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Preface

RNA molecules participate in and regulate a vast array of cellular processes besides

being the physical link between DNA and proteins. They play several other key roles,

which include RNA catalysis and gene regulation mediated mainly by noncoding

RNAs. This regulation occurs at some of the most important levels of genome

function, such as chromatin structure, chromosome segregation, transcription, RNA

processing, RNA stability, and translation. Further, harnessing the potential of RNA

as a therapeutic or diagnostic tool, or as a central player in a fundamental biological

process is becoming increasingly important to the modern day scientific community.

Previously scientists imagined that there was an “RNA World,” in which primitive

RNA molecules assembled themselves randomly from building blocks in the primor-

dial ooze and accomplished some very simple chemical chores. But these molecules

were thought only to be carrying information from DNA to ribosomes. Discovery of

catalytic RNAs changed this idea and opened up a wealth of opportunities to allow

investigators to modulate gene expression post-transcriptionally using ribozymes and

derivatives. In addition to ribozymes, a new RNA-based strategy for regulating gene

expression in mammalian cells has recently been described. This strategy is known

as RNA interference (RNAi). Although much is known about the mechanisms of

RNAi, there lie a number of hurdles that need to be overcome along the applicative

path of gene-silencing technology which includes the activation of innate immunity,

off-target effects, and in vivo delivery.

Currently, high-throughput sequencing, bioinformatic and biochemical approaches

are identifying an increasing number of regulatory RNAs.Unfortunately, our ability to

characterize the detailed story of regulatory RNAs is significantly lacking. Extensive

research of these RNAs is an emergent field that is unraveling the molecular

underpinnings of how RNA fulfills its multitude of roles in sustaining cellular life.

The resulting understanding of the physical and chemical processes at the molecular

level is critical to our ability to harness RNA for use in biotechnology and human

therapy, a prospect that has recently spawned a multibillion-dollar industry.

Nevertheless, RNA research can be daunting, and without a thorough under-

standing of the challenges and complexities inherent in handling this fragile nucleic

acid, forays into the RNA world can be quite frustrating.
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In this book, we have made an attempt to bring together the contributions of the

leading noncoding RNA researchers to embellish the story of regulatory RNAs and

provide a snapshot of the current status of this dynamic field.

The book consisting of 21 chapters offers a comprehensive overview of our

current understanding of the regulatory noncoding RNAs, namely, small interfering

RNAs (siRNAs), microRNAs (miRNAs), Piwi-interacting RNAs (piRNAs), small

nucleolar RNAs (snoRNAs), long noncoding RNAs (lncRNAs), small RNAs

(sRNAs), etc., and their applications in understanding biological systems and

diseases, including therapeutics. This book is divided into three major sections as

per its title. The first section “Basics” consists of eight chapters (Chaps. 1–8). The

first chapter gives an overview of the entire landscape of noncoding RNAs, mainly

highlighting their history and functions with a focus on the current status of

research and future perspectives. This is followed by chapters on discovery, bio-

genesis, evolution, regulatory functions, and molecular mechanisms of different

category of noncoding RNAs.

The “Methods” section provides state-of-the-art experimental and computa-

tional methodologies for noncoding RNA detection using different techniques

and experimental analysis of noncoding RNA regulatory networks in different

systems. This part includes Chaps. 9–15 and provides different bioinformatic,

high-throughput RNA sequencing, ncRNA-specific microarrays, and biochemical

approaches to identify these RNAs as well as protocols for transfection, gene

knockout experiments, and regulatory RNA–based cellular reprogramming and

pathways in different species. Further, some chapters are devoted to methods and

protocols that have been developed by the authors themselves.

The “Applications” section includes Chaps. 16–21, which cover applicative

areas of various noncoding RNAs within a biological system. These serve as

biomarkers for different diseases like cancer, target cancer stem cells, act as

regulators in cell lineage determination, etc. Further, RNAi therapeutics is applied

against solid organ malignancies, cellular reprogramming, and stem cell–based

regenerative therapy.

We are grateful to our friends and colleagues who have encouraged and

supported us in many ways towards preparation of this book. We acknowledge

them, with sincere thanks and appreciation. We take this opportunity to thank all the

authors who have contributed excellent chapters to this book and the reviewers for

their critical comments to improve the quality and integrity of the chapters. Their

special effort has made this book a valuable resource for scientists and aspiring

research students interested in the intersection of RNA biology and clinical

research. We would like to express our sincere appreciation to Sabine Schwarz

and Ursula Gramm of Springer Heidelberg for their invitation to initiate this book

and their continuing support and commitments in making this book a reality and to

other staff members involved in the production of the book.

Bibekanand Mallick and Zhumur Ghosh
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Chapter 1

Renaissance of the Regulatory RNAs

Zhumur Ghosh and Bibekanand Mallick

Abstract “Non-coding RNAs (ncRNAs)” originate from various types of regu-

latory DNA, which lie deep in the wilderness of so-called junk DNA present within

the genomes. Far from being humble messengers, a group of ncRNAs are powerful

players in how genomes operate and are better termed as “regulatory RNAs”. The

new regulatory role of RNA began to emerge recently as researchers discovered

different classes of regulatory RNA molecules, namely, small interfering RNAs

(siRNAs), microRNAs (miRNAs), PIWI-interacting RNAs (piRNAs), small nucle-

olar RNAs (snoRNAs), long noncoding RNAs (lncRNAs), etc. These versatile

RNA molecules appear to comprise a hidden layer of internal signals that control

various levels of gene expression in physiology and development, including

chromatin architecture/epigenetic memory, transcription, RNA splicing, editing,

translation, and turnover. RNA regulatory networks may determine most of our

complex characteristics, play a significant role in diseases, and constitute an

unexplored world of genetic variation both within and between species. In this

chapter, we have attempted to provide a snapshot of the entire landscape of these

versatile molecules.

Keywords Gene expression • long noncoding RNA • microRNA • noncoding

RNA • regenerative therapy • regulatory RNA • ribozymes • RNA world • siRNA
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1.1 Introduction

Beginning of life on earth is one of those big events where the prime role is played

by the tiniest ones. To depict the exact scenario regarding what happened millions

of years ago, scientists study how life works now and then trace back. Today’s cells

keep all-inclusive instruction manual – the DNA under tight wraps in the nucleus.

Tiny pores in the wrapping are the only way in or out. When the cell needs

directions, the DNA makes a copy of the particular pages required in the form of

a short, single strand of ribonucleic acid – the messenger RNA that can leave the

nucleus. Outside the nucleus lies the cell’s framework – the cytoplasm. Messenger

RNA (mRNA) wends its way through the maze looking for the nearest relay station:

a ribosome. Ribosomes call in their interpreters: transfer RNA (tRNA). These

recognize parts of the mRNA message and give it to the ribosome. Ribosomes

get the instructions from DNA to make proteins, which carry out functions in the

cell and in the body ranging from digesting the burger you had for lunch to

determining your skin color. Ribosomes assemble proteins from building blocks,

called amino acids that tRNAs line up in the correct order. Yet another kind of RNA

in the ribosome (rRNA) helps move the assembly line along.

Researchers wondered regarding which came first, DNA, RNA, or protein? This

classic “chicken-and-egg” problem made it immensely difficult to conceive of any

plausible prebiotic chemical pathway to the molecular biological system. It is

obvious that the first information molecule must have been able to reproduce itself

and carry out tasks similar to those done by proteins today, and this limited the

choice. Among the options, RNAs were found to perform numerous functions,

which were once thought to be domains of proteins. Their unique properties bagged

appreciation of the scientific community and obligated them to revise the tenets of

“central dogma”. Hence, they imagined an “RNAWorld,” in which primitive RNA

molecules assembled themselves randomly from building blocks in the primordial

ooze and accomplished some very simple chemical chores. This concept originated

in late 1960s and was supported by different groups (Woese 1967; Crick 1968).

RNA molecules mainly garnered attention with the discovery of ribozymes – the

catalytic RNAs in 1980s (Guerrier-Takada et al. 1983; Kruger et al. 1982). Tom

Cech and his group discovered that an intron within a pre-rRNA from Tetrahymena
thermophila catalyzes its own cleavage (called self-splicing) to form the mature

rRNA product. This explained why some RNAs act as natural RNA enzymes with

self-splicing activity, which is a favorable prerequisite factor for origin of life on

earth (Kruger et al. 1982).

The breakthrough discovery of catalytic RNAs entailed a remarkable increase in

knowledge about the folding of RNA molecules and their functional activities.

Moving a bit further along the landscape of present day research, the explosion of

high-throughput next generation sequencing methods (Mortazavi et al. 2008),

large-scale genome sequencing, and genome-wide transcriptome studies (Lao

et al. 2009) in various organisms has led to the discovery of the RNAi (RNA

interference) phenomenon (A. Fire and G. Mello, Nobel Prize in Medicine or

4 Z. Ghosh and B. Mallick



Physiology, 2006) and the role of noncoding RNAs (ncRNAs) in it, that act as

transcriptional and posttranscriptional regulators. Apart from regulating gene

expression, these ncRNAs also play a dominating role in maintaining genome

stability (Moazed 2009) and have led to novel insights into the biological systems.

This “regulatory RNA” field is presently expanding at an unprecedented rate, and

exciting new developments will undoubtedly emerge over the next years.

Recently, it has been revealed from deep sequencing data of Encyclopedia of

DNA Elements Consortium (ENCODE) transcriptome projects that eukaryotes

transcribe up to 90% of their genomes, whose large fraction includes large and

short RNAs with no coding ability (Birney et al. 2007). Earlier, there was a belief

that more complex organisms would have a greater number of protein-coding

genes; however, it is now well established that human and mouse have approxi-

mately the same number of genes as that of the microscopic organism,

Caenorhabditis elegans (Taft et al. 2007). The complexity of cellular functions in

advanced organisms and their small percentage of coding genome (~2–3%) was

always a tough question to explain their correlation, but not anymore because of the

discovery of thousands of different types of ncRNAs in recent years. It is now clear

that biological complexity probably correlates to non-protein coding genes, not

protein coding genes as thought earlier (Taft et al. 2007).

1.2 The Serendipity

With the discovery of RNAi in 1998 by Andrew Fire, Craig Mello, and colleagues

(Fire et al. 1998), the long-believed concept about RNA became complicated. They

observed silencing of gene expression by double-stranded RNAs (dsRNAs) in

nematodes. This serendipitous phenomenon, termed as RNAi, was discerned

when they injected dsRNAs into the Caenorhabditis elegans and observed silenc-

ing of a gene whose sequence was complementary to that of the dsRNAs. Since

then, RNA has become the heart and soul of a scientific study and created a new

revolution in the field of biological sciences. This revolution started unnoticed in

the late 1980s and early 1990s when plant biologists working with purple petunia

were surprised to find that introducing numerous copies of a gene that codes for

deep purple flowers led to plants with white or patchy flowers, which was not

expected (Napoli et al. 1990; van der Krol et al. 1990). Somehow, the inserted

transgenes silenced both themselves and the plants’ own “purple-flower” genes.

These observations mystified the biologists for a few years but were readily

deciphered after the findings by Fire and Mello in 1998. This RNAi phenomenon

was originally thought to be confined to exogenous dsRNAs; however, it

gradually became clear that genomes of plants and animals encode various

types of endogenous dsRNAs, namely, small interfering RNAs (siRNAs),

microRNAs (miRNAs), etc. The canonical RNAi pathway in animals has been

described in details in Chapter 5. New classes of ncRNAs and more members

1 Renaissance of the Regulatory RNAs 5



of existing classes continue to be elucidated in past years and are yet to be

discovered in future.

1.3 Regulatory RNAs to Date

The world of ncRNAs keeps expanding with the advent of new molecular and

genomic technologies in recent years. Figure 1.1 depicts the different types of

regulatory ncRNAs identified till date.

There have been recent discovery of new ncRNAs sitting adjacent to transcrip-

tion start sites, e.g., promoter-associated small RNAs (PASRs) (Kapranov et al.

2007), transcription initiation RNAs (tiRNAs) (Taft et al. 2009a), and termini-

associated small RNAs (TASRs) located near 30 end of the genes (Kapranov et al.

2007; Kapranov et al. 2010), aside from identification of other regulatory ncRNAs

such as small nucleolar RNAs (snoRNAs) and processed snoRNAs (psnoRNAs)

(see Chap. 3), small RNAs (sRNAs) in bacteria (see Chap. 4), long noncoding

RNAs (lncRNAs) (see Chap. 6), siRNAs, miRNAs, piRNAs, small modulatory

RNAs (smRNAs), tiny noncoding RNAs (tncRNAs), etc. While many of these

ncRNAs remain undeciphered at an appreciable level, miRNAs, siRNAs, and

DNA RNA Coding RNA
(mRNA)

Protein

Non-coding
RNA

Constituent 
RNAs

rRNA
tRNA

reverse
transcription

replication

siRNA

miRNA

piRNA

rasiRNA

lncRNA

scaRNA
snoRNA

sRNA

Regulatory
RNAs

RNA World

scnRNA

xiRNA

PASR

tiRNA

transcription

Fig. 1.1 The expanding noncoding RNA landscape
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piRNAs have been most thoroughly investigated to infer their evolution, function,

and applications in myriad areas of biological systems. In humans, there are over

1,000 miRNAs, hundreds of siRNAs, and millions of piRNAs, complying with the

observation of ncRNAs occupying a substantial portion of the genome. They

contribute significantly to complex regulatory systems of a higher organism by

coordinating important cellular functions at the transcriptional and/or posttranscrip-

tional level. These regulatory RNAs have expanded the RNAworld in due course of

time (see Fig. 1.2 for chronological trajectories for major RNA discoveries). And,

Table 1.1 provides an overview of various types of regulatory RNAs discovered till

date.

1.4 Mini Silencers

Extensive research in the past few years on gene silencing has revealed that the

argonaute protein family members are key players in these pathways (Hutvagner

and Simard 2008; Peters and Meister 2007) guided by different types of small

RNAs. Argonaute proteins are evolutionarily conserved and phylogenetically clas-

sified into the AGO subfamily and the PIWI subfamily. AGO proteins, ubiquitously

expressed in cells bind to siRNAs and miRNAs and regulate posttranscriptional

gene silencing either by destabilization of the mRNA or by translational repression.

Although miRNAs and siRNAs were independently discovered, they share a

common chemical composition, biogenesis-related events, RISC complex assem-

bly Table 1.2, andmechanism of action (see details in Chaps. 5 and 2). They also differ

in their evolutionary conservation process, and possibly they target different genes

(Bartel and Bartel 2003). piRNAs are the most recent development in the RNAi field

that were first reported in 2006 by four independent studies (Aravin et al. 2006;

Girard et al. 2006; Grivna et al. 2006; Watanabe et al. 2006) through cloning of

small RNAs associated with PIWI proteins. PIWI proteins are mostly expressed in the

germlines (Seto et al. 2007) and bind to these novel class of ncRNAs and facilitate

silencing of transposons, the mobile genetic elements, and serve diverse functions in

germline development and gametogenesis (refer to Chap. 5).

miRNA

piRNA tiRNAPASR

19931990 2006 2007 20091965

snoRNA

1968

tRNA

lncRNA

1984

sRNA
bacteria

aTASR

TASR

2010

xiRNA
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Fig. 1.2 Chronological trajectory of the major discoveries related to RNAs
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piRNAs are found in the testes and ovaries of zebra fish and Drosophila as well

as in the testes of mammals. In the germline, these small RNAs ensure genomic

stability by silencing endogenous selfish genetic elements (retrotransposons and

repetitive sequences). piRNA biogenesis is driven by two distinct processes that

have been revealed by deep sequencing and genetic studies (Siomi et al. 2010).

Majority of unique piRNAs are derived from transposon-rich heterochromatic

clusters (Brennecke et al. 2007; Yin and Lin 2007). There is a “ping-pong”

amplification cycle which is needed to amplify siRNA triggers in plants,

nematodes, and yeast (Verdel et al. 2009) (see Chap. 2). The ping-pong model

was developed from observations in Drosophila, but a similar mechanism appears

to function in other animal groups (Aravin et al. 2007; Houwing et al. 2007;

Grimson et al. 2008; Palakodeti et al. 2008; Lau et al. 2009).

A considerable fraction of the piRNAs isolated to date map to transposon-

encoding regions (although this is highly variable from species to species) (Girard

and Hannon 2008), and piRNA mutations lead to massive transposon over-

expression. piRNA–PIWI complexes are therefore assumed to directly control

transposon activity. piRNAs bound to PIWI proteins direct homology-dependent

target cleavage in vitro, suggesting that transposons are silenced through posttran-

scriptional transcript destruction (Gunawardane et al. 2007; Saito et al. 2006;

Nishida et al. 2007). piRNAs bound to Aub and AGO3 direct homology dependent

cleavage of mature transposon transcripts after export from the nucleus. Mutations

in piRNA pathway genes disrupt germline development, often producing complex

and poorly understood phenotypes that are difficult to directly associate

with transposon targets of the pathway (see Chap. 5). There are also evidences,

Table 1.2 Comparison between three most popular small regulatory RNAs

Features siRNAs miRNAs piRNAs

Organisms Eukaryotes Eukaryotes, viruses Worm, zebra fish,

mammals

Origin Endogenous and

Exogenous:

transposons, viruses,

DNA

heterochromatin

Endogenous Endogenous

Length 21–22 18–25 24–30

Nature of precursors dsRNA dsRNA ssRNA

Genomic location Dispersed

throughout

Dispersed throughout Clustered

Site of biogenesis Cytoplasm/nucleus Nucleus/cytoplasm Not clearly known

Argonaute AGO1–AGO4 AGO2 PIWI/aubergine, AGO3

Site of expression All tissues All tissues Germlines

Type of transcripts Polycistronic Polycistronic/

monocistronic

Polycistronic

Phylogenetic

conservation

Rarely conserved Highly conserved Not conserved

The information provided in this table are up to date as per our knowledge (till the time of drafting of

the book). These information are likely to change in due of time because of new research discoveries
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which show that piRNAs might also have a role in regulating translation (Grivna

et al. 2006; Unhavaithaya et al. 2009). These ncRNAs are also assumed to play a

significant role in regulating gene expression, which might be restricted to

specific tissues or developmental stages. Majority of the piRNAs map to the

unannotated regions of the genome in poriferans, cnidarians, worm, and mouse

and only a limited set match transposons and other repeats (Aravin et al. 2006;

Girard et al. 2006; Grimson et al. 2008; Batista et al. 2008; Ruby et al. 2006)

which supports this hypothesis. All these hints toward the biological function for

this novel class of small RNAs well beyond transposons and germline

development.

1.5 Exploring the Genomic Dark Matter

In recent years, novel strategies – both computational and experimental – have

been undertaken to identify a great number of novel ncRNA candidates in various

model organisms from Escherichia coli to Homo sapiens (Storz 2002; Washietl

et al. 2005; Huttenhofer et al. 2001; Wassarman et al. 2001). These findings

demonstrated that the number of ncRNAs in genomes of model organisms is

much higher than it had been anticipated.

Among the different experimental strategies for identifying novel ncRNAs,

RNA sequencing is one of the most powerful and widely adopted approaches and

relies on the generation of specialized cDNA libraries, e.g., RNP libraries (see

details in Chap. 9). Other methods include microarrays for identifying ncRNAs

expressed under a given experimental condition (see Chap. 12) and/or ncRNAs of

various sizes in a single experiment employing hybrid LNA/DNA microarrays (see

details in Chap. 9), “genomic SELEX” to select ncRNA candidates from the

sequence space represented by the genome of an organism of interest, or targeted

deep sequencing of classes of RNA with distinct 50 and 30 ends or affinity for

specific proteins after extraction with immunoprecipitation (see Chap. 10). Apart

from such biochemical methods, bioinformatics tools are also employed to identify

various types of ncRNAs from different species and model organisms (Washietl

et al. 2005; Vogel and Sharma 2005; Eddy 2002). These bioinformatic tools are

often based on sequence, secondary structure, and thermodynamic identities, and/or

conservation features of ncRNAs revealed through comparative genomics

approaches. For comprehensive understanding of the principles and methods for

prediction of small RNAs among bacteria and their targets refer to chapter 11 for

biocomputational approaches, and chapter 14 for experimental approaches. The

long ncRNAs represent another major unexplored component of genomes of great

potential biological importance (see Chap. 8), but they are not properly acknowl-

edged and explored unlike other small RNAs (Carninci and Hayashizaki 2007).

Moreover, lncRNAs surprisingly have no significant homology identified across

each lncRNA in their sequences and mechanisms of function, unlike other ncRNAs

such as miRNAs. These raise questions regarding diversity in their functions and
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origins. Therefore, many methods, both computational and experimental have come

up in these years to identify and characterize lncRNAs (refer to Chap. 13) and make

comprehensive catalogs of these ncRNAs for better understanding of their

functions in gene regulation and human diseases.

However, without a clue to their biological functions, the newly identified

ncRNA molecules raise the burning questions: what are the functions of all of

these RNA transcripts? Or, if they are not functional, why does the cell devote its

resources to producing them? Hence, next to “novel approaches” for identifying

ncRNAs in different organisms comes the novel methods preferably high-through-

put methods (Willingham et al. 2005; Krutzfeldt et al. 2005) to understand their

biological roles in those organisms.

1.6 ncRNAs: A Password to Future Personalized Therapy

Continual discoveries of ncRNAs have changed the landscape of human genetics

and molecular biology. Over the past 10 years, it has become clear that ncRNAs are

involved in all developmental processes (see Chap. 7), including stem cell and

germline maintenance, development and differentiation, and when dysfunctional,

underpin disease (Lee and Calin 2011; Qureshi and Mehler 2011). Several classes

of ncRNAs, such as siRNAs, miRNAs, piRNAs, snoRNAs, etc., are implicated in

different diseases, namely, cancer, heart diseases, immune disorders, and neurode-

generative disorders (see Chap. 18) and metabolic diseases, etc. (Galasso et al.

2010; Taft et al. 2010).

ncRNAs also play a dominant role towards shaping the epigenetic program in

human embryonic stem cells and adult cells (Lunyak and Rosenfeld 2008). This has

opened up the avenue to understand how cells remember their own fates and hence

can improve regenerative medicine in several ways. Specific ncRNAs can be used

as markers to track and predict when cells are acquiring or forgetting specific cell

fates (see Chap. 17). For instance, it may be possible to learn from the pattern of

ncRNAs that an embryonic stem cell is ready to become cardiac cells, which can be

used to treat a patient with cardiac hypertrophy. Further, beyond tracking cell fate,

ncRNAs may be used for direct manipulation of stem or adult cell fates. They can

be used for reprogramming pluripotent stem cells into desired cell types (see Chap.

15). While these potential applications are far in the future, we believe that better

knowledge of this new level of gene regulation will lead to more facile and efficient

manipulation of cell fates for regenerative medicine in future.

Moreover, siRNAs have become not only an exciting new tool in molecular

biology but also the next frontier in molecular therapeutic applications. In this

volume, we have described the types of choices that must be made in the develop-

ment of siRNA therapeutics, the features of the siRNA molecule that are important

for maximizing silencing activity, how to design delivery vehicles to transport

siRNAs to their intended location, and examples of ongoing clinical trials utilizing

siRNA therapeutics to treat solid tumors, acute kidney failures, and some of the

1 Renaissance of the Regulatory RNAs 13

http://dx.doi.org/10.1007/978-3-642-22517-8_13
http://dx.doi.org/10.1007/978-3-642-22517-8_7
http://dx.doi.org/10.1007/978-3-642-22517-8_18
http://dx.doi.org/10.1007/978-3-642-22517-8_17
http://dx.doi.org/10.1007/978-3-642-22517-8_15


acute and dreadful viral infections (see Chap. 19). Furthermore, it has been

observed that some cellular pathways are altered in cancer stem cells (CSC), and

these preferentially offer targets for RNAi therapy against cancers (see Chap. 16).

RNAi provides a unique opportunity to silence cancer-causing stem cell genes at

the pretranslation level, which is otherwise not possible with conventional therapies

such as cytotoxic chemotherapy, small molecule inhibitors, or monoclonal

antibodies.

Since ncRNAs are linked to pathological conditions and, in particular, disease

development and progression, ncRNAs might become useful biomarkers for diag-

nostic purposes. For example, miRNAs have been found to be associated with

disease prognosis, survival, and mortality in biopsies (Schetter et al. 2009;

Bloomston et al. 2007). Their expression levels can be determined by in situ

hybridization and microarray, e.g., on a tumor section and its normal adjacent

counterparts (see Chap. 21). Major challenge lies in translating the molecular

signatures determined in the laboratory to the clinical setting.

The fundamental roles of ncRNAs in development, differentiation, and malig-

nancy suggest that these classes of molecules are potential targets for novel

therapeutics. Antisense oligonucleotide approaches used for inhibition, and

siRNA-like technologies used for replacement are currently being explored for

therapeutic modulation of miRNAs. Several approaches are currently adopted to

silence ncRNAs. Table 1.3 enlists the different approaches for the purpose, which

has been mostly applied to miRNAs till today.

Table 1.3 Approaches employing ncRNAs in therapeutic applications

Approaches

Name of the

tools/methods Applications References

Inhibition of mature

miRNAs

microRNA

sponges

Silence oncomiR family Ebert et al. (2007)

20-Ome AMOs Silence oncomiR Krutzfeldt et al.

(2005)

20-MOE AMOs Silence oncomiR Weiler et al. (2006)

LNA-antagomir Silence oncomiR Elmen et al. (2008a)

Manipulation of miRNA

precursor

amiRNAs Silencing of target genes

involved in

metastasis

Liang et al. (2007)

Zhang et al. (2006)

Inhibition of pri-miRNA AMOs (RNase

H-based)

Silence polycistronic

clusters of miRNAs

Wu et al. (2004)

Replacement of mature

miRNAs

Pre-miRNA-like

shRNAs

Restore tumor suppressor

miRNAs

Brummelkamp et al.

(2002)

Double-stranded

miRNA

mimetics

Restore tumor suppressor

miRNAs

Tsuda et al. (2006)

Designing small

oligonucleotides with

perfect complementary

to the seed

Target protectors Inhibit functions of

oncomiR

Choi et al. (2007)

AMOs anti-miRNA oligonucleotides, 20-Ome 20-O-methyl, 20-MOE 20-O methoxyethyl,

LNA locked nucleic acid, oncomiR oncogenic miRNAs, amiRNAs artificial miRNAs
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Specific knockdown of miRNAs by anti-miRNA oligonucleotides (AMOs),

double-strand miRNA mimetics, and overexpression of miRNA duplexes have

been conducted in vitro and in vivo. Inhibition of specific miRNAs in mouse

model has been performed by antagomirs. Also RNase H-based AMOs have been

found useful for targeting polycistronic pri-miRNAs, like the miR-17–92 cluster

(Wu et al. 2004). Specific dose-dependent silencing of miR-122 has been performed

by systemic administration of 16-nucleotide unconjugated locked nucleic acid

(LNA)-AMO which is complementary to the 5
0
end of miR-122 (Elmen et al.

2008b). Another de novo engineered ncRNA inhibitors are “miRNA sponges”

which inhibit miRNAs with a complementary heptameric seed, such that a single

sponge can be used to block an entire miRNA family with the same seed. Inhibition

of Drosha, Dicer, or any other components in the maturation pathway is another

method for therapeutic targeting of ncRNAs. This method however might be

difficult to be made specific in its therapeutic effect. Moreover, artificial miRNAs

(amiRNAs) are recently developed miRNA-based tools to silence endogenous

genes. These are created from an endogenous miRNA precursor by exchanging

the miRNA/miRNA sequence of it with a sequence designed to match the target

gene of interest (see Chap. 20).

An alternative therapeutic strategy of replacement of defective/absent RNA

effectors is needed if there is a loss in the activity of ncRNAs in the diseased/

affected cells. Lentiviral delivery of short hairpin RNAs is one of the systems for

the delivery of shRNA constructs designed to mimic the pri-miRNA by including

the miRNA flanking sequence into the shRNA stem (Chang et al. 2006; Zeng et al.

2005). Further, there has been activation of tumor suppressor miRNAs, such as

miR-127, by chromatin-modifying drugs which can inhibit tumor growth through

downregulation of their target oncogenes (Grunweller and Hartmann 2007).

All these highlight the clinical potential of ncRNAs as biomarkers for diagnosis,

prognosis, and prediction of therapeutic outcome.

1.7 Future Perspectives

The possibility of self-replicating ribozymes emerging from pools of random

polynucleotides and surviving in a prebiotic soup has put forth these RNAs to be

a challenging molecule, which leads us to an “RNA world.” The logical order of

events begins with prebiotic chemistry and ending with DNA/protein-based life.

The present challenge lies in decoding the genomic dark matter. Further, the

absolute number of protein-coding genes encoded by a genome is essentially static

across all animals from simple nematodes to humans (Taft et al. 2007), which hints

for additional genetic elements that must be involved in the development of the

increasingly complex cellular, physiological, and neurological systems. Noncoding

RNAs are the likely candidates, which can resolve such discrepancy within the

genomic content and illuminate on the genomic dark matter, as they are adaptively
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plastic, capable of regulating processes both broadly and sequence-specifically, and

are now known to be components of nearly all cellular and developmental systems.

It is becoming clear that a comprehensive understanding of human biology must

include both small and large noncoding RNAs. With new systems biology

approaches, and in-depth investigation of other important players and their

interactions, we may see an emerging integration of RNA-dependent regulatory

networks into normal cell physiology. It is perhaps only through inclusion of these

elements in the biomedical research agenda along with studies to determine the

mechanistic basis of the causative variations (identified by genome-wide association

studies), that complex human diseases will be completely deciphered.
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Chapter 2

Diversity, Overlap, and Relationships

in the Small RNA Landscape

Michelle S. Scott

Abstract Rapidly evolving, of high abundance and great diversity, small RNAs

are increasingly found to play central cellular regulatory roles, the extent of which

we are only now starting to comprehend. The evolutionary association of diverse

classes of small RNAs and transposable elements is offering clues about the origin,

abundance, biogenesis pathways, and target acquisition mechanisms of small

RNAs. And as well as a similar relationship with transposable elements, different

types of small RNAs show commonalities in their processing pathways while

displaying a wide degree of diversity and variation within their biogenesis

pathways and amongst their precursors, likely allowing for flexible regulation.

This book chapter examines the evolutionary relationship between small RNAs

and transposable elements through the role transposable elements play in the

expansion of small RNA classes as well as the acquisition of novel targets. The

great diversity but also overlap in both the small RNA biogenesis pathways and

functional entities are also explored.

Keywords Biogenesis pathways • microRNAs • transposable elements

2.1 Introduction and Overview

During the past decade, numerous members of diverse classes of small RNAs have

been associated with transposable elements, offering clues about the origin, abun-

dance, biogenesis pathways, target acquisition mechanisms, and rapid evolution of

groups of small RNAs. Large numbers of small RNAs, and in particular miRNAs,

M.S. Scott (*)

Division of Biological Chemistry and Drug Discovery, College of Life Sciences, University of

Dundee, Dundee, UK

Current address: Department of Biochemistry, University of Sherbrooke, Sherbrooke,Québec, Canada
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have been recently found to originate from noncanonical precursors, display varia-

tion in their biogenesis pathways, or exert novel regulatory functionality, making

clear-cut classification of these molecules increasingly difficult.

The great diversity of small RNA precursors, biogenesis pathways, and targeting

mechanisms allows for combinatorial complexity and high flexibility in the regula-

tion of multiple aspects of cellular function. Increased understanding of the evolu-

tionary and regulatory relationships between these different noncoding RNAs will

be central to unlocking the multiple layers of regulation underlying the cell’s

complexity. This understanding will also be important to determine how we can

harness this knowledge to treat the numerous diseases likely to result from defects

in the regulation of these pathways. For example, numerous miRNAs display

deregulated expression and a functional involvement in cancers (reviewed in

Garzon et al. 2006).

The first half of this chapter explores the relationships between transposable

elements and small RNAs, examining in particular how they have served in the

expansion of small RNA classes as well as the acquisition of novel targets, leading

to both overlap and diversity. The rapid expansion of these elements has led to an

RNA landscape displaying overlapping but also varied and diverse biogenesis

pathways and functional entities which are explored, from a microRNA perspec-

tive, in the second half.

2.2 Evolutionary Relationship Between Small Noncoding

RNAs and Transposable Elements

Members of diverse classes of small RNAs have strong ties with transposable

elements (TEs), generating both small RNAs employed by the cell to suppress

TE expression and transposition but also small RNAs which have acquired new

functionality and serve other and diverse cellular roles, as described in Sect. 2.2.2.

Also known as repeat elements and “jumping genes,” TEs have provided some

small noncoding RNAs with a mechanism for expansion and acquisition of novel

targets and functions, as explored in Sect. 2.2.3.

2.2.1 Transposable Elements

TEs are highly abundant genetic sequences which have the capacity of both moving

and proliferating within and between genomes. It is estimated that between 30%

and 50% of the sequence in mammalian genomes (45% in human), and even higher

proportions in some plants, is derived from TEs, although most are currently

inactive (reviewed in Cordaux and Batzer 2009; Mourier and Willerslev 2009;

Tenaillon et al. 2010). As illustrated in Fig. 2.1, two main types of TEs have been
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described, the retrotransposons and the DNA transposons, also referred to as class I

and class II transposons respectively (reviewed in Cordaux and Batzer 2009;

Slotkin and Martienssen 2007). DNA transposons can move to new genomic

locations, either autonomously or nonautonomously, by excising themselves from

their current location as a DNA molecule and inserting themselves elsewhere. In

contrast, retrotransposons copy themselves using an RNA intermediate which is

reversed transcribed and inserted back into the genome in a different location.

Three main subclasses of retrotransposons have been described (reviewed in

Deininger and Batzer 2002; Richard et al. 2008; Cordaux and Batzer 2009):

– Long terminal repeats (LTRs)

– Long interspersed nuclear elements (LINEs)

– Nonautonomous retrotransposons including the abundant short interspersed

nuclear elements (SINEs).

Fig. 2.1 Classes and structures of TEs. TEs can be classified into two groups based on their

requirement of reverse transcription for transposition. LTRs (a) are flanked by direct repeats at

their ends and encode proteins (gag and pol) which closely resemble retroviral proteins. SINEs (b)

are flanked by direct repeats and encode an RNA polymerase III promoter, whereas LINEs (c)

contain two open reading frames necessary for transposition (ORF1 and ORF2) which are flanked

by untranslated regions (UTRs). Unlike LINEs, SINEs do not encode proteins and are believed to

use the LINE retrotranscription machinery for reverse transcription. Class II elements do not

utilize an RNA step and instead employ a transposase, which recognizes terminal inverted repeats

(TIRs) for excision from the donor site and integration into an acceptor site. Autonomous DNA

transposons (d) encode their own transposase, whereas nonautonomous DNA transposons (e)

encode either a mutated version of the autonomous transposase gene, an unrelated portion of the

host genome, or even a deleted version which consists simply of TIRs in a tail-to-tail orientation

(MITE). Arrows represent direct or inverted repeats. Small striped boxes represent RNA polymer-

ase promoters. Light gray boxes represent genes important for the transposition. Classes and

characteristics of TEs are reviewed in Cordaux and Batzer (2009), Deininger and Batzer (2002),

Richard et al. (2008), Slotkin and Martienssen (2007)
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LTRs are very abundant in plant genomes. However, they have low activity in

organisms like humans. In contrast, members of the LINEs and SINEs are believed

to be currently active in humans (Lander et al. 2001; Mills et al. 2007). TEs range in

length from less than one hundred to a few thousand nucleotides, and some TEs

have been identified in very large copy numbers (e.g., over 1,000,000 copies of Alu

elements, TEs of the SINE subclass of ~300 nucleotides in length, have been found

in the human genome, representing approximately 10% of the genome) (Deininger

and Batzer 2002; Richard et al. 2008; Cordaux and Batzer 2009). The very large

copy number of different TEs in diverse organisms testifies to the great impact they

had in shaping their host genomes.

While TEs can lead to genomic instability if inserted for example in functional

genomic sequences such as protein coding or regulatory regions, they have

also been found to cause the emergence of new regulatory features and genes,

likely playing an important role in evolution and defining organism-specific

characteristics (reviewed in Cordaux and Batzer (2009)). In addition to their role

in the modification and duplication of protein-coding genes, TEs are emerging as

drivers in the creation of novel noncoding genes in numerous organisms.

2.2.2 Association Between Small Noncoding RNAs
and Transposable Elements

Various classes of small RNAs have been described as displaying an association

with one or several types of TEs, as summarized in Table 2.1. Some small RNAs,

such as germ line piRNAs (PIWI-interacting RNAs) and somatic endo-siRNAs

(endogenous small interfering RNAs), derive from TEs and functionally interact

with them, serving the purpose of suppressing TE expression and duplication (Saito

and Siomi 2010; Ghildiyal et al. 2008; Siomi et al. 2008). In contrast, other small

RNAs probably either evolved from TEs that subsequently acquired new function-

ality (a subset of miRNAs for example) or used TE transposition mechanisms for

duplication from existing parental small RNAmolecules such as has been described

for some small nucleolar RNA (snoRNA) copies.

2.2.2.1 piRNAs and TEs

Present both in vertebrates and invertebrates, piRNAs were identified as small RNA

interactors of PIWI proteins, a family originally characterized through genetic

studies as playing a role in the maintenance of germ line integrity (Cox et al.

1998; Brennecke et al. 2007). piRNAs show a strong bias for uridine residues at

their 50 end but no clear secondary structure features in flanking regions in the

genome (O’Donnell and Boeke 2007). Most piRNAs map to a small number of

position-conserved TE-rich clusters which express up to several thousand piRNAs
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displaying low sequence conservation (Malone and Hannon 2009; Brennecke et al.

2007). In both vertebrates and invertebrates, piRNAs have been detected almost

uniquely in germ line cells, where they are believed to function in the silencing of

TEs (Aravin et al. 2006; Brennecke et al. 2008; Das et al. 2008; Houwing et al.

2007). piRNAs are processed from single-stranded precursors derived from both

sense and antisense TE transcripts (Brennecke et al. 2007; Saito et al. 2006). The

biogenesis of piRNAs in flies and mammals has been proposed to involve primary

and secondary processing in a mechanism referred to as the ping-pong cycle

(illustrated in Fig. 2.2). This cycle involves primary piRNAs binding to their

targets and recruiting PIWI family proteins, leading to target cleavage and TE

transcript destruction and resulting in the production of secondary piRNAs, which

can perpetuate the cycle (Brennecke et al. 2007; Gunawardane et al. 2007). In

addition, piRNAs have been found to regulate the DNA methylation of TEs, thus

also exerting epigenetic control over these elements (Brennecke et al. 2008;

Kuramochi-Miyagawa et al. 2008).

Table 2.1 Relationships between TEs and small RNAs

Small RNA

class

Position in genome Associated TEs Relationship

with TEs

References

piRNAs TEs, repeats and

piRNA clusters

Class I and

class II

Transcribed from

TEs, piRNAs

serve in TE

silencing

Kim et al. (2009),

Saito and

Siomi (2010),

Siomi et al.

(2008)

Endogenous

siRNAs

TEs, repeats and

endo-siRNA

clusters

Class I and

class II

Transcribed from

TEs, endo-

siRNAs serve

in TE silencing

Ghildiyal et al.

(2008), Kim

et al. (2009),

Saito and

Siomi (2010),

Siomi et al.

(2008)

miRNAs In introns of

protein-coding

and non-protein

coding host

genes. Others

are encoded in

intergenic

transcription

units

Class I and

class II

TE expression and

secondary

structure

appropriate for

evolution into

miRNA and

generation of

targets

Baskerville and

Bartel (2005),

Borchert et al.

(2006), Kim

et al. (2009),

Lee et al.

(2004),

Rodriguez

et al. (2004)

snoRNAs Intergenic units or

in introns of

host genes. Can

be clustered

(frequent in

plants) or

individual

(frequent in

animals)

Class I (non-LTR

retro-

transposons)

Transposition

machinery

used for

duplication

Dieci et al.

(2009),

Filipowicz

and Pogacic

(2002), Luo

and Li (2007),

Weber (2006)
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2.2.2.2 Endogenous siRNAs and TEs

Originally observed during virus- and transgene-induced silencing in plants, canon-

ical small interfering RNAs (siRNAs) originate from double-stranded RNAs

(Carthew and Sontheimer 2009). More recently, endogenous siRNAs, including

many derived from TEs, have been uncovered in a wide range of organisms

including animals, plants, and fungi. Endogenous TE-derived siRNA precursors

are believed to originate from diverse TEs including read-through transcription of

DNA transposons as well as bidirectional transcription of LINE1 50 UTR and are

found located in both intronic and intergenic regions (Slotkin and Martienssen

2007; Sunkar et al. 2005). As for piRNAs, endogenous siRNAs are believed to

function in TE silencing, but they have been predominantly identified in somatic

tissues (Ghildiyal et al. 2008; Kawamura et al. 2008; Chung et al. 2008). However,

Fig. 2.2 piRNA biogenesis and ping-pong amplification cycle. (a) piRNA clusters (dark gray
boxes) and functional TEs (light gray boxes) are transcribed in the nucleus. (b) Sense transcripts

(solid arrows) and antisense transcripts (broken arrows) are exported to the cytoplasm. (c) Primary

piRNAs complexed with PIWI family proteins (represented by lined ovals) bind to complementary

TE and piRNA cluster transcripts leading to cleavage and amplification. These resulting short

RNAs are bound by different PIWI family proteins and base pair to complementary antisense

piRNA cluster transcripts resulting in antisense piRNAs, thus completing the proposed cycle.

Block arrows represent progression to subsequent steps in the pathway. piRNA biogenesis is

reviewed in Khurana and Theurkauf (2010), Kim et al. (2009)

28 M.S. Scott



some loci-producing piRNAs in flies have also been found to generate endogenous

siRNAs (Kawamura et al. 2008). A cross talk between the piRNA and endogenous

siRNA pathways has been described in worm (Das et al. 2008). The relationships

between these two types of small RNAs and TEs are further described in Chap. 5.

2.2.2.3 MicroRNAs and TEs

Widely expressed in animals and plants, microRNAs (miRNAs) are ~22 nucleo-

tide-long single-stranded RNAs that are processed out of hairpin precursors of

variable length through an extensively characterized biogenesis pathway (see

Sect. 2.3.1). Encoded in introns of protein-coding genes or independent transcrip-

tion units, miRNAs are involved in gene silencing through the regulation of the

stability and translation of target messenger RNAs (mRNAs), usually by base

pairing with their 30 UTR (untranslated region) or their coding region (Bartel

2009; Lai 2005).

Numerous studies have reported TE-derived miRNAs in several different

organisms. As early as 2002, miRNA-like molecules were described encoded in

TEs in Arabidopsis (Llave et al. 2002). Following that report, through sequence

analyses and computational searches, hundreds of previously identified as well as

novel mammalian miRNAs were described as derived from TEs (Borchert et al.

2006; Piriyapongsa et al. 2007; Smalheiser and Torvik 2005; Yuan et al. 2011). In

mammals, a large proportion of miRNAs is found clustered in the genome, in

regions highly enriched in TEs (Yuan et al. 2011). It has been proposed that the

close proximity of TEs of similar sequence inserted in reverse orientations would

result in structures resembling miRNA precursors which if expressed, might be

recognized as substrates by the miRNA biogenesis pathway (Mourier and Willerslev

2009). Such a clustered TE region has been described on human chromosome 19

(referred to as C19MC)which encodes interspersedmiRNAs andAlu elements. It was

found that many of the Alu elements contain intact RNA polymerase III promoters

which could ensure the expression of the miRNAs (Borchert et al. 2006). This

suggests that TEs might represent not only a template from which small noncoding

RNAs can evolve but also a mechanism to ensure their expression (Fig. 2.3).

The analysis of TE-derived miRNAs has revealed that miRNAs have evolved

from all types of TEs described in the previous section. In human, while most

frequently found associated with the L2 (from the LINE subclass) and MIR (from

Fig. 2.3 Three kilobase portion of the human C19MC cluster (Borchert et al. 2006; Kent et al.
2002). Light and dark gray boxes respectively represent miRNAs and Alu elements. The direction

of transcription is indicated with arrows
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the SINE subclass) elements, miRNAs have also been described as derived from

LTRs and DNA transposons such as DNAmariners as well as other SINE and LINE

elements including the B2, Alu, and L1 elements (Mourier and Willerslev 2009;

Piriyapongsa et al. 2007; Smalheiser and Torvik 2005). The proportion of miRNAs

derived from different TE types varies depending on the organism (Yuan et al.

2011). A family of human miRNAs has also been described as originating from

MITEs (see Fig. 2.1), leading to the formation of stable hairpins resembling miRNA

precursors (Piriyapongsa and Jordan 2007; Slotkin and Martienssen 2007).

TE-derived miRNAs have recently been found to be significantly less conserved

within mammals than miRNAs not derived from TEs, likely due to relatively recent

acquisition (Yuan et al. 2011). The evolution of miRNAs from TEs is depicted in

Fig. 2.5.

2.2.2.4 snoRNAs and TEs

snoRNAs are an ancient family of highly conserved and abundant small noncoding

RNAs that predominantly function as guides for the chemical modification of

ribosomal RNA (rRNA) (reviewed in Matera et al. 2007). Like miRNAs, snoRNAs

are either encoded in introns of protein-coding genes or in independent transcrip-

tion units. Two main types of snoRNAs have been described, the box C/D snoRNAs

and the box H/ACA snoRNAs, which differ in terms of the chemical modification

they catalyze. While several hundred snoRNAs, most of them highly conserved,

have been described in mammalian organisms, computational searches have

identified hundreds and even thousands of additional snoRNAs displaying TE

characteristics (Weber 2006; Luo and Li 2007; Schmitz et al. 2008), described in

Fig. 2.4. These TE-derived snoRNAs, referred to as snoRTs (snoRNA retroposons),

result from the retroposition of existing (parental) snoRNA transcripts which

employed LINE machinery to duplicate and transpose themselves to new genomic

locations (Weber 2006).

While many computationally identified snoRTs have not been found previously

and have not been experimentally validated, others have previously been described

as functional snoRNAs (Luo and Li 2007).

2.2.3 A Driving Force of Evolution

TEs have been described as the most nonconserved regions and represent the most

lineage-specific elements in eukaryotic genomes (Lander et al. 2001). Their recent

contribution to animal and plant genomes and their high abundance suggest that

transposition is a common occurrence that is likely a strong driving force in

evolution, providing a mechanism for the emergence of organism-specific regu-

latory elements. Recent studies have revealed that transposition likely leads to both

the creation of small RNAs with new functionality as well as new targets for small

RNAs as depicted in Fig. 2.5.
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2.2.3.1 Creation of New Small RNAs

The integration of TEs in new genomic locations can lead to the creation of new

small RNAs provided the TE is expressed and its transcript displays an appropriate

structure that is recognized as a substrate in a small RNA biogenesis pathway. As

described in the previous subsection, diverse small RNAs have been found to be

TE-derived, generally following insertion into intergenic or intronic regions

(illustrated in Fig. 2.5a, b). Some such TE-derived miRNAs display a high level

of conservation, but many are lineage specific (Piriyapongsa et al. 2007; Smalheiser

and Torvik 2005). Studies of the pattern of occurrence of TE-derived miRNA

members of specific families throughout multiple organisms have led to the

hypothesis that these families follow the birth-and-death model of evolution. As

opposed to concerted evolution in which members of a family evolve in a similar,

concerted way, in the birth-and-death model, new members of the family created by

duplication either remain in the genome over long periods or are deleted or

inactivated (Nei and Rooney 2005). Several miRNA families display gains and

losses of members when closely related organisms are considered, suggesting a

birth-and-death evolutionary process, functional diversification of the family, and a

role in evolution and lineage-specific traits (Zhang et al. 2008; Yuan et al. 2010).

Fig. 2.4 Common snoRT genomic architectures. In all panels, snoRNAs and exons are

represented respectively by light gray boxes and diagonally lined boxes, while the intronic region

immediately flanking the parental snoRNA is depicted by a thick black line. snoRTs often display

LINE characteristics including upstream L1 consensus recognition site (shown with a thin black

box), poly A tails at their 30 end, and flanking direct repeats referred to as target-site duplications

(TSDs, depicted by black arrows). (a) In mammals, parental snoRNAs are typically encoded in

intronic regions of host genes. (b) The simplest form of snoRTs consists of a snoRNA followed by

a poly A tail at its 30 end and flanked by TSDs. (c) Part of the intronic region downstream of the

parental snoRNA can also be retroposed (represented by the thick black line). The intronic region

flanking the 50 end of the parental snoRNA can also be retroposed (not shown here). (d) Exonic

regions from the parental snoRNA host gene have been identified in some snoRTs. (e) Repeat

elements of the SINE class, flanked by TSDs, are found downstream of the snoRNA sequence in

some snoRTs. Examples of snoRTs are described in Luo and Li (2007), Weber (2006)
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In addition to providing templates for the creation of new small RNAs, TEs have

also been suggested to have allowed the expansion of specific small RNA families.

The C19MC region of human chromosome 19 described in Sect. 2.2.2.3 and Fig. 2.3

consists of a cluster of alternating Alu elements and miRNAs of a primate-specific

family. Alu elements from this cluster are proposed to have not only led to the

creation of novel miRNAs through the reverse orientation of adjacent elements but

are also believed to have facilitated the amplification of the region through

a recombination event, leading to the generation of many additional copies

of these miRNAs and the rapid expansion of this family. This large group of

primate-specific miRNAs was found to be evolving rapidly, resulting in some

nonfunctional miRNAs (pseudo-miRNAs) but also novel lineage-specific miRNAs

(Zhang et al. 2008). Other families of miRNAs are also believed to have been

amplified by Alu-mediated recombination events including placental-specific

miRNAs derived from the MER53 DNA transposon (Yuan et al. 2010).

The duplication of functional small RNAs likely results in molecules that are

under less evolutionary pressure to avoid mutation than a single-copy small RNA.

In the case of snoRNAs, the numerous snoRTs originating from snoRNAs have

TE

a bc

a.

b.

c.

…

…

…

…

Fig. 2.5 Transposition events generating new small RNAs or new small RNA targets. The
insertion of TEs can result in the emergence of novel features including intronic TE-derived

small RNAs (a), intergenic TE-derived small RNAs (b), and TE-derived targets of small RNAs if

inserted in reverse orientation into 30 untranslated regions (UTRs) (c), or coding regions (not

shown), for example. TEs are depicted as purple boxes, UTRs as green boxes, and coding exons as

orange boxes. Straight solid arrows represent transposition events and broken arrows show the

genomic region depicted after the transposition
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been proposed to serve two roles: safeguarding against mutation in parental copies

and possibly also allowing for the rapid evolution of snoRNAs with novel targets

(Weber 2006). In support of this hypothesis, numerous “orphan” snoRNAs and

snoRTs have been identified, displaying typical snoRNA characteristics and

features but with no known targets, possibly due to sequence diversification.

Some such orphan snoRNAs are ubiquitously expressed in mammals suggesting

they might have alternate functions and/or noncanonical targets (Bachellerie et al.

2002; Luo and Li 2007). And indeed, one large mammalian family of snoRNAs, the

HBII-52 in human, displays a conserved region of complementarity to several

transcripts including the serotonin 5-HT2C receptor and has been found to regulate

their alternative splicing through base pairing (Bachellerie et al. 2002; Kishore and

Stamm 2006).

2.2.3.2 Creation of New Targets

Small RNAs generally exert their function by base pairing with their targets and

bringing them in close proximity to effector proteins. TEs have been found to play

an important role in generating not only novel small regulator RNAs but also novel

targets for these molecules (Fig. 2.5c).

The large abundance of TEs and transposition events in genomes can likely

rapidly generate regulatory networks if TEs with high sequence similarity to a TE-

derived small RNA are inserted into protein-coding genes in reverse orientation,

readily creating target sites for the small RNA. In human, many miRNAs display

complementarity to conserved Alu elements in 30 UTRs of mRNAs (Smalheiser and

Torvik 2006). Amongst all 30 UTR targets of human TE-derived miRNAs, approxi-

mately 10% were estimated to be TE-derived (Piriyapongsa et al. 2007). As

discussed in the study, this is likely to be an underestimate because miRNA

target-site prediction methods consider conservation in their prediction, and TEs

are among the most lineage-specific elements of genomes. However, some TE-

derived miRNAs were found to have up to 80% of their targets derived from TEs

(Piriyapongsa et al. 2007). Other types of TEs have also been found to generate both

miRNAs and their targets including LINE elements for which an example of

conserved mammalian miRNA and its human-specific target mRNAs were

described (Smalheiser and Torvik 2005).

2.2.3.3 A Prevalent Evolutionary Mechanism

Although often described as harmful and selfish elements in genomes, TEs have

also been found to be beneficial to genomes, and mutualistic relationships between

genomes and their colonizing TEs have been described (Faulkner and Carninci

2009; Cordaux and Batzer 2009; Malone and Hannon 2009). Genomes have

evolved mechanisms to control and limit TE expansion, in great part through the

use of small RNAs such as members of piRNAs and siRNAs (Malone and Hannon
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2009) as described in Sect. 2.2.2. However, a diverse and growing body of evidence

is now suggesting that transposition and TE activity are also a prevalent evolution-

ary mechanism in the de novo creation of small RNAs as well as in their expansion

and generation of targets, providing additional regulatory layers in the control of

cellular networks. As such, TE-derived miRNAs and snoRNAs represent a benefi-

cial consequence of TE activity and expansion. As our understanding of the

contribution of TEs to genome function and evolution increases, so too will our

understanding of their contribution to small RNA evolution and organism-specific

regulation.

2.3 Diversity and Overlap in the Small RNA Landscape,

a miRNA Perspective

The best characterized small RNA biogenesis pathway is the miRNA biogenesis

pathway which has been extensively investigated. In recent years however, numer-

ous unrelated reports have identified miRNAs that deviate from the canonical

pathway in terms of their precursors, biogenesis pathway, characteristics of the

mature molecule, or in their functionality. Together with the contribution of TEs to

miRNA and target diversity, variations from the canonical biogenesis pathway and

diverse characteristics of the mature molecules add flexibility to miRNA regulatory

networks.

2.3.1 Variation and Overlap in miRNA Biogenesis Pathways

In animals, most miRNAs are encoded in introns or within independent transcrip-

tion units and are transcribed by the RNA polymerase II (RNA pol II) (Baskerville

and Bartel 2005; Lee et al. 2004; Rodriguez et al. 2004). The resulting primary

miRNA transcripts are then cleaved by the microprocessor complex which contains

the nuclear RNase type III enzyme Drosha and the double-stranded RNA binding

domain protein DGCR8 (Kim and Kim 2007; Lee et al. 2003). Processing of the

primary miRNA transcript by the microprocessor complex generates the miRNA

precursor hairpin, which is exported to the cytoplasm by exportin-5 where it is

further processed by the RNase type III enzyme Dicer (Bernstein et al. 2001;

Hutvagner et al. 2001; Ketting et al. 2001). Dicer releases the miRNA duplex,

one strand of which is loaded onto specific argonaute (AGO) proteins forming the

RNA-induced silencing complex (RISC) (Hutvagner and Zamore 2002; Mourelatos

et al. 2002). The canonical miRNA biogenesis is reviewed in Bartel (2004) and Kim

et al. (2009) and depicted in Fig. 2.6a. Although the majority of miRNAs in

mammals have been found to be both DGCR8 and Dicer dependent (Babiarz

et al. 2008), numerous examples of deviation from this canonical pathway have
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e. Dicer independent pathway

Transcription 
by RNA pol II

Export to 
cytoplasm

Microprocessor 
cleavage

Dicer complex 
processing

Loading 
onto RISC

a. Canonical miRNA 
biogenesis pathway

b. Transcription by RNA pol III
TE-derived clustered miRNAs

Variations to canonical miRNA 
biogenesis pathway

c. Drosha independent pathway
Mirtrons shRNAs snoRNAs

d. Drosha independent pathway
siRNA precursor   tRNA precursor
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miRNA duplex

Primary miRNA
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Fig. 2.6 Diversity and variation in the miRNA biogenesis pathway. The canonical miRNA

biogenesis pathway (a) has been extensively investigated. Variations from the canonical pathway

have been identified at most steps including at the level of transcription (b), Drosha processing

(c and d), and Dicer processing (e)
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been described, and numerous miRNAs have been shown to originate from diverse

noncanonical precursors (illustrated in Fig. 2.6b–e).

2.3.1.1 Transcription of miRNA Genes by the RNA pol III

As described above, most animal miRNAs, both intronic and intergenic, are

transcribed by the RNA pol II. However, the human chromosome 19 cluster

(C19MC) of interspersed miRNAs and Alu elements described in Sect. 2.2.2.3

contains RNA pol III promoters, and miRNAs encoded within this region were

found to be transcribed by the RNA pol III (Borchert et al. 2006), see Fig. 2.6b.

Other TE-derived human miRNAs in similar genomic contexts are also likely to be

transcribed by the RNA pol III (Borchert et al. 2006). In addition, viral miRNAs

adjacent to a transfer RNA were also recently found to be transcribed by the RNA

pol III as described further below (Bogerd et al. 2010). And shRNA-derived

miRNAs were also found to be transcribed by the RNA pol III as described

below (Babiarz et al. 2008). Thus, although a large majority of animal miRNAs

are transcribed by the RNA pol II, other pathways are used for the generation of

primary miRNA transcripts and are likely under the control of alternate regulatory

networks.

2.3.1.2 Microprocessor-Independent miRNA Biogenesis

Subsets of noncanonical miRNA precursors have been found to bypass the micro-

processor cleavage step. Included among them are mirtrons, small hairpin RNAs

(shRNAs), and long hairpin siRNA precursors.

Mirtrons

Canonical intronic miRNAs are processed by Drosha prior to the host transcript

intron splicing (Kim and Kim 2007). However, a group of short introns of size

<150 nucleotides which fold into hairpins has been found to serve as precursors for

miRNAs. Referred to as mirtrons, these precursors result from splicing and

debranching of the intron lariat by the spliceosome, thus bypassing the Drosha

cleavage step (reviewed in Winter et al. 2009). The resulting hairpin precursor is

then exported to the cytoplasm and further processed following the canonical

miRNA biogenesis pathway (Fig. 2.6c). Although not found in large numbers,

mirtrons have been identified throughout the animal kingdom (Babiarz et al.

2008; Carthew and Sontheimer 2009; Winter et al. 2009).
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Endogenous shRNA Precursors

A second type of miRNA precursors that was found to exhibit independence from

Drosha is endogenous shRNAs, which form short tight stem loop structures

(Fig. 2.6c). A subset of mammalian miRNAs was annotated as derived from

shRNAs for three main reasons: they were found to be Dicer dependent, they are

not encoded in introns and do not display splicing signals, and they show charac-

teristic read position patterns within the full-length molecule. Such shRNA-derived

miRNA precursors seem to be generated directly as short hairpins by RNA pol

III transcription (Babiarz et al. 2008). In mammals, shRNA-derived miRNAs

make up a much larger number of reads than mirtron-derived miRNAs (Babiarz

et al. 2008).

Long Hairpin siRNA Precursors

In Drosophila, miRNAs are typically processed by Dicer1, while endogenous

siRNAs are processed by Dicer2 (reviewed in Miyoshi et al. 2010). However, it

is believed that the terminal hairpins resulting from processing by Dicer2 of a

subset of endogenous siRNAs can serve as miRNA precursors (Fig. 2.6d) which are

recognized as substrates by Dicer1, producing a mature miRNA. Thus these siRNA

precursors would generate both siRNAs and miRNAs as a result of sequential

Dicer2 and Dicer1 processing (reviewed in Miyoshi et al. 2010).

tRNase Z-Derived Precursors

Several animal viruses encode viral miRNAs which display miRNA biogenesis

features characteristic of canonical cellular miRNAs including transcription by the

RNA polymerase II and processing by Drosha and Dicer. However, the murine

gamma-herpesvirus 68 (MHV68) has recently been shown to encode miRNAs

which employ noncanonical biogenesis pathways, including transcription by the

RNA polymerase III of the miRNA precursors linked to an adjacent transfer RNA

(tRNA). The resulting primary transcripts are cleaved by the tRNase Z, releasing

the tRNA from the miRNA precursors and bypassing the Drosha cleavage step. The

miRNA precursors are then further processed by Dicer to generate the mature

miRNA (Bogerd et al. 2010).

2.3.1.3 Dicer-Independent miRNA Biogenesis

A small group of miRNAs processed in a Dicer-independent manner has

been recently described in both mouse and zebra fish (reviewed in Suzuki and

Miyazono 2011). Drosha has been shown to process the primary transcript of the

well-conserved miR-451 miRNA resulting in a short hairpin precursor with a
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17 nucleotide stem, which is shorter than the length required by Dicer for efficient

processing. In the absence of Drosha, the mature form of the miRNA was highly

reduced while its levels were not affected by the absence of Dicer (Cheloufi et al.

2010). As illustrated in Fig. 2.6e, following cleavage by Drosha, this noncanonical

miRNA precursor is believed to be loaded directly onto the RISC complex where it

is sliced by Ago2, thus bypassing Dicer processing (Suzuki and Miyazono 2011;

Cheloufi et al. 2010). This suggests Dicer processing and RISC loading might not

always be coupled (Babiarz et al. 2008; Miyoshi et al. 2010).

Thus over the past 3 years, diverse examples of alternate miRNA biogenesis

pathways, typically with partial overlap with the canonical pathway, have been

described, suggesting both that deviations from the canonical pathway are rela-

tively common and that more such deviations will be found over the next few years.

These examples demonstrate that diverse variations of the miRNA processing

pathway exist and that no component of the canonical miRNA biogenesis pathway

is essential for the biogenesis of all miRNAs. It should be noted however that most

miRNAs are transcribed by the RNA pol II and require both the microprocessor and

Dicer complexes for proper biogenesis (Babiarz et al. 2008).

2.3.1.4 Additional Noncanonical miRNA Precursors

The examples described above of variations to the canonical miRNA biogenesis

pathway generally relate to miRNA precursors whose main function is the genera-

tion of miRNAs. However, subsets of two types of abundant cellular RNAs, small

nucleolar RNAs (snoRNAs), and transfer (tRNAs), which play seemingly unrelated

primary functions in the cell, have also been found to act as noncanonical miRNA

precursors. Some long noncoding RNAs have also been found to serve as

precursors to miRNAs.

Small Nucleolar RNAs (snoRNAs)

Several independent studies and lines of evidence suggest that snoRNAs can serve

as precursors for miRNAs. Small RNAs derived from snoRNAs were identified in a

deep sequencing dataset of small human RNAs associated with argonaute proteins

(Ender et al. 2008). In particular, small RNAs of miRNA size were found derived

from the box H/ACA snoRNA ACA45 and shown to display functional miRNA

characteristics including gene silencing capabilities and endogenous targets. The

processing of ACA45 was shown to depend on Dicer but not Drosha (Ender et al.

2008). Box C/D snoRNA–derived small RNAs were also identified and found to

display miRNA characteristics including incorporation into RISC complexes and

gene silencing capabilities in human and Giardia lamblia (Saraiya and Wang 2008;

Brameier et al. 2011).

The processing of snoRNAs into small RNAs of size generally less than 30

nucleotides (referred to as sdRNAs for snoRNA-derived small RNAs) has recently
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been shown to be widespread and conserved from most snoRNA loci in animal,

Arabidopsis, and yeast genomes (Taft et al. 2009). The processing pathways

responsible for the generation of sdRNAs were investigated, revealing that a subset

of sdRNAs (those derived from box C/D snoRNAs) were only mildly

downregulated in the absence of either DGCR8 or Dicer1, while some box H/

ACA sdRNAs showed a pronounced response, displaying a downregulation in the

absence of Dicer1 but an upregulation in the absence of DGCR8 (Taft et al. 2009).

Thus, multiple processing pathways might be used for the generation of miRNAs

and other small RNAs from snoRNAs (Fig. 2.6c).

While numerous examples of snoRNA-derived small RNAs and snoRNA-

derived miRNAs have now been described, several reports have also identified

known miRNA precursors with snoRNA-like features. Numerous reported, and in

several cases extensively validated, miRNA precursors have been identified

displaying sequence, structure, and functional snoRNA characteristics, suggesting

a possible evolutionary relationship between subsets of miRNAs and snoRNAs

(Ono et al. 2011; Scott et al. 2009). In addition, evidence of cross talk between the

miRNA and snoRNA pathways has also been observed including core snoRNA-

binding proteins in argonaute complexes (Hock et al. 2007).

Transfer RNAs

Several independent studies have recently reported small RNAs derived from

transfer RNAs (tRNAs) and displaying miRNA processing characteristics

(reviewed in (Pederson 2010; Suzuki and Miyazono 2011)). In mouse, miRNAs

were identified originating from a tRNA-Ile gene which encodes a primary tran-

script with the capacity to form not only a mature tRNA cloverleaf secondary

structure but also, alternatively, a long hairpin, as illustrated in Fig. 2.6d. The

miRNAs originating from this precursor were found to be Drosha independent

and Dicer dependent (Babiarz et al. 2008). In human, tRNA-derived small RNAs

appear to be generated with a clear preference for 50 ends of the full-length

molecule, indicating directed processing and accumulation as opposed to nonspe-

cific degradation (Cole et al. 2009). Several studies found evidence of miRNA

processing and binding characteristics for the tRNA-derived small RNAs such as

processing by Dicer and binding to argonaute proteins (reviewed and discussed in

Pederson 2010).

Long Noncoding RNAs

Long noncoding RNAs are generally defined as transcripts of size greater than 200

nucleotides that do not encode proteins. The imprinted and maternally expressed

H19 long noncoding RNA was recently found to encode a previously reported

miRNA in both mouse and human, providing another example of a noncanonical

miRNA precursor. The primary transcript was found to be processed by Drosha
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(Cai and Cullen 2007), but further investigation will be required to fully character-

ize its processing. In addition to this example, a computational analysis of tens of

thousands of long messenger-like noncoding RNAs in mouse predicted they encode

dozens of likely miRNA candidates, including 20 previously reported miRNAs

(He et al. 2008). miRNA-encoding long noncoding RNAs were also described in

Arabidopsis (Hirsch et al. 2006).

Thus, several types of noncanonical miRNA biogenesis pathways and precur-

sor types exist and can lead to functional mature miRNAs. These diverse

sources of miRNAs likely offer the possibility of variety and flexibility in their

regulation.

2.3.2 Diversity of Targets and Targeting Mechanisms

Processing of miRNA precursor hairpins by Dicer generates short miRNA duplexes

of approximately 22 base pairs. One strand preferentially associates with an

argonaute protein, forming the core of the RISC complex (illustrated in Figs. 2.6a

and 2.7a). Other small RNAs such as endogenous siRNAs are also loaded onto

argonaute proteins (reviewed in Kim et al. 2009). The argonaute family member to

which small RNAs are complexed depends on several factors including the cyto-

plasmic Dicer that processed the small RNA, as well as the extent of complemen-

tarity of the double-stranded precursor. The argonaute interactor plays an important

role in determining the functionality of the complex. Argonaute loading and sorting

is reviewed in Czech and Hannon (2011).

The RISC complex carries out gene silencing by base pairing to its messenger

RNA (mRNA) targets. High complementarity of a miRNA to its target, which is

typically seen in plants, results in mRNA cleavage, while lower complementarity,

more characteristic of animals, promotes deadenylation of the mRNA followed by

either maintenance in a translation-repressed state or decapping and 50–30 decay
(reviewed in Bartel 2004; Kim et al. 2009; Huntzinger and Izaurralde 2011). The

target sequences of animal miRNAs typically lie in the 30 untranslated regions (30

UTRs) of mRNAs while in plants, they are predominantly found in coding regions

(Carthew and Sontheimer 2009). However, mature miRNAs displaying atypical

characteristics and functionality have been reported recently.

2.3.2.1 50 UTR Binding and Translation Activation

An affinity-based target-identification method revealed that a highly conserved

murine miRNA, miR-10a, preferentially binds to ribosomal protein transcripts.

Further investigations showed that regions in the 50 UTRs of these transcripts,

and not in their 30 UTRs, are directly bound by the miRNA and that rather than

translation repression, this binding leads to translation activation, thus resulting in

stimulation of global protein synthesis (Orom et al. 2008). Similarly, a human
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miRNA was found to bind to 50 UTRs in the hepatitis C virus genome resulting in

translation activation of viral proteins (Henke et al. 2008). Several miRNAs have

also been shown to bind targets in coding sequences in both mouse and human

(Chi et al. 2009; Duursma et al. 2008; Forman et al. 2008; Tay et al. 2008).

In addition to variation in the position of targets within transcripts, a small

number of human miRNAs have been also found to activate translation of their

targets in a cell cycle-dependent manner (Vasudevan et al. 2007). Thus, a small

number of miRNAs can cause the upregulation of translation rather than its

repression.

Export to 
cytoplasm

Processing by 
Microprocessor 

complex

Processing by 
Dicer complex

Loading
onto RISC

miRNA hairpin

Primary miRNA

RNA editing

miRNA duplex

a. Biogenesis 
of non-edited 
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of cleavage 
by Drosha

d. Loading 
of alternative 

strand

c. Inhibition 
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Fig. 2.7 Diversity generated by RNA editing. Primary miRNA transcripts can be modified by

ADARs resulting in variation in the miRNA sequence (marked with a star). Such modifications

can lead to diversity in the biogenesis pathway and in miRNA functionality
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2.3.2.2 Sequence Editing

RNA editing is the directed modification of specific positions in RNA transcripts

resulting in molecules that differ from the template DNA. RNA editing is thus an

important mechanism driving diversity in the small RNA landscape. Estimates of the

proportion of human miRNA transcripts altered by RNA editing range from 6% to

16% (Blow et al. 2006; Kawahara et al. 2008). RNA editing of primary miRNA

transcripts is carried out byADARs (adenosine deaminases acting onRNA) and leads

to the modification of adenosine (A) residues into inosines (I) (reviewed in Cai et al.

2009;Wulff and Nishikura 2010). RNA editing of miRNA transcripts can affect their

biogenesis by blocking processing byDrosha orDicer and thus plays a regulatory role

in the biogenesis of miRNAs (Fig. 2.7b, c). RNA editing has also been proposed to

cause a change in the miRNA duplex strand most predominantly chosen for

incorporation in the RISC complex (Wulff and Nishikura 2010), see Fig. 2.7d.

RNA editing can also lead to the binding of alternative targets when compared to

the nonedited miRNA, thus extending the repertoire of targets that are regulated by a

single miRNA locus (reviewed in Cai et al. 2009 and illustrated in Fig. 2.7e).

2.3.2.3 Nonprototypical miRNA Characteristics and Functions

Nuclear miRNAs

As described previously, the final steps in processing of miRNA precursors and

release of mature miRNAs take place in the cytoplasm. However, a large number of

human mature miRNAs have been detected in both the cytoplasm and nucleus, and

some accumulate predominantly in the nucleus (Liao et al. 2010; Winter et al.

2009). In addition, many mammalian miRNA precursors as well as mature miRNAs

have been detected in the nucleolus, some accumulating strongly in this compart-

ment (Politz et al. 2009; Ono et al. 2011; Scott et al. 2009). The nuclear/nucleolar

localization mechanism of miRNAs and their function in these compartments are

currently not known. A subset of miRNAs might be processed by a noncanonical

pathway and/or from noncanonical precursors (including snoRNAs, see

Sect. 2.3.1.4) in the nucleus. Alternatively, they might localize in this compartment

after processing in the cytoplasm for further modification including RNA editing or

proper packaging into ribonucleoprotein complexes (RNPs) as discussed in Politz

et al. (2009). However, evidence is also mounting that small RNAs are involved in a

number of functions not directly related to translation regulation.

Functions Outside Posttranscriptional Regulation

Small RNAs identify their targets by base pairing to complementary sequences and

wield their functionality by bringing effector proteins in close proximity to the
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targets. Small RNAs thus have access to the whole spectrum of RNA molecules

present in the cell to exert their regulatory roles and are not limited to the small

range of specific targets that have been thus far extensively characterized. In recent

years, small RNAs have been found to regulate numerous other cellular processes

from chromatin structure to transcription and RNA processing (reviewed in Costa

2010; Carthew and Sontheimer 2009; Taft et al. 2010). Newly identified classes of

small noncoding RNAs include promoter-associated short RNAs, transcription

initiation RNAs (tiRNAs), and transcription-start-site-associated RNAs which reg-

ulate diverse aspects of the transcription of protein-coding genes or help to maintain

these genes in an active state (Costa 2010). Different classes of small noncoding

RNAs have also been proposed to play a role in the regulation of alternative

splicing, X chromosome inactivation, and possibly the maintenance of telomeres

(reviewed in Khanna and Stamm 2010; Taft et al. 2010). Some of these small

RNAs with newly described functions derive from other well-characterized RNA

molecules while others represent novel types. For example, small RNAs derived

from specific snoRNAs have been found to regulate splicing of several transcripts

(Kishore and Stamm 2006) while tiRNAs, derived from regions adjacent to tran-

scription start sites in metazoans, have not been shown to produce other types of

previously characterized small RNAs (Taft et al. 2009a).

2.4 Conclusions and Outlook

Rapidly evolving, abundant and highly diverse, small RNAs play fundamental

cellular regulatory roles, the extent of which we are only now starting to grasp.

Though only a small number of types have been extensively characterized, it is

becoming clear that they are dynamic molecules, often displaying a strong asso-

ciation with transposable elements. Different types of small RNAs show

commonalities in their origin and biogenesis pathways, making it often difficult

to classify them in a clear-cut manner. In addition, a wide diversity and variation

exist in small RNA biogenesis pathways, even when considering only one type of

small RNAs. And though the canonical miRNA pathway has been extensively

described, no component has been found essential for the biogenesis of all

miRNAs. The diversity that exists in small RNA biogenesis pathways likely allows

for differential regulation for molecules within the same class and in different

cell types.

Small RNAs are central regulators in a steadily increasing number of funda-

mental cellular processes. They regulate a diverse and growing number of types of

targets and are responsible for multiple layers in cellular regulatory networks.

Understanding their functions and how they are themselves regulated will thus be

central to a global comprehension of cellular networks and the numerous diseases

caused by their deregulation.
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Chapter 3

Fragments of Small Nucleolar RNAs

as a New Source for Noncoding RNAs

Marina Falaleeva and Stefan Stamm

Abstract Small nucleolar RNAs (snoRNAs) are small, nonprotein-coding RNAs

that accumulate in the nucleolus. So far, these RNAs have been implicated

in modification of rRNAs, tRNAs, and snRNAs. snoRNAs can be grouped into

two classes: C/D box and H/ACA box snoRNAs that direct 20-O-methylation and

pseudouridylation, respectively. However, for numerous snoRNAs, no target

RNAs have been identified. High-throughput sequencing and detailed analysis

of RNase protection experiments have demonstrated that some snoRNAs are

processed into smaller RNAs. These processed snoRNAs are 20–100 nt in length,

are mostly nuclear and do not form canonical snoRNPs, that is, they do not asso-

ciate with methylase or pseudouridylation activity. They can act by binding to pre-

mRNAs in the nucleus where they regulate alternative pre-mRNA splicing. Thus,

processed snoRNAs (psnoRNAs) represent a novel class of regulatory RNAs.
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snRNA Small nuclear RNA

snoRNA Small nucleolar RNA

psnoRNAs Processed snoRNAs
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3.1 Overview of Full-Length snoRNAs

3.1.1 Introduction

Small nucleolar RNAs are an abundant class of nonprotein-coding RNAs found in

archaea and all eukaryotic lineages. They range in size from 80 to 200 nt. Based on

their sequence elements and the function of representative members, snoRNAs are

subdivided into C/D box and H/ACA box snoRNAs. A generalized function of

snoRNAs is that they form a ribonuclear protein complex that acts on other RNAs.

C/D box snoRNAs assemble proteins that perform 20-O-methylation of their target

RNAs, and the H/ACA snoRNA protein complex causes pseudouridylation of

targeted RNAs. C, D, H, and ACA boxes are characteristic sequence elements

that define snoRNAs. Most published examples show that snoRNAs target ribo-

somal RNAs, but they have also been found to target snRNAs (small nuclear RNAs)

(Tycowski et al. 1998; Kiss et al. 2004) and tRNAs in archaea (Singh et al. 2004).

Within these ribonuclear protein complexes, the snoRNAs serve two functions:

They act as a scaffold allowing the formation of a protein complex and serve as

a guide that direct this complex to its RNA targets by hybridization.

Whereas the general function of directing RNA modifying enzymes to their

targets is conserved in snoRNAs from all species, their genomic localization, mode

of transcription, and processing are highly variable. In humans, there are at least

257 C/D box snoRNA genes and 181 H/ACA snoRNA genes. More than 90% of

human snoRNAs are located with in the introns of hosting genes (Dieci et al. 2009).

In contrast, most of the 76 yeast snoRNAs are driven by their own promoter in

a monocistronic gene expression unit. The majority (about 70%) of plant snoRNAs

are transcribed by their own promoters (Fig. 3.1a). Thus, the flexibility in genomic

organization and mode of transcription appears to be an evolutionary hallmark of

snoRNAs (Dieci et al. 2009).

snoRNAs have been previously covered in excellent reviews (Filipowicz and

Pogacic 2002; Matera et al. 2007; Dieci et al. 2009). This chapter will review the

common genesis and function of snoRNAs and summarize our current knowledge

of the emerging class of processed snoRNAs, psnoRNAs.

3.1.2 Generation of snoRNAs from Pre-snoRNAs

Like all mature RNA forms, snoRNAs are generated from precursor RNAs, the pre-

snoRNAs. In general, snoRNAs are excised from their hosting RNAs by nucleases

that remove unprotected RNA. The known processing enzymes are summarized

in Table 3.1.

Despite their different genomic organization, snoRNAs share common features

in this processing pathway. snoRNAs can be located between introns, or expressed

as individual units under their own promoter that generate pre-snoRNAs (Fig. 3.1a).
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Individual classes of pre-snoRNAs then undergo different types of processing that

leads to a linear RNA with free, unprotected 50 and 30 ends. These RNAs are then
subject to nuclease cleavage by 50 and 30 exonucleases. Proteins assembling on the

future mature snoRNA eventually prevent further exonuclease activity, which

finally generates the snoRNA particle (snoRNP).

Almost all human snoRNAs are located in introns, which are transcribed by

RNA polymerase II acting on the hosting gene. Some hosting genes are noncoding,

and the production of the snoRNA is their only currently known function. For

example, the H/ACA snoRNA U17a (Pelczar and Filipowicz 1998) and 10 C/D box

La

A G
 N N

Rntlp

A G
 N N

Rntlp

monocistronic polycistronic
70-90 nt

intronic

Nuclease Trimming

Mature snoRNP

Release of pre–snoRNA Nop1p

Rntlp

Rrp6p
Rat1p
Xrn1p

a

b c

Fig. 3.1 Processing of snoRNAs. (a) Genomic arrangements of snoRNAs. The snoRNA is shown

as a blue line. Exons are shown as boxes and promoters as thick arrows. The intronic localization is

found in mammals, monocistronic and polycistronic arrangements in yeast and plants. RNases

are shown as red “faces”. (b) Processing of intron-dependent C/D box snoRNAs. On the left side,

the most common pathway of intron-located snoRNAs is shown. During the splicing reaction,

the intron is released as a lariat which contains the snoRNA. In some cases, the snoRNA is located

in a stem structure that is cleaved by an RNase III activity (Rnt1p) which is stabilized by

Nop1p/fibrillarin. Both pathways generate an RNA with unprotected ends that is further degraded

by exonucleases. The snoRNA assembles a protein complex (see Fig. 3.2 for details), which

prevents further RNase action. (c) Processing of cistronic snoRNAs. Cistronic snoRNAs are often

located between RNA stems that contain an AGNN tetraloop. The yeast RNase Rnt1p cleaves

these stems, which generates unprotected ends that are attached by exonucleases. Similar to intron-

encoded snoRNAs, a protein complex assembles on the RNA and prevents further nuclease action.

In addition to constitutive snoRNA proteins, auxiliary proteins such as La help protecting the

snoRNA during the snoRNP assembly. These proteins dissociate from the final RNP
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snoRNAs hosted by growth arrest-specific transcript 5 (gas 5) (Smith and Steitz

1998) are hosted by genes that do not encode a protein.

For the majority of intronic snoRNAs, processing starts with the splicing of the

introns which generates a lariat structure (Fig. 3.1b), that is than opened by the

debranching enzyme (Dbr1). The debranching enzyme hydrolyzes the 20!500-
branched phosphodiester bond that forms at the branch point and thus converts the

lariat structure into a linear RNA molecule (Chapman and Boeke 1991).

By opening the lariat, the debranching enzyme generates the linear pre-snoRNA

that undergoes further 50–30 and 30–50 exonuclease trimming. Excised introns that

are debranched are typically subject to fast degradation. To protect the intron-

encoded future snoRNA from these exonucleases, proteins assemble on the pre-

snoRNA. In mammalian systems, where most snoRNAs are encoded by introns, the

snoRNA generation is, therefore, coupled with the pre-mRNA-splicing process.

Most intron-encoded C/D box snoRNAs are located 70–90 nucleotides upstream of

the 30 splice site. This position defines the optimal distance between the snoRNA

position and the branch point of the hosting intron, which is 50 nucleotides

upstream of the 30 splice site (Fig. 3.1a). snoRNP assembly occurs at an advanced

stage of spliceosomal assembly when the pre-mRNA binds to U2, U5, and U6

snRNPs. Thus, snoRNP components could interact directly or indirectly with U2

snRNA or another splicing component associated with the branch point (Hirose

et al. 2003) (Fig. 3.1b).

An alternative pathway was described in Xenopus for the intron-encoded U16

snoRNA. Here, proteins binding to the C and D boxes promote the entry of an

endonuclease that cleaves the pre-snoRNA (Caffarelli et al. 1996). Experiments in

intron-containing snoRNAs in yeast suggest that this protein is Nop1p/fibrillarin

that stimulates the endoribonuclease Rnt1p (Giorgi et al. 2001). The cleavage of

the intron prevents proper splicing of the adjacent exons, indicating that snoRNA

formation can prevent expression of the proper hosting mRNA. Therefore, as

this example shows, snoRNA formation can be in competition with host mRNA

formation.

The majority of snoRNAs in yeast and plants are controlled by their own

promoter. Often, these snoRNAs are in a polycistronic arrangement. They therefore

undergo a slightly different processing pathway than their intron-embedded

relatives (Fig. 3.1c). The future mature snoRNA is typically flanked by a short

hairpin structure that forms around an AGNN tetraloop. Similar to Xenopus U16
snoRNA, the double-stranded RNA stem serves as the entry point for the endori-

bonuclease Rnt1p, which is the orthologue of bacterial RNase III that cleaves

double-stranded RNAs. Rnt1p cleavage generates unprotected 50 and 30 ends,

which are further trimmed by the 50 endonucleases Xrn1p and Rat1p, as well as

the 30 endonuclease Rrp6p (Chanfreau et al. 1998). As with other snoRNAs,

proteins assemble on the final snoRNA and prevent further nuclease cleavage.

These proteins can remain associated with the snoRNP, as in the case of Nop1p,

Nop58p, and Nop56p (Lafontaine and Tollervey 1999), or protect the RNA only

during the processing steps, as exemplified by the association of the Lhp1p/La

protein in U3 snoRNA processing (Kufel et al. 2000) (Fig. 3.1c, Table 3.1).
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3.1.3 Structure of C/D and H/ACA Box snoRNAs

Despite different genomic organization and assembly pathways, the two classes of

snoRNAs form ribonuclear protein complexes that are similar across species. Both

snoRNA types have RNA “boxes,” which refer to short sequence elements that bind

proteins or target RNAs.

C/D box snoRNAs. These RNAs contain C (UGAUGA) and D boxes (CUGA),

and a highly conserved kink-turn element prior to the C box (Fig. 3.2a). C and D

boxes bind to the protein 15.5 kD (Snu13p in yeast, L7e in archaea). Adjacent to the

D boxes is the RNA-interacting sequence, called antisense box or antisense ele-

ment. The arrangement of a C box, antisense box, and D box is the functional unit of

the snoRNA. Most C/D box snoRNAs contain additional units, which are labeled

C0 and D0. The protein 15.5 kD/Snu13p binds to both the C and D boxes, which

brings these two RNA elements in close proximity. This newly formed RNA:

protein complex then forms a new binding site for Nop56/58. The formation of

this complex allows the entry of NOP1p/fibrillarin, which possesses the catalytic

activity that performs the 20-O-methylation of the target RNA (Omer et al. 2002).

The elaborate assembly of the complex allows the precise alignment of the target

RNA with the fibrillarin catalytic activity. As a result, the ribose on the target RNA

that base pairs with the nucleotide located five nucleotides upstream of the D box

will be methylated (Fig. 3.2a).

H/ACA box snoRNAs contain the H (ANANNA) box and the ACA (ACA) box

that are located in single-stranded regions of a “hairpin-hinge-hairpin-tail” config-

uration. One or both hairpins contain a loop structure that allows interaction with

the target RNA (Fig. 3.2b). Dyskerin (centromere binding factor 5, Cbf5 in archaea)

contains a PUA (pseudouridine and archaeosine transglycosylase) domain that

binds directly to the ACA and lower stem of the H/ACA snoRNA (Charpentier

et al. 2005). Dyskerin also contains the catalytic activity, pseudouridine synthase,

that converts a uridine to a pseudouridine in the target RNA. Two other proteins,

GAR1 and NOP10, bind subsequently to dyskerin and increase enzyme activity.

Similar to C/D box snoRNAs, the 15.5 kD (Snu13p) protein binds to a kink-turn

motif of the H/ACA RNA, which bends the RNA (Li and Ye 2006) (Fig. 3.2b).

The idealized structure of C/D box and H/ACA box snoRNAs are shown

in Fig. 3.2c.

3.1.4 Canonical Functions of snoRNAs

The structures of mature snoRNAs allow the identification of their target mRNAs

by identifying RNAs that exhibit sequence complementarity toward their antisense

boxes. The majority of the highly expressed snoRNAs cause modification of

ribosomal RNAs (Steitz and Tycowski 1995). In addition, snoRNAs play a role

in snRNA modification and telomere maintenance, which are summarized in

Table 3.2. Recently, the number of known snoRNAs has been expanded by

54 M. Falaleeva and S. Stamm



Stem

AS ASC D' C'

D'

D

Stem

Target 
RNA

H CO-
³

15.5

58/56 Fibrillarin

H ACA

H ACA H ACA H ACA H ACA

C'

C D

15.5

Dyskerin

Nop10
Gar1

Target 
RNA

Ψ

a

b

c

Fig. 3.2 Formation and function of snoRNPs. The structure of the snoRNAs is schematically

shown on the left. Colors indicate the various sequence elements. C, C0: C box (UGAUGA); D, D0:
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more sensitive experimental cloning efforts that use high-throughput sequencing

(reviewed in Gardner et al. (2010)). A bioinformatic analysis of these snoRNAs

revealed that a large proportion of them have no known target sites on ribosomal

RNAs, snRNAs, or tRNAs (Bazeley et al. 2008; Hertel et al. 2008). Since they lack

known sequence complementarity, these snoRNAs are considered orphan and their

function is elusive.

rRNA processing and modification is the best-studied function of snoRNAs.

In eukaryotes, snoRNPs bind to ribosomal RNA using Watson-Crick base pairing

between their antisense boxes and targets. About half of the estimated 300 rRNA

processing factors are snoRNAs (Fatica and Tollervey 2002).

Both C/D and H/ACA box snoRNPs help in identifying cleavage sites of rRNA

precursors. They do not contain any ribonucleolytic activity on their own and likely

function as RNA chaperones, by promoting the correct folding of rRNA that is

subsequently subjected to cleavage (Beltrame and Tollervey 1995). Examples are

the U3, U14, U8, U22 C/D box snoRNPs, and U17 H/ACA snoRNP. Inhibition of

mature 18S rRNA accumulation occurs in U3, U14, and U17 snoRNPs depleted

Saccharomyces cerevisiae cells and U14 and U22 depleted Xenopus oocytes

(Atzorn et al. 2004).The U8 snoRNA was shown to function in 5.8S and 28S

rRNA processing in Xenopus (Peculis and Steitz 1993).

Other snoRNPs functions are chemical modifications of rRNA, which are believed

to be essential for the correct folding and function of the ribosome (Decatur and

Fournier 2003). C/D box snoRNPs are responsible for 20-O-methylation, and

Fig. 3.2 (continued) D box (CUGA); AS: antisense box, stem: terminal sequences that form

a stem-loop end structure. H: H box (ANANNA), ACA: ACA box (ACA). Proteins are indicated

by oval, colored shapes. The target RNA is a thick black line; hybridization to the snoRNA is

indicated by shorter lines. (a) Assembly of C/D box snoRNAs. (b) Assembly of H/ACA box

snoRNAs. (c) Schematic structure of C/D box and H/ACA box snoRNAs

Table 3.2 Examples of functions of eukaryotic snoRNAs

snoRNA

group

Functions Members Cellular

localization

Conservative

motives

C/D box

snoRNA

rRNA, snRNA

methylation

Many snoRNA

species

Nucleolar C box (UGAUGA),

D box (CUGA)

Pre-rRNA processing U3, U8, U14,

U22

H/ACA box

snoRNA

rRNA, snRNA

pseudouridylation

Many snoRNA

species

Nucleolar H box (ANANNA),

ACA box (ACA)

Pre-rRNA processing snR10, snR30

H/ACA box

scaRNA

snRNA

pseudouridylation

Many scaRNA

species

Cajal body H box (ANANNA),

ACA box (ACA),

CAB box (ugAG)

C/D-H/ACA

box scaRNA

snRNA methylation

and

pseudouridylation

U85, U87, U88,

U89

Cajal body H box (ANANNA),

ACA box (ACA),

CAB box (ugAG)
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H/ACA snoRNPs convert uridine into pseudouridine in the mature rRNAs. There

are at least 106 methylated and 95 pseudouridinated residues found in the human

rRNA (Tollervey and Kiss 1997) that are likely targeted by snoRNA-rRNA inter-

action. Interestingly, the modifications are concentrated in functionally important

regions of rRNA. For example, the V domain of 25S rRNA, which is thought to

associate with peptidyl transferase activity, is the subject to massive modification in

yeast cells (Decatur and Fournier 2002).

snRNA modifications. There are five major spliceosomal RNAs (U1, U2, U4, U5,

and U6) which play a critical role in pre-mRNA splicing. U1, U2, U3, and U4 are

RNA polymerase II transcripts while U6 is transcribed by RNA polymerase III.

These RNAs are also modified to achieve optimal function. The modifications

include 20-O-methylation and pseudouridylation which are mostly located in the

functionally important regions involved in interactions with other snRNAs, pre-

mRNA, or spliceosomal proteins (Yu et al. 1998).

Telomere maintenance. Human telomerase RNA serves as a template for the

replication of chromosome ends. A characteristic H/ACA snoRNA “hairpin-hinge-

hairpin-tail” motif was found in the 30 end of human telomerase RNA (Mitchell

et al. 1999). It spans 240 out of 451 nucleotides of telomerase RNA. Despite of the

fact that the H/ACA domain of telomerase RNA binds to all H/ACA snoRNP

proteins, there is no experimental data that indicate a participation of telomerase

RNA in pseudouridylation (Meier 2005). It is possible that the H/ACA motif is

responsible for the nuclear localization of telomerase RNA since mutation of key

elements of the box H/ACA motif results in localization of the RNA in the

cytoplasm (Lukowiak et al. 2001).

These examples illustrate that snoRNAs can acquire multiple functions in RNA

metabolism. The underlying theme is that snoRNAs identify target RNAs using

short RNA-RNA interaction. The target RNA can be chemically modified, cleaved,

or translocated in the cell.

3.1.5 Noncanonical Functions of snoRNAs

Cloning efforts for small, non-polyadenylated RNAs discovered new, brain-specific

C/D box snoRNAs. One of these snoRNAs, HBII-52 (SNORD 115 in humans),

exhibited an 18 nt sequence complementarity toward the serotonin receptor 2 C

pre-mRNA. The complementary sequences were located in the antisense box of the

C/D box snoRNA and in the alternative exon Vb of the serotonin receptor 2 C

(Cavaille et al. 2000). Transfection experiments using reporter genes showed that

HBII-52 promotes the inclusion of this alternative exon, indicating that snoRNAs

can regulate alternative splicing by interacting with pre-mRNAs (Kishore and

Stamm 2006). The idea that snoRNAs can act on mRNAs was further supported

by proof-of-principle experiments, where the antisense box of a C/D box snoRNA

was engineered to cause a 20-O-methylation of the adenosine branch point of an

alternative exon. As expected, transfection of this snoRNA caused a change
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in alternative splicing, by preventing the phosphodiester bond formation to the

modified 20 hydroxyl group of the branch point (Semenov et al. 2008). These

experiments indicate that snoRNAs can act on pre-mRNAs, but their mechanism

of action is hard to understand.

3.2 snoRNA Expressing Units Give Rise to Shorter

RNAs, psnoRNAs

3.2.1 Discovery of snoRNA fragments

The analysis of high-throughput sequencing data from human, mouse, chicken,

Drosophila, Arabidopsis, and Schizosaccharomyces pombe revealed the existence

RNA fragments that were derived from known H/ACA snoRNAs (Taft et al. 2009;

Cole et al. 2009) and C/D box snoRNAs. Collectively, these RNAs were between

17 and 27 nt in length (Taft et al. 2009). These studies were supported by bioinfor-

matic analyses that showed that numerous H/ACA snoRNAs could be precursors

for experimentally confirmed miRNAs (Scott et al. 2009). The snoRNA precursors

of these miRNAs could bind dyskerin and were localized in the nucleolus indicating

that they have functional properties of snoRNAs (Scott et al. 2009). Deep sequenc-

ing of RNAs associated with argonaute proteins identified H/ACA snoRNA frag-

ments, indicating that these RNA fragments are functionally important as they are

associated with components of the miRNA machinery (Ender et al. 2008).

snoRNA fragments have been found in other species, including the ancient

eukaryote Giradia lamblia that expresses four RNA fragments derived from C/D

box snoRNAs (Saraiya and Wang 2008) and the Epstein Barr virus that expressed

an RNA fragment of a C/D box snoRNA (Hutzinger et al. 2009).

The analysis of whole libraries of noncoding RNAs showed a slight bias

toward short and abundant RNAs, as these RNAs can be more efficiently cloned.

In addition, some of the libraries used to identify fragments of snoRNAs were

specifically size-selected to enrich for miRNAs (Brameier et al. 2011). Therefore,

the currently known psnoRNAs might represent only shorter members of this class

of RNAs.

RNase protection experiments allow for the identification of the RNA fragments

generated from a precursor RNA in an unbiased way. A major problem in analyzing

RNase protection experiments was the difficulty in cloning the generated dsRNA

fragments. Using a new cloning technique that overcomes these problems, the

processing pattern of the brain-specific C/D box snoRNA HBII-52 (SNORD115)

and HBII-85 (SNORD 116) could be determined (Kishore et al. 2010; Shen et al.

2011). This direct analysis showed that HBII-52 is processed into at least six shorter

RNAs ranging from 37 to 73 nt. All these RNAs remained soluble in the biochemi-

cally defined nuclear fraction, indicating that they can have function outside the

nucleolus (Kishore et al. 2010; Soeno et al. 2010). For the HBII-52 class of RNAs, it
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was found that the processed form and not the previously reported full-length

snoRNA are the predominant product of the gene expression unit (Kishore et al.

2010). These RNAs were termed psnoRNAs for processed snoRNAs.

The psnoRNAs known to date are summarized in Table 3.3.

Currently, most psnoRNAs are derived from C/D box snoRNAs. A schematic

alignment of the known psnoRNAs with a hypothetical, “generic” C/D box

snoRNA precursor is shown in Fig. 3.3. It is striking that most of the psnoRNAs

contain C and D boxes, which could indicate that the 15.5 kD protein that binds

these sequence elements plays a role in their biogenesis.

This data suggest that psnoRNAs are generated from the two major classes of

snoRNAs. Shorter, processed psnoRNAs appear in different phyla: human, mouse,

Giardia lamblia, Drosophila, Arabidopsis and Schizosaccharomyces pombe,
indicating that they represent a ubiquitous form of RNA. In contrast to canonical

miRNAs, psnoRNAs appear to be nuclear. psnoRNA processing appears to stop at

defined sites, indicating a regulated biogenesis.

3.2.2 Mechanism of psnoRNA Formation

The mechanism of psnoRNA formation is only beginning to emerge, mainly for

C/D box snoRNAs. Previously, it was shown that shortening of the terminal stem-

loop structures destabilizes snoRNAs (Darzacq and Kiss 2000), and one discrimi-

nating factor between snoRNAs and psnoRNAs could be the length and stability of

the stem. The mutation of C and D boxes completely abolished snoRNA production

from expression clones (Kishore et al. 2010), indicating that psnoRNAs share

processing pathways with traditional snoRNAs. Several scenarios for psnoRNA

generation are possible. The first model suggests that psnoRNAs are derived

through further processing of mature snoRNAs in the nucleus. Related to this

option is that psnoRNAs represent “recycled” degradation products of canonical

snoRNAs. It is not known how snoRNAs are degraded, but, similar to other RNAs,

they will be cleaved by nucleases to allow for an RNA turnover.

psnoRNAs could thus represent degradation products of canonical snoRNAs that

associate with different hnRNPs.

A second scenario is that psnoRNA formation diverges from canonical snoRNA

formation during the processing step. Since most psnoRNAs contain C and D

boxes, it is possible that they still interact with the 15.5/Snu13 protein (Fig. 3.2).

However, for unknown reasons, these RNAs do not form a canonical snoRNP by

further association of NOP58/56, but instead, associate with hnRNPs that protect

the psnoRNA from further degradation. Finally, it can be imagined that a mixture of

these scenarios is at work in the cell.
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3.2.3 Methods to Study psnoRNA Processing and Function

Most of the current knowledge of psnoRNAs comes from the analysis of high-

throughput sequencing data, which is the method of choice to identify psnoRNAs.

In order to avoid a size bias, RNAs in the range of 20–200 nt should be analyzed, as

the focus on miRNAs currently favors RNAs in the 20–30 nt range. To analyze the

processing of psnoRNAs, they can be overexpressed in cells, and cis-acting RNA

elements can be determined by mutagenesis (Kishore et al. 2010; Cavaille et al.

2000). RNA targets can be determined by overexpressing the psnoRNAs in cell

lines followed by an analysis of RNA expression. psnoRNA-dependent targets can

be identified by a candidate approach that analyzes RNAs that exhibit sequence

complementarity to the psnoRNA. Here, it should be taken into account that

potentially the entire psnoRNA, not just the antisense boxes, can interact with the

target, as psnoRNAs do not form a conventional snoRNP. Finally, a psnoRNA-

dependent change in expression can be determined genome-wide using expression

arrays.

3.3 Function of Processed snoRNAs

The identification of psnoRNAs raised the question whether they are functional

or represent degradation products of canonical snoRNAs. The first indications

that psnoRNAs acquire functions came from the analysis of the MBII-52-derived

psnoRNA. It was shown that this snoRNA promotes inclusion of the alternative

exon of the serotonin receptor 2 C (Kishore and Stamm 2006), as well as six other

alternative exons (Kishore et al. 2010). Since all the snoRNAs from the MBII-52

expression units are processed into smaller psnoRNAs, it is likely that psnoRNAs,

not the snoRNAs, influence alternative splicing. To further gain insight into the

mechanism of action, the protein complexes associated with MBII-52 psnoRNAs

were investigated. Surprisingly, none of the canonical C/D box-associated proteins

Fig. 3.3 Schematic alignment of psnoRNAs to a generic C/D box snoRNA. A Hypothetical,

generic C/D box snoRNAs is shown on the top. The RNA elements are colored as in Figs. 3.1

and 3.2. C: C-box, D: D-box, D0 and C0: D0 and C0 boxes, AS: antisense box. The yellow shading at

the end reflects the terminal stem structures. The psnoRNAs shown in Table 3.3 are schematically

indicated by showing the RNA elements that they contain. Note that most of them include C and D

boxes and lack the stems
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(15.5 kD, fibrillarin, NOP 56/58) were found. Instead the psnoRNAs were

associated with hnRNPs and other nuclear proteins, which are listed in Table 3.4.

PsnoRNAs that resembled miRNAs have been tested experimentally, and

CDC2L6 (CDK11) was identified as a target for an H/ACA-derived psnoRNA.

The psnoRNA was argonaute-associated and blocked translation of CDC2L6

(CDK11) via an element in the 30 UTR, similar to a miRNA (Ender et al. 2008).

Other psnoRNAs were found to block translation in luciferase assays, using syn-

thetic binding sites (Saraiya and Wang 2008; Brameier et al. 2011). This data

indicates that snoRNA fragments can act similar to canonical miRNAs.

The association with proteins and the metabolic stability of the psnoRNAs argue

that they are functional noncoding RNAs. Given the variability of snoRNA expres-

sion, it is not surprising that psnoRNAs can be recruited to several functions, such

Table 3.4 Proteins associated with psnoRNAs C/D box snoRNAs

Protein

name

HEK 293T nuclear

extract from an

expression construct

(Kishore et al. 2010)

Total mouse brain

(Soeno et al. 2010)

Protein function

Pur-alpha + + Transcription activation

Pur-beta – +

TDP-43 + + Transcriptional repression, nuclear

pre-mRNA splicing, mRNA

export/import, translational

regulation

hnRNPs

A1/A2/A3/

B1/D0

+ + Transcriptional regulation, nuclear

pre-mRNA splicing via

spliceosome, mRNA

localization, translation and

turnover

ATP-

dependent

RNA

helicase A

– + Transcriptional regulation

and RNA processing

Matrin-3 – + Nuclear pre-mRNA splicing via

spliceosome, rRNA editing

Nucleolin – + Chromatin silencing, nuclear

pre-mRNA splicing via

spliceosome, nucleosome

mobilization, rRNA processing,

transcription from Pol I

promoter

ELAV-like

protein I

– + mRNA stabilization, nuclear

pre-mRNA splicing via

spliceosome

Centromere

protein V

– + Regulation of chromosome

organization

The table lists proteins associated with the psnoRNAs derived from the MBII-52 cluster.

PsnoRNAs derived from H/ACA snoRNA ACA45 are associated with Ago1 and Ago2 (Ender

et al. 2008)
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as a change in nuclear pre-mRNA processing and in cytosolic translational control.

Due to its structure, the double-stranded RNase dicer generates fragments that are

typically 22 nt in length. The larger size (>30 nt) of most psnoRNAs indicates that

they are formed by a dicer-independent pathway. This suggests the existence of

a novel pathway to generate noncoding regulatory RNAs. This idea is supported by

the comparison of psnoRNAs derived from dicer and DGCR8 knockout embryonic

stem cells with wild-type cells. It was found that C/D box psnoRNAs have similar

length distributions, indicating that their formation is independent from Dicer:

DGCR8 complex. However, H/ACA-derived psnoRNAs length was different

between these cells, suggesting that dicer plays a role in their processing (Taft

et al. 2009). The dicer dependency was experimentally confirmed for one H/ACA

psnoRNA (Ender et al. 2008).

Finally, orphan snoRNAs have been defined as snoRNAs without targets for

their antisense boxes. Since psnoRNAs often do not contain antisense boxes,

a targeting of other RNAs that relies on imperfect RNA-RNA interactions will be

missed by bioinformatic prediction programs that focus on the antisense-target

RNA interaction.

3.4 Role of psnoRNAs in Diseases

The cluster of HBII-52 and HBII-85 psnoRNA expression units is subject to intense

analysis, as their loss of expression is linked to Prader-Willi syndrome. Prader-Willi

syndrome (PWS) is a human congenital disease with an incidence of about 1 in

8,000–20,000 live births. A characteristic of the disease in older children is the

inability to gain satiety after a meal, and people with PWS are subsequently

hyperphagic. The hyperphagia causes weight gain and makes PWS the most

common genetic cause of marked obesity in humans. PWS is caused by the loss

of gene expression from a maternally imprinted region on chromosome 15q11–q13

(reviewed in Butler et al. (2006)). Recently, three PWS patients with microdeletions

have been identified that only lack expression of HBII-52 and HBII-85 (Sahoo

et al. 2008; de Smith et al. 2009; Duker et al. 2010). The comparison of the

microdeletions suggests that the loss of HBII-85 expression is the strongest con-

tributor to the phenotype (de Smith et al. 2009). HBII-85 and HBII-52 are human

C/D box snoRNAs that are expressed in 27 and 48 expression units, respectively.

Each expression unit consists of two exons flanking a hosting intron that contains

the snoRNA. The snoRNAs are evolutionary highly conserved, whereas the hosting

noncoding exons are poorly conserved. In mice, both the MBII-85 and MBII-52

expression units are processed into smaller psnoRNAs (Shen et al. 2011; Brameier

et al. 2011), and the full-length snoRNA from the MBII-85 cluster appears as only

a minor intermediate form (Kishore et al. 2010). MBII refers to the mouse

orthologous of the human HB-II snoRNAs. HB-II simply indicates human brain

library number II, and the added number represents the clone number sequenced.
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As the serotonin-receptor 2 C-target RNA for MBII-52 could be predicted from

its sequence, its possible contribution to the Prader-Willi phenotype is best under-

stood. The perfect 18 nt-long sequence complementarity between the MBII-52

antisense box and the pre-mRNA is located in the alternative exon Vb of the

receptor. Failing to include exon Vb into the pre-mRNA generates a nonfunctional

receptor, due to a frameshift (Fig. 3.4). Transfection experiments show that the

HBII-52 expression unit with a 5-HT2C reporter gene promotes exon Vb inclusion.

Mutagenesis studies show that exon Vb contains splicing silencers that normally

prevent the inclusion of the exon. Expression of the snoRNA blocks the action of

the silencers and promotes exon inclusion. The silencers located on the pre-mRNA

can also be modified by RNA editing that changes adenosine to inosine residues

(Kishore and Stamm 2006). As a result, there are two ways of generating a full-

length serotonin 5-HT2C receptor: blocking the silencers through expression of the

snoRNA and weakening the silencers by editing some of its bases. The nature of the

silencing element is not clear and it could be a protein, RNA, or an RNA structure.

psnoRNA actionExon Vb skipping

I II III IV Va Vb VI

Vb Editing

HBII-52

No/truncated, non-
functional Protein

I,M,V
N,D,S,G I,V N

I
I

Edited receptor, weak
serotonin response

Non-Edited receptor, strong
serotonin response 

a

b

c

Fig. 3.4 Regulation of serotonin receptor 5-HT2C by HBII-52-derived psnoRNAs. (a) The

genomic structure of the 5-HT2C receptor. The arrow in exon III indicated the translational start

point. HBII-52-derived psnoRNAs interact with an 18 nucleotide complementarity region in exon

Vb. (b) Protein-coding parts of the mRNAs derived from different pre-mRNA processing events.

Exon Vb skipping results in a shortened mRNA that encodes a truncated protein but is most likely

subject to nonsense-mediated mRNA decay. Exon Vb can be edited at five positions (indicated

as arrows). The editing event promotes inclusion of the exon but changes the amino acid sequence

at three points. The psnoRNAs cause inclusion of exon Vb without editing, which generates

a receptor with the highest agonist efficacy. (c) Structure of the encoded proteins. Editing of exon

Vb leads to a change a potentially three amino acids, which are located in the second intracellular

loop that couples to the effector G protein. The editing events weaken the receptor-G protein

interaction and lead to a weak serotonin response. The non-edited receptor features the amino

acids I, N, and I at the positions that could be edited and shows the strongest coupling to the

G protein and response to serotonin.
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The RNA editing events change the amino acid composition of the receptor at

three sites. These sites are located in an area critical for protein function, namely, in

a loop that couples to the G protein. The editing of the receptor pre-mRNA

decreases the coupling of the G protein to the receptor and thus reduces its efficacy.

The mRNA containing the non-edited version of the 5-HT2C receptor encodes

a receptor that couples optimal to its effector G protein and shows the highest

response to serotonin stimulation. Analysis of limited brain samples from PWS

patients showed a reduction of the non-edited isoform (Kishore and Stamm 2006),

which has also been observed in mouse models lacking HBII-52 snoRNA expres-

sion (Doe et al. 2009). A molecular link between a defect in the 5-HT2C production

and PWS is an attractive hypothesis, as the 5-HT2C receptor plays a crucial role in

hunger control and satiety, which is the major problem in PWS. Since HBII-52

snoRNA promotes the generation of the most active receptor, it acts like a “genetic

agonist” of the serotonin receptor. The administration of selective 5-HT2CR

agonists, such as d-fenfluramine, has a strong appetite-suppressing effect (Vickers

et al. 2001). Underlining the importance of the 5-HT2C receptor for hunger control,

the mouse knockout of 5-HT2CR is hyperphagic and develops obesity. Expression

of the 5-HT2CR in the arcuate nucleus, a major hunger control center, reverses the

hyperphagic phenotype (Xu et al. 2008). Conversely, when a mutant of the receptor

that represents the fully edited 5-HT2CR is expressed in knockout mice, the

resulting mice remain hyperphagic (Kawahara et al. 2008). Collectively, the data

strongly supports a model where the loss of HBII-52 causes a loss of the mRNA

isoform that encodes the most active form of the receptor, which is necessary for

proper hunger control. Finally, overexpression of MBII-52 in mouse brain causes

an autistic-like phenotype, which further underlines the importance of MBII-52

in normal brain function (Nakatani et al. 2009).

Prader-Willi syndrome represents a loss of function of psnoRNAs. The findings

clearly show that psnoRNA expression is physiologically important. It remains

to be seen whether point mutations in psnoRNA can have detrimental effects for

human health, similar to the mutations of the H/ACA snoRNA domain of human

telomerase RNA that result in dyskeratosis congenital (Vulliamy et al. 2001;

Vulliamy et al. 2008).

3.5 Summary and Outlook

The identification of psnoRNAs indicates the existence of a new class of noncoding

regulatory RNAs. Several studies aimed at finding new miRNAs identified

snoRNAs as possible miRNA precursors. These snoRNA-derived miRNAs are

dependent on dicer and are loaded on argonaute proteins. This suggests that some

snoRNAs could be recruited to form miRNAs.

However, the majority of the currently characterized psnoRNAs is larger

than 22 nt in length and is in contrast to miRNAs predominantly nuclear. It is

therefore expected that their processing is independent of dicer, and their function is
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independent of binding to argonaute proteins. Therefore, they likely represent

a new class of nuclear regulatory RNAs. The expression of MBII-52 and MBII-85

snoRNAs was found to be regulated in response to neuronal activity in a fear-

conditioningmouse model. It is therefore possible that psnoRNA expression is plastic

in a physiological system (Rogelj et al. 2003), similar to some neuronal miRNAs

(Krol et al. 2010).

The function of psnoRNAs is only beginning to emerge: Similar to other RNAs,

they appear to be coated with hnRNPs, suggesting that they can form hnRNPs. Such

hnRNPs could influence numerous pre-mRNAs, as has been shown for MBII-85.

Some of the associated hnRNPs have been shown to be involved in chromatin

reorganization, which together with their nuclear localization could indicate that

psnoRNAs influence chromatin structure.

Since it is now clear that every part of a snoRNA, not just the antisense boxes,

can be recruited to target other nucleic acids, improved prediction programs can be

devised to bring targets to so far orphan snoRNAs.
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Chapter 4

Small Regulatory RNAs (sRNAs): Key Players

in Prokaryotic Metabolism, Stress Response,

and Virulence

Sabine Brantl

Abstract Small RNAs (sRNAs) gained worldwide attention in the late 2002, when

the journal Science published a special issue entitled “Small RNAs – Breakthrough

of the Year.” However, small antisense RNAs in bacteria involved in the regulation

of plasmid replication and maintenance, phage life cycles, and transposition had

been investigated in great depth for more than 20 years. Whereas these sRNAs were

discovered only fortuitously, systematic computer-based searches have only been

used since 2001. Currently, it is estimated that a bacterial genome encodes

�200–300 sRNAs with diverse functions. To date (2011), about 140 sRNAs are

known in Escherichia coli and Salmonella. However, only about 25 of these have

been assigned a biological function, indicating that defining their functions

continues to be a challenging issue. Systematic searches have also been performed

for a few Gram-positive bacterial species.

sRNAs in bacteria can be divided into two major groups: The first group

regulates gene expression by a base-pairing mechanism with target mRNA,

whereas the second group acts by binding of small proteins. This chapter covers

mechanisms of action, biological functions, integration in regulatory circuits, and

evolutionary aspects of base-pairing and protein-binding sRNAs.
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4.1 Introduction

In bacteria, small noncoding RNAs are the most abundant class of post-

transcriptional regulators. Whereas sRNAs have been studied in plasmids, phages,

and transposons, systematic computer-based searches of bacterial chromosomes

began in earnest in 2001. These studies have identified �140 sRNAs in E. coli and
Salmonella, and it is estimated that a bacterial genome encodes �200–300 sRNAs

with diverse functions (Hershberg et al. 2003). Small RNAs can be classified into

several major groups. They encompass sRNAs that act by a base-pairing mecha-

nism, by protein binding, and by sensing environmental factors such as RNA

thermometers (Narberhaus et al. 2006) and riboswitches (Roth and Breaker

2009). Additionally, sRNAs with specific functions like tmRNA, RNase P, and

4.5S RNA have been identified.

sRNAs that act by a base-pairing mechanism can be cis- or trans-encoded

(Fig. 4.1a). Cis-encoded antisense RNAs are completely complementary to their

target (sense) RNAs and can, therefore, form complete duplexes with them. By

contrast, trans-encoded antisense RNAs are only partially complementary to their –

often multiple – target RNAs yielding only partial duplexes between both

molecules. In both cases, the interaction between antisense RNA and target

mRNA results in inhibition or activation of target RNA function. The second

group of sRNAs comprises RNAs that regulate gene expression by binding to

proteins (Fig. 4.1b). Here, mechanisms of action, biological functions, integration

in regulatory circuits, and evolutionary aspects of base-pairing and protein-binding

sRNAs are discussed.

Duplex formation Inhibition or activation of
sense RNA function

DNA DNA

Sense/Target RNA ) Sense/Target RNA )

Antisense RNA Antisense RNA

complete duplex partial duplex

cis-encoded trans-encoded

RNA-RNA Interactions
(Basepairing sRNAs)

Bacterial sRNAs

sRNA-Protein Interactions

6S RNA

σ70 inhibited
6S RNA

RNAP-core

X

s s70-promoter

σS

RNAP-core

S-promoter

transcriptionNo transcription

sRNAs binding small translational regulators
rsmA

RsmA
(61 aa) sRNA

translation
inhibition

target RNA

translation

sequestration
of RsmA

rsmB

b

act via

a

Fig. 4.1 Overview of base-pairing and protein-binding sRNAs. (a) Cis-encoded antisense RNAs

form complete duplexes with their target RNAs, whereas trans-encoded sRNAs can only form

partial duplexes with their target(s). Antisense RNAs are drawn in grey, sense RNAs in black.
Black rectangles, promoters. (b) Protein-binding sRNAs. Left: 6S RNA interacts with vegetative

RNAP containing s70, thus inhibiting its promoter binding. Stationary phase RNAP with sS is not

bound by 6S RNA facilitating recognition of sS promoters. Black and white rectangles, �35 and

�10 boxes, respectively. Right: The RsmA-RsmB regulatory system of Erwinia carotovora. Free
RsmA protein inhibits target mRNA translation. Binding of RsmA protein to RsmB depletes the

pool of free RsmA, thereby allowing target mRNA translation
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4.2 cis-Encoded Antisense RNAs

The first cis-encoded antisense RNAs were discovered in 1981 in the E. coli
plasmids ColE1 (Tomizawa et al. 1981) and R1 (Stougaard et al. 1981) where

they regulate replication, and hence, control plasmid copy numbers. Subsequently,

in a wide variety of plasmids, phages, and transposons, cis-encoded antisense RNAs

were found and intensively characterized over the past 30 years (reviewed in

Wagner et al. 2004). In plasmids, antisense RNAs regulate replication, conjugation

frequency, maintenance, and segregational stability. In phages, they have a fine-

tuning function in the decision between lysis and lysogeny. In transposons, they

control transposition frequency. In addition, a growing number of chromosomally

cis-encoded sRNAs have been found. Among them are RatA from the B. subtilis
genome that regulates the toxin TxpA (Silvaggi et al. 2005, Fig. 4.2b) and IsrR from

the cyanobacterium Synechococcus that controls the amount of the photosynthesis

component IsiA (D€uhring et al. 2006). Other examples from E. coli include GadY
that is involved in the acid stress response (Opdyke et al. 2004, Fig. 4.2c) and SymR

that controls the expression of a toxin, the SOS-induced endonuclease SymE

(Kawano et al. 2007, Fig. 4.2a). In Salmonella, the 1,200-nt long sRNA AmgR

transcriptional interference
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Mechanisms employed by cis-encoded antisense RNAs

Fig. 4.2 Overview of regulatory mechanisms employed by cis-encoded antisense RNAs. Antisense
RNAs are drawn in red, sense RNAs in blue. Black rectangles denote promoters, yellow and brown
boxes sense and antisense RNA genes, respectively. Open yellow symbols indicate ribosomes.

Green arrows denote RNase III cleavage, black arrows the putative action of other RNases. Violet
arrow in Fig. 4.2c is an unidentified RNase. Details are described in the text. (a–c) are based on

Brantl (2009)
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controls mgtC (Lee and Groisman 2010, see 8) and in Clostridium acetobutylicum,
four antisense RNAs of different length regulate the sulfur-metabolic ubiG operon

(André et al. 2008, Fig. 4.2d). In Salmonella typhimurium (Padalon-Brauch et al.

2008), 19 novel sRNAs associated with pathogenicity islands were identified, many

of which are cis-encoded. Recently, in the cyanobacterium Synechocystis sp.

PCC6803, 73 cis-encoded sRNAs have been found, among them SyR7 which

possibly modulates murein biosynthesis (Voss et al. 2009). In Staphylococcus
aureus, pyrosequencing identified 30 small RNAs (Bohn et al. 2010), among

them one cis-encoded sRNA, RsaOW, which is perfectly complementary to the

IS1181 transposase 50 UTR. By screening cDNA libraries prepared from low-

molecular-weight RNA of Mycobacterium tuberculosis, nine putative sRNAs,

among them at least one cis-encoded (ASdes), were identified (Arnvig and Young

2009). ASdes might also act as trans-encoded sRNA. Table 4.1 summarizes all

currently known cis-encoded antisense RNAs from bacterial chromosomes for

which targets have been identified.

4.2.1 Mechanisms of Action

Inhibition of target RNA function prevails, but, in a few cases, activating

mechanisms have been found, too. All currently known regulatory mechanisms

employed by cis-encoded antisense RNAs are discussed below and – except for

inhibition of primer formation – summarized in Fig. 4.2.

4.2.1.1 Translation Inhibition

The conceptually simplest mechanism, inhibition of translation of the sense mRNA

by direct blocking of the ribosome binding site, has been found in control of

plasmid replication and maintenance (Wagner et al. 2004). Examples include

replication control by RNAII in streptococcal plasmid pLS1, control of conjugative

transfer in plasmids R1 and F by FinP, maintenance control of plasmid R1 by Sok,

and transposition control of IS10 by RNA-OUT. In some cases, the antisense RNAs

inhibit translation of a leader peptide that itself is required for efficient Rep

translation (rev. in Brantl 2007).

The SymR/symE antitoxin/toxin system from the E. coli chromosome shows that

translational inhibition is not restricted to plasmids (Kawano et al. 2007, Fig. 4.2a).

4.2.1.2 Promotion of mRNA Degradation

One of the few antisense RNAs known to influence mRNA stability without effects

on translation are l OOP RNA that facilitates RNase III–dependent decay of the

cIIO mRNA and RNAa expressed from plasmid pJM1 that affects the stability of
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fatA/B-mRNA in Vibrio anguillarum (rev. in Brantl 2007). For the IsrR/isiA system

involved in photosynthesis in Synechocystis sp., isiA-mRNA degradation has been

suggested but not yet confirmed (D€uhring et al. 2006). By contrast, antisense

RNA–mediated mRNA degradation is supported experimentally for the RatA/

txpA antitoxin/toxin system from B. subtilis, although an involvement of RNase

III is still elusive. A deletion of the ratA promoter and 50 region led to a dramatic

increase in txpA-mRNA levels, whereas a truncated 177-nt txpA RNA detected in

the presence of RatA might result from RNase III cleavage of the RatA/txpA duplex

(Silvaggi et al. 2005, Fig. 4.2b). For SymR/symE, a decrease in target RNA stability

accompanies translation inhibition by the unusually long-lived SymR (half-life

60 min). RNase III was not required for inhibition (Kawano et al. 2007).

4.2.1.3 mRNA Stabilization Due to a Processing Event

For the E. coli GadY/gadXW system, a stabilizing effect of GadY on the gadX
mRNA has been proposed. Both RNAs overlap at their 30 regions. A gadY-
overexpressing strain displayed 20-fold higher levels of gadX-mRNA, whereas a

strain with gadY promoter mutation showed 4.5-fold reduced gadX-mRNA levels.

The gadX 30 UTR was required for this effect (Opdyke et al. 2004). Recently, base

pairing between GadY and the gadX 30 UTR was found to stimulate RNase

III–dependent cleavage of the unstable gadXW mRNA resulting in two short stable

products. Another, still unknown RNase is required additionally to RNase III

(Opdyke et al. 2011, Fig. 4.2c). How can GadY-dependent cleavage stabilize the

gadX and gadW transcripts? (a) GadY could remain base-paired to the processed 30

end of gadX and block recognition of instability determinants in gadXWmRNA, (b)

GadY-directed cleavage could lead to removal of instability determinants, and (c)

full-length gadXW mRNA and transcripts produced by GadY-dependent cleavage

could fold into secondary structures with different susceptibility to degradation

(Opdyke et al. 2011).

4.2.1.4 Transcription Attenuation

This mechanism seemed to be confined to Gram-positive bacteria comprising

replication control of staphylococcal plasmid pT181 (Novick et al. 1989; Brantl

and Wagner 2000) and streptococcal plasmids pIP501 (Brantl et al. 1993, Fig. 4.2d)

and pAMb1 (rev. in Brantl 2007). The nascent repmRNA can adopt two alternative

conformations: Upon binding of the antisense RNA, a terminator stem-loop is

induced in the nascent rep mRNA, and, consequently, transcription is terminated

prematurely upstream of the rep SD sequence preventing Rep protein synthesis,

and, hence, replication. If the nascent rep RNA does not encounter an antisense

RNA, it can refold by complementary base pairing between two alternative

sequences preventing terminator formation and allowing transcriptional read-

through. Subsequently, Rep protein can be synthesized and replication occurs.
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The antisense RNA binds and exerts its inhibitory effect only during a short time

window (Brantl and Wagner 1994). Recently, the first case for Gram-negative

bacteria was reported in Shigella (RnaG/icsA; Giangrossi et al. 2010, see 8).

