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Universidade Técnica de Lisboa
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Preface

This book is intended to serve as a text for graduate-level courses in forest modeling
and as a reference for researchers working in growth and yield modeling. Estimating
tree volumes and stand yields has a long history in forestry, starting with tabulations
and progressing to use of advanced statistical analyses and electronic computers
for implementation. Continuing advances in statistical science and computing
technology have fueled increasingly sophisticated approaches to modeling of forest
trees and stands. The focus of this volume is on contemporary methods (meaning
generally from the 1960s forward) for modeling individual tree characteristics and
forest stand dynamics, growth and yield. It is our hope that this summary and
synthesis of past work on empirical modeling of forest trees and stands will provide
a useful platform from which future researchers can build and move the field
forward.

After an introduction (Chap. 1), the first part of this book (Chaps. 2, 3, 4,
and 5) covers quantification of tree form, taper, volume, biomass, and crown
characteristics. Part 2 provides a transition to stand modeling with chapters on
growth functions (Chap. 6), quantification of site quality (Chap. 7), and measures
of stand and point density (Chaps. 8 and 9, respectively). The third part contains
an introductory chapter (Chap. 10) to modeling forest stand development, which
is followed by Chaps. 11, 12, 13, and 14 on whole-stand, diameter-distribution,
size-class, and individual-tree model structures for even-aged stands. Special
considerations and modeling methods for uneven-aged stands are described in
Chap. 15. Extensions to commonly-applied stand modeling approaches are given in
part 4, with summary information on modeling response to silvicultural treatments
(Chap. 16), incorporating wood quality information (Chap. 17), and implementing
and evaluating models (Chap. 18).

Following an introduction to the topic, each chapter provides increasingly
advanced information on the principal modeling approaches that have been applied.
Although an in-depth background in statistical analysis is required for comprehen-
sion of the more advanced techniques presented, the material is sequenced such that
it should be suitable for use in courses at the masters or doctoral level.
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vi Preface

The scope of this volume is limited to empirical modeling of forest trees and
stands; coverage of process models and related approaches is not provided. No
geographic restrictions were placed on what was included, but due to differences
in contributions to empirical modeling of forests that have been made in different
regions and for different species, some areas and species are inevitably more
prominently represented than others. Citations are largely limited to literature
published in English; where English language summaries of work published in
other languages are available, the English versions are cited. Articles from the peer-
reviewed literature are cited, where possible, but in some instances papers from
proceedings, research bulletins and the like are cited because they are the primary
source for the material. The primary publications for the statistical techniques
employed in various modeling applications are generally not cited in this book,
but they can be located by consulting references listed in the forest modeling
papers cited at the end of each chapter. The list of references at the end of each
chapter consists of literature that is cited therein plus selected citations of additional
papers relevant to the topics covered. Metric units are used throughout, and to the
extent possible, standard symbols of the International Union of Forest Research
Organization are used.

Finally, we wish to acknowledge, with deep gratitude, the critical role that our
mentors, colleagues, and especially our students have played in developing our
appreciation for and understanding of modeling forest trees and stands. A number
of professional associates provided ideas, review comments and suggestions for
various portions of this treatise. Special thanks go to Professor Timothy Gregoire
for his contributions to the planning and early stages of development of the book
proposal. Numerous individuals provided helpful review comments on selected
portions of the manuscript as it was being developed, including Ralph Amateis,
Finto Anthony, Clara Antón Fernández, Quang Cao, Klaus von Gadow, Oscar
Garcia, Samantha Gill, Steven Knowe, Tony Kozak, Thomas Lynch, Douglas
Maguire, Arne Pommerening, Charles Sabatia, Mahadav Sharma, Mike Strub,
Guillermo Trincado, Curtis VanderSchaaf, and Boris Zeide. Graduate assistants
at Virginia Tech, namely Micky Allen, Gavin Corral, Nabin Gyawali, and Ram
Thapa, provided valuable support in obtaining reference material, proof reading,
and performing other tasks associated with preparation of this volume. To all who
contributed to this effort in numerous ways we say “thanks”, while affirming that
any remaining errors or shortcomings in this work are ours alone.

Blacksburg, Virginia Harold E. Burkhart
Lisboa, Portugal Margarida Tomé
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Chapter 1
Introduction

1.1 Quantifying Forest Trees and Stands

Quantitative information on trees and stands is required for assessment and
management of forests. The basic management entity is generally the forest
stand, which, from a forestry standpoint, can be defined as “a contiguous group
of trees sufficiently uniform in age-class distribution, composition, and structure,
and growing on a site of sufficiently uniform quality, to be a distinguishable unit”
(Helms 1998). Forest stands are often described as being pure (single species) or
mixed-species, even-aged or uneven-aged. Production forestry commonly involves
establishment of pure, even-aged stands. Due to the substantial investments required
for intensive management for timber production, highly accurate models of tree
attributes and stand development are required. Models for various stand types are
included in this volume; however, much research has been focused on pure, even-
aged stands and that focus is reflected in the overview of forest tree and stand
modeling that constitutes this book.

While the bulk of this volume is devoted to modeling forest stand dynamics,
stands are composed of trees and models of tree attributes such as stem taper,
volume and weight, as well as tree biomass and crown characteristics, are central
components in a comprehensive growth and yield prediction system. Managers need
information not only on volume but also on value, thus necessitating a detailed
quantitative description of individual tree characteristics. In addition, tree and
hence stand response to silvicultural treatments and environmental influences is
related to tree characteristics such as crown size; accordingly increasingly complete
quantitative descriptions of individual trees are required.

A number of approaches, including process, hybrid, and empirical models, have
been taken to modeling tree and stand development. Empirical forest growth and
yield models are developed using statistical techniques and calibrated with compre-
hensive data sets. They are aimed at describing growth for a range of silvicultural
practices and site conditions. Their relatively simple data input requirements and
accuracy in predicting growth have made empirical models an essential tool for
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2 1 Introduction

forest management. Process-based model include a description of the behavior of a
system in terms of a set of functional relationships (e.g. plant growth relationships)
and their interactions with each other and the system (Landsberg and Sands 2011).
However, both types of models have some empiricism, i.e. are based on data that
describe some process or part of the system. The essential difference between the
so-called empirical models, such as conventional growth and yield models, and
process-based models is that empirical models essentially describe the observed
data at a given organizational level (e.g. tree or stand level) in terms of attributes
at the same level while in process models the empiricism is at lower levels than in
single tree or stand models (Thornley and Johnson 1990). When developing process-
based models the primary units of simulation are the processes. These models deal,
essentially, with dry mass production processes (at the leaf or canopy level) and
its distribution to plant parts, resulting in tree or stand growth. In tree and stand
models the primary unit of simulation is the tree or the stand, respectively. This
means that process-based models are based on causal processes at a hierarchical
level below the entire system while empirical models directly model the tree or
stand variables. Models that combine process-based and empirical components are
often designated as hybrid models. Mäkela et al. (2000) defined hybrid models as
those that contain both causal and empirical elements at the same hierarchical level.
In practice process-based models are used when modeling is undertaken for the
purpose of understanding while growth and yield models are widely used when the
objective is prediction. Data inputs for process models are often lacking in forest
inventories, which limits their use in wide-scale applications. Here we assume the
objective is primary prediction and we emphasize empirical modeling.

Statistical techniques are essential tools in development of empirical models
and the variety and complexity of the techniques used has greatly increased in the
last decades. Mixed-effects models, simultaneous fitting of systems of equations,
generalized linear models, and many other techniques, are now commonly applied
in model development. It is beyond the scope of this book to present underlying
statistical techniques in detail. References on forest modeling, which are included
with each chapter, provide an entry point to books on statistical theory and methods
as well as to key journal papers reporting advances in statistical science.

1.2 Modeling Approaches

In the preface to his book Empirical Model Building Thompson (1989) states:

Empirical model building refers to a mindset that lends itself to constructing practical
models useful in describing and coping with real-world situations.

The empirical models described in the chapters that follow are indeed practical
models that are useful for describing real-world situations – and hence helpful
in solving real-world problems. The objectives of the modeling endeavor and the
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level of understanding of the phenomenon being modeled often dictate an empirical
approach. Empirical models have been applied with successful results for a host of
forestry applications.

Thompson (1989, pp. 2–3) describes the various ways in which scientists
approach the concept of models and categorizes modelers in three groups that appear
to have the greatest numbers of adherents, namely:

Idealists are not really data oriented. They are rather concerned with theory as a
mental process that takes a cavalier attitude toward the “real world.” Their attitude
can be summed up as follows: “If facts do not conform to theory, then so much the
worse for the facts.” For them, the “model” is all.
Radical Pragmatists are the opposite end of the spectrum from that of the Idealists.
The Radical Pragmatists hold that data are everything. Every situation is to be
treated more or less uniquely. There is no “truth.” All models are false. Instead
of model building, Radical Pragmatists fit curves to data. They do not look on the
fitted curve as something of general applicability, but rather as an empirical device
for coping with a particular situation.
Realists occupy a ground intermediate to that of the Idealists and that of the Radical
Pragmatists. They hold that the universe is governed by rational and consistent laws.
Models, to the Realist, are approximations to bits and pieces of these laws. The
Realist knows the model is not quite right but hopes it is incomplete rather than
false. The collection of data is useful in testing a model and enabling the Realist
to modify it in an appropriate fashion. It is this truth seeking, interactive procedure
between mind and data which might be termed empirical model building.

Empirical model building by the Realist approach follows the process that
is commonly referred to as the “scientific method.” In this interactive method
scientists proceed to understand portions of the real world by proposing theoretical
mechanisms, testing these against observations, and revising theory where it does
not conform to data. Much model building in forestry falls within this definition
of the Realist approach. Some modelers lean more towards the Idealists end of
the spectrum while others tend more toward the Radical Pragmatists. But the main
distinctions among forest models and modelers are a matter of modeling objective –
that is whether modeling for understanding or for prediction (Burkhart 1999).

1.3 Empirical Modeling of Forests

In classical growth and yield research, the emphasis has been on the development
of prediction tools to provide decision support for practical forest management.
The approach involves taking field measurements of the relevant variables such
as age, tree diameters and heights, and site quality, and fitting regression models
that allow reproduction of the essential characteristics of the field data set. In its
most data-intensive form, this modeling approach can be regarded as descriptive
(following the Radical Pragmatists School) essentially with the aim of summarizing
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and reproducing field data. As more data became available, sophisticated analytical
methods were developed, and more powerful computing technology was obtained,
this approach evolved to produce rather elaborate yield models, with increasing
detail on individual trees and stand structure. Over the past decades, whole-stand,
diameter-distribution, size-class, and individual-tree models have been developed
for forest management purposes. At the same time increasing detail on crown
structure and branching characteristics, in addition to stem volume, has been
included in the models (Mohren and Burkhart 1994).

Provided the conditions under which these models are applied are the same
(or very similar) as those under which the basic data have been collected, such
models produce accurate predictions of future yield. To the extent that appropriate
underlying functional forms are specified, these empirical models can also be used
confidently for limited extrapolation beyond the range of the field data. Growth and
yield models are used for inventory updating, estimating stand structure and stand
productivity, evaluating silvicultural alternatives, and in general for decision support
in forest management and planning (Burkhart 1990). To develop such models
requires extensive databases from long-term permanent field plots, covering various
management regimes and site productivities. Data from designed experiments
are also often incorporated to extend the range of conditions for which reliable
predictions can be made.

1.4 Organization of Book Contents

The material in this book is organized into four parts. The first part deals with
quantifying attributes of individual trees. Tree form and taper are covered in Chap. 2,
tree-stem volume equations are addressed in Chap. 3, tree weight and biomass
estimation is the topic of Chap. 4, and Chap. 5 deals with characterizing tree crowns.

The second part provides a transition towards forest stand modeling, starting
with background information on growth functions in Chap. 6. Chapter 7 addresses
quantifying site quality, with the primary focus being on the height-age or site index
concept. Stand density measures is the topic of Chap. 8, and Chap. 9 deals with
measures of point density.

Forest stand modeling constitutes a major focus of this text and reference book.
Chapter 10 provides context and introductory information for the chapters on
commonly-used model structures that follow. Chapter 11 describes whole-stand
models for even-aged forests. Due to the large amount of effort that researchers have
devoted to using continuous distributions to produce stand tables (numbers of trees
by diameter classes) and yield estimates from whole stand characteristics, Chap. 12
is devoted to this area, commonly referred to as diameter-distribution models. Size-
class models are the subject of Chap. 13 and individual-tree models are described in
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http://dx.doi.org/10.1007/978-90-481-3170-9_10
http://dx.doi.org/10.1007/978-90-481-3170-9_11
http://dx.doi.org/10.1007/978-90-481-3170-9_12
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Chap. 14. This suite of stand models, from whole-stand to individual-tree levels, is
developed in Chaps. 11, 12, 13, and 14 in the context of even-aged stands. Chapter
15 deals with special considerations involved with modeling uneven-aged stands and
extends and expands the modeling techniques described in Chaps. 11, 12, 13, and
14 to the age-indeterminate situation. Chapter 15 also covers modeling techniques,
most notably matrix models, that have been found highly useful for uneven-aged
management.

The final part of the book extends forest stand modeling approaches by describ-
ing methods to incorporate silvicultural treatments (Chap. 16) and wood quality
attributes (Chap. 17) in growth and yield models. Chapter 18 provides a discussion
of model evaluation and implementation.

1.5 Abbreviations and Symbols Used

Certain abbreviations (such as dbh for diameter at breast height) and symbols are
used in multiple chapters; others are defined when they appear in the text. For
clarification and ease of reference, a description of common symbols is given
here. The symbols used are based on the International Union of Forest Research
Organizations (IUFRO) standardization recommended in 1959 and republished in
1965 (van Soest et al. 1965). Capital letters are used to denote totals per unit area
(most of the stand variables) while lowercase letters generally refer to individual
or mean values for tree variables. Whenever appropriate, the same symbol is used
for the tree (lowercase letters) and for the stand (capital letters). For instance v
symbolizes tree volume, whereas V designates stand volume.

The most referred to tree and stand variables are listed in Table 1.1. Additional
variables are defined as needed in the appropriate chapters. For convenience, most
symbols and variables are defined within each chapter when they are first used.

Conventions followed to develop notation and symbols include:

– Arithmetic mean values of tree variables are indicated by the same symbol used
for the corresponding tree variable with a superimposed bar (for instance d for
tree dbh and d for the mean diameter);

– Mean values, other than arithmetic means, are defined as needed;
– Increment in one variable is indicated by the letter i or the symbol � followed by

the symbol of the variable (for example, tree volume increment is iv or �v and
stand volume increment is iV or �V).

We have strived for consistency in notation within this volume by defining the
most commonly used symbols (Table 1.1). Conventions vary across the primary lit-
erature that is synthesized and presented herein, however, and we have incorporated
certain notation that is typically used in the various subject areas covered to facilitate
augmenting our presentation with more in-depth material.

http://dx.doi.org/10.1007/978-90-481-3170-9_14
http://dx.doi.org/10.1007/978-90-481-3170-9_11
http://dx.doi.org/10.1007/978-90-481-3170-9_12
http://dx.doi.org/10.1007/978-90-481-3170-9_13
http://dx.doi.org/10.1007/978-90-481-3170-9_14
http://dx.doi.org/10.1007/978-90-481-3170-9_15
http://dx.doi.org/10.1007/978-90-481-3170-9_11
http://dx.doi.org/10.1007/978-90-481-3170-9_12
http://dx.doi.org/10.1007/978-90-481-3170-9_13
http://dx.doi.org/10.1007/978-90-481-3170-9_14
http://dx.doi.org/10.1007/978-90-481-3170-9_15
http://dx.doi.org/10.1007/978-90-481-3170-9_16
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Table 1.1 Abbreviations and symbols

Tree and stand variables

Symbol Units Description

Age variables for trees and even-aged stands
t Years Age (independently of the definition: from seed, from planting,

at dbh); also used to denote elapsed time
tb Years Base age (for S determination)

Diameter and diameter related variables
d cm Diameter at breast height (1.3 m, 1.4 m, 4.5 ft D 1.37 m or other)
Nd cm Arithmetic mean diameter
dg cm Quadratic mean diameter
dhi cm Diameter at height hi above ground
g cm2 Tree basal area at breast height
ghi cm2 Cross-sectional area at height hi above ground

Height and height related variables
h m Total tree height
hm m Merchantable tree height
h m Arithmetic mean height
hdi m Height from the ground to point diameter di on the tree stem

(corresponding to diameter di or some other limit of measurement
on utilization)

hd m Height to dbh
hcb m Height to the base of the crown

Crown and crown related variables
cw m Crown width, crown diameter
cl m Crown length
ca m2 Crown area
cv m3 Crown volume
cr – Crown ratio (crown length divided by total tree height)

Stem volume and weight variables
v m3 Total volume (to the tip of the tree)
vm m3 Merchantable volume of stem
vdi m3 Volume to top diameter di (cm)
vhi m3 Volume to height hi (m)
w kg Total weight (green or dry) to tip of tree
wm kg Merchantable weight (green or dry) of stem
wdi kg Weight (green or dry) to top diameter di (cm)
whi kg Weight (green or dry) to height hi (m)

Dominant height and site index variables
hdom m Dominant height (independently of the definition)
S m Site index for a specified base age

Stand density variables
G m2ha�1 Basal area
N ha�1 Number of trees

Stand volume variables
V m3ha�1 Total volume (to the tip of the tree)
Vm m3ha�1 Merchantable volume stand
Vdi m3ha�1 Volume to top diameter di (cm)
Vhi m3ha�1 Volume to height hi (m)
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Chapter 2
Tree Form and Stem Taper

2.1 Form and Taper

Although sometimes used as synonyms, the terms tree form and stem taper have
specific connotations in a forestry context. Form refers to the characteristic shape
of the tree, whereas taper is the rate of decrease in stem diameter with increasing
height from ground level to the tree tip. The general form of trees can be divided into
three basic classes: excurrent, decurrent, or shrub. Species exhibit an excurrent or
conical crown shape when terminal growth exceeds branch lateral growth; excurrent
crowns are typical of many conifers and some deciduous trees (Fig 2.1a). Because
trees of excurrent form generally have a single main stem they have been preferred
for production of solid wood products, in particular, and with their often-times high
commercial value these species have been the focus of much of the research aimed
at accurate quantitative descriptions of the main stem.

Decurrent or spreading crowns, which are typical of many deciduous species,
result when lateral branches grow nearly as fast as or faster than the terminal leader.
This crown form often produces repeated forking of the main stem (Fig. 2.1b).
Quantitative description of such stems is more difficult than with single-stemmed
trees, but, with appropriate definitions and predictor variables, stem taper functions
for decurrent forms have been developed. Fowler and Rennie (1988), for instance,
presented a method to use merchantable height in lieu of total height when
developing stem profile equations for hardwood trees in Tennessee, USA.

Shrubs are woody perennial plants that generally lack a well-defined main stem
(Fig. 2.1c). Although not of primary interest from a wood products and forest
management perspective, the volume or biomass of shrubs is sometimes needed
to evaluate overall site occupancy and productivity, amounts of fuel for fires, and
for other purposes. While stem taper functions are not of general interest for shrubs,
volume and/or biomass equations may be needed. Additional measurements, and
special definitions, have been employed when developing volume and biomass
prediction equations for shrubs (see Chap. 3).

H.E. Burkhart and M. Tomé, Modeling Forest Trees and Stands,
DOI 10.1007/978-90-481-3170-9 2,
© Springer ScienceCBusiness Media Dordrecht 2012
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Fig. 2.1 Excurrent (a), decurrent (b), and shrub (c) tree forms

The stem of excurrent trees resembles a solid of revolution, namely a paraboloid.
A more detailed analysis shows that it is more realistic to consider three parts in
the stem that can be approximated by different solids of revolution: neiloid for the
bottom, paraboloid for the central part of the stem and cone for the top (Fig. 2.2). If
stem form (that is, the shape of the stem or some portion thereof) is approximately
that of a regular geometric solid, the volume can be estimated from measurement of
the appropriate widths and length.

Tree stems, however, have multiple inflexion points along their length resulting
in multiple geometric shapes being approximated, and resulting in a mathematical
description of the entire bole being very difficult to obtain. The functions used to
describe tree stem shape by predicting diameter along the bole as a function of
the height from the ground as well as of tree diameter and height are generally
designated as taper functions. Stem taper functions are exceedingly flexible and
can provide estimates of diameter at any point along the stem, total stem volume,
merchantable volume, and merchantable height to any top diameter and from any
stump height, as well as individual log volumes of any length at any height from
ground. Consequently, a great deal of effort has been devoted to modeling stem
taper, especially for single-stemmed species of high commercial value.

2.2 Stem Taper Functions

Many different forms of taper functions have been developed for various tree
species. In general terms a taper function takes the form

di D f .d; h; hi / (2.1)
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Upper
logs

Paraboloid

Neiloid

Butt
log

Stump

ConeTop

Fig. 2.2 Geometric shapes
assumed by different portions
of tree boles (Adapted from
Avery and Burkhart 2002)

where di is the stem diameter at height hi above ground for a tree with diameter
at breast height d and total height h. Diameter inside bark or outside bark may
be used as the dependent variable. Taper curves can also be used to estimate the
height at a specified diameter by inverting Eq. 2.1. Such equations allow estimation
of merchantable heights to specified top diameters and computation of length of
quantities for specific products.

To obtain stem volume for any desired portion of the tree bole, the expression for
stem cross-sectional area is integrated over the length desired. If one assumes that
tree cross-sections are circular in shape, then the cross-sectional area gi in square
units for a given di is:

gi D �

4
di

2 D kdi
2

where k is �=4 multiplied by a constant depending on the units of di and gi.



12 2 Tree Form and Stem Taper

Integrating the expression for area in square units over the length desired in units
gives the volume in cubic units for that segment:

vh1�h2 .cubic units/ D k

h2Z

h1

di
2dhi

where vh1�h2 is volume for the tree segment between h1 and h2, k is a constant
depending on the units and h1 and h2 denote the limits of integration.

Taper functions can be grouped according to various categories. For purposes
of this discussion three broad categories will be examined: simple taper functions,
segmented functions and variable-exponent models.

Simple taper functions depict the entire tree profile with a single equation. Tree
boles are highly variable, however, with multiple inflection points and it is difficult
to describe their shapes over entire lengths without rather complex functions.
Segmented taper functions consist of sub-models to describe different portions of
the tree bole; these sub-models are then joined for a description of the entire stem.
Variable exponent equations consist of a continuous function for describing the
shape of the bole from ground to tip by using a changing exponent to describe the
lower (neiloid), mid (paraboloid), and upper (conic) forms of the stem.

Integrating for volume estimation and inverting the equation for estimating
height at a specified stem diameter becomes more computationally complex (and
sometimes requires numerical approximations) when complex functions are em-
ployed. Fortunately, computing technology has largely eliminated the computational
difficulties associated with fitting taper equations to data and applying them for
estimating stem diameters and volumes.

2.2.1 Simple Equations

The parabolic function of Kozak et al. (1969) provides an example of a simple taper
function:

di
2=d 2 D b0 C b1 .hi =h/ C b2

�
hi

2=h2
�

(2.2)

where di is diameter at any given height hi above ground, and b0, b1 and b2 are
regression coefficients. Kozak et al. (1969) developed the equation for the prediction
of the tree profile inside bark but the model has been used either to predict di or
dui. If di and d are in the same units and hi and h are also expressed in the same
units, the resultant regression coefficients for relative diameter (di/d) squared as a
function of relative height (hi/h) are unitless. An estimate of upper stem diameter
(di) is obtained as:

di D d

r
b0 C b1 .hi =h/ C b2

�
hi

2=h2

�
(2.3)
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with units of measure identical to d. This simple quadratic equation fits the
mid-section of tree boles reasonably well but it tends to be biased in the upper (more
conic) portion and it fails to account for the butt flare near ground level. Because
fitted equations can be biased in the upper stem portions, the equation is sometimes
conditioned so that when hi equals h estimated diameter is zero. This condition can
be ensured by imposing the constraint b0 D �b1 � b2. Substitution of this condition
into Eq. 2.2 and simplifying gives

di
2=d 2 D b1 ..hi =h/ � 1/ C b2

��
hi

2=h2
�

� 1
�

(2.4)

which is a two-parameter regression equation without a constant term.
By applying the quadratic formula to the parabolic taper Eq. 2.2, it can be

inverted to obtain an expression for height hi to any specified diameter di for trees
of given dbh and total height values:

hi D �b1h �
q

.b1h/2 � 4b2.b0h2 � di
2h2=d 2/

2b2

(2.5)

Using the quadratic taper model (2.2) and substituting the expression for di
2 into

the integral for volume results in

vh1�h2 D kd 2

h2Z

h1

h
b0 C b1 .hi =h/ C b2

�
hi

2=h2
�i

dhi

Solving the definite integral results in

vh1�h2 D kd 2
h
b0hi C .b1=2/

�
hi

2=h
�

C .b2=3/
�
hi

3=h2
�iˇ̌ˇ̌
ˇ
h2

h1

(2.6)

If the taper equation is integrated over the total bole length (i.e., from 0 to h,
where h denotes total tree height), an expression for total tree volume will result.
Following through with the same parabolic taper function, we have:

v D kd 2
h
b0hi C .b1=2/

�
hi

2=h
�

C .b2=3/
�
hi

3=h2
�iˇ̌ˇ̌
ˇ
h

0

D ˚
kd 2

�
b0h C .b1=2/

�
h2=h

�C .b2=3/
�
h3=h2

��� � 0

Noting that the above expression can be written as

k Œb0 C .b1=2/ C .b2=3/� d 2h
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and setting k Œb0 C .b1=2/ C .b2=3/� equal to b, the implied volume equation is

v D bd 2h

which is a logical model for total tree volume v (stem volume equations are
discussed in detail in Chap. 3).

In addition to the quadratic equation in relative height, a number of studies
have applied higher order polynomials, sometimes with a combination of lower
and higher order terms, to describe tree stem profiles (Bruce et al. 1968; Hilt 1980
and others). These studies have used different definitions of relative height. In the
following sections of this chapter we will use the notation x for relative height hi =h

and z for all other definitions of relative height; each time z appears, its particular
definition will be given. The notation y is used for the dependent variable and, due
to the different definitions that have been used by different authors, y will be defined
in each particular context.

Hilt (1980) used a modification of the taper model proposed by Bruce et al.
(1968) when describing taper for upland oaks:

y D z
3
2 C b1

�
z

3
2 � z3

�
h C b2

�
z

3
2 � z3

�
dh C b3

�
z

3
2 � z30

�
d C b4

�
z

3
2 � z30

�
dh

where

y D d 2
i =d 2

z D .h � hi / = .h � hd /

hi D height at measurement point
hd D height to dbh

Another functional form for taper equations was proposed by Laasasenaho
(1982). The function involves a polynomial in accordance with a Fibonacci series
of exponents:

y D b1x C b2x
2 C b3x

3 C b4x
5 C b5x

8 C b6x13 C b7x
21 C b8x

34

Where y D di =d0:2h and x D .1 � hi =h/. The diameter at 20% of total tree
height (d0.2h) was used as the reference diameter in this work, rather than dbh.

Other examples of simple taper functions include that of Ormerod (1973):

di D d

	
h � hi

h � hd


b

(2.7)

which involves only one parameter b. In Ormerod’s function hd is height to dbh.
Sharma and Oderwald (2001), in deriving dimensionally compatible volume and

taper functions, noted that the following mathematical form can accommodate the
overall shape of a tree bole:

di
2 D ad b1

	
1 � hi

h



hi

b2 (2.8)

http://dx.doi.org/10.1007/978-90-481-3170-9_3
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where b1 and b2 are dimensionless parameters to be estimated. The dimensionless
term .1�hi=h/ ensures that di D 0 when hi D h. The dimensions of di

2, d, and hi are
L2, L, and L, respectively. Hence, the dimensional form of Eq. 2.8 (where M denotes
mass, L denotes length, and T denotes time) can be written as

M 0L2T 0 D M 0Lb1Cb2T 0 (2.9)

Therefore, this equation is balanced if and only if b1 C b2 D 2. The specific
values of b1 C b2 are indeterminate, but their sum must equal two. Consequently,
the parameter b2 can be eliminated from Eq. 2.8 to obtain the taper equation

di
2 D ad b1

	
1 � hi

h



hi

2�b1 (2.10)

By applying the constraint that hi D hd when di D d to Eq. 2.10 the constant a
equals

a D .d=hd /2�b1

.1 � hd =h/

Substituting this value of a into Eq. 2.10 and rearranging the terms results in the
final taper equation of Sharma and Oderwald (2001):

di
2 D d 2

	
h

hd


2�b1
	

h � hi

h � hd



(2.11)

Thomas and Parresol (1991) used trigonometric based functions to model taper
of thinned and unthinned slash pine, oak and sweet gum trees:

di
2=d 2 D b1.x � 1/ C b2 sin .b3�x/ C b4 cot.�x=2/

where the symbols are as before and b1–b4 are parameters to be estimated. The
use of trigonometric functions guarantee that the fitted function has an appropriate
shape: the first term represents a linear relationship between squared relative
diameter and relative height, the second term reflects an increase of diameter in the
middle part of the tree and the third gives the neiloid shape to the bottom portion.
Comparison of the trigonometric model with the generally used Max and Burkhart
(1976) segmented model, presented in the next section, indicated that the equations
based on trigonometric functions have a similar performance, with advantages in
terms of parsimony and simplicity of integration for volume computation. It is
important to note that the trigonometric equation does not predict di/d D 0 when
hi D h (x D 0).

Biging (1984) presented a taper equation derived from the Chapman-Richards
function to describe stem form for second-growth mixed-conifers in northern
California:

di D d
h
b1 C b2 ln

�
1 � �

1 � e�b1=b2
�

.hi =h/1=3
�i
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where symbols are as before. The function is parsimonious concerning the number
of parameters and can be integrated to directly yield volumes to any height. Fitting
of this equation to six conifer species (ponderosa pine, Douglas-fir, white fir, red fir,
sugar pine, and incense cedar) showed performance similar to that of the Max and
Burkhart (1976) segmented function fitted to the same data set.

Taper functions provide maximum flexibility for computing volumes of any
specified portions of tree stems. Tree boles are highly variable, however, with
multiple inflection points and it is difficult to describe their shapes over entire
lengths without rather complex functions. Two widely-adopted approaches (seg-
mented taper functions and variable exponent models) aimed at developing more
accurate descriptions of tree stems from ground to tip than what simple functions
provide will be covered in detail.

2.2.2 Segmented Functions

Although tree boles cannot be completely described in mathematical terms, it is
common and convenient to assume that segments of tree stems approximate various
geometric solids. The lower bole portion is generally assumed to be a neiloid
frustum, the middle portion a paraboloid frustum, and the upper portion a cone
(Fig. 2.2). This suggests that three functions are needed to describe expected tree
taper, one each for the lower, middle, and upper segments of the bole. These three
functions can be joined to form a single model which can be fitted using segmented
regression techniques.

Max and Burkhart (1976), using the quadratic function of Kozak et al. (1969)
to describe taper in three bole segments, fitted segmented polynomial regression
models to describe stem taper for loblolly pine trees. Segmented polynomial models
consist of a sequence of grafted or joined sub-models. In the case of one independent
variable, the domain is partitioned and a different polynomial sub-model is defined
on each section of the partition. These sub-models are then grafted together to form
the segmented polynomial model. In general terms, a segmented polynomial model
can be written as

y D f .x/ C e

where

f .x/ D f1 .x; b1/ ; a0 � x � a1

D f2 .x; b2/ ; a1 < x � a2

D : : : : : :

D fr .x; br/ ; ar�1 < x � ar
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where the bi are vectors of parameters to be estimated. These functions are then
grafted together at the join points a1, a2, : : : , ar, by imposing restrictions in such a
manner that f is continuous and has continuous first or higher order derivatives.

If the join points are known fixed constants, then f is linear in the unknown
parameters bi’s, and the bi’s can be estimated using multiple linear regression
methods. If the join points must be estimated and f1; f2; : : : ; fr are polynomials
then f can be rewritten with the restrictions that f be continuous and have a
continuous first partial derivative at each join point. The reparameterized model is
linear in the bi’s but nonlinear in the ai’s, thus non-linear least squares procedures
must be used.

Using the notation of Max and Burkhart (1976) for the dependent and indepen-
dent variables, the quadratic taper model of Kozak et al. (1969), with no restrictions,
can be written as:

y D b0 C b1x C b2x
2 (2.12)

where

y D di
2=d 2

x D hi =h

Dividing the tree stem into three segments, each to be described by fitting
Eq. 2.12, results in

y D b11 C b12x C b13x
2 .conoid/ (2.13)

y D b21 C b22x C b23x
2 .paraboloid/ (2.14)

y D b31 C b32x C b33x2 .neiloid/ (2.15)

Let the height from ground at join point between (2.13) and (2.14) be a1 and that
of the join point between (2.14) and (2.15) be a2.

The three submodels should be continuous at the each of the join points, which
implies (1) that the two segments are equal at the join points and (2) that the first
derivatives at the join points are also equal. A third restriction (3) that should be
imposed is that di D 0.y D 0/ when hi D h.x D 1/. Based on these restrictions,
the equations for the top, middle and bottom segments can be found.

Top segment: If restriction (3) is applied to Eq. 2.13, then

b11 C b12 C b13 D 0 ) b11 D �b12 � b13

and the equation for the top segment is

y D b12.x � 1/ C b13.x
2 � 1/ (2.16)
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Middle segment: Applying restrictions (1) and (2) to Eq. 2.14 to guarantee
continuity at a1 implies that

b11 C b12a1 C b13a1
2 D b21 C b22a1 C b23a1

2 (2.17a)

b12 C 2b13a1 D b22 C 2b23a1 (2.17b)

Manipulation of Eqs. 2.17a and 2.17b leads to the following expressions for b21

and b22:

b21 D b11 � b13a1
2 C b23a1

2 D �b12 � b13 � b13a1
2 C b23a1

2 (2.18a)

b22 D b12 C 2b13a1 � 2b23a1 (2.18b)

Substituting (2.18a) and (2.18b) in Eq. 2.14 originates the equation for the middle
segment:

y D b12 .x � 1/ C b13

�
x2 � 1

�C .b23 � b13/ .a1 � x/2 (2.19)

Bottom segment: The equation for the bottom segment can be obtained by applying
restrictions (1) and (2) to Eq. 2.15 to guarantee continuity at a2 which implies that:

b21 C b22a2 C b23a2
2 D b31 C b32a2 C b33a2

2 (2.20a)

b22 C 2b23a2 D b32 C 2b33a2 (2.20b)

Manipulation of Eqs. 2.20a and 2.20b leads to the following expressions for b31

and b32:

b31 D b21 � b23a2
2 C b33a2

2 (2.21a)

b32 D b22 C 2b23a2 � 2b33a2 (2.21b)

Substituting (2.21a) and (2.21b) in Eq. 2.15 yields the following equation:

y D b21 C b22x C b23x
2 C .b33 � b23/ .a2 � x/2 (2.22)

Noting that the three first terms of Eq. 2.22 correspond to the equation for the
middle segment the equation for the bottom segment is:

y D b12.x � 1/ C b13.x
2 � 1/ C .b23 � b13/.a1 � x/2 C .b33 � b23/.a2 � x/2

(2.23)
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By using two dummy variables I1 and I2 and renaming the parameters Eqs. 2.16,
2.19 and 2.23 can be combined into a single model:

y D b1.x � 1/ C b2.x
2 � 1/ C b3.a1 � x/2I1 C b4.a2 � x/2I2 (2.24)

where

I1 D 1 if x � a1, D 0 otherwise
I2 D 1 if x � a2, D 0 otherwise

which is the six-parameter quadratic-quadratic-quadratic form fitted by Max and
Burkhart (1976).

In summary a segmented polynomial taper function fitted to three submodels
with three parameters each and two join points would require estimation of 11
parameters. By imposing the restriction that diameter at the tip of the tree is zero,
the number of parameters is reduced by one. Two further constraints that the grafted
functions are continuous and smooth (i.e. first partial derivatives are equal) at the
join points reduce the number of parameters by four leaving a total of six parameters
to be estimated.

Sharma and Burkhart (2003) further considered the restriction that forces
Eq. 2.24 to have continuous second partial derivatives with respect to x at points
a1 and a2, then:

b13 D b23 D b33

Applying this restriction and rearranging the terms, Eq. 2.24 collapses to the
two-parameter quadratic taper model of Kozak et al. (1969), namely:

y D b1.x � 1/ C b2.x
2 � 1/

Typically, each constraint or restriction results in a decrease of one parameter in
the model to be fitted, but that is not always the case as demonstrated here.

Sharma and Burkhart (2003) searched for an optimal specification, that is the
minimum number of parameters required, to estimate diameters along the tree
stem accurately for the segmented polynomial taper equation of Max and Burkhart
(1976). Results from fitting with a large set of measurements of loblolly pine stems
showed that an eight-parameter model with minimum constraints (diameter at the tip
of the tree equals zero and the adjacent functions are continuous at the join points)
did not perform better than the six-parameter model (Eq. 2.24) with an additional
smoothness constraint in terms of fit and predictive ability. A four-parameter model
with the join points assumed to be known as 11% and 75% of total tree height was
slightly superior to the six- and eight-parameter models in estimating tree diameters.

A number of additional studies involving segmented taper functions have
been published. For example, Demaerschalk and Kozak (1977) considered two
submodels sufficient to describe the tree profile for Douglas-fir and broad leaf maple
and found that the inflection (or join) point fell between 20% and 25% of total tree
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height. In another instance, Fang et al. (2000) described tree profiles by combining
three segments and using a segmented-stem taper model based on a variable-
form differential equation. They estimated the upper inflection points for slash and
loblolly pine trees as 54% and 57% of total tree height, respectively; the lower
inflexion point was estimated at 7% of total tree height for both species. Petersson
(1999) developed a segmented stem profile model for Scots pine in Scandinavia.
A separate function was specified for segments with relative tree heights of 20%
and 80% being selected as fixed join points for the sub-functions.

It should be noted that segmented taper functions are a form of spline. The utility
of cubic smoothing splines for describing tree stem taper and for estimating volume
of segments of stems has been explored by a number of researchers including
Goulding (1979), Lahtinen and Laasasenaho (1979), Liu (1980), Figueiredo-Filho
et al. (1996a), and Koskela et al. (2006).

2.2.3 Variable-Exponent Functions

Variable-exponent or variable form taper functions are simple continuous functions
that describe the shape of tree boles with a varying exponent from ground to
top to account for neiloid, paraboloid and conic forms. Taper functions of this
type were first developed by Newnham (1988) and Kozak (1988). Since their
introduction, a variety of approaches to the variable-exponent taper function form
have been developed (Perez et al. 1990; Newnham 1992; Muhairwe et al. 1994;
Kozak 1997, 1998; Bi 2000 and others). The model of Kozak (1988), and variations
and extensions from that initial publication, will be used to illustrate the variable-
exponent approach.

The variable-exponent approach is rooted in the idea that, if the values of z and y
are selected appropriately, a simple power function

y D zc (2.25)

where c is a “variable-form” exponent that varies along the entire length of the stem
profile in order to accommodate the tree stem variation in shape. In developing the
variable-form taper function Kozak (1988) imposed the following definitions:

y D di =dI

z D 1 �p
hi =h

1 � p
p

where

di D diameter at hi

hi D height from ground, 0 � hi � h
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Fig. 2.3 Taper curves obtained with the Eq. 2.25 with different values of k (Adapted from Kozak
1988)

h D total height of the tree
hI D height of the inflection point from ground
p D .hI=h/

dI D diameter at the inflection point

Kozak’s variable-exponent function was developed for diameter inside bark, in
which case dI has to be also measured under bark, but the model has been applied
either for inside or outside bark diameter prediction.

Demaerschalk and Kozak (1977) indicated that the relationship between di/d and
hi/h changes from neiloid to paraboloid at a fixed proportion (p) of the total height
of the tree, and they called it the inflection point. They found that the inflection
point ranged from 20% to 25% of total height from the ground for their sample of
commercial tree species in British Colombia, Canada. Further, the relative height of
the inflection point was fairly constant within a species, regardless of tree size. By
expressing the exponent c as a function of hi/h and of a parameter k

c D .hi =h C k/�1 (2.26)

and by varying k one can obtain a family of curves (Fig. 2.3) that is useful for
describing the shape of tree boles. However, to obtain a good fit between di/dI and
hi/h, Kozak found the form of the exponent to be much more complicated than
indicated in Eq. 2.26. A detailed study of the various forms of the exponent indicated
that it can be expressed as a multiple curvilinear regression:

c D b0 C b1x C b2x2 C b3=x C b4 ln.x C 0:0001/ C b5

p
x C b6e

x C b7.d=h/

(2.27)

where x D hi =h
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Analysis of Eq. 2.27 for 33 species groups indicated that the best subset of
variables is

c D b2x2 C b4 ln.x C 0:0001/ C b5

p
x C b6e

x C b7.d=h/ (2.28)

Substituting Eq. 2.28 in Eq. 2.25 and renumbering the coefficients, we obtain:

di =dI D zb1x2Cb2 ln.xC0:001/Cb3

p
xCb4exCb5.d=h/ (2.29)

In Eq. 2.29 the diameter at the inflection point (dI) is not known but can be
estimated from diameter outside bark at breast height (d). The function used to
calculate dI, was

dI D a0d a1a2
d (2.30)

Substituting Eq. 2.30 into Eq. 2.29 and rearranging the terms, we get:

di D a0d
a1a2

d zb1x2Cb2 ln.xC0:001/Cb3

p
xCb4exCb5.d=h/ D a0d

a1a2
d zc (2.31)

Although Eq. 2.31 can be fitted directly with nonlinear least squares, a logarith-
mic transformation is often employed. Using logarithmic transformation, Eq. 2.31
can be linearized as

ln .di / D ln .a0/ C a1 ln.d/ C ln .a2/ d C b1 ln.z/x2 C b2 ln.z/ ln .x C 0:001/

C b3 ln.z/
p

x C b4 ln.z/ex C b5 ln.z/.d=h/

D ln .a0/ C a1 ln.d/ C ln .a2/ d C c ln.z/ (2.32)

Coefficients in (2.32) can be obtained using multiple linear regression methods.
The properties of this model are: (i) di D 0 when hi =h D 1 (top of the tree); (ii)
di D dI (estimated) when hi =h D p; (iii) the function changes direction when
hi =h D p.z D 1/.

The variable-exponent taper function has been very effective for estimating
diameters throughout the length of the bole but it has the drawbacks that (1) it
cannot be analytically integrated to compute stem volumes, (2) the expression for
the exponent of x has multiple terms in x implies that the model is likely to exhibit
strong multicollinearity (see Sect. 2.6.2), and (3) iterative methods must be used
to estimate heights at specified stem diameters. However, it should be noted that
numerical techniques for obtaining volume and height estimates are now reasonably
easy to implement.

After the pioneering works of Newnham (1988, 1992) and Kozak (1988, 1997)
to derive variable-exponent taper functions, other authors followed the same line
of thinking but using different base taper equations and/or exponents. Sharma and
Zhang (2004) developed a variable-exponent taper equation for jack pine, black
spruce, and balsam fir trees grown in eastern Canada based on the dimensionally
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compatible taper equation of Sharma and Oderwald (2001) presented in Eq. 2.11
by expressing the parameter b1 of the exponent as a quadratic function of relative
height x D hi =h:

di
2 D d 2

	
hi

hd


2�.b1Cb2xCb3x2/ 	
h � hi

h � hd



(2.33)

In an effort to overcome the weakness of unstable specification in the variable-
form taper models introduced by Newnham (1988, 1992) and Kozak (1988,
1997), Bi (2000) constructed the base function from trigonometric equations. Bi’s
specification for the exponent includes variables for detecting changes in stem form
along the bole and variables for taking into account differences in stem form among
trees of different sizes. When fitted to data from 25 species of Australian eucalyptus,
the model was found to be stable in specification, flexible in fitting data for trees of
varying species and with varying stem forms, and accurate in predictions of taper
and merchantable height.

Valentine and Gregoire (2001) developed a variable-exponent taper function
using numerical switches to achieve the variable exponent. Numerical switches are
functions widely used in process models of plant growth (e.g. Thornley and Johnson
1990) to switch on or switch off some process. In taper modeling, these functions
can be used to switch from a neiloid to a paraboloid and then to a cone. The authors
considered each bole segment modeled with a modification of Ormerod’s (1973)
function (Eq. 2.7) that uses tree basal area as the dependent variable instead of
diameter, with the needed restrictions to guarantee continuity at the join points (dbh
and height to the base of the crown):

gi D g
�

h�hi

h�hd

�b1

Middle segment (paraboloid if b1 � 1, hd � hi � hcb)

gi D g
�

h�hi

h�hd

�b1
�

h�hi

h�hcb

�b2

Top segment (cone if b1 C b2 � 2, hi > hcb)

gi D g
�

h�hi

h�hd

�b00Cb1

Basal segment (neiloid if b00 C b1 > 2, hi < hd )

where:

gi D cross-sectional area at height above ground hi

g D breast height basal area
hcb D height to the base of the crown

b00 D b0h

and other symbols have the definitions given before.
The switching model for the whole bole was:

gi D g

	
h � hi

h � hd


b1CS1.hi /	 h � hi

h � hcb


b2S2.hi /

(2.34)
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where

S1.hi / D a0

1 C Œhi =.a1h/�a2
; 0 < a1 < hcb=h

S2.hi / D .hi =hcb/a3

1 C .hi =hcb/a3

Switching off function S1.hi / decreases in value from a0 towards 0 as hi increases
in value from 0 to h, while switching on function S2.hi / increases from 0 to 1 as
hi increases, being D 1/2 when hi D hcb . If hi D 0 the equation reduces in form
to the neiloid. A transition from neiloid to paraboloid occurs with the decrease in
value of S1.hi / with increasing height. S1.hi / D a0=2 when hi D a1h. Midway
between hi D a1h and hi D hcb (where S1.hi / approaches 0 and S2.hi / � 1), the
bole takes the form of a paraboloid. The second numerical switch is centered at hcb.
When hi > hcbS1.hi / will be close to 0 and S2.hi / will approach 1, implying that
Eq. 2.34 reduces in form to the cone. This taper model proved to be reasonably
precise for ponderosa pine, slash pine, sweet gum and yellow poplar, with easily
interpreted parameters.

Westfall and Scott (2010) used a modification of the switching model of
Valentine and Gregoire (2001) by incorporating estimated join points and modifying
one of the switching functions. Fitting the model to data from 19 species groups
collected across the northeast United States indicated that the model generally
performed well and that the modifications made to the original model allowed for
significant improvement in describing the observed data.

2.3 Inclusion of Additional Predictor Variables

In developing tree stem taper and volume equations researchers have strived for
a system that is simple, accurate, and flexible while requiring only a few easily
measured tree characteristics such as diameter at breast height and total height as
predictors. However, even for a given species, there is considerable variation in form
among individual trees.

Management practices, such as thinning, pruning, and applying fertilizers, also
affect tree form and stem taper. Hence there has been considerable interest in
including additional predictor variables to better account for tree-to-tree variation.
These additional or auxiliary variables have generally taken one of three forms:
(1) crown dimensions, (2) stand and site variables, or (3) upper stem diameter
measurements.
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2.3.1 Crown Dimensions

Crown dimensions have been considered as auxiliary variables for describing tree
profiles because of the relationship between crown and stem form development
(Larson 1963). Because variations in bole form can be attributed to changes in the
size of the live crown, its distribution along the stem, and the length of the branch-
free bole (Larson 1963), a number of attempts have been made to include crown
dimensions, along with d and h, in taper functions.

Burkhart and Walton (1985) fitted a taper model in dbh and total height after
dividing the data into crown ratio (cr) classes and examined the relationship between
mean crown ratio of the classes and the coefficients of the taper model. Trends of
coefficients over discrete crown ratio can be useful for specifying an appropriate
model for inclusion of crown ratio as a continuous variable. After dividing the
data into three groups in a way that the number of trees in each category would be
approximately equal, the relatively simple model of Kozak et al. (1969) presented
in Eq. 2.12 was fitted to the data in each crown ratio class. As crown ratio (cr)
increased, parameter estimates increased in absolute value, indicating that the
parameters are related to crown ratio. The variables cr ; xcr and x=cr were added
to the second degree polynomial in relative height (x) and used jointly with x and x2

in a stepwise regression procedure to find the best subset of variables to predict y. All
three variables containing crown ratio entered the equation after the relative height
terms (0.10 probability level), but the percentage of variance explained increased
only from 87.8 to 90.1 by adding cr ; xcr and x=cr after x and x2. From these results,
it was concluded that either (1) the functions of crown ratio tested in the stepwise
procedure were not appropriate for incorporating the effect of crown ratio, or (2) the
effect of crown ratio on parameters in this particular model is not marked.

In a second attempt to incorporate crown ratio into a taper model, Burkhart and
Walton (1985) fitted the segmented taper function of Max and Burkhart (1976) –
Eq. 2.24 – to loblolly pine trees after dividing the data into crown ratio classes.

There were no discernable trends in the submodel coefficients (the bi values), but
the upper join point showed a trend with crown ratio. In general, the upper join
point was estimated to occur lower on the stem for trees with proportionally larger
crowns, a logical trend from a biological standpoint as the point of maximum annual
ring increment occurs lower on the stems of large-crowned trees (Farrar 1961). One
would expect the location of the estimated upper join point to be related to this point
of maximum ring width and, hence, lower on the stems of trees with large crowns.
The lower join point was less affected by crown ratio than the upper one. Linear
and nonlinear functions relating the join points to crown ratio were specified and
the following alternatives were examined: neither join point written as a function of
crown ratio; either the upper join point or the lower join point written as a function
of crown ratio; both join points written as functions of crown ratio. The reduction
in the error sum of squares due to adding crown ratio after dbh and total height was
slight and it was concluded that the inclusion of crown ratio as a predictor variable
would not be warranted for most applications.
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In another study involving the segmented taper function, Valenti and Cao (1986)
evaluated various ways to express the coefficients (bi) and the join points (ai) of
the segmented model of Max and Burkhart (1976) as functions of crown ratio. The
best combination resulted from specifying bi and ai as functions of crown ratio.
While the resulting three-segment taper equation with crown ratio as an additional
independent variable was more flexible and provided more accurate predictions of
upper stem diameters, the gains in fit statistics were modest (percent of variation
explained increased from 96.6 for the base model to 96.9 for the model with two
parameters written as functions of crown ratio). The best model with crown ratio
included required estimation of eight parameters as opposed to six for the base form
involving dbh and total height only as predictors. A larger number of parameters to
be estimated by nonlinear least squares, associated with high correlation among the
predictor variables, can lead to difficulties in obtaining stable solutions because of
multicollinearity.

The use of tree age, height to the base of the crown, crown length, as well
as combinations of these variables with tree height and diameter and a distance-
independent competition index were introduced in the model of Petersson (1999)
as auxiliary variables. The best model with auxiliary variables included height to
the base of the crown, tree age and the slenderness coefficient (d/h). Even if the
coefficients of the auxiliary variables were significantly different from zero, their
introduction in the model led to a slightly higher residual mean square error.

Leites and Robinson (2004) also used the Max and Burkhart (1976) segmented
taper equation to explore relationships between taper parameters and crown vari-
ables. They used mixed-effects techniques to fit the model and tested the regression
of the random parameters against crown variables (crown length and crown ratio).
The best combination of mixed effects was that in which the random-effects
parameters affected both linear and quadratic terms of the equation submodels.
Supplementing parameters b1 and b2 of Eq. 2.24 by crown variables improved the
equation fit but the additional improvement from adding random effects indicated
that additional variation might be explained by some other variables. Validation with
an independent data set showed a slight improvement on bias and precision for the
stem middle section but for the upper stem section bias was slightly increased by
adding these variables.

As a general conclusion of this section it can be said that the combination of dbh
and total height provides a great deal of information about crown size for various
species of trees. Consequently, including crown variables as predictors is generally
not warranted due to the practical difficulties and costs of obtaining crown measure-
ments coupled with a low level of increased precision in the statistical fit to data.

2.3.2 Site and Stand Variables

Crown development is affected by site and stand conditions, which suggests
inclusion of site and stand variables in stem profile equations might prove effective.
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Certain site and stand measures could potentially be available or could be computed
as part of an inventory summary, thus obviating the need for taking additional
standing-tree measurements in addition to dbh and total height. Muhairwe et al.
(1994) examined the effect of including crown class, site class, and age in the
exponent part of Kozak’s (1988) variable-exponent taper equation for three species:
Douglas-fir, western red cedar, and aspen. Effects on prediction of diameter along
the stem, total stem volume, and three merchantable heights were assessed. The
additional variables resulted in only marginal improvements to the published version
of Kozak’s taper function, and the authors concluded that including these variables
would not be justified in practical implementation. Muhairwe et al. (1994) noted that
the exponent of Kozak’s variable-exponent function includes the ratio d/h which
is highly correlated with crown dimensions, site and stand variables. Models that
include d/h may not be improved by addition of variables with which the ratio is
strongly related.

Site index and stand variables were also tested as auxiliary variables in the study
of Petersson (1999), described previously, but none of these variables was included
in the selected model, as tree variables (age, height to the base of the crown and the
d/h ratio) performed better.

Sharma and Zhang (2004) modified Eq. 2.33 to accommodate stand density
effects. Since the exponent of the height solely determines the tree form, the
stand density effect can be incorporated by adding a stand density function to the
exponent, that is:

di
2 D d 2

	
hi

hd


2�.b1Cb2xCb3x2Cb4g.SD//	
h � hi

h � hd



(2.35)

where g(SD) is a function of stand density and b4 is a parameter to be estimated.
The best function that described the stand density effect in this case was

g.SD/ D 1=N

where N is number of trees per ha at the time of plot establishment.
The stand density variable was not effective for estimating stem taper in jack

pine or balsam fir, but the taper of black spruce trees was affected by stand density
or thinning (Fig. 2.4).

In a following study, Sharma and Parton (2009) used a similar methodology,
i.e. a dimensional analysis approach, to model taper in jack pine and black spruce
plantations growing at varying stand densities. Different ways of expressing stand
density were examined and the model obtained was:

di

d
D b0

	
hi

hd


b1Cb2xCb3x2Cb4

p
G=d 	

h � hi

h � hd
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Fig. 2.4 Tree profiles generated from Eq. 2.35 using d D 17 cm and h D 15 m at different stand
densities (1,000, 2,000, and 4,000 trees ha�1) for black spruce (Adapted from Sharma and Zhang
2004)

where G is stand basal area and other symbols are defined as before. The density
effect on taper was more pronounced for jack pine than for black spruce trees, but
significant for both.

2.3.3 Upper-Stem Diameters

After dbh and total height the most informative additional variable for prediction
of stem taper is an upper-stem diameter measurement (that is a stem diameter
in the section between dbh and the top of the tree). Czaplewski and McClure
(1988) constrained the segmented taper function of Max and Burkhart (1976) to
pass through dbh and an upper stem diameter measured outside bark at 5.3 m
above ground. Variance of residuals was reduced, but bias was approximately the
same for both the conditioned and unconditioned models. The authors concluded
that the reduction in variance may be of practical importance, depending on the
particular prediction objectives and the relative cost of constraining an upper stem
measurement compared to the cost of measuring more trees.

Kozak (1998) examined the impact of an additional upper-stem diameter outside
bark measurement on predictive ability of his variable-exponent taper equation
(Kozak 1988). His analysis indicated that improvements were small and were
mainly restricted to increasing the precision of the estimates. It was also demon-
strated that additional diameter measurements should be taken between 40% and
50% of the height above breast height for greatest improvement. Measurement
errors in upper stem diameters and in their heights affected both the precision and
bias of predictions.

Other work on using upper-stem measurements in stem taper modeling includes
that of Rustagi and Loveless (1991) who developed compatible variable-form
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volume and stem-profile equations for Douglas-fir. Flewelling and Raynes (1993)
and Flewelling (1993) proposed a multipoint stem profile system that conditioned
the models to pass through measured upper stem diameters.

Cao (2009) pointed out that with the recent advances in laser technology,
accurate and affordable upper-stem diameters can be obtained, making its use more
appealing in taper functions. Therefore he developed and evaluated two methods for
calibrating predictions from the Max and Burkhart (1976) segmented model, one
for dbh and another for both dbh and an upper-stem diameter. The calibration was
obtained by imposing restrictions to some of the parameters (arbitrarily chosen) so
that the predictions at certain values of relative height equal the measured diameters.
Results were promising for outside-bark diameter but varied depending on where
the diameter was measured, with optimum gains when the upper-stem diameter
was measured at the midpoint between breast height and the tree tip. He also
tested a calibration for inside-bark diameters but in this case calibration with only
dbh produced inferior predictions, whereas the calibration based on both dbh and
an upper-stem diameter offered only modest improvements over the unadjusted
predictions.

Taper equations have been fitted using mixed-models techniques in order to take
into account systematic and random variation associated with the jth observation
(diameter measurement) along the bole for the ith individual (tree). One of the
advantages of the use of mixed-models is the possibility to calibrate the parameters
for each future prediction by estimating the random components of the parameters
from a subsample of a particular tree. This allows the use of upper-stem diameters
to improve the quality of the predictions, without considering them explicitly in the
fitted model. Examples of calibration of parameters for future predictions with the
measurement of a subsample of upper-stem diameters are given in Trincado and
Burkhart (2006) and Sharma and Parton (2009).

Cao and Wang (2011) evaluated two approaches for incorporating the midpoint
upper-stem diameter to improve the accuracy of diameter predictions along the bole
of loblolly pine trees: (1) calibrating a segmented taper equation by constraining a
parameter, and (2) localizing the taper model by predicting random effects for each
tree. The calibration technique is simpler and produced less-biased prediction of
diameters. Results from calibration were similar for both fixed- and mixed-effects
taper models; however, a slight gain in accuracy and precision was attained with the
mixed-effects model.

2.4 Compatible Prediction of Inside and Outside Bark
Diameters

Taper functions may be used to predict diameters inside bark or outside bark.
When both diameters are of interest (such as in the computation of bark volume)
it is important to guarantee the compatibility between the two estimates (i.e., the
relationship between the estimates of diameter over and under bark at the same
height above ground must be logical).
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In the development of a system for prediction of total and merchantable volumes
allowing for different definitions of tree volume, Nunes et al. (2010) proposed a set
of compatible models for over and underbark diameters (di and dui , respectively)
along the bole by assuming that an upper stem diameter over bark can be effectively
obtained by adding the bark thickness to the respective stem diameter under bark,
both modeled by the equation of Demaerschalk (1973):

dui D a1d a2
.h � hi /

a3

ha4

di D dui C a5d
a6

.h � hi /
a7

ha8

In their model Nunes et al. used heights above stump but the same methodology
can be applied with heights above ground and other taper models can be used for
estimating diameter under or over bark.

2.5 Taper-Volume Compatible Functions

Demaerschalk (1972, 1973) defined a taper and volume system as compatible when
the integration of the taper equation yields the same total volume as that given by the
volume equation. Taper and volume data are often considered independently when,
in fact, they can be analyzed as mathematically dependent quantities. An important
benefit of compatible taper-volume models is that numerically consistent results are
obtained. Another advantage of compatible systems is that appropriate taper models
may be suggested through knowledge of volume models and vice versa. Here we
introduce the concept of taper-volume compatibility for the case where integration
of the taper function over the entire bole length gives an estimate of total stem
volume that is the same as that given by a stem volume equation. More complex
systems of equations involving total and merchantable volume as well as stem taper
are addressed in Chap. 3.

Given a taper function that expresses diameter (di) at any given height above
ground (hi) total stem volume (v) can be obtained as

v D k

hZ

0

di
2dh

where h is total tree height and k is a constant that includes �=4 multiplied by a
factor to obtain the desired units of volume. One can fit a taper equation and then
integrate for volume but estimates for volume are generally biased and not fully
efficient. Alternatively, a volume equation can be fitted and an implied taper function
can often be derived. In this case the taper equation will not be “best” in a statistical
sense. Hence there has been much interest in treating taper-volume relationships as
a system of interrelated equations.

http://dx.doi.org/10.1007/978-90-481-3170-9_3


2.6 Statistical Considerations 31

Cao et al. (1980) modified Max and Burkhart’s (1976) segmented taper function
to be approximately compatible with total volume by fitting

.kdi
2h=v � 2z/ D b1.3z2 � 2z/ C b2.z � a1/

2I1 C b3.z � a2/2I2 (2.36)

where z D .h � hi /=h, relative height from the tip to top diameter di, and other
symbols remain as previously defined.

Integrating model (2.36) over total tree height gives an estimate of total volume

v D Ov
h
1 C b2.1 � a3/

3=3 C b3.1 � a2/3=3
i

D Ovc (2.37)

where Ov is tree total volume estimated from v D b0
1 C b0

2d
2h and

c D 1 C b2.1 � a1/
3=3 C b3.1 � a2/3=3

The values for c ranged from 0.9896 to 0.9959 for the four combinations of
sample and measurement data fitted; thus the model was labeled “essentially” a
compatible taper equation.

McClure and Czaplewski (1986) noted that by imposing an additional constraint,
which decreased the number of parameters to be estimated by one, exact compati-
bility in Cao et al.’s formulation can be ensured with the following:

0 D .1 � a1/
3b2 C .1 � a2/

3b3

When ranking candidate taper models for different prediction objectives, Cao
et al. (1980) found that the segmented taper function of Max and Burkhart
(1976) performed best for estimating stem diameters but the segmented taper-
volume model was better for estimating volumes to various heights and various
top diameters. The choice of model and of which parameters are fitted and which
are derived when compatibility is desired depends on the objectives for use of
the results. It is common to have multiple prediction objectives, hence fitting the
models as a system of equations with no individual component being “optimized”
but rather attempting to minimize prediction error for the system is often an
attractive alternative. Approaches to fitting taper-volume relationships as a system
of equations are explored more completely in Chap. 3.

2.6 Statistical Considerations

2.6.1 Model Assumptions

As when fitting any linear or non-linear regression models, the regression assump-
tions in relation to the model error must be checked when fitting taper models.

http://dx.doi.org/10.1007/978-90-481-3170-9_3
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Data required to fit taper equations imply the measurement of several diameters
along the bole of each individual of a set of sample trees. These characteristics of
the data imply that the observations from the same individual (tree) are spatially
correlated, violating the assumption of independent errors. Correlation between
residuals from the same individual (within-individual correlation) in taper equations
has been reported by several authors (e.g. Valentine and Gregoire 2001; Garber and
Maguire 2003; Trincado and Burkhart 2006; Rojo et al. 2005). One way to overcome
this problem is to model the error structure with some type of autocorrelation
structure. As the intervals between measurements within the tree are often not
regular, a continuous autoregressive structure (CAR(p)) has been often used (e.g.
Rojo et al. 2005). Some authors found that fitting the model with mixed-effects
techniques (see Sect. 2.6.4) would take care of the within-individual correlation
(Valentine and Gregoire 2001) while others found that the model was improved
by incorporating, even when using mixed-modeling techniques, an autoregressive
continuous autocorrelation structure into the model (Garber and Maguire 2003;
Trincado and Burkhart 2006).

Heteroscedasticity has also been reported when fitting taper curves. It is usual to
fit taper curves using a unitless variable such as di =d or .di =d/2 as the dependent
variable and this option has been found to reduce or overcome heteroscedasticity.
Although it is usually assumed that variance of di =d or .di =d/2 is homogeneous,
that is not generally strictly true; variance is generally related with changing levels of
relative height hi =h. Additionally, the use of a transformed dependent variable has
unwanted implications due to the problem of re-transformation bias (Sect. 2.6.3).

More recently, taper curves have been fitted with di or di
2 as the dependent

variable leading to the need to use weighted non-linear regression to homogenize
variance of the model errors. When using mixed-modeling techniques both within-
and between-tree variance must be considered when selecting the variance functions
to be used as weights in the fitting procedure (e.g. Trincado and Burkhart 2006).

2.6.2 Multicollinearity

Multicollinearity in multiple linear regression occurs when there are strong linear
dependencies among the independent variables. Regression coefficients for models
exhibiting strong multicollinearity may not be precisely estimated, thus resulting in
areas of the regressor space where prediction could be poor. Taper equations with
a large number of independent variables that might be correlated have been used in
several studies (e.g. Bruce et al. 1968; Laasasenaho 1982; Kozak 1988). Potential
problems of multicollinearity should be considered when selecting a taper curve for
a particular data set.

For example Kozak’s variable-exponent (Eq. 2.32) requires estimation of eight
parameters and, given that the expression for the exponent of x has multiple terms in
x, is likely to exhibit strong multicollinearity. One means to combat multicollinearity
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is to eliminate variables but not to the point that the quality of fit is severely
compromised. With this goal in mind, Perez et al. (1990) explored possibilities for
specifying a more parsimonious version of Kozak’s model. Perez et al. (1990) fitted
alternative variable-form taper models using multiple linear regression following
logarithmic transformation and assuming that the inflection point occurred at 25%
of total height. Setting the location of the inflection point at 15%, 20%, 30%, and
35% of total height had little effect on the predictive properties of any model. From
the potential models with comparable fitting quality, preference was given to the
one with the least number of parameters. The “best” or most parsimonious model
that did not show much loss in predictive ability as compared to the “full” model of
Kozak (1988) had the following form:

di D b0d
b1zb3x2 C b4 ln .x C 0:001/ C b5.d=h/ (2.38)

where symbols are as defined before.
When fitting Eq. 2.38, after logarithmic transformation, to data from Pinus

oocarpa in Honduras, the regressor variables did not show strong linear dependence
and, as a result, their coefficient estimates are expected to be more stable because
of less inflated variances. Fit statistics for models (2.32) and (2.38) were basically
equivalent, with R2 D 0:959 for both models. When tested with data that were
withheld and not used in the estimation of parameters the mean bias and standard
deviation of the two models were very similar.