4.2.1.5 Transcriptional Interference

To date, this unique mechanism where the antisense RNA acts exclusively in cis has
been found in only one case (Fig. 4.2e): Four antisense RNAs with different 30 ends
are transcribed convergently to the ubiGmccBA operon mRNA in Clostridium
acetobutylicum (André et al. 2008) from a promoter downstream of the operon

terminator T2. This antisense promoter is located downstream of an S-box and is

�3-fold stronger than the sense promoter. In the presence of methionine, premature

transcription termination at T3 of the S-box riboswitch 30 of the ubiG operon leads

to a low level of antisense RNA and, due to lack of transcriptional interference, a

concomitant increase of sense RNA transcription. By contrast, the absence of

methionine results in refolding in the S-box allowing transcription from the anti-

sense promoter to proceed through T3 and yields – due to colliding polymerases or

accumulation of positive supercoils ahead of the transcribing RNAP – a reduction

in ubiGmccBA transcription. In some transcription attenuation systems, transcrip-

tional interference plays an additional, secondary role (RNAIII/II of pIP501, Brantl

and Wagner 1997; RnaG/icsA, see 8).

4.2.1.6 Prevention of Formation of an Activator RNA Pseudoknot

In some cases, such as IncB and IncIa plasmids, the efficient translation of the

replication initiator protein Rep requires a long-distance activator RNA pseudoknot

(Fig. 4.2f). A leader peptide ORF, repY, must be translated to allow RepZ synthesis

to disrupt an inhibitory stem-loop at the rep RBS (rev. in Brantl 2004). This

permits formation of a short helix between the target loop and disrupted stem,

located 100 nt apart. This long-distance pseudoknot activates repZ translation.

The corresponding antisense RNAs block both leader peptide translation and

pseudoknot formation.

4.2.1.7 Inhibition of Primer Maturation

This mechanism is limited to ColE1 and its related plasmids (Tomizawa et al.

1981; rev. in Brantl 2004) that require a plasmid encoded replication primer

that is synthesized as a 550-nt pre-primer (RNAII). For the formation of a persistent

RNAII/DNA hybrid within the origin, RNAII must fold into specific secondary

and tertiary structures which form during RNAII synthesis in a well-characterized

series of events. Afterward, the mature primer, which will be extended by
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DNA polymerase I, is generated by RNase H cleavage of the RNA strand of

the RNAII/DNA hybrid. Binding of the antisense RNA (RNAI) induces a

change in the nascent primer, thereby preventing primer maturation. The kissing

complex between RNAI and RNAII is stabilized by the plasmid-encoded Rom

protein.

4.2.2 Binding Kinetics, Binding Pathway, and Requirement
of RNase III

Antisense/sense RNA binding pathways have been studied in a variety of systems

and binding kinetics have been measured (rev. in Brantl 2007). Usually, pairing

rate constants were determined to be �106 M�1 s�1. The initial contact between

antisense and sense RNA that often form complementary structures, can either

occur between two complementary loops (many replication control systems) or

between a loop and a single-stranded region (e.g., RNA-IN/RNA-OUT of IS10). In

the first case, simple helix progression in both directions is topologically impossible

due to accumulating torsional stress. Therefore, loop-loop initiating systems require

a subsequent interaction at a distal site to circumvent this limitation. Independent of

a one-step or multistep pathway, the final result of the interaction is a complete

duplex that is often degraded by the double-strand-specific RNase III (shown for

CopA/CopT, RNA-OUT/RNA-IN, and hok/Sok). However, formation of complete

duplexes is too slow to account for the observed biological effects. Instead, many

antisense RNAs mediate inhibition by forming complexes that involve limited

numbers of base pairs with their targets. As has been shown for R1, ColE1,

pIP501, pT181, and the IncB/Inc1a type plasmids, full duplex formation is not

required for control (Wagner and Brantl 1998; Brantl 2007).

For the replication control system of plasmid R1, the binding pathway between

antisense RNA CopA and sense RNA CopT has been elucidated in detail (rev. in

Brantl 2007). Binding initiates with an unstable loop-loop interaction (kissing

complex) that is transformed into an extended kissing complex. Later, a single-

stranded region is required to overcome the torsional stress created upon the

unidirectional progression of this loop-loop interaction. Afterward, a binding inter-

mediate is formed which contains a four-helical junction. This intermediate is

converted into a stable inhibitory complex which is only a partial duplex and is

slowly transformed into a stable duplex, which is cleaved by RNAse III. This

stepwise binding pathway is, apparently, conserved, and the four-helix junction,

although comprising different sequences, is also found as a binding intermediate in

IncIa and related plasmids.

In contrast to R1 and IS10, l OOP RNA depends on RNase III cleavage to exert

control (Krinke and Wulff 1987, 1990), most probably, because the mechanism

exerted by OOP is mRNA degradation, whereas in the other systems, steps preced-

ing degradation, i.e., translation initiation, are inhibited.

80 S. Brantl



4.3 Trans-Encoded sRNAs

The first trans-encoded RNA from the bacterial chromosome, MicF, was discovered

in 1984 (Mizuno et al. 1984). It forms a 20-bp imperfect RNA duplex with the

translation-initiation region of E. coli ompF mRNA encoding an outer membrane

porin, thereby inhibiting ompF translation (Andersen et al. 1990). Until 1999, only

a handful of trans-encoded sRNAs were known. Systematic genome searches using

various methodologies have revealed that bacteria encode a plethora of trans-

encoded sRNAs (e.g., E. coli, Argamann et al. 2001; Wassarman et al. 2001;

Vogel et al. 2003; Salmonella, Sittka et al. 2008; Sittka et al. 2009). Many of the

E. coli and Salmonella sRNA genes are conserved in closely related pathogens.

Interestingly, the majority of sRNAs with known functions regulate outer mem-

brane porins (Vogel and Papenfort 2006). However, many sRNA still await the

identification of their targets. Two systematic searches in Pseudomonas aeruginosa
(Livny et al. 2006; Sonnleitner et al. 2008) detected 17 sRNAs. In Gram-positives,

five searches have been carried out in B. subtilis (Lee et al. 2001; Licht et al. 2005;
Saito et al., 2009; Rasmussen et al. 2009; Irnov et al. 2010). Rasmussen et al. found

84 putative noncoding trans-encoded sRNAs in the B. subtilis genome, and Irnov

et al. increased the total number to 100. Three searches were performed in S. aureus
(Pichon and Felden 2005; Geissmann et al. 2009; Bohn et al. 2010), three in Listeria
monocytogenes (Christiansen et al. 2006; Mandin et al. 2007; Toledo-Arana et al.

2009), and two in Streptococcus (Halfmann et al. 2007; Perez et al. 2009).

Pyrosequencing approaches have allowed the detection of sRNAs in a variety of

pathogenic bacteria (e.g., Chlamydia trachomatis, Albrecht et al. 2010,

Helicobacter pylori, Sharma et al. 2010). In addition, in aerobically grown

Rhodobacter sphaeroides, 20 sRNAs have been detected, four of which are

involved in the response to 1O2 (Berghoff et al. 2009). Table 4.2 provides an

overview of all currently known trans-encoded sRNAs for which targets were

identified.

4.3.1 Biological Functions

Trans-encoded sRNAs have been implicated in a variety of biological functions.

Examples include iron transport and storage (RyhB, Massé et al. 2007),

phosphosugar stress (SgrS, Rice and Vanderpool 2011), oxidative stress (FnrS,

Boysen et al. 2010; Durand and Storz 2010), quorum sensing (Qrr1 to 4, Tu et al.

2007), SOS response (IstR-1, Darfeuille et al. 2007), curli synthesis (OmrA/B,

Holmqvist et al. 2010), and plant/Agrobacterium interaction (AbcR1, Wilms et al.

2011). Frequently, sRNAs are involved in fine-tuning of metabolic processes which

is reflected by the lack of severe phenotypes upon their deletion or overexpression.

One sRNA often regulates a set of mRNAs implicated in the same metabolic

pathway: Spot42, initially found to control galactose degradation (Møller et al.
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2002), eventually turned out to be a regulator of central and secondary metabolism

and redox balance (Beisel and Storz 2011). In the envelope stress response in E. coli
and Salmonella, two sE-controlled sRNAs, MicA and RybB, are involved.

Whereas MicA facilitates selectively the decay of ompA mRNA (Udekwu et al.

2005; Rasmussen et al. 2005), RybB accelerates the decay of at least eight omp
mRNAs encoding outer membrane porins (Papenfort et al. 2006). Another example

is E. coli GcvB that regulates seven ABC transporter mRNAs by targeting C/A-rich

elements inside and upstream of RBS using its G/U-rich single-stranded central

region (Sharma et al. 2007). In Bacillus subtilis, FsrA – similar to E. coli RyhB – is

repressed by Fur and regulates at least four target mRNAs involved in iron

metabolism and storage (Gaballa et al. 2008). In contrast to RyhB, FsrA cooperates

with one or more Fur-regulated small basic proteins FbpA, FbpB, and FbpC. On the

other hand, one mRNA may be targeted by several sRNAs under different environ-

mental conditions. E. coli rpoS mRNA encoding sigma factor sS is translationally

activated by DsrA at low temperatures (Sledjeski et al. 1996), by RprA at osmotic

shock and cell surface stress (Majdalani et al. 2001), and by ArcZ under aerobic

conditions (Mandin and Gottesman 2010). Under oxidative stress, rpoS is

downregulated by OxyS (Altuvia et al. 1997).

Interestingly, a few trans-encoded sRNAs have dual functions: They act both as

base-pairing sRNAs and as peptide-encoding mRNAs. The first reported example

was the S. aureus RNAIII encoding d-hemolysin (26 aa) (Morfeldt et al. 1995).

Later, the streptolysin SLS-ORF of Streptococcus Pel RNA (Mangold et al. 2004)

and the 43 codon-SgrT ORF on E. coli SgrS (Wadler et al. 2007) were identified.

SgrS and SgrT downregulate PtsG glucose transporter activity and have a physio-

logically redundant, but mechanistically distinct function in inhibition (Wadler and

Vanderpool 2007). Recently, B. subtilis SR1-ORF was found to encode a 39 aa

peptide (SR1P) which interacts with GapA (Gimpel et al. 2010). Both SgrT and

SR1P are evolutionarily conserved in Gram-negatives (Horler and Vanderpool

2009) and in Bacillus/Geobacillus species (Gimpel et al. 2010), respectively. The

functions of hyp7 ORF on Clostridium perfringens VR (Shimizu et al. 2002), the 37

codon PhrS-ORF of Pseudomonas aeruginosa (Sonnleitner et al. 2008), the 32

codon RivX-ORF (Roberts and Scott 2007), and the RSs0019-ORF of Rhodobacter
sphaeroides (Berghoff et al. 2009) are still unknown.

Computer approaches to identify bacterial sRNAs and their target binding sites

are summarized in the chapter 11 of this book. Furthermore, chapter 14 summarizes

and explains in detail methods for the experimental analysis of RNA-based

regulations.

4.3.2 Mechanisms Employed by trans-Encoded Antisense RNAs

The most prevalent mechanisms used by trans-encoded sRNAs are inhibition

of translation and promotion of RNA degradation. Furthermore, a few trans-

encoded sRNAs activate translation of their target mRNAs or stabilize them.
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More indirect mechanisms comprise RNA trapping and inhibition of leader peptide

translation. Currently known mechanisms are discussed below and summarized in

Fig. 4.3.
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details see text. (a–d) are based on Brantl (2009)

86 S. Brantl



4.3.2.1 Translational Regulation

Translation Inhibition by Direct Blocking of the RBS

Translation inhibition by direct blocking of the RBS is the most widespread

mechanism. Examples include OxyS, Spot42, MicA, MicC, MicF, RyhB, RybB,

OmrA/B, and SgrS from E. coli. The complementary regions of the sRNAs and

their target mRNAs overlap the RBS or the RBS and/or the adjacent 50 or 30 regions.
For MicA and MicF, base pairing includes the ompA and ompF RBS, respectively,

whereas MicC uses two complementary regions (6 and 16 continuous bp) immedi-

ately upstream of the ompC RBS (Chen et al. 2004). For OxyS/fhlA, two interacting
regions of 7 and 9 bp overlapping the RBS and about 25 nt downstream from the

fhlA start codon, were found (Altuvia et al. 1998, Fig. 4.3b). For SgrS, out of 23

complementary bp, only 6 bp around the RBS are crucial for inhibition (Kawamoto

et al. 2006). This aspect is very similar to the cis-encoded antisense RNAs, where a

nucleation step is essential for fast recognition and efficient regulation. Reminiscent

of miRNA regulation in eukaryotes, E. coli, and Salmonella RybB use a 5–7-nt seed

sequence at their 50 end for multitarget recognition (Papenfort et al. 2010; Balbontı́n

et al. 2010). A similar pattern was found for OmrA/B (Guillier and Gottesman

2008).

Translation Inhibition by Induction of Structural Changes Downstream

from the RBS

To date, the only known example is SR1 from B. subtilis, which interacts with ahrC
mRNA encoding the transcriptional activator of the arginine catabolic operons

(Heidrich et al. 2006). Both RNAs share seven complementary regions A to G in

the 30 half of SR1 and the central part of ahrC. Region G is located �100 nt

downstream from the ahrC RBS. Binding of SR1 induces structural alterations not

only in all complementary regions but also immediately downstream from the ahrC
RBS and upstream of region G, resulting in inhibition of translation initiation

(Heidrich et al. 2007, Fig. 4.3a). Apparently, even base pairing far downstream

from the RBS can prevent binding of the 30S ribosomal subunit.

Translation Inhibition by Blocking of a Ribosome Standby Site

So far, the only example is IstR-1/tisAB of E. coli (Darfeuille et al. 2007, Fig. 4.3c).
Here, �100 nt upstream of the tisB RBS a standby site for ribosomes has been

found, which is required for efficient synthesis of the TisB toxin from this highly

structured RBS. The antisense RNA, IstR-1, is complementary to this site and

competes with standby ribosomes for binding. The IstR-1/tisB interaction generates
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a cleavage site for RNase III which in turn results in a 50 truncated tisB mRNA

which cannot be translated anymore.

Combined Translation Inhibition and mRNA Degradation

Frequently, translation inhibition is accompanied by target RNA degradation by

RNase E or RNAse III. Degradation by RNase III is necessary for inhibition by S.
aureus RNAIII (Huntzinger et al. 2005). As a base-pairing sRNA, RNAIII does not
only activate translation of the a-hemolysin mRNA (Morfeldt et al. 1995) but also

inhibits translation of several targets as the main surface adhesion protein Spa (see

Fig. 4.3d), fibrinogen-binding protein SA1000, pleiotropic transcriptional factor

Rot (Boisset et al. 2007), and staphylocoagulase Coa (Chevalier et al. 2010).

Whereas the 50 domain of RNAIII encodes d-hemolysin, the 30 domain carrying

two redundant hairpin loop motifs (Benito et al. 2000) is decisive for base-pairing

interactions. For all targets, the formation of RNAIII/mRNA duplexes results in

inhibition of ribosome binding and favors recognition by RNase III (see Fig. 4.3).

Specificity for RNAIII is obtained by either propagating the first loop-loop contact

at the RBS into the stem regions (sa1000 and sa2353 mRNAs) or by addition of a

second loop-loop interaction (rot and coa mRNAs). The coa, spa, and SA1000
mRNAs carry a 50 hairpin structure which stabilizes these RNAs in the absence of

RNAIII. Therefore, the coordinated action of RNAIII and RNase III is needed to

irreversibly repress virulence factor synthesis. RNAIII guides RNase III to the

repressed mRNAs in vivo (Huntzinger et al. 2005).

In many Gram-negative bacteria, degradation of translationally repressed

mRNAs is assumed to be a consequence of ribosome exclusion rather than the

primary event, because translation inhibition can occur in the absence of mRNA

degradation. This was demonstrated for SgrS/ptsG, RyhB/sodB (Morita et al. 2006),

and IstR-1/tisAB (Darfeuille et al. 2007). However, recently it was shown that

RyhB/sodB base pairing initiates RNase E cleavage of sodB mRNA independent

of translation and, surprisingly, >350 nt downstream from the RBS (Prévost et al.

2011) supporting an active cleavage model. A distal cleavage site may prevent

RNase E action before ribosomes have cleared the upstream mRNA sequence.

Indirect Regulation by Inhibition or Activation of Leader Peptide Translation

An indirect manner of regulation can be used when translation of a target RNA with

a suboptimal RBS is coupled to translation of a leader peptide. This is the case for

E. coli fur mRNA encoding the negative regulator of iron uptake (Fig. 4.3j).

Binding of RyhB to the RBS and first codons of uof RNA inhibits synthesis of

the 28 aa leader peptide and, thereby, prevents fur translation (Vecerek et al. 2007).
A similar but activating mechanism was found for P. aeruginosa PhrS which

promotes translation of a 40-codon ORF uof which is translationally coupled to
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pqsR. PqsR is the key regulator of quorum sensing and virulence (Sonnleitner

et al. 2011).

Translation Activation

In some cases, the ribosome binding site is located in double-stranded structures

which prevent the access of ribosomes. Melting of these regions is promoted by

binding of the antisense RNA to one strand, thus liberating the complementary

strand containing the RBS and, hence, activating translation. To date, seven

examples are known: S. aureus RNAIII activates translation of hla mRNA

encoding a-hemolysin (Morfeldt et al. 1995). In E. coli, DsrA (Fig. 4.3g), RprA,

and ArcZ promote translation of sS (see above), RyhB supports translation of the

shikimate permease shiA (Prévost et al. 2007), and GlmZ activates translation of

glmS encoding glucosamine-6-phosphate synthase (Urban and Vogel 2008;

Reichenbach et al. 2008). Streptococcal RivX probably enhances mgA translation

(Roberts and Scott 2007, see 8).

4.3.2.2 Effects on mRNA Stability

mRNA Stabilization by sRNA Binding

FasX RNA from Streptococcus pyogenes was shown to bind upstream of the RBS

to ska mRNA encoding streptokinase. The resulting partial duplex stabilizes ska
mRNA and allows translation (Ramirez-Peña et al. 2010; Fig. 4.3e). In the absence

of FasX binding, ska mRNA is rapidly degraded, presumably by RNases J1 and J2.

Specific mRNA Processing Generating Two Stable RNAs

Binding of VR RNA from Clostridium perfringens to the 50 UTR of colA mRNA

encoding collagenase induces a specific processing event upstream of the colA RBS

(Obana et al. 2010), which generates two stable RNAs and allows colA translation

(Fig. 4.3f). In the absence of VR, colA mRNA is rapidly degraded. Interestingly,

base pairing between VR and colA occurs within the VR hyp7 ORF.

Differential Degradation of a Polycistronic mRNA

RyhB binds between iscR and iscS to the intergenic region of iscRSUA mRNA

encoding the enzymes for the biosynthesis of Fe-S clusters. However, in contrast to

VR action on colA, RyhB-induced processing entails differential mRNA degrada-

tion, since only the 50 processing product is stable, whereas the 30 product is
degraded by RNase E and PNPase (Fig. 4.3i, Desnoyers et al. 2009).
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mRNA Degradation Independent of Translation Initiation

Whereas E. coli MicC inhibits translation initiation of ompC, Salmonella
typhimurium MicC targets ompD by binding within the coding sequence (codons

23–26) resulting in accelerated mRNA decay (Pfeiffer et al. 2009). MicC/ompD
base pairing does not inhibit translation initiation but leads to transient ribosome

stalling and reveals an RNase E site 4–5 nt downstream of the complementary

region (Fig. 4.3h). Since the elongating 70S ribosome has a strong helicase activity,

it is unlikely that the MicC/ompD duplex can permanently stall elongating

ribosomes explaining while MicC fails to inhibit translation.

4.3.2.3 RNA Trapping

The observation that an sRNA was not destabilized upon overexpression of its

target RNA but acts catalytically resulted in discovery of RNA trapping. This

unusual mechanism in which an sRNA is converted from regulator to target has

been found for E. coliMicM and its Salmonella homologue ChiX (Overgaard et al.

2009; Figuera-Bossi et al. 2009, Fig. 4.3k). In the absence of inducer, ChiX inhibits

translation of chiP mRNA by binding to its RBS. Whereas chiP-mRNA is

degraded, ChiX is recycled. Its amount is not controlled at transcriptional level.

Instead, in the presence of chitooligosaccharides, a trap mRNA – chBCARFG
mRNA – is transcribed that pairs with and promotes ChiX degradation, thereby

abolishing silencing of the cognate ChiX target chiP.

4.3.3 Role of Hfq

One important hallmark of many trans-encoded antisense RNAs from E. coli is
their ability to bind the RNA chaperone Hfq. An excellent review summarizes the

important properties of Hfq (Brennan and Link 2007): Hfq was identified in E. coli
as host factor for bacteriophage Qb replication and is present in half of all

sequenced bacterial species. Bacillus anthracis, Ralstonia metallidurans, and

Burkholderia cenocepacia encode even two Hfq proteins, the latter ones having

two distinct biological roles (Ramos et al. 2011). Hfq comprises between 70 and

110 amino acids. In stationary phase, up to 60.000 Hfq monomers/E. coli cell have
been measured. The major fraction is associated with the ribosomes, whereas a

minor Hfq fraction appears to be associated with the nucleoid. Hfq binds to AU-rich

sequences in single-stranded regions generally flanked by one or two stem-loops.

The Hfq homohexamer is very similar to the eukaryotic Sm and Sm-like proteins

involved in splicing. It forms a toroid with an outer diameter of �70 Å and a

thickness of 25 Å. The central pore is 8–12 Å wide. The N-terminal a-helix is

followed by five b-strands that form a tightly bent sheet. The repetition of identical

binding pockets on the Hfq hexamer suggests that the binding surface can
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accommodate more than just a single RNA target. This would allow simultaneous

binding of two RNA strands and could promote the interaction between these

strands, which is important in sRNA/target mRNA interactions. Hfq is involved

in mRNA stability and polyadenylation, translation, virulence, bacteriocin production,

and nitrogen fixation. It interacts with the 30S ribosomal subunit, the ribosomal

protein S1, PNP, PAPI, and the C-terminal scaffold domain of RNase E.

Many trans-encoded sRNAs, for example DsrA, Spot42, and RyhB, require

Hfq for their stability (Valentin-Hansen et al. 2004). In other cases, for example

OxyS/fhlA, Spot42/galK, RyhB/sodB, MicA/ompA, and SgrS/ptsG, Hfq was shown

to promote the interaction between sRNAs and their targets (Zhang et al. 2003;

Kawamoto et al. 2006). A FRET study on DsrA/rpoS demonstrated that Hfq

accelerates strand exchange and subsequent annealing between sRNA and rpoS
mRNA, which results in exposure of the rpoS RBS (Arluison et al. 2007). New

data revealed that C-terminally truncated E. coli Hfq variants are fully capable of

promoting post-transcriptional control indicating that the C-terminal tail of E. coli
Hfq plays a small or no role in riboregulation (Olsen et al. 2010). Recently, it was

shown that RNAs displace each other on Hfq on a short time scale by RNA

concentration–driven (active) cycling (Fender et al. 2010). This explains the paradox

of an Hfq-RNAKd value in nM range, long half-lives of Hfq-RNA complexes but the

necessity for a 1–2-min response time for regulation in vivo. Lately, a DEAD box

helicase required at low temperatures for rpoS-DsrA annealing additionally to Hfq

has been found (Resch et al. 2011).

Among sRNAs from Gram-positive bacteria, Listeria monocytogenes LhrA is

the only example for Hfq-dependent antisense regulation (Nielsen et al. 2010).

Whereas some of the identified sRNAs bind Hfq, in at least two cases, B. subtilis
SR1/ahrC and S. aureus RNAIII/spa, no influence of Hfq has been found on sRNA/
target interaction (Heidrich et al. 2007; Bohn et al. 2007). Interestingly,

Streptococci do not encode Hfq, and S. aureus Hfq is not highly expressed. It is

conceivable that other RNA binding proteins fulfill the role of Hfq in Gram-positive

bacteria.

4.4 Differences Between cis- and trans-Encoded

Antisense RNAs

Cis-encoded RNAs are complementary to their targets over a large nucleotide

stretch and can, therefore, form stable duplexes with their target RNAs. Although

in two plasmid cases, ColE1 and R1/F, plasmid-encoded RNA binding proteins

(Rom, and FinO, respectively) were shown to have an effect (rev. in Brantl 2007),

cis-encoded RNAs usually do not require an additional protein to facilitate complex

formation with their targets. ColE1 Rom promotes sRNA/target RNA pairing only

fivefold, since the inhibition rate is primarily determined by the binding rate

constant and not the binding affinity between the loop-loop complexes. The FinO
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protein of F plasmid acts by promoting strand exchange between FinP and traJ
mRNA (Arthur et al. 2003, 2011), but its key function is to protect the antisense

RNA FinP against RNase E degradation (Jerome et al. 1999), so that the repression

effect of FinO is 5–20-fold. Plasmid R1 and ColE1 replication control was found to

be functional in a Dhfq E. coli strain, although both antisense RNAs bound Hfq.

In contrast, many trans-encoded antisense RNAs from Gram-negative bacteria

need Hfq either for stabilization or for complex formation, most probably to

facilitate the interaction with their only partially complementary target RNA(s)

(see above). It is not clear, whether at least in some Gram-positive bacteria another

protein fulfills the role of Hfq.

The existence of U-turn motifs (50 YUNR) has, so far, only been studied for cis-

encoded antisense RNAs and their targets in plasmids: Here, one loop in either the

antisense or sense RNA forms a U-turn structure (Franch et al. 1999) that is

characterized by a sharp bend in the phosphosugar backbone 30 of the YUNR

motif that presents the following three or four bases in a solvent-exposed stacked

conformation providing a scaffold for the rapid interaction with the complementary

RNA. Both for hok/sok of plasmid R1 (Franch et al. 1999) and RNAIII/RNAII of

plasmid pIP501 (Heidrich and Brantl 2003), it has been demonstrated that a U-turn

structure in one sense RNA loop is important for efficient interaction with the

antisense RNA.

Each cis-encoded antisense RNA uses one defined regulatory mechanism on its

single target. By contrast, trans-encoded sRNAs can employ different mechanisms

on different target mRNAs. For instance, RNAIII, DsrA, and RyhB inhibit transla-

tion of one/several targets, but activate translation of others (see above).

Whereas control of translation and RNA stability have been found as regulatory

mechanisms for both cis- and trans-encoded sRNAs, transcriptional interference

(André et al. 2008, Fig. 4.2d) can be exclusively used by cis-encoded sRNAs,

because it requires a cis-acting sRNA.

Notably, a trans-encoded antisense RNA may be under control of another small

RNA: The GlmY/GlmZ sRNA pair acts hierarchically to regulate GlmS synthesis

in E. coli. Thereby, GlmY inhibits processing of GlmZ from a 210-nt into an active

155-nt species that in turn activates translation of glmS mRNA (Urban and Vogel

2008; Reichenbach et al. 2008). It remains to be seen whether RNA-controlled

antisense RNAs will be also found for cis-encoded sRNAs.

4.5 Regulatory Circuits Involving Base-Pairing sRNAs

Regulatory sRNAs acting via base pairing may be integrated in global regulatory

networks. Typically, the regulator is a protein that responds to environmental

stimuli. Alternatively, sRNAs levels can be regulated by competition with

other RNAs, as in the case of GlmZ or ChiX (see 4). Four types of regulatory

circuits incorporate the action of base-pairing sRNAs: single-input module (SIM),
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dense-overlapping regulon (DOR), negative feedback loop (NFL), and feedforward

loop (FFL) (Beisel and Storz 2010; Fig. 4.4).

In SIMs, a single regulator activates or represses the expression of multiple

genes to produce a coordinated response to environmental changes. None of the

target genes regulate each other. The sRNAs often reverse the relationship between

the environmental sensor and the sRNA targets: the repressor becomes an indirect

activator as in the case of Fur/RyhB (Fig. 4.4a) and vice versa. RyhB is repressed by

Fur under high intracellular iron concentrations. When iron is scarce, derepressed

RyhB downregulates at least 18 operons encoding iron-using proteins involved in

iron storage, TCA, dismutation of superoxide radicals, synthesis of siderophores,

etc. (Massé et al. 2007; Salvail et al. 2010). sRNAs targeting multiple genes may

establish a hierarchical order of regulation. First, sRNAs could delay the regulation

of particular target genes to provide a temporal response. Second, under a low or

transient stimulus, only the expression of genes with extensive base pairing to the

sRNA would be affected. Eventually, sRNA-based SIMs can indirectly influence

global expression by controlling other regulators: E. coli OxyS represses the

synthesis of FhlA, an activator involved in formate metabolism (Fig. 4.4a).

DORs coordinate the response to multiple biological signals by combining

various overlapping SIMs. The best characterized example is the regulation of

outer membrane proteins in E. coli and Salmonella enterica (Fig. 4.4c). Omps are
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prevalent sRNA targets as they play pivotal roles in cell survival acting as

gatekeepers for small molecules entering and leaving the cell, as recognition

elements for the host immune system and phage infection (Valentin-Hansen et al.

2007). Another DOR involves sS, the master transcription regulator of the general

stress response. With the help of sRNAs, it integrates distinct stress signals (see 4,

Fig. 4.4c).

Hfq-binding sRNAs can only participate in mixed feedback loops with tran-

scription factors, because they cannot directly influence their own transcription.

Such mixed loops are exclusively NFLs. In direct feedback loops, the sRNA targets

its own regulator, as in the OmrA/B case, while in indirect feedback loops, the

sRNA affects the activity or expression of its regulator by targeting other genes

(Fig. 4.4b): Cell envelope stress frees sequestered sE, which activates the transcrip-

tion of RybB. RybB, in turn, downregulates the expression of major Omps, thereby

reducing the buildup of Omps that contributes to envelope stress (Vogel and

Papenfort 2006). One of the most complex NFLs is provided by quorum-sensing

networks in Vibrio species (Ng and Bassler 2009).

Three FFLs including sRNAs are known so far (Fig. 4.4d): OmpR participates in

two FFLs; it downregulates the expression of ompF and upregulates the expression

of MicF, which translationally represses ompF. On the other hand, OmpR

upregulates ompC expression and downregulates MicC expression which

translationally represses ompC. OmpR is activated through phosphorylation in

response to increased osmolarity, for example (Vogel and Papenfort 2006).

Recently, the involvement of Spot 42 in a multi-output FFL was shown to help

enact catabolite repression (Beisel and Storz 2011). Spot 42 represses multiple

genes, many of which are activated by CRP, and, in turn, is transcriptionally

repressed by CRP. These genes are involved in central and secondary metabolism,

redox balancing, and consumption of nonpreferred carbon sources. By reducing the

leaky expression of genes unnecessary for glucose catabolism, Spot 42 helps divert

metabolic resources toward cell growth and glucose consumption. OmpR-

containing FFLs introduce a lag in repression after removal of the detected signal

which depends on the sRNA half-life. The lag was relatively shorter for sRNA-

based FFLs comprising a short-lived sRNA (Shimoni et al. 2007).

Why are sRNAs used instead of regulatory proteins (transcription factors ¼
TFs)? The following explanations (for details see Beisel and Storz 2010) are

conceivable: (a) chance incorporation without regulatory advantage, (b) reduced

metabolic costs, (c) need for additional layers of regulation, (d) faster regulation,

and (e) unique regulatory properties of sRNAs. (a) The first hypothesis would

predict that TFs and regulatory sRNAs can occupy the same niche. This question

cannot be answered at the moment. (b) The reduced metabolic costs, due to the

small size of an sRNA and its encoding gene, the limited energy to transcribe the

�100–200-nt sRNA, and no energy required to translate the sRNA would confer a

selective advantage on sRNAs over TFs. However, the total metabolic cost also

includes transcription of the target gene and relative levels of either sRNA or the TF

mRNA. The relative metabolic cost may be sRNA-specific and even target

gene–specific. (c) Layered regulation is especially important for genes that must
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be tightly controlled or are critical in multiple cellular responses. By targeting an

entirely separate part of the gene compared to TFs sRNAs expand the number of

sites at which regulation can occur. The average number of TF binding sites is

independent of genome size, and, therefore, transcriptional regulatory architecture

in larger genomes is more complex than in smaller genomes (Molina and van

Nimwegen 2008). It is still unclear whether sRNAs play a larger role in larger or

in smaller genomes. (d) Faster regulation may be beneficial in coordinated regu-

latory processes or under sudden environmental changes. Since sRNAs act at the

post-transcriptional level, gene expression is modulated at a point closer to protein

production and, consequently, less time is required to affect target protein levels

compared to TFs. Bioinformatic studies are needed to compare the regulatory

dynamics of genes controlled by TFs or sRNAs. (e) The response curves and

noise profiles of protein-based and sRNA-based regulation are significantly differ-

ent. While protein-based regulation shows a graded response to repressor levels,

sRNA-based regulation for a fast rate of sRNA action shows a two-regime response

to the rate of sRNA and mRNA production with an ultrasensitive transition (sRNA/

mRNA production �1) between regimes. However, for a slow-rate sRNA action,

there is less distinction between both systems. When sRNA production dominates

mRNA production, target protein levels are low and noise (cell-to-cell-variability)

is dampened. At sRNA/mRNA production �1, noise builds and maximizes at the

transition point. Consequently, when sRNA production dominates, sRNA-based

regulation is advantageous due to tight repression and low noise. This is particularly

important when target gene products are harmful to viability or important to

establish a certain phenotype.

4.6 sRNAs that Act Via Protein Binding

Three groups of protein-binding sRNAs are known; 6S RNA that binds RNA

polymerase, sRNAs that sequester small proteins which regulate target mRNA

translation, and sRNAs that modulate enzyme activity. The latter group is small

and represented only by Rcd of E. coli plasmid ColE1 (Chant and Summers 2007),

and will not be discussed here.

4.6.1 6S RNA

In 2000, it was discovered that E. coli 6S RNA might interact with RNA polymer-

ase (Wassarman and Storz 2000). To date, more than 100 putative 6S RNA

homologues have been identified in diverse bacteria (rev. in Wassarman 2007).

6S RNA has a characteristic secondary structure consisting of a central region with

a largely single-stranded internal loop, which is flanked by two long irregular

double-stranded stem regions that are interrupted by small bulges. This secondary
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structure resembles a DNA transcription bubble leading to a hypothesis for the

function of 6S RNA (Fig. 4.1). 6S RNA forms a stable complex with RNA

polymerase, thereby acting as an open promoter DNA mimic that interferes with

the formation of transcription initiation complexes. Its levels increase �10-fold to

about 10.000 molecules during stationary phase. 6S RNA interacts preferentially

with RNA polymerase containing the exponential phase sigma factor s70. There-

fore, it was proposed that it participates in shifting global gene expression from

exponential to stationary phase. However, a recent demonstration of weak contacts

between 6S RNA and stationary phase sigma factor s38 and the fact that 6S can

inhibit both RNA polymerase holoenzymes (Gildehaus et al. 2007) show that the

molecular details for the action of 6S RNA have still to be elucidated. Surprisingly,

6S RNA can act as a template for the production of small de novo transcripts:

14–22-nt transcripts (pRNA) were observed at high 6S concentration (Wassarman

and Saecker 2006) whereas 170-nt transcripts of unknown function were observed

at high RNA polymerase (RNAP) concentrations (Gildehaus et al. 2007). Synthesis

of the pRNA during outgrowth from stationary phase destabilizes the 6S-RNAP

complexes and leads to release of the pRNA-6S RNA hybrid, thus liberating RNAP

from 6S RNA in response to nutrient availability. 6S RNA sensitive promoters were

suggested to have weak �35 boxes or extended �10 boxes or both, whereas

transcription from promoters with strong �35 boxes was not inhibited by 6S

RNA. A model of competition between 6S RNA and promoters for s70 binding

was proposed (Cavanagh et al. 2008), and binding of 6S RNA was shown to require

a positively charged surface of s70 region 4.2 (Klocko and Wassarman 2009).

However, a recent transcriptome analysis with an ssrS strain revealed 245 genes

during exponential phase and 273 genes during early stationary phase to be �1.5-

fold differentially expressed. This suggested that there are additional functions of

6S RNA different from downregulation of certain s70-dependent genes during

stationary phase. Interestingly, 6S depletion causes a decrease in the expression

of the translation machinery, in particular rRNA transcription (Neusser et al. 2010).

In E. coli, 6S RNA transcription from its two promoters P1 and P2 depends on four

global regulators and is inhibited by H-NS and LRP and, to a lesser extent, by StpA,

while FIS seems to act as a dual regulator (Neusser et al. 2008).

4.6.2 Small RNAs that Act by Sequestration of Translational
Regulators

In 1997, it was shown that a small untranslated RNA, CsrB from E. coli, does not
act via base pairing but exerts its function by binding of the small protein CsrA, a

repressor of gluconeogenesis and biofilm production and activator of glycolysis,

motility, and acetate metabolism (Liu et al. 1997). CsrA binds to the untranslated
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leader of the glgCAP transcript, where it blocks translation and causes rapid mRNA

degradation. Positive control of gene expression by CsrA involves binding to the

leader and stabilization of the corresponding mRNAs, for example of flhDC, but the
detailed mechanism is still elusive. Highly conserved CsrA homologues with

monomer sizes of about 7 kD are found in diverse eubacteria and regulate virulence

factors in animal and plant pathogens (rev. in Babitzke et al. 2007). CsrA

homologues act as dimers and encompass five b-strands and a C-terminal a-helix,
of which b1 and b5 are important for RNA binding. The dimer contains two

symmetrical surfaces that function in RNA recognition.

The CsrA/CsrB ribonucleoprotein complex is comprised of 18 CsrA subunits

and a single CsrB molecule. In 2003, a second RNA, CsrC, has been found that acts

by binding 9 CsrA molecules (Weilbacher et al. 2003). Null mutations of either

CsrB or CsrC cause a modest increase of each other’s levels. The minimal binding

motif of CsrA is 50 GGA present on both sRNAs (CsrB and CsrC) and the

corresponding mRNAs. However, the SELEX-derived consensus sequence is

RUACARGGAUGU, with the underlined AC and GU residues being always

base-paired to one another (Babitzke et al. 2007). Recently, it was discovered that

CsrD mediates CsrB/C turnover together with RNase E (Suzuki et al. 2006). CsrD is

not an endoribonuclease but requires GGDEF and EAL domains for its action.

However, unlike other GGDEF/EAL proteins, it does not act via c-di-GMP signal-

ling. Two CsrA homologues (RsmA and RsmE) and three redundant sRNAs

(RsmX, RsmY, and RsmZ) that function as antagonists of RsmA and RsmE have

been identified in Pseudomonas fluorescens, whereas only RsmY and RsmZ were

found in Pseudomonas aeruginosa (rev. in Lapouge et al. 2008). The size of CsrB-

type sRNAs in different bacteria varies between 100 and 479 nt, all share multiple

unpaired GGA motifs, and are under control of the GacS/GacA TCS. Furthermore,

the sRNAs feedback inhibit the transcription of their own genes by interfering with

the function of the GacS/GacA system in an unknown manner. It is not clear,

whether the sRNA families are functional homologues or have common ancestors.

The three sRNAs from Pseudomonas fluorescens regulate secondary metabolism

and biocontrol traits (e.g., antifungal metabolites and extracellular enzymes

protecting plant roots from pathogenic fungi). An rsmY/rsmZ double mutant is

strongly impaired in the synthesis of extracellular enzymes, whereas single mutants

do not show significant effects. A similar pathway is present in Erwinia carotovora
with RsmB sRNA (Fig. 4.1b). Homologous elements in Salmonella typhimurium
control the expression of genes related to cellular invasion. In Yersinia pseudotu-
berculosis, a Csr-type system regulates virulence (Heroven et al. 2008). In Pseudo-
monas aeruginosa, the sRNA CrcZ transcribed under control of s54 and CbrA/B

contains five CA motifs (AAC/XAACAA) bound by the Crc protein, the mediator

of catabolite repression of degradative genes. Similar CA motifs in their 50 UTRs of
these genes, for example amiE, are recognized by Crc (Sonnleitner et al. 2009). The
CbrA-CbrB-CrcZ-Crc system is comparable to GacS-GacA-CsrB-CsrA in E. coli
and allows the differential adaptation to various carbon sources.
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4.7 Role of sRNAs in Pathogenesis

Two excellent reviews have covered the role of sRNAs in pathogenic bacteria

(Toledo-Arana et al. 2007; Papenfort and Vogel 2010). Therefore, only a few

examples will be described here. Among the recently detected cis-encoded anti-

sense RNAs are several sRNAs in Mycobacterium tuberculosis (e.g., AsDes,

Arnvig and Young 2009) and S. typhimurium (e.g., IsrC, Padalon-Brauch et al.

2008), whose expression negatively correlates with convergent virulence genes (see

Table 4.1). The long 1,200-nt AmgR antisense RNA of S. typhimurium promotes

degradation of mgtC RNA required for Mg2+ homeostasis and virulence and

prevents bacterial hypervirulence in mice. Interestingly, both sRNA and its target

are transcriptionally activated by PhoP (Lee and Groisman 2010). RnaG from a

virulence plasmid in Shigella flexneri regulates icsA encoding an invasion protein

(Giangrossi et al. 2010).

Phenotypic alterations in hfq mutants range from loss of effector secretion in

Salmonella and Yersinia pseudotuberculosis to effector overproduction in patho-

genic E. coli, Yersinia enterocolitica, Pseudomonas aeruginosa, and Vibrio species
(Papenfort and Vogel 2010) indicating that Hfq-dependent sRNAs directly regulate

bacterial virulence factors. Salmonella InvR RNA from the pathogenicity island

regulates the core genome–encoded ompD encoding an outer membrane porin

(Pfeiffer et al. 2007). In Vibrio cholerae, the virulence regulatory cascade controls

glucose uptake through ToxT-dependent activation of TarA RNA, a functional

homologue of E. coli SgrS that also regulates ptsG. In contrast to SgrS, TarA

does not contain an ORF (Richard et al. 2010). A DtarA V. cholerae mutant is

compromised for infant mouse colonization. Borrelia burgdorferi RpoS is required

for virulence gene expression. It is regulated by the functional homologue of E. coli
DsrA, DsrABb, a molecular thermometer that responds to temperature (Lybecker

and Samuels 2007). Its secondary structure is closed at 23
�
C but opens at 37

�
C to

base pair with the rpoS 50 UTR to activate translation. In Neisseria meningitidis, a
functional homologue of E. coli RyhB, NrrF, controls Fur-mediated regulation of

sdhA and sdhC (Mellin et al. 2007). In the intracelluar pathogen Chlamydia
trachomatis, IhtA specifically represses hctA encoding histone-like protein Hc1 in

replicating reticulate body (RB), thereby avoiding chromatin condensation during

the replicative stage (Grieshaber et al. 2006). The Qrr sRNAs in Vibrio species

govern quorum-sensing control (Ng and Bassler 2009). Trans-encoded sRNAs were

found in two species lacking Hfq: H. pylori and Campylobacter jejuni. HPnc5490
targets the 50 UTR of a H. pylori chemotaxis receptor mRNA through a 13-bp GC-

rich RNA duplex. In pathogenic Gram-positives, the most prominent example is

RNAIII from S. aureus (see 4). Several S. aureus sRNAs recognize their target

mRNAs at the RBS via C-rich loops (e.g., Geissmann et al. 2009). Lately, in S.
aureus, SprD RNA regulating translation initiation of the immune-evasion mole-

cule sbi (Chabelskaya et al. 2010) and RsaE, a riboregulator of central metabolism

(Bohn et al. 2010) have been identified. In Streptococcus pyogenes, Pel regulates M
and M-related proteins (Mangold et al. 2004), FasX stabilizes the ska mRNA
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encoding the secreted virulence factor streptokinase (Ramirez-Peña et al. 2010),

and RivX activates the mga regulon by enhancing translation of the virulence gene

regulator MgA (Roberts and Scott 2007). Clostridium perfringens VR RNA (see 4)

is part of the VirR/S regulon that controls toxin production and acts as an inducer of

collagenase (K-toxin) and b2-toxin synthesis (Okumura et al. 2008). In the

foodborne pathogen Listeria monocytogenes, a trans-acting riboswitch (SreA) that

can function like a trans-encoded sRNA was reported (Loh et al. 2009). It

upregulates argD and represses translation of the virulence regulator PrfA by

base pairing 85–24 nt upstream of the RBS. Furthermore, 15 of the 29 recently

discovered novel sRNAs in L. monocytogenes (Toledo-Arana et al. 2009) were

absent in the nonpathogenic L. innocua. Among them, Rli38 showed a 25-fold

increased expression in blood and in the presence of H2O2 and might base pair with

three mRNAs associated with virulence, among them fur. Seven of the 29 sRNAs

were cis-encoded, and three of them covered more than one ORF.

Protein-binding sRNAs are also involved in pathogenesis. Lack of 6S RNA

alters in E. coli expression of 5% of all genes and in Legionella pneumophila
expression of type IV secretion effectors and replication in human macrophages or

amoeba (Faucher et al. 2010). Furthermore, deletion of csrA/rsmA in Pseudomonas
aeruginosa modifies invasion of human airway epithelial cells (Burrowes et al.

2006). CsrB/C of Salmonella enterica regulates expression of the genes of patho-

genicity island 1 (SPI1) required for the invasion of epithelial cells (Fortune et al.

2006).

4.8 Evolutionary Considerations

Based on a recent review (Gottesman and Storz 2010), three possible scenarios are

conceivable for the origin of sRNAs. First, if some low-level promoter activity – as

detected antisense to genes and within spacer regions (Kawano et al. 2005) – was

sufficient for advantageous regulation under some condition, the transcribed RNA

might evolve into a highly expressed regulatory RNA. Secondly, transcripts with

different primary functions such as tRNAs might be transformed into regulatory

molecules. tRNAs are folded, stable RNAs of a similar size to many regulatory

sRNAs and can specifically interact with Hfq (Lee and Feig 2008). Results from

eukaryotes support that tRNA fragments might also have regulatory roles in

bacteria (e.g., Cole et al. 2009). Recently, tmRNA – related to tRNA – was

shown to act as a regulatory sRNA in S. aureus (Liu et al. 2010). Thirdly,

mRNAs, many of which have Hfq binding sites in their 50 UTRs, might be sources

of sRNAs. Separation of the UTR from the mRNA or loss of the downstream ORF

might convert an mRNA into an sRNA.

An interesting question is whether bacterial sRNAs evolved from the RNA

world or more recently as new regulators (as discussed above). Protein-binding

sRNAs such as 6S or CsrB, are more broadly conserved than base-pairing sRNAs.

However, although 6S function is well conserved, the sequence is not (Barrick et al.
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2005). The evolution of Hfq-binding regulatory sRNAs appears to be rapid. As a

result, neither sequence nor structural similarities are sufficient to provide a clear

picture of their evolution. However, since the Hfq-binding sRNAs pair with specific

target mRNAs, the evolution of both interaction partners must be linked. Appar-

ently, pairing helps constrain evolution as sRNAs expressed in different bacterial

species contain a highly conserved core region required for pairing with the target

(Sharma et al. 2007). In cases where multiple sRNAs control the same mRNA (e.g.,

rpoS mRNA) they may have a common ancestor.

Conserved regulation can be used to trace the evolution of sRNAs. Well-studied

examples are Fur-regulated sRNAs involved in iron metabolism which have been

found in Gram-negative bacteria like E. coli (RyhB), Pseudomonas (PrrF), or

Neisseria (NrrF, Mellin et al. 2007) and Gram-positive bacteria like B. subtilis
(FsrA). PrrF, NrrF, or FsrA bear no sequence similarity to RyhB, suggesting either

independent evolution or rapid divergence.

The identification of base-pairing sRNAs in related species has been facilitated

by using conserved gene neighborhood (e.g., SgrS, Horler and Vanderpool 2009).

Enterobacterial homologues of Spot42 are all located in an intergenic region

between two highly conserved protein-coding genes. In Pseudomonas, in the

same region, a functional Spot42 homologue with no sequence similarity has

been found, which might be evolutionarily related but have diverged rapidly.

Alternatively, this location is prone to insertion of sRNA genes from different

sources.

The discovery of sRNAs on cryptic prophages (E. coli IpeX) or pathogenicity
islands (S. aureus SprD) are indicative for horizontal transfer. Furthermore, several

sRNA genes are located in the neighborhood of potential prophage or transposon

integration sites (De Lay and Gottesman 2009) and might be picked up accidentally

upon excision of these elements.

4.9 Future Perspective

It can be anticipated that hundreds to thousands of novel sRNAs will be found in a

multitude of bacterial genomes in the near future. The detection of new mechanisms

of action for both cis- and trans-encoded base-pairing sRNAs can be expected. It is

conceivable that some RNAs might act in cis on one target and in trans on several

other targets, thereby using two or more different mechanisms of action on different

targets.

Furthermore, it cannot be ruled out that – similar to siRNAs or miRNAs in

eukaryotes – novel classes of very short or very long sRNAs with up to now

unknown functions might be discovered. Moreover, sRNAs might be found that

function directly on the genome like the siRNAs involved in chromatin silencing in

Schizosaccharomyces pombe (Grewal 2011).
Interestingly, many concepts established lately for sRNA action in Gram-

negative bacteria cannot be applied to Gram-positive hosts. Important differences
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include the role of RNA chaperones, discrepancies in the RNA degradation

machineries, and the preferential use of transcriptional riboswitches in Gram-

positives and translational ones in Gram-negatives. It can be expected that new

RNA chaperones will be detected in both Gram-positive and Gram-negative bacte-

ria, which may be equivalents to Hfq. Most probably, differences in the set of

endoribonucleases will entail differences in the mechanisms of action of sRNAs

found in enterobacteria vs. those in Gram-positive bacteria.

Additionally, it can be anticipated that more dual-function sRNAs will be

identified and new unprecedented functions for small proteins or peptides encoded

by these sRNAs or acting on them or their targets might be discovered, adding a

new layer to the interplay between peptides and RNA. New representatives of the

class of protein-binding sRNAs that use hitherto unknown mechanisms can be

imagined, for example sRNAs that directly modulate the activity of enzymes or

transcriptional regulators.

Since in prokaryotes, transcription, translation, and RNA degradation are cou-

pled, new results on the role of mRNA structure can be expected. For instance,

sRNAs might exert activating functions during the transcription process, such as

controlling a transcriptional riboswitch, or interacting with RNA polymerase. The

recent observation that RNA polymerase binds several sRNAs and reacts with

them, mapping the interaction site of both molecules to the active center cleft of

the enzyme (Windbichler et al. 2008), would be in support of the latter hypothesis.
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Chapter 5

The Canonical RNA Interference Pathway

in Animals

Jana Nejepinska, Matyas Flemr, and Petr Svoboda

Abstract The canonical RNA interference (RNAi) pathway is defined as a

sequence-specific mRNA degradation mediated by short RNA molecules which

are generated from long double-stranded RNA. Since its discovery in 1998, RNAi

has become a popular tool for experimental silencing of gene expression. On the

other hand, its natural role received less attention. Recent studies in animal systems,

particularly the use of the next generation sequencing and analysis of animals

defective in some aspect of small RNA biogenesis, revealed novel functions of

RNAi and cross talks between RNAi and other pathways employing small RNAs.

This chapter provides a comprehensive view of the natural canonical RNAi path-

way in animals including its molecular mechanism and different biological roles.

Keywords Argonaute • Dicer • dsRNA • RNAi • siRNA

5.1 Introduction

RNA silencing is a common term for repression guided by small RNA molecules

(20–30 nucleotides (nt) long). Suppressive effects of RNA silencing include mRNA

degradation, translational repression, formation of repressive chromatin, and DNA

deletion (reviewed in Czech and Hannon 2011; Ketting 2011). Some forms of RNA

silencing exist in almost all eukaryotes. RNA interference (RNAi) is one of the best

characterized RNA silencing pathways. The term RNAi has been coined for

sequence-specific mRNA degradation mediated by small RNAs produced from a

long double-stranded RNA (dsRNA). Although the term RNAi is sometimes used
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for a broad range of RNA silencing pathways (Ketting 2011), we will use it in its

original connotation here. Since our aim is to provide a detailed overview of RNAi

in animals, we will not discuss data from plants, fungi, and protists. However, it

must be acknowledged that research in these models provided a fundamental

contribution to understanding RNAi and related pathways in animals. Likewise,

other animal RNA silencing pathways, such as the microRNA (miRNA, reviewed

in Kim 2005) pathway and piwi-associated RNA (piRNA, reviewed in Aravin et al.

2007) pathway, will be discussed only in the context of the canonical RNAi

pathway.

RNAi was first described in the nematode Caenorhabditis elegans (C. elegans)
by Andrew Fire and Craig Mello, who observed that injected long dsRNA induced

sequence-specific mRNA degradation in the whole animal (Fire et al. 1998). Initial

studies of effects of dsRNA in animals showed RNAi effects in a wide range of

animal taxa, including mammals (Svoboda et al. 2000; Wianny and Zernicka-Goetz

2000; Lohmann et al. 1999; Sanchez Alvarado and Newmark 1999; Kennerdell and

Carthew 1998). The molecular mechanism of RNAi was deciphered using a

combination of genetic and biochemical approaches. An important step was the

establishment of the biochemical model in Drosophila embryo lysates, which

revealed that long dsRNA is processed by an RNase III Dicer into short interfering

RNAs (siRNA) that guide specific cleavage of cognate mRNAs in positions

corresponding to the center of the siRNA:miRNA duplex (Bernstein et al. 2001;

Tuschl et al. 1999; Zamore et al. 2000). Genetic studies in C. elegans discovered
numerous components of RNAi, including the Argonaute protein family and RNA-

dependent RNA polymerases (RdRPs) (Ketting et al. 1999; Smardon et al. 2000;

Vastenhouw et al. 2003). The final gap in understanding the RNAi mechanism was

bridged by structural analyses of Argonaute 2, which revealed that this protein

carries the endonucleolytic activity, which cleaves cognate mRNAs (Liu et al.

2004; Meister et al. 2004; Song et al. 2004). The following text summarizes the

current knowledge of the RNAi mechanism and its function in the three most

studied animal model systems: C. elegans, Drosophila, and mammals.

5.2 The Mechanism of RNAi

In this section, we summarize current understanding of ribonucleoprotein

complexes involved in RNAi. The RNAi pathway (Fig. 5.1) can be divided into

three steps (1) cleavage of long dsRNA by Dicer into siRNAs, (2) loading of small

RNAs on the effector complex known as the RNA-induced silencing complex

(RISC), and (3) recognition and cleavage of cognate RNAs by the RISC. In addition

to the core pathway, two extensions of the pathway, which are restricted to some

animal species, should be mentioned (1) an amplification step, in which RdRPs

generate secondary siRNAs (transitive RNAi) and (2) the systemic RNAi, where an

RNAi response can spread across cellular boundaries.
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5.2.1 dsRNA Recognition and Cleavage

RNAi is triggered by dsRNA, a unique helical structure formed by two antiparallel

RNA strands. dsRNA is frequently formed by repetitive sequences or during viral

infections. dsRNA can form by base pairing two single-stranded RNAs as an

intramolecular duplex (a hairpin, reviewed in Svoboda and Cara 2006), or the

second strand can be synthesized on a single-stranded RNA template by an RdRP

(reviewed in Ng et al. 2008).

Recognition of dsRNA is mediated by the dsRNA-binding domain (dsRBD),

which is found in a diverse group of proteins (dsRNA-binding proteins, dsRBPs)

involved in various responses to dsRNA. Some proteins contain a single dsRBDwhile

others carry multiple copies of the domain. Specific structural features of dsRNA

(such as dsRNA termini or mismatches) and individual dsRBDs present in specific

Canonical RNAi pathway

Ago

aberrant RNA

substrate recognition

Dicer cleavage

RdRP
amplification

RISC loading

targeting

Ago2

AAAA

Fig. 5.1 A schematic view of

the RNAi pathway. The

“core” RNAi pathway

involves a processing of long

dsRNA into siRNAs by Dicer

and loading of siRNAs on the

RISC complex, which cleaves

cognate transcripts. The gray
area represents an

amplification loop where

RdRPs generate secondary

siRNAs or dsRNA templates

for Dicer processing
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proteins contribute to the routing of dsRNA molecules into specific pathways

(reviewed in Doyle and Jantsch 2002; Gantier and Williams 2007; Tian et al. 2004).

The key protein for dsRNA processing into siRNAs is Dicer, which typically

carries a dsRBD at the C-terminus and can directly recognize and cleave dsRNA

in vitro (Ketting et al. 2001; Zhang et al. 2002; Provost et al. 2002). However, the

production of small RNAs in the RNAi pathway is also assisted by proteins carrying

tandemly arrayed dsRBDs (for more details, see Sect. 5.2.1.2).

5.2.1.1 Dicer Structure and Function

Dicer generates small RNAs in RNAi and many other RNA silencing pathways

(reviewed for example in Jaskiewicz and Filipowicz (2008)). Dicer is a large

(~200 kDa), multi-domain RNase III endonuclease, which cleaves both strands of

a duplex dsRNA (Fig. 5.2). This cleavage produces small (21–27 nt long) RNA

duplexes with two nucleotide 30 overhangs and 50-monophosphate and 30-hydroxyl
groups at RNA termini. Dicer is a member of a class of RNase III enzymes, which

carry two RNase III domains. Several other domains are typically found in Dicer-

like proteins in multicellular eukaryotes. These include N-terminal DEAD-like

(DExD) and helicase superfamily C domains, piwi/argonaute/zwille (PAZ) domain,

domain of unknown function DUF283, and C-terminal dsRBD.

The ribonuclease activity of Dicer requires magnesium ions. Dicer can effi-

ciently cleave dsRNA longer than 30 base pairs (bp), yielding siRNA of approxi-

mately 20 bp (Provost et al. 2002; Zhang et al. 2002). Dicer preferentially cleaves

dsRNA at the termini but it can also cleave internally with low efficiency (Zhang

et al. 2002). Dicer functions as a molecular ruler, measuring the length of the

substrate from the PAZ domain to RNase III domains where it is cleaved. The PAZ

 

RNaseIIIa RNaseIIIa dsRBDDUF283 PAZDExDhelicase

RNaseIIIb

PAZ
3’ ’

3’

5’

RNaseIIIa
“platform”
(DUF283)

5’

PIWI
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N

MID

mRNA

siRNA

3’

5’
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MIDPAZ PIWI

Dicer Argonaute

N
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Fig. 5.2 Key components of RNA silencing. A schematic domain organization of Dicer and

Argonaute. The schematic structural organization based on crystalography and single-particle

electron microscopy structural analysis of Dicer (left) and Argonaute (right) is shown (Du et al.

2008; MacRae et al. 2007; Macrae et al. 2006; Wang et al. 2009a)
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domain binds the end of dsRNA with high affinity to 30 protruding overhangs (Ma

et al. 2004; Lingel et al. 2003; Song et al. 2003; Yan et al. 2003). RNase IIIa and

IIIb domains form a single processing center containing two catalytic “half-sites,”

each cleaving one strand of the duplex and producing short dsRNA with two nt 30

overhang. The RNase IIIa domain processes the protruding 30-OH-bearing strand,

and the RNase IIIb cuts the opposite 50-phosphate-containing strand (Zhang et al.

2004). This model was validated by the crystal structure of the full length Dicer

from Giardia intestinalis (Macrae et al. 2006; MacRae et al. 2007), which showed

that the RNase III domains form a catalytic center connected with the PAZ domain

by a long a-helix (“connector” helix), which is implicated in determining the

product length. The connector helix is supported by a platform-like structure

containing the DUF283 domain, which has a dsRBD-like fold (Dlakic 2006) and

perhaps mediates protein–protein interaction (Qin et al. 2010).

Most Dicer enzymes contain a DExD helicase domain suggesting that it might

be involved in ATP-dependent binding and remodeling of nucleic acids. Although

Drosophila DCR-2 seems to require ATP for processive cleavage of dsRNA,

mammalian Dicer proteins do not require ATP (Provost et al. 2002; Zhang et al.

2002; Nykanen et al. 2001). A kinetic analysis of Dicer mutants showed that the

DExD domain could have an autoinhibitory role because a deletion or a mutation of

this domain increased catalytic efficiency of Dicer in both single- and multiple-

turnover assays (Ma et al. 2008). A modest stimulation of Dicer catalysis was

observed in the presence of TRBP, which interacts with the DExD domain (Ma

et al. 2008). These and other data (Soifer et al. 2008) suggest that the DExD domain

may be a part of the system selecting dsRNA substrates that efficiently enter the

RNAi pathway. Further studies will be necessary to establish if and how the DExD

domain participates in dsRNA processing and loading of small RNAs on the RISC.

Some organisms, like mammals, C.elegans or Trypanosoma, utilize a single

Dicer protein to produce both siRNAs and miRNAs. In contrast,Drosophila utilizes
two Dicer paralogs, DCR-1 to produce miRNAs and DCR-2 to produce siRNAs

(Lee et al. 2004). DCR-2 contains an N-terminal helicase motif and hydrolyzes

ATP. ATP hydrolysis is needed for the processing of dsRNA but not miRNA

precursors, and a model has been proposed that the helicase domain is important

for DCR-2 processivity (Cenik et al. 2011). Some species utilize even more Dicer

paralogs with distinct functions and different cleavage product lengths (e.g., four

Dicer paralogs in Arabidopsis thaliana (reviewed in Meins et al. 2005)).

Animal Dicer usually localizes to the cytoplasm but it can be also found in the

nucleus (Billy et al. 2001; Sinkkonen et al. 2010). However, the significance of the

nuclear localization of mammalian Dicer remains unknown at the moment, and it is

commonly accepted that siRNA production in animals takes place in the cytoplasm.

5.2.1.2 Proteins with Multiple dsRBDs

RDE-4, the first RNAi protein with multiple dsRBDs (RNAi dsRBP), was identified

by a systematic screen for C. elegans RNAi-deficient mutants (Tabara et al. 1999).
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The rde-4 mutant was completely deficient in RNAi but failed to show any

discernible phenotype, including the absence of transposon activation, which was

observed in some other rde mutants (Tabara et al. 1999). Rde-4 encodes a 385-

amino acid protein carrying two N-terminal dsRBDs and a third degenerate dsRBD

at the C-terminus. A similar organization is found in other proteins implicated in

RNA silencing, including Drosophila R2D2 and Loquacious and mammalian

TRBP and PACT. However, while the phylogenetic analysis suggests that these

proteins probably evolved from a common ancestral protein, they significantly

diverged (Murphy et al. 2008) and play distinct roles in dsRNA processing and

RISC loading.

Biochemical characterization of recombinant RDE-4 showed that it preferen-

tially binds long dsRNA, and its dimerization is necessary for the cleavage of

dsRNA into siRNAs (Parker et al. 2006). According to the model supported by

mutants and biochemical analyses, RDE-4 dimers bind cooperatively to dsRNA

and, together with Dicer, RDE-1 (an Argonaute protein), and DRH-1/2 (Dicer-
related helicase from the DExH helicase superfamily), forms a complex initiating

the RNAi (Tabara et al. 2002; Parker et al. 2006, 2008). The presence of an

Argonaute protein in the complex suggests that dsRNA recognition, processing

into siRNA, and loading of the Argonaute-containing effector complex could be

integrated in one complex. RDE-4 is involved in siRNA production from dsRNA

but is not essential for later steps of RNAi because RDE-4 immunoprecipitates with

trigger dsRNA but not siRNA (Tabara et al. 2002) and rde-4 loss can be rescued

with injection of synthetic siRNA (Parrish and Fire 2001).

It should be mentioned that this model of RDE-4 function is based on the

analysis of the RNAi responding to exogenous dsRNA (exo-RNAi), which is one

of the several RNAi-related pathways in C. elegans. RNA silencing in C. elegans
evolved into an extremely complex system, which utilizes 27 Argonaute proteins

and numerous classes of small RNAs (Ketting 2011). The endogenous RNAi

pathway (endo-RNAi), which targets endogenous genes (Ambros et al. 2003),

employs a distinct mechanism of siRNA production involving DCR-1 and RDE-4

but not RDE-1 and DRH-1/2 (Gent et al. 2010; Lee et al. 2006).

Drosophila employs two RNAi-RBPs: R2D2 and Loquacious. R2D2 was co-

purified with Dicer-2 during purifying siRNA-generating activity from Drosophila
S2 cell lysates (Liu et al. 2003). R2D2 bears 33% identity to RDE-4 but its role is

different. DCR-2/R2D2 association does not affect DCR-2 processing. Instead,

DCR-2/R2D2 bind siRNAs to promote AGO2-containing RISC loading (Liu

et al. 2006) (for more details, see the Sect. 5.2.2.2). The second RNAi dsRBP in

Drosophila is Loquacious, which was found to associate with DCR-1, suggesting

that the miRNA pathway in Drosophila employs a distinct dsRBP in substrate

routing (Saito et al. 2005; Forstemann et al. 2005). Surprisingly, deep sequencing of

small RNAs in Drosophila revealed that siRNAs in the endogenous RNAi pathway
are produced by DCR-2 but depend preferentially on Loquacious and not on R2D2,

the canonical DCR-2 partner (Czech et al. 2008). It was further shown that endo-

siRNAs in Drosophila predominantly bind AGO2 and can arise from perfect

duplexes formed from overlapping sense and antisense transcripts as well as from
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long hairpins containing bulges and mismatches (Czech et al. 2008). Detailed

analysis of Loquacious gene expression revealed specific protein isoforms, which

associate with miRNA (LOQS-PB) and RNAi (LOQS-PD) pathways (Hartig et al.

2009; Zhou et al. 2009). Two studies proposed a model where Loquacious and

R2D2 function sequentially and non-redundantly in the endogenous RNAi pathway

(Marques et al. 2010; Hartig and Forstemann 2011). LOQS-PD functions upstream,

stimulating DCR-2-mediated processing of dsRNA whereas R2D2 acts during

RISC loading.

TRBP, one of the two known mammalian RNAi dsRBPs, was identified as a

Dicer-interacting partner involved in miRNA processing and RISC loading

(Chendrimada et al. 2005; Haase et al. 2005). Notably, the role of TRBP in RNA

silencing has been studied in cells where the physiological substrate for Dicer

processing and RISC loading are miRNA precursors and where long dsRNA readily

activates the protein kinase R (PKR) and interferons (IFN). Thus, while the RISC

loading role of TRBP may be common for miRNA and RNAi pathways, it is not

clear if an isoform of TRBP plays any specific role in recognition and processing of

long dsRNA in the canonical mammalian RNAi pathway. Since TRBP also

interacts with and inhibits PKR (Cosentino et al. 1995; Park et al. 1994), it was

speculated that TRBP could be a component of a network of protein–protein

interactions underlying a reciprocal regulation of RNAi/miRNA and IFN-PKR

pathway (Haase et al. 2005). This notion is further supported by PACT, a paralog

of TRBP, which exerts a positive effect on PKR. PACT was shown to interact with

TRBP and Dicer and to facilitate siRNA production (Kok et al. 2007).

5.2.1.3 Helicases and Other Auxiliary Factors

There are several other protein factors which interact with Dicer and facilitate

dsRNA recognition and cleavage. In C. elegans, numerous DCR-1-interacting

proteins were identified by proteomic analyses (Tabara et al. 2002; Duchaine

et al. 2006). Among these proteins are the aforementioned Dicer-related helicases

(DRH-1, DRH-2, and DRH-3), which interact with DCR-1. DRH-1/2 interact with

RDE-4 and DCR-1, and they are essential for exo-RNAi (Tabara et al. 2002). DRH-

3 is essential for viability and it is involved in the endo-RNAi pathway (Duchaine

et al. 2006). Thus, distinct DRH/DCR-1 complexes recognize different dsRNA

triggers and mediate processing and loading on distinct primary Argonaute

proteins.

The closest mammalian homologues of Drh genes are helicases Ddx58, Dhx58,
and Ifih1, which are expressed in the immune system. DDX58, which is most

similar to DRH1, is a helicase also known as RIG-I, which recognizes blunt-

ended dsRNA and induces the interferon response (Marques et al. 2006). In fact,

the presence of 30 overhangs in Dicer products impairs RIG-I ability to unwind the

dsRNA substrate and activates downstream signaling to the transcription factor

IRF-3. The porcine ortholog of Ddx58, Rhiv-1, was initially identified as a locus

responding to porcine reproductive and respiratory syndrome virus (PPRSV)
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infection (Zhang et al. 2000). Thus, while DRH proteins facilitate Dicer processing

in C. elegans, their closest mammalian homologues also respond to dsRNA but

acquired novel roles in the immune system, which include an ability to tolerate

Dicer products but respond to blunt-ended nonself dsRNAs, such as by-products of

viral replication.

While other Dicer-associated proteins were found in C. elegans,Drosophila, and
mammals, they seem to function downstream of Dicer cleavage and will be

discussed further below.

5.2.2 RISC Complex Formation

The next step after siRNA production is selection and loading of one of its strand

onto the RISC. The key component of RISC is an Argonaute family protein (AGO),

which binds the selected siRNA strand and uses it as a sequence-specific guide for

recognizing mRNAs that will be degraded. Upon formation of a perfect duplex,

AGO protein endonucleolytically cleaves the cognate RNA in the middle of the

duplex.

5.2.2.1 Argonaute Proteins

Argonaute proteins have a molecular weight of ~100 kDa and carry two distinct

domains: the central PAZ domain and the PIWI (P-element induced wimpy testis)

domain at the carboxy-terminus. Two additional domains are recognized, the

N-terminal domain and the MID domain between PAZ and PIWI domains

(Fig. 5.2). The PAZ domain binds the 30 end of a short RNA in a sequence-

independent manner (Lingel et al. 2003, 2004; Ma et al. 2004; Song et al. 2003).

Structural studies of archeal Argonaute homologues showed that the PIWI domain

has an RNase H-like fold (Song et al. 2004; Ma et al. 2005; Yuan et al. 2005; Parker

et al. 2004). siRNA is anchored with its 30 end in the PAZ domain. The 50-phosphate
of the siRNA is buried in a pocket at the interface between the MID domain and the

PIWI domain (reviewed in Jinek and Doudna 2009). The 50 end of the base pairing

cognate mRNA enters between the N-terminal and PAZ domains, and its 30 end
exits between the PAZ and MID domains. Argonaute was identified to be a “slicer”

(Liu et al. 2004; Meister et al. 2004; Song et al. 2004), i.e., the enzyme catalyzing

the cleavage of the cognate mRNA in the canonical RNAi pathway. The active site

in the PIWI domain is positioned to cleave the mRNA opposite the middle of the

siRNA guide (Song et al. 2004).

Argonaute proteins can be divided into three distinct groups (reviewed in

Faehnle and Joshua-Tor 2007) (1) AGO proteins, found in all kingdoms, (2)

PIWI proteins, found in animals, and (3) WAGO proteins, found only in worms.

The WAGO subfamily was described only recently (Yigit et al. 2006), so it is not

recognized in the older literature, which typically divides Argonaute proteins into
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AGO and PIWI subgroups (Carmell et al. 2002). Specific Argonaute proteins

functioning in the RNAi pathway include RDE-1 (exo-RNAi) and ERGO-1

(endo-RNAi) in C. elegans, AGO-2 in Drosophila, and AGO2 in mammals.

Other Argonautes act in the miRNA and other pathways employing small RNAs.

5.2.2.2 RISC Assembly

The key step in RISC formation is the loading of a short RNA produced by Dicer

into the complex. In vitro experiments with mammalian proteins suggest that Dicer,

TRBP, and AGO2 are critical for RISC loading, and the minimal RISC is composed

of the AGO2 protein loaded with an siRNA (Martinez et al. 2002; Gregory et al.

2005; MacRae et al. 2008). A complex of Dicer, an RNAi dsRBP, and an Argonaute

protein participates in RISC formation in all studied animal models (Tabara et al.

2002; Tomari et al. 2004b; Gregory et al. 2005).

RISC assembly is best understood in Drosophila and human models (Tomari

et al. 2004a, b; Pham et al. 2004; Gregory et al. 2005; MacRae et al. 2008). The

model of RISC loading in Drosophila suggests that RISC assembly occurs in

several steps which involve a number of described complexes (Tomari and Zamore

2005). The first complex, formed by siRNA, R2D2, and DCR-2, is also known as

R1 or R2/D2/DCR-2 initiator (RDI) complex (Pham et al. 2004; Kim et al. 2007)

and develops into a mature form of the RISC loading complex RLC (Tomari and

Zamore 2005). The RLC determines strand selection and recruits AGO2 (and other

proteins) to form a pre-RISC (Kim et al. 2007), which contains duplex siRNA.

Finally, the release of the passenger strand from the duplex produces holo-RISC,

which can base pair with complementary mRNA substrates.

The coupling of dsRNA cleavage and RISC assembly is a matter of debate. It

was suggested that, after cleavage, small-RNA duplexes need to dissociate from

Dicer and then rebind to a sensor of the thermodynamic asymmetry of the duplex,

because the siRNA guide strand will be at random orientation (Tomari et al. 2004a).

Indeed, small RNA sorting in Drosophila suggests that dicing and RISC assembly

are uncoupled (Tomari et al. 2007). In contrast, the immunopurified or reconstituted

human AGO2 complex can use pre-miRNAs but not siRNA duplexes for a target

cleavage suggesting that Dicer cleavage and RISC assembly are functionally

coupled in humans (Gregory et al. 2005). However, newer data indicate that, just

as in flies, human RISC assembly is uncoupled from dicing and ATP facilitates

RISC loading of small-RNA duplexes (Yoda et al. 2010). Interestingly, all four

human AGO proteins showed similar structural preferences for small-RNA

duplexes, which were highly reminiscent of Drosophila AGO1 but not of AGO2

(Yoda et al. 2010).

Fly AGO1 and AGO2 require ATP for the RISC loading (Nykanen et al. 2001;

Pham et al. 2004; Tomari et al. 2004a; Kawamata et al. 2009). ATP is presumably

used to trigger the dynamic conformational opening of AGO proteins so that they

can accept small RNA duplexes (Kawamata et al. 2009). Earlier studies suggested a

difference between fly and human systems because human RISC assembly using
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immunopurified or reconstituted human RLC containing AGO2, Dicer, and TRBP

did not require ATP hydrolysis (Gregory et al. 2005; MacRae et al. 2008; Maniataki

and Mourelatos 2005). Recent data suggest that ATP facilitates also human RISC

loading while it is dispensable for unwinding (Yoda et al. 2010).

Strand selection in the fly RLC is controlled by R2D2. Analysis of the interac-

tion of DCR-2/R2D2 complex with siRNA duplexes showed that R2D2 orients the

complex according to thermodynamic stabilities of siRNA strands and binds the

50-phosphate of the passenger strand at the thermodynamically more stable end

(Tomari et al. 2004b). Thus, R2D2 functions as a licensing factor for routing

siRNAs into the RNAi pathway. Interestingly, a thorough analysis of AGO2

complexes revealed that, unlike mature miRNAs which are loaded on AGO1,

complementary strands of mature miRNAs (miRNA*) are efficiently loaded on

AGO2 in DCR2/R2D2-dependent manner (Ghildiyal et al. 2010; Okamura et al.

2011). Thus, the role of R2D2 in sorting small RNAs is wider and extends into the

miRNA pathway.

Mammals differ from Drosophila because they do not separate Dicer and

Argonaute proteins dedicated to RNAi and miRNA pathways, and it is assumed

that both pathways use a similar if not the same RLC. However, it should be kept in

mind that our knowledge of the mammalian RLC comes either from cells where

RLC normally loads miRNAs or from in vitro reconstitution of the RLC with

purified proteins. The mammalian RLC is functionally similar to that of Drosoph-
ila. It is composed of Dicer, TRBP, and AGO2 (Gregory et al. 2005; MacRae et al.

2008). In vitro reconstituted mammalian RLC contains one copy of each protein

and has dicing, guide-strand selection, AGO2-loading, and slicing activities.

Biochemical and structural analysis suggests that TRBP is flexibly bound to the

Dicer DExH/D domain (Wang et al. 2009a; Daniels et al. 2009). TRBP seems to

bridge the release of the siRNA by Dicer and the loading of the duplex onto AGO2.

Binding by TRBP may allow the siRNA intermediate to stay associated with RLC

after being released from Dicer and may also help in orientation of the siRNA for

AGO2 loading. It was also predicted that TRBP acts as a sensor of the thermody-

namic stability of 50 siRNA in strand selection during RISC loading, similarly to

DCR-2 and R2D2 (a TRBP homologue) in Drosophila (Wang et al. 2009a).

However, the supporting evidence is inconclusive (Haase et al. 2005) although

some argue that TRBP can indeed act as a sensor (Gredell et al. 2010). Furthermore,

while TRBP function is similar to that of R2D2, TRBP sequence is more closely

related to Loquacious than R2D2 (Murphy et al. 2008). It is tempting to speculate

that the closer evolutionary distance between TRBP and Loquacious and the lack of

an R2D2 ortholog reflect the fact that the mammalian endogenous RNAi is

restricted to a few cell types and employs proteins normally functioning in the

miRNA pathway.

The final step in the assembly of an active RISC is the release of the passenger

strand from the siRNA duplex. A helicase activity was proposed to separate the two

siRNA strands while the guide remains bound to AGO2 (Sontheimer 2005; Tomari

and Zamore 2005; Meister and Tuschl 2004). A candidate for such a helicase in

Drosophila is Armitage helicase (Tomari et al. 2004a). However, experimental data

120 J. Nejepinska et al.



support a simple solution where passenger strand cleavage by AGO2 slicer activity

liberates the single-stranded guide siRNA strand from the pre-RISC complex

(Matranga et al. 2005; Miyoshi et al. 2005; Kim et al. 2007). Removal of siRNA

passenger strand cleavage products is assisted by C3PO endoribonuclease, which

was identified as a RISC-enhancing factor that promotes RISC activation (Liu et al.

2009). The cleavage-assisted mechanism is typical for AGO2-loaded fly and human

siRNAs in the RNAi pathway while passenger strand cleavage is not important for

loading miRNAs (Matranga et al. 2005).

5.2.2.3 RISC Composition: AGO2-Interacting Proteins

While the minimal active RISC contains only the “slicing” Argonaute protein and

the guide siRNA strand (Martinez et al. 2002; MacRae et al. 2008, Rand, 2004

#424), RISC activity was found in different models and cell types to reside in

~200 kDa, ~500 kDa, or 80S complexes (Martinez et al. 2002; Nykanen et al. 2001;

Mourelatos et al. 2002; Pham et al. 2004). Various protein components of RISC

complexes either contribute to RISC formation or might regulate RISC activity,

stability, target selection, mode of repression, or otherwise contribute to RISC

function.

In C. elegans, the RISC complex was not biochemically purified, so protein

complexes containing Argonaute proteins RDE-1 (exo-RNAi) and ERGO-1 (endo-

RNAi) remain uncharacterized.

Analysis of RISC in Drosophila embryo lysate identified the several additional

components of AGO2-containing complexes:

dFMR1: Drosophila ortholog of human fragile X mental retardation protein

(FMRP) (Caudy et al. 2002; Ishizuka et al. 2002; Pham et al. 2004). dFMR1 is

associated with ribosomes through interaction with ribosomal proteins L5 and L1

and with complexes containing miRNAs (Ishizuka et al. 2002). dFMR1 is not a

conserved RISC component involved in RNAi. While depletion of dFMR1 reduces

RNAi efficiency in Drosophila S2 cells (Caudy et al. 2002), the loss of mammalian

FMRP has no apparent direct impact on RISC function (Didiot et al. 2009).

VIG: Vasa Intronic Gene (Caudy et al. 2002; Pham et al. 2004). VIG is a conserved

protein, which encodes for a putative RNA-binding protein, whose depletion reduces

RNAi efficiency (Caudy et al. 2002). Vig mutants are more susceptible to viral

infections in Drosophila (Zambon et al. 2006). Whether this role of VIG is coupled

with its presence in the RISC complex is not known. There is no evidence that

SERBP1, the closest mammalian VIG homologue, would be associated with RISC.

Armitage: RNA helicase, which was identified as a maternal effect gene required

for RNAi (Tomari et al. 2004a). Armitage is probably not required for the RISC

activity. Instead, it was proposed to facilitate the removal of the passenger strand

during RISC formation (Tomari et al. 2004a). The mammalian homologue of

Armitage is an Argonaute-associated protein MOV10 (Meister et al. 2005).

5 The Canonical RNA Interference Pathway in Animals 121



TSN: Tudor Staphylococcal Nuclease is a protein containing five staphylococcal/

micrococcal nuclease domains and a tudor domain. It is a component of the RISC in

C. elegans,Drosophila, and mammals (Caudy et al. 2003; Pham et al. 2004). The role

of TSN in RISC RNAi remains enigmatic. TSN is not the “slicer” (Schwarz et al.

2004), and it has been implicated in promoting cleavage of hyper-edited dsRNA

(Scadden 2005). This observation is surprising considering that RNA editing and

RNAi pathways appear mutually antagonistic (Tonkin and Bass 2003; Yang et al.

2005). TSN is also connected with the miRNA pathway, where it mediates degrada-

tion of edited miRNA precursors (Yang et al. 2006; Kawahara et al. 2007a).

DMP68 (RM62): This conserved helicase was co-purified with AGO1 and dFMR1

(Ishizuka et al. 2002). It seems to be required for RNAi in S2 cells where depletion

of DMP68 results in inhibition of RNAi (Ishizuka et al. 2002). Whether DMP68 is

needed for RISC formation or for RISC activity/stability is not known.

Many AGO2-associated proteins were identified in mammalian cells (reviewed

in detail in Peters and Meister 2007). These include MOV10, DDX6 (Rck/p54),

DDX20 (Gemin3), TNRC6A (GW182), and many others. However, experiments

concerning mammalian AGO2-associated proteins were performed in somatic cells

where these proteins are loaded with miRNAs. Accordingly, some of the AGO-

associated proteins clearly associate with miRNA-mediated repression, while it is

not known if any AGO2-associated protein is required for RNAi.

5.2.3 Target Recognition and Cleavage

The RISC complex uses the loaded siRNA as a guide for recognizing its target for

cleavage. As mentioned above, the first cleavage actually targets the passenger

strand of a loaded siRNA duplex to free the guiding strand, so it can base pair to

cognate mRNAs (Matranga et al. 2005; Kim et al. 2007). Whether the first cleavage

has any further effects on the RISC structure is not known.

Target recognition requires that the loaded RISC finds and hybridizes to the

complementary targets. Target recognition by siRNAs exhibits a distinct 50 bias.
Analysis of miRNA-targeted mRNAs revealed that miRNA bases 2–8 form a

distinct “seed,” which base pairs perfectly to the target transcript (Lewis et al.

2003; Enright et al. 2003). It was found that the 50 half of a small RNA provides

most of the binding energy that tethers RISC to a target RNA (Doench et al. 2003;

Haley and Zamore 2004). Biochemical analysis of target recognition by mamma-

lian RISC showed that the RISC is apparently not systematically scanning

transcripts and it is unable to unfold structured RNA. Thus, RISC randomly

transiently contacts single-stranded RNA and promotes siRNA-target base pairing

(Ameres et al. 2007). The 50 end of the loaded siRNA creates a thermodynamic

threshold for a stable association of RISC with its target (Ameres et al. 2007).

The fact that 50 and 30 ends of an siRNA are bound by distinct binding pockets

and that both ends contribute differently to binding to the target lead to a “two-state
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model of Argonaute function” (Tomari and Zamore 2005). In this model, the 30 end
is bound in the PAZ domain and the 50 end in a pocket at the interface between the

MID and the PIWI domains. The 50 end is pre-organized to interact with the cognate
mRNA and, upon binding, the 30 end is dislodged from the binding pocket to allow

for base pairing of the 30 end. Base pairing in the middle of siRNA results in a

correct orientation and cleavage of the cognate strand in the active site. This model

is supported by recent structural data (Wang et al. 2009b).

Notably, siRNAs can mediate other silencing effects than the cleavage. An imper-

fect complementarity in the middle to the base pairing may result in translational

repression, which is a typical effect of miRNAs (Doench et al. 2003). In addition, out

of four mammalian AGO proteins, which can associate with siRNAs, only AGO2 has

the “slicer” activity (Liu et al. 2004; Meister et al. 2004; Song et al. 2004).

5.2.4 RdRP Amplifier and Its Loss During Animal Evolution

RdRP is an ancestral component of RNAi because RdRP orthologs were identified

in RNA silencing pathways in plants, fungi, and some animals: QDE-1 in Neuros-
pora crassa (Cogoni and Macino 1999), EGO-1 and RRF-1 in C. elegans (Grishok
et al. 2001; Smardon et al. 2000), SDE1/SGS2 in Arabidopsis (Dalmay et al. 2001;

Mourrain et al. 2000), and Rdp1 in Schizosaccharomyces pombe (Hall et al. 2002;
Volpe et al. 2002).

C. elegans is the main animal model for studying RdRPs. While an earlier study

of RdRP in C. elegans suggested that dsRNA synthesis can be primed by primary

siRNAs (a model of “degradative PCR”) (Sijen et al. 2001), later studies

demonstrated that RdRPs do not require the priming by primary siRNAs and

produce short RNAs using RISC-targeted mRNAs as templates (Sijen et al. 2007;

Pak and Fire 2007). Surprisingly, a sequencing of small RNAs associated with

ongoing RNAi in C. elegans showed that Dicer-independent secondary siRNAs

constitute the majority of cloned siRNAs (Pak and Fire 2007). These secondary

siRNAs are only antisense, carry 50-di- or triphosphates, and are not bound by RDE-
1 but by other Argonaute proteins (Sijen et al. 2007; Pak and Fire 2007). C. elegans
genome encodes for 27 Argonaute proteins (Yigit et al. 2006) and four putative

RdRPs, three of which were implicated in RNA silencing (Duchaine et al. 2006;

Lee et al. 2006; Sijen et al. 2001; Smardon et al. 2000). A systematic analysis of

small RNAs combining different cloning strategies with the next generation

sequencing and analysis of Argonaute proteins revealed an amazing complexity

of RNA silencing pathways in C. elegans. Different RNA substrates are processed

in Dicer-dependent and Dicer-independent manner to produce numerous classes of

small RNAs, which are loaded on different AGO proteins (Gent et al. 2010; Yigit

et al. 2006; Correa et al. 2010; Vasale et al. 2010). Thus, the core RNAi pathway

(Sects. 5.2.1–5.2.3) in C. elegans can be seen as a starter followed by the main

course made by RdRPs.
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Homologues of these RdRPs exist in numerous eumetazoan phyla, including

Nematoda (e.g., C. elegans), Cnidaria (Hydra), Chelicerata (tick), Hemichordata
(acorn worm), Urochordata (sea squirt), and Cephalochordata (lancelet), but

appear absent in others, including Platyhelminthes (Planaria), Mandibulata
(Drosophila), and Craniata (vertebrates). Phylogenetic data suggest that RdRPs

in RNA silencing pathways have a monophyletic origin, i.e., evolved from a single

ancestral RdRP (Murphy et al. 2008; Cerutti and Casas-Mollano 2006). The fact

that RdRP orthologs are found in other protostomes and deuterostomes but not in

Drosophila or mammals suggests a repeated loss of the ancestral RdRP component

of RNA silencing. Whether RdRP activity completely disappeared from RNAi in

Drosophila and mammals is unclear. The missing RdRP orthologs in RNA silenc-

ing in Drosophila or vertebrates could be replaced by another RdRP, for example

by horizontal transfer of some viral RdRP. In fact, there is evidence for RdRP

analogs in Drosophila and vertebrates (Lipardi and Paterson 2009; Sam et al. 1998;

Maida et al. 2009; Pelczar et al. 2010). Whether and how these activities participate

in RNAi remains unresolved. An earlier report of RdRP activity in Drosophila
(Lipardi et al. 2001) was contradicted by experiments demonstrating the absence of

transitive RNAi generating secondary sequences upstream of the region targeted by

siRNAs (Roignant et al. 2003; Schwarz et al. 2002). A similar lack of transitive

RNAi was observed in mammals (Stein et al. 2003).

Two recent reports propose that two different RdRP activities in Drosophila and
human cells can generate dsRNA that can be processed by Dicer. One of the RdRPs

is ELP1, a noncanonical RdRP conserved in all eukaryotes, which associates with

DCR-2, and its loss results in reduction of endo-siRNAs and upregulation of

transposon transcripts (Lipardi and Paterson 2009). The second RdRP is a ribonu-

cleoprotein complex of the human telomerase reverse transcriptase (TERT) and the

RNA component of mitochondrial RNA processing endoribonuclease (RMRP).

RMRP shows a strong preference for substrates that have 30 fold-back structures

and produces dsRNA that can be processed by Dicer (Maida et al. 2009). In both

cases, additional experiments are needed to confirm that ELP1 or TERT-RMRP

participates in RNAi and what their exact role is. These include analysis of small

RNAs in mutants lacking Elp1 or TERT and further characterization of complexes

containing ELP1 or TERT and RNAi components. Since the transitive RNAi was

not detected in Drosophila and mammals, it is possible that analogous RdRP

activities are not involved in the production of secondary siRNAs. Instead, they

could play a role in siRNA-independent production of dsRNA substrates for RNAi.

That could explain why ELP1 was not found in any of the previous biochemical

studies of RNAi in Drosophila and mammals.

5.2.5 Systemic and Environmental RNAi

RNAi can either act in a cell autonomous manner, i.e., affecting only cells directly

exposed to dsRNA, or can propagate across cell boundaries (Fig. 5.3). The non-cell

autonomous RNAi was observed already during the first RNAi experiments in
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C. elegans (Fire et al. 1998). It worked like a magic trick: when animals were

microinjected with dsRNA into head, tail, intestine, or gonad arm, or if they were

even just soaked in dsRNA solution or fed by bacteria expressing dsRNA, a specific

null phenotype was induced in the whole animal and even in its progeny,

demonstrating a surprising ability of dsRNA to cross cellular boundaries (Fire et al.

1998; Tabara et al. 1998; Timmons and Fire 1998). Two modes of non-cell autono-

mous RNAi are recognized (1) environmental RNAi involves processes in which

dsRNA is taken up by a cell from the environment; (2) systemic RNAi includes

processes where a silencing signal spreads from a cell across cellular boundaries

into other cells. The studies of RNAi in C. elegans show that both modes can be

combined and environmental RNAi can be followed by systemic RNAi.

At least two pathways for dsRNA uptake were described (1) a specific trans-

membrane channel-mediated uptake and (2) an alternative endocytosis-mediated

uptake (reviewed in Huvenne and Smagghe 2010; Whangbo and Hunter 2008).

The best understood systemic RNA mechanism is that of C. elegans where the

transport of the silencing signal to neighboring cells is controlled by dsRNA-

transporting channels. Sid-1 and sid-2 genes were identified in forward genetic

screen to be responsible for systemic RNAi in C. elegans (Winston et al. 2002).

SID-1 (systemic RNAi deficient-1) is a conserved transmembrane protein that

has homologues in a wide range of animals, including mammals. Sid-1 mutants

have intact cell autonomous RNAi, but are unable to perform either systemic RNAi

or environmental RNAi in response to feeding, soaking, or injection of dsRNA

(Winston et al. 2002). SID-1 sensitizes Drosophila cells to RNAi induced by

soaking, enabling concentration-dependent cellular uptake of dsRNA suggesting

dsRNA

dsRNA

dsRNA

dsRNA delivery RNAi effect

Cell autonomous
RNAi

Systemic
RNAi

Environmental
RNAi
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Fig. 5.3 A schematic overview of the different types of RNAi explained on a model of silencing a

“green” gene in cells. The first row shows the cell-autonomous RNAi where the RNAi agent

targeting the “green” gene is delivered into a cell (e.g., by injection or viral transduction). The

silencing effect remains only in the cells where the RNAi was induced initially. Systemic RNAi

(the middle row) includes processes where the silencing is transported from the cell where RNAi

was induced to other cells or even to different tissues where the silencing also takes place. In case

of environmental RNAi (the bottom row), the dsRNA is taken up from the environment of the cell

(external or internal environment in relation to the animal). The silencing effect is observed in all

cells which can take up the dsRNA
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that SID-1 forms a dsRNA channel (Feinberg and Hunter 2003; Shih et al. 2009).

SID-2 is a transmembrane protein localized to an apical membrane of intestinal

cells. It is necessary for the initial import of dsRNA from gut lumen, but not for the

systemic spread of silencing signals among cells. Sid-2 homologues have been

identified only in two other Caenorhabditis species (Winston et al. 2007).

To date, non-cell autonomous RNAi has also been discovered in parasitic

nematodes (Geldhof et al. 2007), Hydra (Chera et al. 2006), Planaria (Newmark

et al. 2003; Orii et al. 2003), or insects (Tomoyasu et al. 2008; Xu and Han 2008).

However, non-cell autonomous RNAi is not present uniformly. For example, only

one of eight tested Caenorhabditis species showed efficient environmental RNAi

(Winston et al. 2007). Diverse non-cell autonomous RNAi also exists in insects

where different taxa have up to three expressed or silent sid-1 orthologs (Huvenne

and Smagghe 2010; Whangbo and Hunter 2008). Some insects, such as red flour

beetle Tribolium, have efficient systemic RNAi where injection of adults causes

RNAi effects in the progeny (Bucher et al. 2002). In Drosophila, the natural role of
non-autonomous RNAi seems to be coupled with antiviral role of RNAi in adult

flies (Saleh et al. 2009). Experimentally induced non-cell autonomous RNAi in

Drosophila was achieved in some (Dzitoyeva et al. 2003; Eaton et al. 2002) but not

all cases (Roignant et al. 2003).

Non-cell autonomous RNA with an extent similar to that of C. elegans or of

some insects is highly unlikely in vertebrates. However, a limited environmental or

systemic RNAi may exist therein as the homologues of sid-1 have been found in all
sequenced vertebrate genomes (Jose and Hunter 2007). Two sid-1 homologues

(SidT1 and SidT2) are present in mice and humans with a documented role for

SidT1 in dsRNA uptake in humans (Duxbury et al. 2005; Wolfrum et al. 2007).

Furthermore, experimental overexpression of human SidT1 significantly facilitated

cellular uptake of siRNAs and resulted in increased RNAi efficacy (Duxbury et al.

2005). At the same time, it should be kept in mind that the mammalian immune

system employs a number of proteins responding to dsRNA independently of RNAi

(Gantier and Williams 2007), the canonical RNAi pathway efficiently operates in a

limited number of cell types, and mammalian RNAi does not seem to participate in

the innate immunity (Cullen 2006). Thus, the primary role of a dsRNA uptake

mechanism in mammals is likely not involving RNAi even though it could have

served such a role in an ancestral organism.

5.3 Roles of RNAi in Animals

Because dsRNA often originates from harmful sources, such as viruses and mobile

elements, the role of RNAi is often viewed as a form of innate immunity. While this

role is experimentally supported, analysis of RNAi mutants suggests additional

roles. This part summarizes the current knowledge of the role of RNAi in combat-

ing viruses, maintaining genome integrity, and control of gene expression (see also

chapter 2 of this volume).
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5.3.1 Antiviral Role of RNAi

RNA viruses generate dsRNA during their replication cycle in host cells; DNA

viruses often produce complementary sense and antisense transcripts, which can

form dsRNA upon annealing. Thus, dsRNA is a common marker of viral infection

and it is recognized by various mechanisms mediating an innate immune response.

A role of RNA silencing in the innate immunity is supported by several lines of

evidence, which were first found in plants and later also in invertebrates (reviewed

in Xie and Guo 2006; Marques and Carthew 2007) (1) siRNAs derived from viral

sequences were found in infected organisms (Hamilton and Baulcombe 1999), (2)

inhibition of RNA silencing results in increased viral replication (Mourrain et al.

2000), and (3) some viruses produce suppressors of RNA silencing (SRS) (Voinnet

et al. 1999).

Several studies addressed the role of RNAi in viral suppression in C. elegans. As
endogenous viral pathogens of C. elegans were unknown, this problem was

bypassed by using an “artificial” infection with viruses, which had a broad host

range and could infect C. elegans under laboratory conditions. Model viral

infections were based on the (+)ssRNA flock house virus (FHV) (Lu et al. 2005)

or the (�)ssRNA vesicular stomatitis virus (VSV) (Schott et al. 2005; Wilkins et al.

2005). Infection with the recombinant VSV was augmented in strong RNAi mutant

animals (rde-1 and rde-4), and mutants produced higher viral titers. Furthermore,

VSV infection was attenuated in rrf-3 and eri-1 mutants that are hypersensitive to

RNAi (Wilkins et al. 2005). Similar results were obtained from infected cultured

cells (Schott et al. 2005) and from an FHV infection of rde-1 mutants (Lu et al.

2005). The antiviral role of exo-RNAi in nematodes was recently demonstrated also

for a newly discovered natural viral infection of C. elegans and C. briggsae (Felix
et al. 2011).

An antiviral role of RNAi has also been demonstrated in insects. It was shown

that FHV is an initiator and a target of RNA silencing in Drosophila host cells

(Li et al. 2002). Infection of 14 different Drosophila RNA silencing mutants with a

dsRNA X virus (DXV) showed that all but three lines were significantly more

susceptible to viral infection (reduced survival and elevated viral titers) than normal

flies. Moreover, replication of DXV was sequence-specifically inhibited (but not

absolutely blocked) by “immunizing” Drosophila S2 cells with dsRNA from the

coding region of DXV before infection (Zambon et al. 2006). Interestingly,

increased susceptibility was observed not only for mutants of the RNAi pathway,

such as r2d2, armi, or ago2, but also for mutants of the piRNA pathway (aubergine
and piwi), suggesting that RNAi is not the only RNA silencing pathway in Dro-
sophila dedicated to the antiviral response. A number of studies provides

ample evidence that RNAi plays an essential role in antiviral response in insects

(Galiana-Arnoux et al. 2006; Keene et al. 2004; Nayak et al. 2010; Sanchez-Vargas

et al. 2009; Wang et al. 2006).

In contrast to nematodes and insects, data supporting involvement of mamma-

lian RNAi in antiviral defense is weak (reviewed in detail in Cullen 2006). It is
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unlikely that RNAi substantially acts as an antiviral mechanism in mammals where

long dsRNA induces a complex sequence-independent antiviral response, com-

monly known as the interferon response (reviewed in Gantier and Williams 2007).

Consistent with this, no siRNAs of viral origin have been found in human cells

infected with a wide range of viruses (Pfeffer et al. 2005). Occasional observations,

such as detection of a single siRNA in HIV-1 infected cells (Bennasser et al. 2005)

does not provide any conclusive evidence that RNAi is processing viral dsRNA and

suppresses viruses under physiological conditions in vivo.

It must be stressed that any circumstantial evidence suggesting the role of RNAi

in viral suppression must be carefully examined and interpreted. Since viruses

coevolve with different hosts and explore all possible strategies to maintain and

increase their fitness, it is not surprising that viral reproductive strategies come into

contact with mammalian RNA silencing pathways, particularly the miRNA path-

way, which shares components with the RNAi pathway. For example, Epstein-Barr

virus (EBV) and several other viruses encode their own miRNAs (Pfeffer et al.

2004, 2005; Sullivan et al. 2005) or take advantage of host cell miRNAs to enhance

their replication (Jopling et al. 2005; Pfeffer et al. 2005).

Another evidence for an interaction between viruses and RNA silencing is the

presence of putative SRS in various viruses. As viral genomes rapidly evolve, SRS

should be functionally relevant. For example, B2 protein in Nodaviruses (e.g.,

FHV) is essential for replication and inhibits Dicer function, and B2-deficient

FHV can be rescued by artificial inhibition of RNAi response (Li et al. 2002). B2

protein also enhances the accumulation of Nodaviral RNA in infected mammalian

cells (Fenner et al. 2006; Johnson et al. 2004). Other potential SRS molecules have

been identified in viruses infecting vertebrates, such as Adenovirus VA1 noncoding

RNA (Lu and Cullen 2004), Influenza NS1 protein (Li et al. 2004), Vaccinia virus

E3L protein (Li et al. 2004), Ebola virus VP35 protein (Haasnoot et al. 2007), Tas

protein in primate foamy virus (Lecellier et al. 2005), or HIV-1 Tat protein

(Bennasser et al. 2005).

The existence of SRS in viruses infecting mammals does not prove that these

viruses are targeted by RNAi in mammalian cells. First, viruses may have a broader

range of hosts (or vectors), e.g., blood sucking insects. Thus, a virus can be targeted

by RNAi in one host and by a different defense mechanism in another one. For

example, the Dengue virus, whose life cycle takes place in humans and mosquitoes,

is targeted by RNAi in mosquitoes and it likely evolved some adaptation to

circumvent the response (Sanchez-Vargas et al. 2009). Second, viral SRS in

mammalian cells may have other purpose than counteracting viral suppression by

RNAi. Since biogenesis and mechanism of action of mammalian miRNAs overlaps

with RNAi, it is possible that the role of such SRS is to modify cellular gene

expression by suppressing the activity of miRNAs. Third, the primary effect of SRS

may be aimed at other defense mechanisms recognizing and responding to dsRNA

and, as a consequence, SRS effects on RNA silencing are observed.
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5.3.2 RNAi and Suppression of Mobile Elements

In C. elegans, mutant screens for components of the RNAi pathway and for the

repressors of Tc1 transposon revealed that RNAi controls the activity of

transposable elements (TEs) (Ketting et al. 1999; Tabara et al. 1999). Consistent

with these results, primary endo-siRNAs derived from Tc1 transposon were

observed in the germline (Sijen and Plasterk 2003). High-throughput sequencing

identified additional small RNA species involved in TE silencing. These include

Dicer-independent piRNAs expressed in all animal phyla (reviewed in Malone and

Hannon 2009a) and secondary siRNAs generated by RdRPs in C. elegans (Pak and
Fire 2007; Sijen et al. 2007). An unexpected connection linking piRNAs to endo-

siRNA biogenesis has been observed in C. elegans germline (Das et al. 2008),

where endo-siRNAs targeting Tc3 element were dependent on piRNAs while Tc1-

derived endo-siRNAs were still present in piwi mutants. These findings suggest a

cross talk between small RNA pathways in worms to ensure efficient TE silencing.

In Drosophila, the small RNA pathways are believed to play distinct roles in TE

silencing in the germline and in somatic tissues. While piRNAs are responsible for

genome surveillance predominantly in the germline, TE-derived endo-siRNAs have

been identified in somatic tissues and cultured cell lines (Czech et al. 2008;

Okamura et al. 2008; Kawamura et al. 2008; Ghildiyal et al. 2008; Chung et al.

2008). However, piRNAs from ovarian somatic cells have also been described,

arising specifically from the flamenco locus (Malone et al. 2009; Li et al. 2009). As

endo-siRNAs from the flamenco locus and several other piRNA loci were also

detected, it is likely that the Drosophila piRNA and endo-siRNA pathways might

be interdependent, similarly to C. elegans, in their task to efficiently silence TEs

(Ghildiyal et al. 2008).

Abundant piRNAs and potential endo-siRNAs derived from transposons and

repetitive elements were also found in Xenopus tropicalis (Armisen et al. 2009).

Here, the piRNAs are restricted solely to the germline while endo-siRNAs

originating from similar genomic loci were found in both oocytes and somatic

tissues, with most endo-siRNAs mapping to the palindromic sequences of Polinton

DNA transposons.

RNAi-mediated TE silencing has also been documented in the mouse germline

(Watanabe et al. 2006, 2008; Tam et al. 2008). Mutations in the piRNA pathway

components are detrimental to sperm development, suggesting that piRNAs are a

dominant class of small RNAs controlling TE activity in the male germline

(Malone and Hannon 2009b). In contrast, female mice lacking functional piRNA

pathway are fertile with no obvious defects in oocytes (Carmell et al. 2007). Endo-

siRNAs suppress TE silencing in mammalian oocytes as documented by derepres-

sion of some retrotransposons in oocytes depleted of Dicer or AGO2 (Murchison

et al. 2007; Watanabe et al. 2008). As already proposed for invertebrates, the

piRNA and endo-siRNA pathways likely cooperate in creating a complex silencing

network against TEs in the mammalian germline. Long terminal repeat MT

elements and SINE elements are strongly upregulated in Dicer-/- oocytes, while
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the levels of IAP retrotransposon are elevated in the absence of Mili protein but not

in Dicer-/- oocytes (Watanabe et al. 2008; Murchison et al. 2007). Still many loci

composed of other types of TEs, e.g., LINE retrotransposons, give rise to both

piRNAs and endo-siRNAs, again suggesting that the biogenesis of these small

RNAs is interdependent. The role of endogenous RNAi in TE silencing extends

from germ cells to preimplantation embryo stages. Apart from maternally derived

piRNAs and endo-siRNAs, which persist in the embryos for a large part of

preimplantation development, zygotic endo-siRNAs are generated de novo, mainly

to control the activity of zygotically activated MuERV-L retrotransposon (Ohnishi

et al. 2010; Svoboda et al. 2004). SINE-derived endo-siRNAs also increase in

abundance in early embryo stages, which is consistent with the observation that

B1/Alu SINE endo-siRNAs account for a vast majority of endo-siRNAs sequenced

from mouse embryonic stem cells (mESCs) (Babiarz et al. 2008). Whether these

SINE endo-siRNAs play an active role in TE silencing in mESCs similarly to other

TE-derived endo-siRNAs in oocytes remains to be determined. RNAi-dependent

silencing of LINE transposons has also been described in cultured HeLa cells,

where endo-siRNAs derived from bidirectional transcripts of sense and antisense

L1 promoter were proposed to control L1 activity (Yang and Kazazian 2006).

Although some evidence for retrotransposon-derived endo-siRNAs from mamma-

lian somatic cells was obtained from deep sequencing data (Kawaji et al. 2008), a

convincing support for the function of endo-siRNAs in TE silencing in mammalian

somatic tissues has yet to be provided. Further reading on small RNAs and TEs is

provided in chapter 2 of this volume.

5.3.3 RNAi and Regulation of Endogenous Genes
and Development

A role of endogenous RNAi in shaping the protein-coding transcriptomes during

development has been challenged by mutant worms and flies lacking essential

components of the RNAi pathway, which were viable and produced healthy

offspring (Tabara et al. 1999; Lee et al. 2004; Okamura et al. 2004). In view of

those findings, RNAi had been viewed solely as a defense mechanism against

invasive nucleic acids. However, deep sequencing analyses revealed that endo-

siRNAs with sequence complementarity to hundreds of protein-coding mRNAs are

present in C. elegans (Ambros et al. 2003; Ruby et al. 2006). Gene regulating endo-

siRNAs in C. elegans differ in biogenesis and in requirements for functional

components of the RNAi exerting machinery (Pak and Fire 2007; Sijen et al.

2007). This is consistent with microarray analysis of mutant worms lacking various

RNAi-related factors, which identified non-overlapping sets of differentially

expressed genes, supporting the idea of functionally distinct RNAi pathways in

nematodes (Lee et al. 2006). In search for the cellular and developmental processes,

which might be controlled by endo-siRNAs in C. elegans, spermatogenesis-
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associated genes were found enriched in the group of transcripts matching endo-

siRNAs (Ruby et al. 2006). Further studies revealed that mutations in RNAi-related

genes result in defects in meiotic chromosome disjunction, spindle formation, or

microtubule organization during sperm development and ultimately lead to male

sterility or embryonic lethality of the offspring (Han et al. 2008, 2009; Pavelec et al.

2009; Gent et al. 2009).

A fraction of Drosophila endo-siRNAs maps to protein-coding regions

(Ghildiyal et al. 2008; Kawamura et al. 2008; Okamura et al. 2008; Czech et al.

2008). However, only endo-siRNAs derived from a small number of loci are

produced in sufficient amount to reduce target mRNA levels, as exemplified by

the esi-2 locus-derived endo-siRNAs targeting DNA damage-response gene Mus-
308 (Czech et al. 2008; Okamura et al. 2008). The second type of Drosophila endo-
siRNAs arise from overlapping antisense transcripts observed in hundreds of

protein-coding loci. Abundance of these endo-siRNAs is generally low, likely

reflecting the fact that RdRP does not significantly contribute to endo-siRNA

biogenesis in flies. In addition, their potential mRNA targets are not upregulated

in Ago2-deficient flies, suggesting that these endo-siRNAs are not involved in

posttranscriptional control of mRNA levels under physiological conditions

(Czech et al. 2008). Interestingly, a dsRNA/endo-siRNA-binding protein Blanks,

which associates with DCR-2 and forms an alternative Argonaute-independent

functional RISC complex, has a role in spermatogenesis (Gerbasi et al. 2011). As

Blanks deletion does not affect transposon activity, this finding would imply a role

for endo-siRNAs in regulation of protein-coding mRNAs in Drosophila sperm

development.

Although Drosophila mutants lacking Dcr-2 or Ago-2 develop to normal adults

with no specific phenotype under standard laboratory conditions, severe defects in

embryonic development have been noted in these mutants upon exposure to

temperature perturbations (Lucchetta et al. 2009). When two halves of a living

embryo were maintained at different temperatures, the mutant embryos were not

able to compensate for faster development in the anterior part exposed to elevated

temperature, which lead to segmentation abnormalities. This indicates that endo-

siRNA pathway is needed to stabilize embryonic development under environmental

stress (Lucchetta et al. 2009). Strikingly, the endo-siRNA-linked defects in

C. elegans sperm development were also observed upon elevated temperature

(Duchaine et al. 2006; Kennedy et al. 2004; Han et al. 2008; Pavelec et al. 2009;

Gent et al. 2009). It is currently unknown whether the temperature-sensitive endo-

siRNA pathway mobilization might be linked to increased endo-siRNA production

or to enhanced activity of the RNAi machinery. However, it is tempting to speculate

that support of development during unfavorable conditions is another role for endo-

siRNA pathway in animals.

In mice, perturbation of the endo-siRNA pathway in oocytes is responsible for

severe meiotic defects and resulting female infertility. Oocyte-specific knockout of

either Dicer or Ago2 leads to similar phenotypes, including chromosome misalign-

ment and defective spindle (Murchison et al. 2007; Kaneda et al. 2009; Tang et al.

2007). These effects were originally attributed to the loss of maternal miRNAs.
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However, miRNA pathway is suppressed in mouse oocytes and nonessential as

oocytes lacking canonical miRNAs are fertile (Ma et al. 2010; Suh et al. 2010).

Interestingly, transcriptomes of oocytes lacking either Dicer or Ago2 are similarly

affected and genes matching pseudogene-derived endo-siRNAs (Tam et al. 2008;

Watanabe et al. 2008) are enriched in the group of upregulated genes in both

knockouts (Kaneda et al. 2009; Ma et al. 2010; Tang et al. 2009). In addition,

putative endo-siRNA targets are enriched in cell cycle regulators and genes

involved in microtubule organization and dynamics (Tam et al. 2008). These

findings suggest that regulation of protein-coding genes by endo-siRNAs controls

the equilibrium of protein factors required for proper spindle formation, chromo-

some segregation, and meiosis progression in mouse oocytes. As pseudogenes are a

rapidly evolving source of dsRNA for endo-siRNA production, it will be interesting

to investigate whether the role of RNAi in spindle formation during meiotic

maturation of oocytes is conserved in mammals.

Endo-siRNAs have also been proposed to contribute to the self-renewal and

proliferation of mESCs, since the proliferation and differentiation defects observed

inDicer-/- mESCs are stronger than inDgcr8-/- mESCs (Kanellopoulou et al. 2005;

Murchison et al. 2005; Wang et al. 2007). A population of endo-siRNAs derived

mostly from hairpin-forming B1/Alu subclass of SINE elements was identified in

mESCs (Babiarz et al. 2008). Fragments of SINE elements are commonly present in

untranslated regions of protein-coding transcripts; therefore, it is possible that

SINE-derived endo-siRNAs participate in posttranscriptional gene silencing in

mESCs. However, this hypothesis has not been tested experimentally.

Scarce evidence is available for potential role of endo-siRNAs in the regulation

of protein-coding mRNAs in mammalian somatic tissues. Endo-siRNAs derived

from natural antisense transcripts of Slc34a gene were identified in mouse kidney,

where this sodium/phosphate cotransporter exerts its physiological function

(Carlile et al. 2009). However, changes in expression levels of Slc34a upon

suppression of the endo-siRNA pathway have not been addressed. Deep sequencing

revealed a set of potential endo-siRNAs generated from overlapping sense/

antisense transcripts and from hairpin structures within introns of protein-coding

genes in the mouse hippocampus (Smalheiser et al. 2011). The most abundant endo-

siRNAs from SynGAP1 gene locus were also found in complexes with AGO

proteins and FMRP in vivo. Interestingly, a large part of potential hippocampal

endo-siRNA targets encode for proteins involved in the control of synaptic plastic-

ity, and the number of endo-siRNAs derived from these gene loci increased

significantly during olfactory discrimination training (Smalheiser et al. 2011).

Given the fact that the vast majority of identified endo-siRNA sequences mapped

to intronic regions, the endo-siRNAs could act co-transcriptionally on nuclear pre-

mRNAs, perhaps similarly to the mechanism of RNAi-mediated inhibition of RNA

polymerase II elongation recently described in C. elegans (Guang et al. 2010).

Alternatively, endo-siRNAs could control a correct distribution of target mRNAs as

unspliced pre-mRNA can be exported from the neuronal nucleus and transported to

dendrites for processing (Glanzer et al. 2005). In any case, these findings open an

attractive hypothesis that endo-siRNAs participate in synaptic plasticity during
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learning process, and the neuronal endo-siRNA pathway might be also linked to

various neurodegenerative disorders (Smalheiser et al. 2011).

5.3.4 Interaction of RNAi with Other dsRNA-Induced Pathways

Diversity of dsRBPs shows that dsRNA plays other roles apart from serving as a

trigger in RNAi. In this section, we will discuss two dsRNA responding pathways:

A-to-I editing and interferon response, which coexist and interact with RNAi.

5.3.4.1 A-to-I Editing

A-to-I editing is mediated by adenosine deaminases acting on RNA (ADARs),

enzymes that carry dsRBD and recognize both inter- and intramolecular dsRNAs

longer than 20–30 bp (Nishikura et al. 1991). ADARs convert adenosines to

inosines, which are interpreted as guanosines during translation. It was predicted

that more than 85% of pre-mRNAs may be edited, predominantly in the noncoding

regions (Athanasiadis et al. 2004). Many long perfect dsRNAs (>100 bp) undergo

extensive editing with a conversion of approximately 50% of adenosines to inosines

(Nishikura et al. 1991; Polson and Bass 1994). On the other hand, short RNAs

(~20–30 bp) or imperfect long dsRNAs are edited selectively; usually only a few

adenines at specific sites are deaminated (Lehmann and Bass 1999).

RNA editing can negatively influence RNAi in several ways. First, ADARs can

compete with RNAi for dsRNA substrates including siRNAs. The ADAR1 isoform

(ADAR1p150) strongly binds siRNA and reduces the availability of dsRNA for

RNAi, resulting in less efficient RNAi in normal cells compared to Adar1-/- cells
(Yang et al. 2005). Interestingly, injection of high doses of siRNAs enhances

ADAR1 expression, suggesting a role of ADAR1 in a cellular feedback mechanism

in response to siRNA (Hong et al. 2005).

A change of a single base in a sequence may result either in destabilization of

dsRNA structure (inosine–uridine pair) or in its stabilization (inosine–cytidine pair)

(Nishikura 2010). This transition in the local and global stability of dsRNA

structure can influence further processing of dsRNA, such as the selection of the

effective siRNA strand (Bartel 2004; Du and Zamore 2005; Meister and Tuschl

2004). While moderate deamination (one I–U pair per siRNA) does not prevent

Dicer processing to siRNAs (Zamore et al. 2000), hyperditing (~50% of deaminated

adenosines) can make dsRNA resistant to Dicer processing (Scadden and Smith

2001). Hyperedited dsRNA is also degraded by TSN (Scadden 2005).

Moreover, editing affects target recognition as a single nucleotide mismatch

between siRNA and target mRNA can reduce RNAi efficacy (Scadden and Smith

2001) or modify target specificity (Kawahara et al. 2007b). This has been well

documented for miRNAs. Several pri-miRNAs (e.g., miR-142) are known to undergo

editing, which inhibits Drosha cleavage or even causes degradation of pri-miRNA by
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TSN (Nishikura 2010; Scadden 2005; Yang et al. 2006). In other cases, pri-miRNA

editing does not influence Drosha activity but inhibits processing of pre-miRNA by

Dicer (e.g., miR-151) (Kawahara et al. 2007a). Last but not least, RNA editing might

also inhibit export of miRNAs from the nucleus (Nishikura 2010).

An important connection between A-to-I editing and RNAi has been

documented in C. elegans. In contrast to mice, where Adar1 or Adar2 deletion is

lethal, in Drosophila and C. elegans Adr null phenotype causes only weak pheno-

typic alterations (Palladino et al. 2000; Tonkin et al. 2002). Adr-1 or adr-2 mutant

worms exhibit a defective chemotaxis, but the phenotype is reverted when worms

lacking Adar are crossed with RNAi-defective strains (Tonkin and Bass 2003). This
indicates a necessity of a balance between RNAi and ADAR-mediated editing.

5.3.4.2 Interferon Response

Mammalian somatic cells can respond to dsRNA in a sequence-independent manner.

A pioneering work by Hunter et al. showed that different types of dsRNA can block

translation in reticulocyte lysates (Hunter et al. 1975). Analysis of the phenomenon

identified PKR that is activated upon binding to dsRNA and blocks translation by

phosphorylating the alpha subunit of eukaryotic initiation factor 2 (eIF2a) (Meurs

et al. 1990). Activation of PKR represents a part of a complex response to foreign

molecules known as the interferon response (reviewed in Sadler and Williams 2007),

which includes an activation of the NFkB transcription factor and a large number of

interferon-stimulated genes (ISGs) (Geiss et al. 2001). In addition to PKR, several

other proteins recognizing dsRNA are integrated to the interferon response, including

helicases RIG-I and MDA5, which sense cytoplasmic dsRNA and activate interferon

expression, and the 20,50-oligoadenylate synthetase (OAS), which produces 20,50-
linked oligoadenylates that induce general degradation of RNAs by activating latent

RNase L (reviewed in Gantier and Williams 2007; Sadler and Williams 2007).

Interactions between RNAi and interferon response are poorly understood. There

are two clear mechanistical connections between these two pathways. First, TRBP

and PACT, two dsRNA-binding proteins, which were mentioned earlier as Dicer-

interacting proteins, interact also with PKR. Notably, while TRBP inhibits PKR

(Cosentino et al. 1995; Park et al. 1994), PACT activates it (Patel and Sen 1998).

While cytoplasmic long dsRNA in somatic cells apparently triggers the interferon

response, it is not clear if the same dsRNA is also routed into the RNAi pathways.

Experiments in oocytes and undifferentiated mESCs (Stein et al. 2005; Yang et al.

2001) suggest that RNAi dominates in response to cytoplasmic long dsRNA in the

absence of a strong interferon response and that the interferon pathway dominates

when its relevant components are present. Nevertheless, this view may be too

simplistic because there are several reports showing induction of RNAi with experi-

mental intracellular expression of long dsRNA in transformed and primary somatic

cells (Elbashir et al. 2001; Diallo et al. 2003; Gan et al. 2002; Shinagawa and Ishii

2003; Tran et al. 2004; Yi et al. 2003). A recent study of effects of ubiquitous long

dsRNA expression in transgenic mice shows that an expressed long dsRNA is well
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tolerated in mammalian somatic cells and a robust RNAi response is observed only in

oocytes (Nejepinska et al. in press). Further research is needed to understand

mechanisms routing long dsRNA into RNAi and interferon pathways.

The second connection between RNAi and interferon response is evolutionary.

As mentioned earlier, mammalian RNA helicases Ddx58, Dhx58, and Ifih1, which
are involved in immune response, are the closest homologues of helicases involved

in the processing of long dsRNA during RNAi in C. elegans. Notably, DDX58, also
known as RIG-I, is an established component of the interferon response to long

dsRNA (Yoneyama et al. 2004). This suggests that the interferon response, which

has a common trigger and evolved after the RNAi pathway, adopted several

components from the latter pathway. It remains to be determined whether these

and other components of RNAi lost their function in RNAi entirely or mediate a

certain form of a cross talk between RNAi and the interferon response.

5.4 Closing Remarks

Most biologists likely consider RNAi as an excellent tool to study gene function. At

the same time, RNAi is a complex natural phenomenon with numerous physiologi-

cal functions. We have summarized the current knowledge of the molecular mech-

anism of RNAi and its biological roles. RNAi in animals likely originated from an

ancient innate immune response allowing dealing with viral infections and parasitic

sequences in the genome, which have a capacity to generate dsRNA. The original

role of RNAi still persists in invertebrates. In mammals, the defensive role of RNAi

was largely replaced by a more recent form of immune system and RNAi retained

its traditional function in suppression of mobile elements in the female germline.

While mammals do not combat viruses by RNAi anymore, they adopted RNAi for a

regulation of endogenous genes in the female germline. The story of RNAi provides

another example of ingenuity of nature in evolving novel functions for old

mechanisms.
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Chapter 6

Generation of Functional Long Noncoding RNA

Through Transcription and Natural Selection

Riki Kurokawa

Abstract The human genome has been found to generate enormous numbers of

transcripts, much more than expected classically. A majority of the transcripts

appears to be noncoding RNAs (ncRNAs) that do not encode any protein sequence

information. Most of the ncRNAs have been shown to be long ncRNAs (lncRNAs)

with lengths of more than 200 nucleotides. Therefore, strong attention on lncRNAs

has been emerging. However, knowledge of lncRNAs is far less extensive than

microRNAs. Emerging evidence suggests distinct roles of lncRNAs in regulation of

gene expression, raising the central questions of how these lncRNAs are generated

and selected for specific functions. For an attempt to solve these elusive questions,

my major focus in this review is on transcription of the lncRNAs. Examination of

the data regarding the transcription of the lncRNAs raises a hypothesis about the

origin of the functional lncRNAs in which pervasive transcription serves to gener-

ate pools of divergent lncRNAs and that selection of specific lncRNAs by criteria of

biological potency supplies functional lncRNAs in living cells. In this review,

I explore recent and previous papers regarding lncRNAs and discuss the hypothesis.