2.6.3 Retransformation Bias

When fitting some of the taper models presented in the previous sections, for in-
stance the variable-exponent Eq. 2.32, a commonly applied transformation involves
taking the logarithm of both sides of the prediction equation. The logarithmic
transformation allows the use of linear regression and, in many cases, reduces
heterogeneity of the variance. Predictions are, however, desired in arithmetic units
and retransformation of the fitted equation results in bias. The use of a logarithm
transformation results in under estimates of the y variable and therefore some type
of correction is often used.

Using plant biomass prediction as a specific example, Baskerville (1972) pointed
out that the use of a logarithm transformation results in under estimates of biomass.
Baskerville recommended the retransformed estimator

Oy D e O�e O�2=2

where Oy is the estimated mean in arithmetic units, O� is the estimated mean of y for
a given level of x after logarithmic transformation, and O�2 is the estimated variance
about the fitted regression after logarithmic transformation.
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Flewelling and Pienaar (1981) reviewed several estimators for the correction
of bias associated with the fitting of models in logarithmic form. Logarithmic
transformation has often been applied in biomass estimation and the problem of the
transformation bias is generally addressed; however, the same issues apply to other
prediction objectives such as fitting tree profile equations. When a model is fitted in
logarithmic form, assuming a normal error for the logarithmic transformed model
implies that the error associated with the multiplicative model will be lognormal.
Flewelling and Pienaar analysed the properties of different estimators and related
them to the intended use of the regression equations and characteristics of the
sample data.

Snowdon (1991) noted that the estimator recommended by Baskerville (1972)
is consistent but itself biased with a tendency to overestimate the true proportional
bias. He suggested that the bias in logarithm regressions could be estimated from
the ratio of the arithmetic mean of the back-transformed predicted values from
the regression. Under the assumption of a lognormal distribution of errors, the
conditions of application of this ratio estimator are optimal. A simulated sampling
study has shown that this method gives more reliable results than the method
recommended by Baskerville.

In addition to logarithmic transformation, the dependent variance in stem profile
equations is often expressed as a dimensionless variable, for example as di=d or
.di=d/2. While these transformations tend to reduce heterogeneity of variance,
predictions of these transformed dependent variables must be subsequently re-
transformed to produce estimates of di and di

2, which are needed to predict stem
diameters and volumes. In the case of relative diameter and relative basal area,
retransformations of model predictions are also generally biased.

Czaplewski and Bruce (1990) pointed out that if d is a known value an unbiased
estimate of .di =d/2 can be directly transformed to an unbiased estimate of cross-
sectional area and therefore an unbiased estimate of volume. However, the squared
retransformation of an unbiased estimate of di=d will produce a biased estimate of
.di=d/2 and hence a biased estimate of volume.

When illustrating the possible extent of retransformation bias, Czaplewski and
Bruce (1990) fitted the segmented regression model of Max and Burkhart (1976) for
two dependent variables, di=d and .di =d/2 (Table 2.1). The segmented regression
taper equation with di =d as the dependent variable produced volume estimates that
were consistently higher than those for the same model that used .di=d/2 as the
dependent variable. The mean difference in estimated log volume varied from 0.5%
to 1.0% for butt and midbole logs and from 1.0% to 3.5% for the top logs.

The fitted segmented regression models were also used to estimate upper-stem
diameters (di). The square-root retransformation was applied to the predictions that
involve .di=d/2. The fitted profile model with .di =d/2 as the dependent variable
produced retransformed diameter estimates that were smaller than those from the
same model fitted to di=d (differences averaged 0.08–0.30 cm (0.2–0.7%) for butt
and midbole log end diameters and 0.12–0.56 cm (0.7–2.1%) for the merchantable
top diameter). The authors proposed equations for the reduction of the magnitude
of the above mentioned biases but pointed out the need to develop accurate variance
models.
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Table 2.1 Estimated coefficients for the Max and Burkhart (1976) stem profile equation
using data from grand fir (From Czaplewski and Bruce 1990)

Regression response
variable b1 b2 b3 b4 a1 a2 MSEa

di
2=d2 �2.010 0.957 �0.858 118.5 0.722 0.062 0.01113

di =d �2.162 0.942 �0.858 121.1 0.699 0.061 0.00415
aResidual mean squared error (MSE) has dimensionless units of .di =d/4 for the .di =d/2

model, and .di =d/2 for the di =d model

Gregoire et al. (2000) investigated the statistical properties of volume predictions
from an integrated taper model. They derived the expected volume and its prediction
variance when the underlying taper model of stem cross-sectional area was linear
in its parameters and had a Gaussian error distribution. The integration of the
taper model for this special case does not insinuate a bias into the derived model
of stem volume. When the underlying Gaussian taper model for cross-sectional
area is nonlinear in its parameters, there is the usual bias which accrues from the
nonlinearity, but not from the integration of the taper model itself.

When the underlying model portrays the taper of stem diameter rather than
cross-sectional area, the integral of the squared taper model to predict volume
is considerably more complicated. As Gregoire et al. (2000) commented, the
prediction variance of volume in this situation involves the first four moments of
the error distribution of the taper model, making an analytic determination of the
statistical properties of volume predictions rather intractable.

2.6.4 Mixed-Effects Approach

Requisite data to fit taper models are clustered in the sense that multiple measure-
ments of diameter, di, at successively greater heights, hi, form a cluster of data
from each tree. Taper models customarily are fitted to clusters of data from multiple
trees, so that even if observations from different trees are statistically independent,
there is the strong possibility that data within a tree are correlated. If the within-
tree co-variance structure is not modeled appropriately, a bias is introduced into the
estimates of standard errors of the fixed-effect parameter estimates and the related
hypothesis tests and confidence interval estimations (either for model parameters
or for prediction of stem taper) are invalid. Whereas ignoring the co-variance
structure does not introduce bias into the estimates of the fixed-effect parameters
or predictions from the fitted model, these statistics are likely to be less precise than
they would be under an appropriately specified covariance matrix.

An alternative to modeling the so-called marginal covariance structure when
dealing with clustered data is to account for this correlation structure by introducing
subject-specific random effects into the model. This technique is facilitated by
considering stem profile data as repeated measurements done along the stem of
individuals. Mixed-effects models account directly for within- and between-tree
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variation in stem form. An important characteristic in contrast to traditional
regression is that mixed-effects modeling allows for both population-specific and
subject-specific models. A population-specific model considers both fixed and ran-
dom effects parameters. If prior information for the response variable is available for
a new individual k, then random-effects parameters can be predicted and an adjusted
response (subject-specific) rather than a mean response (population-specific) can
be obtained. A population-specific response can be obtained by assuming that the
vector of random effects bk for a new individual k has expected value E.bk/ D 0.

A very readable introduction to both linear and nonlinear mixed-effects models
appears in Schabenberger and Pierce (2002; Chapters 7 and 8).

An initial application of mixed-effects modeling for stem form was presented
by Lappi (1986). In this novel application Lappi specified a mixed linear model
to analyze and predict variation in the taper of Scots pines by decomposing the
variation in diameters along the bole into one component due to random stand
effects and another component due to individual tree effects. That is, he was able
to distinguish between-stand effects from within-stand effects. Since that time, a
number of additional researchers have used mixed linear and nonlinear models for
stem taper.

The mixed-effects model has a number of appealing features, and it has been
the subject of many recent treatises both within the biometrical forestry literature
(Tasissa and Burkhart 1998; Valentine and Gregoire 2001; Trincado and Burkhart
2006; Garber and Maguire 2003; Leites and Robinson 2004; Eerikäinen 2001; Yang
et al. 2009) and the wider statistical literature.

In the following paragraphs, we summarize for illustrative purposes the nonlinear
mixed-effects model for upper-stem diameter presented by Trincado and Burkhart
(2006). Letting yij symbolize the square of di =d at the jth height, hij, on the ith tree,
a segmented model for yij was put forth as

yij D .ˇ1 C b1i /.xij � 1/ C .ˇ2 C b2i /.xij
2 � 1/ C .ˇ3 C b3i /.˛1 � xij /2I1

C .ˇ4 C b4i /.˛2 � xij /2I2 C "ij (2.39)

where xij D hij =hi is the relative height of the measurement and other variables
are as before. In (2.39), the ˇ1; : : : ; ˇ4 and ˛1; ˛2 are the fixed-effects parameters
and the b1i ; : : : ; b4i are random effects specific to the ith tree.

Letting, bi D .b1i ; : : : ; b4i /
0 they specified that

bi � N.0; D/

with E.bi/ D 0 and where D is unstructured covariance matrix of the random
effects. Given the random effects, the errors "ij were assumed to be mutually
uncorrelated. The ˇ’s and ˛’s are fixed effect parameters to be estimated, in addition
to �2 and whatever parameters are stipulated in D.

The inclusion of a vector of random effects permits the model of tree taper to
be individualized to each tree, while also permitting a pooling of all the data when



2.6 Statistical Considerations 37

0
0

5

5

10

10

15

15

20

20

25

25
Stem diameter (cm)

H
ei

gh
t (

m
)

0
0

5

5

10

10

15

15

20

20

25

25
Stem diameter (cm)

H
ei

gh
t (

m
)

a bFig. 2.5 Stem profile curves
generated using (a) mean and
(b) calibrated response based
on two upper-stem diameters
at 3.6 and 6.1 m for one
sample tree (d D 17.8 cm and
h D 21.8 m). The stem
diameters used for calibration
are represented by open
circles (Adapted from
Trincado and Burkhart 2006)

fitting the model. As noted by Gregoire et al. (1995), the specification of random
effects does not presume equally spaced measurements along the stem, nor that the
number of measurements on each stem be identical. The flexibility permitted by a
mixed model of this sort comes at the price of added complexity, both statistical
and computational. Importantly, the random individual effects induce an intra-
individual correlation structure that accounts for the lack of independence among
measurements on the same stem. It is this feature that has great appeal for modelers
of correlated data, even though the induced correlation function may not be easily
discernible (Schabenberger and Gregoire 1996). In the applications of mixed-effects
models in the references given earlier in this section, such models were superior to
purely fixed-effects models when using likelihood or information criteria to quantify
the quality of the model to data.

It is possible to predict the value of bi, as shown in Trincado and Burkhart (2006).
In a linear mixed model setting, this empirical best linear unbiased predictor, saybbi ,
or EBLUP, may be used when generating predictions from the fitted model. (The
EBLUP is also known as an empirical Bayes estimator, because it is the mean of
the posterior distribution of bbi in an empirical Bayes framework). The EBLUPs
may be used to construct the ith tree’s taper profile. While a mixed-effects model
is necessarily subject-specific, predictions that incorporate the EBLUPs may be
subject-specific, or not.

A subject-specific response profile requires knowledge of a sample of upper stem
diameter(s) so that the EBLUP may be computed. Trincado and Burkhart inves-
tigated two different measurement scenarios in selecting upper stem diameter(s)
for calibration: (1) only one upper stem diameter at absolute heights of 2.4, 4.9,
or 6.1 m (8, 16, or 20 ft); and (2) two upper stem diameters measured at 3.7 and
6.1 m (12 and 20 ft). This last scenario gave the best results (Fig. 2.5) when testing
the tree functions fitted using mixed-effects modeling with an independent data set.
Mixed-model predictions of random effects improved the predictive capability of



38 2 Tree Form and Stem Taper

the segmented taper equation mainly in the lower portion of the bole. The method
was effective for localizing stem curves for trees growing under different site and
management conditions. Mixed-effects models provide a general framework that
can be applied to various taper equation forms, increasing their flexibility and
efficiency in predicting for local conditions.
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Chapter 3
Tree-Stem Volume Equations

3.1 Developing Volume Equations

Volume equations are used to predict the content of stems of standing trees as a
function of easily measured tree attributes such as diameter at breast height and tree
height. The predictor variables required in order to achieve acceptable accuracy vary
by tree form. Excurrent crown form results when terminal growth exceeds branch
lateral growth; this form is typical of many conifers and a few hardwood species
such as yellow-poplar. Decurrent (also called deliquescent) crown forms result when
lateral branches grow as fast or faster than the terminal leader; decurrent crowns
are typical of many hardwood species including elms, oaks and maples. Shrubs are
woody, perennial plants that generally lack a well-defined main stem.1 For excurrent
forms, the usual predictors for stem volume are dbh and total tree height (Fig. 3.1a).
Total tree height is generally not highly correlated with the volume of the main
stem of interest for decurrent tree forms, and a measure of merchantable height may
be employed instead (Fig. 3.1b). For shrub forms estimation of volume in multiple
stems requires additional independent variables, as well as use of diameter at root
collar in lieu of diameter at breast height. In order to achieve acceptable precision
for estimates of volume in the multiple stems of shrubs, predictors needed often
include diameter at root collar, total height, and number of stems and perhaps crown
width (Fig. 3.1c).

Much of the research on estimating stem volume of trees has been directed
towards excurrent forms and involves dbh and total tree height as predictors. Varying
units for the dependent variable have been employed but cubic units are most
commonly used; general conclusions reached for estimating cubic volume of stems
apply if other measures of volume are used. Hence, subsequent discussion in this

1For species that can be regenerated by coppice (such as eucalyptus), multiple stems from each
stool may be kept until the next harvest. In such cases, each stem is usually treated as an individual
excurrent tree but with height to dbh being measured from the top of the stool.

H.E. Burkhart and M. Tomé, Modeling Forest Trees and Stands,
DOI 10.1007/978-90-481-3170-9 3,
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Fig. 3.1 Predictor variables needed for estimating stem volume varies for excurrent (a), decurrent
(b), and shrub (c) forms. Where d D dbh, h D total height, hm D merchantable height, drc D
diameter at root collar, and ns D number of stems

chapter of tree-stem volume estimation will assume the objective is to predict cubic
volume for single-stemmed trees using dbh and total height as predictors unless
otherwise noted.

In some instances stem volume is related to dbh only. Such single-variable
volume equations are often termed “local volume equations” in American forestry
parlance. Alternatively, and what is more common practice, a sample of heights and
diameters may be obtained as part of a timber inventory. The data are used to fit an
equation to estimate height from dbh. This fitted relationship can then be used to
convert a standard volume equation (that is an equation that involves dbh and total
height as predictors) to a form to estimate volume from dbh only. Because so called
standard volume equations are often applied in conjunction with a height-diameter
curve when estimates based on dbh only are desired, functions involving dbh only
will not be further considered in this chapter.

When constructing volume equations, precise information is needed on stem
volume and the predictors for a sample of trees. This information has generally
been gathered by felling sample trees and acquiring the needed measurements, but
measurements of standing trees have, on occasion, been used for obtaining the data
required. The true volume of a tree stem can most accurately be determined through
water displacement methods (Martin 1984; Figueiredo Filho et al. 2000), but this
approach is generally not practical. Rather stems of felled trees are measured for
diameter and length over relatively small sections, the volume of each section is
then computed (commonly using Smalian’s formula which involves the average of
the cross-sectional area of the large and small ends times the length to acquire cubic
volume). Volume of the sections is summed to acquire the portion of stem volume of
interest. The top section of excurrent form trees is typically treated as a cone when
total stem volume is computed (Avery and Burkhart 2002 provide additional detail
on tree measurements).
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3.2 Equations for Total Stem Volume

Equations can be fitted to estimate contents of any specified portion of the stem of
interest. In illustrating general approaches and methods for predicting tree volume
from measurements of dbh and total tree height, we will assume that the dependent
variable is total stem (stump to tip) cubic volume.

3.2.1 Combined Variable Equations

Numerous tree-stem volume models have been proposed but one of the most
effective is the “combined variable” equation which combines dbh and height into
a single predictor as:

v D b0 C b1d
2h (3.1)

where v D stem volume, d D diameter at breast height, h D total tree height, and
b0; b1 are estimated using linear regression techniques. Various additional terms of
d and h have been added after d 2h, but invariably these additional terms contribute
little to the fit statistics. When total stem volume is the dependent variable of interest
the intercept term is sometimes omitted and a single parameter is estimated in the
“constant form factor” equation

v D b1d
2h (3.2)

The intercept term in the combined variable Eq. 3.1 is expected to be a small
positive number when the dependent variable is total-stem volume because trees
with total height less than height to dbh will have positive stem volume but a d 2h

value of zero. Equations 3.1 and 3.2 will generally produce similar predicted values
of total stem volume. However, with the possible exception of fitting a sample that
does not include an adequate representation of small trees and when predictions
for small trees are desired, there is no advantage to be gained by forcing the total
stem volume equation through the origin. Thus, the combined-variable function is
generally preferred for total stem volume prediction. If the dependent variable is a
specified merchantable portion, rather than total volume, of the stem the constant
term is expected to be negative because there is zero merchantable volume for trees
with positive d 2h values until sufficient tree size for the specified merchantable
portion is reached (Fig. 3.2).

The combined-variable equation is a particular form of a simple linear regression
y D b0 C b1x where y D tree stem volume and x D d 2h. When fitting simple linear
regression equations with ordinary least squares (OLS), the following assumptions
are commonly invoked:

1. x and y are linearly related
2. x is measured without error
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3. the variance of y is constant at all levels of x
4. the observations are independent (i.e. the residuals .ei/ are not correlated), and
5. when testing hypotheses and computing confidence intervals, one further as-

sumes that the y values are normally distributed at any given level of x.

When tree volumes are plotted versus d 2h values, a straight-line relationship
results but the variance of volume (y) increases with increasing levels of d 2h (x).
This phenomenon of increasing variance of y with increasing values of x is seen
in many biological relationships, but it has received special attention in the case of
fitting tree stem volume functions. When a non homogeneous variance is exhibited,
the resultant estimates of the regression parameters are still unbiased but they are
not the minimum variance estimators. To acquire the best estimators (unbiased,
minimum variance), a weighted regression analysis is required.

When the assumptions for ordinary least squares are fully satisfied the distribu-
tion of the dependent variable can be written:

yi � N.ˇ0 C ˇ1xi ; �2
y:x/

where �N indicates distributed normally, ˇ0 C ˇ1xi , represents the mean of yi at
any specified value of xi , and �2

y:x symbolizes the constant variance at all levels of
xi . In the case of non homogeneous variance, the distribution becomes

yi � N.ˇ0 C ˇ1xi ; �2
y;xi

/

where �2
y:xi

varies according to the level of xi . One can apply weights 1=�2
y;xi

to
obtain unbiased, minimum variance estimators or one can transform the independent
variable in order to stabilize the variance. If the variance of yi is proportional to
some function of xi , that is �2

y;xi
D kf .xi / where k is a constant of proportionality,

then the distribution of the yi observations can be written

yi � N.“0 C “1xi ; kf .xi //
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Recalling that a constant, c, times a normally distributed random variable
distributes normally with mean c� and variance c2�2, the expression for the
distribution of yi with variance kf .xi / can be multiplied by 1=

p
f .xi / to obtain

an expression for a transformed dependent variable with constant variance k, that is:

yi =
p

f .xi / � N..“0 C “1xi /=
p

f .xi /; k/

If the combined-variable formula is assumed and the variance of tree volume is
taken to be proportional to .d 2

i hi /
2
, then

vi � N.ˇ0 C ˇ1d 2
i hi ; k.d 2

i hi /
2
/

and

vi =d 2
i hi � N..ˇ0 C ˇ1d

2
i hi /=d 2

i hi ; k/

The simple linear regression

v=d 2h D b0.1=d 2h/ C b1

is fitted and then algebraically rearranged as

v D b0 C b1d
2h

for stem volume prediction.
A general expression for the weighing function can be written .1=d 2

i hi /
k

for
the combined-variable equation. Although a value of 2 for k has often been
assumed since it was recommended by Cunia (1964), a number of investigations
into the most appropriate weighting function have been conducted. McClure et al.
(1983) suggested using k D 1.5 for white oak and loblolly pine. Gregoire and Dyer
(1989) fitted the weight function for loblolly pine and red pine using a number
of techniques. They obtained k D1.70–1.84 for loblolly pine and k D 1.01–2.07
for red pine. Williams et al. (1992) evaluated a number of weight functions for
two loblolly pine samples and one white oak data set. All weight functions tested
produced similar results in terms of goodness of fit. The most robust weight function
studied was .1=d 2

i hi /
k

where k ranged from 1.80 to 2.07 for the three data sets. In a
follow-up analysis, Williams and Gregoire (1993) recommended a weight function
.1=d 2:3

i h0:7
i /

k1 for all three data sets previously studied for which k1 values ranged
from 1.80 to 2.07.

While the primary impetus for using weights when estimating coefficients in
the combined-variable tree volume equation has been to meet the assumption of
homogeneous variance, the principal impact has been to reduce the influence of
high-leverage data points in the larger tree sizes. For typical samples of tree stem
volume, trees in larger size classes are fewer in number but larger in variance
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Fig. 3.3 Plot of data for 427 loblolly pine trees versus d2h and regression of v D b0 Cb1d2h using
ordinary least squares and fitting with weights under the assumption that the variance of tree-stem
volume is proportional to (d2h)2

than trees in smaller size classes. This condition generally leads to a few highly
influential points with regard to the slope of the straight-line regression. When
weighted regression is applied, the weights are inversely proportional to variance
and more weight is given to the smaller trees than the larger ones which results
in a decreased influence of the high-leverage data point(s). An illustration of this
phenomenon is shown in Fig. 3.3 where the raw data along with the unweighted
ordinary least squares of fit of

v D b0 C b1d
2h

as well as the coefficients for a weighted regression where variance was assumed to
be proportional to .d 2h/

2
. The estimated coefficients for the unweighted fit for these

data from Burkhart (1977) are b0 D 0.01076, b1 D 0.00003487 and for the weighted
regression b0 D 0.00626, b1 D 0.00003666. The influence of the single data point at
d 2h of around 25,000 is mitigated when weights are applied.

3.2.2 Logarithmic Volume Equations

A commonly used function for estimating tree stem volume is the logarithmic, or
Schumacher and Hall (1933), equation:

v D b1d
b2hb3 (3.3)
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Equation 3.3, which goes through the (0,0) point, can be fitted directly using
nonlinear regression techniques, but, in past practice, the functional form has gen-
erally been converted to a form that is linear in the parameters through logarithmic
transformation and linear regression techniques have been applied, giving:

ln v D b0 C b1 ln d C b2 ln h (3.4)

The logarithmic transformation has the advantage of stabilizing the variance of
v across the range of d and h. However, the equivalent coefficients (b1 and eb0 , b2

and b1, b3 and b2) for Eqs. 3.3 and 3.4 will differ considerably for the two methods
of parameter estimation largely because of differences in assumptions about the
error term. Furthermore, taking logarithms leads to a transformation bias. Instead
of passing through the arithmetic mean of tree volume Eq. 3.4 goes through the
geometric mean, which must be less than the arithmetic mean. Consequently, a
correction factor is sometimes applied to account for this bias. The most commonly
applied correction involves adding one half on the estimated variance about the fitted
regression before exponentiating (Baskerville 1972), namely

Oyi D exp. O�i C O�2=2/ (3.5)

where Oyi is the “corrected” estimate of the dependent variable, O�i represents the
expression for the mean as estimated by regression analysis, and O�2=2 is half the
estimated variance (on a logarithmic scale) about the fitted regression. A number of
different factors for correcting logarithmic transformation bias have been proposed
(Flewelling and Pienaar 1981; Snowdon 1991), but the correction factor is often
ignored when applying logarithmic tree stem volume functions.

As noted, the so-called logarithmic equation is conditioned through the ori-
gin, which is reasonable for total stem volume but not tenable for estimating
a merchantable portion of the bole. Schumacher and Hall (1933) recommended
transferring the coordinates of the origin of the logarithmic volume equation
from (0,0) to an appropriate location when merchantable volume is the dependent
variable. Alternatively, a constant term can be added leading to an intrinsically non
linear equation that is sometimes designated the “generalized logarithmic equation”
(Table 3.1):

v D b0 C b1d b2 hb3 (3.6)

With the constant term added, Eq. 3.6 cannot be transformed to a linear function
through taking logarithms. Equation 3.6 can be thought of as a generalization of
Eq. 3.3 or as a generalization of the combined-variable Eq. 3.1 where the exponents
of d and h are estimated rather than being specified as 2 and 1, respectively.
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Table 3.1 Equation forms
commonly used for
estimation of individual
tree stem volumes

Name Equation form

1. Combined variable v D b0 C b1d2h

2. Constant form factor v D b1d2h

3. Logarithmic v D b1db2 hb3

4. Generalized logarithmic v D b0 C b1db2 hb3

5. Honer transformed variable v D d2=.b0 C b1h�1/

v D stem volume
d D dbh
h D a measure of tree height
b0; b1; b2; b3 D constants

3.2.3 Honer Volume Equation

Honer (1965) noted that the relationship between d 2=v and h�1 is linear with
homogeneous variance for total stem volume. Thus, he proposed fitting the simple
linear regression

d 2=v D b0 C b1h
�1 (3.7)

which is then algebraically rearranged as

v D d 2=.b0 C b1h
�1/ (3.8)

for estimating total stem volume (v). In lieu of transforming Eq. 3.8 in order to
estimate the parameters using linear regression methods (3.7), nonlinear regression
can be applied to equation form (3.8). The empirical estimates of b0 and b1 will
differ considerably depending on whether direct estimation is applied to form (3.8)
or linear regression is used with the transformed version (3.7).

Although Honer (1965) found Eq. 3.7 to provide accurate estimates of total
stem volume, other comparisons with alternative estimating equations (e.g. Burkhart
1977) have shown that the combined-variable form is preferred.

3.3 Estimating Merchantable Stem Volume

Standard volume equations are used to estimate volume of a specified portion
of the bole from stump height to a fixed top diameter of standing trees using
measurements of dbh and total or merchantable height. Because estimates of stem
volume for a variety of products are needed, each with different size requirements,
and changing merchantability standards, it is desirable to obtain volume estimates
for various top diameter limits. Separate regression equations can be fitted to stem
volume for a range of top diameters but unconstrained, independent equations
to several top limits may have the undesirable characteristic of crossing within
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the range of observed data, because the slope of the straight-line regression for
merchantable volume is generally greater than that for total stem volume (Fig. 3.2).
These considerations have led to the concept of predicting volume ratios. By
predicting ratios of merchantable volume to total volume, and multiplying the ratio
times total stem volume, one can obtain volumes to any specified top diameter
limit or the volume between specified diameters on the stem by subtraction.
Imposing appropriate constraints on the volume-ratio prediction equation insures
that estimates of volumes for various parts of the bole will be logically related.

3.3.1 Volume Ratio Equations

Equations to predict the ratio (Rdi ) of merchantable stem volume (vdi ) to total
stem volume (v) for varying top diameter limits have been developed by a number
of researchers (Honer 1964; Burkhart 1977; Van Deusen et al. 1981; and others).
Burkhart’s (1977) model

Rdi D 1 C b1

�
d

b2
i d b3

�
(3.9)

has three parameters and is conditioned such that when top diameter (di ) is zero
the ratio equals one. Parameters in Eq. 3.9 can be estimated directly using nonlinear
least squares or by applying linear regression methods following transformation.
Typically nonlinear estimation has been used. Using data from a sample of loblolly
pine trees, the combined-variable equation was fitted to estimate total stem volume
and Eq. 3.9 was fitted using nonlinear regression in order to estimate volume to any
desired top diameter limit (Burkhart 1977). Plotting the resultant volume predictions
showed that for small top diameters the volume lines were nearly parallel to the
total stem volume line, while the slopes became increasingly steeper, but without
illogical crossing, as top diameter became larger. Thus, the approach gave logical
and consistent results when converting total stem volume to merchantable volume
for any desired top limits.

Van Deusen et al. (1981) noted that Eq. 3.9 is constrained only at the tree tip
(when di D 0, Rdi D 1/. Because empirically b1 must be negative, the ratio Eq. 3.9
can assume negative values as the diameter ratio approaches one (i.e. as top diameter
di approaches dbh). This behavior generally presents no practical difficulty, because
interest is usually in stem volumes for top diameters well above dbh. However,
Van Deusen et al. (1981) proposed an exponential model that results in ratio values
between one and zero, namely:

Rdi D eb1.di d
�1/

b2

(3.10)

For this two-parameter model, estimates of b1 will be negative and the resultant
curve will equal one where di is zero and will approach zero as d increases without
bound. Hence, a desirable double conditioning is insured. A comparison of the
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behavior of Eqs. 3.9 and 3.10 is shown in Fig. 3.4. While the exponential expression
(3.10) has the desirable property of non–negativity as di approaches dbh it is
relatively inflexible when only two parameters are estimated, which results in bias
over parts of the range of top diameters with especially pronounced bias for large
top diameters (i.e. for the area where di approaches dbh). Experience with fitting
Eq. 3.10 to tree stem volume and weight data has shown that the more flexible
three-parameter version

Rdi D eb1.di
b2 d b3 / (3.11)

results in less bias and superior predictive performance.
Cao and Burkhart (1980) noted that products are sometimes defined in fixed

length multiples. Consequently equations for estimating the volume in any specified
length of the bole are required. They formulated the volume ratio model:

Rhi D 1 C a1..h � hi /
a2ha3/ (3.12)

where

.h � hi / D distance from the tree tip to the limit of utilization
h D total tree height
Rhi D vhi =v
a1; a2; a3 D regression coefficients to be estimated

Equation 3.12 is conditioned so that Rhi is 1 when hi D h (i.e. when the height
desired is at the tree tip and the volume estimated is for the complete stem).

A pair of volume ratio equations such as (3.9) and (3.12) provides information
needed for computing volumes to specified top diameter limits and for specified
lengths of tree boles, but product specifications often include small end diameter
minimums for fixed length multiples, thus necessitating the need for a taper
function. By equating the two volume ratio equations

1 C b1.di
b2 d b3 / D 1 C a1..h � hi /

a2 ha3/ (3.13)



3.3 Estimating Merchantable Stem Volume 53

and solving for di one obtains the implied taper function

di D
�

a1..h � hi /
a2 ha3/d b3

b1

� 1
b2

(3.14)

which gives estimated stem diameter di as a function of tree dbh (d), total height (h)
and height above ground (hi ).

Equation 3.14 can be rearranged to obtain an expression for height at any given
top diameter for a tree with specified dbh and total height as

hi D h �
"

b1.di
b2d b3 /ha3

a1

# 1
a2

(3.15)

Implied, or derived, taper functions are reasonably accurate and they provide the
additional capability of estimating diameters for specified lengths of bole (or length
of bole to a specified top diameter limit). The derived relationships are not, however,
“best” in a statistical sense because the sum of squared error minimized to obtain
estimates of b1; b2; b3 and a1; a2; a3 was for the ratio of merchantable to total
stem volume. Several studies aimed at estimating merchantable stem volume and
deriving the implied taper relationships (Knoebel et al. 1984; Amateis and Burkhart
1987; Tassisa et al. 1997; Bullock and Burkhart 2003) have concluded that fitting
the pair of equations

vdi D .v/.Rdi / (3.16)

and vhi D .v/.Rhi /

results in better performance of the system for estimating merchantable volume and
taper relationships. The observed total stem volume (v) for each sample tree, along
with appropriate variables in the ratio expression (Rdi or Rhi ) and the associated
merchantable volume (vdi or vhi ), is used when fitting equations in form (3.16). To
implement the system, an expression for v, with estimated coefficients, is required.

In most applications, a common form of the ratio expression (R) has been used
in fitting that is

vdi D v.1 C b1di
b2d b3 / (3.17a)

vhi D v.1 C b1.h � hi /
b2hb3 / (3.17b)

or

vdi D v exp.b1di
b2d b3 / (3.18a)

vhi D v exp.a1.h � hi /
a2ha3/ (3.18b)
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Empirical evaluation has shown that the exponential form (3.18a) is generally
preferred over (3.17a) when top diameters are used but (3.17b) is superior to
(3.18b) when height is employed. This led Bullock and Burkhart (2003) to fit the
“mixed” set

vdi D v exp.b1di
b2d b3 / (3.19)

vhi D v.1 C a1.h � hi /
a2 ha3/ (3.20)

to data for predicting tree weight to varying merchantable limits. Equating (3.19)
and (3.20) and solving for the implied taper relationships gives:

di D
�

d b3=b1

� 1
b2

h
log

�
1 C a1.h � hi /

a2ha3

�i 1
b2

�
(3.21)

hi D h �
�

ha3=a1

� 1
a2
h�

exp
�

b1di
b2d b3

��
� 1

i 1
a2

�
(3.22)

When fitting data using least squares one assumes that the random errors are
independent. Use of multiple observations from each sample tree when fitting
merchantable volume relationships violates the assumption of independence of ob-
servations, which leads to biased estimates of the variances of estimated parameters
and unreliable tests of significance and confidence intervals. Estimation methods
which account for the correlation among observations (Gregoire et al. 1995) have
been applied to the problem of predicting merchantable stem volume (Gregoire and
Schabenberger 1996). Although correlated observations lead to biased estimates
of standard errors, the parameter estimates are unbiased. Consequently, when the
primary interest is prediction rather than hypothesis testing, ordinary least squares
is often applied.

3.3.2 Deriving Taper Functions from Volume Equations

Demaerschalk (1972) showed that an existing total stem volume equation can be
used in conjunction with taper data to develop a taper function that is compatible
with the volume equation (compatible in the sense that integration of the taper
function over the limits zero to total tree height produces the volume equation).
Clutter (1980) reversed the volume-taper compatibility process by noting that any
variable-top merchantable stem volume equation implicitly defines an associated
taper function. Assuming that v D b1d b2hb3 and that merchantable volume can be
estimated as

vdi D v
h
1 C b4di

b5d b6

i
(3.23)
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and applying methods of differential calculus yields the taper function

di D b7d b8hb9 .h � hi /
b10 (3.24)

with the inverse equation

hi D h � b11di
b12d b13hb14 (3.25)

While the numeric values of the coefficients will vary depending on which
equations are fitted and which coefficients are subsequently derived, the form of
the implied taper function and the associated inverse function is the same when
ratio Eqs. 3.9 and 3.12 are equated (as in (3.13)) to derive (3.14) and (3.15) or
when (3.23) is used as the starting point to derive (3.24) and (3.25). Empirical
evaluations with several different data sets have shown, however, that fitting two
equations as indicated in (3.16) and computing implied coefficient values results
in better predictions of tree taper than deriving the coefficients from the estimation
of (3.23).

3.3.3 Compatible Stem Volume and Taper Functions

The concept of defining a taper and volume system that is compatible, in that
integration of the taper equation yields the same total volume as that estimated by the
volume equation, was introduced in Sect. 2.5. This basic concept has been extended
by a number of researchers to include compatibility of merchantable volume, total
volume, and taper relationships (Reed and Green 1984; Byrne and Reed 1986;
McTague and Bailey 1987; Jordan et al. 2005 and others). The equation system
developed by Byrne and Reed (1986) will be used as an example for demonstrating
concepts and methods involved in such volume-taper systems. Byrne and Reed
(1986) described five equations systems that can be applied to estimate upper stem
diameter, total stem volume, and merchantable volumes to any merchantability
limit (expressed in terms of diameter or height). They calibrated their system of
equations using stem analysis data from red and loblolly pine. The equation system
that provided the best overall fit to validation data for both species was based on
a segmented taper equation. The best performing system of equations from the
alternatives evaluated by Byrne and Reed (1986) consisted of a volume estimation
system derived from the segmented taper equation of Cao et al. (1980).

The notation of Byrne and Reed (1986), after some minor changes, will be used
in the presentation of their compatible taper, total and merchantable stem volume
equations.

ai ; bi ; c D regression coefficients estimated from sample data, where, i D
1; 2; 3; : : : ,

d D diameter at breast height,

http://dx.doi.org/10.1007/978-90-481-3170-9_2
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di D top diameter at height hi ,
h D total tree height,
hi D height above the ground to top diameter di ,
K D constant to convert diameter squared to cross-sectional area in square units on

the scale of interest,
v D total cubic volume above the ground,
vm D cubic volume from the ground to some top diameter or height limit,
p D h � hi ,
z D .h � hi /=h, relative tree height from the tip to top diameter d,
R D ratio of merchantable volume to total stem volume,
Rhi D volume ratio for vm prediction to an upper height limit (hi ), and
Rdi D volume ratio for vm prediction to an upper diameter limit (di ).

A volume estimation system was derived from the segmented taper equation
given by Cao et al. (1980)

.d 2Kh=v/ � 2z D b1.3z2 � 2z/ C b2.z � a1/
2I1 C b3.z � a2/

2I2 (3.26)

where

Ii D


1 if z � ai

0 if z < ai ; i D 1; 2:

By considering v D cd 2h (the constant form factor total volume equation), then

d 2 D v=ch (3.27)

and the taper equation can be rewritten as

di
2 D d 2.c=K/

h
2z C b1.3z2 � 2z/ C b2.z � a1/

2I1 C b3.z � a2/2I2

i
(3.28)

where I1 and I2 are as previously defined. A total stem volume equation can be
derived by summing the following three integrals

v D
Z h1

0

Kd 2
i dhi C

Z h2

h1

Kd 2
i dhi C

Z h

h2

Kd 2
i dhi (3.29)

where h1 and h2 are variables representing the heights at the two join points of the
model (i.e. a1 and a2, respectively). Integrating gives

v D c
h
1 C .b2=3/.1 � a1/

3 C .b3=3/.1 � a2/3
i

d 2h (3.30)

This Eq. 3.30 is in the form of a constant form factor total volume equation. An
equation for merchantable volume to a height limit can be found in a similar way as
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the total stem volume equation by integrating to height hi instead of h. The resulting
equation is

vm D c
h
1 C .b1 � 1/z2 � b1z3 � .b2=3/

n
.z � a1/3I1 � .1 � a1/

3
o

�.b3=3/
n
.z � a2/3I2 � .1 � a2/3

oi
d 2h (3.31)

A volume ratio equation to a height limit (Rhi ) is found by dividing the above
equation by the total stem volume equation

Rhi D .1=�/
h
1 C .b1 � 1/z2 � b1z3 � .b2=3/

n
.z � a1/3I1

�.1 � a1/3
o

� .b3=3/
n
.z � a2/

3I2 � .1 � a2/3
oi

(3.32)

where

� D 1 C .b2=3/.1 � a1/3 C .b3=3/.1 � a2/
3

To obtain a volume ratio equation to a diameter limit (Rdi ), the taper equation is
algebraically redefined in terms of di , d, and h:

hi D h
h
1 �

n�
�B ˙ .B2 � 4AC /

1=2
�

=2A
oi

(3.33)

where

A D .c=k/.3b1 C b2J1 C b3J2/

B D .2c=K/.1 � b1 � a1b2J1 � a2b3J2/

C D .c=K/.a1
2b2J2 C a2

2b3J2/ � d 2=D2/

Ji D


1 if di � Mi

0 if di < Mi; i D 1; 2:

Mi D estimated diameter at hi

D d
n
.c=K/

h
2ai C b1.3ai

2 � 2ai / C b3.ai � a2/2
io1=2

Substitution of Eq. 3.33 into Eq. 3.32 results in the following Rdi equation:

Rdi D .1=�/
h
1 C .b1 � 1/w2 � b1w3 � .b2=3/

n
.w � a1/3I1

�.1 � a1/3
o

� .b3=3/
n
.w � a2/3I2 � .1 � a2/3

oi
(3.34)
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where

w D
h
�B ˙ .B2 � 4AC /

1=2
i.

2A

and A, B, C and � are as previously defined.
Byrne and Reed (1986) used two methods when fitting the volume estimation

system to data:

1. least squares techniques to estimate parameters in the taper equation and
algebraically solve for the coefficients of the other equations based on the fitted
taper equation coefficients, and

2. simultaneously fit all equations using a numerical procedure to minimize the total
system sum of squared error.

In the simultaneous fitting procedure all four equations in the volume estimation
system (taper, v, Rhi, Rdi) were fit to the data at the same time. This procedure
minimizes the total system squared error (TSSE) for each model. TSSE is defined
as the summation of the squared observed minus predicted values for each of the
equations in a system.

TSSE D
NX

iD1

.yi � Oyi /
2

O�2
y

C
nX

iD1

.vi � Ovi /
2

O�2
v

C
NX

iD1

.Rhi � ORhi /
2

O�2
Rh

C
NX

iD1

.Rdi � ORdi /
2

O�2
Rd

Where

yi ; Oyi D observed and predicted diameters for the taper function, respectively,
vi ; Ovi D observed and predicted total cubic volume,
Rhi ; ORhi D observed and predicted volume ratios for vm prediction to an upper

height limit,
Rdi ; ORdi D observed and predicted volume ratios for vm prediction to an upper

diameter limit,
O�2

y D mean square error from the least squares fit of the taper equation,
O�2

v D mean square error from the least squares fit of the total volume equation,
O�2

Rh D mean square error form the least squares fit of the volume ratio to a height
limit equation,

O�2
Rd D mean square error from the least squares fit of the volume ratio to a diameter

limit equation,
N D number of height/diameter observations for fitting the equation, and
n D number of trees for fitting the equation.

The fitted equations were evaluated for estimation of taper, total stem volume,
and volume ratios from each height-diameter observation in a validation data set
using four criteria:

1. average residual or bias,
2. standard deviation of the residual or precision,
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3. average of the absolute values of residuals, and
4. percent variation explained (pseudo R2).

For red pine the fitting approaches were similar in predictive ability, but for
loblolly pine the simultaneous fitting resulted in marked improvements. Additional
testing and ranking of the model forms and fitting procedures considered led to the
final conclusion that the segmented taper equation of Cao et al. (1980) utilized in a
simultaneous fitting procedure is the most accurate and precise predictor of taper,
total volume, and volume ratios for both red and loblolly pine.

3.4 Inclusion of Variables in Addition to dbh
and Total Height

Predictor variables in addition to dbh and total height have been used to increase the
generality and the precision of tree stem volume equations. The most commonly
used additional variable is a stem diameter above dbh. Although specifying the
upper-stem diameter at some fixed percentage of stem length from dbh to tree tip
(e.g. 50% or at the mid point) would be desirable from the standpoint of being
biologically meaningful and statistically effective, it is more practical to measure an
upper-stem diameter at a specified height for all tree sizes. The most common form
quotient that has been used in the United States is Girard Form Class defined as the
inside bark diameter at 17.3 ft (5.27 m) above ground divided by dbh (outside bark)
(Avery and Burkhart 2002). Volume equations that incorporate form measurements,
such as form quotients based on the ratio of upper-stem diameters to dbh, can
be easily fitted with stem analysis data but their application in field situations is
problematic. Advances in the technology of tree measuring devices have made
measurements of outside bark upper-stem diameters more accurate and feasible in
instances where the stem is visible at the point of measurement, but ability to sight
the point of measurement on trees growing in stand conditions is sometimes limited.

The combined–variable function has sometimes been generalized to predict stem
volume as a function of dbh, total height, and a measure of form (F)

v D b0 C b1.d
2h/.F / (3.35)

A wide variety of different equations forms and definitions of tree form (F) have
been used.

Due to difficulties with measuring an upper-stem diameter, and because tree stem
form is related to crown size, measures of crown (typically crown ratio, defined as
the length of live crown divided by total tree height) have been incorporated into
tree volume equations. However, in many cases (Laasasenaho 1982, and others), the
reduction in residual variance due to adding crown ratio after tree dbh and height
has been marginal. An exception is the results of Hann et al. (1987) which showed
significant improvement due to incorporating crown ratio into Douglas–fir total stem
volume equations.
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Because the inclusion of an expression for tree form can be difficult in many
field situations and the inclusion of crown ratio has generally resulted in only
marginal improvement in prediction of stem volume, Burkhart (1977) examined
stand characteristics (age, site index, number of trees and basal area per unit area)
which might serve as surrogates for form in predicting stem volume of natural and
plantation-grown loblolly pine; adding stand variables after d2h did not improve
predictive ability for an independent validation data set.

3.5 Volume Prediction for Irregular Stems

Hann and Bare (1978) developed a comprehensive set of tree volume equations for
unforked and forked trees of the major species in Arizona and New Mexico, USA.
Their system consists of estimating the total stem cubic volume for unforked trees
using the combined-variable function with d2h equal to dbh squared times total tree
height. Total cubic volume of forked trees is then estimated as:

vf D v � Rt;f

where

vf D predicted total stem gross cubic volume of a forked tree
v D predicted total stem gross cubic volume of an unforked tree
Rt;f D predicted ratio of actual total stem gross cubic volume in a forked tree

divided by predicted total stem gross cubic volume in an unforked tree of the
same dimensions.

Equations for estimating merchantable volumes of stems, as well as total cubic
volume, were also developed to provide predictions of volume for both regular
(unforked) and irregular (forked) stems.

Merchantable height (hm), rather than total height, is sometimes employed for
decurrent tree forms (Fig. 3.1b). The combined variable and other equation forms
that are useful for estimating tree volume when using total tree height are generally
satisfactory when substituting merchantable tree height (hm), that is

v D b0 C b1d
2hm (3.36)

When estimating volume for shrub forms (Fig. 3.1c) additional predictor vari-
ables are needed. Because shrubs do not normally have a useful dbh value, diameter
at the root collar (drc) is employed. Some studies have found the relatively simple
equation

v D b0 C b1d 2
rch (3.37)
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to be sufficient for shrubs, but in other instances a count of the number of stems
involved has been included in addition to drc and shrub height h. Chojnacky (1985)
developed equations to predict gross cubic volume for trees in the pinyon-juniper
type in the western United States using measurements of diameter at the root collar
drc, total height (h) and number of basal stems (ns). The variables drc squared times
total height and a dummy variable to distinguish single- from multiple-stem trees
(ns D 1 if single-stem; 0 if multiple-stem) were used in a combined-variable-like
volume estimating equation.

3.6 Stem Quality Assessment and Prediction

In addition to predicting the total volume and the volume in given portions of stems,
an assessment of wood quality may also be needed. Quality is often determined by
grading which entails placing logs, veneer bolts, or other product categories into
quality classes. The primary variables associated with grades of round wood are
diameter, sweep, and indicators of internal defects.

As an alternative to assigning portions of boles into grade or quality classes,
there have been studies aimed at developing quality classification systems based on
empirical measurements of individual trees. Product specifications and utilization
standards change over time, resulting in obsolence for classification systems that
assign grades based on current products. However, if appropriate tree characteristics,
in addition to dbh and total height, are measured these characteristics can be related
to quality for varying product categories regardless of changes in standards over
time.

Sonderman and Brisbin (1978) evaluated a number of tree characteristics that
could affect potential product quality and quantity of hardwood trees, namely
dbh, crown class, crown ratio, total height, fork height, sweep and crook, rot and
seams, and limb count and limb-related defects. Using these measurements they
constructed an index system that included crown class, stem sweep, and number of
limbs for ranking sample trees.

In a study of stem quality of planted loblolly pine trees in plots that were
measured at 3-year intervals, Choi et al. (2008) classified individual trees as (i)
single stem or forked, (ii) normal top or broken top, (iii) straight, bole sweep,
butt sweep, or short crook, and (iv) no disease or disease. This hierarchical
classification scheme results in 32 possible categories for each individual tree at
each measurement occasion. Tree quality was then estimated using tree and stand
characteristics as predictors, starting with the general form:

Quality D f .d; h; cc; hr ; t; S; N / (3.38)

where d is diameter at breast height, h is total height, cc is crown class (dominant,
codominant, intermediate, or suppressed), hr is relative height (h= Nh), t is stand age
(years), S is site index, and N is trees per hectare.
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Significant variables were selected using a backward elimination procedure. The
dependent variable “Quality” is a discrete nominal response variable with J possible
categories; hence a multinominal distribution results. Stem characteristics over time
were modeled by fitting a system of multicategorical logit models.

There are inherent difficulties with quantifying wood quality as opposed to
quantity, but statistical methodology for categorical data can be effectively applied
to this problem. While quantitative studies of tree stem quality are relatively rare,
previous results with varying objectives provide a beginning point for future work.
Strub et al. (1986) modeled the proportion of saw timber trees in unthinned loblolly
pine plantations. Burkhart and Bredenkamp (1989) and Amateis and Burkhart
(2005) used similar methods to model the proportion of pulpwood, sawtimber,
and peeler trees in thinned and unthinned loblolly pine plantations. Prestemon
and Buongiorno (2000) developed an ordered-probit model to predict tree grade
from tree and stand-level variables in natural uneven-aged southern pine stands.
Zhang et al. (2005) evaluated the relationship of tree growth and stem quality
characteristics with initial spacing in black spruce.
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Chapter 4
Tree Weight and Biomass Estimation

Weight scaling—that is, determining the weight of tree boles that have been cut and
delivered to a converting facility—has become common practice because it is direct,
efficient, and it encourages delivery of freshly cut material. As a result, much effort
has been devoted to developing equations to estimate the weight, rather than the
volume, of the commercial portion of tree stems. Furthermore, weight estimates are
more easily obtained and more practical to apply than volume units when estimates
for parts of trees such as branches and foliage in addition to stems are also desired.

Increasing interest in predicting fuel loads and potential fire behavior, quantifying
carbon cycles and storage, and sustainable forest management has heightened
the need for reliable allometric equations to estimate tree and shrub biomass.
Accordingly, modelers have developed improved methods for estimating biomass
of component parts as well as total biomass for a variety of tree and shrub species.

4.1 Estimating Green Weight of Stems

Green weight (i.e. weight prior to any seasoning or drying) per unit volume of
tree stems varies according to wood density and moisture content. While there is
some variation in green weight per unit volume throughout the length of tree boles,
this variation is typically not large. Thus model forms applied and research results
obtained from work with estimating tree-stem cubic volume apply equally well
when weight units are used as the dependent variable. The tree-stem equation forms
discussed in Chap. 3 and summarized in Table 3.1 for estimating cubic volume
have been used with equivalent results for estimating weight. Fitting a prediction
equation requires accurate determination of tree weight, along with measurements
of the predictor variables, on a sample of felled trees.

Baldwin (1987) used a modified form of Schumacher and Hall’s (1933) volume
model to predict green and dry weight of the total bole of loblolly pine trees namely:

w D b1d
b2 hb3pb4 (4.1)
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where

w D predicted weight
d D diameter at breast height
h D total height
p D any additional predictor variable specified

The final form of the total bole weight prediction equation with p D exp.t2/ was

ln w D b1 C b2 ln d C b3 ln h C b4t2 (4.2)

where

t D tree age

Bole weights from the stump to any top diameter were predicted from total bole
weight and a weight ratio equation. The ratio equation, to predict the proportion of
total stem weight below a given upper-stem diameter limit, employed was

Rdi D exp.b1di
b2 d b3 / (4.3)

where

Rdi D estimated ratio of partial to total bole weight
di D upper-stem diameter limit
d D diameter at breast height
b1; b2; b3 D coefficients estimated from data.

In a study involving data on green weight of 970 loblolly pine trees from across
the species commercial range in the southeastern USA, Bullock and Burkhart (2003)
used the combined-variable equation to estimate total bole weight:

w D b0 C b1d 2h (4.4)

Where w D total stem green weight and other symbols remain as previously
defined. Two forms of a weight ratio equation for varying top-diameter limits were
evaluated:

Rdi D 1 C b1.di
b2d b3 / (4.5)

and

Rdi D exp.b4di
b5 d b6 / (4.6)

as well as the analogous two forms for weight ratios to varying upper-height limits

Rhi D 1 C a1..h � hi /
a2ha3 / (4.7)

Rhi D exp.a4.h � hi /
a5ha6 / (4.8)
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In comparing the two forms of ratio equations, Eq. 4.6 was best for predicting
green weight to any upper stem diameter limit, and Eq. 4.7 was recommended for
predictions to any upper height limit. These results with stem weight as the variable
of interest are consistent with results reported when cubic volume was the unit of
measure used (e.g. Tasissa et al. 1997).

As a further means of evaluating the relative performance of the two ratio model
forms, Bullock and Burkhart (2003) compared the implicit taper functions for
Eqs. 4.5 and 4.7 and for 4.6 and 4.8. Mixed taper forms were also derived by using
combinations of the two ratio model forms. The combination of ratio models (4.6)
for top diameter limits and (4.7) for upper height limits (the best form for predicting,
respectively, weight to a given top diameter and to a given height limit) resulted in
the most accurate implicit taper relationships for predicting diameter at specified
heights and for predicting height at a specified diameter. (The implicit taper function
for this “mixed forms” combination is given in Sect. 3.3.1.)

4.2 Estimating Dry Weight of Stems

Although wood is commonly bought and sold on a green weight basis, estimates of
dry weight may be desired when the wood will be utilized for pulped products or
conversion to energy. Dry weight is more highly correlated with the yield of pulped
products than is green weight, which is influenced by variations in moisture content.
Dry weight may also be the desired metric in studies of biomass productivity. For
some species wood density is not closely related to tree age and dry weight of stems
can be estimated with the predictors dbh and total tree height. An application of the
combined-variable equation

w D b0 C b1d 2h

to estimate the dry weight of wood and bark (w) for plantation-grown sycamore
trees resulted in an r2 value of 0.99 (Belanger 1973).

Wood density (specific gravity) for some species, however, varies by age to
an extent that age, in addition to tree diameter and height, should be included
when predicting the dry weight of stems. Tree age can be directly incorporated by
specifying

Dry weight D f .d; h; t/

or a separate equation to estimate specific gravity D f (t) can be fitted and dry weight
can be estimated as

Dry weight D .cubic volume/ .specific gravity/ .K/ (4.9)

http://dx.doi.org/10.1007/978-90-481-3170-9_3
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where cubic volume can be m3 or ft3, specific gravity is the dry weight of wood
divided by the weight of an equal volume of water, and K is the weight of a cubic
unit of water (1 g/cm3 or 1,000 kg/m3 or 62.4 lbs/ft3).

Specific gravity for the whole stem or for a specific merchantable part of the stem
has been estimated (Burkhart and Beckwith 1970, and others) from tree age (t) with
the following model

SG D b0 C b1t
�1 (4.10)

If a cubic volume equation is available or fitted for estimating contents of the
same portion of the stem as the specific gravity function, dry weight values for
trees of varying species and ages can be obtained. Assuming the combined-variable
function for cubic volume

v D b0 C b1d
2h (4.11)

multiplying Eqs. 4.10 and 4.11 and rewriting as

w D c0 C c1t
�1 C c2d

2h C c3.d
2h/.t�1/ (4.12)

results in an implied dry weight prediction equation of the combined-variable form
with intercept and slope varying by tree age.

Equations such as (4.10) are useful for estimating specific gravity of a specified
portion of tree stems as a function of the tree’s age. Wood density varies from stump
to tip and from pith to bark for many tree species, which has resulted in efforts to
model specific gravity on an individual ring and relative stem height basis (Tasissa
and Burkhart 1998, and others). A taper function can be used in conjunction with
tree diameter and height increment prediction equations to establish an estimated
sheath of wood year by year. Wood density of annual rings at specified heights can
then be predicted and dry weight of given portions of stems can be determined.

Parresol and Thomas (1989) developed a generalized density-integral model for
estimating tree-stem biomass. The mass (M) for a lamina with a continuous density
function �.x; y/ is commonly defined as:

M D
“

R

�.x; y/dA

The 3-dimensional structure of a tree can be represented as a 2-dimensional
lamina by taking cross-sectional area (y) as one dimension and height (hi) as the
other dimension (Fig. 4.1). Parresol and Thomas (1989) noted that moving from
lower limit h1 to upper limit hu in Fig. 4.1, the variable y is seen to vary from 0 to
upper limit f (hi), which establishes the following model for stem biomass:

w D
Z hu

h1

Z f .hi /

0

�.hi ; y/dydhi
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Fig. 4.1 Excurrent tree form
represented as a
2-dimensional lamina (From
Parresol and Thomas 1989)

where f (hi) is an equation expressing taper in cross-sectional area as a function of
height, and w is bole dry weight of wood between limits h1 and hu. Typically stem
profile (cross-sectional area) is modeled using relative height .x D hi =h/ instead of
actual height. Performing a change of variable from h to x results in the following
generalized stem biomass model:

w D h

Z xu

x1

Z f .x/

0

�.x; y/dydx

For a specific biomass model one needs to define � and f. As a demonstration of
the density integral approach to tree bole biomass estimation, Parresol and Thomas
(1989) derived specific equations for slash pine in the West Gulf region of the United
States.

A number of prediction variables were examined but only relative height and age
were important for estimating bole specific gravity:

SG D b0 C b1x C b2t (4.13)

where SG is specific gravity, x is relative height, t is plantation age (years) and
b0; b1; b2 are coefficients estimated from data. For this initial investigation of
the density-integral approach, Parresol and Thomas (1989) used the simple taper
function of Kozak et al. (1969)

di
2=d 2 D c1.x � 1/ C c2.x

2 � 1/

where di is upper stem diameter, d is dbh, and c1; c2 are coefficients estimated from
data. The specific integral weight equation for slash pine stem dry weight was then
derived as follows:

�.x; y/ D .b0 C b1x C b2t/k1
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and

f .x/ D d 2
�
c1.x � 1/ C c2.x2 � 1/

�
k2

where k1 D 1,000 (the factor for converting SG to density in kg/m3) and
k2 D �=40;000 (the factor converting d 2

i to cross-sectional area), the following
specific model results:

w D h

Z xu

x1

Z d2Œc1.x�1/Cc2.x2�1/�k2

0

k1.b0 C b1x C b2t/dydx

Performing the integration gives:

w D �

40
d 2h

8̂
ˆ̂<
ˆ̂̂:

Œb0 C b2t �

�
�.c1 C c2/.xu � x1/ C c1.x

2
u � x2

1/

2
C c2.x3

u � x3
1/

3

�

C b1

��.c1 C c2/

2
.x2

u � x2
1/ C c1.x

3
u � x3

1/

3
C c2.x4

u � x4
1/

4

�

9>>>=
>>>;

where w is dry weight (g), and �=40 is k1k2.
Parresol and Thomas (1989) compared the integrated model and total stem and

weight ratio equations for predicting sectional stem weight and found that the
density-integral model performed well. They conjectured that employing a more
complex taper function in the integrated modeling approach would lead to more
accurate estimates of sectional bole weights. In two follow-up studies (Thomas
et al. 1995; Parresol and Thomas 1996) a trigonometric taper function (Thomas and
Parresol 1991) was used to describe stem profiles in the density-integral system:

di
2=d 2 D b1.x � 1/ C b2 sin.b3�x/ C b4 cot.�x=2/ (4.14)

where x is relative height (hi =h). Bole specific gravity (SG) was predicted from
relative height and tree age (t) with Eq. 4.13.

The integral weight equation was then derived using Eqs. 4.13 and 4.14 forming
a system of three linear statistical models with non-linear cross-equation constraints
(Parresol and Thomas 1996). When contemporaneous correlations are present in
systems of equations, seemingly unrelated regression (SUR) estimation yields more
efficient parameter estimates than ordinary least squares. The null hypothesis that
the contemporaneous covariances are zero was rejected; therefore the system of
equations was fitted using SUR as well as OLS. Parameter estimates for fitting with
OLS and with SUR to data for slash pine and for willow oak were similar but the
standard errors of the parameter estimates were smaller for SUR in all cases. For
slash pine, standard errors were reduced by 11–29% and for willow oak by 5–20%.
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4.3 Biomass Estimation

Estimates of forest biomass are needed for forest management and for scientific
study purposes. Woody biomass may be converted to various end uses including
firewood, biofuels, and pulp products. Studies of ecosystem productivity, energy
and nutrient flows, and carbon cycles require the ability to assess forest biomass.
In many instances the estimates of above ground biomass (stem, branches, foliage)
suffice, but in some cases below ground components (roots) are also included. Tree
biomass (components and total) is commonly estimated using fitted regression re-
lationships. A sample of trees is chosen through an appropriate selection procedure
for destructive sampling, and the dry weights of the components and total weight
of each tree are determined and related by regression analysis to easily measured
dimensions of standing trees.

4.3.1 Models for Biomass Estimation

Researchers have used a variety of regression models for estimating total-tree and
tree-component biomass; prediction equations typically are of three forms (Parresol
1999):

Linear .additive error/ W y D ˇ0 C ˇ1x1 C � � � ˇj xj C " (4.15)

Nonlinear .additive error/ W y D ˇ0x
ˇ1

1 x
ˇ2

2 : : : x
ˇj

j C " (4.16)

Nonlinear .multiplicative/ W y D ˇ0x
ˇ1

1 x
ˇ2

2 : : : x
ˇj

j " (4.17)

where y D total or component biomass, xj D tree dimension variable, ˇj D model
parameter, and " D error term. Some commonly used tree dimension variables are
diameter at breast height (d), d 2, total height (h), d 2h, age (t) and live crown
length (cl ). Diameter at the base of the live crown has proved to be one of the
best predictor variables for crown weight (Clark 1982). Biomass data often exhibit
heteroscedasticity; that is the error variance is not constant at all levels of x. If
models (4.15) and (4.16) are fitted to such data, weighted analysis is necessary
to achieve minimum variance parameter estimates (assuming all other regression
assumptions are met). Nonlinear regression equations such as (4.17) are often
transformed into linear (additive error) regression equations by taking the logarithm
of both sides of the equation. In this form, the equation parameters can easily be
estimated by least squares procedures. Typically, the variance of y is not uniform
across the domain of one or more of the xj ’s; however, when transformed to
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logarithms, model (4.17) generally has homoscedastic (constant) variance. The
logarithmic equation form is

ln y D lnb0 C b1 ln x1 C � � � C bj ln xj C ln " (4.18)

where ln is natural logarithm. Goodness-of-fit statistics related to the transformed
equation and are not directly comparable with the same statistics produced through
use of either model (4.15) or (4.16). Although logarithmic transformation may be
used, it is usually desirable to express estimated values of y in arithmetic (i.e.,
untransformed) units. The antilogarithm of ln y is not an unbiased estimate of
the arithmetic mean of y. If O� D Oy and O�2 D sample variance of the logarithmic
equation, then Oy is often estimated as

Oy D exp. O� C O�2=2/

However, some researchers (e.g. Madgwick and Satoo 1975; Hepp and Brister
1982) have indicated that the logarithmic bias correction factors commonly em-
ployed tend to overestimate and hence to overcorrect, the true bias. As an alternative
to logarithmic transformation for stabilizing error variance, if the error variance
is a function of a small number of unknown parameters and if these parameters
can be consistently estimated, generalized least squares may be used to obtain
asymptotically efficient estimates of the model parameters.

4.3.2 Additivity of Linear Biomass Equations

A desirable feature of tree biomass component regression equations is that the
predictions for the components sum to the prediction for biomass of the total tree.
Kozak (1970), Chiyenda and Kozak (1984), and Cunia and Briggs (1984, 1985a)
have discussed the problem of ensuring additivity for a set of tree biomass functions.
In a review paper on assessing tree and stand biomass, Parresol (1999) summarized
methods for forcing additivity by identifying three procedures.

In procedure 1, the total biomass regression function is defined as the sum of the
individually calculated best regression functions of the k biomass components:

Oy1 D f1.x0
1/

Oy2 D f2.x0
2/

:::

Oyk D fk.x0
k/

Oytotal D Oy1 C Oy2 C � � � C Oyk
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In procedure 2, the additivity of the components is ensured by using the same
independent variables and the same weight function in the weighted least squares
linear regressions of the biomass of each component and that of the total. Under this
method, the regression coefficients of the total equation are computed by summing
the regression coefficients of the (assumed independent) component equations (the
bi vectors), that is:

Oy1 D x0b1

Oy2 D x0b2

Oyk D x0bk

Oytotal D x0 Œb1 C b2 C � � � C bk�

This result holds only under the restrictive assumption that the k components
yi .i D 1; : : : ; k/ are independent, which implies that the "i .i D 1; : : : ; k/ are uncor-
related.

In procedure 3, which is general and flexible, statistical dependencies among
sample data are accounted for using generalized least squares regression with
dummy variables techniques to calculate a set of regression functions such that: (1)
each component regression contains its own independent variables, and the total-
tree regression is a function of all independent variables used; (2) each regression
can use its own weight function; and (3) additivity is ensured by setting constraints
(i.e., linear restrictions) on the regression coefficients. In the seemingly unrelated
regression (SUR) formulation for a set of contemporaneously correlated linear
statistical models with cross-equation constraints, the structural equations for a
system of models of biomass additivity can be specified as

y1 D f1.X1/ C "1

y2 D f2.X2/ C "2

:::

yk D fk.Xk/ C "k

ytotal D ftotal.X1; X2; : : : ; Xk/ C "total

and redundant columns in ftotal are eliminated. When the stochastic properties of the
error vectors are specified, along with the linear restrictions, the structural equations
form a statistical model for efficient parameter estimates and reliable prediction
intervals.
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Parresol (1999) presented an example of fitting biomass data according to
procedures 1, 2, and 3 using data from 39 willow oak trees. The individual “best”
biomass component equations were:

Oywood D b0 C b1d 2h

Oybark D b0 C b1d 2

Oycrown D b0 C b1.d 2h/.cl / C b2h

For total tree biomass, the best individual equation was:

Oytotal D b0 C b1d
2h

Scatter plots of residuals indicated increasing error variance, and error models
were specified to account for the heteroscedasticity. By way of example, for
procedure 1 for additivity, total tree biomass is simply the sum of the components. In
an example for a tree with d D 30 cm, h D 18 m, and cl D 10 m the total biomass is
estimated as 603.4 kg with an approximate 95% confidence interval of ˙111.7 kg.
By contrast, OLS fit for total tree biomass gives a mean and approximate 95%
prediction interval of 557.6 kg ˙ 102.8 kg. Ensuring additivity using procedure 1
resulted in the prediction interval increasing from ˙102.8 to ˙111.7, indicating a
loss in efficiency.