Keywords Chemical evolution • long noncoding RNA • nucleosome • SELEX •

transcription

6.1 Introduction

Analyzing the transcriptome of the human genome has demonstrated that more

than 90% of the genome generates divergent transcripts including a few percent of

coding messenger RNAs and mostly noncoding RNAs (ncRNAs). Many of these
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ncRNAs are defined as long ncRNAs (lncRNAs) of which length is more than 200

nucleotides (nts) (Carninci et al. 2005; Kapranov et al. 2007a; Kapranov et al. 2007b).

The focus of the ncRNA studies is on small RNAs like microRNA and piRNA, while

issues concerning long ncRNAs are emerging recently. Here, I focus on the lncRNAs

in this chapter. There is still pretty much skeptical view of the biological significance

of these lncRNAs. Due to very low levels of expression, some lncRNAs might

represent a bona fide noise of transcription and be made through random or pervasive

transcription. However, other lncRNAs are highly expressed and/or are transcribed in

a signal-regulated manner. In order to understand the biological significance of

lncRNAs, we need to find biological functions of the lncRNAs from a pool

of divergent RNA molecules transcribed from the human genome (see details in

Chap. 13). In this review article, I search formechanisms of generating such numerous

numbers of lncRNAs, focusing on their transcriptions. Mechanism of eukaryotic

transcription has a key role in generating divergent species of lncRNAs.

Early studies on RNA polymerase II showed that the enzyme catalyzes

ribonucleic acid polymers effectively from bare DNA templates (Shenkin and

Burdon 1966). Upon incorporation of DNA into chromatin structure, the transcrip-

tion of the DNA is suppressed. However, once the interaction between DNA and

histones in the chromatin is disrupted by genotoxic stimuli including UV, DNA-

damaging chemicals, and ionizing irradiation, RNA polymerases are forced to

recruit on the site and catalyze RNA synthesis there (Wang et al. 2008). This

event might induce the random transcription initiation everywhere in the human

genome and generate heterogeneous species of lncRNAs to produce a pool of the

random lncRNAs. According to their chemical property, these lncRNAs are

expected to be selected for suitable biological processes, like the X chromosome

inactivation and transcriptional repression (Lee 2010; Wang et al. 2008). Regarding

the process of generating lncRNAs, I would present the hypothesis of a natural

selection of functional lncRNAs from the pool of divergent RNA molecules

transcribed from the noncoding regions of the human genome. In this review,

I explore the papers related to properties and functions of lncRNAs, discuss origin

of lncRNAs, and trace a pathway to the hypothesis of generating lncRNAs from the

human genome during the biological evolution.

6.2 Diversity of lncRNAs

It is not so easy to categorize divergent species of lncRNAs. Let us observe the

diversity of lncRNAs. This is a good topic to start to see chaos of the lncRNAs.

6.2.1 Definition of lncRNA

It has been reported that more than 34,000 possible lncRNAs are revealed

by genome-wide analysis of transcriptomes with computational approaches
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(Carninci et al. 2005; ENCODE-consortium 2004). Functional annotations of these

lncRNAs have been far less established than those of coding mRNAs. Recent

challenge to find out functional lncRNAs has predicted functions of 340 lncRNAs

(Liao et al. 2011). An attempt to construct a database of known lncRNAs was

reported with 160 entries of the published lncRNAs (Amaral et al. 2011). A

prevailing definition of lncRNA is the ncRNA with nucleotide length more than

200. The tentative number of 200 nts is practically defined by the technical

limitations of separation technologies of RNA molecules. It has been presented a

definition of lncRNA as the noncoding RNAs that have been spliced and unspliced

RNAs which are not known classes of small RNA.

With this definition, the database was developed and has entries now more than

160 lncRNAs identified from literatures in around 60 different organisms.

Examples of the lncRNAs in the database are divergent like Kncqlotl, HOTAIR,

and Neat1 (Clemson et al. 2009; Mohammad et al. 2008; Pandey et al. 2008; Rinn

et al. 2007). To date, the huge number of lncRNAs has shown to be transcribed from

the genome, but only small fractions of the lncRNAs have been annotated to have

their biological functions. This raises a question whether some of lncRNAs might

be generated as a bona fide noise of transcription. For biological studies, lncRNAs

need to be inspected for their functional significance.

6.2.2 Functional lncRNA

Expression levels of lncRNAs are generally low compared to protein-coding

mRNAs with a few exceptions like Malat1 (Neat2) and Gomafu (Sone et al.

2007; Tripathi et al. 2010). This suggests that lncRNAs work mostly as regulatory

molecules rather than cellular structures (see details in Chap. 8). Some of lncRNAs

are involved in transcriptional regulation. At this section, I describe various

lncRNAs, focusing on functions of transcriptional regulations.

Recently, we found a transcriptional regulatory lncRNA that acts through an

RNA binding protein TLS. The cyclin D1 promoter-associated lncRNA (CCND1-

lncRNA) has been found to be transcribed from the CCND1 promoter region upon

genotoxic stimuli like ionizing irradiation (Wang et al. 2008).The CCND1 binds to

RNA binding protein TLS and exerts inhibitory effect on transcription through

inhibition of histone acetyltransferase (HAT) activity of CBP/p300 (Fig. 6.1a).

Khps is an antisense RNA transcribed from T-DMR (tissue-dependent differen-

tially methylated region) of Sphk1 (sphingosine kinase-1) (Imamura et al. 2004).

Over expression of Khps1 induces demethylation of the CpG island of T-DMR but

methylation of its non-CG region (Imamura et al. 2004). The modulation of the

methylation of Sphk1 locus was shown to regulate expression of this locus. This is

one example where the antisense transcript of the gene promoter regulates gene

expression through methylation status of the gene.

The ncRNA of the dihydrofolate reductase (DHFR) minor promoter has other

mechanisms to repress transcription. In quiescent mammalian cells, expression of
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Fig. 6.1 Divergent functions of lncRNAs. (a) Transcription repression by the cyclin D1

promoter-associated lncRNA (CCND1-lncRNA) through RNA binding protein TLS. The DNA

damaging-signal like ionizing irradiation induces expression of the CCND1-lncRNA. The TLS-

CCND1-lncRNA complex is effectively bound to CBP/p300 and inhibits its histone

acetyltransferase activity to repress the transcription of the CCND1 gene. (b) The dihydrofolate

reductase (DHFR) minor promoter ncRNA represses transcription of the DHFR gene. This

lncRNA directly targets general transcription factor TFIIB and the RNA polymerase II complex

to repress the transcription. (c) The Evf2 ncRNA activates transcription. The Evf2 ncRNA is

bound to Dlx2 protein and targets the intergenic regions (i and ii) between the loci Dlx5 and

Dlx6 to activate transcription of these genes
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DHFR is repressed. A transcript of a minor promoter located upstream of a major

promoter of DHFR is involved in the repression of this gene (Martianov et al.

2007). In the quiescent cells, the minor promoter transcript inhibited transcriptional

initiation from the major promoter through direct binding to TFIIB of the

preinitiation complex (Fig. 6.1b). The alternative promoters within the same gene

have been observed in various loci. This could be a general mechanism that the

transcripts from the alternative promoters have a regulatory role in the transcription

of the promoter.

Some lncRNAs also have a function in transcriptional activation. The Evf2

ncRNA is transcribed from an intergenic region between Dlx5 and Dlx6.

These two genes belong to the homeodomain protein family. The Evf2 ncRNA is

interacted with a protein Dlx2 and bound to the intergenic regions i and ii

located between Dlx5 and Dlx6, and activates expression of these loci (Feng

et al. 2006). This is another example to regulate transcription in a positive manner

(Fig. 6.1c).

X-chromosome inactivation is executed by a well-analyzed lncRNA, 17 kb-

length Xist (Zhao et al. 2008). X-chromosome inactivation also employs the

ncRNA, the 1.6-kb RepA that is transcribed from the fragment of the Xist locus

as an antisense RNA (Zhao et al. 2008). The reduction of expression of Tsix that is a

full-length antisense RNA of Xist has a function as a signal. RepA as the sensor

receives the reduction of the Tsix expression as the signal, recruiting PRC2

(polycomb repressive complex 2) containing histone methyltransferase activity to

the Xist locus, and induces X-chromosome inactivation.

Another example of the lncRNA sensor is HOTAIR (Rinn et al. 2007). During

embryonic development, HOTAIR also works as a sensor and exerts gene-silencing

effect through recruitment of PRC2 (Rinn et al. 2007). Intriguingly, the lncRNAs

with function of the sensors have been shown to need histone-modifying enzymes

as an effector molecule. These data suggest that lncRNAs function as sensors

for divergent biological signals and regulate gene expression through histone

modification.

NEAT1, an abundant 4-kb lncRNA, plays a role in assembly of specific nuclear

organelle, paraspeckle (Bond and Fox 2009; Chen and Carmichael 2009). The

functions of paraspeckle have been thought to be involved in transcription, pre-

mRNA splicing, and nuclear retention of RNA (Bond and Fox 2009; Fox et al.

2002). Depletion of NEAT1 eliminated paraspeckles in many cell lines, including

293, HeLa, and HT-1080, indicating that the NEAT1 is required for the paraspeckle

formation. These data show that abundant lncRNAs exert functional roles in

assembly of subcellular structures.

Generally speaking, relatively many species of lncRNAs function as a transcrip-

tional regulator, while still others have divergent functions. Each group of lncRNA,

for example, HOTAIR and the CCND1-lncRNA, display no significant homology.

A question is emerging why so divergent species of lncRNAs have been generated

in human and other mammalian cells. To answer the question, analyzing intrinsic

mechanisms of transcription is expected to present a radical solution.
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6.3 Mechanism of Eukaryotic Transcription

It is no doubt that only transcription makes lncRNAs. Then, we need to analyze the

basic core transcriptional machinery extensively. Most of lncRNAs are generated

through RNA polymerase II, although some lncRNAs have been shown to be

transcribed through RNA polymerase III (Dieci et al. 2007; Kurokawa 2011;

Kurokawa et al. 2009). Therefore, this section focuses on the function of RNA

polymerase II. This tells us a hint to know how diverse species of lncRNAs are

transcribed from the human genome.

6.3.1 RNA Polymerase II and General Transcription Factors

Extensive biochemical and molecular biological studies have demonstrated that the

RNA polymerase II complex comprises multiple components: TFIIB, TFIID

including TBP and TAFs, TFIIE, TFIIF, and TFIIH (Fig. 6.2), and the precise

initiation of the transcription requires the RNA polymerase II with its essential

components shown above to form the complex, that is, the holoenzyme of RNA
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Fig. 6.2 Mechanism of eukaryotic transcription. Simplified scheme of the eukaryotic transcrip-

tion is shown. There is a growing list of factors involved in this process
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polymerase II (Roeder 1991; Weake and Workman 2010). These data indicate that

RNA polymerase II alone could not initiate specific and precise transcription, and

needs to form the holoenzyme for specific transcription initiation. Contrarily, RNA

polymerase II alone could catalyze a random transcription reaction with induction

by some protein fractions as described in the next section.

6.3.2 Random or Pervasive Transcription

The fractions of Ehrlich ascites tumor cells (SII) and of HeLa cell (TFIIS) were

shown to stimulate nonspecific transcription by RNA polymerase II (Reinberg and

Roeder 1987; Sekimizu et al. 1979). These data facilitate understanding randomly

initiated transcription of lncRNAs from divergent sites of the human genome.

Biochemical analyses with nuclei of the mouse ascitic carcinoma Krebs II cells

and RNA polymerase II with endogenous DNA as templates revealed strong

activity of the transcription (Shenkin and Burdon 1966). Indeed, the incubation of

0.83 mL of the nuclear fraction of Krebs II cells with [3H]uridine at 37�C for 30 min

generated the amount of [3H]RNA ranging from 0.175 to 0.50 mg, showing that

significant percentage of the mouse genome is potentially transcribed. The nuclear

fraction contained enzymes and substrates that were sufficient for this active

transcription. Taken together, these data indicate that the genome has the potential

to be transcribed to create divergent RNA species, although these data are all results

by in vitro experiments.

6.4 Chromatin Structure and Transcription

The human genome is indeed assembled into chromatin, which consists of genomic

DNA, core histones, and related proteins. Chromatin is an essential apparatus to

accommodate transcription and related events in nuclei. At default mode, transcrip-

tion remains suppressed in the chromatin structure. At certain circumstances,

transcription is activated by stimuli. Then, nucleosome positioning and nucleosome

removal (eviction) play a substantial role in regulation of transcription of lncRNAs.

Therefore, we have a look at these issues at the next two sections.

6.4.1 Nucleosome Positioning and Transcription

Nucleosomes comprise of 146 base pairs of DNA wrapped with a histone octamer

consisted of histones H2A, H2B, H3, and H4, and function as a fundamental unit of

gene-expression process. Recently, it has been shown that various kinds of the

histone modification enzyme function at many types of human cell lines.
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Nucleosome positions have been published regarding yeast (Lee et al. 2007),

C. elegans (Johnson et al. 2006), and the human genomes (Schones et al. 2008).

The positioning of nucleosomes in the human genome of both resting and activated

human CD4+ T cells has been analyzed by direct sequencing of the nucleosome

ends using the high-throughput deep sequencing technology (Schones et al. 2008).

Schones et al. have sequenced the ends of the mononucleosome-protected DNA

fragments isolated from micrococcal nuclease (MNase)-digested chromatin and

presented the genome-wide maps of nucleosome positions in both resting and

activated human T cells. They found that nucleosomes are highly “phased (period-

ically altered positioning of nucleosomes)” relative to the transcription start sites

(TSSs) of expressed genes, but this phasing disappeared for unexpressed genes. It

has shown that promoters with stalled or posed RNA polymerase II exhibited a

nucleosome phasing similar to promoters of transcriptionally active genes,

suggesting that the posing of RNA polymerase is one of regulatory mechanisms

of transcription.

Gene activation by T-cell receptor signaling is accompanied by nucleosome

reorganization in promoters and enhancers as well. Moreover, deposition of variant

histone H2A.Z and the H3K4me3 (trimethylation of lysine 4 of histone H3)

modification have been suggested to facilitate nucleosome eviction or repositioning

in promoter regions of the human genome. The genome-wide maps of nucleosome

positions could lead to solutions to understand the relationship between transcrip-

tion and chromatin structures. Activation of transcription needs to place a massive

molecular assembly of basic core transcriptional machinery containing RNA poly-

merase II at an immediate upstream of the TSS (Fig. 6.2). At this situation, the

nucleosome structure is a barrier against initiation of transcription and needs to be

removed for activation of transcription. Large-scale analyses have shown nucleo-

some loss surrounding TSSs in both yeast and human genomes (Bernstein et al.

2004; Ozsolak et al. 2007; Yuan et al. 2005). Consistent with these data, level of

nucleosomes at an immediate upstream of TSSs is decreased in an RNA polymerase

II-dependent manner in the human genome. This suggests that removing the arrays

of nucleosomes is required for the transcription initiation and transcription of

lncRNAs as well.

For this nucleosome loss, there are two possible mechanisms involved, that is,

nucleosome eviction and nucleosome sliding. The nucleosome eviction has been

shown to accompany gene activation (Boeger et al. 2003; Reinke and Horz 2003).

Similarly, it has also been reported that nucleosome sliding is associated with

activation of the gene, for example, the interferon-B gene by viral infection

(Lomvardas and Thanos 2002).

Selection of eviction or sliding of nucleosome might be induced depending upon

favorable energy status of each situation. It is speculated that the nucleosome

positioning at regulatory regions such as promoters may be maintained by multiple

factors like chromatin-modifying enzymes and RNA polymerase II machinery

assembly, whereas the nucleosome positioning at nonregulatory regions may be

mainly controlled by the underlying DNA sequence features (Ioshikhes et al. 2006;

Segal et al. 2006).

158 R. Kurokawa



These data indicate that removal of the nucleosome on TSS is an initial event of

transcription. This prompts us to consider roles of the nucleosome free regions on

transcription initiation of lncRNAs.

6.4.2 LncRNAs Are Transcribed from Nucleosome-Free Regions
of the Genomes

Nucleosome positioning is an essential procedure for transcription regulation as

described above. As a particular case of the nucleosome positioning, nucleosome-

free regions (NFRs) are generated in the genomes. The NFR at the 50 and 30 ends of
genes is a general region of the transcription initiation of mRNAs and also

lncRNAs. It has been identified as NFRs within transcriptional regulatory regions

like promoters, enhancers, and also the conserved location of TSSs. These data

suggest that regulation of NFRs profoundly affects transcription initiation and

related events.

Recent genome-wide mappings of nucleosome positions have been performed in

a number of organisms, including yeast (Albert et al. 2007; Bernstein et al. 2004)

and humans (Barski et al. 2007; Schones et al. 2008). The genomes of these

organisms display a characteristic chromatin structure containing gene-coding

regions and transcriptional regulatory regions. Gene-coding regions generally

have high nucleosome occupancy with arrays of well-phased nucleosomes

extending from the 50 end of a gene. In contrast, transcriptional regulatory regions

like promoters and enhancers have low nucleosome occupancy and often contain an

NFR. NFRs represent regions with an increased accessibility to MNase digestion

and also other factors. Thus, the term NFR refers to a deficiency in experimentally

determined canonical nucleosomes and does not necessarily imply a complete lack

of histones (Fig. 6.3). Recently, multiple factors are shown to facilitate transcription

initiation by inducing the formation and size of NFRs in vivo.

There have been characterized predominantly two major classes of NFRs: 50-
NFRs and 30-NFRs. In yeast, these NFRs are typically from 80 to 300 bp and are

flanked by two well-positioned nucleosomes that often contain the histone variant

Htz1 (Albert et al. 2007; Raisner et al. 2005). Recently, two additional classes of

NRFs have been reported (Yadon et al. 2010): the NRFs located in open reading

frames (ORF-NFRs) and far from ORFs (other NFRs). In yeast and other

organisms, the transcriptions of many ncRNAs were found to initiate at the

upstream edge of 50-NRFs or at 30-NFRs. The conserved locations of the ncRNA

TSSs around NFRs suggest that NFRs are a general area of transcription initiation,

and apparatus controlling NFR accessibility are critical to transcriptional regulation

of ncRNAs.

A variety of factors, including the physical and chemical properties of DNA

(Kaplan et al. 2009; Zhang et al. 2009), transcription factors (Hartley and Madhani

2009), and chromatin regulators (Hartley and Madhani 2009) are known to
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positively regulate the formation and size of NFRs in vivo. The activities of these

factors in establishing larger NFRs are thought to facilitate the initiation of tran-

scription by allowing transcription factors greater access to DNA. It still remains to

be revealed whether there are mechanisms to negatively regulate the size of NRFs

in vivo. Recent analysis has shown in yeast that the ATP-dependent chromatin-

remodeling enzyme Isw2 functions at the 50 and 30 ends of genes to increase

nucleosome occupancy within intergenic regions, sliding nucleosomes away from

coding regions. Intriguingly, Isw2 is also required to repress noncoding antisense

transcripts from the 30 end of three genes tested (Whitehouse et al. 2007). It was not

certain if Isw2-dependent chromatin remodeling generally affects chromatin struc-

ture and the ncRNA transcription around NFRs. Yadon et al. have hypothesized that

Isw2 might generally repress the ncRNA transcription by negatively regulating the

size of NFRs in vivo (Yadon et al. 2010). To examine the hypothesis, they analyzed

data from multiple nucleosome-mapping studies to systematically annotate a con-

sensus set of NFRs across the yeast genome (Yadon et al. 2010). Their work

identified two additional NFRs above-mentioned across the yeast genome. The

Isw2 targets were found to be significantly enriched at all four classes of NFRs.

Thus, this identified previously unknown targets of Isw2 at the OFR-NFRs. Fur-

thermore, they employed custom strand-specific tiled microarrays to analyze

ncRNA transcripts and found that Isw2 is globally required to repress initiation

of cryptic RNA transcripts from NFRs by sliding nucleosomes toward NFRs to

restrict their size. Finally, they provided evidence that a potential biological conse-

quence for Isw2-dependent repression of some cryptic transcripts is to prevent

transcriptional interference (Yadon et al. 2010). These data present firm evidence

to demonstrate that NRF is an area for the transcriptional initiation of ncRNAs and

lncRNAs as well.

Fig. 6.3 Nucleosome-free regions of the human genome. Upper panel: At the transcription-

repressed region, tightly placed nucleosomes form “closed chromatin” with methylated histones

(red circle) and methylated DNA mostly at cytosine residues (red dot). Lower panel: At the

transcription-activated region, nucleosome-free regions formed at the 50 and 30 untranslated

regions provide space for the assembly of transcription factors and induce activation of transcrip-

tion. The NFRs are accompanied with acetylated histones (blue circle) and unmethylated DNAs

with cytosine residues (green dot)
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6.5 Pervasive Transcription Generates lncRNAs

At this section, we discuss involvement of the histone covalent modification in

transcriptional regulation of lncRNAs. The histone modification is also one of

regulatory elements of transcription of lncRNAs.

6.5.1 Divergent Transcription Makes Antisense RNA

It has been reported that 70% of coding genes have their counterpart of antisense

transcripts (Katayama et al. 2005). Thus, antisense RNA occupies a major part of

the lncRNA fractions. Then, I describe the transcription of antisense RNA at this

section. Our experiments with the CCND1-lncRNA showed that its transcription

proceeds in both sense and antisense directions (Wang et al. 2008). The CCND1-

lncRNA binds to TLS and exerts inhibitory activity on the HAT activity of CBP/

p300, repressing the transcription of the CCND1 gene itself (Fig. 6.1a). Exposure of

HeLa cells with ionizing irradiation (IR) resulted in induction of the CCND1-

lncRNA expression from the promoter (Fig. 6.4a). The transcripts were found to

be a novel class of lncRNAs with 200 and 330 nt (Fig. 6.4b). Intriguingly, the

exposure of the cells to IR induced transcription of both sense and antisense of the

strands of the promoter (Fig. 6.4c, d). We have not known how this kind of

pervasive or bidirectional transcription could occur on lncRNA loci and discuss

this mechanism at this section.

Analysis of transcription of lncRNAs requires precise monitoring of nascent

transcripts, especially rapidly degraded transcripts. Churchman and Weissman

developed an approach, native elongating transcript sequencing (NET-seq), based

upon deep sequencing of 30 ends of nascent transcripts associated with RNA

polymerase, to monitor active transcription at nucleotide resolution (Churchman

and Weissman 2011). The NET-seq approach made it possible to determine the

precise positions of all active RNA polymerase II complexes by exploiting the

extraordinary stability of the RNA polymerase ternary complex with DNA and

RNA to capture nascent transcripts directly from living cells without cross-linking.

The properties of the 30 end of purified transcripts are revealed by deep sequencing,
thus providing a quantitative measurement of RNA polymerase II density.

The NET-seq detected the relative amounts of nascent sense and antisense

transcripts. Although some divergent promoters were observed, the large majority

of promoters had much less antisense transcription than sense transcription. Then, a

question arising is why the promoter has a directionality. Intriguingly, the NET-seq

indicated a strong positive correlation between antisense transcription levels and

previously published measurements of the levels of histone H4 acetylation

(Pokholok et al. 2005). The correlation between the antisense transcription and

the H4 acetylation indicated that the H4 acetylation may have a causative role in

facilitating antisense transcription. To test this end, the effect of deletion of RCO1,
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an essential subunit of the Rpd 3 small (Rpd3S) H4 deacetylation complex

(Carrozza et al. 2005; Keogh et al. 2005), was examined on the antisense transcrip-

tion. The experiment revealed a pervasive increase at average fourfold in the

unstable antisense transcription. Deletion of EAF3, another essential subunit of

Rpd3S, also increased the pervasive transcription, confirming the result with dele-

tion of ECO1. These experiments indicated that the Rpd3S histone complex

enforces the promoter directionality. To see how the Rpd3S works in preventing

the antisense transcription from promoters, the experiment was performed with the

deletion mutants of yeast. These data together with previously published data

indicated that the mechanism of Rpd3S action on antisense transcription is involved

in the Set2 recruitment to elongation of RNA polymerase II via the Ser2
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composed from our data (Wang et al. 2008). According to the Nature Publishing Group, a division

of Macmillan Publishers Ltd., the copyright of the Nature paper belongs to the authors
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phosphorylation on its carboxy-terminal domain. This, in turn, through the Set2

methylation activity, allows recruitment of Rpd3S to the 30 ends of genes,

suppressing antisense transcription from downstream nucleosome-free regions

(Churchman and Weissman 2011). Although it remains unsolved how the histone

H4 acetylation in the body of antisense transcripts can facilitate the initiation of

transcription, these data indicate that the histone acetylation has a crucial role in

transcription of antisense RNAs and pose a speculation that the histone modifica-

tion may have a general role in transcriptional regulation of lncRNAs.

Additional NET-seq experiments demonstrated pervasive polymerase pausing

and backtracking throughout the body of transcripts. The average pause density

showed the prominent peaks at each of the first four nucleosomes, with the peak

location occurring in good agreement with in vitro previous biophysical

experiments (Churchman and Weissman 2011). Therefore, the nucleosome-

induced pausing represents a major barrier to transcriptional elongation in vivo.

Taken together, these data demonstrated that the nucleosome is an apparatus to

repress transcription through modification of chromatin structure. In the case of the

CCND1-lncRNA transcription, the H4 acetylation on antisense region of the

promoter could be induced or inhibited by blocking recruitment of Rpd3S. This

suggests that epigenetic regulation is also a crucial element for expression of the

CCND1-lncRNA or generally lncRNAs as well.

6.5.2 Transcription from Intergenic Regions Generates lncRNAs

We have observed particular histone modifications around the CCND1 loci

(Fig. 6.5). The CCND1 locus has been shown to be encompassed between an

upstream H3K4me3 region and a downstream H3K36me3 region of the gene

body. Guttman et al. recently identified these specific modifications of histone H3

methylation around loci of large intervening noncoding RNAs (lincRNA: hereafter

lncRNA), which are related to their expression (Guttman et al. 2009). Their

approach to identify lncRNAs using chromatin-state maps indicated discrete tran-

scriptional units intervening known protein-coding loci. The genome-wide chro-

matin-state mapping with chromatin immunoprecipitation and deep sequencing
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Fig. 6.5 The K4-K36 domain of the CCND1-lncRNA locus. Human embryonic stem cells (ESCs)

are tested to detect these histone modifications. The figure was composed from the data from the

UCSC Genome Bioinformatics Site: http://genome.ucsc.edu/index.html
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(ChIP-Seq) demonstrated that genes actively transcribed by RNA polymerase II are

marked byH3K4me3 at their promoter and also by H3K36me3 along the tran-

scribed regions. This distinctive structure was named as a “K4-K36 domain.”

Therefore, the K4-K36 domain turns out to be a marker for active transcription

regions. Then, searching for the K4-K36 structures that reside outside the known

protein-coding gene loci makes it possible to systematically discover lncRNAs.

Examining the K4-K36 domains in genome-wide chromatin-state maps was

performed in four mouse cell types, that is, mouse embryonic stem cells (ESCs),

mouse embryonic fibroblasts (MEFs), mouse lung fibroblasts (MLF), and neural

precursor cells (NPCs). This identified the K4-K36 domains of at least 5 kb in

length that did not overlap regions containing protein-coding genes as well as

known microRNAs and endogenous short interfering RNAs. This revealed the

1,675 spots of the K4-K36 domains that do not overlap with known annotations

and identified more than 1,600 large multiexonic RNAs across four mouse cell

types. Moreover, these K4-K36 domains display high evolutionary conservation

between mouse and human. Together, the results confirm biological significance of

these identified lncRNAs in living cells.

Upon identification of a long list of conserved lncRNAs, Guttman et al. devel-

oped methods to infer their putative functions that can be tested experimentally

(Guttman et al. 2009). To this purpose, the RNA expression profiles of both

lncRNAs and protein-coding genes were examined over variety of tissues. The

polyadenylated RNA fractions from 16 mouse samples were hybridized to a custom

lncRNA array. The samples included the original four cell types (mouse ESCs,

NPC, MEF, and MLF), a time course of embryonic development (whole embryo,

hind limb, and forelimb at embryonic days 9.5, 10.5, and 13.5), and four normal

adult tissues (brain, lung, ovary, and testis). These expression data present impor-

tant information about biological functions of the lncRNAs. Indeed lncRNAs with

an expression pattern was screened for opposite to the known lncRNA HOTAIR.

Notably, the most highly anticorrelated lncRNA in the genome was found in the

HOXC cluster, in the same euchromatic domain as HOTAIR. Then, this lncRNA

was named as “Frigidair.” The data imply that Frigidairmight repress HOTAIR or

perhaps activate genes in the HOXD cluster that was shown to be of negative

correlation with HOTAIR (Guttman et al. 2009).

Using published data, 118 lncRNAs in which the promoter loci were bound by

the transcription factors Oct4 and Nanog have been identified (Loh et al. 2006).

Interestingly, more than 70% of these lncRNAs were associated with pluripotency.

One of these lncRNAs was found to be only expressed in ESCs and located around

100 kb from Sox2 locus, which encodes a key transcription factor for pluripotency.

Transient transfection experiment using the locus of the lncRNA in mouse cells

showed that Sox2 and Oct4 were each sufficient to drive expression of this lncRNA

promoter, and the expression of both Oct4 and Sox2 together caused synergistic

increases in the expression. Transcription factors, Sox2 and Oct4, were found to

regulate the expression of the lncRNAs through their binding to the related

promoters. Taken together, the data demonstrate that specific sets of functional

lncRNAs are highly conserved and implicated in divergent biological significances.
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The data examined at this section demonstrate two clues to understand the

functions of lncRNA. First one is that the genes near lncRNA loci are strongly

biased toward the gene-encoding transcription factors and other transcription-

related molecules. The second one with previous data (Rinn et al. 2007) is that

the lncRNA like HOTAIR functions with a protein complex bearing chromatin-

modifying enzyme activity to regulate transcription. Therefore, these data suggest

that distinctive ncRNAs are involved in crucial aspect of regulation of transcription

by recruiting chromatin-modifying enzyme to active sites of transcription.

The analysis could divide these lncRNAs into two categories. One category

would represent lncRNAs that are associated with mRNAs and that might act in cis

to regulate the associated mRNA. Another category would not be associated with

mRNAs and would act in trans to regulate the expression of multiple genes nearby

or at a distance. These lncRNAs could also include structural RNAs, for example,

required to build paraspeckles.

6.6 Chemical Evolution of Functional RNA Molecules from a

Pool of Divergent RNAs and Evolution of lncRNAs

Systematic evolution of ligands by exponential enrichment (SELEX) process

provides a small oligonucleotide that was coined “aptamers” (derived from the

Greek word aptus, “to fit”) (Tuerk and Gold 1990). The SELEX technology

presents a speculation about generation of divergent lncRNAs. Here, we discuss

the origin of the lncRNAs.

6.6.1 SELEX Chooses Functional RNA Oligos from an RNA
Oligonucleotide Library

Initially, the SELEX technology was developed with experiments regarding the

translational operator within the bacteriophage T4 gene 43 mRNA (Tuerk and Gold

1990). These remarkable data of the first SELEX process prompted them to make it

more refined technology to select single-stranded nucleic acids, aptamers, and

promoted it to target therapeutic applications. Actual SELEX procedure is

summarized in Fig. 6.6.

High specificity of aptamers against target molecules stimulated therapeutic

interests. It has been started to develop therapeutics with aptamers. Many useful

aptamers were identified, some of which are in clinical development nowadays. The

first aptamer taken into clinic is Macugen, and many others have been in clinical

examinations (Doggrell 2005; Kaiser 2006). These data have proved usefulness of

aptamers and also of SELEX technology. Robustness of the SELEX process has

raised a hypothesis that lncRNAs have been generated or evolved through a process

like SELEX over the biological evolution.
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6.6.2 Natural Selection of Functional lncRNAs from a Pool
of Divergent lncRNAs

The natural selection of genetic codons through the process like the SELEX proce-

dure is one of intriguing examples of the evolution. We discuss this process at this

section. Evolution of the genetic codon displays robustness of SELEX process. The

SELEX process with the evolution of the genetic code presents intense implication of

evolution of functional RNAs and also lncRNAs. It could be tested if genetic codons

that specify a particular amino acid in the canonical genetic code occur more than

expectedly at RNA regions that bind to the amino acid. Amazingly, it has been

shown that arginine binding sites are predominantly composed of Arg codons which

are AGG, AGA, CGG, CGA, CGC, and CGT, even in the aptamers selected

in different laboratories using distinctive protocols (Knight and Landweber 1998).

Fig. 6.6 Systematic evolutions of ligands by exponential enrichment (SELEX) procedure. Typical

SELEX procedure is summarized
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The recent isolation of aptamers to tyrosine turned out to contain actual Tyr codons

which are TAT and TAC (Mannironi et al. 2000). Yarus extended this analysis to

other amino acids for which aptamers are now available (arginine, isoleucine, and

tyrosine) and concluded that the overall probability that the observed codon/binding

site association would occur by chance is fairly low (3.3 � 10�7), suggesting that the

interaction of the codons and the corresponding amino acids is selected by specific

procedure like SELEX (Yarus 2000). Taken together, analyzing different

components of the translation apparatus has been starting to present a reliable scheme

of evolution of the genetic code. The primordial code, influenced by direct

interactions between bases of primitive tRNA and amino acids, probably dates

back to the RNA world. The creation of tRNA and ribozyme-based aminoacyl-

tRNA synthetases could make the mechanism of translation more consistent by

allowing exchanges of amino acids between codons and achievement of optimal

combinations between amino acids and codons. Furthermore, the code probably

underwent a process of expansion from relatively a few amino acids into the modern

complement of 20 amino acids.

These data indicate that the SELEX has a role in natural selection of functional

tRNA during evolutionary process. This piece of information confirms evidence to

indicate that the SELEX should work as to select functional lncRNAs from a pool

of divergent RNA molecules from the human genome (Fig. 6.7).

6.6.3 Chemical Evolution of Functional RNAs in the Ancient
RNA World and Evolution of lncRNAs

Elucidation of the origin of life is one of fundamental problems in natural sciences.

Beginning of life on Earth, the chemical evolution is assumed to be an initial event

of the biological evolution. The chemical evolution represents that the creation of

complex organic compounds originated from simple inorganic chemicals through

chemical reactions in a hypothetical shallow pool, a Darwinian pond during early

days of the Earth. In the context of the chemical evolution, the SELEX procedure

might play a role in accelerating its process. In this section, we discuss possible

roles of the SELEX during the chemical evolution and its potency in the biological

evolution. At this section, I present a hypothesis to tether the SELEX to natural

selection of functional lncRNAs in the biological evolution.

Creating life implies making a hereditary substance, a gene bearing functions to

store, replicate, and transfer genetic information to next generations. In the modern

life, there are two nucleic acids, DNA and RNA, as a hereditary substance. In

ancient time of the primeval Earth, RNA was presumably an initial macromolecule

generated in the Darwinian ponds where abiogenic organic compounds could be

accumulated. Then, primitive RNA molecules were synthesized and selected to

function as a genetic substance, a gene, because of its versatility like enzymatic

activity, making three-dimensional structures, and storing information in its
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structure. Now, the idea of an ancient RNA world as a probable progenitor of the

contemporary living world on Earth is generally recognized (Joyce 1989, 1994).

How were primitive RNA molecules self-assembled and evolved into refined

molecules with multiple functions? This is still one of central questions regarding

the RNA world. One clue comes from selection process of ancient RNA molecules.

We discuss a possibility of the SELEX procedure to be involved in the selection of

the functional RNA from ancient pools of RNA molecules.

It is also essential to postulate a functional membrane isolating solution

containing soluble univalent metal cations (K+ and Na+) and Mg++ on the ancient

Earth, although it is one of major questions how such kinds of the primitive

membrane have been developed. However, there is a possible alternative for the

membrane. Chetverin and colleagues demonstrated that RNAmolecules could form

colonies on gels when optimal conditions were attained for their replication

(Chetverin et al. 1991). It is conceivable that mixed RNA colonies grown on

Stimuli

RNA polymerase

Nucleosome

lncRNA

Functional lncRNA

Natural SELEX

Fig. 6.7 Hypothesis of

natural selection of functional

lncRNAs. Bare DNA is an

efficient template to make

random transcripts. The

human genome is assembled

into chromatin. The

transcription of the

chromatinized template is

repressed. Stimuli like DNA

damage induce random or

pervasive transcription. The

naturally occurring SELEX

procedure selects the

lncRNAs fitting specific

biological actions. The

selected ones have been

evolved to functional

lncRNAs

168 R. Kurokawa



solid surfaces with no membrane were the earliest cell-free molecular complexes.

Some RNA molecules were able to perform genetic functions, while others might

produce the structures accommodating the survival of the RNA colonies or function

as ribozymes for synthesis and preparation of chemicals for RNA synthesis

(Chetverin et al. 1991; Chetverina and Chetverin 1993).This cell-free situation

presumably provided conditions for an extremely rapid evolution. These RNA

colonies were not isolated from the environment and could readily exchange their

molecules as a genetic substance. Instead of gaining a membrane, survival of these

alternative cell-free molecular complexes seems plausible because the formation of

RNA colonies could have been a natural consequence of the drying of RNA-

containing ponds. Then, the naturally occurring SELEX procedure selected the

earliest functional RNAs.

The scenario of the natural primordial SELEX was started when mixture of

primitive RNA molecules was synthesized in the Darwinian pond. When function-

ally different RNAs including the RNA-replicating ribozyme were placed in the

same pond, the entire RNA population increased in number and, due to spontaneous

transesterification (Spirin 2005) and replication errors, increased in diversity of the

RNA molecules.

When the pond dried, the RNA molecules were absorbed on the moist surface of

clay or other mineral substrate. On the surface of such kinds of clay, mixed RNA

colonies containing the RNA-replicating enzyme and several other RNAs were

formed and grew. The most successful colonies comprising of the most potent RNA

molecules grew more rapidly than others. Subsequent flooding of the dried surface

resulted in dissolution of the colony, and the resulting RNA population was again

amplified in the shared pond, but starting with the population enriched with

“potent” RNA molecules. In this context, the repeating flooding and drying of

RNA-containing ponds provided for the systematic enrichment of RNA population

with functionally better molecules. This was indeed the natural SELEX and most

likely the initial format of development of the ancient RNA world.

The natural SELEX hypothesis is just one possibility. There are other ideas like

evolution of pseudogenes and serving as microRNA decoys. The possible problem

with the hypothesis is that it needs to have a versatile RNA-replicating ribozyme for

multiple cycles of the SELEX at the very beginning of the RNA world. Therefore,

proving the natural SELEX hypothesis is still a future homework for modern

biology.

The natural SELEX is just a way of selection of the functional lncRNAs.

Another question is what selection pressures are needed to generate the functional

lncRNAs because the lncRNAs do not encode proteins. A clue for the question

might be that the lncRNAs lack strong conservation on the primary sequences. This

is major argument for nonfunctionality of the lncRNAs. Contrarily, mRNAs have

strong selection pressures to conserve the codon usage and prevent frameshift

mutations in a single open reading frame. The lncRNAs might conserve just

portions of the primary sequences that are constrained by secondary structures.

Indeed, many lncRNAs still contain strongly conserved elements (Ponjavic et al.

2007; Siepel et al. 2005). Comparative genomic analysis predicted that such
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conserved elements could form secondary structures of the RNA molecules

(Torarinsson et al. 2006; Torarinsson et al. 2008). These secondary structures of

the lncRNAs could be targeted by specific RNA-binding proteins. Upon binding

of the RNA-binding proteins to the lncRNAs through conserved secondary

structures, the complexes exert biological functions. Selecting these combinations

of the RNA-protein interactions could be mediated through the natural SELEX

procedure that I presented above, or any other ways of selection might occur.

The discussion at this section presents a guide to see how the natural SELEX

might work on the natural selection in the RNA world. In the Darwinian pond,

primordial RNA molecules were passed through rigorous selection of the natural

SELEX. The SELEX procedure turns out to be extensively versatile for selecting

beneficial molecules from pools of divergent RNA molecules. This postulates us

that the similar SELEX procedure also has been playing a role in selecting func-

tional lncRNAs from pools of lncRNAs in living cells.

6.7 Conclusions and Future Perspectives

I have outlined functions of the lncRNA and presented the hypothesis regarding the

origin of the lncRNAs at this review. Pervasive and random transcriptions could

generate the lncRNA pools. The natural selection might pick the biologically

beneficial lncRNAs from the pools. The beneficial lncRNAs could be evolved

through the selection process. For instance, Xist was derived from fragments of a

pseudogene of a previously active coding gene Lnx3 and of transposable elements

(Duret et al. 2006; Elisaphenko et al. 2008). The prototype of Xist was a sort of

nonfunctional lncRNA comprising fragments of the pseudogene and the

transposable elements. Unidentified selection step on the prototypic Xist might

generate the functional Xist during the biological evolution. For the selection step,

the natural SELEX might play a pivotal role in establishment of functional Xist.

There are two crucial events to generate functional lncRNAs in the hypothesis:

one is to provide a pool of divergent RNA molecules; second is to select functional

lncRNAs from the pool. It is likely that these two events are continuously occurring

on the way in the modern living world. Therefore, there are lots of nonfunctional

lncRNAs as pools for future selections in living cells. Rapid and small-scale

evolution has been progressing in the cells and generatingmore functional lncRNAs.

Then, it is possible to have a quick response to altered environment by selecting

novel lncRNAs for survival of cells. Elucidating generation of the lncRNAs will

present evidence of the biological and chemical evolutions, and also clue to know

fundamental structure of the human genome and transcription mechanisms.
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Chapter 7

MicroRNA Regulation of Neuronal

Differentiation and Plasticity

Christian Barbato and Francesca Ruberti

Abstract MicroRNAs (miRNAs) expressed in the mammalian nervous system

exhibit context-dependent functions during different stages of neuronal develop-

ment, from early neurogenesis and neuronal differentiation to dendritic morpho-

genesis and neuronal plasticity. miRNAs often act through regulatory networks in

specific cellular contexts and at specific times to ensure the progression through

each biological state. Crosstalk between miRNAs and RNA-binding proteins

introduces an additional layer of regulatory complexity in miRNA-mediated post-

transcriptional regulation. Plasticity in localised parts of synapses is necessary for

the information storage capacity of the brain. miRNAs and RNA-induced silencing

complexes (RISCs) contribute to synaptic plasticity by modulating dendritic

mRNA translation and dendritic spines. Specific molecules in neuronal cells may

regulate miRNA action at the post-transcriptional and transcriptional level,

suggesting that they may be involved in early and late responses underlying

synaptic plasticity processes. Studies in animal models show that RISC and specific

miRNAs may be recruited in synaptic plasticity processes underpinning learning,

memory and cognition. Recent discoveries provide an encouraging starting point to

investigate miRNA/RISC involvement in the development, progression and even-

tual therapeutic treatment of neurological and psychiatric diseases. Here we discuss

recent findings that highlight the role of microRNAs in the regulatory networks

associated with neuronal differentiation and synaptic plasticity in mammals.
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7.1 Introduction

Genome projects have shown that although more than 90% of the human and mouse

genome is transcribed, only 1.2% encodes proteins. Indeed, a large number of non-

coding RNAs (ncRNAs) have been identified. Among them are microRNAs

(miRNAs), which are small non-coding RNA (ncRNAs) that are 20–24 nucleotides

in length. They regulate mRNA target expression through base pairing, usually in

the 30 untranslated region (30UTR). In mammals, the recognition of mRNA by

miRNA occurs through partial base pairing between the miRNA response element

(RE) of the target and usually the 50 end of the miRNA, including nucleotides 2–8.

miRNAs derive from transcripts that fold back on themselves to form distinctive

hairpin structures (i.e. primay precursor miRNAs) (Bartel 2004), whereas other

types of endogenous small RNAs derive either from much longer hairpins that give

rise to a greater diversity of small RNAs (e.g. small interfering RNAs, or siRNAs),

from two RNA molecules complexed into RNA duplexes (e.g. siRNAs), or from

precursors without any suspected double-stranded character (e.g. piwi-interacting

RNAs).

miRNA functions are executed by the multi-protein RNA-induced silencing

complex (RISC). The core of RISC consists of Argonaute (Ago) proteins, which

load only one strand of the miRNA duplex. RISC/miRNA mediates miRNA-

dependent mRNA decay and translation repression (reviewed in Bartel 2009).

Each miRNA has been predicted to target dozens to hundreds of genes. As a

consequence, an miRNA can regulate several genes in a pathway or even multiple

pathways in an additive, synergistic or antagonistic manner. In addition, more than

one RE for the same miRNA, as well as several REs for different miRNAs, are

present within an mRNA target. Therefore, cooperative regulatory mechanisms

may be involved (reviewed in Bartel 2009).

The number of miRNA genes expressed in the nervous system seems to be larger

than in other tissues, probably because the nervous system contains many types and

subtypes of cells. Some miRNAs are enriched in or unique to brain tissue and neural

cells (Lagos-Quintana et al. 2002; Bak et al. 2008). The temporally regulated

expression of miRNAs suggests that miRNAs play important roles in the develop-

ment of the mammalian brain (Miska et al. 2004). Recent studies have

demonstrated critical roles for miRNAs in changes in the gene expression

programme underlying the transition from progenitor neural cells to mature

neurons. miRNAs expressed in the mammalian nervous system exhibit context-

dependent functions during different stages of neuronal differentiation, including

dendritic morphogenesis, dendritic spine development and neuronal physiology.

The diversification of protein synthesis in specific neuronal compartments, such as

dendrites and spines, contributes to the formation of neuronal connections during

neuronal development and to higher-order cognitive behaviour (Bramham and

Wells 2007). Recent studies have shown that miRNAs and RISC may act locally

in specific neuronal compartments and also play essential roles in synaptic plastic-

ity and memory processes.
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7.2 miRNA Regulation of Neuronal Differentiation

Intricate networks of transcription factors and post-transcriptional regulators,

including miRNAs and RNA-binding proteins, are involved in neuronal differenti-

ation. miRNAs often act through regulatory networks in specific cellular contexts

and at specific times to ensure the progression through each biological state.

Examples of regulatory feedback circuits involving miRNAs, the underlying neu-

ronal cell fates and neuronal differentiation, have been found in invertebrates and

mammals.

7.2.1 miRNA Networks and Neuronal Differentiation

In mammals, miR-9 and miR-124 are miRNAs that are highly enriched in the brain.

miR-124 was first identified as one of the mouse brain-specific miRNAs, and it has

been conserved from Aplysia, Drosophila, and C. elegans to mammals. miR-124 is

the most abundant miRNA in the brain, where it accounts for 25–48% of all

miRNAs. In mammals, miR-124 is encoded by three genes located on three

different chromosomes (Lagos-Quintana et al. 2002). miR-124 is upregulated

during neuronal differentiation (Smirnova et al. 2005). It is broadly expressed in

all postmitotic neurons in the adult mouse brain. In mammals, miR-124 seems to

ensure a switch from non-neuronal to neuronal gene expression. miR-124 is

extensively involved in repressing non-neuronal genes, thereby controlling neuro-

nal identity. The overexpression of miR-124 in HeLa cells induces the

downregulation of more than 100 non-neuronal mRNAs, producing a neuron-like

expression profile and suggesting that it plays a role in neuronal differentiation

(Conaco et al. 2006; Lim et al. 2005). In cortical neurons, several non-neuronal

mRNA transcripts increase upon miR-124 knockdown (Conaco et al. 2006), and

during chick spinal cord development, miR-124 is necessary for the preservation of

neuronal identity (Visvanathan et al. 2007). RE1-silencing transcription factor

(REST) is a transcriptional repressor of neural genes in non-neuronal tissues,

including miR-124 (Conaco et al. 2006). Decreased levels of REST, together

with increased miR-124 expression, lead to the terminal differentiation of neuronal

cells (Visvanathan et al. 2007). miR-124 downregulates REST activity by silencing

non-neuronal mRNAs, including the small C-terminal domain phosphatase-1

(SCP1), an activator of REST that is involved in the anti-neural REST pathway

(Visvanathan et al. 2007). In non-neuronal cells and neuronal precursors, REST and

SCP1 repress the expression of miR-124 and other neuronal genes, which are

derepressed during neural differentiation (Visvanathan et al. 2007; Wu and Xie

2006). These results suggest a negative feedback loop between REST/SCP1 and

miR-124 for the rapid transition from neural progenitors to postmitotic neurons.

Among the genes controlled by miR-124 is the polypyrimidine tract-binding

protein (PTBP1), which is an important splicing regulator (Makeyev et al. 2007).
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During neuronal differentiation, PTBP1 expression is substituted by its neuronal

homolog, PTBP2. This switch has substantial consequences for the splicing patterns

of genes involved in neuronal functions (Makeyev et al. 2007).

A negative feedback interaction controlling neuronal differentiation involves the

mutual inhibition of Ephrin-B1 and miR-124 in the developing mouse brain

(Arvanitis et al. 2010). Ephrins act as both ligands and receptors that transduce

bidirectional signals, reflecting cell–cell contact. Ephrin-B1 and miR-124 show

reciprocal expression during mouse cortex differentiation. Ephrin-B1 is expressed

in neural progenitor layers, whereas miR-124 expression is elevated in more

differentiated cells. Ephrin-B1 signalling reduces miR-124 levels, and reciprocally,

miR-124 expression represses ephrin-B1 expression post-transcriptionally. Thus,

ephrin-B1 is required for maintaining the progenitor state, and miR-124 promotes

differentiation.

miRNAs show defined expression patterns at precise time points during devel-

opment. In mammals, miR-9 is encoded by three genomic loci: miR-9-1, miR-9-

2 and miR-9-3. Their mature forms have identical nucleotide sequences. In the

E11.5 mouse brain, miR-9 is most abundantly expressed in the developing medial

pallium, but it is also apparent in the ventricular zone of the ganglion eminences.

Gain- and loss-of-function studies of miR-9 showed that miR-9 modulates Cajal-

Retzius cell differentiation by suppressing the expression of transcription factor of

the forkhead family Foxg1 in the mouse medial pallium within the developing

telencephalon (Shibata et al. 2008). Where miR-9 is highly expressed, Foxg1 is

absent. The defined spatial distribution of miR-9 at precise time points may play a

dual role (1) it may regulate cellular differentiation where it is highly expressed,

and (2) it may allow a genetic programme to occur in tissues adiacent to where it is

absent. Interestingly, studies of miR-9-2 and miR-9-3 in double mutant mice

(Shibata et al. 2011) demonstrate that miR-9 controls neural progenitor prolifera-

tion and differentiation in the developing telencephalon by regulating the expres-

sion of multiple transcription factors. miR-9-2/3 double mutants exhibit

dysregulation of the proliferation and differentiation of pallial and sub-pallial

progenitors. Concomitantly, the double mutants exhibit multiple defects in telence-

phalic structures, possibly due to the dysregulation of Foxg1, nuclear receptor

subfamily 2, group E, member 1 (Nr2e1), genomic screened homeobox 2 (Gsh2)

and Meis homeobox 2 (Meis2) expression (Shibata et al. 2011).

The simultaneous actions of different miRNAs on the same mRNA target

regulate the exit of neural progenitors from the proliferative state and the transition

to postmitotic neurons. miR-124 and miR-9* promote neuronal differentiation by

repressing BAF53a (Yoo et al. 2009). BAF53a is a chromatin remodelling protein

that is essential for neuronal progenitor proliferation. BAF53b is a subunit of the

chromatin complex that is essential for postmitotic neuronal development and

dendritic morphogenesis. The miRNAs miR-9* and miR-124 have been shown to

be regulated by REST (Conaco et al. 2008; Packer et al. 2008). REST-mediated

repression of miR-124 and miR-9/9* was found to direct the switch of chromatin

regulatory complexes, which distinguish neuronal progenitors from fully

differentiated neurons. Therefore, in neuronal precursors, miR-124 and miR-9*
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are inhibited by REST and their targets are expressed. Therefore, BAF53a is

expressed to promote and sustain the maintenance of the progenitor state. In the

absence of active REST, miR-124 and miR-9* repress their targets, which results in

a derepression of pro-neural genes, such as BAF53b (Fig. 7.1).

A complex network of transcriptional activators and repressors acting together

with miRNAs was recently associated with the neuronal differentiation of human

neuroblastoma cells. These studies have shown that, miR-9-2 is expressed by a

transcription unit independent from that of the host gene (Laneve et al. 2010). The

search for transcription factors involved in miR-9-2 gene regulation has highlighted

two antagonistic molecules, the repressor REST and the activator cAMP-response

element binding protein (CREB), which function in an opposite and temporally

regulated manner (Laneve et al. 2010). Studies in proliferating cells have indicated

that REST is bound to the miR-9-2 promoter, which prevents transcriptional activity.

Upon retinoic acid treatment, REST depletion and the concomitant phosphorylation

of CREB already bound to the promoter activate transcription (Laneve et al. 2010).

The fine regulation of gene expression by miRNAs may occur not only during

neuronal differentiation, but also during neuronal maturation processes. KCC2 is a

potassium chloride co-transporter that is specifically expressed in neurons, devel-

opmentally regulated and abundant in the mature central nervous system (CNS)

(Blaesse et al. 2009). The high expression of KCC2 in the mature CNS causes a

decrease in the intracellular concentration of chloride ions, resulting in a develop-

mental shift in g-aminobutyric acid (GABA) action from depolarisation to

hyperpolarisation. Recent studies have shown that miRNA-92 is developmentally

downregulated during the maturation of rat cerebellar granule neurons in vitro, and

that KCC2 is post-transcriptionally regulated by miR-92 (Barbato et al. 2010).

Furthermore, the modulation of miR-92 expression levels was shown to regulate

KCC2 protein expression and to change the reversal potential of GABA-induced

chloride currents in granule neurons (Barbato et al. 2010). miR-92, similar to other

miRNAs, might act in concert with a transcriptional control to define the fine-tuned

Fig. 7.1 REST-mediated

repression of microRNAs. In

the absence of REST, both

miR-124 and miR-9 promote

neuronal differentiation by

silencing BAF53a
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regulation of KCC2 expression. Indeed, it has been shown that KCC2 expression is

transcriptionally regulated in the mouse cerebellum during postnatal development

by the transcription factor early growth response 4 (Uvarov et al. 2006). Recently,

the REST-dual repressor element-1 interaction was identified as a novel mechanism

of KCC2 transcriptional regulation that significantly contributes to the develop-

mental switch in neuronal chloride concentration and GABA action in cortical

neurons (Yeo et al. 2009). The search for interactions between transcriptional

and post-transcriptional mechanisms might further elucidate the developmental

regulation of KCC2 expression and the consequent switch in neuronal chloride

concentration.

7.2.2 The Interplay Between miRNAs and RNA-Binding Proteins
in the Regulation of Neuronal Development and Physiology

Crosstalk between miRNAs and RNA-binding proteins introduces an additional

layer of regulatory complexity in miRNA-mediated post-transcriptional regulation.

miRNA actions on mRNA targets may be either reduced or enhanced by RNA-

binding protein interactions with the same mRNA (reviewed in Krol et al. 2010).

Alternatively, a single miRNA may be involved in the regulation of RNA-binding

proteins implicated in neuronal differentiation.

Several examples of RNA-binding proteins facilitating miRNA functions have

been described (reviewed in Krol et al. 2010). In mammalian neurons, Edbauer

et al. (2010) demonstrated a functional association between fragile X mental

retardation protein (FMRP), a protein implicated in translation repression, miRNAs

and Ago1. In particular, they found that the inhibitory effect of FMRP on transla-

tion of the mRNA encoding the N-methyl-D-aspartate (NMDA) receptor subunit

NR2A is reinforced by miR-125b. Furthermore, the depletion of FMRP prevents

the effect of miR-125 overexpression on spine morphology (Edbauer et al. 2010).

Several RNA-binding proteins counteract the repressive activity of miRISC. An

AU-rich RNA-binding protein, Elavl2 [(Embryonic lethal abnormal vision Dro-

sophila)-like 2 or HuB], was found to attenuate the miR-9-2-mediated repression of

Foxg1 (Shibata et al. 2011). Studies of telencephalon development in mice have

shown that in the ventricular zone of mutant mice lacking miR-9-2 and miR-9-3
(miR-9-2/3), Foxg1 expression is suppressed by miR-9 at earlier stages (E14.5), but
the suppression is countered by Elavl2 (E16.5), whose expression increases at later

stages (Shibata et al. 2011).

Several reports indicate that miRNAs not only act as repressors, but can also act

as activators of translation (Vasudevan et al. 2007). Studies performed in miR-9-2/3

double mutant mice and in vitro experiments in P19 cells have shown that two

RNA-binding proteins, Elavl1 (HuR) and Msi1 (Musashi homolog 1), together with

miRNA-9, target Nr2e1 mRNA 30UTR to enhance expression (Shibata et al. 2011).

Not only do RNA-binding proteins modulate miRNA activity, but miRNAs may

also repress RNA-binding proteins. miR-134 and miR-375 have been found to
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regulate dendrite density by targeting the translational activator Elavl4 (or HuD)

(Abdelmohsen et al. 2010) and the translational repressor Pumilio2 (Pum2) (Fiore

et al. 2009), respectively.

The miR-134 gene is clustered together with more than 50 other miRNAs within

the Glt2/Dlk1 locus (miR-379-410 cluster). Interestingly, the myocyte enhancer

factor 2 (Mef2)-induced expression of miR-134 and at least two other miRNAs

of the miR-379-410 cluster are required for the activity-dependent dendritic

outgrowth of hippocampal neurons (Fiore et al. 2009). Activity-induced miR-134

promotes dendritic outgrowth by fine tuning Pum2. Recent work has shown that

vertebrate Pum2 is significantly upregulated at postnatal day 1, when dendritic

outgrowth begins in the hippocampus, and negatively modulates the translation of

eIF4E (eukaryotic translation initiation factor 4E) and other transcripts in hippo-

campal neurons (Vessey et al. 2010).

The levels of miR-375 are highest in early mouse embryos and decrease by E16,

whereas HuD levels are low in early embryos and increase markedly by E16, when

neurogenesis peaks (Abdelmohsen et al. 2010). miR-375 represses HuD expression

through a specific, evolutionarily conserved site on the HuD 30UTR (Abdelmohsen

et al. 2010). The ectopic expression of miR-375 in the mouse hippocampus potently

reduces dendrite density. miR-375 overexpression lowers both HuD mRNA stabil-

ity and translation and recapitulates the effects of HuD silencing, which reduces the

levels of target proteins with key functions in neuronal signalling and cytoskeleton

organisation (Abdelmohsen et al. 2010).

Besides regulating protein abundance, RNA-binding factors have been

implicated in RNA transport and local translation in neuronal dendrites. Neuronal

granules are ribonucleoprotein particles that serve to transport mRNAs along

microtubules and control local protein synthesis. Components of miRNA machin-

ery, such as Ago proteins, miRNAs and mRNAs repressed by miRNAs, are

enriched in evolutionarily conserved cytoplasmic structures called P-bodies (also

called Dcp or GW bodies), which function as sites of both mRNA degradation and

storage for translationally repressed mRNAs (Liu et al. 2005; Pillai et al. 2005;

Bhattacharyya et al. 2006). Recently, P-body-like structures (i.e. dlPbodies) were

described in mammalian dendritic neurons. Interestingly, neuronal activity seems

to induce the disassembly of dendritically localised P-bodies (Zeitelhofer et al.

2008), or their remodelling, relocalisation to more distant sites and decreased

association with Ago2 (Cougot et al. 2008). To date, it is still unknown whether

miRNAs/RISC, in combination with RNA-binding proteins, play a role in mRNA

dendritic transport.

7.3 miRNAs and Local Protein Synthesis

Plasticity in individual or localised regions of synapses is necessary for the infor-

mation storage capacity of the brain. Upon the discovery of polyribosomes within

dendritic shafts and spines, it was suggested that rapid dendritic protein synthesis,
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triggered by synaptic activity, serves as a mechanism for long-term plasticity at

specific synapses. However, many of the most intriguing questions remain unan-

swered. For synaptic protein synthesis, the corresponding mRNAs must be

transported to the dendritic compartment and translated upon site-specific activa-

tion. It is generally thought that dendritic mRNAs are transported in a

translationally silenced state within ribonucleoprotein complexes (Kiebler and

Bassel 2006). Ongoing efforts are underway to understand post-transcriptional

mechanisms regulating gene expression and the consequent abundance of proteins

at synapses. The studies described below indicate that miRNAs may contribute to

the regulation of dendrites and spine morphology by modulating the expression of

dendritic mRNAs.

7.3.1 miRNAs and Dendritic Spines

Recent studies indicate that a new class of small molecules, miRNAs, may partici-

pate in the mRNA-specific regulation of local translation by tuning gene expression

at the post-transcriptional level. Dendritic spines are specific domains where local

protein synthesis occurs. Spine structures are dynamically regulated (Hotulainen

and Hoogenraad 2010), and functional and structural changes at spines and

synapses are proposed as the basis of learning and memory (Kasai et al. 2010).

miRNAs, expressed in a spatially and temporally controlled manner in the brain, are

ideal candidates for the modulation of dendritic protein synthesis. miRNAs modu-

late dendritic morphology by regulating the expression of proteins involved in the

actin cytoskeleton (Vo et al. 2005; Schratt et al. 2006; Siegel et al. 2009; Wayman

et al. 2008) mRNA transport (Fiore et al. 2009) and neurotransmission (Edbauer

et al. 2010).

Schratt and collaborators showed an association between miRNA function and

local protein synthesis in mammalian neurons, with the brain-specific miRNA-134

(Schratt et al. 2006). The overexpression of miR-134 causes a significant reduction

in dendritic spine size, whereas its inhibition by 20-O-methyl antisense

oligonucleotides induces a slight increase in spine volume. The mRNA target of

miR-134 was identified as Lim-domain containing protein kinase 1 (Limk1). The

repression of Limk1 translation by miR-134 is mitigated by brain-derived

neurotrophic factor (BDNF) stimulation of synaptic activity. In cortical neurons,

BDNF induces the translation of the 30UTR Limk1 mRNA luciferase reporter, but

not when neurons are transfected with a reporter in which the miR-134 responsive

sequence was mutated. This suggests that BDNF stimulation and the repression of

Limk1 translation by miR-134 play a role in synaptic plasticity in the dendritic

compartment of hippocampal neurons (Fig. 7.2).

Kosik’s group, with the aim of identifying dendritic mRNAs under the control of

RISC, individuated several dendritically localised mRNAs. They trapped both

known RISC-regulated mRNAs, Limk1 and alpha-isoform of calcium/calmodu-

lin-dependent protein kinase II (aCaMKII) and a novel mRNA, Lysophospholipase
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1 (Lypla1), which is also known as acyl-protein thioesterase (APT) 1, a

depalmitoylation enzyme regulated post-transcriptionally by dendritic miR-138

(Banerjee et al. 2009). Previously, Schratt’s group showed that in rat hippocampal

neurons, miR-138 is enriched at the synapses and negatively modulates spine size

through the regulation of APT1 levels (Siegel et al. 2009), followed by the

depalmitoylation of Ga13, a downstream target of APT1 that is an activator of

Rho downstream of G-protein coupled receptors (Kurose 2003) (Fig. 7.2).

CREB- and activity-regulated miRNA-132 is induced during periods of active

synaptogenesis. Gain- and loss-of-function experiments have shown that miR-132

is necessary and sufficient for hippocampal spine formation (Impey et al. 2010).

Likewise, the depletion of the miR-132 target Rho family GTPase-Activating

Protein, known as p250GAP (Vo et al. 2005; Wayman et al. 2008), increases

spine formation, while the introduction of a p250GAP mutant unresponsive to

miR-132 attenuates this activity. P250GAP is an inhibitor of Rho family GTPases

that may influence spine structure through their ability to regulate actin dynamics

(Van Aelst and Cline 2004). Interestingly, the miR-132/p250GAP circuit regulates
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Fig. 7.2 MicroRNAs and RISC pathway regulating synaptic plasticity and dendritic spines. Top

part of figure shows several miRNAs and their targets involved in the regulation of dendritic spine

size and density. The components of each pathway are indicated with the same colour. miRNAs

involved in either spine size or spine density are artificially separated by a dashed line. Bottom part

of figure depicts the disassembly of the RISC complex after proteasomal degradation of MOV10, a

way to allow derepression of APT1 and aCaMKII mRNAs

7 MicroRNA Regulation of Neuronal Differentiation and Plasticity 183



Rac1 activity and spine formation by modulating synapse-specific kalirin-7/Rac-1

signalling (Impey et al. 2010) (Fig. 7.2). Consistent with these data, the ablation of

the miR-212/132 locus dramatically reduces dendritic length, branching and spine

density in newborn hippocampal neurons in young adult mice (Magill et al. 2010).

Changes in dendritic arborisation and spine formation in newborn neurons persist

for several months after training in a Morris water maze (Dupret et al. 2008).

Alterations in dendrite spine morphology are associated with fragile X syndrome

(FXS) (reviewed in Beckel-Mitchener and Greenough 2004). The loss of the Fmr1

gene product FMRP, an mRNA-binding protein involved in translational regula-

tion, leads to FXS. FMRP is thought to repress the synthesis of proteins required for

synaptic plasticity. Among the most common symptoms reported in FXS are

deficits in attention, inhibitory control and cognitive flexibility (Bassell and Warren

2008). Recent studies have shown that FMRP interacts with the RISC complex

through an association with Ago (Edbauer et al. 2010). In hippocampal neurons,

FMRP is linked to several specific miRNAs, including miR-132 and miR-125b

(Edbauer et al. 2010). miR-132 and miR-125b have been reported to differentially

affect dendritic spine morphology. Indeed, miR-132 gain of function increases

spine density, while miR-125 gain of function reduces spine width. The effects of

miR-132 and miR-125b overexpression on the morphology of mouse hippocampal

neurons are abolished in cells with FMRP knockdown. In addition, the negative

regulation of the NMDA receptor (NMDAR) subunit NR2A involves both FMRP

activity and miR-125b targeting of the NR2A 30UTR (Fig. 7.2). This indicates that

FMRP contributes to miRNA function during synapse development, confirming

previous observations that the loss of FMRP modulates NMDAR function in mice

(Pfeiffer and Huber 2007).

7.4 RISC and miRNAs in Neuronal Plasticity

The formation of stable memory requires protein synthesis, a feature common to

vertebrates and invertebrates. Local protein synthesis at the synapse is partially

regulated by miRNAs. By modulating dendritic mRNA translation, miRNAs

may contribute to synaptic plasticity. The coordination of different pathways

orchestrating protein expression at synapses is fundamental for the control of

synaptic plasticity. The assumption that synaptic plasticity underlies memory

formation (Morris 2003) and the evidence that certain forms of long-lasting synap-

tic plasticity depend on protein synthesis (Manahan-Vaughan et al. 2000) suggest

that miRNAs may indeed be important for this phenomenon.

7.4.1 RISC, Memory and Behaviour

The first evidence of the involvement of the RISC complex in memory formation

was reported by the Kunes laboratory (Ashraf et al. 2006). The regulated disruption

184 C. Barbato and F. Ruberti



of the silencing complex component Armitage leads to the removal of the miRNA-

mediated repression of CaMKII, an mRNA involved in synaptic plasticity. Putative

miRNA binding sites are present within the 30UTR of CaMKII, as well as within the

30UTR of transcripts coding for Staufen and Kinesin Heavy Chain, two dendritic

granule-associated proteins. Expression analyses of these genes have indicated that

the synaptic translation of CaMKII increases in dicer-, armitage- and aubergine-

mutant brains. Indeed, this work suggests an armitage-driven repression of CaMKII

expression in the Drosophila olfactory system (Table 7.1). Synaptic activation

induces a decrease in the levels of Armitage protein and a corresponding increase

in CaMKII abundance (Fig. 7.2). The decrease in Armitage protein was due to the

activity of the proteasome, which is known to act at the synaptic level to contribute

to modulating synaptic protein content (Bingol and Schuman 2005; 2006). Overall,

Ashraf et al. (2006) proposed a novel and intriguing regulatory mechanism whereby

CaMKII translational repression is driven by miRNAs and, in turn, is relieved by

the activity-dependent proteasome-mediated degradation of Armitage. Similarly,

recent findings indicate that the mammalian ortholog of Armitage, Moloney

Table 7.1 Summary of studies illustrating microRNAs/RISC involvement in memory and

behaviour

miRNA/RISC Behavioural phenotypes Target Reference

Dicer # Enhanced memory in Morris

water maze and contextual fear

conditioning

? Konopka et al.

(2010)

Ago2 # Reduced cocaine self-

administration

? Schaefer et al.

(2010)

Impaired short-term memory Batassa et al. (2010)

Impaired long-term contextual

fear memory

Armitage # Failure in long-term olfactory

memory

CaMKII Ashraf et al. (2006)

miR-124* Altered cocaine conditioned place

preference

Genes involved in

cocaine-induced

plasticity

Chandrasekar and

Dreyer (2009,

2011)
let-7d*

miR-181 *

miR-134 " Impaired contextual fear

conditioning

CREB Gao et al. (2010)

Impaired LTP

miR-132 " Deficits in novel object

recognition

MeCP2 Hansen et al. (2010)

miR-212 " Decreased cocaine intake MeCP2 Im et al. (2010)

miR-219 # Extension of the circadian period Cheng et al. (2007)

Attenuation of behavioural

response mediated by

NMDAR antagonist

CaMKIIg Kocerha et al. (2009)

miR-132 # Potentiation of light-induced clock

resetting

MeCP2, Ep300,

Jarid1a, Btg2,

and Paip2a

Alvarez-Saavedra

et al. (2011)

* Knock-down of these miRNAs modulates conditioned place preference. The question mark

indicates that the miRNA target genes associated to the behavioural phenotype are unknown
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leukaemia virus 10 homolog (MOV10), is present at synapses and is rapidly

degraded by the proteasome after NMDAR activation. RNA interference-mediated

knockdown of MOV10 may release the translational repression of mRNAs

regulated by RISC, CamkII and Lypla1 (Banerjee et al. 2009) (Fig. 7.2).

The effect of RISC/Ago2 complex inactivation in the mouse brain was recently

investigated (Batassa et al. 2010). In the human and mouse genome, four Ago genes

that encode Ago1, Ago2, Ago3 and Ago4 are present. Among Ago proteins, only

Ago2 is able to control mRNA expression through the ‘slicer activity’ of mRNA,

which is perfectly complementary to specific miRNAs (Song et al. 2004). Five

different plasmids that express siRNA targeting Ago2 mRNA and induce Ago2

downregulation were injected into the dorsal hippocampus of C57BL/6 mice. After

surgery, the animals were allowed 1 week of recovery, after which two groups were

submitted to hippocampus-related tasks. Ago2 silencing impaired both short-term

memory and long-term contextual fear memory (Batassa et al. 2010). These data

demonstrate the importance of Ago2 in the hippocampus for both contextual fear

conditioning and passive avoidance tasks (Table 7.1). Importantly, when Ago2

expression levels were rescued 3 weeks after injection, memory recovered,

indicating that the memory deficit was not due to a broad-spectrum impairment in

hippocampal function. This was the first study showing a role for the RISC/Ago2

pathway in mammalian memory formation in vivo. The effects of Ago2 silencing

on contextual memory impairment might involve not only alterations in miRNA-

mediated post-transcriptional regulation, but also modulations of endogenous

siRNAs. Indeed, through deep sequencing technology, endo-siRNAs have been

revealed in mammalian cells (Ghildiyal and Zamore 2009). More recently, the

expression of endo-siRNAs and other ncRNAs in the adult mouse hippocampus

was demonstrated (Smalheiser et al. 2011). Moreover, endo-siRNAs are

upregulated during olfactory discrimination training. Among them are several

hairpin-derived siRNAs, identified by deep sequencing, which are mapped within

genes associated with synaptic plasticity, such as SynGAP1, CaMKIIa and GAP43.

These endo-siRNAs can bind to both the sense mRNAs from which they derive, as

well as any antisense transcripts that may be expressed on the opposite strand. The

studies described above suggest that Ago2 by small inhibitory RNA (siRNAs/

miRNAs) might be actively involved in learning and memory processes.

RISC/Ago2 impairment is also associated with other behavioural tasks. Recent

data have shown that the regulation of specific genes by cocaine administration may

involve miRNAs (Chandrasekar and Dreyer 2009). In addition, Ago2 was found to

participate in the maturation of miRNAs from their precursors (O’Carroll et al.

2007). Therefore, the effect of Ago2 deficiency on cocaine addiction was explored

(Schaefer et al. 2010). Ago2 knockout in mouse dopamine 2 receptor (Drd2)-

expressing neurons reduces animal dependence on cocaine (Table 7.1). Moreover,

the acute administration of cocaine leads to an increase in 63 miRNAs in Drd2-

expressing neurons in wild-type mice. Of those miRNAs, 23 are Ago2-dependent.

Thus, the Ago2/miRNA pathway is an important player in animal behaviour. It

will be important to explore whether the other Ago proteins (Ago1, 3 and 4) are

involved in the selection of miRNA groups related to other behavioural patterns.
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7.4.2 Regulation of miRNA Expression During Synaptic Plasticity

Several observations suggest that the induction of long-term potentiation (LTP) and

long-term depression (LTD), two forms of synaptic plasticity, extensively regulates

miRNA expression. Park and Tang (2009) performed a temporal expression profile

of 60 hippocampal miRNAs following the induction of chemical LTP (C-LTP) and

metabotropic glutamate receptor-dependent LTD (mGluR-LTD) in mouse hippo-

campal slices. They observed that C-LTP or mGluR-LTD evokes changes in the

expression levels of most hippocampal miRNAs, suggesting a role for miRNA-

mediated translational repression. miRNAs regulated in both experimental

paradigms display distinct temporal expression dynamics. Further, many miRNAs

are upregulated at specific time points during C-LTP and mGluR-LTD induction, as

if to provide an active mechanism for restoring the dormant state of mRNA

translation after transient activation (Park and Tang 2009).

Recent studies have demonstrated the fine regulation of mature and precursor

miRNA expression by mGluR and NMDAR signalling during LTP induction in the

adult dentate gyrus (Wibrand et al. 2010).

The first evidence that miRNA expression is specifically altered during an

in vivo learning paradigm in mammals was recently revealed (Smalheiser et al.

2010). In particular, olfactory discrimination training upregulates and reorganises

the expression of miRNAs in the adult mouse hippocampus (Smalheiser et al.

2010). Among miRNAs most upregulated by training, miR-10a is particularly

intriguing. miR-10a is predicted to target numerous plasticity-related genes, includ-

ing BDNF, Camk2b, CREB1 and Elavl2. However, miR-10a was reported to

produce a positive effect on general protein translation by binding to the 50 terminal

oligopyrimidine mRNAs and enhancing their translation (Orom et al. 2008). Fur-

ther studies are required to evaluate the role of miRNA responses in changes in gene

expression associated with this learning paradigm.

7.4.3 miRNAs, Memory and Behavioural Phenotypes

How does the expression of miRNAs affect learning and memory? This was studied

in a mouse model with an inducible disruption of the Dicer1 gene in the adult

forebrain (Konopka et al. 2010). After the induction of the Dicer1 gene deletion, a

progressive loss of a whole set of brain-specific miRNAs was observed. Mice were

tested in a battery of both aversively and appetitively motivated cognitive tasks,

such as the Morris water maze, IntelliCage system and trace fear conditioning. An

enhancement in memory was recorded 12 weeks after the Dicer1 gene mutation

(Table 7.1). To date, it is not known whether there is ‘better memory with less

miRNA’ or the reverse, but it is known that miRNAs may modulate memory, that

components of LTP require local protein translation, which regulates synaptic
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plasticity, and that miRNAs have been identified as key regulators of protein

synthesis.

The direct involvement of specific miRNAs in establishing long-term synaptic

modifications in mammals was recently demonstrated. A novel pathway mediated

by Sirtuin 1 (SIRT1) and miR-134 was found to regulate memory and plasticity

(Gao et al. 2010). Mammalian SIRT1 is involved in several complex processes

relevant to ageing, including DNA repair, genomic stability, neuronal survival and

age-dependent neurodegenerative disorders. In the hippocampus of SIRT1 knock-

out mice, dendritic spine density in pyramidal neurons is decreased, and associative

memory and spatial learning are impaired (Gao et al. 2010). Furthermore, LTP in

the CA1 region of acute hippocampal slices is abrogated (Table 7.1). Since CREB

protein levels are significantly reduced in the SIRT1-KO hippocampus, but mRNA

levels of CREB are not altered, it has been suggested that CREB protein levels are

downregulated in SIRT1-KO brains via post-transcriptional mechanisms. Indeed,

these effects are mediated via the post-transcriptional regulation of CREB expres-

sion by miR-134. Chromatin immunoprecipitation experiments demonstrated that

SIRT1 in complex with the transcription factor Ying Yang 1 negatively regulates

miR-134 transcription through the association of SIRT1 with DNA sequences

upstream of the pre-miR-134 sequence (Gao et al. 2010). In the SIRT1-KO

neuronal context, miR-134 is upregulated, with a consequential increase in the

translational repression of its target mRNAs (Gao et al. 2010). Furthermore, miR-

134 attenuates CREB expression via a specific interaction with miR-134 REs

within the 30UTR of CREB (Gao et al. 2010). Since the inhibition of miR-134 in

SIRT1-KO mice rescues LTP and partially rescues memory formation, the synaptic

plasticity impairments observed in SIRT1 KO mice are partly due to miR-134

upregulation and the consequent inhibition of miR-134 target genes. These results

not only describe a novel pathway regulating memory and plasticity via SIRT1 and

miR-134, but also suggest that miRNA-based mechanisms may be involved in other

normal or pathological pathways regulated by SIRT1, indicating its value as a

potential therapeutic target for the treatment of CNS disorders.

Another miRNA, miR-132, was found to modulate memory processes. A trans-

genic mouse strain that expresses miR-132 in forebrain neurons shows an increase

in dendritic spine density and deficits in novel object recognition (Hansen et al.

2010) (Table 7.1). Consistently, a decrease in MeCP2 expression in the hippocam-

pus of miR-132 transgenic mice was observed. MeCP2 is a target regulated by

miR-132 (Klein et al. 2007), and the altered expression of MeCP2 has been

associated with the development of Rett syndrome, a neurodevelopmental disorder

in which dendrite development and synaptogenesis are affected. Further work is

necessary to evaluate whether the dysregulation of miR-132 could contribute to an

array of cognitive disorders.

Recent studies have shown that MeCP2 regulates responses to psychostimulants.

In particular, MeCP2 was reported to regulate cocaine intake through interactions

with miR-212 (Im et al. 2010). The early finding was that MeCP2 levels are

increased in the dorsal striatum of rats with extended access to intravenous cocaine

self-administration. After MeCP2 downregulation in the rat dorsal striatum, a
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decrease in cocaine intake is associated with higher expression levels of miR-212

(Im et al. 2010) (Table 7.1). Therefore, the molecular mechanisms underlying

behavioural responses to psychostimulants were investigated. First, when miR-

212 was inhibited after MeCP2 knockdown, cocaine intake was found to increase

in animals with extended periods of access (Im et al. 2010). Second, a negative

feedback mechanism between MeCP2 and miR-212 was observed mainly in rats

with extended cocaine access (Im et al. 2010). Indeed, MeCP2, which represses

miR-212, is repressed in turn by miR-212. Lastly, MeCP2-miR-212 interactions

control cocaine’s effect on BDNF (Im et al. 2010). Striatal BDNF transmission is

known to increase sensitivity to the motivational effects of cocaine (Graham et al.

2007). The work from Im et al. (2010) suggests that repeated cocaine consumption

in rats with extended access induces BDNF neosynthesis in the dorsal striatum.

Striatal BDNF levels are negatively correlated with miR-212 expression, whereas

they are positively correlated with MeCp2 expression (Im et al. 2010). These

authors described MeCP2 and miR-212 as being locked in a regulatory loop,

demonstrating that they both exert opposite effects on striatal BDNF levels and

suggesting that the balance between these two factors may be fundamental in

determining vulnerability to cocaine addiction. However, the precise mechanism

by which MeCP2-miR-212 interactions affect striatal BDNF levels is still unclear

(Im et al. 2010).

Behavioural phenotypes during circadian rhythms have been extensively studied

in several organisms. Circadian mutants can exhibit behavioural dysfunctions

associated with addiction and human mood disorders (reviewed in Takahashi

et al. 2008). In mammals, the circadian rhythm is organised in a hierarchical

network of molecular clocks that operate in different tissues. The master clock

resides in the suprachiasmatic nucleus (SCN) of the hypothalamus and synchronises

the rhythms of the peripheral oscillators. The circadian clock is composed of a cell-

autonomous transcription-translation feedback loop. In mammals, the circadian

clock is composed of a primary feedback loop involving the genes Clock, Bmal1,
period homologue 1 (Per1), Per2, cryptochrome 1 (Cry1) and Cry2. The CLOCK
and BMAL1 complex activates the transcription of the Per and Cry genes. The

resulting PER and CRY proteins interact with the CLOCK-BMAL1 complex to

inhibit their own transcription. After this phase, the PER-CRY repressor complex is

degraded and CLOCK-BMAL1 can then activate a new cycle of transcription.

Transcription activation also underlies the resetting, or entrainment, of the clock.

CREB has been implicated in light-induced gene transactivation and resetting the

circadian clock. Recently, miRNAs were revealed as new players in the landscape

of circadian clock regulation. miRNA-132 and miRNA-219 were found to modu-

late the circadian clock located in the mouse SCN (Cheng et al. 2007). miR-219 is

regulated by the transcription factor CLOCK and exhibits a robust circadian rhythm

of expression. miR-132 expression is light-inducible via CREB, and miR-132

levels are also rhythmic (Cheng et al. 2007). Loss-of-function experiments showed

that miR-219 inhibition extends the circadian period, while miR-132 inactivation

potentiates light-induced clock resetting (Table 7.1), suggesting that endogenous

miR-132 acts as a negative modulator of light responsiveness (Cheng et al. 2007).
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A subset of miR-132-regulated targets in the mouse SCN has been implicated in

chromatin remodelling (e.g.Mecp2, Ep300, Jarid1a) and in translational control (e.
g. Btg2, Paip2a) (Alvarez-Saavedra et al. (2011)). The coordinated regulation of

these genes has been shown to underlie the miR-132-mediated modulation of

period gene expression and fine tuning of clock entrainment (Alvarez-Saavedra

et al. 2011).

The direct regulation by miRNAs of core components of the circadian clock has

also been observed (Nagel et al. 2009). The miR-192/194 cluster was found to

inhibit Per gene family expression through a functional interaction with the 30UTR
of Per mRNA. In addition, miR-192/194 overexpression leads to an altered circa-

dian cycle in cultured cell lines (Nagel et al. 2009).

Interestingly, miR-219 is decreased in the prefrontal cortex of mice after

NMDAR signal blockade with dizocilpine (Kocerha et al. 2009). The disruption

of NMDA-mediated glutamate signalling has been linked to behavioural deficits

observed in psychiatric disorders such as schizophrenia. Dizocilpine is a highly

selective phencyclidine-like NMDAR antagonist that can rapidly produce schizo-

phrenia-like behavioural deficits in humans and rodents (Heresco-Levy and Javitt

1998). In particular, dizocilpine treatment in mice produces hyperlocomotor activ-

ity and increased stereotypic behaviour. Consistent with a role for miR-219 in

NMDAR signalling, calcium/calmodulin-dependent protein kinase II g subunit, a

component of the NMDAR signalling cascade, has been identified as a target of

miR-219. The inhibition of miR-219 in vivo attenuates behavioural responses

mediated by the block of NMDAR signal transduction (Table 7.1), suggesting

that miR-219 is part of a compensatory mechanism that maintains NMDA receptor

function (Kocerha et al. 2009).

All of the findings described above underline the importance of the post-tran-

scriptional regulation of miRNAs mediated in several behavioural paradigms,

indicating a high level of complexity in transcriptional and post-transcriptional

regulatory networks.

7.5 Conclusions and Perspectives

Networks of regulatory mechanisms are involved during the development and

differentiation of the nervous system. The examples of REST, miR-124 and miR-

9 summarised above suggest that miRNAs can act as reinforcers and backups of

specific transcriptional programmes. Thus, an miRNA and its target are oppositely

regulated by the same signal, defining a coherent feedback loop. This suggests that

an miRNA participates in signalling networks to stabilise fine tissue patterning by

repressing its target mRNA in cells where it should be not expressed, or to better

control gene expression levels.

Studies of miRNAs and the 30UTR of mRNAs highlight the complexity and

significance of post-transcriptional regulation mediated by the 30UTR in mamma-

lian gene expression. Multiple cis-elements present within the 30UTR may act in a
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synergistic or antagonistic manner to regulate gene expression. Furthermore,

miRNA action may be either activated or reduced by RNA-binding proteins.

miRNAs may play a crucial role in regulatory networks underlying synaptic

plasticity, memory formation and cognitive functions. While this field is still in

its infancy, studies are already demonstrating that specific molecules in neuronal

cells may modulate miRNA action at the post-transcriptional and transcriptional

level. This suggests that they may be involved in early and late responses underly-

ing synaptic plasticity processes.

The analysis of miRNA expression profiles in physiological and pathological

conditions, and the individuation of the relationship between the miRNA/RISC

pathway and neuronal activity, may elucidate the mechanisms underlying the

cellular and molecular basis of neuronal plasticity. A major effort will be needed

to define the role of RNA-mediated gene-silencing machinery in neurons, the

neuronal miRNA targets, and specific components of RISC that are relevant in

neurological and psychiatric diseases.

Despite major challenges that still need to be overcome, miRNAs hold great

potential as therapeutic targets (see Chap. 18 by Majer et al., this volume). Future

therapies may be directed at specific miRNAs of interest that can affect a multitude

of targets involved in modulating the mechanisms of plasticity.
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Chapter 8

Long Noncoding RNA Function and Expression

in Cancer

Sally K Abd Ellatif, Tony Gutschner, and Sven Diederichs

Abstract In the last decades, medical research has mainly focused on the 2% of the

human genome that serve as blueprint for proteins, assuming that the noncoding

sequences were irrelevant and would neither contain significant information nor be

of functional importance. However, 70% of the human genome are transcribed into

RNA; therefore, the genome contains much more noncoding information than

coding, which is present in the cell as noncoding RNA (ncRNA). Some of these

ncRNAs are highly expressed, specifically regulated and evolutionarily conserved

arguing in favor of their functional significance.

Long ncRNAs (lncRNAs) have been shown to regulate gene expression at

various levels including chromatin modification, transcription, and posttran-

scriptional processing. Here, we review recent advances in ncRNA research for

examples such as XIST, H19,MALAT1, HOTAIR, and GAS5. Many lncRNAs show

differential expression patterns that correlate with diagnosis or prognosis in multi-

ple tumor entities and can, thus, serve as an extensive source of new biomarkers.

Moreover, these lncRNAs are functionally important and can provide novel insights

into the mechanisms underlying tumor development and might serve as new targets

in cancer therapy.
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8.1 Introduction

Ribonucleic acids that do not code for proteins are collectively referred to as

noncoding RNA (ncRNA). However, this does not imply that such RNAs do not

contain information or have no function (Mattick and Makunin 2006). For many

years, the central dogma of molecular biology was embraced by scientists that most

RNAs mainly serve as messengers between the genetic information stored in the

DNA and the functionally important proteins (with the notable exception of RNAs

involved in protein biosynthesis itself like rRNA or tRNA). It was assumed that the

noncoding sequences were not important, but recent evidence has clearly

demonstrated that RNA can be more than a mere messenger. The noncoding parts

– previously often perceived as “junk” – contain unrecognized jewels representing

a high value for multiple processes in the cell (Habeck 2003; Mattick 2003; Berg

2006). Indeed, the flow of information can end at the RNA stage without proceeding

to the protein level.

The complete human transcriptome, i.e., the entire set of all RNA molecules,

which are written off the human genome, could be only described and characterized

in recent years by two new techniques: ultra deep sequencing and tiling arrays. Both

methods have led independently to the same result: a much larger part of the human

genome is transcribed into RNA than previously assumed (Fig. 8.1). It is estimated

that up to 70% of the sequence of the human genome is transcribed but only up to

Transcription

untranslated

Translation

genetic information
(100%)

transcribed
genetic information

(70-90%)

(1-2%)

(about 70%)

Protein

non-protein-coding
RNA

Fig. 8.1 The human genome – much more than protein-coding genes. The human genome

contains protein-coding and nonprotein-coding genes. Nearly 70–90% of the genetic information

encoded in about three billion base pairs of DNA is transcribed into different classes of RNA, e.g.,

rRNA, tRNA, mRNA, small, and long ncRNA. However, only a minor subset of the genetic

information is converted into proteins (1–2%). The large majority of genomic information is not a

template for translation and might function at the RNA level
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2% of the human genome two percent serve as blueprints for proteins (Bertone et al.

2004; Carninci et al. 2005; Cheng et al. 2005; Sultan et al. 2008; Diederichs 2010).

Until recently, most of the known ncRNAs were classical “housekeeping”

ncRNAs, such as transfer RNAs (tRNAs), ribosomal RNAs (rRNAs), small nuclear

RNAs (snRNAs), and small nucleolar RNAs (snoRNAs), which are constitutively

expressed and play critical roles in protein biosynthesis (Mattick and Makunin

2006; Chen and Carmichael 2010a; Chen and Carmichael 2010b). In addition to

these well-characterized members, new classes have recently enriched the ncRNA

world, some of which are very short: microRNA (miRNA) (Winter et al. 2009),

small interfering RNA (siRNA), or PIWI-interacting RNA (piRNA); while others

are long and termed long ncRNA (lncRNA) or long intergenic ncRNA (lincRNA)

(Taft et al. 2010). The short ncRNAs are discussed elsewhere (see Chap. 1)

and need to be distinguished from the long ncRNAs, which are the main focus of

this chapter.

Although short ncRNAs received most attention in recent years, it has become

increasingly clear that mammalian genomes encode numerous long ncRNAs. They
were first described via the large-scale sequencing of full-length cDNA libraries in

the mouse (Okazaki et al. 2002; Mercer et al. 2009). Other names such as large

RNA, macroRNA, and long intergenic ncRNA or lincRNA are also used to refer to

lncRNA. They are defined as endogenous cellular RNAs of more than 200

nucleotides in length that lack any significant positive-strand open reading frame

and are distinct from any known functional RNA classes (including but not limited

to ribosomal, transfer, and small nuclear or nucleolar RNAs) (Ponting et al. 2009;

Chen and Carmichael 2010b; Lipovich et al. 2010). Thus, this group of ncRNAs is

defined by size and lack of protein-coding potential, but does not constitute a

homogeneous class of functionally related molecules.

Long ncRNAs often overlap with or are interspersed between coding and

noncoding transcripts making their classification a complex task (Carninci et al.

2005; Kapranov et al. 2005; Mercer et al. 2009). For the identification of lncRNA

in animals and plants using experimental and computational approaches, see

Chap. 13. A preliminary classification places a lncRNA into one or more of five

broad categories: (1) sense or (2) antisense, when overlapping one or more exons of

another transcript on the same or opposite strand, respectively; (3) bidirectional,

when the expression of it and a neighboring coding transcript on the opposite strand

is initiated in close genomic proximity; (4) intronic, when it is derived wholly from

within an intron of a second transcript (although these sometimes may represent

pre-mRNA sequences); or (5) intergenic, when it lies as an independent unit within

the genomic interval between two genes (Ponting et al. 2009).

Some lncRNAs show clear evolutionary conservation or strict regulation, imply-

ing that they are of functional importance (Huarte et al. 2010). Some transcripts are

derived from ultraconserved genomic regions (UCR) (Bejerano et al. 2004). These

UCR can be altered in human cancer (Calin et al. 2007). For further information on

the transcription and evolution of lncRNAs, see Chap. 6 of this volume.

A recent study identified 5,446 lncRNA genes in the human genome and

combined them with lncRNAs from four published sources to derive 6,736 lncRNA
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genes. The study also examined protein-coding capacity of known genes

overlapping with lncRNAs and revealed that 62% of known genes with “hypotheti-

cal protein” names lacked protein-coding capacity. This means that the human

lncRNA catalog is much larger than previously expected (Jia et al. 2010). While

lncRNAs are pervasively transcribed in the genome, their potential involvement in

human disease is not yet understood (Gupta et al. 2010).

Several lncRNAs can regulate gene expression at various levels, including

chromatin modification, transcription, and posttranscriptional processing (Mercer

et al. 2009; Wilusz et al. 2009) (Fig. 8.2). Some lncRNAs, such as the X inactive-

specific transcript (XIST) orHOTAIR, repress the expression of their target genes by
interacting with chromatin remodeling complexes, which induce the formation of

heterochromatin (Rinn et al. 2007; Zhao et al. 2008). Other lncRNAs function by

regulating transcription through a variety of mechanisms that include interacting

with RNA-binding proteins, acting as a coactivator of transcription factors, or

repressing a major promoter of their target gene (Feng et al. 2006; Martianov

et al. 2007; Wang et al. 2008b).

In addition to chromatin modification and transcriptional regulation, lncRNAs

can regulate gene expression at the posttranscriptional level. On the one hand, a long
antisense transcript can silence a gene posttranscriptionally by annealing to the

corresponding sense mRNA transcript forming a duplex that can be cleaved by

Dicer into endogenous siRNAs (Ogawa et al. 2008). On the other hand, the lncRNA

can induce an alternative splicing pattern of the target gene. For example, the 50

splice site of the zinc finger HOXmRNA ZEB2 can be masked by a complementary

antisense ncRNA, which prevents the removal of the intron by the spliceosome and

leads to the retention of the intronic internal ribosome entry site (IRES) in themature

mRNA. This results in an enhanced translation of the ZEB2 mRNA (Beltran et al.

2008). The different mechanisms by which lncRNAs perform their functions will be

discussed in further detail in the following section. An overview of differentially

expressed lncRNAs in cancer is provided in Table 8.1.

8.2 Long Noncoding RNAs in Cancer

8.2.1 XIST: From X Chromosome Inactivation to Cancer

XIST is one of the few well-characterized lncRNAs. The XIST gene is located on

human chromosome Xq13.2 and produces a 17-kb-long ncRNA, best known

for its role in dosage compensation/equilibration between the male XY and the

female XX gonosomes. This genetic regulatory mechanism involves the silencing

(inactivation) of one of the two X chromosomes in female somatic cells to adjust

the expression levels of genes present on the X chromosome, so that they are equal

to the levels in male cells (Agrelo and Wutz 2010; Lipovich et al. 2010).

XIST was discovered as a transcript associated with the inactive X chromosome

(Xi) but not with the active X chromosome (Xa) in human and mouse (Borsani
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Epigenetic functions:

me3
K27

me3
K27

Chromatin remodelling
and histone modification
(e.g. HOTAIR, Xist, Kcnq1ot1)

Transcriptional functions & Splicing regulation:

a) Activation of Transcription

b) Inhibition of Transcription

c) Regulation of alternative splicing

DLX2

Evf-2

Dlx6

TFIID

RNA-DNA-Triplex

DHFR

Spliceosome

Zeb2 pre-mRNA

Post-Transcriptional functions:

a) Generation of endo-siRNAs
or small RNA precursor 

b) Regulate protein activity or localization c) Scaffolding or structural role 

activated forminactive form

protein complex formation

   Dicer
cleavage

or
+

Fig. 8.2 Long noncoding RNA – regulators of gene expression and beyond. Recent studies on

long ncRNA function have uncovered a broad range of mechanisms for gene expression control

that involve and require these transcripts. At the epigenetic level of expression control, ncRNAs

can regulate chromatin remodeling as well as histone modifications. The ncRNA HOTAIR recruits

the Polycomb repressive complex to the HoxD locus where the lysine 27 residues of histone H3 get

trimethylated (H3K27me3). This leads to the formation of heterochromatin and the repression of

gene expression. Also, ncRNAs were found to regulate gene expression at the transcriptional level.

They can either activate the expression of another gene, e.g., the ncRNA Evf-2, which binds to the
transcription factor DLX2 and functions as a coactivator for the transcription of the DLX6 gene.

However, long ncRNAs can also inhibit transcription. For the DHFR gene, an ncRNA is tran-

scribed from the minor promoter of the DHFR gene and forms a triplex structure at the major
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et al. 1991; Brockdorff et al. 1991; Brown et al. 1991). XIST is transcribed from

the X inactivation center (Xic) locus on the X chromosome to be inactivated.

It spreads along this chromosome and silences gene expression by epigenetic

mechanisms. In detail, XIST recruits the chromatin remodeling Polycomb complex

that trimethylates the lysine-27 residues of histone H3 leading to heterochromatin

formation (Mercer et al. 2009; Agrelo and Wutz 2010).

TSIX, the antisense repressor of XIST, is transcribed as a 40-kb-long ncRNA

located 15 kb downstream of XIST (Lee et al. 1999). TSIX is downregulated on the

X chromosome destined to be inactivated, allowing the upregulation of XIST and its

spread along this chromosome. On the other hand, TSIX prevents XIST upregulation

on the active X chromosome (Zhao et al. 2008).

XIST has been implicated in sex and nonsex related cancers (Agrelo and Wutz

2010; Weakley et al. 2011). XIST expression is lost in female ovarian, breast, and

cervical cancer cell lines (Kawakami et al. 2004b; Benoit et al. 2007). In some

epithelial ovarian cancer cell lines, XIST expression is undetectable in contrast to

normal epithelial ovarian cells (Benoit et al. 2007). When RNA expression is

compared between primary and recurrent ovarian tumors from the same patient,

XIST is the most strongly differentially expressed gene downregulated in the

recurrent tumor. XIST expression also correlates with the response to chemotherapy

and Taxol sensitivity of gynecological cancer cell lines (Huang et al. 2002). Its

expression strongly associates with the disease-free survival of Taxol-treated can-

cer patients (Huang et al. 2002). The loss of XIST expression could be due to the

loss of Xi that is frequently reported in female tumors and can serve as a marker in

certain female tumors (Kawakami et al. 2004b; Agrelo and Wutz 2010).

The relationship between the breast cancer gene BRCA1, a well-known tumor

suppressor gene, and XIST has been controversial: BRCA1 could contribute to the

regulation of XIST localization on Xi and X chromosome inactivation in somatic

cells (Ganesan et al. 2002; Silver et al. 2007). Additionally, BRCA1-deficient

breast cancer cell lines have increased XIST expression, which is partly attributed

to XIST expression from Xa. Moreover, BRCA1-associated hereditary cancers have
significantly higher levels of XIST in comparison to sporadic basal-like cancers,

suggesting that XIST could be used as a marker to distinguish between these two

types of tumors (Sirchia et al. 2009). However, some studies did not find a

Fig. 8.2 (continued) promoter of this gene. This blocks the binding of TFIID, a general transcrip-

tion factor, resulting in DHFR gene silencing. Long ncRNAs can also regulate alternative splicing

of pre-mRNAs. The access of the spliceosome to the 50 splice site of the ZEB2 pre-mRNA is

hindered by an antisense ncRNA. This leads to intron retention and the formation of an alternative

ZEB2 transcript, which gets translated efficiently due to the presence of an internal ribosome entry

site (IRES) in the retained intron. Finally, long ncRNAs function also at the posttranscriptional

level. Hybridization of ncRNAs to complementary antisense transcripts leads to RNA-RNA

duplex formation. This structure is recognized by Dicer and gets subsequently processed into

small endo-siRNAs. Alternatively, long ncRNAs can be precursors for small, single-stranded

RNAs like miRNAs or piRNAs. Furthermore, ncRNAs can bind to proteins and regulate their

activity, influence their cellular localization, or help larger protein complexes to form by

presenting a scaffold or docking platform for the proteins
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correlation between BRCA1 and XIST expression or localization (Pageau et al.

2007; Vincent-Salomon et al. 2007). Thus, further analyses are needed to clearly

define the role of XIST in tumorigenesis of gynecological cancers.

Since male somatic cells have only one X chromosome, they weakly express

XIST. In contrast, mature testes show strong expression levels of XIST. However,
absolute levels are much lower than in female somatic cells (Richler et al. 1992).

Nevertheless, XIST plays a role in male cancers such as testicular germ cell tumors

(TGCTs) and prostate cancer. TGCTs, among the most common cancers in young

men, show XIST expression especially in seminomas (Looijenga et al. 1997;

Kawakami et al. 2003).

Normally, the promoter region of XIST on the active X chromosome in female

and male somatic cells is methylated leading to gene silencing. In contrast, this

region is hypomethylated and reactivated in some TGCT patients (mainly

seminomas). Therefore, the methylation status of the XIST promoter may be used

as a diagnostic marker for TGCTs (Kawakami et al. 2004a; Zhang et al. 2005; Lind

et al. 2007). Similarly, prostate cancer cells and DNA fragments from the serum of

prostate cancer patients show hypomethylated XIST promoter regions. This might

be used for diagnosis and the identification of the more aggressive cases (Laner

et al. 2005; Song et al. 2007).

In addition to sex-specific cancers, XIST is potentially involved in various types

of gender-independent cancers. In leukemia, XIST gene deletion from the Xi is

observed. However, this does not lead to reactivation of the Xi (Rack et al. 1994).

Gastric fundus cells from normal male mice do not express XIST, whereas

preneoplastic fundus cells infected with Helicobacter felis gain XIST expression

(Nomura et al. 2004). In addition, microsatellite unstable sporadic colorectal

cancers harbor XIST gene amplifications suggesting a putative functional role of

XIST in carcinogenesis (Lassmann et al. 2007). Copy number gains of the XIST
gene have also been documented in cell lines of collecting duct carcinoma of the

kidney (Wu et al. 2009). Moreover, mice that receive oral Benzo[a]pyrene, a

polycyclic aromatic hydrocarbon and a common combustion product, develop

proximal small intestine tumors with remarkable upregulation of XIST expression

(Shi et al. 2010).

In summary, XIST has proven to be more than a key player in X chromosome

inactivation. Different types of cancers show XIST deregulation, suggesting its

potential value as a diagnostic marker. However, further studies are needed to

explore its role and potential functional importance in these cancers.

8.2.2 H19: Beyond Genetic Imprinting

H19 is another well-characterized lncRNA. The H19 gene is located on human

chromosome 11p15.5 and gives rise to a 2.5-kb-long, spliced, and polyadenylated

cytoplasmic RNA (Bartolomei et al. 1991). H19 was first identified while screening
for genes that are upregulated by a-fetoprotein in murine fetal liver and was

identified as the 19th clone in row H, which gave rise to its current name (Pachnis
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et al. 1984). It was also found in a screen for genes involved in myogenic

differentiation (Davis et al. 1987). It is upregulated during embryonic stem cell

differentiation, as well (Poirier et al. 1991).

H19 is exclusively expressed from the maternal chromosome. This phenomenon

is known as genetic imprinting: imprinted genes are expressed only from either the

maternal or the paternal allele. While H19 is only expressed from the maternal

allele, its imprinted neighbor, insulin-like growth factor 2 (IGF2), is expressed

solely from the paternal allele, and their locus is collectively referred to as the

H19/IGF2 locus (DeChiara et al. 1991; Gabory et al. 2010).

H19 is suggested to play a role in the regulation of IGF2 at the transcriptional

and posttranscriptional level. Maternal deletion of H19 changes the methylation

profiles of IGF2 on both alleles, which points toward a transcriptional effect of H19
(Forne et al. 1997). The IGF2 mRNA-binding protein 1 (IMP1) binds to the 50

untranslated region of the IGF2 mRNA and maintains its stability. H19 RNA can

compete with IGF2 mRNA for binding to IMP1, interfering with the posttranscrip-

tional regulation of IGF2 (Runge et al. 2000; Hansen et al. 2004).

In addition, the first exon of H19 produces a highly conserved microRNA

(miR-675) (Cai and Cullen 2007). However, the role of miR-675 remains to be

elucidated.

H19 is deregulated in a variety of cancers, and several studies suggest that it can
serve as an oncogenic marker in humans. H19 is increased in TGCTs due to

biallelic expression. Moreover, its expression levels depend on the differentiation

lineage and maturation stage (Verkerk et al. 1997). H19 can also be used as a

prognostic marker for the early recurrence of bladder cancer: higher H19 expres-

sion is correlated with a shorter disease-free period. Moreover, the number of cells

expressing H19 decreases as tumor grade increases, i.e., cells become less

differentiated (Ariel et al. 2000).

In breast adenocarcinomas, H19 expression is increased as compared to healthy

tissues. This upregulation of H19 significantly correlates with tumor size and

estrogen or progesterone receptor expression (Adriaenssens et al. 1998). In addi-

tion, H19 overexpression enhances the tumorigenic properties of breast cancer cells

(Lottin et al. 2002). Increased expression of H19 is also found in hepatocellular

carcinoma (HCC), uterine tissue myometrium carcinoma, epithelial ovarian cancer,

lung cancer, esophageal carcinoma, and colorectal carcinoma recommending it as

universal tumor marker (Kondo et al. 1995; Hibi et al. 1996; Ariel et al. 1998; Tanos

et al. 1999; Lottin et al. 2005).

Knockdown studies have been performed to elucidate the function of H19. Loss
of H19 in the HCC cell line Hep3B reduces tumor growth after implantation

(Matouk et al. 2007). Similar results are found in bladder cancer, suggesting that

H19 acts as an oncogene (Matouk et al. 2007).

In contrast, other studies propose a tumor suppressive role for H19. Children
affected with the Beckwith-Wiedemann syndrome show biallelic silencing of H19
and are more susceptible to developing Wilms’ tumors (Rump et al. 2005; Riccio

et al. 2009). However, these cases also show a biallelic activation of IGF2 which

might be also involved in tumorigenesis. Ectopic H19 expression causes growth
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retardation in embryonic tumor cell lines (Hao et al. 1993). In a murine model for

colorectal cancer, double mutant mice lacking H19 and Apc show an increased

number of polyps compared to Apc mutant mice suggesting that H19 might control

the initiation step of tumorigenesis (Colnot et al. 2004). In an HCC mouse model,

loss of H19 causes the tumors to appear earlier (Yoshimizu et al. 2008). Therefore,

H19 may delay the onset of tumor appearance and could act as tumor suppressor.

How can these contrary roles in tumorigenesis be explained? It’s oncogenic or

tumor suppressive role might depend on the cell type and conditions under investi-

gation. The cellular role of H19 could also differ at different times in life in

embryonic versus adult cells or between human and mouse. Further studies are

needed to shed light onto the role ofH19 in cancer and to elucidate whether this role
is mediated through the full-length RNA molecule or through the microRNA

(Gabory et al. 2010).

8.2.3 MALAT1: From a Metastasis Marker to a Player in
Metastasis?

Metastasis-associated lung adenocarcinoma transcript 1 (MALAT1), also known as
nuclear-enriched abundant transcript 2 (NEAT2), is an ncRNA of about 8 kb

expressed from human chromosome 11q13. It was first discovered as a prognostic

marker for patient survival and metastasis in non-small-cell lung cancer (NSCLC)

(Ji et al. 2003).

MALAT1 is highly conserved across several species indicating its potentially

important function. The MALAT1 transcript is specifically retained in the nucleus

and localizes to nuclear speckles, but it is not required to maintain these structures

(Hutchinson et al. 2007; Clemson et al. 2009). Nuclear speckles play a role in pre-

mRNA processing, and recently, MALAT1 has been shown to regulate alternative

splicing of pre-mRNAbymodulating the levels of active serine/arginine (SR) splicing

factors. These factors regulate tissue- or cell-type specific alternative splicing in

a concentration- and phosphorylation-dependent manner (Zhao et al. 2009; Tripathi

et al. 2010). Knockdown ofMALAT1 alters the processing of a subset of pre-mRNAs,

which play important roles in cancer biology, e.g., tissue factor or endoglin. This

supports the hypothesis that MALAT1 is a regulator of posttranscriptional RNA

processing or modification (Lin et al. 2011).

MALAT1 is expressed in many healthy organs with the highest levels of expres-

sion in pancreas and lung (Ji et al. 2003). In several human cancers including lung

cancer, uterine endometrial stromal sarcoma, cervical cancer, and HCC, it is

deregulated (Ji et al. 2003; Yamada et al. 2006; Lin et al. 2007; Guo et al. 2010).

MALAT1 is significantly associated with metastasis in NSCLC patients. This

association with metastasis is stage and histology specific. Therefore,MALAT1 can
serve as an independent prognostic parameter for patient survival in early stage lung

adenocarcinoma (Ji et al. 2003). A recent study sheds light onto the role ofMALAT1
in the metastasis process. It suggests that MALAT1 promotes cell motility of lung
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cancer cells through transcriptional or posttranscriptional regulation of motility-

related genes (Tano et al. 2010). In cervical cancer, depletion of MALAT1
suppresses proliferation and invasion of CaSki cells. The knockdown of MALAT1
also leads to an upregulation of caspase-8 and -3 and Bax and downregulation of

Bcl-2 and Bcl-xL in these cervical cancer cells, which suggests that MALAT1 may

regulate these genes (Guo et al. 2010). However, since both studies were carried out

with individual siRNAs only and lack rescue experiments, further investigations are

necessary to exclude unspecific off-target effects and to corroborate the functional

importance of MALAT1 in carcinogenesis or metastasis.

In addition to its potential involvement in lung and cervical cancer, MALAT1 is

upregulated in endometrial stromal sarcoma of the uterus, which is a rare uterine

malignancy. Overexpression of MALAT1 is thought to be a characteristic of endo-

metrial stromal sarcoma and may be correlated with relapse or metastasis (Yamada

et al. 2006). Moreover, MALAT1 is overexpressed in HCC and in other types of

cancer including breast and pancreas carcinoma suggesting that it plays a signifi-

cant role in neoplasia and can be potentially used as a universal marker for

carcinomas (Lin et al. 2007).

TheMALAT1 transcript can also be processed into a highly conserved tRNA-like
small cytoplasmic RNA of 61 nucleotides that is broadly expressed in human

tissues (Wilusz et al. 2008). The function of this so-called mascRNA is unknown.

8.2.4 HOTAIR: A Chromatin Regulator Goes a Long Way
“in trans”

HOTAIR (HOX antisense intergenic RNA) was discovered while studying the

transcriptional landscape of the human HOX loci. HOTAIR is a 2.2-kb-long

ncRNA, transcribed in the antisense direction from the HOXC gene cluster. It is

the first lncRNA that functions in trans repressing transcription across 40 kb along

the HOXD locus by interacting with the Polycomb repressive complex 2 (PRC2).

This interaction leads to the trimethylation of histone H3 lysine-27 (H3K27) at the

HOXD locus and consequently its transcriptional silencing (Rinn et al. 2007). In

detail, HOTAIR executes its function by providing a scaffold for histone modifica-

tion complexes. Its 50-domain binds PRC2 while its 30-domain binds to the LSD1

complex. HOTAIR can coordinate the targeting of both complexes to chromatin for

a coupled histone H3K27 methylation and H3K4 demethylation, enforcing gene

silencing (Tsai et al. 2010).

Given its important role in the epigenetic regulation of gene expression, it is not

surprising that HOTAIR is deregulated in different types of cancer (Gupta et al.

2010; Yang et al. 2011). HOTAIR expression is increased in primary breast tumors

and metastases. Its expression level in primary tumors positively correlates with

metastasis and poor outcome. Overexpression of HOTAIR in epithelial cancer cells

targets PRC2 to alter H3K27 methylation and gene expression. This leads to
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increased cancer invasiveness and metastasis. On the other hand, HOTAIR deple-

tion inhibits cancer invasiveness (Gupta et al. 2010).

HOTAIR expression in hepatocellular carcinoma (HCC) is elevated compared to

noncancerous tissues. In HCC patients, who received a liver transplantation, high

HOTAIR expression levels are an independent prognostic marker for HCC recur-

rence and shorter survival. HOTAIR suppression by siRNAs reduces cell invasion

and cell viability in a liver cancer cell line. In addition, this suppression sensitizes

cancer cells to TNFa-induced apoptosis and increases their sensitivity to the che-

motherapeutic agents cisplatin and doxorubicin (Yang et al. 2011). These studies

suggest that HOTAIR may be an important target for cancer diagnosis and therapy.

8.2.5 HULC: A ncRNA with Strong Regulation in HCC

Highly upregulated in liver cancer (HULC) is an lncRNA named for being the most

strongly upregulated gene in HCC and was first identified by screening an HCC-

specific gene library for deregulated genes. The HULC gene locus on chromosome

6p24.3 produces a spliced, 484-nt-long, polyadenylated ncRNA, which localizes to

the cytoplasm. HULC might be associated with ribosomes, which could point

toward a potential role in translation or translational regulation (Panzitt et al. 2007).

siRNA-mediated knockdown of HULC in HCC cell lines alters the expression of

several genes, some of which are known to be affected in HCC. Therefore, HULC
may also have a role in posttranscriptional modulation of gene expression. Since

HULC is specifically upregulated in HCC and can be detected in HCC patients, it

can be used as a tumor marker (Panzitt et al. 2007). HULC is also upregulated in

hepatic metastases of colorectal carcinoma. Moreover, it is upregulated in HCC cell

lines that produce hepatitis B virus (HBV) compared to the same parental lines that

do not produce HBV (Matouk et al. 2009). So far, a detailed mechanistic analysis of

the molecular function of HULC is lacking but will be necessary to gain deeper

insight into hepatocellular carcinogenesis.

8.2.6 GAS5: A Host Gene for Small snoRNAs with a Big Impact

The gene growth arrest-specific 5 (GAS5) was originally identified based on its

increased levels in growth-arrested mouse NIH3T3 fibroblasts (Schneider et al.

1988). In actively growing Friend leukemia or NIH3T3 cells, GAS5 is expressed at

low levels while it increases after density-induced cell cycle arrest (Coccia et al.

1992). GAS5 RNA levels appear to be regulated by stabilization rather than

transcription (Coccia et al. 1992; Smith and Steitz 1998). Nutrient deprivation in

F9 embryonal carcinoma cells also induces GAS5 expression (Fleming et al. 1998;

Fontanier-Razzaq et al. 2002).

Human GAS5 is transcribed from chromosome 1q25.1 and is alternatively

spliced. Its exons contain a small and poorly conserved open reading frame
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that does not encode a functional protein (Muller et al. 1998; Raho et al. 2000).

GAS5 introns encode multiple small nucleolar RNAs (snoRNAs), which may

mediate important biological activities (Smith and Steitz 1998). GAS5 functions

as a “riborepressor”: the ncRNA interacts with the DNA-binding domain of

the glucocorticoid receptors, thus competing with the glucocorticoid response

elements in the genome for binding to these receptors. This suppresses gluco-

corticoid-mediated induction of several responsive genes including cellular
inhibitor of apoptosis 2 (cIAP2) ultimately sensitizing cells to apoptosis (Kino

et al. 2010).

The link to apoptosis may explain why GAS5 is necessary for normal growth

arrest in leukemic human T-cell lines as well as human peripheral blood T cells.

Overexpression of GAS5 in these cells causes increased apoptosis and decelerated

cell cycle, while downregulation of endogenous GAS5 inhibits apoptosis and

maintains a more rapid cell cycle progression (Mourtada-Maarabouni et al. 2008).

In breast cancer, GAS5 transcript levels are significantly reduced compared to

normal breast epithelial tissues. Moreover, GAS5 expression induces growth arrest

and apoptosis independently of other stimuli in some prostate and breast cancer cell

lines (Mourtada-Maarabouni et al. 2009). Since effective control of cell survival

and proliferation is critical for the prevention of oncogenesis, GAS5 could play a

role in the development and therapy of cancer.

Another link between cancer and GAS5 is the serine/threonine protein kinase

mTOR (mammalian target of rapamycin). mTOR plays a critical role in the control

of mammalian cell growth and regulates both cellular protein synthesis and cell

proliferation (Fingar et al. 2004; Hay and Sonenberg 2004). The mTOR antagonist

rapamycin decreases cell proliferation and is used in cancer therapy of leukemia

and other malignancies (Abdel-Karim and Giles 2008; Jiang and Liu 2008).

Downregulation of GAS5 by RNA interference protects both leukemic and primary

human T cells from the proliferative inhibition by mTOR antagonists, suggesting

that GAS5 might – directly or indirectly – be required for this inhibitory effect

(Mourtada-Maarabouni et al. 2010). Finally, genetic aberrations of the GAS5 locus

have been found in many types of tumors including melanoma, breast, and prostate

cancers (Smedley et al. 2000; Nupponen and Carpten 2001; Stange et al. 2006;

Morrison et al. 2007; Nakamura et al. 2008). However, their functional significance

needs to be established.

8.2.7 ANRIL: An Oncogene Sharing a Locus with Three
Tumor Suppressors

Antisense noncoding RNA in the INK4 locus (ANRIL) was first identified in a study

to determine the precise size and end points of a large germline deletion removing

the entire INK4A-ARF-INK4B gene cluster in a melanoma/neural system tumor

syndrome family. ANRIL is a 3,834-nt lncRNA with its first exon located in the
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promoter of the ARF gene and overlapping the two exons of INK4B in antisense

orientation (Pasmant et al. 2007).

This gene cluster codes for three distinct tumor suppressor proteins: p16INK4A,

p14ARF, and p15INK4B (Pasmant et al. 2010). Genome-wide association studies

identified ANRIL as a risk locus for several cancers including breast cancer,

nasopharyngeal carcinoma, basal cell carcinoma, and glioma (Shete et al. 2009;

Stacey et al. 2009; Bei et al. 2010; Turnbull et al. 2010). ANRIL may regulate the

p16INK4A, p14ARF, and p15INK4B locus via Polycomb complex-mediated epigenetic

silencing and therefore may play a role in cancer. ANRIL binds to chromobox7

(CBX7) within the Polycomb repressive complex 1 (PRC1), contributes to CBX7

function, and affects its ability to repress the locus and control senescence. In

addition, both ANRIL and CBX7 levels are elevated in prostate cancer tissues

(Yap et al. 2010). ANRIL also binds to and recruits PRC2 to repress the expression

of the p15INK4B locus. ANRIL depletion disrupts the binding of SUZ12, a compo-

nent of PRC2, to the p15INK4B locus. This results in increased expression of

p15INK4B, but not p16INK4A or p14ARF, and inhibits cellular proliferation (Kotake

et al. 2011).

8.2.8 DLEU1 and DLEU2: Long Sought Tumor Suppressors
Harbor Short MicroRNAs

The most common genomic aberration in chronic lymphocytic leukemia (CLL) is

the loss of a critical region in 13q14.3 [del(13q)] with an occurrence of more than

50% (Bullrich et al. 1996). This led to the assumption that the region might contain

tumor suppressor genes (Stilgenbauer et al. 1998; Dohner et al. 2000). By screening

primary CLL clones and cell lines, DLEU1 and DLEU2, also known as LEU1 and

LEU2, were identified as candidate tumor suppressor genes. DLEU1 and DLEU2
are lncRNAs significantly downregulated in CLL cells. DLEU2 seems to be a pri-

miRNA giving rise to the mature microRNAs miR-16-1 and miR-15a that have

tumor-suppressive functions (Liu et al. 1997; Wolf et al. 2001; Calin et al. 2002;

Mertens et al. 2009; Klein et al. 2010).

8.2.9 PRNCR1: A Message for Prostate Cancer from 8q24

Multiple genetic variants in a large region of chromosome 8q24 have been

associated with susceptibility to prostate cancer. A mapping and resequencing

study focusing on its most centromeric region led to the identification of a 13-kb-

long ncRNA, which was named prostate cancer noncoding RNA 1 (PRNCR1).
PRNCR1 may be involved in prostate carcinogenesis, as it is upregulated in

prostatic intraepithelial neoplasia and prostate cancer cells. Knockdown of
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PRNCR1 decreases the viability of prostate cancer cells and the transactivation

activity of androgen receptor (Chung et al. 2011).

8.2.10 TERRA: Coming to the End of the Chromosome

Telomeres are heterochromatic structures at the ends of eukaryotic chromosomes

and are essential for chromosome stability. Until recently, telomeres have been

considered to be transcriptionally silent. However, Northern blot analysis of RNA

from a human cervical cancer cell line (HeLa) revealed the existence of TERRA.
TERRA describes a group of lncRNAs transcribed from several subtelomeric loci

toward chromosome ends. It localizes to telomeres and is involved in telomeric

heterochromatin formation (Azzalin et al. 2007; Schoeftner and Blasco 2008; Deng

et al. 2009; Luke and Lingner 2009).

Telomere transcription is an evolutionarily conserved phenomenon in eukary-

otic cells suggesting functional importance (Caslini 2010). Critical shortening of

telomeres is essential for the limited capacity of normal human cells to divide and

the subsequent onset of replicative senescence (Hayflick 1965; Harley et al. 1990).

Overcoming the senescence barrier by elongating and maintaining telomeres is a

prerequisite for tumor formation (Hanahan and Weinberg 2000). Telomere length

maintenance is achieved by activation of telomerase in around 85% of tumors and

by the alternative lengthening of telomeres (ALT) mechanism in about 15% of

tumors (Bryan et al. 1997; Shay and Bacchetti 1997).

TERRA is a proposed regulator of telomerase, which may act globally or at

individual telomeres as a direct inhibitor of the telomerase enzyme (Redon et al.

2010). Reduction of TERRA transcription is necessary for telomerase-mediated

telomere lengthening. This role may link TERRA to cancer. Telomerase-positive

cancer cells with high levels of subtelomeric methylation display low levels of

TERRA compared to matched ALT-positive cancer cells or normal cells (Ng et al.

2009). Moreover, when cell extracts are incubated with an excess of synthetic RNA

oligonucleotides mimicking TERRA, telomerase activity is inhibited (Schoeftner

and Blasco 2008).

Taken together, TERRA is the first lncRNA that has not been linked to

cancer based on its expression pattern but by virtue of its function. A deregulation,

silencing, or mutation of TERRA in human cancer remains to be discovered.

8.3 Conclusion and Outlook

The nonprotein-encoding part of the human genome was once referred to as the

“dark matter of the genome” (Johnson et al. 2005). However, these parts have

now been found to be frequently transcribed into nonprotein-encoding RNAs.

These ncRNAs have proven to be important regulators in health and in disease.
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Despite the rapid progress in identifying these transcripts, only individual examples

have been functionally studied at all, and many important questions remain to be

addressed. Molecular studies are needed to explore the functions and mechanisms

of action of this novel class of biomolecules. Although the majority of recent

literature and current research focuses on short RNAs (miRNAs, siRNAs, piRNAs),

the underestimated long ncRNAs have a great potential and show a lot of promise to

be important molecules in physiological as well as pathological settings. Therefore,

the next step should be genome-scale identification of lncRNAs differentially

expressed in a wide variety of human cancers. One way would be to use

microarray-based profiling, deep sequencing or RNA-Seq, as well as the careful

and detailed validation of the expression and sequencing data by qRT-PCR, North-

ern blotting, and RACE. lncRNAs specifically expressed or silenced in human

cancers could play an important role in these cancer entities, and their functional

analysis is required to understand the molecular mechanisms underlying

tumorigenesis.

This is where lncRNAs raise a lot of challenges due to their mechanistic

heterogeneity that is just beginning to emerge from the first discoveries in this

field. Insights into their function can be gained using RNA interference to knock

down the lncRNA, genetic loss-of-function models, or overexpression followed by

studying the cellular phenotypes associated with tumor development such as

proliferation, migration, cell viability, or apoptosis. However, RNAi-mediated

loss-of-function studies should always be scrutinized to exclude frequent off-target

effects. Essential controls include the use of multiple siRNAs for each gene,

nontargeting or scrambled siRNA controls, and a validation of the phenotype

specificity in rescue experiments reversing the phenotype by overexpression of

the targeted gene. Studying the localization of the lncRNA can also provide

valuable insights into its function. Once the cellular fraction, where the lncRNA

is normally present, has been established, the lncRNA can be further analyzed. For

example, protein interaction partners of the ncRNA could be identified via RNA

affinity purification.

RNA immunoprecipitation-sequencing (RIP-Seq) or PAR-CLIP provides other

approaches to studying RNA-protein interactions (Hafner et al. 2010; Zhao et al.

2010). Here, all RNAs that bind to a specific protein of interest are pulled down to

identify substrate, target, or regulator RNAs – either coding or noncoding.

Expanding RIP-based analysis of protein–lncRNA-binding patterns will help to

create an experimentally documented lncRNA–protein interactome atlas. Such

atlas can be a helpful guide for in-depth studies on the functions of each lncRNA

(Lipovich et al. 2010).

We have discussed many lncRNAs with differential expression patterns that

could be of diagnostic, prognostic, or predictive value for various types of cancer.

lncRNA offer a number of advantages as diagnostic and prognostic markers. First,

they can be highly specific; HULC, for example, is highly expressed in primary

liver tumors and hepatic metastases of colorectal carcinoma, but not in the primary

colon tumors or in nonliver metastases (Matouk et al. 2009). Prostate-specific gene
1 (PCGEM1), differential display code 3 (DD3), also known as prostate cancer
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gene 3 (PCA3), and PRNCR1 are three lncRNAs that have been exclusively

associated with prostate cancer (de Kok et al. 2002; Ifere and Ananaba 2009a;

Chung et al. 2011). LncRNAs can also be used to differentiate between subtypes of

the same cancer.

Second, lncRNAs can be detected in biological fluids like blood and urine,

which is much less invasive and more convenient than biopsies. A quantitative

PCA3 urine test with the potential for general use in clinical settings was developed,

the Progensa™ PCA3 urine test. This specific test can help patients who have a first

negative biopsy to avoid unnecessary repeated biopsies (Durand et al. 2011).

Third, the ncRNAs can be detected from minute amounts using qRT-PCR

amplification. For example, HULC can be easily detected in the blood of HCC

patients using PCR (Panzitt et al. 2007).

Fourth, lncRNAs expression may potentially correlate with patient response to

chemotherapy. As mentioned before, XIST expression strongly associates with the

disease-free survival of Taxol-treated cancer patients (Huang et al. 2002). lncRNAs

are also powerful predictors of patient outcome. For example,MALAT1 can serve as
an independent prognostic parameter for patient survival in early-stage lung adeno-

carcinoma because it is significantly associated with metastasis in NSCLC patients

(Ji et al. 2003). Also, HOTAIR positively correlates with metastasis and poor

outcome in primary breast tumors (Gupta et al. 2010).

The great wealth of newly discovered transcripts makes it highly likely that

many other lncRNA markers remain to be discovered. The vast amount of cancer

genome data becoming rapidly available can only be fully exploited if also the

noncoding content of the human cancer genome is studied in great detail – after all,

it constitutes the large majority of the genomic information! The more we learn

about lncRNA expression patterns in different types of cancer – as well as in

healthy cells – the higher the chances for an improved diagnosis and better

prognosis will be.

Lastly, uncovering the role of lncRNAs in cancer will not only provide novel

insights into the molecular mechanisms in the normal as well as the tumor cell but

will also aid in designing novel therapeutic agents. For example, oncogenic

lncRNAs could be targeted by RNA interference or an antagolnc (a synthetic

RNA that specifically binds a target lncRNA) or tumor suppressive lncRNAs

could be induced. Also, designing therapeutic aptamer agents that specifically

target (deregulated) lncRNA-protein interactions, modulating the function of

lncRNAs, or using lncRNAs to epigenetically silence oncogenes is conceivable

and could provide new options in cancer therapy. Here, lncRNAs with increased

expression in tumors can reduce the risk of affecting normal tissues during genetic

treatment by providing tumor-specific regulatory regions: For example, H19
expression is increased in a wide range of human cancers. A plasmid BC-819

(DTA-H19) has been developed to make use of this tumor-specific expression of

H19. The plasmid carries the gene for the A subunit of diphtheria toxin under the

regulation of the H19 gene promoter. It is administered via intratumoral injection

and induces the expression of high levels of diphtheria toxin specifically in the

tumor resulting in a reduction of tumor size in human trials. While most in vivo

214 S.K.A. Ellatif et al.



studies have investigated BC-819 for the treatment of bladder cancer, recent studies

have also yielded encouraging results in NSCLC, colon, pancreatic, and ovarian

cancers (Smaldone and Davies 2010; Gibb et al. 2011).

Targeting cancer-specific lncRNAs may provide a way to cancer-specific thera-

peutics. However, designing molecules to inhibit oncogenic lncRNAs can be

challenging due to their extensive secondary structures which underscores the

importance of structural studies in designing such therapeutic agents. For example,

HOTAIR leads to increased cancer invasiveness and metastasis by targeting the

chromatin remodeling complex PRC2 to alter H3K27 methylation and gene expres-

sion. The administration of an antagolnc against HOTAIR would prevent it from

binding to PRC2 and may normalize the chromatin state to inhibit cancer cell

growth and metastasis (Tsai et al. 2011). Similarly, targeting MALAT1 with an

antagolnc could reduce cell motility of lung cancer cells by affecting MALAT1-
mediated regulation of motility-related genes. The same principle can be used to

target ANRIL and prevent its repressive effect on the tumor suppressor locus INK4.
GAS5 transcript levels are significantly reduced in breast cancer, and its expres-

sion induces growth arrest and apoptosis independently of other stimuli in some

prostate and breast cancer cell lines (Mourtada-Maarabouni et al. 2009). Therefore,

designing a vector that would induce the expression of GAS5 when injected into the
tumor might provide an attractive therapeutic approach. As mentioned above,

TERRA is a proposed regulator of telomerase, and telomerase-positive cancer

cells display low levels of TERRA (Ng et al. 2009). Therefore, a potential therapeu-
tic strategy in such cancer cells would be to enhance TERRA expression or

administer synthetic TERRA mimics.

We are taking our first steps on the road of understanding the role of lncRNAs in

cancer, and as we move forward, we are bound to discover new lncRNAs and find

out more about their importance in cancer, which will inevitably help us to design

better therapeutic agents.

References

Abdel-Karim IA, Giles FJ (2008) Mammalian target of rapamycin as a target in hematological

malignancies. Curr Probl Cancer 32(4):161–177

Adriaenssens E, Dumont L, Lottin S, Bolle D, Lepretre A, Delobelle A, Bouali F, Dugimont T,

Coll J, Curgy JJ (1998) H19 overexpression in breast adenocarcinoma stromal cells is

associated with tumor values and steroid receptor status but independent of p53 and Ki-67

expression. Am J Pathol 153(5):1597–1607

Agrelo R, Wutz A (2010) ConteXt of change–X inactivation and disease. EMBO Mol Med 2

(1):6–15

Alimonti A, Carracedo A, Clohessy JG, Trotman LC, Nardella C, Egia A, Salmena L, Sampieri K,

Haveman WJ, Brogi E, Richardson AL, Zhang J, Pandolfi PP (2010) Subtle variations in Pten

dose determine cancer susceptibility. Nat Genet 42(5):454–458

Ariel I, Miao HQ, Ji XR, Schneider T, Roll D, de Groot N, Hochberg A, Ayesh S (1998) Imprinted

H19 oncofetal RNA is a candidate tumour marker for hepatocellular carcinoma. Mol Pathol 51

(1):21–25

8 Long Noncoding RNA Function and Expression in Cancer 215



Ariel I, Sughayer M, Fellig Y, Pizov G, Ayesh S, Podeh D, Libdeh BA, Levy C, Birman T,

Tykocinski ML, de Groot N, Hochberg A (2000) The imprinted H19 gene is a marker of early

recurrence in human bladder carcinoma. Mol Pathol 53(6):320–323

Askarian-Amiri ME, Crawford J, French JD, Smart CE, Smith MA, Clark MB, Ru K, Mercer TR,

Thompson ER, Lakhani SR, Vargas AC, Campbell IG, Brown MA, Dinger ME, Mattick JS

(2011) SNORD-host RNA Zfas1 is a regulator of mammary development and a potential

marker for breast cancer. RNA 17(5):878–891

Azzalin CM, Reichenbach P, Khoriauli L, Giulotto E, Lingner J (2007) Telomeric repeat

containing RNA and RNA surveillance factors at mammalian chromosome ends. Science

318(5851):798–801

Bartolomei MS, Zemel S, Tilghman SM (1991) Parental imprinting of the mouse H19 gene.

Nature 351(6322):153–155

Bei JX, Li Y, Jia WH, Feng BJ, Zhou G, Chen LZ, Feng QS, Low HQ, Zhang H, He F, Tai ES,

Kang T, Liu ET, Liu J, Zeng YX (2010) A genome-wide association study of nasopharyngeal

carcinoma identifies three new susceptibility loci. Nat Genet 42(7):599–603

Bejerano G, Pheasant M, Makunin I, Stephen S, Kent WJ, Mattick JS, Haussler D (2004)

Ultraconserved elements in the human genome. Science 304(5675):1321–1325

Beltran M, Puig I, Pena C, Garcia JM, Alvarez AB, Pena R, Bonilla F, de Herreros AG (2008) A

natural antisense transcript regulates Zeb2/Sip1 gene expression during Snail1-induced epithe-

lial-mesenchymal transition. Genes Dev 22(6):756–769

Benoit MH, Hudson TJ, Maire G, Squire JA, Arcand SL, Provencher D,Mes-Masson AM, Tonin PN

(2007) Global analysis of chromosome X gene expression in primary cultures of normal ovarian

surface epithelial cells and epithelial ovarian cancer cell lines. Int J Oncol 30(1):5–17

Berg P (2006) Origins of the human genome project: why sequence the human genome when 96%

of it is junk? Am J Hum Genet 79(4):603–605

Bertone P, Stolc V, Royce TE, Rozowsky JS, Urban AE, Zhu X, Rinn JL, Tongprasit W, SamantaM,

Weissman S, GersteinM, SnyderM (2004) Global identification of human transcribed sequences

with genome tiling arrays. Science 306(5705):2242–2246

Borsani G, Tonlorenzi R, Simmler MC, Dandolo L, Arnaud D, Capra V, Grompe M, Pizzuti A,

Muzny D, Lawrence C, Willard HF, Avner P, Ballabio A (1991) Characterization of a murine

gene expressed from the inactive X chromosome. Nature 351(6324):325–329

Braconi C, Valeri N, Kogure T, Gasparini P, Huang N, Nuovo GJ, Terracciano L, Croce CM, Patel T

(2011) Expression and functional role of a transcribed noncoding RNA with an ultraconserved

element in hepatocellular carcinoma. Proc Natl Acad Sci USA 108(2):786–791

Brockdorff N, Ashworth A, Kay GF, Cooper P, Smith S, McCabe VM, Norris DP, Penny GD,

Patel D, Rastan S (1991) Conservation of position and exclusive expression of mouse Xist from

the inactive X chromosome. Nature 351(6324):329–331

Brown CJ, Ballabio A, Rupert JL, Lafreniere RG, Grompe M, Tonlorenzi R, Willard HF (1991) A

gene from the region of the human X inactivation centre is expressed exclusively from the

inactive X chromosome. Nature 349(6304):38–44

Bryan TM, Englezou A, Dalla-Pozza L, Dunham MA, Reddel RR (1997) Evidence for an

alternative mechanism for maintaining telomere length in human tumors and tumor-derived

cell lines. Nat Med 3(11):1271–1274

Bullrich F, Veronese ML, Kitada S, Jurlander J, Caligiuri MA, Reed JC, Croce CM (1996)

Minimal region of loss at 13q14 in B-cell chronic lymphocytic leukemia. Blood 88

(8):3109–3115

BussemakersMJ, vanBokhovenA,VerhaeghGW,Smit FP,KarthausHF, Schalken JA,Debruyne FM,

Ru N, Isaacs WB (1999) DD3: a new prostate-specific gene, highly overexpressed in prostate

cancer. Cancer Res 59(23):5975–5979

Cai X, Cullen BR (2007) The imprinted H19 noncoding RNA is a primary microRNA precursor.

RNA 13(3):313–316

Calin GA, Dumitru CD, Shimizu M, Bichi R, Zupo S, Noch E, Aldler H, Rattan S, Keating M,

Rai K, Rassenti L, Kipps T, Negrini M, Bullrich F, Croce CM (2002) Frequent deletions and

216 S.K.A. Ellatif et al.



downregulation of micro-RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic

leukemia. Proc Natl Acad Sci USA 99(24):15524–15529

Calin GA, Liu CG, Ferracin M, Hyslop T, Spizzo R, Sevignani C, Fabbri M, Cimmino A, Lee EJ,

Wojcik SE, Shimizu M, Tili E, Rossi S, Taccioli C, Pichiorri F, Liu X, Zupo S, Herlea V,

Gramantieri L, Lanza G, Alder H, Rassenti L, Volinia S, Schmittgen TD, Kipps TJ, Negrini M,

Croce CM (2007) Ultraconserved regions encoding ncRNAs are altered in human leukemias

and carcinomas. Cancer Cell 12(3):215–229

Carninci P, Kasukawa T, Katayama S, Gough J, FrithMC,MaedaN, Oyama R, Ravasi T, Lenhard B,

Wells C, Kodzius R, Shimokawa K, Bajic VB, Brenner SE, Batalov S, Forrest AR, Zavolan M,

Davis MJ,Wilming LG, Aidinis V, Allen JE, Ambesi-Impiombato A, Apweiler R, Aturaliya RN,

Bailey TL, Bansal M, Baxter L, Beisel KW, Bersano T, Bono H, Chalk AM, Chiu KP,

Choudhary V, Christoffels A, Clutterbuck DR, Crowe ML, Dalla E, Dalrymple BP, de Bono B,

Della GG, di Bernardo D, Down T, Engstrom P, Fagiolini M, Faulkner G, Fletcher CF,

Fukushima T, Furuno M, Futaki S, Gariboldi M, Georgii-Hemming P, Gingeras TR, Gojobori T,

Green RE, Gustincich S, Harbers M, Hayashi Y, Hensch TK, Hirokawa N, Hill D,

Huminiecki L, Iacono M, Ikeo K, Iwama A, Ishikawa T, Jakt M, Kanapin A, Katoh M,

Kawasawa Y, Kelso J, Kitamura H, Kitano H, Kollias G, Krishnan SP, Kruger A,

Kummerfeld SK, Kurochkin IV, Lareau LF, Lazarevic D, Lipovich L, Liu J, Liuni S,

McWilliam S, Madan BM, Madera M, Marchionni L, Matsuda H, Matsuzawa S, Miki H,

Mignone F, Miyake S, Morris K, Mottagui-Tabar S, Mulder N, Nakano N, Nakauchi H, Ng P,

Nilsson R, Nishiguchi S, Nishikawa S, Nori F, Ohara O, Okazaki Y, Orlando V, Pang KC,

Pavan WJ, Pavesi G, Pesole G, Petrovsky N, Piazza S, Reed J, Reid JF, Ring BZ, Ringwald M,

Rost B, Ruan Y, Salzberg SL, Sandelin A, Schneider C, Schonbach C, Sekiguchi K,

Semple CA, Seno S, Sessa L, Sheng Y, Shibata Y, Shimada H, Shimada K, Silva D,

Sinclair B, Sperling S, Stupka E, Sugiura K, Sultana R, Takenaka Y, Taki K, Tammoja K,

Tan SL, Tang S, Taylor MS, Tegner J, Teichmann SA, Ueda HR, van Nimwegen E, Verardo R,

Wei CL, Yagi K, Yamanishi H, Zabarovsky E, Zhu S, Zimmer A, HideW, Bult C, Grimmond SM,

Teasdale RD, Liu ET, Brusic V, Quackenbush J, Wahlestedt C, Mattick JS, Hume DA,

Kai C, Sasaki D, Tomaru Y, Fukuda S, Kanamori-Katayama M, Suzuki M, Aoki J,

Arakawa T, Iida J, Imamura K, Itoh M, Kato T, Kawaji H, Kawagashira N, Kawashima T,

Kojima M, Kondo S, Konno H, Nakano K, Ninomiya N, Nishio T, Okada M, Plessy C,

Shibata K, Shiraki T, Suzuki S, Tagami M, Waki K, Watahiki A, Okamura-Oho Y, Suzuki H,

Kawai J, Hayashizaki Y (2005) The transcriptional landscape of the mammalian genome.

Science 309(5740):1559–1563

Caslini C (2010) Transcriptional regulation of telomeric non-coding RNA: implications on

telomere biology, replicative senescence and cancer. RNA Biol 7(1):18–22

Chen LL, Carmichael GG (2010a) Decoding the function of nuclear long non-coding RNAs. Curr

Opin Cell Biol 22(3):357–364

Chen LL, Carmichael GG (2010b) Long noncoding RNAs in mammalian cells: what, where, and

why? Wiley Interdiscip Rev RNA 1(1):2–21

Cheng J, Kapranov P, Drenkow J, Dike S, Brubaker S, Patel S, Long J, Stern D, Tammana H,

Helt G, Sementchenko V, Piccolboni A, Bekiranov S, Bailey DK, Ganesh M, Ghosh S, Bell I,

Gerhard DS, Gingeras TR (2005) Transcriptional maps of 10 human chromosomes at

5-nucleotide resolution. Science 308(5725):1149–1154

Chung S, Nakagawa H, Uemura M, Piao L, Ashikawa K, Hosono N, Takata R, Akamatsu S,

Kawaguchi T, Morizono T, Tsunoda T, Daigo Y, Matsuda K, Kamatani N, Nakamura Y,

Kubo M (2011) Association of a novel long non-coding RNA in 8q24 with prostate cancer

susceptibility. Cancer Sci 102(1):245–252

Clarke RA, Zhao Z, Guo AY, Roper K, Teng L, Fang ZM, Samaratunga H, Lavin MF, Gardiner RA

(2009) New genomic structure for prostate cancer specific gene PCA3 within BMCC1:

implications for prostate cancer detection and progression. PLoS One 4(3):e4995

Clemson CM, Hutchinson JN, Sara SA, Ensminger AW, Fox AH, Chess A, Lawrence JB (2009)

An architectural role for a nuclear noncoding RNA: NEAT1 RNA is essential for the structure

of paraspeckles. Mol Cell 33(6):717–726

8 Long Noncoding RNA Function and Expression in Cancer 217



Coccia EM, Cicala C, Charlesworth A, Ciccarelli C, Rossi GB, Philipson L, Sorrentino V (1992)

Regulation and expression of a growth arrest-specific gene (gas5) during growth, differentia-

tion, and development. Mol Cell Biol 12(8):3514–3521

Colnot S, Niwa-Kawakita M, Hamard G, Godard C, Le Plenier S, Houbron C, Romagnolo B,

Berrebi D, Giovannini M, Perret C (2004) Colorectal cancers in a new mouse model of familial

adenomatous polyposis: influence of genetic and environmental modifiers. Lab Invest 84

(12):1619–1630

Davis RL, Weintraub H, Lassar AB (1987) Expression of a single transfected cDNA converts

fibroblasts to myoblasts. Cell 51(6):987–1000

de Kok JB, Verhaegh GW, Roelofs RW, Hessels D, Kiemeney LA, Aalders TW, Swinkels DW,

Schalken JA (2002) DD3(PCA3), a very sensitive and specific marker to detect prostate

tumors. Cancer Res 62(9):2695–2698

DeChiara TM, Robertson EJ, Efstratiadis A (1991) Parental imprinting of the mouse insulin-like

growth factor II gene. Cell 64(4):849–859

Deng Z, Norseen J, Wiedmer A, Riethman H, Lieberman PM (2009) TERRA RNA binding to TRF2

facilitates heterochromatin formation andORC recruitment at telomeres.Mol Cell 35(4):403–413

Diederichs S (2010) Non-coding RNA in malignant tumors. A new world of tumor biomarkers and

target structures in cancer cells. Pathologe 31(Suppl 2):258–262

Dohner H, Stilgenbauer S, Benner A, Leupolt E, Krober A, Bullinger L, Dohner K, Bentz M,

Lichter P (2000) Genomic aberrations and survival in chronic lymphocytic leukemia. N Engl J

Med 343(26):1910–1916

Durand X, Moutereau S, Xylinas E, de la Taille A (2011) Progensa PCA3 test for prostate cancer.

Expert Rev Mol Diagn 11(2):137–144

Feng J, Bi C, Clark BS, Mady R, Shah P, Kohtz JD (2006) The Evf-2 noncoding RNA is

transcribed from the Dlx-5/6 ultraconserved region and functions as a Dlx-2 transcriptional

coactivator. Genes Dev 20(11):1470–1484

Fingar DC, Richardson CJ, Tee AR, Cheatham L, Tsou C, Blenis J (2004) mTOR controls cell

cycle progression through its cell growth effectors S6K1 and 4E-BP1/eukaryotic translation

initiation factor 4E. Mol Cell Biol 24(1):200–216

Fleming JV, Hay SM, Harries DN, Rees WD (1998) Effects of nutrient deprivation and differenti-

ation on the expression of growth-arrest genes (gas and gadd) in F9 embryonal carcinoma cells.

Biochem J 330(Pt 1):573–579

Fontanier-Razzaq N, Harries DN, Hay SM, Rees WD (2002) Amino acid deficiency upregulates

specific mRNAs in murine embryonic cells. J Nutr 132(8):2137–2142

Forne T, Oswald J, Dean W, Saam JR, Bailleul B, Dandolo L, Tilghman SM, Walter J, Reik W

(1997) Loss of the maternal H19 gene induces changes in Igf2 methylation in both cis and

trans. Proc Natl Acad Sci USA 94(19):10243–10248

Gabory A, Jammes H, Dandolo L (2010) The H19 locus: role of an imprinted non-coding RNA in

growth and development. Bioessays 32(6):473–480

Ganesan S, Silver DP, Greenberg RA, Avni D, Drapkin R, Miron A, Mok SC, Randrianarison V,

Brodie S, Salstrom J, Rasmussen TP, Klimke A, Marrese C, Marahrens Y, Deng CX, Feunteun

J, Livingston DM (2002) BRCA1 supports XIST RNA concentration on the inactive X

chromosome. Cell 111(3):393–405

Gibb EA, Brown CJ, Lam WL (2011) The functional role of long non-coding RNA in human

carcinomas. Mol Cancer 10:38. doi:1476-4598-10-38 [pii] 10.1186/1476-4598-10-38

Guo F, Li Y, Liu Y, Wang J, Li G (2010) Inhibition of metastasis-associated lung adenocarcinoma

transcript 1 in CaSki human cervical cancer cells suppresses cell proliferation and invasion.

Acta Biochim Biophys Sin (Shanghai) 42(3):224–229

Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, Tsai MC, Hung T, Argani P,

Rinn JL, Wang Y, Brzoska P, Kong B, Li R, West RB, van de Vijver MJ, Sukumar S,

Chang HY (2010) Long non-coding RNA HOTAIR reprograms chromatin state to promote

cancer metastasis. Nature 464(7291):1071–1076

Habeck M (2003) Jewels among the junk. Drug Discov Today 8(4):145–146

218 S.K.A. Ellatif et al.

http://dx.doi.org/1476-4598-10-38 [pii] 10.1186/1476-4598-10-38


HafnerM, Landthaler M, Burger L, KhorshidM, Hausser J, Berninger P, Rothballer A, AscanoM Jr,

Jungkamp AC, Munschauer M, Ulrich A, Wardle GS, Dewell S, Zavolan M, Tuschl T (2010)

Transcriptome-wide identification of RNA-binding protein and microRNA target sites by PAR-

CLIP. Cell 141(1):129–141. doi:S0092-8674(10)00245-X [pii] 10.1016/j.cell.2010.03.009

Hanahan D, Weinberg RA (2000) The hallmarks of cancer. Cell 100(1):57–70. doi:S0092-8674

(00), 81683-9 [pii]

Hansen TV,HammerNA, Nielsen J,MadsenM, DalbaeckC,WewerUM,Christiansen J, Nielsen FC

(2004) Dwarfism and impaired gut development in insulin-like growth factor II mRNA-binding

protein 1-deficient mice. Mol Cell Biol 24(10):4448–4464

Hao Y, Crenshaw T, Moulton T, Newcomb E, Tycko B (1993) Tumour-suppressor activity of H19

RNA. Nature 365(6448):764–767. doi:10.1038/365764a0

Harley CB, Futcher AB, Greider CW (1990) Telomeres shorten during ageing of human

fibroblasts. Nature 345(6274):458–460. doi:10.1038/345458a0

Hay N, Sonenberg N (2004) Upstream and downstream of mTOR. Genes Dev 18(16):1926–1945.

doi:10.1101/gad.1212704 18/16/1926 [pii]

Hayflick L (1965) The limited in vitro lifetime of human diploid cell strains. Exp Cell Res

37:614–636

Hibi K, Nakamura H, Hirai A, Fujikake Y, Kasai Y, Akiyama S, Ito K, Takagi H (1996) Loss of

H19 imprinting in esophageal cancer. Cancer Res 56(3):480–482

Huang KC, Rao PH, Lau CC, Heard E, Ng SK, Brown C, Mok SC, Berkowitz RS, Ng SW (2002)

Relationship of XIST expression and responses of ovarian cancer to chemotherapy. Mol

Cancer Ther 1(10):769–776

HuarteM,GuttmanM,FeldserD,GarberM,KoziolMJ,Kenzelmann-BrozD,KhalilAM,ZukO,Amit I,

Rabani M, Attardi LD, Regev A, Lander ES, Jacks T, Rinn JL (2010) A large intergenic noncoding

RNA induced by p53 mediates global gene repression in the p53 response. Cell 142(3):409–419

Hutchinson JN, Ensminger AW, Clemson CM, Lynch CR, Lawrence JB, Chess A (2007) A screen

for nuclear transcripts identifies two linked noncoding RNAs associated with SC35 splicing

domains. BMC Genomics 8:39. doi:1471-2164-8-39 [pii] 10.1186/1471–2164-8-39

Ifere GO, Ananaba GA (2009a) Prostate cancer gene expression marker 1 (PCGEM1): a patented

prostate- specific non-coding gene and regulator of prostate cancer progression. Recent Pat

DNA Gene Seq 3(3):151–163. doi:DNAG: 09 [pii]

Ifere GO, Ananaba GA (2009b) Prostate cancer gene expression marker 1 (PCGEM1): a patented

prostate- specific non-coding gene and regulator of prostate cancer progression. Recent Pat

DNA Gene Seq 3(3):151–163

Ji P, Diederichs S, Wang W, Boing S, Metzger R, Schneider PM, Tidow N, Brandt B, Buerger H,

Bulk E, Thomas M, Berdel WE, Serve H, Muller-Tidow C (2003) MALAT-1, a novel

noncoding RNA, and thymosin beta4 predict metastasis and survival in early-stage non-

small cell lung cancer. Oncogene 22(39):8031–8041

Jia H, Osak M, Bogu GK, Stanton LW, Johnson R, Lipovich L (2010) Genome-wide computa-

tional identification and manual annotation of human long noncoding RNA genes. RNA 16

(8):1478–1487. doi:rna.1951310 [pii] 10.1261/rna.1951310

Jiang BH, Liu LZ (2008) Role of mTOR in anticancer drug resistance: perspectives for improved

drug treatment. Drug Resist Updat 11(3):63–76. doi:S1368-7646(08), 00018-6 [pii] 10.1016/j.

drup.2008.03.001

Johnson JM, Edwards S, Shoemaker D, Schadt EE (2005) Dark matter in the genome: evidence

of widespread transcription detected by microarray tiling experiments. Trends Genet

21(2):93–102. doi:S0168-9525(04), 00337-3 [pii] 10.1016/j.tig.2004.12.009

Kapranov P, Drenkow J, Cheng J, Long J, Helt G, Dike S, Gingeras TR (2005) Examples of the

complex architecture of the human transcriptome revealed by RACE and high-density tiling

arrays. Genome Res 15(7):987–997

Kawakami T, Okamoto K, Sugihara H, Hattori T, Reeve AE, Ogawa O, Okada Y (2003) The roles

of supernumerical X chromosomes and XIST expression in testicular germ cell tumors. J Urol

169(4):1546–1552. doi:10.1097/01.ju.0000044927.23323.5a S0022-5347(05), 63816-5 [pii]

8 Long Noncoding RNA Function and Expression in Cancer 219

http://dx.doi.org/S0092-8674(10)00245-X [pii] 10.1016/j.cell.2010.03.009
http://dx.doi.org/S0092-8674(00), 81683-9 [pii]
http://dx.doi.org/S0092-8674(00), 81683-9 [pii]
http://dx.doi.org/10.1038/365764a0
http://dx.doi.org/10.1038/345458a0
http://dx.doi.org/10.1101/gad.1212704 18/16/1926 [pii]
http://dx.doi.org/1471-2164-8-39 [pii] 10.1186/1471&ndash;2164-8-39
http://dx.doi.org/DNAG: 09 [pii]
http://dx.doi.org/rna.1951310 [pii] 10.1261/rna.1951310
http://dx.doi.org/S1368-7646(08), 00018-6 [pii] 10.1016/j.drup.2008.03.001
http://dx.doi.org/S1368-7646(08), 00018-6 [pii] 10.1016/j.drup.2008.03.001
http://dx.doi.org/S0168-9525(04), 00337-3 [pii] 10.1016/j.tig.2004.12.009
http://dx.doi.org/10.1097/01.ju.0000044927.23323.5a S0022-5347(05), 63816-5 [pii]


Kawakami T, Okamoto K, Ogawa O, Okada Y (2004a) XIST unmethylated DNA fragments in

male-derived plasma as a tumour marker for testicular cancer. Lancet 363(9402):40–42. doi:

S0140-6736(03), 15170-7 [pii] 10.1016/S0140-6736(03)15170-7

Kawakami T, Zhang C, Taniguchi T, Kim CJ, Okada Y, Sugihara H, Hattori T, Reeve AE, Ogawa

O, Okamoto K (2004b) Characterization of loss-of-inactive X in Klinefelter syndrome and

female-derived cancer cells. Oncogene 23(36):6163–6169. doi:10.1038/sj.onc.1207808

1207808 [pii]

KhaitanD, DingerME,Mazar J, Crawford J, SmithMA,Mattick JS, Perera RJ (2011) Themelanoma-

upregulated long noncoding RNA SPRY4-IT1 modulates apoptosis and invasion. Cancer Res 71

(11):3852–3862. doi:0008-5472.CAN-10-4460 [pii] 10.1158/0008-5472.CAN-10-4460

Kino T, Hurt DE, Ichijo T, Nader N, Chrousos GP (2010) Noncoding RNA gas5 is a growth arrest-

and starvation-associated repressor of the glucocorticoid receptor. Sci Signal 3(107):ra8

Klein U, Lia M, Crespo M, Siegel R, Shen Q, Mo T, Ambesi-Impiombato A, Califano A,

Migliazza A, Bhagat G, Dalla-Favera R (2010) The DLEU2/miR-15a/16-1 cluster controls B

cell proliferation and its deletion leads to chronic lymphocytic leukemia. Cancer Cell 17

(1):28–40. doi:S1535-6108(09)00419-X [pii] 10.1016/j.ccr.2009.11.019

Kondo M, Suzuki H, Ueda R, Osada H, Takagi K, Takahashi T (1995) Frequent loss of imprinting

of the H19 gene is often associated with its overexpression in human lung cancers. Oncogene

10(6):1193–1198

Kotake Y, Nakagawa T, Kitagawa K, Suzuki S, Liu N, Kitagawa M, Xiong Y (2011) Long non-

coding RNA ANRIL is required for the PRC2 recruitment to and silencing of p15(INK4B)

tumor suppressor gene. Oncogene 30(16):1956–1962

Laner T, Schulz WA, Engers R, Muller M, Florl AR (2005) Hypomethylation of the XIST gene

promoter in prostate cancer. Oncol Res 15(5):257–264

Lassmann S, Weis R, Makowiec F, Roth J, Danciu M, Hopt U, Werner M (2007) Array CGH

identifies distinct DNA copy number profiles of oncogenes and tumor suppressor genes in

chromosomal- and microsatellite-unstable sporadic colorectal carcinomas. J Mol Med 85

(3):293–304. doi:10.1007/s00109-006-0126-5

Lee JT, Davidow LS, Warshawsky D (1999) Tsix, a gene antisense to Xist at the X-inactivation

centre. Nat Genet 21(4):400–404. doi:10.1038/7734

Lin R, Maeda S, Liu C, Karin M, Edgington TS (2007) A large noncoding RNA is a marker for

murine hepatocellular carcinomas and a spectrum of human carcinomas. Oncogene 26

(6):851–858

Lin R, Roychowdhury-Saha M, Black C, Watt AT, Marcusson EG, Freier SM, Edgington TS

(2011) Control of RNA processing by a large non-coding RNA over-expressed in carcinomas.

FEBS Lett 585(4):671–676. doi:S0014-5793(11), 00060-3 [pii] 10.1016/j.febslet.2011.01.030

Lind GE, Skotheim RI, Lothe RA (2007) The epigenome of testicular germ cell tumors. APMIS

115(10):1147–1160. doi:APMapm_660.xml [pii] 10.1111/j.1600-0463.2007.apm_660.xml.x

Lipovich L, Johnson R, Lin CY (2010) MacroRNA underdogs in a microRNA world: evolution-

ary, regulatory, and biomedical significance of mammalian long non-protein-coding RNA.

Biochim Biophys Acta 1799(9):597–615

Liu Y, Corcoran M, Rasool O, Ivanova G, Ibbotson R, Grander D, Iyengar A, Baranova A,

Kashuba V, Merup M, Wu X, Gardiner A, Mullenbach R, Poltaraus A, Hultstrom AL,

Juliusson G, Chapman R, Tiller M, Cotter F, Gahrton G, Yankovsky N, Zabarovsky E,

Einhorn S, Oscier D (1997) Cloning of two candidate tumor suppressor genes within a 10 kb

region on chromosome 13q14, frequently deleted in chronic lymphocytic leukemia. Oncogene

15(20):2463–2473. doi:10.1038/sj.onc.1201643

Looijenga LH, Gillis AJ, van Gurp RJ, Verkerk AJ, Oosterhuis JW (1997) X inactivation in human

testicular tumors. XIST expression and androgen receptor methylation status. Am J Pathol 151

(2):581–590

Lottin S, Adriaenssens E, Dupressoir T, Berteaux N, Montpellier C, Coll J, Dugimont T, Curgy JJ

(2002) Overexpression of an ectopic H19 gene enhances the tumorigenic properties of breast

cancer cells. Carcinogenesis 23(11):1885–1895

220 S.K.A. Ellatif et al.

http://dx.doi.org/S0140-6736(03), 15170-7 [pii] 10.1016/S0140-6736(03)15170-7
http://dx.doi.org/10.1038/sj.onc.1207808 1207808 [pii]
http://dx.doi.org/10.1038/sj.onc.1207808 1207808 [pii]
http://dx.doi.org/0008-5472.CAN-10-4460 [pii] 10.1158/0008-5472.CAN-10-4460
http://dx.doi.org/S1535-6108(09)00419-X [pii] 10.1016/j.ccr.2009.11.019
http://dx.doi.org/10.1007/s00109-006-0126-5
http://dx.doi.org/10.1038/7734
http://dx.doi.org/S0014-5793(11), 00060-3 [pii] 10.1016/j.febslet.2011.01.030
http://dx.doi.org/APMapm_660.xml [pii] 10.1111/j.1600-0463.2007.apm_660.xml.x
http://dx.doi.org/10.1038/sj.onc.1201643


Lottin S, Adriaenssens E, Berteaux N, Lepretre A, Vilain MO, Denhez E, Coll J, Dugimont T,

Curgy JJ (2005) The human H19 gene is frequently overexpressed in myometrium and stroma

during pathological endometrial proliferative events. Eur J Cancer 41(1):168–177. doi:S0959-

8049(04), 00780-4 [pii] 10.1016/j.ejca.2004.09.025

Luke B, Lingner J (2009) TERRA: telomeric repeat-containing RNA. EMBO J 28(17):2503–2510.

doi:emboj2009166 [pii] 10.1038/emboj.2009.166

Martianov I, Ramadass A, Serra Barros A, Chow N, Akoulitchev A (2007) Repression of the

human dihydrofolate reductase gene by a non-coding interfering transcript. Nature 445

(7128):666–670. doi:nature05519 [pii] 10.1038/nature05519

Matouk IJ, DeGroot N, Mezan S, Ayesh S, Abu-lail R, Hochberg A, Galun E (2007) The H19 non-

coding RNA is essential for human tumor growth. PLoS One 2(9):e845. doi:10.1371/journal.

pone.0000845

Matouk IJ, Abbasi I, Hochberg A, Galun E, Dweik H, Akkawi M (2009) Highly upregulated in

liver cancer noncoding RNA is overexpressed in hepatic colorectal metastasis. Eur J

Gastroenterol Hepatol 21(6):688–692

Mattick JS (2003) Challenging the dogma: the hidden layer of non-protein-coding RNAs in

complex organisms. Bioessays 25(10):930–939

Mattick JS, Makunin IV (2006) Non-coding RNA. Hum Mol Genet 15(1):R17–R29

Mercer TR, Dinger ME, Mattick JS (2009) Long non-coding RNAs: insights into functions. Nat

Rev Genet 10(3):155–159

Mertens D, Philippen A, Ruppel M, Allegra D, Bhattacharya N, Tschuch C, Wolf S, Idler I,

Zenz T, Stilgenbauer S (2009) Chronic lymphocytic leukemia and 13q14: miRs and more.

Leuk Lymphoma 50(3):502–505

Migliazza A, Bosch F, Komatsu H, Cayanis E, Martinotti S, Toniato E, Guccione E, Qu X,

Chien M, Murty VV, Gaidano G, Inghirami G, Zhang P, Fischer S, Kalachikov SM, Russo J,

Edelman I, Efstratiadis A, Dalla-Favera R (2001) Nucleotide sequence, transcription map, and

mutation analysis of the 13q14 chromosomal region deleted in B-cell chronic lymphocytic

leukemia. Blood 97(7):2098–2104

Morrison LE, Jewell SS, Usha L, Blondin BA, Rao RD, Tabesh B, Kemper M, Batus M, Coon JS

(2007) Effects of ERBB2 amplicon size and genomic alterations of chromosomes 1, 3, and 10

on patient response to trastuzumab in metastatic breast cancer. Genes Chromosomes Cancer 46

(4):397–405. doi:10.1002/gcc.20419

Mourtada-Maarabouni M, Hedge VL, Kirkham L, Farzaneh F, Williams GT (2008) Growth arrest

in human T-cells is controlled by the non-coding RNA growth-arrest-specific transcript 5

(GAS5). J Cell Sci 121(Pt 7):939–946. doi:121/7/939 [pii] 10.1242/jcs.024646

Mourtada-Maarabouni M, Pickard MR, Hedge VL, Farzaneh F, Williams GT (2009) GAS5, a non-

protein-coding RNA, controls apoptosis and is downregulated in breast cancer. Oncogene 28

(2):195–208

Mourtada-Maarabouni M, Hasan AM, Farzaneh F, Williams GT (2010) Inhibition of human T-cell

proliferation by mammalian target of rapamycin (mTOR) antagonists requires noncoding RNA

growth-arrest-specific transcript 5 (GAS5). Mol Pharmacol 78(1):19–28. doi:mol.110.064055

[pii] 10.1124/mol.110.064055

Muller AJ, Chatterjee S, Teresky A, Levine AJ (1998) The gas5 gene is disrupted by a frameshift

mutation within its longest open reading frame in several inbred mouse strains and maps to

murine chromosome 1. Mamm Genome 9(9):773–774

Nakamura Y, Takahashi N, Kakegawa E, Yoshida K, Ito Y, Kayano H, Niitsu N, Jinnai I,

Bessho M (2008) The GAS5 (growth arrest-specific transcript 5) gene fuses to BCL6 as a

result of t(1;3)(q25;q27) in a patient with B-cell lymphoma. Cancer Genet Cytogenet 182

(2):144–149. doi:S0165-4608(08), 00035-6 [pii] 10.1016/j.cancergencyto.2008.01.013

Ng LJ, Cropley JE, Pickett HA, Reddel RR, Suter CM (2009) Telomerase activity is associated

with an increase in DNA methylation at the proximal subtelomere and a reduction in telomeric

transcription. Nucleic Acids Res 37(4):1152–1159. doi:gkn1030 [pii] 10.1093/nar/gkn1030

8 Long Noncoding RNA Function and Expression in Cancer 221

http://dx.doi.org/S0959-8049(04), 00780-4 [pii] 10.1016/j.ejca.2004.09.025
http://dx.doi.org/S0959-8049(04), 00780-4 [pii] 10.1016/j.ejca.2004.09.025
http://dx.doi.org/emboj2009166 [pii] 10.1038/emboj.2009.166
http://dx.doi.org/nature05519 [pii] 10.1038/nature05519
http://dx.doi.org/10.1371/journal.pone.0000845
http://dx.doi.org/10.1371/journal.pone.0000845
http://dx.doi.org/10.1002/gcc.20419
http://dx.doi.org/121/7/939 [pii] 10.1242/jcs.024646
http://dx.doi.org/mol.110.064055 [pii] 10.1124/mol.110.064055
http://dx.doi.org/mol.110.064055 [pii] 10.1124/mol.110.064055
http://dx.doi.org/S0165-4608(08), 00035-6 [pii] 10.1016/j.cancergencyto.2008.01.013
http://dx.doi.org/gkn1030 [pii] 10.1093/nar/gkn1030


Nomura S, Baxter T, Yamaguchi H, Leys C, Vartapetian AB, Fox JG, Lee JR, Wang TC,

Goldenring JR (2004) Spasmolytic polypeptide expressing metaplasia to preneoplasia in H.

felis-infected mice. Gastroenterology 127(2):582–594. doi:doi:S0016508504009217 [pii]

Nupponen NN, Carpten JD (2001) Prostate cancer susceptibility genes: many studies, many

results, no answers. Cancer Metastasis Rev 20(3–4):155–164

Ogawa Y, Sun BK, Lee JT (2008) Intersection of the RNA interference and X-inactivation

pathways. Science 320(5881):1336–1341. doi:320/5881/1336 [pii] 10.1126/science.1157676

Okazaki Y, Furuno M, Kasukawa T, Adachi J, Bono H, Kondo S, Nikaido I, Osato N, Saito R,

Suzuki H, Yamanaka I, Kiyosawa H, Yagi K, Tomaru Y, Hasegawa Y, Nogami A, Schonbach C,

Gojobori T, Baldarelli R, Hill DP, Bult C, Hume DA, Quackenbush J, Schriml LM, Kanapin A,

Matsuda H, Batalov S, Beisel KW, Blake JA, Bradt D, Brusic V, Chothia C, Corbani LE,

Cousins S, Dalla E, Dragani TA, Fletcher CF, Forrest A, Frazer KS, Gaasterland T,

Gariboldi M, Gissi C, Godzik A, Gough J, Grimmond S, Gustincich S, Hirokawa N, Jackson IJ,

Jarvis ED, Kanai A, Kawaji H, Kawasawa Y, Kedzierski RM, King BL, Konagaya A,

Kurochkin IV, Lee Y, Lenhard B, Lyons PA, Maglott DR, Maltais L, Marchionni L,

McKenzie L, Miki H, Nagashima T, Numata K, Okido T, Pavan WJ, Pertea G, Pesole G,

Petrovsky N, Pillai R, Pontius JU, Qi D, Ramachandran S, Ravasi T, Reed JC, Reed DJ, Reid J,

Ring BZ, Ringwald M, Sandelin A, Schneider C, Semple CA, Setou M, Shimada K, Sultana R,

Takenaka Y, Taylor MS, Teasdale RD, Tomita M, Verardo R, Wagner L, Wahlestedt C,

Wang Y, Watanabe Y, Wells C, Wilming LG, Wynshaw-Boris A, Yanagisawa M, Yang I,

Yang L, Yuan Z, Zavolan M, Zhu Y, Zimmer A, Carninci P, Hayatsu N, Hirozane-Kishikawa T,

Konno H, Nakamura M, Sakazume N, Sato K, Shiraki T, Waki K, Kawai J, Aizawa K, Arakawa

T, Fukuda S, Hara A, Hashizume W, Imotani K, Ishii Y, Itoh M, Kagawa I, Miyazaki A, Sakai K,

Sasaki D, Shibata K, Shinagawa A, Yasunishi A, Yoshino M, Waterston R, Lander ES, Rogers

J, Birney E, Hayashizaki Y (2002) Analysis of the mouse transcriptome based on functional

annotation of 60,770 full-length cDNAs. Nature 420(6915):563–573

Pachnis V, Belayew A, Tilghman SM (1984) Locus unlinked to alpha-fetoprotein under the

control of the murine raf and Rif genes. Proc Natl Acad Sci USA 81(17):5523–5527

Pageau GJ, Hall LL, Lawrence JB (2007) BRCA1 does not paint the inactive X to localize XIST

RNA but may contribute to broad changes in cancer that impact XIST and Xi heterochromatin.

J Cell Biochem 100(4):835–850. doi:10.1002/jcb.21188

Panzitt K, Tschernatsch MM, Guelly C, Moustafa T, Stradner M, Strohmaier HM, Buck CR,

Denk H, Schroeder R, Trauner M, Zatloukal K (2007) Characterization of HULC, a novel gene

with striking upregulation in hepatocellular carcinoma, as noncoding RNA. Gastroenterology

132(1):330–342

Pasmant E, Laurendeau I, Heron D, Vidaud M, Vidaud D, Bieche I (2007) Characterization of a

germ-line deletion, including the entire INK4/ARF locus, in a melanoma-neural system tumor

family: identification of ANRIL, an antisense noncoding RNA whose expression coclusters

with ARF. Cancer Res 67(8):3963–3969. doi:67/8/3963 [pii] 10.1158/0008-5472.CAN-06-

2004

Pasmant E, Sabbagh A, Vidaud M, Bieche I (2010) ANRIL, a long, noncoding RNA, is an

unexpected major hotspot in GWAS. FASEB J 25(2):444–8

Poirier F, Chan CT, Timmons PM, Robertson EJ, Evans MJ, Rigby PW (1991) The murine H19

gene is activated during embryonic stem cell differentiation in vitro and at the time of

implantation in the developing embryo. Development 113(4):1105–1114

Poliseno L, Salmena L, Zhang J, Carver B, Haveman WJ, Pandolfi PP (2010) A coding-indepen-

dent function of gene and pseudogene mRNAs regulates tumour biology. Nature 465

(7301):1033–1038. doi:nature09144 [pii] 10.1038/nature09144

Ponting CP, Oliver PL, Reik W (2009) Evolution and functions of long noncoding RNAs. Cell 136

(4):629–641

Rack KA, Chelly J, Gibbons RJ, Rider S, Benjamin D, Lafreniere RG, Oscier D, Hendriks RW,

Craig IW, Willard HF et al (1994) Absence of the XIST gene from late-replicating isodicentric

X chromosomes in leukaemia. Hum Mol Genet 3(7):1053–1059

222 S.K.A. Ellatif et al.

http://dx.doi.org/doi:S0016508504009217 [pii]
http://dx.doi.org/320/5881/1336 [pii] 10.1126/science.1157676
http://dx.doi.org/10.1002/jcb.21188
http://dx.doi.org/67/8/3963 [pii] 10.1158/0008-5472.CAN-06-2004
http://dx.doi.org/67/8/3963 [pii] 10.1158/0008-5472.CAN-06-2004
http://dx.doi.org/nature09144 [pii] 10.1038/nature09144


Raho G, Barone V, Rossi D, Philipson L, Sorrentino V (2000) The gas 5 gene shows four

alternative splicing patterns without coding for a protein. Gene 256(1–2):13–17. doi:S0378-

1119(00), 00363-2 [pii]

Redon S, Reichenbach P, Lingner J (2010) The non-coding RNA TERRA is a natural ligand and

direct inhibitor of human telomerase. Nucleic Acids Res 38(17):5797–5806. doi:gkq296 [pii]

10.1093/nar/gkq296

Riccio A, Sparago A, Verde G, De Crescenzo A, Citro V, Cubellis MV, Ferrero GB, Silengo MC,

Russo S, Larizza L, Cerrato F (2009) Inherited and sporadic epimutations at the IGF2-H19 locus

in Beckwith-Wiedemann syndrome andWilms’ tumor. Endocr Dev 14:1–9. doi:000207461 [pii]

10.1159/000207461

Richler C, Soreq H, Wahrman J (1992) X inactivation in mammalian testis is correlated with

inactive X-specific transcription. Nat Genet 2(3):192–195. doi:10.1038/ng1192-192

Rinn JL, Kertesz M, Wang JK, Squazzo SL, Xu X, Brugmann SA, Goodnough LH, Helms JA,

Farnham PJ, Segal E, Chang HY (2007) Functional demarcation of active and silent chromatin

domains in human HOX loci by noncoding RNAs. Cell 129(7):1311–1323. doi:S0092-8674

(07), 00659-9 [pii] 10.1016/j.cell.2007.05.022

Rump P, Zeegers MP, van Essen AJ (2005) Tumor risk in Beckwith-Wiedemann syndrome: a

review and meta-analysis. Am J Med Genet A 136(1):95–104. doi:10.1002/ajmg.a.30729

Runge S, Nielsen FC, Nielsen J, Lykke-Andersen J, Wewer UM, Christiansen J (2000) H19 RNA

binds four molecules of insulin-like growth factor II mRNA-binding protein. J Biol Chem 275

(38):29562–29569. doi:10.1074/jbc.M001156200 M001156200 [pii]

Schneider C, King RM, Philipson L (1988) Genes specifically expressed at growth arrest of

mammalian cells. Cell 54(6):787–793. doi:S0092-8674(88), 91065-3 [pii]

Schoeftner S, Blasco MA (2008) Developmentally regulated transcription of mammalian

telomeres by DNA-dependent RNA polymerase II. Nat Cell Biol 10(2):228–236. doi:

ncb1685 [pii] 10.1038/ncb1685

Shay JW, Bacchetti S (1997) A survey of telomerase activity in human cancer. Eur J Cancer 33

(5):787–791. doi:S0959-8049(97), 00062-2 [pii] 10.1016/S0959-8049(97)00062-2

Shete S, Hosking FJ, Robertson LB, Dobbins SE, Sanson M, Malmer B, Simon M, Marie Y,

Boisselier B, Delattre JY, Hoang-Xuan K, El Hallani S, Idbaih A, Zelenika D, Andersson U,

Henriksson R, Bergenheim AT, Feychting M, Lonn S, Ahlbom A, Schramm J, Linnebank M,

Hemminki K, Kumar R, Hepworth SJ, Price A, Armstrong G, Liu Y, Gu X, Yu R, Lau C,

Schoemaker M, Muir K, Swerdlow A, Lathrop M, Bondy M, Houlston RS (2009) Genome-

wide association study identifies five susceptibility loci for glioma. Nat Genet 41(8):899–904.

doi:ng.407 [pii] 10.1038/ng.407

Shi Z,DraginN,MillerML, StringerKF, JohanssonE, Chen J,Uno S, Gonzalez FJ, Rubio CA,Nebert

DW (2010) Oral benzo[a]pyrene-induced cancer: two distinct types in different target organs

depend on the mouse Cyp1 genotype. Int J Cancer 127(10):2334–2350. doi:10.1002/ijc.25222

Silver DP, Dimitrov SD, Feunteun J, Gelman R, Drapkin R, Lu SD, Shestakova E, Velmurugan S,

Denunzio N, Dragomir S, Mar J, Liu X, Rottenberg S, Jonkers J, Ganesan S, Livingston DM

(2007) Further evidence for BRCA1 communication with the inactive X chromosome. Cell 128

(5):991–1002. doi:S0092-8674(07), 00249-8 [pii] 10.1016/j.cell.2007.02.025

Sirchia SM, Tabano S, Monti L, Recalcati MP, Gariboldi M, Grati FR, Porta G, Finelli P, Radice P,

Miozzo M (2009) Misbehaviour of XIST RNA in breast cancer cells. PLoS One 4(5):e5559.

doi:10.1371/journal.pone.0005559

Smaldone MC, Davies BJ (2010) BC-819, a plasmid comprising the H19 gene regulatory

sequences and diphtheria toxin A, for the potential targeted therapy of cancers. Curr Opin

Mol Ther 12(5):607–616

Smedley D, Sidhar S, Birdsall S, Bennett D, Herlyn M, Cooper C, Shipley J (2000) Characterization

of chromosome 1 abnormalities in malignant melanomas. Genes Chromosomes Cancer 28

(1):121–125. doi:10.1002/(SICI)1098-2264(200005)28:1<121::AID-GCC14>3.0.CO;2-O [pii]

Smith CM, Steitz JA (1998) Classification of gas5 as a multi-small-nucleolar-RNA (snoRNA) host

gene and a member of the 50-terminal oligopyrimidine gene family reveals common features of

snoRNA host genes. Mol Cell Biol 18(12):6897–6909

8 Long Noncoding RNA Function and Expression in Cancer 223

http://dx.doi.org/S0378-1119(00), 00363-2 [pii]
http://dx.doi.org/S0378-1119(00), 00363-2 [pii]
http://dx.doi.org/gkq296 [pii] 10.1093/nar/gkq296
http://dx.doi.org/gkq296 [pii] 10.1093/nar/gkq296
http://dx.doi.org/000207461 [pii] 10.1159/000207461
http://dx.doi.org/000207461 [pii] 10.1159/000207461
http://dx.doi.org/10.1038/ng1192-192
http://dx.doi.org/S0092-8674(07), 00659-9 [pii] 10.1016/j.cell.2007.05.022
http://dx.doi.org/S0092-8674(07), 00659-9 [pii] 10.1016/j.cell.2007.05.022
http://dx.doi.org/10.1002/ajmg.a.30729
http://dx.doi.org/10.1074/jbc.M001156200 M001156200 [pii]
http://dx.doi.org/S0092-8674(88), 91065-3 [pii]
http://dx.doi.org/ncb1685 [pii] 10.1038/ncb1685
http://dx.doi.org/S0959-8049(97), 00062-2 [pii] 10.1016/S0959-8049(97)00062-2
http://dx.doi.org/ng.407 [pii] 10.1038/ng.407
http://dx.doi.org/10.1002/ijc.25222
http://dx.doi.org/S0092-8674(07), 00249-8 [pii] 10.1016/j.cell.2007.02.025
http://dx.doi.org/10.1371/journal.pone.0005559


Song MA, Park JH, Jeong KS, Park DS, Kang MS, Lee S (2007) Quantification of CpG methyla-

tion at the 50-region of XIST by pyrosequencing from human serum. Electrophoresis 28

(14):2379–2384. doi:10.1002/elps.200600852

Srikantan V, Zou Z, Petrovics G, Xu L, Augustus M, Davis L, Livezey JR, Connell T, Sesterhenn

IA, Yoshino K, Buzard GS, Mostofi FK, McLeod DG, Moul JW, Srivastava S (2000)

PCGEM1, a prostate-specific gene, is overexpressed in prostate cancer. Proc Natl Acad Sci

USA 97(22):12216–12221. doi:10.1073/pnas.97.22.12216 97/22/12216 [pii]

Stacey SN, Sulem P, Masson G, Gudjonsson SA, Thorleifsson G, Jakobsdottir M, Sigurdsson A,

Gudbjartsson DF, Sigurgeirsson B, Benediktsdottir KR, Thorisdottir K, Ragnarsson R, Scherer D,

Hemminki K, Rudnai P, Gurzau E, Koppova K, Botella-Estrada R, Soriano V, Juberias P,

Saez B, Gilaberte Y, Fuentelsaz V, Corredera C, GrasaM, HoiomV, LindblomA, Bonenkamp JJ,

van Rossum MM, Aben KK, de Vries E, Santinami M, Di Mauro MG, Maurichi A, Wendt J,

Hochleitner P, Pehamberger H, Gudmundsson J, Magnusdottir DN, Gretarsdottir S, Holm H,

Steinthorsdottir V, Frigge ML, Blondal T, Saemundsdottir J, Bjarnason H, Kristjansson K,

Bjornsdottir G, Okamoto I, Rivoltini L, Rodolfo M, Kiemeney LA, Hansson J, Nagore E,

Mayordomo JI, Kumar R, Karagas MR, Nelson HH, Gulcher JR, Rafnar T, Thorsteinsdottir U,

Olafsson JH, Kong A, Stefansson K (2009) New common variants affecting susceptibility to

basal cell carcinoma. Nat Genet 41(8):909–914. doi:ng.412 [pii] 10.1038/ng.412

Stange DE, Radlwimmer B, Schubert F, Traub F, Pich A, Toedt G, Mendrzyk F, Lehmann U, Eils R,

Kreipe H, Lichter P (2006) High-resolution genomic profiling reveals association of chromo-

somal aberrations on 1q and 16p with histologic and genetic subgroups of invasive breast cancer.

Clin Cancer Res 12(2):345–352. doi:12/2/345 [pii] 10.1158/1078-0432.CCR-05-1633

Stilgenbauer S, Nickolenko J, Wilhelm J, Wolf S, Weitz S, Dohner K, Boehm T, Dohner H,

Lichter P (1998) Expressed sequences as candidates for a novel tumor suppressor gene at band

13q14 in B-cell chronic lymphocytic leukemia and mantle cell lymphoma. Oncogene 16

(14):1891–1897. doi:10.1038/sj.onc.1201764

Sultan M, Schulz MH, Richard H, Magen A, Klingenhoff A, Scherf M, Seifert M, Borodina T,

Soldatov A, Parkhomchuk D, Schmidt D, O’Keeffe S, Haas S, Vingron M, Lehrach H, Yaspo

ML (2008) A global view of gene activity and alternative splicing by deep sequencing of the

human transcriptome. Science 321(5891):956–960

Taft RJ, Pang KC, Mercer TR, Dinger M, Mattick JS (2010) Non-coding RNAs: regulators of

disease. J Pathol 220(2):126–139

Tano K, Mizuno R, Okada T, Rakwal R, Shibato J, Masuo Y, Ijiri K, Akimitsu N (2010) MALAT-

1 enhances cell motility of lung adenocarcinoma cells by influencing the expression of

motility-related genes. FEBS Lett 584(22):4575–4580

Tanos V, Prus D, Ayesh S, Weinstein D, Tykocinski ML, De-Groot N, Hochberg A, Ariel I (1999)

Expression of the imprinted H19 oncofetal RNA in epithelial ovarian cancer. Eur J Obstet

Gynecol Reprod Biol 85(1):7–11. doi:S0301211598002759 [pii]

Tripathi V, Ellis JD, Shen Z, Song DY, Pan Q, Watt AT, Freier SM, Bennett CF, Sharma A,

Bubulya PA, Blencowe BJ, Prasanth SG, Prasanth KV (2010) The nuclear-retained

noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor

phosphorylation. Mol Cell 39(6):925–938. doi:S1097-2765(10), 00621-0 [pii] 10.1016/j.

molcel.2010.08.011

Tsai MC, Manor O, Wan Y, Mosammaparast N, Wang JK, Lan F, Shi Y, Segal E, Chang HY

(2010) Long noncoding RNA as modular scaffold of histone modification complexes. Science

329(5992):689–693. doi:science.1192002 [pii] 10.1126/science.1192002

Tsai MC, Spitale RC, Chang HY (2011) Long intergenic noncoding RNAs: new links in cancer

progression. Cancer Res 71(1):3–7. doi:71/1/3 [pii] 10.1158/0008-5472.CAN-10-2483

Turnbull C, Ahmed S, Morrison J, Pernet D, Renwick A, Maranian M, Seal S, Ghoussaini M,

Hines S, Healey CS, Hughes D, Warren-Perry M, Tapper W, Eccles D, Evans DG, Hooning M,

Schutte M, van den Ouweland A, Houlston R, Ross G, Langford C, Pharoah PD, Stratton MR,

Dunning AM, Rahman N, Easton DF (2010) Genome-wide association study identifies five

224 S.K.A. Ellatif et al.

http://dx.doi.org/10.1002/elps.200600852
http://dx.doi.org/10.1073/pnas.97.22.12216 97/22/12216 [pii]
http://dx.doi.org/ng.412 [pii] 10.1038/ng.412
http://dx.doi.org/12/2/345 [pii] 10.1158/1078-0432.CCR-05-1633
http://dx.doi.org/10.1038/sj.onc.1201764
http://dx.doi.org/S0301211598002759 [pii]
http://dx.doi.org/S1097-2765(10), 00621-0 [pii] 10.1016/j.molcel.2010.08.011
http://dx.doi.org/S1097-2765(10), 00621-0 [pii] 10.1016/j.molcel.2010.08.011
http://dx.doi.org/science.1192002 [pii] 10.1126/science.1192002
http://dx.doi.org/71/1/3 [pii] 10.1158/0008-5472.CAN-10-2483


new breast cancer susceptibility loci. Nat Genet 42(6):504–507. doi:ng.586 [pii] 10.1038/

ng.586

Verkerk AJ, Ariel I, Dekker MC, Schneider T, van Gurp RJ, de Groot N, Gillis AJ, Oosterhuis JW,

Hochberg AA, Looijenga LH (1997) Unique expression patterns of H19 in human testicular

cancers of different etiology. Oncogene 14(1):95–107. doi:10.1038/sj.onc.1200802

Vincent-Salomon A, Ganem-Elbaz C, Manie E, Raynal V, Sastre-Garau X, Stoppa-Lyonnet D,

Stern MH, Heard E (2007) X inactive-specific transcript RNA coating and genetic instability of

the X chromosome in BRCA1 breast tumors. Cancer Res 67(11):5134–5140. doi:67/11/5134

[pii] 10.1158/0008-5472.CAN-07-0465

Wang XS, Zhang Z, Wang HC, Cai JL, Xu QW, Li MQ, Chen YC, Qian XP, Lu TJ, Yu LZ,

Zhang Y, Xin DQ, Na YQ, Chen WF (2006) Rapid identification of UCA1 as a very sensitive

and specific unique marker for human bladder carcinoma. Clin Cancer Res 12(16):4851–4858.

doi:12/16/4851 [pii] 10.1158/1078-0432.CCR-06-0134

Wang F, Li X, Xie X, Zhao L, Chen W (2008a) UCA1, a non-protein-coding RNA upregulated in

bladder carcinoma and embryo, influencing cell growth and promoting invasion. FEBS Lett

582(13):1919–1927. doi:S0014-5793(08), 00413-4 [pii] 10.1016/j.febslet.2008.05.012

Wang X, Arai S, Song X, Reichart D, Du K, Pascual G, Tempst P, Rosenfeld MG, Glass CK,

Kurokawa R (2008b) Induced ncRNAs allosterically modify RNA-binding proteins in cis to

inhibit transcription. Nature 454(7200):126–130. doi:nature06992 [pii] 10.1038/nature06992

Weakley SM,Wang H, Yao Q, Chen C (2011) Expression and function of a large non-coding RNA

Gene XIST in human cancer. World J Surg. doi:10.1007/s00268-010-0951-0

Wilusz JE, Freier SM, Spector DL (2008) 30 end processing of a long nuclear-retained noncoding

RNA yields a tRNA-like cytoplasmic RNA. Cell 135(5):919–932. doi:S0092-8674(08),

01303-2 [pii] 10.1016/j.cell.2008.10.012

Wilusz JE, Sunwoo H, Spector DL (2009) Long noncoding RNAs: functional surprises from the

RNA world. Genes Dev 23(13):1494–1504. doi:23/13/1494 [pii] 10.1101/gad.1800909

Winter J, Jung S, Keller S, Gregory RI, Diederichs S (2009) Many roads to maturity: microRNA

biogenesis pathways and their regulation. Nat Cell Biol 11(3):228–234

Wolf S, Mertens D, Schaffner C, Korz C, Dohner H, Stilgenbauer S, Lichter P (2001) B-cell

neoplasia associated gene with multiple splicing (BCMS): the candidate B-CLL gene on 13q14

comprises more than 560 kb covering all critical regions. Hum Mol Genet 10(12):1275–1285

Wu ZS, Lee JH, Kwon JA, Kim SH, Han SH, An JS, Lee ES, Park HR, Kim YS (2009) Genetic

alterations and chemosensitivity profile in newly established human renal collecting duct

carcinoma cell lines. BJU Int 103(12):1721–1728. doi:BJU8290 [pii] 10.1111/j.1464-

410X.2008.08290.x

Yamada K, Kano J, Tsunoda H, Yoshikawa H, Okubo C, Ishiyama T, Noguchi M (2006)

Phenotypic characterization of endometrial stromal sarcoma of the uterus. Cancer Sci 97

(2):106–112. doi:CAS [pii] 10.1111/j.1349-7006.2006.00147.x

Yang Z, Zhou L, Wu LM, Lai MC, Xie HY, Zhang F, Zheng SS (2011) Overexpression of long

non-coding RNA HOTAIR predicts tumor recurrence in hepatocellular carcinoma patients

following liver transplantation. Ann Surg Oncol. doi:10.1245/s10434-011-1581-y

Yap KL, Li S, Munoz-Cabello AM, Raguz S, Zeng L, Mujtaba S, Gil J, Walsh MJ, Zhou MM

(2010) Molecular interplay of the noncoding RNA ANRIL and methylated histone H3 lysine

27 by polycomb CBX7 in transcriptional silencing of INK4a. Mol Cell 38(5):662–674

Yoshimizu T, Miroglio A, Ripoche MA, Gabory A, Vernucci M, Riccio A, Colnot S, Godard C,

Terris B, Jammes H, Dandolo L (2008) The H19 locus acts in vivo as a tumor suppressor. Proc

Natl Acad Sci USA 105(34):12417–12422. doi:0801540105 [pii] 10.1073/pnas.0801540105

YuM, Ohira M, Li Y, Niizuma H, OoML, Zhu Y, Ozaki T, Isogai E, Nakamura Y, Koda T, Oba S,

Yu B, Nakagawara A (2009) High expression of ncRAN, a novel non-coding RNA mapped to

chromosome 17q25.1, is associated with poor prognosis in neuroblastoma. Int J Oncol 34

(4):931–938

8 Long Noncoding RNA Function and Expression in Cancer 225

http://dx.doi.org/ng.586 [pii] 10.1038/ng.586
http://dx.doi.org/ng.586 [pii] 10.1038/ng.586
http://dx.doi.org/10.1038/sj.onc.1200802
http://dx.doi.org/67/11/5134 [pii] 10.1158/0008-5472.CAN-07-0465
http://dx.doi.org/67/11/5134 [pii] 10.1158/0008-5472.CAN-07-0465
http://dx.doi.org/12/16/4851 [pii] 10.1158/1078-0432.CCR-06-0134
http://dx.doi.org/S0014-5793(08), 00413-4 [pii] 10.1016/j.febslet.2008.05.012
http://dx.doi.org/nature06992 [pii] 10.1038/nature06992
http://dx.doi.org/10.1007/s00268-010-0951-0
http://dx.doi.org/S0092-8674(08), 01303-2 [pii] 10.1016/j.cell.2008.10.012
http://dx.doi.org/S0092-8674(08), 01303-2 [pii] 10.1016/j.cell.2008.10.012
http://dx.doi.org/23/13/1494 [pii] 10.1101/gad.1800909
http://dx.doi.org/BJU8290 [pii] 10.1111/j.1464-410X.2008.08290.x
http://dx.doi.org/BJU8290 [pii] 10.1111/j.1464-410X.2008.08290.x
http://dx.doi.org/CAS [pii] 10.1111/j.1349-7006.2006.00147.x
http://dx.doi.org/10.1245/s10434-011-1581-y
http://dx.doi.org/0801540105 [pii] 10.1073/pnas.0801540105


Zhang X, Zhou Y, Mehta KR, Danila DC, Scolavino S, Johnson SR, Klibanski A (2003) A

pituitary-derived MEG3 isoform functions as a growth suppressor in tumor cells. J Clin

Endocrinol Metab 88(11):5119–5126

Zhang C, Kawakami T, Okada Y, Okamoto K (2005) Distinctive epigenetic phenotype of cancer

testis antigen genes among seminomatous and nonseminomatous testicular germ-cell tumors.

Genes Chromosomes Cancer 43(1):104–112

Zhang X, Rice K, Wang Y, Chen W, Zhong Y, Nakayama Y, Zhou Y, Klibanski A (2010)

Maternally expressed gene 3 (MEG3) noncoding ribonucleic acid: isoform structure, expres-

sion, and functions. Endocrinology 151(3):939–947

Zhao J, Sun BK, Erwin JA, Song JJ, Lee JT (2008) Polycomb proteins targeted by a short repeat

RNA to the mouse X chromosome. Science 322(5902):750–756

Zhao R, Bodnar MS, Spector DL (2009) Nuclear neighborhoods and gene expression. Curr Opin

Genet Dev 19(2):172–179

Zhao J, Ohsumi TK, Kung JT, Ogawa Y, Grau DJ, Sarma K, Song JJ, Kingston RE, Borowsky M,

Lee JT (2010) Genome-wide identification of polycomb-associated RNAs by RIP-seq. Mol

Cell 40(6):939–953

Zhu Y, Yu M, Li Z, Kong C, Bi J, Li J, Gao Z (2011) ncRAN, a newly identified long noncoding

RNA, enhances human bladder tumor growth, invasion, and survival. Urology 77(2):510

e511–515

226 S.K.A. Ellatif et al.



Part II

Methods



Chapter 9

Expression Profiling of ncRNAs Employing RNP

Libraries and Custom LNA/DNA Microarray

Analysis

Konstantinia Skreka, Michael Karbiener, Marek Zywicki, Alexander

H€uttenhofer, Marcel Scheideler, and Mathieu Rederstorff

Abstract Recently, it has been shown by the ENCODE consortium that more than

90% of the human genome might be transcribed. While only about 1.5% of these

transcripts correspond to mRNAs, it was proposed that the majority of them (i.e.,

88.5%) might correspond to regulatory noncoding RNAs (ncRNAs). Numerous

protocols dedicated to the generation of cDNA libraries coupled to next-generation

sequencing (NGS) technologies are currently available to identify novel ncRNA

species, and we have recently developed a novel procedure for the generation of

ribonucleoprotein (RNP) libraries. To validate differential expression of ncRNAs

identified using our or any library generation approach, we describe an innovative

ncRNA profiling approach based on microarray technology. Employing LNA

probes, dedicated to the analysis of small/microRNAs, and DNA probes, dedicated

to the study of longer ncRNAs, our platform enables the study of most ncRNAs

independently of their length in a single experiment. Detailed methodological

solution description includes the automated design of probes to be spotted on the

array, optimization of spotting and labeling of probes, as well as hybridization

conditions. All the steps have been improved for the analysis of ncRNAs, which are

generally difficult to study owing to their peculiarities in terms of secondary

structure or abundance.
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9.1 Introduction

9.1.1 The ncRNA Transcriptome

Pervasive transcription of eukaryotic genomes has been widely described within the

last decade, with the prediction that the majority of transcripts does not code for

proteins (Brosius 2005; Carninci et al. 2005; Cheng et al. 2005; Kampa et al. 2004;

Mattick and Makunin 2005, 2006; Willingham and Gingeras 2006). High-resolution

analysis of about 1% of the human genome by the ENCODE consortium has even

shown that more than 90% of the genome might be transcribed, with about 88.5% of

the transcripts corresponding to ncRNAs and only 1.5% to mRNAs (Birney et al.

2007). As a consequence, the predicted number of ncRNA transcripts originating

from these regions has increased extremely, with the highest estimations

corresponding to about 450,000 ncRNAs encoded in the human genome. This

suggests that ncRNAs may serve as major regulatory elements in eukaryal genomes

(Mattick and Makunin 2005, 2006). However, most of these transcripts remain of

unknown function, and it is still a matter of debate which ones represent real,

functional ncRNA species (Willingham and Gingeras 2006).

Most, if not all, functional ncRNAs are involved in RNA-protein complexes in

the cell, designated as ribonucleoprotein particles (RNPs), with a broad range of

possible functions. ncRNAs such as ribosomal RNAs (rRNAs) or transfer RNAs

(tRNAs) are involved in protein synthesis, while the more recently identified

small interfering or microRNAs (siRNAs, miRNAs) were found to regulate gene

expression (Liu et al. 2008; Ghildiyal and Zamore 2009; see also Chap. 12 of this
volume). New classes of ncRNAs continue to be discovered (Mercer et al. 2008;

Guttman et al. 2009; Dinger et al. 2008) and even for already known ncRNAs,

a complete understanding of their functions is still lacking.

9.1.2 ncRNA Identification and Profiling: Microarray Versus
Next-Generation Sequencing Approaches

To identify novel ncRNA candidates, numerous computational (Kawaji et al. 2009)

as well as experimental approaches based on the generation of cDNA libraries

(Rederstorff et al. 2010; Huttenhofer and Vogel 2006) have been described. Previ-

ously, cDNA libraries were generated using RNA that was size-separated on

denaturing gels (Jochl et al. 2008). This led mostly to the cloning and sequencing

of RNA species corresponding to ribosomal RNAs (rRNAs) or mRNA degradation

products, constituting a major issue. Therefore, to distinguish the biologically

relevant ncRNAs from junk transcripts, we developed a novel procedure for the

generation of cDNA libraries derived from ncRNAs involved in functional ribonu-

cleoprotein particles (Fig. 9.1) (Rederstorff et al. 2010; Rederstorff and Huttenhofer
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2011a). Thus, RNP libraries constitute an alternative approach for ncRNA

transcriptome studies employing RNA deep sequencing (RNA-seq). By employing

this approach, we could enrich the libraries with functional ncRNA species com-

pared to size-separated RNA libraries, as well as identify numerous candidates for

novel functional ncRNA.

One of the advantages of RNA-seq techniques is that they are open to the

identification of novel transcripts. Therefore, such “open” techniques are becoming

the standard for high-throughput transcriptome analysis (Hawkins et al. 2010) and

will benefit from the variations in library generation protocols to obtain an exhaus-

tive picture of the ncRNA transcriptome within a defined system. On the other

hand, microarray technologies belong to the “closed” approach category, which are

based on previous knowledge of the transcripts studied and are, thus, not suitable

Fig. 9.1 Generation of ncRNA libraries. Total RNA or RNP extracts are prepared from the cells

or tissues of interest. Classical library generation approaches use naked, phenol-extracted, size-

separated RNAs, which mostly leads to sequencing of non functional degradation products. RNP

libraries are enriched in functional RNA species, as the ncRNAs they contain are selected upon

binding to proteins within functional RNPs: to do so, RNP extracts are sedimentated on 10–30%

glycerol gradient before RNAs are extracted from the gradient fractions. Next, since ncRNAs do

not contain a poly(A) tail, they are, in the first step of the library generation process, tailed with

CTP and poly(A) polymerase. After the addition of C-tails, a primer-adapter is ligated to the 50-end
of ncRNAs, and they are reverse-transcribed into cDNA employing an oligo-d(G) primer. PCR-

amplified cDNA libraries are next submitted to high-throughput sequencing
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for the identification of previously uncharacterized ncRNA candidates (Table 9.1).

However, they remain largely used for various transcriptome analyses and remain a

method of choice for the profiling of ncRNAs once their identification has been

achieved by RNA-seq approaches.

Therefore, although the recently described “digital gene expression” by next-

generation sequencing (NGS) has been introduced as a promising new platform

for assessing the copy number of transcripts, thereby providing a digital record of

the numerical frequency of a sequence in a sample, the question of whether NGS

or microarray technology is better suited for ncRNA profiling is open for debate.

A study employing two synthetic ncRNA mixtures consisting of 744 synthetic

RNA oligonucleotides enabled a direct comparison of the results obtained from

each platform for the known RNA sample content (Willenbrock et al. 2009).

Microarray technology appeared to be highly specific and sensitive, surpassing

next-generation sequencing for absolute quantification of small ncRNAs (e.g.,

miRNAs). Nonetheless, sequencing offers other advantages, such as enabling

discovery of new sequence variants, although this study indicates that thorough

filtering is important in order to avoid overinterpretation of potential sequencing

errors. Both technologies deliver highly reproducible expression data and perform

well in relative gene expression studies (Willenbrock et al. 2009; Marioni et al.

2008). As for NGS, one has also to be aware of potential inaccuracies in sequenc-

ing data that might be introduced due to PCR biases, as most current techniques

involve an amplification step of RNA material (Metzker 2010; Carninci et al.

2005). In contrast, such amplification is usually not necessary for microarray

analyses.

Other methodologies have been applied to profile ncRNA expression, such as

northern blotting (Griffiths-Jones 2006), quantitative reverse transcription PCR-

based (qRT-PCR) amplification (Schmittgen et al. 2004) as well as bead-based

profiling (Goff et al. 2005) (Table 9.1). However, if a large number of ncRNAs are

screened for in a parallel manner, microarray-based profiling has grown in popular-

ity as the primary tool for gene expression analysis (Castoldi et al. 2008). Although

microarray-based expression profiling may be less sensitive in detecting low abun-

dant transcripts (compared to qRT-PCR), its application is often less reagent and/or

time consuming (compared to northern blotting or cloning approaches) or less

expensive (compared to qRT-PCR).

9.1.3 ncRNA Microarrays: The Challenges

Specificity and accuracy of mRNA expression profiling techniques applied to short

or long ncRNAs are challenged by (1) the short length of the transcripts that offer

little sequence for appending detection molecules (in case of detecting short

ncRNAs), (2) a wide range of predicted melting temperatures (Tm) compared to

their DNA counterparts, (3) the low copy number of some transcripts, (4) their

frequent occurrence in families that in some cases differ by as little as a single
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nucleotide (Griffiths-Jones 2006), and, last but not least, (5) secondary structures,

particularly in long ncRNAs (Anthony et al. 2003; Chandler et al. 2003). These

features complicate the design of suitable capture probes across the complete

“RNome” and the optimization of hybridization conditions that are unbiased

regarding an accurate detection of all ncRNAs. A combined platform for all

ncRNAs independently of their length appears therefore difficult to establish

due to the numerous different parameters each class of ncRNAs is presenting.

Hybridization temperature gradients (Hutzinger et al. 2010) have been employed

to bypass these problems, however, using labeled total RNA with a temperature

gradient might also result in higher background due to unspecific hybridization.

To overcome the challenges (1) and (2) in case of short ncRNAs, modified

oligonucleotides termed locked nucleic acids (LNA) can be incorporated within the

oligonucleotide capture probes immobilized on the array surface. LNA is a syn-

thetic RNA analog characterized by increased thermostability of nucleic acid

duplexes by 2–10�C per LNA/RNA hybrid when LNA monomers are introduced

into oligonucleotides (Fig. 9.2a). As a consequence of this property, LNA-modified

capture probes can be designed such that, despite the limited length of the short

ncRNA capture probe, a uniform Tm can be applied to a genome-wide set of probes,

allowing the establishment of normalized hybridization conditions. To overcome

Fig. 9.2 Hybrid LNA/DNA microarrays. (a) Structures of DNA, RNA, and LNA nucleotide

monomers. An LNA is a synthetic RNA analog which maintains a stable 30-endo conformation

due to a bridge connecting the 20 oxygen with the 40 carbon of the ribose. As a consequence, an

oligonucleotide containing LNA residues has a higher melting temperature than an RNA or a DNA

oligonucleotide of the same sequence. (b) Spotting of longer customized DNA probes together

with shorter LNA probes featuring identical melting temperature
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the challenge (2) in case of long ncRNAs, their longer sequence allows a more

flexible capture probe design that meets the requirement of a uniform Tm for

the whole capture probe set.

Hence, the combination of LNA probes, dedicated to the analysis of small/

microRNAs, together with DNA probes dedicated to longer ncRNAs is described.

Such a platform can be functional if the DNA and LNA oligos are designed to all

have the same Tm so that they can be used in combination in a single experiment

(Fig. 9.2b). As a proof of concept, our study was performed on miRNAs and

different longer ncRNAs (LNA probes and custom DNA probes, respectively,

Skreka et al., unpublished results, manuscript in preparation).

Concerning low abundant transcripts (3), LNA-modified capture probes yielded

a several fold increased sensitivity that was more obvious when lower amounts

(2.5–5 mg) of total input RNA were used (Castoldi et al. 2008). Furthermore, the use

of microarray slides with reflective optical coating can increase the sensitivity of

fluorescence-based detection systems compared to traditional (first-generation)

glass slides (Redkar et al. 2006). Moreover, in terms of specificity (4), LNA-

modified capture probes hybridize their ncRNA targets in a highly specific manner,

as even a single nucleotide mismatch is sufficient to destabilize the heteroduplex.

Therefore, LNA-modified capture probes enable efficient discrimination between

ncRNA family members, at least when they differ in nucleotides close to the central

position (Castoldi et al. 2008).

Secondary structures of long ncRNAs (5) can be addressed by hybridization at

higher temperature. A basic prerequisite for that is a higher Tm of the capture probe/

RNA hybrid that can be achieved either by incorporation of LNA-modified

nucleotides into the capture probe or by increased capture probe sequence length.

9.2 Materials

9.2.1 LNA Probes

The miRCURY LNA microRNA array ready-to-spot probe set 208010 was pur-

chased from Exiqon as an LNA capture probe set for short ncRNAs detection. This

set comprises 2,056 capture probes designed to have a uniform Tm of 72�C and

covers all miRNAs of miRBase version 9.2.

9.2.2 DNA Probes

The DNA probes used were 50-C6 amino-modified to attach to the slide’s surface

and their Tm was set at 72�C to comply with the Exiqon LNA set hybridization

conditions. DNA probes were desalted and diluted in 3xSSC, 1.5 M Betaine buffer
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to a final concentration of 20 mM. DNA probes were purchased from Microsynth,

Balgach, Switzerland.

9.2.3 ncRNA Chip

The LNA-based capture probe set for short ncRNAs as well as the self-designed

DNA-based capture probe set for long ncRNAs were spotted on HiSens epoxy-

coated glass slides (Nexterion) using the MicroGrid II Microarrayer (Zinsser

Analytic).

9.2.4 Hybridization Station

Hybridizations were performed using the Tecan HS400 hybridization station.

9.2.5 Microarray Scanner

The ncRNA chip was scanned using the Axon instruments GenePix 4000B.

9.2.6 Labeling Kits

The poly(A) labeling kit used was the NCode Rapid miRNA Labeling System

(MIRLSRPD-20). This kit contains Alexa Fluor 5 and Alexa Fluor 3 dyes, equiva-

lent to Cy5 and Cy3, respectively.

9.2.7 Poly(A) Tailing Buffer

We found it more efficient to replace the optimized buffers for small RNA poly(A)

tailing with a reaction buffer containing 0.05 M Tris-HCl (pH 8.0), 0.25 M NaCl,

and 10 mM MgCl2.
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9.3 Methods

In this section, after briefly explaining how to generate ncRNA libraries, we will

provide hints on how to achieve adequate bioinformatical analysis of NGS data, as

this step is of fundamental importance to any subsequent study, and will next focus

on the various methodological aspects for the ncRNA profiling using microarray

technology (Fig. 9.3).

9.3.1 RNP Library Generation

Library generation approaches aimed at the identification of novel functional

ncRNAs have been described extensively (Huttenhofer and Vogel 2006; Jochl

et al. 2008; Saxena and Carninci 2010). The original RNP library generation

Fig. 9.3 Overview of the experimental strategy for the identification and profiling of ncRNAs
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approach enables considerable enrichment of libraries with functional ncRNAs

owing to prior isolation of ribonucleoprotein particles (Fig. 9.1) (Rederstorff

et al. 2010; Rederstorff and Huttenhofer 2011b; Rederstorff 2011). Briefly, RNP

extracts are prepared from the cells or tissues of interest and RNP are sedimentated

on a 10–30% glycerol gradient. RNAs are extracted from the gradient fractions.

Since ncRNAs do not contain a poly(A) tail, they are, in the first step of the library

generation process, tailed with CTP and poly(A) polymerase. After the addition of

C-tails, a primer-adapter is ligated to the 50-end of ncRNAs and they are reverse-

transcribed into cDNA employing an oligo-d(G) primer. Libraries are next

amplified by PCR using specific oligonucleotides. cDNA libraries are then submit-

ted to high-throughput sequencing (Metzker 2010).

9.3.2 NGS Data Analysis

The general concept of the analysis of cDNA libraries containing novel ncRNAs

includes similar steps to those used in other types of transcript analysis (see also
Chap. 10 of this volume). However, due to specific features of ncRNA genes, some

aspects vary significantly. The first step consists in removal of any adaptor sequence

that has been used during the library preparation from the reads. Sequences of low

quality should be discarded at this step as well. Reads are next assembled into

contigs. The most appropriate approach for this is based on genome mapping of the

reads and assembly of the contigs, based on the overlapping positions within the

genomic sequence. An alternative approach, based on de novo contig assembly

without any reference genome (Martin et al. 2010), requires relatively large

overlaps between the reads and low repetitive sequence content, which is not the

case for ncRNAs. During the genome alignment, it is crucial to include all positions

of the reads that would map in more than one unique genomic locus, or most of the

snoRNAs and other ncRNAs encoded by multiplicated genes would be discarded.

The next step is to annotate the existing contigs with the gene information. The

most straightforward way for this is to check for overlaps with the genome annota-

tion tables from one of the genome databases, like Ensembl (Hubbard et al. 2009) or

UCSC Genome Browser (Fujita et al. 2011). In the case of cDNA libraries

containing ncRNAs, such annotation will result in identification of numerous

intergenic contigs. To complement this annotation, it is useful to perform a

sequence similarity search against noncoding RNA databases, like the Functional

RNA Database (fRNAdb) (Mituyama et al. 2009). Finally, prediction of whether

the remaining intergenic contigs belong to known ncRNA families, like

microRNAs (Friedlander et al. 2008) or snoRNAs (Schattner et al. 2005), can be

performed.

Identification of differentially expressed ncRNAs, in other terms, ncRNA

profiling, corresponds to the next step in the study. We will next describe in detail

a microarray-based approach to do so; however, numerous in silico methods for this

purpose also exist, which we will briefly describe here. Since most of these tools
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have been designed to work with mRNA or microRNA sequencing data, the

analysis of putatively novel ncRNAs requires particular precautions. The crucial

step in the assessment of differential expression is the correct normalization of the

read numbers. The standard method for mRNA transcriptome profiling relies on

RPKM values (reads per kilobase of the transcript per million of mapped reads)

(Mortazavi et al. 2008), which depends on the length of the transcript. This value

reflects the random fragmentation step introduced in RNA-seq protocols for

mRNAs, leading to higher representation of fragments originating from longer

transcripts. Concerning small ncRNA gene analysis, as no fragmentation is

performed, length parameters are not required for standardization. Thus, the best

method is to normalize read counts against the total number of reads mapping to the

genome. The approach published recently by Robinson and Oshlack (Robinson

et al. 2010) is of special recommendation for that purpose. It reduces the library

composition bias caused by occupancy of the read space by the most abundant

transcripts. Whenever the experiment contains any replicates, the variance normal-

ization should then be performed in the next step. Normalized data can next be used

directly for statistical testing of differential expression.

Assembly and annotation of ncRNA-derived cDNA libraries can be performed

step-by-step using different tools; however, we recommend the use of the APART

pipeline (Automated Pipeline for Analysis of RNA Transcripts) (Zywicki et al.

2011). This novel approach provides fully automated workflow for analysis of

ncRNA-containing cDNA libraries. It includes trimming of the reads, genome

mapping, as well as contig assembly and annotation. One of the advantages of the

APART pipeline is that it can handle nonunique reads, and it offers a convenient

way to identify and cluster spurious contigs derived from multiple mapping of a

single set of reads. For differential expression analysis, the Bioconductor packages

edgeR (Robinson et al. 2010) and DESeq (Anders and Huber 2010) software are

recommended. They both provide extensive solutions for normalization and calling

of differentially expressed genes. EdgeR additionally supports the library composi-

tion normalization by Robinson and Oshlack.

9.3.3 Microarray Probe Design

Design of specific custom oligonucleotide probes for small noncoding RNAs is

much more complex than for mRNA arrays. The first task in designing the best

probes is to choose the appropriate duplex Tm of the probes. This temperature

should be high enough to destabilize structured ncRNAs. However, the increase of

Tm requires an extension of the probe length, which is then incompatible with the

small sizes of several ncRNA classes (e.g., microRNAs). Employing locked nucleic

acid (LNA) during the oligonucleotide synthesis is one way to overcome this

limitation. However, their elevated cost is a major drawback, rendering this method

unsuitable for large- or genome-scale projects. A good conciliation can be reached

by using the combined LNA/DNA platform. However, such an option limits the
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choice of the Tm to the one of the LNA probe set. The second challenge in the

design of ncRNA microarray probes is to verify their specificity. This task, which is

relatively easy in case of mRNA probe design, where only poly(A) tailed transcripts

(or cDNAs) are used for hybridization, is much more complex here, mainly because

of the use of total RNA in the experiment. Based on the pilot ENCODE project

findings, one can expect about 90% of the genome to be actively transcribed

(Birney et al. 2007); thus, the verification of specificity has to be performed against

the whole genome. In the case of ncRNA genes encoded in clusters (e.g., snoRNAs)

(Elmen et al. 2005; Nahkuri et al. 2008), a simple search of the probe sequence

within the genome can be confusing and may result in multiple genomic hits even

for a specific probe. Therefore, we propose to perform the specificity verification in

two steps. The first step consists in comparison of the probe sequence with the

genomic sequence. Then, the genomic positions of known ncRNAs are obtained

from the Functional RNA Database (fRNAdb) (Mituyama et al. 2009), and all the

matches of the probe are verified to be annotated as the same ncRNA. One has to

keep in mind that, because of their short length, it might be impossible to design any

single specific DNA probe of desired Tm for some small AU-rich ncRNAs.

Many tools for designing microarray probes are available at the moment.

Concerning ncRNAs, it is important that the tool used provides three major

possibilities: (1) calculation of the Tm of RNA-DNA duplexes, (2) optimization

of the probes to reach the desired Tm, and (3) verification of the local secondary

structure on the RNA target site. One of these tools corresponds to the program

OligoWiz (Wernersson and Nielsen 2005). However, for ncRNA probe design, we

even suggest to increase the importance of the target RNA structure. Since

OligoWiz is only using known genes sequence sets (obtained from the Unigene)

for specificity verification, we recommend to additionally filter the results with any

local search software (e.g., blast, fasta) using the nucleotide substitution matrix

recently released by Eklund et al. (Eklund et al. 2010) on the full genomic sequence.

9.3.4 RNA Preparation and Labeling

9.3.4.1 Total RNA Preparation and Quantification

LNA microarrays can function with small amounts of RNA, starting with as few as

30 ng of total RNA, according to the manufacturer’s recommendations (Exiqon),

which can be directly labeled. In contrast, DNA microarrays require 10–25 mg of

total RNA as starting material for reverse transcription and cDNA labeling (see

below). Direct RNA labeling protocols limit the maximum amount of total RNA

used as starting material to 5 mg. We recommend using 1–2 mg RNA (total RNA or

size-separated RNA) as starting material when employing an LNA-DNA platform.

Indeed, we observed that using 5 mg of RNA with this platform increased unspecific

hybridization.
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Total RNA is extracted from any tissue or cell line by TriReagent (Sigma)

treatment. DNase digestion can be applied to ensure that no traces of DNA

contaminate the sample. RNA quantity was estimated with a Nanodrop spectropho-

tometer (Peqlab). RNA quality should be checked with an Agilent 2100

Bioanalyser before labeling.

9.3.4.2 Labeling of RNA

Generally, microarray-based analysis of gene expression employs cyanine-labeled

cDNA. During reverse transcription, aminoallyl-modified nucleotides are

incorporated in the cDNA. These modified nucleotides react with N-hydroxysuc-

cinimidyl ester (NHS-ester) reactive groups of cyanine dyes (Cy3, Cy5), thus

labeling the molecule. This method is also suitable for long ncRNAs but not for

small RNA species that are difficult to reverse transcribe. Moreover, reverse

transcription is prone to different possible artifacts (Ozsolak et al. 2009). Therefore,

alternative methods, such as direct RNA labeling, are required to study ncRNAs of

various sizes.

Most ncRNAs present a stable and conserved secondary structure as well as

several posttranscriptionally modified nucleotides (Cantara et al. 2011). The most

common modifications correspond to the isomerization of uridine residues to

pseudouridines (pseudouridilation) or the methylation of the ribose moiety on the

20-hydroxyl group (20O-methylation). These modifications enhance stacking

interactions and stabilize the RNA structure (Ishitani et al. 2008). However, they

might interfere with optimal direct labeling.

Commercial kits aimed at direct labeling of small RNA species are available.

Two different methods have been developed, namely, labeling by enzymatic

reaction and labeling by ligation of fluorescent dye dendrimers to poly(A) tailed

small RNAs, using an oligo-dT bridge oligonucleotide. By testing both methods,

we have observed that the latter one, with a slight modification of the poly(A)

tailing protocol (see Materials), provides the best results in labeling long structured

RNA species until 400 bp (longer ncRNAs were not tested). It was described in the

literature that unfolding of some ncRNAs increases efficiency of poly(A) tailing,

and that RNAs with a hairpin structure are more difficult to tail (Martin and Keller

1998). We made similar observations, especially regarding long structured ncRNAs

such as 7SK RNA. Therefore, we recommend to first heat-denaturate ncRNAs to

increase RNA poly(A) tailing yields.

9.3.5 Hybridization

9.3.5.1 Hybridization Temperature

The hybridization temperature suggested for the LNA capture set according to the

manufacturer’s recommendations (Exiqon) is 56�C, although Tm of the probes is
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72�C. DNA capture probes designed with an identical Tm can be combined with the

LNA probes, enabling specific results at a high temperature for both short and long

ncRNAs in a single experiment, minimizing unspecific hybridization. A different

range of temperature is possible, but we recommend a 56�C–65�C range for optimal

results.

9.3.5.2 Sensitivity Versus Specificity

Unspecific hybridization, a problem frequently observed in microarray studies, is

difficult to quantify (Dufva et al. 2009). Additionally, sensitivity and specificity of

the array are important features. In order to increase specificity, high-quality probe

design (as previously described), optimal hybridization temperature, as well as

stringent enough washing steps are required. Thus, the quantity of RNA used

needs to be adjusted so that sensitivity of the array is not compromised under

these stringent conditions.

9.3.5.3 Self-Self Hybridization and Dye Swap

One-color array approaches provide an absolute estimation of the expression of a

given gene, as the labeled RNA is hybridized on an array spotted with probes

corresponding to known sequences. In two-color array approaches, the same array

is hybridized simultaneously with RNA deriving usually from two biological

samples, each labeled with a different fluorescent dye. The latter approach, thus,

provides an estimation of differential expression of the transcripts in each sample.

The dyes usually used for direct RNA labeling, Cy3 and Cy5, have a different

dependency on transcript concentration regarding signal emission, thus creating a

bias, which can be gene dependent (Cox et al. 2004; Fang et al. 2007). Therefore,

when testing one sample for expression, two technical replicates should be pro-

duced, labeled each with either Cy3 or Cy5 and hybridized on the same slide (self-

self hybridization). When two or more samples are tested for differential expres-

sion, an additional hybridization is performed where the dyes are swapped. This

means that the technical replicates of each biological sample are hybridized on

different arrays together with the technical replicates of the other biological sample,

so that, per array, there is a pair of two different fluorescent dyes, e.g., a Cy3–Cy5

pair. Per experiment, 3–5 biological replicates are required to gain statistical

significance of the results.

9.3.6 ncRNA Chip Data Analysis

Hybridized slides were scanned with the software GenePix Pro 4.1 (Axon

Instruments). After image acquisition and filtering the data for low intensity,
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heterogeneity, and saturated spots, results were normalized with our in-house

developed software ArrayNorm (Pieler et al. 2004). After background correction,

the datasets were normalized by global-mean and dye-swap pair normalization. The

obtained result files were used for cluster analyses using the Genesis software tool

(Sturn et al. 2002).

9.4 Short Protocol

1. RNA Labeling
Start with 1–2 mg RNA (total RNA or size-separated RNA) per labeling reaction.

When using high hybridization temperatures (65�C), use 2 mg RNA.

Denaturation step:

– Denaturate RNA by heating at 90�C for 3 min.

– Immediately cool on ice for 2 min to avoid refolding of denatured RNAs.

Poly(A) tailing and labeling:

– Proceed with poly(A) tailing according to the labeling kit manufacturer’s

instructions. Replace the reaction buffer (see Materials) for better results.

2. Hybridization

– A prehybridization step is needed at the same temperature as the

hybridization step for 30 min, to reduce unspecific hybridization.

– Mix labeling reactions when using two-color arrays, whether when

performing self-self hybridization or dye swap (see above).

– The mixed labeled RNA probe is denatured at 90�C for 3 min, spun down,

and injected on the slides.

– Hybridization is preferably performed at stable temperature between 56�C
and 65�C for 16 h. We recommend 65�C for more specific results.

– We recommend using the protocol provided by Exiqon with the LNA capture

set for the washing steps.

9.5 Discussion

Microarray technology is currently challenged by other methods such as real-time

PCR or next-generation sequencing, for expression profiling as well as for molecu-

lar diagnostic (Jordan 2010). However, combining high-throughput sequencing and

microarray analysis should be considered, as these methods appear to be very

complementary (Coppee 2008). Identification of novel functional regulatory
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ncRNAs employing RNP library generation approaches coupled to NGS, in com-

bination with differential expression of the candidates in various conditions (dis-

ease, development, etc.) employing microarray technology, appears to be an

excellent compromise. Indeed, RNA-seq approaches feature numerous biases or

drawbacks, generally linked to isolation of RNA protocols or library generation

steps. Therefore, the exhaustive transcriptome elucidation would require the gener-

ation and sequencing of as many libraries as possible, e.g., from tissues under

various stresses or developmental conditions. Employing customized microarray

approaches, therefore, enables to check for ncRNA differential expression in

various conditions with a limited number of arrays.

Importantly, since several ncRNAs have been associated to different disorders,

their use as potent biomarkers for diagnostic purposes is more and more frequent

(Gilad et al. 2008). MicroRNAs, for instance, are widely considered as excellent

biomarkers for different types of cancers (Lu et al. 2005; Rosenfeld et al. 2008) or

neurological diseases (Kocerha et al. 2009). On the other hand, long noncoding

RNAs (lincRNAs) were shown to be involved in chromatin regulation (reviewed in

Huarte and Rinn 2010) with some of them being differentially expressed in tumors

as well (Gupta et al. 2010). For instance, the expression level of the lincRNA

HOTAIR in primary breast tumors was shown to be important for the prediction of

metastasis or death (Gupta et al. 2010). Other lincRNAs act as antisense transcripts

to regulate protein-coding genes expression, which they epigenetically silence

(Katayama et al. 2005) or posttranscriptionally regulate (Beltran et al. 2008).

Even some snoRNAs have been described as good biomarkers for non-small-cell

lung cancer, as they were observed to be differentially expressed in patients (Liao

et al. 2010).

Hence, incorporating ncRNAs in diagnostics would provide a more complete

picture regarding prognosis and evolution of a disease. The more ncRNA

biomarkers will be discovered, the more precise diagnostics will be achieved.

ncRNA biomarkers could easily and widely be used employing custom LNA-

DNA ncRNA microarrays for diagnostic profiling. Such platforms will enable the

analysis of long ncRNAs (e.g., HOTAIR RNA, 2,200 nt) as well as short ncRNAs

(e.g., miRNAs, 21 nt) biomarkers in a single, affordable experiment. Importantly

enough, amounts of RNA needed for such approaches comply with diagnostic

references. Hence, LNA-DNA ncRNA microarrays could become a routinely

employed clinical tool for diagnostics or molecular profiling.
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Chapter 10

Targeted Methods to Improve Small RNA

Profiles Generated by Deep Sequencing

Yoshinari Ando, A. Maxwell Burroughs, Mitsuoki Kawano,

Michiel Jan Laurens de Hoon, and Yoshihide Hayashizaki

Abstract Several recent reviews expertly address the relative merits of different

approaches to preparation and analysis of deep-sequenced small RNA libraries.

Here, we focus on an array of protocols and tools with the intention of assisting

researchers in improving short RNA profiles constructed with second-generation

sequencing. This includes methods and commentaries on the preparation of

sequencing-caliber immunoprecipitation RNA libraries, techniques for targeting

different populations of RNAs with distinct 50- and 30-ends, reduction of adapter

dimers in libraries, and dealing with the underappreciated problem of genomic

cross-mapping of similar miRNA sequences.

Keywords AGO2 • Deep sequencing • Immunoprecipitation • IP-seq • Library

preparation • LNA • miRNA • Second-generation sequencing • small RNA
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LNA Locked nucleic acid
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miRNA microRNA

mRNA Messenger RNA

nt Nucleotides

PAR-CLIP Photoactivatable-ribonucleoside-enhanced cross-linking and

immunoprecipitation

PASR Promoter-associated small RNA

piRNA Piwi-interacting RNA

qPCR Quantitative real-time PCR

RISC RNA-induced silence complex

siRNA Small interfering RNA

T4 PNK T4 polynucleotide kinase

TAP Tobacco acid pyrophosphatase

TASR Termini-associated small RNA

TEX TerminatorTM 50-phosphate-dependent exonuclease
UTR Untranslated region

10.1 Introduction

Increasingly, small RNAs (16–30 nucleotides (nt) in length) in eukaryotes are

regarded as crucial contributors to a host of regulatory processes including post-

and pretranscriptional gene and transposon silencing, chromatin dynamics, splicing

regulation, and transcriptional initiation. The advent of high-throughput, genome-

wide analysis platforms have enabled the construction of global small RNA profiles

which seek to catalog and quantify the expression of the complete set of small

RNAs in desired conditions or backgrounds. Construction of these profiles have

changed our appreciation of the diversity and dynamism of eukaryotic small RNA

through two primary means: (1) discovery of novel classes of RNA and demonstra-

tion of their ubiquity within a transcriptome and (2) offering contextual clues

providing the first indications of possible functional roles. Additionally, targeted

application of small RNA profiling in efforts to answer specific biological questions

has begun to provide new perspective to complex biological problems.

Methods for global small RNA profiling began with availability of microarray

and quantitative real-time PCR (qPCR) technologies (Willenbrock et al. 2009;

Baker 2010). However, these technologies suffer from several limitations: (1)

they are only applicable for measuring the expression of RNAs which have already

been characterized; (2) these methods are based on hybridization, and cross-

hybridization can result in acquisition of noisy data which, in the case of small

RNA, is further compounded by the close sequence similarity within related classes

(Kucho et al. 2004); and (3) data is generated by measuring the intensity ratio of the

fluorescence label normalized by the background level resulting in difficulties

properly quantifying signal at low and high extremes in expression. An additional

technology, traditional Sanger sequencing with cloning, has been available for quite

some time for use in discovery of novel classes of small RNA. However, the
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application of this sequencing method to small RNA identification is severely

affected by the low expression level of many small RNAs, particularly in restricted

cell types in distinct tissues or at very specific developmental stages. Second-

generation sequencing technologies provide distinct advantages for small RNA

studies compared with the aforementioned technologies because they do not need

the sequence information and content of samples beforehand, require no cloning,

and enable ultrahigh-throughput sequencing of the compatible length of many

distinct classes of regulatory small RNA. Data resulting from these experiments

is also comparable as absolute “digital” values which, through careful application

of the proper analytical methods, can produce a clear understanding of changes in

small RNA expression across different cell types or conditions.

Deep sequencing of small RNAs by second-generation sequencers has revealed

a wealth of diverse and distinct classes of small RNA. As these classes are

extensively covered elsewhere (Carninci 2010) and also in an introductory chapter

in this book (see Chap. 1), we will not focus on describing these but will point out

that the context of their identification has often provided substantial clues to the

functional roles of the small RNAs. For example, the cellular restriction of Piwi-

interacing RNAs (piRNAs) in germ line cells hinted at a role controlling transcrip-

tion in early development and the genome-derived locations of the bidirectionally

transcribed 20–100 nt length promoter-/termini-associated small RNAs (PASRs/

TASRs) which are located in the upstream/downstream termini of genes (Kapranov

et al. 2007; Affymetrix/Cold Spring Harbor Laboratory ENCODE Transcriptome

Project 2009) suggested a role in regulating gene expression which, at least for the

PASRs, some supporting experimental evidence has been presented (Affymetrix/

Cold Spring Harbor Laboratory ENCODE Transcriptome Project 2009). Thus, deep

sequencing has contributed to understanding the biological role of these small RNA

sequences. Recently, small RNA profiling has increasingly been employed as a tool

to assist in answering more specific questions. For example, when applied to

microRNA (miRNA), a class of 20–23 nt sequences which posttranscriptionally

regulates gene expression, deep sequencing has led to an understanding of the

mechanisms behind generation of multiple mature variants (termed isomiRs)

from the same miRNA locus (Landgraf et al. 2007; Morin et al. 2008) and their

selective expression across distinct cell types (Lee et al. 2010). Additionally, deep

sequencing of small RNAs has been utilized to identify enzymes involved in

processing of the mature miRNA through 30 adenylation and uridylation (Jones

et al. 2009; Lehrbach et al. 2009; Burroughs et al. 2010) and editing events by

adenosine/cytidine deaminases (de Hoon et al. 2010; Kim et al. 2010).

Second-generation sequencing technology has enabled deep exploration of the

small RNA world, increasing our understanding of the vast and varied content of

the classes of small RNA in the cell. Careful application of this technology has

opened novel avenues of research substantially impacting our understanding of the

roles of small RNA. However, care must be taken to apply the proper technique to

answer the biological question under investigation. This chapter will focus on a

variety of methods, from small RNA library construction to computational data
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analysis methods that have proven to be useful in the past in assisting with the

characterization of small RNA.

10.2 Methods

Small RNA profiling studies with second-generation sequencing technologies are

currently performed from the construction of complementary DNA (cDNA)

libraries followed by sequencing on a second-generation platform (McCormick

et al. 2011). A small RNA library is prepared by enzymatically ligating 50 and 30

adapters to small RNA molecules and is enriched by 10–15 cycles of PCR using

primers that contain sequences homologous to these adapters and complementary to

the oligos optimal for each sequencing platform. This ligation-based library con-

struction method is popular to most users of second-generation sequencers (Morin

et al. 2010; Thomas and Ansel 2010; Lu and Shedge 2011) despite the ligation and

PCR amplification bias (Linsen et al. 2009; Tian et al. 2010; McCormick et al.

2011). However, ligation bias can be decreased to some extent by using a truncated

version of T4 RNA ligase 2 (T4 Rnl2 truncated) for 30 adapter ligation (Vigneault

et al. 2008; Munafo and Robb 2010). This enzyme specifically ligates the

preadenylated 50-end of the 30 adapter to the 30-end of RNA. Unlike usual RNA

ligases, T4 Rnl2 truncated cannot ligate the 50-phosphorylated RNA or DNA to the

30-end of RNA and does not circularize 50-phosphorylated and 30-hydroxylated
RNAs, like miRNAs. Amplification bias is also minimized by optimizing the

experimental condition (Aird et al. 2011).

10.2.1 Sequencing Using Second-Generation Sequencers

Comparison of the relative strengths and weaknesses of different second-generation

sequencers has been extensively considered elsewhere (Metzker 2010; McCormick

et al. 2011; see Chap. 21); we will only briefly survey standard library construction
approaches here. Relevant to this discussion are recent studies which have shown

that the diversity and abundance of small RNAs sequenced in the libraries can be

less affected by the sequencing platform than the library preparation method

(Linsen et al. 2009; Tian et al. 2010). The primary implication of these findings is

that selection of a verified library construction method is important for proper

comparison between different samples.

For the Illumina and SOLiD platforms, there are several commercial kits

available for small RNA library construction as shown below. These kits have

simple, speedy, and verified protocols to make small RNA libraries with or without

barcode tags for multiplex sequencing.
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Genome Analyzer IIx or HiSeq2000: Small RNA Sample Prep Kit v1.5

(Illumina); TruSeqTM Small RNA Sample Prep Kit (Illumina); ScriptMinerTM

Small RNA-Seq Library Preparation Kit (EPICENTRE Biotechnologies);

NEBNextTM Small RNA Sample Prep Set 1 (New England Biolabs); NEXTflexTM

Small RNA Sequencing Kits (Bioo Scientific); Ambion RNA-Seq Library Con-

struction Kit compatible with the Illumina GAII platform (Life Technologies)

SOLiD4hq: SOLiDTM Total RNA-Seq Kit (Life Technologies); NEBNextTM

Small RNA Sample Prep Set 3 (New England Biolabs)

While the 454 platform, the first second-generation sequencer to be widely

adopted on the market, has been used extensively for small RNA sequencing in

the past (Watanabe et al. 2008; Taft et al. 2009), the library construction kit is not

commercialized. Due to an average read length of 400 nt (Table 10.1), 454

sequencing is somewhat unwieldy for small RNA sequencing when compared to

more recently introduced platforms available on the market. Additionally, the depth

of coverage for 454 sequencing is shallower than other platforms. This can be

mitigated somewhat through concatemerization of several small RNAs for efficient

sequencing. However, this step makes the protocol relatively complicated.

The read length and sequencing depth of the Helicos platform is suitable for

small RNA sequencing (Table 10.1), and it has already been used to great effect in

analyzing short RNA content (Kapranov et al. 2010). This true single molecule

sequencing technology enables dissolution of problems derived from ligation and

amplification bias and has been adapted to achieve levels of reproducibility in gene

expression not previously observed on other sequencing platforms (Kanamori-

Katayama et al. 2011). For small RNA libraries, single molecule sequencing

increases the complexity of small RNA libraries enabling the discovery of novel,

low-expressed classes of RNA that will fail to effectively amplify using other

library preparation techniques (Kapranov et al. 2010). However, the Helicos plat-

form still has a higher raw error rate (substitution 0.2%, insertion 1.5%, and

deletion 3.0%) than other platforms, which poses a particular problem when trying

to accurately assess expression levels within classes of small RNA with members

Table 10.1 Comparison of second-generation sequencers

Platform Read length

(bases)

Sequencing reaction Run time

(days)

Gb per

run

GS FLX/454Life sciences in

Roche Diagnostics

500 (400)a Pyrosequencing 10 h 0.4–0.6b

Genome Analyzer IIx/Illumina 150 Sequencing by

synthesis

14 67b

HiSeq2000/Illumina 100 Sequencing by

synthesis

10 400–480b

SOLiD 4hq/Applied biosystems

in life technologies

75 Sequencing by

ligation

14 300b

Heliscope/Helicos Biosciences 25–55 (35)a True single molecule

sequencing

8 21–35

aAverage length
bError-free bases
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displaying high levels of sequence similarity (e.g., miRNA). Additionally, a small

RNA library construction kit has not been commercialized yet. Despite these

difficulties, single molecule sequencing represents the next frontier in exploring

small RNA; continued improvements in error rates could improve usefulness of the

technology in understanding small RNA expression. In sum, availability of com-

mercial kits or verified protocols is extremely helpful for users in selecting suitable

sequencing platforms.

10.2.2 RNA Sample Preparation and Library Production

10.2.2.1 Different 50-End Structure of Small RNAs

The majority of small RNAs have 50-monophosphoryl and 30-hydroxyl termini as

products generated by endonucleases like the DICER and argonaute (AGO)

proteins. In a ligation-based “standard” library construction method, T4 RNA ligase

1 is essential to ligate the 50 adaptor sequence to the 50-end of RNA molecules. T4

RNA ligase 1 requires a 50-monophosphoryl terminus on the donor sequence in the

ligation reaction. Some small RNA species are not detected by standard library

preparation techniques because these RNAs have different 50-end structures (50-
triphosphorylated, 50-hydroxylated, or 50-capped). For example, the human hepati-

tis delta virus produces 50-capped, 18–25 nt small RNAs using human RNA

polymerase II for their replication in human cells (Haussecker et al. 2008).

PASRs and TASRs are well known as small RNAs with a 50-cap structure tran-

scribed by RNA polymerase II (Affymetrix/Cold Spring Harbor Laboratory

ENCODE Transcriptome Project 2009). To clone these small RNA species, several

treatments (dephosphorylation, rephosphorylation, and decapping reaction) are

required before the ligation reaction.

Bacterial alkaline phosphatase (BAP) catalyzes the dephosphorylation of almost

all phosphate monoesters from the 50- and 30-ends of RNA. T4 polynucleotide
kinase (T4 PNK) catalyzes the transfer and exchange of monophosphate from the g
position of ATP to the 50-hydroxyl terminus of single-stranded RNA. Tobacco acid
pyrophosphatase (TAP) hydrolyzes the phosphoric acid anhydride bonds in the

triphosphate bridge of the 50-cap structure, releasing the 7-methylguanosine cap

nucleotide (m7G) and generating a 50-monophosphorylated terminus. Similarly,

TAP digests the triphosphate group at the 50-end, generating an RNA molecule

with a 50-monophosphate. TerminatorTM 50-phosphate-dependent exonuclease
(TEX, EPICENTRE Biotechnologies) digests RNA with a 50-monophosphate,

while the enzyme cannot digest RNA having a 50-triphosphate, a 50-cap, or a

50-hydroxyl group. Using this enzyme, minor small RNA species might be enriched

in the library by selectively digesting the miRNA with a 50-monophosphorylated

terminus. Combination of these pretreatments makes it possible to construct various

small RNA libraries containing minor RNA species with different 50-end structures
(Fig. 10.1). For example, to construct a library consisting of small RNAs with only
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50-cap structures, total RNA or small RNA fraction should be treated by TAP

following BAP treatment before library construction.

10.2.2.2 Immunoprecipitated RNAs with Human AGO2 Proteins

Functional miRNAs bind to AGO family proteins forming the RNA-induced
silencing complex (RISC); RISC-associated miRNA then recognizes and interacts

with partially complementary sequences typically located in the 30 untranslated
regions (30 UTRs) of specific target messenger RNAs (mRNAs), leading to transla-

tional repression or mRNA degradation (Hutvagner and Simard 2008; Ender and

Meister 2010). High purified fractions of miRNA, which binds with human AGO2

proteins, can be enriched by immunoprecipitation (IP) methods using a high affinity

antibody against human AGO2 protein (Azuma-Mukai et al. 2008; Goff et al. 2009;

Burroughs et al. 2010; Burroughs et al. 2011). As well as miRNAs, various small

RNAs can be enriched in AGO2-IP sequence libraries, suggesting association with

a functional RISC (Ender et al. 2008; Burroughs et al. 2011). Although these small

RNAs often appear to lack the canonical hairpin structure of miRNA precursors

leaving the nature of biogenesis and RISC-incorporation pathways somewhat

murky, in at least some cases, a RISC-active functional role has been demonstrated

in human cells (Ender et al. 2008; Haussecker et al. 2010; Lee et al. 2009).

Fig. 10.1 Preparation of small RNA libraries containing various RNAs with different 50-end
structure. T4 PNK: T4 polynucleotide kinase, BAP: bacterial alkaline phosphatase, TAP: tobacco

acid pyrophosphatase, TEX: Terminator™ 50-phosphate-dependent exonuclease, 50-P: 50-
monophosphorylated RNA, 50-PPP: 50-triphosphorylated RNA, 50-OH: 50-hydroxylated RNA,

50-CAP: 50-capped RNA
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The following protocol is designed based on microRNA Isolation Kit Human

Ago2 (Wako Pure Chemical Industries) with some modifications (Fig. 10.2).

Cultured cells (1 �107 cells) are collected and incubated in cell lysis solution

(20 mM Tris–HCl buffer (pH7.4), 200 mM sodium chloride, and 2.5 mM magne-

sium chloride) for 10 min on ice. Cell lysates are then cleared by centrifugation at

4�C, and 50 mL of Anti Human Ago2 Antibody Beads Solution in the kit was added

to supernatant of cell lysate and mixed by rotation for 2 h at 4�C. Beads are washed
twice with cell lysis solution, and each bound AGO2-RNA complex is eluted with

elution solution (0.5% SDS). Eluted complexes are extracted with phenol/chloro-

form, and RNAs are precipitated with ethanol. Purified immunoprecipitated RNAs

are used for construction of small RNA libraries.

This basic AGO2 IP-seq protocol has been extended in an effort to decipher

the genome-wide microRNA-mRNA interaction map. Using the high-throughput

Fig. 10.2 Outline of human AGO2 immunoprecipitation using a commercial kit
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sequencing of RNAs isolated by cross-linked immunoprecipitation (HITS-CLIP)

(Chi et al. 2009) protocol, Darnell and colleagues identified two distinct RNA

populations binding to AGO2 which corresponded to miRNA and its target

mRNA sequences. Separate sequencing of the two populations was successful at

reducing the size of possible target mRNA sequences for individual miRNAs. A

variation of this method which has similarly been applied to AGO2 to identify both

miRNA and mRNA targets is referred to as photoactivatable-ribonucleoside-
enhanced cross-linking and immunoprecipitation (PAR-CLIP) (Hafner et al.

2010). This protocol is slightly more involving, requiring the insertion of

photoreactive ribonucleoside analogs into the RNA of cultured cells. These analogs

enhance the RNA-protein cross-linking reaction after exposure to UV light, in

theory increasing the efficiency of the detection of interacting RNA species.

10.2.2.3 Dimer Eliminator and Barcode Library

In most methods used to sequence small RNAs, RNA-derived cDNA libraries

consisting of cDNA inserts of various sizes ligated between the 50 and 30 adapter
linker sequences are constructed. A protocol has recently been developed with

fewer preparation steps needed to construct small RNA libraries, and its use of

preadenylated adapter oligos makes it particularly efficient in capturing small

RNAs (Vigneault et al. 2008; Munafo and Robb 2010). However, even when this

protocol is used with a commercially available sample preparation kit (Illumina), a

large number of sequencing reads without cDNA inserts are often observed, mainly

composed of adapter-dimer products. To overcome this problem, we developed a

method adding a locked nucleic acid (LNA) oligonucleotide, named dimer elimi-

nator-22 (50-TACGAGATTTNNGATCGTCGGA-30; LNA is shown in italics, and

NN shows random DNA), that is complementary to the adapter-dimer ligation

products: 8 nt of it span the 30 adapter, while 14 nt span the 50 adapter during the

reverse transcription reaction (Fig. 10.3). LNA treatment reduces adapter dimers

which often contaminate standard libraries by as much as threefold, concomitantly

increasing the number of non-insert sequence reads (Kawano et al. 2010).

A simplified version of protocol follows. Briefly, a 30 DNA adapter and a 50 RNA
adapter are sequentially ligated to RNA. The ligation products are reverse-tran-

scribed with 10–20 mM of the dimer eliminator oligo, followed by PCR and

polyacrylamide gel purification of insert-containing cDNA products of around

100 base pairs (bp) which corresponds to RNAs of approximately 15–36 nt. The

products are subjected to sequencing runs on the Illumina sequencing platform.

We applied this technology for a pooled library construction which requires a

barcoding system for multiplex sequencing in order to increase the sequencing

performance (Kawano et al. 2010). We designed eight barcode tags (two nucleotide

barcode with common AA at the 30-end): AAAA, GAAA, CAAA, TAAA, AGAA,
ACAA, ATAA, and TTAA and incorporated them at the 30-end of the 50 RNA
adapter oligos. We pooled the samples after ligation to the barcoded adapter and

proceeded with the above reactions in a single tube. It is not necessary to prepare
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dimer eliminators corresponding to each of the barcoded adapter sequences because

the dimer eliminator-22 contains random sequences at the middle to fit the 50 RNA
adapter sequences and they can be applied to any barcoded adapter.

The barcoding system for high-throughput sequencing has been previously

published, but to our knowledge, there has not been any evaluation of bias from

the use of barcodes, which would interfere with an accurate expression comparison

of the barcoded samples (Hamady et al. 2008; Vigneault et al. 2008; Smith et al.

2009). Therefore, we evaluated the barcoding system by looking at Pearson’s

correlation values for each of the eight barcodes from two pooled libraries made

from the same total RNA by using the dimer eliminator-22. The small RNA

expression profiles between the technical replicates showed high correlation: the

average Pearson’s correlation coefficient was 0.983. Furthermore, the profiles

between the distinct barcodes also showed high correlation: 0.894 for all tested

barcodes and 0.945 for the following four barcodes: AAAA, GAAA, CAAA, and

TAAA. These results show that our protocol reproduces RNA population profiles

well with technical replicates and different barcode tags, indicating that little or no

bias is generated through LNA treatment (Kawano et al. 2010). We recommend the

use of these four barcode tags in comparing samples with more precise small RNA

measurements as they show small bias during the complete procedure. This method

improves the sequencing yield and efficiency while simplifying library construction

and makes it easier to perform large-scale small RNA sequencing.

Fig. 10.3 Scheme of adapter dimer reducing technology using LNA dimer eliminator oligo. With

an insert RNA between adapters, RT primer can anneal to 30 DNA adapter and synthesize cDNA

product. Without an insert RNA, LNA dimer eliminator oligo can completely anneal to only

adapter dimer ligation products. Thus, cDNA synthesis for adapter dimers cannot occur due to

interference with the annealing of the RT primer. LNA dimer eliminator oligo cannot be used as a

primer in reverse transcription reactions
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10.2.3 Analysis of Sequencing Results

Raw tags deep-sequenced in small RNA libraries by second-generation machines

are typically subjected to three basic processing steps: (1) removal of adaptor and

barcode sequences from raw tags, (2) filtering to remove low-quality tags, and (3)

mapping to the appropriate genome assembly. Further downstream analyses can

vary depending on the goal of the study, but typically includes annotation of the

mapped tags, normalization of tags to enable comparisons of annotated tags across

libraries, statistical assessment of the significance of observed expression changes,

and identification of novel small RNAs within the generated data. Comparison of

different methods which address these issues has been adroitly covered elsewhere

(Metzker 2010; McCormick et al. 2011; see Chap. 9 and Chap. 21). Instead of

revisiting the strengths and weaknesses of these many methods, we will discuss

issues facing biologists lacking a strong computational background yet seeking

single-solution, comprehensive platforms for second-generation sequencing

analysis and focus on solving the underappreciated problem of miRNA genome

cross-mapping.