Continuing with the example using data from 39 willow oak trees, a set of linear
models with statistical dependence among components and total tree biomass was
estimated using SUR methods. The following equations and variance functions were
employed for the willow oak sample data:

Oywood D b10 C b11d
2hI

O�2 D .d 2h/
1:95

Oybark D b20 C b21d
2hI

O�2 D .d 2h/
1:745

Oycrown D b30 C b31.d 2h/.cl / C b32hI

O�2 D
�

.d 2h/.cl /

10;000

�1:646

� exp
��0:00406h2

�

Oytotal D b40 C b41d
2h C b42.d

2h/.cl / C b43hI

O�2 D .d 2h/
1:844
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where b40 D b10 C b20 C b30; b41 D b11 C b21; b42 D b31; and b43 D b32. For
system parsimony, the Oybark equation was modified by using d 2h rather than d2 (the
predictor in the “best” individual equation).

The estimated total biomass for the example willow oak tree was 583.8 kg when
using parameter estimates from the SUR fitting, with prediction limits of ˙93.8 kg.
This prediction interval on Oytotal is narrower than the least squares prediction interval
on Oytotal. One might expect the individually best regression on Oytotal to have the
smallest variance, because it is the best estimator that is a linear unbiased function
of Oytotal. However, when contemporaneous correlations are present, it is possible to
obtain a better linear unbiased estimator that is a function of Oywood , Oybark , Oycrown and
Oytotal. Thus, even under the constraint of additivity, the SUR estimator can achieve
lower variance and be a more efficient estimator than OLS.

Russell et al. (2009) developed a system of linear equations to predict the
component and total tree masses of young loblolly pine trees grown in a high-density
spacing trial. Their system of equations, fitted using seemingly unrelated regression
(SUR) methods which ensured that the sum of the component masses equaled the
tree mass, was:

Oystem D b10 C b11dgl
2h C b12t

Oyfoliage D b20 C b21dgl
2cl

Oybranch D b30 C b31dgl
2h

Oyroot D b40 C b41dgl
2h

Oytotal D b50 C b51dgl
2h C b52dgl

2cl C b53t

where Oyc (c D stem, foliage, branch, root, total) is the observed component (or total
tree) mass (g), dgl is the groundline diameter (mm), h is the total tree height (cm),
t is the tree age (years), cl is the live crown length (cm), and bij are the coefficients
to be estimated for the jth parameter in the ith equation.

4.3.3 Additivity of Nonlinear Biomass Equations

Three procedures for insuring additivity for a set of linear tree biomass equations
were presented by Parresol (1999). In a subsequent paper, Parresol (2001) illus-
trated two procedures for forcing additivity for nonlinear models. The procedures
differ, depending on how the separate components are aggregated. The following
discussion of these methods is based on the presentation of Parresol (2001).

In procedure 1, subscripts refer to tree biomass components (stem, branches,
etc.), and the total biomass regression function is defined as the sum of the separately
calculated best regression functions for the components of biomass:
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Oy1 D f1.x1; b1/

Oy2 D f2.x2; b2/

:::

Oyc D fc.xc; bc/

Oytotal D Oy1 C Oy2 C � � � C Oyc

Reliability (i.e., confidence intervals) of the total biomass prediction can be
determined from variance properties of linear combinations:

var. Oytotal/ D
cX

iD1

var. Oyi / C 2
X
i<j

X
cov. Oyi ; Oyj /

where

cov. Oyi ; Oyj / D O� Oyi ; Oyj

p
var. Oyi /var. Oyj /

O�yi ;yj D estimated correlation between Oyi and Oyj .

In procedure 2, which is more general and flexible than procedure 1, statis-
tical dependencies (i.e., contemporaneous correlations) among sample data are
accounted for using nonlinear joint-generalized least squares regression, also known
as nonlinear seemingly unrelated regressions (NSUR). A set of nonlinear regression
functions is specified such that (i) each component regression constrains its own
independent variables, and the total-tree regression equation is a function of all
independent variables used; (ii) each regression equation can employ an appropriate
weight function; and (iii) additivity is ensured by setting constraints (restrictions)
on the regression coefficients. The structural equations for the system of nonlinear
models of biomass prediction with additivity ensured can be specified as:

y1 D f1.X1; ˇ1/ C "1

y2 D f2.X2; ˇ2/ C "2

:::

yc D fc.Xc; ˇc/ C "c

ytotal D ftotal.X1; X2; : : : ; Xc; ˇ1; ˇ2; : : : ; ˇc/ C "total

When the stochastic properties of the error of the vectors are specified along
with the coefficient restrictions, the structural equations become a statistical model
that allows for efficient parameter estimation and reliable prediction intervals.
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The procedure 2 or NSUR method is generally preferable to procedure 1. If
disturbances or errors in the different equations are correlated (the usual situation
for biomass models), then procedure 2 is superior to procedure 1, because NSUR
takes into account the contemporaneous correlations and results in lower variance
(Parresol 2001).

Procedures 1 and 2 were illustrated by Parresol (2001) with a numeric example
using data from a sample of 40 slash pine trees. The structural equations for
procedure 1 were

Oywood D b1.d
2h/

b2

Oybark D b1d b2

Oycrown D b1d
b2hb3

Oytotal D sum of components

where d is diameter at breast height and h is total tree height. Appropriate weighting
functions were applied to account for heteroscedasticity.

Procedure 2 involves a set of nonlinear models with allowance for statistical
dependence among components and the total tree biomass. Parameters are estimated
using nonlinear seemingly unrelated regression (NSUR) with parameter restrictions
that ensure additive predictions. The model for total biomass must consist of a
combination of the component biomass models to be additive, thus using the same
component equations as those used in procedure 1, the NSUR formation is:

Oywood D b11.d
2h/

b12

Oybark D b21d b22

Oycrown D b31d
b32hb33

Oytotal D b11.d 2h/
b12 C b21d b22 C b31d

b32hb33

where Oytotal is restricted to have the same independent variables and coefficients as
the component equations. The same error or weight functions that were used for the
three component models in procedure 1 were applied and an error function for Oytotal

was determined.
For a tree with d D 20 cm and h D 17 m, Parresol (2001) computed the estimated

total tree mass for the equations fitted to slash pine data using procedure 1 to be
268.1 kg with an approximate 95% confidence interval of ˙9.3 kg. The comparable
figures for procedure 2 were 264.2 ˙ 6.3 kg. The NSUR confidence interval was
32% narrower (˙6.3 versus ˙9.3 kg) than that computed using procedure 1.

In the example just presented the tree above ground was divided into three
components: bole wood, bole bark, and crown. If the crown component were
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separated into two subcomponents, foliage and branches, one might wish to apply
restrictions on the subcomponent equations to give predictions that sum to the
prediction from the crown regression equation, while still maintaining the overall
additivity to the total. To maintain the property of additivity under this scenario
while employing NSUR estimation procedures requires that the crown component
model be a combination of the subcomponent models with appropriate parameter
restrictions. Parresol (2001) noted that the system of biomass equations could be
expanded by adding equations for foliage and branches as:

Oywood D b11.d
2h/

b12

Oybark D b21d b22

Oyfoliage D b31d b32hb33

Oybranches D b41.dcl /
b42

Oycrown D b31d
b32hb33 C b41.dcl /

b42

Oytotal D b11.d
2h/

b12 C b21d
b22 C b31d b32hb33 C b41.dcl /

b42

The expressed restrictions in this system guarantee that the foliage and branch
predictions will sum to equal the crown prediction, plus the total prediction will still
equal the sum of the component predictions. With appropriate restrictions many
layers can be added to a system while maintaining the property of additivity.

Nonlinear seemingly unrelated regression methods have been applied in a
number of studies aimed at producing a consistent set of tree biomass prediction
equations. Carvalho and Parresol (2003) applied NSUR for estimating mass of
the stem, crown and tree for Pyrenean oak in Portugal. A system of nonlinear
additive biomass equations was developed for 15 native species of eucalyptus
in Australia by Bi et al. (2004). Data from 441 trees sampled on several sites
representative of eucalyptus plantings in Portugal were used by António et al. (2007)
to simultaneously fit, using seemingly unrelated regression, biomass of stem wood,
stem bark, foliage, and branches. Sabatia et al. (2008) utilized NSUR to fit biomass
component equations for shortleaf pine; the component equations were constrained
in the estimation process to sum to total tree biomass.

4.3.4 Inclusion of Additional Predictor Variables

In developing tree biomass equations researchers have evaluated the use of various
tree variables, as well as stand and site variables, as predictors. Diameter at breast
height is a universally used predictor because it shows a good relationship with tree
biomass components and it is easy to obtain.
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Several studies have concluded that height, as an additional predictor, only adds
marginally to the predictive ability of diameter-based biomass regressions (e.g. Ter-
Mikaelian and Korzukhin 1997; Johansson 1999; Verwijst and Telenius 1999; Porté
et al. 2002; Jenkins et al. 2003). In the models fitted by Parresol (1999), height
was a useful predictor for stem wood but not for stem bark. Lambert et al. (2005)
found that tree height improved the accuracy of the stem equations but not of
the crown equations. Bi et al. (2004) reported similar conclusions. The combined
variable of diameter and tree height (d2h) performed better as a predictor for stem
and bark components than diameter alone, but not for branch and leaf components.
Pitt and Bell (2004) and Ter-Mikaelin and Parker (2000) also found large increases
in predictive ability of stem biomass, but found needle and branch biomass models
to be invariant to the addition of height. It has been argued that height can serve to
adjust predictions for effects such as stand age, density and site quality (e.g. Ter-
Mikaelin and Parker 2000).

In the equations developed by António et al. (2007) the use of height implied
decreases in the sums of squares for press residuals (SSrp) by 72%, 8%, 12% and
10%, respectively, for stem wood, stem bark, leaves and branches. Furthermore, the
use of crown length instead of height in the models for the crown components led
to greater decreases in SSrp of 29% and 19%, respectively, for leaves and branches.
António et al. (2007) detected no impact of stand density on tree allometry. The
addition of tree height compensated for effects of differences in stand density, as
found by Pitt and Bell (2004) for thinning treatments.

Porté et al. (2002) reported that stand age greatly improved the predictive ability
of the branch and stem models they developed for maritime pine. A change in the
allometric relationships with stand development was also noted by Bond-Lamberty
et al. (2002), Saint-André et al. (2005) and Shaiek et al. (2011) who introduced age
as a supplementary variable in biomass prediction equations.

Harrington and Fownes (1993) found that the allometry of woody biomass
and leaf area did not differ between planted and coppice stands in fast-growing
tropical tree species. For António et al. (2007) the introduction of a dummy variable
representing coppice produced a significant reduction in the residual sum of squares
but the gain in predictive ability was not considered large enough to justify this
additional model complexity.

Crow (1978) and Ketterings et al. (2001) found an influence of site factors on tree
allometry but this result has not been reported by other authors (e.g. António et al.
2007 or Shaiek et al. 2011). Most studies suggest that it is possible to use the same
model for biomass prediction across different sites and regions provided that height
is included and that the stage of development of the stand is taken into account.
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Chapter 5
Quantifying Tree Crowns

5.1 Approximating Tree Crowns with Geometric Shapes

Larger crown sizes generally produce higher rates of growth for trees of a given
species and age. Crown characteristics have also been found effective for predicting
responses to silvicultural treatments, such as thinning and fertilizing applications.
Consequently, crown measures are often incorporated in growth and yield models
to improve predictions of stand development and response to management practices.

Crown size, which is a surrogate for the amount of photosynthetically active
foliage, is typically quantified using measures of crown width and length. Crown
profiles are irregular and the branches of neighboring trees are often interlocked,
making the measurement of crown width difficult. As with tree boles, the area of a
tree’s crown projection is typically determined by calculating an average diameter
and then assuming a circular shape. The length of green crown may be defined as
the vertical distance from the tip (highest growing point) to the lowest live foliage.
While the upper limit can be objectively defined, the base of the tree crowns is often
very difficult to ascertain (additional detail on measuring tree crowns can be found
in Avery and Burkhart 2002).

With measurements of crown length and width, crown surface area and crown
volume can be approximated by assuming the crown is some regular geometric
solid. It is common to assume that tree crowns are cones or paraboloids. If one
assumes that a cone is a reasonable approximation for the crown, the surface area
and volume can be computed as

Surface area .m2/ D �cw

2

r
c2

l C
�cw

2

�2

Volume .m3/ D �cwcl
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where

cw D diameter at the crown base (m)
cl D crown length (m)

While invoking the assumption that tree crowns assume a regular geometric
shape may provide acceptable approximations of surface area and volume for some
purposes, more exact values for given species have been derived through empirical
modeling.

5.2 Modeling Crown Profiles

Biging and Wensel (1990) defined crown volume as the geometric space occupied
by the crown and developed models to describe the crown volume and related mea-
sures for six conifer species in northern California. Crown sectional volumes were
computed from felled tree measurements and total crown volume was determined by
summing the sectional volumes. Regression equations of the following form were
fitted to estimate crown volume (cv) from the easily measured variables of dbh (d),
total tree height (h) and live-crown ratio (cr ):

cv D ad bhccd
r

where cr is length of live crown divided by total tree height and a, b, c and d
are coefficients estimated by regression techniques. Estimates of cumulative crown
volume at any height in the crown, crown cross-sectional area, and crown surface
were derived from the total crown volume relationship.

Hann (1999) and Marshall et al. (2003) modeled crown profiles by dividing the
crown into segments: the portion of the crown above the point of largest crown width
(cwmax) and the portion below that point. Hann’s equation for the upper portion of
Douglas-fir crowns predicted a crown profile that ranged in shape from nearly conic
to parabolic, depending on position within the crown and the social status of the tree
as indicated by the ratio of total height divided by dbh for the tree. The equation for
the lower portion predicted a crown profile with a cylindrical shape.

Crown profile for the light crown (that portion above cwmax) was expressed by
the equation:

cwah D .cwmax/R

h
a0Ca1RPA

1=2
h Ca2.h=d/

i
pah (5.1)

where

cwah D crown width at height h above ground for the portion of the crown above the
height where largest crown width occurs

cwmax D largest crown width of a stand-grown tree
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Fig. 5.1 Predicted
Douglas-fir crown profiles for
a dominant tree
(dbh D 81.3 cm, total
height D 39.6 m, and crown
ratio D 0.5), and a suppressed
tree (dbh D 5.1 cm, total
height D 7.6 m, and crown
ratio D 0.2) (From Hann
1999)

Rpah D relative position of the crown width within the length of the crown occurring
above the portion of the largest crown width
h D total tree height
d D tree diameter at breast height

Crown width for the shade portion of the crown was predicted by

cwbh D b1.cwmax/ (5.2)

where cwbh D crown width at height h above the ground for the portion of the crown
below the height where cwmax occurs.

Figure 5.1 illustrates the application of this segmented approach for predicting
crown profiles for dominant and suppressed Douglas-fir trees.

Baldwin and Peterson (1997) proposed a function of the following form to model
the crown shape of loblolly pine trees growing in stands with closed canopies:

Ocr D b1

	
Rch � 1

Rch C 1



C b2.Rch � 1/ (5.3)

where Ocr is outer crown radius (m), Rch is relative crown height (height within
the crown/crown length), and b1 and b2 are coefficients to be determined from
individual-tree data. Note that when relative crown height is equal to one (top of
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hlf hcb

Fig. 5.2 Diagram of the
modeled inner and outer
shape of a loblolly pine
crown showing the height to
the base of the full live crown
(hcb) and height to the base of
the live foliage (hlf ) (From
Baldwin and Peterson 1997)

crown), crown radius is equal to zero. From data it was observed that maximum
crown width occurs above the crown base, except for cone-shaped crowns, and
varies with stand and tree characteristics.

The area next to the tree bole from the crown base to almost the tree tip is
essentially defoliated in loblolly pine, as well as in many other conifers. It is roughly
conical (not consistently concave or convex) in shape, with the apex near the crown
tip. Therefore, this inner area was modeled with a straight line. The inner shape
begins at a predicted radius at the crown base and extends upwards to an intersection
with the bole below the crown tip (Fig. 5.2). This intersection is the point at which
all inner crown radius measurements above it are zero. Typically, the point is just
below 1–2 years height growth, where foliage is growing immediately off the bole.

The model for the inner crown shape is

Icr D b3 C b4.Rch/ (5.4)



5.2 Modeling Crown Profiles 89

where Icr is inner crown radius (m) and b3 and b4 are coefficients to be determined
from individual-tree data. The maximum crown radius is found directly as the
maximum of the outer shape function. The intercept for the inner function is the
maximum radius of inner defoliation occurring at the base of the live crown.

In trees sampled by Baldwin and Peterson (1997), foliage typically did not occur
until 0.3–0.9 m above the measured height to base of live crown (hcb). Consequently
an equation was fitted to predict height to the base of live foliage (hlf ) from the outer
crown measurements and used to redefine crown base (Fig. 5.2), thus redefining Rch

in (5.3) and (5.4). The sample data were fitted to model (5.3) using the new definition
of Rch. Foliated crown length (clf ) was then defined as total tree height (h) minus
hlf , and crown ratio (cr ) as clf divided by h. The height of the live foliage, in meters,
is estimated to occur at

hlf D 0:9326hcb � 0:0267d C 0:1006h

where

hcb is height to the base of the full live crown (m)
d is bole diameter 1.37 m above ground line (cm)
h is total tree height (m)

Crown shape changes due to tree growth, competition, and age. Thus the
parameters in Eqs. 5.3 and 5.4 were related to individual tree characteristics to
capture the dynamic nature of crown shape. The coefficients b1 and b2 in Eq. 5.3
were found to be a function of tree dbh and crown ratio while b3 in (5.4) was a
function of dbh and foliated crown length and b4 was a function of dbh. The best
fitted equation that included individual tree characteristics to predict outer crown
shape was

Ocr D.�4:5121 C 0:5176d C 4:3529cr/ �
	

Rch � 1

Rch C 1




C .4:4749 � 0:0175t � 0:4985d � 6:0414cr/.Rch � 1/ (5.5)

where t is age (years) and cr is crown ratio D .h � hcb/=h

The prediction equation for the inner crown shape model that includes tree
characteristics was

Icr D .0:0168d C 0:0155clf / C .�0:0233d/.Rch/ (5.6)

where clf is foliated crown length (m).
Outer crown radius and area of inner defoliation were predicted for two

representative sample trees using Eqs. 5.5 and 5.6 and plotted in Fig. 5.3 to illustrate
the models’ flexibility in predicting height to maximum radius and crown form
for trees of different sizes and ages. Baldwin and Peterson (1997) demonstrated
how their equation system can be applied to determine key crown measures such
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as maximum crown radius and its height, crown volume, and crown surface area.
Additional examples of approaches for describing crown profiles, with emphasis on
models developed in central Europe, can be found in Pretzsch (2009).

5.2.1 Incorporating Stochastic Variation

While relatively simple functions may be suitable for describing tree crown profiles
for many purposes, individual trees will deviate significantly from the mean profile
for a given species. Hence it may be desirable to apply stochastic models to represent
the high degree of unexplained variability in tree crown form. Biging and Gill (1997)
performed a feasibility study of using stochastic models to describe the profile
of tree crowns for five conifer species from the mixed conifer region of northern
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California, USA. Their pilot approach was later extended with an enhanced data
set for conifers (Gill and Biging 2002a) and for two hardwood species with highly
variable crown forms (Gill and Biging 2002b).

Biging and Gill (1997) viewed the crown radii to be composed of three
components: (1) the trend line, (2) the autoregressive moving average time-series
model (ARMA), and (3) the random error. The trend line can be thought of as
the basic morphological term, the ARMA term incorporates spatial correlation of
branch length, and the error or white noise term is unaccounted for variation. Instead
of having a function that changes over time, as in most time-series analyses, Biging
and Gill (1997) considered the radius of tree crowns as functions of the height
increment (that is, height increment was considered analogous to the time variable
in standard time-series analyses).

Because equidistant measurements help facilitate the analysis of a time-series, a
cubic spline was fitted to the data and then crown measurements were interpolated
to 0.3–0.6 m height increments depending on the length of the tree crown.

When analyzing time-series data it is desirable to have a series that has a constant
mean (i.e., no trend) and homogeneous variance. Such a series is referred to as
a stationary series. From plots of the data, Biging and Gill observed that data
of most of the tree crown series contained a quadratic trend. Figure 5.4 shows
the interpolated data and the quadratic trend for tree number 24, a representative
tree. After removal of the trend, residuals were plotted and analyzed to ensure that
stationarity was achieved.

Biging and Gill fitted ARMA models to each tree. An ARMA (p, q) has
autoregressive (AR) factors up to order p and moving average (MA) factors of
order q. An AR process expresses the series in terms of past observations and
the current disturbance (random error) whereas a MA process expresses the series
in terms of current and past disturbances (series of random errors). The spatial
autocorrelation approach can improve predictive ability because nearby branches
experienced the same microenvironment, biological interactions, and history. For
these crown models, one might interpret an AR process as the crown radius at a
given height expressed as a weighted linear combination of, and thus influenced
by, the previous (lower) crown radii. A MA process is used to model a variable
that is in equilibrium but is disturbed from the equilibrium by outside forces.
Thus, an interpretation of a MA crown profile model is that the profile follows
the deterministic trend, but is moved from this trend by outside forces such as
competition and climatic variables.

The form of an ARMA (p, q) (Biging and Gill 1997) is:

zj D 	1zj1 C 	2zj �2 C � � � C 	pzj �p C ı C uj � 
1uj �1 � � � � � 
quj �q

where

zj D crown radius at height j minus the quadratic or cubic crown trend at height j
(j D 1, : : : , J)

	i D parameters of the autoregressive factors (i D 1, : : : , p)
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Fig. 5.4 Plot of interpolated
crown profile data with
estimated quadratic trend
superimposed (From Biging
and Gill 1997)


k D parameters of the moving average factors (k D 1, : : : , q)
ı D constant
uj D white noise (a sequence of identically and independently distributed random

disturbances with mean zero and variance �2).

Biging and Gill (1997) found that for 70% of the sample trees the crown profile
could be modeled as a quadratic or cubic trend in conjunction with a simple
autoregressive moving average model (ARMA). In the remaining cases they used
a quadratic or cubic trend in conjunction with white noise. The stochastic ARMA
models were judged to be visually and statistically an improvement over using
Euclidean geometric crown profile models.
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5.2.2 Additional Techniques for Describing Tree Crowns

Additional methods that have been applied to describe tree crowns include
stochastic frontier models (Nepal et al. 1996), non-parametric models (Doruska
and Mays 1998), and use of fractal geometry (Zeide and Gresham 1991; Zeide and
Pfeifer 1991; Zeide 1998). Nepal et al. (1996) demonstrated the stochastic frontier
estimation technique by fitting a nonlinear function to the shape of loblolly pine
tree crowns. Their crown shape model related the maximum observed crown radius
to the relative crown length. Doruska and Mays (1998) modeled crown profile
of loblolly pine by nonparametric regression analysis. Nonparametric regression
involves selection of polynomial order and bandwidth which determine curvature
and degree of smoothing. Noting that tree crowns are difficult to quantify in terms
of classical geometry, Zeide and Pfeifer (1991) proposed that fractal geometry may
prove a fruitful approach. Unlike Euclidean dimensions, which are integers (one for
lines, two for areas, three for volumes) common to all objects, fractal dimensions
are fractional numbers that are unique for each object. Zeide and Gresham (1991)
calculated fractal dimension of loblolly pine from the regression of foliage area (or
mass) on the area (or volume) of the convex hull that envelopes the crown.

5.3 Modeling Crown Morphology

As an alternative to assuming a crown shape or predicting the crown profile,
crown morphology (branch diameter, location, angle and length) can be modeled.
A number of models of branch size, inclination and location have been developed
for the primary purpose of characterizing wood quality. For instance, Colin and
Houllier (1992) predicted the maximum and average diameter of branches within a
whorl, distance from the tip of the tree to the whorl, and branch angle for Norway
spruce trees. Standard inventory tree measurements were used as predictor variables
of branch characteristics. Maguire et al. (1994) predicted the number, diameter and
distribution of primary branches along the bole of young Douglas-fir trees. Crown
structure for 9- to 30-year old loblolly pine trees was quantified via analysis of
branch diameters and location, both along and around the bole, by Doruska and
Burkhart (1994). Three equations were developed to describe diameter distribution
of branches, and circular statistics were used to examine branching patterns around
the bole. The total number of branches within a crown was predicted and three
equations were employed to describe the mean and range of diameters within a
whorl. Trincado and Burkhart (2009) developed a stochastic model to simulate the
processes of initiation, diameter growth, death, and self pruning of branches in
loblolly pine trees. Three components – whorls, branches and knots – were modeled
and hierarchically connected. The branch model was linked to an individual tree
model to simulate the dynamics of first-order branches. Information on the trend of
branch diameters along and around the stem, volume of knots, and spatial location
of knots is provided by the modeling system.
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Because of the role of crown volume and shape for determining individual tree
stem growth and form, which in turn impacts stand dynamics, growth and yield,
a great deal of effort has been devoted to quantifying crown morphology. Crown
variables of branch length and foliage distribution, in addition to branch diameters
and locations along the stem, are of interest. It is often desirable to predict crown
variables from the input variables commonly used to implement forest growth and
yield models.

In an effort aimed at modeling crown shape, Deleuze et al. (1996) developed
prediction equations for branch length increment and inclination for Norway
spruce. The model of branch extension is based on height growth and on the
year of elongation of the branch. A second model describes the change in branch
inclination. Branch spread increased with increased between-tree spacing, whereas
branch inclination was found to be affected by crown contact. The result of the study
was a relatively simple model of crown shape development that can be used as an
input in growth predictions; in addition the relationship between branch diameter
and branch length can be used in assessment of wood quality (knottiness of the
stem). The overall structure of the height-growth driven system for modeling crown
shape is displayed in Fig. 5.5.

When developing crown profile models based on branch attributes of Douglas-
fir trees, Roeh and Maguire (1997) observed that despite use of primary branching
structure as a modeling basis, a practical prediction system for crown profile must be
able to accept easily measured whole tree characteristics as the sole or primary input.
Thus, in their study, branch diameter was modeled as a function of tree dbh, height,
and crown length. Although branch angle and branch length each were expressed
as functions of branch diameter in addition to whole-tree variables, branch diameter
was regarded as an endogenous variable or, in other words, was predicted within the
system; hence, both branch angle and branch length at an arbitrary depth into the
crown were ultimately functions of only whole-tree variables and crown depth of
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interest. The developed system therefore preserves the capacity to estimate crown
profile from standard tree measurements while allowing parameters to be estimated
from branch data collected on standing or felled sample trees.

Roeh and Maguire’s (1997) models for estimating crown profile in Douglas-
fir were developed from attributes of individual whorl branches, including basal
diameter, total length, angle of origin, and height from ground. The prediction
system consisted of four equations to predict whorl branch basal diameter, branch
length, branch angle of origin, and corresponding crown radius. The system is
entered with three standard individual-tree measurements: diameter at breast height,
total height, and height to crown base. Four approaches were developed for
modeling crown profile with this system of equations, distinguished by parameter
estimation method, modeling data subset, and the specific form by which whorl
branch diameter was represented (mean or maximum diameter). Modified three-
stage least squares was applied to account for the correlation of error terms across
the equations, and this procedure was compared with ordinary and nonlinear least
squares methods.

Roeh and Maguire found the following segmented polynomial model to be the
best model for estimating mean whorl branch diameter for a given position in the
crown:

brdmean D a1.h � hi/ C a2.h � hi/2 C a3d.h � hi/ C a4d.h � hi/2

C a5h.h � hi/ C a6cl .h � hi/2 C a7I
h
h.K � .h � hi//2

i
(5.7)

where brdmean D mean whorl branch diameter (mm); (h � hi) D depth into crown
(m); d D diameter at breast height (cm); h D total tree height (m); cl D crown length
(m); I D 1 if (h � hi) > K, otherwise I D 0; K D 2/3 cl .

A similar range of model forms as evaluated for mean branch diameter was
explored for maximum branch diameter. The best model was close in form to the
selected mean branch diameter model, Eq. 5.7, but did not require a second quadratic
segment near the base of the crown:

brd max D b0 C b1.h � hi/ C b2.h � hi/2 C b3d.h � hi/ C b4d.h � hi/2

C b5h.h � hi/ C b6h.h � hi/2 C b7cl .h � hi/2 (5.8)

where brd max D maximum whorl branch diameter (mm). (h � hi), d, h, and cl

remain as defined before.
Angle of origin was expressed as the angle subtended by the bole and base

of the branch (that is angle from vertical). This angle became progressively
larger (branches more horizontal) with increasing depth into crown. However, the
smoothed graph of branch angle on .h�hi/ revealed that the average trend in branch
angle down the stem was curvilinear with an asymptote of approximately 90ı. After
exploring various model forms for branch angle, Roeh and Maguire selected:

brvang D Œc0 C c1h�
�
1 � ec2.h�hi/Cc3S

�c4brd (5.9)
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where brvang D angle of origin, from vertical (ı); h D total tree height (m); S D site
index (m); brd D branch basal diameter (mm). Graphical analysis of the Douglas-
fir data suggested that, like branch diameter, branch length peaked within the
crown. Analysis of numerous models indicated that the most appropriate form for
predicting branch length was:

brl D ed1 .h � hi/d2ed3.h�hi/br
d4

d hd5 (5.10)

where brl D branch length (cm). (h � hi), brd , and h are as above.
Equations 5.7, 5.9, and 5.10 were combined with the trigonometric formula for

crown radius (crad ) to produce the following system of equations:

brdmean D s1.h � hi/ C s2.h � hi/2 C s3d.h � hi/ C s4d.h � hi/2

C s5h.h � hi/ C s6cl .h � hi/2 C s7I
h
h.K � .h � hi//2

i
(5.11)

brvang D .s8 C s9h/
�
1 � es10.h�hi/Cs11S

�s12brdi

brl D es13.h � hi/s14 es15.h�hi/br
s16

di
hs17

crad D brli

�
� sin.brvangi =180/

�

where brdi , brvangi , and brli were the instrumental variables for brdmean, brvang and
brl , respectively. The three stage least squares procedure for parameter estimation
produced seven nonsignificant coefficients s3; s5; s6; s7; s9; s11, and s17. Although
the system of equations approach accounted for across-equation error correlation,
it would be expected to change the estimated mean squared error (MSE) for each
component equation relative to the individual equation MSE estimates, and, hence,
it would also be expected to change the standard errors for parameter estimates.
Some otherwise significant independent variables therefore could be expected to
become nonsignificant in the system parameter estimation. Independent variables
were dropped successively from the Eq. 5.11 system based on parameter estimate
P-values until only significant parameter estimates remained (˛ D 0:05). The final
system of equations reduced to the following form:

brdmean D s18.h � hi/ C s19.h � hi/2 C s20d.h � hi/2 (5.12)

brvang D s21

�
1 � es22.h�hi/

�s23brd

brl D es24.h � hi/s25es26.h�hi/br
s27

d

crad D brl

�
� sin.brvang=180/

�
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Fig. 5.6 Predicted crown profiles for a (a) small, (b) medium, and (c) large Douglas-fir tree. Site
index for Approach 4 was held constant at 38 m (From Roeh and Maguire 1997)

In their study Roeh and Maguire (1997) evaluated four modeling approaches
consisting of combinations of use of mean branch diameter or maximum branch
diameter as the driving variable and different parameter estimation techniques.
Figure 5.6 illustrates variability in Douglas-fir crown profiles predicted for small,
medium, and large trees by the four approaches (approach 2, consisting of OLS/NLS
estimation techniques and use of mean branch diameter, was judged best based on
overall performance for representing the branch characteristics and crown profile of
the validation trees).

While much attention has been devoted to modeling excurrent form conifer
crowns, Cluzeau et al. (1994) provides an example of quantifying the crown
morphology of a decurrent branching species, common ash. The relationship
between stem and branch growth was studied from cumulated annual increments
of stems and branches of unforked ash trees. An allometric relationship between
branch length and cumulated stem growth above the branch base was modified to
account for an additional tree height effect and fitted to data. Crown dimensions
of trees are then derived from the branch growth equation and an average mean
branching angle by solving a crown radius equation. Thus crown shape results from
branch spread and the distance from the stem apex to the branch tip projection
(Fig. 5.7).

For practical purposes many crown profile models are based on easily measured
and readily available tree variables and branch variables are related to tree stem
variables rather than vice versa. Mitchell (1975) conducted a detailed examination
of the growth of stems and branches of Douglas-fir trees and developed equations
and numeric methods to simulate dynamics and yields that can be depicted as
follows: age, site quality and tree vigor ! height growth ! branch extension ! size
and shape of the crown ! foliar volume ! quantity and distribution of annual
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bole increment, and subsequent height growth. These and other relations were
incorporated into a dynamic mathematical model that allows the simulated crowns
of individual trees to expand and contract asymmetrically in a three-dimensional
growing space in response to internal growth processes and the physical restrictions
imposed by competitors. The crowns add a shell of foliage each year that benefits the
tree in diminishing amounts for 5 years (Fig. 5.8). The volume increment produced
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by the 1- to 5-year-old foliage is distributed over the bole annually and accumulated
to provide tree and stand statistics. Other trees in a stand are assumed to be relevant
to the model of a single tree only if branch extension is obstructed by neighbors.
The technique of constraining growing space in relation to location and size of
competing crowns is depicted in Fig. 5.9.
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5.4 Tree Crowns and Growth

A number of studies have shown close relationships between tree crown size and/or
morphology and individual tree and stand growth. Sprinz and Burkhart (1987)
investigated empirical and theoretical relationships between tree crown, stem, and
stand characteristics for unthinned stands of planted loblolly pine. Readily measured
crown variables representing the amount of photosynthetic area or distance of the
translocation process were identified. Various functions of these variables were
defined and evaluated with regard to efficacy in predicting stem and stand attributes.
The stem attributes modeled included basal area, basal area growth, diameter at
breast height, and diameter growth. Crown diameter and crown projection area were
particularly important in contributing to model fit and prediction of individual stem
characteristics, while sum of crown projection areas was found especially important
in stand level equations. As these crown measures developed over time so did
corresponding stem and stand attributes.

Larocque and Marshall (1994a) related changes over time of crown relative
growth measures of crown width/crown length (crown shape ratio), crown sur-
face/crown volume, and foliage/crown volume to changes in relative growth rates
(RGR) for red pine plantations originating from different initial spacings. Crown
shape ratio decreased with increased dbh in the absence of severe competition and
increased with dbh under severe competitive stress. The other two crown relative
growth measures were always negatively correlated with dbh, indicating that large
trees use their aerial growing space less efficiently than small trees at all stages of
stand development. Crown shape ratio changed in the same manner as RGR.

Raulier et al. (1996) developed a model of bole volume increment based on crown
dimensions and tree social status to predict bole volume increment independently of
stand structure. Data were collected in two boreal black spruce stands in Quebec. A
varying parameter approach was taken to show that the crown profile of black spruce
depends on competition. Formal expressions for crown surface area and volume
were developed from the crown profile and were used to derive a potential growth
function for bole volume. Three social status indices were considered to characterize
competition experienced by a subject tree. These indices were combined with the
potential growth function to successfully model bole volume increment.

Because of the relationship between tree crown measures and tree and stand
development, crown variables are often included in growth models. The most
practical measure to include is crown length or crown ratio (length of green crown
divided by total tree height) because height to the base of the live crown can
be measured at the same time total height is assessed. While the tip of the tree
crown is generally straight forward to determine, the base of the crown is often
somewhat ambiguous. The crown base has been variously defined; examples include
the lowest branch with green foliage, the lowest whorl which contains at least three
live branches, and the point half way between the first whorl with one or more
live branches and the whorl with at least four live branches. The United States
Forest Service generally defines crown ratio in terms of compacted or uncompacted
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measurements (Toney and Reeves 2009). Measurement of compacted crown ratio
(CCr ) involves envisioning the transfer of lower branches of trees with asymmetric
crowns to fill holes in the upper portion of the crown. Uncompacted crown ratio
(UNCr ) is measured without adjustment for holes in the crown and may be a more
appropriate measurement when interest is on height to the first live branches in the
crown. Toney and Reeves developed equations to convert CCr to UNCr for tree
species in the western USA. UNCr was modeled as a logistic function of CCr and
tree diameter; species-specific equations were fitted by nonlinear regression.

5.4.1 Modeling Crown Ratio

Due to its effectiveness as a predictor variable in many growth and yield relation-
ships, a great deal of effort has been aimed at modeling crown ratio. Crown ratio
(cr ) has been related to various tree and stand variables including dbh, height, stand
density, and age. Holdaway (1986) developed the following model for predicting
the crown ratio from tree and stand variables:

cr D b1

	
1

1 C b2G



C b3.1 � e�b4d /

where G D basal area per hectare and d D diameter at breast height of the subject
tree.

Dyer and Burkhart (1987) started with a function to constrain crown ratio
predictions between 0 and 1, namely:

cr D 1 � exp.�ˆ.x// (5.13)

where cr is crown ratio and ˆ.x/ is some function of tree and stand attributes.
When ˆ.x/ is positive cr will be within its logical range. The function ˆ.x/ was
determined by first linearizing the basic model structure. All possible regressions
of no more than four independent variables were constructed for various functions
of tree and stand attributes. Several functions for ˆ.x/ were chosen based on
Mallow’s Cp statistic, mean square error, percent variation explained, and analysis
of residuals. The final function for ˆ.x/ was based on analysis of non-linear fit of
the model. This procedure resulted in the following crown ratio model:

cr D 1 � exp
��.b0 C b1t

�1/d=h
�

(5.14)

where

t D stand age
d D tree dbh
h D tree total height
b0 and b1 are positive coefficients
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Dyer and Burkhart’s final model form (5.14) has several desirable properties
for modeling crown ratio. The variable d/h ensures that trees with more taper
have higher crown ratios than those trees with less taper. With age entering as its
reciprocal, crown ratio will decrease with age and the rate of this decrease will
level off with time (provided that diameter and height are modeled with asymptotic
functions). The inclusion of various stand density measures did not significantly
reduce the residual sum of squares over Eq. 5.14, indicating that the effect of density
on crown ratio is apparently largely accounted for in the d/h variable.

Hynynen (1995) also used the general model form (5.13) when developing crown
ratio prediction equations for unthinned and thinned Scots pine stands in Finland.
The function ˆ.x/ was specified in terms of tree and stand variables. The analysis
of the relationships between crown ratio and tree and stand characteristics resulted
in the following crown ratio model form for unthinned stands:

cr D 1 � exp


�
h
a0.exp.�a1G// C a2h�1

dom

i	d

h


a3
�

(5.15)

where

G is stand basal area (m2/ha)
hdom is dominant height (m)
d is tree diameter at breast height (cm)
h is total tree height (m)
a0; a1; a2; a3 are parameters

Thinning changes stand density, which has a strong effect on the development of
tree crown ratio. At the time of thinning, crown ratio of a tree will be equal to the
crown ratio of a similar tree in an unthinned stand. After thinning, crown recession
for most trees in thinned stands is temporarily arrested because of the increased
growing space, and tree crown ratios start to build back up by height increment. In
developing a model for thinning response, Hynynen assumed that in thinned stands,
trees crown ratio approaches the crown ratio of a tree growing in an unthinned stand
with initial basal area equal to the basal area of the thinned stand after thinning.

Hynynen further assumed that the effect of thinning on crown ratio is affected by
thinning intensity and time elapsed after thinning. The effect of thinning intensity
was described by the difference between stand basal area before thinning (Gb), and
stand basal area after thinning (Ga), which modifies the thinning response function.
The difference between current dominant height (hdom) and dominant height at the
time of thinning (hdomt) was applied to describe the effect of time after thinning. The
thinning response function was expressed as:

THIN D .Gb � Ga/ exp

�
�
	

hdom � hdomt

a4


a5
�

(5.16)

where

Gb is stand basal area before thinning (m2/ha)
Ga is stand basal area after thinning (m2/ha)
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hdom is dominant height (m)
hdomt is dominant height at the time of thinning (m)
a4; a5 are parameters

Function (5.16) was incorporated in model (5.15) in connection with stand basal
area, resulting in the crown ratio model for thinned stands:

cr D 1 � exp


�
h
a0 exp.�a1.G C THIN// C a2hdom

�1
i	d

h


a3
�

(5.17)

where THIN is given by Eq. 5.16.
Liu et al. (1995) introduced a thinning response variable (T) into the crown ratio

model of Dyer and Burkhart (1987) (Eq. 5.14) as follows:

cr D 1 � T exp
��.b0 C b1t

�1
s /d=h

�
(5.18)

Equation 5.18 is bounded between 0 and 1 given that T is between 0 and 1. In
the initial specification of (5.18) T was defined as I tt =ts where I is the ratio of after
thinning basal area to before thinning basal area, ts is stand age and tt is the stand
age at time of thinning (from Short and Burkhart 1992).

The thinning effect function, T, found in Eq. 5.18 has certain desirable properties.
First, when no thinning has occurred, the before to after thinning ratio, I, is 1 which
means T has no effect on the prediction of crown ratio. Second, as the ratio tt =ts
becomes smaller through time the effect of T becomes smaller. This suggests that
over time the effect of thinning diminishes, and crown development approaches
that of an unthinned stand condition. This specification of T, however, ensures
a monotonically decreasing response to thinning over time, which implies that
the maximum response of crown size to thinning occurs at the time of thinning.
Biologically, however, there should be no immediate response at the time of
thinning. Instead, response to thinning should begin at zero and increase to some
maximum as the crowns of the residual trees respond to extra growing space and
additional sunlight. Then, as the stand again closes, the response should diminish
and approach an unthinned condition. With these considerations in mind, Liu et al.
(1995) derived a thinning response function:

T D I
�.ts �tt /2Ck.ts �tt /

t2s (5.19)

where

T D thinning response
ts D stand age
tt D age of stand at time of thinning
I D ratio of after thinning basal area to before thinning basal area
k D duration parameter.
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The duration of thinning response (in years) is determined by the value of the
duration parameter, k. The first derivative of the exponential part of Eq. 5.19 with
respect to ts � tt , the time elapsed since thinning, indicates that the maximum
thinning response will occur at

ktt

k C 2tt

years after thinning. Thus, age of maximum response depends on age of the stand
at time of thinning and k. Using Eq. 5.19, a new allometric crown ratio model was
specified:

cr D 1 � I

rŒ�.ts �tt /2Ck.ts �tt /�
t2s exp Œ�.b0 C b1=ts/d=h� (5.20)

where all variables are as previously defined. The rate parameter, r, is dimensionless,
and along with I, ts, and tt define the shape of the response function.

In a study aimed at developing crown ratio equations for Austrian forests,
Hasenauer and Monserud (1996) employed a logistic function:

cr D 1

1 C e�'x
(5.21)

where 	x is a linear function of input variables and estimated coefficients. To select
a set of variables for the linear function 	x, Hasenauer and Monserud defined the
variable groups of size characteristics (SIZE), competition measures (COMP), and
site factors (SITE), thus:

cr D 1

1 C e�Œb0Cb1SIZECb2COMPCb3SITE�
(5.22)

Data from the Austrian National Forest Inventory consisting of more than 42,000
trees were used to fit Eq. 5.22 with the total variation explained by the model varying
from 49% for larch to 17% for “other broadleafed species”.

Soares and Tomé (2001) used data from spacing trials and permanent plots of
Eucalyptus globulus to evaluate several nonlinear equations (exponential, logistic,
Richards, and Weibull functions) restricted to the interval [0,1] for crown ratio
prediction. Based on measurement of fit and prediction ability, they recommended
the following Richards function for tree crown ratio prediction in Eucalyptus stands
in Portugal:

cr D 1�
1 C e�.�b0Cb1t�1Cb2N Cb3hdomCb4d/

�1=6
(5.23)

where t, age (years); N, number of trees per ha; hdom, dominant height (m); d,
diameter at breast height (cm).
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Fig. 5.10 Relationship between crown ratio and tree diameter and stand dominant height for two
age classes of eucalyptus plantations (From Soares and Tomé 2001)

Function (5.23) is age and density dependent, reflecting the importance of
competition; age was expressed by its inverse and the number of live trees per
hectare was the best expression of density; an initial tree dimension (diameter) and a
measure of stand productivity (dominant height) were also required as explanatory
variables. In function (5.23) greater values for age, number of trees or dominant
height resulted in smaller crown ratio values; in the same stand, at a specific age, an
increase in diameter resulted in higher crown ratio values (Fig. 5.10).

Temesgen et al. (2005) noted that crown ratio (cr ) is often an important predictor
variable for tree-level growth equations in multi-species and multi-layered stands.
Accordingly, they developed models to predict cr from size, competition and site
variables for several coniferous and one hardwood tree species growing in complex
stands of southeastern British Columbia, Canada. The data indicated cr decreasing
with increasing height, and with increasing competition. A logistic model form was
used to constrain predicted cr values to the interval [0,1]. Predictors were divided
into tree size, stand competition, and site measures, and the contribution of each set
of contributors was examined. For all models, height was an important predictor.
The stand competition measure, basal area of larger trees, contributed significantly
to predicting cr given that crown competition factor was also included as a measure
of competition. Site variables slightly improved predictions for some species, but
much of the variability in cr was not accounted for, indicating that other variables
are important for explaining cr changes in these complex stands.

Leites et al. (2009) evaluated crown ratio estimation accuracy for the cr equations
in two variants of the Forest Vegetation Simulator. They also assessed the effects
of using measured crown ratio for estimating 10-year diameter growth and 30-year
basal area increment. Differences between measured and predicted crown ratio were
positively correlated with differences in diameter growth predictions; differences in
the 30-year basal area increment predictions were not large when either predicted
or measured crown ratio values were used.
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Although crown ratio is often the dependent variable used for estimating changes
in tree crown size, direct modeling of crown rise (crown recession) is sometimes
employed. Maguire and Hann (1990a) estimated crown recession rates for Douglas-
fir trees via branch mortality dating. The logarithmic model recommended by the
authors predicts crown recession from current crown ratio, total length, breast
height age, height growth, and crown competition factor. Short and Burkhart (1992)
developed individual tree crown-height increment equations to predict annual crown
height increment in thinned and unthinned loblolly pine plantations. The selected
model contained tree height, crown ratio, age, and a measure of competition as
predictors. Liu et al. (1995) found little difference in predictive ability between
using a crown height increment equation or an allometric model, which derives
crown ratio from tree diameter and height information.

5.4.2 Crown Relationships for Open-Grown Trees

In addition to models for estimating crown variables for stand-grown trees, relation-
ships between crown size and tree dimensions of open-grown trees have been found
useful in forest modeling. Open-grown trees represent the empirical maximum
for certain tree dimensions. These maximum values have been found valuable for
modeling competition and crown closure. Honer (1971) developed crown radius
equations for open-grown balsam fir and black spruce, Strub et al. (1975) regressed
dbh on crown width for open-grown loblolly pine trees, Leech (1984) estimated
crown width from dbh for open-grown radiata pine trees in South Australia, and
Farr et al. (1989) presented height diameter and crown-width equations for western
hemlock and Sitka spruce. Smith et al. (1992) collected data on open-grown loblolly,
longleaf, and shortleaf pines to provide predictive equations of crown width and
maximum potential basal area growth. Hasenauer (1997) investigated crown width,
dbh, height to live crown base, and taper rates for open-grown trees in Austria.
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Chapter 6
Growth Functions

6.1 Introduction

Growth functions describe the change in size of an individual or population with
time. The selection of appropriate growth functions for tree and stand modeling
is an important aspect in the development of growth and yield models. Here we
present information on the forms and characteristics of the more commonly-used
growth functions for modeling forest development. When fitted to data, a number
of these functions will give essentially equivalent results within the range of the
observations used for estimating the equation’s coefficients. However, their behavior
when extrapolated may be quite different depending on the underlying mathematical
properties involved. Hence, understanding these properties is helpful to modelers to
determine which candidate functions to consider for specific applications.

Unless the data available for modeling cover a very small range of time, there
are certain properties that a growth function should exhibit to be consistent with the
principles of biological growth (Fig. 6.1):

(i) The curve is often limited by the value zero at a specific beginning (t D 0 or
t D t0), depending if the variable that is being modeled starts at t D 0, as is
the case for the great majority of the tree and stand variables, or later on, as
happens with tree diameter at breast height or stand basal area;

(ii) The curve generally should exhibit a maximum value usually achieved at an
older age (existence of an asymptote);

(iii) The slope of the curve should increase with increasing growth rate in the initial
phase and decrease in the final stages (show an inflection point).

At this point it is important to understand the concepts of growth and yield.
Growth is the increase in size of an individual or population per unit of time
(for instance volume growth in m3ha�1 year�1) while yield is the size of the
tree or population at a certain point in time (for instance total volume at age 50

H.E. Burkhart and M. Tomé, Modeling Forest Trees and Stands,
DOI 10.1007/978-90-481-3170-9 6,
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Fig. 6.1 Development of a single tree over time (Data from stem analysis of a maritime pine tree
at age 29 years)

in m3ha�1). In the case of continuous functions, a yield equation can be obtained by
integrating the growth equation and, conversely, a growth equation can be obtained
by differentiating a specified yield equation.

6.2 Empirical Versus Mechanistic or Theoretical
Growth Functions

Functions used to model growth have been classified into one of two broad divisions
(Thornley 1976; Hunt 1982; Vanclay 1994), empirical and theoretical or mech-
anistic models. The last are conceived in terms of the mechanism of the system
(Thornley 1976), usually having an underlying hypothesis associated with the cause
or function of the phenomenon described by the response variable (Vanclay 1994),
while empirical models describe the behavior of the response variable without trying



6.2 Empirical Versus Mechanistic or Theoretical Growth Functions 113

to identify the causes and explaining the phenomenon. The distinction between
the two is not sharp and most modeling applications contain both empiricism and
mechanism in varying mixtures. According to Thornley (1976), the mechanistic
modeler will tend to construct models before doing the experiments or analyzing the
data, thinking of possible mechanisms and deducting their consequences by means
of a model while the empirical modeler will describe the behavior of the response
variable based on the data. If a mathematical model has a theoretical/biological
basis, the parameter estimates, even if obtained from empirical data, can provide
insight into the phenomenon that is being modeled.

Many equations have been used to model tree and stand growth, usually under the
integral form. Table 6.1 summarizes some non-sigmoid functions that are commonly
used in forest modeling (Grosenbaugh 1965; Prodan 1968). A longer list can be seen
in Kiviste (1988) or Kiviste (2002).1 More than one differential form may exist for
a given function; the differential form shown in Table 6.1 is the one most often used
in forestry applications. None of these functions exhibit all the desirable properties
listed previously; thus, when using them for modeling, one needs to be cautious with
extrapolations outside the range of data used to fit the models and with the signs
that the parameters can take so that they exhibit a shape compatible with biological
growth.

The functions known as Freese, Hossfeld I and Korsun show extremes (maximum
and/or minimum) that, depending on the signs of the coefficients, may follow within
the range of time values relevant for forest growth modeling. However they follow
approximately the shape of a growth curve for a limited range of ages and have been
used in several growth modeling applications, especially the Hossfeld I function.

Theoretical growth functions have commonly been developed in their growth
form – either absolute or relative growth – and the respective yield form has
been obtained by integration. Generally this approach allows interpretation of
the function parameters and helps to impose restrictions on the values that the
parameters can take to be biologically consistent.

Several authors (e.g. Grosenbaugh 1965; Pienaar and Turnbull 1973; Causton
and Venus 1981; Hunt 1982; Zeide 1993; Kiviste et al. 2002) have analysed growth
function properties. Table 6.2 summarizes the properties of the sigmoid growth
functions that are more commonly used in forest modeling. In this table, the
asymptote is designated by A, the k parameter is related to the slope of the curve
(growth rate), the m parameter is a shape parameter, and, usually, the c parameter
relates to the initial condition used. An analysis of the assumptions from which the
functions in Table 6.2 were derived, as well as the interpretation of the parameters,
is given in the following sections. In these sections the functions are grouped
according to their functional form, with the groups being designated by the most
general or best known function of the group: (1) Lundqvist-Korf; (2) Richards; (3)
Hossfeld IV/McDill-Amateis; (4) other growth functions.

1The analysis of growth functions published by Kiviste (1988) in Russian was later partially
translated into Spanish (Kiviste et al. 2002). We are not aware of an English version of this work.
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6.3 Growth Functions of the Lundqvist-Korf Type

6.3.1 Schumacher Function

Schumacher’s function (Schumacher 1939) represents an early attempt in forestry
to develop a growth function from biologically sound assumptions. The model
proposed by this author for “generalized use” relies on the hypothesis that the
relative growth rate increases linearly with the squared inverse of time (which means
that it decreases nonlinearly with time):

1

Y

dY

dt
D k

1

t2
(6.1)

The yield function is

Y D A e�k 1
t (6.2)

where A D Y0e
k=t0 is the asymptote and (t0,Y0) are the initial values.

The k parameter expresses the rate of decrease of the relative growth rate and is
therefore inversely related to the growth rate. The location of the inflection point
depends on the value of k; the value of Y at the time at which the inflection occurs
depends on A and k.

The Johnson-Schumacher function (Grosenbaugh 1965) is a generalization of
Schumacher’s function that includes cases when the initial value for t D 0 is not
zero, that is:

Y D A e�k 1
tCb

The additional parameter (b) implies that, for t D 0, the tree/stand has already
attained the dimension Ae�k=b . The addition of an extra parameter is of limited
value except in the cases where the trees are planted and one wants to consider the
initial size of the seedlings.

6.3.2 Lundqvist-Korf Function

Another generalization is the Lundqvist-Korf function (Korf 1939; Lundqvist 1957):

1

Y

dY

dt
D k

m

t.mC1/
(6.3)

The corresponding yield function is:

Y D A e�k 1
tm (6.4)

where A D Y0e
k=tm

0 is the asymptote and (t0; Y0) are the initial values.
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Fig. 6.2 Flexibility of the Lundqvist-Korf growth function exhibited through specifying varying
values for the parameters

The k parameter is inversely related to the growth rate but this is also influenced by
the m parameter, adding flexibility to the curve.

Figure 6.2 illustrates the flexibility of the Lundqvist function. By changing the
parameters (asymptote, k and m) it is possible to cover a large range of shapes.
When fixing the other parameters, the k parameter has an inverse relationship with
the growth rate, while the reverse is true for the m parameter. It is important to stress
that the three parameters interact as is shown on Fig. 6.2; it is possible to obtain
higher growth with a smaller value of m, if the latter is combined with a higher
asymptote. The location of the inflection point does not depend on the value of the
asymptote, but on the combined values of k and m, increasing with k. The effect of
m is highly dependent on the k value. Figure 6.3 shows the combined effect of the
two shape parameters on the age at which the inflection occurs. The respective Y
value, however, does not depend on the k parameter, but on the asymptote and m
parameter values (Fig. 6.4), occurring at higher Y values, the higher the asymptote
and the m value.
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Fig. 6.3 Effect of the k and m parameters of the Lundqvist-Korf’s function on the location of the
inflection point
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6.4 Growth Functions of the Richards Type

6.4.1 Monomolecular Function

The monomolecular function, sometimes referred in agriculture and economics
as the Mitscherlich function or law of diminishing returns (Zeide 1993), can be
obtained under the assumption that the absolute growth rate is proportional to the
difference between the maximum value (asymptote) and the present dimension:

dY

dt
D k .A � Y / D kA � kY (6.5)
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The absolute growth rate decreases linearly with the size of the individual or
population (Y).

The yield form is

Y D A
�
1 � ce�kt

�
; (6.6)

with c D ekt0
�
1 � Y0

A

�
. Using the initial condition Y(0) D 0 leads to c D 1.

The function has an upper asymptote A, but no inflection point. The k parameter
expresses the rate of decrease of the absolute growth rate.

6.4.2 Logistic and Generalized Logistic Functions

The logistic function, first developed for population growth, is one of the best
known sigmoid functions. It was applied to predicting yield of loblolly pine in 1937
(MacKinney et al.1937) and is based on the assumption that the relative growth
rate is equal to a biotic potential k, reduced according to the size/dimension of the
population (in the present case tree/stand):

1

Y

dY

dt
D .k � mY / (6.7)

The relative growth rate is therefore a declining linear function of the dimension.
The yield function is

Y D A�
1 C ce�kt

� (6.8)

with c D Y0 =m

k � mY0

ekY0 and A D k

m

The inflection point of the logistic function occurs at t D log(c)/k and Y D A/2 and
the curve is symmetric around the inflection point. The parameter k is the maximum
relative growth rate and corresponds to the initial stage of growth.

A generalization of the logistic function (Pearl and Reed 1923), formulated to
overcome the symmetry of the logistic curve, usually has the integral form:

Y D A�
1 C c e�.a1tCa2t2Ca3t3/

�

where a1, a2 and a3 are parameters that define the shape of the curve. The inflection
point is variable and almost incalculable. Note that the function may have more than
one inflection point. A detailed study of this function as well as a reparameterization
of it was published by Grosenbaugh (1965).
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Monserud (1984) proposed the following function, which has been referred to as
a generalization of the logistic growth function:

Y D A�
1 C ce�f .X;t /

� (6.9)

where f (X,t) is a function of age (t) and of several independent variables (X). A is
the asymptote and c is the half-saturation parameter that defines the value of e�f .X;t /

at which Y(t) D A/2 (Cieszewski 2002).

6.4.3 Gompertz Function

The Gompertz equation (Gompertz 1825) was designed to describe age distribution
in human populations and later on it was applied as a growth model (Winsor 1932).
This function can be directly obtained from the following differential equation:

1

Y

dY

dt
D k .log A � log Y / D �k log

	
Y

A



(6.10)

The function assumes that the relative growth rate is inversely related to the
logarithm of the ratio between the present dimension of Y and the respective
asymptotic value.

The relative growth function can also be defined as a decreasing exponential
function of time:

1

Y

dY

dt
D ke�ce�kt

Integration of Eq. 6.10 leads to the yield function:

Y D A e�ce�kt

(6.11)

with c D .log A � log Y0/e
kt0 D log

�
A
Y0

�
ekt0

6.4.4 Richards Function

Richards (1959) generalized the function presented by von Bertalanffy (1938) for
animal growth (Pienaar and Turnbull 1973). This function describes the absolute
growth rate as the difference between an anabolic rate (constructive metabolism),
which in plants is proportional to the photosynthetically active area, and a catabolic
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rate (destructive metabolism) that is proportional to biomass. If the photosynthet-
ically active area is expressed as an allometric relationship with biomass, these
relationships can be expressed as:

Anabolic rate c1S D c1.c0Y
m/ D c2Y m

Catabolic rate c3Y

Potential growth rate c2Y m � c3Y

Growth rate c4.c2Y
m � c3Y /,

where S is the photosynthetically active area; Y is the biomass (or other tree/stand
variable); m is the allometric constant of the relationship between S and Y;
c0; c1; c2; c3 are proportionality coefficients; and c4 is an efficacy coefficient.

The following differential form of the Richards function is then obtained:

dY

dt
D aY m � bY (6.12)

By integration (Bernoulli differential equation), the corresponding yield function is
obtained:

Y D A
�
1 � ce�kt

� 1
1�m ; (6.13)

where the parameters c, k and A are:

c D e�.1�m/bt0 D e�kt0

k D .1 � m/ b

A D
�a

b

� 1
1�m

.asymptote/

The m exponent is often taken to equal 2/3. It is important to note that the
monomolecular, logistic and Gompertz functions are particular cases of the Richards
function when the parameter m takes, respectively, the values 0, 2, or tends to 1.

Figure 6.5 shows the flexibility of the Richards function as well as the effect
of the three parameters on the respective shape. Higher values of k produce higher
growth rates while, on the contrary, smaller values of m result in higher growth rates.
As expected, the asymptote is also positively related with higher yields.

Figures 6.6 and 6.7 show effects of changing parameter values on the location of
the inflection point and the corresponding Y value. Figure 6.6 shows that higher
values of the k parameter result in earlier inflection points, while the opposite
relationship can be observed with the m parameter. The value of Y at the time when
the inflection point occurs is higher for higher asymptote values, but it is inversely
related with the value of the m parameter.

Causton and Venus (1981) present a detailed study on the application of the
Richards function to plant growth modeling.
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Fig. 6.5 Flexibility of the Richards growth functions with changing values of the parameters
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Fig. 6.6 Effect of the k and m parameters of the Richards function on the location of the inflection
point



6.5 Functions of the Hossfeld IV Type 123

0

4

8

12

16

20

20 40 60 80 100

0.4
0.3
0.2
0.1

m

0

4

8

12

16

20

0.0 0.2 0.4 0.6

90
70
50
30

A

Y
  a

t 
th

e 
in

fl
ec

ti
o

n
 p

o
in

t

Y
  a

t 
th

e 
in

fl
ec

ti
o

n
 p

o
in

t

Asymptote Parameter m

Fig. 6.7 Effect of the asymptote (A) and m parameters of the Richards’s function on the inflection
point of Y

Since its introduction for forestry applications by Pienaar and Turnbull (1973),
this equation has been used extensively in studies of tree and stand growth (Zeide
1993). The Richards function is flexible (Fig. 6.5) and typically fits growth data
well. However, some authors question the usefulness of the Richards function due
to its intrinsic properties. Ratkowsky (1983, pp. 83–84) showed that this equation is
“the only model that has an unacceptable intrinsic nonlinearity as the solution locus
departs significantly from an hyperplane”. These properties may lead, in practice, to
instability in the parameter estimates. One way to overcome this problem is to use
expert judgement for an estimate for the asymptote and apply nonlinear regression
to estimate the remaining parameters from data fitting.

6.5 Functions of the Hossfeld IV Type

6.5.1 The Hossfeld IV Function

The Hossfeld IV function is a sigmoid function, originally proposed in 1822 (Zeide
1993), for the description of tree growth:

Y D tk

c C tk =A
D A

tk

Ac C tk
D A

tk

c1 C tk
(6.14)

where A is the asymptote, t is the age and c and k are parameters.
The function can also be obtained from the generalized logistic in Eq. 6.9 by

using f .X; t/ D �k ln.t/. Consequently some authors (e.g. Cieszewski 2000;
Dieguéz-Aranda et al. 2006) designate it as the log-logistic growth function.
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Fig. 6.8 Flexibility of the Hossfeld IV growth functions when the parameters take different values

To our knowledge the equation is not based on any specific biological rationale,
but it generally performs well. According to Kiviste (1988), it is the third most
accurate of 31 three-parameter equations when the three main stand variables (total
tree height, stem diameter and volume) are considered together. Kiviste further
found it to be the best equation for volume growth.

The Hossfeld IV function is able to take several shapes (Fig. 6.8) and to produce
inflection points located earlier or later in the life of the tree or stand (Figs. 6.9 and
6.10).

6.5.2 McDill-Amateis/Hossfeld IV Function

McDill and Amateis (1992) proposed the use of a growth function, written in
differential form, whose integral form is equivalent to the Hossfeld IV function.
The McDill-Amateis function was developed in order to guarantee compatibility
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of dimensions and also to take into account the biological properties expected
from growth functions. The variables considered for the growth function and the
respective dimensions were:

Variable dY/dt t Y A
Dimension LT�1 T L L

where L indicates length, T is time and A is the asymptote for variable T.
Applying dimensional analysis to these variables (McDill and Amateis 1992)

and taking into account, at the same time, that the growth rate tends to zero when Y
tends to the asymptote, the following differential form is obtained:

dY

dt
D k

Y

t

	
1 � Y

A
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In this equation, k is a parameter related to the growth rate. The function has one
less parameter than the Richards function which can be an advantage when fitting
the function to empirical data.

The solution for the differential equation leads to the following yield function,
known in forestry literature as the McDill-Amateis function:

Y D A

1 �
�
1 � A

Y0

��
t0
t

�k (6.15)

where (t0; Y0) is the initial condition.

By making c D
�

1
Y0

� 1
A

�
tk
0 the integral form of the McDill-Amateis function

coincides with the Hossfeld IV function (Eq. 6.14). McDill and Amateis’s formu-
lation allows a better explanation for the parameters in Eq. 6.15; the k parameter
expresses the growth rate and c is related to the initial conditions. The inflection
point occurs when

Y D A

2

	
1 � 1

k




6.5.3 Generalizations of the Hossfeld IV Function

In Kiviste’s study the most accurate equations with three (Levakovic III equation)
and more (Levakovic I and Yoshida I equations) parameters are modifications of the
Hossfeld IV equation, namely:

Levakovic I function:

Y D A

	
tk

c1 C tk


c2

Levakovic III function:

Y D A

	
t2

c1 C t2


c2

Yoshida I function:

Y D A
tk

c1 C tk
C c2
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6.6 Other Growth Functions

Two growth functions that do not fall within any of the previous categories but
merit mention, as they have been used in forest modeling with success (Zeide 1993;
Kiviste et al. 2002), are the Weibull and the Sloboda functions.

The Weibull function multiplied by a parameter A has been used successfully in
forest modeling (Yang et al.1978; Payandeh and Wang 1995):

Y D A
�
1 � e�ktb

�

The Sloboda equation is a generalization of the Gompertz equation by adding a
parameter (b):

Y D Ae�ce�ktb

6.7 Zeide Decomposition of Growth Functions

When analyzing a large set of growth functions in differential form Zeide (1993)
found that all the investigated equations could be decomposed into two components:
growth expansion and growth decline. The expansion component represents the
innate tendency towards exponential multiplication and is associated with biotic
potential, photosynthetic activity, absorption of nutrients, constructive metabolism,
anabolism, and the like. The decline component represents the constraints imposed
by external (competition, limited resources, respiration, and stress) and internal
(self-regulatory mechanisms and aging) factors. Those factors that adversely affect
growth have been referred to as environmental resistance, destructive metabolism,
catabolism, respiration, and so on.

The decomposition can be achieved either by a subtraction or a division (subtrac-
tion of logarithms) of the two effects. As was shown before, the Richards function
differential form was defined using these concepts. Analysing the decomposition of
the growth functions by division, and rewriting the equations in order to simplify
the notation of the constant parameters, Zeide (1993) found that all the equations
analyzed, except Weibull’s, are particular cases of the two following forms:

ln
�
y0� D k C p ln.y/ C q ln.t/ $ y0 D k1y

ptq

ln
�
y0� D k C p ln.y/ C qt $ y0 D k1y

peqt

where p > 0, q < 0 and k1 D ek.
In both forms the expansion component is proportional to ln(y) or, in the antilog

form, is a power function of size. The forms differ in the decline component: in the
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first form, designated LTD, the decline component is proportional to the logarithm
of age while in the second form, TD, it is either a power function or an exponential
function of age. Depending on the values of p and q, several distinct integral
equations can be obtained from the same equation form. For the functions listed
in Table 6.2, the LTD form includes the Lundqvist-Korf and the McDill-Amateis
(Hossfeld IV) functions; the TD form includes the Richards function and all its
particular cases.

The transformed equations reveal quite different and simple relationships be-
tween the growth functions. Despite the difference of their integral forms, Hossfeld
IV and Korf equations are varieties of the same basic form. On the other hand,
differentiation shows that the outward similarity between the Chapman-Richards
and Weibull equations is misleading.

Zeide (1993) proposed a third form in which the declining component is
expressed as a function of size instead of age, the YD form:

ln
�
y0� D k C p ln.y/ C qy $ y0 D k1ypeqy

The three forms above are very useful for the direct modeling of tree and/or stand
growth. These forms provide some assurance that the resulting model will display
appropriate behavior from a biological stand point.

6.8 Formulating Growth Functions Without Age Explicit

Age is commonly employed as a variable in growth and yield modeling of even-aged
stands. However, age is not always readily available. Increment cores (to the pith)
can be used for age determination in tree species with well-defined annual rings, but
coring may not be possible for certain species or in tropical zones. In uneven-aged
stands, composed of trees that differ markedly in age, stand age cannot be used as
a predictor of growth and yield. Hence, an alternative to the typical applications of
growth functions for age determinate trees and stands is sometimes needed.

Tomé et al. (2006) showed that it is possible to obtain formulations of the growth
functions as difference equations in which age is not explicit. Age independent
difference forms can be obtained by solving the equation for age (t) and substituting
it in the expression of the growth function for age equal to t C a. To illustrate the
procedure, assume the Lundqvist function and solve for age t:

Yt D A e�k 1
tm ) t D

� �k

ln .Yt =A/

� 1
m

The expression for t can be substituted in the growth function written for age t C a,
where a is the projection length:
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YtCa D Ae

�k 1 h
�k

ln.Yt =A /

i 1
m

Ca

!m

.Lundqvist function without t explicit/

which results in the formulation of the Lundqvist function as an age independent
equation. The expression seems complex, but parameter estimates converge quickly
when fitted to data.

Using a similar procedure, the following formulations of the Richards and
Hossfeld IV functions as age independent equations can be obtained:

YtCa D A

 
1 � e�ka

 
1 �

	
Yt

A


1�m
!! 1

1�m

.Richards function without t explicit/

YtCa D A

0
@
 

c Yt

A�Yt

! 1
k

C a

1
A

k

c C
0
@
 

c Yt

A�Yt

! 1
k

C a

1
A

k
.Hossfeld IV function without t explicit/

In order to model growth with these equations, at least one of the parameters
has to be expressed as a function of site variables (e.g. soils and climate) and stand
characteristics. It is important to stress that the age-independent difference equations
are invariant for projection length only if the parameters are expressed solely as a
function of other variables that are invariant with time. Otherwise, if the parameters
are expressed as a function of variables that vary with time, the projections will
depend on the projection interval used.
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Chapter 7
Evaluating Site Quality

7.1 Need to Quantify Site Quality

Assessment of site quality is essential for identifying the productive potential of land
and for providing a frame of reference for silvicultural diagnosis and prescription.
To be most useful for modeling and prediction, a measure of site quality must
be quantitative – that is expressed by a number. In the context of practical forest
management, a quantitative assessment of site quality should be objective, easily
determined, and, when using measurements of trees in the evaluation, free from the
influence of stand density. Although site quality evaluation for volume production
is desired, it is seldom feasible to use direct measures of volume productivity when
quantifying wood-growing potential. Typically there are limited historical records
of yields from forested sites. Furthermore, volume productivity is highly dependent
on stand density (Chap. 8) and product definitions, merchantability limits, and tree
volume estimating functions used. Thus an indirect measure – dominant stand height
development – has become the most widely used means of evaluating site quality,
especially for even-aged monocultures.

Site index – that is, the average height of the dominant portion of the stand at an
arbitrarily chosen age – is the most commonly used indicator of site quality. Height
growth is highly correlated with volume productivity, and dominant height is not
greatly affected by stand density and thinning treatments (assuming thinning from
below). A number of different definitions of dominant or top height are applied
around the world (Sect. 7.2), but all involve measurement of the trees in the upper
part of the canopy.

Knowing dominant height provides little information about site quality unless
it is standardized at a particular age. If a stand is measured at the index age,
the dominant height can be taken as the site index. However, it is rare that
measurements coincide with the index age, but rather they usually occur before
or after. Consequently a means for projecting the height of the measured stand
forward or backward to the index age is required. These height-age relationships
are traditionally termed site index curves or equations.
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Several reviews of methods for evaluating forest site productivity have been
published, including those by Carmean (1975), Hägglund (1981), Vanclay (1992),
and Skovsgaard and Vanclay (2008). Because of the importance and prevalent use
of the site index concept in empirical modeling of growth and yield for even-aged
stands, this chapter explores in detail the development of height-age-site index
relationships.

7.2 Computing Top Height

The site index concept is based on development of the dominant portion of stands
over time. Unfortunately there is no generally agreed upon definition of which trees
to include and how many to measure as site trees. One commonly used definition is
average height of trees in the dominant and codominant crown classes. There is no
standard definition of how many trees to measure or what should be the mix between
dominant and codominant trees in the sample.

In an effort to avoid subjective judgment, such as assigning trees to crown
classes, dominant or top height is often defined in terms of tree size. A specified
number of the tallest trees per hectare is one measure that has been used, but the
number per unit area is not standardized. Alternatively trees of the largest diameter
might be measured as site trees. Selecting the largest diameter trees is more easily
implemented in the field than selecting those of largest height.

Sharma et al. (2002a) evaluated seven definitions of top height with data collected
over a 15-year period in thinned and unthinned loblolly pine plantations. With
the exception of a few cases at certain measurements, all seven definitions of top
height were significantly different from each other. Predictions of site index with
the various definitions of top height indicated that using trees that have always been
dominant or codominant over the life of the stand is more precise than estimates
using other definitions.

Determining which trees on sample plots to measure as site trees is done
subjectively, not randomly. Consequently, estimates of top height, unlike average
height, are a function of the size of the sampling unit. Two commonly-used sampling
practices involve measuring a fixed number of site trees per unit area and selecting a
fixed proportion of trees per unit area. Zeide and Zakrzewski (1993) pointed out that
these two procedures (constant number or constant proportion) are both biased and
their bias is opposite in sign. The number or proportion can be varied over time, or,
as recommended by Zeide and Zakrzewski, a weighted average of estimates from
the two methods can be computed. When applied to permanent plots established in
jack pine in Ontario, Canada, the authors found that the weights needed to provide
an unbiased estimate were nearly equal.

The impact of sample plot size on estimates of top height has been the subject
of a number of studies, including those of Garcia (1998), Magnussen (1999), and
Garcia and Batho (2005).
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Modeling principles involved in projecting top stand height development over
time remain essentially the same regardless of the particular definition of top
height employed. Thus, for purposes of presenting height/age/site index modeling,
we will refer to top height or dominant height without necessarily providing an
exact definition of how the terms were applied in various analyses. For simplicity,
throughout this chapter, hdom will be used to designate a measure of dominant or top
height unless further clarification is needed in the context of the discussion. Age in
site index estimation may be defined as total tree age, age at breast height, or, in the
case of plantations, as years since planting. Regardless of details of how age was
defined in specific instances, unless necessary to the presentation, we will simply
refer to “age” without further specificity and designate it as t. The base age for site
index (S) will be denoted by tb . Before applying site index functions it behooves
users to check carefully definitions used for stand height and age determination and
to collect field data appropriate to the sampling and measurement protocols used in
developing the prediction equations.

7.3 Data Sources for Developing Site Index Curves

7.3.1 Temporary Plots

Site index equations have often been developed by measuring height-age pairs on
temporary plots in stands of varying site qualities and ages and then fitting a “guide
curve” with the data. (Methods for fitting guide curves are given in Sect. 7.4.) The
guide curve represents the height development for the average site index in the data.
Heights at all ages for all other site classes are typically assumed to be proportional
to that of the guide curve.1 Thus if the guide curve passed through 20 m at index
age, the heights for all ages for the site index curve 22 m would be assumed to be
equal to 1.1 times the guide curve, those for the 18 m site index curve would be 0.9
times the guide curve values, etc. This procedure produces a family of anamorphic
site index curves.

7.3.2 Permanent Plots

Although the guide curve method has the advantage of being relatively inexpensive
in time and money resources to apply, site index curves from longitudinal or
remeasurement data are generally preferred. The remeasurement data may come

1The so-called “coefficient of variation method” (e.g. Brickell 1968) can be applied to circumvent
the proportionality assumption, but it is difficult to develop satisfactory site index curves using this
technique and it is seldom applied in practice.
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from repeated observations on permanent sample plots or from a sample of
stem analysis trees. Obtaining height growth data from remeasured plots is time
consuming and expensive, but it provides highly useful data. Selecting a sample of
trees for stem analyses to establish height-age pairs over time is a means of obtaining
growth data more quickly and less expensively than is the case with permanent
growth plots.

Periodic measurements of dominant height and age on permanent plots provide
the best source of data for fitting site index functions. Data on stand height
development over time allow for fitting of anamorphic (one shape) or polymorphic
(many shapes) site index equations. However, permanent plot measurement data are
relatively expensive to obtain and results are not available until a number of years
after the plots are initially established.

When remeasurement data are available, height can be predicted directly or
height growth can be modeled. If measurement error is small and the measurements
are close together (e.g. annual measurements) finite differences in height and age
( hdom2�hdom1

t2�t1
) can be used to approximate the instantaneous rate of height growth

dhdom=dt. The differential form dhdom=dt D f .t/ or dhdom=dt D f .t; hdom/ can be
fitted directly and height-age curves can be produced via integration. The resultant
site index curves may be anamorphic or polymorphic for growth predicted as a
function of age or of age and height depending on the form of the differential
equation used.

In cases where measurement error is large and/or the interval between measure-
ments is long, an accurate approximation of instantaneous growth is not possible
and direct fitting of height is preferred.

7.3.3 Stem Analysis

Stem analysis may be performed by making internodal measurements for tree
species that have a determinate growth pattern. Alternatively, the main stem may
be split along the pith so that heights at various ages can be measured directly.
As a third alternative, cross-sectional cuts may be made at given heights and rings
counted to determine tree age at that height.

If internodal measurements are feasible to obtain, or if it is possible to split
the stem along the pith, measurement error for the height-age pairs is minimal. If,
however, cross-sectional cuts are made along the stem and ring counts are recorded,
a bias in height determination for given ages results because the cut will seldom
occur at the tip of a terminal leader (Fig. 7.1).

7.3.3.1 Height Correction Methods

Various methods for estimating the height corresponding to a given age with
sectioned-tree stem analysis data have been proposed (Carmean 1972; Lenhart
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Crosscut

Crosscut

Fig. 7.1 Diagrammatic
representation of the stem
growth development of a
5-year-old tree. Shaded
portions represent “hidden
tips” in stem sections (From
Dyer and Bailey 1987)

1972; Newberry 1991; Fabbio et al. 1994; Kariuki 2002). Dyer and Bailey (1987)
compared six height correction methods for tree-section data using actual heights
at known ages for 28 loblolly pine trees. In their comparison, Carmean’s (1972)
method, which assumes that height growth is constant for each year contained within
a bolt and that each crosscut occurs at the middle of a year’s growth, was most
accurate. Lenhart’s (1972) correction method, although somewhat less accurate than
the method of Carmean (1972), produced data that when used to fit the Chapman-
Richards function gave very similar results.

Procedures commonly used for estimating heights at different ages of stem-
analyzed trees consist of ring counts at crosscuts made at predetermined heights.
The accuracy of estimates of the length of the hidden tips in each bolt is dependent
on the bolt length and the correction algorithm employed. Fabbio et al. (1994)
proposed a procedure called Issa where the distance between the sampled section
and the apex of the successive hidden tip varies according to the number of tips
within each bolt. Data from 27 black pine trees were used to compare precision of
the Issa method with that of Carmean’s (1972) and Lenhart’s (1972) methods and
with a branch whorl method. When applying the alternative correction methods to
crosscutting frequencies of 50, 100, and 200 cm, the Issa procedure was the most
precise at a cutting frequency of 50 cm and the Carmean method was the most
precise for a frequency of 200 cm.

Kariuki (2002) developed an approach (called TARG) that uses annual ring
width to estimate where annual height growth ceased within a bolt section.
The performance of the TARG method was assessed against other documented
procedures using data taken at sampling intervals of 1.5 and 3 m. While Carmean’s
(1972) and Lenhart’s (1972) procedures gave acceptable estimates for the 1.5 m
sampling interval, both methods significantly overestimated the tree height when



136 7 Evaluating Site Quality

3 m sampling intervals were used. The method of Fabbio et al. (1994) significantly
overestimated the true tree heights for both sampling intervals, while the TARG
method did not show a significant difference for either sampling interval. For height-
age curves fitted using Richards (1959) equation, the data corrected using the TARG
method gave more accurate height estimates than those provided by data adjusted
by other methods at both sampling intervals. Application of the TARG approach
does, however, require the additional time and expense of acquiring highly accurate
measurements of annual growth ring widths.

7.3.3.2 Selection of Stem Analysis Trees

The most serious drawback to constructing site index curves from stem analysis data
is that height growth of individual trees does not necessarily represent dominant
height growth of stands. Shifts in relative position of individual trees in the height
distribution occur during stand development. For site index curves to be applicable,
the degree of dominance of predicted heights should remain constant over time.
Stem analysis trees are typically selected at older ages in order to provide height-
age pairs over a span approximating rotation lengths of interest. Individual trees
that represent dominant or top height in more mature stands may not have occupied
a similar position in the canopy at earlier ages. Thus a bias can, and often does,
occur.

The average height of stem analysis trees at younger ages is generally less than
that of the trees in the dominant canopy at those ages. Thus, when equations are
fitted to data derived from a sample of stem analysis trees, the resultant curves are
too steep and their application results in over estimates of site index.

The problem of selecting stem analysis trees to represent height development
of the dominant portion of stands where relative dominance of individuals changes
over time has received considerable attention (Dahms 1963; Curtis 1964; Zeide and
Zakrzewski 1993; Magnussen and Penner 1996; Raulier et al. 2003; Feng et al.
2006). Dahms (1963) showed that using data only from the single tallest sectioned
tree per plot substantially reduced bias when developing site index curves for
lodgepole pine. In addition to changes in height growth patterns of individual trees
over time, mortality among the tallest trees is another factor that can cause height
development of stands and individual trees to differ. In the case of the lodgepole pine
data, mortality did not appear to have exerted a large influence on the development
of site trees.

Magnussen and Penner (1996) presented an algorithm to recover an estimate of
dominant height from stem analysis data. Their procedure consists of estimating
dominant height as a function of the population mean, the standardized height
difference, and the population variance of tree height. By relating the reconstructed
dominant height from the stem analysis trees to their theoretical expectations, one
can calculate the expected bias. The recovery algorithm minimizes the expected bias
in dominant height when the only growth history of the population is the one derived
from the trees selected for dominance at or near rotation age. Results confirmed that
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the recovery procedure very effectively reduced the relative bias. Bias was reduced
by over 40% for the first half of a rotation; small but insignificant increases in bias
were incurred for the second half of a rotation.

When modeling height growth of spruce-dominated, even-aged stands in British
Columbia, Canada, with a stochastic differential equation formulation of the
Bertalanffy-Richards function, Hu and Garcia (2010) used both stem analysis
(SA) and permanent sample plot (PSP) data. A comparison of SA data with PSP
observations showed a statistically significant bias was present. This bias was,
however, smaller than that indicated in theoretical calculations of Magnussen and
Penner (1996) and Feng et al. (2006). There was also a significant difference
in error structure between the two data sources. Hu and Garcia were able to
combine observations from SA and PSP sources using methods that reduced bias
and increased the precision of the final model.

7.4 Fitting Site Index Guide Curves

Numerous height-age models have been successfully applied for fitting site index
guide curves. One of the most widely applied model forms is the logarithm of
height-reciprocal of age model, namely

ln hdom D b0 C b1t
�1 (7.1)

where ln hdom is the logarithm of dominant height and t is the stand age (monospe-
cific, even-aged stands are assumed). The logarithm-reciprocal transformations
result in a sigmoid shaped growth function, stabilize the variance of the dependent
variable, provide for an upper asymptote in height as age increases without bound,
and allow fitting with linear regression methods. Assuming parameter estimates for
b0 and b1 in (7.1), we note that if age is equal to index age (that is t D tb), by
definition dominant height equals site index (i.e., hdom D S ):

ln S D b0 C b1t�1
b

which implies that

b0 D ln S � b1t
�1
b

Substituting the definition of b0 into (7.1) and simplifying gives

ln hdom D ln S C b1.t
�1 � t�1

b / (7.2)

which can be used to generate height at given ages for specified values of S and tb.
Equation 7.2 can also be rearranged to estimate site index (S) for specified values of
height (hdom) and age (t).
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Another commonly used model for fitting guide curves for site index equation
purposes is the so-called Chapman-Richards model

hdom D b0.1 � eb1t /
b2 (7.3)

which must be fitted using nonlinear regression techniques. Writing the guide curve
Eq. 7.3 in the equivalent form of Eq. 7.2 gives

hdom D S

�
1 � eb1t

1 � eb1tb

�b2

(7.4)

where all symbols remain as previously defined.
Although widely used, the guide curve method of site index curve construction,

which results in what is known as “anamorphic” site index curves, has a number of
shortcomings. When the same shape is assumed for all site classes, the inflection
point (age of maximum height growth) is the same regardless of site quality.
This is not a biologically reasonable assumption, as one would expect an earlier
culmination of height growth on better quality sites.

A second problem often encountered is bias in the fitted guide curve. In order
to have an unbiased trend of dominant height over time when fitting temporary plot
data with ordinary least squares methods, all site qualities must be approximately
equally represented at all ages. Often a negative correlation exists between site
quality and age for a given population. This negative correlation stems from the
fact that better quality sites tend to be managed on shorter rotations, resulting in a
disproportionate number of the older sample observations being in stands on poorer
quality sites. A negative correlation between stand age and site classes will cause
the guide curve to flatten excessively.

While the assumption of a common shape for all site classes is often cited as the
culprit in biased estimates of site index when using guide-curve-based anamorphic
equations, the primary problem often rests with bias in the guide curve itself. The
assumption of a common shape is not in serious error for site classes reasonably
close to the mean, but if the guide curve is biased the entire family of site curves
will be biased.

A test for the validity of the common-shape (anamorphic) assumption can be
conducted by dividing the data into age classes and computing the coefficient of
variation (standard deviation divided by the mean) of heights for each class. If the
coefficient of variation is not related to age, the assumption of proportionality of
heights at all ages is reasonable.

When site and hence the error term are correlated with the predictor (age),
biased and inconsistent estimates will result if OLS is applied. Walters et al. (1989)
compared instrumental variable (IV) estimation to ordinary least squares when using
temporary plot data to fit a site index guide curve. If an appropriate instrument that is
uncorrelated with site index but correlated with age is available, bias can be reduced
and consistent coefficient estimates can be obtained. Measures of stand density
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(Chap. 8) were considered as instruments. However, for five data sets examined,
the IV techniques proved effective in only one case (Fig. 7.2). Nevertheless, these
results suggest that the use of instrumental variables may, in some instances, prove
effective for reducing bias in guide curves fitted to temporary plot data.

7.4.1 Comparisons of Stem-Analysis and Guide-Curve Based
Site Index Equations

In a study involving Douglas-fir in the Pacific Northwest region of the United
States, Monserud (1985) found that the type of data and resulting methodology
used to develop the site index equations were strongly related to the similarity of
the resulting curves. Site index curves derived from stem analysis studies were quite
similar to each other, but differed substantially from those developed by guide-curve
methods. The magnitude of possible differences due solely to different methods of
site index curve construction (stem analysis vs. guide curve) was demonstrated to
be quite large when both methods were applied to the same data (Fig. 7.3). Other
comparisons (e.g. Thrower and Goudie 1992, for Douglas-fir in British Columbia,
Canada; Milner 1992, for ponderosa pine, western larch, lodgepole pine, and
Douglas-fir in western Montana, USA) have shown similar trends to those observed
by Monserud.

http://dx.doi.org/10.1007/978-90-481-3170-9_8
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7.5 Site Index Equations Using Age and Height at Index Age

As noted previously, differential and difference equations can produce both anamor-
phic and polymorphic curve forms. Another approach to developing polymorphic
site index equations that has been employed in a number of instances (King
1966; Beck 1971; Graney and Burkhart 1973; Trousdell et al. 1974; Burkhart and
Tennent 1977a, b; Carmean and Lenthall 1989), (and is sometimes referred to as the
“parameter prediction method”), involves predicting height from age and site index,
that is hdom D f .t; S/.

The parameters of a number of different height functions have been related to
site index to develop polymorphic site curves, but the Chapman-Richards equation
has been most commonly employed. Site index equations for radiata pine in
New Zealand (Burkhart and Tennent 1977a) provide an example of this approach.
Relating constants in the Chapman-Richards function to site index (observed or
interpolated height at index age) gave

hdom D b1Sb2 .1 � exp.b3S � t//b4 (7.5)

Equation 7.5 was conditioned to insure that predicted height equals site index
when age equals index age (tb) by writing b1 in terms of the other coefficients.
Conditioning led to the following expression for height as a function of age and site
index:
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hdom D S.1 � exp.b3S � t//b4

.1 � exp.b3S � tb//b4
(7.6)

The two-parameter function (7.6) was then fitted to data.
Expressing height development as a function of age and an arbitrarily designated

height-age pair (site index) has produced satisfactory results from an applications
standpoint. However, the procedure has a number of drawbacks: (1) height mea-
surements at or near the index age are required, (2) the resultant site index curves
are specific to the base age used to determine site index in fitting, and (3) for many
functions (including the Chapman-Richards), the fitted equation cannot be solved
explicitly for S, given hdom and t.

7.6 Segmented Models for Site Index Curves

In reviewing various site index models, Devan and Burkhart (1982) found that some
had very good characteristics for young tree ages while others fit better at older ages.
This observation suggested use of a segmented modeling approach as a possible
means to obtaining good predictive ability across the full range of ages of interest.
Hence a segmented polynomial regression approach was taken to develop a system
of equations where different functions would apply over a given domain.

Height increment submodels were fitted to data from loblolly pine for various
combinations of the independent variables of height, age, and age squared for two
segments with a join point being a function of age. Height increment, dh/dt, was
approximated as the finite height increment calculated from adjacent bolts of stem
analysis trees after transforming height to logarithms and ages to reciprocals. The
differential equation model used was a generalization of that of Clutter and Lenhart
(1968). The resultant curves were polymorphic, did not require specification of a
base age for fitting, provided an estimate of height equal to site index at the base
age, and could be analytically solved for both height and site index. A disadvantage
of the differential equation form used to describe height growth in the two segments
was that it was not conditioned through the origin (i.e., when t was equal zero, height
was not equal zero).

Borders et al. (1984) noted that no single published equation form conformed
well to height-age data for slash pine plantations. Anamorphic curve forms appeared
to fit best at young plantation ages (less than 15 years) whereas polymorphic
forms seemed best at older ages. This dichotomy indicated that a spline of these
two model forms might provide a good overall description of slash pine height
development. An algebraic difference formulation (Sect. 7.8) was applied because
it could be easily fitted with nonlinear least squares and it avoided the necessity
of estimating instantaneous growth rates. A difference form of the logarithm of
height-reciprocal of age anamorphic height-age model was fitted for young ages and
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joined to a difference formulation based on Clutter and Jones (1980) polymorphic
height increment model. The site index curve from this spline reproduced observed
trends in the data and gave estimates with the desirable properties of (1) height is
zero when age is zero, (2) height at base age equals site index, (3) each site index
has a separate asymptote, and (4) the curves are invariant with respect to choice of
base age.

Jones and Reed (1991) sought to improve predictions at younger ages of red
pine plantations by extending existing site index equations through segmented
regression techniques. The segmented models join a polynomial equation with site
index curves published by Lundgren and Dolid (1970) that are widely used in the
Lake States region of the USA. Two segmented models were fitted, one joining a
polynomial function in age to Lundgren and Dolid’s site index equation based on the
simple monomolecular function and the other to their exponential-monomolecular
function. In both cases the join point was set at 20 years, because the data used to
fit the original equations was for ages 20 and above. The joined models produced
identical predictions to the published equations of Lundgren and Dolid (1970)
for ages older that the join point. The two segments were conditioned to insure
that the predicted values for height and the slopes for the two segments were the
same at the join point. Evaluation showed that the segmented model involving the
simple monomolecular function was considerably improved over the original for
predicting height at young ages. For the exponential-monomolecular function, the
segmented model produced results for young ages similar to those of the original
function.

7.7 Differential Equation Approach

As a simple illustration of the differential equation approach, assume that adequate
data are available for modeling height growth and that height growth divided by total
height is proportional to the reciprocal of age squared. These assumptions suggest
the differential equation:

�
h�1

dom

�
dhdom=dt D �bt�2 (7.7)

Separating variables and integrating (7.7)

Z
h�1

domdhdom D �b
Z

t�2dt

results in

ln hdom D bt�1 C c
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then letting c D ln S � bt�1
b and collecting terms and simplifying one obtains

ln hdom D ln S C b
�
t�1 � t�1

b

�
(7.8)

which is the familiar and often used Schumacher-type function approach to site
index curve construction. Equation 7.8 could be fitted directly to the height-age data
to estimate the slope coefficient b which determines a family of anamorphic site
curves, but the least squares estimate will not be identical to that obtained by fitting
(7.7). Use of differenced data is often preferred as a means of mitigating effects of
age-site correlation, and, hence bias, in guide-curve fitting.

Differential equations used to describe height growth are typically more complex
than (7.7) and they involve terms in both age and height on the right-hand side.
Having an analytical solution to the differential equation is an advantage, but
numerical solutions can be employed if necessary. Amateis and Burkhart (1985)
fitted the differential equation

d ln hdom=d t�1 D b1 ln hdom=t�1 C b2 ln hdom (7.9)

to loblolly pine height-age measurements. Equation 7.9 is separable with a closed
form solution; it expresses height growth as a function of both height and age and
produces polymorphic site index curves. The integrated form of Eq. 7.9 yields the
total height model:

ln hdom D ln S.tb=t/b1eb2.t�1�t�1
b / (7.10)

Height–age functions have generally been treated as deterministic and have
been fitted using linear or nonlinear regression techniques. In a departure from
usual procedure, Garcia (1983) modeled height growth by a stochastic differential
equation. Stochastic differential equations consist of deterministic and random
components. The form employed by Garcia can be written:

dhc
dom=dt D b

�
ac � hc

dom

�C p
b � Pw.t/

with Pw.t/ being “white noise,” the formal derivative of a Wiener stochastic process
(Garcı́a 1983). The deterministic part integrates to the Richards (1959) growth curve

hdom D a
h�

1 � hc
dom0=ac� e�b.t�t0/

i1=c

The serially independent white noise perturbations cause a particular stand
to deviate from the most likely trajectory given by Richards growth function.
Stochastic differential equations have been used to model height growth for a
number of species; examples include radiata pine in New Zealand (Garcı́a 1999),
Maritime pine in Spain (Garcı́a 2005), southern beeches (Nothofagus) in Chile
(Salas and Garcı́a 2006), and spruce in Canada (Hu and Garcı́a 2010).
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7.8 Difference Equation Approach

The difference equation approach requires data from plots or individual trees. It
can be applied to any height-age equation to produce families of anamorphic or
polymorphic curves. To develop a difference form of a height-age equation, height
at a future time must be expressed as a function of future age, current age and current
height, that is:

hdom D f .t2; t1; hdom1/

As an example, the difference equation form of the Schumacher height-age
model can be written

ln hdom2 D ln hdom1 C b
�
t�1
2 � t�1

1

�
(7.11)

After computing an estimate of ˇ using regression analysis, a site index equation
is obtained by letting t2 equal tb so that hdom2 is by definition S and rewriting Eq. 7.11
as

ln hdom D ln S C b
�
t�1 � t�1

b

�
(7.12)

The difference equation formation may be somewhat difficult to develop with
more complex height-age models, but a usable form can generally be obtained. An
example application of this approach is the site index equation developed by Clutter
and Jones (1980) for slash pine plantations in the southeastern coastal plain of the
USA. The difference equation model

ln hdom2 D b2t
�1
2 � b3 C �

ln hdom1 � b2t
�1
1 C b3

�
eb1.t�1

1 �t�1
2 / (7.13)

was fitted to plot remeasurement data to produce a polymorphic site index equation
of the form

ln S D b0 C b1e
b2t�1 �

ln hdom C b3t
�1 C b4

�
(7.14)

where

S D site index (index age of 25 years)
t D plantation age
hdom D average height of dominant and codominant trees

Cao (1993) evaluated three different methods for estimating coefficients in
selected site index models. Method one involved obtaining coefficients from either
a height-age model or a differential equation model. The second method utilized
a height growth, or difference equation, of the form ln hdom2 D f .t2; t1; hdom1/.
Method three was also a difference equation approach but the dependent variable
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was hdom rather than ln hdom, that is hdom2 D f .t2; t1; hdom/. The height-age
model forms considered were those of Schumacher (1939), Richards (1959),
Bailey and Clutter (1974), Clutter and Lenhart (1968), and Amateis and Burkhart
(1985). Remeasurement data from loblolly pine plantations were used to estimate
coefficients of the height-age functions using the three different forms. Evaluation
statistics consisting of the means of the differences between observed and predicted
stand heights, mean of the absolute value of the differences, and square root of
mean squared error indicated that in the majority of cases coefficients of the site
index models considered should be obtained using the height growth (difference)
equation formulation.

7.8.1 Algebraic Difference Approach

Bailey and Clutter (1974) developed base-age invariant polymorphic site index
curves using a technique that has come to be known as the algebraic difference
approach. Anamorphic (proportional) site index curves are commonly based on the
assumption that ln hdom and .1=t/c are linearly related. Given height-age data from
m sites (plots), an anamorphic system results from fitting:

ln hdom D ai C b.1=t/c

.i D 1; 2; : : : m/ (7.15)

where

ai D a parameter specific to the ith site
b D a common regression slope parameter

Equation 7.15 can be fitted by nonlinear least squares or c can be specified
(commonly taken to be C1) and linear regression can be applied.

Estimates of the ai ’s are not required in the final form of the model. Setting t D tb
implies that hdom D S , that is:

ln Si D ai C b.1=tb/c

ai D ln S � b.1=tb/
c

(7.16)

Substituting (7.16) for ai in (7.15) gives:

ln hdom D ln Si C b.t�1 � tb
�c/

or hdom D Si Œexp.b.t�c � tb
�c//� (7.17)

an equation for hdom in terms of t, tb, and Si .
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If b < 0, height over age curves produced by (7.17) start at the origin and tend
to different asymptotes as age increases without bound. The asymptotes for a curve
through the point (tb; S ) will be

Se�btb�c

Models based on (7.15) generate proportional site index curves with a constant
relative growth rate, .dhdom=dt/=hdom, across all sites at a given age. If a polymor-
phic (non proportional) system is desired (7.15) can be written:

ln hdom D a C bi .1=t/c

.i D 1; 2 : : : m/

(7.18)

In (7.18) the bi ’s are site-specific parameters and .dhdom=dt/=hdom contains
them; thus relative growth rate is a function of both age and site. Expressing bi

as a function of site index, as was done with ai in (7.15) results in

ln hdom D a C .ln Si � a/.tb=t/c

or hdom D ea.Si=ea/
Œtb=t �c

(7.19)

If S < ea and c > 0, the limits for hdom are zero as t approaches zero and ea as t
tends towards infinity. The first limit is desirable, but the second indicates that the
asymptote for height is the same for all sites. Thus, curves from (7.19) for given
values of Si at index age tb will start at the origin, have rates of increase dependent
on values of the Si ’s, and tend to a common upper asymptote.

Bailey and Clutter (1974) fitted Eq. 7.19 to data from radiata pine plantations in
New Zealand. They went on to note that the method used to obtain polymorphic
curves with an Eq. 7.18 model can be applied to other equation forms by identifying
a parameter in the equation responsible for curve shape and allowing that parameter
be site-specific. An estimation technique not requiring specification of site index in
the data before fitting must then be derived.

Since the seminal paper by Bailey and Clutter (1974), a number of studies
have used an algebraic difference type of approach for the development of site
index equations (Goelz and Burk 1992; McDill and Amateis 1992; Amaro et al.
1998; Palahı́ et al. 2004; Bravo-Oviedo et al. 2004; Diéguez-Aranda et al. 2005b).
Various functions have been applied (Chapman Richards, Hossfeld, Lundquist-Korf,
Schumacher, Sloboda) and different constraints on the model parameters have been
evaluated.

McDill and Amateis (1992) developed a growth function that is dimensionally
compatible (Amateis and McDill 1989) with two parameters: a rate parameter and
a maximum size parameter. They proposed a parameter estimation procedure that
specifies some parameters as being the same for all stands (global parameters) and
others that vary from stand to stand (stand-level) parameters.
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The dimensionally compatible differential equation formulated by McDill and
Amateis for height growth as a function of age and height was:

dhdom=dt D a.hdom=t/.1 � hdom=hmax/ (7.20)

The rate parameter in (7.20) is denoted by a and the asymptotic maximum height
parameter by hmax. The equation was constrained so that dhdom=dt goes to zero
as hdom approaches hmax. Separating variables and integrating Eq. 7.20 gives a
difference equation form:

hdom2 D hmax

1 � .1 � hmax=hdom1/ .t1=t2/
a (7.21)

where hdom1 and t1 are initial conditions.
Amaro et al. (1998) used the algebraic difference equation approach for modeling

dominant height of eucalyptus plantations in Portugal. Difference forms of the
Chapman-Richards and the Lundquist-Korf functions were derived and compared
with the performance of the McDill-Amateis difference model. Three difference
equations were derived for the Chapman-Richards and the Lundquist-Korf functions
by successively specifying one of the three parameters in functions as the “free”
parameter, leaving two parameters to be estimated statistically. The model form
and free parameter combination that best described the data was selected. In the
application with data from eucalyptus plantations, the Chapman-Richards equation
with the shape parameter as the free or varying parameter (the asymptote and rate
parameters were estimated) was selected. Thus the difference equation approach
provided a basis for selecting both which model form and which combination of
global and stand-specific parameters to use.

Similar approaches have been taken in other studies but the model as well
as the free parameter that produced the best results has varied. Palahı́ et al.
(2004) evaluated the McDill-Amateis difference model and difference forms of the
Chapman-Richards, Hossfeld, Lundquist-Korf, and Schumacher models for estimat-
ing dominant height growth of Scots pine in north-east Spain. They concluded that
the polymorphic difference equation derived from the Hossfeld function resulted
in the best compromise between biological and statistical aspects, producing the
most adequate site index curves. Bravo-Oviedo et al. (2004) allowed the rate and
asymptote parameters in the Richards and Schumacher equation forms to be free pa-
rameters when evaluating candidate site index models for Mediterranean maritime
pine in Spain. In this application, the polymorphic form of the Schumacher model
with a common asymptote was judged most appropriate. Difference equations based
on McDill-Amateis, Richards, Korf and Hossfeld growth functions were formulated
for developing site index equations for Scots pine plantations in the Galicia region
of Spain by Diéguez-Aranda et al. (2005b); the function proposed by McDill and
Amateis (1992) produced the most adequate site curves.
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7.8.2 Generalized Algebraic Difference Approach for Dynamic
Site Equations

Desirable characteristics of site index equations include passing through the origin,
exhibiting polymorphism, having multiple asymptote values, and predicting height
at base age to be equal to site index. Bailey and Clutter (1974) introduced the
concept of base-age invariance in which predictions from dynamic equations are
unaffected by arbitrary changes in base-age. Their algebraic difference approach
(ADA) was expanded by Cieszewski and Bailey (2000) to the generalized algebraic
approach (GADA). The GADA methodology allows derivation of flexible dynamic
equations that are base-age invariant, polymorphic with varying asymptotes, and
with predicted height equal to site index at base age. Base-age invariant equations
also have the path invariance property, which means that one-step predictions or
multiple iterations will result in the same predicted value at a given final age.

To facilitate the generalized algebraic difference approach, Cieszewski and
Bailey (2000) identified a theoretical variable called a growth intensity factor x
and defined it to be a quantification of growth dynamics associated with a site. x
can be a variable or a function of any number of variables such as climate, soils,
and genetic components. Because it is not practically obtainable, x is replaced with
initial conditions that are measurable so that the equation is operationally useful.
This replacement, however, does not occur until after the equation is explicitly
formulated in a way that it exhibits desirable properties such as polymorphism and
varying asymptotes.

The first step in the GADA process is to select a base equation and to identify
in it the site-specific parameters. Then, one defines explicitly how the site-specific
parameters change across different sites by replacing them with explicit functions
of x and new parameters. Thus, the initially selected two-dimensional base equation
is expanded into an explicit three-dimensional base equation describing both
independent variables t and x. In the final step, a solution for x replaces all x’s with
implicit definitions using the equation’s initial conditions t0 and Y0 (Cieszewski and
Bailey 2000).

Proceeding with a more formal definition of GADA, Cieszewski and Bailey
(2000) noted that symbolically the base equation is the same as in the ADA:

Y.t/ D f .t; �1 : : : �n�1; �n/ (7.22)

where �1 : : : �n are the equation parameters. If in the base equation, a given site-
specific parameter �i is defined as a function gi of x and any number of j new
parameters, viz., �i � gi .x; �il : : : �ij /, the base Eq. 7.22 with multiple site-specific
parameters is changed to the explicit three-dimensional site equation with two
independent variables t and x:

Y.t; x/ D f .t; �1 : : : �m�1; gm.x; �m1 : : : �mk/ : : : gn.x; �n1 : : : �ni // (7.23)

where Y.t; x/ is a function of t, x and m C k C l � 1 parameters.
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If Eq. 7.23 can be solved for x, the right hand side of this solution, with initial
condition values for t and Y, that is:

x D u.t; Y; �1 : : : �ni / D u.t0; Y0; �1 : : : �ni / (7.24)

can be substituted in Eq. 7.23 in place of x so the dynamic equation

Y.t; t0; Y0/ D f .t; �1 : : : �m; u.t0; Y0; �1 : : : �n1//

after reformulation and elimination of redundant parameters, becomes the dynamic
equation with an implicitly defined initial condition:

Y.t; t0; Y0/ D f .t; t0; Y0; �1 : : : �w/ (7.25)

where

n � 1 � w � m C k C � � � C l � 1 (7.26)

The result in Eq. 7.26 means that Eq. 7.25 has a smaller or equal number of
parameters than Eq. 7.23.

Practical applications of the GADA involve different levels of complexity and
difficulty in equation derivations. Cieszewski and Bailey (2000) classified the
equations as simple or complex, depending on whether the solutions involved are
based on just a reformation of an equation (simple) or on finding its roots (complex).

Nord-Larsen (2006) summarized the steps in formulating GADA equations as
follows:

1. Select the basic equation form.
2. Identify the site-specific parameter(s) in the basic equation.
3. Generalize the site-specific parameters in the equation as functions of X, where

X is an unknown measure of site quality.
4. Solve for X and substitute for the independent variables, t and hdom, the initial

conditions, t0 and hdom0. The X in the equation developed in step 3 is finally
replaced by this solution for X.

7.8.2.1 GADA Applied to Simple Equations

As presented in Sect. 7.8.1 ADA procedures can be readily applied to produce
anamorphic site curves with varying asymptotes or polymorphic curves with a
common asymptote. Continuing with using the Schumacher equation as an example,
that is

ln Y.t/ D a � b=t (7.27)

where Y is height and t represents age, the GADA approach can be applied
when more than one simultaneous site-specific parameter is required to adequately
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describe changes in curve shapes across different sites. For example, if one assumes
concurrent polymorphism and varying asymptotes, both a and b in (7.27) could be
dependent on x while x could define the limiting size, that is

ln Y.t; x/ D x C bx=t (7.28)

The solution for x would then be

x D ln Y

1 � b=t
D ln Y0

1 � b=t0

and applying the GADA to Eq. 7.28 with respect to x would result in a dynamic
equation based on Schumacher’s equation that provides polymorphic base-age
invariant curves with variable asymptotes:

ln Y.t; t0; Y0/ D ln Y0

t0.t � b/

t.t0 � b/
(7.29)

The assignment of x to a means that given an objective measure of growth
intensity, the upper production limit would be increasing with increasing innate
growth potential. This relationship would result in variable asymptotes. The as-
signment of x to b means that the shapes of curves change with changing growth
intensity which defines a polymorphic equation. Clearly, both variable asymptotes
and polymorphism occur if x affects both a and b (Cieszewski and Bailey 2000).

7.8.2.2 GADA Extensions to More Complex Functions

Cieszewski and Bailey (2000) labeled as complex dynamic equations those that
require in their derivations the roots of an equation in order to determine x; the
solutions required may be difficult to obtain. The selection of the most appropriate
expression for x may depend on the equation parameters, the data available, and the
domain of applicable ages. For each base equation, several possible approaches may
be used to derive the implicit dynamic equation.

Generic equations might be formulated in cases where there are no specific
expectations about the final model form. Such equations can result from simple
or complex derivations. However, Cieszewski and Bailey (2000) caution that
development of generic equations can lead to over parameterization and model
instability as well as difficulties with parameter estimation.

7.8.2.3 Applications of GADA

Since the introduction of the generalized algebraic difference approach, there have
been a number of applications of the method. These applications have varied in the
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amount and quality of data available, the base functions evaluated, the site-specific
parameters considered, and the fitting methods employed. A brief description of
several applications of the GADA techniques follows.

Cieszewski (2001) used data generated from existing site-index curves for
Douglas-fir (Monserud 1984) to demonstrate three approaches to derivation of
dynamic equations that provide compatible height and site index values from
one common equation. In another analysis, Cieszewski (2002) compared a fixed-
base-age height growth equation with several dynamic equations derived by the
GADA process. The focus of the comparison was on ability to exhibit concurrent
polymorphism and multiple asymptotes. With data from subalpine fir, Cieszewski
(2003) developed a dynamic site equation using a modified Hossfeld IV function.
The proposed model performed better than other base-age specific and base-age-
invariant models that were evaluated for both fit to the data and behavior in
extrapolations.

Diéguez-Aranda et al. (2005a) used data from stem analysis of 161 trees to
develop a model for predicting height growth of radiata pine plantations in Galicia
(north-west Spain). Different base equations were evaluated for modeling the
dominant height growth pattern and several variants of each base equation were
developed using the simplified approach of mixed-effects model of Cieszewski
(2003). Models with both one and two parameters specified to be site-specific
were considered. Many seemingly different model forms and variants resulted in
essentially the same curves. Thus, for simplicity, three base equations with variants
were used as a basis for developing a final model (Table 7.1).

For convenience, Diéguez-Aranda et al. (2005a) let a1; a2; : : : ; an denote param-
eters in base models, and b1; b2; : : : ; bm symbolize global parameters in subsequent
GADA formulations. The GADA based models have the general implicit form
of Y D f .t; t0; Y0; b1; b2; : : : ; bm/. The first group of models Diéguez-Aranda
developed using the GADA were formulated on the basis of the function pro-
posed by Bertalanffy. Three models were derived by applying the GADA to the
Bertalanffy-Richards function while considering only one parameter to be site-
specific (in this case, the GADA is equivalent to the ADA; dynamic equations
(2)–(4) in Table 7.1). Both dynamic Equations (3) and (4) in Table 7.1 have a
common asymptote. However, an important property of site equations that should
be considered during modeling various growth trends is the ability to simulate
concurrent polymorphism and multiple asymptotes, which requires that more than
one parameter be site-specific. Therefore, in the next model derived using the GADA
(Equation (5) in Table 7.1) both the asymptote and the shape parameter a3 were
assumed to be dependent on X. As the site variable X is arbitrary, the base equation
was reparameterized to provide a mathematically tractable solution for X. When
developing Equation (5), the solution for X involved finding roots of a quadratic
equation and selection of the most appropriate root to substitute into the dynamic
equation. As noted by Cieszewski and Bailey (2000), the selection of the most
appropriate expression for X may depend on the equation parameters that in turn
depend on the data and the domain of the applicable ages.
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The subsequent two models (Equations (6) and (7) in Table 7.1) may be viewed
as special cases of the log-logistic class of models, which are equivalent to Hossfeld
models (Cieszewski 2000). Within the different forms investigated by Diéguez-
Aranda et al. (2005a), one model proposed by Cieszewski (2002) was found to
perform particularly well. Its formulation is identical to the general solution of the
differential equation developed by McDill and Amateis (1992), whose difference
equation solved by parameter a2 has been successfully used for modeling the height
growth in other studies (Sharma et al. 2002a; Fontes et al. 2003). Both dynamic
Equations (6) and (7) are polymorphic with variable asymptotes.

The last model evaluated (Equation (8) in Table 7.1) was the GADA based
equation developed by Cieszewski (2003). The two forms of Equation (8) are
equivalent except for the fact that only one of them is defined for t D 0, depending
on the value of parameter b2.

Parameter estimation for site models involves many different statistical con-
siderations such as criteria of fitting, error structures and independence of errors,
homogeneity of variance and balance of data panels. When estimating parameters,
Diéguez-Aranda et al. (2005a) used the base age invariant (BAI) method by
Cieszewski et al. (2000). In this method, the initial conditions are specified to be
identical for all the measurements belonging to the same tree. The initial age can
be, within limits, arbitrarily selected, even for each tree; however, age zero is not
allowed. The height corresponding to the initial age is then simultaneously estimated
for each tree along with all of the global model parameters during the fitting process.
The dummy variables method recognizes that each measurement is made with error,
and, therefore, the model is not forced through any given measurement. Instead, the
curve is fitted to the observed individual trends in the data. With this method, all
the data can be utilized and there is no need to make any arbitrary choice regarding
measurement intervals (i.e., it is a BAI method). In the dummy variables method, a
minimum of two measurements per tree is required, and the number of trees must
be greater than the number of global parameters in the model.

Diéguez-Aranda et al. (2005a) used a second-order continuous-time autoregres-
sive error structure to correct the inherent autocorrelation of the longitudinal data.
The GADA formulation derived on the basis of the Bertalanffy-Richards model
by considering the asymptote and the initial pattern parameters as related to site
productivity (Equation (5) in Table 7.1) resulted in the best compromise between
biological and statistical considerations, producing the most adequate site curves.

Using procedures similar to those applied when modeling radiata pine height
growth, Diéguez-Aranda et al. (2006) evaluated four dynamic site equations derived
with GADA methods to describe height development in loblolly pine plantations in
the USA. The data came from a large, long-term study involving permanent sample
plots. As in the study with radiata pine, the fittings were done in one stage using
the base-age invariant dummy variables method. A first-order autoregressive error
structure was used to correct the serial correlation in the longitudinal data. In this
case, Cieszewski’s (2002) model best described the data.
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Table 7.2 Selected studies that have employed GADA-type approaches in the development of
site curves. The data base (species, country), base model selected, and citation for the study are
shown.

Data base Base model selected Citation for the study

Scots pine, Spain Hossfeld Palahi et al. (2004)
Pyrenean Oak, Portugal Bertalanffy-Richards Carvalho and Parresol (2005)
Radiata pine, Spain Bertalanffy-Richards Diéguez-Aranda et al. (2005a)
Loblolly pine, USA Cieszewski Diéguez-Aranda et al. (2006)
European beech, Denmark Logistic Nord-Larsen (2006)
Mediterranean maritime pine, Spain Hossfeld Bravo-Oviedo et al. (2007)
Red alder, USA Schumacher Weiskittel et al. (2009)
Longleaf pine, USA Hossfeld Lauer and Kush (2010)

Other examples of using a GADA-type approach to site index equation modeling
include studies of Scots pine in Spain (Palahı́ et al. 2004), Pyrenean Oak stands in
Portugal (Carvalho and Parresol 2005), European beech in Denmark (Nord-Larsen
2006), Mediterranean maritime pine in the Iberian Peninsula (Bravo-Oviedo et al.
2007, 2008), red alder plantations in the Pacific Northwest, USA (Weiskittel et al.
2009), thinned stands of even-aged naturally regenerated longleaf pine in the East
Gulf region of the United States (Lauer and Kush 2010), and maritime pine in
Portugal (Nunes et al. 2011). A tabulation of these studies, along with those of
Diéguez-Aranda et al. (2005a, 2006), giving information on the data base used and
the base model selected is provided in Table 7.2. The Hossfeld function was selected
as the base model in three of the eight studies, the Bertalanffy-Richards function was
chosen in two instances; the Cieszewski, logistic, and Schumacher functions were
each selected in one case. At this juncture, it seems that there are multiple options
for base functions and for specifying which parameter(s) are site-specific that can
produce essentially equivalent results.

7.8.3 Estimating Parameters in ADA- and GADA-Type
Formulations

In developing the ADA concept for site curve construction, Bailey and Clutter
(1974) specified that it exhibit the base-age invariance property. Being invariant
under choices of base age is dependent not only on model formulation but on
parameter estimation methodology as well. To be base-age invariant the height-age
model must be reparameterized as a function of site index and age and the global and
site-specific parameters must be estimated with least squares. If the first requirement
is met but not the second, biased parameter estimates result. The bias stems from
forcing the equation through a particular data point (height at index age – i.e., site
index) rather than assuming that height at index age also contains error as do all
other height-age pairs. There is no generally-accepted terminology to distinguish
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between the so-called GADA models that are truly base-age invariant and those
that are not. However, it is important that the parameter estimation methodology,
as well as the model formulation, be noted when interpreting and applying results
from studies that have used GADA-type approaches. Bailey and Cieszewski (2000)
provide additional discussion on the mathematical definition of invariant. As part of
the discussion, they demonstrated a simple means to evaluate whether or not a given
site index model formulation with attendant parameter estimates is in fact base-age
invariant.

Furnival et al. (1990) showed analytically that different methods of parameter
estimation can, in the special case of a linear model, give identical estimates for the
slope coefficient. These results do not, however, extend to models that are nonlinear
in the parameters. Cao (1993) evaluated three different methods for estimating
coefficients of five base-age-invariant site index models. Results indicate that in
most cases coefficients of the site index models evaluated should be obtained from
a height growth or difference equation.

Eight hypothetical data points (four growth series with two observations each)
were used by Strub and Cieszewski (2006) to illustrate differences between base-
age invariant stochastic regression (BAI) and the method of all base ages (BAA)
for site index curve parameter estimation. The anamorphic form of the Schumacher
height-age equation was used for the comparison. The two estimation techniques
are equivalent for the linear case of the model but produce different parameter
estimates for its nonlinear form. For both linear and nonlinear cases the BAI
approach produced a lower root-mean-squared error than the BAA method. Further,
the BAI approach produced unique estimates for the site-specific parameters of both
model forms and both growth series.

Additional detail about the comparison of parameter estimation techniques
published by Strub and Cieszewski (2006) follows. The Schumacher (1939) log-
transform height-age equation was expressed as:

ln.hdomij/ D aj C b=tij ;

where hdomij D dominant height for measurement i and series j; tij D age for
measurement i; a and b D model parameters to be estimated.

The nonlinear form of this model was given as:

hdomij D cj eb=tij

where cj D eaj and e D the base of the natural logarithm.
An anamorphic form of the site index curve results when b is the global param-

eter. If all growth series contain two observations, as in the example constructed by
Strub and Cieszewski, the least-squares estimates for the site-specific parameters
(a and c) suggested by the BAI approach are

Oaj D
P2

iD1

�
ln.hdomij

� � Ob=tij /

2
(7.30)
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Ocj D
P2

iD1 hdomije
Ob=tij

P2
iD1 e2Ob=tij

(7.31)

With the BAI approach, the estimates for site-specific parameters are unique and
use all of the data for a growth series rather than depending on the value of a single
observation. Thus, the BAI estimates of the site-specific parameters are independent
of any arbitrary choice of base age, and therefore they are base-age invariant.

Estimates for the site-specific parameters with the BAA approach are

Oaij D ln.hdomij/ � Ob=tij (7.32)

Ocj D hdomij=eOb=tij (7.33)

For each of the BAA estimates (Oaij or Ocij ), an arbitrary choice for base age
(i) must be selected before determining the estimate. In the Strub and Cieszewski
example, either age 10 or age 40 was chosen as the base age. The estimates for each
of the base ages are, therefore, not base-age invariant. Furthermore, even though the
overall estimate of the BAA method averages the estimates for each of the base ages
for the linear model, in the case of a nonlinear model the resulting average is not
equal to the base-age invariant estimate. Although Eqs. 7.30 and 7.32 illustrate that,
for the linear model the BAI estimate of Oaj is equal to the average of the two BAA
estimates (Oa1j and Oa2j ), Eqs. 7.31 and 7.33 illustrate that, for the nonlinear model
the BAI estimate of Ocj is different from the average of the two BAA estimates (Oc1j

and Oc2j ).
Strub and Cieszewski (2006) provide a specific numeric example and conclude

with the observation that both approaches BAI and BAA are based on least-squares
estimation of the global parameter (Ob), but the BAI method also relies on least-
square estimates of local (Oa or Oc) site parameters. Because the BAI estimates are
based on least-square criteria and can assume any values for the site estimates, this
method must have root-mean-square errors smaller than or equal to that of any other
method.

Wang et al. (2008b) proposed a method to develop polymorphic base-age
invariant models with multiple asymptotes by specifying the asymptotic parameter
as the site-specific parameters (x) and one of the other parameters as related to x as
a simple power function. Their approach is a constrained form of the generalized
algebraic difference (GADA) and eliminates the requirement to obtain an explicit
solution for x. In this constrained GADA approach, x is estimated along with other
parameters of the model. This approach may be used to adapt base-age specific
models to be base-age invariant. The Wang et al. approach was evaluated using data
sets for Chinese fir, red alder, and beech with models being fitted using the dummy
variable method in which each observed data series has its own specific x parameter.
The base-age invariant models were superior to their comparable base-age specific
models.
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7.9 Mixed-Effects Models for Height Prediction

Mixed-effect models provide a flexible and efficient approach for estimating site-
specific parameters in height-age equations. Traditional regression models are fixed
effects models, containing only constants in the functional form and one random
variant, the error term. Fixed-effects models describe a mean function. Mixed-
effects arise when some of the model components are fixed while others are random.
Mixed models contain at least one random effect as well as the random error term;
as such, they describe a mean trend and deviations from the mean trend.

The standard linear regression model can be written in matrix form as:

y D Xˇ C e

e � N n.0; �2In/

where y D .y1; y2; : : : ; yn/0 is the response vector; X is the model matrix with
typical row x0

i D .x1i ; x2i ; : : : xpi /; ˇ D .ˇ1; ˇ2; : : : ; ˇp/0 is the vector of
regression coefficients: e D .e1; e2; : : : ; en/0 is the vector of errors; N n represents
the n-variable multivariate-normal distribution; 0 is an n � 1 vector of zeroes;
and In is the order-n identity matrix. Mixed-effect models (or just mixed models)
include additional random-effect terms, and are often used for representing clustered
data resulting, for example, when observations are collected hierarchically, when
measurements are taken on related individuals, or when observations are gathered
over time on the same individuals. The mixed-effects model can be represented in
matrix form:

yi D Xi ˇ C Z i bi C ei

bi � N q.0; D/

ei � N ni
.0; �2Ri /

where

yi is the ni � 1 response vector for observations in the ith group.
Xi is the ni � p model matrix for the fixed effects for observations in group i.
ˇ is the p � 1 vector of fixed-effect coefficients.
Zi is the ni � q model matrix for the random effects for observations in

group i.
bi is the q � 1 vector of random-effect coefficients for group i.
ei is the ni � 1 vector of errors for observations in group i.
D is the q � q covariance matrix for the random effects.
�2Ri is the ni � ni covariance matrix for the errors in group i.

For mixed models the bi are random effects or coefficients with mean 0
and variance-covariance matrix D that vary across clusters and the ei are the
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within-cluster errors. The model contains a fixed-effect mean structure given by
Xi ˇ and a random structure given by Z i bi C ei . In addition to linear mean
functions, mixed modeling procedures can be applied when the mean function is
nonlinear.

7.9.1 Varying Parameter Model

In many past applications data have been pooled and height has been predicted as a
function of age or age and site. However, as pointed out by Biging (1985), if there
is significant variation in individual tree growth the conditional mean height of the
sample given specific values of the explanatory variables will differ from that of an
estimator that allows coefficients in the growth model to vary by individual. It cannot
be assumed that the mean regression derived by standard procedures represents
height growth of the average tree. To allow for individual tree variation, Biging
(1985) developed a varying parameter (random regression coefficient) approach
using weighted least squares fitting of height growth models to the observations
of individual trees over time to produce a height growth curve for the average
tree.

Data for Biging’s analysis consisted of four to six dominant trees chosen
randomly on sample plots in the mixed conifer region of California, USA, and
felled as site index trees for stem analysis. Between-tree heterogeneity was treated
by using a varying-parameter model in which coefficients of height over age curves
for individual trees are treated as random. Figure 7.4 illustrates how the varying-
parameter approach can produce results that differ from those of standard regression
fitting with pooled data.
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7.9.2 Mixed-Effects Models with Multiple Random
Components

Using data from slash pine plantations, Lappi and Bailey (1988) illustrated a
procedure that explicitly describes the major random components in the variation
of height curves. The average height of dominant and codominant trees in the
population is expressed as a function of age. Then a model is developed for the
variance-covariance structure of deviations from this average height curve due to
stands and trees within stands. The Lappi-Bailey formulation takes into account
the fact that, within a given stand, heights of trees at a specific age are correlated,
and tree heights and average stand height are correlated over time. This special
covariance structure is specified and estimated by including random stand and
tree parameters in the height growth model. With the estimates of variances and
covariances, and of the parameters of the function for average height, the height
development of a given stand or single tree can be predicted using statistical
prediction methods that utilize all available height measurements.

The varying-parameter approach of Biging (1985) did not take the stand level
variation into account but rather treated tree parameters as independent for trees
belonging to the same stand. Lappi and Bailey (1988) recognized three different
height over age curve types: (1) the population average curve, (2) the stand average
curve, and (3) the tree curve. The population height curve is the deterministic (fixed)
average height curve for all dominant and codominant trees in the population.
Stand and tree curves are assumed to be random, but predictable, fluctuations from
the population curve. Specifying a model with random stand and tree parameters
allows analysis of the within-stand and between-stand variance in the height of
trees at different ages and the autocorrelation among heights over time. Therefore,
in application the model allows all available data from a plot (stand) for all
measurements to be used for predicting subsequent growth.

After estimating parameters of the population height curve and of the covariance
structure, stand and tree heights can be predicted from any available height
measurements using linear prediction methods. The main advantage of specifying
stand-specific parameters as random is that the resulting predictor combines opti-
mally (in the “best linear unbiased” sense) the available measurements and the prior
knowledge of the variances and covariances of the random parameters (Lappi and
Bailey 1988).

Lappi and Malinen (1994) further developed the modeling structure of Lappi
and Bailey (1988) for the situation where stand-specific parameters are correlated
with stand age. When this correlation exists, the population mean curve will be
biased. (The bias that results when guide curve methods are applied and possible
ways to mitigate against the bias are discussed in Sect. 7.4.) Lappi and Malinen
(1994) showed how ordinary least squares estimates of tree-specific parameters can
be used for computing unbiased estimates of the population mean parameters and
for estimating the relationship between stand parameters and stand age.



160 7 Evaluating Site Quality

In other applications of mixed-effects models for predicting height development,
Fang and Bailey (2001) used a modified Richards growth function with nonlinear
mixed effects for modeling slash pine dominant height growth in conjunction
with different silvicultural treatments. Noting that there are strong site and genetic
variations in eucalyptus stands, Calegario et al. (2005) used a nonlinear mixed-
effects model to represent the height growth pattern of eucalyptus clonal stands
in the Brazilian coastal region.

7.9.3 Accounting for Serial Correlation

The inclusion of random effects into mixed models is expected to bring about a
reduction in serial correlation. However, random effects may not be sufficient to
account for serial correlation; directly modeling the error structure to further reduce
the correlation may be required.

Generalized least squares (GLS) procedures have been applied to model directly
the error structure for various forest growth models. The mixed-effects modeling
approach addresses the correlation issue by incorporating the random effects into
models and/or by directly modeling the error structure. Including a function to
account for serial correlation generally results in an improvement of the model’s
fit statistics (Gregoire et al. 1995). This improvement in fit may not, however,
always result in improvement in the model’s predictive ability. Fortin et al. (2007)
reported an improved predictive ability of a model fitted using the GLS method
when estimated correlation of the model was used to adjust predictions. Only one
prior measurement was used to adjust the predictions.

Meng and Huang (2010) conducted a study to determine if accounting for serial
correlation would result in improved predictive ability for three nonlinear mixed
models calibrated using individual tree sectional data and repeated measurements
from permanent sample plots. Results showed that accounting for the serial
correlation using the spatial power (SP(POW)) or Toeplitz (TOEP(X)) functions
resulted in a large reduction in serial correlation and improved the fit of the models.
The improved model fits, however, did not necessarily translate into improved model
predictions when evaluated under different scenarios. In many cases, the models
with the simple independent and identically distributed structure outperformed the
models with the SP(POW) or TOEP(X) structure in terms of the models’ predictive
ability.

Meng and Huang (2010) also examined the effect of adjusting predictions
according to a theorem that indicates the estimated correlation of a model can be
used to enhance the model predictions based on known prior measurements. It was
shown that, in general, the adjusted predictions had lower errors than those without
adjustment, but the differences were small in many cases. The adjustment with three
prior measurements was better in predictions that the adjustment with only one or
two prior measurements for the models with the TOEP(X) structure, but not for
SP(POW).
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In addition to serial correlation, heteroscedasticity is also often encountered.
Various procedures can be applied to combat heteroscedasticity (such as trans-
forming variables, applying weights), or it can be modeled directly. When fitting
height-age functions, the heteroscedasticity is often modeled by fitting a power
function with age as a covariate.

7.9.4 Calibration of Nonlinear Mixed-Effects Models

The calibration of nonlinear mixed effects models is central to making local predic-
tions. Numerous authors (e.g. Hall and Bailey 2001; Nothdurft et al. 2006; Meng and
Huang 2009) have addressed calibration issues. Meng and Huang (2009) observed
that simplified calibration procedures for nonlinear mixed-effects models can distort
local predictions. Using a nonlinear height growth model for lodgepole pine, Meng
and Huang (2009) demonstrated procedures to obtain improved calibration of the
height growth model. Calibration using the improved method reduced bias and
variance of the errors.

Meng and Huang (2009) used two data sets to demonstrate the improved
calibration of a nonlinear mixed-effects height growth model. A logistic-type
function was adopted as the height growth model and appropriate procedures for
calibrating nonlinear mixed models expanded via a first-order Taylor series expan-
sion at zero and at EBLUP (the empirically best linear unbiased predictors) were
applied. The improved calibration, based on a three-step iteration was compared
to conventional calibration. The resultant predictions differed considerably between
the two methods.

7.9.5 Evaluation of Population-Averaged and Subject-Specific
Predictions

Meng et al. (2009) evaluated population-averaged (PA) and subject-specific (SS)
approaches for modeling the dominant height of lodgepole pine. The population-
averaged response was modeled using a set of covariates and fixed-effects parame-
ters, that is:

hdomi D f .Xi ; ˇ/ C "i (7.34)

where hdomi is a vector of heights for site tree i; Xi is a matrix of covariates usually
consisting of age, site index, and other predictors; ˇ is a vector of fixed-effects
parameters; and "i is a vector of error terms.



162 7 Evaluating Site Quality

Top height was also modeled using a mixed-effects modeling approach; the
mixed-effects model can be expressed in a general form as:

hdomi D f .X i ; ˇ; ui / C "i (7.35)

where ˇ is the fixed-effects parameters common to all subjects (trees) and ui is a
vector of the random-effects parameters unique for subject i, which is assumed to
follow a multivariate normal distribution with mean zero and a variance-covariance
matrix D.

To obtain a subject-specific response using model (7.35), a proportion of
premeasured Xi and hdomi for subject i has to be acquired to predict ui , which
is then used together with estimates of ˇ and the variance-covariance matrix D
to predict other hdomi values at given values of Xi . This procedure differs from
PA models, which require only Xi values to predict hdomi. In cases where there
is an insufficient proportion of premeasured Xi and hdomi to predict ui , then the
estimated fixed-effects parameters of Eq. 7.35 can be used to predict a typical mean
(TM) response. The TM response obtained using only the fixed-effects component
of a mixed- effect model is a PA response only for linear mixed-effects models.

Using only the fixed-effects parameters of a linear mixed-effects model can
yield a true PA response, and TM is equivalent to PA. However, for a nonlinear
mixed-effects model because ui enters the model in a nonlinear fashion, the
random-effects parameters cannot be factored out of the integration as in linear
mixed-effects models; therefore, the TM response generated using only the fixed-
effects parameters is not equal to the PA mean.