10.2.3.1 Platforms for Analysis of Deep-Sequenced Data

Newcomers to the world of second-generation sequencing are essentially faced

with one of two choices when trying to find comprehensive or integrative solutions

to sequence data processing and analysis: (1) purchasing a commercial platform or

(2) adopting a platform developed in an academic lab. Both options can be fraught

with uncertainty. Commercial platforms, like those developed by CLC Bio, Real

Time Genomics, and Genomatix, represent a new cost for a laboratory, and while

they may perform basic analysis tasks well, they may lack flexibility for adaptation

to specialized analysis tasks. On the other hand, while academic platforms (see

NGSQC (Dai et al. 2010), SAMS (Bekel et al. 2009), and SEWAL (Pitt et al. 2010)

for recent examples) are open source and often more flexible, they may be

customized to fit the needs of the research lab constructing the software and may

require considerable expertise to limit the impact of portability and performance-

related issues. Hence, academic options potentially represent a sizeable personnel

and time investment.

As consensus is reached on the best approaches to analyzing second-generation

sequencing data, the task of selecting appropriate commercial and open-source

efforts will likely become easier, and these approaches will be adopted in lieu of

the current, lab-centric approach. Parallels can be drawn to the development of

microarray analysis methods and the rise of widely used commercial platforms

like GeneSpring GX (Agilent Technologies) and open-source projects like

Bioconductor (http://www.bioconductor.org/). A sensible short-term approach,

particularly for laboratories involved in smaller-scale sequencing projects, is

pooling together freely available programs from different sources most suitable
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for the necessary tasks. While many methods for mapping and normalization are

available, programs targeting a range of additional tasks like managing quality

control across multiple sequencing runs (Lassmann et al. 2011), artifact removal

(Lassmann et al. 2009), and novel small RNA predictions (Friedlander et al. 2008;

Hackenberg et al. 2009) are also becoming easier to acquire and implement.

10.2.3.2 Cross-Mapping of Small RNA Sequences to Multiple miRNA Loci

Many miRNA sequences are closely related at the sequence level and can be

grouped into what are termed miRNA “families.” Such related miRNA sequences

are thought to have descended from a common ancestor, undergoing diversification

through gene duplication at pivotal points in animal evolution (Hertel et al. 2006).

This sequence similarity, coupled with the short size of mature miRNA sequences

(20–23 nt) and the error rates inherent to any sequencing machines, poses

difficulties in assessing the true genomic locus for miRNA sequences as often

more than one genomic location may appear to be equally suitable for a given

tag. Further compounding this cross-mapping problem is the widespread presence

of nucleotidyltransferase enzyme–mediated 30 adenine and uridine addition events

in mature miRNA (Jones et al. 2009; Katoh et al. 2009; Heo et al. 2009; Burroughs

et al. 2010). Since these nucleotides are genuinely present in small RNA libraries,

they cannot be filtered using conventional per-nucleotide quality scores (de Hoon

et al. 2010).

All of these factors can combine to influence expression measured at individual

miRNA loci in deep-sequencing experiments. In a broad sense, this problem is akin

to the cross-hybridization in microarray experiments. Perhaps more pressingly, tags

with more than one possible mapping location that contain a mismatch to the

genome may be improperly assigned to a locus. Inspection of the tags aligning to

these loci can lead to the impression that editing sites are present when in fact the

mismatch is an artifact of cross-mapping. With an abundance of studies purporting

detection of novel editing sites through analysis of deep-sequenced small RNA data

(Reid et al. 2008; Su et al. 2010; Schulte et al. 2010; Buchold et al. 2010) concerns

about potential, unaddressed effects of cross-mapping prompted the development

of a new tool to make corrections (available for download from http://

134.160.84.27/osc/english/dataresource/) (de Hoon et al. 2010).

In many ways, the approach of the program resembles efforts to similarly correct

for deep-sequenced tags mapping to repetitive regions like promoter-derived cap
analysis gene expression (CAGE) tags (Faulkner et al. 2008). Ultimately, each

small RNA tag that can map to multiple locations in the genome is assigned a

weight based on the local expression level of a given position within the same

library and the alignment errors at that position. Penalty for alignment errors is

determined through comparing the position-specific error profile for each tag

against the likelihood of observing an error in the genome-tag mapping location

(de Hoon et al. 2010). In general, the effects of cross-mapping correction on the

calculated expression at miRNA loci were not widespread; however, for at least 14
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loci in the THP-1 cell line expression differences with cross-mapping correction

and in the absence of cross-mapping correction was larger than 50% (de Hoon et al.

2010). These effects will vary considerably depending on the composition of the

miRNA transcriptome in different cells and conditions.

More dramatic was the impact of cross-mapping correction on apparent editing

sites. Applied to the FANTOM4 small RNA sequencing dataset, the ten sites

identified as possible editing sites in the absence of cross-mapping correction

were reduced to two sites (de Hoon et al. 2010). One of these sites was found to

harbor an SNP in the genome sequence, and the other was a previously experimen-

tally characterized editing event (Kawahara et al. 2007). Application of the correc-

tive procedure to another dataset which had shown possible editing events within

the let-7 miRNA family appeared to show these sites instead resulted from cross-

mapping (Reid et al. 2008). These results emphasize the importance of considering

the effects of cross-mapping when searching for novel, potential editing sites in

mature miRNA sequences derived from second-generation sequencing data. Inter-

estingly, application of the cross-mapping correction to plant miRNA datasets did

not appreciably reduce the number of editing sites, suggesting that mature plant

miRNAs may be targeted far more frequently by the editing machinery in the cell

(Ebhardt et al. 2009; personal observations).

Recently, a genome alignment program named Statmap based on similar

principles has been employed for the mapping of CAGE data in the drosophila

modENCODE project (Hoskins et al. 2011). A primary difference between the

techniques is that instead of being applied as a postmapping corrective procedure,

Statmap assigns a mapping likelihood based on mismatch profiles and relative

expression of different locations in the genome for every tag in a given library

during the mapping procedure (Hoskins et al. 2011). Such a mapping approach has

the potential to address cross-mapping issues for short RNA at the genome mapping

step.

10.3 Applications: Probing the Extent of 30 miRNA

Addition in Animals

In this chapter, we have attempted to draw attention to and discuss several distinct

methodologies which can assist in the design and also improve the yield and

analysis of small RNA datasets. As specific examples on how many of these

methods can be utilized, the reader is referred to previous research by our group

(Burroughs et al. 2010; Burroughs et al. 2011). In this research, miRNA cross-

mapping correction was performed on a broad range of deeply sequenced, publicly

available datasets across several organisms in an effort to determine the evolution-

ary depth and global distribution of 30 miRNAmodification events (Burroughs et al.

2010). This revealed not only the conservation in frequency of miRNA 30 addition
events but also a tendency for addition to occur on phylogenetically related miRNA
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sequences. We also tested the global effects of knockdown of several known and

predicted miRNA nucleotidyltransferases on 30 miRNA addition using library

preparation techniques discussed above and again utilizing the cross-mapping

corrective procedure to ensure accurate counting of the addition events following

sequencing. This global analysis identified the GLD-2 enzyme as a principal

miRNA adenyltransferase. Several targeted, miRNA-specific studies indicated a

possible role for 30 adenylation in affecting the association of miRNA with AGO

proteins. Deep sequencing of the immunoprecipitated small RNA associating with

the AGO1–3 proteins using the protocol described above and employing cross-

mapping correction revealed the reduction of adenylated miRNA isomiRs in the

AGO2 and AGO3 proteins, possibly supporting a scenario where adenylation

interferes with proper AGO association (Burroughs et al. 2010). Further analysis

of the cross-mapping corrected isomiRs across the three AGO-derived libraries

revealed the presence of a small-scale, intralocus sorting mechanism wherein

different isomiRs from the same miRNA locus preferentially associated with

distinct AGO proteins in a significantly differential manner (Burroughs et al.

2011), consistent with a previous experimental investigation demonstrating this at

a single miRNA locus (Azuma-Mukai et al. 2008).

10.4 Discussion

Small RNA sequencing has proven an extremely effective tool for identifying novel

populations of small RNA (see Chap. 1) and, in many cases, offering the first clues

to their potential biological role. At the same time, the use of small RNA profiling

as a standard tool incorporated into more targeted biological experiments is grow-

ing, including examining the biogenesis of miRNA (Jones et al. 2009; Lehrbach

et al. 2009; Burroughs et al. 2010), the roles of small RNAs in regulating splicing

and transcription initiation (Taft et al. 2009; Taft et al. 2010), and the roles of

small RNA in regulating heterochromatin formation (Halic and Moazed 2010).

While this research is generating exciting new perspectives on fundamental issues

in molecular biology, as we have tried to communicate in this chapter, the effec-

tiveness of sequencing as a tool to investigate targeted biological questions

depends on its proper application. Several crucial issues need to be considered

when planning deep-sequencing experiments. Foremost among these is choice of

sequencing platform, which needs to be made after weighing the strengths and

weaknesses of each technology in light of the desired experimental outcome;

specific issues to consider include tag yield, amplification bias, read length, time

for sequencing run, and cost. Similarly, choice of RNA and library preparation

technique should be tailored to the class of small RNA that is targeted by the

research, and if needed, additional techniques like the LNA treatment outlined

above can also be employed to improve yield. Even postsequencing analysis needs

to be considered carefully to ensure proper interpretation of the data. One common
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pitfall in the analysis of miRNA is to ignore potential effects of cross-mapping

across closely related miRNA species.

The various methodologies discussed in this chapter are intended to assist

researchers seeking to utilize sequencing in various targeted biological contexts.

We hope the explanations and discussion provided in this chapter will be of use to

investigators both during the project design phase and also during implementation

and troubleshooting of projects incorporating second-generation sequencing.
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Chapter 11

Biocomputational Identification of Bacterial

Small RNAs and Their Target Binding Sites

Brian Tjaden

Abstract Over the past decade, small regulatory RNAs (sRNAs) have been found

to be widespread among bacteria. A major class of these sRNA genes act as

posttranscriptional regulators of messenger RNAs via base-pairing interactions.

Members of this class of bacterial sRNA are typically noncoding and 50–300

nucleotides in length. Because these sRNAs do not have open reading frames

with distinctive statistical biases nor are they broadly conserved in most cases,

bioinformatics approaches for identifying these RNA genes on a genome-wide

scale have met with only moderate success. Similarly, computational approaches

for predicting message targets of sRNA regulation are still emerging. In this

chapter, we survey the state of the field, first in computational identification of

sRNAs throughout bacterial genomes and second in computational identification

of regulatory targets of sRNA action. We present different classes of techniques

that have proven effective at identifying sRNAs or their regulatory targets as well

as specific implementations of these bioinformatic techniques along with their

strengths and weaknesses.

Keywords Regulatory targets • small noncoding RNA • target prediction

11.1 Introduction

Small regulatory RNA (sRNA) genes pervade bacterial genomes. These sRNAs act

by a variety of mechanisms to regulate a range of processes (reviewed in Liu and

Camilli 2010; Waters and Storz 2009; Gottesman and Storz 2010). One family of

sRNAs interacts with proteins and modifies their activity. Members of this family

include 6S (Hindley 1967; Wassarman and Storz 2000), GlmY (Urban et al. 2007),
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CsrB/CsrC/CsrD (Liu et al. 1997), 4.5S (Ribes et al. 1990), RNase P (Stark et al.

1978), and tmRNA (Ray and Apirion 1979). Another family is comprised of

riboswitches, which are structured elements that bind to small metabolites and are

part of the mRNA they regulate (Tucker and Breaker 2005). Clusters of regularly

interspaced short palindromic repeat (CRISPRs) represent a class of sRNAs

characterized by short tandem repeats separated by distinct spacer sequences.

Together with associated proteins, CRISPRs are thought to act as a type of immune

system via an RNA interference mechanism (Sorek et al. 2008).

The largest family of sRNAs corresponds to sRNAs that regulate target mRNAs

via base pairing (see Chap. 4). Many of these base-pairing sRNAs are cis-acting
RNAs in that they are transcribed opposite to their target RNA. Because these

sRNAs are antisense, at least in part, to their target, they share an extended region of

complementarity to their target. Examples of cis-acting sRNAs include RNA

antitoxins (Gerdes and Wagner 2007), sRNAs such as GadY that direct cleavage

of their target (Opdyke et al. 2004), and sRNAs such as IsrA that repress expression

of their target’s product (Duhring et al. 2006). The best studied group of sRNAs

corresponds to trans-acting regulators that bind via base pairing to their message

targets. In contrast to cis-acting sRNAs, the trans-acting sRNAs typically

have limited complementarity to their targets. For example, Fig. 11.1 shows the
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Fig. 11.1 (a) A region around the translation initiation site of the frdA mRNA sequence is shown

in blue with the frdA start codon underlined. The putative secondary structure of the sRNA RyhB is

shown in red. (b) The partial complementarity between the frdA mRNA and the sRNA RyhB is

illustrated in the interaction
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putative interaction in Escherichia coli for the trans-acting sRNA RyhB and its

target frdA, which codes for a subunit of fumarate reductase. While there are few

universal properties of these trans-acting sRNAs, some features are shared by the

majority. For example, trans-acting sRNAs are generally transcribed indepen-

dently, often approximately 100 nucleotides in length; they most often negatively

regulate their targets through translational repression or destabilization of the target

RNA, though there are also examples of positive regulation. Many bind the RNA

chaperone Hfq at least in enteric bacteria. They typically bind the 50 UTR of their

targets in the neighborhood of the ribosome binding site though binding can also

occur far upstream of the ribosome binding site or downstream in the coding

sequence; they are often synthesized under specific growth conditions, and many

regulate multiple targets. In E. coli, where they are perhaps best understood, there

are approximately 100 such trans-acting sRNAs. The remainder of this chapter

focuses primarily on these trans-acting sRNAs that act by limited base pairing to

their mRNA targets.

11.2 Computational Identification of sRNAs

In this section, we restrict our consideration to in silico methods for identifying

sRNA genes on a genome-wide scale. We do not consider experimental methods

either for detecting individual sRNAs or for genome-wide screens though such

experimental approaches are critical for validating predictions from in silico
methods (see Chap. 14). For review of experimental methods for characterizing

sRNAs, including genome-tiling microarrays, high-throughput sequencing, shot-

gun cloning and RNomics, direct labeling and sequencing, functional genetic

screens, and isolation of sRNAs through co-purification with proteins, see Altuvia

(2007) and Sharma and Vogel (2009). Here, we present different classes of compu-

tational techniques that have proven effective at identifying sRNAs as well as

specific implementations of these bioinformatics techniques along with their

strengths and weaknesses.

While computational methods that predict protein-coding genes rely heavily on

codon usage statistics to identify coding sequences within a genome, in contrast,

sRNAs have no open reading frames with distinctive statistical biases so that

computational methods for predicting sRNAs must rely on other signals suggestive

of a gene. Bioinformatics approaches for predicting sRNAs typically use one (or

more) of four types of data: primary sequence data, conservation of primary

sequence, secondary structure information, and conservation of secondary struc-

ture. We will consider each of the four types of data in turn in the context of

biocomputational identification of sRNAs.
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11.2.1 Primary Sequence Data

While sRNAs have been identified within protein-coding sequences, antisense to

protein-coding sequences, and within the untranslated regions between genes co-

transcribed as part of an operon, most sRNAs characterized to date reside in

intergenic regions of a genome. As a result, many computational screens for

sRNAs restrict their searches to intergenic regions of a genome. Transcription

signals such as promoter sequences and Rho-independent terminators are often

used as indicators of sRNA genes. TransTermHP is a commonly used tool to predict

Rho-independent terminators (Kingsford et al. 2007). TransTermHP predictions

can be downloaded for many genomes from the authors’ website (http://transterm.

cbcb.umd.edu/), or the program can be downloaded and executed on a genome of

interest, typically requiring less than a minute when run on a desktop computer.

While computational prediction of Rho-independent terminators is fairly reliable,

accurate prediction of promoter sequences is a more challenging problem. Many

tools that predict promoter sequences suffer from high false positive rates because

promoter-like sequences abound in a genome and it is difficult to distinguish

spurious sites from sites of RNA polymerase binding that lead to functional

transcripts (Haugen et al. 2008). Furthermore, promoter prediction methods cannot

easily be applied broadly across bacterial genomes since promoter sequences are

specific to various sigma factors. Those sRNA prediction methods that attempt to

identify promoters primarily have been applied to E. coli and they model, either

with a consensus sequence or a position-specific scoring matrix (Staden 1984), the

�10 region and �35 region corresponding to s70.

Regulatory sites corresponding to specific transcription factors have been used to

focus searches for sRNAs in intergenic sequences, though more commonly tran-

scription factor binding sites are identified after candidate sRNAs have been

determined in order to elucidate possible regulatory mechanisms targeting the

sRNA. Under the assumption that sRNAs have a different nucleotide composition

than the intergenic sequences in which they reside, GC content and dinucleotide

frequencies have been used to distinguish possible sRNAs from background geno-

mic sequence. Finally, in order to limit false positive predictions that may corre-

spond to untranslated regions of neighboring protein-coding genes, computational

methods may restrict their searches to those regions of intergenic sequences that are

sufficiently far from neighboring protein-coding genes, for example, at least 50

nucleotides from start or stop codons of annotated genes, or to intergenic sequences

on the opposite strand from neighboring protein-coding genes.

11.2.1.1 Example Programs Using Primary Sequence Data

One of the seminal studies in computational identification of sRNAs relies on

a combination of primary sequence data and primary sequence conservation

276 B. Tjaden

http://transterm.cbcb.umd.edu/
http://transterm.cbcb.umd.edu/


(Argaman et al. 2001). Argaman et al. used four criteria to search for candidate

sRNAs in E. coli: (1) only intergenic sequences were considered, (2) promoter

sequences corresponding to the RNA polymerase sigma factor s70 and Rho-

independent terminators were identified, (3) only sequences with 50–400

nucleotides between a predicted promoter and terminator were retained, and (4)

candidate sRNA sequences were required to demonstrate significant conservation

in related genomes as determined by BLAST (Altschul et al. 1990). These criteria

led to the prediction of 24 sRNAs in E. coli, at a time when only 10 sRNAs had been

identified previously. Of the 24 predictions, 23 were tested experimentally by

Northern blot, primer extension, and RACE (rapid amplification of cDNA ends),

and 14 of these 23 showed evidence of an expressed transcript corresponding to the

computational prediction.

Intergenic Sequence Inspector (ISI) uses similar criteria for predicting

sRNAs (Pichon and Felden 2003). ISI searches intergenic regions for primary

sequence conservation and allows the user to incorporate information about

promoters, terminators, and RNA secondary structure, while filtering the results

based on size and GC content. ISI was tested for its ability to correctly predict

known sRNAs in E. coli. Later, ISI together with Northern blots and microarrays

were used to identify 12 sRNAs in Staphylococcus aureus (Pichon and Felden

2005).

11.2.2 Primary Sequence Conservation

Few, if any, trans-acting sRNAs that bind via base pairing with their targets are

conserved broadly across bacteria. However, many sRNAs are conserved, particu-

larly in closely related species. As a result, conservation of a sequence, usually

detected by BLAST (Altschul et al. 1990) or a similar approach, can indicate the

presence of an sRNA. The primary challenge associated with using conservation as

a predictor of sRNAs is that sequences may be conserved for a variety of reasons,

and it is not trivial to distinguish conservation of an sRNA from that of untranslated

regions of genes, regulatory sites, and other functional elements in a genome.

Not only can conservation of a sequence be used as an indicator of an sRNA, but

the pattern or profile of conservation across a large number of genomes (hundreds

or thousands) offers predictive power. In this vein, nucleic acid phylogenetic

profiling has recently been used to identify sRNAs on a genome-wide scale

(Marchais et al. 2009). Of course, any approach that relies on conservation will

be unable to identify orphan sRNAs, and the extent of orphan sRNA genes in

bacteria remains unknown, in part, because many computational approaches for

identifying sRNAs rely on conservation and, thus, are bias against discovery of

orphans.
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11.2.2.1 Example Programs Using Primary Sequence Conservation

sRNAPredict is a computational method for predicting sRNAs based both on

primary sequence data and primary sequence conservation (Livny et al. 2005).

sRNAPredict searches a genome for sRNAs by considering, for each intergenic

sequence, the extent of primary sequence conservation as well as distance to

neighboring protein-coding genes and possible promoters and Rho-independent

terminators in the intergenic sequence as predicted by other programs. One study

suggests that sRNAPredict is among the most effective computational methods for

sRNA prediction (Lu et al. 2011). When applied to Pseudomonas aeruginosa, 34
novel sRNAs were predicted, 31 of which were experimentally tested via Northern

analysis and 17 were found to encode sRNA transcripts (Livny et al. 2006).

sRNAPredict’s methodology has been applied throughout sequenced bacterial

genomes in the SIPHT pipeline (Livny et al. 2008).

Most sRNA prediction methods that employ comparative genomics analyses

only incorporate conservation information from a handful of closely related

genomes when identifying candidate sRNAs. In contrast, NAPP (nucleic acid

phylogenetic profiling) uses the pattern of conservation across a large number

(e.g., hundreds) of genomes when identifying candidate sRNAs (Marchais et al.

2009). RNA genes tend to have a pattern of primary sequence conservation similar

to that of other RNA genes and less similar to that of protein-coding genes. NAPP

exploits this distinguishing feature by clustering similar conservation patterns in

order to identify groups of candidate RNA genes. In Staphylococcus aureus, NAPP
predicted 189 candidate sRNAs. Of these predictions, 24 were tested by Northern

blot and 7 showed evidence of sRNA expression (Marchais et al. 2009).

11.2.3 Secondary Structure Information

While it is unclear if, in general, mRNAs have lower folding free energies than

background sequences (Workman and Krogh 1999), the thermodynamic stability of

an sRNA sequence may help distinguish it from intergenic sequences not encoding

RNAs (Washietl et al. 2005). The stability of a sequence can be estimated by

folding the sequence into the most energetically favorable secondary structure or

into an ensemble of possible secondary structures each with a corresponding

measure of stability. When considering a given intergenic sequence, the thermody-

namic stability of the sequence’s structure can provide some indication as to

whether the sequence is likely to correspond to a functional RNA. While thermo-

dynamic stability has not been employed on its own to predict sRNAs, it has been

used successfully in collaboration with other features such as structural conserva-

tion of a sequence.
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11.2.3.1 Example Programs Using Secondary Structure

The BIOPROP program has been used as the basis of a machine learning approach

for predicting RNA genes (Carter et al. 2001). The approach uses a combination of

neural networks and support vector machines to classify sequences as RNAs based

on mono- and dinucleotide composition, thermodynamic stability, and presence of

five short nucleotide motifs often found in RNA sequences. The approach was used

to predict approximately 370 small RNAs in E. coli, though the predictions were

not tested experimentally.

11.2.4 Secondary Structure Conservation

Many sequences are conserved in closely related genomes. The pattern of conser-

vation of a sequence can be an effective predictor of the functional role of the

sequence. Rivas and Eddy (2001) have developed an approach that classifies a

sequence into one of three groups based on its pattern of conservation. Conserved

sequences with mutation patterns consistent with synonymous codons may be

classified as protein-coding sequences. Conserved sequences whose mutation pat-

tern conserves a secondary structure, such as via compensatory mutations in base-

pairing nucleotides in an RNA structure, may be classified as structural RNAs

(Fig. 11.2). Conserved sequences with no obvious pattern in mutations may be

classified as intergenic or nonfunctional sequences. As a first step in determining

conserved structural RNAs, typically a pairwise sequence alignment or multiple

sequence alignment is performed to identify related sequences and mutation

patterns. Then the mutation patterns are assessed for covarying mutations and

their likelihood of corresponding to conserved RNA structural elements. Programs

for predicting structural RNAs tend to work best when the input alignments

correspond to sequences with approximately 65–85% similarity (Rivas and Eddy

2001). Comparative sequences need to be sufficiently similar so that RNA

structures are conserved, yet sufficiently divergent so as to allow for compensatory

mutations. Such approaches are effective at identifying RNA elements; however,

they generally lack the ability to discriminate sRNAs from other RNA structures

that abound in a transcriptome.

A T C G A G T T A C G A C T C G C

A T C C A A T T A C G A T T G G C
| | | x | x | | | | | | x | x | |
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Fig. 11.2 The pairwise alignment of two sequences (1) and (2) is illustrated along with a hairpin

secondary structure for each of the two sequences. Four nucleotides differ between the two

sequences, yet the structures of the two sequences are conserved since the four differences

correspond to compensatory base pair mutations
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11.2.4.1 Example Programs Using Secondary Structure Conservation

QRNA is a tool that can use comparative sequence analysis to predict structural

RNA genes by identifying patterns of compensatory mutations consistent with

some base-paired secondary structure (Rivas and Eddy 2001). QRNA requires an

input pairwise sequence alignment and uses a pair stochastic context-free grammar

to identify RNA candidates. QRNA was initially applied to E. coli (Rivas et al.

2001), hyperthermophiles (Klein et al. 2002), and yeast (McCutcheon and Eddy

2003), but has served more broadly as the prototype for structural RNA gene

finding.

Motivated by QRNA, ddbRNA searches for compensatory mutations consistent

with secondary structure in conserved sequences but allows input three-way

alignments in addition to pairwise alignments (di Bernardo et al. 2003). MSARI

extends the search for compensatory mutations with general multiple sequence

alignments as input (Coventry et al. 2004).

RNAz, like MSARI, uses multiple sequence alignments as input to identify

mutation patterns indicative of structural RNAs (Washietl et al. 2005; Gruber

et al. 2010). However, RNAz also incorporates thermodynamic stability informa-

tion of a sequence when classifying it with a support vector machine as a structural

RNA. RNAz was used in conjunction with QRNA in one study (del Val et al. 2007),

though both independently have been applied widely. Following the model of

RNAz, the Dynalign program has been used as the basis of a support vector

machine classifier for structural RNA genes (Uzilov et al. 2006).

sRNAFinder is a biocomputational tool that attempts to integrate in a unified

probabilistic framework the various sources of heterogeneous data that evince

sRNAs in a genome (Tjaden 2008a). sRNAFinder uses a hidden Markov model

to predict sRNAs based on a variety of sources of information such as promoter and

terminator signals, conserved structure, and expression data if available.

sRNAFinder has been applied to both bacteria and archaea in genome-wide screens

for sRNAs (Swiercz et al. 2008; Gvakharia et al. 2010; Babski et al. 2011).

11.2.4.2 Perspectives

As a summary of some of the available tools used for genome-wide screens of

sRNAs, Table 11.1 lists the more commonly used computational approaches for

sRNA prediction along with which of the four abovementioned data types each

approach employs. Despite the abundance of computational methods for predicting

sRNAs, there has been a dearth of systematic comparisons of these methods. Many

of the abovementioned bioinformatics approaches suffer from low specificity when

used for genome-wide screens. Further, there is little practical guidance for users of

these tools. Recently, Lu et al. (2011) assessed four of the leading biocomputational

tools for sRNA prediction: eQRNA (Rivas and Eddy 2001), RNAz (Washietl et al.

2005; Gruber et al. 2010), sRNAPredict3 and SIPHT (Livny et al. 2005; Livny et al.
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2006; Livny et al. 2008), and NAPP (Marchais et al. 2009). As a benchmark

upon which to test the tools, the authors compiled a set of over 700 sRNAs

taken from experimentally confirmed sRNAs, RNAs characterized in the Rfam

database (Gardner et al. 2008), sRNAs suggested from genome-tiling microarray

experiments, and sRNAs suggested by RNA-seq experiments conducted in six

different bacteria. The authors found that the mean sensitivities of the tools, i.e.,

the percentage of putative sRNAs correctly predicted by the tools, ranged from

20% to 49%. The mean precisions of the tools ranged from 4% to 12%. Such low

precisions suggest potentially high false positive rates associated with the tools’

predictions. Even when predictions from the various tools were combined, the

ability of the tools to distinguish sRNAs on a genome-wide scale remained unim-

pressive when compared, for example, to protein-coding gene prediction. In gen-

eral, the tools performed well in predicting the strand and length of the sRNAs.

Nevertheless, the modest sensitivity and poor precision of the tools suggest that

Table 11.1 Some common methods for predicting sRNA genes as well as genome-wide screens

that employ these methods

Name of method Type of data used References

Argaman et al. 1,2 Argaman et al. (2001)

Axmann et al. 2,3 Axmann et al. (2005)

BIOPROP 1,3 Carter et al. (2001)

Chen et al. 1 Chen et al. (2002)

Coenye et al. 3,4 Coenye et al. (2007)

ddbRNA 4 di Bernardo et al. (2003)

Dynalign 3,4 Uzilov et al. (2006)

GMMI 1 Yackie et al. (2006)

ISI 1,2 Pichon and Felden (2003)

Lenz et al. 1,2 Lenz et al. (2004)

MSARI 4 Coventry et al. (2004)

NAPP 2 Marchais et al. (2009)

nocoRNAc 1 Herbig and Nieselt (2011)

Panek et al. 1,2 Panek et al. (2008)

PSoL 1,2,3 Wang et al. (2006)

QRNA 4 Rivas and Eddy (2001)

Saetrom et al. 1,3 Saetrom et al. (2005)

Schattner 1 Schattner (2002)

SIPHT 1,2 Livny et al. (2008)

sRNAFinder 1,4 Tjaden (2008a)

sRNAPredict 1,2 Livny et al. (2005), Livny et al. (2006)

sRNAscanner 1 Sridhar et al. (2010)

RNAz 3,4 Washietl et al. (2005), Gruber et al. (2010)

Tran et al. 3 Tran et al. (2009)

Voss et al. 3,4 Voss et al. (2009)

Xiao et al. 1,2,3 Xiao et al. (2009)

The middle column indicates the type of data used by the method: (1) primary sequence data, (2)

primary sequence conservation, (3) secondary structure information, (4) secondary structure

conservation
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there is much room for improvement in the field of computational sRNA prediction.

In light of recent studies using RNA-seq experiments to identify sRNAs in a range

of bacteria (Sittka et al. 2008; Liu et al. 2009; Yoder-Himes et al. 2009; Albrecht

et al. 2010; Sharma et al. 2010), it is clear that the role of high-throughput

sequencing methods will be increasingly important in elucidating sRNAs. As

such, the demand for computational tools that integrate data from high-throughput

sequencing experiments to identify functional transcripts is likely to grow for the

foreseeable future.

11.3 Computational Identification of sRNA Regulatory Targets

As in the case of microRNAs in eukaryotes, trans-acting sRNA regulators that bind

via base pairing to messages typically affect the translation and stability of their

targets. Commonly, these sRNAs inhibit the translation of their mRNA target, for

example, by binding in the neighborhood of the translation initiation site and

blocking ribosome binding (Fig. 11.1b). Either as an alternative or complement to

ribosome occlusion, sRNAs may decrease the stability of the message and target it

for degradation by RNase E (Pfeiffer et al. 2009; Desnoyers et al. 2009). Thus,

sRNAs often act stoichiometrically where they are degraded along with their

targets. Less commonly, sRNAs can activate translation, for example, by freeing

translation initiation sites that would otherwise be occluded by an inhibitory

secondary structure (Prevost et al. 2007; Urban and Vogel 2008).

In most cases studied to date in enteric bacteria, the chaperone protein Hfq binds

both sRNA and mRNA and facilitates interaction. By binding to both sRNA and

mRNA, Hfq may increase the local concentrations of both or affect the RNAs’

secondary structures (Brennan and Link 2007). However, some sRNAs, particularly

in Gram-positive bacteria, do not require Hfq (Boisset et al. 2007; Silvaggi et al.

2006), and the role of an RNA chaperone protein in sRNA:mRNA interactions

throughout bacteria more broadly remains unclear.

Base pairing between an sRNA and mRNA occurs over a short region, usually

one to two dozen nucleotides, and is imperfect. For these reasons, computational

methods for predicting the targets of an sRNA have met with only moderate

success, often generating large numbers of false positive predictions. Within the

region of interaction between an sRNA and one of its message targets, a few

mutational studies have suggested that only about 4–9 nucleotides are essential

for regulatory effect (Kawamoto et al. 2006). One sRNA can interact with multiple

mRNAs (reviewed in Papenfort and Vogel 2009), enabling sRNAs to be effective

participants in bacterial global responses to specific, often stress related, conditions.

A number of experimental approaches have been employed for the purpose of

large scale target identification (reviewed in Vogel and Wagner 2007; Sharma and

Vogel 2009). Examples of such approaches include genetic screens (Altuvia et al.

1997), co-immunoprecipitation of interaction complexes (Zhang et al. 2003), and

sRNAs being used as bait for capturing target mRNAs by affinity purification
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(Antal et al. 2005; Douchin et al. 2006). Also, candidates can be identified by

investigating differentially expressed targets through transcriptome or proteome

screens following deletion or expression of an sRNA (Masse et al. 2005; Papenfort

et al. 2006; Rasmussen et al. 2005). One limitation of this approach is that

distinguishing primary (physically interacting) targets from secondary downstream

regulatory effects is difficult. Consequently, validation of candidate targets, such as

through site-specific mutagenesis, is important.

11.3.1 Data Used for Computational Prediction of sRNA
Regulatory Targets

Most methods for predicting sRNA:mRNA interactions use one or more of a

few different types of data in order to generate predictions. The strength of

hybridization between the two RNAs is often used as an indicator of an interaction.

Hybridization strength typically refers to inter- but not intramolecular interactions

involving the two RNAs, and it can be assessed in a variety of ways. Most simply,

the two RNA sequences can be aligned and the (possibly weighted) count of

matching base pairs can be used as an indicator of hybridization strength. Using a

thermodynamic approach, the energy contribution of stacking base pairs can be

aggregated together with the destabilizing effects of bulge and interior loops

(Mathews et al. 1999). Hybridization strengths can be assessed for two RNAs either

for a specific structured interaction or over an ensemble of different structured

interactions between the two RNAs.

Intramolecular structures can also be used to elucidate potential sRNA:mRNA

interactions. One approach involves simultaneously computing the joint secondary

structure of the two interacting RNAs, for example, by concatenating the two RNA

sequences and “folding” the concatenated sequence, while another approach

involves computing the accessibility of the interacting region of each RNA by

determining its propensity for being unpaired (not part of a structure) in an

ensemble of secondary structures. Methods that restrict interactions by disallowing

certain complex structures such as pseudoknots and kissing hairpins may increase

their computational efficiency at a cost to their sensitivity.

While hybridization, structure, and accessibility are the most common features

used by methods to predict targets, other features can also be employed. Since most

known interactions occur around the message target’s translation initiation site, the

search for interactions is often restricted to this region. Comparative genomics may

be used to identify interacting regions, as more highly conserved regions may

be more likely to act as interacting sites than less highly conserved regions. Since

many interactions contain a seed region comprised of a short series of consecutive

base pairs between the two RNAs, the existence of such a seed region may be used

to hone the search for target candidates. Potential Hfq binding sites can be

incorporated into prediction algorithms, though there has been little success thus
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far in reliable prediction of Hfq binding sites in RNAs. Similarly, RNA architec-

tural modules have yet to be applied to sRNA regulatory target prediction (Westhof

2010). Thus, further research is needed in the field of computational identification

of mRNA targets of sRNA action. Table 11.2 summarizes some of the more popular

computational methods and the type of data they employ when making their

predictions.

11.3.2 Example Programs That Predict Regulatory Targets
of sRNA Action

Some of the early bioinformatics methods for predicting sRNA:mRNA inter-

actions stem from methods designed to predict microRNA targets in eukaryotic

genomes. RNAhybrid, for example, predicts targets of microRNA action and was

initially applied to Drosophila (Rehmsmeier et al. 2004). To predict the likelihood

of interaction of two RNAs, RNAhybrid simplifies the classic approach for

folding RNA sequences (Zuker and Stiegler 1981) by disallowing intramolecular

interactions and restricting loop sizes to be at most 15 nucleotides in length. Similar

to RNAhybrid, RNAup considers the intermolecular energy of two interacting

RNAs (Muckstein et al. 2006). However, RNAup combines this hybridization

energy with the energy associated with the interacting regions being unpaired

Table 11.2 Some common methods for predicting sRNA regulatory targets

Name of

method

Type of

data used URL of web server References

RNAhybrid 1 http://bibiserv.techfak.uni-bielefeld.

de/rnahybrid/

Rehmsmeier et al.

(2004)

RNAup 1,2 http://rna.tbi.univie.ac.at/cgi-bin/

RNAup.cgi

Muckstein et al.

(2006)

TargetRNA 1,3 http://snowwhite.wellesley.edu/targetRNA/ Tjaden et al. (2006)

Mandin et al. 1 Mandin et al. (2007)

Boisset et al. 4 Boisset et al. (2007)

RNAplex 1 Tafer and Hofacker

(2008)

IntaRNA 1,2,3 http://rna.informatik.uni-freiburg.

de:8080/IntaRNA.jsp

Busch et al. (2008)

sRNATarget 3,4 http://ccb.bmi.ac.cn/srnatarget/index.php Zhao et al. (2008)

RactIP 4 Kato et al. (2010)

Peer and

Margalit

2,5 Peer and Margalit

(2011)

PETcofold 4,5 http://rth.dk/resources/petcofold/

submit.php

Seemann et al.

(2011)

ripalign 4,5 Li et al. (2011)

The second column indicates, for each method, the type of data used by the method:

(1) hybridization, (2) accessibility, (3) seed region, (4) joint structure, (5) conservation
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(i.e., accessible) in the intramolecular structures. The probability of two RNAs

interacting at a given site is determined as the sum of the two energies over all

possible types of binding. RNAup was evaluated by comparing its RNA interaction

predictions to data from RNA interference experiments. RNAup is distributed as

part of the Vienna RNA package and can be used via a Web interface (Hofacker

2003). Because of the computational costs associated with RNAup, it takes days to

execute when applied to genome-wide screens.

TargetRNA was one of the first biocomputational tools designed specifically for

predicting targets of sRNAs in bacteria (Tjaden et al. 2006). TargetRNA offers two

approaches for predicting the hybridization of an sRNA with a candidate target: an

individual base pair model that is an extension of the Smith-Waterman dynamic

program (Smith and Waterman 1981) and a stacked base pair model that is similar

to RNAhybrid (Rehmsmeier et al. 2004). TargetRNA was evaluated on its ability to

correctly predict previously published sRNA:mRNA interactions as well as on

targets showing differential expression in microarray assays and Northern blot

experiments following ectopic expression of several sRNAs in E. coli. TargetRNA
demonstrated variable results – for some sRNAs the predictions corresponded well

with putative targets and for some sRNAs the predictions did not correspond well

with putative targets. Some useful features of TargetRNA include its calculation of

p values enabling the significance of a prediction to be estimated, its incorporation

of a seed region of consecutive interacting nucleotides, its speed (genome-wide

searches take a few seconds), its ability to identify orthologous sRNA:mRNA

interactions in other genomes, and its user-friendly Web interface. The primary

limitation of TargetRNA is the significant false positive rate of its predictions. An

extension of TargetRNA, RNATarget, addresses the inverse problem of identifying

an sRNA in a genome that may regulate a given mRNA target (Tjaden 2008b). Like

TargetRNA, RNATarget suffers from a significant number of false positive

predictions.

Mandin et al. developed a computational method to scan a genome for mRNA

targets of an sRNA based on thermodynamic pairing energies (Mandin et al. 2007).

The method combines favorably contributing stacking energies of predicted base-

pairing nucleotides with unfavorably contributing energies of bulge and internal

loops. The contribution of loop energies to a predicted interaction are determined

from a training set of three known sRNA:mRNA interactions in E. coli and one in

Staphylococcus aureus. Unlike other methods that restrict their searches to the 50

end of sRNAs, both 50 and 30 regions were screened for possible targets. The

computational approach was applied in Listeria monocytogenes, where target

predictions for three of nine sRNAs were validated experimentally.

As part of their investigation of RNAIII in Staphylococcus aureus, Boisset et al.
(2007) use a computational approach to predict the sRNA’s targets that can be

viewed as an instantiation of the more general tool PairFold (Andronescu et al.

2003). The authors concatenate part of the 50 UTR sequence around the ribosome

binding site of each mRNA with an eight nucleotide linker sequence and with a

hypothesized interacting region of RNAIII. The concatenated sequence is then

folded with RNAfold (Hofacker et al. 1994) to identify joint structures with free
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energy below a chosen threshold. Two of the predicted RNAIII targets were then

validated experimentally.

RNAplex uses an approach comparable to that of RNAhybrid, which is to say

that intramolecular interactions are ignored when computing a hybridization energy

for two interacting RNAs (Tafer and Hofacker 2008). RNAplex uses a simplified

energy model, i.e., an affine function for loop size rather than a logarithmic

function, in order to achieve a 10–27 speedup as compared to RNAhybrid. When

evaluating RNAplex target predictions for eight sRNAs in E. coli, on average,

RNAplex scores more than 100 mRNAs higher than the known target, suggesting a

potentially substantial false positive rate.

Similar to RNAup, IntaRNA is a tool that uses a combination of hybridization

energy (intermolecular base pairings) and accessibility of an interacting region

(unpaired in the intramolecular structure) to predict the interaction of two RNAs

(Busch et al. 2008). As in the case of TargetRNA, IntaRNA can restrict predictions

to those containing a seed region composed of consecutive base-pairing nucleotides

in the interaction. On a test set of 18 sRNA:mRNA interactions, IntaRNA’s

accuracy was found to be comparable to or better than that of other approaches

while requiring less time to execute than other approaches that incorporate accessi-

bility information. IntaRNA is available for use via a Web interface (Smith et al.

2010) and typically takes minutes to hours to execute for a genome-wide screen.

sRNATarget is a tool that uses either a Naive Bayes classifier or a support vector

machine to discriminate sRNA:mRNA interactions (Zhao et al. 2008). The classifiers

are based on ten features, seven of which are derived from minimum free energy

structures of the RNAs, one of which corresponds to a seed region, and two of which

correspond to A/U rich sequences in unstructured regions of minimum free energy

structures. The latter two features are meant to model possible Hfq binding regions in

the two RNAs. This is one of the few examples of a biocomputational tool that

incorporates information about possible Hfq binding sites. Of the ten features, the

difference between the minimum free energy of the joint sRNA:mRNA structure and

the minimum free energies of the individual sRNA andmRNA structures are found to

offer the best discriminatory power in classifying interactions. The tool was evaluated

on a set of previously reported sRNA:mRNA interactions in E. coli and later made

available through a Web server (Cao et al. 2009).

RactIP is a method that uses integer linear programming to estimate the joint

secondary structure of two interacting RNAs (Kato et al. 2010). Aspects of feasible

structures are modeled as a series of linear constraints. The objective function,

which is the sum of weighted base pairs in the joint secondary structures, is

maximized using an integer programming solver. RactIP does not use the classic

thermodynamic parameters (Mathews et al. 1999) for modeling stacked base pairs

or various loops within the structures. RactIP’s primary contribution is a more

efficient method for estimating joint secondary structure as compared to more

computationally expensive methods for computing the interaction partition func-

tion (McCaskill 1990). RactIP was initially evaluated on 18 sRNA:mRNA

examples in E. coli for its ability to accurately predict the interacting nucleotides

given a known sRNA:mRNA interaction as input. However, it was not applied to
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the more general problem of predicting targets of a given sRNA. A recent study

evaluating its ability to predict mRNA targets for a given sRNA found its specificity

to be prohibitively low (Tjaden 2011, unpublished).

Peer andMargalit approach the problem of predicting sRNA:mRNA interactions

from a different perspective – rather than focusing on the mRNA targets, they

investigate the target-binding regions of sRNAs (Peer and Margalit 2011). The

authors consider different features that may be used to identify sRNA interaction

sites. In particular, they find that sRNA interaction sites are better conserved, as

determined by primary sequence conservation, than other regions of the sRNA and

that sRNA interactions sites are more accessible, i.e., less likely to participate in

structured regions, than other regions of the sRNA. As a result, the authors offer

evidence that false positive predictions can be reduced by focusing searches for

sRNA targets to messages that interact with probable sRNA interaction sites as

determined by conservation and accessibility. This finding is an important advance

as it addresses, at least in part, the main limitation of sRNA target prediction

methods – their high false positive rate.

11.3.3 Comparison of Tools

For three of the abovementioned tools, IntaRNA, TargetRNA, and RNAplex, we

assessed their performance on a test set of 73 validated sRNA:mRNA interactions

involving 24 sRNAs in Escherichia coli (Peer and Margalit 2011). Each tool was

used to predict message targets in E. coli for the 24 sRNAs. Only regions of

messages within 30 nucleotides upstream of the start of translation and within 20

nucleotides downstream of the start of translation were considered. For IntaRNA, a

seed of 7 was used and predictions at or below 32 energy scores ranging from�25.0

to�9.5 were considered. For TargetRNA, a seed of 7 was used and predictions at or

below 14 p values ranging from 0.0001 to 0.12 were considered. For RNAplex,

predictions at or below 17 energy scores ranging from �25.0 to �9.0 were

considered. Figure 11.3 illustrates the sensitivity of the three tools in identifying

the 73 sRNA:mRNA interactions in the test set. At larger score thresholds, as the

tools make more predictions for each sRNA, the sensitivities of their predictions

rise. However, when making as many as 200 predictions per sRNA, no tool

identifies even half of the 73 sRNA:mRNA interactions, and when making a

more reasonable 30 predictions per sRNA, no tool identifies even a quarter of the

73 interactions.

11.3.4 Perspectives

Taken together, the abovementioned methods offer a number of insights into the field

of computational prediction of sRNA targets. First, most approaches for predicting
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sRNA:mRNA interactions use some subset of the same few features such as the

existence of a seed region, thermodynamically favorable hybridization and structures,

and conservation in other genomes. When applied to entire genomes, a number of

approaches demonstrate a trade-off between faster execution (seconds) with less

accurate results and slower execution (hours or days) with more accurate results.

Two of the main challenges for the field of computational identification of sRNA

regulatory targets are limiting the number of false positive predictions and training

methods on a small number of verified sRNA:mRNA interactions, especially outside

of Escherichia coli. As more interactions are verified experimentally, benchmark data

sets can be developed and systematic comparisons of the various tools will offer more

compelling assessments of the tools and better practical guidance for users of the

tools. Thus, accurate prediction of sRNA regulatory targets remains a challenging

problem, with many opportunities for further investigation and advancement.
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Chapter 12

Identifying Functional miRNA Targets Using

Overexpression and Knockdown Methods

Elizabeth L. Johnson, Eric J. Suh, Talia R. Chapman, and Hilary A. Coller

Abstract MicroRNAs are important regulators of gene expression that can

posttranscriptionally regulate transcript abundance. Misregulation of miRNA

expression has been associated with cell cycle abnormalities and disease states,

thus reinforcing the importance of understanding the functional role of miRNAs.

Genomic approaches are particularly valuable for studying miRNA function

because they can address the ability of a single miRNA to direct the regulation of

multiple mRNA targets. This chapter details methods for monitoring differentially

expressed miRNAs using expression profiling, monitoring miRNA-related cell

cycle phenotypes using flow cytometry, identifying miRNA targets using

overexpression and knockdown methods, and validating target sites in 30UTRs
using luciferase reporters.

Keywords 30UTR luciferase assay • cell cycle flow cytometry • expression

profiling • LNA • miRNAs • overexpression • sponge

12.1 Introduction

MicroRNAs (miRNAs) are short single-stranded sequences of RNA, around

22 nt in length, that have been shown to be important regulators of mammalian

gene expression. Altered miRNA expression has been linked to abnormal cell

cycle control, and perturbing miRNA levels has allowed for the identification of

specific and functional mRNA targets. In a growing number of instances, miRNA

targets have been directly linked with cell cycle control (Johnson et al. 2007;
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Linsley et al. 2007). Two representative examples of cell cycle control by

miRNAs include a study in which overexpression of the miRNA let-7 led to

G2/M arrest through the downregulation of Cdc34 and a study in which depletion

of miR-221/222 in cancer cell lines was shown to cause an increased fraction of

cells in the G0/G1 state by alleviating the negative regulation of the cell

cycle inhibitor p27 (Legesse-Miller et al. 2009; le Sage et al. 2007). miRNA

misregulation has also been associated with poor prognosis in cancer patients

along with increased incidence of certain cancers (Takamizawa et al. 2004; He

et al. 2005; Calin et al. 2008). Understanding how individual miRNAs affect the

gene expression landscape of a cell can provide insight into how miRNA

misregulation contributes to the development of proliferative diseases and other

associated pathologies.

Complications to understanding the regulatory function of even a single miRNA

arise from the ability of one miRNA to repress the expression of a multitude of

mRNA targets. In order to repress target genes, miRNAs are loaded into the RNA-

induced silencing complex (RISC), which recognizes complementary sequences

in the 30 untranslated region (30UTR) of the target mRNA. This interaction with

RISC is primarily thought to cause transcript destabilization but can also cause

translational inhibition through a variety of mechanisms (Guo et al. 2010). Because

decreases in mRNA stability often correlate with decreases in gene expression,

gene expression levels can serve as an indicator of miRNA effectiveness. There-

fore, identifying transcripts that decrease in abundance upon overexpression of an

miRNA and increase in expression when miRNA levels are depleted allows for a

better understanding of the specific functional role of miRNAs in a biological

system.

To begin understanding how miRNAs are regulating a system of interest, one

can perform a genome-wide analysis of miRNA expression changes between

distinct cellular states. Such an approach offers an unbiased assessment of the

global changes in miRNA levels in a given system. Once an individual miRNA

of interest is identified from miRNA expression profiling, cell cycle flow can be

used to determine miRNA-associated cell cycle phenotypes. Then changes in target

expression can be monitored by microarray in response to overexpression and

knockdown of the miRNA. Targets of interest can be identified based on their

responses to changes in the miRNA’s expression levels and can be subsequently

validated using luciferase-based 30UTR assays. Some of the major advantages of

this genome-wide approach are the identification of multiple miRNA targets of

interest in one experiment and the potential to organize related transcripts into their

associated pathways.

Multiple challenges arise in this analysis ranging from experimental design to

data analysis. Approaches to these challenges are addressed in this chapter. We will

focus on an example in which the targets of the let-7 miRNA are identified using

microarray analysis, and the functional effects on the cell cycle are determined for

let-7 and its targets.
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12.2 Materials

12.2.1 miRNA Expression Profiling to Identify miRNAs That
Change in Abundance Between Cell Cycle States

1. miRNA Complete Labeling and Hyb Kit (Agilent 5190-0456)

2. Gene Expression Wash Buffer Kit (Agilent 5188-5327)

3. MicroRNA Spike-In Kit (Agilent 5190-1934)

4. mirVana™ miRNA Isolation Kit (Applied Biosystems AM1560)

5. Micro Bio-Spin 6 Columns, in Tris Buffer, 6 kD Limit (Bio-Rad 732-6221)

6. RNase-free water

7. RNA 6000 Nano Kit (Agilent 5067-1511)

8. 2100 Bioanalyzer (Agilent)

9. Microarray Scanner (Agilent)

10. Hybridization Chamber, Stainless (Agilent)

11. Hybridization Chamber Gasket Slides, 8 Arrays/Slide (Agilent)

12. Hybridization oven, 20 rpm, set at 55�C (Agilent)

13. TruSeq Small RNA Sample Prep Kit (Illumina RS-200-0012)

12.2.2 Reverse Transfection of miRNAs into Primary Human
Foreskin Fibroblasts

1. Human Foreskin Fibroblasts (ATCC CRL-2522™)

2. Pre-miR™ miRNA Precursor Molecule (hsa-let-7b) (Ambion AM17100)

3. Locked Nucleic Acid (LNA™) (hsa-let-7b) (Exiqon)

4. Pre-miR Negative Control #1 RNA (Ambion AM17100)

5. Oligofectamine™ Transfection Reagent (Invitrogen 12252-011)

6. Opti-MEM® Reduced Serum Media (Invitrogen 11058-021)

7. Dulbecco’s Phosphate-Buffered Saline (D-PBS) (Invitrogen 14190144)

8. Trypsin, 0.5% (10�) with EDTA 4Na (Invitrogen 15400-054) – diluted to 1�
in PBS

9. Twenty percent Fetal Bovine Serum (FBS) in Dulbecco’s Modified Eagle

Media (DMEM) (Invitrogen)

10. Trypsin Inhibitors – 0.25–0.5 mg/ml in PBS (Invitrogen 17075-029)

12.2.3 Monitoring Changes in Cell Cycle Status

12.2.3.1 Monitoring DNA Synthesis Using Flow Cytometry

1. 5-Ethynyl-20-deoxyuridine (EdU) (Invitrogen A10044)

2. Permeabilization buffer – 0.2% Triton X-100 in PBS
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3. Wash buffer – 1% BSA, 0.2% Triton X-100 in PBS

4. Blocking solution – 5% BSA, 0.2% Triton X-100 in PBS

5. 40,6-Diamidino-2-phenylindole (DAPI) Solution (Sigma D9542-10MG) – 1 mg/
ml DAPI solution diluted 1:1000 from 1 mg/ml DAPI stock solution in 0.1%

Triton X-100 in PBS

6. Reaction cocktail (per sample) – 50 ml 1 M Tris pH 8.5, 10 ml 100 mM CuSO4 in

water, 2.5 ml 2 mM Alexa Fluor® 488 azide (Invitrogen A10266), 50 ml 1 M

ascorbic acid, 387.5 ml water
7. Polystyrene Round-Bottom Tube (5 mL) (BD Falcon 352053)

12.2.3.2 Cell Cycle Analysis Using Pyronin Y–Hoechst 33342 Staining

to Quantify Cells in the G0 Cell Cycle State

1. Hanks Buffered Saline Solution (1�) (HBSS) (Invitrogen 14170112)

2. Pyronin Y (Sigma-Aldrich P9172-1 G)

3. Hoechst 33342 (Invitrogen H1399)

4. Ethanol (70%) – chilled at �20�C
5. Polystyrene Round-Bottom Tube (5 mL) (BD Falcon 352053)

12.2.4 Monitoring Changes in Gene Expression Using
Microarray Analysis in Response to miRNA
Overexpression or Knockdown

1. TRIzol® Reagent (Invitrogen 15596026)

2. Chloroform Isoamyl Alcohol 24:1 (Sigma 25666-100ML)

3. Ethanol (100%) (Sigma E7023)

4. Nuclease-free water

5. 15-ml Heavy Phase-lock Gel Tubes (PLG) (5 PRIME 2302850)

6. Quick Amp Microarray Labeling Kit, Two-Color (Agilent 5190-0444)

7. RNA Spike-in control, Two-Color (Agilent 5188-5279)

8. Whole Human Genome Microarray Kit, 4 � 44 K (Agilent G4112F)

9. Gene Expression Hybridization Kit (Agilent 5188-5242)

10. Gene Expression Wash Buffer 1 and 2 (Agilent 5188-5325, 5188-5326)

11. Microarray Wash Buffer Additive (Agilent 5190-0401)

12. Prehybridization Buffer (Agilent 5190-0402)

13. RNeasy Mini Kit (Qiagen 74104)

14. Hybridization Chamber Gasket Slides, 4 Arrays/Slide (Agilent)
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12.2.5 Identifying miRNA Targets and Using 30UTR Luciferase
Assays to Validate Target Responsiveness to miRNAs

1. HEK 293 cells (ATCC CRL-1573™)

2. psiCHECK™-1 Vector (Promega C8011)

3. pRL-CMV Renilla Luciferase Control Plasmid (Promega E2261)

4. Pre-miR™ miRNA Precursor Molecule (hsa-let-7b) (Ambion AM17100)

5. Lipofectamine™ 2000 Transfection Reagent (Invitrogen 11668-019)

6. Opti-MEM® I Reduced-Serum Medium (1�) (Invitrogen 31985-070)

7. Firefly & Renilla Luciferase Assay Kit (Biotium 30005-1)

8. OptiPlate-96, White Opaque 96-well Microplate (PerkinElmer 6005290)

9. GloMax® 96 Microplate Luminometer (Promega E6501)

12.3 Methods

The following subsections describe methods that will guide the reader in techniques

that include choosing an miRNA to study, identifying cell cycle effects of the

chosen miRNA, and using expression profiling to identify then validate targets

regulated by the miRNA. This complete analysis can lead to the identification of

specific transcripts and pathways that are involved in miRNA-mediated cell cycle

control. A schematic of the workflow recommended to complete this analysis is

detailed in Fig. 12.1.

12.3.1 Expression Profiling to Identify miRNAs That Change
in Abundance Between Cell Cycle States

miRNA expression levels are measured using a variety of standard molecular

biology techniques of varying throughput, from low-throughput northern blots

to high-throughput next-generation sequencing. Many of the sample preparation

procedures have been simplified and packaged in commercially available kits. Here

we compare two methods to quantify miRNA expression: miRNA microarrays and

high-throughput sequencing of small RNAs (refer to Chap. 9 of this volume for

more information on expression profiling of ncRNAs). Expression profiling of

miRNAs offers an unbiased method to determine miRNAs that may have functional

importance in a particular biological system. The application of miRNAmicroarray

technology assumes that miRNAs that change in abundance between two states are

important for the proper regulation of cell state transitions. Disadvantages of this

approach include that it will not detect changes unrelated to miRNA levels, for

instance, changes in the accessibility of the miRNA binding site. Another possible

disadvantage is that miRNA profiling can result in a multitude of promising
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candidates and it may not be clear which miRNAs are most important. It is therefore

important to use supporting methods to select specific miRNAs for further analysis.

Possible filtering criteria include the strength and consistency of the change in

miRNA abundance, information in the literature, and the extent to which the

miRNA’s targets correlate with the biological process under consideration.

Among these, the most straightforward way to select miRNAs for continued

experimentation is to consider the magnitude of the abundance change while

keeping in mind that abundance does not always perfectly correlate with how

effective an miRNA is at regulating predicted targets in a particular condition.

12.3.1.1 miRNA Microarrays

The advantages of miRNA microarrays for quantifying miRNA expression are

the simple, established workflow and the ease of data processing when using readily

available computational packages and methods. Agilent miRNA microarrays,

for example, are easily used to quantify the differences in miRNA levels between

proliferating and quiescent fibroblasts. For Agilent microarrays, a cyanine

3-conjugated pCp (Cy3-pCp) is ligated to the 30 end of the RNA by T4 RNA ligase,

followed by purification and hybridization to the array probes (Wang et al. 2007).

We have had success using Agilent’s miRNA Complete Labeling and Hyb Kit to

complete these steps.

Fig. 12.1 Schematic providing an overview of the techniques used in this chapter
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There are also drawbacks to using microarrays. The only miRNAs that can be

monitored with miRNA microarrays are those that are present on the microarray,

and thus, there is no opportunity for de novo discovery. Microarrays also have a

compressed dynamic range compared to digital counting expression analysis for

sequencing. Finally, microarray results can be confounded by cross-hybridization

artifacts, which can lead to bias between isoforms as well as bias from miRNA

precursors.

We suggest at least two separate labeling and hybridization replicates and at

least three biological replicates for each experimental condition in order to accu-

rately distinguish technical variation from the biological variation of interest.

Brief Overview of miRNA Microarray Methods

Total RNA can be isolated from 106 primary human fibroblasts per condition using

the mirVana miRNA isolation kit and eluted into nuclease-free water. Total RNA

isolation is recommended over methods that attempt to isolate only small RNAs, as

the latter can introduce biases and loss of sample compared to the former.

To assess the quantity and quality of the RNA, the RNA can be analyzed both on

a spectrophotometer such as the Nanodrop 2100 and Agilent’s analytical

microfluidic Bioanalyzer system. In general, we suggest quantifying the RNA on

the former and assessing the quality on the latter. Microarrays require extremely

pure and nondegraded RNA samples, as data from profiling the expression of

mature miRNAs can be confounded when degradation causes a change in

miRNA precursor chemistry and size. This RNA degradation may result in the

unwanted hybridization of miRNA precursors to probes designed to specifically

bind to short mature miRNA sequences. In general, we only use total RNA samples

with a Bioanalyzer RNA integrity number greater than 9.5.

Following the Agilent protocol, dilute the total RNA sample to 25 ng/ml in
RNase-free water, and use 4 ml (100 ng) along with the properly diluted spike-in

reagents in the initial calf intestinal alkaline phosphatase (CIP) reaction. After

denaturing the reaction with DMSO and heating the reaction, the total RNA

samples are labeled at the 30 end with the Cy3-pCp. These labeled RNA samples

are desalted using the Micro Bio-Spin 6 columns, eluted in RNase-free water, dried

in a warm SpeedVac, and then hybridized with a spike-in control to the Agilent

array using the methods described in Agilent’s protocol.

The arrays are scanned in Agilent’s microarray scanner using the standard

settings described in the miRNA microarray protocol. The log2-normalized data

can then be processed by multiple linear regression. Some experimental artifacts

(i.e., “hidden” experimental variables) may only affect a subset of genes, thus

creating widespread biases that would be difficult to remove with standard linear

regression. We find surrogate variable analysis (SVA) to be particularly useful in

this circumstance (Leek and Storey 2007); SVA is a technique to estimate the

effects of such unknown experimental variables by searching for statistically

significant patterns in the regression residuals matrix. The combination of thorough
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regression along all experimental and technical variables with SVA generally

produces results that correlate well with quantitative real-time polymerase chain

reaction (qRT-PCR) data. Artificially stringent normalization criteria can lead to

loss of biological signal and inadequate characterization of biologically driven

changes.

12.3.1.2 High-Throughput Sequencing of Small RNAs

The advantages of using high-throughput sequencing to profile miRNA expression

include the ability to discover and profile miRNAs de novo without a reference

genome sequence, the ability to detect modifications and alternative forms of

miRNAs (such as uridylated miRNAs or processing variants), greater dynamic

ranges for expression changes, and the ability to distinguish between mature and

precursor forms of miRNAs (Wang et al. 2009). The drawbacks consist of the

slightly more difficult sample preparation (compared to a microarray or qRT-PCR

platform), the relatively more complicated data processing steps, and the lack of

mature ways to handle normalization and analysis of digital counting data.

In general, we have found microarray results to be satisfactory for initial

experiments and much simpler than high-throughput sequencing of small RNAs.

We have chosen to focus on the former platform based on those tradeoffs, but for

truly accurate digital count quantification, small RNA sequencing can be

multiplexed using a bar-coding strategy, thus allowing for larger dynamic range

of detection along with accurate internal controls for normalization. We have used

and included in the recommended materials sections reagents for Illumina Inc.’s

small RNA sequencing platform. However, multiple sequencing platforms offer

small RNA quantification by sequencing including Roche’s 454 sequencer, Applied

Biosystems/Life Technologies’ SOLiD system, and Life Technologies’ Ion Torrent

Personal Genome Machine. As the data for digital sequencing quantification is

likely to follow a discrete statistical distribution rather than a continuous, normal

distribution, care must be taken in choosing a method of statistical analysis.

Both microarrays and high-throughput sequencing require careful, reproducible

pipetting techniques along with enough replicates and control samples to accurately

partition the variation in the data using statistical methods such as ANOVA. From

this perspective, sequencing technologies have an advantage because of the ability

to use multiplexed bar code strategies to allow for internal normalization.

Once microarray or sequencing analysis of the sample has been completed, a

small set of miRNAs of interest can be selected based on the most striking

abundance changes between the two states. Other criteria such as information in

the literature, relevance to the biological system of interest, and correlation to other

supporting datasets (previously generated microarray, proteomics, metabolomics,

etc., data) can be useful when singling out a potential miRNA candidate to

characterize functionally. The next section of detailed protocols explains how to

use overexpression and knockdown analysis to analyze the effects of the chosen

miRNA on cell cycle progression.
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12.3.2 Reverse Transfection of miRNAs into Primary Human
Foreskin Fibroblasts

A cell’s response to perturbations of miRNA levels can be measured in a multitude

of ways, some of which are described in the methods below. In order to identify

important phenotypic effects of a particular miRNA, it is possible to overexpress or

deplete levels through the transfection of interacting oligonucleotides into the cell.

The reagent oligofectamine is used to introduce RNA oligonucleotides into a

liposome that can readily penetrate a cell’s plasma membrane. The procedure

below introduces the oligofectamine/miRNA transfection complexes to cells

while they are not adherent to a tissue culture plate, allowing for faster and more

efficient uptake of exogenous RNAs (Chesnoy and Huang 2000):

1. Plate cells at 60% confluency the day before transfection.

2. Dilute let-7 pre-miR (overexpression) or let-7 LNA (knockdown) to 50 nM in

Opti-MEM from a 50-mM stock.

3. Add 25 ml of Oligofectamine reagent to 350 ml of Opti-MEM for each plate.

4. Add 375 ml of diluted Oligofectamine to 625 ml of diluted miRNA for each

plate and incubate at room temperature for 15 min.

5. During the 15-min incubation, trypsinize and resuspend cells at a concentration

of 375,000 cells/ml in Opti-MEM.

6. Add transfection reaction from step 4 to 4 ml of cells from step 5.

7. Add transfection reaction/cell mixture to a 10-cm tissue culture plate.

8. Incubate at 37�C for 4 h.

9. Supplement the cells with 5 ml of media containing 20% FBS with no

antibiotics.

10. Change to full serum 24 h after transfection.

11. Collect samples for phenotypic analysis 12 h after serum addition. RNA is

needed for microarray analysis (Sect. 12.3.3), or cells can be fixed for flow

cytometry analysis (Sect. 12.3.5).

Common challenges with this procedure involve low cell survival after transfec-

tion and varied transfection efficiency. To address excessive cell death after trans-

fection, it may be necessary to empirically determine the concentration of nucleic

acid needed for a successful transfection. To determine the effectiveness of the

overexpression or knockdown, it is possible to do real-time PCR (qRT-PCR)

targeting the mature form of the miRNA.

12.3.3 Monitoring Changes in Cell Cycle Status

Any phenotypic changes related to proper cell cycle progression in response to the

transfection can be readily identified by cell cycle flow cytometry. The major

advantage of flow cytometry is that it allows an analysis of the cell cycle status
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for each of tens of thousands of cells simultaneously based on the intracellular

levels of specific fluorescent dyes. The methods below address identifying defects

in cell cycle progression (monitoring DNA synthesis using labeled nucleotides and

flow cytometry) and cell cycle exit defects (pyronin Y–Hoechst staining).

12.3.3.1 Monitoring DNA Synthesis Using Flow Cytometry

Monitoring DNA synthesis using flow cytometry is a preferred method of measur-

ing cell cycle status because of the ability to clearly identify cells progressing

through S phase. This approach allows for a determination of whether cells have

stalled or accelerated their cell division cycles. The method described provides

information on both DNA content and DNA synthesis to give a clear picture of how

fast cells are progressing through S phase in relation to the control. Other

advantages of this method include reproducibility and ease of execution. In this

method, DAPI staining allows for the identification of DNA content, while fluores-

cent monitoring of the thymidine analogue 5-ethynyl-20-deoxyuridine (EdU)

indicates the amount of new DNA synthesis during a defined labeling period

(Fig. 12.2). A fluorescent azide (Alexa Fluor® 488-azide) is added to newly

incorporated EdU molecules by a copper-catalyzed reaction. The Alexa Fluor®
488 intensity indicates the amount of new DNA synthesis (Salic and Mitchison

2008). This method provides clear data on the fraction of cells in G0/G1, early S

phase, late S phase, and G2/M:

1. After transfection (Sect. 12.3.2), dilute 10 mM EdU in cell culture media for a

final concentration of 10 mM and incubate for 2 h at 37�C.
2. Wash cells with PBS, add 1� trypsin, and incubate for 5 min.

3. Inactivate the trypsin by adding an equal volume of trypsin inhibitors to the cell

suspension in a conical tube.

4. Spin the conical tube at 1,600 rpm for 5 min to pellet cells.

5. Decant supernatant and suspend the cells in 1% BSA in PBS at a concentration

of 1 � 107 cells/ml.

6. Add 100 ml 4% paraformaldehyde and incubate the conical tube in the dark for

15 min.

7. Add 2 ml of 1% BSA and PBS and spin the conical tube at 1,600 rpm for 5 min.

8. Decant supernatant and suspend cells in 100 ml 1% BSA in PBS (note: safe

stopping point – cells can stay at 4�C for up to 1 week).

9. Permeabilize cells with 100 ml of 0.2% Triton X in PBS and protect from light.

10. Incubate in reaction cocktail for 30 min.

11. Add 2 ml of wash buffer and centrifuge cells at 1,600 rpm for 5 min.

12. Remove supernatant, add 2 ml of wash buffer, and centrifuge cells at 1,600 rpm

for 5 min.

13. Remove supernatant and resuspend pellet in 500 ml of DAPI solution.
14. Transfer sample to a flow tube, vortex, and incubate in the dark on ice for

10 min.
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15. Analyze fluorescence using flow cytometry.

16. Excitation is UV (max 350 nm) for DAPI and 495 nm for Alexa Fluor® 488.

Emission is measured at 461 nm for DAPI and 518 nm for Alexa Fluor® 488.

One common difficulty with this protocol is incomplete DNA staining with the

DAPI solution. Precise cell counting is necessary for even DAPI staining across

conditions, and in situations of incomplete staining, it is appropriate to double the

DAPI concentration for a clearer determination of DNA content. Other staining

concerns involve the extra wash in step 12, which is critical for eliminating

nonspecific EdU staining. It is important to achieve specific and high-resolution

staining in order to accurately classify cells into their respective cell cycle states.

Additionally, it is important to note the condition of the EdU and ascorbic acid

Fig. 12.2 Identification of let-7 targets by microarray analysis. Primary human diploid fibroblasts

were transfected with a noncoding microRNA or let-7 microRNA. Twenty-four hours after

transfection, samples were serum-starved for 36 h and then stimulated by readdition of serum.

Samples were collected 24 h post transfection and at time-points 0, 12, 24, and 36 h after serum

stimulation. RNA was isolated and microarrays were performed such that samples transfected with

the noncoding control microRNAwere compared with samples collected from the let-7 transfected
cells at each time-point. Genes repressed in the let-7 transfected samples compared to control

samples are indicated in blue, while genes present at higher levels in let-7 transfected samples are

in yellow. K-means clustering analysis of expression intensities resulted in five clusters that are

shown in heat map format. Further motif and pathway analysis of this data identified Cdc34 as an

important let-7 target showcasing the power of this method. This research was originally published

in the Journal of Biological Chemistry (Legesse-Miller et al. (2009). # the American Society for

Biochemistry and Molecular Biology)
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stocks. Diluted EdU should be used within a year and the ascorbic acid in solution

should be discarded when it has oxidized (when the clear solution starts to turn

orange). Another minor technical issue to consider is the importance of using a

consistent 2-h labeling period in step 1 in order to ensure the reproducibility of the

data. It is also important to stain the cells with the reaction cocktail within 1 week of

the fixation in paraformaldehyde.

12.3.3.2 Pyronin Y–Hoechst 33342 Staining

To further delineate cells that have reversibly exited the cell cycle into

G0/quiescence from cells in G1, RNA content can be monitored with the use of

the fluorescent dye pyronin Y (PY) (Darzynkiewicz et al. 2004). Low PY levels

represent the characteristic depletion of ribosomal RNA and lowered translational

potential of quiescent cells. Hence, quiescent cells are identified as cells that have

2N DNA content (monitored by Hoechst staining) and PY levels lower than the

levels in S phase cells (Fig. 12.3):

1. Make PY–Hoechst 33342 staining solution – 1 mg Hoechst 33342, 2 mg

pyronin Y in 500 ml of room temperature HBSS. Make sure to mix the

PY–Hoechst 33342 solution well and allow enough time before staining for

the solution components to completely dissolve into the HBSS.

Fig. 12.3 Flow cytometry to detect new DNA synthesis in cells transfected with noncoding

miRNA or let-7 miRNA. Fibroblasts were transfected with noncoding miRNA or let-7 miRNA,

allowed to recover for 24 h, serum-starved, and restimulated for 32 h. Cells were pulsed with the

nucleotide analogue EdU and collected for cell cycle analysis. Cells were labeled with DAPI for

DNA content and a fluorescent molecule that covalently attached to the EdU incorporated into the

DNA. Cells were analyzed by flow cytometry, and the dot plots are shown. DNA content is plotted

on the x-axis, and EdU incorporation is shown on the y-axis. Cell cycle status was determined in

cells transfected with a control (a) and cells transfected with let-7b pre-miR (b). There is an

increased fraction of cells in the G2/M cell cycle state upon overexpression of let-7b in primary

human fibroblast as compared to the control
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2. After transfection (Sect. 12.3.2), trypsinize, spin down cells at 1,000 rpm, and

resuspend cells in 1 ml of cold PBS at a density of 2 � 106 cells/ml.

3. Add 10 ml of cold 70% ethanol to a 15-ml conical tube.

4. Transfer 1 ml of cell suspension from step 1 into ethanol from step 2 and

incubate on ice for at least 2 h (note: cells can stay in ethanol fixative for up to

1 week).

5. Centrifuge tubes with fixed cells in ethanol at 300 � g at 4�C for 5 min.

6. Remove supernatant and resuspend the cell pellet in 2 ml of cold HBSS.

7. Centrifuge tubes, remove supernatant, and resuspend cells in 500 ml of cold
HBSS.

8. Transfer 500 ml of cell suspension to flow tube and place tube on ice.

9. Add 500 ml cold PY–Hoechst 33342 staining solution to flow tube.

10. Incubate cells for 20 min before measuring cell fluorescence on flow cytometer.

11. Excitation is UV (355 nm) for Hoechst and 488 nm for pyronin Y. Emission is

measured at 450 � 50 nm for Hoechst and 576 � 26 nm for pyronin Y.

Inconsistent staining can confound results. In order to avoid this challenge,

which mainly stems from imprecise cell counting and improper dilution of the

PY–Hoechst 33342 staining solution, much care should be taken with steps 1 and

2 of this protocol. Since there is spillover of the Hoechst 33342 signal into the

pyronin Y channel, it may be necessary to use compensation to compose cell cycle

dot plots as seen in Fig. 12.3. Samples that are to be compared should be run on

the same day as changes in cytometer settings from one day to the next can

introduce variability that make the data difficult to compare.

Fig. 12.4 Flow cytometry dot plots of Pyronin Y–Hoechst 33342 (PY–H) staining to determine

G0 cell population. Cycling (a) or quiescent (b) fibroblasts were fixed and stained with a PY–H

solution. Quiescence was induced by maintaining the cells in a contact-inhibited state for 7 days.

Cell cycle status was determined using DNA content (x-axis) and RNA content (y-axis) informa-

tion. In the sample of cells induced into quiescence, more cells are classified to the G0 cell cycle

state than in the sample taken from cycling cells. G0 ¼ orange, G1 ¼ blue, S ¼ magenta, G2/

M ¼ green (Lemons et al. 2010)
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Deviations from the control in a particular cell cycle state indicate that the

miRNA of interest is involved in a process that regulated the indicated cell cycle

transition. To further identify the exact transcripts and pathways involved in the

cell cycle phenotype, it is necessary to look at global changes in transcript abun-

dance in response to miRNA overexpression or knockdown using gene expression

microarrays (Sect. 12.3.4).

12.3.4 Monitoring Changes in Gene Expression Using
Microarray Analysis in Response to Overexpression
or Knockdown to Identify miRNA Targets

Since a single miRNA can affect a large number of mRNA targets, it is convenient

to use microarrays to identify transcripts that are responsive to perturbations in

miRNA levels. Microarrays give an investigator the ability to monitor expression

levels of many genes in a single experiment, and Agilent’s two-color microarray

format further allows for the direct identification of expression changes between

control and experimental conditions.

The commentary below goes into detail on two of the most important aspects of

microarray analysis: Performing a quality RNA isolation and experimental design.

An overview of downstream array processing steps follows.

12.3.4.1 Total RNA Isolation from Transfection in Sect. 12.3.2

RNA is isolated from other cellular components while maintaining transcript

integrity using the TRIzol reagent (Chomczynski and Sacchi 1987). TRIzol

contains guanidinium thiocyanate, a potent RNase inhibitor, that allows for the

deactivation of cellular RNase activity in the cell lysate. Upon the addition of

chloroform to the cell lysate, phase-lock gel tubes (PLG) are used to create a gel

barrier between aqueous and organic layers of the extraction mixture after centrifu-

gation. The RNA is present in the aqueous layer. To recover clean RNA, the RNA is

precipitated out of solution by incubating the aqueous layer in cold isopropanol.

Centrifuging this mixture results in a small pellet of RNA on the side of the

centrifuge tube. Ethanol washes allow the recovery of RNA free from protein and

salt contamination before resuspending the pellet in nuclease-free water. Special

precautions must be observed when working with RNA to avoid degradation from

RNases. RNases are ubiquitous; therefore, a 0.1% SDS solution should be used to

clean materials such as gloves that come into close proximity of RNA samples. All

reagents/containers should be RNase free. A 0.1% concentration of diethylpyro-

carbonate (DEPC) in water can deactivate RNases. Autoclaving for 15 min per liter

should inactivate DEPC allowing for downstream analysis. Additionally, extra
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caution should be taken when working with TRIzol® as it contains harmful toxins

and irritants:

1. Add 3 ml of TRIzol® reagent to one 10-cm tissue culture plate of Human

Foreskin Fibroblasts.

2. Incubate plate at room temperature for 5 min (safe stopping point – at this

point, the lysate can be stored at 80�C).
3. While the plate is incubating, spin down phase-lock gel (PLG) tubes at

1500 � g to get gel to bottom of tube.

4. Transfer TRIzol/cell mixture to a 15-mL PLG tube and add 600 uL of

chloroform.

5. Shake tube by hand for 15 s and avoid mixing by vortexing.

6. Spin at 3000 � g for 10 min at 4�C.
7. Pour clear supernatant into a clean 15-ml conical tube. The red organic layer

should stay separated by the gel. If there is red liquid in the top layer, add 200 ml
of chloroform and spin at 4�C for another 10 min.

8. Add 1.5 ml of isopropanol. Invert 10 times and incubate at room temperature

for 10 min.

9. Spin tube at 11000 � g for 10 min at 4�C.
10. Remove supernatant with a pipet, being careful not to disturb the pellet. Note:

Pellet may be loose and easily disturbed. If this is the case, spin tube at

3000 � g for 5 min at 4�C for a more compact pellet. Repeat this at any

subsequent step to avoid losing the pellet.

11. Add 3 ml 75% ethanol to conical tube.

12. Spin tube at 7500 � g for 5 min at 4�C.
13. Remove supernatant with a pipet, being careful not to disturb the pellet.

14. Spin down residual ethanol at 2000 � g for 5 min at 4�C and use a pipet to

carefully remove supernatant.

15. Air dry pellet under a fume hood for 5 min.

16. Resuspend pellet in 50–200 ml of nuclease-free water.

Insufficient yields and the isolation of low-quality (degraded) RNA are major

concerns when performing this protocol. If it is difficult to see a compact pellet or

the pellet is loose and it is difficult to decant supernatants without losing the pellet,

it can be helpful to do the spins in steps 9 and 12 at 13,000 g. At this speed, it is

prudent to use VWR’s SuperClear™ Gatefree™ centrifuge tubes to avoid cracking,

which can occur when using a conventional conical tube at such high speeds.

Without practice, isolating RNA from a small amount of cells using this method

can result in abnormally low yields. In this case, it may be useful to use a carrier

such as glycogen or to purchase a column-based RNA isolation kit such as

Ambion’s PureLink RNA mini kit. This kit allows RNA isolation with a lower

risk of losing the RNA during the wash steps.

As previously mentioned in Sect. 12.3.1.1.1, the quality of RNA used for

microarray analysis is one of the major determinants of the quality of the final

gene expression analysis. If contamination from salts, proteins, and buffers results

in a low 260/280 or 260/230 ratio (<2), it is possible to purify the RNA by doing
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another isopropanol precipitation or using a commercial cleanup kit such as

Qiagen’s RNeasy kit for RNA cleanup. Note that if there is Qiagen RLT buffer

on the column after the final spin before elution, the RNA sample’s 260/230 ratio

will be lower than usual, but the RNA is fine for further analysis.

For two-color arrays, it is important to choose a reference sample that represents

an appropriate control. For an miRNA overexpression/knockdown experiment, it is

appropriate to use total RNA from the negative control RNA transfection as the

reference sample. Any changes observed in the experimental condition are then in

reference to the negative control sample and all the information needed to evaluate

transcript abundance changes is contained on a single array. This design controls

for experimental noise caused by array effects. The negative control RNA should be

as closely matched to the experimental RNA without actually targeting genes as

possible. It is also important when looking at miRNAs that cause cell cycle defects

to analyze genes that are direct targets of the miRNA. Other gene expression

changes can be expected if the fraction of cells in different phases of the cell

cycle changes as a result of the transfection, but these changes will not necessarily

reflect the direct action of the overexpressed miRNA. In addition, swamping out the

RISC complex may result in upregulation of miRNA targets if other miRNAs can

no longer access RISC. Using knockdown methods in addition to overexpression

and ensuring the chosen target has an miRNA binding site will help control for off

target miRNA effects. Once RNA quality and experimental design are satisfactory,

it is appropriate to proceed to RNA labeling, hybridization, and array scanning.

12.3.4.2 RNA Labeling, Hybridization, and Array Scanning

Agilent two-color arrays are printed with gene-specific probes. To determine the

relative abundance of transcripts between experimental and reference conditions,

the RNA is first reverse transcribed by Moloney Murine Leukemia Virus Reverse

Transcriptase (M-MLV RT) to cDNA. cDNA from the experimental condition

(miRNA overexpression/knockdown transfection) is labeled using the fluorescent

nucleotide cyanine 3-dCTP (Cy3-dCTP), while total RNA from the control condi-

tion (negative control RNA transfection) is labeled using the fluorescent nucleotide

cyanine 5-dCTP (Cy5-dCTP) by T7 RNA polymerase to make cRNA. Note that

Cy5 is sensitive to high ozone levels and should be handled in an ozone-free

environment in areas with characteristically high ozone levels.

The cRNA is then incubated with the microarray slide resulting in the

hybridization of labeled cRNA with probes on the array surface. After the

hybridization is complete, the array is scanned to measure fluorescence intensity

of all the features on the array. The gene associated with a probe is readily identified

by the gridded position on the array slide. The relative fluorescence intensity at that

gridded position represents the expression of that transcript in the sample. The log2
transformed ratio between experimental and reference samples is used to determine

the fold change in expression of a gene between the experimental and control

conditions.
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Special attention should be taken to understand the specific software settings

when using Agilent’s feature extractor to determine fluorescence intensities. Using

the default settings may normalize out important biological variance instead of just

experimental abnormalities.

12.3.4.3 Data Processing and Pathway Analysis

Microarray analysis provides a wealth of information about the experimental

condition. Determining patterns in expression levels can help an investigator

identify interesting biological processes that are associated with the miRNA of

interest. Clustering of genes based on their expression patterns groups together

genes that change similarly in response to the overexpression and knockdown of the

miRNA of interest. There are multiple clustering algorithms that will allow for the

visualization of data in the form of a heat map. Source code and user-friendly

interfaces for clustering and visualizing this data can be found at http://rana.lbl.gov/

EisenSoftware.htm (Eisen et al. 1998).

Once genes that decrease or increase in expression in response to miRNA

overexpression or knockdown, respectively, have been identified, it is important

to determine the subset of these genes that actually contain recognition sites for the

miRNA of interest in their 30UTR. This correlation suggests that the miRNA has the

potential to regulate the transcript. Direct targeting of the transcript by the miRNA

of interest can be further validated by 30UTR luciferase reporter assays using

methods detailed in Sect. 12.3.5. To identify miRNA targets, popular algorithms

include TargetScan (http://www.targetscan.org/), PicTar (http://pictar.mdc-berlin.

de/), and miRanda (http://www.microrna.org/microrna/home.do). We suggest com-

piling a comprehensive list that incorporates the results from searching all these

sites. Possible miRNA targets can be selected from the list among genes that display

the appropriate expression changes in the overexpression/knockdown microarray

data.

Genes that have been clustered into coregulated groups can be introduced into

pathway analysis software to identify biological pathways associated with the

miRNA. Table 12.1 lists a few pathway analysis tools that we have found to be

valuable in our studies.

12.3.5 Identifying miRNA Targets and Validating Responsiveness
to miRNAs Using 30UTR Luciferase Assays

Integration of data from miRNA microarray and overexpression/knockdown

microarray experiments can help to narrow down a truly responsive miRNA target

from a large list of candidates. Below are three criteria to choose a classically

responsive miRNA target:
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1. Potential target goes down in expression with overexpression of miRNA.

2. Potential target increases in expression when the miRNA is depleted.

3. Potential target has one or more miRNA motif(s) in its 30UTR.

Once a target is chosen, the 30UTR sequence of the transcript can be cloned

downstream of luciferase to create a reporter for miRNA activity. The luciferase

gene makes a preferable reporter because changes in its expression level are easily

monitored using a luminometer after cell lysates are exposed to the luciferase

substrate D-luciferin. Decreased luminescence in relation to a negative control

small RNA is evidence that the miRNA can regulate the expression of the transcript

containing that 30UTR sequence.

12.3.5.1 Creation of Luciferase Reporter Vector

Several commercial nonviral luciferase reporter vectors are available to assess

30UTR response to miRNA activity. These vectors can be transfected using chemi-

cal transfection, electroporation, or nucleofection using the Lonza Nucleofector

device. They generally come in one of two varieties: with only one luciferase

enzyme in front of a multiple cloning site, or with two orthogonal luciferase

enzymes, with one upstream of a multiple cloning site and the other used as an

internal control. Three commonly used vectors include pMIR-REPORT (Ambion)

and psiCHECK-1 (Promega), which are of the first variety, and psiCHECK-

2 (Promega), which is of the second variety. For many in vitro cell culture

applications, a pMIR-REPORT derivative cotransfected with an orthogonal lucif-

erase vector (e.g., pRL-TK) as a transfection and input control is generally a very

accurate and efficient way to assay the repression of gene expression by a

cotransfected miRNA. A neomycin resistance cassette in pMIR-REPORT allows

for selecting immortal stable cell lines.

However, for cells in which selection of nonviral vectors is not feasible,

having two separate vectors can lead to differential loss of one vector or the other

and therefore more experimental noise and bias. In these experiments, the two-

luciferase system vectors are more useful as they are internally controlled on the

same plasmid. psiCHECK-2, however, has the drawback that it does not have a

selectable marker, making stable lines difficult to generate even in immortalized

cell lines.

For stable cell line production, instead of luciferase expression, a viral GFP

fusion vector can be used. We have developed a retroviral vector from pRetroQ-

AcGFP-C1, in which the 30UTR of GFP contains a multiple cloning site to allow for

insertion of a variety of either 30UTR gene sequences, miRNA target sites, or

sponge cassettes. To convert the pRetroQ-AcGFP-C1 vector to a pRetroQ-UTR

vector, an in-frame stop codon must be inserted in the 50 end of the multiple cloning

site. We inserted the sequence AACTGAGCCTTAATTAAGTCAT into the BglII

site, leaving a number of restriction sites 30 of the stop codon. This inserted

sequence has a PacI site to cut out concatemeric ligation products. In brief, the
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oligos GATCTAACTGAGCCTTAATTAAGTCATA and GATCTATGACT-

TAATTAAGGCTCAGTTA are 50 phosphorylated with T4 PNK, pRetroQ-

AcGFP-C1 is digested with BglII and then dephosphorylated with calf intestinal

alkaline phosphatase, and then the oligos are annealed and ligated into the plasmid.

Finally, the plasmid is digested with PacI and then religated to obtain the final

product.

This vector can be used similarly to a luciferase reporter vector, if an endoge-

nous gene’s 30UTR sequence is ligated into the cloning site. By cloning sites

complementary to miRNA seed sequences, pRetroQ-UTR derivatives can be used

as a reporter for miRNA levels. In addition, with 15 or more concatemeric binding

sites (especially binding sites with noncomplementary sequences against

nucleotides 9–12 of the miRNA), one can construct an miRNA sponge. In practice,

however, stable tranfections of miRNA sponges lead to less repression of the

miRNA compared to transient transfection of the sponge vector (Ebert et al.

2007). The sponge vector will repress miRNA expression by sequestering the

miRNA when it binds to complementary 30UTR sites. Transient transfection of

this sponge vector can be used instead of the LNA to knockdown miRNA expres-

sion levels in Sect. 12.3.2. miRNA sponges can also be used to test other cell

phenotypes when the miRNA of interest is repressed.

12.3.5.2 Transfection of Luciferase Reporter Vectors into HEK 293 Cells

psiCHECK-1 and pRL-TK are used in the following protocol to measure luciferase

activity. Transfections can be done in duplicate to estimate technical error. Note

that lipofectamine instead of oligofectamine is used when transfecting HEK 293

because HEK 293 cells are more robust to the toxicity of the lipofectamine than

fibroblasts. This makes it possible to take advantage of lipofectamine’s greater

transfection efficiency. The renilla control plasmid is not under specific posttran-

scriptional regulation and serves as a control for transfection efficiency of the

reporter construct. The following transfection conditions will allow determination

of whether an miRNA decreases luciferase expression more than a nonspecific

control RNA:

Reporter Construct + Renilla Control Construct (plasmid endogenous con-

trol) + pre-miR

Reporter Construct + Renilla Control Construct (plasmid endogenous con-

trol) + negative control

1. Plate HEK 293 cells in 6-well plates at 60% confluency the day before starting

transfection.

2. Make 1% lipofectamine working solution in Opti-MEM and incubate for

15 min.

3. Dilute pre-miR or negative control RNA to 50 nM in Opti-MEM.

4. Add 0.5 mg each of reporter plasmid and renilla control plasmid to pre-miR and

negative control tubes.
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5. Add 300 ml of lipofectamine working solution to DNA/RNA tubes and incubate

at room temperature for 5 min.

6. Aspirate media off of cells and wash with 1 ml of PBS.

7. Add 200 ml of lipofectamine/DNA/RNA complex and 800 ml of Opti-MEM to

cells.

8. Incubate for 4 h at 37�C.
9. Add 1 ml of DMEM + 20% FBS to wells with no antibiotic for recovery.

10. Aspirate media from wells, add 200 ml of lysis buffer to each well and rock at

room temperature for 1 h (plates can be stored at �20�C at this point).

12.3.5.3 Measuring Luciferase Activity

Luciferase activity is measured by monitoring the emission of light associated with

the luciferase-catalyzed oxidation of D-luciferin into oxyluciferin using a

luminometer. Renilla-luciferase activity is measured in a similar manner except

coelenterazine is used as the substrate. Luciferase activity should be measured in

triplicate for each condition to estimate experimental error. We have found a 96-

well plate format to be convenient for these assays. Commercial kits provide a

simple workflow in which cells from the transfection are lysed in a buffer and then

exposed to solutions containing either the substrate for firefly or renilla luciferase.

The buffers in these kits are optimized to sustain a detectable signal while

minimizing substrate autoluminescence (Sambrook and Russell 2001). Final lucif-

erase expression levels are calculated by subtracting the respective luciferase and

renilla-luciferase negative control values from the experimental conditions then

dividing the luciferase values by the renilla luciferase values. This will result in a

normalized luminescence value that is comparable between transfection conditions.

Equation 12.1 details this normalization scheme.

luciferasenormalized ¼ luciferaseexperimental � luciferasebackground
renillaexperimental � renillaexperimental

(12.1)

A two-tailed student’s t test is used to determine if normalized luciferase values

from the technical replicates are significantly different in their means between pre-

miR and negative control transfection conditions.

12.4 Conclusions

The analyses that we have described allow for the identification of an miRNA

involved in cell cycle regulation. The protocols can further identify specific

targets of the miRNA and evaluate if the target of choice is posttranscriptionally

regulated by the miRNA using 30UTR luciferase reporter assays. The studies can be
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extended by perturbing the levels of the target identified by this analysis to

determine if the target has the same effect on cell cycle progression as the

miRNA. Taken together, the protocols described here will allow for a deeper

understanding of the mechanisms of miRNA regulation of the cell cycle.
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Chapter 13

Identification of lncRNAs Using Computational

and Experimental Approaches

Phil Chi Khang Au and Qian-Hao Zhu

Abstract Over the last decade, we have been illuminated by the startling discovery

that many long noncoding RNAs (lncRNAs) are implicated in diverse and substan-

tial biological processes. The identification of most lncRNAs to date has been

unintentional and was mainly from subtractive hybridization or mutagenesis

screening, initially aimed to identify protein-coding genes of interest. However,

the characterization of lncRNAs and their acceptance as important regulators of

many developmental and biological pathways have led to strategies specific to

their isolation. Experimental methodologies to identify lncRNAs include RNA

sequencing, lncRNA-specific microarray, and RNA-immunoprecipitation by taking

advantage of their association with known RNA-binding proteins. The past decade

has also generated a significant number of EST (expressed sequence tag)-based

transcriptome databases which enabled computational methodologies to target their

isolation. This chapter discusses several current and powerful computational and

experimental approaches to identify lncRNAs.

Keywords cDNA library preparation • in silico identification of lncRNA • long

noncoding RNA identification • RNA-immunoprecipitation
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FLC Flowering locus C

Gas5 Growth arrest–specific 5

H3K4me3 Trimethylation of lysine 4 of histone H3

H3K36me3 Trimethylation of lysine 36 of histone H3

lincRNAs Large intervening noncoding RNAs

lncRNA Long noncoding RNA

PRC2 Polycomb repressive complex 2

RNA-IP RNA-immunoprecipitation

SRA Steroid receptor RNA activator

TUs Transcript units

Xist X-inactive specific transcript

13.1 Introduction

The past decade saw the characterization and implication of many long noncoding

RNAs (lncRNAs) in diverse biological processes independent to those known to

play specific roles in protein synthesis such as ribosomal RNAs, which were the first

lncRNAs discovered in the 1950s (Palade 1955, 1958). These bona fide lncRNAs

participate in diverse gene regulatory pathways including imprinting (Nagano et al.

2008; Rinn et al. 2007), X-chromosome inactivation (Ogawa et al. 2008; Zhao et al.

2008), transcriptional (Feng et al. 2006; Martianov et al. 2007; Wang et al. 2008)

and posttranscriptional regulation (Beltran et al. 2008; He et al. 2008; Ogawa et al.

2008), and changes in gene expression resulting in tumor progression as discussed

in the previous chapter (see Chap. 8, this volume). In addition, while different

orders of eukaryotes have approximately the same number of protein-coding genes

but vastly different phenotypic complexity (Mattick 2004; Taft et al. 2007), the

number of noncoding genes increases proportionally with increasing developmen-

tal complexity with 98% of the human transcriptome represented as noncoding

RNAs (Mattick and Makunin 2005; Taft et al. 2007), suggesting that functional

ncRNAs including lncRNAs may represent the key to understanding the

mechanisms that gave rise to species complexity. Following these discoveries,

efforts in the isolation of lncRNAs in numerous species have commenced using

experimental and computational approaches.

However, previous to our knowledge of the regulatory significance of these

novel lncRNAs, approaches used in the identification and study of lncRNAs in

animals and plants did not differ to those used in the identification of functional

mRNA as lncRNAs were initially identified serendipitously through screening

methodologies aimed to identify functional protein-coding RNAs. Perturbation

conditions can be used to identify up-regulated transcripts of interest that can be

captured through subtractive hybridization screening, while mutagenesis in forward

genetics studies can be used to identity genes responsible for interesting

phenotypes. These studies have allowed for the isolation of genes that encode

both coding and noncoding RNA transcripts, with the latter determined to possess
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no protein-coding characteristics (e.g., no open reading frames or ORFs) through

sequence analyses or when mapped to fully or partially nongenic regions of an

available genome. lncRNAs identified through these methodologies include Xist
(Brown et al. 1991), Gas5 (Schneider et al. 1988), lncRNA from upstream of the

Pho5 gene (Kramer and Andersen 1980), MeiRNA (Watanabe and Yamamoto

1994), and plant Zm401 (Li et al. 2001).

Subsequently, specific approaches were developed for their identification.

Experimental approaches employed for the identification of lncRNAs include but

are not limited to next-generation deep sequencing, lncRNA-specific microarray,

and RNA-immunoprecipitation. Notably, the generation of many EST-based

transcriptome databases has facilitated the development of computational

approaches to identify lncRNAs. In this chapter, we will discuss these selected

but powerful approaches specific for lncRNA identification.

13.2 Computational Identification of lncRNAs

13.2.1 De Novo Prediction from Genomic Sequences

Protein-coding genes exhibit clear evolutionary signatures that can be exploited in

their computational predication by comparative genomics methods (Solovyev et al.

2006; Stark et al. 2007). However, lncRNAs generally lack common sequence

patterns and characteristic evolutionary patterns, making their de novo detection

in genomic DNA sequences more difficult than protein-coding genes (see Chap. 6,

this volume). Additionally, as a heterogeneous group, lncRNAs usually do not

exhibit conserved secondary structures observed in other types of ncRNAs, such

as rRNAs, tRNAs, snoRNA, snRNAs, and miRNAs (Pang et al. 2006), which

further complicates their computational identification. Nevertheless, it has been

noted that the splice sites and intron positions are generally conserved and under

purifying selection in both protein-coding genes and lncRNAs (Ponjavic et al.

2007; Rodriguez-Trelles et al. 2006). Based on these observations, bioinformatics

tools have been developed to computationally identify lncRNAs in Drosophila
melanogaster (Hiller et al. 2009) and human (Rose et al. 2011). The assumption

underlying these approaches is that a functional pair of donor (50) and acceptor (30)
splice sites will be retained over long evolutionary time scales only if (1) the locus

is transcribed into a functional transcript and (2) accurate intron removal is neces-

sary to produce a functional transcript (Hiller et al. 2009; Rose et al. 2011).

Application of the conserved-intron-based approach in 15 Drosophila genomes

identified 129 novel lncRNAs that are largely unstructured and not associated

with significant sequence conservation (Hiller et al. 2009). This strategy, however,

is not suitable for discovery of lncRNAs in vertebrates due to their much longer

introns and more variable intron sizes. To circumvent this issue, the same group

introduced a new strategy by combining comparative genomics and machine
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learning approach to predict conserved novel splice donor and acceptor sites in

human genome based on conserved exon/intron structure in 44 vertebrate genomes

(Rose et al. 2011). This new approach uncovered both coding and noncoding exons,

but only a small portion of the predicted exons showed homology to protein-coding

exons because features of protein-coding genes were deliberately neglected by the

program.

Similar to programs for prediction of protein-coding genes and other types of

ncRNAs (e.g., miRNA), these de novo lncRNA identification programs still heavily

rely on conserved features of lncRNAs (such as exon/intron structure and intron

positions), and conservation of these features across different species, making them

unfeasible for prediction of lncRNAs in species without comparative genome

information. Notably, de novo identification of lncRNA genes on a genome scale

is still a challenging task, and more efforts should be devoted to this area because

discovery of certain tissue-specific or rare transcripts that are difficult to be isolated

even by the cutting-edge high-throughput sequencing technology may have to rely

on genome-wide ab initio computational prediction programs.

13.2.2 In Silico Identification of lncRNAs Using cDNAs and ESTs

The rationale for in silico identification rests on the notion that the majority of

lncRNAs are transcribed by RNA polymerase II; therefore, they are capped,

polyadenylated, and often spliced just like protein-coding mRNAs but lack discern-

ible open reading frames (Erdmann et al. 1999). Thus, lncRNAs can be distin-

guished from protein-coding mRNAs based on their potential coding capacity.

The starting data for in silico identification can be cDNAs or ESTs available in

public databases, such as GenBank and FANTOM, or novel transcripts generated

by high-throughput experiments, e.g., full-length cDNA cloning, tiling arrays, and

deep sequencing. Generally, RNA sequences are compared against genomic

sequences to remove those that overlap with predicted protein-coding genes; the

remaining RNA sequences are then screened for ORFs. There is no defined ORF

length for lncRNAs, but 70 or 100 amino acids are commonly used as a threshold. A

number of ORF prediction programs are available, including GeneMark.hmm

(Lukashin and Borodovsky 1998), GenScan (Burge and Karlin 1998), ESTScan2

(Lottaz et al. 2003), ANGLE (Shimizu et al. 2006), and ORF-Predictor (Jia et al.

2010). More sophisticated bioinformatics tools have also been developed to esti-

mate the protein-coding potential of an RNA sequence, such as CRITICA (Badger

and Olsen 1999), DIANA-EST (Hatzigeorgiou et al. 2001), CSTminer (Mignone

et al. 2003), and RNAcode (Washietl et al. 2011). In addition, programs, such as

CONC (Liu et al. 2006) and Coding Potential Calculator (CPC, Kong et al. 2007),

developed based on support vector machines (SVM), have been used to assess the

coding potential of putative lncRNAs. These SVM algorithms exploited multiple

distinct features of mRNAs in the machine learning methods to distinguish

lncRNAs from protein-coding mRNAs. More recently, integrated ncRNA finder
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(incRNA), an integrative machine learning method which combines a large amount

of expression data, RNA secondary structure stability, and evolutionary conserva-

tion at the protein and nucleic-acid level, has been applied in prediction and

characterization of ncRNAs in C. elegans (Lu et al. 2011). This program, however,

was not designed specifically for lncRNA identification. Hyperlinks of these

programs along with databases accommodating lncRNA information are listed in

Table 13.1.

Reliable in silico identification of lncRNAs depends on the completeness of the

full-length status of the input sequences. It should also be noted that approaches

used in the assessment of the protein-coding potential of a transcript are based on

the assumption that an RNA can be unequivocally annotated as protein-coding or

noncoding. In some cases, however, RNAs might be bifunctional, i.e., they can be

translated into proteins but also work independently as regulatory RNAs (Dinger

et al. 2008; Au et al. 2011). For instance, most mammalian cells have both coding

and noncoding RNA isoforms of steroid receptor RNA activator (SRA). The

function of the protein (SRAP) encoded by SRA remains to be deciphered, but the

noncoding isoform of SRA has been shown to be the coactivator of many nuclear

receptors (Chooniedass-Kothari et al. 2004). Meanwhile, RNAs without protein-

coding capacity but with short ORFs may encode small peptides (Hanada et al.

2007; Rohrig et al. 2002; Xu and Ganem 2010). One example of such RNA is

Enod40 which is identified in leguminous plants. Enod40 RNA contains a

conserved secondary structure that is important for interaction with the nuclear

Table 13.1 Resources for long noncoding RNA research

Type Tool Source Reference

Protein-coding

potential

assessment

and lncRNA

discovery

CONC http://cubic.bioc.columbia.edu/_liu/

conc/

Liu et al. (2006)

CPC http://cpc.cbi.pku.edu.cn/ Kong et al. (2007)

ORF Finder http://www.ncbi.nlm.nih.gov/gorf/gorf.

html

NCBI

CRITICA http://www.ttaxus.com/software.html Badger and Olsen

(1999)

CSTminer http://t.caspur.it/CSTminer/ Mignone et al. (2003)

ESTScan http://www.ch.embnet.org/software/

ESTScan.html

Lottaz et al. (2003)

GeneMark.

hmm

http://exon.biology.gatech.edu/ Lukashin and

Borodovsky (1998)

GenScan http://genes.mit.edu/GENSCAN.html Burge and Karlin

(1998)

incRNA http://incrna.gersteinlab.org/ Lu et al. (2011)

RNAcode http://wash.github.com/rnacode/ Washietl et al. (2011)

lncRNA database lncRNA http://www.lncrnadb.org/ Amaral et al. (2011)

NONCODE http://www.noncode.org/ Liu et al. (2005)

NRED http://jsm-research.imb.uq.edu.au/nred/

cgi-bin/ncrnadb.pl

Dinger et al. (2009)

RNAdb http://research.imb.uq.edu.au/rnadb/ Pang et al. (2007)
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RNA-binding protein MtRBP1. It also contains two short overlapping ORFs

encoding two peptides of 10-25 amino acids that could be involved in nodule

formation by regulation of sucrose utilization in nodules (Rohrig et al. 2002).

Therefore, when it comes to the functional characterization of single transcripts,

the presence of an ORF should not exclude a priori the existence of additional

regulatory functions at the RNA level, and vice versa (Solda et al. 2009).

13.3 Experimental Identification of lncRNAs

13.3.1 Identification of lncRNAs by Whole-Genome Tiling
Array and RNA Sequencing

In both plants and animals, a number of lncRNAs have been identified using full-

length cDNAs and ESTs that were generated using the traditional Sanger sequenc-

ing approach (Ben Amor et al. 2009; Hirsch et al. 2006; Jia et al. 2010; Khachane

and Harrison 2010; MacIntosh et al. 2001; Maeda et al. 2006). Full-length cDNA

sequencing is the golden standard as it provides the full-length sequence required

to determine the exonic structure and confirm noncoding potential; however, the

main limitation of this approach is that it is time consuming and expensive.

The disadvantage of the cDNA sequencing approach can be well overcome by

whole-genome tiling microarray and RNA sequencing (RNA-seq).

Tiling DNA microarray is designed to probe the expression pattern of the whole

transcriptome of interested tissues or developmental stages at a high resolution.

Using this technology, it has been found that the whole genome of most eukaryotes

is pervasively transcribed (Li et al. 2006; Shoemaker et al. 2001; Stolc et al. 2005).

For example, the analysis of 1% of the human genome by the ENCODE Consor-

tium suggested that 93% of the genome is transcribed (ENCODE Project Consor-

tium 2007). In rice, more than 5,000 uniquely transcribed intergenic regions were

found using whole-genome tiling array (Li et al. 2006). These unannotated

transcripts identified by tiling arrays provided a rich source for lncRNA discovery.

However, tiling arrays rely on existing knowledge of a reference genome, without

which tiling arrays will only be able to identify novel exons but will not be able to

provide their connections. Furthermore, they suffer from a lack of sensitivity in

detecting rare transcripts due to high level of background, cross-hybridization of

related sequences, and saturation of signals.

Transcriptome sequencing or RNA-seq has emerged as a new technology for

tackling the complexity of eukaryotic transcription in an unbiased manner. The

technique has a wide dynamic range spanning at least four to five orders of

magnitude (Cloonan et al. 2008; Mortazavi et al. 2008; Wilhelm et al. 2008)

and allows accurate quantification of expression levels of transcripts. These

characteristics make RNA-seq the most suitable approach so far for lncRNA

discovery. To perform RNA-seq, RNAs are first converted into a cDNA library
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through either RNA fragmentation or DNA fragmentation. Sequencing adaptors

are subsequently ligated to 50 and 30 ends of each cDNA fragment, and a short

sequence is generated from each cDNA using a next-generation high-throughput

sequencing technology, such as 454, Illumina, or SOLiD. A single cDNA prepara-

tion can yield over hundreds of millions of short reads that are then computationally

aligned to a reference genome. Sequences mapping to a single exon can be

generally unambiguously assigned to the corresponding gene, although RNAs

that are produced by highly similar members of paralogous genes present an

alignment challenge. With improvement in read length, it should become easier

to exactly align these sequence reads.

Results from RNA-seq suggest the existence of a large number of novel tran-

scribed regions in every genome investigated, even for the well-annotated genomes,

such as Drosophila melanogaster and Arabidopsis thaliana. For instance, by

combining tiling arrays and RNA-seq, the modENCODE project has explored the

Drosophila melanogaster transcriptome at unprecedented depth throughout various

developmental stages of both males and females (Graveley et al. 2011). From this

comprehensive study, ~2,000 novel transcribed regions that do not link to any

annotated gene models were identified, and about two-thirds of these novel

transcripts have an ORF of less than 100 amino acids, including a multiexon

lncRNA in the well-studied Bithorax complex, which is expressed in embryos

and adult males but not females (Graveley et al. 2011). In another study, more

than 7,000 novel transcript units (TUs) were identified in eight rice tissues, about

half of these novel TUs contain multiple exons, the majority of which lack protein-

coding capacity (Zhang et al. 2010). With cost reduction and increase in read

length, RNA-seq is expected to provide more applications in the discovery of

novel RNA species, and with further increase in sequencing depth, chances are

good that even rare regulatory lncRNAs expressed only in certain tissues can be

identified.

All current RNA-seq protocols require RNA to be converted into cDNA. This

cDNA conversion process introduces biases and artifacts at various steps, such as

priming with random hexamers, cDNA synthesis, ligation, and amplification, which

can all interfere with the proper characterization and quantitation of transcripts. The

recently developed direct RNA sequencing (DRS) approach, in which RNA is

sequenced directly without prior conversion to cDNA, is able to overcome these

biases and therefore allows more accurate quantitation of transcripts. More impor-

tantly, DRS requires only femtomole or attomole levels of input RNA and involves

relatively simple sample preparation (Ozsolak and Milos 2011; Ozsolak et al.

2009), which should be more feasible to discover very lowly expressed lncRNAs.

So far, a key challenge for DRS is to generate the multimillion-level read quantities

that are required for many RNA applications and to further reduce error rates and

input RNA quantities (Ozsolak and Milos 2011).
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13.3.2 Identification of lncRNA Using lncRNA-Specific
Microarray

Microarrays or tiling arrays have been developed for transcriptome analyses as well

as quantitative and comparative analyses of mRNA expression between one or two

samples of different origins. Microarrays are glass or silicon slides, whose surface

are printed with DNA probes in a grid-like arrangement. These probes represent the

entire level of cellular transcripts of an organism and are typically single stranded

with variable lengths (predominantly 25-70 nucleotides). Samples used in

microarrays are prepared from extracted RNA, converted to cDNA, and generally

labeled with Cy3 or Cy5 fluorescent dyes (CyScribe™ first-strand cDNA labeling

kit). These labeled cDNAs are applied to the microarray slide, allowing comple-

mentary cDNA and probe to hybridize resulting in a spot on the slide. The slide is

subjected to a scanner that displays the result as a red or green dot, depending on the

fluorescent dye used (Fig. 13.1). The intensity of the fluorescence is a quantitative

measure of transcript abundance. If two samples are used and labeled with different

dyes, the appearance of a red, green, yellow, or orange color dot is a reflection on

the relative abundance of the transcript between the two RNA pools.

Fig. 13.1 Schematic illustration of computational and experimental approaches currently used in

the identification of lncRNA
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The same principle can be applied to the identification and expression analysis of

lncRNAs. The limitation is related to the fact that most commercially available

microarray slides contain probes that represent mRNA populations. However, with

new advances in microarray technology, the ability to create custom oligonucleo-

tide microarray is now possible. Babak et al. (2005) searched for functional

lncRNAs using a microarray containing 3,478 intergenic and intronic sequences

of both sense and antisense orientation that are conserved between human, mouse,

and rat genomes. They identified 55 highly expressed novel lncRNAs, of which

eight were confirmed to be expressed in mouse tissues by northern blot analyses.

More recently, Hung et al. (2011) identified promoter-derived lncRNA transcripts

using a high-density array containing probes that tile for the regulatory region of 56

human cell cycle genes. This was used to identify differentially induced lncRNAs

from a large range of tissues or cells which allowed for the subsequent identification

and validation of lncRNAs induced in human cancers, during specific oncogenic

stimuli and stem cell differentiation as well as under DNA damage condition.

In plants, a microarray covering both the sense and antisense strands, and 50 kb

upstream and downstream of the FLC (Flowering Locus C) gene was used to

identify COOLAIR (Swiezewski et al. 2009), a lncRNA shown to be involved in

the repression of the FLC gene during cold treatment.

Following microarray analyses, validation of lncRNA expression typically

employs qRT-PCR and northern blot hybridization. Custom oligonucleotide

microarrays can be purchased from a range of manufacturers including Roche

NimbleGen, MYcroarray, Aligent Technologies, and Biosynthesis.

Limitations in the use of lncRNA-specific microarray to identify lncRNAs are

that the methodology requires existing knowledge of an available genome for probe

design and it highly relies on the quality of the designed probes to cover predicted

regions that potentially transcribe lncRNAs and therefore omits regions that do

transcribe lncRNAs but are not incorporated into the microarray as probes. Of the

3,478 sequences analyzed, only 55 novel lncRNAs have been isolated in the study

by Babak et al. (2005). Lowly expressed transcripts as determined by microarray

are usually discarded as they may potentially represent artifacts. However, in some

cases, the biological significance of a lncRNA is not correlated to its abundance as

one or few transcripts can adequately function. These lncRNAs include Xist
(Brockdorff et al. 1992; Penny et al. 1996), Air (Nagano et al. 2008), and lncRNA

transcribed from an upstream region of the DHFR (dihydrofolate reductase) locus
(Martianov et al. 2007), whose functions are to induce gene silencing by physically

associating with target gene promoters. Under these regulatory mechanisms, poten-

tially one to several stably expressed transcripts per nucleus will suffice.

13.3.3 Chromatin Signature–Based Approach

Actively transcribed genes are marked by a distinctive chromatin signature that

consists of a short region with trimethylation of lysine 4 of histone H3 (H3K4me3,
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mark of active promoter) and a long region with trimethylation of lysine 36 of

histone H3 (H3K36me3, mark of transcribed region). After generation of genome-

wide chromatin-state maps of H3K4me3 and H3K36me3 using ChIP-seq, Guttman

et al. (2009) tested the idea of whether intergenic lncRNAs (lincRNAs) can be

identified by searching for actively transcribed intergenic regions defined by a

K4–K36 domain. Using this strategy, Guttman et al. (2009) identified 1,250 unan-

notated intergenic regions (at least 5 kb in size) in four mouse cell types. Expression

of these RNA transcripts was then confirmed by hybridizing DNA microarray

containing oligonucleotides that tile across the corresponding K4–K36 domain

regions with poly(A)+-selected RNA (Guttman et al. 2009). These lincRNAs

showed similar expression levels as protein-coding genes but lacked protein-coding

capacity. The same strategy has been later used to isolate ~3,300 lincRNAs from six

human cell types. Approximately 38% of such identified human lincRNAs were

found to be associated with chromatin modification complex, such as PRC2 and

CoREST, suggesting a role for these lincRNAs in regulating gene expression

through chromatin modification mechanisms (Khalil et al. 2009).

13.3.4 Identification of lncRNA Using RNA-Immunoprecipitation
and Template-Switch cDNA Library Preparation

13.3.4.1 Principles

RNA-immunoprecipitation (RNA-IP) is a more function-orientated method to

identify lncRNAs of interest. This method may require some established knowledge

of characterized lncRNA-protein interaction as it employs antibodies against a

specific RNA-binding protein in order to isolate the entire population of lncRNA

associated. This is generally followed by cDNA library construction and deep

sequencing to identify low abundant lncRNAs. Therefore, RNA is immunopre-

cipitated based on their interaction with a protein of known function, giving us

predetermined clues to their functional roles. In order to preserve in vivo

associations and prevent nonspecific in vitro associations during immunoprecipita-

tion, cross-linking using either formaldehyde (generally used in plants) or UV-

irradiation (in mammalian cells) is usually recommended.

Depending on the subcellular localization of the RNA-protein complex of

interest, one may wish to perform nuclear RNA-IP in which a nuclear isolation

step is performed prior to lysis. Such method is used to remove all cytoplasmic

components that can form nonspecific association with the antibodies, reducing the

quality of the immunoprecipitated sample. This method is feasible provided that an

RNA amplification step is incorporated as nuclear RNA-IP tend to give minimal

amount of RNA which may not be adequate for cDNA preparation using standard

cDNA construction kits, designed for total or poly(A)+ RNA pools. This is not ideal

as with any amplification steps, the quality of the resulting data is reduced.
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In other cases, whole-cell RNA-IP is suitable, particularly if the subcellular

localization of the RNA-protein complex is unclear. However, one must note that

whole-cell RNA-IP tends to give more background noise associated with nonspe-

cific interaction between the antibodies and ribosomal/mitochondrial RNA includ-

ing those derived from chloroplasts in plant tissues. Therefore, stringent

bioinformatics analyses must follow to filter these confounding RNA from the

true RNA population. Following RNA-IP, the pool of RNAs can be converted to

cDNA using cDNA library preparation protocols such as template-switch cDNA

library preparation (Fig. 13.2) and their identities interrogated by using high-

throughput deep sequencing (see Sect. 13.3.1) or alternatively through the use of

microarray (see Sect. 13.3.2) by using fluorescent-labeled cDNA. While RNA-IP

combined with lncRNA-specific microarray has yet to be utilized in the identifica-

tion of lncRNA, it is a powerful approach to consider. Landthaler et al. (2008)

identified human Argonaute–associated mRNA via RNA-IP followed by mRNA

microarray analyses.

RNA-IP followed by template-switch cDNA library preparation was recently

employed by Zhao et al. (2008) to successfully identify lncRNAs associated with

the mammalian Polycomb complex. This library construction protocol is in-house,

cost-effective, and can preserve strand specificity via addition of adaptors in a

directional manner (Fig. 13.2). The adaptor and primer sequences used in this

cDNA library construction protocol are compatible with and suitable for high-

throughput single-end Illumina® GAII sequencing. We have adapted this library

construction methodology in our laboratory to successfully study lncRNAs in

plants. In this section, we will describe whole-cell RNA-IP and template-switch

cDNA library preparation in detail for lncRNA identification in animals and plants.

Protocols on nuclear RNA-IP in animals (Zhao et al. 2008) and plants (Wierzbicki

et al. 2008) can be found in the corresponding publication.

As nonspecific association between RNA molecules and antibody is common,

negative controls must be included such that the RNA pools isolated can be

comparatively analyzed and these nonspecific RNAs can be omitted from the

resulting data. Controls can include cells/tissues derived from an organism that

does not express the RNA-binding protein and/or from an immunoprecipitation

without antibodies. Since nonspecific RNA and antibody association is common,

the former control is recommended.

13.3.4.2 Materials

• Mortar and pestle

• Rotator for 1.5-mL microcentrifuge tubes

• Heat block or water bath set to 65�C
• PCR cycler

• Stratalinker (for animal cells)

• Microcentrifuge set to 4�C
• Liquid nitrogen
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• Absolute ethanol

• DEPC-treated H2O

• Sodium acetate, 3 M, pH 5.2

• Acid phenol/chloroform pH 4.5 (Ambion)

• Formaldehyde solution 37 wt% in H2O (Sigma-Aldrich)

• Antibodies of choice

• Salmon sperm DNA/Protein A/G agarose (Millipore)

Fig. 13.2 Schematic illustration of template-switch cDNA library preparation
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• Glycogen 5 mg/mL (Ambion)

• RNase out (Invitrogen)

• SuperScript™ II Reverse Transcriptase (Invitrogen)

• RQ1 Rnase-free DNase (Promega)

• Platinum® Taq high-fidelity DNA polymerase

• Set of dNTPs (Fisher Biotec)

• Proteinase K (Progen)

• NuSieve® 3:1 agarose (Lonza)

• Tris-Borate-EDTA buffer

• Adaptor/primer sequences:

• Adaptor 1: 50 CTTTCCCTACACGACGCTCTTCCGATCTNNNNNN 30

• Adaptor 2: 50CAAGCAGAAGACGGCATACGAGCTCTTCCGATCTggg30

– lowercase nucleotides are ribonucleic acid

• Illumina forward primer: 50AATGATACGGCGACCACCGAGATCTA-
CACTCTTTCCCTACACGACGCTCTTCCGATCT 30

• Illumina reverse primer: 50 CAAGCAGAAGACGGCATACGAGCTC-

TTCCGATCT 30

• Extraction buffer:

• Plant: 20 mM Tris–HCl pH 7.5, 4 mM MgCl2, 5 mM DTT, 0.1% SDS,

100 mL/10 mL Protease inhibitor cocktail for plants* (Sigma-Aldrich),

1 mM PMSF*, 40 u/mL RNase out* (Invitrogen)

• Polysome lysis buffer for animal cells: 100 mM KCl, 5 mM MgCl2, 10 mM

HEPES, 0.5% nonidet P-40, 1 mM DTT, 100 u/mL RNase out* (Invitrogen),

2mMvanadyl ribonucleoside complexes solution* (Sigma-Aldrich), 25 mL/mL

protease inhibitor cocktail for mammalian tissues* (Sigma-Aldrich)

• Wash buffer: 150 mM NaCl, 20 mM Tris–HCl pH 8.0, 2 mM EDTA, 1% Triton

X-100, 0.1% SDS, 1 mM PMSF, 40 U/ml RNase out* (Invitrogen).

• RNA-IP elution buffer: 100 mM Tris–HCl pH 8.0, 10 mM EDTA, 1% SDS,

40 U/ml RNase out* (Invitrogen).

*Add just prior to use

13.3.4.3 Methods

General aseptic pipetting techniques, sterile and/or autoclaved consumables, and

buffers must be used in all steps to prevent RNA degradation. In addition, all steps

of RNA-IP are performed in mild denaturing conditions and include enzymes that

inhibit RNases. Centrifugation steps and tubes containing samples are maintained

at 4�C unless indicated.

Tissue/cell preparation and extraction:
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1. Plants:

(a) Collect 3 g of plant tissues from each experimental sample and negative

control.

(b) Vacuum infiltrate plant tissues with 0.5% formaldehyde for 2 min, repeat

for another 8 min. Stop reaction with addition of glycine to a final concen-

tration of 70 mM and vacuum infiltrate for 1 min with another 4 min repeat.

Wash tissues at least four times with DEPC-treated H2O. Freeze tissues in

liquid nitrogen and store at �80�C or continue to extraction.

(c) Grind tissues into fine powder under liquid nitrogen and then homogenize

in 10 mL of plant extraction buffer. Transfer each homogenate into a

50-mL Falcon tube on ice.

(d) Divide homogenate into 1 mL aliquots in 1.5-mL microcentrifuge tubes.

2. Mammalian cells:

(a) Grow cells in 10-cm dish until confluent (~5.0 � 106 cells).

(b) Place dish on ice in Stratalinker with lid off and UV-irradiate once for

150 mJ/cm2.

(c) Harvest each dish of cells with 1 mL of polysome lysis buffer, scrape cells

with a cell scraper to detach cells, and transfer to microcentrifuge tubes

on ice.

3. Remove cell debris by centrifugation at maximum speed for 20 min at 4�C and

collect lysate (supernatant) into new microcentrifuge tubes.

Preclearing:
4. In order to remove lysate components that form nonspecific association with

the protein agarose beads, a preclearing step should be included. Incubate each

lysate aliquot on a rotator at 4�C for 1 h with a desired amount of protein A/G

agarose (generally 20 mL/mL lysate will suffice). Centrifuge at 4,000 rpm for

1 min and transfer precleared lysate (supernatant) into new microcentrifuge

tubes.