Obtaining a PA response using only fixed-effects parameters for a nonlinear
mixed-effects model is not appropriate; the true PA response should be generated
from a separate fit of the nonlinear model without the inclusion of random effects
(Meng et al. 2009). Six candidate models derived from the Chapman-Richards and
logistic functions were included in the evaluation reported by Meng et al. (2009).
The true PA response obtained from separate fits of the models was compared with
the typical mean (TM) response computed using only the fixed-effects parameters
of the mixed-effects models. Results showed that the TM response had higher
prediction errors than the PA response, suggesting that a true PA response and not
the TM response is needed to reflect the overall mean response of the model. The
SS approach produced improved height prediction relative to the PA approach when
evaluated using independent validation data. In addition, the logistic performed
better than the Chapman-Richards function, regardless of whether the SS or PA
approach was applied. Among the candidate models, the logistic function with
the inclusion of site index gave the most accurate predictions. Three scenarios of
calibrating the mixed-effects models on the validation data set were compared. The
SS predictions obtained using only one premeasured observation per subject were
not as good as those that used all observations, but they were still generally better
than PA predictions.
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7.10 Comparison of Subject-Specific Approaches
for Modeling Dominant Height

Wang et al. (2008a) compared two subject-specific approaches to height modeling,
the dummy variable method (fixed individual effects) and the mixed model method
(random individual effects). Chapman-Richards type models were fitted to loblolly
pine data from a designed experiment.

Table 7.3 lists the models considered by Wang et al. (2008a). The three ADA
models (MI–M3) are examples of one-local-parameter models, and they are either
anamorphic (M1) by choosing the asymptote parameter a to be site-specific or
polymorphic with single asymptotes (M2 and M3) by choosing either parameter
b or c as site-specific. GADA model M4 was developed by Cieszewski (2004) and
has been used by Diéguez-Aranda et al. (2005a, 2006), and Nord-Larsen (2006).
This model is an example of a one-varying-parameter model which is polymorphic
with multiple asymptotes. Model M5 is a two-local-parameter example, which has
been used in Lappi and Bailey (1988) and Hall and Bailey (2001). When attempting
to fit a model with three random parameters, convergence could not be obtained;
thus the most flexible model with two random parameters that was obtained is
model M5.

Parameters in the candidate models were estimated using measurements taken at
3-year intervals starting at age six and extending to age 18. A brief description of
the parameter estimation procedures employed by Wang et al. (2008a) follows.

Dummy variables were generated to indicate plot-specific parameters. For
M1–M4, the dummy variable models in the general form are given as:

hdomij D f .tij I x; ˇ/ C "ij

x D
nX

iD1

xi Di

where hdomij is the jth observed heights for the ith plot, tij is the age, "ij is the error
term, n is the number of plots, Di is the dummy variable with value of 1 for the ith

Table 7.3 Height models considered by Wang et al. (2008a)

No. Model form Derivation

M1 hdom D ai .1 � e�bt /
c C " � D ai

M2 hdom D a.1 � e�bi t /
c C " � D bi

M3 hdom D a.1 � e�bt /
ci C " � D ci

M4 hdom D e�.1 � e�bt /
c1Cc2=� C " �1 D ai D e�; �2 D ci D c1 C c2=�

M5 hdom D ai .1 � e�bt /
ci C " �1 D ai ; �2 D ci

Where hdom is dominant height measurements at age t; a; b; c; c1; c2 are common
parameters; i indicates subject; ai ; bi ; ci , and � indicate local parameters
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plot and 0 otherwise, and xi is the fixed plot-specific parameter. For M5, the dummy
variable model was specified as

hdomij D
 

nX
iD1

aiDi

!
.1 � e�bt /

P
n
iD1ci Di C "ij

where ai and ci are the two fixed plot-specific parameters.
Nonlinear mixed models for M1–M4 can be expressed in the general form as:

hdomij D f .tij I x; ˇ/ C "ij

x � N.�x; �2
x /

where N denotes the bivariate normal distribution, �x and �2
x are the fixed mean

and variance parameters of the random subject-specific parameter x, respectively.
For M5 the general form is:

hdomij D ai

�
1 � e�bt

�ci C "ij	
ai

ci



� N

		
�a

�c



;

	
�2

a ��a�c

��a�c �2
c





where N denotes the bivariate normal distribution, �a and �c are the fixed mean
parameters and �a and �c are the variance parameters of the two random plot-specific
parameters ai and ci , and � is the correlation between the two random parameters.

In the comparison of two subject-specific approaches to height modeling, Wang
et al. (2008a) concluded that, for height growth description, the dummy variable
method is preferred. In terms of height prediction, results showed that using
single height measurements to recover single local parameters, the mixed predictor
generally, but not always, performed better. When using multiple observations, there
was no substantial difference in prediction between the least squares (LS) predictor
and the mixed predictor, and when using the LS predictor both the dummy variable
method and the mixed model method produced nearly identical height prediction.
However, using single height measurements and recovering several local parameters
through the mixed predictor did not perform better in terms of height prediction than
recovering single local parameters.

Wang et al. (2008a) further concluded that with respect to height prediction given
few measurements, the mixed model method may be more appropriate because it
takes advantage of more information obtained from model building (i.e., that of
local parameters and error parameter(s)). In this regard, the authors emphasized that
the usefulness of mixed models in height modeling results largely from the fact that
it provides a new local parameter predictor; proper use of mixed models for height
modeling should include both “mixed” estimation of the common parameters and
“mixed” prediction of local parameters.
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7.11 Including Concomitant Information
in Height-Age Models

In many instances developing site curves that exhibit varying asymptotes and/or
shapes for differing levels of site index is sufficient. However, there is a plethora
of genetic, edaphic and climatic variables that influence height development and, to
improve predictive ability, it may be necessary to include such factors in site index
models. Typically, in the past, differences in growing conditions have been taken
into account by including categorical variables such as physiographic regions, soils
groups, or habitat types in height growth models.

As an example, Burkhart and Tennent (1977a) divided data from a country-wide
set of permanent plot installations in radiata pine in New Zealand into regions.
Where differences warranted, a further division was made into soils groups. Eight
region/soils groups were recognized and separate coefficients were computed for
each group. The two-parameter Eq. 7.6 was fitted, resulting in the estimation of
16 parameters. The resultant site index curves are polymorphic, having different
shapes by site index classes within each group and different shapes among the eight
groups for land of the same site index. Figure 7.5 illustrates the variation in curve
shape between the volcanic plateau and the Canterbury Plain of New Zealand for
site index 24 m. Adding concomitant information accommodates nondisjoint site
curves (i.e., curves of the same site index having differing values at ages other than
index age).
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Monserud (1984) found that forest habitat type was a useful concomitant variable
when developing site index curves for inland Douglas-fir in the USA. Three habitat
types (based on overstory and understory vegetation composition) proved important
in determining the shape of the height growth and site index curves. In a follow-
up comparison of Douglas-fir site index and height growth curves in the Pacific
Northwest region of the USA, Monserud (1985) noted that differences in height
growth pattern increased with increasing distance between sample areas. The trend
in height growth divergence along an east-west gradient was attributed to the
multiplicity of factors, both environmental and genetic, that vary across the region.

Amateis et al. (2006) used data from permanent plots established in stands
planted throughout the native range of loblolly pine in the southeastern United States
to model differences in dominant height development by physiographic region and
geographic locale. Three physiographic regions (Atlantic Coastal Plain, Piedmont,
and Gulf Coastal Plain) were recognized and geographic locale was represented
by the longitude and latitude of each sample location. A significant reduction in
the error sum of squares resulted from inclusion of both physiographic region and
geographic coordinates. These results indicate that longitude and latitude, which
are continuous variables that are easily obtained, may serve as useful surrogates
for biologic, edaphic, and climatic factors that are difficult to measure, and, thus,
provide more general predictive ability across broad areas.

In the case of naturally regenerated stands, and in particular with shade tolerant
species, variability in early suppression of regeneration can have a profound effect
on subsequent height development. Stage (1963) included the number of annual
rings in a 1.5-in. (3.8 cm) radius from the pith at breast height as a variable
when determining the appropriate height-age curves for grand fir in the Inland
Empire region of the United States. Grand fir, a shade tolerant species with a high
growth potential, responds well to release and the inclusion of diameter increment
information improved ability to estimate height growth and site index.

Bravo-Oviedo et al. (2007) developed a polymorphic base-age invariant model
with multiple asymptotes for Mediterranean maritime pine in the inland part of the
Iberian Peninsula using a generalized algebraic formulation of Hossfeld’s function.
The selected model was used in a regional-based comparison of growth patterns.
The parameter identified as ‘global’ in the first part of the study was expanded
with dummy variables to assess the differences among regions. In follow-up studies
(Bravo-Oviedo et al. 2008; Nunes et al. 2011), the applicability of height-age models
across regions was improved by expressing parameters as a function of climate
and/or soils variables.

7.12 Effect of Stand Density on Height Growth

When applying the site index method, an assumption that stand density does not
affect height development of the dominant portion of the stand is generally invoked.
While it is recognized that stand density affects average stand height, the evidence
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regarding effects on the dominant portion of the canopy is mixed. Stand density has
been reported to affect dominant height growth of conifers in a number of studies
(such as, Alexander et al.1967, for lodgepole pine; Bennett 1975, for slash pine;
Curtis and Reukema 1970, for Douglas-fir; Harms and Lloyd 1981, for loblolly
pine; and Boyer 1983, for longleaf pine). However, there are instances in which
no significant differences in dominant height due to stand density were detected,
including the results of Pienaar and Shiver (1984) for slash pine and Harms et al.
(1994, 2000) for two spacing trials with loblolly pine.

Stand density is confounded with site factors and it is difficult to assess its impact
on height growth without designed experiments that are measured over long time
periods. Antón-Fernández et al. (2011) analyzed density effects on height growth
using rotation-age data from a loblolly pine spacing trial (intermediate results were
reported by MacFarlane et al. 2000, and by Sharma et al. 2002b, c). These spacing
trials were established at four locations (two on Atlantic Coastal Plain sites, two
on Piedmont sites in the USA) with three replicates at each location and 16 plots
per replicate. Initial planting densities ranged from 750 to 6,730 trees per hectare.
Annual measurements from ages 1–25 were taken.

The Chapman-Richards equation was adopted as the base model to describe
height development. Nonlinear mixed-effects modeling techniques were applied
with random effects at the location, block, and plot levels. Average stand height as
well as four different definitions of dominant height were modeled. In all instances,
there were significant impacts of stand density on height development with the
differences among initial planting densities being evident from age 6 and consistent
to the end of the 25-year period of study. Height-age models that take into account
the effect of spacing on average and dominant height were developed from the
spacing trial data.
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Fontes L, Tomé M, Coelho MB, Wright H, Luis JS, Savil P (2003) Modelling dominant height
growth of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) in Portugal. Forestry 76:
509–523
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Chapter 8
Quantifying Stand Density

8.1 Stocking and Stand Density

Forest stand dynamics are a function of the species present, the site quality, the
degree to which the site is occupied, stand age in the case of even-aged stands or
elapsed time from a specified initial condition for uneven-aged stands, and man-
agement treatments. Quantification of site occupancy (or stand density) is central
to developing reliable models for predicting forest growth and yield. Response
to silvicultural treatments and the amount and size-class distribution of volume
produced over time are closely related to competition for site resources (light,
water, nutrients); stand density measures that are simple and direct to determine
yet highly correlated with tree and stand growth and mortality are needed. Because
of the importance of quantitatively describing site occupancy and competition for
growth resources, much attention has been devoted to the problem of developing
stand density measures, but it remains a rather elusive and vexing component of
forest growth and yield forecasting.

Although stocking and stand density are terms that are often applied interchange-
ably in forestry use, the two terms are not synonymous. Stand density denotes a
quantitative measurement of the stand, whereas stocking refers to the adequacy
of a given stand density to meet some management objective (Bickford et al.
1957). Accordingly, stands may be referred to as understocked, fully stocked, or
overstocked. A stand that is “overstocked” for one management objective could be
“understocked” for another.

Stand density is a quantitative term describing the degree of stem crowding
within a stocked area; it can be expressed in absolute or relative terms. Absolute
measures of density are determined directly from a given stand without reference to
any other stand. For example, number of trees per hectare is an absolute measure
that expresses the density of trees on an area basis. Relative density is based on a
selected standard density. If, for instance, “fully stocked” is defined on a basal-area
basis, the ratio of the measured basal area in a stand to that of the fully stocked
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standard is a relative measure of stand density. The problem of what constitutes
full stocking makes application of relative density measures difficult (Avery and
Burkhart 2002).

The extent of competition in a stand is determined by the number of trees per
unit area, their respective sizes and their spatial distribution. Spatial distribution
is generally not explicitly considered in measures of stand density. For practical
purposes of forest management and growth and yield prediction, measures of stand
density should be objective, easily measured, and highly correlated with stand
growth, yield and mortality.

Quantitative expressions of the degree of crowding and competition for site
resources fall into two broad categories: (1) measures of average stand density, and
(2) measures of point density (crowding at a particular location or for individual
subject trees; point density measures, which are commonly designated competition
indices, are the subject of Chap. 9). Some stand density measures can be computed
directly from measurements in the stand of interest while others require reference to
previously-determined relationships.

8.1.1 Trees Per Unit Area

Number of trees per unit area is a simple, easy to measure numeric expression
for average stand density that does not rely on reference to other stands, agreed
upon standards, or previously determined relationships. When employing fixed-area
sampling units in the field, only a frequency count of stems is needed to determine
trees per hectare. Although no information on tree sizes or spatial distribution of
stems is included, trees per hectare, along with stand age and a measure of site
quality, has been found highly useful and is commonly employed as a measure
of stand density for deriving silvicultural prescriptions and predicting growth for
planted stands of a single species.

8.1.2 Basal Area Per Unit Area

Basal area is the sum of the cross-sectional area at dbh of all trees or a specified
portion of trees in the stand, expressed on a per unit area basis (m2ha�1). It, like trees
per unit area, is simple, easily measured, and does not require information other than
that from the stand of interest. When using point sampling methodology, basal area
per hectare can be determined in the field with a simple frequency tally that does not
require any tree measurements. Size information is incorporated as part of the basal
area measure; basal area per hectare has been widely used in deriving silvicultural
prescriptions and it is highly correlated with stand growth, yield and mortality when
used in conjunction with stand age and a measure of site quality. Together basal area
and trees per hectare specify average tree size. Hence both measures are sometimes

http://dx.doi.org/10.1007/978-90-481-3170-9_9
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combined to obtain an improved quantification of average stand density for input
into planning silvicultural treatments and projecting stand growth and yield.

8.2 Size-Density Relationships

Forest biometricians have long devoted, and continue to devote, a great deal of
attention to the problem of developing simple and effective indices of competition
in forest stands. As individual trees grow in size their demands on site resources
and growing space increase. When resources are no longer adequate to support
additional growth of all of the trees present, self-thinning will be initiated and the
number of trees per unit area will decrease. Quantifying self-thinning relationships
is important for prescribing silvicultural treatments such as thinning and for
predicting forest stand development. Consequently, a number of indices have been
developed to study the influence of density on self-thinning; the indices combine an
expression of the size of the average tree (diameter, height, volume, or biomass) with
the number of trees per unit area. The best known and most commonly employed
of these self-thinning or maximum size-density relationships are those of Reineke
(1933), Yoda et al. (1963), and Hart (1926). Reineke’s stand density index is based
on the relationship between numbers of trees per unit area and the quadratic mean
diameter of stands, whereas Yoda et al. related mean plant volume (or biomass)
to numbers per unit area. Hart proposed a measure based on the average distance
between trees and the average height of the dominant canopy.1 Each of these size-
density measures will be explained in more detail in the following sections and
relationships among them will be shown.

8.2.1 Reineke’s Stand Density Index

In fully stocked even-aged stands the limiting relationship between the number of
trees per hectare (N) and the quadratic mean dbh ( Ndg) is generally linear on the log-
log scale (Fig. 8.1). For any given Ndg there is a limit to the number of trees per unit
that can be carried. Reineke (1933) noted that for a variety of species the slope of
the limiting line was approximately �1.6 on the log-log scale, that is2:

log N D �1:6 log Ndg C k (8.1)

where k is a constant varying by species and log indicates logarithm.

1The concept of using height in a numerical expression of stand density was largely brought to the
attention of foresters in the USA through an article by Wilson (1946).
2In his original paper Reineke (1933) used a value of �1.605 for the common slope; in our
discussion the slope value has been rounded to �1.6. Also, in some treatments of Reineke’s SDI
an index diameter of 25.4 cm is used. We have used 25 cm for simplicity.
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Fig. 8.1 The size density
relationship for even-aged
eastern white pine by
hand-fitting a line with slope
equal to �1.6 (Adapted from
Zhang et al. 2005)

Reineke defined the limiting number of trees when Ndg was equal to 10 in. to be
the stand density index (SDI). In metric units the index Ndg value is generally taken
to be 25 cm. Noting that the limiting relationship can be written as

N D a Nd b
g

and that stands at the limiting density with a quadratic mean diameter of 25 cm
define stand density index, that is:

SDI D a25b

Thus, for any stand of known N and Ndg, the stand density index can be
computed as

SDI D N .25= Ndg/
b

(8.2)

where b is often taken to be �1.6.
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8.2.2 3/2 Rule of Self-thinning

The so-called 3/2 rule of self-thinning, like Reineke’s stand-density index, is based
on the concept of a mean size-density relationship. In the case of the 3/2 rule of
self-thinning the logarithm of mean tree volume or weight is plotted against the
logarithm of the number of trees per unit area. For pure, even-aged stands that are
sufficiently crowded such that competition-induced mortality (“self-thinning”) is
occurring the slope of the line of logarithm of mean volume (or weight) versus
logarithm of trees per unit area has been found to be approximately �3/2, but the
intercept varies by species. That is,

log Nv D �3=2 log N C a

where

Nv D mean tree volume
a D a constant varying with species

Obviously, the 3/2 rule of self-thinning is closely related to the stand-density
index – in fact, the two can be shown to be mathematically equivalent. Reineke’s
stand-density index was developed with log N on the left-hand side of the Eq. 8.1.
Rearranging the 3/2 relationship with log N on the left-hand side gives

�3=2 log N D log Nv � a (8.3)

Assuming that mean tree volume is proportional to the diameter of the tree of
average basal area raised to the power of 2.4 (Bredenkamp and Burkhart 1990),
that is,

Nv D c Nd 2:4
g

where c is a constant and substituting the definition for Nv into Eq. 8.3 and simplifying
one obtains

log N D �1:6 log Ndg C k

which is the stand-density index reference line.
Although the two concepts are, for the stated assumptions, mathematically

equivalent, due to measurement considerations and historical precedent, the stand
density index has been applied widely in forestry, whereas the 3/2 rule of self-
thinning has been utilized prevalently by plant ecologists.
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Fig. 8.2 Relative spacing
trends for the 1.8 � 1.8 m
(solid line) and the
3.6 � 3.6 m (dashed line)
plots in a loblolly pine
spacing trial (Sharma et al.
2002 present a full
description of the spacing
trial)

8.2.3 Relative Spacing

The average distance between trees divided by the average height of the dominant
canopy has been termed relative spacing. Assuming square spacing, the average
distance between trees can be computed as the square root of the number of m2 per
ha (10,000) divided by the number of trees per ha. This average distance between
trees in m is then divided by the average height of the dominant canopy in m to
compute relative spacing as:

RS D
p

10;000=N

hdom
(8.4)

where hdom D average height of the dominant canopy, m
For even-aged stands, relative spacing initially drops rapidly; then it levels off at

a lower limit (Fig. 8.2). After reaching the lower limit, RS will increase somewhat if
the stand is carried to an advanced age. The lower limit of relative spacing is fairly
constant for a given species regardless of the site quality and the initial density.

Although it may not be immediately obvious, relative spacing is closely related
to stand-density index. Height has been found to be proportional to diameter raised
to the power of 0.8 (Curtis 1970), that is,

h D a d 0:8

Assuming that the height of the dominant canopy (hdom) can be related to the
quadratic mean diameter ( Ndg) by the preceding relationship, hdom in the relative
spacing formula can be replaced by a d 0:8, giving

RS D
p

b=N

a Nd 0:8
g
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where b is an appropriate constant (10,000). Combining the constants b and a into
a single constant denoted c, squaring both sides, taking the logarithm of both sides
and rearranging terms gives

log N D log c � 2 log RS � 1:6 log Ndg

If RS is at or near its lower limit, it can be assumed constant, and the terms
log c � 2 log RS can be set equal to a constant called k, giving

log N D �1:6 log Ndg C k

which is the stand-density index reference line.

8.3 Methods for Fitting Maximum Size-Density
Relationships

8.3.1 Data Screening

The maximum size-density relationship that results from statistical analysis depends
on how the data are screened to determine which observations are at the maximum
and what fitting procedure is applied. There is no established statistical procedure
for selecting appropriate plots to include (Bi and Turvey 1997). Consequently a
visual inspection of the data is often employed to determine which observations
to include. The extent to which the slope of the maximum size density line is
affected by the data screening step depends, to some extent, on the fitting algorithm
employed. For instance when applying ordinary least squares, the slope of the self-
thinning line can be greatly affected by inclusion of plots that diverge from the stage
of maximum size for a given number per unit area.

8.3.2 Free Hand Fitting

Reineke (1933) noted that when using data from fully stocked stands, plotting
numbers of trees per unit area over quadratic mean diameter on double logarithmic
cross-section paper resulted in a straight-line relationship. For many species the
slope of the logarithmic straight-line graph was constant, but the level of the line
varied by species. Consequently he proposed the general relationship

log N D �1:6 log Ndg C k
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In which the constant k varies by species. Plotting data and then positioning a line
with a fixed slope by hand in such a way that all, or essentially all (with the exception
of “outliers”), points are below the line is quite straight forward (as in Fig. 8.1).
However, as computing capability and statistical methodology advanced so did
interest in deriving more objective ways of estimating size-density relationships.
The vast majority of this work has focused on the stand density index or the �3/2
self-thinning concepts. A summary of the primary methods proposed for statistically
estimating maximum size-density relationships follows.

8.3.3 Reduced Major Axis Regression

Leduc (1987) pointed out that there are two primary reasons for estimating an
equation to describe the trend of a set of bivariate data: (i) the estimation of
conditional means of one variable for given values of the other, and (ii) the
description of the functional relationship between two variables. While least-squares
regression is generally regarded as best for the first purpose, an alternative fitting
procedure may be preferred when interpretation of functional relationships is the
main objective.

Leduc describes a number of techniques (Bartlett’s three-group methods,
Schnute’s trend line, the general structural relationship, major axis regression,
and reduced major axis regression) that might be used when the primary interest is
in the values of the equation parameters themselves. After comparing the relative
merits of six methods, he concluded that reduced major axis regression is most
applicable because of its desirable properties and ease of estimation.

Solomon and Zhang (2002) established maximum size-density relationships for
three mixed-softwood forest types (hemlock-red spruce, spruce-fir, and cedar-black
spruce) in the northeastern USA. Plots with relative density index (number of trees
per unit area present divided by the maximum number for the mean tree volume of
a given plot) greater than 0.7 were selected for model development. Reduced major
axis regression was used to fit the coefficients of the self-thinning lines.

8.3.4 Frontier Functions

Frontier functions, which originated in economics, are aimed at estimating maxi-
mum possible values for given inputs. In all frontier production functions the slope
parameter “ can be consistently estimated by ordinary least squares (OLS); the
intercept parameter ’ can be consistently estimated in a frontier function by shifting
the OLS line upward so that the largest residual is zero thus, the corrected ordinary
least squares (COLS) estimation of the intercept is:

aCOLS D a C max "i
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Fig. 8.3 Maximum
size-density lines obtained
from six modeling methods.
COLS corrected ordinary
least squares, RMA reduced
major axis, OLS ordinary
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regression, DFF deterministic
frontier function, SFF
stochastic frontier function
(From Zhang et al. 2005)

In a deterministic frontier model, the output is bounded from above by a deter-
ministic function. By contrast, a stochastic frontier model specifies that maximum
output is determined both by the production function and by random factors. Zhang
et al. (2005) used data from an even-aged white pine stand to show that quantile
regression (QR), deterministic frontier function (DFF) and stochastic frontier
function (SFF) methods can potentially produce an upper limiting boundary line
above all plot values for the maximum size-density relationship without subjectively
selecting a subset of data points based on predetermined criteria. On the other hand,
Zhang et al. observed that ordinary least squares (OLS), corrected ordinary least
squares (COLS), and reduced major axis (RMA) methods are sensitive to the data
selected for model fitting and may produce self-thinning lines with inappropriate
slopes. Statistical inference is difficult with the DFF and QR methods, and Zhang
et al. recommended the SFF approach due to the satisfactory results achieved and the
ease of producing statistics for inference on the model coefficients. A comparison
of results produced by the six methods applied to the eastern white pine data is
displayed in Fig. 8.3.

Bi (2001) developed a self-thinning surface that defines a density-dependent
upper frontier of stand biomass over a gradient of site productivity for a given
species. The equation was formulated for parameter estimation as a stochastic
frontier function with two error components that have different distributional
properties. Weiskittel et al. (2009) applied stochastic frontier functions to test
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the influence of additional covariates when fitting self-thinning boundary lines.
Likelihood ratio tests indicated that site index, stand origin (natural versus planted),
and composition (proportion of basal area in the primary species) significantly
influenced the species self-thinning boundary line intercept for all of the species
examined (Douglas-fir, western hemlock, and red alder). In Douglas-fir and western
hemlock stands the slope of the self-thinning boundary was also dependent on stand
origin; in addition site index was related to the slope of the boundary in the case of
Douglas-fir.

8.3.5 Mixed Models

VanderSchaaf and Burkhart (2007a) fitted maximum size-density relationships
(MSDR) for a range of planting densities using data from a loblolly pine spacing
trial. Three methods for estimating the slope of the MSDR species boundary line
were compared: ordinary least squares, first-difference approach, and linear mixed-
effects model. In the linear mixed effects model formulation the intercept (b0) and
the slope (b1) terms were assumed to contain random effects; that is:

ln N D .b0 C u0i / C .b1 C u1i / ln Ndg C " (8.5)

where u0i ; u1i are cluster-specific random effects to be predicted and assumed to be
N.0; �2

0 / and N.0; �2
1 /, respectively. A cluster is an individual plot (indexed by i).

" is the random error where it is assumed " � N.0; �2I/.
The three methods of parameter estimation were compared on the basis of

stability of parameter estimates, where stability refers to the extent to which
parameter estimates do not change when the range of planting densities in the
fitting data set vary. Results from fitting with data from a spacing trial consisting
of planting densities ranging from 6,727 to 747 seedlings per ha showed that mixed-
effects models produced the most stable estimates of the slope while OLS resulted
in the least stable.

When developing self-thinning models for even-aged stands of Scots pine,
Norway spruce, and birch, Hynynen (1993) used mixed-effects analysis to estimate
the MSDR species boundary line slopes.

8.3.6 Curvilinear Size-Density Boundaries

In a detailed analysis of the 3/2 power rule of self-thinning, Zeide (1987) asserted
that the limiting line does not necessarily have a constant slope of �3/2 on the log-
log scale, or any other constant slope. Rather his analysis led to the conclusion that
the self-thinning line is a curve concave down.

Cao et al. (2000) used data from direct-seeded slash pine stands to develop
a model to describe the trajectory of maximum quadratic mean diameter after
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self-thinning begins when the trajectory departs from Reineke’s size-density line.
Noting that Reineke’s relationship between quadratic mean diameter and tree
density can be written as

Ndg D b1N
b2

where b2 was taken as 1/(�1.605)D �0.623 Cao et al. proposed a new relationship

dmax D Ndg

�
1 � exp.b3N

b4 /
�

or

dmax D b1N
�0:623

�
1 � exp.b3N

b4 /
�

(8.6)

where dmax is the maximum stand diameter at tree density N. The values of the
expression within the square brackets in Eq. 8.6 ranges from 0 to 1 for negative
values of b3. The result of estimating the self-thinning curve (8.6) using data from
direct-seeded slash pine stands is shown in Fig. 8.4.

8.3.7 Segmented Regression

Size-density trajectories on the logarithmic scale are generally considered to consist
of two major stages. The first stage, often referred to as density-independent, is
represented by precanopy conditions. Within the self-thinning stage segments of
a size-density trajectory can be represented by a non-linear approach to a linear
portion, a linear portion, and a divergence from the linear (Fig. 8.5). Fully-stocked
stands are thought to be in phase II (the linear portion of density-dependent mortality
on a log-log scale) of this overall size-density trajectory and most of the past effort
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Fig. 8.5 Depiction of a size-density trajectory for an individual stand. Two stages of stand
development are shown: density-independent mortality and density-dependent mortality. Within
the density-dependent mortality stage three phases of stand development are shown. The join
points (c1, c2, and c3,) used in Eq. 8.7 to differentiate stages and phases of stand development
in size-density trajectories are indicated (From VanderSchaaf and Burkhart 2008)

to model maximum size-density relationships has focused on this phase. Long-term
remeasurement data have, however, provided an opportunity to model the size-
density trajectory over the full range of stages and phases of stand development.

VanderSchaaf and Burkhart (2008) used data from a loblolly pine spacing trial to
demonstrate the use of segmented regression techniques for estimating stages and
phases of self-thinning. A segmented regression model to represent the two stages
of stand development and the three phases of self-thinning illustrated in Fig. 8.5 can
be written as

ln N D .b1/J1C
h
b1 C b2

�
ln Ndg � c1

�2i
J2 C

h
b1 C b2.c2 � c1/

2 C b3

�
ln Ndg � c2

�i
J3

C
h
b1 C b2.c2 � c1/2 C b3 .c3 � c2/ C b4 ln

� Ndg�c3

�i
J4 (8.7)

where Ndg is the quadratic mean diameter (cm), J1; J2; J3 and J4 are indicator
variables for the stages and phases of stand development, J1 D 1 if ln Ndg is within
the density-independent mortality stage of stand development (Stage I in Fig. 8.5)
and 0 otherwise, J2 D 1 if ln Ndg is within the curved approach to the MSDR dynamic
thinning line phase of self-thinning (Phase I of Stage II in Fig. 8.5) and 0 otherwise,
J3 D 1 if ln Ndg is within the MSDR dynamic thinning line phase of self-thinning
(Phase II of Stage II in Fig. 8.5) and 0 otherwise, and J4 D 1 if ln Ndg is within the
divergence phase of self-thinning (Phase III of Stage II in Fig. 8.5) and 0 otherwise
and other variables are as defined previously.
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Estimates of ln Ndg and ln N where the linear segment begins and ends were
obtained from the segmented regression analyses and used as response variables
predicted as a function of planting density. Predicted values of ln Ndg and ln N can
then be used to develop self-thinning line trajectories for varying initial planting
densities.

Cao and Dean (2008) used data from direct-seeded slash pine stands in the
southeastern USA when fitting segmented regression functions to describe the
trajectory of tree density and quadratic mean diameter through time for individual
stands. Two-segment and three-segment models were fitted; the authors concluded
that, for their data, a two segment model was sufficient. Because the overall trend
lines from Cao and Dean are the result of two quadratic curves, they are curvilinear
throughout.

8.4 Applying Maximum Size-Density Concepts to Complex
Stand Structures

Stand density index has been widely applied to assess and contrast stand structure
and growing stock in single-species, even-aged stands. The usefulness of SDI, which
is based on quadratic mean diameter and number of trees in a subject stand, for
uneven-aged and multi-species stands has been questioned because of the need to
partition the index into additive components to describe the relative stocking of a
stand by species or size classes. Stage (1968) showed that SDI can be partitioned to
allow for the contribution of various classes of trees in the stand towards the total
index value. The summation method involves calculating SDI for each tree (or by
diameter class) and then summing for the total stand value as

SDI D
X

Ni

	
Di

25


1:6

(8.8)

Where Di is the midpoint of the ith diameter class (cm) and Ni is the number
of trees per hectare in the diameter class. In the case of even-aged monocultures,
where the diameter distribution is typically unimodal and fairly symmetric (i.e.
is approximately normal), the application of Eq. 8.2 with overall quadratic mean
diameter and number of trees will result in an overall value of SDI that is very close
to that computed by the summation methods given in (8.8). However, for uneven-
aged stands with a large number of small trees and an inverse shaped diameter
distribution, then the total SDI value can be considerably different when computed
by Eqs. 8.2 and 8.8.

A number of authors (Long and Daniel 1990; Long 1996; Shaw 2000) have
advocated computing SDI for uneven-aged stands by applying Eq. 8.8 in order
to avoid the bias that use of quadratic mean diameter alone introduces for highly
skewed diameter distributions and to provide a way for partitioning the growing
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stock among the various size classes. Woodall et al. (2003) found that the SDI
summation method was biased for apportionment of relative density across diameter
classes in uneven-aged ponderosa pine stands because a greater relative density was
assigned to small trees than to larger ones. Thus, SDI by summation may over-
predict site occupancy for reverse J-shaped diameter distributions with relatively
large numbers of small trees and it may underpredict occupancy for stands with
nonreverse J-shaped diameter distributions.

Using data from even- and uneven-aged mixed species stands in northern Idaho
and northwestern Montana, USA, Sterba and Monserud (1993) showed that the
slope of Reineke’s maximum density line depended on the skewness of the dbh1.5

distribution, which in turn was correlated with structural stand characteristics like
“unevenagedness” and species mixture. In an effort to improve application of SDI in
uneven-aged mixed species stands, Woodall et al. (2005) examined the relationship
between a stand mean specific gravity of component trees and maximum SDI.
Results indicated that the maximum SDI that any particular species can attain is
affected to varying degrees by species composition of subject stands. A strong
relationship was found between the mean specific gravity of all trees in a stand
and the 99th percentile of the observed distribution of stand SDI values by classes
of mean stand specific gravity. A model was proposed whereby the mean specific
gravity of individual trees in a stand may serve as a predictor of a stand’s maximum
stocking potential, regardless of the stand’s diameter distribution and species
composition.

Although differences between SDI calculated using an “average” stand diameter
and by summation of individual trees or diameter classes are generally not large, a
considerable amount of attention has been given to a “best” method of computation
for complex stand structures (Long and Daniel 1990; Long 1996; Shaw 2000).
Ducey and Larson (2003) have, however, argued that additivity may not always be
required and that theory alone cannot determine if one index is superior to another.
They opined that direct tests of the predictive ability of stand density indices are
required to provide concrete guidance on what density index is best for a given
species and management context.

One disadvantage of stand density indices is that they are more difficult to
determine in the field than simpler measures such as trees and basal area per hectare.
However, Ducey and Valentine (2008) derived a direct method of establishing SDI
using point sampling methodology.

8.5 Incorporating Size-Density Relationships in Models
of Stand Dynamics

Size-density or self-thinning relationships have been used in various ways when
developing models of forest stand dynamics, growth and yield. Some modelers (e.g.
Smith and Hann 1984, 1986; Lloyd and Harms 1986; Tang et al. 1994) have used the
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self-thinning boundary as a central component that governs stand dynamics, while
others (e.g. Yang and Titus 2002; Monserud et al. 2005) have imposed self-thinning
constraints on a specific component, namely on the mortality function for growth
and yield prediction. Turnblom and Burk (2000) and Pittman and Turnblom (2003)
formulated the mean size-density relationship as a coupled system in order to allow
for mean size to affect mortality and mortality to affect mean size.

Smith and Hann (1984) developed a model of maximum mean biomass for a
given number of stems per unit area. In order to incorporate the third dimension
of time they subsequently (Smith and Hann 1986) modeled numbers of stems as
a function of time. Thus, the self-thinning analytical model was converted into a
growth model for self-thinning stands.

The growth model of Lloyd and Harms (1986) for pure, even-aged stands is
asymptotically bounded above by the self-thinning rule that relates maximum plant
size to plant density. Their model characterizes accretion in mean size as a deviation
from the limiting size, through a function relating mean size to time and density
and a companion survival model. The growth model is obtained by substituting the
survival model for density in the mean size relationship.

A stand growth model was developed by Tang et al. (1994) by combining the
self-thinning model with a basal-area increment model. Their stand growth model
can be used to estimate the average diameter and stand density at any given stand
age with any initial stand density.

Yang and Titus (2002) used a maximum size-density relationship as a constraint
on an existing individual tree mortality model in a stand simulator for boreal
mixedwood species in Alberta, Canada. For a given stand, its quadratic mean
diameter and density can be calculated at any point during growth projection. If
the combination of quadratic mean diameter and density exceeds the maximum
size-density line tree mortality is accelerated to maintain the stand on or below the
maximum size-density boundary.

Monserud et al. (2005) examined the question of whether or not a tree-specific
mortality model can elicit expected forest density dynamics without imposing stand-
level constraints such as Reineke’s maximum stand density index (SDImax) or the
�3/2 rule of self-thinning. This question was investigated using a stand simulator
that does not use stand density constraints to determine individual tree mortality
rates. Initial conditions were obtained from research plots that were established in
young pure stands of Norway spruce and Scots pine in Austria. From the results for
Norway spruce they concluded that stand-level density constraints are not necessary
to obtain Reineke’s maximum size-density relations. Results from simulation of
Scots pine also displayed reasonable and stable stand dynamics, except that they
greatly exceeded Reineke’s maximum stand density index determined empirically
from the literature. This result argues for stand-level constraints (such as specifying
SDImax) to ensure that the appropriate intercept for the maximum density line is
applied. Thus, the authors were left with ambiguous results. First, that a density-
dependent individual-tree mortality model, developed on an adequate data set,
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is sufficient for the desired stand-level behavior of Reineke to be exhibited. Second,
that stand-level constraints on SDImax need to be imposed if the underlying mortality
modeling database is not adequate.

Turnblom and Burk (2000), studied the density-mean size trajectory using simul-
taneous differential equations. Growth and mortality were interrelated and bounded
by the maximum density-mean tree size line. Using this modeling framework they
found that initial stand density in red pine plantations in the Lake States (Minnesota,
Michigan, and Wisconsin) had a large impact on the level of the self-thinning
boundary. Site quality (as measured by site index) chiefly affected the rate at
which stand dynamics progressed. Pittman and Turnblom (2003) extended the two-
dimensional system of Turnblom and Burk (2000) by the inclusion of a measure of
vertical growth, hdom (height of the dominant stand). After calibrating this model
with data from Douglas-fir permanent sample plots located throughout western
Washington and western Oregon, USA, and southwest British Columbia, Canada,
they compared model predictions quantitatively with data and then qualitatively
with the �3/2 power rule. Results indicated that allometric relationships are
interdependent and the authors concluded that it is desirable to model the mean size-
density relationship using a coupled dynamical system rather than with uncoupled
algebraic equations.

8.6 Other Proposed Measures of Stand Density

Numerous measures of stand density have been proposed. The similarity of SDI,
the �3/2 self-thinning rule, and relative spacing was shown in Sect. 8.2. Before
proceeding with categorizing the various measures and showing analogies among
them, two additional measures will be described, namely the tree-area ratio of
Chisman and Schumacher (1940) and the crown competition factor of Krajicek et al.
(1961).

8.6.1 Tree-Area Ratio

As described by Clutter et al. (1983), tree-area ratio is a measure of stand density
based on the assumption that the land area A occupied by any given tree in a stand
can be represented by the equation

A D ˇ0 C ˇ1d C ˇ2d
2 (8.9)

where d is tree dbh. The total area occupied by n trees on a unit area of land is then

nX
j D1

Aj D ˇ0n C ˇ1

nX
j D1

dj C ˇ2

nX
j D1

d 2
j (8.10)
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where the summation is made over the n trees growing on a specified area (generally
on an acre or a ha). Suppose N sample plots of a given size were established in
a population of interest, and on each plot the values ni ,

P ni

j D1dij and
P ni

j D1d
2
ij

(i D 1,2, : : : ,N) were obtained, where dij is the dbh of the jth tree on the ith sample
plot and ni is the number of trees on sample plot i. Estimates of the parameters
ˇ0; ˇ1, and ˇ2 can be obtained by minimizing

nX
j D1

0
@1 � Ǒ

0ni � Ǒ
1

njX
j D1

dij � Ǒ
2

njX
j D1

d 2
ij

1
A

2

(8.11)

These least squares estimates can then be used to evaluate Eq. 8.10 for any
given stand with observed n,

P
n
j D1dj and

P
n
j D1d

2
j . The computed tree-area ratio

(
P

n
j D1Aj ) is a measure of stand density relative to the average relationship in the

original sample, which is typically restricted to “fully stocked” stands. While the
tree-area is not restricted to be less than 1.0, it generally will be except for stands of
exceptionally high density.

Tree-area ratio is a measure that relies on a predetermined relationship. It has
been applied in both even and uneven-aged stands. However, it has not been used as
extensively in growth and yield prediction as simpler measures such as basal area
and number of trees per unit area.

8.6.2 Crown Competition Factor

Developed by Krajicek et al. (1961), crown competition factor (CCF) reflects the
area available to the average tree in a stand in relation to the maximum area it
could use if it were open-grown. To compute CCF values, the crown-width/dbh
relationship for open-grown trees of the species of interest must be established.
Generally, a simple linear regression of the form

cw D b0 C b1d (8.12)

suffices to establish this relationship where cw is crown width in m and d is diameter
at breast height in cm.

Assuming that the crowns of open-grown trees are circular in shape the maximum
crown area (MCA), expressed as percent of a ha, that can be occupied by the crown
of a tree with a specific bole diameter is computed as

MCA D �.cw/2.100/

.4/.10;000/
D 0:0078.cw/2 (8.13)
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CCF for a plot or stand is computed from a stand table by summing the MCA
values for each diameter class and dividing by the area in ha. In formula form,
the expression for CCF is

CCF D 1

a

h
a0X ni C b0XDi ni C c0XD2

i ni

i
(8.14)

where

a D plot or stand size, ha
ni D number of trees in ithdbh class
Di D midpoint of ithdbh class, cm, and
a0; b0; c0 are constants that vary depending on the value of the regression

coefficient
(b0 and b1) in (8.12).

A predetermined relationship between crown width and dbh of open-grown trees
is required to apply the CCF measure of stand density. Although not as widely
used as some of the other measures of stand density, it has been found to be well
correlated with growth and yield for a number of species.

8.7 Similarity of Stand Density Measures

Curtis (1970) observed that many stand density measures can be regarded as
expressions of average area available to trees in a given stand, relative to that
occupied by trees growing under a standard density condition and comparable in
dbh or another measure of size. Either the open-grown condition (as for CCF) or
the “fully stocked” stand (as for tree-area ratio and a number of other measures) can
be used as the standard and lead to similar results. Differences are introduced by
use of stand diameter, height, or volume as alternative bases for relating observed
stands to a standard condition.

Although the various measures of stand density often seem to be regarded as
distinct and separate entities, Curtis (1970) provided a unifying view of a number
of common relative measures of stand density as expressions of the same basic
relationship, which differ mainly in details of algebraic form and methods of
estimation of the constants. He concluded that “most common measures appear to
be practically equivalent.”

In a subsequent paper, Curtis (1971) derived equations for a number of alternative
relative stand density measures for Douglas-fir. A simple sum of diameters, without
reference to other stand characteristics (i.e.,

P
d b

i , where b is approximately 3/2),
provided an index of density closely related to tree-area ratio. This sum was also
closely related to measures based on ratios of observed numbers of trees or basal
area to that expected for a given stand diameter.



8.8 Efficacy of Various Stand Density Measures for Growth and Yield Prediction 193

West (1983) compared stand density measures in an even-aged eucalypt forest
in Tasmania, Australia. Most measures for even-aged forests provide estimates of
the degree of approach of a stand to a “maximum density” condition. West (1983)
computed 17 different density measures for stands of eucalypts and presented
the various measures in mathematically equivalent forms so that the relationships
among them can be easily seen. The 17 density measures were found to fall into
four groups: (i) stand basal area, (ii) other measures based on sums of tree diameters,
(iii) measures based on sums of tree volumes, and (iv) measures based on sums of
tree height. The measures within each group did not seem to differ appreciably; of
particular note was the lack of difference among the diameter-based measures. Many
of the more complex measures differed little from their simpler counterparts in the
way they represented stand density and the author concluded that little gain seems to
have been achieved with developing the more complex expressions of stand density.

8.8 Efficacy of Various Stand Density Measures for Growth
and Yield Prediction

Stand density measures are used to guide silvicultural prescriptions and to predict
stand dynamics, growth and yield. Choosing an expression for stand density
generally depends on the application at hand, the types of stands of interest, and
the preferences of the individual analyst. When the purpose is to include a measure
of stand density for predicting growth and yield a choice can be made on the
basis of selecting a measure that is highly correlated with the growth and yield
response variables of interest. More precisely, it is the multiple correlation between
the growth and yield variables of interest and stand age, site quality, and stand
density that is of primary interest when modeling even-aged stands. One might,
for instance, select the stand density measure that results in the highest R2 value for
a fitted growth or yield relationship for even-aged stands that includes stand age,
site quality, and density as predictor variables.

Nelson and Brender (1963) tested total stand basal area, SDI, and percent full
stocking measures in conjunction with age and site index for ability to account for
variation in growth of loblolly pine stands via the following equation form

�Vm D b0 C b1t
�1 C b2S C b3SD2

i C b4.S/.SDi / C b5S
2 (8.15)

where

�Vm D merchantable periodic net annual growth in cubic volume per unit area
t D stand age
S D site index
SDi D stand density using the ith measure at the beginning of the growth period
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Basal area, SDI, and percent full stocking were successively substituted for SDi

in Eq. 8.15 and the R2 value of each fitted equation was noted. The R2 values for
fitting Eq. 8.15 using the three density measures with age and site index were
very similar, ranging from 0.77 to 0.78; Nelson and Brender recommended use
of basal area per unit area because of the ease of computation and because it is
a direct measure that does not rely on having or establishing any prior standards or
relationships.

In a similar study Larson and Minor (1968) evaluated nine measures of stand
density for predicting 10-year basal area growth of ponderosa pine in the south-
western USA. Multiple correlation coefficients were best when including stocking
percent, stand basal area, or crown competition factor, with values being essentially
identical for these three measures.

Allen and Duzan (1981) included basal area, MacKinney and Chaiken’s (1935)
modification of SDI, percent full stocking, and number of trees in three growth
models to determine which measure performed best for estimating gross growth in
untreated loblolly pine plantations. The coefficients of determination for the simple
liner regression

�V D b0 C b1SDi (8.16)

where

�V D 5-year growth in cubic volume per unit area
SDi D the ith stand density measure

were 44.6%, 45.0%, 45.0% and 16.8%, respectively, for basal area, modified
SDI, percent full stocking, and number of trees per unit area. When site index
was included along with one of the measures of stand density, coefficients of
determination increased to 65.7%, 67.0%, 67.7% and 34.1% for basal area, modified
SDI, percent full stocking, and number of trees, respectively. From those results,
Allen and Duzan recommended that basal area be used when predicting growth in
untreated stands because it is easy to determine and effective in predicting growth.

A generally-accepted model for yield estimation in even-aged stands (Chap. 11)
was fitted with four different measures of stand density (total basal area per ha, CCF,
SDI, trees per ha) to evaluate ability to predict yield of natural and planted stands of
loblolly pine (Burkhart et al. 1982):

ln V D b0 C b1t
�1 C b2S C b3 ln SDi (8.17)

where

V D total cubic volume per ha for all trees
t D stand age
S D site index
SDi D the ith measure of stand density

http://dx.doi.org/10.1007/978-90-481-3170-9_11
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There was little difference in the coefficients of determination among SDI, CCF,
and basal area (0.970, 0.984, 0.992, respectively) for fitting (8.17) to data from
planted stands, but all three were superior to using trees per ha (R2 D 0.937). For
plot data from natural stands the R2 values were 0.974 for SDI and CCF, 0.990 for
basal area and 0.872 for trees per unit area. Thus, there was little difference among
SDI, CCF, and basal area, but basal area was best and all were superior to trees per
ha, especially for natural stands.

Results from comparing the efficacy of various stand density measures for
reducing the error sum of square after inclusion of age and site index in growth
and yield relationships have consistently shown that basal area per unit area is fully
as effective as more complex measures. These results are not surprising, given the
near equivalency of many commonly employed stand density measures. Making
such comparisons, however, presents a dilemma. In past applications the “base”
model has been held constant and different measures are successively substituted
for the stand density term(s). This process avoids confounding model specification
and density measure, but, due to the different algebraic constructs of stand density
measures, it is possible that different models should be specified, depending on the
stand density measure to be included in the empirical fitting.

As an example, consider the yield function (8.17). If the measure of stand density
(SDi ) is basal area, the coefficient b3 is expected to be near 1.0. Setting b3 D 1.0 and
taking the antilogarithm of both sides gives:

V D eb0eb1t�1

eb2S G (8.18)

where V is cubic volume and G is basal area per unit area. Given that specifying age
(t) and site index (S) is equivalent to specifying height of the dominant stand (hdom)
and setting eb0 D F , the stand form factor, Eq. 8.18 can be written:

V D .F /.hdom/.G/ (8.19)

which is, by definition, an expression for total stand cubic volume. While the result
that basal area as the measure of stand density results in the best fit of (8.17)
is expected, it should be noted that basal area has consistently produced good
results for a variety of growth and yield prediction objectives. These empirical
results, coupled with the objective definition of basal area per ha and the ease of
its measurement, make basal area a highly attractive measure of density for stand
modeling purposes.

In highly uniform stands – such as planted monocultures – number of trees per
unit area is quite adequate for growth and yield estimation. Trees per ha is sometimes
combined with basal area per ha in order to obtain a more complete assessment of
site occupancy and stand structure.

In some of the literature on stand density measurement, the desirability of
developing measures that can be applied without reference to stand age or site index
is expressed. While assessment of density for stands that are at particular points
of development (e.g. actively self-thinning) may be possible without reference to
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age or site quality, many forest management situations require that site occupancy
be determined throughout all stages of stand development from establishment to
crown closure to self-thinning and beyond. In these situations stand density must be
modeled as a function of species, stand age, and site index and often silvicultural
treatments as well. These circumstances require that site occupancy be regarded
as dynamic and that stand density functions be incorporated as a component in a
system of inter-related equations for modeling stand development through time. In
subsequent chapters which describe stand-level models for even-aged structures,
we will deal primarily with basal area and stems per hectare as measures of site
occupancy and we will consider these measures to be dynamic with regard to age
and site index.

8.9 Evaluation of Concepts Underlying Stand
Density Measures

While empirical correlations between growth and yield values and a number of stand
density expressions do not vary greatly, that does not imply that all are equally
desirable or sound for modeling purposes. Having sound supporting biological
and ecological rationale for measures of stand density provides generality in their
application and use. In a series of papers, Zeide (1985, 1987, 1991, 1995, 2002,
2005, 2010) analyzed self-thinning and stand density using reasoning and empirical
evidence. A brief summary of the arguments and conclusions presented in Zeide’s
papers follows.

The simplest measure of density is number per unit area, but to be useful in
quantifying crowding or competition for space, tree size is an essential component of
stand density measures. Number of trees is necessary but not sufficient to adequately
describe stand density. A large number of stand density measures that include tree
size have been advanced. Commonly-used measures of size are tree-stem volume,
diameter, and height. Relying on knowledge of forest tree characteristics and stand
development when comparing self-thinning relationships, Zeide (2010) concluded
that measures based on diameter are to be preferred.

Basal area has the same components as Reineke’s index (number of trees and
stem diameter), but the power of diameter is 2 for basal area and 1.6 for the index.
Empirical evidence indicates that numbers of trees in self-thinning stands is related
to mean diameter expressed as a power less than 2.

Tree stem volume is a principal variable for many forestry purposes, but it is not
the best representation of crowding (Zeide 2010). Crowding depends on the space
trees occupy, which is closely related to crown, not stem, size. The size of crowns
increases with stem diameter but, given trees of the same diameter, decreases with
tree height within a stand. As elaborated by Zeide (2002):

This means that taller trees have smaller crowns than shorter trees with the same diameter.
On the other hand, stem volume increases with both stem diameter and height. This
reasoning explains why stem diameter, the easiest tree dimension to measure, has a closer
relationship with crown size than stem mass or volume.
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Zeide (2010) noted that in dense stands with complete crown closure, the number
of trees is inversely related to the square of average crown diameter. Therefore,
he asserted, the variable most closely related to crown diameter will be the best
predictor of self-thinning. Average height is not as highly correlated with crown
width as average diameter, and stem volume, which involves both diameter and
height, is intermediate in correlation.

Similar correlation of stand density measures in empirical fitting of growth and
yield equations does not necessarily mean equivalent behavior when applied for
a variety of purposes and across a spectrum of conditions. Based on reasoning
advanced by Zeide and on empirical relationships between crown width and tree
variables, one would expect measures using stem diameter to be “best” followed
by those employing stem volume and measures involving height. However, it is
important to note that quantifying stand density has been and remains one of the
most vexing problems in forest modeling and a completely satisfactory measure has
not yet been advanced.
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Chapter 9
Indices of Individual-Tree Competition

Growth of individual trees on particular sites is influenced by a number of factors
such as age, size, micro-environment, genetic characteristics, and competitive
status. Past growing conditions and genetic potential to grow account for actual
characteristics of the tree, such as size and vigor, which are usually introduced in a
tree growth model by initial tree size and age. The influence of other factors may be
separated into the following three components:

– Micro-environmental and genetic influences, represented by a ratio of some
dimension of the tree to the mean or maximum value of this dimension in the
stand;

– General environment of competition, which is usually taken into account using
stand density measures such as total basal area per ha or others presented in
Chap. 8;

– Average growth potential of individual trees as modified by the influence of local
neighbors.

Competition may be defined as an interaction between individuals brought about
by a shared requirement for a resource in limited supply, and leading to a reduction
in the survival, growth and/or reproduction of the individual concerned (Begon et al.
1986). The effect of competition on growth of individual trees has long been studied
in an attempt to more accurately predict tree increment and mortality.

The effect of local neighbors is usually expressed by some mathematical
formulation – commonly referred to as a “competition index” – representing
how much each tree is affected by its neighbors. Functions used to quantify
competition range from simple formulations expressing the hierarchical position
of the tree within the stand or plot to more complex indices that express the
size of, distance to, and number of local neighbors. Munro (1974) classified
competition indices as distance-independent (not requiring individual tree loca-
tions) and distance-dependent (requiring tree coordinate locations for computation).
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Subsequently, Stage and Ledermann (2008) and Ledermann (2010) presented a class
of competition measures that they termed “semi-distance-independent” indices.

This chapter focuses on the quantification of competition by local neighbors and
its influence on individual tree growth.

9.1 Distance-Independent Indices

Distance-independent indices do not require individual tree coordinates, since they
are simple functions of stand level variables and/or dimensions of the subject tree
in relation to the average or maximum tree value of the stand. A brief description of
representative examples of these indices by category or type follows.

Relative dimensions

These indices are mathematical formulations that measure the hierarchical position
of the subject tree within the stand. Examples are ratios of a tree’s dimension to the
dimension of the average tree (Glover and Hool 1979; Daniels et al. 1986), larger
tree, or the average dimension of the dominant trees (Alder 1979) in the stand:

Rxm D xi

xm

Rxmax D xi

xmax

Rxdom D xi

xdom
(9.1)

where x is a tree variable such as diameter, height or some crown variable (Biging
and Dobbertin 1995) and the subscripts m, max and dom indicate, respectively, the
stand average, maximum and the average size of dominant trees.

Area proportional to relative tree basal area

This measure, designated AP gi , consists of dividing the plot area among the
individual trees according to their dimension (for instance basal area) in relation
to the dimension of the average tree of the stand (Tomé and Burkhart 1989):

APgi D 10;000

N

gi

Ng (9.2)

Crown ratio

Crown ratio (crown length divided by total tree height) has also been used to express
the past competition undergone by each individual tree (Daniels et al. 1986; Soares
and Tomé 2003):

cr D cl=h

Measures based on trees larger than the subject tree

The basal area of the trees greater than the subject tree (G>di) was first proposed
by Wykoff et al. (1982) and has been largely used since then either in its absolute
value or relative to stand basal area (G>di=G). Later on, Schröder and Gadow (1999)
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Neighbor 1

Neighbor 3

Neighbor 4Subject tree

Neighbor 2

ca1 cai ca3 ca4

Fig. 9.1 Computation of a distance-independent index based on crown cross sectional areas
calculated at a reference height equal to p% of the height of the subject tree (Adapted from Biging
and Dobbertin 1995)

proposed a related competition measure (G>dimod) that combines G>di with relative
spacing (Rs):

G>dimod D 1

Rs

	
1 �

	
G>di

G




(9.3)

Ritchie and Hann (1986) employed the crown competition factor of trees larger
than the subject tree to model individual tree height growth of Douglas-fir in Oregon;
Biging and Dobbertin (1995) used similar indices based on tree crown variables
including crown cross-sectional area, crown volume, and crown surface area.

Measures based on crown variables evaluated at a certain percentage of crown
length

Biging and Dobbertin (1995) proposed a distance independent measure of compe-
tition that utilized crown areas computed at a reference height equal to p% of the
height of the subject tree (hp). If the base of the crown of a competitor is above this
height, the full crown area is used instead; whereas if the tree height is below the
reference height the tree is not considered (Fig. 9.1):

CCp D 1

Sa

nX
iD1

capi (9.4)

where CCp is crown cover computed at hp , Sa is plot surface, cap is the crown
cross sectional area of one tree at the same height (D 0 if the tree is smaller than this
height and to the crown area if the tree crown base is higher than hp).
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The authors also used the same index with crown volume and crown surface
above hp instead of crown cross-sectional area.

Distance-independent indices are easy to calculate and less demanding in data
and computer time, which make them preferable to distance-dependent indices in
some applications.

9.2 Distance-Dependent Indices

According to Opie (1968), Staebler presented in 1951 perhaps the first individual
tree competition index. He assumed each tree had a circular area of influence
expressed as a function of its size and measured competitive stress as the degree
to which this influence area was overlapped by those of its neighbors.

Later on, measures of local stand basal area around individual trees were utilized
to quantify the local inter-tree competition and its relationship with tree growth
(Lemmon and Schumacher 1962a, b; Spurr 1962). Two years later, Newnham (1964)
used a competition index in the development of a growth model for Douglas-fir in
British Columbia. Opie (1968) formulated an area-overlap index, and since that time
a wide variety of competition measures have been developed.

The computation of distance-dependent measures of point density, or com-
petition indices, involves two main steps: (i) selection of competitors, and (ii)
computation of an index that synthetize the degree to which the subject tree has
to share resources with its competitors. With the exception of a few indices,
implementation of these two steps is not necessarily linked; therefore the following
sections will present them separately.

9.2.1 Selection of Competitors

The selection of the neighbors that affect growth of a subject tree is of crucial
importance when modeling inter-tree competition. While various methods for
choosing competing neighbors have been proposed, the most common approaches
include those listed below.

Using a fixed area or a fixed number of trees

Examples are:

– All trees within a circle of fixed radius centered at the subject tree (Hegyi 1974;
Pukkala and Kolström 1987)

– Search radii as a multiple of the mean crown radius of overstory trees or as a
multiple of the crown width of the subject tree (Lorimer 1983)

– A fixed number of nearest neighbors (Soares and Tomé 1999; Rivas et al. 2005)



9.2 Distance-Dependent Indices 205

Subject tree i

Neighbor 1
competitor

Neighbor 2
non competitor

l

r

disti,1

disti,2

Fig. 9.2 Selection of
competitors using Bitterlich’s
angle count method

Trees selected by angle count sampling

– Trees selected according to Bitterlich’s angle count sampling centered at the
subject tree were used by Hamilton (1969) and Daniels (1976).

The condition for a neighbor j to be considered as a competitor when applying
Bitterlich’s angle count method is that:

distij < distlim D kdj

where distij is the distance between subject tree i and neighbor j, dj is the diameter
of tree j and k is a function of the basal area factor used (Fig. 9.2). Soares and
Tomé (1999) noted that the selection of competitors using a basal area factor, which
results in a linear relationship between the search radius and the tree dimension, did
not result in a realistic number of competitors. To overcome this problem they tested
several alternative rules among which several were based on asymptotic functions of
the tree dimension (Fig. 9.3); the best results were obtained by use of the Richards
function with an asymptote equal to 7 m.

Areas of influence overlap

Areas of influence overlap have been found useful when quantifying local com-
petition. A measure of size (e.g. dbh) determines each tree’s zone of influence.
In Fig. 9.4, distij is the distance between the subject tree i and the neighbor j,
with the radius of the respective areas of influence Ri and Rj . The neighbor j is
a competitor if:

distij < Rj C Ri

Competition elimination angle

Competing trees may be selected according to the competition elimination angle
(proposed by Lee and Gadow and referred in Gadow and Hui 1999). The method
is based on a fixed search radius to select the neighbors of a given subject tree.
Each neighbor may be an active or a passive competitor, based on a competition
elimination sector defined by a specific elimination angle. The magnitude of the
angle is fixed a priori. The nearest neighbor is first selected as a competitor and all
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Fig. 9.3 Relationship between the distance of competition and tree size: (a) basal area factors
of 1–4 m2 ha�1; (b) hyperbolic function; (c) monomolecular function; (d) Richards function
(an asymptote (A) of 7 m was assumed); k and m are shape parameters (Adapted from Soares
and Tomé 1999)

the trees located within the angle with the vertex at the subject tree and centered at
the neighbor are considered as passive competitors and discarded from the selection
procedure; the nearest neighbor outside the elimination angle is then selected and
the respective passive competitors identified; the procedure ends when all the active
competitors have been identified.

Selection using a vertical search cone

Trees can be selected using a vertical search cone. An upside-down search cone is
set up at a certain height of the subject tree (stem base, base of the crown or some
point within the crown) and all the trees whose crowns overlap the search cone
are considered as competitors (Pukkala and Kolström 1987; Biging and Dobbertin
1992; Pretzsch 2009). Using the notation in Fig. 9.5 (search cone, with an opening
angle of ˇ, centered at a height hci of the subject tree), a neighbor is selected as a
competitor if:

hj > hci C distij tan .90 � ˇ=2/
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Subject tree i

Fig. 9.4 Selection of competitors in area overlap competition indices (cr1Ccri < disti;1 therefore
neighbor 1 is not a competitor to subject tree i; cr2 C cri > disti;2 therefore neighbor 2 is a
competitor to subject tree i)

β = 90°

Neighbor 1

Neighbor 3

Neighbor 4Subject tree

Neighbor 2 

Fig. 9.5 Selection of competitors using a vertical search cone with an opening angle ˇ D 90º.
Neighbors 3 and 4 are selected as competitors. The shaded areas in the crowns of the competitors
are used in the competition indices CIcvha and CIcvsha proposed by Biging and Dobbertin (1992)

9.2.2 Formulation of the Competition Index

Distance-dependent competition indices include, directly or indirectly, the size of
the neighbors and their distance to the subject tree. The competitive influence of
a neighboring tree should be a decreasing function of the distance between the
neighbor and the subject tree and an increasing function of the neighbor’s size
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(Weiner and Solbrig 1984). Different methods have been applied to synthetize the
information from the neighbors’ size and distance from the subject tree into an
index. According to the principles in which they are based, the competition indices
can be classified into several types that will be further described in the next sections.

9.2.2.1 Point Density Indices

Lemmon and Schumacher (1962a, b) pointed out that basal area measurements with
an angle gauge, using the center of study trees as a sampling point, would provide
an assessment of the density of competing trees around the tree being studied.

Spurr (1962) adapted point basal area for use as a point density measure (CIPD).
Whereas in the Bitterlich angle-count technique a limiting angle is arbitrarily chosen
and the number of trees exceeding the angle when viewed from a center point are
counted (Fig. 9.2), in the angle-summation method, an angle is chosen so as to
define a one-tree plot and an estimate of basal area is computed; a second angle is
chosen to create a two-tree plot and a second estimate of basal area results, etc.;
the process is continued until the desired number of trees has been measured. The
final estimate of basal area is the mean of the individual estimates, each based upon
the angle subtended by a separate individual tree in the plot. The one-tree plot is
based on the tree that subtends the largest angle from the viewing point. This tree
may not be the closest or the largest tree in the vicinity. In the ordered sequence, the
second tree is the one subtending the second largest angle, which is not necessarily
the second closest or second largest tree near the sampling point.

Spurr (1962) presented two options for this index, which consist of excluding
(CIPD1) and including (CIPD2) the subject tree:

CIPD1i D 2500

n

2
4 nX

j D1

.j � 0:5/

	
dj

distij


3
5 (9.5a)

CIPD2i D 2500

n

2
4 nX

j D1

.j C 0:5/

	
dj

distij


3
5 (9.5b)

where n is the number of competitors, dj is diameter at breast height of competitor
j and distij is the distance between subject tree i and competitor j.

9.2.2.2 Area Overlap Indices

Area overlap indices (AO), the first distance-dependent indices to be developed, are
based on the sharing of the areas of influence of the subject tree and its competitors.
The area of influence, or influence zone, can be defined as an area over which the
tree obtains or competes for site resources (Opie 1968). Competition between trees
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is assumed to occur when their zones overlap. All trees whose area of influence
overlaps the area of influence of the subject tree are considered to be its competitors.
Various definitions of area of influence, measure of overlap, and the use of weights
in summing area overlaps lead to different area overlap indices.

The most common definitions of area of influence involve linear functions of
dbh (e.g. Opie 1968; Alemdag 1978; Tomé and Burkhart 1989) or of open-grown
tree crown radius (e.g. Bella 1971; Arney 1974; Alemdag 1978; Ek and Monserud
1974).

According to Bella (1971), Staebler’s area overlap index used linear overlap
within competition circles. Angles subtended by overlapping crowns were used by
Newnham (1964), but area overlap (Opie 1968; Bella 1971; Arney 1974; Ek and
Monserud 1974) has been the most frequently applied measure.