Immunoprecipitation:
5. Perform immunoprecipitation on each precleared lysate aliquot with 20 mL of

protein A/G agarose beads and antibodies (optimization required, generally

5 mg of antibody per lysate aliquot is sufficient) for 2–4 h on a rotator at 4�C.
Overnight incubation is not recommended as this may exhaust the RNase

inhibitors and lead to RNA degradation.

Wash:
6. Centrifuge at 4,000 rpm for 1 min at 4�C and discard supernatant.

7. Wash the immunoprecipitated complexes (now attached to the beads) three

times with 1 mL wash buffer/tube at 4�C, 5–10 min on a rotator per wash.

Centrifuge at 4,000 rpm for 1 min at 4�C between each wash. The length and

number of washes can be optimized to improve the quality of the resulting

RNA extract.

Elution:
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8. Following the last wash and centrifugation, discard supernatant. Optional

validation at this step (see Sect. 13.3.4.4).

9. Add 50 mL of RNA-IP elution buffer to the beads in each tube and rotate at

room temperature for 10 min. The high concentration of SDS and RNase

inhibitor in the elution buffer prevents RNA degradation at room temperature.

10. Centrifuge at 4,000 rpm for 1 min at 4�C, collect the eluate (supernatant) into a
new microcentrifuge tube and save on ice.

11. Repeat elution by adding another 50 mL of RNA-IP elution buffer to the beads

and incubate at 65�C with gentle frequent mixing to denature and release the

protein complexes.

12. Combine two eluates, add 20 mg of proteinase K, and incubate at 65�C for 1 h to

reverse cross-link. Proteinase K inactivates any DNase and RNase and digests

the protein complexes to allow the release of the RNA.

RNA extraction:
13. Extract RNA from each tube with 100 mL of acidic phenol/chloroform

(Ambion), followed by overnight ethanol precipitation in the presence of acidic

sodium acetate and 30 mg glycogen at �80�C.
14. Centrifuge at maximum speed for 20 min at 4�C.
15. Wash pellet with 70% ethanol and air dry pellet for 2 min.

16. Resuspend RNA pellet in desired amount of DEPC-treated water containing 40

units of RNase inhibitor. Optional validation at this step (see Sect. 13.3.4.4).

DNase treatment:
17. Remove any contaminating DNA with 1 u RQ1 DNase/tube for 15 min at 37�C.
18. Extract RNA with an equal volume of acid phenol/chloroform, pool all

supernatants into one single tube, ethanol precipitate, and wash as previously

described.

19. Dissolve and pool all RNA pellets with a desired amount of DEPC-treated

water containing 40 units of RNase inhibitor.

20. Determine RNA concentration and store RNA at �80�C.
Template-switch cDNA library preparation:

21. Concentrate 200–300 ng of each RNA sample to a volume of 1.5 mL by vacuum

centrifugation if necessary. Note: Lower amounts of RNA is not recommended

as this changes the ratio of RNA to adaptors/primers which can result in adaptor

primer and/or primer dimer formation at subsequent steps preventing efficient

cDNA synthesis and amplification. Include a negative control using water as

template.

22. Random prime each RNA/water sample by adding 0.5 mL of 2.4 mMAdaptor 1

to the RNA and incubate for 10 min at 72�C in a PCR cycler.

23. Synthesize first-strand cDNA using SuperScript II Reverse Transcriptase in a

5-mL reaction by adding on ice: 1 mL 5� first-strand buffer, 0.5 mL 20 mM

DTT, 0.5 mL 10 mM dNTPs, 0.5 mL RNase out (40 u/mL), and 0.5 mL Super-

Script II (200 u/mL). Incubate the tubes at the following conditions: 20�C for

10 min followed by 37�C for 10 min and 42�C for 45 min.

24. Denature required amount of 10 mM Adaptor 2 at 72�C for 5 min.
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25. To each tube, add 0.5 mL denatured 10 mMAdaptor 2 and 0.5 mL SuperScript II.

Incubate at 42�C for 30 min followed by 72�C for 15 min.

26. PCR amplify 1 mL of the first-strand cDNA template using Platinum Taq high-

fidelity DNA polymerase in a 25-mL reaction containing: 1 mL of template,

2.5 mL 10� high-fidelity PCR buffer, 1 mL 10 mM dNTPs, 1 mL 50 mM

MgSO4, 2.5 mL 2.5 mM Illumina forward primer, 2.5 mL 10 mM Illumina reverse

primer, 0.5 mL Platinum Taq high-fidelity polymerase (5 u/mL), and 14 mL
RNase/DNase–free H2O. Perform PCR as follows: 94�C for 2 min, 24 cycles

of [94�C for 30 s, 65�C for 30 s, 72�C for 30 s], and 72�C for 5 min. Optional

validation at this step (see Sect. 13.3.4.4).

27. Run 10 mL of PCR products on a 3% NuSieve/1� TBE gel. A smear should be

observed.

28. Size select the range of PCR products desired for analyses (200–500 bp is

preferred for Illumina sequencing applications) by gel extraction using

QIAquick Gel extraction kit (Qiagen).

13.3.4.4 Validation

Validation of RNA-IP and cDNA library preparation can be performed at the

protein, RNA, or cDNA level. Following RNA-IP immediately after the last wash

but before elution, the immunoprecipitated complex can be validated for the

presence of the specific RNA-binding protein of interest between the experimental

and control samples using Western blot analyses. This can be done by denaturing

the pull-down beads/products at 95�C with addition of Western blot loading buffer

followed by SDS polyacrylamide gel electrophoresis and blotting.

Following RNA extraction and DNase treatment, one may perform gene-specific

RT-PCR to validate the quality of the RNA using primers against transcripts that

are known to associate with the RNA-binding protein in question and against

unrelated transcripts as negative controls.

Libraries can also be validated by PCR for transcripts known to associate with

the RNA-binding protein of interest and for unrelated transcripts as negative

controls as above. One may also choose to subclone libraries into routinely used

cloning and sequencing vectors such as pGEM®-T Easy (Promega) for validation

using standard DNA sequencing. Unlike Phusion high-fidelity DNA polymerase,

Platinum Taq high-fidelity DNA polymerase adds a single deoxyadenosine to the 30

end of PCR products allowing subsequent cloning into pGEM®-T Easy vectors.

However, this may not be suitable for whole-cell RNA-IP as the overrepresentation

of ribosomal RNA will limit subcloning and sequencing/identification of the lower

abundant but relevant sequences present in the library.

13.4 Conclusions and Future Views

We have come a long way from unintentionally identifying lncRNAs to the

development of specific computational and experimental strategies specific for

their identification. While computational approaches are increasingly popular and
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have been successful in identifying lncRNAs in both animals and plants, they will

continue to prove challenging due to the intrinsic nature of lncRNA being mostly

derived from unconserved regions and lacking common signatures and structural

characteristics that have facilitated the identification and functional analyses of

protein-coding RNA. Without doubt, experimental approaches must always follow

to validate and confirm the noncoding functional capabilities of a lncRNA

identified using computational approaches.

Experimental approaches have proven more successful as evidenced by their

direct identification and characterization of lncRNA, particularly through the

use of lncRNA-specific microarray and RNA-IP. Undoubtedly, lncRNA-specific

microarray is a powerful method for predicting, identifying, and characterizing

functional lncRNA of high abundance. For the identification of lncRNA of low

abundance, next-generation deep sequencing is a more effective method, and

combined with RNA-IP can achieve the purpose of identifying low abundant

novel lncRNA with specific functions. To circumvent the issue associated with

low RNA concentration from nuclear RNA-IP which limits cDNA library prepara-

tion, one may consider using nuclear RNA-IP followed by direct RNA sequencing.

Our understanding of lncRNA is only at its primordial phase but will be expected

to grow in an exponential way with improvement in computational programs and

their ability to analyze and generate infinite amount of data and the increasing read

length and depth from our deep sequencing technology. We expect lncRNA to

become the focus of many more regulatory pathways and ultimately our unique

origin.
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Chapter 14

Experimental Analyses of RNA-Based

Regulations in Bacteria

Marc Hallier, Svetlana Chabelskaya, and Brice Felden

Abstract The paradigm of small, usually noncoding, RNAs (sRNAs) as major

performers in gene regulation in bacteria is soundly accepted. The number of

sRNAs identified in bacteria has markedly increased. Most sRNAs exert regulatory

functions by pairing with mRNAs and/or interacting with dedicated proteins. Apart

from these trans-acting sRNAs, many mRNA leaders sense environmental signals

or intracellular concentrations of metabolites and thus adopt structures that prevent

or activate their expression. Recent studies on various bacteria indicate that anti-

sense transcription is widespread. All these sRNAs are components of regulatory

circuits involved in stress adaptation, metabolism, and virulence. Although still a

new field, the study of sRNAs has already extended our understanding of numerous

regulatory circuits in bacteria. In this chapter, we focus on the experimental

methods that have allowed the inventory of the sRNAs and their mRNA targets

expressed in bacteria, with emphasis on the technologies that unravel the

mechanisms of the target gene regulations at molecular level.
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14.1 Introduction

Small, usually noncoding (there are exceptions) regulatory RNA molecules that

guide the expression of other genes are conjointly referred to as sRNAs. The

number of predicted and experimentally confirmed prokaryotic sRNAs has grown

significantly in recent years due, in large part, to the development and utilization of

computational methods for predicting sRNA-encoding loci. Most bacterial sRNAs

characterized up to now act as intermediate genetic elements of signal transduction

pathways that are themselves initiated by an assortment of external stimuli. A

wealth of experimental evidence suggests that sRNA-based regulation of gene

expression is an archetype common to all domains of life.

Bacterial sRNAs can modulate DNA replication, gene transcription, mRNA

stability, and translation (see Gottesman and Storz (2010) for a review). They fulfill

these activities through several mechanisms. Detailed information is available in

the Chap. 4 of this volume. The sRNAs can be categorized in the following classes

based on their mechanisms of action. Many bacterial sRNAs act on target genes by

base parings, having either extensive or more limited complementarities with their

mRNA targets. The most prevailing mechanism implies antisense pairing between

the regulatory sRNA and mRNA target(s) (Wagner et al. 2002). In many instances,

a single sRNA mediates regulatory effects on different mRNA targets. Others

modulate the activity of proteins (protein targets) by mimicking structures of

other nucleic acids. In those cases, sRNAs offer single or multiple binding sites

to dedicated proteins to competitively alleviate protein-mediated regulation of

target mRNAs. One additional and wide class of regulatory sRNAs comprises

riboswitches, which are part of the mRNA they regulate (Breaker 2010). A newly

discovered class of sRNAs includes CRISPR (clustered regulatory interspaced
short palindromic repeats) RNAs which are central to defense mechanisms against

foreign DNAs in many bacteria that are involved in DNA maintenance or silencing

(Horvath and Barrangou 2010).

Since their initial, fortuitous discovery in the late 1960s, the bacterial sRNA

world has greatly expanded, especially during the last decade. The objectives of this

chapter are to provide aids and tips to scientists interested in listing and studying the

RNome of their favorite bacterium, together with their mRNA and/or protein target

candidates. Once the RNome and predicted targets are identified, procedures are

described to examine the molecular bases of the detected regulations that utilize

RNAs. Also, it summarizes our current experimental knowledge on the various

“state of the art” technologies that can be employed for analyzing RNA-based

regulatory mechanisms in living cells. All of these strategies will evolve rapidly, as

was the case for the spectacular developments of the high-throughput methods for

sRNA findings.
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14.2 Bacterial sRNA Identification

14.2.1 Computational Methods

14.2.1.1 Bioinformatic Screens

The lack of genome-wide annotations for sRNA-encoding genes compared to those

for genes encoding proteins, tRNAs, and rRNAs is due to the difficulty of

identifying sRNA-encoding loci by computational methods. Indeed, parameters

used in conventional genome annotation are meaningless for the prediction of

sRNA genes. Therefore, there is no universal method for their detection (see

Backofen and Hess (2010) for a recent review). The use of computational methods

to identify the bacterial sRNAs is a difficult task because they usually do not contain

recurrent nucleotide motifs such as ribosome binding sites or open reading frames,

they are generally small (~50–600 nt-long sRNAs), most are only conserved among

closely related bacterial species and sometimes only expressed in “pathotype-

specific” strains. Bacterial sRNA gene prediction can be achieved by various

methods with variable efficacy, frequently relying on comparative genome analysis.

Detailed information is available in the Chap. 11 of this volume.

Some methods rely on primary genomic sequence analysis. As specific

examples, the GC content can be useful since sRNA genes usually contain a higher

GC content than the remaining portions of the genome; the identification of

transcription signals including promoters and rho-independent terminators (Pichon

and Felden 2005) and/or the presence of transcription factor binding sites can be

used to detect novel sRNA genes. Other methods rely on RNA secondary structure

information, such as RNA detection based on thermodynamic stability and mini-

mum free energy of RNA folding. Using multiple sequence alignments, conserved

secondary structures can be detected based on compensatory base pair mutations.

Some computational approaches use a combination of primary sequence and

secondary structure information to increase their predictive capability (Pichon

and Felden 2003). All the computational studies predicting the existence of novel

sRNA genes have to be challenged experimentally. Once the computational inven-

tory of the putative sRNAs for a bacterium has been performed, their distributions

among the bacterial phylogeny can be assessed. Also, within the intergenic regions,

primary sequences can be conserved in phylogenetically related species, allowing

the identification of novel sRNA genes by comparative genomics (Wassarman

et al. 2001).

14.2.1.2 Phylogenetic Analyses

Phylogenetic comparison of gene sequences is an elegant way to hypothesize the

course of evolution. It was pioneered in the 1970s by analyzing 16S ribosomal RNA

nucleotide sequences and structures (Woese et al. 1975), and later applied to
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various sRNAs (Felden et al. 2001). In the case of sRNAs, the approach is to

analyze the pattern of nucleotide substitutions detected in a pairwise alignment of

two homologous sRNA gene sequences. Pairwise alignments of sRNA genes are

constrained by structural RNA evolution. A conserved coding region shows an

arrangement of synonymous substitutions whereas a conserved structural sRNA

reveals a pattern of compensatory mutations consistent with base-paired secondary

structures. This strategy allows detection of structurally conserved sRNAs. Some

sRNA genes, however, do not have well-conserved intramolecular secondary

structures, and therefore, their identification is unattainable with such an approach.

SRNAs detected in E. coli can usually be identified, by sequence comparison,

with closely related enterobacteria, but additional approaches are necessary to find

the equivalent sRNAs in other bacterial species (Gottesman et al. 2006). For the

4.5S RNA, the RNase P RNA, and tmRNA that are housekeeping RNAs present in

all prokaryotes (tmRNA genes are detected in all eubacteria but not in archaea)

(Felden et al. 1999), primary sequence is sufficiently conserved between bacteria to

detect them by sequence comparison. For the 6S housekeeping RNA gene, how-

ever, its primary sequence is highly divergent between bacteria and therefore

difficult to detect at first glance (Pichon and Felden 2005), despite possessing a

consensus secondary structure that mimics an open promoter for transcription

initiation (Wassarman and Storz 2000). Interestingly, a recent procedure that uses

suboptimal structures is capable of identifying homologous sRNAs in strongly

divergent bacterial species, including the 6S RNA (Panek et al. 2011).

So far, all the identified bacterial sRNA genes are located in the core genome,

sometimes also in mobile accessory elements, and some are detected in multiple

copies (Felden et al. 2011). Besides the housekeeping RNAs such as 4.5S, RNase P,

tmRNA, and the 6S RNA, conservation of most sRNAs is restricted to a few

bacterial genera, and among them, a substantial fraction is only detected within a

single bacterial species. Therefore, each bacterium possesses a “genus-specific”

subset of sRNAs, and in that case, the phylogenetic approach is useless and bench

work is essential.

14.2.2 Biochemical Approaches

14.2.2.1 Direct Methods

Initially, highly expressed bacterial RNAs other than rRNAs and tRNAs were

discovered casually through metabolic [32P]-labeling of total RNAs, followed by

direct analysis by fractionations. The 4.5S (part of the secretion machinery) and 6S

RNAs (RNA polymerase modulator) were first identified (Griffin 1971; Hindley

1967), followed by tmRNA, responsible for the release of stalled ribosomes and

the RNase P RNA that is the catalytic module of a ribozyme responsible for 50-end
pre-tRNAmaturation (Ray andApirion 1979). Two-dimensional gel electrophoresis

led to the discovery of the Spot 42 RNA (Ikemura and Dahlberg 1973) that mediates
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discoordinate expression of the E. coli galactose operon (Moller et al. 2002). Then,

natural antisense RNAs (asRNA) were identified in plasmids controlling their copy

numbers (Stougaard et al. 1981). Even bacterial sRNAs expressed at lower yields,

compared to those mentioned above, could be detected directly from cell extraction

and RNA sequence determination (e.g., SprD; Pichon and Felden 2005). The major

limitation of the direct methods is that they can only detect the highly expressed

RNAs, usually transcribed under specific environmental conditions that, for many

RNAs, are still unknown. In bacteria, 10–20% of the genes are predicted to encode

regulatory RNAs (Romby and Charpentier 2010). Therefore, to identify more

bacterial RNAs, specific purification strategies were implemented.

14.2.2.2 Purification and Detection of sRNAs Forming Complexes

with Proteins

Several sRNAs interrelate with cellular proteins. As a specific example, the E. coli
CsrA protein forms a stable ribonucleoprotein complex with the CsrB RNA

(Liu et al. 1997). Therefore, bacterial cellular extracts can be incubated with

polyclonal antisera against an RNA-binding protein to enrich RNAs by co-immu-

noprecipitation (Co-IP) followed by hybridization to tiling arrays. An RNA-binding

protein that was used for such experiments in various bacteria (Christiansen et al.

2006; Sonnleitner et al. 2008; Zhang et al. 2003) is the Sm-like Hfq protein. During

the “Hfq-coIP,” however, there are several incubation steps that can favor the

detection of those having the higher affinity for the protein but can lead to the

loss of the RNAs interacting with a lower affinity with Hfq. Hfq is required for both

intracellular stability and target mRNA pairing for many sRNAs and was used as a

lure to identify novel Hfq-associated sRNAs in bacteria expressing high levels of

Hfq. An improvement came from the use of an antibody specific to DNA/RNA

hybrids to detect on the microarrays of the RNAs previously coIP with Hfq (Hu

et al. 2006). The problem of the species specificity of the Hfq antibodies can be

overcome by adding a tag (triple FLAG) at the chromosomal hfq gene, performing

coIP and converting the extracted RNAs into cDNAs that are pyrosequenced (Sittka

et al. 2008). The sRNAs can be determined by RNA sequencing, RNomics (gel

extraction of 50–500 nt size range RNAs, reverse transcription, cloning and

sequencing; Huttenhofer et al. 2004), or by microarray analysis.

14.2.2.3 High-Throughput Methods

In recent years, genome-wide global approaches for sRNA identifications have

been implemented, based on microarrays (Perez et al. 2009), shotgun cloning and

Sanger sequencing of small-sized cDNAs (RNomics; Vogel et al. 2003), 454

sequencing (the first of the so-called next generation sequencing methods to

become commercially available in 2004; for a recent application on finding bacte-

rial sRNAs, see Bohn et al. (2010)), or Illumina high-throughput sequencing (HTS;

Beaume et al. 2010). Microarrays are designed either with oligonucleotides or
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“PCR-derived” DNA probes for a selected set of RNAs (low-density; Pichon and

Felden 2005) or tiling arrays containing up to thousands of oligonucleotides

covering both the sense and antisense DNA strands encompassing the intergenic

regions (high-density; Rasmussen et al. 2009). Tiling arrays have allowed the

identification of sRNAs in many bacteria (Toledo-Arana et al. 2009; for the RNAs

expressed by Listeria), and their high probe density allows reasonable estimations

of 50 and 30 RNA extremities. A major disadvantage of the tiling arrays, however, is

that they are provided by commercials and therefore are very expensive. RNomics

consist in conventional Sanger sequencing of cloned cDNAs produced from size-

fractionated (gel separation and extraction) or total RNAs (Huttenhofer et al. 2004).

High-throughput sequencing (HTS) technologies have now replaced both the

cloning and Sanger procedures, using either 454 GS FLX pyrosequencing, SOLiD

(massive parallel sequencing based on oligonucleotides ligations), Solexa GA or

Heliscope sequencing, or the Pacific Biosciences sequencing method (MacLean

et al. 2009). For all high-throughput sequencers, sRNA cDNA library preparation is

based on few basic steps including RNA extraction and isolation, 30 and 50 linker
ligation, reverse transcription, and PCR amplification (Fig. 14.1). The RNAs are

reverse transcribed into millions of cDNAs that are sequenced, such analysis being

usually named “RNA-Seq.” It allows the detection of RNA transcripts that include

sRNAs at the genome-wide level (Perkins et al. 2009). Using HTS, sRNAs

expressed at a given time and under selected experimental conditions are identified

and quantified. HTS reveals an exhaustive inventory of the RNAs expressed in a

sample, the detection sensitivity being only limited by the sequencing depth. To

improve the finding of novel sRNAs by high-throughput sequencing, alternative

sRNA library preparation methods using ligation, extension, and circularization

have been recently developed. They are faster and simpler than the widely used

procedures, and the constructed libraries are compatible with high-level multiplex

analysis (Kwon 2011).

Most current RNA-seq (cDNA sequencing at massive scale) methods rely on

cDNA synthesis and an array of subsequent manipulation steps, which places

limitations on the current strategies. Another limitation imposed by cDNA synthe-

sis is template switching. During reverse transcription, the nascent cDNA can

sometimes dissociate from the template RNA and reanneal to a different stretch

of RNA with a sequence similar to the initial template, generating artefactual

chimeric cDNAs. In addition to their requirement for cDNA synthesis, RNA-seq

approaches present other difficulties: the RNA-seq signal across transcripts tends to

show nonuniformity of coverage, which may be a result of biases introduced during

priming with random hexamers, cDNA synthesis, ligation, amplification, or

sequencing. RNA-seq can result in transcript-length bias because of the multiple

fragmentations and the RNA/cDNA size-selection steps. RNA-seq often involves a

poly(A) mRNA enrichment step that could increase the RNA degradation products.

The existing approaches are not sufficient to detect certain transcripts and/or cover

their entire length. Therefore, the length normalization step is a source of errors for

quantitative applications.
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Fig. 14.1 High-throughput sequencing engineering. The various technologies can be carried out

on (a) naked (colored strings), (b) adaptor ligated (gray cylinders) single-stranded DNA fragments

that can, in some cases, (c) be immobilized on beads (empty black circles) and amplified in water-

oil emulsion (large black oval). (d) Emerging techniques are available for single-cell applications.

(a) The sequencing method developed by Pacific Biosciences in wells encompassing a trapped

DNA polymerase (black and filled oval) and dNTPs (colored circles; A: dATP, C: dCTP, G:
dGTP, and T: dTTP). Fluorophores are cleaved as the complementary DNA strand expands.

Uninterrupted fluorescence detection combined with an elevated dNTP concentration authorizes

rapid and extended reading. (b1) Solexa GA sequencing. DNAs with ligated adaptors are attached

and immobilized on substrate followed by “solid-phase” bridge amplification with unlabeled
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These limitations can be alleviated by emerging RNA analysis technologies that

modify the method of RNA characterization. Massive direct RNA sequencing

(DRS) approaches were recently developed by the Helicos approach (Ozsolak

et al. 2009) relying on hybridization of femtomoles of 30-polyadenylated RNA

templates to single channels of poly(dT)-coated sequencing surfaces, followed by

sequencing by synthesis. DRS requires only femtomole or attomole levels of input

RNA and involves relatively simple sample preparation. DRS sample preparation

involving polyadenylation can be applied to any RNA species, allowing both short

and long RNAs to be observed in a single run. Methods for high-quality RNA

isolation from small quantities of cells are available. The main limitation

preventing reliable, global profiling of minute RNA quantities has been the incom-

patibility of high-throughput RNA profiling approaches with low-quantity RNA

samples. A number of both hybridization- and sequencing-based technologies are

now allowing reliable transcriptome profiles to be obtained from minute cell

quantities. Amplification-free RNA-seq approaches have recently been developed

that minimize the quantity of input RNA required. One approach involves the

sequencing of first-strand cDNA products from as little as ~500 picograms of

RNA, with priming carried out in solution with oligo(dT) or random hexamers.

Another strategy uses poly(dT) primers on sequencing surfaces to select poly

(A) + mRNA from cellular lysates, followed by on-surface first-strand cDNA

synthesis and sequencing (Fig. 14.1). Microfluidic capabilities could be combined

with DRS for single-cell applications. Hybridization-based methodologies are

providing promise for working with very low quantities of RNA. The NanoString

Fig. 14.1 (continued) nucleotides and enzymes. The double-stranded DNA fragments are dena-

tured and PCR amplified in sufficient amounts so that the accumulated fluorophore is perceived.

The use of terminator dNTPs and DNA polymerase results in synthesis of the complementary

DNA strands. (b2) Heliscope sequencing captures DNAs with ligated adaptors to a substrate. Each

fluorescent dNTP is successively used to build a complementary DNA strand, the used

fluorophores being removed at the beginning of each round, diminishing background signal.

(c1) The 454 pyrosequencing method in which the ligated DNA fragments are immobilized to

the outside of microscopic beads prior to PCR amplification in a water-oil emulsion. The beads are

isolated in wells, a cDNA strand is constructed, and each nucleotide incorporation releases

pyrophosphate (pp) that allows ATP production used for a chemiluminescent reaction, the light

produced being recorded and analyzed. (c2) SOLiD sample making up is as for the 454

pyrosequencing. After amplification, the beads are attached to a glass slide and subjected to

sequential hybridization starting with an oligonucleotide complementary to the adaptor sequence

linked to short random oligonucleotides bearing known 30 dinucleotides and a corresponding

fluorophore. After 5 cycles, cDNAs are melted away from their templates and the process is

reiterated. During a second cycle, synthesis reinitiates at the position immediately upstream from

where synthesis began initially, generating reads of 30–50 nucleotides. Repeats of these cycles

ensure that nucleotides in the gap between the known dinucleotides are read. (d) Single-molecule

DNA and RNA sequencing technologies can be adapted for single-cell applications. Cells are

delivered to flow cells using fluidic systems, followed by cell lysis and mRNA capture by

hybridization on poly(dT)-coated sequencing surfaces. For bacteria, the sRNAs have to be gel

purified (please refer to the RNomic subheading) based on their sizes followed by 30-
polyadenylation using poly A polymerase. Sequence analysis can be performed by direct RNA

sequencing or by “on-surface” cDNA synthesis followed by single-molecule DNA sequencing
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nCounter System provides RNA quantification without cDNA synthesis and relies

on the generation of target-specific probes (Fig. 14.1). This approach requires

~100 ng of RNA or 2,000–5,000 cells, but optimization of the probe hybridization

and surface immobilization steps may reduce input RNA quantity. Recent advances

in RNA-seq have provided a powerful toolbox for transcriptome characterization

and quantification. These technologies will allow the building of an exhaustive

catalog of transcripts expressed from genomes ranging from bacteria to mammalian

cells.

14.2.3 Conclusions

Several in-silico and data-based techniques were progressively implemented to

identify and verify the expression of a number of sRNAs in numerous bacteria

including human and animal pathogens. An indisputable prerequisite to the upcom-

ing sRNA functional and structural studies is to determine their 50 and 30 boundaries
by primer extension (50-ends) or by RACE (rapid amplification of cDNA ends)
analyses, as well as to monitor their expression profiles during growth. A few

elegant genetic studies have identified novel sRNAs starting from their mRNA

targets (Mandin and Gottesman 2009; Yamamoto et al. 2011). They have screened

for posttranscriptional regulators, including sRNAs, regulating genes of interest by

constructing translational fusions of the 50 ends of genes of interest to reporter genes
in the chromosome, and they have scanned a plasmid library of the bacterial

genome to isolate clones that can affect the activity of the fusion. In most cases,

however, the mRNA and/or protein targets of the sRNAs are unknown and their

identifications remain a challenging task. This is because the mechanisms underly-

ing the pairing of sRNAs to their mRNA targets are not yet well understood,

rendering the prediction of mRNA targets difficult.

14.3 Target Identification

14.3.1 Introduction

The discovery of new sRNAs raises the question about their functional roles in

bacterial physiology. The analysis of the biological effects due to the inactivation or

overexpression of sRNAs in bacteria can provide some information about the

affected metabolism they are involved in. Additional data can be obtained by the

characterization of the environmental growth conditions affecting their expression

levels. The true challenge is to identify their primary target(s) which corresponds to

those interacting directly with the sRNA. Most sRNAs of known functions regulate

gene expression by binding to their mRNAs or to protein targets with specificity.
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For a few sRNAs, their targets were discovered casually. In the case of 6S

sRNA, the identification of its protein target results from the characterization of

macromolecules which copurify with the sRNA. The 6S RNA from E. coli cell
extracts migrates as an 11S particle in a sucrose density gradient separation (Lee

et al. 1978). Analysis of protein composition of the 11S fraction revealed that the 6S

RNA interacts with the sigma 70 subunit of RNA polymerase (Wassarman and

Storz 2000). Other sRNAs were discovered by copurifications with RNA-binding

proteins (Heeb et al. 2002; Liu et al. 1997). For example, the carbon storage

regulator CsrA is an RNA-binding factor involved in the mRNA decay of glgCAP
transcript which regulates the glycogen metabolism of E. coli. The CsrB sRNA was

found associated to a histidine-tagged recombinant CsrA protein during the purifi-

cation of the protein and then identified as a regulator of CrsA (Liu et al. 1997). For

other sRNAs such as cis-encoded sRNAs, their direct targets are easily identified

since sRNAs are transcribed from the opposite strand of their target genes. It cannot

be excluded, however, that they possess additional targets encoded in trans. The
targets for trans-encoded sRNAs are trickier to detect. We expose here diverse

approaches that have been successfully used to identify targets of several trans-
encoded sRNAs. These include “large-scale” screens using biocomputational pre-

diction algorithms, microarrays, proteomic analyses, genomic methods, and capture

by affinity chromatography.

14.3.2 “Large-Scale” Screens

14.3.2.1 Computational Methods

Identification of target mRNAs of sRNAs by computational methods requires the

availability of bacterial genomic sequences. Since sRNAs are able to interact with

all domains of a target mRNA, including the sequences within the open reading

frame and those encompassing the translation start site as well as their 30-UTRs
(untranslated regions), an accurate annotation of the genomes is essential for the

identification of their mRNA targets. The first step is the search for complementary

regions between sRNA and putative mRNA targets. In rare cases, when base-

pairing interactions between sRNA and its mRNA target are long, contiguous,

and perfect, targets could be detected by simple BlastN or Fasta3 searches. This

approach was successfully applied to the identification of the ompC and tisAB
mRNAs as targets of MicC and IstR-1 sRNA, respectively (Chen et al. 2004;

Vogel et al. 2004).

In most cases, the pairing sequences are short and lead to the formation of partial

and imperfect duplexes. The interaction between the two RNAs can also imply

multiple binding sites. Moreover, “sRNA-mRNA” complexes can involve internal

loops which complicate the prediction of sRNA targets (Huntzinger et al. 2005;

Gottesman 2004; Argaman and Altuvia 2000). Computational methods were devel-

oped to search for complementarities between sRNAs and mRNAs. In most cases,
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the algorithms scan the genomic regions that have the highest probability of pairing

with the sRNA. These regions include genomic sequences encompassing the

translational start site of mRNA and the sequences upstream and downstream of

the annotated ORFs (open reading frames). Algorithms can predict the secondary

structures of two interacting RNA molecules by means of free energy minimization

(Alkan et al. 2006), or they calculate hybridization and/or thermodynamic score(s)

for “sRNA-mRNA” duplex formations (Target RNA, RNA-up, RNA-hybrid,

intaRNA are examples of such available software) (Tjaden et al. 2006; Tjaden

2008; Muckstein et al. 2006; Rehmsmeier et al. 2004; Busch et al. 2008). The

programs constantly evolve to take into account the RNA secondary structures, the

GU wobble base pairs, and the intrinsic specificity of some bacterial genomes such

as those possessing low GC contents (e.g., Staphylococcus or Listeria) (Mandin

et al. 2007). The “sRNA-mRNA target” binding regions are substantially conserved

between the species and are usually more accessible than random nucleotide

sequences. Algorithms based on the evolutionary conservations and surface

accessibilities of sRNAs allow the prediction of the “sRNA-mRNA target” binding

domains (Peer and Margalit 2011). The progressive inclusion of these parameters in

the algorithms designed for target prediction is expected to reduce the false positive

hits. All computational approaches, however, do not include the protein

chaperones, such as Hfq, that are required for a number of base-pairing interactions

to happen in several bacteria. The level of false positive predictions is high but

provides a fairly good starting point for the use of experimental data required to

confirm or rebut the computational predictions.

14.3.2.2 Genetic Methods

A popular genetic approach is based on the design, selection, and analysis of

bacterial mutants that are genetically engineered in the particular function under

study. A genetic approach using random insertions of a bacteriophage carrying a

reporter gene into the bacterial genome was performed to identify mRNAs targets

of an sRNA. The lplacMu bacteriophage allows the random insertion of a lacZ
reporter gene that is deleted for its promoter and for the translation signals. The

integration of this phage into a gene in the correct orientation and reading frame

leads to a gene fusion in which the expression of lacZ depends on the promoter and

the translation start site of the target gene. The expression level of the fusion

proteins containing the N-terminal sequences encoded by the target gene and

the b-galactosidase protein is analyzed by a colorimetric assay with 5-bromo-

4-chloro-3-indolyl-b-D-galactoside (X-Gal). The random insertion of lplacMu in

a strain carrying an inducible sRNA leads to the detection of colonies

containing fusion genes which are either upregulated (blue colonies) or

downregulated (white colonies), according to the sRNA expression levels. Target

genes are identified by cloning and sequencing. Since the reporter gene contains the

translational start site of the target mRNA, an antisense effect induced by an sRNA

onto translational initiation can be detected. However, this method excludes the
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identification of target genes which are regulated by an interaction of the sRNA

with its 30-UTR and within the ORF and do not discriminate between a direct or

indirect regulation of the expression of the target gene. sRNAs can modify the

expression of a set of genes involved in signal transductions or genes encoding

general transcription factors which, in turn, modulate the expression of several

genes. By this approach, the Storz team showed that the expression of five genes

was regulated by the OxyS sRNA (Altuvia et al. 1997). The translation of only one

mRNA target, the fhlA mRNA that encodes a transcriptional regulator of the

formate hydrogenase, is directly repressed by OxyS through base pairing that

blocks the Shine-Dalgarno (SD) sequence (Altuvia et al. 1998). Bacteriophage

Mu can be used to randomly insert LacZ reporter genes in other gram-negative

bacteria, as in Pseudomonas syringae and Legionella pneumophilia (Choi and Kim
2009). A similar genetic approach could also be performed in gram-positive

bacteria by using modified Tn917 transposons (Choi and Kim 2009).

14.3.2.3 Microarray Analysis

Global searches of the mRNA targets of sRNAs can be performed by microarrays

which allow the comparison of the mRNA profiles of strains expressing various

levels of an sRNA using differential fluorescence labeling of two cDNA pools.

Although some sRNAs regulate the expression of genes by modulating translation,

they can also stabilize or destabilize the target mRNA secondary structure and/or

increase/decrease protection against ribonucleases which leads to substantial varia-

tion of target mRNA stability. Microarray analysis depends on the expression levels

of target mRNAs upon pairing. It allows the identification of target genes regulated

at the transcriptional and posttranscriptional levels, but also a part of those

regulated at translational levels. Generally, microarray analysis compares a deleted

sRNA strain, a wild-type strain, and/or an sRNA-overexpressing strain. Total RNAs

extracted from bacteria are reverse transcribed into cDNAs which are labeled by

fluorescent dyes and hybridized to whole-genome microarrays (cDNA or oligo-

arrays). Analysis requires the availability of whole-genome microarray chips for the

studied bacterium. For many bacteria, microarrays can be purchased from commer-

cial sources or are custom-made with the help of dedicated firms.

In E. coli, 80% of the mRNA half-lives are between 3 and 8 min (Bernstein et al.

2002). So, RNA extraction procedures that require additional steps such as an

enzymatic digestion of the cell wall lead to reduced quantities and qualities of the

mRNAs. The success of the microarray analyses depends upon the detection of

target mRNA expression and requires the characterization of the expression profile

of the sRNA. The sRNA expression profiles usually vary according to the growth

phases, and many sRNAs require specific experimental conditions to be induced.

For example, the expression of ryhB is regulated by iron through the fur “iron-

dependent” transcription factor. For the microarray analysis, wild-type and “ryhB-
deleted” strains were grown in “iron-depleted” minimal medium to induce RyhB in

order to maximize the differential expression of the genes regulated by RhyB
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(Davis et al. 2005). Microarray analysis allows the identification of a multitude of

up- or downregulated genes according to the presence or absence of a given sRNA.

The largest fraction of these variations in genetic expression does not result from

direct regulation by an sRNA but reports the overall effect of sRNA inactivation or

overproduction. The deregulation of the expression of primary targets leads to

numerous variations of secondary targets. If the primary target is a general regula-

tor, changing its expression levels can deregulate many secondary targets. The best

examples come from the gram-positive pathogen Staphylococcus aureus. RNAIII is
a multifunctional RNA that encodes d-hemolysin at its 50-domain while also acting

as a regulatory RNA in controlling the expression of Rot (repressor of toxins), a
transcriptional factor, at the posttranscriptional level (Boisset et al. 2007; Geisinger

et al. 2006; Novick et al. 1993). Thus, a major drawback of this technique is that it

leads to the detection of indirect rather than direct effects on mRNA expression.

One possibility to favor the identification of primary targets is to perform a “short-

term” expression of the sRNA. The analysis of the mRNA profiles after this short

(5–15 min) sRNA induction enhances the identification of primary transcripts

whose expression levels are modulated by the sRNA. Plasmids containing a

controlled promoter, as an “IPTG-inducible” lac promoter, an “arabinose-induc-

ible” araBAD promoter, or a tet-inducible promoter (anhydrotetracycline, aTc),

have been successfully used to identify mRNA targets through a transient expres-

sion of the sRNA under study (Bohn et al. 2010; Boysen et al. 2010; Guillier and

Gottesman 2006; Massé et al. 2005).

14.3.2.4 Proteomic Analysis

Quantitative proteomic approaches are used to compare the protein expression

profiles in the presence or absence of an sRNA expressed in a bacterial strain.

Proteins are resolved on 1D or 2D gels, and the bands or spots corresponding to

differentially expressed proteins are excised from the gels and identified by mass

spectrometry. Unlike the transcriptomic analyses by microarrays, proteomic studies

allow the detection of the translational regulations triggered by the sRNAs. While

the results obtained by the microarrays are strongly influenced by the expression

level of the mRNAs and/or by their stability, proteomic analysis is mainly ham-

pered by sample preparation difficulties. Whereas some bacteria are easily lysed by

mechanical disruption in specific buffers, others require enzymatic digestions to get

rid of the cell wall. Sample preparation is also critical. For 2D gel- and mass

spectrometry-based proteomic analysis, proteins are separated based on their net

charges in the first dimension and also on their molecular masses in the second

dimension. The proteins from the samples must be brought into a state allowing

their isoelectric focusing separations on immobilized pH gradients. Nucleic acids

cause streaking in the first dimension and therefore have to be removed from the

protein samples.

Other problems come from the difficulty in identifying proteins that are fused

into a single spot on 2D gels (“spot crowding”) or that are intractable by mass
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spectrometry analysis. Moreover, the analysis of poorly soluble proteins, such as

membrane proteins and multiprotein complexes, and proteins of low abundance or

aberrant pIs is problematic. In summary, only 10% of all proteins can be visualized

by proteomic studies. On the other hand, proteomic analysis performed on

subproteomic fractions of a bacterium, such as cytosolic, membrane, cell surface-

associated, and extracellular proteins, can provide attractive information on the

biological signaling pathway regulated by the sRNA. Due to the relatively low

number of individual protein spots that can be resolved, however, and because of

the incompleteness of protein identification by mass spectrometry, proteomics

provides only partial information about the pattern of protein expressions.

In some cases, a single 1D separation gel of the “whole-cell” proteins allows the

identification of a target gene by mass spectrometry. As specific examples, the

OmpD outer membrane protein was identified as a target of the InvR sRNA

encoded by a Salmonella pathogenicity island (Pfeiffer et al. 2007).

Prefractionation of protein samples through subcellular isolation is useful to per-

form 1D gel electrophoresis. The reduction in the number of proteins in the sample

increases the probability of detecting only one band on the gel which is linked to the

variation of expression of a single protein. For example, the analysis of the

extracellular protein expression profile from Staphylococcus aureus strains

expressing various amounts of the sRNA SprD allowed the identification of a

target, the Sbi immune-evasion molecule (Chabelskaya et al. 2010). The expression

levels of a given protein are either reduced or increased when the sRNA is lacking

or, conversely, is overexpressed. The regulation can be either direct on the mRNA

encoding the protein or indirect via additional regulators. Additional strategies such

as microarray analyses, after a short-term sRNA expression, should be used to

identify its primary targets (Boysen et al. 2010).

14.3.3 Capture by Affinity Chromatography

The main problems encountered with “large-scale” screens using bioinformatics,

microarray, and proteomic approaches are either in detecting many false positive

targets or the difficulty in identifying the primary targets of the sRNAs. In order to

favor the identification of the primary targets, experiments based on affinity chro-

matography were developed. The sRNAs are immobilized covalently, or not, onto a

column and can be used as baits for capturing target mRNAs or target proteins by

affinity purifications from bacterial extracts. The native sequence of the sRNA can

be covalently linked to Sepharose using cyanogen bromide activation. One limita-

tion of this strategy is that the reaction between the sRNA and the matrix occurs at

random location, which can limit the number of accessible protein/RNA binding

sites. The direct coupling of the sRNA to adipic acid dihydrazide agarose beads

could also be performed, but this immobilization procedure requires sRNA oxida-

tion with sodium periodate, limiting the attachment of the sRNA 30-end onto the

matrix (Hovhannisyan and Carstens 2009).
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A covalent immobilization approach was successfully used to identify the

protein target of the Rcd sRNA. Rcd is transcribed from cer which stabilizes the

Col E1 multicopy plasmid in E. coli. The in vitro transcribed, unmodified Rcd RNA

was covalently linked to “CNBR-activated” sepharose beads and incubated with the

total proteins from E. coli cell lysates. Proteins retained on the column were eluted

by a NaCl step-gradient and resolved by 1D gel electrophoresis. Maldi spectros-

copy fingerprint analyses of the eluted proteins have identified the tryptophanase

enzyme (TnaA) as a target of Rcd (Chant and Summers 2007). The binding of Rcd

increases the affinity of TnaA for tryptophan, stimulating indole production which

induces a cell division delay.

Noncovalent immobilizations of sRNAs require their specific in vitro chemical

modifications. After in vitro biotinylation, the sRNAs are immobilized on

“streptavidin-bearing” matrices in accordance with the high-affinity interaction

between streptavidin and biotin. This noncovalent binding approach was used to

identify the mRNA targets of RseX, an sRNA expressed in enterobacteria.

Biotinylated RseX immobilized on streptavidin beads was incubated with total

RNAs extracted from E. coli strains. The eluted RNAs were reverse transcribed

into complementary DNAs before hybridization on a pan-genome E. coli DNA
chip. Affinity captures coupled to microarray analyses led to the identification of

two direct targets of RseX, the mRNAs coding for the outer membrane proteins

OmpA and OmpC (Douchin et al. 2006).

For some sRNAs, auxiliary factors must be incorporated during the immobiliza-

tion process to obtain a functional chromatography column. The presence of the

RNA chaperone Hfq protein can be required for the base pairing between sRNAs

and their mRNA targets. This is the case for the RydC sRNA from enterobacteria

that adopts a conformational change when it binds to Hfq. Preformed “RydC-Hfq”

complexes using a His-tagged recombinant Hfq and an in vitro RydC transcript

were immobilized noncovalently on nickel-sepharose beads by the chaperone

protein. This affinity chromatography column devoid of free, nonfunctional,

RydC molecules was used to capture a target mRNA, the polycistronic yejABEF
mRNA encoding an ABC transporter which confers resistance to antimicrobial

peptides and contributes to Salmonella virulence (Antal et al. 2005).

The nonspecific binding of proteins and/or RNAs to the sRNAs is a major

drawback of the in vitro affinity chromatography methods. Indeed, affinity chroma-

tography using Rcd has captured the EF-Tu protein, an abundant tRNA binding

macromolecule involved in translation, which is highly expressed in bacteria

(representing 5% of the total proteins in the cells). This nonspecific purification is

partially due to the large amount of the bait immobilized on a column, in compari-

son with the available protein targets. A similar experimental pitfall was observed

with the unspecific binding of 16S or 23S ribosomal RNA fragments during target

mRNA purification.

An interesting approach to maximize binding specificity uses RNA aptamers to

isolate in vivo-assembled “RNA-protein” or “RNA–RNA” complexes (Fig. 14.2).

RNA aptamers are highly structured molecules that exhibit high affinity and

specificity for their ligands. Aptamer-tagged sRNAs can be expressed in vivo and

14 Experimental Analyses of RNA-Based Regulations in Bacteria 355



linked noncovalently to Sepharose that contains the specific ligand of the aptamer

(Fig. 14.2). The Vogel team showed that engineering sRNAs with various aptamers

did not affect their stability when overexpressed in Salmonella. Aptamer-tagged

GcvB, InvR, and RybB sRNAs are active and repress translation of their respective

mRNA targets by “Hfq-dependent” base-pairing mechanisms (Said et al. 2009).

The in vivo overexpression of tagged sRNAs does not only allow their purification

according to their respective affinities with their dedicated aptamers but also the

copurification of their associated proteins, as Hfq. Moreover, chromosomal inte-

gration of the tag (the aptamer) into the sRNA gene can be performed to increase

the specificity of the protein interactions by restoring endogenous levels of sRNA

expression (Fig. 14.2). This promising approach could be used to identify protein

ligands of sRNAs but also of their mRNA targets (Said et al. 2009).

14.3.4 Conclusion

Diverse experimental and biocomputational approaches have been developed to

identify sRNA target(s). Some are aimed at identifying sRNA targets directly by

bioinformatic methods that predict mRNA targets on the basis of direct interactions

with the sRNAs. Also, protein and mRNA targets can be identified directly by

copurification with a given sRNA (Chant and Summers 2007; Windbichler et al.

2008). In the case of the proteomic and transcriptomic approaches, they provide a

list of putative targets for an sRNA. The regulation can be either direct through a

physical interaction between the sRNA and the mRNA, or indirect via numerous

intermediates. The “pulse expression” of a given sRNA under the control of an

inducible promoter should prevent the pleiotropic effects that can result from the

constitutive expression of the sRNA. It should mainly allow the detection of the

direct targets and avoid putative downstream effects. Even in that case, however,

the expression of several genes can be modulated. The discrimination between the

primary and secondary targets is even more puzzling because one sRNA can

regulate multiple primary targets. Indeed, in addition to Rot, RNAIII has many

other direct targets encoding bacterial virulence factors such as the alpha-hemolysin

(hla), the protein A (SpA), the staphylocoagulase (Coa) (Morfeldt et al. 1995;

Huntzinger et al. 2005; Chevalier et al. 2010; Boisset et al. 2007). Thus, once the

targets of an sRNA are identified, the next challenge is to understand the

mechanisms of each of the regulations at molecular level as well as their integration

in the overall regulatory networks of gene expression regulations.

356 M. Hallier et al.



Fig. 14.2 sRNA target identification using “aptamer-tagged” sRNAs expressed in vivo. An

aptamer module is genetically engineered and inserted within the sRNA gene in the bacterial

chromosome. The in vivo expressed “tagged-sRNA” contains an additional sequence which allows

the “high-affinity” purification of the modified sRNA. In vivo preformed “sRNA-mRNA” and/or

“sRNA-protein” complexes are purified on sepharose beads containing the aptamer ligand (strep-

tomycin or tobramycin). Specifically associated mRNAs and proteins are recovered from the

“aptamer-tagged” sRNA resin. sRNA binding proteins are resolved on PAGE, and the proteins are

excised from the gel before mass spectrometry identification (p: protein sample, M: molecular

weight markers). For the identification of the mRNAs that interact specifically with the sRNAs, the

mRNAs are converted into cDNAs and labeled with fluorescent dyes. The probe is hybridized to a

“whole-genome” microarray to identify the target genes
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14.4 Elucidation of sRNA-Based Regulatory Mechanisms

The different types of sRNAs and their mechanisms of action were previously

discussed in details in several excellent reviews (Deveau et al. 2010; Gottesman and

Storz 2010; Repoila and Darfeuille 2009; Waters and Storz 2009) and in the chapter

“Small regulatory RNAs (sRNAs) – key players in prokaryotic metabolism, stress
response and virulence” of this book. Here, we propose an overview of a general

experimental strategy to elucidate the mechanisms of actions of sRNAs with special

attention to mRNA and protein targets.

The identification of putative targets is only the first step in the elucidation of the

role(s) of an sRNA. To determine the function(s) of sRNAs, further experimental

manipulations are indispensable consisting in (1) the validation of the target and (2)

the subsequent explanation of the regulatory mechanisms. This can be achieved by

several approaches. Strategies that will be discussed hereafter will concern only

primary mRNAs and protein targets.

14.4.1 Target Validation

Generally, RNA-mediated effects can be monitored in vivo in strains in which the

RNA regulator gene of interest has been deleted or overexpressed. “sRNA-based”

repression or activation of mRNA targets often results in changes in protein levels

that may be analyzed by Western blot. If no specific antibodies are available,

chromosomal or plasmid constructions in which regulatory regions of putative

mRNA targets have been fused with a reporter gene may be used. Several systems

have been developed in both gram-positive and gram-negative bacteria. They use

different reporter genes such as lacZ, encoding b-galactosidase (Boisset et al. 2007;
Huntzinger et al. 2005) or gfp (green fluorescent protein) (Pfeiffer et al. 2007;

Urban and Vogel 2007). Such constructions often contain the translational regu-

latory regions of genes of interest fused with a reporter gene and placed under the

control of a promoter independent of regulation by sRNAs. This allows the investi-

gation of direct regulation of the mRNA targets at translational level without

possible outcomes at transcriptional level.

In addition to the translational regulation, the sRNA/mRNA pairing can induce

changes in mRNA stability. Changes in mRNA target levels often accompany the

sRNA-mediated regulation of translation (Boisset et al. 2007; Morita et al. 2005;

reviewed in Kaberdin and Blasi 2006). This can be due to recruitment of RNases

such as RNase E or RNase III upon sRNA-mRNA duplex formation. It can also be

due to increased accessibility of less translated and, therefore, less protected

mRNAs for RNases. However, sRNAs can promote changes in mRNA target levels

without direct translational repression or activation (Desnoyers et al. 2009; Opdyke

et al. 2011; Pfeiffer et al. 2007). So, it is important to verify if sRNA binding leads

to changes at the mRNA levels (degradation and/or processing). Several approaches
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such as Northern blot, RT-qPCR, and RNase protection assays can be used to

monitor the changes in target RNA levels and prove or disprove the “RNA-

based” regulation.

These in vivo analyses are usually the first step in studying the regulatory

mechanism because they confirm the target regulation in the cellular context.

Furthermore, they could also give the first indications about the mechanism of

regulation.

14.4.2 Elucidation of the Regulatory Mechanisms at Molecular
Level

Unraveling the precise regulatory mechanism(s) is necessary to study the function

(s) of an sRNA. This can be achieved by several approaches, both in vitro and

in vivo.

14.4.2.1 In Vitro Approaches

In vitro experiments are required to provide insight into the mechanism(s) of action

of “sRNA-mediated” regulation. They can help in validating the direct interaction

(s) between an sRNA and its protein or mRNA targets. For both the protein and

mRNA targets, similar strategies can be used. These biochemical experiments

include electrophoretic mobility shift assay (EMSA) that allows visualization of

the complex between sRNA with its target(s) and confirmation of direct binding.

Complex formation between an sRNA and its mRNA or protein target(s) usually

induces structural changes of the sRNA and the target mRNA or protein. This can

be analyzed by enzymatic or chemical probes in solution which allows the mapping

of the interaction sites and structural changes that accompany complex formation.

Additionally, “RNA-mediated” regulation of translation initiation can be monitored

by ribosome toeprint assays. These allow the examination of the formation of

translation initiation complexes on an mRNA in vitro in the absence or presence

of an sRNA.

Analysis of Complex Formation by EMSA

This analysis can be applied to study the binding of an sRNA with its mRNA or

protein targets. EMSA experiments are performed with in vitro synthesized RNAs

and purified native proteins. As for most in vitro applications, RNAs are transcribed

in vitro with T7 or SP6 RNA polymerases from a PCR product or a linearized

plasmid template carrying the T7 or SP6 promoter fused with the gene of interest.

To avoid the presence of the short transcripts, RNAs are purified by electrophoresis
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from denaturing “polyacrylamide-urea” gels. Labeling of RNAs can be achieved

by incorporating [a-32P] UTP during transcription or by terminal labeling with

polynucleotide kinase (50-ends) or RNA ligase (30-ends). For complex formation, a

fixed concentration of labeled RNA (either the sRNA or the mRNA target)

is mixed with an increasing concentration of the unlabeled second RNA or

purified protein (Fig. 14.3a). A large concentration range is usually used in the

first set of experiments, generally from 10 nM to 10 mM. The complexes are

Fig. 14.3 Experimental approaches for studying the mechanisms of regulation mediated by an
sRNA. (a) Complex formation between an sRNA and its mRNA target analyzed by EMSA. The

purified labeled sbi mRNA (mRNA-P32) was incubated in the presence of increasing amounts of

unlabeled SprD (sRNA). Complexes were separated on polyacrylamide gels under native

conditions. The autoradiogram obtained after gel electrophoresis is presented. The dissociation

constant value (Kd) of the “sRNA-mRNA” complexes (right panel) is experimentally determined

as the concentration of unlabeled sRNA for which 50% of labeled mRNA target is in complex. (b)

Toeprint assays illustrating the inhibitory effect of an sRNA (here: SprD) on ribosome loading and

translation initiation of sbi mRNA. “+/�” indicates the presence of purified ribosomes, sRNA

(SprD), or an sRNAmutant lacking the domain of interaction with its mRNA target (mut SprD). U,

A, G, and C refer to the mRNA sequencing ladders. (a) In the absence of ribosomes, the reverse

transcriptase progresses until the 50 end of the mRNA is reached (arrowhead); (b) 30S ribosome

loading onto the mRNA that prematurely stops cDNA elongation by the reverse transcriptase and

leads to the appearance of a “toeprint” located ~17 nt downstream on the initiation codon (arrow);
(c) the binding of the sRNA onto the mRNA reduces ribosome loading onto the mRNA in a

“concentration-dependent” manner, leading to the progressive decrease of the “toeprint”; (d) an

sRNA (mut sRNA) incapable of pairing with the mRNA target fails to interfere with ribosome

loading onto the mRNA and, consequently, does not inhibit “toeprint” formation. It demonstrates

that the sRNA inhibits mRNA translation initiation
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separated on native polyacrylamide gels and visualized by autoradiography or

phosphorimaging. This analysis can provide further information about the binding

affinity (Fig. 14.3a), the conditions that favor the interactions between the

molecules (temperature, pH, buffer compositions), and also if the interaction

requires additional helper molecules, as for example, the RNA protein chaperone

Hfq (Antal et al. 2005; Geissmann and Touati 2004; Heidrich et al. 2007). Further-

more, in conjunction with a mutational analysis, this approach allows the identifi-

cation of the binding sites (Kawamoto et al. 2006).

Probing RNA Structures in Solution

This approach allows the study of the secondary structures of RNAs in solution,

either free or interacting with ligands (for example, proteins, nucleic acids, and

small molecules). The tools for probing RNA structures under statistical conditions

can be nucleases or chemical agents (reviewed in Chevalier et al. 2009; Felden

2007). Most of the enzymes induce cleavages of the sRNA in unpaired regions in

native buffers: RNase T1 cleaves 30 of unpaired Gs, U2 at unpaired As and to a

lesser extent at Gs, and the S1 nuclease at unpaired residues, whereas RNase V1 is

the only probe which cleaves at paired or stacked residues. RNase T2 cleaves in

unpaired regions with a slight preference for As. The limitations of enzymes as

probes for RNA structures are due to their size which could prevent the RNA

sequences from being cleaved. Therefore, smaller probes can be used: RNase

mimics (imidazole conjugates which cleave at unpaired or flexible ribonucleotides),

lead (II) acetate (cleaves phosphodiester bonds in unpaired or flexible regions), or

base-specific probes (the carbodiimide CMCT modifies atomic positions of

nucleotides N3U and N1G; dimethyl sulfate [DMS] methylates N1A, N3C, and

N7G; diethylpyrocarbonate [DEPC] monitors the reactivity of N7A; and kethoxal

reacts with N1G and N2G) (reviewed in Chevalier et al. 2009; Felden 2007). By

using probes with different specificities toward accessible or buried residues, it is

possible to determine the reactivity of each nucleotide of RNAs for enzymes or

chemical probes. This allows the discrimination of unpaired from paired regions as

well as the detection of structural changes resulting from complex formation

(Boisset et al. 2007; Bordeau and Felden 2002; Darfeuille et al. 2007; Heidrich

et al. 2007; Pfeiffer et al. 2007). The detection of the cleavages can be performed by

several methods, depending essentially on the lengths of the studied RNAs. One

uses 50 or 30 end-labeled RNAs, and another involves primer extension by reverse

transcriptase on the unlabeled modified RNA with 50 labeled DNA primers. Probing

studies of RNA conformations have the advantage of being performed under native,

physiological conditions. Chemicals such as DMS and lead (II) acetate can be also

used to monitor RNA structures in living cells (Altuvia et al. 1997; Benito et al.

2000; Lindell et al. 2002). RNA structure models based on these chemical and

enzymatic probes can be refined by using site-directed mutagenesis of selected

residues predicted to be critical for RNA folding. These models are useful to

identify the nucleotides participating in ligand interactions as well as to infer new
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functional hypotheses. Such analysis can also be applied to map the cleavage

positions of bacterial RNase E or RNase III within the mRNA sequence, in the

presence or absence of the sRNAs (Boisset et al. 2007; Viegas et al. 2011).

Testing the Effects of sRNAs on Translation Initiation

A primer extension inhibition (toeprints) assay was developed to study the forma-

tion of bacterial ribosomal initiation complexes in vitro (Hartz et al. 1988). The

bacterial 30S, or rarely 70S, purified ribosomal subunits are utilized to form

translation initiation complexes on the mRNAs to be translated. This method is

based on the inhibition of reverse transcriptase elongation by the ribosomes loaded

on the mRNA (Fig. 14.3b). The location of the pause (“toeprint”) during reverse

transcriptase elongation corresponds to the position at the 30 edge of the mRNA

sequences covered by the loaded ribosome. In the presence of an initiator fMet-

tRNAfMet, the “toeprint” is situated on the mRNA at position +16 or + 17 on the

initiation codon. A modification due to the binding of purified ribosomes can be

visualized by the variation in the intensity of the “toeprints.” Initially, this approach

was used to monitor the effects of ribosomal components and translation factors on

the formation of active ribosomal initiation complexes. Since the discovery of

bacterial sRNAs, this method has been largely used to test the effects of sRNAs

on mRNA target translation initiation in vitro (reviewed in Fechter et al. 2009).

When the “RNA-based” regulation is accompanied by the fast degradation of the

mRNA targets in vivo, it is problematic to discriminate between transcriptional and

posttranscriptional regulation, as for example, in the case of the specific RNAIII-

based regulation in S. aureus. So, the toeprint assays are a simple in vitro way to

provide evidence for translational repression or activation by an sRNA. The binding

of the sRNA to the ribosome binding site (RBS) of an mRNA leads to RBS masking

and to the competition between the sRNA and the ribosome, thus preventing the

formation of the ribosomal initiation complex (Boisset et al. 2007; Chabelskaya

et al. 2010; Holmqvist et al. 2010). Several recent works using toeprint analyses

have reported regulation by sRNA binding outside of the mRNAs RBS. A number

of cases of translational repression by sRNAs interacting with the 50-UTRs of target
mRNAs (Darfeuille et al. 2007; Sharma et al. 2007) and also translation inhibition

by an sRNA that interacts within the coding sequence of a target mRNA (Bouvier

et al. 2008; Heidrich et al. 2007) have been reported. In addition to toeprint

analysis, another in vitro method can be used for testing potential translational

regulators. The commercially available “mRNA decay-free 70S ribosome transla-

tion system” (PURESYSTEM) was used to demonstrate the effect of sRNAs on

target mRNA translation in vitro (Maki et al. 2008; Sharma et al. 2007).

14.4.2.2 In Vivo Approaches

Independent of the strategy chosen to study the biological roles of the sRNAs, the

confirmation of their mechanisms of action has to be collected in vivo. If the sRNA
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acts by pairing with mRNA target(s), mutations or deletions of the sRNA and/or of

its mRNA target(s) in the area of the interaction should affect the regulation

(Boisset et al. 2007; Chabelskaya et al. 2010). A strong validation of a direct

“sRNA-mRNA” interaction comes from compensatory base pair exchanges

in vivo. Mutations in the interaction sites of sRNA and target mRNA should abolish

the regulation, whereas compensatory mutations at both sites on the two interacting

RNAs should restore the regulation (Bouvier et al. 2008; Papenfort et al. 2008;

Pfeiffer et al. 2007; Vogel et al. 2004).

Also, as for target validation (paragraph 4.1), the specificity of “RNA–RNA”

interactions can be assayed in vivo using a two-plasmid E. coli-based system

(Urban and Vogel 2007). In this approach, the 50 regulatory sequences of an

mRNA target are cloned as translational fusions into a reporter gene (GFP) and

coexpressed with the sRNA under the control of constitutive promoters to avoid

transcriptional regulations. Since the regulation can occur within the coding

sequence of a target mRNA, this has to be taken into account during the construc-

tion of translational fusions. The direct interaction of the sRNA with its mRNA

target can be challenged experimentally by introducing point mutations that abolish

or restore regulation. Such “two-plasmid” systems are applicable to monitor the

interactions between the sRNA and its mRNA target(s) in various bacteria.

In addition to regulation at translational level, the most frequent outcome of the

“sRNA-mRNA” binding is to modify mRNA stability. The pairings can result in

mRNA degradation (Afonyushkin et al. 2005; Huntzinger et al. 2005; Pfeiffer et al.

2009) or, sometimes, in protecting the mRNA from degradation (McCullen et al.

2010). The role of various RNases in the degradation process of the RNA duplex

can be tested in vivo. Thus, monitoring the RNA levels in strains lacking specific

RNase(s) can provide information about the implication of an RNase into the

regulatory process and to test whether or not the regulation is irreversible

(Afonyushkin et al. 2005; Boisset et al. 2007; Masse et al. 2003; McCullen et al.

2010; Opdyke et al. 2011; Viegas et al. 2011). Moreover, if the target mRNA is not

rapidly hydrolyzed, the primer extension analysis can be applied to study the

“sRNA-mRNA” interactions and to map the 50/30 ends of the cleaved mRNAs. In

the case of the bicistronic gadX-gadWmRNA, the 50-ends of the processed mRNAs

resulting from GadY (the sRNA) binding were determined by this method (Opdyke

et al. 2011). Likewise, the identification of 50 termini of processed mRNA

transcripts can be performed by 50 rapid amplification of cDNA ends by PCR

(RACE) (Vogel et al. 2004). 30 RACE analysis can also be used to estimate the

“sRNA-mRNA” pairing domains (Pfeiffer et al. 2009).

Overall, there is a variety of strategies to validate putative mRNA targets and to

understand the role(s) of the sRNAs. Because of space limitations, only selected

experimental approaches are described in this chapter, and therefore, we apologize

for the authors and methods that are not mentioned and discussed in same. More-

over, new approaches are emerging, as for example, a “RNA walk” method to

investigate the “RNA–RNA” interactions between an sRNA and its target (Lustig

et al. 2010). Combining in vitro and in vivo approaches is a reasonable line of attack

to elucidate the mechanism(s) of action of the sRNAs. It is essential to remember
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that the in vitro systems are very sensitive to experimental conditions. Therefore, in

order to minimize the experimental artifacts linked to the in vitro methods (biases),

one should select the physiologically relevant conditions for the in vitro

experiments. Certainly, the suggested mechanism(s) based on in vitro data must

always be confirmed in vivo.

14.5 General Conclusions

A significant number of bacterial sRNAs were discovered during the last decade by

computational and biochemical approaches. Given the expeditious ongoing tech-

nological developments, as illustrated recently with the high-throughput sequenc-

ing and their upcoming availability at low costs, we anticipate a considerable

increase of the sRNA catalog in many bacteria, especially in the human pathogens

considering that several sRNAs have been shown to be involved in bacterial

virulence. The forthcoming challenge is to characterize their primary, direct targets.

Indeed, sRNA target identification is the limiting tread for the functional investiga-

tion of many sRNAs. The task is further complicated by the multiplicity of the

targets per sRNA and the multiplicity of mechanisms of action for a given sRNA.

Most of the current “large-scale” technologies favor the identification of secondary

targets. Approaches based on affinity captures of sRNA targets focus on identifying

the primary targets but are confronted with multiple nonspecific ligands. Thus, a

combination of these different methods is required not only to detect the primary

targets but also to provide further information on their regulatory processes.

Numerous sophisticated tools are currently available to characterize the mecha-

nism(s) of action of the sRNAs both in vitro and in vivo. Whereas in vitro analysis

can be performed for any sRNA from any bacterial species, the in vivo experiments

require specific experimental strategies according to the bacterium studied. Classi-

cal genetic approaches easily set up in E. coli, as site-directed mutagenesis, are

much more complicated to accomplish in other bacteria such as gram-positive

bacteria. As for target identification, an association of in vitro and in vivo comple-

mentary approaches is required to elucidate the mechanisms underlying target

regulations.

In this chapter, strategies are described that can be applied to identify sRNAs and

their primary targets and to study their mechanisms of regulation. The proper use of

these methods is mandatory to integrate the sRNAs into bacterial physiology and

especially to integrate them into the various signaling pathways triggered by

external stimuli. This upcoming challenge will allow understanding of their

involvement in elaborate gene regulatory networks in bacteria. One should keep

in mind that an sRNA is able to regulate multiple target genes and that the

expression of one gene can be controlled by several sRNAs and also by additional

regulators, such as the general transcription factors.

364 M. Hallier et al.



References

Afonyushkin T, Vecerek B, Moll I, Blasi U, Kaberdin VR (2005) Both RNase E and RNase III

control the stability of sodB mRNA upon translational inhibition by the small regulatory RNA

RyhB. Nucleic Acids Res 33(5):1678–1689. doi:10.1093/nar/gki313

Alkan C, Karakoc E, Nadeau JH, Sahinalp SC, Zhang K (2006) RNA–RNA interaction prediction

and antisense RNA target search. J Comput Biol 13(2):267–282

Altuvia S, Weinstein-Fischer D, Zhang A, Postow L, Storz G (1997) A small, stable RNA induced

by oxidative stress: role as a pleiotropic regulator and antimutator. Cell 90(1):43–53

Altuvia S, Zhang A, Argaman L, Tiwari A, Storz G (1998) The Escherichia coli OxyS regulatory

RNA represses fhlA translation by blocking ribosome binding. EMBO J 17(20):6069–6075

Antal M, Bordeau V, Douchin V, Felden B (2005) A small bacterial RNA regulates a putative

ABC transporter. J Biol Chem 280(9):7901–7908

Argaman L, Altuvia S (2000) fhlA repression by OxyS RNA: kissing complex formation at two

sites results in a stable antisense-target RNA complex. J Mol Biol 300(5):1101–1112

Backofen R, Hess WR (2010) Computational prediction of sRNAs and their targets in bacteria.

RNA Biol 7(1):33–42

Beaume M, Hernandez D, Farinelli L, Deluen C, Linder P, Gaspin C, Romby P, Schrenzel J,

Francois P (2010) Cartography of methicillin-resistant S. aureus transcripts: detection, orien-
tation and temporal expression during growth phase and stress conditions. PLoS One 5(5):

e10725. doi:10.1371/journal.pone.0010725

Benito Y, Kolb FA, Romby P, Lina G, Etienne J, Vandenesch F (2000) Probing the structure of

RNAIII, the Staphylococcus aureus agr regulatory RNA, and identification of the RNA domain

involved in repression of protein A expression. RNA 6(5):668–679

Bernstein JA, Khodursky AB, Lin PH, Lin-Chao S, Cohen SN (2002) Global analysis of mRNA

decay and abundance in Escherichia coli at single-gene resolution using two-color fluorescent

DNA microarrays. Proc Natl Acad Sci USA 99(15):9697–9702

Bohn C, Rigoulay C, Chabelskaya S, Sharma CM, Marchais A, Skorski P, Borezee-Durant E,

Barbet R, Jacquet E, Jacq A, Gautheret D, Felden B, Vogel J, Bouloc P (2010) Experimental

discovery of small RNAs in Staphylococcus aureus reveals a riboregulator of central metabo-

lism. Nucleic Acids Res 38(19):6620–6636

Boisset S, Geissmann T, Huntzinger E, Fechter P, Bendridi N, Possedko M, Chevalier C, Helfer

AC, Benito Y, Jacquier A, Gaspin C, Vandenesch F, Romby P (2007) Staphylococcus aureus
RNAIII coordinately represses the synthesis of virulence factors and the transcription regulator

Rot by an antisense mechanism. Genes Dev 21(11):1353–1366

Bordeau V, Felden B (2002) Ribosomal protein S1 induces a conformational change of tmRNA;

more than one protein S1 per molecule of tmRNA. Biochimie 84(8):723–729

Bouvier M, Sharma CM, Mika F, Nierhaus KH, Vogel J (2008) Small RNA binding to 50 mRNA

coding region inhibits translational initiation. Mol Cell 32(6):827–837. doi:10.1016/j.

molcel.2008.10.027

Boysen A, Moller-Jensen J, Kallipolitis B, Valentin-Hansen P, Overgaard M (2010) Translational

regulation of gene expression by an anaerobically induced small non-coding RNA in

Escherichia coli. J Biol Chem 285(14):10690–10702

Breaker RR (2010) Riboswitches and the RNA World. Cold Spring Harb Perspect Biol.

doi:10.1101/cshperspect.a003566

Busch A, Richter AS, Backofen R (2008) IntaRNA: efficient prediction of bacterial sRNA targets

incorporating target site accessibility and seed regions. Bioinformatics 24(24):2849–2856

Chabelskaya S, Gaillot O, Felden B (2010) A Staphylococcus aureus small RNA is required for

bacterial virulence and regulates the expression of an immune-evasion molecule. PLoS Pathog

6(6):e1000927

Chant EL, Summers DK (2007) Indole signalling contributes to the stable maintenance of

Escherichia coli multicopy plasmids. Mol Microbiol 63(1):35–43

14 Experimental Analyses of RNA-Based Regulations in Bacteria 365

http://dx.doi.org/10.1093/nar/gki313
http://dx.doi.org/10.1371/journal.pone.0010725
http://dx.doi.org/10.1016/j.molcel.2008.10.027
http://dx.doi.org/10.1016/j.molcel.2008.10.027
http://dx.doi.org/10.1101/cshperspect.a003566


Chen S, Zhang A, Blyn LB, Storz G (2004) MicC, a second small-RNA regulator of Omp protein

expression in Escherichia coli. J Bacteriol 186(20):6689–6697
Chevalier C, Geissmann T, Helfer AC, Romby P (2009) Probing mRNA structure and

sRNA–mRNA interactions in bacteria using enzymes and lead(II). Methods Mol Biol

540:215–232. doi:10.1007/978-1-59745-558-9_16

Chevalier C, Boisset S, Romilly C, Masquida B, Fechter P, Geissmann T, Vandenesch F, Romby P

(2010) Staphylococcus aureus RNAIII binds to two distant regions of coa mRNA to arrest

translation and promote mRNA degradation. PLoS Pathog 6(3):e1000809

Choi KH, Kim KJ (2009) Applications of transposon-based gene delivery system in bacteria. J

Microbiol Biotechnol 19(3):217–228

Christiansen JK, Nielsen JS, Ebersbach T, Valentin-Hansen P, Sogaard-Andersen L, Kallipolitis

BH (2006) Identification of small Hfq-binding RNAs in Listeria monocytogenes. RNA 12

(7):1383–1396. doi:10.1261/rna.49706

Darfeuille F, Unoson C, Vogel J, Wagner EG (2007) An antisense RNA inhibits translation

by competing with standby ribosomes. Mol Cell 26(3):381–392. doi:10.1016/j.

molcel.2007.04.003

Davis BM, Quinones M, Pratt J, Ding Y, Waldor MK (2005) Characterization of the small

untranslated RNA RyhB and its regulon in Vibrio cholerae. J Bacteriol 187(12):4005–4014
Desnoyers G, Morissette A, Prevost K, Masse E (2009) Small RNA-induced differential degrada-

tion of the polycistronic mRNA iscRSUA. EMBO J 28(11):1551–1561. doi:10.1038/

emboj.2009.116

Deveau H, Garneau JE, Moineau S (2010) CRISPR/Cas system and its role in phage-bacteria

interactions. Annu Rev Microbiol 64:475–493. doi:10.1146/annurev.micro.112408.134123

Douchin V, Bohn C, Bouloc P (2006) Down-regulation of porins by a small RNA bypasses the

essentiality of the regulated intramembrane proteolysis protease RseP in Escherichia coli.
J Biol Chem 281(18):12253–12259

Fechter P, Chevalier C, Yusupova G, Yusupov M, Romby P, Marzi S (2009) Ribosomal initiation

complexes probed by toeprinting and effect of trans-acting translational regulators in bacteria.

Methods Mol Biol 540:247–263. doi:10.1007/978-1-59745-558-9_18

Felden B (2007) RNA structure: experimental analysis. Curr Opin Microbiol 10(3):286–291.

doi:10.1016/j.mib.2007.05.001

Felden B, Gesteland RF, Atkins JF (1999) Eubacterial tmRNAs: everywhere except the alpha-

proteobacteria? Biochim Biophys Acta 1446(1–2):145–148

Felden B, Massire C, Westhof E, Atkins JF, Gesteland RF (2001) Phylogenetic analysis of tmRNA

genes within a bacterial subgroup reveals a specific structural signature. Nucleic Acids Res 29

(7):1602–1607

Felden B, Vandenesch F, Bouloc P, Romby P (2011) The Staphylococcus aureus RNome and its

commitment to virulence. PLoS Pathog 7(3):e1002006. doi:10.1371/journal.ppat.1002006

Geisinger E, Adhikari RP, Jin R, Ross HF, Novick RP (2006) Inhibition of rot translation by

RNAIII, a key feature of agr function. Mol Microbiol 61(4):1038–1048

Geissmann TA, Touati D (2004) Hfq, a new chaperoning role: binding to messenger RNA

determines access for small RNA regulator. EMBO J 23(2):396–405. doi:10.1038/sj.

emboj.7600058

Gottesman S (2004) The small RNA regulators of Escherichia coli: roles and mechanisms. Annu

Rev Microbiol 58:303–328

Gottesman S, Storz G (2010) Bacterial small RNA regulators: versatile roles and rapidly evolving

variations. Cold Spring Harb Perspect Biol. doi:10.1101/cshperspect.a003798

Gottesman S, McCullen CA, Guillier M, Vanderpool CK, Majdalani N, Benhammou J, Thompson

KM, FitzGerald PC, Sowa NA, FitzGerald DJ (2006) Small RNA regulators and the bacterial

response to stress. Cold Spring Harb Symp Quant Biol 71:1–11. doi:10.1101/sqb.2006.71.016

Griffin BE (1971) Separation of 32P-labelled ribonucleic acid components. The use of polyethy-

lenimine-cellulose (TLC) as a second dimension in separating oligoribonucleotides of ‘4.5S’

and 5S from E. coli. FEBS Lett 15(3):165–168

366 M. Hallier et al.

http://dx.doi.org/10.1007/978-1-59745-558-9_16
http://dx.doi.org/10.1261/rna.49706
http://dx.doi.org/10.1016/j.molcel.2007.04.003
http://dx.doi.org/10.1016/j.molcel.2007.04.003
http://dx.doi.org/10.1038/emboj.2009.116
http://dx.doi.org/10.1038/emboj.2009.116
http://dx.doi.org/10.1146/annurev.micro.112408.134123
http://dx.doi.org/10.1007/978-1-59745-558-9_18
http://dx.doi.org/10.1016/j.mib.2007.05.001
http://dx.doi.org/10.1371/journal.ppat.1002006
http://dx.doi.org/10.1038/sj.emboj.7600058
http://dx.doi.org/10.1038/sj.emboj.7600058
http://dx.doi.org/10.1101/cshperspect.a003798
http://dx.doi.org/10.1101/sqb.2006.71.016


Guillier M, Gottesman S (2006) Remodelling of the Escherichia coli outer membrane by two small

regulatory RNAs. Mol Microbiol 59(1):231–247

Hartz D, McPheeters DS, Traut R, Gold L (1988) Extension inhibition analysis of translation

initiation complexes. Methods Enzymol 164:419–425

Heeb S, Blumer C, Haas D (2002) Regulatory RNA as mediator in GacA/RsmA-dependent global

control of exoproduct formation in Pseudomonas fluorescens CHA0. J Bacteriol 184

(4):1046–1056

Heidrich N, Moll I, Brantl S (2007) In vitro analysis of the interaction between the small RNA SR1

and its primary target ahrC mRNA. Nucleic Acids Res 35(13):4331–4346. doi:10.1093/nar/

gkm439

Hindley J (1967) Fractionation of 32P-labelled ribonucleic acids on polyacrylamide gels and their

characterization by fingerprinting. J Mol Biol 30(1):125–136

Holmqvist E, Reimegard J, Sterk M, Grantcharova N, Romling U, Wagner EG (2010) Two

antisense RNAs target the transcriptional regulator CsgD to inhibit curli synthesis. EMBO J

29(11):1840–1850. doi:10.1038/emboj.2010.73

Horvath P, Barrangou R (2010) CRISPR/Cas, the immune system of bacteria and archaea. Science

327(5962):167–170. doi:10.1126/science.1179555

Hovhannisyan R, Carstens R (2009) Affinity chromatography using 20 fluoro-substituted RNAs for
detection of RNA-protein interactions in RNase-rich or RNase-treated extracts. Biotechniques

46(2):95–98

Hu Z, Zhang A, Storz G, Gottesman S, Leppla SH (2006) An antibody-based microarray assay for

small RNA detection. Nucleic Acids Res 34(7):e52. doi:10.1093/nar/gkl142

Huntzinger E, Boisset S, Saveanu C, Benito Y, Geissmann T, Namane A, Lina G, Etienne J,

Ehresmann B, Ehresmann C, Jacquier A, Vandenesch F, Romby P (2005) Staphylococcus
aureus RNAIII and the endoribonuclease III coordinately regulate spa gene expression. EMBO

J 24(4):824–835

Huttenhofer A, Cavaille J, Bachellerie JP (2004) Experimental RNomics: a global approach to

identifying small nuclear RNAs and their targets in different model organisms. Methods Mol

Biol 265:409–428. doi:10.1385/1-59259-775-0:409

Ikemura T, Dahlberg JE (1973) Small ribonucleic acids of Escherichia coli. I. Characterization by
polyacrylamide gel electrophoresis and fingerprint analysis. J Biol Chem 248(14):5024–5032

Kaberdin VR, Blasi U (2006) Translation initiation and the fate of bacterial mRNAs. FEMS

Microbiol Rev 30(6):967–979. doi:10.1111/j.1574-6976.2006.00043.x

Kawamoto H, Koide Y, Morita T, Aiba H (2006) Base-pairing requirement for RNA silencing by a

bacterial small RNA and acceleration of duplex formation by Hfq. Mol Microbiol 61

(4):1013–1022. doi:10.1111/j.1365-2958.2006.05288.x

Kwon YS (2011) Small RNA library preparation for next-generation sequencing by single

ligation, extension and circularization technology. Biotechnol Lett. doi:10.1007/s10529-011-

0611-y

Lee SY, Bailey SC, Apirion D (1978) Small stable RNAs from Escherichia coli: evidence for the
existence of new molecules and for a new ribonucleoprotein particle containing 6S RNA. J

Bacteriol 133(2):1015–1023

Lindell M, Romby P, Wagner EG (2002) Lead(II) as a probe for investigating RNA structure

in vivo. RNA 8(4):534–541

Liu MY, Gui G, Wei B, Preston JF III, Oakford L, Yuksel U, Giedroc DP, Romeo T (1997) The

RNA molecule CsrB binds to the global regulatory protein CsrA and antagonizes its activity in

Escherichia coli. J Biol Chem 272(28):17502–17510

Lustig Y, Wachtel C, Safro M, Liu L, Michaeli S (2010) ‘RNA walk’ a novel approach to study

RNA–RNA interactions between a small RNA and its target. Nucleic Acids Res 38(1):e5.

doi:10.1093/nar/gkp872

MacLean D, Jones JD, Studholme DJ (2009) Application of ‘next-generation’ sequencing

technologies to microbial genetics. Nat Rev Microbiol 7(4):287–296. doi:10.1038/

nrmicro2122

14 Experimental Analyses of RNA-Based Regulations in Bacteria 367

http://dx.doi.org/10.1093/nar/gkm439
http://dx.doi.org/10.1093/nar/gkm439
http://dx.doi.org/10.1038/emboj.2010.73
http://dx.doi.org/10.1126/science.1179555
http://dx.doi.org/10.1093/nar/gkl142
http://dx.doi.org/10.1385/1-59259-775-0:409
http://dx.doi.org/10.1111/j.1574-6976.2006.00043.x
http://dx.doi.org/10.1111/j.1365-2958.2006.05288.x
http://dx.doi.org/10.1007/s10529-011-0611-y
http://dx.doi.org/10.1007/s10529-011-0611-y
http://dx.doi.org/10.1093/nar/gkp872
http://dx.doi.org/10.1038/nrmicro2122
http://dx.doi.org/10.1038/nrmicro2122


Maki K, Uno K, Morita T, Aiba H (2008) RNA, but not protein partners, is directly responsible for

translational silencing by a bacterial Hfq-binding small RNA. Proc Natl Acad Sci USA 105

(30):10332–10337. doi:10.1073/pnas.0803106105

Mandin P, Gottesman S (2009) A genetic approach for finding small RNAs regulators of genes of

interest identifies RybC as regulating the DpiA/DpiB two-component system. Mol Microbiol

72(3):551–565. doi:10.1111/j.1365-2958.2009.06665.x

Mandin P, Repoila F, Vergassola M, Geissmann T, Cossart P (2007) Identification of new

noncoding RNAs in Listeria monocytogenes and prediction of mRNA targets. Nucleic Acids

Res 35(3):962–974

Masse E, Escorcia FE, Gottesman S (2003) Coupled degradation of a small regulatory RNA and its

mRNA targets in Escherichia coli. Genes Dev 17(19):2374–2383. doi:10.1101/gad.1127103
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Chapter 15

Microregulators Ruling Over Pluripotent

Stem Cells

Shijun Hu and Andrew Stephen Lee

Abstract Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs)

have very promising clinical applications in regenerative medicine due to their

ability for unlimited self-renewal and potential to differentiate into every cell type

of the adult human body. microRNAs (miRNAs) are a novel class of single-

stranded noncoding RNA that have been found to play a significant role in epige-

netic regulation of ESCs and iPSCs. Understanding the miRNA regulatory

pathways underlying the induction and maintenance of pluripotency in ESCs and

iPSCs will facilitate basic research and stem cell–based regenerative therapies.

Keywords Embryonic stem cells • induced pluripotent stem cells • microRNAs

15.1 Pluripotent Stem Cells and Micromanagers Building

up a Synchronized Network

Embryonic stem cells (ESCs) are derived from the inner cell mass of pre-implantation

blastocysts and are technically defined as cells which can both self-renew indefinitely

and differentiate into all adult cell types. These potential for self-renewal and differ-

entiation are considered the primary defining features of ESCs. The regulatory

mechanism of self-renewal and differentiation in ESCs is a topic that has been

intensely investigated since the end of the last century. Much progress has been
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made in this field, including characterization of transcriptional regulatory networks

controlling pluripotency. A number of transcriptional factors and networks that are

critical for “stemness” of ESC, including Oct4, Sox2, Nanog, and Tcf3, have been

identified in recent years (Takahashi et al. 2007). These proteins have emerged as key

regulators of pluripotency, working together to maintain of self-renewal and capacity

for differentiation. However, much remains unknown about the essential nature of

“stemness” and the regulation of proliferation and differentiation of ESCs at the

molecular and genomic levels.

Induced pluripotent stem cells (iPSCs) generated by de-differentiation of adult

somatic cells are a potential solution for the ethical issues surrounding ESCs as well

as the potential for ESCS to be rejected immunologically after cellular transplanta-

tion. Reprogramming somatic cells to a pluripotent state is typically accomplished

through the induction of different combinations of transcription factors such as

Oct4, Sox2, Klf4, and C-myc (Takahashi et al. 2007) or Oct4, Sox2, Nanog, and

Lin28 (Yu et al. 2007). Reports reveal that iPSCs have similar gene expression and

chromatin patterns to those of ESCs. Further, iPSCs spontaneously differentiate to

form teratoma and possess self-renewal property as ESCs (Chin et al. 2009).

Both ESCs and iPSCs have significant potential for clinical therapies due to

their potential to differentiate into a wide range of cell types. Much progress has

been made toward understanding the core regulatory circuitry for self-renewal

and differentiation of these pluripotent cells, which is fundamental for their

clinical applications, however our current understanding is not complete.

Although pluripotency and self-renewal are regulated by a core network of

transcription factors – Oct4, Sox2, Nanog, and Klf4 – that are integrated into

complex molecular circuits, scientists do not yet have significant control over

direction of cell fate. To figure out this missing link, other elements must be

considered in order to understand the process of self-renewal and differentiation

of ESCs and iPSCs. Recently, miRNAs have been shown to act as microswitches that

reveal certain hidden dimensions of the ES cell cycle (Ganga raju and Lin 2009;

Mallick et al. 2011).

miRNAs are small noncoding single-stranded RNAs, about 22–24 nucleotides in

length that silence messenger RNA (mRNA) expression by binding the 30UTR
of target mRNAs and mediate RNA destruction and translational suppression

(Bartel 2009). miRNAs have been shown to be powerful regulatory elements as a

single miRNA can silence hundreds of genes. In the process of stem cell self-

renewal and differentiation, miRNAs potentially target a great number of genes

involved in the regulation of pluripotency and interact with core transcriptional

factors (Tiscornia and Izpisua Belmonte 2010). Refer to Chap. 17 (this volume) for

details on role of miRNAs in development and stem cell differentiation.

A number of miRNAs have been identified as important regulators of

pluripotency in ESCs and iPSCs, including let-7 (Melton et al. 2010), miR-302s

(Card et al. 2008), miR-371–373 (Stadler et al. 2010), miR-145 (Xu et al. 2009),

among others (Table 15.1). Nucleotides 2–7 of mature miRNAs form the key region

for target mRNA recognition and hybridize nearly perfectly with complementary

sequences on the 30 UTR of target mRNAs for loading into the Argonaute
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protein–containing RNA-induced silencing complex (RISC). Therefore, target

recognition is very important for the elucidation of miRNA functions. Many

ESC-specific miRNAs are cotranscribed as polycistronic transcripts, indicating

common upstream regulation and coordinated expression patterns. These ESC-

specific miRNAs are regulated by a core set of ESC-specific pluripotent transcrip-

tional factors (Marson et al. 2008) and are not present or highly expressed in

differentiated cells and somatic cells. Conversely, a great number of miRNAs

such as the let-7 family are expressed in differentiated cell types at high levels

and in ESCs at low levels (Viswanathan et al. 2008).

15.2 Role of Dicer and Dgcr8 in Stem Cell Maintenance

In mammals, the loss of entire miRNA expression gives critical clues to the

importance of miRNAs in early development and pluripotency. For instance,

Dicer�/�mice which lack the miRNA processing and regulatory pathways display

embryonic lethality and complete loss of stem cell compartments (Bernstein et al.

2003). The loss of Dicer in mouse embryonic stem cells (mESCs) leads to an acute

loss of proliferative potential. Moreover, Dicer�/� mESCs display an altered cell

cycle profile, with an increase in the number of cells in phase G1-G0. Dicer is not

the only key factor involved in miRNA processing. Dgcr8 is another protein that

has also been implicated in maintenance of pluripotency in mESCs. Like Dicer�/�
embryos, Dgcr8�/� embryos arrest in early development, though this phenotype is

less severe than Dicer�/� counterparts (Wang et al. 2007). Dgcr8�/� mESCs

demonstrate a distinct impairment in cell proliferation and cannot efficiently silence

pathways that maintain pluripotency even under conditions of differentiation.

Although the morphology of Dicer�/� and Dgcr8�/� in human ESCs (hESCs)

is similar to their wild-type counterparts, these cells are not able to downregulate

stem cell–specific marker genes and show defects in self-renewal. The cell cycles of

Dicer�/� and Dgcr8�/� hESCs exhibit delays in G1-S and G2-M transition

(Melton et al. 2010). These data demonstrate the importance of miRNA-based

Table 15.1 Important miRNAs involved in stem cell maintenance

Stem cell process miRNAs involved Potential targets

Self-renewal miR-302 cluster Cyclin D1, Lefty, Nr2f2

miR-290 cluster P21, Rbl2, Lats2, Wee1, Fbx15, caspase 2, El24

miR-195 Cdkn1a

miR-92b P57

Differentiation Let-7 C-myc, Sal14, Lin28

miR-145 Klf4, Sox2, Oct4

miR-1 Dll-1

miR-9 Stathmin
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regulatory pathways as a whole to the regulation of ESC self-renewal and

pluripotency.

15.3 Distinct miRNA Signatures in Pluripotent Stem Cells

15.3.1 miR-302s/367 Cluster

In both human and mouse, the miR-302s/367 cluster overlaps with the LA-related

protein 7 (LARP7) gene. The human miR-302 cluster consists of several different

miRNAs cotranscribed in a polycistronic manner: miR-302a, miR-302a*, miR-

302b, miR-302b*, miR-302c, miR-302c*, miR-302d, miR-302d*, miR-367, and

miR-367* with a highly conserved 50 region (Landgraf et al. 2007). Recently,

miRNA homologues to the miR-302 family have been reported and registered as

miR-302e and miR-302f which are from different chromosomes (Morin et al. 2008)

but are separate from the miR-302s/367 cluster. The miR-302s/367 cluster is

exclusively expressed at high levels in ESCs and iPSCs but not in somatic stem

cells or differentiated cells (Wilson et al. 2009).

ESC expression of the miR-302s/367 cluster is dependent on binding of its

promoter region by the pluripotency factors Oct4, Nanog, Sox2, and Rex1 (Card

et al. 2008; Barroso-delJesus et al. 2008), indicating that expression of ESC-specific

miRNAs is governed by a regulatory network controlled by the ESC-specific

transcriptional program.

Many key molecules involved in self-renewal and differentiation of pluripotent

stem cells have been proven as targets of miR-302s. The cell cycle regulator, cyclin

D1, has been recently found to be post-transcriptionally regulated by the miR-302

cluster in hESCs (Card et al. 2008). Several studies have indicated that during ESC

differentiation, the Nodal inhibitor Lefty is post-transcriptionally targeted by the

miR-302 cluster for suppression (Barroso-delJesus et al. 2011; Rosa et al. 2009).

Recently, Nr2f2 (nuclear receptor subfamily 2, group F, member 2) that can inhibit

Oct4 expression has been proven to be a target of the miR-302 cluster. The

transcriptional factors Oct4, Nr2f2, and miR-302 are linked in a regulatory circuit

that governs both pluripotency and differentiation in hESCs (Rosa and Brivanlou

2011).

In human fibroblasts, miR-302b coupled with miR-372 can promote

reprogramming into iPSCs by targeting several genes which are involved in cell

cycle, epithelial-mesenchymal transition (EMT), and epigenetic regulation, includ-

ing Tgfbr2 and Rhoc (Subramanyam et al. 2011). Impressively, the miR-302

cluster alone may drive human skin cancer cells or hair follicle cells to iPSC

fates (Lin et al. 2008; Lin et al. 2011). A recent study has indicated overexpression

of the miR-302s/367 cluster and addition of valproic acid (VPA) can rapidly and

efficiently reprogram mouse and human fibroblasts to iPSCs without exogenous

transcription factors (Anokye-Danso et al. 2011). It seems that miR-367 plays a
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critical role in the process of miR-302s/367-mediated reprogramming, which can

activate the expression of Oct4.

15.3.2 miR-290 Cluster

The mouse miR-290 cluster includes 14 miRNAs (miR-290-5p, 290-3p, 291a-5p,

291a-3p, 292-5p, 292-3p, 291b-5p, 291b-3p, 293, 293*, 294, 294*, 295, and 295*)

coded by 2.2-kb DNA fragment (Landgraf et al. 2007). The miRNA cluster

homologous to miR-290 in human is the miR-371 cluster, which includes miR-

371-5p, 371-3p, 371b-5p, 371b-3p, 372, 373, and 373*. The majority of mice

deficient in the miR-290 cluster die during embryogenesis. Surviving females are

infertile due to the absence of germ cells. In Dicer�/� ESCs, reintroduction of

the miR-290 cluster can partially rescue the proliferation defects of Dicer-deficient

ESCs. Similarly, in Dgcr8�/�ESCs, themembers of themiR-290 family can rescue

cell proliferation defects by suppression of several key regulators of the G1/S

checkpoint (Wang et al. 2008). G1/S restriction in ESCs is largely absent, allow-

ing the cells to move through the G1 to S phase rapidly. The miR-290 cluster

regulates this transition in ESCs through mediating cell cycle regulators

directly and indirectly, including targeting of P21, Rbl2, Lats2, Wee1, and Fbx15

(Wang and Blelloch 2009; Lichner et al. 2011; Sinkkonen et al. 2008). Importantly,

both miR-290 and miR-371 clusters are regulated by ESC-specific transcription

factors, including Oct4, Sox2, Nanog, and Tcf3 (Marson et al. 2008).

Furthermore, the miR-290 cluster has been implicated in promotion of cell

survival in murine ESCs by targeting two critical apoptotic regulators directly:

caspase 2, the most highly conserved mammalian caspase, and El24, a p53 tran-

scriptional target (Zheng et al. 2011). Overall, the miR-290 cluster can be classified

as a regulator of pluripotency and cell survival in ESCs.

15.3.3 Let-7 Family

During differentiation, ESCs must shift to alternative molecular programs that

inhibit self-renewal and promote differentiation into specialized cell types. The

let-7 family miRNAs are undetectable in ESCs but are highly expressed in

differentiated cell types and tightly regulated during ESC differentiation. Let-7 is

considered as an “anti-stemness” miRNA and functions as a pro-differentiation

factor during ESC differentiation (Melton et al. 2010).

The RNA-binding protein Lin28 has been identified as an inhibitor of let-7

expression through binding of let-7 precursor RNAs and inhibition of Dicer cleav-

age activity (Viswanathan et al. 2008). Other studies have indicated that Zcchc11

functions with Lin28 to catalyze the addition of a short stretch of uridines to the 30-
end of the Lin28-bound let-7 precursor RNAs (Heo et al. 2009; Hagan et al. 2009).
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This has put forth a model in which Lin28 recruits Zcchc11 to let-7 precursors, and

promotes the addition of uridines to induce blockade of let-7 maturation in ESCs.

In Dgcr8�/� ESCs, the reintroduction of let-7 can rescue silencing of the self-

renewal pathways by directly suppressing several ESC-specific transcription

factors, including c-Myc, Sall4, and Lin28 (Melton et al. 2010). Inhibition of let-

7 family via antisense oligos enhances reprogramming of mouse fibroblast to

iPSCs, highlighting the potential importance of the let-7 family in maintenance of

the differentiated state (Melton et al. 2010).

15.3.4 Other miRNAs Regulating the Pluripotent Stem Cell
Network

Many other miRNAs have been investigated to be involved in the regulation of self-

renewal and differentiation of pluripotent cells. In human ESCs, miR-195 and

miR-372 have been found to partially rescue cell cycle impairment in Dicer�/�
hESCs. miR-195 has been shown to regulate the G1/M checkpoint inhibitory kinase

Wee1, and miR-372 has been shown to regulate the G1/S checkpoint inhibitor

Cdkn1a (Qi et al. 2009). miR-92b has also been identified as a regulator of G1/S

transition in human ESCs by repression of the P57 checkpoint gene (Sengupta et al.

2009).

miR-145 functions by promoting cell differentiation from the pluripotent state

through repression of key pluripotent transcriptional factors including Klf4, Sox2,

and Oct4 (Xu et al. 2009). In human ESCs, overexpression of miR-145 blocks cell

self-renewal and induces differentiation. Conversely, inhibition of miR-145 has

been shown to increase the capacity of hESC self-renewal. Expression of miR-145

is negatively regulated by binding of Oct4 in a negative feedback circuit.

Muscle-specific miRNAs miR-1 and miR-133 promote mesodermal differentia-

tion in ESCs when ectopically expressed in murine ESCs through direct repression

of Dll-1, a key ligand in the Notch signaling pathway (Ivey et al. 2008). During

retinoic acid–induced smooth muscle cell (SMC) differentiation, overexpression of

miR-1 promotes SMC differentiation by repressing Klf4 (Xie et al. 2011). During

cardiac differentiation of ESCs, inhibition of miR-296-3p and miR-200c*

decreases, while inhibition of miR-465-5p increases (Sun et al. 2011). These

miRNAs are regulated by neuregulin 1 signaling. Identification of new microRNAs

that are important for ESC cardiac differentiation and regulated by neuregulin 1 is

an important field of continued research.

During neuronal progenitor cell (NPC) differentiation from human ESCs, inhi-

bition of miR-9 activity through addition of antisense oligos has been shown to

restrict hNPC proliferation (Delaloy et al. 2010). Stathmin is a target of miR-9 and

mediates its effects in early NPCs. This observation indicates tissue-specific

miRNAs can narrow the gene expression profile of cells to a defined lineage and

thereby promote differentiation into a specific cell type.
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In mouse ESCs, a recent study discovered miR-134, miR-296, and miR-470

regulate pluripotent transcription factors Nanog, Oct4, and Sox2 (Tay et al. 2008).

Another study byWellner et al. has shown that introduction of miR-200c, miR-203,

and miR-183 into ESCs can upregulate markers of differentiation and reduce

capacity for self-renewal in mESCs through repression of Klf4 and Sox2 (Wellner

et al. 2009).

Interestingly, it was recently found that expression of a large cluster of miRNAs

encoded in the Dlk1-Dio3 gene cluster on mouse chromosome 12 uniquely

distinguishes some miPSCs and mESCs. This gene cluster is expressed in ESCs

and iPSCs but is silenced in incompletely reprogrammed iPSCs (Liu et al. 2010;

Stadtfeld et al. 2010). Determination of the miRNAs that are critical in this cluster

for maintenance of pluripotency in ESCs and iPSCs and the corresponding targets

of these miRNAs should yield significant insights to the importance of miRNA

regulatory pathways in ESCs and iPSCs. Determination of a homologous miRNA

cluster in human ESCs and iPSCs is also critical to future clinical applications of

pluripotent stem cells.

15.4 miRNA-Based Cellular Reprogramming

miRNAs modulate target genes in a tissue specific manner, and hence participate in

cellular reprogramming by modulating proteins that function in reprogramming.

University of Pennsylvania researchers have shown that miRNAs can be used to

reprogram mouse and human fibroblasts into iPS cells without the use of inefficient

exogenous transcription factors (Anokye-Danso et al. 2011). Below is a schematic

for miRNA-based reprogramming in adult somatic cells. Figure 15.1 shows the

flowchart for miRNA-based cellular reprogramming of IMR-90 human fibroblast

cells.

D21D6D0 D5

D-MEM containing 10% FBS, 2 mML-glutamine,
50 U/mL penicillin, and 50 µg/mLstreptomycin.

Knockout™ D-MEM, 20% KSR,  0.1 mMNEAA, 2 mML-glutamine,
450 uM monothioglycerol,  50 U/ml penicillin, and 50 ug/ml, and 4 ng/ml bFGF

Oct4, Sox2, Klf4,C-myc

miR-302 cluster

mTeSRâ1 medium

On Matrigelcoated dishes afterwards 

Lentiviral transduction at D0

Re-seed the cells on Matrigel-coated dishes at D5
Lift potential colonies at around D21

a

b c

Fig. 15.1 Flowchart shows the iPSC’ generation with traditional transcription factors (Klf4, Oct4,

Sox2, and C-Myc) and the miR-302 cluster. Typically, the whole procedure includes three steps:

(a) lentiviral transduction, (b) cell reseeding on Matrigel-coated dishes, and (c) lifting potential

colonies. “D0” represents day 0
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15.4.1 Steps to Reprogram IMR-90 Human Fibroblast
with miR-302 Cluster

15.4.1.1 Materials

A. Lentiviral Transduction

IMR-90 human fibroblast (ATCC, Manassas, VA, USA)

D-MEM (Invitrogen, Carlsbad, CA, USA)

Fetal bovine serum (FBS) (Invitrogen, Carlsbad, CA, USA)

L-Glutamine (Invitrogen, Carlsbad, CA, USA)

Polybrene (Sigma-Aldrich, USA)

B. Coating Tissue Culture Dishes with BD Matrigel™ hESC-Qualified Matrix

BD Matrigel™ hESC-qualified Matrix (BD Biosciences, San Jose, CA, USA)

KnockOut™ D-MEM (Invitrogen, Carlsbad, CA, USA)

Tissue culture plate (BD Falcon™, San Jose, CA, USA)

BD Falcon™ conical tubes (BD Biosciences, San Jose, CA, USA)

Parafilm® M (Pechiney Plastic Packaging Company, Chicago, IL, USA)

C. Transfer Infected IMR90 Cells on Matrigel™-Coated Dish

TrypLE™ (Invitrogen, Carlsbad, CA, USA)

Countess® Automated Cell Counter (Invitrogen, Carlsbad, CA, USA)

KnockOut™ Serum Replacement (KSR) (Invitrogen, Carlsbad, CA, USA)

Nonessential amino acids (NEAA) (Invitrogen, Carlsbad, CA, USA)

Monothioglycerol (Sigma-Aldrich, USA)

bFGF (R&D Systems, Minneapolis, MN, USA)

D. Lift Single Colonies to Establish the Potential iPSC Line

mTeSR®1 medium for maintenance of human ESCs and iPSCs (STEMCELL

Technologies, Vancouver, BC, Canada)

15.4.1.2 Methods

One of major hindrances in iPSC derivation and therapeutic usage is low

reprogramming efficiency, about from 0.01% to 0.2%. Several approaches have

been applied to improve reprogramming efficiency, including small molecule–based
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methods. miRNAs provide a valuable tool to improve reprogramming efficiency.

The hESC-specific miR-302 cluster has been considered as substantial inducer of

iPSC generation.

A. Lentiviral Transduction

Very high gene expression can be obtained by lentiviral transduction. Therefore, in

this protocol, we employ the lentivirus to overexpress the reprogramming transcrip-

tion factors and miR-302 cluster.

1. IMR90 human fibroblast cells are maintained with D-MEM containing 10%

FBS, 2 mM L-glutamine, 50 U/mL penicillin, and 50 mg/mL streptomycin.

2. When IMR90 were plated at about 80% confluence per well of six-well plate, the

cells are infected with 1 � 107 TU titer of individual lentivirus (Oct4, Sox2,

Klf4, C-Myc, and miR-302 cluster including miR-302a, miR-302b, miR302c,

and miR-302d), with 6 mg/mL polybrene, in 1 mL of fresh medium.

3. After 24 h of incubation, change fresh medium. Change medium every day until

day 5 posttransduction.

B. Coating Tissue Culture Dishes with BD Matrigel™ hESC-Qualified Matrix

To avoid the mouse feeder cells due to the potential usage of human iPSC line for

regenerative medicine, we derive the iPSCs on feeder-free surfaces using Matrigel-

coated tissue culture dishes.

1. Take out an aliquot of frozen BD Matrigel™ hESC-qualified Matrix from

�80�C refrigerator. Thaw it on ice until liquid.

2. Dispense 25 mL of cold KnockOut™ D-MEM into a 50-mL conical tube and

keep on ice.

3. Add the thawed BD Matrigel™ Matrix into the cold KnockOut™ D-MEM

medium and mix thoroughly.

4. Coat tissue culture dishes with the diluted BD Matrigel™ solution. For one well

of six-well plate, use 1 mL of diluted BD Matrigel™ solution. Swirl the dish to

spread the BD Matrigel™ solution evenly.

5. Coated dish should be left at room temperature for at least 1 h. If not used

immediately, the coated plate must be sealed by Parafilm® M and can be stored

at 4�C for at most 1 week.

6. Remove the diluted BD Matrigel™ solution by aspiration before you use the

plates.

C. Transfer the Transduced IMR90 Cells on Matrigel™-Coated Dish

The iPSCs can be generated on Matrigel-coated dishes to avoid the usage of murine

feeder cells.
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1. Lift the cells at day 5 post-transduction with TrypLE™ Express.

2. Count the cells with Countess® Automated Cell Counter.

3. Seed 5 � 104 transduced cells into 1 well of Matrigel™-coated six-well plate.

Keep culture the cells with previous medium for another 24 h.

4. Change medium to hESC medium containing KnockOut™ D-MEM, 20%

KnockOut™ Serum Replacement (KSR), 0.1 mM NEAA, 2 mM L-glutamine,

450 uM monothioglycerol, 50 U/mL penicillin, and 50 mg/mL, supplemental

with 4 ng/mL bFGF.

5. Change fresh hESC medium every day afterward.

D. Lifting the Single Colonies to Establish the Potential iPSC Lines

Single potential iPSC colonies can be obtained through lifting and reseeding iPSCs

physically. The iPSC cell lines can be maintained in mTeSR®1 medium under the

feeder-free condition.

1. Typically, after day 21 transduction, the colonies with hESC morphology can be

observed.

2. Change to fresh medium and locate undifferentiated colonies.

3. Use 200-mL tip, deattach one single colony physically, and transfer it into a

1.5-mL tube.

4. Pipette up and down strongly several times to break the colony into several small

pieces.

5. Reseed the colony pieces onto another new Matrigel™-coated dish.

6. Maintain and split these picked potential iPSCs in mTeSR®1 medium afterward.

Typically, over expression of the miR-302 cluster can increase the

reprogramming efficiency of iPSC generation by at least five times as compared

to traditional 4-factor reprogramming. iPSCs derived with miR-302s have similar

pluripotency to human embryonic stem cells, and form derivatives in vitro and

in vivo of three germ layers.

15.5 Future Perspectives

Taken together, miRNAs are becoming crucial players in stem cell biology, open-

ing up avenues to unravel the cellular and molecular mechanisms underlying self-

renewal and pluripotency of ESCs and iPSCs. While a number of studies have

demonstrated that miRNAs play a significant role in the regulation of ESC

pluripotency, functional characterization of miRNAs in pluripotent cells is still in

its infancy.

Recently, it has been demonstrated that mouse and human cells can be

reprogrammed to iPSCs by direct transfection of cells by mature double-stranded

miRNAs, including the combination of miR-200c, miR-302s, and miR-369s family
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miRNAs (Ambasudhan et al. 2011). This strategy bypasses the usage of vectors for

gene delivery and provides a very promising method for deriving iPSCs. For the

purposes of regenerative therapy, pluripotent cells can be differentiated into various

therapeutic cell types such as neuronal and endothelial cells prior to transplantation

to reduce their capacity for tumorigenicity, although they are not completely devoid

of this potential (Ohm et al. 2010; Ghosh et al. 2011). These examples demonstrate

the significance of miRNA function in the regulation of multiple signaling networks

involved in iPSC generation.

How does miR-302s maintain “stemness” of ESCs and iPSCs? How do different

miRNAs interact with each other directly or indirectly to maintain stem cell

signatures? How do miRNAs regulate stem cell differentiation globally? There

are still plenty of questions to be answered in this field. Further investigation is

needed to uncover the complicated miRNA regulatory networks and cross-

networks which underlie the self-renewal and differentiation of ESCs and iPSCs.

Researchers can employ a number of techniques including in vitro cell culture,

knockout mice, as well as transgenic animal models to address the roles of miRNAs

in pluripotent cells and development. Hopefully in the near future, continued

research into this field will not only provide broad insights into the function of

miRNAs but also identify novel miRNA-based networks that can be used to

improve clinical applications of pluripotent cells.
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Chapter 16

The Role of RNA Interference in Targeting the

Cancer Stem Cell and Clinical Trials for Cancer

Russell C. Langan*, John Mullinax*, Manish Raiji*, and Itzhak Avital

Abstract Recently, compelling evidence has emerged in support of the cancer stem

cell (CSC) theory for solid organ cancers. The CSC theory postulates that CSCs

account for tumor initiation, tumor propagation, therapeutic resistance, and relapse

following surgery or therapy. CSCs are able to do this through traits including (1) self-

renewal, either through symmetric or asymmetric cell division via nonrandom chro-

mosomal cosegregation; (2) the capacity for differentiation, which allows for the

recapitulation of all cell types of the original tumor; and (3) tumor initiating capacity,

which is the ability to propagate tumors when transplanted into a separate environ-

ment. The CSC theory provides better understanding of neoplastic formation and

tumor propagation which may lead to novel exciting therapies for advanced cancer.

Clear identification CSC-specific surface markers, genes (Nanog, Oct3/4, STAT3),

and pathways such as TGF-b, hedgehog, and Wnt-b-catenin are crucial to the devel-
opment of CSC-targeted treatments. RNAi provides a unique opportunity to silence

cancer-causing stem cell genes at the pretranslation level, which is otherwise not

possible with conventional therapies such as cytotoxic chemotherapy, small molecule

inhibitors, or monoclonal antibodies. Owing to the explosion of knowledge generated

by a growing understanding of the human genome and the development of high-

throughput gene expression profiling of tissue stem cells, a plethora of genes that

contribute to tumor initiation and the metastatic cascade are being discovered. RNAi

therapy against multidrug resistance genes and CSC genes may provide exceptional

benefit and herald a paradigm shift in the treatment of deadly diseases.
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16.1 Introduction to the Cancer Stem Cell

16.1.1 The Cancer Stem Cell Theory

Current nonsurgical therapy for patients with locally advanced or metastatic disease

continues to fall short of providing durable survival benefit. In the United States, a

total of 1.6 million new cases of primary cancers and 572,000 deaths are projected

to occur in 2011 (Siegel et al. 2011). Factors contributing to this abysmal prognosis

include delayed diagnosis, resistance to conventional therapies, and the lack of

understanding of neoplastic formation and tumor propagation. Furthermore, many

drugs considered to have efficacy against cancer were discovered decades ago and

without a clear understanding of the mechanism of action (Haney 2007). Though

the molecular changes involved in malignant transformation are better understood

today, systemic therapy continues to fall short of providing long-term survival for

patients with advanced disease.

Recently, compelling evidence has emerged in support of the cancer stem cell

(CSC) theory for many solid organ cancers. Traditionally, the vast majority of all

cancer drugs were crude cytotoxic agents that discriminated poorly between cancer

cells and normal cells in a given tissue. These agents provided minimal benefit

because they preferentially affect the actively proliferating cells of a tumor mass

and in many instances recurrence and/or progression occurred via the minority of

tumor cells that were left unscathed. It is this particular cell population which has

been proposed as the CSC population.

The CSC theory was first developed after noting similarities between embryonic

tissue and cancer with respect to their enormous capacity for proliferation and

differentiation. This observation led to the “Embryonal Rest” hypothesis which

postulated that the stem cells in adult tissue acquire mutations leading to cancer

(Pal et al. 2010). This hypothesis holds that because many mutations are necessary

for a cell to become tumorigenic, it is unlikely that well-differentiated cells within a

given organ live long enough to form cancer. Due to their long life span, however,

tissue stem cells are able to accumulate the number of mutations required for

carcinogenesis (Pal et al. 2010). Validation of this hypothesis was first established

in acute myelogenous leukemia (AML) (Lapidot et al. 1994), and Bonnet et al.

found that AML is clonally derived, hierarchically organized, and can be serially

passaged in murine models (Bonnet and Dick 1997).

The CSC theory postulates that CSCs account for tumor initiation, tumor

propagation, therapeutic resistance, and relapse following surgery or therapy.

CSCs are able to do this through traits including (1) self-renewal, either through

symmetric or asymmetric cell division via nonrandom chromosomal cosegregation;

(2) the capacity for differentiation, which allows for the recapitulation of all cell

types of the original tumor; and (3) tumor initiating capacity, which is the ability to

propagate tumors when transplanted into a separate environment. Furthermore,

traits of motility, invasiveness, and self-renewal are central to cancer and are

reflections of the malignant stem cell subpopulations located within solid organ
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cancers. Identification and proper characterization is imperative to understand the

biology of the CSCs. The CSC theory provides better understanding of neoplastic

formation and tumor propagation which may lead to novel exciting therapies for

advanced cancer.

16.1.2 Potential Role of Cancer Therapeutics Targeting
the Cancer Stem Cell

RNA interference (RNAi) harnesses the capability to target intricate CSC or

pluripotency pathways associated with tumor initiation and propagation and the

metastatic cascade. The ability of RNAi to suppress the translation of any gene

expands the universe of drug targets to the entire genome. It will be possible to

inhibit expression of not only tyrosine kinase receptors but also any anti-apoptotic

gene, survival factor, and tumor-promoting growth factor, the key participants in

their signaling pathways or genes essential for cell proliferation. Currently,

improved in vitro culture methods to maintain CSC activity from primary tumor

samples open the arena of high-throughput screening of RNAi libraries. These

studies can therefore provide novel agents to target this critical cell population

via RNAi.

RNAi targeting a CSC provides intelligently designed anticancer therapies to

silence cancer-causing genes which would otherwise not be amenable to conven-

tional therapies such as cytotoxic chemotherapy, small molecule inhibitors, or

monoclonal antibodies. This chapter will focus on the role of RNAi in targeting

the CSC and CSC pluripotency pathways and discuss current clinical trials

implementing RNAi targeting these cells. Specifically, we will describe the use

of RNAi screens in stem cells and discuss RNAi approaches to target CSC function,

multidrug resistance genes, and pluripotency pathways. By analyzing the gene

expression of CSCs, a novel RNAi therapy will be developed to target the popula-

tion of cells that is responsible for recurrence and metastasis.

16.2 Targeting the Cancer Stem Cell: RNAi Techniques

16.2.1 RNAi Screening in Human Stem Cells and Cancer
Stem Cells

Prior to understanding the role RNAi plays in targeting the CSC, we must first

review its role in normal human stem cells. Stem cells discern themselves from

other cells by two paramount characteristics, self-renewal and differentiation

(Chap. 17, this volume). Embryonic stem cells (ESCs) are pluripotent stem cells

derived from the inner cell mass of a blastocyst. ESCs are therefore attractive cells
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to study molecular regulation of cell lineage commitment and differentiation since

they can give rise to all three germ layers: endoderm, mesoderm, and ectoderm

(Zou 2010). The ESC provides a possible strategy for high-throughput functional

screening of genes that are required for cell lineage differentiation of ESC (Zou

2010) (Fig. 16.1). RNAi screening expands knowledge of stem cell function for

potential drug discovery since it systematically eliminates gene function (Haney

2007).

Recent advances have allowed for superb growth of stem cell RNAi libraries.

Screening and the creation of such libraries is a promising weapon to explore

regulatory mechanisms and may allow for identification and validation of proper

genetic targets (Karlsson et al. 2010). These advances in high-throughput

technologies which measure changes of gene expression at the mRNA level have

enabled extensive global transcriptome profiling of stem cells including ESC and

HSC along with their differentiated progenies (Birney et al. 2007). Currently,

technological platforms such as subtractive cDNA library analysis, expressed

sequence tags (ESTs) sequencing, serial analysis of gene expression (SAGE),

DNA microarrays, and massive parallel signature sequencing (MPSS) tran-

scriptomic efforts are being initiated to identify specific human stem cell genes

(Birney et al. 2007).

Early studies have shown that RNAi is an effective strategy to regulate gene

expression for a plethora of human stem cell types including the ESC. Work of

Yang et al. showed that long dsRNA represses the target gene expression in

undifferentiated ESC population by mRNA degradation (Yang et al. 2001). They

conclude that this serves as an important model to study ESC differentiation. In

another study, Zou et al. transfected differentiated ESC with small interfering

RNA (siRNA) and found diminished expression of PU.1 and c-EBPa genes (Zou

2010). Similarly, knockdown of Shp-2 expression in differentiated ESC resulted

in reduction of hemangioblast development (Zou 2010).

In an evaluation of pluripotency, Velkey et al. used a knockdown model involv-

ing Oct-4, a gene associated with ESC pluripotency (Fig. 16.1). They transfected

ESC with plasmids containing an independently expressed reporter gene and an

RNA polymerase type III promoter to constitutively express small stem-loop RNA

transcripts corresponding to Oct-4 mRNA. Cells transfected with Oct-4 shRNA

demonstrated reduced levels of Oct-4 mRNA and exhibited characteristics of

trophectodermal differentiation (Velkey and O’Shea 2003; Zou 2010) Furthermore,

Oct-4 has been knocked down via siRNA in both murine and human models

(Velkey and O’Shea 2003; Zou et al. 2010).

It has also been shown that siRNA has the ability to knock down gene expression

in HSCs. Scherr et al. showed that HSCs are sensitive to genetic interference by

transfecting human CD34+ HSC and CD34+ chronic myeloid leukemia (CML)

cells with siRNA targeting bcr-abl (Zou 2010). Results showed an 87% reduction of

bcr-abl genetic expression which essentially demonstrates that siRNA can specifi-

cally and efficiently interfere with the expression of an oncogenic fusion gene in

HSC (Scherr et al. 2003; Zou 2010). In a similar model, researchers evaluated the

Abelson helper integration site (ahi-1), an oncogene that is dysregulated in CML

390 R.C. Langan et al.



stem cells which have elevated levels of bcr-abl transcripts (Zou 2010).

Overexpression of ahi-1 in HSC confers growth advantages in vitro and causes

leukemia in vivo. It was found that RNAi therapy against ahi-1 in human cord

blood bcr-abl-transduced lin (�), CD34 (+) cells, and CML stem cells reduced their

growth autonomy in vitro (Zou 2010). This experiment therefore alludes to ahi-1 as
a potential therapeutic target in CML.

In order to ascertain a stem cell gene signature, Sperger et al. compared mRNA

expression patterns via cDNA microarrays in five human ESC lines to a panel of 69

other different human cell lines (Sperger et al. 2003). Results showed that the genes

Fig. 16.1 Embryonic stem cell pluripotency pathways. Key: TGF-b, transforming growth factor-

b; SOX2, sex determining region Y-box 2; TRK, tropomyosin-receptor-kinase; GSK-3b, glycogen
synthase kinase 3 beta; FGFR, fibroblast growth factor receptors; ALK, anaplastic lymphoma

kinase. BMPR, bone morphogenetic protein receptor
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highly expressed in the ESCs were previously proven ESC-associated genes –

transcription factors Oct3/4, FoxD3, and Sox2 and a DNA methyltransferase

DNMT3B (Sperger et al. 2003). In addition, genes involved in the Wnt-b-catenin
signaling pathway, such as FZD7, FZD8, and Tcf3, were also highly expressed.

This data is consistent with previous mouse genetics data showing that different

dosage of b-catenin could modulate ESC differentiation (Sperger et al. 2003;

Birney et al. 2007). Validation of this data came with the results of Bhattacharya

et al. who used DNA microarrays to identify 92 genes that were enriched in six

different human ESC lines (Bhattacharya et al. 2004; Birney et al. 2007). Results

showed upregulation of these known ESCmarkers such as Oct3/4, Nanog, GTCM-1,

Connexin 43/GJA1, TDGF1, and Galanin (Bhattacharya et al. 2004; Birney et al.

2007). A cross-comparison of the gene lists generated by these experiments showed

that Oct3/4, Nanog, Sox2, Rex1, DNMT3B, Lin28, TDGF1, and GDF3 are com-

monly expressed in all human ESCs (Birney et al. 2007) (Fig. 16.1).

HSCs can fully reconstitute all blood cell elements because in addition to their

ability to self-renew, they give rise to both lymphoid and myeloid lineages. This

occurs through progressive restriction of lineage potential, and HSCs subsequently

acquire the characteristics of mature, fully differentiated cells. Several groups have

used high-throughput sequencing strategies to uncover the transcripts that specify

HSCs (Birney et al. 2007). These approaches require construction of cDNA

libraries from murine HSCs followed by the subtraction of mature housekeeping

genes prior to sequencing and analysis (Birney et al. 2007). A cross-comparison

among these efforts demonstrates that the evolutionarily conserved and develop-

mental regulatory pathways prominent in HSCs include the genes from the Wnt

pathway (Lef1, Tcf4, Dsh), the TGF-b pathway (BMP4, activin C, serine and

therine kinases NIK and Ski), the hedgehog pathway (SMO), the Notch pathway

(Notch1 and manic fringe), the homeobox regulatory cascade (Hoxa9, Meis-1,

TGIF, and Enx-1), and Bmi-1 (Birney et al. 2007).

Mounting evidence indicates that some of these intracellular pathways are

involved in the regulation of stem cell self-renewal or maintenance. For instance,

activation of Wnt pathway by expressing b-catenin in HSCs results in growth

factor–independent growth and enhanced self-renewal properties (Birney et al.

2007). Expression of b-catenin in the granulocyte-monocyte progenitor (GMP)

confers enhanced self-renewal activity and leukemic potential of these cells in

chronic myelogenous leukemia (CML) patients (Birney et al. 2007). Bmi-1, a

suppressor of the Ink4 locus (encoding p16 and p19 cell growth inhibitors), is

essential for the determination of the proliferation potential of HSCs. BMP signal-

ing controls the number of HSCs by regulating the size of HSC niche which is the

proposed hematopoietic microenvironment in bone marrow supporting HSC self-

renewal via the BMP receptor BMPRIA (Birney et al. 2007).

Recently, a shared collection of several hundred genes has been identified in

different populations of stem cells (Zou 2010). Further elucidation is required to

determine whether these genes are specifically required for the maintenance of stem

cell function. RNAi may not only provide an approach to knock down these genes

but also expand our understanding of the molecular regulation of function in CSCs
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(Zou 2010). Further investigations are required to improve the sensitivity of current

genomic and proteomic technologies (Birney et al. 2007) through rigorous func-

tional analysis of selected candidate genes using in vivo and in vitro assays. The

development and implementation of better computational algorithms are required

(Birney et al. 2007). This will allow for an integrated systems level analysis and

modeling of the collective data from the combined genomic, transcriptomic,

and proteomic efforts (Birney et al. 2007).

16.2.2 Cancer Stem Cell Pathways Amenable to RNAi Therapy

Systemic chemotherapy for cancer can mediate a response in terms of disease

burden and, in some cases, lead to complete regression of disease. Sometimes,

the response conveyed by conventional cytotoxic chemotherapy is not durable and

patients have local recurrence or develop distant metastasis. The CSC theory

hypothesizes that a small group of cells – the putative CSC population – is

responsible for relapse or progression of the disease at a distant site. These CSCs

are theorized to harbor specific mutations leading to altered cellular pathways that

enable them to escape the cytotoxicity of conventional chemotherapy. Like bone

marrow–derived stem cells following myeloablation, CSCs are able to regenerate

following current chemotherapy regimens. To translate the basic science behind

CSC research into the clinic, these pathways unique to CSC must be exploited, and

RNAi offers a unique opportunity.

Human cancers are classified by the embryonic tissue from which they are

derived. Nearly 90% of neoplasms are of epithelial origin, approximately 5% are

of mesenchymal origin, and approximately 5% are liquid cancers derived from

components in the peripheral blood (Harless 2011). Each of these malignancies is

treated differently in the clinical setting, but similarities exist at the cellular level in

terms of altered or overactive pathways that are amenable to RNAi therapy. These

similarities allow for broad application of therapies targeting aberrant pathways

even though differences exist in the clinical applications in terms of delivery and

timing of therapy (i.e., during or after a surgical resection).

Cellular pathways preferentially altered in CSC offer targets for RNAi therapy

(Marquardt et al. 2011; Zou 2010; McDermott andWicha 2010) (Table 16.1). Many

of these pathways regulate gene expression through downstream transcription

Table 16.1 CSC-associated pathways amenable to RNAi therapy

Pathway Key components amenable to RNAi therapy

Hedgehog SMO, GLi transcription factors

Notch Notch receptor subtypes 1–4

Wnt Lef1, Tcf4, Dsh, JNK

TGF-b MEK, ERK, SMAD4

IL-6 STAT3, mTOR
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factors in tissue progenitor cells, making them fundamental to embryogenesis,

organogenesis, and tissue homeostasis (Merchant and Matsui 2010). They are

generally well conserved among species, allowing for basic research along a wide

spectrum of experimental animal models. There is great potential to abrogate

recurrence and metastasis after initial local therapy by preferentially targeting

these CSC-associated pathways.

A thorough understanding of the pathways responsible for the unique properties

of CSC is paramount to planning therapy based on RNAi. The CSC theory holds

that migration and self-renewal are central to the function of the CSC and the

pathways associated with these two characteristics are most intriguing from a

therapeutic perspective. This section will explore the pathways associated with

the fundamental CSC function in more depth in an effort to characterize how RNAi

therapy might be directed.

16.2.2.1 The Hedgehog Pathway

The number of genes required to be activated or suppressed in the process of

organogenesis requires a hierarchical control of gene expression. Individual intra-

cellular pathways leading to the activation or suppression of a single gene would no

doubt overwhelm a cell in terms of energy expenditure. The hierarchical model of

gene expression allows a single signal to effect a significant change within a cell.

The hedgehog (Hh) pathway is an important example of a highly conserved

pathway that ends with the transcriptional regulation of large sets of genes.

The Hh pathway occurs in tissues of both mesenchymal and epithelial origin

(McDermott and Wicha 2010; Peacock et al. 2007). Initiation occurs when one of

the three ligands – sonic hedgehog (SHh), desert hedgehog (DHh), and Indian

hedgehog (IHh) – binds at the cell surface with patched (Ptch), a cell surface

receptor (Fig. 16.2). Ligand binding displaces Ptch from the cilia, allowing smooth-

ened (Smo) to move in into place, thereby activating any of three GLi transcription

factors. Once activated, these factors move into the nucleus of the cell and effect

downstream expression of target genes (Pal et al. 2010). Each of the three forms of

the GLi transcription factors – GLi1, GLi2, and GLi3 – acts differently at the level

of gene expression, with GLi1 being responsible for activation of gene expression,

GLi2 suppressing gene expression, and GLi3 alternating between the two

depending on posttranslational modification (Merchant and Matsui 2010).

At each level, there is an opportunity for interference in the pathway, and there

are currently several phase I trials of small molecule inhibitors against Smo (Pal

et al. 2010). Specifically delivering therapy only to malignant cells is a hallmark of

optimal cancer therapy. As the Hh pathway is required for physiologic tissue

homeostasis, inhibition must be preferential in the malignant cells of a given

tissue and not the normal tissue to avoid potentially catastrophic adverse events.

Since CSCs are known to have vastly increased levels of Hh expression (Li et al.

2007), therapy against the Hh pathway should preferentially treat CSCs.
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Using RNAi therapy, the gene for downstream target such as a cell surface

receptor may be suppressed. In the case of the Hh pathway, suppressing the Ptch

receptor would potentially not be as beneficial since there is some evidence that a

mutated KRAS can have constitutively active GLi1 transcription factor (Ji et al.

2007). It is more likely RNAi toward the transcription factors GLi1 or GLi2 would

allow for more therapeutic potential with greater specificity as these factors have

opposite functions. In vitro models have shown to increase apoptosis in cells

transfected with siRNA against GLi1 and GLi2 and eliminate metastatic potential

when transfected with shRNA against Smo (Merchant and Matsui 2010).

The goal of RNAi therapy against the Hh pathway is not necessarily cell death.

When used to preferentially treat CSCs, the greatest benefit of this therapy may be

in eliminating the ability to self-renew, thereby enhancing the ability of cytotoxic

Fig. 16.2 The hedgehog signaling pathway. Key: Hh, Hedgehog; Ptc, Patch transmembrane

receptor; Smo, Smoothened transmembrane receptor
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agents to eradicate tumor. By combining RNAi therapy with more conventional

therapies, the opportunities are much greater in terms of specific therapeutic goals.

As CSCs are hypothesized to be responsible for the recurrence of previously

eradicated disease, eliminating this phenotype from the malignant lesion may be

just as important as complete regression alone.

16.2.2.2 The Notch Signaling Pathway

The Notch signaling pathway is responsible for self-renewal and differentiation and

has been studied most extensively in mammary stem cells (McDermott and Wicha

2010; Pal et al. 2010). There are four Notch receptors (Notch 1–4) with four ligands

(Jagged1, Jagged 2, Delta, and Delta-like). Ligand binding initiates proteolysis of

the transmembrane Notch receptor by g-secretase. Having been cleaved, the intra-

cellular domain of the Notch cell surface receptor translocates to the nucleus where

it combines with two other factors to induce expression of target genes such as

cyclin D1 and c-Myc.

The Notch pathway is important in the differentiation of the precursor mammary

cell. It has been shown to determine the polarity of breast epithelium in mouse

mammary cell lines (Bouras et al. 2008). By demonstrating the Notch pathway to be

most active in the luminal cells of the breast tissue, its role in cell polarity and

differentiation is clearer. The Notch1 plays a greater role than the other subtype,

and it appears to be a repressor of stem cell proliferation in the mouse model by

permitting differentiation.

Studies in human breast cancer cell lines have further clarified the role of the

Notch pathway in the differentiation of breast stem cells. One recent report shows a

differential expression of the Notch receptor subtype in breast CSCs (Harrison et al.

2010). In contrast to the previous report in the mouse model, the authors show that

inhibition of Notch1 and Notch4 led to a decrease in proliferation of the CSC.

Interestingly, the Notch4 receptor is more highly expressed in breast CSC as

compared to bulk breast tumor cells. Therefore, it reasons that a therapy targeting

the Notch4 subtype specifically could eliminate the off-target effects of therapy to

the normal breast stem cells.

Current therapies developed against the Notch pathway are largely centered on

the inhibition of the g-secretase enzyme. As this enzyme is responsible for cleaving

the receptor into the active Notch intracellular domain (NICD), it has been

postulated that a g-secretase inhibitor (GSI) would have substantial antitumor

activity against those lesions with increased expression of the Notch pathway.

While a highly sophisticated and targeted therapy, the small molecule inhibitors

currently being studied do nothing to protect the physiologic Notch expression in

tissue stem cells throughout the body. Based on the data reported in breast CSC, a

therapy targeting Notch4 could potentially achieve this goal. RNAi therapy is

ideally suited for this as the sequence difference between the Notch receptor

subtypes could be exploited in the form of either siRNA or shRNA. Targeted
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inhibition of the Notch4 subtype may well achieve preferential suppression of CSCs

without harming tissue stem cells of the same organ.

16.2.2.3 The Wnt Signaling Pathway

Another fundamental pathway involved in organogenesis and normal tissue

renewal is the Wnt signaling pathway. In the b-catenin-dependent pathway, a

Wnt ligand binds to the Frizzled transmembrane receptor. This interaction leads

to the stabilization of b-catenin and its dissociation from the GSK-3b protein. The

free b-catenin thus translocates to the nucleus where it serves as a transcription

factor for downstream genes such as cyclin D1 and c-Myc (Smalley and Dale 1999;

Pal et al. 2010; de Sousa et al. 2011).

Increased activity of this Wnt-b-catenin pathway has been implicated in several

malignancies, most notably colon cancer (de Sousa et al. 2011; Zeki et al. 2011).

One of the components of the complex that binds b-catenin in the cytoplasm is the

adenomatous polyposis coli (APC) protein. Germline mutations in the APC gene

are well documented and lead to the hereditary syndrome of familial adenomatous

polyposis (FAP), a condition which confers a near 100% risk of colon cancer by the

age of 50. Acquired mutations in the same gene are implicated early in the

progression from adenoma to carcinoma in the well-described sequence

(Vogelstein et al. 1988). The APC gene is described as a tumor suppressor gene

because mutations allowWnt-independent translocation of b-catenin with therefore
uncontrolled transcription of downstream genes.

The mortality associated with cancer is generally due to recurrence, and the

morbidity many times is secondary to metastasis (i.e., liver failure from replace-

ment with metastatic deposits). Metastasis has been historically thought to follow a

“seed and soil” method whereby a single tumor cell breaks off from the primary

lesion and implants at a distant site. While there is certainly an element of truth in

terms of the physical translocation of cells, it is not likely that all cells in a given

tumor mass have the ability to recapitulate the primary lesion in a distant organ.

Only cells capable of the recently described phenomenon of epithelial to mesen-

chymal transition (EMT) are likely capable of tumorigenesis in distant organs.

Mutations in the Wnt-b-catenin pathway are closely associated with the ability to

undergo EMT (Li and Zhou 2011), and suppression of b-catenin nuclear transloca-

tion is fundamental to stemming the overexpression of Wnt-associated genes. Since

CSCs have been shown to have increased expression of genes in the Wnt-b-catenin
pathway, targeting cells with increased free intracytoplasmic b-catenin could

mitigate metastases.

In order to evaluate the hypotheses associated with the CSC theory, the ability to

identify the CSCs is of utmost importance. There have been a variety of methods

employed such as labeling DNA with fluorescent nucleotides (Hari et al. 2011), but

the most commonly employed method involves cell surface markers (Li et al. 2007;

Lapidot et al. 1994; Al-Hajj et al. 2003; Hermann et al. 2007). There are a variety of

putative cell surface markers reported to be specific to CSC, and one specific
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marker, leucine-rich repeat-containing G-protein-coupled receptor 5 (Lgr5), is

associated with the Wnt-b-catenin pathway. As a Wnt target gene, Lgr5 is exclu-

sively expressed on the columnar cells of the intestinal crypt (Barker et al. 2007).

The receptor is an intriguing marker for stem cells, specifically CSCs, as it denotes

activation of the Wnt signaling pathway.

The ability to convert a CSC to a more well-differentiated cell through expres-

sion-level knockdown of a CSC-associated gene is something offered only by

RNAi therapy. As described above, the Wnt signaling pathway offers several

sites of interest for development of such a therapy. For example, the use of

siRNA against the Lgr5 receptor might convert an otherwise self-renewing tumor

cell into one more sensitive to cytotoxic therapy or even destined for apoptosis. The

ability to finely regulate these intracellular, even intranuclear, processes makes

RNAi therapy exciting as a CSC-specific treatment.

16.2.3 Delivery of RNAi

There are significant hurdles that exist in the field of RNAi targeting the CSC. The

first includes the difficulty of delivering RNA to its point of action within the target

cellular cytoplasm while avoiding off-target gene silencing effects (see Chap. 19,

this volume). Secondly, progress on isolating the CSC and determining specific

CSC gene signatures is underway, but the precise gene targets for RNAi are not yet

clear.

The placement of interfering RNA oligonucleotides into the cytoplasm of target

cells is hampered by an innate immune response to dsRNA via the IFN pathway

(Sen 2001). Innate immune cells are capable of recognizing pathogen-associated

molecular patterns (PAMPs), which are generally not present in host tissues

(Janeway and Medzhitov 2002). The discovery that long dsRNA is processed into

short-nucleotide sequences that do not trigger an IFN response provided the basis of

RNAi as an in vivo therapeutic strategy (Elbashir et al. 2001). Another issue arising

in the delivery of RNAi involves off-target gene silencing effects (Jackson et al.

2003). Since targeting a CSC is truly novel, off-target effects and toxicity profiles at

this point are largely unknown. Current work on chemical modification of synthetic

siRNA, including 20-uridine modification (Cekaite et al. 2007) and 20-O-methyl

substitutions (Jackson et al. 2006), holds promising results for minimizing these

off-target effects of RNAi.

In order to translate in vitro studies of CSC RNAi to in vivo therapeutics, the

biological barriers to the systemic administration of nucleic acids must be over-

come. First-pass metabolism and renal excretion occurs rapidly, with up to 30% of

delivered nucleic acid accumulating in the kidneys and a substantial portion

accumulating within hepatocytes (Higuchi et al. 2010). Investigation of chemical

modifications to protect oligonucleotides from the effects of 30-endonuclease, the
primary enzyme responsible for in vivo nucleic acid degradation (Kennedy et al.

2004), has shown promise in extending the bioavailability of naked RNAi
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oligonucleotides. The relatively small proportion of nucleic acid that remains intact

after first-pass metabolism and serum degradation then must cross the cellular

membrane to reach its site of action in the cellular cytoplasm. The negatively

charged nucleic acid is repelled by the negatively charged outer layer of the cellular

phospholipid bilayer, while the hydrophobic inner membrane repels the hydrophilic

RNA. Liposomal RNA encapsulation may solve this problem, and local adminis-

tration of RNAi may prove to be invaluable for a variety of benign and malignant

skin and ocular diseases (Geusens et al. 2009). Unfortunately, this does not address

the lack of anatomical access to the vast majority of tumors and, thus, fails to fully

address the biological barriers to systemic administration of naked RNA

oligonucleotides. That being said, we will discuss a trial of a locally administered

siRNA targeting a CSC-associated pathway later in this chapter.

Recently, advances in nanotechnology hold promise as a stable delivery system

for nucleic acids. The use of polymer-based nanoparticles has emerged as a leading

area of research into direct drug delivery systems (Duncan 2003). Traditional

cationic polymers, including poly-ethylenimines, interact with negative charges

on siRNA to provide excellent packaging of the nucleic acid core. However,

these cationic polymers have significant in vivo toxicities. Attempts at using

polyethylene glycol (PEG) as a shield provide a possible method of packaging

siRNA while protecting the host from cationic polymer toxicity (Malek et al. 2008).

Targeting of RNAi molecules provides a promising method of increasing the

proportion of RNAi nucleic acids that reach their therapeutic targets after systemic

administration. This can be accomplished either by directly tagging siRNA with

molecules that are able to target cell surface molecules or encapsulating siRNA into

nanoparticles with targeting molecules bound to its surface (Jeong et al. 2009).

These molecules can include ligands to cell surface receptors (Ikeda and Taira

2006), aptamers specific for cell surface proteins (Chu et al. 2006), and targeted

antibodies (Toloue and Ford 2011). Research into RNAi therapeutics for solid

tumors using targeted delivery systems is currently underway, with a trial involving

anti-RRM2 siRNA targeted via a nanoparticle targeted toward human transferring

protein (TF), which is known to be upregulated on the surface of solid tumor cells

(Davis et al. 2010). The use of targeted RNAi against CSC holds promise for a

major advancement in oncologic medicine.

16.2.4 Advances in Cancer Stem Cell Laboratory Practices

The stochastic model of tumorigenesis suggests that the population of cells most

susceptible to modern therapeutics is the terminally differentiated population of

cells within a tumor (Sell 2004). However, the CSC theory holds that a subpopula-

tion of CSCs accumulate the necessary mutations to become tumorigenic while

retaining the stem-like nature that allows them to repopulate the tumor cellular

burden. The presence of CSCs in hematologic malignancy has been well

established (Dick 1996; Lapidot et al. 1994), and the use of RNAi against these
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stem cells is actively being researched (Zuber et al. 2011). Currently, improved

in vitro culture methods to maintain CSC activity from primary tumor samples open

the arena of high-throughput screening of siRNA libraries. These studies can

therefore provide novel agents to target this critical cell population.

In order to properly target a CSC, one must first identify and characterize the

CSC. Much of the current research into CSCs has focused on cell surface markers as

a method of identifying cells capable of initiating tumors in immunodeficient mice

(Al-Hajj and Clarke 2004). The identification of cell surface patterns unique to a

stem population has been found in leukemia (Lapidot et al. 1994), breast (Al-Hajj

et al. 2003), prostate (Collins et al. 2005), and a variety of other tumors. A more

functional approach of CSC isolation involves isolating the side population (SP) of

tumor cells that demonstrate low uptake of Hoescht dye 33342. This is based on

studies showing that these SP cells are consistent with ESCs (Goodell et al. 1997).

However, it is clear that the SP is a heterogenous group of cells and that only a small

subset of SP cells are consistent with stem cells (Pearce et al. 2004).

Stem cells in tissues from epithelial origins have a subpopulation of cells that

retain genetic material through a process of asymmetric cell division (Bickenbach

and Mackenzie 1984). These so-called label-retaining cells have been investigated

in several solid tumors and have been shown to have increased tumor-initiating

capacity in melanoma (Roesch et al. 2010) and breast cancer (Pece et al. 2010). A

technique to isolate live label-retaining cells has been developed which allows for

further experimentation after identification, not just prior as in most other studies

(Hari et al. 2011). As advancements continue to be made in CSC laboratory

practices, we will see further RNAi options to target the CSC.

16.3 Current Clinical Trials of RNAi Therapy

16.3.1 A Clinical Trial of siRNA Targeting PLK1

RNAi offers new hope in the treatment of many deadly neoplastic diseases. Due to

current advances in CSC laboratory practices and advances in gene libraries, novel

therapies have been developed utilizing RNAi. Our group is beginning a clinical

trial involving the intra-arterial administration of lipid nanoparticles containing

siRNA targeting the PLK1 gene. Eligible patients include those with primary liver

cancer or patients with hepatic metastases from other malignancies. Historic

controls have shown that patients with unresectable metastatic liver disease hold

a 5-year survival less than 5%. For selected histologies, the 5-year survival for

resectable hepatic metastases ranges from 20% to 60%, suggesting that control of

liver metastases could result in prolonged survival (Kemeny 2010). Although phase

I trials of hepatic arterial infusion therapy have shown it to be a safe delivery

mechanism, agents used to date have limited efficacy (Callahan and Kemeny 2010).

Our strategy differs in that we are targeting a gene associated with the CSC.
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The polo-like kinase (PLK) family is characterized by serine/threonine kinase

activity and is fundamental to progression through the cell. The four mammalian

PLK family members (PLK1, 2, 3, and 4) are characterized by their unique

phosphopeptide-binding polo-box domains and have been shown to play nonredun-

dant roles in cell cycle regulation (Barr et al. 2004). In mammalian cells, PLK1 acts

to phosphorylate a diverse array of cell cycle proteins and is known to be critical for

mitotic progression and cytokinesis. PLK1 expression is temporally controlled in

proliferating cells, becoming upregulated as a cell approaches and enters mitosis.

PLK1 is overexpressed in many human tumor types, and its overexpression is a

negative prognostic indicator of patient outcome in a variety of cancers (Strebhardt

and Ullrich 2006). Inhibition of PLK1 activity in proliferating cancer cells rapidly

induces mitotic arrest and apoptosis (Steegmaier et al. 2007). Partial inhibition of

PLK1 can also sensitize cancer cells to the cytotoxic effects of conventional

chemotherapeutics, likely due to the functional role of PLK1 in the DNA damage

and spindle assembly checkpoints (Spankuch et al. 2007). More recently, it has

been found that cancer cells harboring mutations in the KRAS oncogene or the gene
encoding the p53 tumor suppressor protein have increased dependency on PLK1 to

support their dysregulated growth and survival (Luo and Zhou 2009).

All of these features combine to make PLK1 a promising therapeutic target in

oncology (Strebhardt and Ullrich 2006). Recent evidence also suggests that PLK1

may have implications in CSC pathways (Grinshtein et al. 2011). Grinshtein et al.

demonstrated the role of PLK1 in the CSC using a neuroblastoma model

(Grinshtein et al. 2011). Andrisani et al. showed that hepatic CSCs have a gene

signature which includes genes shown to be involved in cell proliferation

(Andrisani et al. 2011). Interestingly, patients with tumors expressing that gene

signature tended to have a poor prognosis. This data suggests a mechanistic link

between these two gene clusters involving the proliferation cluster gene PLK1

(Andrisani et al. 2011).

16.3.1.1 Rationale for an RNAi Approach to PLK1

A number of small molecule PLK1 inhibitors are currently in development, but

siRNA therapy has several advantages over these novel drugs. Because it acts at the

level of gene expression, RNAi is highly specific and allows for the more selective

inhibition of closely related proteins compared to the relative promiscuity of kinase

inhibitors. Current PLK1 inhibitors, for example, also inhibit PLK2 and PLK3

kinase activity (Steegmaier et al. 2007). The cellular effect of PLK1 depletion by

RNAi also differs from its functional inhibition by small molecules, likely due to

the loss of both kinase and polo-box functionality (McInnes et al. 2006). The

duration of drug effect with siRNA is another attractive advantage. Once RNAi is

established within mammalian cells, gene silencing can persist for many days due

to the relative stability of activated RNA-induced silencing complex (RISC) in the

presence of its complementary mRNA. Therefore, the maintenance of drug activity
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in the tissues can be uncoupled from the requirement to maintain an effective drug

concentration in the blood.

There are several obstacles to the delivery of siRNA therapy which include

evasion of the immune response, penetration of tumor tissue, and intracellular

deposit of nucleic acid. To evade the immune response, the siPLK-1 siRNA in

TKM-080301 contains 20-O-methyl (20-OMe)-modified ribonucleotide bases at

selected positions in both the antisense and sense strands. These modifications are

intended to reduce or eliminate the potential for nonspecific pharmacologic effects

related to activation of the innate immune response, which can occur when using

native, unmodified DNA and RNA (Judge et al. 2006; Judge et al. 2009). The

delivery of siRNA into the cytoplasm of target cells is an absolute requirement for

drug activity and is a key technological hurdle to developing siRNA therapies (de

Fougerolles 2008). Nonformulated siRNAs are very sensitive to nuclease degrada-

tion and are also rapidly eliminated, thereby limiting distribution to the intended

target tissue(s). TKM-080301 was designed for intravenous delivery of siRNA to

solid tumors and has been prepared in the form of stable nucleic acid lipid particles

(SNALP). These lipid nanoparticles have a diameter of approximately 75–90 nm.

To ensure penetration of the tumor tissue, SNALP delivery takes advantage of

the “enhanced permeation and retention” effect. This effect, also referred to as

passive disease site targeting, involves charge-neutral carriers of suitable size

(�100 nm diameter) that pass through the fenestrated walls (gaps less than

400 nm) of the neovascular blood vessels typically found within tumors (Seymour

1992; Yuan et al. 1995). To ensure intracellular deposit of nucleic acid, the lipid

components of TKM-080301 protect the siRNA from degradation by plasma and

tissue nucleases, prevent rapid clearance of the siRNA in the kidneys, and enable

effective intracellular uptake into cancer cells (Judge et al. 2009). Once in the tumor

tissue, intact lipid particles are believed to enter cells via endocytosis, followed by

fusion with the endosomal membrane and release of siRNA into the cytoplasm,

wherein it can interact with the RISC to facilitate RNAi.

16.3.1.2 Pharmacology of TKM-080301

The oligonucleotide sequence of siPLK-1, the active drug substance loaded into the

SNALP, has been selected from a panel of approximately 50 siRNA duplexes

designed to target human PLK1. Selection was based on a series of in vitro activity

screens in human cancer cell lines, the results of which consistently showed that

siPLK-1 has the greatest potency in silencing human PLK1 expression and

inhibiting cancer cell growth. TKM-080301, the formulated drug product that

includes the siPLK-1 molecule, does not induce activation of the innate immune

response in vitro using mouse dendritic cells (DC) or human peripheral blood

mononuclear cells (PBMC). Also, in murine models, this compound elicited no

immune response by the animal. However, mild increases in IL-6 and MCP-1 have

been observed in monkeys, as well as IL-6, TNF-a, IL-1b, and IL-8 in human whole

blood culture assays. Importantly, these cytokine inductions by TKM-080301 can
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be abrogated in human whole blood culture assays when the cells are preexposed to

clinically relevant concentrations of dexamethasone.

16.3.2 Future Multidisciplinary Use of RNAi in Cancer
Stem Cell Therapeutics

Clear identification CSC-specific surface markers, genes (Nanog, Oct3/4, STAT3),

and pathways such as TGF-b, hedgehog, and Wnt-b-catenin are crucial to the

development of CSC-targeted treatments. RNAi provides a unique opportunity to

silence cancer-causing stem cell genes at the pretranslation level, which is other-

wise not possible with conventional therapies such as cytotoxic chemotherapy,

small molecule inhibitors, or monoclonal antibodies. Owing to the explosion of

knowledge generated by a growing understanding of the human genome and the

development of high-throughput gene expression profiling of CSCs, a plethora of

genes that contribute to tumor initiation and the metastatic cascade are being

discovered. RNAi therapy against multidrug resistance genes and CSC genes may

provide exceptional benefit and herald a paradigm shift in the treatment of deadly

diseases.
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Chapter 17

MicroRNAs in Development, Stem Cell

Differentiation, and Regenerative Medicine

Betty Chang, Ihor R. Lemischka, and Christoph Schaniel

Abstract Mammalian development and cellular differentiation are robust but

tightly controlled processes. MicroRNAs have emerged as key players in posttran-

scriptional regulation of gene expression during development and cellular differen-

tiation. As analytical tools advance from cloning techniques to microarrays and

most recently to massively parallel deep sequencing technologies, the space of

known microRNAs and their target mRNAs is better defined and is leading to a

comprehensive catalog combined with functional characterization. Several tissue-

and cell-lineage-specific microRNAs have been identified, some of which are

associated with distinct stages of cell identity from stem to progenitor to terminally

differentiated cells. We describe the important functional roles of some of these

microRNAs as exemplified by the ability of their exogenous expression to elicit

changes in cell fate and discuss how, with this knowledge, we can dispense with

genetic manipulation and begin to harness the advantage of microRNAs,

microRNA mimics, microRNA antagonists (antagomirs), antisense RNA, siRNA,

and alike molecules as tools for regenerative medicine and therapy.

Keywords microRNAs • stem cells • development • differentiation • regenerative

medicine
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EMT Epithelial-mesenchymal transition

ES Embryonic stem

GFP Green fluorescent protein

GMP Granulocyte macrophage progenitor

h Human

HIV Human immunodeficiency virus

HSC Hematopoietic stem cell

ICM Inner cell mass

iPS(C) Induced pluripotent stem (cell)

lacZ Gene encoding bacterial b-galactosidase
LNA Locked nucleic acid

loxP Locus of chromosomal crossover in the bacteriophage P1

LV Lentivirus

m Mouse

MEP Megakaryocyte erythrocyte progenitor

miR MicroRNA

miRISC MicroRNA-induced silencing complex

MPP Multipotent progenitor

ncRNA Noncoding RNA

NK Natural killer (cell)

NKP NK cell progenitor

NSC Neural stem cell

P Postnatal (day)

PCR Polymerase chain reaction

RA Retinoic acid

RCME Recombination-mediated cassette exchange

RNA Ribonucleic acid

shRNA Short hairpin RNA

siRNA Small interfering RNA

SNALP Stable nucleic-acid-lipid particles

SRF Serum response factor

Th T helper type

TK Thymidine kinase
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TP T-cell progenitor

TSS Transcription/transcript start site

UTR Untranslated region

17.1 Introduction

In the nematode C. elegans, defects in developmental timing led Ambros and

colleagues to discover the first microRNA in 1993 (Lee et al. 1993). Aberrations

within the gene lin-4 in C. elegans caused animals to display early larval stage

phenotypes late in development. The gene encoding lin-4 was localized within an

intron and found to generate two small RNAs of 61 and 22 nucleotides. These small

RNAs harbored sequences complementary to the 30untranslated region (30UTR) of
the mRNA encoding lin-14, a protein specific to early larval stages that accumulates

in the lin-4 mutants. Sequences for the small RNAs, when introduced into the lin-4
mutants, were able to rescue the developmental timing defects, and this correlated

with the downregulation of lin-14 protein levels, suggesting an antisense targeting

of the lin-14 mRNA 30UTR to inhibit protein expression. This discovery intimately

linked these small RNAs, which we now call microRNAs, with developmental

processes and highlights their importance in developmental regulation.

The biogenesis from primary to precursor to functional mature microRNA

requires the coordinated effort of several RNA-binding proteins and enzymes.

Disruption of genes involved in microRNA biogenesis by either targeted deletion

or knockdown results in developmental defects in vertebrates (Bernstein et al. 2003;

Wienholds et al. 2003; Giraldez et al. 2005; Harfe 2005b; Kanellopoulou 2005;

Murchison 2005; Wang et al. 2007). These studies characterizing members of the

microRNA biogenesis pathway, including Drosha, DiGeorge syndrome critical

region gene 8 (Dgcr8), and Dicer, outlined in detail in previous chapters, demon-

strate the essential roles of microRNAs in vertebrate development. Danio rerio,
zebra fish, appear to progress through early developmental events normally in the

absence of Dicer1, mutated by targeted gene inactivation (Wienholds et al. 2003);

however, growth is arrested 8–10 days postfertilization. Normal growth in the early

zebra fish embryo was further dampened by the introduction of morpholinos,

antisense RNA, against Dicer1 to target maternal mRNA contribution. Maternal-

zygotic disruption of Dicer (Giraldez et al. 2005), also performed in zebra fish,

showed the ability of animals to undergo early fate specification events such as axis

formation and generation of embryonic cell lineages; however, the fish have

impairments in morphogenesis and neural development during gastrulation. In

these fish, the addition of a single microRNA, miR-430, was able to, in part, rescue

neural-developmental defects. The loss of Dicer1 in mice halted development at

embryonic stage 7.5, with small embryos lacking expression of the embryonic stem

cell marker, Oct4, and the mesodermal lineage marker, Brachyury, and eventually

succumbing to lethality before embryonic stage 8.5 (Bernstein et al. 2003). The lack

of functional Dicer more specifically leads to deficits in proliferation and
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differentiation within mouse embryonic stem (mES) cells and depletion of stem

cells from the embryo (Kanellopoulou 2005; Murchison 2005; Bernstein et al.

2003). Similar impairment is seen in mES cells lacking functional Dgcr8, a Drosha

cofactor, where mES cells display defects in cell proliferation rates and are unable

to suppress pluripotency markers and thus are unable to exit from the self-renewal

state (Wang et al. 2007; Wang and Blelloch 2011). Conditional deletion of Dicer,
by Cre recombinase–mediated excision in homozygous mice harboring loxP sites

flanking the exon encoding the RNase III domain in the Dicer gene, within the

developing limb, led to malformations and morphogenesis defects (Harfe 2005b)

consistent with studies in zebra fish. Disruption of Dicer1, also by tissue-specific

conditional ablation, leads to defects in skin morphogenesis and epithelial stratifi-

cation in the mouse (Yi et al. 2006). Interruptions in the microRNA biogenesis

pathway cause an ablation of mature microRNAs. This suggests that microRNAs

are vital to proper development in vertebrates. The more pronounced defects

observed in mice over zebra fish lacking proper microRNA biogenesis imply an

evolutionarily enhanced role for microRNAs in higher vertebrates.

The diversity of cell fate changes during vertebrate development is often

characterized by alterations in gene expression regulated by key transcription

factors. The POU-family transcription factor Oct4 defines the inner cell mass

(ICM) from where ES cells are derived, and the loss of Oct4 denotes the departure

from the pluripotent state toward cellular differentiation. Transcription factors

display temporal- and cell-specific expression and serve to mark and shepherd the

progression in development toward specified cell fates. During gastrulation and

early development, transcription factors establish cell programs to define morpho-

genesis and patterning in the developing organism. MicroRNAs exhibit temporal-

and cell-type-specific expression and act as a posttranscriptional control unit to

provide an additional level of regulation. Cataloging of microRNAs across several

organisms has defined the milieu of microRNAs expressed at different stages of

cellular differentiation and tissue specification. Bioinformatics’ predictions in con-

junction with cloning, microarray, and next-generation sequencing techniques have

defined, identified, and verified a growing list of mature microRNAs.

MicroRNAs demonstrate spatiotemporal expression patterns from C. elegans to
vertebrates throughout development and in adult organisms. The coordinated

expression and activity of microRNAs within C. elegans ensures the correct

progression among larval stages and ultimately to adulthood (Lee et al. 1993;

Reinhart et al. 2000; Rougvie 2001; Großhans et al. 2005). Heterochronic

microRNAs lin-4 and let-7, differentially expressed during larval development,

act to promote stage progression and serve as switches in developmental timing.

Lin-4 and let-7 are evolutionarily conserved microRNAs within vertebrates. The

mammalian counterparts of lin-4 are known as miR-125a and miR-125b, and let-7
has several homologues encoded at several loci that are known collectively as the

let-7 family. Both of these microRNA families target the 30UTR of the ES cell

marker Lin-28, an RNA-binding protein that recognizes and sequesters the stem

loop of the let-7 precursor microRNA preventing Dicer-mediated conversion to

mature let-7, thus forming a regulatory feedback loop. The mature forms of miR-
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125 and let-7 are expressed widely in somatic cells and tissues and serve various

functions within specific cell types. The microRNA miR-125b is expressed in the

brain, hematopoietic cells, skin, and muscle, among other cell types, and is linked to

proliferation and, in different tissues, the advancement or blockage of cellular

differentiation. Inappropriate expression and regulation of these microRNAs are

also associated with many cancers and other disorders.

Selective expression of individual microRNAs during development plays an

important role in cell specification at different stages of embryogenesis and animal

maturation. For example, in mice, miR-1 specifies cardiac tissue; however,

overexpression leads to growth arrest due to accelerated differentiation leading to

depletion of progenitor cells (Zhao et al. 2005). Single microRNAs, by design, have

a predicted potential to target a multitude of mRNAs (Lewis et al. 2003). The

cellular and coordinated gene expression context surrounding the microRNA

influences its activity and functionality. Aberrant microRNA expression is linked

to disease – exhibiting developmental defects and cancer phenotypes – since the

ability to target multiple genes leads to improper global regulation. To understand

and predict potential inappropriate regulation, there is an imperative for better

characterization of microRNA targets by computational and biochemical

techniques. Target prediction algorithms are beyond the scope of this chapter but

incorporate mining mRNA transcripts for sequences complementary to microRNA

(Lewis et al. 2003). Biochemical techniques to elucidate microRNA-mediated

regulation include ascertaining targeting by luciferase or microRNA-sensor activity

or methods examining miRISC incorporation of microRNAs together with their

mRNA targets using Ago2-imunoprecipitation followed by parallel sequencing

(Landthaler et al. 2008; Chi et al. 2009; Hafner et al. 2010).

The growing body of evidence uncovering microRNAs playing significant roles

in posttranscriptional regulation of gene expression during development, differen-

tiation, and in diseased cells makes microRNAs attractive targets for use in regen-

erative medicine. Several studies demonstrate the ability of ectopic overexpression

of microRNAs to drive cellular differentiation, transforming microRNAs into a

valuable resource in directed differentiation for research and future cell transplan-

tation therapy. The discovery of small RNAs has burgeoned into the flourishing

field of small interfering RNAs and short hairpin RNAs vital to current advances in

research and therapeutic applications (see Chap. 19). Antisense RNAs are currently

in clinical trials in, for example, diabetes and cancer therapy (Knowling and Morris

2011). Reprogramming to induced pluripotency and trans-differentiation using

microRNAs (Anokye-Danso et al. 2011; Yoo et al. 2011; Ambasudhan et al.

2011) illustrates the efficacy of microRNAs to promote dramatic changes in cell

identity and presents them as promising factors in regenerative medicine. Tran-

scriptional regulation of microRNAs, microRNA moieties as mimics or other

vehicles, and their complementary and inhibitory sequences may be studied for

the development of therapeutic tools. In this chapter, we describe the current

knowledge on the role of microRNAs in development and differentiation and

their application to either direct differentiation of embryonic and adult stem cells
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or to prevent differentiation to undesirable or diseased cells for regenerative

medicine.

17.2 Spatiotemporal MicroRNA Expression Patterns

in Vertebrates

Specialization of tissues within the body is shaped by differential gene expression

and is typically defined by measurements at the RNA and protein levels. These

studies described below define tissue-specific microRNA expression in mouse and

human. Within these tissues are arrays of cellular subtypes all of which contribute

to the functionality of the larger tissue. Closer examination of each cell type and, in

particular, progenitor and terminally differentiated cells identifies microRNAs to

distinguish both location-specific as well as cell-fate-specific and identity-specific

characterization and function to further define supporting roles for microRNAs in

cellular differentiation and development. Early techniques in tissues and specific

cell types consisted of cloning small RNAs and northern blotting. This was

followed by oligonucleotide arrays and sequence-specific reverse transcription

coupled with PCR amplification. Today, discovery and interrogation of mature

microRNA species is achieved using massive parallel sequencing platforms. In

animals, lacZ-based sensors harboring microRNA target sites map functional

activity of mature microRNAs by lineage tracing along embryonic maturation.

Moving to cellular systems, overexpression of individual microRNAs by transgenic

or mimic introduction allows for gain of function analyses. Antisense molecules or

antagomirs can also be utilized, such as locked nucleic acid (LNA)

oligonucleotides, for loss of function experiments. Cell-based analyses also allow

for luciferase reporter-mediated functional characterization of microRNA target

sites. Here we outline some examples of microRNAs distinguishing tissue and cell

states with a focus on the diversity of expression.

17.2.1 Tissue-Specific Expression Patterns

A survey for microRNAs was done on 18.5-week-old mice by cloning small, about

21-nucleotide RNA species from heart, liver, spleen, small intestine, colon tissue,

and the cortex, cerebellum, and midsection of the brain (Lagos-Quintana et al.

2002). This study uncovered that although a given microRNA may be expressed in

several tissues, expression levels of specific microRNAs dominate within specific

tissues. For example, miR-1 accounted for over 45% of the microRNA clones

derived from the heart. Sempere and colleagues also probed tissues of the mouse

and human by northern blotting against 119 microRNAs (Sempere et al. 2004) and

defined 30 microRNAs as specific to a single organ or tissue among those profiled.
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The majority of the microRNAs found in the brain, liver, heart, and skeletal muscle

were conserved between mouse and human. Several microRNAs, let-7a, let7b,
miR-30b, and miR-30c, were also found to have abundant tissue-wide expression.

MicroRNAs encoded within the same loci shared coordinate expression patterns.

For example, miR-194 and miR-215 were found in the mouse kidney and miR-1

and miR-133 were detected in both the heart and skeletal muscle in both mouse and

human. Other microRNAs arising from the same genomic region show differential

expression patterns. For example, miR-132 was detected in mouse and human brain

but miR-212 was not. Oligonucleotide microarrays were also used to interrogate

microRNA expression in mouse tissues (Strauss et al. 2006; Chen et al. 2007). All

of these studies identify miR-124 as brain-specific microRNA and miR-122 specific

to the liver. Mouse fetal liver cells were collected at embryonic stages E16.5, E17.5,

perinatal day P1, and from the adult mouse and profiled by microarray for

microRNA expression (Rogler et al. 2009). The miR-23b cluster was upregulated

in late fetal development within fetal hepatocytes beginning at E17.5 through

adulthood. During hepatocyte differentiation to bile duct cells, the miR-23b cluster

family of microRNAs was downregulated and when overexpressed blocked this

differentiation step.

In another approach, Mansfield and colleagues developed sensors for in vivo

microRNA target validation (Mansfield et al. 2004). Transgenic insertions of the

lacZ gene engineered with microRNA target elements within its 30UTR served as a

tracking system for microRNA activity in specific tissues, cells, or developmental

stages during embryonic patterning of the mouse. Interestingly, let-7 family

members displayed differing expression patterns in the developing limb, where

let-7c was expressed in the anterior limb and let-7e in the limb ectoderm. The

expression of miR-1 in the heart was detected within the myocardium chamber,

ventricles, and the atrioventricular canal. MicroRNAs encoded within Hox gene

clusters (Krumlauf 1994), essential transcriptional regulators that specify segment

identity and accurate body patterning, also demonstrate temporal expression

patterns similar to their host Hox genes. MiR-10a is encoded upstream of Hoxb4,

and identical mature microRNAs miR-196a-1 and miR-196a-2 lie upstream of the

Hoxb9 and Hoxc9 genes, respectively. MiR-10a and Hoxb4 display coordinate

expression patterns. Near-perfect sequence complementarity to miR-196 in the

Hoxb8 30UTR (Mansfield et al. 2004; Yekta 2004) creates mutually exclusive

spatial expression patterning of miR-196/Hoxb8 during limb development.

In situ hybridization studies in the zebra fish brain using LNA probes for selected

microRNAs show tissue-wide and restricted expression patterns. MiR-92b was

found to be specific to neural precursor stem cells, whereas miR-124 defined cells

that were transitioning from a proliferative stage to a mature differentiated neuronal

stage, and miR-218a was only detected in motor neurons (Kapsimali et al. 2007).

Temporal examination of mouse cerebellum, cortex, and midbrain (Smirnova et al.

2005) from embryonic stage 12 (E12) to birth (P0) and after birth at days 2 (P2) and

14 (P14) characterizes expression of miR-26 in early brain development at E12 and

miR-29 late in brain development at P14. Three microRNAs, miR-124, miR-125,
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and miR-128, accrued at increasing expression levels in parallel with the matura-

tion of neuronal cells.

17.2.2 Cell-Specific Expression Patterns

17.2.2.1 Embryonic Stem Cells

mES and hES cells derived from the ICM and cultured in vitro have the ability to

continually self-renew and retain their pluripotent potential to differentiate into

cells of the three primary germ layers, endoderm, mesoderm, and ectoderm

(Fig. 17.1a). Several studies defining microRNAs expressed in mES and hES

cells (Houbaviy et al. 2003; Suh et al. 2004; Wang et al. 2007; Sempere et al.

2004; Strauss et al. 2006; Chen et al. 2007; Wang et al. 2008) identify sets of

microRNA families from distinct clusters with similar seed sequences that are both

specific to ES cells and downregulated upon loss of self-renewal and pluripotency.
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Fig. 17.1 MicroRNAs associated with cell fate and cell fate decisions, selected examples. (a)
Embryonic stem (ES) cells derived from the inner cell mass (ICM) (red depicts Nanog-RFP

reporter expression); cells of the blastocyst differentiate to primary germ layers endoderm,

mesoderm, and ectoderm. (b) Myogenesis of cardiac and muscle progenitor cells; microRNAs

are able to push the myoblast cell line C2C12 toward myotube formation. (c) A simplification of

hematopoietic cell hierarchy; microRNAs are implicated in self-renewal of hematopoietic stem

cells (HSC), in multipotent progenitors (MPP), and in cell progression from common lymphoid

progenitors (CLP) to T-cell progenitors (TP), B-cell progenitors (BP), and natural killer

progenitors (NKP) and their terminal cells; and from common myeloid progenitors (CMP) to

granulocyte-macrophage progenitor (GMP) and megakaryocyte-erythroid progenitor (MEP) to

their terminal cell lineages
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The miR-290 in the mouse and the miR-302 family in both the mouse and human

are examples of ES cell–specific microRNAs that promote self-renewal by

modulating cell cycle proteins.

17.2.2.2 Adipogenic Lineage

MiR-143 was observed in cultured adipocytes (Esau et al. 2004) and is enriched in

mouse and human adipose tissues. Using antisense oligonucleotides (ASO) to miR-

143 prevented expression of mature adipocyte traits such as expression of GLUT4,

ASL, PPARg2, and triglyceride accumulation. The predicted target of miR-143,

ERK5 exhibited diminished expression by western blot analysis in cells

overexpressing miR-143, and ERK5 increased with miR-143-ASO treatment.

MiR-143 regulation via binding to the ERK5 30UTR was recently confirmed

(Noguchi et al. 2011). Closer examination of microRNA specificity in mouse

adipose tissue revealed miR-143 localization to mature white adipocytes and a

reduction in brown fat, where miR-455 was highly expressed (Walden et al. 2009).

Walden and colleagues also identify miR-1, miR-133a, and miR-206 expression in

premature and mature brown adipocytes exclusive of any expression in white

adipocytes.

17.2.2.3 Neuronal Lineage

In neural specification by induction of mES cells to defined neuronal cell types

using RA treatment (Smirnova et al. 2005), expression of miR-124 and miR-128

were raised in neurons and miR-23 and miR-29 were elevated in astrocytes.

Neuronal progenitors and terminally differentiated neuronal cells derived from

embryoid bodies (EB) were compared to primary cortical neurons and showed

common expression of miR-124a, miR-9/9*, miR-22, and miR-125b (Krichevsky

et al. 2006).

17.2.2.4 Pancreatic Lineage

Mir-375 and miR-376 appear to be exclusively expressed in pancreatic cells and

when overexpressed decrease insulin secretion (Poy et al. 2004; Harfe 2005a).

Mouse a- and b-cell lines also express miR-375. Within the developing mouse

pancreas, miR-124a was differentially upregulated at E18.5 relative to E14.5 and

was found to target Foxa2 in pancreatic b-cells (Baroukh et al. 2007). Pancreatic

islets isolated from human fetal pancreas also show distinct expression of miR-375

and miR-376 along with miR-7 and miR-9 (Joglekar et al. 2009).

17 MicroRNAs in Development, Stem Cell Differentiation, and Regenerative Medicine 417



17.2.2.5 Hematopoietic Lineage

Mouse hematopoietic tissues were profiled via northern blotting by Chen and

colleagues to demonstrate expression of miR-223 in the bone marrow and miR-

142s in all hematopoietic cells (Chen 2004). This study also found miR-181

expression in the thymus, brain, lung, bone marrow, and spleen. Ectopic expression

of these individual microRNAs in lineage-depleted cells isolated from mouse bone

marrow promoted B lymphocyte expansion by miR-181 and T-lymphoid lineage

expansion by miR-142s and miR-223. Expression of microRNAs in seven cell types

of the mouse hematopoietic system, representing a hierarchy of cellular differentia-

tion, was profiled by microarray (Monticelli et al. 2005). Levels of miR-150

increased in both B- and T-cell progenitors but declined during the differentiation

of T lymphocytes to T helper type 1 (Th1) and Th2 cells. In addition, miR-146 was

exclusively upregulated in Th1 cells. MiR-150 was identified as specific to several

hematopoietic progenitor cells (Monticelli et al. 2005; Lu et al. 2008) and when

aberrantly overexpressed, blocks c-Myb expression to impair lymphocyte matura-

tion and dramatically depletes animals of the mature B-cell population (Xiao et al.

2007). In contrast, miR-150 promotes differentiation to the megakaryocyte and

erythroid lineage (Lu et al. 2008).

CD34-positive hematopoietic stem cells (HSCs) isolated from human bone

marrow express miR-155, which is able to block in vitro differentiation to myeloid

and erythroid cells (Georgantas et al. 2007). Expression of miR-155 was decreased

in erythroid progenitor cells (Masaki et al. 2007), while miR-451 increased in

expression and was able to induce differentiation (Zhan et al. 2007) in in vitro

culture.

17.2.2.6 Cardiac and Skeletal Muscle Lineages

The mesoderm lineage gives rise to both cardiac and skeletal muscle cells, so it is

not surprising that they share similar microRNA expression profiles. MiR-1 and

miR-133 are detected in both cardiac and skeletal muscle cell in the mouse and

human, in the embryo, as well as in adult cells, but there are some clear differences

during adult cell specification. In skeletal muscle, miR-1 and miR-206 target sites

are found in connexin-43 mRNA whose downregulation is concurrent with

myotube differentiation; interestingly, miR-206 is absent from the heart (Anderson

et al. 2006).

17.2.2.7 Epithelial Lineage

MiR-203 is expressed in the skin and hair follicle cells in mice (Yi et al. 2006; Yi

et al. 2008). HNF1alpha transcriptionally activates miR-194 to induce differentia-

tion in the Caco-2 cell line, cells derived from the human intestinal epithelium, and
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marks primary human intestinal epithelium cells (Hino et al. 2007; Hino et al.

2008).

The epithelial-mesenchymal transition (EMT) is another shift in development

with coordinated gene expression, where the transcription factor Twist is able to

induce this conversion and activate expression of miR-10b and miR-21. These

microRNAs, however, are not able to solely elicit an EMT response (Bracken et al.

2009). The miR-200 cluster of microRNAs is highly expressed in epithelial tissues,

and they are able to block the EMT in mice.

MicroRNAs exhibiting either tissue- or cell-specific expression or enriched

levels are summarized in Table 17.1.

17.2.3 Transcriptional Regulation of MicroRNA Genes

MicroRNA genes are predominately transcribed by RNA polymerase II and are

subject to the same regulation by transcription factors as protein coding genes. Not

surprisingly, transcription factors that define cell identity and cell fate have been

shown to regulate microRNA expression.

ES cell–specific transcription factors Nanog, Oct4, and Sox2 were mapped by

chromatin immunoprecipitation to several putative microRNA transcript start sites

(TSS) loci (Marson et al. 2008). Among those microRNA TSS bound by all three

transcription factors are the ES cell–specific clusters encoding the miR-290 family

in the mouse and the miR-302 family in both the mouse and human. Interestingly,

Nanog, Oct4, and Sox2 also reside at several loci regulating differentiation-

associated microRNAs, for example, let-7, miR-124, and miR-451, suggesting

both positive and negative transcription factor regulation of microRNAs in ES cells.

Muscle-specific transcription factors serum response factor (SRF), MyoD, and

MEF2 positively regulate miR-1, miR-133, and miR-206 expression in the devel-

oping muscle and during differentiation of C2C12 mouse myoblasts to myotubes.

MEF2 binds enhancer regions within the locus, between sequences encoding miR-

1-2 and miR-133a-1 in the mouse to induce expression in somite myotubes, skeletal

muscle fibers and activates these microRNAs in the developing heart tube during

embryogenesis (Liu et al. 2007). MyoD induces miR-206 expression to inhibit

follistatin-like 1 (Fstl1) and Utrn in skeletal muscle (Rosenberg et al. 2006). TGFb1
in conjunction with Smad3 negatively regulates transcription of miR-24 which is

able to enhance myogenic differentiation in mice (Sun et al. 2008).

Transcription of the noncoding RNA (ncRNA), bic (B-cell integration cluster),

was determined to have a vital impact on the immune response of mice, where bic
loss caused immunodeficiency with lineage commitment of T-lymphocyte

progenitors skewed to Th2 cells and exhibit B-cell deficiency (Turner and Vigorito

2008). Interestingly, miR-155, outlined earlier with expression specific to

hematopoietic progenitors, is encoded within an exon of bic, and overexpression

studies of miR-155 in mice cause B-cell malignancies. Gfi1 transcriptionally

inhibits miR-21 and miR-196b to maintain hematopoietic progenitor cells, and
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expression of these microRNAs is essential for myelopoiesis toward granulocytes

(Velu et al. 2009).

17.3 MicroRNAs in Directed Differentiation

A concert of techniques encompassing cytokine and small molecule exposure and

varying formulations of cell culture media have been established to direct differen-

tiation of mES and hES cells toward defined lineages. Gene knockdowns causing

loss of pluripotency and self-renewal in ES cells also promote differentiation to a

diversity of cell types. The advantage of microRNAs in directed differentiation is

the ability to simultaneously target multiple genes, eliminating the need for indi-

vidual gene targeting. However, unwanted off-target effects may occur and the

consequences of this are discussed later in the chapter. Cell fate–determining

microRNAs can be defined by studies identifying mature microRNAs that increase

in expression using conventional directed differentiation methods. Table 17.2

identifies some of these characterized effects of microRNA-mediated induction or

inhibition of cell fate progression and their impacts on cell identity with selected

examples illustrated in Fig. 17.1.

17.3.1 MicroRNA Differential Expression upon Differentiation

Levels of mature members of the miR-12 cluster decline in expression prior to the

downregulation of Oct4 RNA, a marker of pluripotency and ES cells in

differentiating hES cells (Suh et al. 2004). Studies aimed to study global microRNA

changes by expression profiling include mouse and human embryo carcinoma (EC)

and ES cells upon leukemia inhibitory factor withdrawal, retinoic acid (RA)

induction, and EB formation (Houbaviy et al. 2003; Sempere et al. 2004; Smirnova

et al. 2005; Suh et al. 2004; Wu and Belasco 2005; Krichevsky et al. 2006; Strauss

et al. 2006; Chen et al. 2007; Tzur et al. 2008; Marson et al. 2008). Chen and

colleagues describe increased expression of miR-152, miR-193, miR-197, and

miR-206 during EB differentiation at 3, 6, and 9 days. Of these, miR-206 has

demonstrated effects on enhancing skeletal muscle differentiation.

In addition to tissue profiling, Sempere and colleagues examined mEC and hEC

cells treated with RA, an inducer of neuronal differentiation, by northern blotting

for brain-specific microRNAs identified from tissue profiling, and found 19

microRNAs to be enriched in the RA-treated mEC and hEC cells. These include

miR-124a, miR-124b, miR-9 and miR-9* as recurring neuronal specific

microRNAs which have potent effects on cell fate, described later for their role in

trans-differentiation.

Differentiation of hES cells toward an endoderm lineage (Fig. 17.1a) promotes

the elevation of miR-24, miR-10a, miR-122, and miR-192 levels (Tzur et al. 2008).
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Mouse pre-adipocyte-derived small RNA cloning libraries generated at days 1

and 9 after induction of differentiation using defined media reveal several

microRNAs increasing during adipogenesis: miR-10b, miR-15a, miR-26a, miR-

99a, miR-101, miR-101b, miR-143, miR-151*, miR-152, miR-183, miR-185,

miR-423, and let7b (Kajimoto 2006). Individual antisense inhibition of any of

these microRNAs does not block change in cell fate suggesting that these

microRNAs do not elicit a switch of cell fate but arise as a consequence of

differentiation. Two microRNAs, miR-181a and miR-182b, were observed to

decline across adipocyte differentiation.

Another model of adult stem cells is adipose tissue–derived stem (AS) cells of

mesenchymal progenitor status. When hAS cells are differentiated to osteoblasts,

miR-26 increases and targets SMAD1 to facilitate terminal differentiation (Luzi

et al. 2007). Overexpression of miR-196a in hAS cells reduced proliferation rates

and enhanced osteogenic differentiation.

The mouse C2C12 cell line is a widely used and accepted cellular model for

myoblast differentiation into myotubes. MiR-1 and miR-133 are upregulated during

C2C12 myoblast serum starvation–driven differentiation (Chen et al. 2005)

(Fig. 17.1b). MiR-181 also was found to increase in C2C12 myotubes during

differentiation and targets HoxA12 expression. Inhibition of miR-181 in these

cells impedes differentiation, but overexpression does not trigger terminal differen-

tiation (Naguibneva et al. 2006). Also increased during C2C12 differentiation is

miR-206 and is also found to be elevated in newly formed muscle fibers and

myotubes in mice (Yuasa et al. 2008). MiR-26a also increases in myotubes

differentiated from C2C12 cells (Wong and Tellam 2008).

17.3.2 MicroRNAs Inducing Differentiation

Examples of differentiation-inducing microRNAs are demonstrated in the differen-

tiation of many adult progenitor and stem cells. In the hematopoietic system, miR-

196 induces myeloid differentiation by directly blocking Hoxb8 in HL60 cells

(Kawasaki and Taira 2004). Interestingly, this microRNA-target pair is also

involved in murine limb bud formation as discussed earlier (Mansfield et al.

2004), indicating that conserved targeting interactions of microRNAs are depen-

dent on the spatiotemporal context. Expression of miR-150 drives differentiation of

mouse megakaryocyte-erythrocyte progenitor cell within in vitro and in vivo

systems (Lu et al. 2008) (Fig. 17.1c). Ectopic expression of miR-424 in myeloid

progenitor cells isolated from human bone marrow stimulates monocyte and mac-

rophage differentiation and diminishes NFI-A protein levels by direct inhibiting via

30UTR elements (Rosa et al. 2007).

MiR-1 and miR-133 are able to promote mesoderm marker expression in mES

and hES cells, and in one study only, miR-1 is able to push ES cells toward a cardiac

fate, whereas miR-133 blocks myogenic terminal differentiation (Ivey et al. 2008;

Ivey and Srivastava 2010). It is unclear if the contrast in miR-133 function in cells
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derived from ES cells versus the C2C12 cell line is due to differences in their

differentiation potential. Similar observations noted in vivo may also arise from the

presence of similar yet distinct progenitor cells. Mouse ES cells transfected with a

construct conferring constitutive expression of miR-1 and transplanted into

infarcted mouse hearts were able to repair cardiac function (Glass and Singla

2011). MiR-1 and miR-133 induce myogenic differentiation in C2C12 cells, and

miR-206 does likewise even in the presence of serum, implying a dominant effector

microRNA activity (Kim 2006). Also in C2C12 mouse myoblasts, transfection with

a miR-1 overexpression cassette led to enhanced differentiation and increased

cellular fusion, a hallmark of myotube formation (Nakajima et al. 2006) although

this augmentation did not detract from the ability for osteoblast or adipocyte

formation given appropriate differentiation conditions.

17.3.3 MicroRNAs Shifting Cellular Programs

Selective inhibition of microRNAs is also able to drive differentiation. Many

microRNAs with primary expression in stem and progenitor cells function to

maintain a proliferative state, perhaps enabling expansion of progenitor populations

in adult organisms. MicroRNAs may function to inhibit differentiation and support

proliferation of progenitor populations. MiR-223 is a bone marrow–specific

microRNA which in mouse osteoclast precursors prevents differentiation, which

is reversed when miR-223 is inhibited (Sugatani and Hruska 2007). Decreasing

expression of miR-223 also leads to erythroid differentiation (Felli et al. 2009).

The potency of microRNAs in altering cellular programs is another area of

interest. MiR-1 when transfected into human HeLa cells drives expression of a

muscle-specific genetic program (Lim et al. 2005), and the transfection of miR-124

into the same cell line shifts expression toward a brain-like pattern as measured by

gene expression microarrays. Incidentally, miR-124a targets Foxa2 (Baroukh et al.

2007), an early marker for endoderm lineage differentiation.

Remarkably, lentiviruses overexpressing the neuronal lineage–specific miR-9/9*

and miR-124 are able to trans-differentiate human neonatal foreskin and adult

fibroblasts to a neuronal cell fate (Yoo et al. 2011) with the ability to elicit functional

action potentials. This conversion was facilitated by NEUROD2 expression and was

enhanced by addition of the transcription factors ASCL1 andMTY1L. The transfor-
mational competency of miR-124 is corroborated by the coupling of miR-124

expression with two transcription factors MYT1L and POU3F2 (BRN2) for suffi-

cient reprogramming of human primary dermal fibroblasts originated from the

mesoderm to neurons capable of forming action potentials and functional synapses

(Ambasudhan et al. 2011).

MicroRNAs also participate in dedifferentiation mechanisms, as several

microRNAs demonstrate the ability to inhibit differentiation progression. These

microRNAs are candidates for reprogramming studies. The miR-290 family has

been demonstrated to orchestrate the enhanced proliferation rates of ES cells by
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modulating the cell cycle (Wang et al. 2008; Wang and Blelloch 2011) and,

additionally, enhances cellular reprogramming (Judson et al. 2009). Both the

mES- and hES-specific miR-302 family microRNA cluster alone is able to repro-

gram somatic cells to induced pluripotency and generate germ line–competent iPS

cells (Anokye-Danso et al. 2011). Refer to the Chap. 15 (this volume) for details

about miRNA-based reprogramming approach and associated protocols.

17.3.4 Therapeutic and Research Advantages of Small RNAs

The ubiquitous expression of miR-30 throughout all cell types and tissues has

turned it into a widely utilized tool in the laboratory. The miR-30 stem loop

sequence is commonly used for short hairpin RNA (shRNA) generation owing to

the efficient expression and processing of miR-30 (Zeng et al. 2002; Zhou 2005).

ShRNA enables continual and stable expression of siRNAs under control of a

defined promoter; however, this generally requires vector integration into the host

cell genome. The advantage and potential of microRNAs for future therapeutic

applications is to administer a microRNA mimic, antagomir, or siRNA without

incurring genetic manipulation of target cells, much like a small molecule drug. ES

and iPS cells can be manipulated in vitro by these small RNAs and induced to

differentiate away from a pluripotent state toward terminally differentiated states

(Fig. 17.2a) without altering genomic integrity. Small RNAs can also be delivered

in vivo akin to a pharmaceutical product to promote in situ target cell differentiation

or to expand progenitor cell populations (Fig. 17.2b).

A clever application benefiting from knowledge of differential microRNA

expression patterns enables segregation of cell populations (Brown et al. 2007)

where a gene encoding thymidine kinase (TK) is transgenically introduced as a

“suicide” lentivirus harboring microRNA targeting sites within the TK 30UTR.
Upon ganciclovir drug treatment, only cells that have downregulated TK are able

to survive. The use of cells derived from differentiating ES and iPS cells poses a

danger for cellular transplantation, for the remaining pluripotent cells cause tumor

formation as evidenced by teratoma formation competence being a defining char-

acteristic of these cells. Use of this “suicide” TK harboring differentiation-specific

microRNA target sites for use in cellular transplantation would eradicate trace

residual undifferentiated cells. This method can be adapted to deplete other pro-

genitor cells or undesired cell lineages generated during differentiation steps to

develop pure and segregated cell populations (Fig. 17.2c).

Prosser and colleagues have recently introduced a set of tools for in vivo

functional analysis of microRNAs (Prosser et al. 2011). They provide a total of

428 different targeting vectors for the genomic loci of 476 distinct microRNAs and

have established 392 mouse ES cell lines with conditional targeting capacity to

target individual microRNAs by recombination-mediated cassette exchange

(RCME). These mES cells are able to generate chimeric mice and are germline

competent. Crossing such mice containing conditionally targeting individual
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microRNA loci with tissue- or cell-lineage-specific Cre recombinase–expressing

animals will enable in vivo characterization of microRNA function during devel-

opment and within specialized cell compartments. Fluorescent proteins and other

traceable markers can also be introduced by RMCE for lineage tracing of individual

microRNA loci. This will not only provide a resource for microRNA and

microRNA-target characterization during development in vivo but will also create

a multitude of mouse models and derived cell types to characterize microRNA

function for differentiation, trans-differentiation, and reprogramming studies.

Researchers are also developing microRNA “sponges” as alternatives to design-

ing siRNAs to target misregulated microRNAs (Brown and Naldini 2009). These

microRNA sponges function by offering alternative binding sites for sequestration

of microRNAs, thus preventing them from binding and suppressing their natural

a

b

c

+ microRNA
mimic/antagomir or siRNA

Differentiation
conditions

Self-renewal
conditions + microRNA

mimic/antagomir or siRNAES or iPS cell

differentiated cells,
e.g. myotube

+ microRNA
mimic/antagomir or 

siRNA
drug delivery

+ LV-thymidine kinase-
3’UTR-miR-124 sites

ES or iPS cell Differentiated (neuronal) cells
with residual ES/iPS cells

+ ganciclovir

Differentiated (neuronal) 
cells only

Cells not expressing miR-124 are
killed with ganciclovir

IC50
Toxicity
Off target effects

Repair
defect Cell 

Replacement
Therapy+ microRNA, 

antagomir,
siRNA, etc.

Fig. 17.2 MicroRNA applications to enhance regenerative medicine. (a) MicroRNA mimics,

antagomirs, and siRNAs repress or relieve repression of target gene expression without genetic

manipulation for in vitro differentiation, reprogramming, and treatment of, for example, embry-

onic stem (ES) or induced pluripotent stem (iPS) cells, progenitor cells, adult somatic cells, and

terminally differentiated cells for use in cell transplantation. (b) MicroRNA mimics, antagomirs,

and siRNAs can be administered in vivo as therapeutics to alter tissue- and cell-specific differen-

tiation. (c) A “suicide” gene carrier (Brown et al. 2007), for example, lentivirus (LV), for

thymidine kinase (TK) harboring 30UTR microRNA target sites for cell-specific microRNA

integrated into progenitor cells. Cell populations expressing microRNAs of interest, for example,

neural-specific miR-124, treated with ganciclovir survive, and those with intact TK expression will

die
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targets. This approach typically relies on strong promoters, active in distinct tissues

or cell types to achieve target specificity and to drive expression of an engineered

sequence encoding multiple microRNA target sites, often downstream of a reporter

gene. The multiple copies act as targets for binding of the natural microRNAs. This

technique can be readily coupled with the microRNA loci transgenic models

developed by Prosser and colleagues.

Currently, antisense-RNAs (asRNA) are being developed as therapeutics for

diabetes, cancer, and coronary artery disease, among other indications (Knowling

and Morris 2011). The most advanced asRNA drug marketed as Vitravene by Isis

Pharmaceuticals, Inc. and approved by the FDA in 1998 is being used in the

treatment of cytomegaloviral infection of the retina (CMV retinitis) by targeting

CMV mRNA in order to prevent translation and thereby relieve inflammation.

Santaris Pharma A/S began a Phase 2 study of miravirsen, a selective inhibitor of

miR-122, a liver-specific microRNA, in 2010 for the treatment of hepatitis C

infection. The hepatitis C virus is able to usurp miR-122 in the liver to promote

its own replication to produce additional viral particles. Miravirsen is based on

LNA technology, and its antisense targeting attenuates the exploitation of miR-122

by hepatitis C virus to inhibit viral infection.

17.4 MicroRNAs in Regenerative Medicine

Cells isolated from the developing mouse blastocyst and cultured in vitro were

established in 1981 as mouse ES cells (Martin 1981; Evans and Kaufman 1981).

These cultured mES cells maintain continual self-renewal and pluripotency and the

ability to give rise to all cells of the primary germ layers, the endoderm, mesoderm,

and ectoderm (Fig. 17.1a), as well as the germ line. In 1998, James Thomson

established the first human ES cell lines from human embryos (Thomson 1998)

and with it a new potential for regenerative medicine. The ability to culture hES

cells and to derive a multitude of cell lineages in vitro gives hope of advancing cell

transplantation therapy to multiple disease areas and provides a tremendous

resource for studying disease etiology and developmental processes in the

laboratory.

The advent of reprogramming of somatic cells in mouse and human (Takahashi

and Yamanaka 2006; Takahashi et al. 2007; Yu et al. 2007) to induced pluripotent

stem (iPS) cells breathed new life into the fields of stem cell biology and regenera-

tive medicine. We can now routinely reprogram patient-specific somatic cells to

iPS cells and subsequently differentiate them to defined lineages for in vitro study

of disease progression and, perhaps eventually, for in vivo transplantation.

MicroRNA expression profile comparison between ES cells and iPS cells has

identified sets of microRNAs in both mouse and human that are not elevated or

downregulated during or following reprogramming (Wilson et al. 2009; Stadtfeld

et al. 2010; Mallanna and Rizzino 2010). A better understanding of the differences

in both mRNA and microRNA expression between ES cells and iPS cells and the
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functional impact of these differences on their maintenance, homeostasis, and

developmental potential is vital for realizing their biochemical promise.

Many microRNAs are distinctly expressed during differentiation and may pro-

mote either differentiation or the maintenance and proliferation of progenitor cells.

These microRNAs (Table 17.2) are candidates for directed differentiation or for

antisense targeting in both in vitro and in vivo systems. MicroRNA or antagomir

influx to these cells for directed differentiation is typically performed by transgenic

methods; the advantage of small RNAs is that they can also be introduced into cells

and tissues as synthetically generated oligonucleotides (Fig. 17.2a, b), thus averting

genetic manipulation and its associated complications.

Several cell replacement therapy options employing microRNAs exist to differ-

entiate or treat cells in vitro or in vivo (Yang and Wu 2007). MiR-375 can be used

to differentiate pancreatic islet cells from diabetic patient-derived iPS cells. MiR-1,

miR-133, etc., are prime candidates in cases of muscle injury in cardiac muscle (as

recently demonstrated in mice (Glass and Singla 2011)) or skeletal muscle where

miR-1 and miR-133 can in vivo induce satellite cell differentiation.

Careful monitoring and extensive studies of microRNAs and small RNA utili-

zation in regenerative medicine need to be performed before implementation. The

potential for a given microRNA to have hundreds or thousands of targets poses a

hurdle for proper cell targeting when these are administered in vivo. A study of how

each therapeutic small RNA effects areas of the body beyond their intended target

and therefore causes possible abnormal differentiation or dedifferentiation and/or

proliferation is crucial to determine if a given potentially therapeutic small RNA

will function as an oncogene or cause other pathological states.

MiR-195 increases upon cardiac hypertrophy, whereas miR-133 declines (van

Rooij et al. 2006). Upon loss of miR-208, a heart-specific microRNA, the heart is

protected against hypertrophy (Callis et al. 2008). These microRNAs are potential

candidates for in vivo therapeutic treatment. Several congenital disorders manifest

in part as hypertrophic cardiac cells to impair heart function. These include

LEOPARD syndrome where we have previously shown by patient-specific iPS

cell differentiation that enlarged and hypertrophic cardiomyocytes can be

generated, thus recapitulating the disease in vitro (Carvajal-Vergara et al. 2010).

These cardiomyocytes are prime candidates for in vitro microRNA treatment

toward employment in cell replacement therapy. miRagen Therapeutics is currently

conducting a preclinical study to investigate the effect of a miR-208/499 antagomir

in chronic heart failure.

17.5 Discussion

The discovery of microRNAs in 1993 and the isolation of mES cells in 1981, hES

cells in 1998, and invention of miPS and hiPS cells in 2006 and 2007, respectively,

have created two very dynamically growing fields. Research discoveries in both

areas have burgeoned as demonstrated by the microRNA studies in ES and iPS
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biology discussed in this chapter. We summarize a growing body of knowledge on

microRNA expression in development with respect to spatial and temporal expres-

sion and, most importantly, their expression in progenitor and terminally

differentiated cells as well as their roles in maintaining cell identity or mediating

a switch in cell fate and how they may impact regenerative medicine (Tables 17.1

and 17.2). The repertoire lists of microRNAs and their targets in spatiotemporal

expression patterns during development are increasingly comprehensive, and these

microRNA regulatory networks will inform all areas of developmental control. This

will lead to advances in mechanistic insights of developmental disorders and

defects in lineage progression to ultimately inform regenerative medicine

applications. Although we aim to cover all aspects of microRNAs involved in

differentiation, our summary is by no means complete, and we expect the increasing

interest in integrating microRNAs and regenerative medicine to contribute much

more knowledge. The clear potential advantages of microRNA and other small

RNA therapeutics are the absence of genetic manipulation and ability to deliver

them in vivo. The clinical utility of siRNA-, shRNA-, asRNA-, or microRNA-based

therapeutics has not yet been realized; however, ongoing clinical trials provide

hope for success (Knowling and Morris 2011).

Once microRNA targets are better defined within a given cell- or tissue-specific

state or program, they can begin to be applied for therapeutic use. Many research

programs, not covered here, aim to elucidate microRNA targeting of the

transcriptome during changes in cell fate by RNA foot printing of miRISC-

associated microRNAs and their mRNA targets. Target definition can define the

course of therapy for both safety and efficacy where cocktails of siRNAs or small

molecules for inhibition of a set of mRNAs or proteins may prevent undesired off-

target effects stemming from a microRNA. Although a valid concern, it is worth

noting that if a microRNA is administered to induce differentiation or a change in

cell identity to a fate where it is typically observed, aberrant off-target effects will

be minimal and, in fact, as yet unknown mRNAs maybe essential targets in the cell

fate switch. This may not hold true when eliciting a transition between two cell fates

that do not fall within the same lineage tree in vertebrate development.

Before we can take full advantage of RNA-based therapeutic applications,

several obstacles need to be addressed. One of the challenges in any RNA-based

therapy continues to be the delivery system. Viruses allow long-term delivery of

vectors encoding the RNA therapeutic. However, of great concern is the potential

for integration-mediated mutagenesis and consequent possible development of

cancer or other pathologies. More recently, nanoparticles have become an attractive

delivery vehicle. Lipid-based nanoparticles such as the stable nucleic-acid-lipid

particles (SNALP) consist of a lipid bilayer containing a mixture of cationic and

fusogenic lipids coated with diffusible polyethylene glycol (Morrissey et al. 2005).

The lipid combination not only protects the RNA therapeutic from serum nucleases

but also enhances cellular endosomal uptake followed by cytoplasmic release.

Nanoparticles consisting of biodegradable polymers that allow more precise phar-

macokinetic release are another exciting and promising delivery system. Another

challenge, namely how to steer the RNA therapeutic to the appropriate target cell,
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has been overcome, for example, by engineering the nanoparticle surface to incor-

porate a cell-type-specific ligand for targeted delivery (Davis et al. 2010).

An early example of a small RNA therapeutic approach was the intravenous

delivery of synthetic microRNA mimics, antagomirs (Pedersen et al. 2007).

In a primate model of chronic hepatitis C viral infection, LNA-modified

oligonucleotides complementary to the liver-specific miR-122 provided long-term

suppression of viral replication (Lanford et al. 2010). A version of this LNA

targeting miR-122 for therapy in humans is currently in clinical trials by Santaris

Pharma A/S. Plasmid- and virus-based approaches are also being used for reducing

endogenous microRNA levels (Brown and Naldini 2009). Exploiting and

antagonizing microRNA regulation using inducible microRNA sponges is another

exciting avenue for use in therapeutic as well as experimental applications (Ebert

et al. 2007).

A currently ongoing clinical trial employs tripled RNA-based gene therapy to

inhibit HIV infection and replication. The strategy is based on transplantation of

autologous CD34+ cells lentivirally transduced to express three RNA-based anti-

HIV components, namely an shRNA targeting the tat/rev genes, which enhance

viral replication, a decoy of the viral transactivating region mRNA hairpin to

sequester the viral Tat protein, and lastly a ribozyme that targets the chemokine

receptor CCR5. The pilot feasibility study demonstrated that the treated patients

tolerated the therapy well and that the observed toxicity was strictly related to and

in the typical range for hematopoietic stem/progenitor cell transplantation

(DiGiusto et al. 2010). The reader is directed to refer to the Chap. 16 and the

following reviews on the broad range of potential applications of targeted gene

silencing for therapy and the recent status of clinical trials using siRNA/shRNA and

microRNA (Wahid et al. 2010; Czech et al. 2011; Burnett et al. 2011; Davidson and

McCray 2011).

Caution is warranted in using microRNAs to induce differentiation in vivo;

although demonstrated recently to aid in the repair of the infarcted mouse heart

by miR-1 transfected mES cells (Glass and Singla 2011), transgenic overexpression

in mice of miR-1 in cardiac and skeletal muscle progenitors led to developmental

arrest at E13.5. This was probably due to the early differentiation and depletion of

the progenitor populations (Chen et al. 2005).

Future advances in microRNA-target identification and prediction, as well as a

more comprehensive understanding of the roles of microRNAs in specific cell fate

transitions from stem to progenitor to specialized mature cell will help define and

refine microRNA-based directed cellular differentiation strategies for use in regen-

erative medicine.
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Chapter 18

The Role of MicroRNAs in Neurodegenerative

Diseases: Implications for Early Detection

and Treatment

Anna Majer, Amrit S. Boese, and Stephanie A. Booth

Abstract MicroRNAs (miRNAs) are small noncoding RNAs that can posttranscrip-

tionally regulate gene expression in development, differentiation, and in response to

various stimuli. Numerous miRNAs are very specifically expressed within the central

nervous system suggesting they regulate important brain functions. MiRNAs are also

required for the postmitotic survival of neurons, strongly suggesting a crucial role in

survival and neuroprotection. The fact that diverse arrays of miRNAs have been

reported to be dysregulated in several neurodegenerative diseases implies that they

can contribute to pathogenesis. As a group, the global burden of neurodegenerative

disease is huge and includes conditions such as Alzheimer’s disease and other

dementias, for which the numbers are steadily rising with the aging population, as

well as communicable diseases caused by prions that are of public health concern. As

yet, no drugs to halt or even delay the progression of these diseases are available, and

this is a huge focus of global research. The best time for therapeutic intervention

would be before significant memory loss and tissue destruction occurs such that

interventions to boost cell repair and to promote neuroprotective mechanisms could

provide significant health benefits. MicroRNA research promises to further elucidate

the pathways, genes, and proteins that contribute to the neurodegenerative process

that may serve as potential therapeutic targets. Furthermore, given the evidence of the

neuroprotective properties of some miRNAs, these small RNA species may them-

selves be the focus for drug development. Here, we review recent studies that imply a

link between miRNA function and neurodegeneration plus discuss how increased

knowledge of miRNAs may be used in diagnosis and treatment of neurodegenerative

diseases.
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18.1 Introduction

Neurological disorders represent one of the greatest present-day threats to public

health. According to the World Health Organization, the neurological burden is

likely to become an increasingly serious and unmanageable problem affecting the

entire world (Ferri et al. 2005). As a group, the global burden of neurological

disease is higher than that for malignancies plus digestive and respiratory diseases.

These diseases include noncommunicable neurodegenerative conditions such as

Alzheimer’s, Parkinson’s, and Huntington’s disease whose numbers are steadily

rising with the aging population. Although multiple sclerosis predominantly affects

young adults, the number of cases is also on the rise. At present, the complete

mechanism involved in the degenerative process associated with these neurological

diseases remains largely unknown which, in turn, hinders the development of

effective therapies. The best time for therapeutic intervention is before memory

loss and tissue destruction occurs; a time when interventions to boost cellular repair

and to promote neuroprotective mechanisms provide the most significant health

benefits, namely, to improve the symptoms related to disease and to prolong disease

progression. Concurrent identification of biomarkers able to identify susceptible

individuals and patients with early stages of disease is also required to be able to

distinguish between these neurodegenerative diseases and for effective treatment.

The discovery of microRNAs (miRNAs) has unlocked a novel avenue for

therapy and biomarker design. MicroRNAs are small noncoding RNAs that are

highly evolutionarily conserved. These RNA species bind to unique sites in the

regulatory regions of numerous genes within the RNA-induced silencing complex

(RISC) resulting in translational repression or degradation. Each miRNA is

predicted to target tens to hundreds of genes and, therefore, is able to regulate the

expression of multiple and diverse proteins involved in a biological process. This

posttranscriptional mechanism of regulation can be simultaneously evoked in a

cell-type and context-dependent fashion.

An abundance of miRNAs in the nervous system initially implied their impor-

tance in this tissue, and subsequent studies have uncovered pivotal roles for

miRNAs in fundamental processes such as neuronal differentiation, development,

plasticity, and survival (see Chap. 7, this volume). Many of these studies implicate a

general role for CNS-specific miRNAs in these functions, while the explicit

identities of the miRNAs involved remain, for the most part, unresolved. Teasing

apart the regulatory loops in which miRNAs play such important roles will be an

exciting stage in biological research. Not surprisingly, links between miRNA

dysfunction and neurodegenerative diseases are also becoming increasingly more

apparent. Loss of miRNA expression in the brain leads to neurodegeneration in a

444 A. Majer et al.

http://dx.doi.org/10.1007/978-3-642-22517-8_7


number of animal models. There is also evidence from human tissues that the

dysregulation of miRNA expression plays a role in the development of neurode-

generative disorders. Studying this novel layer of gene regulation promises to

augment our knowledge of brain dysfunction and pathology.

The focus of this chapter is to describe the current contribution of miRNA

activity in a number of neurodegenerative conditions. Furthermore, we discuss

the potential usefulness of disease-specific microRNAs as biomarkers and tools

for targeted therapy.

18.2 The Role of MicroRNAs in Neurodegenerative Disorders

Some of the most compelling evidence for miRNA involvement in neuro-

degeneration has emerged from investigating Dicer knockout in animal models.

Dicer is an essential enzyme in the miRNA biogenesis pathway, and its knockout

prevents newly synthesized pre-miRNAs from being processed into mature, func-

tional forms. Dicer ablation in neurogenic progenitors leads to dramatic impairment

of neuronal differentiation and subsequent lethality in a number of models

(Bernstein et al. 2003; Choi et al. 2008; Kim et al. 2007; Schaefer et al. 2007;

Davis et al. 2008; Kawase-Koga et al. 2009). More specifically, miRNAs appear to

be essential for the differentiation, survival, and maturation of newborn postmitotic

neurons (De Pietri Tonelli et al. 2008) as well as for normal cellular expansion

(Kawase-Koga et al. 2010). Conditional Dicer loss in certain cell types such as

Purkinje cells in the cerebellum (Schaefer et al. 2007), dopaminergic neurons of the

midbrain (Kim et al. 2007), neocortical neurons (De Pietri Tonelli et al. 2008),

oligodendrocytes (Shin et al. 2009), and neuronal stem cells (Kawase-Koga et al.

2010) leads to cell death, providing further evidence that the long-term health and

survival of differentiated postmitotic neurons is also governed by miRNAs. Degen-

eration and death in these cells could possibly be attributed to an increase in

proapoptotic proteins, and/or a decrease in prosurvival proteins (Kawase-Koga

et al. 2010), perhaps in accordance with documented heterochromatin

abnormalities (Fukagawa et al. 2004; Kanellopoulou et al. 2005; Kawase-Koga

et al. 2010). All of these phenotypes are reminiscent of progressive neuro-

degeneration in the absence of Dicer and were the first reports to raise the possibil-

ity of an involvement of miRNAs in neurodegenerative disorders.

The extent of miRNA dysregulation in neurodegenerative diseases was initially

determined using global miRNA screening techniques such as miRNA microarrays

(Saba et al. 2008; Otaegui et al. 2009; Nunez-Iglesias et al. 2010; Wang et al. 2011).

While global dysregulation of miRNAs in diseased tissues is evident, the

contributions of specific miRNAs to the initiation and progression of neurodegen-

erative disease are just beginning to be understood (see Table 18.1 for a list of

miRNAs and validated targets discussed in this chapter).
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18.2.1 Alzheimer’s Disease

Alzheimer’s disease (AD) is the most common cause of neurodegeneration,

accounting for 60–70% of all dementia cases worldwide (Fratiglioni and Qui

2009). Currently, it affects 2% of the population, and the incidence of disease is

expected to increase 20- to 40-fold in the next 50 years with the aging population.

The cause of Alzheimer’s disease is multifaceted and is believed to be due to the

accumulation of extracellular deposits of amyloid fibers (amyloid plaques) and

intracellular inclusions (neurofibrillary tangles) leading to gliosis (proliferation of

glial cells) and degeneration. Amyloid plaques are produced from the sequential

cleavage of amyloid precursor protein (APP) by the b-site APP-cleaving enzyme1

(BACE1) into Ab 1-40 and Ab 1-42 products, the main component of amyloid.

Over time, these fragments aggregate to form extracellular plaques that are toxic to

neurons because they disrupt calcium homeostasis, triggering apoptosis (O’Brien

and Wong 2010). In addition, APP is a transmembrane protein critical for neuronal

growth, survival, and synapse formation and also plays an important role in post-

injury repair. Perhaps the loss of normal APP during the disease process results in

the impairment of an essential function, and this may also contribute to disease

progression.

BACE1 protein abundance is highly correlated with disease, and therefore, the

mechanism by which this enzyme is regulated is profoundly important to the

understanding of the development of Alzheimer’s disease. Modulation of BACE1

expression by miR-9 and a miR-29a/b-1 cluster was the first evidence of the

possible involvement of miRNAs in the development of Alzheimer’s disease

(Hebert et al. 2008). Hebert et al. also found the levels of miR-9 and a miR-29a/

b-1 to be downregulated in a pool of sporadic AD brain samples. In contrast, a

second study observed an increase of miR-9 levels in AD hippocampus (Lukiw

2007). Focusing further functional experiments on the miR-29a/b-1 cluster, it was

determined that BACE1 protein expression could be significantly repressed in

cultured cells. MiR-29a and miR-29b-1 are developmentally regulated in mouse

brain in a similar fashion to BACE1, and their levels correlate with BACE1

expression in AD (Hebert et al. 2008). Furthermore, miR-107 (Wang et al.

2008b), miR-298, and miR-328 (Boissonneault et al. 2009) have since been found

capable of the posttranscriptional regulation of BACE1 and also exhibit decreased

expression in AD patients. This is consistent with the existence of a molecular link

between miRNA expression in sporadic AD and the amyloid cascade. Recent

evidence suggests that miR-29c, part of the miR-29 family, may play a protective

role during early AD (Zong et al. 2011). The authors showed that miR-29c levels

are increased in 3- and 6-month-old APPswe/PSDE9 mice and that miR-29c targets

BACE1, inhibiting protein translation (Zong et al. 2011). Furthermore, Ab 1-40

peptide levels were decreased in miR-29c transgenic mice that overexpressed

miRNA-29c, which may be due to miRNA regulation of BACE1 and subsequent

effects of this regulation on APP processing (Zong et al. 2011). Further investigation
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into the potential involvement of miR-29c and other miRNAs early in AD may help

alleviate the mechanisms of disease and enhance therapeutic prospects.

A recently published series of papers have described the direct regulation of APP

levels by miRNAs. MiR-106a was shown by Patel and colleagues to regulate APP

protein levels (Patel et al. 2008); however, in a second study, the miR-20a family

(consisting of miR-20a, miR-17-5p, and miR-106b, but not miR-106a) was found to

be active (Hebert et al. 2009). Discrepancies such as this are relatively common

among miRNA studies carried out by different groups and can largely be attributed

to experimental variations in a developing research field. One important factor

appears to be variations in the lengths of the 30 UTR cloned into the luciferase

reporter vectors used to assay miRNA specificity. It is likely that 30 UTRs are

arranged in a 3-dimensional structure that is stabilized by sequences some distance

away, thus effecting the establishment of the associated RISC complex (Bartel

2009). Furthermore, additional to the seed sequence of a miRNA, the “non-seed”

sequence also contributes to the specificity of miRNA regulation (Bartel 2009).

Hebert et al. (2009) found that although miR-106a and miR-106b share the same

seed sequence, the non-seed segment of miR-106b proved to be essential for its

regulation of APP. Importantly, the tested AD patients had significantly decreased

expression levels of miR-106b (Hebert et al. 2009), implying that disruption of APP

regulation by miRNAs is possible during disease. In another study, miR-101 was

shown to function as a negative regulator of APP expression (Vilardo et al. 2010;

Long and Lahiri 2011) and Cyclooxygenase 2 (Cox-2) (Vilardo et al. 2010), a gene

that promotes amyloid formation in the brain (Xiang et al. 2002). Interestingly, the

overexpression of miR-101 dampens the accumulation of amyloid-b in hippocam-

pal neurons (Vilardo et al. 2010). In this case, miR-101 has the potential to regulate

both Cox-2 and APP levels, two proteins strongly associated with the development

of Alzheimer’s disease, suggesting a cumulative, coordinate deregulation of genes

involved in the pathobiology of disease.

APP undergoes alternative splicing that produces functional isoforms of exons 7

and 8 in non-neuronal cells, while the exon 15 isoform is more abundantly

expressed in neuronal cells. An increase in APP exon 7 and/or 8 isoforms in neurons

leads to an increase in amyloid-b synthesis, potentially contributing to AD (Golde

et al. 1990; Neve et al. 1990; Rockenstein et al. 1995). The endogenous

polypyrimidine-tract-binding protein 1 (PTBP1) correlates with the presence of

APP exons 7 and 8, while PTBP2 is associated with the predominant expression of

exon 15. PTBP1 is partially regulated by miR-124, a miRNA that is also

downregulated in AD patients, suggesting the involvement of miR-124 in affecting

the alternative splicing mechanism of APP (Smith et al. 2011).

Another protein intimately involved with the progression of Alzheimer’s disease

is tau, which when phosphorylated functions to stabilize the microtubule network

within neurons. The microtubule track spans the entire neuronal axon and is used to

transport molecules from the cell body to dendrites and vice versa. In Alzheimer’s

disease, tau is hyperphosphorylated and begins to associate with multiple

microtubules causing the tracks to intertwine, resulting in the formation of neurofi-

brillary tangles and eventual disruption of the molecular transport within the cells.
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In primary neurons, amyloid-b peptide treatment encourages the formation of

cofilin rods (Minamide et al. 2000). Similar to tau protein, the presence of cofilin

rods disrupts microtubule bundles in neurites, interfering with neuritic transport and

neuronal structure and activity (Maloney and Bamburg 2007; Davis et al. 2009).

Recent evidence links the formation of cofilin aggregates to the formation of tau

neurofibrils (Whiteman et al. 2009). In 2010, Yao and colleagues demonstrated that

miR-107 and miR-103 are both able to regulate cofilin levels (Yao et al. 2010).

Furthermore, they showed that both of these miRNAs were decreased in a trans-

genic mouse model of AD. Levels of cofilin were similarly increased, suggesting

that miRNA dysregulation can also contribute to the cytoskeletal pathology that

accompanies AD progression.

Another biological process that is affected during Alzheimer’s disease, and

common to neurodegenerative conditions, is inflammatory signaling. Accumulation

of amyloid-b 1-42 fragments functions as proinflammatory mediators, activating an

inflammatory response that further perpetuates the pathobiology of disease. MiR-

146a, a well-studied miRNA with anti-inflammatory function (Sonkoly and

Pivarcsi 2009), is increased in AD. This miRNA is able to suppress the expression

of both complement factor H (CFH) (Lukiw et al. 2008) and interleukin-1 receptor-

associated kinase 1 (IRAK-1) (Cui et al. 2010), and may in part modulate a

potentially harmful inflammatory response in AD brain.

Ultimately, neurons are lost during AD, and apoptosis is a potential molecular

mechanism by which death occurs. The majority of the Alzheimer’s disease–related

miRNAs reported so far are downregulated during disease, thus relieving regulatory

restraints on the expression of propathogenic proteins. However, increased expres-

sion of miR-34a observed in brain samples from AD patients (Wang et al. 2009)

may function to perpetuate neuronal death by decreasing the expression of the

antiapoptotic protein B-cell lymphoma 2 (BCL2). Interestingly, miR-106b has also

been shown to target the TGF-B type II receptor, a protein that may have a

neuroprotective role in a transgenic mouse model of Alzheimer’s disease (Wang

et al. 2010), thereby contributing to pathogenesis. Given the previously described

role of miR-106b in the processing of APP, this illustrates the propensity for

dysregulated miRNAs to influence multiple pathways that are potentially function-

ally unrelated. A further example of this is observed with miR-29a which targets

both BACE1 and NAV3 (neurone navigator 3) protein that is an important regulator

of axonal guidance (Shioya et al. 2010). Interestingly, only mRNA expression

levels, not the protein levels, are elevated in AD (Shioya et al. 2010). A multifacto-

rial approach to understanding the complexities of miRNA function in

neurodegeneration is therefore vital.

18.2.2 Parkinson’s Disease

Parkinson’s disease (PD) affects roughly 1% of the elderly population (Savitt et al.

2006) by causing severe degeneration of dopaminergic neurons in the substantia
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nigra (SN). Although current treatments exist, they only target symptoms and

involve dopamine replacement therapy, which can mitigate some of the symptoms

of disease but does not counteract progressive degeneration (Zesiewicz et al. 2010).

To add further complexity, the cause of PD is primarily sporadic in nature and

linked to numerous gene disruptions including a-synuclein (a-syn), leucine-rich
repeat kinase 2 (LRRK2), parkin, PTEN-induced kinase 1 (PINK1), and DJ-1.

Abnormal accumulation of a-synuclein protein in the brain forming Lewy bodies

is a hallmark of disease. However, it is not known whether these fibrillar aggregates

directly contribute to cell death perhaps by inducing oxidative stress or are by-

products of the disease process (Harraz et al. 2011).

MiRNA profiling of tissues from the midbrain of PD patients revealed the

significant reduction of miR-133b, a miRNA normally specifically expressed in

midbrain DNs, in comparison to similar samples from a normal pool. It was

also found to be severely reduced in mouse dopamine deficiency models.

Overexpression of this miR-133b leads to the decrease in dopamine release from

neurons, suggesting a direct link to dopamine homeostasis (Kim et al. 2007).

Pituitary homeobox 3 (PITX3), a transcription factor implicated in PD (Fuchs

et al. 2009), was recently identified as a miR-133b target. Interestingly, PITX3

mutant mice exhibit loss of dopaminergic neurons in the substantia nigra (Hwang

et al. 2003), suggesting the existence of a negative feedback loop between PITX3

and miR-133b (Kim et al. 2007).

Computational methodologies have been used to predict miRNA binding sites

within genes linked to PD, such as a-syn and fibroblast growth factor 20 (FGF20).

These miRNAs have subsequently been further investigated as candidate regulators

of the disease process. The brain-enriched miRNAs, miR-7 and miR-153, were

predicted to target a-syn and were duly shown to be decreased in the SN of PD

mouse models (Junn et al. 2009; Doxakis 2010). MiR-7 has a neuroprotective role

by preventing oxidative stress, and miR-7 inhibition causes neuronal apoptosis.

Depletion of these miRNAs resulting in a concomitant increase in a-syn levels in

PD brain would indicate a functional role of these miRNAs in the disease process;

however, this has yet to be confirmed. Fibroblast growth factor 20 (FGF20)

disruptions are associated with a higher risk of PD, and single-nucleotide

polymorphisms (SNP) in its 30 UTR has been identified in some PD patients

(Wang et al. 2008a). One such SNP is within a miR-433 binding site, leading to

decreased miR-433 binding efficiency. In an experimental model, decreased miR-

433 binding results in FGF20 overexpression and a concomitant increase in a-syn
protein levels. Moreover, human brains with the miR-433 SNP have higher levels

of a-syn accumulation than those without the mutation (Wang et al. 2008a). SNPs

in the 30 UTRs of genes associated with neurodegenerative disease may well

contribute to the pathogenesis of neurodegenerative disease and should be a focus

for future study.
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18.2.3 Huntington’s Disease

Huntington’s disease is an autosomal dominant neurodegenerative disorder that

affects cortical and striatal neurons. The genetic factor is the insertion of a CAG

trinucleotide repeat expansion in the huntington gene that codes for the huntingtin

protein (Htt) (The Huntington’s Disease Collaborative Research Group 1993). This

results in the introduction of at least 36 glutamate residues that expands the N

terminus, altering the protein’s structure and function. MiRNA expression profiling

of human cortex samples from HD patients, relative to healthy controls, revealed a

number of dysregulated miRNAs of which many are neuronal specific (Johnson et al.

2008; Packer et al. 2008; Marti et al. 2010). These included decreases in the amounts

of miR-9, miR-9*, miR-29b, miR-124a, miR-132, miR-135b, miR-139, miR-212,

and miR-218 (Johnson et al. 2008; Packer et al. 2008) and upregulation of miR-29a

and miR-330 (Johnson et al. 2008). While specific functions of the majority of these

miRNAs have not been determined, it is known that miR-9, miR-9*, and miR-124a

are regulated by the repressor element 1-silencing transcription factor (REST), a

master regulator of neuronal genes that plays a role in HD (Wu and Xie 2006).

REST is normally sequestered by functional Htt in the cytoplasm of neurons

where it remains inactive. Mutant Htt is unable to bind REST which results in the

translocation of Htt to the nucleus and subsequent binding to the repressor element

1/neuron-restrictive silencer element (RE1/NRSE) upstream of numerous

neuronally expressed genes and miRNAs. Interestingly, miR-9, miR-9*, miR-

132, and miR-124a are all posttranscriptional regulators of REST (Wu and Conaco

et al. 2006; Wu and Xie 2006; Packer et al. 2008). In addition, miR-9/miR-9*

directly bind to the 30 UTRs of REST and the REST corepressor 1 (CoREST),

respectively. MiR-132 targets the protein MeCP2 (Klein et al. 2007) that can

interact with REST and CoREST to suppress transcription (Lunyak et al. 2002).

In neural progenitors, REST inhibits miR-124a expression, allowing the persistence

of non-neuronal transcripts. During differentiation into mature neurons, REST

leaves the miR-124a RE1 site and the non-neuronal transcripts are selectively

degraded. Mature miR-124a also targets a splicing factor, PTBP1, thus tipping

the balance toward a brain-specific alternative pre-mRNA splicing pattern by

PTBP2 (Makeyev et al. 2007). These data suggest that REST/CoREST related

miRNAs are involved in a double feedback loop regulatory mechanism. This

complex regulatory device for gene expression has previously been described in

some systems where the levels of multiple, key proteins are critical for miRNA

function (Tsang et al. 2007).

MiR-30a was recently shown to be increased in brain tissue samples from HD

patients (Marti et al. 2010) which targets the prosurvival brain derived growth

factor (BDNF) (Mellios et al. 2008) that also contains an RE1/NRS element within

its promoter. Hence, REST inhibition of BDNF transcription contributes to neuro-

nal dysfunction and death (Zuccato et al. 2007). Indeed, decreased BDNF mRNA

and protein levels are also seen in HD patients (Zuccato et al. 2001). These data

further emphasize the important contribution of miRNAs to gene regulation in HD.
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Parallel sequencing of miRNAs in the frontal cortex and striatum regions of HD

patients not only identified numerous dysregulated miRNAs (both having increased

and decreased expression levels) but also distinguished numerous new IsomiRs

(Marti et al. 2010). IsomiRs, highly abundant in HD tissues, are miRNAs that

exhibit variation from their “reference” sequences and 50 trimming modifications

from sequencing data. The putative targets of the seed-region IsomiRs suggest that

their altered expression may contribute to aberrant gene expression in HD. Never-

theless, the role of miRNA variation in biological processes and the mechanisms by

which IsomiRs are selectively generated have as yet to be determined.

Another interesting finding that appears to be a factor common to a number of

neurodegenerative diseases is the induction of changes to the RNA silencing

machinery itself. Htt protein actually sequesters within RNA processing bodies

(P-bodies) where it colocalizes with Argonaute 2 (Ago2). Mutant Htt transgenic

mice were found to have reduced numbers of P-bodies in cortical neurons (Savas

et al. 2008), resulting in reduced gene silencing activity in comparison with wild-

type mice. Thereby, Htt may function as a coaccessory to Ago2 and its mutation in

disease may lead to aberrations in the normal activity of Ago2 in miRNA-mediated

silencing.

18.2.4 Prion Disease

Transmissible spongiform encephalopathies (TSEs), or prion diseases, comprise a

group of rare but fatal neurodegenerative disorders that affect both humans and

animals (Aguzzi and O’Connor 2010). Unique among neurodegenerative diseases,

TSEs have the ability to be transmitted by template-dependent conversion of the

normal prion protein, PrPC, to an abnormal, pathogenic isoform, PrPSc. In addition

to transmission of PrPSc in contaminated food or through surgical procedures, the

initial acquisition of PrPSc can also occur through spontaneous generation or

genetic mutation of the prion gene, PRNP (Aguzzi and O’Conner 2010; Lloyd

et al. 2011). In prion diseases, the replication of PrPSc is the cause of neuronal

damage and death, whereas in other neurodegenerative diseases, the toxic trigger is

less evident. Although there are key differences in the proximal triggers and

markers of different neurodegenerative diseases, it is becoming clear that multiple

convergent downstream pathways are stimulated. Animal models of prion disease

have clear advantages for studying these complexities; not least, they are extremely

well defined and lead to a clear endpoint – the death of the animal. Similar models

for other neurodegenerative diseases rely on transgenic modifications which simu-

late only certain facets of degeneration. Thus, prion infection models represent an

excellent system to identify overarching pathological cascades and targets for

therapeutic intervention.

The first indication of miRNA involvement in prion disease pathology was the

identification of 15 miRNAs deregulated at end-stage of disease in mouse models

(Saba et al. 2008). The majority of these miRNAs were increased and included
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miR-342-3p, miR-328, miR-128, miR-146a, and miR-191, while miR-338-3p and

miR-337-3p were both downregulated. Using bioinformatic software such as

TargetScan, miRBase, and PicTar (reviewed in Majer and Booth 2010) along

with luciferase assays, the early growth response 1 (EGR1) gene was identified as

a target of miR-191 (Saba et al. 2008). EGR1 is a transcription factor that poten-

tially regulates multiple genes involved in neuronal function (Beckmann and Wilce

1997; Harada et al. 2001; Jones et al. 2001; James et al. 2006) and was observed to

be downregulated at end-stage of prion disease (Sorensen et al. 2008). A number of

the dysregulated miRNAs identified in this study have also been described

in investigations of other neurodegenerative diseases. For example, miR-128,

miR-328, and miR-146a were all aberrantly expressed in Alzheimer’s disease

(Lukiw 2007; Lukiw et al. 2008; Boissonneault et al. 2009; Cui et al. 2010) and

HIV-induced neurodegenerative disease (Eletto et al. 2008) as well as in prion

disease (Montag et al. 2009). The identification of aberrantly expressed miRNAs

found in common between different neurodegenerative diseases echo’s similarities

identified within gene expression studies among multiple diseases. Taken together,

this suggests that it may be possible to identify a generalized pattern of transcrip-

tional dysregulation between many neurodegenerative disease processes.

Aberrantly expressed miRNAs have also been identified in BSE-infected

macaques and CJD patients (Montag et al. 2009). Two miRNAs, miR-342-3p and

miR-494, were significantly upregulated in BSE-infected macaques, while miR-

342-3p was also upregulated in brain samples from CJD patients. Overall, miR-

342-3p was found to be upregulated in human samples (CJD) and two animal

models (scrapie-infected mice and BSE-infected primates) (Saba et al. 2008;

Montag et al. 2009) suggesting it to be a strong candidate for consistent involve-

ment in prion pathogenesis across various host and prion species.

18.2.5 Amyotrophic Lateral Sclerosis

Amyotrophic lateral sclerosis (ALS) is a fatal motor system disease leading to rapid

neurodegeneration of motor neurons (MNs) located in the ventral horn of the spinal

cord, causing atrophy and paralysis of limbs and respiratory muscles (Mulder

et al. 1986). Little is known about the causative trigger for ALS. MNs develop

proteinaceous inclusions in their cell bodies and axons, although in contrast to that

seen in Alzheimer’s, Parkinson’s, Huntington’s, and prion diseases, these protein

aggregates do not form amyloid. Inclusions usually contain ubiquitin and often the

superoxide dismutase-1 (SOD1) which is associated with dominantly inherited

familial forms of ALS (Bruijn et al. 2004). Additionally, mutations in RNA

processing proteins such as the transactive response (TAR) DNA binding protein

43 kDa (TDP-43) (Arai et al. 2006) and the fused in sarcoma/translocation in

liposarcoma (FUS/TLS) (Kwiatkowski et al. 2009; Vance et al. 2009) have also

been localized to neuronal inclusion bodies. Interestingly, TDP-43 and FUS/TLS

proteins are associated with components of the Drosha microprocessor complexes
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(Gregory et al. 2004). Abnormal aggregation of these proteins inevitably disrupts

the processing of pri-miRNA to pre-miRNAs in the nucleus (Ling et al. 2010). It

has been shown that TDP-43 knockdown in cultured cells results in changes to the

total miRNA population. Nevertheless, it remains unknown whether TDP-43

affects the processing of Drosha-free miRNA that are expressed from introns

(miRtrons) (Buratti et al. 2010).

The extent of miRNA function in MN survival was assessed in Dicer ablation

studies that specifically hindered miRNA activity in postmitotic somatic MNs

(MNDicermut mice). Interestingly, MNDicermut showed progressive locomotion

dysfunction, atrophy, and neuronal degeneration, strongly indicating an essential

function of miRNAs in MN survival (Haramati et al. 2010). Significant

downregulation of miR-9 and miR-9* was observed in both MNDicermut and spinal

muscular atrophy animal models where miR-9 was predicted to regulate the

expression of the heavy neurofilament subunit (NF-H) (Haramati et al. 2010).

Defects in the intermediate filament system have previously been implicated in

ALS disease, and disruption of the coordinated expression of neurofilament genes

by miRNAs may contribute to the cause of this observation (Figlewicz et al. 1994;

Al-Chalabi et al. 1999).

Considering that ALS affects neurons of the motor system, alterations of miRNA

expression levels specifically at the neuromuscular junction have been further

investigated. One of the miRNAs identified to be increased in a SOD1 ALS

mouse model was miR-206. Deletion of miR-206 in G93A-Sod1 mice did not

affect the timing of disease onset but led to accelerated disease progression and

shortened survival times (Williams et al. 2009). Further investigation suggested that

miR-206 is important for efficient regeneration of neuromuscular synapses follow-

ing injury by regulating histone deacetylase 4 (HDAC4) levels, a protein that

hinders the repair of neurons (Williams et al. 2009).

18.2.6 Multiple Sclerosis

Multiple sclerosis (MS) is the result of chronic inflammation within the nervous

system that causes damage to the myelin sheath, the protective covering

surrounding nerve cells. It is a relatively common disease affecting approximately

1–2 people per 1000 with the incidence rate appearing to be on the rise (Hauser and

Oksenberg 2006). Typically, MS patients exhibit progressive deterioration of

neuronal function and have 5–10 years shorter life expectancies. Although symp-

tom manifestation varies between relapsing and progressive forms of MS, neuronal

deterioration is observed in both. The pathogenic hallmarks of MS diseases include

autoimmunity, an uncontrolled activation of inflammatory cells within the brain

that leads to demyelination of axons and destruction of oligodendrocytes, forming

white matter lesions (Hauser and Oksenberg 2006). The trigger that activates this

degenerative cascade remains unknown, but research suggests a combination of

genetic and environmental factors.
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Increased understanding of this inflammatory process is required prior to the

development of effective therapies for MS. Otaegui and colleagues (2009)

obtained blood samples from 21 individuals consisting of 9 MS patients in

remission, 4 MS patients during relapse, and 8 healthy controls. Peripheral

blood mononuclear cells (PBMCs) were isolated from whole blood and miRNA

profiling revealed increased expression of miR-18b and miR-599 in relapse

samples, while miR-96 levels were increased in remission samples (Otaegui

et al. 2009). Bioinformatic analysis suggested that potentially important targets

of miR-96 are involved in interleukin or wnt signaling pathways, although these

have yet to be experimentally validated.

TH1 and TH-17 cells have significant involvement in disease pathogenesis by

being critically involved in CD4+ T-cell-mediated autoimmunity. In a recent

study, miRNAs regulating TH-17 cell differentiation were identified in peripheral

blood leukocytes (Du et al. 2009). MiR-326 was found to be increased in MS

patients, and it was further determined that Est-1, an inhibitor of TH-17 differen-

tiation, is a target of this miRNA (Du et al. 2009). Manipulation of miR-326

expression levels in an in vivo MS model system affected TH-17 population

numbers: decreased miR-326 levels produced fewer TH-17 cells which in turn

resulted in milder experimental autoimmune encephalomyelitis (EAE) (Du et al.

2009). In contrast, by overexpressing miR-326, more TH-17 cells were produced

and a faster onset of EAE was observed (Du et al. 2009).

Profiling miRNAs in CD4+, CD8+, T cells, and B cells from peripheral blood of

relapsing-remitting MS patients revealed increases in expression of miR-485-3p,

miR-376a, miR-193a, miR-126, and in particular a marked upregulation of miR-17,

known to function in autoimmunity (Lindberg et al. 2010). Stimulation of CD4+

cells with anti-CD3/CD28 resulted in the significant upregulation of miR-17 and

miR-193a. The authors suggested that miR-17 directly or indirectly regulates

phosphatase and tensin homolog (PTEN), phosphatidylinositol 3-kinase regulatory

subunit 1 (PI3KR1), proapoptotic member of the Bcl-2 family (Bim), and transcrip-

tion factor 1 of the elongation 2 factor family (E2F1) during CD4+ T-cell stimula-

tion. In turn, miR-193a has been involved in apoptosis by influencing the activation

of the caspase cascade (Ovcharenko et al. 2007). Further research to validate direct

targets of miR-17 and miR-193a needs to be performed to determine the extent of

their contribution to disease.

Another whole blood miRNA transcriptome study that employed a relatively

large MS cohort determined the downregulation of 26 miRNAs across all samples

from primary progressive, secondary progressive, and relapsing remitting MS

disease. MiR-17 and miR-20a, interestingly encoded in the same cistron, were the

most significantly downregulated as compared to controls (Cox et al. 2010). This is

in contrast to the previously described upregulation of miR-17 in CD4+ cells of MS

patients; the reason for this discrepancy is unknown. MiR-17 and miR-20a were

postulated to inhibit T-cell activation in this study, but the mechanism remains to be

resolved.

Only one study to date has investigated miRNA dysregulation in MS lesions;

three miRNAs, miR-34a, miR-155, and miR-326, were associated with active
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lesions (Junker et al. 2009). All three of these miRNAs targeted CD47, a gene that is

normally expressed on resident host cells and is considered a “marker of self” that

functions to inhibit macrophage activation (Kinchen and Ravichandran 2008). This

gene was also found to be downregulated by 50% in active MS lesions as compared

to control white matter samples (Junker et al. 2009). Perhaps in the MS lesion

environment these 3 miRNAs remove the inhibitory effects imposed by resident

cells on macrophage activation, allowing these macrophages to initiate myelin

phagocytosis.

18.2.7 Fragile X Syndrome and Fragile X–Associated
Tremor/Ataxia Syndrome

Fragile X syndrome (FXS) is the most common inherited cause of mental retarda-

tion that occurs due to the silencing of the fragile X mental retardation 1 (FMR1)

gene (Pieretti et al. 1991; Verkerk et al. 1991). In disease, a massive expansion of

CGG repeats in the 50 untranslated region (UTR) of FMR1 becomes

hypermethylated and leads to gene silencing so that the protein product, FMR

protein (FMRP), is lacking. Although no neurodegeneration is seen in fragile X

patients, the FMR1 gene codes for a protein that is intimately linked to the miRNA

processing machinery. Interestingly, a common “premutation” form of the gene

exists in some individuals in which FMRP contains a number of CGG repeats but is

still expressed. These individuals suffer from an adult onset progressive neurode-

generative disorder termed fragile X tremor ataxia syndrome (FXTAS) that is

characterized by intranuclear ubiquitin-positive inclusions in neurons and

astrocytes of the cerebellum and cerebral cortex (Willemsen et al. 2003; Raske

and Hagerman 2009).

FMRP is an RNA-binding protein abundantly expressed in neuronal dendrites

and spines (Feng et al. 1997) which functions to suppress translation (Laggerbauer

et al. 2001; Lin et al. 2006). This RNA-binding protein is important during neuronal

development and synaptogenesis; Fmr1 knockout mice have abnormal dendritic

spines (Comery et al. 1997; Nimchinsky et al. 2001), a phenotype evident in human

patients of FXS (Hinton et al. 1991). FMRP has been shown to interact with the

Dicer and Argonaute 2 (Ago2) proteins of the miRNA machinery, suggesting that

the functional activity of FMRP is mediated by the miRNA complex (Jin et al.

2004; Plante et al. 2006). More specifically, the absence of FMRP in Drosophila
resulted in the lowered abundance of the Dicer/Ago complexes which partially

decreases miRNA-124a expression levels (Xu et al. 2008). Hence, FMRP can

modulate the processing of miR-124a during development but is not essential for

miRNA biogenesis (Xu et al. 2008).

In lieu of the fact that FMRP is localized to dendritic spines and functions in

synaptogenesis, Edbauer et al. (2010) studied whether miRNAs that associate with

FMRP may regulate these neuronal properties in mice. The authors found that
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miR-125b and miR-132 both affect spine morphology and their function requires

FMRP (Edbauer et al. 2010). Further investigations led to the identification of the

NR2A, a subunit of the NMDA receptor, to be a target of FMRP-associated miR-

125b (Edbauer et al. 2010). It is known that several functions of NMDA-receptor-

dependent plasticity are impaired during FXS, which may be partially explained by

the lack of FMRP-regulated miRNA function. Interestingly, both these miRNAs

have been implicated in neurodegeneration which may indicate some convergence

of pathways triggered during disease prior to neuronal death.

Conflicting results on the role of miRNAs in the regulation of FMR1 have been

reported. Recent evidence points to FMRP regulation by miRNAs in which miR-

19b, miR-302b*, and miR-323-3p repress gene expression in HEK293T cells

(Yi et al. 2010). Nevertheless, FMR1 mRNA expression levels did not change in

Dicer knockout cells (Cheever et al. 2010), while in vivo studies have yet to be

performed.

In FXTAS, the expanded FMR1 mRNA is present within the intranuclear

inclusions found in neurons and astrocytes of patients, which suggests that the

mRNA itself is important for the neurodegenerative phenotype. It has been shown

that the pri-miRNA processing complex (microprocessor comprising Drosha and

DGCR8 proteins) can interact directly with CGG-repeat mRNA (Faller et al. 2010;

Sellier et al. 2010). This results in protein sequestration and subsequently a reduced

capability to process pri-miRNA to pre-miRNA. These data imply that CGG-

repeat-induced pathogenesis in FXTAS may involve sequestration of proteins

engaged in the miRNA processing machinery.

18.3 The Challenges of Studying MicroRNAs in CNS Tissue

Although a number of genomic investigations of miRNA expression have been

performed, there is much ambiguity and seemingly contradictory reports of under-

or over-expression of particular miRNAs. A crucial contributing factor to explain

this is undoubtedly the vast complexity of brain tissue combined with the extended

periods of time in which disease progression occurs in both patients and animal

models. Brain tissue is made up of a myriad of neuronal cell types working together

in intricate cell networks. Often, one cell performs a rapid response involving

biochemical and genetic alterations, while adjacent cells act in an opposite manner

to dampen and counter the neighbors’ activity. Adding to the complexity is the

multifarious array of cell types that both support and overlay their own functions

upon these neural networks. These cell types include astrocytes, microglia, and

oligodendrocytes that can outnumber neurons by up to 20:1. Therefore, in a tissue

sample, transcriptome profiles are representative of numerous cell types which

makes the determination of changes specific to a particular cell type difficult. In

particular, neurons whose perturbed function likely contributes mostly to the

clinical phenotype and eventual death of patients are likely to be swamped by the

changes seen in multiplying support cells.
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We believe that a potential way to counteract these issues is the use of Laser

Capture Microdissection to carefully remove cell bodies from frozen brain sections.

This methodology has numerous advantages including: (1) the ability to cut out

groups of similarly functioning neurons such as those enriched in hippocampus CA

regions; (2) the option of prestaining sections to identify particular cell types, or for

example, prion-infected cells; and (3) the potential to apply this technology for

tissues from both animal models and human samples. Of course, numerous practical

challenges exist such as the requirement for rapid preservation of tissue to ensure

miRNA integrity, the requirement for rapid labeling protocols for use prior to

dissection, difficulty in obtaining samples completely free of contaminating tissue,

and the challenge of working with small quantities of RNAs including the use of

RNA amplification techniques. However, a number of reports have shown the

efficacy of this type of methodology (Hoefig et al. 2010), and work in our lab has

been successful in determining very early changes in miRNA profiles that are

specific to hippocampal neurons (manuscript in preparation).

Other methods likely to be useful when looking at animal models of neurodegen-

erative diseases are new lines of transgenic mice in which specific neuronal

populations are tagged and could be isolated following disruption of brain tissue

(Livet et al. 2007; Beirowski et al. 2005). Increasingly sophisticated approaches for

the targeted expression of Cre suggest that this unique approach can be applied across

systems, such as to insert novel markers within specific neuronal populations (Nelson

et al. 2006). These markers can then be used to purify tagged cells by techniques such

as automated fluorescent cell sorting (FACS) for transcriptome analysis. Crossing

these lines with mouse models of neurodegenerative disease should provide exciting

new avenues of exploration. Nevertheless, caution should be exercised since tagging

proteins may well infer a biological change to the system (Comley et al. 2011).

18.4 The Use of MicroRNAs as Potential Biomarkers

for Neurological Disorders

A biomarker is defined as a measurable biological component that is able to

discriminate between normal biological processes, pathological states, or pharma-

cological responses to therapy. An ideal biomarker would also be noninvasive, cost-

effective, translatable from animal models to humans, and be detectable early in the

disease course. Biomarker discovery has expanded from genomic, transcriptomic,

and proteomic avenues to also include miRnomic analysis. For example, miRNA

expression profiling to discriminate between cancer and normal tissue (Lodes et al.

2009; Zhao et al. 2010; Bansal et al. 2011), to identify the tissue origin of metastatic

cancer (Rosenfeld et al. 2008), and to predict prognosis of disease (Liu et al. 2011)

has had some success. Furthermore, different physiological or pathological

conditions have been associated with unique “signatures” of deregulated miRNAs

detected in bodily fluids (Gilad et al. 2008; Hanke et al. 2010; Weber et al. 2010),
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highlighting the potential utility of monitoring multiple miRNA biomarkers for

disease conditions. Changes in miRNA expression profiles associated with neuro-

degenerative diseases may well serve as biomarkers for these disorders which

require improved methods of diagnosis.

Cell-free nucleic acids such as miRNAs have been readily detected in numerous

body fluids and have been exploited as potentially useful biomarkers of disease

(Li et al. 2007; Gilad et al. 2008; Park et al. 2009; Hanke et al. 2010; Weber et al.

2010; Zubakov et al. 2010). Interestingly, miRNAs present in the blood are stabilized

by associating with ribonucleoprotein complexes such as RISC or encapsulated in

exosomes or microvesicles (Valadi et al. 2007; Hunter et al. 2008; Arroyo et al.

2011). This increased stability of circulating miRNAs is conducive to their exploita-

tion as biomarkers over mRNA sampling. Interestingly, tissue-specific miRNAs,

such as the brain-enrichedmiR-124, have been detected in plasma samples following

stroke in rats (Laterza et al. 2009). IfmiRNAmarkers of brain injury are circulating in

blood samples, perhaps certain miRNA-specific markers of neurodegenerative

diseasesmay also be detected in bodily fluids. To date, few studies have been reported

in regard to miRNA biomarker discovery for neurodegenerative disease.

Analysis of cerebrospinal fluid (CSF) samples from 10 AD patients revealed the

presence of 60 deregulated miRNAs that could be used to distinguish samples from

AD versus controls (Cogswell et al. 2008). Perhaps surprisingly, many of these

miRNAs have not been observed to be significantly dysregulated in affected brain

regions. Some, but not all, of the miRNAs are expressed at high levels in the brain

or are highly enriched in the choroid plexus at the interface between blood and CSF;

however, others are expressed at very low levels, if at all in brain tissue. Many of

the miRNAs detected may be derived from immune cells in the CSF; however,

these may still be good indicators of disease.

Profiling miRNAs in blood mononuclear cells (BMCs) from patients with

sporadic AD revealed a significant upregulation of many miRNAs including miR-

34a, miR-181b, let-7f, and miR-200a (Schipper et al. 2007). Target prediction

revealed that transcription/translation and synaptic activity were the functional

targets of these miRNAs (Schipper et al. 2007) of which many identified target

genes were previously shown to be downregulated in BMCs from AD patients

(Maes et al. 2007). It is interesting to note that miR-34a was previously found to be

upregulated in AD brain samples (Wang et al. 2009), while let-7f was upregulated

in the CSF of AD patients (Cogswell et al. 2008). Perhaps, these miRNAs may be

specific markers of Alzheimer’s disease.

Due to the autoimmune nature of multiple sclerosis, many publications

investigated the presence of deregulated miRNAs in either whole blood or periph-

eral blood leukocytes. Specifically, increased levels of miR-326 have been

documented in relapsing multiple sclerosis patients, but not in similar diseases,

suggesting that miR-326 may be a potential biomarker and/or good therapeutic

candidate for MS (Du et al. 2009). Nevertheless, a second study failed to recognize

miR-326 as a determinant of MS but instead, identified 165 miRNAs deregulated in

patients with relapsing MS as compared with healthy controls. MiR-145 was the

single best candidate marker, exhibiting over 89.5% specificity, sensitivity, and
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accuracy (Keller et al. 2009). However, to date, miRNA-145 failed to be identified

in other MS-related studies.

Although these few studies highlight an inconsistency, they nevertheless provide

an impetus for further forays into the use of CSF and/or serum miRNAs as

biomarkers for early and specific diagnosis of neurodegenerative diseases.

18.5 MicroRNA-Based Therapeutics Targeting

Neurodegenerative Diseases

Manipulating the expression levels of disease-related miRNAs in the hope of curing

or prolonging disease onset is an exciting avenue of exploration. Introduction of

mature miRNA mimics, pre-miRNAs, or lentiviral-based vector systems encoding

miRNAs can be used to effectively increase levels of endogenous miRNAs in vitro

and in vivo. However, whereas a single cellular target is paramount in conventional

drugs, miRNAs have numerous molecular targets raising the possibility of pertur-

bation of multiple “unwanted” cellular functions. Robust promoters may drive the

expression of miRNAs to above physiological levels, exacerbating these effects.

Furthermore, these abundantly expressed miRNAs may outcompete other endoge-

nous miRNAs for the RISC machinery, resulting in additional off-target physiolog-

ical effects. For these reasons, adequate dose optimization must be achieved before

clinical application.

Conversely, neutralizing the endogenous miRNA functions can be achieved by

introducing synthetic anti-microRNAs or “antagomirs.” These are single-stranded,

antisense oligonucleotides that have perfect sequence complementarity to the

miRNA target, thus interfering with miRNA function (Krutzfeldt et al. 2005).

The exact mechanism of action remains ambiguous; however, this approach has

been used successfully in vivo to prevent gene repression by the targeting miRNA.