Most area overlap indices can be included under the generalized formula:

CIAOi D
nX

j D1

aoij

AIi

�
Rji
�m

(9.6)

where aoij is the area overlap between the subject tree i and the competitor j; Rji is
the ratio between the dimensions of the competitor j and the subject tree i; m is an
exponent; and AIi is the area of influence of subject tree i and other symbols are as
before.

Holmes and Reed (1991), recognizing the importance of root competition,
developed several variants of a root/crown index that include not only crown overlap
but also root overlap.

Pretzsch (2009) describes the “lateral crown restriction” (") as the area overlap of
the potential crown diameter of the subject tree with the crowns of the adjacent trees
computed at the height at which the crown of the subject tree is larger (Fig. 9.6). This
methodology has the advantage of computing lateral restriction. Using Fig. 9.6 as an
example, in horizontal projection the crown of the subject tree overlaps the crowns
of neighbors 1, 2 and 3. However, at the height of the widest part of the subject
tree’s crown, just the crowns of trees 1 and 3 overlap its potential crown.

9.2.2.3 Indices Based on the Size and Distances of the Neighbors
Within a Search Radius

The best-known indices of this type fall under the category of distance-weighted
size ratio (CIDR) indices, first used by Hamilton (1969) and Hegyi (1974) and
defined as the sum of the ratios between the dimensions of each competitor to the
subject tree, weighted by a function of the inter-tree distance. In Hegyi’s (1974)
index all trees within a fixed radius were considered competitors. Hamilton (1969)
defined as competitors all trees selected by a fixed angle gauge sweep centered at the
subject tree (Fig. 9.2) and this definition of competitors has been preferred in most
of the following applications (Daniels 1976; Alemdag 1978; Daniels et al. 1986;
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Neighbor 1

Neighbor 3

Neighbor 4

Subject tree

Neighbor 2

Fig. 9.6 Area overlap index computed according to the “lateral crown restriction” proposed by
Pretzsch (2009). In horizontal projection the potential crown of the subject tree (represented by the
bold line) overlaps the crowns of neighbors 1, 2 and 3. However, at the height of its larger crown
just the crowns of trees 1 and 3 overlap its potential crown

Tomé and Burkhart 1989). However the index can be applied with any other rule
for the selection of competitors. CIDR type indices have the advantage of being easy
to compute, while explaining variation in growth with precision similar to other
indices.

Indices of this type can be generalized by:

CIDRi D
nX

j D1

Rj if
�
distij

�
(9.7)

where n and Rji are as previously defined and f .distij/ is a function of the distance
between the subject tree i and competitor j.

Lorimer (1983) pointed out a limitation to these types of indices, namely that
their numerical values decrease in a given stand over time even when the stocking
level remains constant. To overcome this problem, Lorimer proposed using a
constant search radius defined as a multiple of the average crown radius of the
overstory and weighting the distance function with the inverse of the search radius:

CIDRi D
nX

j D1

Rji
1

distij =dists
(9.8)

where dists represents a fixed search radius, which is a multiple of the mean crown
radius of overstory trees and other symbols are as defined before.

Different variables have been used in the ratio Rj i including tree diameter or
basal area at breast height, tree height, and crown variables. Biging and Dobbertin
(1992) used the crown cross-sectional area of the competitors and the subject tree
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computed at a reference height defined as p% of the height of the subject tree in
the computation of Rji. Other crown variables, such as crown surface area or crown
volume computed above the reference height, have also been used.

Biging and Dobbertin (1992) proposed two indices that did not utilize distance
as a weighting factor. They used the crown volume or crown surface area of the
competitor tree above the point where a vertical angle from the base of the subject
tree cuts the axis of the stem of the competitor (Fig. 9.5) relative to the crown volume
or crown surface area of the subject tree:

CIcvhai D
nX

j D1

cvhaj

cvi
(9.9a)

CIcshai D
nX

j D1

cshaj

csi
(9.9b)

where cvhaj and cshaj are crown volume and crown surface area of the competitor
j above the height at which the vertical angle cuts its stem axis (haj ) and cvi and csi

are crown volume and crown surface area of the subject tree i. In these indices the
weighting function for distance is not used as the distance between the subject tree
and each competitor is already embedded in the crown variable itself.

Cole and Lorimer (1994) also used crown measures in size ratio indices and
found the variable exposed crown surface area to perform well. Exposed crown
radius was measured as the portion of the total radius estimated to be free from
overlap from above by the branches of neighboring trees.

Several authors formulated indices similar to those just described but using just
the size of the neighbors instead of the ratio of the sizes of the competitor and the
subject tree (Lorimer 1983; Newton and Jolliffe 1998; Canham et al. 2004; Zhao
et al. 2006). Also, variants on the way the distance to competing neighbors is taken
into account have been proposed (see, for instance, Martin and Ek 1984; Newton
and Jolliffe 1998).

9.2.2.4 Indices Based on Horizontal or Vertical Angles Centered
at the Subject Tree

Pukkala and Kolström (1987) and Rouvinen and Kuuluvainen (1997) used the sum
of the horizontal/vertical angles from the subject tree to all the neighbors within a
fixed search radius (competitors) as a competition measure:

CISang D
nX

j D1

naX
kD1

˛jk (9.10)

where ˛jk is the horizontal/vertical angle subtended by some dimension xjk of the
neighbor. They tested vertical angles centered at the base of the subject tree or at a
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certain height within its crown and used different dimensions of the neighbor, such
as diameter at breast height and crown width, for horizontal angles; total tree height
or height above the insertion point of the vertical angle was used for vertical angles.
Rouvinen and Kuuluvainen (1997) proposed using the widest horizontal angle from
a subject tree without neighbors, called the widest free angle, in a competition
measure formulation.

When selecting competitors with a search cone of magnitude ˇ, a possible
measure of competition is given by the sum of the angles � between the surface
line of the search cone and the line connecting the tip of the competitor tree j with
the cone apex on the subject tree i. The closer and taller the competitor compared to
the subject tree, the greater the angle � and the competitive strength of this neighbor.
Pretzsch (2009) describes a competition measure he developed that also includes the
ratio of the competitor and subject tree crown cross-sectional areas at the height
of the search cone insertion (if the height of the maximum crown width of the
competitor is higher than the cone insertion height, the crown projection area is
used instead) and a species-specific light transmission coefficient:

CISangi
D

nX
j D1

�j

cahcj

cahci
ltj D

nX
j D1

"
arctan

 
hj � .p =100/ hi

distij

!
� ˇ

#
cahcj

cahci
ltj

(9.11)

where cahc indicates the crown cross-sectional area at height of cone insertion hc,
�j is the angle defined by the surface line of the search cone and the line between
the insertion point of the cone and the top of the competitor tree and ltj is the light
transmission coefficient for competitor j (dependent on species) and other symbols
are as before.

9.2.2.5 Growing Space and Area Potentially Available

Alemdag (1978) proposed an index defined on the basis of the growing space for
the subject tree that may also be included under the distance-weighted size ratio
indices. The stand surrounding a central tree i is divided into as many imaginary
circle segments as there are competitors. Each circle has a radius proportional to the
size of the subject tree in relation to the sum of its size and that of the corresponding
competitor. The sum of the area of these n segments, assumed to be the area available
for tree growth, is used as the competition index:

CIGS D
nX

j D1

�

�
distij

di

di C dj

�2

„ ƒ‚ …
area of the circle

dj

distij

, nP
j D1

dj

nP
j D1

distij

„ ƒ‚ …
opening width of the segment

(9.12)
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Fig. 9.7 Area potentially
available to each tree in a
permanent plot established in
a Eucalyptus globulus
plantation

The first term in Eq. 9.12 defines the area of the circle corresponding to each
competitor and the second term defines the opening width of the segment. The radius
of the segments increases with the diameter of the subject tree and with its distance
to the neighbor and its width is proportional to the diameter/distance ratio of the
competitor in relation to the same ratio for all the competitors.

An area potentially available index (APA) was first defined by Brown (1965) as
a measure of point density. The area available to each tree is calculated as the area
of a polygon defined by the bisectors to the inter-tree lines (example in Fig. 9.7).
Essentially the APA for each tree is derived from a Dirichlet tessellation (or Voronoi
diagram) of the point pattern of trees in a stand. Moore et al. (1973) modified
Brown’s index by bisecting the inter-tree lines proportionally to the subject tree
and competitor sizes; this version was used with success by Pelz (1978), Daniels
et al. (1986), and Tomé and Burkhart (1989).

Pelz (1978) extended the concept of tree polygons to the third dimension
by defining a tree growing space represented by a geometric solid obtained by
multiplication of the tree polygon area by the height of the subject tree. However,
simple correlations of this three-dimensional APA with tree basal area growth were
not higher than those obtained with the traditional APA.

Nance et al. (1988) constrained the distance to a polygon side by a function of
the radius of an open-grown tree of the same diameter as the subject tree to prevent
polygon areas from becoming excessively large. This variant of the APA index may
be useful in stands with irregular spatial patterns.
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9.2.2.6 Indices Based on Ecological Field Theory (EFT) and on Field
of Neighborhood (FON)

In the last two decades ecologists have given particular attention to the so-called
individual-based models in which inter-plant competition plays an essential role
(e.g. Burton 1993; Berger and Hildenbrandt 2000; Grimm and Railsback 2005;
Berger et al. 2008). These individual-based models are similar in concept to
distance-dependent, individual-tree growth and yield models. Berger et al. (2008)
identified two types of spatially explicit individual-based models describing plant
competition: (i) site-based neighborhood models, and (ii) individual-based models.
The first class, often referred to as “cellular automata” (CA) or as “grid-based
models”, refers to models that represent spatial relationships on regular (hexagonal
or squared) lattices or grids, i.e., space is discretized. The second class includes
models that consider plant positions in continuous space. Distance-dependent
models described in Sects. 9.2.2.1, 9.2.2.2, 9.2.2.3, 9.2.2.4, and 9.2.2.5 are part of
this class although the individual-based literature uses different designations for the
indices. Indices based on the size of and distances to neighbors within a search
radius have been used with a fixed search radius and designated as fixed-radius
neighborhood models, area overlap indices as zone of influence models, and area
potentially available as tessellation models.

Following is a brief description of two competition models that have been
advocated in the literature on individual-based models: models applying ecological
field theory (EFT), and those based on the field of neighborhood (FON) model.

The EFT model (Wu et al. 1985) uses classical field theory concepts to outline a
general theoretical approach to describe spatial interference among plants, assuming
that the combined effects of a plant’s crown, stem and roots on the resources
available to other plants in the area constitute a field of influence. The field of
influence of each local plant is first defined for each resource (water, nutrients
and light) as a continuous function scaled from 0 to 1 (0 represents the most
favorable environment) and the effects of the plant on the different resources are
then integrated to compute a general measure of resource availability around each
single isolated plant. An iterative procedure is used to compute resource availability
at each point (x, y) resulting from the influences of all the individuals in the plant
community. In this way it is possible to use an integrated measure of the resources
available to each plant when modeling its growth. One problem with this type of
model, other than the complexity of the associated computation, is that the influence
of a single tree on resource availability cannot be observed in the field because each
point is influenced simultaneously by more than one tree. Pukkala (1989) used EFT
to model competition among Scots pine trees in a 70-year-old stand located in a
rather poor site of North Carelia, Finland. Miina and Pukkala (2002) developed
EFT-based competition indices to model growth of Scots pine and Norway spruce
in Finland. In both cases, EFT-based competition indices performed slightly better
than indices based on the sum of vertical angles.

Berger and Hildenbrandt (2000) developed the concept of field of neighborhood
(FON) that is related to EFT. The basic idea is also the definition of a tree’s field
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of influence that takes the value 1 at the tree location and decreases exponentially
across the radius of the zone of influence. The method assumes that the FON’s
of all trees superimpose, therefore at a given location (x, y), the aggregate field
strength of all trees, F(x, y), is given by the sum of their single field intensities.
The specific, dimensionless value of F(x, y) depends on the local configuration of
all neighboring trees and represents the local neighborhood situation taking into
account the number, the weighted distance and the individual size of the neighboring
trees. When describing the neighborhood situation of a particular tree, the authors
assume that the tree ‘perceives’ the aggregate field strength F on its entire zone
of influence. Consequently, the mean value FA of the aggregate field strength F
produced by all other trees on the tree’s area is computed and used as a competition
index. Similarly, Pommerening et al. (2011) used the idea of the shot-noise field
from Illian et al. (2008) to derive the competition load of a tree by additively
aggregating the competition effects of all other trees. The authors noted that EFT
and FON are conceptually similar, with the difference being that competition effects
are aggregated in a multiplicative manner in the EFT model and in an additive
fashion in the FON and shot-noise field approaches.

9.2.2.7 Indices Based on the Estimation of Shading or Light Interception

Among the resources limiting growth of individual trees in forest stands, light (i.e.,
photosynthetically active radiation, PAR) is often assumed to be the most important
(e.g., Cannell and Grace 1993). Therefore indices that estimate light interception
or the degree of shading from neighbors seem useful to model competition for
light. The simulation of light interception within a forest stand has been a topic
of research in ecology with the objective of better understanding stand production
and dynamics. Brunner (1998) presents an exhaustive review of such light models.
However, some recent studies have used simplified models of light interception as
a way to include inter-tree competition in modeling tree growth. Examples of these
types of indices are described by Brunner and Nigh (2000), Pretzsch (2009), and
Canham et al. (2004).

9.2.3 Asymmetric/One-Sided Versions
of the Competition Indices

Competition processes have been defined according to two basic models: symmet-
ric/asymmetric and one-sided/two-sided competition (Brand and Magnussen 1988;
Weiner 1985, 1986, 1990). In two-sided competition, resources are shared (equally
or proportionally to size) by all the trees while in one-sided competition larger trees
are not affected by smaller neighbors. When there is perfect sharing relative to size,
competition is symmetric. One-sided competition may be considered as an extreme
case of asymmetric competition, and two-sided competition can be symmetric or
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asymmetric according to whether or not the sharing of resources is proportional to
the size of the individuals. It has been shown for some species that, in the early
stages of stand development, competition for light may not be present, although the
effects of competition for water and nutrients are evident. Additionally, even when
competition for light is the main factor impacting individual plant growth, two-sided
competition for water and nutrients also has an effect.

Depending on the respective formulation, competition indices implicitly assume
an asymmetric or symmetric partitioning of resources among neighboring trees. In
this section we analyze how the different types of competition indices previously
identified have been used to reflect symmetry or asymmetry in the partitioning of re-
sources among trees. The term asymmetric competition will be used throughout this
section to indicate that the neighbors bigger than the subject tree are assumed to use
the resources more than proportionally to their size, eventually in a unilateral way.

All the distance-independent competition indices that are based on the trees
larger than the subject tree implicitly assume asymmetric competition and therefore
reflect mainly competition for light. In distance-dependent indices the distinction
between these two models relates also to the selection of competitors.

Lorimer (1983) included, among the competition indices that he compared, sev-
eral formulations that reflect asymmetric competition by restricting the competitors
to those neighbors that belong to certain crown classes or to those that belong to a
crown class higher than that of the subject.

Most of the competition indices used by Pukkala and Kölstrom (1987) expressed
asymmetric competition as they restricted the neighbors to those larger (in dbh
and/or height or some function of height) than the subject tree. Rouvinen and
Kuuluvainen (1997) also used both symmetric and asymmetric variants of the
competition indices.

When studying maize, Yoda et al. (1957) found that within a row of plants,
once a difference has been triggered, it is progressively exaggerated (Harper 1977).
Accordingly, Tomé and Burkhart (1989) expressed the competitive status between
each tree and its neighbors in eucalyptus plantations taking into account their
relative dimensions. It was assumed that neighbors larger than the subject tree
place the subject tree at a competitive disadvantage, whereas those smaller put
it at a competitive advantage. This leads to competition indices that are sums of
positive and negative values. Dominant neighbors make a positive contribution to
the index while suppressed neighbors subtract from the index. Moreover, Tomé
and Burkhart assumed that in the competition between two trees of different sizes,
the contribution of the larger tree to the smaller tree competition index is equal in
absolute value, although opposite in sign, to the contribution of the smaller tree
to the larger tree competition index. When applying these competition indices,
dead neighbors were included as a special kind of suppressed neighbor. The size
of a dead tree was set as dj 0 D min.d0=.2ny/; dmin/ where d0 is the dbh of the
tree before dying, ny is the number of years since it died, and dmin is the dbh
of the smallest tree in the stand. When selecting neighbors, dominant competitors
were selected using the search radius centered at the subject tree while suppressed
competitors were selected by centering the search radius at the neighbor. The
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number of competitors selected in this way was, in most cases, larger than if
dominance/suppression relationships were not considered. Also some modification
was made in the calculation of ratios of dimensions between the competitors and the
subject tree. For dominant neighbors the ratio was neighbor/subject tree as usual, but
for suppressed neighbors the ratio was subject tree/neighbor (with a minus sign) in
order to ensure a decrease in the competition index directly proportional to subject
tree dimension and inversely proportional to suppressed neighbor dimension. This
computational algorithm guarantees that the contribution of every neighbor to a
subject tree’s competition index is equal, but opposite in sign, to the subject tree’s
contribution to its own index. Taking distance-weighted size ratio indices as an
example (the index for area overlap indices is developed in a similar way), the index
expression is specified as:
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where n1; n2; and m are, respectively, the number of dominant, suppressed and dead
neighbors. Based on the same philosophy the authors also developed an asymmetric
distance-weighted size differences index:
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where the symbols are as before. Canham et al. (2004) also used an asymmetric
version of the indices they tested based on the differences of the sizes of the
competitor and the subject tree.

Soares and Tomé (1999) compared different competition indices, including the
asymmetric variants from Tomé and Burkhart (1989) and the corresponding unilat-
eral variants (only trees larger than the subject tree considered as competitors), with
data from permanent plots and spacing trials established in eucalypt plantations. In
general, the unilateral and asymmetric versions of the indices performed better than
the other measures included in the comparison.

Wimberly and Bare (1996) used asymmetric/unilateral versions of the DR and
AO competition indices they tested by imposing the constraint that only neighbors
with a basal area larger than the subject tree would be included as competitors.
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They also presented a layered variant of APA index (APAL) that computes the
tessellation separately for each of three crown classes – dominant and co-dominant
combined into one class, intermediate and suppressed.

9.2.4 Interspecific Competition

Models for complex, multi-species and multi-aged forest structures are often
required. Hence, quantifying competition in such stands with the identity of the
species of neighbors has been an area of research emphasis.

The competition index used by Pretzsch in the SILVA model (Pretzsch et al.
2002), presented in Eq. 9.11, includes a species-specific light transmission coeffi-
cient. Additionally, the authors found that height and diameter growth of spruce,
pine and beech are significantly affected by the type of competitor, and that this
effect is not covered by the light transmission coefficients, therefore an additional
differentiation between deciduous and coniferous trees was introduced by using a
tree-type specific value that is calculated as the ratio between the sum of crown
surface area of the coniferous competitors in relation to that of all competitors.

Canham et al. (2004), when defining competition indices for application in
forests of northern, interior British Columbia dominated by western hemlock and
western red cedar, used a parameter (k) as shown in (9.15) to account for tree
species:
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where djk is the diameter of competitor j of species k, located at a distance dijk from
subject tree i and ˛ and ˇ are parameters.

Zhao et al. (2006) modeled growth and survival of individual trees in a natural
temperate species-rich forest taking species groups neighborhood effects into
account. They used distance-weighted size-ratio and distance-weighted neighbors’
size indices that were computed separately according to the species group of the
neighbors. The species group specific competition indices were tested in individual-
based diameter growth and survival models.

Miina and Pukkala (2000) used optimization techniques combined with regres-
sion analysis to specify the parameters of five competition index types for a mixture
of Scots pine and Norway spruce. The best model included an index computed
from vertical angles formed by a horizontal plane and the tops of competitors.
The elevation of the horizontal plane was computed with a species-specific linear
regression model using height of the subject tree as the predictor. Pine competitors
nearer than 6 m and spruce competitors nearer than 9–10 m were included in the
optimal competition index.

Kaitaniemi and Lintunen (2010) studied the potential importance of competitive
species interaction for tree growth prediction in mixed stands of silver birch, Scots
pine, and Siberian larch by selecting subject trees with a high local abundance
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of a single dominant neighboring species. The dominant neighboring species was
defined as the one with the sum of basal areas being over half (typically close to
80%) of the total sum of basal areas of all the neighboring trees. The importance of
neighbors identity was assessed by fitting models of tree growth – average annual
height increment, diameter growth, shoot length, branch numbers per unit crown
length, and whorl distances – that included a competition index as a covariate, neigh-
boring species as a fixed factor and site as a random factor. Interspecific neighbors
influenced annual height increment, shoot length, and branch number per unit crown
length, especially in Scots pine. Silver birch and Siberian larch were predominantly
affected by the level of competition alone, as estimated with competition indices.
A simple extrapolation of individual tree growth to the stand level suggested that
Scots pine and silver birch may grow faster in mixed than in pure stands. Siberian
larch showed negative growth responses to interspecific neighbors, but the effects
may be counterbalanced at the stand level by a corresponding increase in pine or
birch growth.

9.2.5 Clumping, Differentiation and Mingling

When modeling structurally irregular stands, it is often important to account for spa-
tial characteristics such as clumping, differentiation and mingling in the competition
indices. Clumping means that the neighbors are not uniformly distributed around the
subject tree, differentiation expresses the variability in the size of the neighbors, and
mingling measures the spatial structure of the species mixture.

The effect of the directional distribution of the neighbors was described by
Pukkala (1989) using an index aimed at expressing the distance of the center of
the competition from the subject tree. The index was computed in two stages. First,
a weighted average of the x- and y-coordinates was computed for neighbors nearer
than the search radius:
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where Nxi and Nyi are the means of the x- and y-coordinate of the competitors of subject
tree i, (xi ; yi ) are the coordinates of subject tree i, wj is a weight variable for tree
j and n is the number of neighbors. The studied weights depended on the distance
and diameter of the neighbor and the ratio between the heights of the neighbor and
the subject tree.
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Second, the distance of the subject tree to the center of competition was
calculated by

distci D
q

.xi � Nxi /
2 C .yi � Nyi /

2 (9.16)

This index was used in a tree basal area growth model, jointly with a competition
index based on the sum of horizontal angles.

The SILVA simulator (Pretzsch et al. 2002) uses the index distci but expresses it
in relation to the average distance ri that would result if all trees inside the search
cone used to derive the competition index C Isangˇ were randomly distributed:

ri D 1

2
p
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where Aci represents the projection area of the search cone at the subject tree i and
M ci the trees inside the area Aci . The normalized distance of the subject tree to the
center of competition is then:
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Gadow and Hui (1999) describe several indices to quantify size differentiation
and species mingling in the neighborhood of the subject tree. Other structural
indices are delineated in Pommerening and Stoyan (2008).

The differentiation index (Ti ) is defined as (Gadow and Hui 1999):

Ti D 1 � 1

m

mX
j D1

�
min .di ; dj /

max .di ; dj /

�
(9.18)

where m is the number of competitors and di and dj are the diameters of the subject
tree i and neighbor j, respectively. In plantations or mature stands managed for future
crop trees differentiation is low and Ti approaches 0; maximum differentiation
corresponds to Ti values close to 1.

The mingling index (Mi ) is defined as the proportion of neighbors of another
species (Gadow and Hui 1999):
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where the variable vij is D 0 if neighbor j is the same species as the central tree i
and D 1 if the neighbor j is a species different from the subject tree i. The index Mi

varies between 0, when all the neighbors are the same species as the subject tree,
and 1, when all the neighbors are another species.
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Canham et al. (2004) added the effect of clumping by including a clumping index
(ı, presented in Zar 1996) in Eq. 9.15. The clumping index is calculated as a function
of the angles from the target tree to each neighbor and ranges from 0 when the
neighbors are uniformly distributed around the target tree to 1 when they are tightly
clumped:
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where the variables and parameters are as described for Eq. 9.15.

9.2.6 Using Change in Competition Indices to Model
Thinning Effects

Modeling thinning effects remains a challenge for forest analysts (see Chap. 16), and
competition indices can potentially improve ability to simulate reaction of individual
trees to thinning.

Based on the assumption that individual tree growth following thinning should
be correlated with the amount of new growing space made available by the
treatment, Wimberley and Bare (1996) proposed that this new growing space can be
measured in terms of the change in the competitive status of the residual trees. For
competition indices that exhibit a positive correlation with competitive stress (all
except APA, APAL and the relative size indices), the corresponding thinning index
was computed as:

�CI D 1 � CIat

CIbt

where �CI is the thinning index based on competition index CI, CIat is the
competition index measured immediately following thinning and CIbt is the
competition index measured before thinning. For competition indices that exhibit
a negative correlation with competitive stress (APA, APAL and the relative size
indices), the thinning index was computed as:

�CI D CIat

CIbt
� 1

Both forms of this index equal zero when no thinning treatment is applied and
they increase with the amount of removal.

The change in the competition index value is used both in the height and diameter
increment models of the SILVA simulator to express the reaction of single tree
growth to varying pressure from local neighborhood (Pretzsch et al. 2002). Thinning
will have a strong impact on the competition index in the year thinning occurs and
this effect is therefore taken into account when predicting tree growth.

http://dx.doi.org/10.1007/978-90-481-3170-9_16


222 9 Indices of Individual-Tree Competition

9.2.7 Edge Bias in Competition Indices Computation

As described in the previous sections, the computation of local or distance-dependent
measures of competition implies knowledge of the size and location of all trees
located in the neighborhood of each tree within a plot. Bias can be introduced
if neighbors of trees near the edge of measured plots are ignored. The edge
effect is especially problematic in forest growth predictions when the long-term
development of a stand is based on a small sample area without information about
the stand structure around the plot border. Several methods that have been proposed
to correct for plot edge bias are briefly described in the following paragraphs.

A very simple method for avoiding edge bias is the use of a boundary strip or
“buffer” zone, of width Rb , inside the measurement plot. This method has been
used by many researchers when dealing with the computation of competition indices
(e.g., Soares and Tomé 1999; Miina and Pukkala 2002; Canham et al. 2004). In the
computation of competition indices only the trees in an inner plot are used as subject
trees, namely those that are at a distance larger than Rb from the plot boundary.
The width of the buffer zone should be large enough so that all relevant interaction
between trees in the reduced plot is accounted for within the plot. Determining the
optimal width of the buffer zone is difficult; if it is too small residual edge effects
will remain; if it is too large valuable data will be discarded unnecessarily. The use
of a “buffer” zone takes the actual border trees into account, rather than applying a
correction method.

The border zone outside the plot can be simulated by utilizing the structure of the
measured plot. Pommerening and Stoyan (2008), for instance, developed methods
for reconstructing plot structure using modeling of the observed point patterns.

Edge bias can be reduced by creating an artificial stand structure in the border
zone of the plot. Assuming that the border zone has a spatial structure similar to
the one observed inside the plot, the border zone can be created by one of two
methods: reflection or translation. Reflection assumes a symmetric distribution of
the trees on both sides of a reflection line that may pass through the plot border,
the border tree closest to the plot border, or at a fixed distance from the plot border.
The plot is first reflected right and left and then the enlarged plot is reflected up
and down (Fig. 9.8). This method results in large trees near the border competing
with equal sized neighbors (i.e. themselves in reflection) only a short distance away.
Additionally the method implies some periodicity at tree level as seen in Fig. 9.8.
Translation involves copying the plot and placing it around the plot boundaries
until the border zone is complete (Fig. 9.8). This method also has a propensity
for introducing periodicity at plot level (Monserud and Ek 1974) as is apparent in
Fig. 9.8. Reflection and translation methods also pose problems when using circular
plots, although it is possible to reflect or translate circles by first “transforming”
them into squares by filling the empty areas using the reflection or translation of a
square circumscribed inside the circle.

The linear expansion method for edge bias correction, developed by Martin et al.
(1977), is applicable to a wide variety of plot shapes and sizes and is reported to
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a b

Fig. 9.8 Illustration of the translation (a) and reflection (b) edge-correction methods. The
observation window, W is the center with boundaries in bold (From Pommerening and Stoyan
2006)

be unbiased under general assumptions about the forest tree spatial pattern. When
comparing the linear expansion method with plot translation techniques, Martin
et al. (1977) found that both methods performed equally well for square plots 0.08
ha in size. As the plot size diminished or its shape deviated from square, the linear
expansion method provided greater accuracy and lower bias than translation.

9.2.8 Modeling and Simulating the Spatial Pattern
of Forest Stands

It is important to note that measurements of tree coordinates are not required in
order to apply distance-dependent individual-tree models for many purposes. One
of the components of most individual-based tree growth models is a stand structure
simulator. These simulators use information measured in study plots to obtain the
variables needed to simulate a stand. Information about the spatial structure of
the stand can be given by directly providing the x, y coordinates of each tree,
in case they are measured, or by providing descriptive information about stand
structure: random, regular, or aggregated (different levels of aggregation may be
provided). Measurements of tree coordinates are essential for the development of
distance-dependent models but not for all applications in forestry practice. Distance-
dependent growth models can be applied to simulate response to alternative
management treatments, but they are generally not used for inventory updating
because it is not practical to record tree locations for the large number of samples
typically obtained in forest inventories.

Descriptions of methodologies useful for simulating spatially-specific stands are
provided by a number of authors including Tomppo (1986), Biging et al. (1994),
Pretzsch (1997), Paulo et al. (2002), and Pommerening and Stoyan (2006). (See
also Sect. 14.5.)

http://dx.doi.org/10.1007/978-90-481-3170-9_14
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9.3 Evaluation and Comparison of Competition Measures

There has been considerable debate in the literature as to whether tree spatial
information improves prediction of individual tree growth. Conceptually, one would
expect some improvement in precision when going from distance-independent to
distance-dependent indices; however, most of the comparisons of competition do
not report large differences.

Competition indices have often been compared by computing simple correlation
coefficients with tree growth and determining significance of the competition index
when added to a tree growth model in which the influence of tree size and
stand density is already accounted for in the base model. In some instances, a
distance-independent competition index has been included along with tree size and
overall stand density before testing for significance of adding a distance-dependent
measure.

9.3.1 Simple Correlations with Tree Growth or Models with the
Competition Index as the Unique Independent Variable

Daniels (1976) compared area overlap and distance weighted size ratio indices for
predicting diameter and height growth of trees in plantations of loblolly pine and
found similar correlation coefficients with tree growth for the best variants of both
types of indices tested (Ek and Monserud 1974 for area overlap indices and a variant
of Hegyi’s index for distance weighted size ratio).

Using data from three even-aged temperate hardwood stands, Lorimer (1983)
tested several formulations of distance-weighted size-ratio indices with indices
that did not include inter-tree distances, concluding that the correlation between
competition and growth is optimal over a wide range of competition radii and that
the inclusion of inter-tree distances in the formulation of the index is of little value
despite considerable small-scale variability in the stocking level around individual
trees. Highest correlations were obtained when competitors were defined to be
only those trees of equal or higher crown class than the subject tree, suggesting
that asymmetric competition was dominant in these hardwood stands. Another
conclusion was that inclusion of the size of the subject tree as well as that of the
competitors was necessary for obtaining reasonable correlations with growth.

Pukkala and Kolström (1987), using data from three plots with areas from 0.10 to
0.19 ha, observed simple correlation coefficients between competition indices and
tree growth, at plot level, between 0.40 and 0.77. Generally, correlation increased
with increasing length of the search radius, but after 4–5 m the change became
negative. The indices based on the sum of horizontal and vertical angles, as well
as Hegyi’s index, provided the highest correlation coefficients. When the three plots
were combined, the sum of horizontal angles to the neighbors with a size larger than
the subject tree, selected within a search radius of 5 m, had the highest correlation.
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The use of crown characteristics did not increase the correlation with growth above
that obtained with diameter and/or height.

Holmes and Reed (1991) compared competition indices to predict annual
diameter growth in mixed species northern hardwood stands in upper Michigan,
USA. Their study used simple correlation coefficients between annual diameter
growth and each of the competition measures studied. Generally, size-ratio indices
performed well, but Spurr’s point density and APA indices did not. The root/crown
indices tested showed good correlations with growth but did not outperform the size
ratio indices. An interesting conclusion from the study was that area overlap indices
(e.g., Bella 1971; Arney 1974) using species-specific search radii to differentiate
competition levels among tolerance classes proved useful.

9.3.2 Contribution of Competition Indices to Tree Growth
Models in Which Tree Size and/or Stand Variables
Are Already Included

Daniels et al. (1986) compared several distance-independent indices with variants
of area overlap, distance-weighted size-ratio, Spurr’s point density and APA indices
on the basis of simple correlations and multiple correlations in the presence of
other tree and stand attributes with growth of planted loblolly pine trees. The
best distance-dependent indices had little if any advantage, either in simple or
multiple correlation, over the best distance-independent indices. However, the
point density measure of Spurr and especially the APA contributed significantly to
growth prediction even in the presence of tree size, stand density, and the distance-
independent relative size and crown ratio indices. Further, APA had the highest
partial correlation when all variables were included in this multiple correlation.

Tomé and Burkhart (1989) evaluated the contribution of several distance-
dependent competition measures when added to a linear model for tree diameter
growth that already included the influence of tree size, a measure of stand density
and a distance-independent index. Generally, the contribution of competition indices
was significant, even if the differences in multiple correlation values were not very
large in magnitude. The contributions of APA and asymmetric versions of distance-
weighted size ratios were significantly higher than that of other indices.

Biging and Dobbertin (1995) evaluated several competition indices in individual
tree diameter squared and height growth models in multi-aged mixed-species
conifer stands in California, USA. The assumption was that if distance-dependent
competition indices are superior to distance-independent measures it should become
evident in heterogeneous stands, such as those examined in this study, where
individual tree competition varied greatly. Based on the reduction in mean square
error, they found that the distance-independent indices based on crown variables
evaluated at a specified percentage of crown length performed as well as or slightly
better than the best distance-dependent competition indices.
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Wimberly and Bare (1996) compared distance-independent and distance-
dependent competition measures as regressors in a basal area growth equation
for Douglas-fir and western hemlock, using data from plots measured in a single
stand that had been subjected to a range of thinning and fertilization treatments.
Performance of competition indices was analyzed as their contribution to a model of
basal area growth that already included tree size and age, crown class and a thinning
index. The distance independent index G>di was significant for both species but
much more important for Douglas-fir than for hemlock. The best distance-dependent
competition measure was the APAL, but its contribution was small for both species,
although larger than that of the distance-independent competition variable (G>di )
in the western hemlock model.

The study of Rouvinen and Kuuluvainen (1997) evaluated the contribution
of competition indices for prediction of crown base height and crown width.
A distance-dependent competition index was significant in the models for both
variables. In the height to crown base model the best competition index was an
asymmetric variant of a sum of vertical angles centered at 80% of the height of the
subject tree while the crown width model included a distance weighted size index
and an asymmetric variant of the widest free angle.

Moravie et al. (1999) compared several competition measures, including non-
spatial indices of tree vigor such as crown ratio and h/d ratio, tree position in the
canopy (tree social status), and several point density measures. Assessment of the
contribution of the various competition measures to a model of dbh growth, in which
dbh was present, showed that tree social status and all of the distance-dependent
competition indices were significantly related to diameter increment.

Soares and Tomé (1999) compared different competition indices, including the
asymmetric variants from Tomé and Burkhart (1989), using data from permanent
plots and spacing trials established in eucalypt plantations covering different stages
of stand development that were defined following a methodology proposed by
Perry (1985). In a first stage, in which competition is not yet evident, small trees
have relative growth rate (RGR) values greater than those for larger trees. In an
intermediate stage, RGR differs little among social classes. Finally, competition
effects are clearly visible and trees in the lower diameter classes are suppressed
exhibiting smaller RGR than the bigger trees. The contribution of the tested indices
to a multiple linear regression equation to predict the annual increment of tree
basal area in which tree size, stand density and a distance independent index
were present was analyzed separately for the three stages of stand development.
The asymmetric formulations of the distance weighted size ratio indices exhibited
the best performance in the first two stages of competition. When asymmetric
competition was clearly evident performance of these indices was still good but the
area potentially available indices showed the best performance. An interesting result
of this study was that the simple correlations of point density, distance weighted size
ratio (all variants) and APA were all relatively high and increasing with the three
stages of stand development; the differences among the indices became evident only
when their contribution to a model for tree basal area prediction was considered.

Pukkala (1989) and Miina and Pukkala (2002) compared the performance of two
competition indices, one based on the sum of angles and another one based on EFT.
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The performance of the indices was assessed when they were added to a tree growth
model that already included tree size. The index based on EFT exhibited a slightly
better performance.

Canham et al. (2004) considered the separation of two effects of competition:
shading by the neighbors and crowding that reflects both belowground competition
and physical aboveground inhibition of crown development. They assumed that
traditional competition indices are a measure of crowding and tested the perfor-
mance of these two types of competition measures in a model of annual radial
growth of individual trees in forests of northern, interior British Columbia, Canada,
dominated by western hemlock and western redcedar. The effects of crowding and
shading were subtracted from the potential radial growth. For both species, the
most parsimonious regression models included terms for the effects of tree size,
crowding, and shading and separate competitive effects of four different groups of
competing species. The models explained 33–59% of the variation in radial growth
of the two species. For both species, growth declined more steeply as a function
of crowding than shading. The measure of crowding that gave the best fit did not
include the dimension of the subject tree. There was striking asymmetry in the
strength of interspecific competition between hemlock and redcedar, with crowding
by hemlock having a strong effect on redcedar, while crowding by redcedar had
relatively little effect on the radial growth of hemlock.

Rivas et al. (2005) compared the contribution of a large list of distance-
independent, area overlap, and distance-weighted size indices when predicting tree
basal area growth in mature even-aged stands of Cooper pine in Mexico. The
distance-dependent indices were computed using several methods for the selection
of competitors. Based on the mean square error reduction when a competition
index was added to an individual tree basal area growth model in which site index,
stand density, basal area and the ratio between crown width and tree height had
already been included, the distance-independent competition indices G>di and the
corresponding variant modified by Schröder and Gadow (1999) performed as well
as the best distance-dependent competition indices.

Zhao et al. (2006) developed individual-based spatially-explicit diameter growth
and survival models for each species group in a natural temperate species-rich
forest in the southeastern USA. Their models explicitly partition the competitive
effects of different species groups of neighbors. The individual-based approach
proved effective in detecting density-dependent relationships and understanding
the ecological processes of the mixed-species stand. From the results, the authors
concluded that the competitive effects among different species are unequal and
asymmetric and that the identity of neighboring species was important.

Contreras et al. (2011) evaluated 16 measures of tree competition in terms of
their effectiveness as growth predictors for three important conifer tree species
in western Montana, USA. Strong correlations were exhibited between several
competition indices and tree growth for all three species. The best distance-
dependent indices explained a larger proportion of the variation in growth than
the best distance-independent indices (64% vs. 56%). Competition indices derived
from light interception models performed poorly in terms of predicting tree growth.
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The low correlations between light-value indices and growth, the authors opined,
suggest that trees in the semi-arid conditions of their study area are not competing
primarily for light.

9.3.3 Distance-Independent Versus Distance-Dependent
Competition Indices

A wide array of competition indices have been developed and no single index
or class of indices has been found to be universally superior. Performance varies
according to forest type and forest conditions. There remain, however, many
opportunities for refinement and improvement on past methods for quantifying local
competition in forest stands, including a better understanding of resource depletion
(symmetric competition) and resource preemption (asymmetric competition). Better
definition of the zone of influence (and hence search radius) of each tree may also
bring about improvements in predictive ability. The impact of sample plot size on
the relative performance of distance-dependent and distance-independent indices
also needs to be elucidated.

Although superiority for distance-dependent indices of point density for growth
predictions has not been consistently exhibited, there are many management
and ecological considerations that require spatially-explicit forest growth models.
Plantation management questions, such as the influence of spacing rectangularity
(ratio of distance between rows to distance between trees in rows) of planting
stock on tree and stand growth cannot be evaluated without spatially-explicit
models. Simulating a wide range of thinning options, including the tradeoff between
maximizing the quality of trees in the residual stand versus aiming for a relatively
even distribution of the residual growing stock, requires growth response functions
that include spatial information. Furthermore, evaluations of alternative silvicultural
systems and stand management options to maintain diverse stand composition and
structure involve spatially-explicit considerations. Models involving stand density
measures and distance-independent competition indices will provide the same
predictions of tree and stand growth response regardless of differences in the
spatial distribution resulting from various treatments. While the presently-available
density-dependent point density measures may not provide improved precision over
density-independent indices for longer-term forecasts, they can provide information
on relative differences likely to result for a number of management alternatives that
involve spatial differences.
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Chapter 10
Modeling Forest Stand Development

10.1 Need for Stand Models

Growth and yield models are essential for informed forest management decision
making, and a great deal of emphasis has been placed on developing reliable models
for predicting stand characteristics (volume, basal area, numbers of trees per unit
area, and height and diameter distributions) at selected times in the production cycle.
Growth and yield forecasts may be required for a short-term or long-term basis,
for the overall stand volume or volume by product and size classes. With the wide
variety of existing stand conditions and the diverse objectives and needs of users of
growth and yield models, as expected, numerous approaches have been proposed.
These approaches range from models that provide only a specified aggregate
stand volume to models with information about individual trees. Regardless of the
structural complexity and amount of stand detail provided, all growth and yield
models have a common purpose: to produce estimates of stand characteristics at
specified points in time.

While growth and yield forecasts enter into virtually all stand management
decisions, the primary uses of growth and yield information can be categorized as:
production forecasting, inventory updating, evaluation of silvicultural alternatives,
management planning, and harvest scheduling.

Questions arise with regard to whether it is more efficient to develop multipur-
pose models that can be used for a variety of forecasting objectives as opposed to
developing a number of limited-purpose models for specific tasks. In choosing a
growth and yield model users must be concerned with the stand detail needed for
the particular decision(s) of interest and the efficiency in providing the required
information. When predictions are required for a broad range of management
decisions, it would be desirable to have a system of growth and yield models
capable of providing logical and consistent estimates for varying levels of stand
detail (whole stand values, size class data, or individual tree information), thus
allowing users to efficiently compute estimates with stand detail appropriate to the
use of the information.
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10.2 Approaches to Modeling Forest Stands

Numerous approaches to modeling forest stand development have been taken and
there is no universally accepted means of categorizing the various techniques. One
possibility is to classify according to the modeling entity (stand, size class, tree)
involved. Alternatively, growth and yield models might be grouped according to
the level of resolution or detail about stand structure provided (overall stand values,
size-class information, tree-level data).

In the first classification alternative, models that provide disaggregation of
whole-stand values into size-class information would be called “whole-stand”
models, whereas in the second approach they would be labeled “size-class models”.
The most commonly-applied disaggregation approach involves using a continuous
distribution function to describe the diameter at breast height distribution. Although
only stand-level variables are projected, size-class information is developed and
yield is estimated from the resulting stand table. Due to the wide-spread application
of this so-called “diameter-distribution” method, we have recognized it as a separate
category in our classification scheme (Table 10.1) and have presented details of
the approach in Chap. 12. Thus, to some extent, we have applied somewhat of a
“hybrid” between two alternative groupings when organizing the presentation of
growth and yield models into chapters for this book. The categories recognized are
arbitrary and not exhaustive but they provide a framework for presenting the key
features of the most commonly used modeling structures. Table 10.1 contains a
summary to the key components of the most prevalent growth and yield modeling
systems. In practice, elements from more than one modeling approach may be used
when developing an operational growth and yield forecasting system.

Although no classification system of modeling approaches is fully satisfactory,
categorizing provides a succinct way of identifying the general features involved
rather than having to provide a detailed description of each model’s structure.
While all “whole-stand”, “size-class”, “diameter-distribution”, and “individual-
tree” models are not exactly the same – indeed no two are exactly the same – they
share certain common characteristics. And the various modeling approaches can
be linked. Developing linkages allows for efficiencies and consistency in providing
different levels of detail on stand structure. Linkages can consist of disaggregation
from stand to size class to individual tree, or conversely of aggregation of individual
tree to size class to whole stand. There are limitless ways that these linkages might
be structured, each with its own advantages and disadvantages. Relating different
levels of resolution of growth and yield models can be an aid to understanding
relative merits of alternative approaches as well as insuring consistency in predic-
tions at varying levels of detail. Figure 10.1 illustrates relationships among the most
commonly used growth and yield modeling methods and shows how the alternate
structures are related.

In the whole-stand approach (Chap. 11), quantities such as volume, basal area,
and/or number of trees per unit area are forecast. The input or predictor variables for
these models for even-aged stands are generally age, site index, and stand density

http://dx.doi.org/10.1007/978-90-481-3170-9_12
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Table 10.1 Key components of commonly-used structures for modeling growth and yield of forest
stands (modified and adapted from Davis et al. 2001).

Model type
Model equations: primary relationships and
variables (growth equations in bold)

Whole stand models
Direct prediction of

growth


iV1�2 D f .t1; t2; S; SD1/

V2 D V1 C iV1�2

Direct prediction of
future volume


SD2 D f .t1; t2; S; SD1/

V2 D f .t2; S; SD2/

Prediction from stand
density projection


SD2 D f .t1; t2; S; SD1/

V2 D f.t2; S; D2/

Diameter distribution
models

Implicit prediction
8̂
<̂
ˆ̂:

SD2 D f .t1; t2; S; SD1/

pdf.d2/ D f.t2; S; D2/

vk2 D f.dk2/

V2 D †kvk2nk2

Size class models
Diameter class growth

models

8<
:

nk2 D f .nk1; t2�1; S; SD1/

vk2 D f.dk2/

V2 D †kvk2nk2

Matrix models
8<
:

nk2 D nk1P dkj

vk2 D f.dk2/

V2 D †kvk2nk2

Individual tree models
Distance-dependent

8̂
<̂
ˆ̂:

CIkl D f
�
.dk;hk;ck; XYk/1; .d†j;h†j;c†j; XY†j/1

�
.dk; hk; ck/2 D f

�
t1; t2; S; SD1; CIk1; .dk; hk; ck; XYk/1

�
vk2 D f.dk;hk/2

V2 D †kvk2nk2

Distance-independent
8̂
<̂
ˆ̂:

CIk1 D f
�
S; SD1; .dk;hk;ck/1

�
.dk; hk; ck/2 D f

�
t1; t2; S; SD1; CIk1; .dk; hk; ck/1

�
vk2 D f.dk;hk/2

V2 D †kvk2nk2

S D site index; ti D stand age at time ti ; SDi D stand density (number of trees per ha and/or stand
basal area) at time ti ; Vi D stand volume at time ti ; iV1�2 D volume growth in the period between
t1 and t2; pdf(d) D diameter distribution function; nki D number of trees in diameter class k at time
ti ; dki ; hki ; cki D diameter, height and crown size of tree k at time ti ; vk D volume of a tree with
dk; Pdkj D probability of moving from state k to j; CIki D competition index for tree k at time ti ;
XYk D spatial coordinates of tree k; subscript †j indicates that all competitors j are included in
the computation

(numbers of trees planted per unit area for plantations; initial basal area for natural
stands). Often only aggregated volume growth and/or yield is predicted for the total
stand. As a variation on this approach, several researchers have applied probability
density functions to estimate the number of trees by dbh (diameter at breast height)
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Fig. 10.1 General relationships among commonly applied approaches to modeling forest stand
development

classes, given that an estimate of the total number of trees per unit area is available.
This approach, commonly termed the “diameter distribution approach,” still relies
on overall stand values as the basic modeling unit (Chap. 12).

Size-class models typically involve projecting the stand table (numbers of trees
by diameter class) forward for a specified time period (Chap. 13). Stand tables
can be converted to stock tables (volume or weight by diameter class) through
application of tree taper functions, volume or weight prediction equations (Chaps.
2, 3, and 4); the difference between the current stock table and the estimated future
stock table (after allowance for mortality) is the periodic growth. Stand tables (or
tree lists by dbh classes) can be projected via a system of equations for upgrowth
(trees moving into larger diameter classes) and ingrowth (trees growing into the
smallest measured diameter class), or by means of a matrix model (Chap. 15) with
transition probabilities. The so-called “absorbing states” (states that once entered
cannot be changed) for mortality and for harvested trees are generally included in
matrix models.

Approaches to predicting stand growth and yield that use individual trees as
the modeling entity are referred to as “individual tree models.” The components
of tree growth (e.g., diameter increment, height increment) in these models are
commonly linked through a computer program that simulates the growth of each
tree and then aggregates these values to provide estimates of stand growth and
yield. Individual tree models are divided into two classes, distance-independent
and distance-dependent, depending on whether or not individual tree locations are
used. Distance-independent models project tree growth either individually or by size

http://dx.doi.org/10.1007/978-90-481-3170-9_12
http://dx.doi.org/10.1007/978-90-481-3170-9_13
http://dx.doi.org/10.1007/978-90-481-3170-9_2
http://dx.doi.org/10.1007/978-90-481-3170-9_3
http://dx.doi.org/10.1007/978-90-481-3170-9_4
http://dx.doi.org/10.1007/978-90-481-3170-9_15


10.3 Prediction, Parsimony and Noise 237

classes, usually as a function of present size and stand-level variables (e.g., age, site
index, number of trees per unit area). In distance-dependent models, initial stand
conditions are input or generated and each tree is assigned spatial coordinates. The
growth of each tree is predicted as a function of its attributes, the site quality, and a
measure of competition from neighbors.

Modeling methodology continues to evolve and to become increasingly sophis-
ticated as forest biometricians bring new biological rationale, advanced statistical
techniques, and powerful computing technology to bear on growth and yield
prediction problems. Levins (1966) argued that modelers of population biology
strive to maximize simultaneously three desirable properties of a given model:
generality, reality and precision. Generality refers to applicability to a range of
instances, reality might be thought of as conformity of model assumptions and
relationships to the real system, and precision indicates the degree of exactness in
predictions. In any one model, Levins asserted, developers may sacrifice one of these
desired properties to achieve a higher level of the other two. In traditional growth
and yield models, generality is sacrificed for increased reality and precision (with
the primary emphasis being on precision). Given the usual objectives of growth
and yield modelers, this is a reasonable strategy. However, due to rapidly changing
management and environmental conditions, there is increased interest in enhancing
the generality of growth and yield models.

10.3 Prediction, Parsimony and Noise

To have high utility, models must be accurate. Model accuracy can be improved
by collecting more data, improving the quality of the data obtained, or by applying
more sophisticated modeling techniques to existing data. Collecting data is expen-
sive relative to performing analyses; thus analysts must make the best possible use
of the data available. When planning data collection efforts, it is important that a
wide range of site and stand conditions be included in the sample.

It is commonly believed that a model can be no more accurate than the data on
which it is based. This is not necessarily true, however, because models can amplify
patterns and discard unwanted noise, they can be more accurate than the data used
to build them. Gauch (1993) emphasized that models being more accurate than the
data available is dependent on: (i) the precise question being asked of the model,
(ii) the design of the experiment, and (iii) the quantity and accuracy of the available
data.

Typical modeling efforts attempt to enhance prediction by amplifying pattern and
discarding noise. Ordinarily, most of the pattern in a data set is recovered quickly
with relatively simple models. Patterns usually depend on a few main causal factors
that can be summarized readily. Noise, on the other hand, is recovered slowly as
a model’s complexity increases. The accuracy of prediction, therefore, increases
quickly as parameters are added to relatively simple models. Predictive ability tends
to peak rather quickly (this point is sometimes referred to as ‘Ockham’s Hill’)
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recover much of it in a data set; noise is more idiosyncratic and complex and is thus recovered
more slowly as model complexity increases; predictive ability arises from pattern recovery minus
noise recovery so it is expected to increase quickly in simple models but peak on ‘Ockham’s Hill’
and then decrease in increasingly complex models (Adapted from Gauch 1993)

and then decrease with increasingly complex models (Gauch 1993). Figure 10.2
illustrates how model accuracy (in terms of predictive ability) is affected by the
recovery of pattern and noise through increasing model complexity. Modeling thus
offers its greatest benefits when a parsimonious, simple model captures the essence
of the data’s pattern in a large, noisy data set (Burkhart 2003).

10.4 Level for Modeling Forest Stands

The level at which forest stands can be modeled is often dictated by the data avail-
able. If, for instance, individual trees are not numbered and identified, individual-
tree-based approaches are not possible. Permanent plots established in the past
have sometimes had limited usefulness because of inadequacies in the measure-
ments taken. To allow for flexibility in modeling approaches, in permanent plots
established for growth estimation purposes, tree measurements should include, as
a minimum, dbh, height, crown measures, stem quality assessment and tree spatial
coordinates.

Whether one should model at the tree level and aggregate for stand estimates
or model at an aggregated level depends on the specific objectives for modeling.
The use for which a growth model is intended, it is generally argued, should
determine the resolution level at which one should operate. However, as Leary
(1979) discussed, another consideration is the relationship between dimensionality
of the model (or resolution level) and the time horizon over which projections are to
be made. The following relationship from Kahne (1976) has been found useful in a
number of large-scale modeling efforts:
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md D k˛

th

where th is the time horizon over which projections are to be made, md is the
dimension of the model state vector and k˛ is a constant for a given accuracy
or precision level. This relationship indicates that the model dimension should be
reduced for long-term projections and increased for short-term projections, to give
the same level of accuracy.

The relationship between model dimensionality and projection length has been
fairly well accepted by scientists working in various fields with large-scale models,
but it has not received much attention by researchers involved in forest projection.
Forest projections are often made for any time horizon of interest without regard to
the dimensionality of the model.

Insight into the influence of dimensionality of growth and yield models and
performance over increasing projection lengths can be gained from the study of
Shortt and Burkhart (1996). They evaluated a whole-stand (Sullivan and Clutter
1972) and an individual-tree, distance-independent (Amateis et al. 1989) growth
and yield model for loblolly pine for the purpose of updating forest inventory
data. The growth and yield models were evaluated at varying projection periods
by using permanent plots measured at 0, 3, 6 and 9 years after initial plot
establishment. Evaluations were based solely on the capability of each model to
predict merchantable volume. The individual-tree model produced the best result
until the 6-year period, at which time it was approximately equal to the whole-stand
model. After 6 years, the whole-stand model produced more reliable results. Both
models displayed increasing error of prediction with increasing projection length.
As expected from the general relationship of model dimension to projection length,
for short-term projections the more detailed individual-tree model performed best,
but for long-term projections the simple whole-stand model performed best.

Although the science of modeling forests has advanced greatly, and continues
to advance, there is still a great deal of judgment and intuition involved. One
cannot overemphasize the necessity of having clearly stated objectives for modeling,
because no approach can satisfy all purposes. Regardless of the modeling objective,
one should strive to: (i) select as parsimonious a model as possible to describe the
population trends of interest, and (ii) adjust the dimensionality of the model to suit
the projection length (Burkhart 2003).

10.5 Field Data for Growth and Yield Modeling

The typical approach taken in past growth and yield studies has involved defining a
population of interest, obtaining a sample from the defined population (the sample
could consist of temporary plots, permanent plots, or both), and estimating coef-
ficients (invariably with least squares) in specified equation forms. This approach
produces satisfactory prediction tools for many purposes, but it may not be adequate
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in circumstances where forest management practices and objectives are changing
rapidly. Given that growth and yield models are used to project the present forest
resource and to evaluate alternative treatment effects, data both of the inventory type
(which describe operational stands of interest) and of the experimental or research
type (which describe response to treatment) are needed.

As an example, when the primary interest is in evaluating silvicultural alter-
natives, designed-experiment type data with the relevant silvicultural treatments
included would be required. The model structure would likely be quite detailed
in terms of the underlying equations and the types of output produced so that
the full range of treatments could be evaluated under varying assumptions. If, on
the other hand, one were primarily interested in inventory updating, the data for
equation fitting should be obtained from a representative sample of the population
of stands to which the model is going to be applied. The input to the model
would necessarily need to be consistent and compatible with the inventory data
definitions and quantities available. The fundamental equations should be as simple
and straightforward as possible for producing output (updated stand statistics) that
is needed for and consistent with the inventory data base. What is “best” depends
primarily on the objective(s) for developing the model; obviously, the objectives
should be specified clearly before data collection and analyses are initiated (Adlard
1995).

Growth and yield information is used for a variety of purposes; no single data
base or modeling approach can be optimal for all applications. Köhl et al. (1995),
in a comparison of Swiss growth and yield plots and forest survey plots, noted that
sample plots from forest inventories are representative of the total population but
give only limited information on site conditions and management history. On the
other hand, growth and yield plots contain detailed information on site conditions
and management history but are not representative of the total population.

Empirical growth and yield models are based on field plot measurements. Ideally,
one would like to have permanent plots that have been established, maintained, and
measured regularly over a full rotation (that is, a complete time series). This, of
course, is not always feasible. More commonly, permanent plots are established
in stands of varying initial conditions (i.e. differing ages, site qualities, and stand
densities) and measured over one or more growth periods. Such interval plots
represent a partial time series for each stand and they are an effective and efficient
means for obtaining growth and yield data. In some instances where permanent plots
are not available and results are needed quickly, temporary plots are established in
stands of varying ages, site qualities, and densities. Equations for estimating yield
can be fitted to temporary plot data and growth can be estimated by differencing
the yield function. Diameter and height measurements from temporary plots are
sometimes supplemented with information from a sample of increment cores or
stem analysis trees. While temporary plots may be satisfactory for some purposes,
they generally do not provide fully satisfactory information for growth and yield
modeling. Figure 10.3 illustrates these three types of field plots.

Many permanent plot installations in forest types of interest for growth and
yield modeling consist of plots with different thinning treatments plus an unthinned
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Fig. 10.3 Schematic representation of (a) permanent plots, (b) interval plots, and (c) temporary
plots established for growth and yield estimation. (a) Left: A permanent plot with three successive
measurements (white trees are removed during thinning operations; the time axis is designated t).
Right: Hypothetical data series derived from three permanent plots. (b) Left: Three interval plots;
white trees are removed during thinning operations. Right: Interval data for obtaining rates of
change of observed state variables. (c) Left: Three temporary plots of varying age; the x-axis
signifies the tree position; the symbol t indicates the time axis. Right: Independent height-age
data obtained from temporary plots (Adapted from Gadow and Hui 1999)

control. The ability to predict response to thinning is often seen as a central part
of growth and yield prediction systems. Vanclay et al. (1995) recommended that
permanent plot installations for developing growth models include experimental
observations that are manipulated to provide data on a wide range of stand densities
and thinning treatments. In addition to thinning, for intensively managed forest
types, managers may also need to evaluate response to fertilizer applications,
vegetation control, and other treatments that could be applied at various times (stand
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establishment, during the rotation) in the production cycle and in various combina-
tions. It is not possible to apply all treatments of interest to a single installation
of permanent plots. Consequently, data from a variety of silvicultural experiments
are often used in the modeling process. Response data from various sources can
be incorporated into an overall modeling framework; stand modeling serves to
integrate and synthesize growth response information, identify knowledge gaps, and
provide forecasting capability for managers. (Chap. 16 includes additional detail on
modeling stand response to thinning, vegetation control, fertilizer applications, and
genetic enhancement.)

As an illustration of the need for data from designed experiments as well as
from plots in operational stands, consider the problem of determining an appropriate
initial planting density. One of the most important factors that is within the
direct control of forest managers is tree spacing at time of planting. Economic
considerations dictate that managers strive for the “optimal” number of trees. This
optimum will, of course, vary widely depending on the management objective. Data
from surveys of existing stands rather than from designed experiments with the
independent variables controlled at specified levels result in imprecise estimates
of some parameters and place restrictions on the type of analyses that can be
performed. One cannot legitimately treat density (number of trees) as a controlled
variable when analyzing the yield response surfaces unless density was a controlled
variable in the data set. Hence designed spacing trials are essential for providing
definitive answers to the important question “How many trees per unit area should
be planted?” Designed spacing experiments are commonly employed to augment
permanent plot data from stands in order to develop reliable information on optimal
density for specified product objectives.

10.6 Looking Ahead

Growth and yield models provide an effective means for summarizing and integrat-
ing information from a variety of sources, and they are essential decision-support
tools for forest managers. The next four chapters provide an overview of the basic
structure of three important modeling approaches for even-aged stand structures
(Chap. 11, whole-stand models; Chap. 12, diameter-distribution models; Chap. 13,
size-class models; Chap. 14, individual-tree models).

Special considerations and approaches for modeling uneven-aged stands are
covered in Chap. 15. Methods for incorporating silvicultural treatments and wood
quality in growth and yield models are presented in Chaps. 16 and 17, respectively.
In the final chapter (Chap. 18) we provide information on evaluating and imple-
menting forest stand models.

http://dx.doi.org/10.1007/978-90-481-3170-9_16
http://dx.doi.org/10.1007/978-90-481-3170-9_11
http://dx.doi.org/10.1007/978-90-481-3170-9_12
http://dx.doi.org/10.1007/978-90-481-3170-9_13
http://dx.doi.org/10.1007/978-90-481-3170-9_14
http://dx.doi.org/10.1007/978-90-481-3170-9_15
http://dx.doi.org/10.1007/978-90-481-3170-9_16
http://dx.doi.org/10.1007/978-90-481-3170-9_17
http://dx.doi.org/10.1007/978-90-481-3170-9_18
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Chapter 11
Whole-Stand Models for Even-Aged Stands

11.1 Background

Yield prediction for even-aged stands began with the development of normal yield
tables. Temporary plots were located in fully stocked or “normal” density portions
of a sample of stands of varying ages representing various site qualities. These
plot observations of volume per unit area were sorted into site-quality classes, and
volume values were plotted over age. A volume-age curve was drawn through the
points for each site-quality class by using graphical techniques. Values were read
from the curve for selected site-quality classes and ages to compile a normal yield
table. Many normal yield tables also contain auxiliary information, such as basal
area and number of trees per unit area and diameter distributions, as well as volume
per unit area.

Normal yield tables were constructed in an era when only two variables could be
included readily by graphical techniques. Thus analysts eliminated the variable of
density by holding it constant at fully stocked or “normal” levels.

As a variation on the normal yield table approach, so-called “empirical yield
tables” were sometimes developed. An empirical yield table is similar to a normal
yield table except that it supposedly applies to “average” rather than full, or normal,
stocking. Thus the problem of defining normal stocking is eliminated, but an
empirical yield table applies only to the average density levels found on the sample
plots included.

Growth and yield equations that do not rely on either “normal” or “average”
stand density concepts, but, rather, include density as a dynamic part of the stand-
projection system are commonly termed variable-density models. The focus of this
chapter is on variable-density growth and yield equations that use whole-stand
values as the basic modeling unit.

H.E. Burkhart and M. Tomé, Modeling Forest Trees and Stands,
DOI 10.1007/978-90-481-3170-9 11,
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11.2 Growth and Yield Relationships

Before proceeding further, we define the terms growth and yield. Growth is the
increase (increment) over a given period of time. Yield is the total amount available
for harvest at a given time. Thus yield can be regarded as the summation of the
annual increments. To be meaningful, growth and yield values must be qualified
with regard to the part of the tree and the portion of the stand being considered.
Further, the unit of measurement being used and, for growth, the time period
involved, must be specified.

The factors most closely related to growth and yield of forest stands, apart from
management treatments, are (1) the point in time in stand development, (2) the site
quality, and (3) the degree to which the site is occupied. For even-aged stands, these
factors can be expressed quantitatively through the variables of stand age, site index,
and stand density, respectively. The measure of stand density most commonly used
in growth and yield models for natural stands has been basal area per unit area,
whereas most models for planted stands have employed number of trees per unit
area.

For a given site index and initial stand-density level, yield (volume per unit
area) plotted over stand age results in a sigmoid curve. The growth curve (often
referred to as current annual growth or current annual increment), which is the first
derivative of the yield function, increases up to the inflection point of the yield curve
and decreases thereafter. Another important quantity is the mean annual growth or
increment, defined as the yield at any given time divided by the total number of
years (age) required to achieve that yield. The current annual growth curve crosses
the mean annual growth curve at its highest value (Fig. 11.1).
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11.3 Variable-Density Growth and Yield Equations

11.3.1 Schumacher-Type Equations

MacKinney et al. (1937) suggested the use of multiple regression to construct
variable-density yield equations. Subsequently, MacKinney and Chaiken (1939)
used a multiple regression approach to construct a yield equation for natural stands
of loblolly pine. Their prediction model was:

log V D b0 C b1t
�1 C b2S C b3 log SDI C b4C

where

log V D logarithm of yield (total cubic volume per unit area of loblolly pine)
t�1 D reciprocal of stand age
S D site index
log SDI D logarithm of stand-density index
C D composition index (basal area per unit area of loblolly pine divided by total
stand basal area)

The measure of density used was Reineke’s stand-density index (Chap. 8) and
a “composition index” was included, because not all of the sample plots were
pure loblolly pine. Since MacKinney and Chaiken’s milestone publication, many
investigators have used multiple regression techniques to predict growth and/or
yield for total stand values or for some merchantable portion of stands. Stand-level
variables, such as age, site index, basal area or number of trees per unit area, are used
to predict some specified aggregate stand volume. The resultant equations from this
approach are commonly referred to as whole-stand models.