Modified LNA-antimiRs designed against miR-122 administered over long-term

periods successfully reduced the amount of miR-122 and did not show toxicity in

nonhuman primates or mice (Elmen et al. 2008a, b). Hence, the use of modified

oligonucleotides through noninvasive routes such as intravenous injections or CSF

infusion provides a potential nontoxic miRNA-based therapy. Another way to

interfere with miRNA function is by scavenging away the miRNA itself by

providing competitive binding targets, otherwise known as “sponging” (Ebert

et al. 2007). These miRNA decoys contain multiple microRNA recognition

elements (MREs) that compete with endogenous miRNA–mRNA interactions.

These MRE sequences are plasmid-expressed and driven by strong promoters to

effectively neutralize the targeted endogenous miRNAs. A second benefit of this

methodology is that it addresses the redundancy often seen between independently

expressed members of a miRNA family that all share the same seed sequence. As

the interaction between the decoy and the miRNA is based on the seed sequence

composition, the effective removal of the entire seed-specific miRNA family is
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possible (Ebert et al. 2007). Furthermore, multiple endogenous miRNAs may be

removed from the system due to the presence of different MRE sequences found on

the sponge. This allows for the removal of repressed genes that are targeted by

multiple miRNAs. Similarly, tiny LNAs have recently been developed that consist

of 8-mer-long LNA oligonucleotides that are complementary to the miRNA seed

regions and effectively repress miRNA families with negligible off-target effects

(Obad et al. 2011). Furthermore, tiny LNAs can be delivered systemically when

combined with phosphorothioate backbone leading to long-lasting silencing of

miRNA function (Obad et al. 2011).

The complexity of neurodegenerative diseases poses an immediate challenge to

the design of effective miRNA-based therapeutics. The triggers responsible for

disease remain poorly understood as do the molecular pathways that lead to neuron

damage and death. RNAi-based therapies have previously been used to successfully

decrease protein levels implicated in neurodegenerative disease progression. For

example, a lentiviral-based siRNA expression vector specific for BACE1 resulted

in decreased APP cleavage in vivo (Singer et al. 2005), while targeting mutant

allele-specific APP decreased disease-related behavior and pathology (Rodriguez-

Lebron et al. 2009). Also, inhibiting the expression of PrPC interferes with prion

disease progression (Bueler et al. 1994; Pfeifer et al. 2006; White et al. 2008) and,

surprisingly, reversal of prion neuropathology when administration of RNAi-based

treatment occurs early in the course of disease (Mallucci et al. 2003). Targeting

a-synuclein in PD by injection of shRNA-specific lentiviral vector systems (Sapru

et al. 2006) or infusion of chemically modified siRNA (Lewis et al. 2008) signifi-

cantly reduced protein levels. Similar methods were employed to target the mutant

Htt, reflective of HD, leading to effective allele inhibition and improved neuropa-

thology and behavior associated with disease (Harper et al. 2005; Boudreau et al.

2009). Interestingly, introducing mismatch mutations to the siRNA, which mirror

miRNA function, showed an increased selectivity and potency of inhibiting mutant

Htt expression (Hu et al. 2010), strongly suggesting that miRNAs may be better

candidates for RNA-based therapies. MiRNA drugs have an added advantage over

siRNA- or shRNA-based therapies in that they do not appear to have the same

issues with toxicity (McBride et al. 2008; Boudreau et al. 2009).

Delivery of any drug to the brain by peripheral administration is extremely

challenging. The blood-brain barrier (BBB) is a complex organization of cerebral

endothelial cells and their basal lamina, which are surrounded and supported by

astrocytes and perivascular macrophages. The BBB effectively protects the CNS

from unwanted, and typically harmful, compounds from entering the delicate CNS.

For the most part, the BBB is very effective at executing this function, but it poses a

considerable challenge for drug delivery to the CNS. Recent advancements include

the development of nanoparticle or viral evasion strategies. Numerous delivery

shuttles have been designed to successfully deliver siRNAs into the CNS but at low

frequencies (Leng et al. 2009). Furthermore, additional hyperfusion chemicals may

be needed to effectively open the tight junctions of the BBB, allowing for greater

entry of these compounds to the brain. The temporary disruption of the BBB may

pose further risks for patients with neurodegenerative disease, for example,
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allowing access to peripheral immune cells that may aggravate the condition of the

patient. One method to surmount these challenges was recently developed by

Kumar et al. (2007). This method consists of a 29-amino acid peptide derived

from the rabies virus glycoprotein (RVG) that specifically binds to nicotinic

acetylcholine receptors (nAchRs) (Lentz et al. 1982; Lafon 2005) and has been

found to efficiently transverse the BBB. SiRNA can be bound to an RVG peptide

that has been modified with a stretch of 9 synthesized arginine residues (RVG-9R).

The intravenous injection of RVG-9R/siRNA complexes was shown to enter the

CNS without inducing inflammatory cytokines or antipeptide antibodies (Kumar

et al. 2007). However, siRNA can be degraded from these complexes in serum,

reducing its efficacy. An alternative strategy would be to encapsulate siRNAs with

liposomal nanoparticles shown to increase stability in serum (Leng et al. 2009). To

this end, RVG linked to LSPCs (Pulford et al. 2010) or to a disulfide polyethy-

leneimine (SSPEI) nanomaterial showed increased stability in the blood (Hwang

et al. 2011). Successful delivery of miR-124a to the brain was observed when

complexes were injected into the blood, while a greater abundance transversed the

BBB when mannitol was used to perfuse the brain (Hwang et al. 2011). For all

reported RVG-RNA complexes, the small RNA species delivered to the brain

conferred functional activity through an unknown release mechanism. It should

be noted that the specificity of this delivery system is based on the RVG peptide

being able to recognize nAchRs which are not exclusively found in neurons but on

other cells such as macrophages (Kim et al. 2010). Perhaps, specificity of RVG

complexes for targeting subsets of neurons may be obtained by incorporating

additional recognition components to these complexes.

In summary, successful manipulation of miRNA expression levels has been

obtained both in in vitro and in vivo systems (highlighted in Fig. 18.1). The

specificity of miRNA function and the specific non-invasive delivery to the CNS

are two major challenges that remain to be overcome before miRNA-based

therapies can be used against neurodegenerative diseases in the clinic. Neverthe-

less, phase II clinical trials are already underway for the use of LNA-based

antisense molecule against miR-122 in Hepatitis C virus affected patients,

illustrating the tremendous rate of progress toward novel miRNA drugs since

their demonstration in mammals only a decade ago. Although many challenges

remain to be resolved, our increasing understanding of the involvement of

miRNAs in neurodegenerative diseases presents exciting opportunities for the

design of miRNA-based therapies to combat some of humankind’s most common

and debilitating diseases.

18.6 Future Perspectives

Although a relatively small number of studies have been reported to date in regard

to miRNA function in neurodegenerative conditions, several common themes have

been uncovered. One of the most intriguing is the proven importance of miRNAs in
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long-term neuronal function and survival. It is interesting to note that protein

misfolding, as observed with TGD-43, is able to ablate miRNA activity by

sequestering Drosha-associated proteins in not only ALS disease but also in other

neurodegenerative diseases such as AD (Herman et al. 2011; Wilson et al. 2011)

and Parkinson’s disease (Tian et al. 2011). It is also evident that the function of

FMRP is also closely associated with the miRNA biogenesis pathway. FMRP is

able to modulate the expression of miRNAs and may be conversely regulated by

miRNAs in vivo, a potential contributing pathway to disease pathology. Perhaps

miRNA biogenesis and processing machinery is affected by similar mechanisms in

other protein misfolding diseases. MiRNA expression deregulation appears to be a

common feature between all neurodegenerative diseases, including early stages that

occur prior to the development of clinical symptoms. In our own studies on prion

disease, the earliest detectable changes in affected neurons may surpass molecular

buffering mechanisms evoked by homeostatic circuits, perpetuating a stressed state

that ultimately leads to neuronal demise. Identification of some of these changes

may provide biomarkers indicative of early stages of disease, such as dysregulation

of miR-9/9* in HD and AD. This review represents the tip of the iceberg in the

identification of the miRNAs and their targets involved in neurodegeneration. The

future of miRNA research will undoubtedly lead to breakthroughs in understanding

the diagnosis and treatment of this group of devastating diseases.

Fig. 18.1 The methods successfully employed for in vivo miRNA manipulation. Some miRNAs

that are implicated in Alzheimer’s disease are used as examples (a) for the potential employment

of currently designed therapies to combat this disease (b). Overall, green arrows represent an

upregulation of the indicated miRNA(s)/target protein, while red arrows reflect miRNA or target

protein downregulation
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Chapter 19

siRNA Therapeutic Design: Tools

and Challenges

Amanda P. Malefyt, Phillip A. Angart, Christina Chan,

and S. Patrick Walton

Abstract Current RNA-based therapeutics are principally focused toward

activating the RNA interference (RNAi) pathway through exogenous administra-

tion of short interfering RNAs (siRNAs) and sometimes short hairpin RNAs

(shRNAs). The promise of RNAi-based therapeutics arises from their broad appli-

cability and excellent specificity. This chapter reviews siRNA design strategies for

improving intracellular interactions with the RNAi pathway proteins as well as key

characteristics required for the design of optimal delivery vehicles to maximize

specific silencing in only the cells of interest. The status of previous and ongoing

clinical trials will be described as these provide insight for overcoming future

challenges for long-term use of RNAi as a therapeutic modality.

Keywords Asymmetry • clinical trials • immune response • nanoparticles •

nanotechnology • nucleic acid delivery • off-target effects • RNAi • siRNA •

therapeutics

19.1 Introduction

While the list of regulatory RNAs in human cells continues to grow, the principal

focus for RNA-based therapeutics remains on leveraging the RNA interference

(RNAi) pathway through the exogenous delivery of short interfering RNAs

(siRNAs) and, to a lesser degree, short hairpin RNAs (shRNAs). The versatility

of RNAi to target essentially any protein and treat a diversity of diseases makes it an

ideal addition to the current repertoire of therapeutic modalities that principally

includes small molecules and recombinant proteins.
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In this chapter, we will focus on therapeutic applications of RNAi and the types

of choices that must be made in the development of this new class of therapeutics

(Fig. 19.1). Foci include the features of the siRNAmolecule itself that are important

for maximizing silencing activity and how to design delivery vehicles to transport

siRNAs to their intended location. We will also describe the status of RNAi-based

therapeutics currently in clinical trials, as well as the challenges that need to be

overcome for the long-term success of future clinical trials.

19.2 siRNA Design

In RNAi, the siRNA is both the initiator of the pathway as well as the compon-

ent that provides target gene specificity. siRNAs, which are double-stranded

ribonucleic acids (dsRNAs), must interact with a series of proteins that select one

of the two strands as the active strand. Throughout the pathway, siRNAs, in both

double-stranded and single-stranded forms, interact with a variety of cellular

proteins and the target mRNA. Design rules for siRNAs then should maximize

the useful interactions with the proteins and target while minimizing those that

lead to reduced specific activity or increased nonspecific activity. A firm grasp

of the RNAi mechanism is necessary for the construction of a complete set of

design rules.

Fig. 19.1 siRNA therapeutic development. The development of optimized siRNA therapeutics

must focus on three related but distinct functions: delivery of active siRNAs to the tissues and

cells of interest, strong silencing activity against the target of interest, and avoiding nonspecific

effects.
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19.2.1 Details of the RNAi Mechanism

In human cells, the minimal components of RNAi required to silence the expression

of a gene are a single-stranded siRNA and the protein argonaute 2 (Ago2) (Rivas

et al. 2005; Liu et al. 2004). This RNA–protein complex is called the active RNA-

induced silencing complex (RISC) and cleaves the target mRNA at the center of the

region of the mRNA that is complementary to the siRNA strand (Hammond et al.

2000; Rivas et al. 2005; Elbashir et al. 2001b; Leuschner et al. 2006). When

initiated with double-stranded siRNAs, formation of an active RISC involves the

loading of one siRNA strand, called the guide strand, into Ago2, while the other

strand, the passenger strand, is nicked by Ago2 to yield the active RISC (Tomari

et al. 2004b; Miyoshi et al. 2005; Matranga et al. 2005; Rand et al. 2005; Leuschner

et al. 2006). As either siRNA strand can be loaded into the active RISC, to ensure

correct targeting, the strand selected as the guide strand must be the strand that is

complementary to the intended target mRNA and, moreover, the targeted sequence

must be unique within the transcriptome. If the incorrect strand is loaded into RISC

(or if the correct strand is complementary to multiple target mRNAs), it can result in

deleterious “off-target” effects (Jackson et al. 2003; Jackson and Linsley 2010).

While Ago2 is minimally required for formation of an active RISC, other proteins

and protein complexes, including Dicer, TRBP, PACT, and C3PO, are known to be

central to the pathway or closely associated with proteins central to the pathway,

with their functional roles still incompletely defined (Liu et al. 2004; Hammond

et al. 2000; Kok et al. 2007; Lee et al. 2006; Ye et al. 2011; Liu et al. 2009).

However, in some cases, it has been found that these proteins interact more

favorably with siRNAs of particular sequences or structures. The remainder of

this section focuses on the characteristics of the siRNA that are known to be

recognized by RNAi pathway proteins and, hence, can be applied to designing

siRNAs for optimal activity and selectivity in humans.

19.2.2 General Structural Features of siRNAs

The unique structure of siRNAs, ~19 bp duplexes with 2 nt overhangs on each 30

end, is a result of the endonucleolytic processing of longer dsRNAs by Dicer

(Fig. 19.2) (Bernstein et al. 2001; Zamore et al. 2000; Elbashir et al. 2001a;

Zhang et al. 2002a, 2004; Lima et al. 2009; Sakurai et al. 2011). To be recognized

by the pathway proteins, siRNAs must also have a 50 phosphate (Nyk€anen et al.

2001). Fortuitously, synthetic siRNAs are rapidly phosphorylated upon entry to

cells by the protein Clp1 (Weitzer and Martinez 2007). Thus, exogenous siRNAs

synthesized with the canonical siRNA structure are active as silencers (Lima et al.

2009; Sakurai et al. 2011). For additional information, please see the chapter 5

(this volume).
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19.2.3 Factors Influencing Silencing Activity

Understanding the silencing activity of an siRNA requires knowledge of how

siRNAs activate the pathway and how siRNAs and the pathway proteins subse-

quently mediate silencing. Investigation of these molecular scale interactions is

guided in part by large dataset analyses, which can be used to find features

characteristic of active and inactive siRNAs (Fig. 19.2 and Table 19.1) (Reynolds

et al. 2004; Ui-Tei et al. 2004; Huesken et al. 2005; Shabalina et al. 2006). Analysis

of these datasets has helped discern the impact of positional base preferences,

overall hybridization stability, and local hybridization stability. Design of an

siRNA with knowledge of these interactions can be used to minimize the recogni-

tion of siRNAs by cellular immune responses, ensure proper strand selection, and

maximize RISC turnover and stability.

19.2.3.1 Asymmetry

One of the major challenges in siRNA design is ensuring selection of the antisense

strand as the guide strand. Selective incorporation of one of the siRNA strands is

referred to as asymmetry. TRBP, Dicer, and Ago2 directionally bind siRNAs based

upon differences localized to the termini of the siRNA (Gredell et al. 2010; Noland

et al. 2011; Frank et al. 2010; Matranga et al. 2005), although there are

discrepancies as to what factors contribute to asymmetry and the roles of the

various pathway proteins in the recognition of asymmetry. In Drosophila, R2D2
(a TRBP homolog) senses and preferentially binds to the termini with the greater

hybridization stability, thereby orienting the less stably hybridized end to be bound

by Dcr-2 (a Dicer homolog), followed by association of Ago2 with the ternary

complex (Liu 2003; Tomari et al. 2004a, b; Liu et al. 2004). It is thought that the

end with greater hybridization stability adopts a more stable A-form helix that is

more strongly bound by the dsRNA binding domains present in R2D2 (Tomari et al.

2004a, b). In humans, asymmetry sensing and the formation of an active RISC are

less well understood, though it is known to be different in some ways than the

Drosophila pathway (Wang et al. 2009; Sakurai et al. 2011). Methods used to

Fig. 19.2 Structure of an siRNA. The canonical siRNA structure consists of two complementary

RNA strands with 19 bp and two nucleotide overhangs on each 30 end. Current design criteria

involve nucleotide preferences at specific positions (indicated by shading) as well as general

recommendations for overall and terminal base content (see Table 19.1).
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predict asymmetry in relation to silencing activity may depend on the nucleotides at

the 50-termini (Gredell et al. 2010; Seitz et al. 2011; Frank et al. 2010),

hybridization stability of the termini (Mathews et al. 1999; Lu and Mathews

2008b; Schwarz et al. 2003; Hutvagner 2005), or both (Gredell et al. 2010; Seitz

et al. 2011; Frank et al. 2010; Walton et al. 2010).

Early predictions of asymmetry depended only upon differential hybridization

stability of the four-terminal hybridized nucleotides (Schwarz et al.; Hutvagner

2005; Khvorova et al. 2003; Tomari et al. 2004b). More recent findings have

pointed to positional base preferences at the termini of miRNAs and more active

siRNAs (Seitz et al. 2011; Gredell et al. 2010; Walton et al. 2010). At this point, it is

clear that more active siRNAs and miRNAs contain A or U base pairs at the 50

position of the guide strand (Reynolds et al. 2004; Gredell et al. 2010; Seitz et al.

2011). Ago2 recognizes this position using a nucleotide specificity loop that does

not exist in other Ago2 homologs (Frank et al. 2010). Based on these studies,

asymmetry predictions for RNAi should take into account nucleotide preferences at

the 50 termini.

19.2.3.2 mRNA Target Structures

Another variable that can effect gene silencing and RISC activity is the secondary

structure of the target mRNA (Fig. 19.3) (Vickers et al. 2003; Ameres et al. 2007;

Bohula et al. 2003; Brown et al. 2005; Kretschmer-Kazemi Far and Sczakiel 2003).

There are a variety of different methods to predict the efficiency of silencing based

upon secondary structure (Bohula et al. 2003; Overhoff et al. 2005; Schubert et al.

2005; Shao et al. 2007; Kiryu et al. 2011; Lu and Mathews 2008b). The findings of

these reports indicate that regions of low secondary structure tend to be better

targets for siRNA-mediated silencing. mRNAs with little secondary structure at the

30 and 50 ends of the siRNA target region tend to be silenced more efficiently as

compared to other structures (Yoshinari et al. 2004; Gredell et al. 2008; Vickers

et al. 2003). As the prediction and experimental characterization of target mRNA

structures continues to improve, it is expected that exact specifications for the

impact of target structure on siRNA design will be more clearly delineated,

including an understanding of any impact due to mRNA tertiary structures.

19.2.4 siRNA-Mediated Cytotoxicity and Immune Response
Activation

In addition to unintended effects resulting from targeting the wrong gene or by

interfering with the endogenous RNAi functionality (Grimm et al. 2006; Sioud

2007), siRNAs are detected by the human innate immune system by a series of

surface and cytoplasmic receptors (Samuel-Abraham and Leonard 2010). These
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receptors can recognize either specific sequences or the A-form helix of dsRNA,

and their expression levels vary across different cell types (Iwasaki and Medzhitov

2004; Judge and Maclachlan 2008). Immune recognition poses a significant con-

cern in the development of siRNA therapeutics and presents a challenge in the

design of an siRNA structure that efficiently knocks down its target gene and does

so with minimal nonspecific effects. Immunogenicity can be mitigated with the use

of an appropriate delivery vehicle and chemical modifications to the ribose sugar,

aromatic base, and phosphate backbone, but these modifications must be made

without compromising specific silencing activity.

19.2.4.1 Sequence-Specific Off-Target Effects

Off-target effects occur when RISC cleaves the wrong mRNA. These effects can be

caused by targeting an mRNA sequence that is not unique, by the incorporation of

the wrong strand into RISC, by the incorporation of a degraded fragment of mRNA

into RISC, or by activating a miRNA pathway by designing an siRNA with miRNA

seed region homology (Jackson et al. 2003; Jackson and Linsley 2010; Bartel

Fig. 19.3 Possible secondary

structures within an mRNA.

mRNA molecules adopt

complex secondary and, to a

lesser degree, tertiary

structures that make some

locations highly accessible

(green shading), partially
accessible (yellow shading),
or highly inaccessible (red
shading).
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2009). Sequence-specific off-target effects can generally be avoided through

comparison of the potential siRNA sequence against the wealth of available

sequence information using utilities such as:

BLAST (http://blast.ncbi.nlm.nih.gov/Blast.cgi)

RefSeq (http://www.ncbi.nlm.nih.gov/RefSeq)

miRBase (http://www.mirbase.org/)

19.2.4.2 Surface Receptor Responses

Toll-like receptors (TLRs) are a set of transmembrane proteins that are expressed

primarily within endosomes and lysosomes of immune cells (Takeda et al. 2003).

TLR7 and TLR8 activate an immune cascade after binding specific ssRNA

sequences called pathogen-associated molecular patterns (PAMPs) (Hornung

et al. 2005; Judge et al. 2005; Sioud 2005, 2006; Diebold et al. 2004, 2006),

resulting in the production of type I interferons, primarily interferon-a (IFN-a),
and inflammatory cytokines, including interleukin-6 (IL-6) and tumor necrosis

factor-a (TNF-a) (Liu 2005; Judge and Maclachlan 2008; Gorden et al. 2005;

Hornung et al. 2005; Judge et al. 2005). siRNAs are believed to activate TLR7

and TLR8 responses following melting in the acidic endosomes (Sioud 2005;

Goodchild et al. 2009). The severity of the response can also vary significantly

with different sequence motifs and cell types (Hornung et al. 2005; Judge et al.

2005; Sioud 2005; Diebold et al. 2004, 2006; Iwasaki and Medzhitov 2004).

siRNAs may also activate TLR3, a sequence-independent receptor for dsRNA

found on the cell membrane and within endosomes (Alexopoulou et al. 2001;

Karikó et al. 2004). This information has led to the development of siRNAs that

can avoid a TLR response by using a delivery vehicle that does not enter the cell by

endosomal integration as well as by blocking TLR binding to the siRNA by

changing the 20-OH of uridine bases to a 20-OMe group (Robbins et al. 2009).

19.2.4.3 Cytoplasmic siRNA Recognition

OAS1, PKR, and RIG-I are all nonspecific cytoplasmic receptors for exogenous

dsRNA (Gantier and Williams 2007; Samuel-Abraham and Leonard 2010) and

siRNAs (Hornung et al. 2006). These cytoplasmic receptors have more uniform

expression levels across all cell types compared to TLRs and cannot be easily

avoided by using a cell-specific delivery vehicle. PKR and OAS1 recognize

dsRNA, and the level of immune response depends on the length of the dsRNA

bound to the receptor. PKR generally requires dsRNA greater than 30 bp for

dimerization and subsequent activation, although it has been found to bind to

dsRNA as short as 16 bp in length (Manche et al. 1992; Bevilacqua and Cech

1996). PKR recognition of siRNAs may be facilitated by its interactions with the

RNAi-associated proteins PACT and TRBP, which regulate PKR phosphorylation
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(Kok et al. 2007; Lee et al. 2006). OAS1 can bind dsRNA as short as 19 bp, and its

activation is particularly sensitive to the presence of the motif NNWW(N9)WGN

(Kodym et al. 2009). OAS1 activates RNase L, which nonspecifically degrades

ssRNA (Minks et al. 1979). The degraded products of RNase L can subsequently

activate immune responses in neighboring cells (Malathi et al. 2007). RIG-I is

strongly activated when bound by a blunt-ended dsRNA with a 50-triphosphate
(Schlee and Hartmann 2010; Schlee et al. 2009; Yoneyama et al. 2004; Hornung

et al. 2006; Kato et al. 2008; Kim et al. 2004). Nonetheless, RIG-I can still be

activated by siRNAs (Pichlmair et al. 2006; Marques et al. 2006). Taken together,

the evidence shows that siRNAs do not initiate most cytoplasmic immune

responses. However, moving forward, it will be important to further define, and

hence design around, the molecular events that do result in immune stimulation

upon siRNA administration.

19.2.5 Chemical Modifications and Other Exogenous
siRNA-Like Structures

siRNA characteristics can be manipulated through changes in the length of either

siRNA strand or by the addition of chemical modifications to the phosphate

backbone, ribose sugar, or aromatic base. With the large number of potential

modifications that can be made, it is difficult to know which to use to generate

the desired effect. To further complicate design, chemical modifications used in

tandem require subsequent structural optimization (Dande et al. 2006). For the

interested reader, more detailed analyses of the investigation and application of

chemical modifications in siRNA design have been described previously (Guo et al.

2010a; Bramsen et al. 2009).

Various structural designs have been found to enhance siRNA activity as well as

mitigate unintended effects. For clarity, these structures are given different

names that are indicative of their unique structures/modes of action. For instance,

aiRNAs are asymmetric interfering RNAs, where asymmetric refers to the

differences between the length of the guide strand and passenger strand. aiRNAs

are designed to contain a passenger strand shorter than the guide strand and are

shown to have potentially stronger and longer-lasting silencing than standard

siRNAs (Sun et al. 2008; Chu and Rana 2008). Examples of other structures include

small internally segmented interfering RNA (sisiRNA), double-guide siRNA

(dgRNA), and long interfering RNA (liRNA) (Bramsen et al. 2007; Hossbach

et al. 2006; Chang et al. 2011). In some cases, siRNAs have been used intentionally

for their immunostimulatory effect, termed immunostimulatory RNA (isRNA), and

have desirable therapeutic attributes despite their inability to knock down a target

gene (Schlee et al. 2006). The future of siRNA designs will likely include at least

some modifications to the canonical siRNA design; what is still not clear is how

best to select optimal sets of modifications for clinical applications.
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19.3 Delivery

The direct administration of siRNAs has shown some success when delivered

topically to areas such as the eye, skin, or vagina or locally to the lung, brain, or

isolated tumors (Whitehead et al. 2009). However, this requires direct and some-

times intrusive access to the areas of interest. When delivered systemically, naked

siRNAs have minimal in vivo success due to degradation by serum nucleases and

early filtration through the renal system (Soutschek et al. 2004; van de Water et al.

2006). Additionally, naked siRNAs cannot be targeted directly to the tissues/cells

of interest. As a result, it is preferred to utilize some type of carrier to protect the

siRNA cargo and aid in its delivery to the cells of interest. Delivery approaches are

generally divided between biological (viral or bacterial) (Seow and Wood 2009)

and nonviral methods. With respect to RNAi, viral vectors are primarily useful for

chronic therapies requiring long-term expression of shRNAs. Bacterial vectors are

less common, but nonetheless still an area of continuing investigation (Xiang et al.

2006). Nonviral delivery vehicles, which can deliver either siRNAs or shRNAs for

transient therapies, are further categorized according to the chemical or physical

properties into several different groups such as lipids, polymers, or solid-core

particles. These carriers typically range in size from 50 to 200 nm and are some-

times termed nanoparticles (NPs). Each of these approaches has shown success in

cell culture and in some in vivo studies (Shim and Kwon 2010). Nonetheless,

refinement of currently available vehicles is likely necessary for development of

highly effective, noncytotoxic, tissue-specific, systemic delivery vehicles.

19.3.1 Viral Vectors

Viral-based delivery can be achieved using adenoviruses (ADs), adeno-associated

viruses (AAVs), or retroviruses such as lentiviruses (Ghosh et al. 2006; Coura and

Nardi 2007; Cockrell and Kafri 2007). ADs are large viruses (60–90 nm in diame-

ter) and are typically transported into the cell through clathrin-coated endocytosis

(Ghosh et al. 2006). Their large size allows for the highest nucleic acid packing

capacity among viral vectors. ADs naturally deliver their cargo to the nucleus

where they infect their host cells with viral, double-stranded DNA. ADs can be

purified to high concentration and have shown success in infecting both dividing

and nondividing cells (Bain et al. 2004). AAVs are modified forms of adenoviruses

in which the majority of the viral DNA has been removed and replaced with single-

stranded DNA constructs (Coura and Nardi 2007). AAVs are nonpathogenic on

their own, having to rely on helper viruses as well as the host cells’ polymerases for

replication. Due to their simpler structure as compared to ADs, AAVs have a much

smaller packaging capacity (average size is ~22 nm in diameter) (Coura and Nardi

2007). AAVs can often avoid immune response and provide stable transgene

expression over time, however at a level much lower than other viruses
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(Gao et al. 2002). Retroviruses, such as lentiviruses, use envelope fusion to gain

access into target cells and are the most common form of virus used for gene

therapy (Ghosh et al. 2006). Unlike ADs which require delivering DNA to the

nucleus, retroviruses act by delivering RNA into the cell and using reverse tran-

scription to incorporate their DNA into the genome. Lentiviral vectors have

reported improved success in transducing primary cells over other viral vector

systems (Cockrell and Kafri 2007). RNAi-based strategies initiated by viral infec-

tion rely on transduction of DNA encoding shRNAs, which are then processed and

enter the RNAi pathway (Grimm et al. 2006).

Viral delivery systems are highly efficient in delivering their therapeutic cargo

but do so with the concomitant risk of immunogenicity (Kaiser 2007; Hartman et al.

2008), though this is not solely a shortcoming of viral delivery systems (Robbins

et al. 2009). To this point, AAVs are advantageous due to their reduced immuno-

genicity relative to ADs. Even if innate immune recognition is avoided, adaptive

immunity can lead to decreased viral vector efficiency over time (Ghosh et al.

2006). Additionally, all viral vectors, however modified, run the risk of uncon-

trolled insertional mutagenesis with active viruses or untargeted cells (Cockrell and

Kafri 2007).

Generally, viral promoters result in strong expression of viral proteins by the

infected cell. For shRNA expression, such high expression results in competition

between endogenous miRNAs and viral shRNAs utilizing the same RNAi pathway,

saturating the shared nuclear exporter, exportin-5 (Grimm et al. 2006). As a result,

normal miRNA functionality is impeded, leading to cell dysregulation and death.

Negative cell responses can be mitigated by using smaller doses of viral vectors or

using weaker promoters for shRNA expression but must be balanced against lower

efficacy. Despite their slower activation relative to other viral vectors, lentiviral

vectors seem to be the most feasible choice for shRNA transduction due to their

relatively broader infectivity.

19.3.2 Lipid-Based Vehicles

Among lipid-based approaches, the majority of delivery vehicles are based on

cationic lipids. The use of cationic lipids allows facile complex formation with

anionic nucleic acids. The resulting complexes, sometimes referred to as

lipoplexes, protect siRNAs from serum degradation during transport to cells

of interest (Buyens et al. 2008). The first reported cationic transfection lipid

was N-[1-(2,3-dioleyloxy)propyl]-N,N,N-trimethylammonium chloride (DOTMA)

(Malone et al. 1989). DOTMA was subsequently modified to create a second

transfection reagent, N-[1-(2,3-Dioleoyloxy)propyl]-N,N,N-trimethylammonium

methyl-sulfate (DOTAP) (Ren et al. 2000). Their common structure consists of a

quaternary amine head group and a glycerol-based backbone linked to two long

hydrocarbon chains. A variety of cationic lipids are now available commercially,

with their principal application being siRNA delivery in cell culture.
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For improved delivery specificity, targeting ligands have been conjugated to the

lipids (e.g., such as transferrin to mediate uptake via the transferrin receptor)

(Cardoso et al. 2007). High-throughput screening approaches have been used to

identify the important characteristics of successful lipid-based delivery agents

(Akinc et al. 2008). Based on this study, lipid-based reagents should include

amide linkages, two or more alkyl tails of 8–12 carbon length, as well as the

presence of secondary amines, though the incorporation of these characteristics

does not ensure successful siRNA delivery. Interestingly, it has been reported that

combinations of ineffective lipid-based reagents can yield more active reagents

through synergistic effects (Whitehead et al. 2011). It remains to be seen if lipids in

development can overcome the significant cytotoxicity that to date has limited their

use in vivo (Zhang et al. 2007).

Endogenous liposome-like structures termed exosomes have gained attention

recently as potential siRNA delivery vehicles (Thery 2011). Exosomes are small

membrane vesicles, averaging 100 nm in diameter, that are released from most cell

types. Originating from endocytotic vesicles, their existence has been known for

over 25 years; however, their ability to carry RNA molecules, including miRNAs,

between cells is a relatively recently discovered phenomenon (Valadi et al. 2007).

Exosomes have been shown to cross the blood-brain barrier, another advantage for

in vivo application. Moreover, exogenous exosomes can be generated containing

targeting peptides for targeted delivery applications (Alvarez-Erviti et al. 2011).

19.3.3 Polymer-Based Vehicles

Polymeric vehicles have been used for the delivery of both plasmids and siRNAs.

As with lipid-based vehicles, polymers used for nucleic acid delivery are typically

cationic to allow for self-assembly of the polymer-nucleic acid complexes, some-

times termed polyplexes. Linear and branched polyethylenimines (LPEI, BPEI)

have been routinely used, despite their significant cytotoxicity (Burke and Pun

2008). Current polymer systems lack the efficacy of lipid-based systems.

Modifications of single polymer systems have been explored, such as adding poly

(ethylene glycol) (PEG) (Mao et al. 2006) or ethyl acrylate (Zintchenko et al. 2008),

and have been found to increase in vivo delivery efficiency by increasing circula-

tion time and decreasing toxicity.

Other polymer systems that have been used for nucleic acid delivery include

poly(b-amino esters) (PBAE) (Lynn and Langer 2000), poly(amidoamine)

(PAMAM) dendrimers (Tang et al. 1996), and chitosan (Katas and Alpar 2006;

Liu et al. 2007). In order to combine positive attributes from varied synthetic

polymers, combinations of polymers to create diblock or triblock polymers have

also been tested as successful methods of improving nucleic acid delivery in cell

culture. These include polyvinyl alcohol/poly(D,L-lactide-co-glycolide) (PVA-

b-PLGA) (Nguyen et al. 2008) or poly(ethylene oxide) (PEO)/poly(e-caprolactone)
(PEO-b-PCL) (Xiong et al. 2009). While cationic polymer systems rely on the
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electrostatic attraction of the siRNA for complex formation, covalent attachment of

the siRNA to the polymer by disulfide bonds has also shown some success (Rozema

et al. 2007). It is believed that the presence of disulfide bonds, which are reduced

through cellular levels of glutathione and thioredoxin, can also aid in the intracel-

lular release of the complex. The numerous and varied functional groups that are

available on polymers allow for extensive modifications to tune the properties of the

polymers for siRNA delivery applications. Rules for such modifications are just

beginning to emerge (Siegwart et al. 2011; Portis et al. 2010).

19.3.4 Solid-Core Particles

A third type of delivery vehicle currently under development uses solid-core

particles such as iron, gold, or silica (Veiseh et al. 2011; Rosi et al. 2006; Hom

et al. 2010). One advantage of these NPs is tighter control of the size and structure

of complexes formed. Also, solid-core particles have the potential to provide

enhanced imaging and diagnostic signals for in vivo applications.

Iron NPs can be coated with other compounds to improve delivery efficiency.

Commercially available iron NPs (e.g., SilenceMag, OZ Biosciences) rely on a

mixture of solid-core iron particles with lipids to create a combination delivery

reagent. Other iron NPs utilize cationic polymer coatings or polymer peptides to

help bind siRNAs and improve delivery efficiency (Veiseh et al. 2011). Delivery of

iron NPs can be controlled with a magnetic field, termed magnetofection (Lee et al.

2011). This can enhance delivery to the cells of interest and increase transfection

rates.

siRNAs have been conjugated to gold NPs via disulfide bonds (Rosi et al. 2006).

This improves their nuclease stability over free siRNAs (Patel et al. 2011). In

addition, combinations between delivery systems have been examined, such as

using a gold NP modified with PEG and/or PBAE polymers (Lee et al. 2008;

Lee et al. 2009) or PEI and polyanhydrides (PAH) in a layer-by-layer approach

(Guo et al. 2010b). Gold NPs modified with folate for receptor targeting and

near-IR photoactivity have shown selective in vivo activity in tumors (Lu et al.

2010) indicating the ability for receptor-mediated targeting.

Increasingly, silica NPs are being studied for siRNA delivery. Similar to other

solid-core NPs, silica particle size can be finely tuned, and particles can be easily

modified with the addition of polymers such as PEI (Hom et al. 2010). Furthermore,

the porous nature of silica particles allows for codelivery of siRNAs with other

small molecule drugs such as doxorubicin for cancer treatment (Meng et al. 2010).

However, solid-core particles create additional barriers to in vivo applications since

their size and insolubility also play a role in their ability to traverse the circulation.

It has been shown that sedimentation of solid-core gold NPs in two-dimensional

cell culture has a direct effect on cellular uptake (Cho et al. 2011).
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19.3.5 Mechanism of Entry

In order to activate the RNAi pathway, siRNA complexes must enter the cell and

access the cytoplasm. Most often, this occurs through macropinocytosis or endocy-

tosis (Dausend et al. 2008). Macropinocytosis results from a cell membrane

reaching out and enveloping the delivery vehicle, allowing for entry of larger

(>150 nm) particles. Endocytosis can be subdivided into categories such as recep-

tor-mediated, clathrin dependent, caveolae, or lipid raft based (Dausend et al.

2008). These methods create internalized vesicles of delivery vehicles that, while

intracellular, do not provide access to the cytoplasm. Although the exact means of

delivery for each vehicle has not been defined, the two main hypotheses for entry

into the cytoplasm from vesicles are through the proton sponge effect (Sonawane

et al. 2003; Akinc et al. 2005) or a membrane fusion event (Lu et al. 2009).

According to the proton sponge hypothesis, amine-containing vehicles, espe-

cially polymers containing many amines, are endocytosed through normal means.

As the endosome acidifies, the buffering capacity of the amines draws in an excess

of protons and concomitantly an excess of chloride ions. Osmotic swelling then

causes the endosome to burst, releasing the contents into the cytoplasm of the cell

(Cho et al. 2003; Sonawane et al. 2003; Akinc et al. 2005). Other delivery vehicles

utilize fusogenic peptides to create more potent and active endosomal escape

(Kwon et al. 2008).

While it has been proven that all NP delivery vehicles display some type of

endocytotic uptake (Medina-Kauwe et al. 2005), for some lipid vehicles, endocyto-

sis is not the only pathway through which silencing can be achieved. In one study, it

was shown that normal conditions result in 95% of lipoplexes being taken via

endocytosis (Lu et al. 2009). However, when endocytosis was blocked, lipid/siRNA

complexes still accumulated inside the cell and caused silencing. It is believed the

access occurred through direct fusion of the lipoplex with the lipid bilayer mem-

brane, resulting in delivery directly to the cytoplasm of the cell.

19.3.6 Two-Dimensional In Vitro, Three-Dimensional In Vitro,
and In Vivo Transition Challenges

Typical laboratory experiments involve treating cells grown on a flat cell culture

plate where the treatment is added directly on top of the cells. However, this does

not mimic the cells’ natural environment. In vivo, cells are embedded in tissues,

with extracellular matrix and cell contacts in all directions. In the development of

novel siRNA therapeutics, few good cell culture-based models exist for examining

the differences in delivery to three-dimensional cultures versus two-dimensional

cultures. The development of three-dimensional collagen (Ishihara et al. 2010),

fibronectin (Zhou et al. 2008), or synthetic PEG (Raeber et al. 2005) hydrogels to

study cell morphology and migration has often been used as an intermediate step
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between cell culture and in vivo models. Current three-dimensional studies involv-

ing siRNA treatments either resort to pretreating cells before embedding in the

matrix (Ivanov et al. 2008), treatment of cells growing on top of a hydrogel (Lei

et al. 2010), or nucleic acid–containing hydrogel scaffolds implanted into animal

models (Andersen et al. 2010). In three-dimensional systems, siRNA delivery is

limited, resulting in longer transfection times as well as reduced delivery efficiency.

Many commercially available transfection reagents can be ineffective when

attempting to treat cells embedded within a three-dimensional matrix (Zhang

et al. 2010). Future development of reagents for in vivo delivery will depend on

the availability of three-dimensional cell culture model systems.

Despite the multitude of candidates, there is no single delivery vehicle that can

guarantee reliable, consistent siRNA delivery to all cell types. This is attributable

both to a need to optimize the vehicles and to the lack of good model systems for

evaluating in vivo vectors. The best vehicle choice may also depend on the disease

and cellular targets, as generalized toxicity can be an acceptable response if

confined to, for instance, cancer cells. The risk of immune complications often

hinders viral vector development even though they can show highly efficient

delivery. Lipid vehicles provide simple and efficient transfection and are the

standard for cell culture as well as large-scale bioreactors where toxicity is not a

concern. Solid-core particles can be highly modified without altering their structure.

While often noncytotoxic at low concentrations, accumulation of these typically

nondegradable particles is a potential concern for long-term or repeated use.

Polymer vehicles provide the greatest variety of constructs but currently lack the

efficiency attainable with viral vectors. However, their potential for extensive

modification, in concert with their potential biodegradability, seems to make

them the likeliest candidates for future siRNA delivery applications.

19.4 Clinical Challenges and Successes

There are several ongoing clinical trials utilizing siRNA therapeutics to treat

macular degeneration, solid tumor cancers, acute kidney failure, and viral

infections such as hepatitis C (HCV) and respiratory syncytial virus (RSV)

(Davidson and McCray 2011), but, as yet, no clinical trials have progressed to

FDA approval. Although the time frame for therapeutic development from discov-

ery to FDA approval can vary markedly depending on the drug type and its target,

RNAi therapeutics are not moving through the developmental pipeline as quickly as

initially hoped. As a result, major pharmaceutical companies have started cutting

funding toward development of RNAi therapeutics (Pollack 2011; Krieg 2011).

Current therapies in clinical trials are investigating a variety of involved siRNA

designs that leverage chemical modifications and tailored delivery vehicles

(Table 19.2), though current siRNA designs do not incorporate many of the

established criteria for maximizing siRNA activity (Table 19.1).
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ALN-RSV01 is an siRNA targeted against the nucleocapsid mRNA of RSV,

a gene critical to viral replication (Alvarez et al. 2009). RSV-caused bronchiolitis

can lead to hospitalization of infants and is implicated in the development of other

illnesses including asthma and reactive airway disease (Leader and Kohlhase 2002;

Kalina and Gershwin 2004; Peebles 2004; Psarras et al. 2004). To date, there is no

vaccine developed to prevent RSV; although other treatments do exist, their use is

limited (Ventre and Randolph 2007; Stevens and Hall 2004). ALN-RSV01 has

progressed to a phase IIb clinical trial and is currently the closest RNAi therapeutic

to reaching FDA approval (Zamora et al. 2011). RSV infections are specifically

amenable to RNAi therapeutics because the infection is superficial, localized to the

airway epithelial cells, and is easily accessible by inhaled delivery of naked siRNA

(Zhang et al. 2002b; Johnson et al. 2007; Alvarez et al. 2009; Meyers 2011).

The selection of the ALN-RSV01 siRNA began with the identification of a 19 bp

conserved region of the virus followed by screening for siRNAs with fewer than

17 bp homology with any host genes (Alvarez et al. 2009). ALN-RSV01 was found

to be particularly effective in the knockdown of the nucleocapsid protein in

comparison to other candidate siRNAs (Alvarez et al. 2009). The ALN-RSV01

siRNA is highly asymmetric; however, the first nucleotide of the guide strand is

a cytosine and not a uracil or adenine, which have been found to mediate more

efficient siRNA interactions with Ago2. While the current clinical trial does not use

a chemically modified siRNA, the patent filed by Alnylam Pharmaceuticals

explores many different chemical modifications including the addition of 20-OMe

to the ribose backbone and hydroxyproline to the 50 termini (Meyers 2010).

OPKO Health’s Bevasiranib was the first siRNA therapeutic to reach stage III

clinical trials. As an early frontrunner, the naked siRNA was injected intravitreally

to target the vascular endothelial growth factor (VEGF) for use in the treatment of

age-related macular degeneration (Dejneka et al. 2008). The phase III clinical trial

relied on combinatorial therapy of Bevasiranib combined with monoclonal anti-

body therapy (Singerman 2009). However, the company withdrew the trial in 2009

due to lack of significant activity in reducing vision loss and is currently looking for

alternative delivery methods such as increased dosing or the use of some type of

siRNA delivery vehicle to improve efficacy (Rubin 2009).

The first targeted siRNA delivery drug to reach clinical trials is Calando

Pharmaceutical’s CALAA-01. The siRNA, designed to target tumor growth factors,

is delivered in a protective cyclodextrin polymer NP, modified with human trans-

ferrin to target binding to transferrin receptors, which are typically upregulated in

cancer cells (Davis 2009). While still in the phase I stage, the advantage to this

upcoming therapeutic is that it addresses required design features previously

discussed, including a polymeric vehicle with a cationic backbone to bind and

protect nucleic acids, components that minimize immunogenicity, PEG to increase

intravenous circulation time, complex size small enough to access the tumors but

large enough to minimize kidney filtration, receptor targeting for enhanced cell

specificity, and efficient endosomal release.
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19.5 Conclusion

Current clinical trials use siRNAs based largely on early design rules and experi-

mental validation of a limited number of candidates (e.g., ALN-RSV01). While

siRNA sequence selection and design has proven more complex than initially

anticipated, improved understanding of the RNAi mechanism has led to the devel-

opment of siRNAs with improved functionality. Moving forward, the development

of siRNA therapeutics will likely be informed by a better understanding of the

RNAi pathway in regard to the proteins involved and how they recognize siRNAs,

leading to the rational inclusion of modifications to the canonical siRNA design.

While improving the function of siRNA itself is important, the majority of

ongoing siRNA clinical trials focus on accessible, localized targets (lungs, eyes,

solid tumors) or targets that are natural filtering agents (liver, kidneys), indicating

that the key barrier to successful siRNA therapies is delivery. Targeted delivery

agents and increased knowledge into how siRNAs traverse complex tissues are

important areas of continued study.

Following continued optimization of the multitude of design variables discussed,

future challenges for therapeutic development include techniques for the reliable

large-scale processing of both siRNAs as well as complex delivery vehicles.

Nonetheless, comprehensive knowledge obtained outlining design guidelines as

well as current clinical trial successes and failures provide a strong starting point for

the continued development of RNAi therapeutics.
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Chapter 20

Artificial MicroRNA and Its Applications

Pranjal Yadava and Sunil Kumar Mukherjee

Abstract Enhanced understanding of cellular microRNA (miRNA) biogenesis

machinery has allowed researchers to engineer synthetic or artificial miRNAs

(amiRNAs) that can be designed to direct efficient silencing of any transcript.

The amiRNA technology has not only widened the existing gene silencing tool

kit but also offers several distinct improvements over existing RNAi approaches,

primarily based on siRNA generating hairpin RNA precursors. amiRNAs have

already been applied to a wide range of agricultural and medical applications.

This chapter discusses various aspects of miRNA processing, design principles of

amiRNA expression vectors and their application.

Keywords Artificial microRNA • Gene silencing • microRNA

20.1 Introduction to MicroRNAs

MicroRNAs (miRNAs) are a class of 19–24 nucleotide (nt) nonprotein-coding

RNAs, which constitute an important component of posttranscriptional as well as

transcriptional regulation of gene expression (Ambros et al. 2003; Bartel 2004; Kim

et al. 2008; Younger and Corey 2011). Pioneering research during last decade was

successful in not only deciphering important players of cellular miRNA biogenesis

machinery but also unraveling their important roles in development and disease.

Mature miRNAs are processed from imperfect duplex regions of long primary RNA

polymerase II (Pol II)-generated transcripts, termed pri-miRNAs (Cai et al. 2004).

These precursors are sequentially processed into a mature miRNAs by proteins

involved in cellular miRNA biogenesis machinery (Table 20.1).
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In animals, the pri-miRNA is processed in the nucleus into hairpin pre-miRNA

by the double-strand specific ribonuclease III (RNase III) enzyme, Drosha, and its

cognate RNA-binding proteins. Subsequent to nuclear processing, the pre-miRNA

is transported to the cytoplasm via exportin-5 (Exp-5) (Yi et al. 2005; Lund et al.

2004), where it is digested by a second double-stranded RNA (dsRNA)-specific

RNAse III enzyme, called Dicer and the associated proteins. The resulting 19–24 nt

miRNA duplex is then unwound, and one of the strand preferentially associates

with a complex known as the RNA-induced silencing complex (RISC) that

participates in repressing the target transcript, resulting in its reduced accumulation

or translation.

In contrast to animals, in plants both the pri-and pre-miRNA are processed in the

nucleus by the dsRNA-specific RNAse III enzyme, DCL1 in combination with

HYPONASTIC LEAVES1 (HYL1), and Serrate (SE) to release the miRNA duplex

(Tang et al. 2003). Another protein specific to plants called Hua-Enhancer1 (HEN1)

methylates the terminal sugar residues of miRNA to prevent 30 end uridylation and

increases the stability of miRNA. DCL1, HYL1, and SE are known to interact with

each other and are colocalized in the nuclear bodies, called dicing bodies or

D-bodies (Fang and Spector 2007). The miRNA:miRNA* duplex formed in the

nucleus is transported to the cytoplasm by Exp-5 homolog, HASTY (Bollman et al.

2003), where it is unwound, and usually one of the strand (miRNA) is incorporated

Table 20.1 Important proteins involved in miRNA biogenesis machinery

Organism Protein Location Function

Plants DCL1 Nuclear dsRNA-specific RNAse III involved in dicing

pri-miRNAs

HYL1 Nuclear Interacts with DCL1 and confers stability to

miRNA precursors

HEN1 Nuclear Protects miRNA/miRNA* duplex 30 end
methylation

Serrate Nuclear Binds to pre-miRNAs in association with

DCL1 and HYL1 and helps in processing

HASTY Nuclear membrane Export of miRNA/miRNA* duplex to

cytoplasm

SDE3/RDR Nucleocytoplasmic Performs catalysis of ds long RNA generation

that can initiate different RNAi pathways

AGO1 Nucleocytoplasmic miRNA-catalyzed target cleavage

Animals Drosha Nuclear RNase III-type enzyme that binds dsRNA

with characteristic structures and

generates pre-miRNA forms by cleaving

pri-miRNAs

DGCR8/Pasha Nuclear dsRNA-binding protein assists Drosha

function

Exportin5/

RanGTPase

Nucleocytoplasmic Transports pre-miRNA from nucleus to

cytoplasm

Dicer Cytoplasmic dsRNA-specific RNAse III involved in

processing pre-miRNA in cytoplasm to

form miRNA/miRNA* duplex
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into RISC to guide it to repress target mRNA(s). Argonaute (AGO) protein of the

RISC carries out the actual slicing function with the help of its PAZ and PIWI

domains. The PAZ domain allows for interaction with DCL1 and other proteins and

is also believed to help align the miRNA with its target mRNA. The structure of the

PIWI domain is related to RNase H enzyme, and it is believed to be involved in

miRNA-catalyzed target cleavage. Earlier, it was believed that plant miRNAs lead

to cleavage of the target, while in animals, translational repression is the predomi-

nant mode of miRNA-directed repression of gene expression; however, it has now

been demonstrated that translational repression also occurs in plants (Brodersen

et al. 2008). miRNA biogenesis operates under a feedback regulation, as the DCL1

and AGO1 genes are themselves regulated by miRNAs. DCL1 is targeted by

miR162 (Xie et al. 2003), while AGO1 is targeted by miRNA168.

Over the years, few noncanonical miRNA biogenesis pathways have been

discovered especially in animals, where miRNAs were found to be processed

from introns (termed as mirtrons) (Ruby et al. 2007), viral tRNA-like sequences

(Bogerd et al. 2010), or snoRNA precursors (Ono et al. 2011). Dicer-independent

but AGO2-dependent miRNA maturation, viz., formation of miRNA451 which is

highly conserved in animal kingdom, is also known (Yang et al. 2010). In a similar

manner, upregulation of few miRNAs are also observed in transformed cell lines

deficient in Dicer activity. In another phenomenon sometimes referred to as RNA

activation (RNAa), animal miRNAs are shown to upregulate translation as well,

adding to further complexity (Vasudevan et al. 2007; Huang et al. 2010). miRNAs

have been found to be involved in modulation of almost every significant biological

process, like development, signaling, and stress response.

20.2 Determinants of miRNA Processing

A pri-miRNA contains the following structural features: a terminal loop region, a

mostly dsRNA stem encompassing the miRNA:miRNA* duplex and a ~1 helical

turn extension, and flanking ssRNA (Fig. 20.1). Emerging evidences indicate that

architecture of stem and loop region of miRNA precursor has profound influence on

its correct recognition and accurate processing. The miRNA precursors exhibit

terminal loop of varying sizes and possess diverse structure destabilizing motifs

(bulges) in the stem region. The bulges, loops, and asymmetry of miRNA:miRNA*

duplex are a function of free energy values of RNA secondary structure, which in

turn is further modulated by non-Watson–Crick base pairing and other parameters

like temperature and strand concentration. Most of the miRNA precursors are

processed in a “base-to-loop” mode in which the initial Drosha-like cut is located

close to the base of the stem (Werner et al. 2010, Mateos et al. 2009, Kim 2005).

Most animal pri-miRNAs are processed by two cleavages, the first at a loop-

distal site 11 nt from the end of the hairpin and the second 22 nt beyond the first. In

plants, the first cleavage is often at 15 nt from an unpaired region and lower stem

is most critical for miRNA biogenesis. Closing bulges immediately below the
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loop-distal cleavage sites increases the accumulation of accurately cleaved precur-

sor miRNAs but decreases the abundance of the mature miRNAs. Pri-miRNAs with

an unpaired lower stem would not process, while variants with a perfectly paired

middle or upper stem were processed normally (Song et al. 2010).

Other studies have also demonstrated that in plants, secondary structure of the

lower stem region is most important and a shift or introduction of a major bulge in

this region could move or disrupt the initial cleavage site. If the bulge in the lower

stem is altogether removed, processing of the precursor is highly inaccurate or

inefficient. Thus, this bulge or loop above the unpaired region in the lower stem

defines a required structure that ensures accurate and efficient processing of plant

miRNA precursors. On the other hand, most point mutations in the terminal loop

had minimal impact on miRNA maturation. In case of partial deletion of the upper

loop, mature miR172 was still detected, but a complete deletion of the terminal loop

completely abolished mature miR172 accumulation (Mateos et al. 2009). However,

the structure at the upper junction of the miRNA:miRNA* duplex and terminal loop

is important for processing because the second DCL1 cut is located in this region. It

is extremely important to note that, unlike animal miRNAs, miRNA:miRNA*

duplex region of plant miRNAs are tolerant to point mutations. This consideration

has important bearing on designing the artificial microRNAs (amiRNAs) which

have been illustrated in later sections.

The rules mentioned above hold true for majority of the miRNA precursors, but

there are exceptions also. One notable exception is in pri-miR319a, which has been

most extensively used in designing many plant amiRNAs. Unlike other precursors,

pri-miR319a exhibits a loop-to-base processing (Bologna et al. 2009).

Terminal loop

Stem region (with bulges)

5’
m7g Cap

2 helix turns 1 helix turn

miRNA

miRNA*

Pri miRNA
Pre miRNA

Fig. 20.1 Structural features of an miRNA precursor. The pri-miRNA consists of one or more pre-

miRNA(s), which harbor mature miRNA. Pre-miRNA consists of a central stem region of ~3

helical turns (not shown on scale here) and a terminal loop region. The mature miRNA/miRNA*

reside in the stem region (shaded region). The pre-miRNA is sequentially processed by Dicer (viz.,

DCL1) to release miRNA:miRNA* duplex. The structural parameters of plant pre-miRNAs are

different from those of the animal pre-miRNAs
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Conventional miRNA biogenesis pathway presumes that only one of the strands

of the miRNA:miRNA* duplex is incorporated into the functional RISC complex,

while the other strand is degraded. However, with the emerging evidences from the

next generation sequencing data, it is clear that the miRNA* strand also

accumulates in various tissues and under varying physiological conditions. Gener-

ally, the animal-miRNA strand associates with AGO1, while the animal-miRNA*

strand has affinity toward AGO2 (Czech et al. 2009). This discrimination in the

cellular abundance of miRNA and miRNA* is largely governed by mismatches in

the miRNA:miRNA* duplex at positions 9 and/or 10 relative to the miRNA strand,

with thermodynamic asymmetry of the 50 end playing a subsidiary role. In plants, 50

nucleotides play a role in specific AGO interactions. The functionality of the

miRNA*s has been demonstrated using the reporter-based RNAi sensor constructs

and the targets of a small number of miRNA* sequences have been identified (Yang

et al. 2011). Thus, the ability to distinguish miRNA from miRNA* is crucial for not

only correct functional roles of endogenous miRNAs, but also it has important

significance for amiRNA design. Apart from structure, specific pri-miRNA binding

proteins are also found to modulate pri-miRNA processing. A group of proteins,

known as SMADs directly binds to stem regions of a group of animal pri-miRNA

and promote their processing by Drosha (Davis et al. 2010).

20.3 Artificial miRNAs (amiRNAs)

Many excellent reviews on biogenesis and silencing functions of natural miRNAs

that are encoded by genomes of several eukaryotic species are available in the

literature (Djuranovic et al. 2011). These functions are entirely dependent on the

abundance of the cellular factors as mentioned in Table 20.1. However, presence of

such factors could be exploited to broaden or engineer the silencing purview carried

out by the eukaryotic cells. The described details of miRNA processing

determinants amply suggest that pre-miRNA processing is largely dependent on

precursor structure and not on the miRNA/miRNA* sequence. Accordingly, it has

been shown that altering several nucleotides within the miRNA/miRNA* strands of

the miRNA precursor transcript has no bearing on mature miRNA biogenesis and

maturation, as long as the overall secondary structure of the modified precursor

remains unchanged. This observation has been utilized to alter endogenous miRNA

precursors to produce synthetic or artificial mature miRNAs (amiRNAs) designed

to target any gene of interest. amiRNA technology was first used to knock down

gene expression in human cell lines (Zeng et al. 2002). A nice example could be

drawn from usages of the backbone of pre-miRNA451. As mentioned earlier, the

formation of miRNA451 is dicer independent. Hence using the backbone of pre-

miRNA451, many different miRNAs could be expressed in cells lacking the Dicer

activity (Yang et al. 2010; Cifuentes et al. 2010). This technology, i.e., expression

of any designed mature miRNA sequence using the backbone of known pre-

miRNA, was subsequently employed to specifically downregulate gene expression
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in transgenic plants (Schwab et al. 2006; Alvarez et al. 2006). While sense

transgene–mediated silencing and intron-spliced hairpin RNA constituted the first

and second generation of gene silencing technologies, respectively, amiRNA tech-

nology could be regarded as a third generation of gene silencing technologies.

20.4 Design Parameters of amiRNAs

amiRNAs are essentially designed to mimic the natural miRNAs. Their sequences

are designed according to the determinants of plant miRNA target selection, such

that the 21-nt RNA specifically silences its target gene(s). amiRNAs are intended to

be similar to natural miRNAs by three major criteria (1) express a 50 terminal uracil

(found in most of the natural plant and animal miRNAs), (2) display 50 instability
relative to the amiRNA* duplex strand, and (3) possess adenosine at position 10 of

the mature amiRNA strand (Reynolds et al. 2004; Mallory et al. 2004). In the stem

region of miRNA precursor containing the miRNA/miRNA* duplex, the end of one

duplex strand is normally thermodynamically less stable. The strand with lower

thermodynamic stability at its 50 end (50 instability) is preferentially incorporated

into activated RISC (Khvorova et al. 2003; Schwarz et al. 2003). This principle of

strand asymmetry of natural miRNAs is unfailingly followed in amiRNA design.

The amiRNA and amiRNA* of the artificial precursor should maintain the same

structural relationship (in terms of mismatches and bulges) with each other as found

in the corresponding miRNA and miRNA* of its natural precursor.

For the amiRNA to be effective in repressing its intended target, pairing of the

target to the 50 portion of the amiRNA (positions 2–12) is most important, and this

region should not have any mismatch and rarely any more than one. Presence of up

to two mismatches in the 50 part can only be compensated by perfect pairing in the

30 portion. Mismatches at the presumptive cleavage site (between positions 10 and

11) and more than two consecutive mismatches in the 30 part should be avoided.

Usually, 1–3 mismatches are deliberately kept in the 30 part of the amiRNA to

reduce the likelihood that an amiRNA would act as a primer for RNA-dependent

RNA polymerases (RdRP), and thereby trigger secondary RNAi. The likelihood of

RdRP-mediated transitivity can be checked by determining potential 21-mer sec-

ondary siRNAs for the amiRNA target gene from both the strands of a 200–300-bp

region, surrounding the initial binding site of the amiRNA. Probable targets of these

secondary siRNAs can be recognized using miRNA/siRNA target prediction

algorithms. As a thumb rule, the overall free energy of amiRNA–target pairing

should not exceed �30 kcal/mole.

The amiRNA should be designed to target only the gene of interest to limit

and/or remove the chances of off-target silencing. The specificity of the amiRNAs

can be tested by various miRNA target prediction algorithms. While doing this

investigation, special attention should be given to the matches between 2 and

8 nucleotide positions of amiRNAs, as base pairing to this so-called seed region

between positions 2 and 8 is often enough for target recognition in animals.
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In contrast to miRNAs in animals, natural plant miRNAs have a very narrow action

spectrum and target only mRNAs with few mismatches.

An automated Web tool that incorporates many of the above described

parameters has been developed by Dr Detlef Weigel’s laboratory at Max Planck

Institute of Developmental Biology, Tubingen, and is publicly available at wmd3.

weigelworld.org. The Web site also contains detailed protocols for pre-amiRNA

synthesis.

20.5 Pre-amiRNA Construction and New amiRNA Vectors

Following its design, the amiRNA can be incorporated into a suitable precursor

which would help deliver the amiRNA into a cell. In the cell, the precursor would

be recognized by cellular miRNA biogenesis machinery which would dice it like

any other natural pre-miRNA and release the amiRNA to carry out its intended

silencing. For this purpose, the amiRNA is brought in a backbone of a natural

miRNA precursor by replacing the resident miRNA and miRNA* of natural

miRNA precursor by designer amiRNA and amiRNA* using site directed muta-

genesis. This mutagenesis can be achieved by a series of overlapping PCRs using

appropriately designed oligonucleotides (Schwab et al. 2006), in which the pre-

amiRNA is synthesized in parts and later fused together using two terminal

oligonucleitides to get the full-length amiRNA precursor. As a simpler alternate

strategy, the full-length pre-amiRNA gene itself can be commercially synthesized.

In most of the amiRNA studies in plants, the natural precursor structures of ath-

miRNA159a, ath-miRNA164b, ath-miRNA172a, ath-miRNA319a, and osa-

miRNA528 have been successfully used. Recently, a simple amiRNA vector

(pAmiR169d), which is based on the structure of Arabidopsis miRNA169d precur-

sor (pre-miRNA169d), was designed (Liu et al. 2010). As the processing efficiency

of the various vectors varies widely, the abundance of the mature amiRNA accu-

mulation also varies accordingly. Thus, the choice of the vector backbone is crucial

to generating the appropriate amount of intracellular amiRNA.

In mammals, precursors of miRNA-16, miRNA-206, miRNA-331, and many

other natural precursors have been used to engineer amiRNAs. New amiRNA

vectors for concurrent targeting of multiple genes have also been developed in

mammalian systems (Hu et al. 2009). The optimum number of concatenated

amiRNA precursors in a multi-amiRNA expression vector should not be more

than four. The relative position of an amiRNA in the multi-amiRNA expression

vector has no apparent influence on its gene silencing activity (Hu et al. 2010).

Inducible Pol II promoters can be used to overexpress authentic miRNAs in cell

culture (Zeng et al. 2005). A modified Cabbage leaf curl virus vector has been

designed to express artificial as well as endogenous miRNAs in plants. Using this

viral miRNA expression system, it was demonstrated that amiRNA-based virus-

induced gene silencing (VIGS) or “miRNA VIGS” offered efficient silencing of the

expression of the endogenous genes PDS, Su, CLA1, and SGT1 in Nicotiana
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benthamiana infiltrated leaves (Tang et al. 2010b). Furthermore, the “Highly

Efficient gene Silencing Compatible vector” (HESC vector) is a new amiRNA

plant expression vector for rice and is deemed suitable for use in a systems biology

approach for functional genomic research (Wang et al. 2010b). Similarly, a novel

approach to construct plant amiRNA expression vectors with seamless enzyme-free

cloning (SEFC) and mating-assisted genetically integrated cloning (MAGIC) has

been tested to generate more than 200 amiRNA vectors in a high-throughput

fashion (Yan et al. 2011).

20.6 Applications of amiRNA Technology

amiRNAs are generally seen as a third-generation RNAi technology and have found

a wide range of applications in basic research, therapeutic medicine, and plant

biotechnology.

20.6.1 amiRNA in Basic Research

amiRNA screens are becoming the method of choice for large-scale functional

genomics studies in both animal and plant systems. The Arabidopsis 2010 project,

which aimed to identify function of all the Arabidopsis genes by the year 2010, has
used the amiRNA approach to help achieve this goal (Small 2007). Each of the

estimated 22,000 Arabidopsis genes is targeted by three unique amiRNAs, making

this the first amiRNA-based genome-wide resource for plant RNAi. These

constructs use the ath-miRNA319a backbone and CaMV 35S promoter. Recently,

amiRNA-based targeting of AGAMOUS-LIKE 6 (AGL6) gene in Arabidopsis
revealed its novel role in regulation of circadian clock (Yoo et al. 2011). In a

study, using an amiRNA approach to simultaneously silence the three SHINE

(SHN) clade members, it was revealed that these transcription factors act redun-

dantly to shape the surface and morphology of Arabidopsis flowers (Shi et al. 2011).
Similarly, amiRNA-mediated targeting led to identification of an Arabidopsis
plasma membrane–located ATP transporter (PM-ANT1) important for anther

development and autogamy (Rieder and Neuhaus 2011). In another study, two

different amiRNA constructs were designed to specifically downregulate two

different subsets of phenylalanine ammonia-lyase (PAL) genes in Populus tree,

revealing differential regulation within the gene family (Shi et al. 2010).

For use in animal cell culture–based systems, amiRNA libraries have been

produced to target mammalian genes like mouse p53 ORF (Xue et al. 2009).

Such an enzymatically prepared library has the potential to target the whole

transcriptome for genome-wide RNAi screening, or a randomized amiRNA library

to search for functional amiRNAs. amiRNA technology has been used to develop

new mouse models of human diseases. Autosomal dominant polycystic kidney
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disease (ADPKD) is one of the most common life-threatening inherited diseases,

and the PKD1 gene is responsible for most cases of this disease. Previous efforts to

develop a mouse model recapitulating this disease have been unsuccessful owing to

complexities posed by “haploinsufficiency” phenomenon exhibited by PKD1.
Recently, ubiquitin B driven co-cistronic expression of two amiRNAs targeting

PKD1 and an Emerald GFP reporter in transgenic mice helped in creating an ideal

mouse model for studying ADPKD (Wang et al. 2010a).

20.6.2 amiRNA in Medicine

In medicine, amiRNAs are finding application toward developing therapies against

dreaded human diseases—infectious as well as metabolic or neurological disorders.

amiRNA against a GPCR family chemokine receptor CXCR4 can serve as an

alternative means of therapy to lower CXCR4 expression and to block the invasion

and metastasis of breast cancer cells (Liang et al. 2007). AmiRNA expression

vector successfully targeting prostate apoptosis response-4 (PAR4) gene in

SW620 cells has been developed which may lead to future therapy against human

colorectal cancer (Han et al. 2010).

AmiRNAs can be used to enhance immunogenicity of DNA vaccines by silenc-

ing cellular apoptotic and antiviral pathway that limit maximal antigen expression.

In a recent study, DNA vaccine vectors co-expressing amiRNA with HIV-1 enve-

lope (Env) antigens were found to influence the magnitude or quality of the immune

responses to Env in mice. Vaccinating BALB/c mice with a DNA vaccine vector

delivering amiRNA targeting cellular antiviral protein PERK was able to augment

the generation of Env-specific T cell immunity (Wheatley et al. 2011). Further trials

will be needed to ascertain if such novel approach can lead to an effective AIDS

vaccine for eventual human use.

amiRNA-based antiviral therapy has shown promise for circumventing viral

mutations and targeted delivery, two major constrains faced by current RNAi-

based therapies. Ye et al. (2011) designed two amiRNAs targeting 30UTR of

myocarditis causing coxsackievirus B3 (CVB3) genome with mismatches to the

central region of their targeting sites. To achieve specific delivery, amiRNAs were

linked to the folate-conjugated bacterial phage packaging RNA (pRNA) which

delivered the complexes into HeLa cells, a group of folate receptor positive cancer

cells widely used as an in vitro model for CVB3 infection, via folate-mediated

specific internalization. It was found that the designed pRNA–amiRNA conjugates

were tolerable to target mutations with little effect on triggering interferon induc-

tion. amiRNAs have also been used to target other important mammalian viruses

like hepatitis B (Gao et al. 2008) and rabies (Israsena et al. 2009).

In a study demonstrating the potential of amiRNA-based therapy for veterinary

use, amiRNA targeting foot-and-mouth disease virus (FMDV) 3D gene, were found

to efficiently inhibit FMDV replication in vitro (Du et al. 2011).
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An interesting study supports the potential use of amiRNA as a therapeutic agent

for the treatment of alcohol dependence. In the brain, the stress system plays an

important role in motivating continued alcohol use and relapse. The neuropeptide

substance P and the neurokinin-1 receptor (NK1R) are involved in the stress

response and drug reward systems. Lentivirus vector–based delivery of amiRNA

targeting NK1R into the mouse brain leads to decreased voluntary alcohol con-

sumption by these mice (Baeka et al. 2010). amiRNA-based therapy of neurological

disorders is more desirable over small hairpin RNAs (shRNAs) as amiRNAs can

mitigate shRNA-mediated toxicity in the brain (McBride et al. 2008).

In another study pointing toward potential of amiRNA-based therapy for

augmenting medical transplantation procedures, knockdown of a transmembrane

protein neuropilin-2 (NP2) by amiRNA improved corneal graft survival by selectively

inhibiting lymphangiogenesis promoted immune rejection (Tang et al. 2010a).

20.6.3 amiRNA in Plant Biotechnology

In addition to Arabidopsis, amiRNA technology has been validated in rice

(Warthmann et al. 2008), moss (Khraiwesh et al. 2008), Chlamydomonas, tobacco,
and tomato (Alvarez et al. 2006).

amiRNA technology was used to develop a method for customized expression of

flowering—a trait of significant biotechnological interest. Ethanol-inducible

expression of a heterologous FT gene from the model legumeMedicago truncatula
(Medicago) was able to rescue the late-flowering phenotype of Arabidopsis
transgenics overexpressing an amiRNA targeting endogenous FT gene (Yeoh

et al. 2011).

Application of this technology to achieve plant virus resistance has been proved

successful for several viruses and in model plants (Niu et al. 2006; Qu et al. 2007;

Ai et al. 2011). However, the potential of this approach has not been tested on

geminiviruses or in crop plants (Shepherd et al. 2009). Now, amiRNAs have been

shown to be effective in engineering geminivirus resistance in tomato (Yadava and

Mukherjee 2010). Two pre-amiRNAs targeting the conserved regions of Tomato
leaf curl virus (ToLCV)—Replicase (Rep) along with AC4 and AC2 RNAi

suppressors separately—were designed using the ath-miRNA319a backbone in

our laboratory. In computational analysis, the designed amiRNAs were found to

bind to the viral targets, namely, Rep/AC4 and Rep/AC2, effectively and specifi-

cally without any off-target effects. These amiRNAs were processed in vitro, as
previously demonstrated for endogenous miRNA precursors, using either

Arabidopsis inflorescence or wheat germ extracts; and the mature amiRNAs were

also detected in vivo in stably transformed tobacco and tomato plants. The trans-

genic plants overexpressing the amiRNAs were resistant to Tomato leaf curl New
Delhi virus (ToLCNDV) bipartite agroinfectious clones. A small number of the

transgenic lines showed complete immunity to viral infection. These transgenic

lines also inhibited the mini-viral DNA replication (Fig. 20.2). In conclusion, the
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Fig. 20.2 amiRNA-mediated virus resistance. (I) Working hypothesis. The amiRNA gene is

introduced in the nuclear genome of tomato plants using stable transgenesis. The transgene is

designed to mimic natural miRNA biogenesis process. As soon as the transgene is transcribed, it

assumes a characteristic “hairpin”-type secondary structure, termed pri-amiRNA. This secondary

structure is a substrate for cellular DCL1, which together with other accessory proteins, like

HEN1, HYL1, etc., sequentially cleaves pri-amiRNA into 20-mer duplex RNA (amiRNA:

amiRNA* duplex). The duplex is exported from the nucleus to the cytoplasm with the help of

HASTY. Because the principle of strand asymmetry is inbuilt during amiRNA transgene design,

one of the strands of amiRNA:amiRNA* duplex is preferentially incorporated into the RISC

(RISC loading) following unwinding. The amiRNA-activated RISC is ready to cleave/repress

cognate RNA targets in the cytoplasm, which is dependent on the loaded amiRNA sequence. The

amiRNA has been specifically designed to bind to and suppress ToLCV Rep/AC2/AC4 mRNA.

Thus, amiRNA strategy uses cell’s own miRNA biogenesis pathway to produce anti-ToLCV

miRNAs leading to containment of the virus. (II) amiRNA transgenic tomato resists viral chal-

lenge. Response of wild-type and amiRNA transgenic tomato lines to Agrobacterium-delivered
ToLCNDV infectious clones at 60 dpi is shown. Both amiRNA–AC4 and amiRNA–AC2 trans-

genic lines were challenged with an agroinfectious clone of a bipartite virus ToLCNDV, harboring

both DNA A and DNA B (A + B). At 60 days post infiltration (dpi) A + B inoculated wild-type

plant (WT) developed severe curling. However, most of the transgenic lines remained largely

healthy, without much curling. (III) Amplicon assay for measuring viral replication efficiency. (a)

Detection of viral episome in wild-type and transgenic tomato plants. At 15 dpi, the viral episome

was detected, using a PCR-based strategy, in wild-type plant. However, all the four transgenic
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results of this study demonstrate that amiRNAs can be effectively deployed to

engineer ToLCV resistance in tomato. This study opens up the possibility of

employing the amiRNA strategy to target other economically important viruses in

other important crop species.

20.7 Advantages of amiRNA Technology

amiRNAs have several unique advantages over other RNAi technologies for func-

tional genomic applications. amiRNAs are likely to be particularly useful for

targeting groups of closely related genes, including tandemly arrayed genes.

Approximately 4,000 genes in Arabidopsis are found in tandem arrays, and no

convenient tool has been reported to generate knockout lines. Because of their

exquisite specificity, amiRNAs could possibly be adapted for allele-specific

knockouts. There is a substantial level of alternative splicing, and amiRNAs have

the potential to target only specific splice variants. Unlike conventional hairpin

mediated RNAi, in which small RNAs are generated from both the strands,

amiRNAs have the advantage of being strand specific. Moreover, amiRNA

sequences can be optimized for high efficiency since they are always produced

from the same locus in their precursors. Most importantly, amiRNA-induced

mutants can be complemented by amiRNA resistant targets, where silent mutations

can be introduced in the amiRNA target site, disrupting amiRNA-mediated degra-

dation (Schwab et al. 2006).

In the hairpin RNAi approach, multiple siRNAs are formed from one precursor.

As the exact positions of Dicer/DCL2/DCL3 cleavage are not known, the 50 ends of
siRNAs cannot be accurately determined. Also, the parameters determining targets

of siRNAs are yet not fully known. Prediction of small RNA targets other than the

perfectly complementary intended targets is difficult. In contrast, amiRNAs are

produced from pre-amiRNAs which preferentially generate only one single stable

mature amiRNA. Since, the determinants of amiRNA target selection have been

determined, the complete target spectrum of amiRNA is readily identifiable

(Schwab et al. 2006). siRNAs are perfectly complementary to their targets, and

thus their binding to the target can lead to transitivity, i.e., RdRP-dependent

amplification and generation of secondary siRNAs. The promiscuity of secondary

siRNAs may lead to off-target effects in RNAi-based transgenic plants. On the

other hand, amiRNAs can be deliberately designed to include few mismatches with

Fig. 20.2 (continued) lines showed much reduced accumulation of the viral episome. A few lines,

for example, the one represented in lane #6, did not show any episome activity at all, reflecting

their robustness to resist the virus. Expectedly, no episome was detected in the mock inoculated

plants. (b) The intensity of episomal bands was measured using ImageQuant software and

normalized with respect to actin control. Relative replication efficiency as percentage of that of

wild type is shown as bar graph. (Yadava et al. 2010; Yadava 2010)
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respect to their target, thereby altogether avoiding complications of transitivity.

These mismatches would not have any effect on silencing as even imperfectly

matched miRNAs are known to efficiently repress their targets. One of the major

concerns of using RNAi in developing transgenic crops is the potential pleiotropic

effects caused by off-targeting. This concern is most satisfactorily addressed by

amiRNAs, which paves the way for their utilization in developing novel traits in

GM crops (Yadava 2011).

Earlier, it was believed that unlike conventional siRNA-based RNAi, amiRNAs

can function in tissue-specific and inducible manner, as they have only limited cell-

autonomous effect (Schwab et al. 2006). However, question of systemicity of

amiRNA has been revisited recently and emerging evidence points out noncell-

autonomous nature of amiRNAs as well as trans-acting siRNAs. Nonautonomous

effects of the miRNA were seen to be triggered by several different miRNA

precursors deployed as backbones (Felippes et al. 2011).

siRNA-based silencing is known to be compromised in extremes of temperature.

On the other hand, miRNA biogenesis machinery is more robust as many natural

miRNAs are produced by the organism in varying conditions, including extremes of

temperatures. Thus, amiRNA-based silencing is expected to be more resilient, and

amiRNA transgenics using precursors that express optimally in such conditions of

abiotic stresses can possibly be widely adapted to temperate and tropical

agroecosystems.

20.8 Perspectives

The advent of amiRNA technology has widened the available options to direct

efficient gene silencing. Although, determinants of pre-miRNA processing are not

yet fully characterized, there is already a rush to use amiRNA technology for various

biotechnological goals using and maintaining the endogenous backbones of tested

endogenous miRNAs such as ath-miRNA159a, ath-miRNA164b, ath-miRNA172a,

ath-miRNA319a, and osa-miRNA528. Plant amiRNA expression vectors are robust

to alterations in the stem region and different amiRNA precursors can be combined

with various promoters to achieve desired abundance of mature amiRNA offering

optimum silencing. Nevertheless, with a more detailed understanding of some of the

more important structural features that control the efficiency of plant pri-miRNA

processing, it may be possible to engineer miRNA precursors with different

processing abilities. One of the important aspects, often ignored with respect to

amiRNA design is that of RNA editing of amiRNA precursors. RNA editing of

primary transcripts by ADARs (adenosine deaminases acting on RNA) modifies

adenosine (A) into inosine (I). Because the base pairing properties of inosine are

similar to those of guanosine (G), A-to-I editing of miRNA precursors may change

their sequence, base pairing, and structural properties and can influence their further

processing as well as their target recognition abilities. Several examples of editing-

mediated regulation of miRNA processing have been described. Very often, it is
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required to express multiple amiRNAs to generate a desired phenotype or agricul-

tural trait. Duan et al. (2008) expressed three amiRNAs by ligating three pre-

amiRNAs and keeping the ligated product under the 35S transcription unit. These

three small RNAs targeted three different accessible regions of the conserved 30UTR
of the RNA genomes of various Cucumber mosaic virus (CMV) isolates. The

transgenic tobacco or Arabidopsis expressing the three amiRNAs showed extreme

resistance to the challenge CMV. However, this technology has limited applications

so far because of the unavailability of a suitable plant pri-miRNA vector that can

give rise to multiple pre-miRNAs in plants. Though such vectors are well known in

animals, the corresponding plant vectors remain to be discovered. Such plant vectors

will usher in a new phase of plant biotechnology. Another important area of

amiRNA research would be to explore their usage in transcriptional gene silencing.

So far, the roles of amiRNAs have remained limited in posttranscriptional gene

silencing. Revealing their usages in formation of heterochromatin would definitely

show the novel means in control of human disease.
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Chapter 21

Deep Sequencing of MicroRNAs in Cancer:

Expression Profiling and Its Applications

Ândrea Ribeiro-dos-Santos, Aline Maria Pereira Cruz, and Sylvain Darnet

Abstract MicroRNAs are small, non-coding RNA molecules that regulate genes

post-transcriptionally through the degradation of target messenger RNA or the

suppression of protein synthesis. According to recent findings, alterations in the

patterns of microRNA expression can lead to the loss or gain of function of

particular gene targets, which may then act in carcinogenesis as tumour suppressors

or oncogenes, respectively. To study the correlation of cancer progression with

microRNA expression, next-generation sequencing technology is a powerful tool to

obtain genome-wide expression levels of small RNAs. With this technology,

sequencing coverage of the microRNA transcriptome is high and allows the identi-

fication of novel microRNAs, the detection of microRNA polymorphisms and the

quantification of individual microRNAs by digital gene expression analysis. Thus,

the expression profiles of microRNAs can provide accurate diagnoses, therapy

effect predictions and prognoses, and they can act as biomarkers for various types

of cancer when characterised by next-generation sequencing technologies.

Keywords Applications • cancer • deep sequencing • expression profiling •

miRNAs • NGS

Abbreviations

DGE Digital gene expression

isoMir miRNA isoform

miRNA MicroRNA

miRnome Full set of microRNAs
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NGS Next-generation sequencer

onco-miR MicroRNA that acts as oncogene

pre-miRNA miRNA precursor

pri-miRNA Primary miRNA

qRT-PCR Real-time quantitative reverse transcription PCR

QV Quality value

siRNA Small interference RNA

TS-miR Tumour suppressor microRNA

WG-smRNA-Seq Whole-genome small RNA sequencing

21.1 Introduction

Recent advances in the study of microRNAs, small regulatory RNAs, have opened

new possibilities to understand the mechanisms regulating carcinogenesis

(Zimmerman and Wu 2011). The microRNA regulatory network is complex and

extensive: in humans, the prediction is that 1,400 mature miRNAs, encoded in 3%

of the genome, regulate over 60% of protein-coding genes (Friedman et al. 2009).

The major advance is the evidence that the expression of microRNAs is specific to

each type of cancer and its developmental stage (Lu et al. 2005). The new challenge

in cancer biology, then, is to characterise the miRnomes, the sets of microRNAs

expressed in a specific tissue (or cell) before and during cancer development

(Garzon et al. 2006). Comparing the miRnomes, it may be possible to predict the

function of each microRNA and verify its association with one type or stage of

cancer to define biomarkers (Perrotti and Eiring 2010; Weidhaas 2010).

To respond to this challenge, the characterisation of miRnomes could be based

on approaches using hybridisation and sequencing (Sharma and Vogel 2009).

Hybridisation technologies, such as microarrays, allow the quantification of the

relative expression levels of RNA species across different conditions (Sharma and

Vogel 2009; Wang et al. 2009a). Hybridisation methods have technical limitations,

however, including high levels of background signal due to cross-hybridisation,

which limits the dynamic range of detection. The design of microarrays also

depends on pre-existing knowledge, which means that novel microRNA molecules

and transcript variants cannot be detected (Wang et al. 2009a).

Sequencing-based technologies are based on the sequencing of a small RNA

cDNA library, or microRNA cDNA library obtained by enrichment for microRNA

from a small RNA cDNA library. The library-sequencing approach has the great

advantage of allowing the identification of each molecule present in the sample

(Nagalakshmi et al. 2010; Wang et al. 2009c). Some methods, however, such as

Sanger sequencing of cDNA, have technical limitations: the library-sequencing

coverage is so low that the miRnome is only partially characterised, and gene

expression data are reliable only for the most highly expressed genes (Wang et al.

2009a). Next-generation sequencer (NGS) technologies can overcome these

limitations by generating high numbers of reads, increasing the microRNA cDNA

library sampling and providing a deeper and more complete view of the miRnome.
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These new technologies, known as RNA-Seq, or deep sequencing, have been

successfully applied to the human miRnome (Hawkins et al. 2010; Lister et al.

2009; Wang et al. 2009a; Morozova et al. 2009). Human small RNA transcriptome,

which comprises functional non-coding RNAs shorter than 50 nt, has been

estimated to account for approximately 1–2% of the human genome (Borel et al.

2008). Considering that the size of the human genome is approximately 3.1 GB, the

small RNA transcriptome size is approximately 31–62 MB, and this amount of

sequence can be rapidly analysed in one NGS experiment. Such high-throughput

datasets ensure the accurate and complete, or quasi-complete, identification of the

microRNA repertoire of the sequenced library. Sequencing the entire population of

microRNAs in a sample provides a direct means to identify most, if not all, small

RNA species that are present in the sample (Mishra 2009). Considering that a NGS

run could reach 20 Gb, the sequencing coverage is very high, more than 300�, and

allows for highly sensitive microRNA quantification. The range of microRNA

detection is large, from one to several thousand copies. This high coverage permits

reliable nucleotide polymorphism detection because it is generally accepted that

transcriptome coverage of greater than 20� is required for good reliability; how-

ever, it has been shown that coverage of greater than 40� is needed for the reliable

detection of polymorphisms related to cancer (Meyerson et al. 2010; Goya et al.

2010). The use of deep sequencing to characterise the miRnome has been revolu-

tionary for human genetics and is a powerful tool for studying and understanding

miRnome variations in cellular processes such as carcinogenesis (Fabbri and Calin

2010; Negrini et al. 2009).

21.2 Methods

This section describes the NGS technologies used to perform transcriptome deep

sequencing and, based on recent cancer genetic studies, describes the strategies that

could be used to profile the human miRnome, including details about sampling,

small RNA cDNA library preparation, template preparation and sequencing, bioin-

formatics analysis and statistical post-analysis interpretation.

21.2.1 Next-Generation Sequencing Technologies

Sequencing technologies have significantly evolved over the last 5 years. Using

new sequencing chemistries, novel sequencing platforms have been developed and

optimised to generate high numbers of reads from a unique library. In comparison

to the Sanger sequencing protocol, which was the first and remains the most

commonly used sequencing protocol in molecular biology, NGS platforms produce

short or ultra-short reads and have a slightly inferior accuracy. However, during one

full run on an NGS platform, several million reads are generated in a few days at a
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relatively low cost, allowing the rapid sequencing of genomes or transcriptomes

with high coverage, which is typically not feasible using Sanger sequencing

(Morozova et al. 2009).

21.2.1.1 454-Roche Pyrosequencing

The 454-Roche method is based on massive parallel sequencing using

pyrosequencing technology (Margulies et al. 2005; Thomas and Harkins 2008).

Using emulsion PCR, each single DNA template is attached by amplification to an

individual bead, forming a clonal colony. Each single bead is deposited into

microwells that are inside a 454 sequencer, wherein the nucleotide-incorporation

event results in pyrophosphate release and well-localised luminescence during the

sequencing cycle. The luminescence signal for each well and cycle is recorded, and

data integration generates sequence reads. The last version of the 454 FLX

sequencer generates approximately one million sequence reads per run, with read

lengths of 500 bases, for a total sum of 500 MB of data (Thomas and Harkins 2008).

21.2.1.2 Illumina Sequencing

The NGS Solexa platform is based on sequence by synthesis using reversible dye-

terminator sequencing (Illumina 2010). A bridge amplification is performed in

order to fix DNA molecules on slides and form sequence clusters, wherein each

cluster consists of one single DNA molecule. Each ddNTP is fluorescently labelled,

and only one nucleotide can be added in each cycle due to a terminal 30 blocker,
which is chemically removed before each cycle. After each cycle, a camera takes

images of the slide, and the emitted signal permits the nucleotide that is added to

each sequence cluster to be identified. Integrating the information by cluster and

cycle, a sequence read dataset is obtained. This NGS platform, Genome Analyser II,

generates short reads, which are approximately 35–100 bp long for the latest

version, and, when using a 30-bp-long read, is able to generate 10 GB of data per

run (Illumina 2010).

21.2.1.3 SOLiD System

SOLiD technology is based on other sequencing chemistry methods. Each sequenc-

ing step is based on the addition of labelled oligonucleotides by hybridisation and

ligation, which is a methodology that differs from the two other NGS systems,

which are based on an extension step that uses DNA polymerase (Applied

Biosystems 2011). Each single molecule of DNA is attached to a bead by emulsion

PCR, and all of the beads are deposited onto a glass slide. The sequencing reaction

is based on the use of a labelled oligonucleotide mixture. Each labelled oligonucle-

otide (8-mers) has a degenerated sequence at only the 50 extremity, wherein the first
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two nucleotides are known. The oligonucleotides are used as probes that are

annealed with the template and allow for the detection of the dimer that is present

at the 30 end of the template. After annealing and ligation of the oligonucleotides,

the detection is performed with only four dyes and a dibase encoding system that

allows for the identification of all 16 dinucleotides (Applied Biosystems 2011). In

order to obtain the complete sequence, the sequencing reaction is performed in

different phases (N-1, N) that allow for an overlap of information on the sequence

template. Using this methodology, each base is sequenced twofold with the dimer

system, which increases the accuracy of the read dataset and enables the

distinguishing of sequencing error and polymorphism variation (Applied

Biosystems 2011). The latest version of the SOLiD system, 5500xl, can generate

up to 30 Gb of data with read lengths of 75 bp (Applied Biosystems 2011).

The three aforementioned NGS technologies are currently ubiquitously used for

the sequencing of miRnomes or small RNA cDNA libraries (Table 21.1); however,

many other NGS platforms are in use on a laboratory scale, such as the Helicos and

Pacific sequencers (Hayden 2009). The third generation of sequencer, which offers

more efficient sequencing technology, has already been developed and will be

employed to characterise the human transcriptome and genome (Hayden 2009).

Table 21.1 Deep-sequencing experiments performed to explore human miRnome in cancer

disease

Cancer type Sample NGS

platform

Raw

dataset

for library

(103 reads)

Bioinformatics

tools

Reference

Breast 2 cell lines 454 180 Vmatch Nygaard et al. (2009)

5 tissues 454 180 Vmatch Nygaard et al. (2009)

Embryonal 10 tissues SOLiD 19,000 MAQ Schulte et al. (2010)

Gastric 1 tissue SOLiD 5,000 RNA2MAP Ribeiro-dos-Santos

et al. (2010)

Hepatocellular 44 tissues 454 500 BLAST/BLAT Mizuguchi et al.

(2011)

3 cell lines 454 500 BLAST/BLAT Mizuguchi et al.

(2011)

Kidney 6 tissues Illumina 10,000 Novalign Weng et al. (2010)

Leukaemia/

lymphomas

3 cell lines Illumina 5,000 BLAST Vaz et al. (2010)

31 cell lines Illumina 11,000 miRDeep Jima et al. (2010)

Lung 2 cell lines 454 100 Not. infor. Tarasov et al. (2007)

Nasopharyngeal 2 cell lines Illumina 5,000 Bowtie Liao et al. (2010)

4 tissues 454 20 BLAST Zhu et al. (2009)

Prostate 4 cell lines 454 45 BLAST Mitchell et al. (2008)

2 cell lines 454 20 BLAST Sun et al. (2011)

4 pool tissues 454 – Not. infor. Szczyrba et al.

(2010)

Ovarian 2 cell lines 454 200 BLAST Wyman et al. (2009)

3 tissues 454 200 BLAST Wyman et al. (2009)
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21.2.2 NGS Strategies for Profiling miRnome Variations
in Cancer

21.2.2.1 The Sampling of a Small RNA cDNA Library Preparation

in Cancer Studies

Sample preparation is of major importance for NGS and for assessing the quality of a

library preparation. Table 21.1 lists recent published studies regarding the deep

sequencing of the miRnome in the context of cancer studies. NGS experiments have

been performed using human cell lines or tissues that were directly collected from

patients. In Table 21.1, it can be seen that there have been nine miRnome sequencing

experiments using carcinoma and teratoma cell lines. Working with stem cells and

carcinoma cell lines is easy due to the capability of experimental reproduction, the

ability to confirm subsequent results with other approaches and the ability to obtain a

high quantity ofmaterial, which is a great advantage to the development of amiRnome

library (MacLeod et al. 2008). In order to study miRnome variation in cell lines,

miRNA expression should be compared to those of other cell lines or to normal tissues

fromwhich the cell lines were isolated. Unlike other methods of detection, whichmay

require large amounts of input RNA, the NGS system allows for the sequencing of

small RNA transcriptomes from samples that are as small as 10–500 ng of total RNA,

which enables the use of tissues or tissue fragments (Wang et al. 2009a).

All of the experimental designs depicted in Table 21.1 are based on the binary

comparison(s) of tumour(s) versus controls (or normal). Experiments that use

tissues are more complex due to the difficulties that are associated with collecting

tumour tissue and defining control tissue (extra-tumour, adjacent tissue, total blood

or serum), which must be from the same patient. One other difficulty is the presence

of cell layers and heterogeneity in a tumour (Wang et al. 2009b). RNA extraction

can be performed with a complete tumour or with only a fragment or piece that is

obtained by microdissection. For RNA extraction, tissue samples can be fresh,

frozen, formalin- or paraformalin-fixed or paraffin-embedded (Ambion 2010).

Sample preparation is of major importance for NGS experiments in order to

define what biological information can be extracted and ensure the preparation of a

high-quality small RNA cDNA library.

21.2.2.2 Small RNA cDNA Library Preparation for NGS Platforms

Figure 21.1 depicts the different steps that are required to obtain a small RNA cDNA

library from samples such as cell line cultures or tissues, based on an amplification-

based protocol. Two kinds of protocols are commonly used, and the greatest

difference between the protocols is the step that converts the RNA to double-

stranded DNA (Tian et al. 2010). The protocol, which is optimised for the 454 and

Illumina platforms, is based on the successive ligation of 50 and 30 adapters and then
reverse transcription followed by PCR amplification (Fig. 21.1a) (Lu et al. 2007;
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Thomas and Ansel 2010). The other protocol, which is more specific to the SOLiD

system, is based on the hybridisation of adapters with degenerated extremities,

followed by reverse transcription and library amplification by PCR (Fig. 21.1b)

(Applied Biosystems 2011). For both protocols, the final step involves small RNA

cDNA gel separation and size selection by PAGE. Optionally, a preliminary first

step of small RNA enrichment can be performed if the estimated concentration of

miRNA is less than 0.5% of the total RNA so as to optimise the protocol (Applied

Biosystems 2011). This preliminary small RNA enrichment step can be performed

using gel separation or a commercial kit, such as the miRvana miRNA isolation kit

(Ambion – Life Technologies, USA). Unlike larger RNA molecules, small RNAs

can be directly sequenced after adaptor ligation, without fragmentation into smaller

pieces (200–500 bp), as their size is compatible with most deep-sequencing

technologies. The quantification of the small RNA, or miRNA, fraction can be

performed using the NanoDrop Spectrophotometer and the Agilent 2100

Bioanalyser with the RNA 6000 Nano kit and Small RNA Chip kit.

For miRnome studies, a full NGS run provides ultra-high coverage, and one

good option is to sequence many libraries in the same run. For example, the SOLiD

system permits a slide to be divided into 4, 8 or 16 quadrants in order to perform

parallel sequencing. Another, more cost-effective option is to mix several libraries

in one run using multiplex identifiers (Parameswaran et al. 2007). This method is

Cells, tissues

5’ RNA adapter ligation 

3’ RNA adapter ligation 

Cells, tissues

Reverse transcription and RNase H digestion

Hybridization and ligation to adaptor mix 

Cleanup and size selection by PAGE

cDNA library amplification RT-PCR Amplification

RNA extraction 

Small RNA fraction

Small RNA enrichment
Total RNA

Cleanup and size selection by PAGE

RNA extraction 

Small RNA fraction

Small RNA enrichment
Total RNA

Small RNA cDNA library
with miRNA fraction

Small RNA cDNA library
with miRNA fraction

a b

Fig. 21.1 Small RNA cDNA library preparation methods for NGS platform. (a) Optimised

protocol for SOLiD platform. The library preparation could be performed with total RNA or

enriched small RNA fraction. First step is a hybridisation and ligation of two adaptors. Following

step is the reverse transcription and cDNA library amplification. Finally, a cleanup and size

selection of library, about 100 bp (small RNA + 2 adaptors length), is performed by poly-

acrylamide gel electrophoresis. (b) Optimised protocol for Illumina and 454 platform. This

protocol is without hybridisation step and includes a direct ligation followed by RT-PCR

amplification
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based on the use of indexing nucleotides, which are termed ‘barcodes’, and these

can be added to the individual cDNA libraries such that the origins of the sequences

can be traced. Sequencing several libraries in one run has significant advantages,

including increasing the reproducibility and avoiding sequencing variations either

between different runs or, in a unique run, between positions on the slide (Applied

Biosystems 2011). In order to prepare a multiplex sample for NGS platforms,

it is better to mix the libraries at the same concentration, but it is necessary

to determine the concentrations of the libraries in order to do this. Depending on

the barcode length, it is possible to codify and sequence up to 96 samples in a

unique run (Parameswaran et al. 2007). It is possible to add a synthetic miRNA-

like sequence with a known sequence and concentration, such as the miSPIKE™
RNA control oligonucleotide from Integrated DNA Technologies (Integrated DNA

Technologies 2010) to each library, which can then be used as an internal RNA

control in order to normalise the gene expression data.

Small RNA deep sequencing involves several manipulation stages during the

production of cDNA libraries, which can complicate its use in profiling different

types of transcripts (Tian et al. 2010). For example, a study comparing the sequenc-

ing of cloning libraries has shown that SOLiD data differ from Illumina data and

that this may be related to distinct methods of adapter ligation. In addition, the high

correlation between qRT-PCR results and SOLiD data might be due to the

similarities of the hybridisation-based methods (Tian et al. 2010; Wang et al.

2009a).

miRnome library preparation can be considered to be a limiting step, specifically

due to the associated amplification steps, and further optimisation can be performed

in order to increase NGS reliability and improve the estimation of miRNA abun-

dance (Kircher and Kelso 2010). New NGS library preparation protocols, which are

based on direct and single-molecule sequencing, have been published and have

demonstrated that the determination of RNA abundance is more reliable without the

library amplification step, thereby avoiding the plateau problem of highly

represented RNA and increasing the detection of molecules with low abundances

(Blow 2009; Bailo and Deckert 2008; Ozsolak et al. 2009; Sam et al. 2011). For

more information on targeted library construction techniques, please see chapter 10

of this volume.

21.2.2.3 Template Preparation and Sequencing

With the Sanger method, the sequencing reaction occurs in a PCR tube, and the

sequencing products are sorted and identified by capillary electrophoresis. The

requirement for electrophoresis by each sequencing reaction limits the throughput

of this methodology. For NGS platforms, the DNA molecules are fixed on a solid

matrix, such as microbeads that have been distributed on a glass slide or microwells

(Kircher and Kelso 2010). This system allows millions of DNA molecules to be

individually deposited, such that a high number of sequencing reactions can

be performed in situ and in parallel. One sequencing cycle consists of the
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incorporation of labelled nucleotides by polymerase extension or oligonucleotide

ligation, followed by the detection and identification of the incorporated labelled

nucleotides. The detection is based on the use of a camera system that records

pictures of the complete slide for each cycle. The emitted signal for each spot,

which corresponds to an individual DNA molecule, provides one piece of sequence

information at a time, enabling parallel sequencing of all of the deposited molecules

(Kircher and Kelso 2010).

For the 454-Roche and SOLiD NGS platforms, the DNA molecules of a library

are attached individually and clonally to microbeads using emulsion PCR. For the

454-Roche platform, each bead is deposited into a microwell, where all of the

sequencing reactions are performed (Thomas and Harkins 2008). For the SOLiD

platform, all of the beads are deposited onto a glass slide (Applied Biosystems

2011). For the Illumina platform, the DNA molecules are fixed onto a slide by

bridge amplification, such that each DNAmolecule forms a clonal cluster, and all of

the clusters are distributed across a complete slide (Illumina 2010).

For the three NGS systems that are commonly used to sequence the miRnome,

template preparation is important and can influence the sequencing quality and the

sequence read depth. For each platform, one bead (or cluster) corresponds to one

read, and the number of deposited beads affects the read number and the ‘deepness’

of the sequencing (Kircher and Kelso 2010). For the SOLiD system, the quantity of

deposited beads is approximately 150–300 million per slide, with the major limit

being the camera resolution (Applied Biosystems 2011). For each bead or cluster,

the camera records the emitted signal, and the camera resolution determines the

minimum distance between two beads that is necessary to obtain a good signal

(Metzker 2010).

There are differences between the three major NGS platforms (Kircher and

Kelso 2010). Due to sequencing chemistry differences, the raw data generated by

the three platforms differ in terms of read length and read number. The 454-Roche

system generates read lengths of approximately 400–500 bp with up to 600 MB of

total data, the Illumina system produces 100-bp reads and 200 GB of total data, and

the SOLiD system gives 75-bp reads and 100 GB of total data. For miRnome

sequencing, the read length is not limiting because all mature miRNAs are shorter

than the read length, ranging from 18 to 25 nt. Only when isolating pri- or pre-

miRNAs would a larger read length be of interest. The output dataset size is

important because the higher the read number, the higher the overall sequencing

coverage and the higher the number of miRnome libraries that can be sequenced in

one run. Table 21.1 lists publications that have described miRnome sequencing

using NGS platforms. The raw sequence dataset size is variable and depends on the

platform. For example, when using the 454-Roche systems, 20,000–500,000 reads

were obtained, whereas the Illumina and SOLiD systems produced 5–10 million

and 5–19 million reads, respectively. One experiment was performed with a pool of

tissues, and one made use of multiplexed libraries with barcode identifiers

(Szczyrba et al. 2010; Ribeiro-dos-Santos et al. 2010, respectively).
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After sequencing and the generation of the raw sequence dataset, bioinformatics

tools are used to extract the biological information from the raw sequence, such as

miRNA sequences and variations in miRNA expression.

21.2.3 Bioinformatics Analysis of Small RNA Deep-Sequencing
Dataset

NGS platforms generate large datasets with high numbers of sequence reads.

Retrieving the biological information from these large datasets is a challenging

bioinformatics task (Horner et al. 2010). The objective is to process the large

datasets and to certify the reliability of detection and the unambiguous quantifica-

tion of small RNAs and microRNAs obtained from the raw datasets. This task is

difficult because not all RNA species of the human small RNA transcriptome have

been characterised, and the detection of novel sequences or isoforms in NGS

datasets requires specialised algorithms (Horner et al. 2010). Statistical methods

and bioinformatics pipelines have been developed to optimise the processing of

such datasets.

21.2.3.1 Pipelines for Small RNA Deep-Sequencing Dataset Analysis

In NGS, read datasets that are obtained from small RNA cDNA library–sequencing

experiments are expected to identify sequences of interest, i.e., microRNAs (mature

miRNA, miRNA* and pri-miRNA fragments); however, many other sequences are

also detected, such as other small RNAs (snoRNA, piwiRNA and other kinds),

biological contaminants (rRNA and tRNA), sequencing reagent contaminants

(adapters) and aberrant sequences (which are randomly generated by the sequenc-

ing system) (Hackenberg et al. 2009; Huang et al. 2010; Wang et al. 2009b). To

annotate the reads, two strategies are commonly used to analyse miRnomes, as

listed in Table 21.1 and illustrated in Fig. 21.2.

In the first method, the pipeline (Fig. 21.2a) is based on successive rounds of

detection of known molecules. The identified sequences are systematically

subtracted from the dataset. The remaining sequence set is mapped to the complete

human genome and analysed with algorithms to predict novel small RNAs and

microRNAs. To optimise the read alignment against a genome reference sequence,

the first step of the pipeline includes an optional filtering step that excludes reads

with low sequence quality or short lengths. The filtering step can also involve

trimming reads using QV (quality value) or fixed parameters (Friedlander et al.

2008; Wang et al. 2009b). As with Sanger methods, all nucleotides that are

sequenced with an NGS system have a QV, which indicates the probability that

the correct nucleotide is at a particular position. Filtering the raw data and exclud-

ing all of the reads with low reliabilities has the significant advantage of decreasing
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the size of the dataset to be analysed and reducing the computation time required for

further sequence comparisons. To optimise miRNA detection, other pre-processing

methods can be used, such as trimming of the 30 extremities of reads to obtain reads

that are comparable in size to mature miRNAs, and/or the selection of reads with

high QVs in the first ten nucleotides, which are thought to contain the ‘seeds’ for

miRNA binding (Ribeiro-dos-Santos et al. 2010).

Table 21.1 indicates the alignment algorithm used to compare the read datasets

to the corresponding reference sequences. Depending on the size of the dataset and

read, the type of algorithm employed in this context differs. A BLAST algorithm

has been employed for datasets generated using the 454-Roche platform (Altschul

et al. 1990). For datasets with a high number of short reads, such as those that

originate from the Illumina and SOLiD systems, algorithms with greater

efficiencies in aligning short reads, such as MAQ, bowtie or RNA2MAP, are

used (Langmead et al. 2009; Li et al. 2008; Applied Biosystems 2011). As shown

in Fig. 21.2, the first step in the analysis of sequence reads is to align the sequences

Alignment against human genome

Sequence without matches 

or with 10x or more matches 

Filtering (optional) 

Usable reads

mapped reads

Prediction 
new microRNAs

Detection
 known microRNAs

new microRNAs

Expression data
of microRNAs

Filtering (optional) 

Usable reads

(adapter and tRNA, rRNA, LINEs, SINEs..)

Sequence without matches 
or with 10x or more matches
in genome

Alignment against microRNAs Precursors

adapter and tRNA, rRNA, LINEs, SINEs...

Known microRNAs

Expression data
of microRNAs
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new microRNAs

Prediction 
new microRNAs
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a b

Fig. 21.2 Bioinformatics pipeline for miRnome NGS dataset analysis. (a) Pipeline workflow

based on step by step analysis. After an optional filtering, each kind of small RNAs are detected in

the sequence dataset. Finally the no-identified fraction is mapped against human genome to

annotated novel small RNA sequences, as novel microRNAs. (b) Pipeline workflow based on

annotation strategy. After a previous filtering step, all reads are mapped on human genome and

annotated, aiming to identify microRNAs
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to a set of potential contaminant sequences, which includes adapter sequences,

primers and sequences from previously identified small RNA molecules. The

second step is the detection of miRNAs, which are aligned against the sequences

of pre-miRNAs. It is more informative to align against pre-miRNAs than against

mature microRNAs because alignment against pre-miRNAs allows for the detec-

tion of miRNAs and other fragments, such as loop sequences. The miRBase

sequence database has been used in all of the studies that have employed this

type of pipeline. The latest version of miRBase (17.0) has 1,426 human miRNA

entries (Griffiths-Jones et al. 2006).

Alignment parameters must be adjusted to optimise miRNA detection without a

loss of reliability. For example, the number of mismatches is an important factor

because without mismatches, the reliability of detection is high and the detection of

distinct isoMir, multiple sequence variants of a mature miRNA, is possible; how-

ever, this may involve discarding reads that have even one sequencing error or

sequences that are polymorphic at only one position (Guo et al. 2011; Horner et al.

2010). Many pipelines have an option to align and select all of the reads that match

one miRNA sequence reference or to select only the reads that align against a

particular reference sequence without ambiguity, such as with other isomiRs. The

pipeline generates several files that list all reads with their matches against the pre-

miRNA reference. One file has the read counts, and another file lists the homolo-

gous positions between the reads and the reference, which can be used to visualise

the alignment in a genome browser such as UCSC genome browser. For more

discussion on handling miRNA mapping, please see the discussion on miRNA

cross-mapping in the chapter 10 of this volume.

In a subsequent step, the remaining reads are aligned against the human genome

to discover new small transcripts and novel molecules (sequences that were not

included in previous comparisons). The read position in the genome can be highly

informative and permits the annotation of molecular function (Borel et al. 2008).

For example, the use of other genomic information, such as sequence conservation

in other species or known transcript annotations, could potentially lead to the

discovery of new molecules, including novel miRNAs. Other ways to predict new

miRNAs include the use of algorithms that identify possible pre-miRNA structures

based on thermodynamic properties (Friedlander et al. 2008; Agarwal et al. 2010).

In many studies, it has been observed that a relatively high proportion of reads did

not map to the reference genome. The set of unmapped reads comprises reads that

match more than 10� of the reference genome and those that do not match the

genome at all. Reads without matches could be aberrant sequences randomly

generated by sequencing errors, RNA sequences that originated from RNA degra-

dation or fragments generated during RNA processing by enzymes, including the

Dicer or splicing complex enzymes (Guo et al. 2011). In the final analysis, the

pipeline will have identified the miRNA sequences, known or novel, with a read

count number for each that is used to perform digital gene expression (DGE)

analysis (Linsen et al. 2009; Audic and Claverie 1997).

The second method, shown in Fig. 21.2b, is primarily based on mapping all

of the reads against the human reference genome and, secondarily, performs a
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functional annotation of the mapped reads. This functional annotation is based on

all of the information that is available for the genomic positions of the mapped

reads. All of the reads that are mapped to characterised regions can be annotated,

whereas reads that are mapped to regions that lack such information require further

investigation (Borel et al. 2008). One uncharacterised region with many read

matches could be investigated to reveal novel microRNAs using algorithms, such

as miRDeep (Friedlander et al. 2008). As is the case for the other pipeline strategy,

the final step involves counting the numbers of matching reads for all of the

miRNAs that were identified from the sequence dataset.

21.2.3.2 Digital Gene Expression Analysis and Profiling

Processing the data via the bioinformatics pipeline results in a list of all of the

identified miRNAs and their relative abundances based on read counts. DGE

analysis is based on the read count number of each RNA molecule.

There are many considerations for the comparison of different conditions, such

as normalisation of the read count number. The read number can be normalised by

the total number of reads or the number of mapped reads to correct for the deepness

of each run for which the results are typically expressed in rpm (reads per million)

units. Alternatively, normalisation can be performed by using an endogenous

control transcript, such as snoU6, which is a small RNA with a relatively constant

concentration. Synthetic internal controls can also be used, such as 20- or 30-mer

oligonucleotides of known concentrations that are added during the library prepa-

ration. Having an endogenous or internal control greatly increases the reliability of

further DGE results and allows for comparisons among libraries that have been

prepared from different tissues or tumour stages.

It is possible to profile miRNA expression patterns in tissues or cell lines based

on the relative expression levels of miRNAs. The aim of profiling is to define

miRNAs with specific expression patterns, such as specificity to one tissue or stage

of development, that could be used as biomarkers for further investigation (0t Hoen
et al. 2008). With the proper experimental design, data comparisons can be based on

different statistical methods. All of the studies listed in Table 21.1 have descriptive

and graphical data representations, which depict the miRNA read numbers (or their

log transformations) or the normalised values for different conditions. These values

are used to visualise the global variations between conditions and samples. In many

studies, the ratios between conditions, fold changes or Z-factors have been calcu-

lated to quantify variation. To evaluate the significance of the variation, t-tests or
Vencio tests based on Bayesian methods can be performed (Vencio et al. 2006).

To investigate the specificity of miRNA expression, approaches based on clus-

tering (hierarchical and unsupervised) or Venn diagrams have been used in many of

the studies that are listed in Table 21.1. Venn diagrams, clustering dendrograms and

heat maps are helpful to represent comparative miRNA expression levels and define

groups or clusters of miRNA expression relative to particular conditions or
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samples. The group and cluster definitions enable the establishment of miRNA

expression profiles for tissues and tumours at different stages of development.

The defined profiles, which are used to define miRNA expression models in

humans, need to be validated by other methods. In the studies listed in Table 21.1,

the correlation between the NGS results and qRT-PCR has been approximately

80–95%, demonstrating that the NGS results are reliable estimates of microRNA

expression.

21.3 Deep-Sequencing Applications in Cancer Research

21.3.1 The Roles of miRNA in Carcinogenesis

In several types of cancer, genomic stability is lost through the disturbance of

minute mechanisms that regulate the balance between cell proliferation and apo-

ptosis. These genetic changes include a large range of events, such as chromosomal

rearrangements, amplification, viral integration, microsatellite changes, insertions/

deletions, SNPs and interactions with pathogens. Studies of these events, which are

associated with genomic instability, have lead to the discovery of novel genes that

are linked to critical regulatory pathways, including microRNAs (Yasui 2005).

However, single genetic alterations are often insufficient to explain the com-

plexity of the aberrations observed in cancer cells. Therefore, epigenetic phenom-

ena, which are defined as heritable changes in gene activity without changes

(damage) to the DNA sequence, are thought to contribute to the initiation and

progression of cancer. Examples of such changes include the hypermethylation of

tumour suppressor genes, the global DNA hypomethylation and post-translational

histone modifications. These phenomena explain the aberrant expression of

miRNAs in cancer and show that microRNAs can regulate the enzymes that are

involved in the methylation of CpG islands in tumour suppressor genes, conferring

the role of pathway component in malignant phenotype or executor of specific

epigenetic events on microRNAs. Thus, genetic changes that are complemented by

epigenetic changes can shed new light on a mechanism that partially explains the

misregulation of miRNA expression in cancer (Di Leva and Croce 2010; Zhang

2010).

In general, spontaneous carcinogenesis originates from multiple genetic and

epigenetic events. However, in recent years, genome-wide studies have shown

that miRNA genes are frequently located within regions of loss of heterozygosity,

amplification regions, fragile sites and other cancer-associated genomic regions

(Calin et al. 2004). It has been demonstrated that miRNAs are involved in human

tumourigenesis, thus revealing a new paradigm in the molecular architecture of

human cancer (Negrini et al. 2009).

Calin et al. (2002) provided the first evidence linking miRNAs to human cancers

by showing that frequent deletions and downregulation of the microRNA genes

miR-15 and miR-16 at 13q14 occurred in chronic lymphocytic leukaemia (CLL).
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The target of miR-15/16 is the mRNA of the anti-apoptotic oncogene Bcl-2.

Deletion thus results in overexpression of Bcl-2, leading to the initiation of stepwise

leukaemogenesis (Cimmino et al. 2005). Therefore, miR-15 and miR-16 are natural

antisense Bcl-2 interactors that could be used for the treatment of Bcl-2-

overexpressing tumours (Guo et al. 2009; Varol et al. 2011).

Numerous profiling studies have found significantly dysregulated miRNA

expression in various cancer, showing patterns of both downregulation and

upregulation. These results suggest that microRNAs have a dual role in

tumourigenesis, such that alterations in a microRNA expression pattern may lead

to the loss or gain of gene function. Thus, microRNAs may act as either tumour

oncogenes (onco-miR) and tumour suppressors (TS-miR) during tumour develop-

ment and progression (Varol et al. 2011; Wang et al. 2010). Another well-known

example of a tumour suppressor is let-7 that targets Ras mRNA. When expressed at

low levels, it is associated with non-small cell lung cancers, and a poor prognosis is

associated with overexpression of the Ras oncoprotein, (Belinsky et al. 2008).

In contrast, overexpression of oncogenic miRNAs induces tumour development.

The miR-17-92 gene cluster, the first onco-miR ever identified, accelerates the

development of human B-cell lymphoma. Overexpression of the miR-17-92 cluster

has been shown to interact with c-myc expression to accelerate tumour develop-

ment (Barbarotto et al. 2008; Varol et al. 2011). MicroRNAs act as both a tumour

suppressor and an oncogene.

It is believed that this miRNA is a component of distinct pathways with different

effects on cell growth, survival and proliferation. These effects must correspond to

particular cell types and gene expression patterns (Calin and Croce 2006). A study

by Zhang et al. (2008) demonstrated that miR-21 overexpression resulted in cell

proliferation. Changes in miR-21 expression caused different effects in the gastric

tumour cell line AGS, triggering tumour development when stimulated and reduc-

ing the proliferation and invasion that leads to apoptosis when repressed (Zhang

et al. 2008). In contrast, another study has identified a mutation in the p53 protein

(responsible for inducing miR-34 transcription) that promotes cell proliferation as a

consequence of its low expression (Zimmerman and Wu 2011). Yao et al. (2009)

detailed the location, mechanisms (tumour suppressor and oncogene) and targets of

the microRNAs that are involved in gastric carcinogenesis.

A publication by Ribeiro-dos-Santos et al. (2010) described the expression

profile of the miRnome of healthy gastric tissue. The authors, via ultra-deep

sequencing on the SOLiD platform using barcodes (multiplexing), identified a

group of 15 miRNAs that are highly expressed in gastric tissue (Fig. 21.3). Subse-

quently, the expression of these miRNAs was validated in 10 healthy individuals by

qRT-PCR, with a significant correlation of 83.97% (P ¼ 0.05). This study aimed to

validate and characterise the normal miRNA profiles of human gastric tissue to

establish a reference profile for healthy individuals.

The establishment of normal miRNA profiles in human tissue is aimed at

establishing a reference profile of healthy individuals that can be compared to

profiles from various tissues and organs that are affected by cancer. Therefore,

these results, in addition to the tumour cell line studies, have provided new

information about the pathogenesis of gastric cancer as mediated by complex
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miRNA regulatory pathways. Valuable results can be obtained from the analyses of

miRNA expression profiles that elucidate the functions of miRNA regulatory

pathways in malignant tumours and reveal a common method for directing the

processes of carcinogenesis. All of this information leads to a better understanding

of advanced gastric cancer and possible improvements in the diagnosis and treat-

ment of the disease (Tie et al. 2010).

21.3.2 MicroRNA Signatures

Since the discoveries of microRNAs, various profiling studies have found signifi-

cantly dysregulated microRNA profiles in various cancers, which suggests that

aberrant miRNA expression profiles could be used as biomarkers. MicroRNAs can

serve as biomarkers because they are an abundant class of molecules that are

expressed with high specificity in a given tissue and are involved in regulating a
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large number of human genes. Using microRNAs as biomarkers could improve the

identification of patients who would benefit from more aggressive and specific

therapies (Zhang et al. 2008).

This tool adds to the traditional diagnostic measures that are available for

samples that have been obtained from various biological sources, such as tissue

(biopsy or surgical resection), plasma, blood, faeces, urine, cerebrospinal fluid,

peritoneal fluid and saliva (Wang et al. 2010; Zhou et al. 2010; Mitchell et al. 2008).

The development of sensitive and specific biomarkers for cancer will improve

cancer management and early detection (Varol et al. 2011; Wang et al. 2010),

helping to provide an adequate time window to prevent metastatic disease and death

(Yachida et al. 2010). However, miRNA-related biomarkers should not be limited

to miRNA expression but should also include miRNA-related SNPs, methylation

changes and mutations (Xie et al. 2010).

The literature indicates that global expression of miRNAs is higher in normal

tissues than in the homologous tumour tissue, which suggests that the normal

miRNA expression pattern is important for maintaining the integrity of cellular

differentiation processes (Lu et al. 2005). However, as there are aberrant expression

of microRNA in tumour tissue, these specific molecular signature may be useful in

which the first stage involves screening, early detection, classic diagnosis and

prognosis (Volinia et al. 2006) (Table 21.2). Table 21.1 shows the miRnomes that

have been sequenced using NGS, all of which include profiling of different kinds of

cancer, such as breast, embryonic, gastric, hepatocellular, kidney, leukaemia,

lymphomas, lung, nasopharyngeal, prostate and ovarian cancers. One common

observation relevant to this table is that the miRnome profile varies during carci-

nogenesis, with many microRNAs becoming upregulated or downregulated during

the process.

Table 21.2 Analysis of miRNA expression profiles in different stages of carcinogenesis

Stages of

carcinogenesis

Features Conduct MicroRNA expression

profile

Initiation Founder mutation Screening Identifies early

molecular changes

(biomarkers)

Promotion Presence of parental clones Early diagnosis

(asymptomatic

disease)

Determines the precise

tumour staging,

group and

hierarchical tissue

Progression Advantages of survival,

motility and invasion are

acquired according to the

clonal evolution and

observation of subclones

Classic diagnosis

with symptoms

installed

Determines embryonic

origin in

undifferentiated

tumours

Metastasis Angiogenic factors, anti-

apoptotic proteins, among

other factors are active

Prognosis Detects recurrence or

other metastatic

organs related to

microRNA involved
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For example, Mizuguchi et al. demonstrated that sequencing-based miRNA

clustering could be used to identify patients with a high potential for early tumour

recurrence after liver surgery (Mizuguchi et al. 2011). Employing Illumina

sequencing, Chen et al. (2008) sequenced all of the serum miRNAs of healthy

Chinese subjects and identified over 100 and 91 serum miRNAs in male and female

subjects, respectively. The authors also identified expression patterns of serum

miRNAs specific to lung cancer, colorectal cancer and diabetes, providing evidence

that serum miRNAs contain fingerprints for various diseases. Using these analyses,

the authors concluded that serummiRNAs could potentially serve as biomarkers for

the detection of various cancer types and other diseases. Liu et al. (2010)

demonstrated that plasma miR-31 levels were significantly elevated in oral squa-

mous cell carcinoma patients relative to age- and sex-matched controls. In addition,

plasma miR-31 levels in patients are remarkably reduced after tumour resection,

suggesting that this marker is tumour associated. The authors also demonstrated the

feasibility of detecting increases in miR-31 in the saliva of patients. Analysing

miRNA profiles facilitates the detection of coregulation patterns and the identifica-

tion of miRNAs that seem to be specific to the tumour or a tissue development

stage.

21.3.3 Perspectives on miRNA Use in Cancer Therapy

The association of a significantly dysregulated miRNA expression profile with the

pathogenesis and progression of cancer illustrates the large potential for utilising

microRNAs as targets for therapeutic intervention. The basic strategy of current

microRNA-based treatment methods is either to antagonise the expression of target

miRNAs with antisense technology or to restore or strengthen the function of

particular microRNAs to inhibit the expression of certain protein-coding genes

(Wang et al. 2010).

The therapeutic application of microRNAs or any microRNA-related molecules

will rely on the development of efficient delivery strategies based on viral vectors or

nonviral nanoparticles (Aigner 2011). Despite many encouraging advances, the

application of these therapeutic methods against cancer is just beginning. There is a

convergence of screening results regarding the functionality of regulatory networks

of miRNAs (in vitro or in vivo), which is needed to reduce the gap between

scientific research and clinical applicability. Our understanding of the efficiency

of the methods and techniques in terms of reducing adverse reactions is inadequate,

as is a full understanding of their applicability to non-invasive early diagnosis.

These processes are important for the development of therapy and individualised

medicine, and they are relevant to the timely prognosis of many cancer types that

are typically only discovered at advanced stages, with extensive invasion and

metastasis to other tissues (Oue et al. 2005; Tie et al. 2010).
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