The variable forms used in subsequent analyses have generally been similar to
those employed by MacKinney and Chaiken. Logarithmic transformation of yield
is usually made prior to equation fitting to stabilize variance and thus to conform
to the assumptions customarily made in linear regression analysis. Furthermore,
the use of the logarithm of yield as the dependent variable is a convenient way to
mathematically express the interaction of the independent variables in their effect on
yield. The effects of age, site index, and stand density are additive for the logarithm
of yield but multiplicative for yield. In most yield analyses, stand age has been
expressed as a reciprocal to allow for the “leveling off” or asymptotic effect of
yield with increasing age. Site index often is not transformed prior to fitting, but
logarithmic or reciprocal transformations are sometimes employed. The measure of
stand density is commonly subjected to logarithmic transformation – particularly
in models employing basal area – but the exact form in which density is included
is quite variable, especially for models fitted to data from planted stands that use
number of trees per unit area as a predictor variable.

http://dx.doi.org/10.1007/978-90-481-3170-9_8


248 11 Whole-Stand Models for Even-Aged Stands

The rationale for the logarithm of yield-reciprocal of age stand yield function
was laid out by Schumacher (1939). Subsequently yield models of the basic form

log Y D b0 C b1t
�1 C b2f .S/ C b3g.SD/

where Y is a measure of yield per unit area, t equals stand age, f (S) is some function
of site index, and g.SD/ is some function of stand density have frequently been
referred to as “Schumacher yield models”. The Schumacher or logarithm of yield-
reciprocal of age function is a special case of the Lundquist-Korf equation described
in Chap. 6.

11.3.2 Chapman-Richards Equations

Various growth functions have been fitted to stand growth and yield data. Besides
the Schumacher-type equations, one of the most commonly-fitted equation forms
is the Chapman-Richards generalization of Bertalanffy’s growth model. Bertalanffy
formulated a hypothesis which expressed rate of volume growth of an organism
as the difference between anabolic growth rate (constructive metabolism) and
catabolic growth rate (destructive metabolism). The anabolic rate was assumed to
be proportional to surface area of the organism raised to the power 2/3, while the
catabolic rate was assumed proportional to size or volume. Thus, expressing the
hypothesis in mathematical terms yields

dV=dt D aV 2=3 � bV (11.1)

where dV=dt is the volume growth rate and V is the size or volume, a and b are
parameters and 2/3 is an allometric constant.

Richards (1959) in studying plant growth and Chapman (1961) in analyzing
growth of fish argued that Bertalanffy’s allometric constant of 2/3 was too restric-
tive, leading to the modified growth function:

dV=dt D aV m � bV (11.2)

where the value of m is to be estimated for each organism and environment.
The integration of Eq. 11.2 and simplification of the resultant expressions for the

constants leads to the form in which the so-called Chapman-Richards function has
generally been fitted to forestry yield data:

Y D a0.1 C exp.a1t//a2 (11.3)

where Y is the cumulative value (or yield) of interest and t is time (stand age in the
context of modeling even-aged stands). The parameters a0; a1; a2, are readily inter-
preted as the asymptote, rate and shape for the fitted function. While Eq. 11.3 has

http://dx.doi.org/10.1007/978-90-481-3170-9_6
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been found to be flexible in assuming sigmoid shapes exhibited by individual-tree
and stand-level characteristics for even- aged stands, it has been most prevalently
applied in fitting height-age (site index) relationships.

Pienaar and Turnbull (1973) provide a comprehensive discussion of the origin
and generalization of Bertalanffy’s growth model and give examples of its applica-
tion to tree growth. They further extended the Chapman-Richards generalization of
Bertalanffy’s growth model for basal area growth and yield of even-aged stands.

Equations, such as Bertalanffy’s, that are based on biological rationale are
sometimes termed “theoretical” and are often times thought to be superior to strictly
empirical fits to data. Typically a number of equations exist that will approximate
the observed data points with nearly equal fidelity. The principal advantages of
employing functional forms with underlying biological rationale often rest with the
ability to interpret the parameter estimates and to extrapolate the fitted functions
with more confidence than is generally the case with results from strictly data-based
curve fitting.

11.4 Compatible Growth and Yield Equations

11.4.1 Analytic Compatibility

Early work did not attempt to relate growth analyses to yield analyses, although
the biological relationships can be readily expressed mathematically. Buckman
(1962) and Clutter (1963) were the first researchers in the United States to
explicitly recognize the mathematical relationships between growth and yield in
their analyses. When deriving compatible growth and yield models for loblolly pine,
Clutter started with a particular form of the Schumacher yield function, namely:

ln V D b0 C b1S C b2 ln G C b3t
�1 (11.4)

where ln V D logarithm of cubic volume per unit area of all pine stems

S D site index
G D basal area per unit area
t D stand age in years

Differentiating (11.4) with respect to age (noting that G is a function of age) gives
the total derivative

.dV=dt/=V D b2G�1.dG=dt/ � b3t
�2 (11.5)

where

dV/dt D instantaneous rate of cubic volume growth
dG/dt D instantaneous rate of basal area growth with respect to age
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To estimate cubic volume growth one must specify the relationship between basal
area growth and age, site index, and basal area. Plotting of data indicated that the
following would be appropriate as a basal area yield model:

ln G D a0 C a1S C a2t
�1 C a3 ln .G20/t

�1 C a4St�1 (11.6)

where G20 D basal area at age 20.
Differentiating (11.6) with respect to age and algebraic rearrangement yields:

dG=dt D t�1G Œa0 C a1S � ln G� (11.7)

The growth rate equation can be integrated to obtain the difference equation:

ln G2 D
	

t1

t2



ln G1 C a0

	
1 � t1

t2



C a1S

	
1 � t1

t2



(11.8)

where

t1 D initial age
t2 D projection age
G1 D initial basal area (age t1)
G2 D predicted basal area at age t2

11.4.2 Ensuring Numeric Consistency

Clutter’s (1963) system of compatible growth and yield equations was derived
to ensure that a derivative-integral relationship existed between the analytic ex-
pressions for stand volume and basal area. In extending and building upon this
analytic framework, Sullivan and Clutter (1972) noted that the parameters in any
one equation are not independent of those in other equations of the system. This
dependence must be recognized in the parameter estimation process in order for the
equations to be numerically consistent. As a means of ensuring numeric consistency
in Clutter’s compatible system of growth and yield equations, a single linear model
relating projected stand volume to initial stand age, projected age, site index, and
initial basal area was developed. If projected age is equal to initial age, the model
simplifies to a conventional yield equation.

The models selected by Sullivan and Clutter (1972) can be written:

E.ln y1/ D ˇ0 C ˇ1S C ˇ2t
�1
1 C ˇ3 ln G1 (11.9)

E.ln y2/ D ˇ0 C ˇ1S C ˇ2t
�1
2 C ˇ3 ln G2; and (11.10)

E.ln G2/ D .t1=t2/ ln G1 C ˛1.1 � t1=t2/ C ˛2.1 � t1=t2/S (11.11)
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where

yi D stand volume per unit area at age ti
S D site index
Gi D basal area per unit area at age ti
ti D stand age at time i (t1 D present stand age, t2 D projected stand age)
ln denotes logarithm to the base e, and E denotes expected value.

Replacing ln G2 in Eq. 11.10 by the functional form of its expected value
(Eq. 11.11) and simplifying the resulting expression results in:

E.ln y2/ D ˇ0 C ˇ1S C ˇ2t�1
2 C ˇ3.t1=t2/ ln G1 C ˇ3˛1.1 � t1=t2/

C ˇ3˛2.1 � t1=t2/S (11.12)

By letting ˇ4 D ˇ3˛1 and ˇ5 D ˇ3˛2, Eq. 11.12 can be written as:

E.ln y2/ D ˇ0 C ˇ1S C ˇ2t
�1
2 C ˇ3.t1=t2/ ln G1 C ˇ4.1 � t1=t2/

C ˇ5.1 � t1=t2/S (11.13)

Equation 11.13 is a model for projected volume as a function of site index,
initial age, projected age, and initial basal area. When t2 D t1, i.e., the projection
period is zero years, Eq. 11.13 reduces to the yield model (11.9). Thus Eq. 11.13 is
simultaneously a yield model for observations at the initial time and a projection or
growth model for subsequent times.

Sullivan and Clutter (1972) showed that Eq. 11.13 is invariant for different
combinations of projection lengths. That is, if yield is projected from t1 to t2 and
then from t2 to t3, the result is identical with a projection from t1 to t3.

A second desirable property is that substituting projected basal area into the
volume yield equation to calculate yield at t2 should be equivalent to using
initial basal area in the volume projection equation. To ensure this equivalency
property, Sullivan and Clutter (1972) noted that the definitions ˇ4 D ˇ3˛1 and
ˇ5 D ˇ3˛2 in the derivation of their simultaneous growth and yield model imply
that at ˛1 D ˇ4=ˇ3 and ˛2 D ˇ5=ˇ3. Given estimates for the parameters of
(11.13), they suggested that, although not the most efficient estimators, estimates
of ˛1 and ˛2 in (11.11) could be computed as Ǫ1 D Ǒ

4= Ǒ
3 and Ǫ2 D Ǒ

5= Ǒ
3.

While this procedure ensures the desired equivalency property, the estimates
of ˛1 and ˛2, and thus the basal area projection equation, are dependent on
the volume units and merchantability limits chosen for the dependent variable
in (11.13).

Burkhart and Sprinz (1984) selected the models specified by Sullivan and Clutter
(1972) for fitting with data from thinned loblolly pine plantations because these
models have the desired properties of analytic compatibility between growth and
yield, invariance for projection length, and numeric equivalency between alternative
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applications of the equations. In applying these models, however, Burkhart and
Sprinz sought to develop more efficient and stable (i.e., not dependent on volume
units or merchantability standards) estimators for the basal area equation.

Rather than deriving coefficients for the basal area projection Eq. 11.11 from
parameter estimates in the volume projection Eq. 11.13, both functions were fitted
simultaneously. When defining the criterion or loss function to be minimized in
the simultaneous fitting, equal weights were assigned to volume and basal area
projection. This led to the standardized loss function:

L D †.yi � Oyi /
2

�2
y

C †.Gi � OGi /
2

�2
G

(11.14)

where yi and Oyi are the observed and predicted volume logarithms, Gi and OGi are
the observed and predicted basal area logarithms, and O�2

y and O�2
G are estimates of

the variance around the regression lines for volume and basal area, respectively.
These variance estimates, O�2

y and O�2
G , were computed as the mean square error from

ordinary least squares regression fits of Eqs. 11.13 and 11.11, respectively.
Loss function (11.14) was used when fitting projection equations for total stand

volume, volume of the pulpwood portion of the stand, and volume of the sawtimber
sized trees. In all cases basal area included all stems. By using the simultaneous
fitting procedure with the imposed restrictions that Ǫ1 D Ǒ

4= Ǒ
3 and Ǫ2 D Ǒ

5= Ǒ
3,

coefficients in the basal area projection equations were nearly identical regardless
of the merchantability definitions employed in the volume equation. Further, with
the imposed restrictions, this process results in a system of equations that gives
numerically consistent results. The three sets of parameter estimates for the basal
area equations were quite close to those computed by ordinary least squares. As
expected, there was a slight increase in the sum of squared error (SSE) for volume
when fitting by the simultaneous approach. However, this small increase in SSE
for volume was more than offset by the decrease in the SSE for basal area in the
simultaneous fit versus deriving basal area coefficients from the volume equation.

While the method of Burkhart and Sprinz (1984) proved effective, it does
not use information on correlation between residuals of the component equations
and the statistical properties of the estimators are not known. VanDeusen (1988)
showed that the system of equations fitted by Burkhart and Sprinz (1984) can
be solved in the framework of seemingly unrelated regression (SUR). In SUR no
analytical relationships are implied between variables to be predicted. Relationships
are conceptual and take the form of correlations between error terms of component
equations. VanDeusen (1988) pointed out that, if the requirements for SUR are met,
the estimates are consistent and asymptotically efficient. When VanDeusen fitted the
equation system (11.11) and (11.13) using loss function (11.14) and using SUR with
data from unthinned plots of slash pine, both methods gave similar results. Thus,
it seems that including across-equation constraints brings about large gains while
additional gains from alternative parameter estimation techniques are not likely to
be large.
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11.5 Growth Models Based on Annual Increments

Compatibility between growth and yield is highly desirable because it ensures
consistent results. Imposing compatibility constraints may, however, limit the
types of models that can be fitted, thus reducing options and perhaps accuracy
of predictions. Ochi and Cao (2003) advanced an alternative approach based
on modeling annual stand growth. Although such models are not necessarily
conceptually compatible, they can provide estimates that are invariant for different
combinations of projection lengths. Furthermore, models of annual increment are
not subject to restrictions resulting from compatibility constraints; consequently
they provide increased flexibility.

Ochi and Cao (2003) evaluated two compatible models (Sullivan and Clutter
1972; Pienaar and Harrison 1989) and an annual increment growth model for
predicting survival, basal area, and volume in loblolly pine stands. The annual
increment model consistently performed better than the two compatible models for
short (4–7 years), medium (10–12 years), and long (15–17 years) projection lengths.
The model based on annual growth included both current measures of stand density
(number of trees and basal area) as independent variables, whereas the compatible
models did not. Due to restrictions of compatible growth and yield models, which
might be thought of as special cases of annual increment models, one of the two
measures of stand density could not be predicted from the other.

11.6 Simultaneous Systems of Growth and Yield Equations

Growth and yield of volume in even-aged stands is ordinarily viewed as a function
of site quality, stand age, and stand density. The stand density measure is usually
considered a function of site quality, age, and initial density. Site quality, expressed
as site index, is frequently quantified as a function of age only. These equations
form an interdependent system in which all relationships are assumed to hold
simultaneously. Ordinary least squares procedures have customarily been used
to estimate the parameters separately for each equation within the system. But
independent, sequential fitting of the components of such a system of equations
will often lead to biased and inconsistent estimates.

Furnival and Wilson (1971) suggested that techniques commonly used to fit
simultaneous systems of equations in econometrics may be applicable to forest
growth and yield modeling. Subsequently, Murphy and Sternitzke (1979) used
three-stage least square estimation procedures to fit the Sullivan and Clutter (1972)
volume and basal area projection system (with a modified basal area equation) with
data from loblolly pine stands; Murphy and Beltz (1981) applied similar procedures
for shortleaf pine data.

The simultaneous system fitted by Borders and Bailey (1986) will be used to
illustrate an interdependent, multi-equation system of growth and yield equations.
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As a first step, Borders and Bailey (1986) specified models for predicting volume
and basal area for planted stands:

ln V D b0 C b1 ln hdom C b2 ln G (11.15)

ln G D a0 C a1 ln hdom C a2 ln Np (11.16)

where

V D volume per unit area
G D basal area per unit area
hdom D dominant stand height
Np D number of trees planted per unit area
b0; b1; b2; a0; a1; a2 are unknown parameters to be estimated.

Equations 11.15 and 11.16 are yield equations. These equations can be differ-
entiated to define analytically compatible growth equations. Differentiating (11.15)
and (11.16) with respect to age one obtains:

.dV=dt/=V D .b1=hdom/.dhdom=dt/ C .b2=G/.dG=dt/ (11.17)

and

.dG=dt/=G D .a1=hdom/.dhdom=dt/ (11.18)

Relative volume growth is dependent upon relative changes in both dominant
height and basal area while relative growth rate of basal area is dependent upon rel-
ative growth rate of dominant height. Therefore height-age prediction and projection
components are also needed. The following height-age model was adopted:

ln hdom D c0 C c1t
�1 (11.19)

The first derivative of (11.19) with respect to age is

.dhdom=dt/=hdom D �c1t
�2 (11.20)

Equations 11.17, 11.18, and 11.20 were solved as separable linear differential
equations and integrated from t1 to t2 to produce the following growth (projection)
equations (Borders and Bailey 1986):

ln V2 D ln V1 C b1 .ln hdom2 � ln hdom1/ C b2 .ln G2 � ln G1/ (11.21)

ln G2 D ln G1 C a1 .ln hdom2 � ln hdom1/ (11.22)

ln hdom2 D ln hdom1 C c1

�
t�1
2 � t�1

1

�
(11.23)
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where

Vi D volume per unit area at age ti
Gi D basal area per unit area at age ti
hdomi D dominant height at age ti
ti D age in years at time i
i D 1,2

and b1; b2; a1; c1 are defined in the yield models (11.15, 11.16 and 11.19).
In systems of interdependent equations, such as (11.15, 11.16, 11.21, 11.22 and

11.23), variables that occur on the left-hand sides are customarily referred to as
endogenous variables; they are assumed to be determined by the structure of the
model. The endogenous variables may also appear as predictor variables on the
right-hand sides of equations within the system. All other variables are normally
referred to as exogenous variables. Application of OLS estimation techniques
to this equation system will yield biased and inconsistent parameter estimates
because of correlations between explanatory variables and error terms. Alternatives
to OLS estimation of simultaneous system parameters include two-stage least
squares (2SLS) and three-stage least squares (3SLS). These alternatives will yield
consistent, although not necessarily unbiased, parameter estimates.

Borders and Bailey (1986) fitted the five equations individually using OLS.
These same models were also fitted as a system using unrestricted 3SLS and
restricted 3SLS. In the restricted 3SLS case the cross-equation restrictions: (1) b1

and b2 must be the same in (11.15) and (11.21), and (2) a1 must be the same in
(11.16) and (11.22) were imposed. It was assumed that the observations used to
estimate parameters were independently and identically distributed (iid); however,
different equations in the system may exhibit contemporaneous correlations (these
contemporaneous correlations are used in the 3SLS procedure to obtain more
efficient estimates). Results showed that parameter estimates were similar for
all three cases, but the 3SLS estimates generally had smaller predicted standard
errors. Multistage procedures provide consistent estimators and allow for ready
incorporation of constraints to insure that compatible results are achieved. Further,
interval, as well as point, estimates are possible.

Borders (1989) suggested an alternative parameter estimation procedure to two-
stage and three-stage least squares that can be applied to any number of sequentially
related linear or nonlinear equations.

11.7 Mixed-Effects Models for Growth and Yield Prediction

Mixed-effects models have become important tools for modeling forest trees and
stands. Most applications to date have focused on modeling particular components
or variables such as tree height (Chap. 7) or tree taper (Chap. 2), but there have been
some investigations aimed at yield prediction systems.

http://dx.doi.org/10.1007/978-90-481-3170-9_7
http://dx.doi.org/10.1007/978-90-481-3170-9_2
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Gregoire et al. (1995) outlined a linear mixed-effects model that accounts for
the covariance among repeated measurements and for random plot effects. Their
formulation includes a continuous-time autocorrelation error structure that permits
the model to be applied to irregularly spaced, unbalanced data. When fitted to two
permanent-plot data bases, the model showed improvement when compared with
models that do not account for the error structure.

Hall and Clutter (2004) developed a multivariate multilevel nonlinear mixed ef-
fects model for describing several plot-level volume characteristics simultaneously.
Their system consists of models for height of dominant trees (hdom) basal area (G)
and numbers of trees per ha (N). Using trivariate three-level nonlinear mixed models
they obtained predictions of the plot-level variables hdom, G, and N at a future age
of interest. The authors proposed to use these predictions as input into a known or
a fitted model for volume as a function of the three variables. As an example, they
fitted the following volume model to the same data to which the trivariate nonlinear
mixed models for hdom, G, and N were applied:

V D eb1h
b2

domGb3 N b4 (11.24)

where the parameters bi , i D 1, 2, 3, 4 were assumed to be functions of age. After
expressing each of the bi ’s as a polynomial in the reciprocal of age, model (11.24)
was linearized by taking logarithms and fitted as a linear mixed effects model.
The Hall and Clutter (2004) mixed models approach provides an alternative to
other methods that have been applied for developing simultaneous systems of linear
equations for growth and yield prediction. They listed the primary advantages of
their methodology as: (1) the ability to model and predict timber growth and yield at
the plot, stand, and population level, and (2) the availability of a prediction variance
estimator, which allows for quantification of uncertainty in yield predictions.

11.8 State Space Models

Forest growth models predict future values of product volumes per ha for given in-
puts such as site index, stand density, age, and silvicultural treatments. Considering
that both inputs and outputs are functions of time, and that outputs depend on the
entire past history of the stand, Garcı́a (1984, 1994) adopted a state space approach
to stand modeling. The idea is to characterize the state of the system at any point in
time so that given the present state the future state does not depend on the past. For
example, an even-aged monoculture might be characterized by its basal area, stems
per ha, and dominant stand height. It is then assumed that two stands with the same
values for these variables will behave in essentially the same manner regardless
of how they happened to reach that state. In other words, the state of the stand at
any given time is assumed to be the necessary and sufficient information needed to
determine its future behavior.
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Garcı́a (1994) laid out the general structure of the state space approach as
follows:

Let the state at a given time, t, be specified by a list of n numbers (state variables),
that is, by an n-dimensional state vector x(t). The inputs and outputs are finite-
dimensional vectors denoted u(t) and y(t), respectively. Then the behavior of the
system is described by a transition function:

x.t/ D F Œx.t0/; U; t � t0� (11.25)

and an output function:

y.t/ D g Œx.t/� (11.26)

Equation 11.25 gives the state at any time t as a function of the state at some
other time t0, of the inputs (as a function of time, denoted by U), and of the elapsed
time between t0 and t. The output function (11.26) gives the current outputs as a
function of the current state.

A transition function must possess the properties:

1. No change for zero elapsed time:

F Œx.t/; U; 0� D x.t/ for all t; x.t/; U

2. The result of projecting the state first from t0 to t1, and then from t1 to t2, must
be the same as that of the one-step projection from t0 to t2:

F ŒF Œx.t0/; U; t1 � t0� ; U; t2 � t1� D F Œx.t0/; U; t2 � t0� for any t0 � t1 � t2

3. A change of state can only be influenced by inputs within the relevant time
interval:

F Œx.t0/; U1; t1 � t0� D F Œx.t0/; U2; t1 � t0�

if u1.t/ D u2.t/ for t0 � t � t1

The next step is to exploit the fact that transition functions generated by
integration of differential equations (or summation of difference equations when
using discrete time) automatically satisfy these conditions. The model can then be
stated as:

dx=dt D f.x; u/ (11.27)

y D g.x/ (11.28)
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In a discrete-time model �x is substituted for dx=dt . Integration of the local
transition function (11.27) between t0 and t gives the global transition function
(11.25).

To illustrate the state space approach, consider a simple system for pure, even-
aged stands. The two state variables to be modeled are dominant stand height and
basal area per unit area. For a given site, the rate of change of hdom can be modeled
as a function of the current height, namely:

dhdom=dt D f1;1.hdom/ or �hdom D f1;2.hdom/ (11.29)

Stand basal area increment is considered a function of hdom and current basal area
(G), giving:

dG=dt D f2;1.hdom; G/ or �G D f2;2.hdom; G/ (11.30)

The output (volume per unit area, V) can be computed by employing a stand
volume equation:

V D f3.hdom; G/ (11.31)

In most applications three to five state variables have been used to characterize
the stand systems. In addition to the transition functions describing growth and
mortality, auxiliary relationships to estimate instantaneous change in the state
variables caused by silvicultural intervention and to estimate volumes of various
products for given states may be included. Forecasting is done by integrating the
transition functions or through accumulation.

Examples of applications of the state space approach to growth modeling for
even-aged stands include the work of Garcı́a (1984) for radiata pine in New Zealand,
the model of Garcı́a and Ruiz (2003) for eucalypt coppice stands in Spain, the
stand growth model for European beech in Denmark by Nord-Larsen and Johannsen
(2007), the model for interior spruce in British Columbia, Canada, by Garcı́a (2011),
and a model for loblolly pine in the Piedmont physiographic region of the United
States by Garcı́a et al. (2011).
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Chapter 12
Diameter-Distribution Models
for Even-Aged Stands

12.1 Estimating Yields by Size Class Using a Distribution
Function Approach

Overall stand volume is sufficient for many purposes, but effective forest manage-
ment and planning often requires information about the distribution of volume by
size and product classes. In the past, stand (numbers of trees by diameter class)
and stock (volume by diameter class) tables were sometimes included as auxiliary
information to yield tables. Because of the importance of stand and stock table
information, a great deal of attention has been focused on modeling diameter
distributions for even-aged stands. In typical applications, the total number of trees
per unit area is distributed through the use of a probability density function (pdf),
which provides the relative frequency of trees by diameters. Mean total tree heights
are predicted for trees of given diameters growing under specified conditions.
Volume per diameter class is calculated by substituting the predicted mean tree
heights and the diameter class midpoints into tree volume equations. Yield estimates
are obtained by summing the diameter classes of interest. Although only overall
stand values (such as age, site index, and number of trees per ha) are needed as
input, detailed stand distributional information is obtainable as output.

The various diameter distribution models differ chiefly in the function used to
describe the diameter distribution. Regardless of the probability density function
used, the procedure that is commonly referred to as “parameter prediction” involves
estimating the pdf parameters for each plot in the data set (typically by maximum
likelihood, the method of moments, or percentile estimators) and then developing
regression equations to relate these parameter estimates to stand characteristics such
as age, site index, and number of trees per unit area.

Functions for relating pdf parameters to stand characteristics have not been fully
satisfactory; furthermore, predictions of basal area and overall stand volume from
the “parameter prediction” approach to stand modeling will not be compatible
with direct prediction of these stand variables. Consequently alternative methods
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distribution for pure,
even-aged stands (Adapted
from Avery and Burkhart
2002)

commonly referred to as “parameter recovery”, have been developed. The so-called
parameter recovery method consists of forecasting overall stand attributes (such
as stand mean diameter and basal area per ha) and solving for the parameters of
a theoretical distribution model that will give rise to the overall stand attributes
included. Such an approach allows for a direct mathematical link between the
predicted overall stand characteristics and a diameter distribution that is consistent
with those characteristics.

A typical dbh distribution for pure, even-aged stands is shown by the histogram
in Fig. 12.1. As a rule diameter distributions for even-aged stands are unimodal
and slightly skewed. Curves can be fitted to such distributions by a variety of
mathematical functions, including the beta, Weibull, gamma, Johnson SB and,
lognormal distributions.

12.1.1 Selecting a Distribution Function

When fitting diameter distribution data, the choice of a statistical distribution
function to characterize the probabilities of interest is critical. Criteria for choosing
a distribution function include ease of parameter estimation, flexibility to describe
a broad spectrum of shapes, simplicity of integration methods for estimating
proportions in various size classes, and accuracy in fitting the observed data. Hafley
and Schreuder (1977) advocated using the skewness coefficient,

p
ˇ1, and kurtosis

coefficient, ˇ2, of candidate statistical distributions as a means of evaluating their
flexibility to reproduce a variety of shapes. Skewness measures asymmetry; negative
values indicate a distribution with a long tail to the left and positive values a long
tail to the right. Kurtosis is generally considered a relative measure of flatness or
peakedness of a distribution, with the larger the value of ˇ2 the more peaked the
distribution.

A graph of ˇ1 � ˇ2 space is useful to demonstrate the range of skewness and
kurtosis that can be assumed by various statistical distributions. Such a graph can be
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Fig. 12.2 The ˇ1 � ˇ2 space
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helpful to narrow the search for distribution functions that might accurately describe
forest stand diameter and/or height distributions. Figure 12.2 shows the ˇ1�ˇ2 space
for a number of statistical distributions, including several functions that have been
employed for modeling diameter distributions.

The ‘impossible region’ indicates combinations of ˇ1 and ˇ2 that are mathemat-
ically impossible. Further, by tradition, the ordinate scale is plotted upside down.
One use of such a graph is to suggest distributions which might fit a set of data
based on sample estimates of ˇ1 and ˇ2.

The normal, exponential, and uniform are all represented by points in the space,
showing that they all have but one shape. The other three distributions shown in the
figure are more flexible in terms of their ability to approximate a broader segment of
the space. The three distributions gamma, lognormal, and Weibull are represented
by lines in the ˇ1 � ˇ2 space, demonstrating their capability to assume a variety
of shapes. The fact that these lines fall rather close to each other helps to explain
why approximately comparable fits to sets of data are often achieved with these
three distributions. However, as indicated in the graph, the Weibull distribution is
somewhat more flexible than the gamma and lognormal; as expected, empirical
results have repeatedly shown the Weibull function to result in a somewhat better fit
to forestry data.

A further distinction between these three distributions is their ability to represent
different types of skewness. Both the lognormal and gamma distributions are limited
to shapes that have positive skewness, while the Weibull distribution has the ability
to describe both positive and negative skewness. Since Fig. 12.2 presents ˇ1 as
the square of the skewness coefficient, the positive and negative skewness aspect
of a set of data is not readily discernable from the graph. When considering
the sign of

p
ˇ1 the lower line of the Weibull plot in Fig. 12.2 is generated by
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negatively skewed shapes. The beta distribution covers the entire region between
the gamma distribution line, the impossible region, and the ˇ2 axis. Hence, the beta
distribution covers a broad spectrum of shapes and is quite flexible, fitting both
positively and negatively skewed data. Johnson’s SB system of distributions, based
on transformations of a standard normal variate, spans the ˇ1 � ˇ2 space. Johnson’s
(1949a,b) system consists basically of three distributions identified as SB , SL, and
SU . (Sometimes the normal distribution, which is a special case of the three, is
included and denoted by SN .) The SL distribution is a three-parameter lognormal
distribution with one parameter being the lower limit, the SB distribution covers
the region above the lognormal line in Fig. 12.2, and the SU distribution covers
the region below the lognormal line. Hence, Johnson’s SB distribution provides
somewhat more flexibility in skewness and kurtosis than the beta distribution
(Hafley and Schreuder 1977).

For demonstration purposes, Hafley and Schreuder (1977) fitted the beta, SB ,
Weibull, gamma, lognormal, and normal distributions to 21 data sets of diameter and
height measurements for even-aged stands. Based on the log likelihood criterion the
best fit was achieved by the SB distribution followed by the beta, Weibull, gamma,
lognormal, and normal distributions for describing diameter distributions. For the
height distribution data, the ranking was SB , beta, Weibull, normal, gamma, and
lognormal.

Mateus and Tomé (2011) found that the Johnson SB was the only pdf of those
evaluated that could assume the range of (ˇ1; ˇ2) values observed in their data from
eucalyptus plantations.

12.1.2 Characterizing Diameter Distributions
Using Parameter Prediction

Various functions, including the lognormal (Bliss and Reinker 1964) and gamma
(Nelson 1964), have been used to characterize diameter distribution in even-aged
forest stands. It was, however, not until Clutter and Bennett (1965) utilized the beta
distribution to model diameter class frequencies, and their subsequent application
to produce stand structure and yield estimates for slash pine plantations (Bennett
and Clutter 1968), that the potential for this approach to stand modeling began
to be thoroughly explored and developed. Following on Clutter and Bennett’s
(1965) work on slash pine diameter distribution estimation, Beck and Della-Bianca
(1970) published yields, based on the beta distribution, for naturally-regenerated
stands of yellow-poplar. Lenhart and Clutter (1971) and Burkhart and Strub (1974)
applied the beta distribution when developing stand yield models for loblolly pine
plantations.

For a given pdf f .xI 
/, where 
 is a vector of parameter values, integration
between d1 and d2 gives the proportion of trees in that diameter interval. Since a pdf
has the property that its integral over the range on which it is defined equals 1, the
sum of the relative proportions of all defined diameter classes times the total number
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of trees present must equal the total. Often the cumulative distribution function
(CDF) is employed and the proportion in a given diameter interval is computed as
F.d2/ � F.d1/ where F.di/ represents the cumulative area under the CDF from
�1 to di . Given a function for number of trees per unit area and a site index
equation and assuming that the paramaters of the chosen pdf can be related to the
stand characteristics of age, number of trees, and site index, a stand table can be
generated. A stock table and current yield can be produced through application of a
height-diameter relationship and appropriate tree taper, volume or weight equations.
Future yields are forecast by advancing age, predicting future numbers of trees, and
updating the parameters of the pdf. Growth is estimated by differencing yield values.

Since Bailey and Dell (1973) suggested the Weibull function (Weibull 1951) for
modeling forest stand diameter distributions it has been widely adopted and applied.
Desirable attributes cited for the Weibull distribution include flexibility in assuming
a variety of shapes, ease of estimating the distribution parameters by a number of
methods, and efficiency in computing relative frequencies by diameter class due to
the Weibull CDF being in closed form. The Weibull is a three-parameter distribution
defined by the probability density function:

f .x/ D c

b

�x � a

b

�c�1

exp
h
�
�x � a

b

�ci
.a � x < 1/

D 0 otherwise (12.1)

The parameter a is referred to as the location parameter, b is the scale parameter,
and c is the shape parameter. The b and c parameters must be positive while in
general a can be positive, zero, or negative, for diameter distribution applications it
must be nonnegative. For c less than 1 the distribution assumes the inverse j-shapes
found in uneven-aged stands. When c equals 1, the negative exponential distribution
results. Mound shape curves typical of even-aged stands are produced for c greater
than 1. When c is equal 3.6 the Weibull approximates a normal distribution. Right-
skewed curves are defined for c less than 3.6, and left-skewed curves for c greater
than 3.6. As c approaches infinity the distribution approaches a spike over a single
point. One can interpret a C b as that diameter where approximately 63% of all trees
are smaller in diameter. The location parameter is directly related to the minimum
diameter in a stand.

Integrating the pdf produces the cumulative distribution function for the Weibull
distribution:

F.X/ D 1 � exp f�Œ.x � a/=b�cg .a � x < 1/

D 0 otherwise (12.2)

When developing a diameter-distribution based yield model sample plot data
consisting of age, total number of trees per ha, site index (or, equivalently, average
dominant stand height), numbers of trees per ha by dbh classes, and height and dbh
for selected sample trees are required. A separate Weibull distribution is fitted, often
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using maximum likelihood methods, to the dbh class frequency data from each plot.
The data are then used to develop regression equations to predict the Weibull
parameters, that is:

a D f1.t; N; S/

b D f2.t; N; S/

c D f3.t; N; S/

where t D stand age, N D total number of trees per ha, S D site index (dominant
stand height in conjunction with t may be used). Typically the functions for
predicting a, b and c account for only a small part of the variation. The R2 value for
predicting the location parameter, a, which is equivalent to predicting the minimum
diameter of the stand, is generally around 0.3. The shape parameter, c, is especially
difficult to model with R2 values often being close to 0.1. In most applications, the
equations for estimating pdf parameters have been fitted independently, but Newton
et al. (2005) employed stepwise regression and seemingly unrelated regression
(SUR) techniques when modeling maximum likelihood estimates for the location,
scale and shape parameters of the Weibull pdf fitted to data for black spruce
plantations.

The information on heights and dbh of a set of sample trees is used to fit a height-
dbh relationship that is specific to given stand conditions, that is:

h D f .d; t; S; N /

where h D total tree height, d D tree dbh, and t, S, N remain as previously defined.
Tree diameters and predicted heights are substituted into tree volume weight

or taper equations for generating yield estimates. The tree survival and site index
equations needed to implement the system may be developed from the same data
set as the one used to estimate the pdf parameters or the functions may come
from other sources. Examples of applications using the Weibull function and the
parameter prediction approach for developing yield models include Smalley and
Bailey (1974a, b), Dell et al. (1979), and Feduccia et al. (1979).

12.1.3 Characterizing Diameter Distributions
Using Parameter Recovery

For an appropriate density function, Strub and Burkhart (1975) presented a class-
interval-free method for obtaining yield estimates over specified diameter class
limits. The general equation form is given by:

Vm D N

Z u

l

g.d/f .d/dd
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where

Vm D expected volume per unit area for a specified portion of the stand
N D number of trees per unit area,
d D dbh,
g(d) D individual tree volume equation,
f (d) D pdf for d, and
l, u D lower and upper merchantability limits, respectively, for the volume described

by g(d).

Using attributes from a whole stand model and the relationship given by the
class-interval-free equation presented by Strub and Burkhart (1975), Hyink (1980)
and Hyink and Moser (1983) introduced a method of solving for the parameters
of a pdf approximating the diameter distribution. The approach involves predicting
stand average attributes of interest for a specified set of stand conditions and using
these estimates as a basis to “recover” the parameters of the underlying diameter
distribution. When the number of stand attributes included is equal to the number of
parameters in the pdf employed, a system of simultaneous equations results that can
be solved for the pdf parameters, thus defining a “parameter recovery” method. The
resultant diameter distribution will provide identical estimates of the stand average
value(s) (e.g. average diameter, basal area) employed in the parameter recovery
procedure.

12.1.3.1 Using Moments for Diameter Distribution Parameter Recovery

Use of moments to recover parameters for the pdf selected to represent the diameter
distribution will be illustrated with the growth and yield model for yellow-poplar
developed by Knoebel et al. (1986). As is often the case, the lower-bound of the
diameter distribution is set equal to a constant or is predicted outside the parameter
recovery system. In some instances a lower limit for tree size measurements is
imposed in the field data collection; in cases where the recovery system is to be
applied to thinned stands users generally wish to have the ability to set or predict
the lower limit. The Knoebel et al. (1986) model consists of stand-level prediction
plus diameter distribution information recovery using the Weibull function. The two
parameter Weibull density was used, namely:

f .xI b; c/ D
� c

b

� �x

b

�c�1

exp
h
�
�x

b

�ci
(12.3)

and the location parameter, a, was set to a constant or predicted external to the
recovery of the b and c parameters.

With the general diameter distribution yield function,

Yi D N

Z u

l

gi .x/f .xI 
/dx (12.4)
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where

Yi D total per unit area value of the stand attribute defined by gi .x/

gi .x/ D stand attribute as a function of x
f .xI 
/ D pdf for x
N D number of trees per unit area
l, u D lower and upper diameter limits, respectively, for the attribute described by

gi .x/

integration over the range of diameters, x, for any gi .x/, gives the total per unit area
value of the stand attribute defined by gi .x/. Average diameter, basal area per ha,
and total cubic volume per ha are examples of such stand attributes. The number
of stand attribute equations must equal the number of parameters to be estimated in
order to solve the system of equations for recovery of the pdf parameters.

Letting gi .x/ equal xi, one obtains the ith noncentral moment of X as

E.Xi/ D
Z 1

�1
Xi f .xI 
/dx

and the parameter recovery system utilizes the method of moments technique of pdf
parameter estimation. In the case of forest diameter distributions, the first noncentral
moment, E(X), is estimated by

X
xi =N D Nx;

the arithmetic mean diameter of the stand, and the second noncentral moment,
E(X2), is estimated by

X
x2

i =N D x2

the square root of which is the quadratic mean diameter of the stand. Hence, the
first two moments of the diameter distribution have stand-level interpretations that
are common in forestry practice.

Stand average estimates of the first k moments produce a system of k equations
with k unknown parameters which can be solved to obtained estimates of the
pdf parameters while ensuring compatibility between whole stand and diameter
distribution estimates of the stand attributes described by the moment equations.

Stand level basal area was estimated using the equation form of Sullivan and
Clutter (1972). To ensure the required relationship d 2 � Nd 2 � 0, the logarithm of
the difference, ln.d 2 � Nd 2/, was predicted and, given a value for d 2 obtained from
the stand basal area prediction and the overall number of trees, Nd was determined
algebraically. The minimum diameter (dmin) in the stand was specified as a constant
or predicted and the location parameter was set to 0.5dmin. The equations for the
two parameter recovery system are:
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Nx D
Z 1

0

xf .xI b; c/dx D b�.1 C 1=c/ (12.5)

x2 D
Z 1

0

x2f .xI b; c/dx D b2�.1 C 2=c/ (12.6)

the estimated variance of the distribution is given by

s2 D x2 � Nx2 D b2
�
�.1 C 2=c/ � �2.1 C 1=c/

�
(12.7)

and the coefficient of variation (CV) is estimated by

C V D s

Nx D
�
�.1 C 2=c/ � �2.1 C 1=c/

� 1
2

�.1 C 1=c/
(12.8)

Given estimates of Nx and x2, the coefficient of variation is a function of c
alone, thus reducing the order of the system. Under this formulation, there exists
a unique solution for c, and simple iterative techniques for solving one equation in
one unknown can be used to obtain a value for c. With c known, b is solved from
Nx D b�.1 C 1=c/, and a is estimated with a constant or an equation external to the
system. When applying the system, the same stand-level basal area equation is used
when deriving diameter distributions and when estimating overall stand basal area
in order to ensure compatibility between the two levels of stand detail.

Knoebel et al. (1986) used a set of randomly selected plots to evaluate the
correspondence between observed and predicted diameter distributions and to
check for logical consistencies that should be exhibited between stand tables for
thinned and unthinned conditions. Although the predicted distributions closely
approximated the observed distributions, some discrepancies were present among
the stand tables of thinned and unthinned plots. Predicted numbers of trees increased
in some diameter classes after thinning, and in some instances, the stand table
after thinning had a larger maximum stand diameter and/or a smaller minimum
stand diameter than those in the corresponding stand table prior to thinning. It was
apparent that the diameter distribution predictions before and after a thinning from
below could not be carried out independently, but had to be conditioned such that
inconsistencies could not occur.

As an alternative to two independent predictions, the diameter distribution prior
to thinning was predicted, as before, then a proportion of the basal area in each
diameter class was removed to simulate the thinning. With this procedure the
number of trees in a given class cannot increase as trees can only be removed from
a class. Consequently, if any change occurs, minimum diameter can only increase
and maximum diameter can only decrease.

A function was defined specifying the amount of basal area to be removed from
each diameter class. The equation form relating the proportion of basal area removed
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in a diameter class to the ratio of the midpoint diameter of the class squared to the
average squared diameter of the stand was:

Pj D exp

�
b1

�
d 2

j = Nd 2
�b2
�

(12.9)

where

Pj D proportion of basal area removed from diameter class j
dj D midpoint diameter of class j
Nd 2 D average squared diameter of stand, and

b1; b2 D coefficients estimated from data.

As the yellow-poplar plot data were taken from stands thinned from below, the
removal function reduces tree numbers more heavily in the smaller diameter classes
than in the larger diameter classes. Equation 12.9, when fitted, represents the average
removal pattern in the data used to estimate the parameters.

After defining basal area removal function (12.9), a thinning algorithm was
implemented as follows:

1. Predict the diameter distribution prior to thinning from the Weibull distribution.
2. Starting with the smallest diameter class, remove the proportion of basal area

specified by the removal function.
3. Proceed through the diameter classes until the desired level of basal area to be

removed is achieved.
4. If the required basal area removal is not obtained after the largest diameter class

is reached, return to the smallest diameter class and remove the remaining basal
area in that class. Proceed in this manner through the diameter classes until the
desired level of basal area removal is attained.

In another approach to insuring consistency between stand tables before and after
thinning, Matney and Farrar (1992) and Farrar and Matney (1994) used a combi-
nation of parameter recovery and weighted constrained least squares procedures.
Prior to the first thinning, diameter distributions are approximated by recovering the
parameters of a three-parameter Weibull distribution so that its expected arithmetic-
and quadratic-mean diameter equals predicted arithmetic- and quadratic-mean stand
diameters. At first thinning, a list of tree diameters and the numbers per unit area are
generated from the Weibull distribution. After generating the tree list, any specified
thinning can be applied to the list; weighted constrained least squares procedures
are employed to allocate mortality and diameter growth to the list. The mortality
allocation function minimizes the weighted sum of squared differences between
tree list elements before and after mortality, subject to constraints on the adjusted
tree list, namely (1) the total number of trees per unit area represented equals
the predicted total number of trees per unit area surviving to time t0 C �t , and
(2) the arithmetic- and quadratic-mean diameters (first-and second-order diameter
moments) equal the values for trees at time t0 that will survive to time t0 C �t .
Similarly, the least squares diameter growth procedure generates a tree diameter
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growth allocation function by minimizing the weighted sum of squared differences
between tree list elements at time t0 C �t , subject to the constraint that the adjusted
tree list has arithmetic- and quadratic-mean diameters equal to their projected values
(Matney and Farrar 1992).

A number of growth and yield simulators use the moment-based parameter
recovery method with the Weibull function, among them being models for unthinned
slash pine plantations (Matney, et al. 1987), thinned loblolly pine plantations (Cao
et al. 1982), and unthinned natural stands of loblolly pine (Burk and Burkhart 1984).
In most applications of the parameter recovery technique, diameter distributions
that are compatible with stand predicted values for mean diameter and basal area
are produced, height is predicted as a function of diameter (Sect. 12.2), and yields
are computed using volume, weight or taper functions. Using these procedures, the
resultant volume per unit area from the diameter distribution analysis will not equal
that obtained from a standard yield function. An exception is the model of Matney
and Sullivan (1982) for compatible stand and stock tables for thinned and unthinned
stands. They first developed compatible equations for projecting per hectare values
of numbers of trees, basal area, and total cubic volume. Three-parameter Weibull
distribution representations of diameter distributions were then calculated so that
when integrated for per hectare basal area and cubic volume the result is the same
as predicted.

12.1.3.2 Using Percentiles for Diameter Distribution Parameter Recovery

Percentile estimates provide another approach to recovering parameters of a specific
distribution function. In the case of the Weibull function, percentile estimators are
relatively easy to implement. The basic concept is similar to that of using moments
for recovery of pdf parameters. If three sample percentiles are known, each can be
equated to its corresponding Weibull cumulative distribution function value and the
three equations can be solved iteratively for estimates of a, b and c.

Given the Weibull cumulative distribution function

F.X/ D 1 � exp f�Œ.x � a/=b�cg

and letting Xp represent the p-percentile value in the sample (that is the value such
that 100p-percent of the sample values are less that Xp), then

p D 1 � exp
n
��.Xp � a/=b

�co
(12.10)

Expression (12.10) can be solved for Xp to give

Xp D a C bŒ� ln.1 � p/�
1
c (12.11)
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Selected percentiles of diameter distributions are computed for a series of sample
plots and related to the overall plot characteristics of age, total number of trees per
unit area, and site index (or, alternatively height of the dominant stand). A predicted
diameter distribution for any specified combination of t, N and S (or hdom) values
can be obtained by solving the system of percentile estimators for the Weibull
distribution parameters. Three percentiles can be used to develop a simultaneous
system of equations to be solved but, as with the use of moment estimators, the
location parameter a is often predicted directly or related to the predicted value for
the minimum diameter and the scale and shape parameters (b and c, respectively)
are recovered through the solution of two equations with two unknowns.

Although many different approaches to the application of percentile estimators
are possible, the Weibull recovery procedure presented by Bailey et al. (1989) has
been widely applied (examples include Brooks et al. 1992; Knowe 1992, and Knowe
et al. 1994). The Bailey et al. (1989) parameter recovery procedure is based on
the 0th, 25th, 50th and 95th diameter percentiles (denoted D0; D25; D50 and D95).
Assuming that c D 3, the location parameter, a, is obtained by the minimum (D0)
and median (D50) diameters and sample size (n):

a D n0:3333D0 � D50

n0:3333 � 1

Negative values for a are set to zero. The shape parameter is determined by using
the estimate for the location parameter (a) and D95 and D25:

c D 2:343088

ln.D95 � a/ � ln.D25 � a/

Then the scale parameter, b, is obtained by solving the second moment of the
Weibull distribution for the positive root using the estimates for c and Nd 2

g :

b D �a�1

�2

C
s	

a

�2


2

.�2
1 � �2/ C

Nd 2
g

�2

where

�1 D �
�
1 C 1

c

�
�2 D �

�
1 C 2

c

�
� is the gamma function, and
Ndg is the quadratic mean diameter

This procedure does not rely entirely upon percentiles but includes information
on dg . The system ensures that dg in the predicted diameter distribution is the same
as the quadratic mean diameter implied by prediction equations for stand basal area
and number of trees.
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12.1.4 Evaluations of Alternative Distributions and Parameter
Estimation Methods

A number of comparisons have been made involving alternative methods for
estimating pdf parameters from forest diameter distribution data. Zarnoch and Dell
(1985) contrasted maximum likelihood and percentile estimators for estimating the
three-parameter Weibull distribution. Employing computer simulations and field
data comparisons, they found that maximum likelihood estimators had smaller bias
and lower mean square error but larger variance than the percentile estimators.
Comparisons of resultant distributions indicated that either maximum likelihood
or percentile estimators should perform adequately when modeling pine plantation
diameter distributions. The authors further noted that because the parameters
are correlated, various combinations of parameter values can lead to similar
distributions.

Shiver (1988) evaluated three methods of parameter estimation over four sample
sizes for characterizing diameter distributions using the Weibull function. Maxi-
mum likelihood, moment (Burk and Newberry 1984; Garcia 1981) and percentile
(Zanakis 1979) estimators were contrasted by generating samples of 30, 50, 75,
and 100 trees using data from a simulator developed to provide realistic diameter
distributions for unthinned slash pine plantations. Maximum likelihood estimation
provided the best estimates of known distribution parameters. Under the assumption
of no specific underlying parameters, both moments and percentile procedures re-
produced the underlying distribution of diameters as well as or better than maximum
likelihood estimation. All three methods required samples of approximately 50
trees to reproduce distributions with acceptable accuracy. In agreement with results
of Zarnoch and Dell (1985), Shiver (1988) found that percentile estimators were
biased but had smaller variances than maximum likelihood estimators. Percentile
estimators were also more biased but with smaller variances than moment-based
estimators. Maximum likelihood estimators proved best when the goal was to
reproduce a given set of Weibull parameters. However, from a practical point of
view, differences in results from different estimation methods were small and the
alternate methods performed as well at reproducing diameter distributions.

The investigations by Zarnoch and Dell (1985) and Shiver (1988) were aimed
at evaluating methods for estimating parameters of the Weibull function for the
purpose of reproducing forest stand diameter distributions. In order to implement
a diameter distribution based yield model, the parameters must be related to
overall stand characteristics such as age, site index and trees per unit area. Liu
et al. (2004) used parameter prediction, moment-based parameter recovery, and
percentile-based parameter recovery methods for estimating parameters of the
three-parameter Weibull pdf and tested their applicability for predicting diameter
distributions of unthinned black spruce plantations. Using stepwise regression
analyses in combination with seemingly unrelated regression techniques, the three
methods were calibrated using commonly measured prediction variables (stand age,
dominant height, site index, and stand density). Results indicated that, although all
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three methods were successful in predicting the diameter frequency distributions
within the sample stands, the percentile-based recovery was superior in terms of
prediction error. Specifically, the percentile-based method had the lowest mean error
index (80.98), followed by the moment-based recovery (82.73) and the parameter
prediction method (83.98). Consequently, among the three methods assessed, the
percentile method was considered the most suitable for describing unimodal di-
ameter distributions using the three-parameter Weibull probability density function
within unthinned black spruce plantations.

Cao (2004) used data from a loblolly pine planting thinned to different residual
densities to evaluate six methods for predicting parameters of Weibull functions
applied to model diameter distributions. The following general form for regression
equations was adopted:

y D exp b1 C b2Rs C b3 ln N C b4 ln hdom C b5t
�1 (12.12)

where:

y D a specific Weibull parameter, diameter percentile, or mean diameter;
Rs D relative spacing, (10,000/N)0.5/hdom, which is the ratio of average distance

between trees (assuming square spacing ) and dominant height;
N D number of trees per ha;
hdom D dominant height in meters.
t D stand age in years; and
b1; : : : ; b5 D regression parameters.

Methods used to obtain the Weibull parameters were:

1. Parameter prediction
The system consisted of three regression equations, each in the form of Eq. 12.12.
The dependent variables of these equations were Weibull parameters, a, b and c,
which had previously been estimated for each plot measurement using the
method of maximum likelihood. Because cross-equation correlations existed
among error components of these equations, they were treated as a system of
nonlinear, seemingly unrelated equations.

2. Moment estimation
The Weibull location parameter was computed as 0.5 OD0, the predicted minimum
diameter in the stand. The b and c parameters were recovered from the first two
moments of the diameter distribution

b D . ONd � a/=�1

ONd 2
g C a22a ONd � b2�2 D 0

where ONd and ONdg are predicted arithmetic and quadratic mean diameters, respec-
tively, and �i D �.1Ci=c/. Borders’ (1989) method was used to simultaneously
estimate regression parameters of equations to predict D0, Nd , and Ndg .
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3. Percentiles
The method of Bailey et al. (1989) was used to compute the Weibull parameters

from the quadratic mean diameter ( ONdg), minimum diameter ( OD0), 25th diameter
percentile ( OD25), 50th percentile ( OD50), and 95th percentile ( OD95):

a D .n0:3333 OD0 � OD50/=.n0:3333 � 1/

c D 2:343088=
h
ln. OD95 � a/ � ln. OD25 � a/

i

b D �a�1=�2 C
h
.a=�2/

2.�2
1 � �2/ C ONd 2

g=�2

i0:5

where n is the number of trees in the plot. This method was not strictly percentiles
as Ndg was used. Regression parameters of equations to predict Ndg; D0; D25; D50;

and D95 were simultaneously estimated.
4. Moment-percentile method

As in Method 2, the Weibull location parameter was computed from a D 0.5 OD0.
Baldwin and Feduccia (1987) developed this hybrid method in which the b and
c parameters are recovered from two values: a moment (the quadratic mean
diameter) and a percentile (the 93rd diameter percentile or OD93):

b D . OD93 � a/=2:659261=c

a2 � Od 2
g C 2a. OD93 � a/�1=2:659261=c C a. OD93 � a/

2
�2=2:659262=c D 0

where 2.65926 D �ln(1�0.93). The system of equations to predict, Ndg; D0, and
D93 was fitted simultaneously.

5. Maximum likelihood estimator (MLE) regression
The Weibull location parameter was computed from a D 0.5 OD0. The following
two equations were used for predicting the scale parameter (b) and shape
parameter (c):

b D exp
�
b1 C b2Rs C b3 ln.N / C b4 ln.hdom/ C b5t

�1
�

c D exp
�
c1 C c2Rs C c3 ln.N / C c4 ln.hdom/ C c5t

�1
�

The coefficients bi and ci were iteratively searched to maximize the sum of
the log-likelihood values from all plots.

6. Cumulative Distribution Function (CDF) Regression
This method is similar to Method 5, except that the coefficients bi and ci were
iteratively searched to minimize the following function:

pX
iD1

niX
j D1

.Fij � OFij /
2
=ni
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where

Fij D observed cumulative probability of tree j in the ith plot-age combination;
OFij D 1 � exp

˚��.xij � a/=b
�c�D or the value of the CDF of the Weibull

distribution evaluated at xij ;
xij D dbh of tree j in the ith plot-age combination; and
ni D number of trees for the ith plot-age combination.

Results from three measures of goodness of fit were very similar. Parameter
prediction (Method 1) was the poorest performer, ranking last for both fit and
validation data. The “parameter recovery” group, which involved recovery of
the Weibull parameters from moments (Method 2), percentiles (Method 3), or a
combination of both (Method 4), produced similar evaluation statistics. Methods 5
and 6 ranked best among the alternatives evaluated, with Method 6 (CDF regression)
consistently producing the lowest goodness-of-fit statistics for both fit and validation
data.

When developing a diameter distribution prediction model for longleaf pine
plantations, Jiang and Brooks (2009) evaluated the percentile-based parameter
recovery method of Bailey et al. (1989) (Method 3 in Cao’s comparison) and the
CDF regression presented as Method 6 by Cao (2004) for estimating parameters
of the Weibull function. In contrast to the results of Cao (2004), the percentile-
based parameter recovery method consistently produced the better goodness-of-fit
statistics for both fit and validation data sets of longleaf pine. Liu et al. (2009)
compared six methods for predicting parameters of the Weibull function when
describing diameter distributions in unthinned white spruce plantations in eastern
Canada. Weibull parameters, moments, or diameter percentiles were related to
stand age, site index, dominant height and relative spacing using stepwise linear
regression analysis to identify functional forms. Results indicated that the percentile
method performed best. Maximum likelihood regression, cumulative distribution
function regression, and moment-based parameter recovery all performed about
equally well and all were superior to parameter prediction. The two hybrid-based
(moment-percentile) methods tested showed the poorest performance in predicting
diameter frequency distributions.

The Johnson system of distributions was used by Zhao and McTague (1996)
to fit both diameter and height data from ponderosa pine and mixed-conifer forest
types in New Mexico and Arizona, USA. Five parameter estimation methods (per-
centile, Knoebel-Burkhart, mode, maximum likelihood, and a new linear regression
approach developed by the authors) were compared and evaluated. For the sample
data available, the linear regression method proved best for estimating parameters
of SB distributions for both diameter and height.

In a study aimed at developing tree diameter distributions for biomass estimation
in four boreal forest types (trembling aspen, jack pine, black spruce, and mixed for-
est), Chen (2004) contrasted parameter prediction and parameter recovery methods
using the Weibull, Johnson’s SB , and lognormal functions. The three distribution
functions ranked Johnson’s SB first, lognormal second and Weibull third, but the
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differences in goodness of fit among them were minor. The parameter recovery
method performed well in comparison to two parameter prediction methods that
were evaluated.

Zhang et al. (2003) compared four commonly used estimation models to fit
the three-parameter Weibull and Johnson’s SB distributions to pure and mixed
stands of red spruce-balsam fir stands. The results indicated that the Weibull and
the Johnson’s SB distributions were generally equally suitable for modeling the
diameter frequency distributions. However, the relative performance depended on
the parameter estimation method used. The observed diameter distributions of
the whole plots were typically positively skewed, reverse-J, or mound shapes.
The relative merits of the Weibull and Johnson’s SB distributions depended not
on the inherent flexibility of the probability density functions themselves, but
rather on the accuracy of methods employed to estimate the parameters. As more
information from the tree list was used to fit the distributions, a more accurate
representation of the tree diameter distribution was obtained.

12.1.5 Characterizing Diameter Distributions
of Mixed-Species Stands

In addition to monocultures, diameter distributions for mixed-species stands have
been modeled. Little (1983) reported that the three-parameter Weibull function met
specified standards for goodness of fit as a model for the diameter distributions
of mixed stands of western hemlock and Douglas- fir. Bowling et al. (1989)
developed diameter distributions for five species groups of Appalachian hardwoods.
Equations were specified to predict stand attributes by species group and for the
whole stand to provide the inputs for moment-based recovery of parameters of
Weibull functions. In another application, Maltamo (1997) used Weibull functions
to model distributions of mixed Scots pine and Norway spruce stands. Tham (1988)
investigated the structure of mixed Norway spruce and two birch species and found
that the Johnson’s SB distribution fit well to all three species separately and to the
entire stand.

The diameter distribution of the entire stand consisting of multiple species is
often basically unimodal. When species are considered individually, multiple modes
may be exhibited; neither the Johnson SB nor the Weibull distribution can accurately
represent bimodal distributions. Various solutions to the problem of modeling highly
irregular tree-size distributions have been investigated including use of segmented
distributions (Cao and Burkhart 1984), distribution-free models (Borders et al.
1987), and nonparametric statistical methods (Droessler and Burk 1989; Haara et al.
1997; Maltamo and Kangas 1998).

Liu et al. (2002) suggested using a finite mixture model (FMM) for characterizing
the diameter distributions of mixed-species stands. A frequency distribution made
up of two or more component distributions is defined as a “mixture” distribution.
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In their study, Liu et al. compared a finite mixture of two Weibull distributions
against two traditional methods: (1) fitting the Weibull function to the entire plot,
and (2) fitting the Weibull function to each species separately. For comparison
purposes, plots composed of two species were used. Results showed that the finite
mixture model was capable of fitting irregular, multimodal, or highly skewed
diameter distributions. Compared with traditional methods in which a single Weibull
function is fitted to either the whole plot or each species component separately, the
finite mixture model produced smaller root mean square error and bias. The finite
mixture approach simultaneously estimates the proportion and component diameter
distributions of different tree species in mixed-species stands. Liu et al. judged
the finite mixtures modeling approach to be promising but pointed out that it has
both advantages and disadvantages. Advantages listed were: (1) it is more flexible
than the traditional Weibull function fit either to the whole plot or to individual
species separately, (2) it is not necessary to classify the components of a multimodal
distribution a priori during data collection, and (3) the proportions of each species
component or group can be estimated when the information is not available in the
data. A disadvantage of the FMM approach is that it may not predict each species
component as accurately as fitting the component data separately.

12.1.6 Bivariate Approach

12.1.6.1 Modeling Diameter and Height Distributions

As an alternative to predicting mean tree heights by diameter class, Schreuder and
Hafley (1977) suggested a bivariate distribution approach for describing height-
diameter data from even-aged stands. Based on the comparatively good performance
of the marginal SB distribution for fitting both diameter and height data (Hafley and
Schreuder 1977), Schreuder and Hafley (1977) asserted that the bivariate extension,
commonly denoted SBB , could provide more usable information than approaches
that involve fitting marginal distributions for diameter and estimating mean heights
by diameter class. The SBB allows for generation of bivariate frequencies for
diameter and height. In addition, the SBB implies a height-diameter relationship
that is comparable in fit to commonly-used regression models.

Hafley and Buford (1985) used the SBB distribution for describing stand structure
(height and diameter distributions) in thinned and unthinned stands of loblolly
pine. By using a bivariate distribution approach height, as well as diameter, can
be included in the thinning algorithm. In the Hafley-Buford application, a stand
is described at any instance using the SBB distribution on the assumption that
the stand is a bivariate population of diameters and heights. The model predicts
changes over time in nine stand characteristics and uses those characteristics to
derive the nine parameters of the SBB distribution. Stand yield at any desired point
in time is determined from the SBB distribution whose parameters are defined by
the stand characteristics, and the number of surviving trees per hectare at that
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point. The quadratic mean diameter, basal area, average height, dominant height,
and cubic volume are all obtained from moments of the respective marginal SB

distributions and the SBB distribution using numerical integration. Integrating the
bivariate distribution over the two-way cell boundaries gives two-way stand tables
of frequency by diameter and height class.

12.1.6.2 Modeling Diameter Distributions at Two Points in Time

Knoebel and Burkhart (1991) presented a bivariate distribution approach to
modeling forest diameter distributions at two points in time. There are a number of
shortcomings associated with the usual parameter prediction and parameter recovery
methods by which a given diameter distribution is projected to a future point in
time. These procedures obtain initial and future diameter distribution parameter
estimates for a specified stand either directly or indirectly from initial and future
stand characteristics. The future diameter distribution does not directly depend
on the initial diameter distribution; the initial and future diameter distributions
are treated as independent entities and the dependencies that exist between them
are not taken into account. Intuitively, the projected future distribution should be
related to, or depend on, the current initial distribution. These considerations led
Knoebel and Burkhart to hypothesize that the incorporation of the initial distribution
information into a projection method would improve the prediction of the future
diameter distribution. As initial and future diameters measured on the same tree
represent correlated observations, and future tree diameter given current diameter is
a random variable, an investigation of a bivariate distribution approach to modeling
distributions at two points in time was undertaken. Such an approach assumes a
dependency between the initial and future diameter distributions and allows future
tree diameter, given current diameter, to be treated as a random variable.

Rather than independently predicting the initial and future diameter distribu-
tions, the bivariate distribution approach suggests the following: given an initial
distributions and the implied relationships between initial and future tree diameters
as defined by the particular bivariate distribution, determine or specify the future
distribution. The first phase in development of the bivariate distribution approach
involved the selection of an appropriate bivariate density capable of describing
the diameter distributions. Criteria for selection included flexibility and ease of
parameter estimation. A bivariate distribution was considered to be flexible if the
marginal distributions were capable of describing the univariate diameter distri-
butions while implying a biologically reasonable relationship between the initial
and future diameter random variates. Many statistical distribution functions have
been used to describe diameter distributions in forest stands with varying degrees
of success. The selected bivariate distribution should be able to accommodate
both positive and negative skewness, as well as symmetry for either marginal
variate.

Ease of parameter estimation and computations was desired as was limiting
the number of parameter to be estimated while ensuring sufficient flexibility in
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approximating a range of shapes. Estimation of proportions in various size classes
should also be relatively simple. A bivariate distribution that satisfied all criteria set
forth was the bivariate Johnson distribution or the SBB .

For the SBB distribution the median regression takes a relatively simple form
and is bounded by the limits of the marginal distributions. Hence, the SBB

distribution was selected as an appropriate bivariate distribution to model tree
diameter distributions at two points in time.

Simply fitting a bivariate SB distribution to tree diameters from sample plots and
predicting the distribution parameters from fitted functions relating them to stand
characteristics would not establish a means of determining the future distribution
given the initial distribution. While directly fitting the bivariate distribution will
determine whether the initial and future diameter distributions can be described by
such a bivariate distribution, this fitting requires knowledge, or specification, of both
the initial and future marginal distributions, and the future distribution is assumed
to be unknown.

For the purpose of modeling diameter distributions at two points in time, it was of
interest to explicitly define the future distribution based on the current distribution.
The general approach taken, which was possible due to the form of the median
regression equation of the SBB , was as follows. First specify the initial diameter
distribution, described by an SB density function. Next, define the median regression
equation, which represents the relationship between initial and future tree diameters.
From the parameters of the initial distribution and median regression, obtain
the future diameter distribution parameters. The bivariate SB distribution model
presented by Knoebel and Burkhart was compared to several “standard” methods
for predicting future diameter distributions including the parameter prediction,
parameter recovery, and percentile prediction methods. Observed present and future
diameter distributions were obtained from permanent plot installations in yellow-
poplar stands. Comparisons of projected diameter distributions to observed values
showed that the bivariate SB distribution approach gave results as good as, and in
some cases better than, the alternative methods.

12.2 Modeling Height-Diameter Relationships

In most applications, distribution functions have been used to estimate stem
frequencies by dbh class. Height information is then generated via a regression
equation fitted for predicting mean heights of trees of a given dbh growing in stands
of specified age, site index (or average height of the dominant stand), and total
number of stems per hectare. The midpoint of diameter classes, along with the
predicted tree heights, are then used with tree taper, volume or weight functions
(Chaps. 2, 3, and 4) to compute the per unit area values of interest. Heights, as well
as diameters, are measured on all, or often times a sample, of the trees comprising
the sample plots used to develop the diameter distribution information.

http://dx.doi.org/10.1007/978-90-481-3170-9_2
http://dx.doi.org/10.1007/978-90-481-3170-9_3
http://dx.doi.org/10.1007/978-90-481-3170-9_4
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Because of their importance for a number of forest stand modeling applications,
height-diameter equations have received considerable attention. In addition to
predicting average heights associated with dbh classes in diameter distribution
systems, height-diameter relationships are also employed in stand-table projection
(Chap. 13) and individual-tree growth and yield simulators (Chap. 14).

Curtis (1967) compared a number of height-diameter and height-diameter-age
equations for Douglas-fir and found that most gave similar results within the
range of the observed data but some forms were more stable than others when
extrapolation was involved. In an evaluation of model forms for estimating height-
diameter relationships in loblolly pine plantations, Arabatzis and Burkhart (1992)
found the form

ln h D b0 C b1d
�1 (12.13)

where h is total tree height for a tree of dbh equal to d to be most satisfactory.
In the context of diameter distribution models developed for growth and yield

prediction, most have relied on the basic form (12.13) when predicting mean tree
heights by diameter class. Bennett and Clutter (1968), in their original publication
on yield prediction based on diameter distribution analyses, specified the height
prediction model

ln h D b0 C b1S C b2N C b3t
�1 C b4d

�1 (12.14)

which reduces to ln h D b0 C b1d
�1 for specified stand variables of S, N and t.

In a subsequent analysis, Lenhart and Clutter (1971) adopted the form

ln.h=hdom/ D b0 C b1.d
�1 � d �1

max/ C b2t
�1.d �1 � d �1

max/ C b3.d
�1 � d �1

max/ ln N

(12.15)

where dmax is defined as the midpoint or the upper limit of the largest occupied
diameter class. Formulation (12.15) also reduces to ln h D b0 C bd �1 for given
stand variables but it has the desirable property that predicted height for the larger
dbh classes will be close to the specified average height of the dominant stand
(hdom). Variants of equation form (12.15) have been incorporated in a number of
diameter-distribution-based models including Smalley and Bailey (1974a, b), Dell
et al. (1979), Feduccia et al. (1979), and Amateis et al. (1984).

Most height-diameter relationships are aimed at predicting individual tree heights
given stand age, site index, stand density, and dbh. However, as Lynch and Murphy
(1995) pointed out, it is reasonable to expect that the current total height of a tree
if known (either by direct measurement or from the current height-dbh relationship
in the stand) should also be useful when predicting tree heights. Since “current”
(previous to age of prediction) tree heights are not always known, a height prediction
system which also retains the desirable features of traditional height-diameter
relationships may also be required.

http://dx.doi.org/10.1007/978-90-481-3170-9_13
http://dx.doi.org/10.1007/978-90-481-3170-9_14
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Accordingly, Lynch and Murphy (1995) developed a system of two compatible
equations that can be used to predict individual tree heights at various ages. One
equation uses known values of current tree height to project future heights, while the
other provides height predictions that depend only on dbh and stand-level variables.
The Lynch-Murphy system, when applied to data for trees in natural, even-aged
shortleaf pine stands, showed that future total heights were more precisely predicted
when previous values of total height were known. Seemingly unrelated nonlinear
regression techniques were applied to the system of two equations, which had
unequal sample sizes and restrictions on equation parameters.

Due to the importance of estimating heights from tree diameters, a number of
evaluations of model forms and/or efficacy of adding additional stand-level predictor
variables have been conducted (examples include Arabatzis and Burkhart 1992;
Huang et al. 1992; Huang et al. 2000; Staudhammer and LeMay 2000; Temesgen
et al. 2007; and Fast and Ducey 2011; Paulo et al. 2011). The addition of stand
variables after dbh generally improves fit statistics and extends the generality of
height-diameter models. Lei and Parresol (2001) listed the following desirable
characteristics for functions used to model heigh-diameter relationships: (i) increase
monotonically, (ii) have an upper asymptote, and (iii) have an inflection point. Paulo
et al. (2011) questioned the third requirement. Both diameter and height growth
curves have an inflection point, but this may not be necessarily so for the relationship
between height and diameter. Although the fitting data set used by Paulo et al.
included cork oak trees with large variability of diameter values (corresponding
to young and old individuals), no evidence of an inflection point was found when
plotting height against diameter.

Several relatively recent studies (for instance, Mehtätalo 2004; Calama and
Montero 2004; Sharma and Parton 2007; Trincado et al. 2007; Budhathoki et al.
2008; Temesgen et al. 2008; and Coble and Lee 2011; and Paulo et al. 2011)
have applied mixed-effects modeling techniques when developing height-diameter
curves. Mixed models allow prediction of a typical response, using only fixed
effects, and a calibrated response where random effects are predicted and included
in the model using measurements of heights from a sample of trees.

12.3 Predicting Unit-Area Tree Survival

When applying distribution functions to estimate stand tables and yields, the total
number of trees per unit area is assumed to be known. Given that a suitable site
index equation is available, future yields and growth estimates (computed as the
differences between yield values at two points in time) rely on projection of stand
age and overall number of trees. The ability to estimate the number of stems per
unit area over time and for varying stand characteristics is a key component in the
distribution-based approach to growth and yield prediction.
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The prediction of tree survival (or mortality) is difficult, and a number of
different approaches have been advanced. In the context of diameter-distribution-
based models, the basic structure

ln.Np=Ns/ D t f .t; S.or hdom/; Np/ (12.16)

where Np represents the number of trees planted, Ns is the number surviving at age
t, S is site index (alternatively, hdom height of the dominant stand at age t) has been
employed in several models, including those of Smalley and Bailey (1974a, b), Dell
et al. (1979), Feduccia et al. (1979), and Amateis et al. (1984). The merits of form
(12.16) are that when t D 0; ln.Np=Ns/ D 0 and, thus, Ns D Np and the equation
predicts 100% survival.

Tree survival prediction equations are commonly developed using data from at
least one remeasurement of permanent sample plots. Typically, the data consists of
numbers of stems (N1) at an initial age (t1), number (N2) at a subsequent age (t2),
and site index of the stand. Such data allow fitting an equation to predict Ns as a
function of t1, t2, and N1; site index may also be included in the prediction equation,
but it has often been found not to contribute significantly to the fitted relationship.
Certain properties are desired in equations for estimating future numbers of trees in
even-aged stands, including: (i) if t2 equals t1,N2 should equal N1, (ii) if t2 is greater
than t1, N2 should be less than or equal to N1, (iii) as t2 increases without bound, N2

should approach 0; and (iv) if N2 is predicted at age t2 and t2 and N2 are then used
to predict N3 at age t3.t3 > t2 > t1/, the result should be the same as that obtained
by a single projection from t1 t0 t3.

Experience has shown that integration of mortality rate equations is often an
effective means of expressing a difference equation model with desirable properties
for estimating future numbers of trees. For example, one might assume that
instantaneous mortality rate is constant, that is:

dN=dt

N
D k (12.17)

where N D number of trees per ha at age t, dN/dt D instantaneous mortality rate at
age t, and k D constant.

Integration of equation (12.17) with the initial condition that N D N1 when
t D t1 gives the difference equation:

N2 D N1e
k.t2�t1/ (12.18)

Equation 12.18, would be appropriate for populations where proportional mortal-
ity rate is constant at all ages, site indexes, and stand densities. Such an assumption
is not realistic for most cases involving forest stands, but rather mortality rate is
generally related to stand variables.
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Assuming that mortality rate is proportional to stand age raised to a power gives:

dN=dt

N
D ˛tˇ (12.19)

Integrating Eq. 12.19 results in the difference equation model

ln N2 D ln N1 C b1

�
t

b2

2 � t
b2

1

�
(12.20)

which has been fitted by Piennar and Shiver (1981), Pienaar et al. (1990), and
Amateis et al. (1997).

While difference Eq. 12.20 may be suitable for certain stages of stand develop-
ment, an assumption that mortality rate is proportional to stand age and density is
often more appropriate leading to the mortality rate model:

dN=dt

N
D ˛tˇN � (12.21)

Solving (12.21) as a difference equation yields

N2 D
h
N

b1

1 C b2

�
t

b3

2 � t
b3

1

�i.1=b1/

(12.22)

Model (12.22) exhibits several desirable properties, such as, when t1 D t2, N2 D
N1 and as t2 approaches infinity N2 approaches zero. Clutter and Jones (1980) used
model (12.22) when projecting number of trees in thinned slash pine plantations.
In an evaluation of four equations for predicting mortality after thinning in loblolly
pine plantations, Lemin and Burkhart (1983) found that the difference equation form
(12.22) performed best.

Although site index frequently does not contribute significantly after including
age and number of trees when predicting mortality, it is occasionally also included.
Under the assumption that mortality rate is proportional to a function of age, number
of trees, and site index one can write the differential equation as:

dN=dt

N
D ˛tˇN �Sı (12.23)

Integrating (12.23) results in the difference equation:

N2 D
h
N

b1

1 C b2S
b3

�
t

b4

2 � t
b4

1

�i.1=b1/

(12.24)

Obtaining convergence when fitting (12.24) with nonlinear least squares can be
difficult. A slightly different form was fitted by Clutter et al. (1984) when predicting
mortality in loblolly pine plantations, namely:

N2 D
h
N

b1

1 C �
b2 C b3S

�1
� �

t
b4

2 � t
b4

1

�i.1=b1/

(12.25)
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Somers et al. (1980) demonstrated the use of the censored Weibull distribution
for modeling survival in young, even-aged natural stands of loblolly pine. Setting
parameters “c” of the Weibull distribution to a common value for all densities and
relating parameter “b” to initial numbers of trees resulted in adequate predictions
from ages 3 to 14.

In a study aimed at developing methods for predicting stand survival over much
of the life of a plantation, Amateis et al. (1997) defined three distinct phases. The
first phase occurs during the first year after planting. Survival during the first year
tends to be highly variable and depends on many factors, including care of the
planting stock at the nursery and at the planting site, storage time of seedlings,
planting crew practices, and first year climatic factors (such as the amount and
distribution of rainfall during the growing season).

The second survival phase occurs from year 1 to sometime beyond crown closure.
Mortality during this period can be attributed to factors other than intraspecific
competition. Important factors which may influence survival in phase 2 include lev-
els of interspecific competition (both woody and herbaceous), stand establishment
practices, and certain stochastic elements such as insect or disease attacks.

The third survival phase occurs from the onset of intraspecific competition-
induced mortality to rotation age. During this period, the effects of intraspecific
competition are the dominant forces affecting survival. Factors to be considered
when modeling survival during this phase are age, stand density, and site index.
These factors will also affect the time when competition-induced mortality begins
(denser stands on better sites are expected to enter this stage of stand development
sooner). In addition, intermediate silvicultural treatments applied to plantations
during this phase will affect survival patterns. Thinning, in particular, has a direct
effect on stand survival because it alters the amount and distribution of the growing
stock, and it changes the overall vigor of the stand by removing smaller, slower
growing trees (when thinning is from below) and provides additional growing space
for the residual stand. Survival models for this period of intraspecific competition
include natural changes in stand density due to self-thinning and perhaps artificial
changes due to thinning and other silvicultural treatments as well.

Amateis et al. (1997) presented two equations which can be used to project
survival for the second and third phases of stand development. Owing to the highly-
variable nature of first-year survival, prediction equations could not be developed
for this stage. Managers are required to specify first-year survival when applying
the system. Model form (12.20) was used for estimating survival in young stands
(phase 2) and a post-crown closure (phase 3) model was specified to complete the
system.

Woollons (1998) suggested a two-step strategy for modeling mortality in even-
aged stands. In the first step a logistic regression is developed to predict the
probability of mortality (or, alternatively, of all trees surviving). A second step
consists of fitting a mortality equation utilizing only plots where some tree death
occurred over the observation period. Representative examples of applications of
this two-step idea include models of mortality for even-aged stands fitted by Eid
and Øyen (2003) using data from the Norwegian National Inventory, equations
for predicting tree number decline in planted stands of Scots pine in northwestern
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Spain developed by Diéguez-Aranda, et al. (2005), and mortality models for
loblolly pine plantations in the southeastern United States published by Zhao et al.
(2006).

In an effort to avoid specifying separate equations for estimating survival during
different phases of the life span of plantations, Rose et al. (2004) derived whole-
stand survival models that are capable of modeling complex underlying hazard
functions. Knowledge of the empirical hazard function was used to limit selection
to appropriate functions for survival estimation. Integrating selected functions
results in initial condition difference equations that, when fitted to data, provided
biologically reasonable whole-stand survival predictions and adequately represented
the underlying hazard function.

12.4 Alternatives to the Distribution Function Approach

The use of unimodal probability density functions to apportion the total number of
trees into a stand table has been widely applied and generally successful. These dis-
tributions are, however, somewhat restricted in the shapes they can assume and there
are situations where a wide range of diameter distributions occur and need to be ap-
proximated. Hence, alternatives to the pdf approach have been proposed for describ-
ing diameter distributions and computing yields for various portions of the stand.

12.4.1 Percentile-Based Distributions

The classical “diameter distribution” approach to yield estimation involves defining
a functional form (pdf or CDF) to approximate the tree frequencies by dbh class.
In a departure from this approach, Borders et al. (1987)—rather than relying on
a predefined functional form—characterized the diameter distribution by defining
an empirical probability density function with 12 percentiles. Their percentile-
based methods permit a variety of distribution shapes to be represented, including
inverse-j, unimodal, and multimodal.

Borders et al. (1987) noted that a system of regression equations for estimating
the ordered percentiles from the stand attributes can be constructed as

Pn D f .stand attributes/

where Pn D the nth percentile of the distribution.
To fit the system of equations by least squares methods, it is formulated in general

terms around a percentile selected to be the driver, as

PD D f .stand attributes/

PDCi D f .PD; stand attributes/
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where

i D �j, �j C 1, : : : , �1, 1, 2, : : : , k,
PD D percentile selected to drive the system (D for driver), generally the percentile

that can be predicted with the greatest confidence,
PDCi D other percentiles of the system, which, due to constraints, are directly or

indirectly related to PD such that there are j percentiles less than PD and k
percentiles greater than PD:

The individual equations should be constructed such that percentile estimates are
mathematically consistent across the system (i.e., percentiles should be monotonic
with PD�j the minimum and PDCk the maximum). Given a set of percentiles as
defined above, a stand table can be generated with any desired size classes (i.e.,
1 cm, 2 cm, or other merchantability classes). An empirical probability density
function can be defined by assuming trees are uniformly distributed between
adjacent percentiles, that is:

f .d/ D


Ni=N=.Pi � Pi�1/

0
Pi�1 < d < Pi elsewhere (12.26)

where

d D dbh
Ni D number of trees between percentiles Pi and Pi�1,
N D number of trees per ha,
Pi�1, Pi are adjacent percentiles (Note Pi > Pi�1).

From (12.26) one can define

Ni D .pi � pi�1/N (12.27)

where

pi D proportion of trees per ha with d less than Pi

pi�1 D proportion of trees per ha with d less than Pi�1, and all else is as defined
above.

Thus (12.26) can be written

f .D/ D


.pi � pi�1/=.Pi � Pi�1/

0
Pi�1 < d < Pi

elsewhere
The number of trees in the Kth size class is defined as

NK D N

Z
U DK

�1
f .d/dd �

Z
LDK

�1
f .d/dd

�
(12.28)
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where

NK D number of trees per unit area in the Kth diameter size class,
LDK D lower limit of the Kth diameter size class,
U DK D upper limit of the Kth diameter size class, and all else is as defined

previously.

Note that

Z
U DK

�1
f .d/dd D

Z P1

�1
f .d/dd C

Z P2

P1

f .d/dd C � � � C
Z Pj

Pj �1

f .d/dd

C
Z

U DK

Pj

f .d/dd D pj � p1 C .pj C1 � pj /.U DK � Pj /=.Pj C1 � Pj /

where
P1; P2; : : : ; Pj C1 are the first j C 1 percentiles (with P1 the minimum dbh and
Pj <U DK < Pj C1).

Thus the closed form solution for (12.28), the number of trees per unit area in the
Kth size class, is

NK D


Pi �LDK

Pi � Pi�1

.pi � pi�1/ C .pj � pi/ C .pj C1 � pj /
U DK � Pj

Pj C1 � Pj

�
N

(12.29)

where

Pi�1<LDK < Pi

Pj <U DK < PiC1

The percentile-based method was tested by Borders et al. (1987) using 12
percentiles defined across the stand table: the 0th percentile (or minimum diameter),
the 5th continuing to the 95th by increments of 10 percentile points, and the 100th
percentile (or maximum diameter). The 65th percentile was used as the driver of
the system and was estimated as a function of quadratic mean diameter and age. All
other percentiles were estimated as functions of adjacent percentiles and quadratic
mean diameter, except maximum diameter which was a function of an adjacent
percentile and age. Data from a slash pine stand density study, were used to fit the
system of equations using seemingly unrelated regression (SUR) techniques. From
this empirical test, the authors concluded that 12 percentiles produced an adequate
representation of the stand tables.

In a follow-up study, Borders and Patterson (1990) compared three yield
projection systems: (1) a probability distribution approach based on the Weibull
function, (2) the percentile-based method of Borders et al. (1987), and a stand
table projection system reported by Pienaar and Harrison (1988). (The Pienaar and
Harrison (1988) model is described in Chapter 13.) This comparison, based on two
data sets, showed that the stand table projection method generally reproduced stand
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and stock tables with less bias and with greater precision than the other methods.
The percentile-based method was overall superior to the Weibull distribution based
approach. The ordering – from stand table projection to percentile-based to Weibull-
based – is in accordance to expectation because differing amounts of information
are used in each instance. The stand table projection used the observed stand table
when using projections, the percentile method used 12 percentiles from the observed
stand table, and the Weibull method used only four percentiles when making
projections.

12.4.2 Ratio Approach

A stand-level ratio model which uses stand attributes age, site index, basal area, and
number of surviving trees per unit area to portion total stand yield to any specified
top diameter and/or threshold dbh limit was presented by Amateis et al. (1986).
In addition a model was developed which distributes the total number of trees by
diameter such that basal area is consistent with total stand basal area. Comparisons
with two Weibull-based diameter distribution approaches showed the ratio approach
to be a satisfactory alternative.

Amateis et al. (1986) selected the following equation form for predicting
merchantable yields to various top diameters and threshold dbh limits:

Vm D V eb1.dt = Ndg/
b2 Cb3N b4 .dT = Ndg/

b5

(12.30)

where

Vm D merchantable yield (m3/ha) for trees dT cm and above to a dt cm top diameter
limit

V D total yield (m3/ha)
Ndg D quadratic mean dbh (cm)

N D number of loblolly pine surviving (per ha)
dt D top diameter merchantability limit (cm)
dT D threshold dbh limit (cm)
e D base of the natural logarithm
b1 � b5 D parameters to be estimated

Equation 12.30 is conditioned such that when both dt and dT equal zero,
merchantable yield equals total yield. When dt equals zero, the merchantable
portion of the stand is determined by the threshold dbh limit (dT ) alone. When
dT equals zero, the merchantable portion of the stand is determined only by the
top diameter dt merchantability limit. Equation 12.30 can be used to estimate the
merchantable cubic yield for individual diameter classes as well as for groups of
diameter classes by subtraction.

In order to use Eq. 12.30 it is necessary to estimate total cubic yield (V). Since
estimates of both the number of loblolly pine per ha surviving (N) and the loblolly



290 12 Diameter-Distribution Models for Even-Aged Stands

pine basal area per ha (G) are necessary for computing the quadratic mean dbh ( Ndg),
these variables were included as:

ln V D c0 C c1.1=t/ C c2.hdom=t/ C c3.t ln N / C c4.ln G/ (12.31)

where

V D total cubic yield
t D years since planting
hdom D average height of dominant and codominant trees
N D number of planted pine (ha�1)
G D basal area of planted pine (m2ha�1)
ln D natural logarithm
c0 � c4 D coefficients to be estimated.

Equations 12.30 and 12.31 provide estimates of cubic yield for any portion of
the stand. However, it is useful to know how the yield is distributed with regard
to number of trees and basal area. Equation 12.32, which is of similar form to
Eq. 12.30, can be used to distribute the total number of trees across the diameter
distribution:

Nm D N e�f1Gf2 .dT = Ndg/
f3

(12.32)

where

Nm D trees per ha larger than dT cm
N D number of planted pine surviving (ha�1)
G D basal area of planted pine (m2ha�1)
Ndg D quadratic mean dbh (cm)
dT D threshold dbh limit (cm)
e D base of the natural logarithm
f1 � f3 D parameters to be estimated.

By rearranging Eq. 12.32

Nm=N D e�f1Gf2 .dT = Ndg/
f3

(12.33)

and noting that the form of the 2-parameter Weibull distribution is

P.X > x/ D e�. x
b /

c

it can be seen that Eq. 12.33 is in the form of the 2-parameter Weibull distribution

where c D f3 and b D Ndg

.f1Gf2 /
1=f3

. Recognizing this, and that for the Weibull

distribution,

Nd 2
g D b2�.1 C 2=c/
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where � is the gamma function, then

b2 D
Nd 2
g

�.1 C 2=c/
or b D

Ndg

�
1
2 .1 C 2=c/

:

Equating the two expression for b, one obtains:

f1 D � f3=2.1 C 2=f3/

Gf2

By substituting this value of f1 into Eq. 12.32, Eq. 12.34 is obtained which
portions the total number of trees by dbh limit and is conditioned such that the sum
of both the number of trees and the corresponding basal area across the diameter
distribution is equivalent to the total stand values:

Nm D N e�� f3=2.1C2=f3/.dT = Ndg/
f3

(12.34)

where

f3 D parameter to be estimated and all other variables are as previously defined.

The stand ratio model was contrasted and compared with two different parameter
recovery methods (Matney and Sullivan 1982; Burk and Newberry 1984) using the
Weibull distribution when fitting data from two sets of sample plots in loblolly
pine stands. Results showed that the Weibull-based value recovery method (Matney
and Sullivan 1982) was slightly better, in terms of smaller average absolute value
of residuals, than either the Weibull-based moment recovery method (Burk and
Newberry 1984) or the ratio method for predicting merchantable yields. However,
there was little overall differences among the three techniques and any of the three
methods should provide satisfactory estimates of yield to any specified top diameter
or threshold dbh limit.

12.4.3 Functional Regression Tree Method

Because forest stand diameter distributions can adopt a wide variety of shapes that
may not be adequately represented by a single parametric family, Lane et al. (2010)
investigated the functional regression tree (FRT) method for modeling probability
density functions. The FRT approach can be used to estimate stand diameter
distributions without making assumptions about the functional form. Comparing the
functional regression tree method with a parameter prediction and percentile method
showed favorable results. The FRT approach was found suitable for diameter
distributions that are multimodal and excessively skewed – situations that are not
easily dealt with in a parametric context.
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Sarkkola S, Hökkä H, Laiho R, Päivänen J, Penttilä T (2005) Stand structural dynamics on drained
peatlands dominated by Scots pine. For Ecol Manage 206:135–152

Schreuder HT, Hafley WL (1977) A useful bivariate distribution for describing stand structure of
tree heights and diameters. Biometrics 33:471–478

Schreuder HT, Swank WT (1974) Coniferous stands characterized with the Weibull distribution.
Can J For Res 4:518–523

Schreuder HT, Hafley WL, Bennett FA (1979) Yield prediction for unthinned natural slash pine
stands. For Sci 25:25–30

Scolforo JRS, Tabai FCV, Grisi de Macedo RL, Acerbi WF Jr, Leandra de Assis A (2003) SB

distribution’s accuracy to represent the diameter distribution of Pinus taeda, through five fitting
methods. For Ecol Manage 175:489–496

Sharma M, Parton J (2007) Height-diameter equations for boreal tree species in Ontario using a
mixed-effects modeling approach. For Ecol Manage 249:187–198

Shiver BD (1988) Sample sizes and estimation methods for the Weibull distribution for unthinned
slash pine plantation diameter distributions. For Sci 34:809–814

Siipilehto J (1999) Improving the accuracy of predicted basal-area diameter distribution in
advanced stands by determining stem number. Silva Fennica 33:281–301

Siipilehto J, Sakari S, Mehtätalo L (2007) Comparing regression estimation techniques when
predicting diameter distributions of Scots pine on drained peatlands. Silva Fennica 41:333–349

Smalley GW, Bailey RL (1974a) Yield tables and stand structure for loblolly pine plantations
in Tennessee, Alabama, and Georgia highlands. USDA Forest Service, Southern Forest
Experiment Station, New Orleans, Research Paper SO-96

Smalley GW, Bailey RL (1974b) Yield tables and stand structure for shortleaf pine plantations
in Tennessee, Alabama, and Georgia highlands. USDA Forest Service, Southern Forest
Experiment Station, New Orleans, Research Paper SO-97



References 297
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Chapter 13
Size-Class Models for Even-Aged Stands

13.1 Defining Size Classes

Tree populations can be divided into groups, commonly called cohorts, based on
species, diameter, height, or a combination of these and other characteristics. It is
most common to form size classes on the basis of dbh. Size classes may be formed
by specifying diameter classes of equal width (size-class cohorts), resulting in
varying numbers per class. Alternatively, each cohort may be specified to contain the
same number of trees (percentile cohorts) by varying the diameter class boundaries.
Size-class cohorts are more commonly used, but there are examples of models that
rely on percentiles cohorts.

Size-class models for even-aged stands typically generate future diameter
distributions (stand tables) based on an initial measured diameter distribution.
Fundamental to the stand projection process is the ability to estimate diameter
growth and mortality by diameter class. Present and future stand tables can be
converted to stock tables (volumes by size classes) and growth can be estimated.
Various constraints are sometimes imposed on the stand table projection algorithm
to insure consistency in behavior of the system.

Size-class models make use of information from inventories of trees by diameter
classes and they avoid the necessity of assuming a particular distribution for
tree diameters. Using size classes as the basic modeling unit provides a level of
resolution between that of the whole-stand and individual-tree approaches.

13.2 Stand-Table Projection

Stand-table projection (STP) methods have been used to estimate forest growth for
many different timber types. The procedure can be summarized as follows:

1. A present stand table showing numbers of trees in each dbh class is developed
from a conventional inventory.
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2. Past periodic growth, by dbh classes, is determined from increment borings or
from remeasurements of permanent sample plots.

3. Past diameter growth rates are applied to the present stand table to derive a future
stand table (adjustments for mortality must be made).

4. Both present and future stand tables are converted to stock tables and periodic
stand growth is obtained as the difference between the volume of the present
stand and that of the future stand.

In instances where short-term projections are needed and reliable growth and
yield models are not available, the general STP method can be applied. Classical
stand table projection has many limitations, however, (e.g. assuming past growth
rates by diameter class apply to the future, and difficulty with determining realistic
mortality rates by diameter class without appropriate data from permanent plots),
and models constructed from robust data sets are preferable. Size-class models,
many of which are formalized extensions of the basic STP idea, have been developed
and applied for growth and yield estimation in even-aged stands.

13.2.1 Stand-Table Projection Based on Change in Relative
Basal Area

Pienaar and Harrison (1988), building on earlier work by Clutter and Jones (1980),
developed a model to project an initial tree list or stand table in such a way that
the future stand table will be consistent with the projected future survival and basal
area per unit area. Assuming a list of tree diameters is available from sample plot
measurements, the relative size of the ith tree was defined as gi = Ng where gi is the
basal area of the ith tree and Ng is the mean basal area per tree. Using long-term
remeasurement data from a slash pine spacing study, Pienaar and Harrison examined
hypotheses concerning the change in relative tree sizes over time. If n trees survived
from age t1 to t2 > t1, and g1i and g2i were the basal areas of the ith survivor
tree and Ng1 and Ng2 the mean basal area per tree of the n survivors at ages t1 and
t2, respectively, then the relative size of the ith survivor was defined as g1i = Ng1 and
g2i = Ng2 at ages t1 and t2, respectively, for i D 1, 2, : : : , n.

Examination of the data from the slash pine spacing study showed that relative
size of smaller than average-sized survivors decreased over time whereas the relative
size of the larger trees increased over time. It was also evident that, for the same
length of remeasurement period, the change in relative size decreased as age
increased. In light of these trends the following model was formulated:

g2i = Ng2 D .g1i = Ng1/.t2=t1/b
(13.1)

where b is a parameter to be estimated from remeasurement data, and t1 and t2 are
the initial and projection ages, respectively.
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When an estimate of b is available, a projected stand table consistent with the
observed or projected total basal area G2 can be obtained as follows:

g2i D G2

0
BBB@

.g1i = Ng1/
ani

kP
iD1

.g1i = Ng1/
ani

1
CCCA (13.2)

where a D .t2=t1/
b, ni is the number of survivors in the ith initial dbh class (i D 1,

2, : : : , k), and g2i the projected future total basal area of the ni survivors.
Fitting Eq. 13.1 to the remeasurement data from slash pine resulted in:

g2i = Ng2 D .g1i = Ng1/
.t2=t1/0:2333

To complete the stand table projection model a survival function (originally
proposed by Clutter and Jones (1980) and shown as Eq. 12.22 in Chap. 12) and
a basal area projection equation were fitted. When total survival and basal area
projection equations are available, the stand table projection procedure proposed
by Pienaar and Harrison requires that the predicted total mortality be identified in
the initial stand table. It is assumed that the probability of a given tree dying during
the projection interval is inversely proportional to its relative size. Given that a tree
dies, it is then possible to compute a probability of its being of a particular relative
size, and these probabilities are then used to allocate the observed or predicted total
mortality to the initial tree list or stand table.

In a comparison of three yield projection systems (Weibull-distribution,
percentiles-based, and Pienaar and Harrison’s STP model), Borders and Patterson
(1990) found that the stand table projection method of Pienaar and Harrison had
less bias and greater precision when predicting stand and stock tables than the other
methods. (Additional detail about Borders and Patterson’s comparison is contained
in Sect. 12.4.1.)

13.2.2 A Distribution-Independent Approach to Stand Table
Projection

Tang et al. (1997) proposed an approach to projecting future stand diameter
distributions based on current stand structure observed in forest inventory and
future stand-level attributes predicted independently from a whole stand model.
No theoretical probability density function was assumed for the empirical diameter
distribution. Relationships between current and future stand distributions and stand-
level attributes were established. The parameter recovery method was employed
to derive the parameters in the tree survival function and diameter growth func-
tion. The growth function also included a stochastic component to mimic the
differentiation of tree diameters over time.

http://dx.doi.org/10.1007/978-90-481-3170-9_12
http://dx.doi.org/10.1007/978-90-481-3170-9_12
http://dx.doi.org/10.1007/978-90-481-3170-9_12
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The Lebesque-Stieltjes integral was applied by Tang et al. to derive a group
of equations for the relationships between current and future stand diameter
distributions and stand-level attributes. The parameters in the tree survival function
and diameter growth function were recovered using these equations based on
independent estimates of future stand mean diameter, quadratic mean diameter, and
survival from a whole stand model. This disaggregation approach ensured that the
resolutions at size-class distribution and/or individual tree levels were compatible
with the stand-level aggregates. A stochastic error component, incorporated into
the tree diameter growth function, mimicked the tree diameter differentiation
process over time, and it improved prediction accuracy for future stand diameter
distributions.

13.2.3 Stand Table Projection Algorithms that Incorporate
a Diameter Growth Function

Bailey (1980) showed that by considering transformations of variables which
preserve the functional form of the diameter distribution function, tree diameter
growth models are implied. If d is the tree’s diameter at the beginning of a growth
period and �d is the increment in diameter, then the model

�d D .ˇ0 � d/ C ˇ1.d � ˇ3/
ˇ2

is implied by assuming the Weibull, lognormal, or generalized gamma distribution
as a diameter distribution model. The exponential, normal, beta, or Johnson’s SB
distribution is implied for the special case of ˇ2 D 1. The relationship between
diameter distribution functions and implied diameter growth has been applied by
several developers of stand table projection models.

A stand table projection method based on existing estimates of future basal area
and survival was derived by Nepal and Somers (1992). An observed stand table is
first projected by applying either an existing diameter growth equation or a growth
equation derived from appropriate diameter distributional assumptions. The stand
table is adjusted by an algorithm that equates the future stand table to existing
estimates of basal area and survival.

To apply the Nepal and Somers stand table projection algorithm, a stand table at
time one is assumed available along with projection equations for future numbers
of trees and basal area from a stand-level growth and yield model. An existing
tree diameter growth equation can be applied or one can be derived by making
distributional assumptions. Nepal and Somers assumed that the Weibull distribution
would be an appropriate model for diameter at both points in time. The Weibull
distribution and associated parameters can be written:

f .d/ D
"

exp �
	

d � ai

bi


ci
#"	

ci

bi


	
d � ai

bi


ci �1
#

(13.3)
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where

d D diameter at breast height
ci D shape parameter at time i
bi D scale parameter at time i
ai D location parameter at time i

By assuming that trees do not change their relative sizes over time, the Weibull
distribution at both periods implies the following individual diameter growth
equation (Bailey 1980):

d2 D a2 C b2

	
d1 � a1

b1


 c1
c2

(13.4)

In the Nepal and Somers application the location parameter ai was assumed to
remain fixed at the lower endpoint of the lowest initial dbh class (a1 D a2).

Using data from permanent plots in naturally regenerated, even-aged longleaf
pine stands, Nepal and Somers compared goodness-of-fit for diameter distributions
produced with their proposed stand table projection model with those of a parameter
recovery method using the Weibull function. In 75% of the cases the fit as measured
by the Kolmogorov-Smirnov statistic was better for the proposed method than for
the parameter recovery method. The proposed method also compared favorably with
the procedures of Pienaar and Harrison (1988). Both methods (Nepal and Somers
and Pienaar and Harrison) require an independent estimate of future survival and
basal area.

Cao and Baldwin (1999) introduced an algorithm for stand table projection that
produces estimates of stand basal area, numbers of trees per ha, and average tree
diameter that are compatible with either observed or predicted values from growth
and yield models. The Cao-Baldwin algorithm for stand table projection consists of
three steps: (1) computing survival and allocating mortality, (2) deriving diameter
growth for individual trees, and (3) adjusting projected diameters to match future
average diameter and stand basal area.

After assuming that all mortality occurs at the beginning of the growth period,
the surviving number of trees for the ith diameter class was predicted using the
following survival function:

On2i D n1i

n
1 � exp

h
b1 � .di � dmin 1 C 1/

io
(13.5)

where

n1i D current number of trees per hectare in ith diameter class, i D 1, 2, : : : , p
On2i D future surviving number of trees per hectare in the ith diameter class,
di D midpoint diameter of the ith class,
dmin 1 D midpoint of the current minimum diameter class, and
b1 D coefficient to be determined.
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Based on Eq. 13.5, more trees survive to the end of the growing period for large
diameter classes as compared to small diameter classes, relative to the minimum
diameter class. The coefficient b1, which is negative, is calculated such that On2i will
sum to N2, the total future surviving trees per hectare.

Since mortality rate is not evenly distributed across diameter classes, the diameter
distribution will change after mortality. As a result, the stand attributes need to be
updated. The current average diameter ( Nd1) and basal area per hectare (G1) after
mortality are given by:

Nd1 D †i On2i di

N2

(13.6)

G1 D k
X

i

On2i d
2
i (13.7)

where k D �/40,000 (to convert diameter in cm to area in square meters).
The minimum diameter was assumed to increase (i.e., all trees in the current

minimum diameter class either die or move up to higher classes) when there is a
sufficient shift in diameter distribution based on the arithmetic and quadratic mean
diameters. Procedures for implied diameter growth followed those of Nepal and
Somers (1992). Parameters of a Weibull distribution were recovered from Nd1 and
G1 to approximate the current diameter distribution of the stand immediately after
mortality. Similarly, parameters of another Weibull distribution to characterize the
future diameter distribution were recovered from Nd2 and G2, the future average
diameter and basal area per hectare, respectively.

After producing a stand table for the future stand, a constrained least squares
procedure, similar to that employed by Matney and Farrar (1992) and Farrar and
Matney (1994) (see Sect. 12.1.3.1), was used to adjust the future stand table.
The final number of trees per hectare in the diameter class n2i was calculated by
minimizing

X
i

.n2i � On2i /
2 (13.8)

subject to the following constraints:

X
n2i D N2 (13.9a)

X
n2i di D N2

Nd2 (13.9b)

X
n2i d

2
i D G2=k (13.9c)

where the summation signs denote the sum over all diameter classes. This step can
be interpreted as adjusting values of the stand table ( On2i ) to new values (n2i ) such
that the three constraints (13.9a, 13.9b, and 13.9c) are met.

http://dx.doi.org/10.1007/978-90-481-3170-9_12
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The above constrained least squares problem can be rewritten as:

min :
X

.n2i � On2i /
2 C 21

�X
n2i � N2

�
C 22

�X
n2i di D N2

Nd2

�

C 23

�X
n2i d

2
i � G2=k

�
(13.10)

where † denotes the sum over all diameter classes (for values of i from 1 to p), p is
the number of diameter classes, and j ’s are Lagrangian multipliers.

Differentiating (13.10) with respect to n2i and then setting the derivative equal to
zero gives:

n2i D On2i � �
1 C 2di C 3d 2

i

�
(13.11)

or

1 C 2di C 3d 2
i D On2i � n2i (13.12)

The Lagrangian multipliers (j ’s) can be solved from the following system of
three linear equations:

1p C 2

X
di C 3

X
d 2

i D
X

On2i � N2 (13.13a)

1

X
di C 2

X
d 2

i C 3

X
d 3

i D
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Nd2 (13.13b)

1

X
d 2

i C 2

X
d 3

i C
X

d 4
i D

X
On2i d

2
i � G2=k (13.13c)

where † denotes the sum over all diameter classes (for values of i from 1 to p).
Cao and Baldwin (1999) used data on diameter distributions from direct-seeded

stands of loblolly pine to compare the performance of their constrained least
squares method of stand table adjustment to that of Nepal and Somers (1992)
and to a Weibull distribution parameter-recovery approach. For the data used, the
constrained least squares method provided the best goodness-of-fit statistics. Both
stand-table projections methods (Cao-Baldwin and Nepal-Somers) were superior to
the Weibull parameter-recovery method, which consistently ranked third based on
all of the goodness-of-fit statistics (Kolgomorov-Smirnov, Chi-square, and an error
index).

In an extension of work reported in Cao and Baldwin (1999), Cao (2007)
presented a stand table projection system consisting of (1) computing survival of
tree in each diameter class from a tree survival equation, (2) projecting diameters
using a tree diameter growth equation, (3) reclassifying trees into new diameter
classes, and (4) adjusting number of trees in each class to match total number
of trees and basal area per hectare as predicted from the whole-stand model.
Results indicated that incorporating the diameter growth equation, as contrasted
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Nepal and Somers Algorithm Cao and Baldwin Algorithm

Projected Stand Table

Adjustment of Projected
Stand Table, applying a
least squares approach

Application of diameter
growth equation derived
from Weibull distribution
to each diameter class

midpoint

Estimation of parameters
of Weibull distribution
at both time periods

(parameter recovery method)

Increase in minimum
diameter and movement

of diameter classes

Predict survival in each
diameter class (assuming

that it occurs at the
beginning of the period)

Estimation of parameters
of Weibull distribution
at both time periods

(parameter recovery method)

Application of diameter
growth equation derived
from Weibull distribution
to each diameter class

midpoint

Estimation of proportion
Pi satisfying

constraints of basal
area and survival

Adjustment of Projected
Stand Table, applying Pi

Projected Stand Table

Fig. 13.1 Flowcharts showing the algorithms proposed by Nepal and Somers (1992) and Cao and
Baldwin (1999) for projecting diameter distributions in even-aged forest stands (From Trincado
et al. 2003)

to the method suggested by Nepal and Somers (1992) which relies on an implied
diameter growth function, improved the projection of stand tables. The three
adjusting methods (stand table projection, constrained least squares, and modified
constrained least squares) produced comparable error indices, but the constrained
least squares method consistently provided the best results when compared to the
other approaches.

Trincado et al. (2003) compared the stand-table projection methods of Nepal
and Somers (1992) and Cao and Baldwin (1999) using data from young eucalyptus
plantations in Chile. (A flow chart of the two algorithms is displayed in Fig. 13.1.)
The evaluation compared the observed and estimated diameter distributions for
different projection intervals using the Kolmogorov-Smirnov test and an error
index. Results showed that both methods are suitable for application in eucalypt
plantations. However, the method proposed by Nepal and Somers proved to be
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more accurate, especially for projection periods of 4 years or more. Expected error
and bias for observed and estimated total and merchantable volumes at the stand
level were also evaluated. The observed error (mean absolute residual) and bias
(mean residual) were relatively low for both methods; however, the Nepal-Somers
approach exhibited greater accuracy in the estimation of both total and merchantable
volume.

Allen et al. (2011) evaluated four methods for projecting stand tables of loblolly
and slash pine plantations in East Texas, USA. The four methodologies included
were: (1) Nepal and Somers (1992), (2) Cao and Baldwin (1999), (3) Cao (2007),
and (4) a model that combines aspects of the Cao and Baldwin (1999) and Pienaar
and Harrison (1988) algorithms. Validation of the stand table projection models,
based on error indices computed by the method described by Reynolds et al. (1988),
showed that the Nepal and Somers and Cao and Baldwin models consistently
produced the lowest mean error index values for both species and for projection
lengths varying from 3 to 21 years.

13.3 Percentile-Based Models

As an alternative to defining size classes as dbh class limits, a fixed number of cohort
groups may be specified. Cohorts are groups of individual trees that are assumed to
exhibit similar growth and, thus, are treated as single entities within the model.
Percentile models consist of equations for predicting increment, mortality, and, in
some cases, recruitment.

In the model developed by Clutter and Allison (1974) for radiata pine in New
Zealand, an actual diameter distribution from a forest inventory can be entered.
Alternatively, equations which predict average stand diameter, minimum stand
diameter, and variance of the stand diameters from stand age and number of stems
per unit area can be used to estimate parameters for a three-parameter Weibull
distribution. The Weibull probability density function is divided into 25 classes of
equal area. Thus, class 1 contains the smallest (by diameter) four percent of the
trees in the stand, class 2 contains the next smallest four percent, etc. The median
diameter in a class is assumed to represent all trees in the class. Total tree heights
are predicted using the median diameter of each class and stand age and number
of trees per unit area. Diameter and height values for the 25 cohorts are applied
to estimate stand volume. Stand growth projection is carried out on a year-by-year
basis, with predicted values per unit area being allocated among the diameter-based
cohort groups. With diameter classes defined on the basis of relative size rather than
in relation to fixed diameter limits, the problem of “class movement” is avoided.

Alder (1979) formulated a model for conifer plantations in East Africa by
defining 10 classes based on fixed cumulative probability points of the diameter
distribution. Ten median trees corresponding to the 5th, 15th, : : : 95th percentiles
of the cumulative tree diameter distribution are updated in the growth estimation
process. Increment for a given diameter is predicted as a function of three main
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effects – site, age, and competitive status defined as the ratio of stand basal area to
maximum basal area for the site and age of a subject stand. For a stand of given
relative basal area, competitive status among individual trees is accounted for by the
ratio of the diameter of a specified tree to the mean diameter of dominant trees.

13.4 Related Approaches

Size-class models have been successfully applied to a variety of even-aged forest
types. In this approach the tree population is divided into a limited number of size
classes (generally diameter classes). These size classes are projected forward to
obtain future stand structure and yields. The size-class method is flexible, in that
no assumptions about the underlying overall size-class distribution are required,
and the approach is computationally efficient. When individual trees are followed
through time, rather than grouping them into size classes, a distance-independent
individual-tree modeling approach (Chap. 14) may be an attractive alternative.

Matrix models (Chap. 15) are another form of size-class model. Although matrix
models could be applied with data from even-aged stands, this approach has seldom
been taken, largely due to difficulties with modeling transition probabilities over
time in even-aged structures. The matrix modeling approach has most commonly
been applied to uneven-aged forests managed with a selection system of silviculture.
Matrix models are presented and discussed in the chapter on growth and yield
models for uneven-aged stands (Chap. 15).
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Chapter 14
Individual-Tree Models for Even-Aged Stands

14.1 Approach

Individual-tree models consist of a system of equations to simulate stand dynamics
by incrementing each tree during a growth period in relation to its growing
conditions. Tree growth, ingrowth and regeneration, and mortality are aggregated
to provide estimates of stand growth and yield. Models based on individual-tree
dynamics provide detailed information about stand development and structure,
including the distribution of stand volume by size classes. Individual-tree models
have inherent flexibility that permits modeling combinations of species mixtures and
stand structures, management regimes and regeneration methods. Individual-tree
models represent the highest level of abstraction and resolution in the suite of forest
growth and yield models, and include feedback loops between stand structure and
individual tree growth. This chapter focuses on individual-tree models developed
for simulating development of even-aged stands; models for uneven-aged systems
are described in Chap. 15.

14.2 Types of Individual-Tree Models

Individual-tree models may be divided into two classes based on whether or not
tree locations are required tree attributes. Distance-independent (also sometimes
called “position-independent”, “location-independent”, or “non-spatially-explicit”)
models usually project tree growth as a function of present size and stand-level
variables such as age, site index, and stand density. Individual-tree locations are
not specified when applying these models. Typically, distance-independent models
consist of three basic components: (1) a diameter-growth equation, (2) a height-
growth equation (or a height-diameter relationship to predict heights from dbh
values), and (3) a mortality component. Mortality may be stochastically generated
or it may be predicted as a function of growth rate and/or tree characteristics.

H.E. Burkhart and M. Tomé, Modeling Forest Trees and Stands,
DOI 10.1007/978-90-481-3170-9 14,
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In the application of distance-dependent (which may be designated “position-
dependent”, “location-dependent”, or “spatially-explicit”) models, initial stand
conditions are input or generated, and each tree is assigned a coordinate location.
The growth of each tree is simulated as a function of its attributes, the site quality,
and a measure of competition from neighboring trees. The competition index varies
from model to model but in general is a function of the size of the subject tree and
the size of and distance to competitors (Chap. 9). Estimated tree growth is often
adjusted by a random component representing genetic and/or microsite variability.
Survival is generally controlled stochastically as a function of competition and/or
individual-tree attributes.

Yield estimates in individual-tree models are obtained by summing individual-
tree volumes and multiplying by an appropriate expansion factor; growth is
computed as the difference between successive yield estimates.

14.3 Growth Functions

Two approaches have been commonly used to predict growth in individual-tree
models. In the first approach, tree increment is related to tree, stand, and site
variables via regression analysis. A second approach involves establishing a growth
potential, which is adjusted by a modifier or reduction factor based on a tree’s
competitive status and vigor. The potential times modifier formulation is fitted
to tree measurement data using regression analysis techniques. Although both
approaches have proven successful, the potential times modifier function approach
has the feature of readily incorporating limits or bounds on growth relationships.

Diameter growth of individual trees can be expressed as diameter increment or
basal area increment. In a study aimed at determining if it is preferable to estimate
diameter growth from diameter or basal area increment measurements, West (1980)
concluded that there is no practical difference between the two scales.

14.4 Distance-Dependent Models

Newnham (1964) developed the first spatially-explicit stand simulator based on
growth of individual trees. Diameter increment of trees in planted stands of Douglas-
fir was considered to be equal to that of open-grown trees as reduced by a measure
of competition. Competition was assessed for each tree as the sum of “angles of
intersection” of crowns of neighboring trees. Total heights were estimated through
a regression equation using diameter at breast height and stand basal area as
predictors. Newnham and Smith (1964) reported on the model’s performance for
Douglas-fir and lodgepole pine.

Since the work of Newnham, a number of distance-dependent, individual-tree
models have been promulgated for even-aged, single species stands, including

http://dx.doi.org/10.1007/978-90-481-3170-9_9
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simulators developed by Arney (1974) and Mitchell (1975) for Douglas-fir, Hegyi
(1974) for jack pine, Burkhart et al. (1987) for loblolly pine and Pukkala (1989a)
for Scots pine, Faber (1991) for poplar, Soares and Tomé (2003) for eucalyptus
plantations, and Perot et al. (2010) for mixed sessile oak-Scots pine stands. These
models differ in detail, but all of them follow the general modeling principles and
procedures first employed by Newnham.

Two well established models, one for plantations and another for mixed-species
stands, will be used as typical examples of distance-dependent models.

14.4.1 Example Model Structure for Pine Plantations

A stand simulator for loblolly pine plantations, PTAEDA2, is, in many aspects,
typical of distance-dependent, individual-tree models. The PTAEDA2 model
(Burkhart et al. 1987) consist of two main subsystems – one dealing with the
generation of an initial precompetitive stand and another with the growth and
dynamics of that stand. Management subroutines added to the overall framework
allow simulation of controlling hardwood competition levels, applying fertilizers,
and implementing thinning. Input/output routines facilitate model operations.

A number of options are available for creating rectangular spatial patterns in
PTAEDA2. Users may specify the distance between trees and between rows in
a conventional manner allowing the program to compute the planted number of
trees. Alternatively, the number of trees may be specified along with the ratio
of planting distance to row width (e.g., 3:4, 1:2). If this ratio is omitted, square
spacing is assumed. From this information, a simulation plot is generated and
coordinate values are assigned to each of the planting locations. The juvenile stand
is then advanced to an age of 8 years where intraspecific competition is assumed to
begin. At this point, predicted juvenile mortality is assigned at random. Individual-
tree dimensions are then generated for the residual stand. Tree dbh values are
generated from a two-parameter Weibull distribution; the parameters of the Weibull
distribution are estimated as functions of stand age, number of trees surviving, and
average height of dominant and codominant trees at that age. Height is predicted
for each tree from an equation that includes dbh, average height of the dominant
stand, trees surviving, and age. Crown ratio for each tree is then calculated as a
function of its total height, dbh, and age. After assigning dimensions to each tree,
the competition effect of neighboring trees is calculated for each individual tree as:

CIi D
nX

j D1

dj =di

distij
(14.1)

where

C Ii D competition index of ith subject tree
n D number of competitors “in” with BAF 2.3 m2 per ha sweep centered at ith tree
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dj D dbh of jth competitor
di D dbh of ith subject tree
distij D distance between subject tree i and jth competitor

After generation of the precompetitive stand, competition is evaluated and
simulated trees are grown individually on an annual basis. In general, growth in
height and diameter is assumed to follow some theoretical growth potential. An
adjustment or reduction factor is applied to the potential increment based on a tree’s
competitive status and vigor, and a random component is then added representing
microsite and/or genetic variability.

The potential height increment (�hpot ) for each tree is the change in average
height of the dominant and codominant trees, obtained as the first difference with
respect to age of a site-index equation. A tree may grow more or less than this
potential, depending on its individual attributes. Crown ratio is considered to be
an expression of a tree’s photosynthetic potential. It is used in conjunction with
the competition index to compute an adjustment factor for height growth. The
adjustment factor times the potential height growth (determined from a site-index
equation) gives the estimated actual height growth for an individual tree with a given
crown ratio and competition index. The final form of the height increment (�h)
equation that was fitted to measurement data was:

�h D �hpot

�
b1 C b2c

b3
r e.�b4CI�b5cr /

�
(14.2)

where cr is crown ratio and CI is competition index as computed by Eq. 14.1.
Crown ratio appears two times in the height increment equation, thus allowing
increasing growth with increasing crown ratio up to a maximum (which occurs
at around cr D 0.6 for Eq. 14.2 fitted to data from loblolly pine plantations) and
then decreasing height increment thereafter. Assuming residual variability in height
growth is normally distributed, a random component is added to the final growth
determinations with variance equal to the residual mean square from the fitted
regression.

The maximum dbh attainable for an individual tree of given height and age is
considered to be equal to that of open-grown loblolly pines. An equation describing
this relationship, developed from measurements of open-grown trees (Strub et al.
1975), is:

d0 D b0 C b1h C b2t (14.3)

where

d0 D dbh of open-grown trees
h D total tree height
t D tree age

The first difference of Eq. 14.3 with respect to age represents maximum potential
diameter increment.
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�dpot D b1�h C b2 (14.4)

where �dpot is the potential diameter increment and �h is the observed height
increment. This potential diameter increment is adjusted by a reduction factor
that is a function of the tree’s competition index and crown ratio, a measure
of photosynthetic potential. The equation fitted to estimate diameter increment
(�d ) was

�d D �dpot

�
b1c

b2
r e�b3CI

�
(14.5)

where cr and CI remain as previously defined. In the case of diameter increment,
crown ratio appears only once because growth in diameter is expected to increase
monotonically as crown ratio increases. Finally a normally distributed random
component is added to diameter-growth determinations with variance equal to the
residual mean square from the fitted regression.

The probability that a tree remains alive in a given year is assumed to be a
function of its competitive stress (CI) and vigor as measured by crown ratio. An
equation for estimating “probability of survival” was developed using non-linear
least squares for fitting the following form to dichotomous (0,1) data:

Plive D b1c
b2
r e�b3C I b4 (14.6)

where Plive is the probability that a tree remains alive.
In PTAEDA2, survival probability is calculated for each live tree each year and

used to determine annual mortality. Plive increases with increasing crown ratio and
decreases with increasing competition. The calculated Plive is compared with a
uniform random variate between zero and one. If Plive is less than this generated
number, the tree is considered to have died.

The increment and mortality components, along with subroutines to simulate the
effects of various levels of hardwood competition, thinning, and fertilization, were
linked together in a computer program to simulate individual-tree growth and stand
development. Figure 14.1 is a schematic diagram showing relationships between
tree and stand components in this distance-dependent, individual-tree growth and
yield model for loblolly pine plantations.

14.4.2 A Model for Complex Stand Structures

Because of their inherent flexibility, there has been considerable interest in devel-
oping spatially-explicit models for simulating multispecies, as well as pure, stands
subject to a wide array of silvicultural inputs. A notable example of an individual-
tree, distance-dependent stand modeling approach to encompass an array of stand
structures is the SILVA model (Pretzsch et al. 2002).
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Fig. 14.1 Schematic diagram showing relationships between tree and stand components for an
individual-tree, distance-dependent model of loblolly pine plantations (From Burkhart et al. 1987)

The SILVA model predicts growth in pure and mixed stands of any age
composition, and it can be used to evaluate silvicultural alternatives at the stand
level. Required model inputs include initial stand parameters, site variables, and
selected silvicultural prescriptions.

In SILVA each tree is characterized by species, dbh, total height, height to crown
base, crown diameter, and location coordinates. Species-specific crown models are
used to represent three-dimensional crown shapes. The simulation time step with
SILVA is 5 years, which corresponds with the measurement interval for the trial plots
used in its development. For each growth cycle a three-dimensional competition
analysis is computed to determine the degree of competition for each tree. Then
preliminary tree growth is computed for use in the mortality module to determine if
the individual is considered alive for the current simulation period. After removal of
dead or harvested trees, competition indices and dimensional changes of each tree
are recalculated.

The competition index is a geometrical competition measure calculated for the
three-dimensional space surrounding a particular tree. After determining the degree
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of competition, natural mortality within the next simulation cycle is estimated. The
mortality module calculates the survival probability from the dimensions of a tree
and its estimated increase in basal area.

Thinnings are performed according to specifications defined by the user at the
start of the simulation.

Site-dependent height growth potential is calculated for each tree; this potential is
reduced to the expected height growth according to the individual tree’s conditions
defined by its competition index and crown dimensions. Tree diameter increment is
also derived from potential growth; the potential diameter increment is used when
estimating expected basal area growth.

New crown dimensions are calculated by estimating the height to the crown base
and crown diameter from tree height and diameter.

Output from SILVA includes growth and yield information at the stand and
tree level (such as stem number, basal area, timber volume, current and mean
annual increment, and mean height). A stand visualization system allows for three-
dimensional views of stand development, virtual walkthroughs and interactive
thinning. Figure 14.2 provides an overview of the prediction algorithm employed
by the growth simulator SILVA.

The SILVA model was originally parameterized with data from a large network
of trial plots in Germany (Pretzsch et al. 2002). It was subsequently calibrated for
Norway spruce and beech in Denmark by Brunner et al. (2006).

14.5 Generating Spatial Patterns

Spatially-explicit models can be used when projecting existing stands if the
coordinate locations of trees are known or if the individual tree attributes can be
assigned to points generated on a two-dimensional plane. Seldom are stem locations
recorded in forestry practice, and most use of stem location-specific models results
from simulations of various specified initial conditions and management treatments.
Initiating a simulation scenario requires generating realistic spatial patterns and
assigning initial values to the points. In the case of planted stands, the generation of
locations for each planting space is straight forward (stochastic variation in planting
spots can be incorporated, if desired). Mortality of planted seedlings prior to inter-
tree competition can be assigned at random or in a clumped distribution, after which
the simulation of stand dynamics can be projected forward.

Forest structure – spatial distribution, species diversity, and variation in tree
dimensions – affects biodiversity and forest dynamics, growth and yield. Conse-
quently a great deal of effort has been devoted to developing quantitative measures
of forest structure (Tomppo 1986; Penttinen et al. 1992; Mateu et al. 1998; Kokkila
et al. 2002; Pommerening 2002; Aguirre et al. 2003).

Quantitative spatial pattern descriptions, which are required for implementing
distance-dependent growth and yield models, have been developed for a number
of applications. Daniels (1978) examined spatial patterns in 5–12-year-old loblolly
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pine stands of seed origin using point-to-plant distance methods. A nonrandomness
index indicated that clumping was prevalent in stands regenerated by seed. Observed
distance frequencies from data collected in 40 stands were described by continuous
distributions and a simulator was constructed to generate spatial patterns and
individual tree sizes at age 10 for seeded loblolly pine (Daniels et al. 1979b).
Tree growth and mortality were then incremented annually in the framework of
the distance-dependent simulator of Daniels and Burkhart (1975).

Pommerening (2006) evaluated forest spatial structural indices for generating
spatial patterns. A family of individual tree neighborhood-based indices, which are
measures of small-scale variations in tree positions, species, and dimensions, was
used. When expressed as frequency distributions, these indices provide information
on spatial structure, which can be used to produce tree coordinates as input data
for growth simulations or visualizations. In a subsequent paper, Pommerening
and Stoyan (2008) presented an efficient method of synthesizing spatial tree
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point patterns from nearest neighbor summary statistics sampled in small circular
subwindows. Data on nearest neighbor summary statistics can be feasibly obtained
as part of forest surveys, thus providing information needed for generating spatial
patterns for use in growth modeling and visualization.

Pretzsch (1997) described the stand structure generator STRUGEN that is used to
produce stem coordinates for all trees at an initial time for use in the spatially explicit
simulator SILVA. To generate stand structures, a two-dimensional homogeneous
Poisson process is used as well as a set of two-dimensional distribution functions
which determine mixture type and intermingling intensity of main and associated
tree species. A distance function determines minimum distances between competing
neighboring trees. The pattern produced is thus the result of a combination of an
inhomogeneous Poisson process for generating mixture units and a so-called hard-
core process for determining minimum distances between neighbors. Application of
the STRUGEN generator requires information on diameters and species of all trees
in an area to be simulated.

14.6 Controlling Plot Edge Bias

When implementing distance-dependent models it is generally necessary to account
for stem spatial patterns beyond the simulation plot when computing competition
index values for trees near the plot borders in order to avoid what is commonly
termed “edge bias”. Sample plots on which growth measurements are taken are
typically rather small with a sizeable portion of the trees being at or close to the
plot boundaries. Likewise, the simulation plot created in model applications may
contain a relatively high proportion of border trees. Hence, a method for edge bias
correction is required.

When fitting equations or simulating stand growth, one possibility is to include
only the interior trees. This option may not be feasible for small plots and it
has the disadvantage that much of the measurement data are not used. Edge-bias
compensation methods fall into three general categories. The first, and most widely
used method, consists of extending plots through translation or reflection. Both
translation and reflection methods can create unrealistic periodicities in spatial
patterns, but the problem is much more pronounced in the reflection approach
(Fig. 9.8 illustrates translation and reflection). Spatial periodicities from translation,
which typically involves shifts to all four sides as well as to the four corners of the
simulation plot, generally do not create detectable biases in growth predictions. A
second general approach is based on estimating competition outside the plot from
surrounding trees inside the measurement or simulation plot. The third general
approach involves generating spatial structure outside the plot based on stem-
distance functions.

Monserud and Ek (1974) judged methods which involve shifting the simulation
plot image to form a set of border plots best on the basis of likely bias reduction and
the relative simplicity of introduced spatial pattern periodicity. Martin et al. (1977)

http://dx.doi.org/10.1007/978-90-481-3170-9
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followed up with a study aimed at control of plot edge bias in forest simulation
models with an approach termed the linear expansion method. When comparing the
linear expansion method with plot image translation techniques they concluded that
both methods behaved equally well on square plots 0.08 ha in size. However, as
plot size diminished or its shape deviated from square, the linear expansion method
provided greater accuracy and lower bias than translation techniques.

Radtke and Burkhart (1998) compared four methods of edge-bias compensation
with the alternative of ignoring off-plot trees to determine their relative adequacy in
modeling crown closure from individual tree crown measurements. By shrinking
the size of experimental plots in a loblolly pine spacing trial, measurements of
“off plot” data were available to compare the results from edge-bias compensation
methods. Three edge-bias computation algorithms were found to perform equally
well: translation, reflection via a reflecting line through the edge trees, and a random
arrangement of interior trees around the plot.

Pommerening and Stoyan (2006) evaluated the performance of six different
approaches to edge-correction: no correction, translation, reflection, buffer zone,
and two nearest-neighbor methods. The performance of edge-correction methods
depended strongly on the algorithm of the indices and the spatial pattern involved.
In fact, they found that some edge-correction methods introduced more error than
ignoring edge-bias entirely. The reflection method resulted in highly-biased values,
and the authors recommended that it not be used. Translation, buffer zone, and a
nearest-neighbor method were judged suitable methods to reduce error.

14.7 Distance-Independent Models

Distance-independent models are very similar in structure and operation to distance-
dependent models, the primary difference being in how competition is represented.
In the case of distance-independent models a measure of stand density may be
included in the tree increment equations along with an indication of the relative
competitive status of the individual tree such as the basal area of trees larger than
the subject tree or the ratio of mean stand diameter to the diameter of the subject
tree. The data required for developing and implementing individual tree increment
and mortality equations that are not spatially explicit are generally more readily
available and less expensive to acquire than spatially-explicit observations.

Distance-independent, individual-tree models typically consist of a diameter
increment equation, a height increment or height-diameter function, and a mortality
function. Increment may be predicted directly as a function of tree, stand, and site
variables, or it may be estimated by a potential growth function multiplied by a
modifier.

Tree diameter and height information is inserted in tree volume, weight, or taper
equations to obtain estimates of tree contents; the tree values are summed and
converted to unit area estimates. The tree increment and mortality equations, along
with silvicultural response functions, are implemented in a stand simulator. Because
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individual tree values are summed to obtain unit area values, no assumption about
or restrictions on the underlying dbh or height distributions are required.

Individual-tree models that are tree position independent have been developed
for a variety of stand types. Arney (1985) reported on an individual-tree, distance-
independent model that uses the potential growth times modifier functions approach
for diameter and height development of even-aged Douglas-fir stands. Amateis
et al. (1989) fitted diameter increment and survival equations for loblolly pine
plantations using equation forms from the distance-dependent model of Daniels
and Burkhart (1975) with the ratio of quadratic mean diameter to individual tree
diameter being substituted for a spatially explicit competition index. Equations for
basal area increment and height-diameter relationships were developed by Harrison
et al. (1986) to predict growth of even-aged Appalachian mixed hardwood stands.
Lynch et al. (1999) presented an individual tree growth and yield prediction system
for even-aged, natural stands of shortleaf pine.

Complex stand structures (mixed species and uneven– as well as even-aged
stands) have been modeled using an individual- tree, distance-independent frame-
work. Andreassen and Tomter (2003) developed basal area growth models for
Norway spruce, Scots pine, birch and other broadleaves in Norway. The candidate
input variables included: tree size, competition index, site conditions, and stand
variables. Huang and Titus (1995) used data from permanent sample plots to
model periodic diameter increment of white spruce grown in boreal mixed-species
stands in Alberta, Canada, as a function of tree diameter, total height, relative
competitiveness of the tree in the stand, species composition, stand density, and site
productivity. The Forest Vegetation Simulator (FVS), developed and maintained by
the United States Forest Service, is a distance-independent individual-tree growth
and yield platform that has been widely applied. Building on the framework laid
out by Stage (1973), a large number of variants of FVS have been developed
(Crookston and Dixon 2005) for timber types in North America as well as in other
parts of the world. As an example Monserud and Sterba (1996) fitted a basal area
increment model for individual trees growing in even- and uneven-aged forest stands
in Austria. The Monserud-Sterba basal area increment model was patterned after the
basal area function in FVS and described in detail by Wycoff (1990). Wycoff’s basal
area increment model for individual conifers in the Northern Rocky Mountains of
the USA does not include site index or age because of the irregular stand structures
found in mixed-conifer stands in the region.

As with distance-dependent models, two typical distance-independent models
will be described to illustrate the structure of this approach.

14.7.1 Example Model for Pure, Even-Aged Stands

Lynch et al. (1999) developed a distance-independent individual-tree growth and
yield system for even-aged shortleaf pine stands. The basic components of the
model are individual-tree basal area growth and survival probability equations,
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plus compatible height-dbh and height-growth projection equations. The basal area
growth model uses the potential-modifier approach in which a Chapman-Richards
(Richards 1959) function, constrained by maximum tree size (Shifley and Brand
1984), represents potential tree growth. This potential is multiplied by a logistic
function modifier. The modifier function (Murphy and Shelton 1996) is constrained
to assume values between 0 and 1; it reduces potential growth on the basis of
variables representing stand and tree attributes. Equation 14.7 was fitted to predict
basal area growth of individual shortleaf pine trees in even-aged natural stands:

�gi D b1g
b2
i � �

b1gi =g1�b2
max

�
1 C exp.b3 C b4G C b5t C b6Ri C b7gi /

(14.7)

where �gi is annual basal area growth of tree i; gi is basal area of tree i; t is stand
age; Ri is the ratio of quadratic mean stand diameter to the dbh of tree i; G is stand
basal area; gmax is the maximum expected basal area for a shortleaf pine tree in
managed stands; and b1; b2; : : : ; b7 are coefficients estimated from data.

Individual-tree survival was predicted using a logistic model. The dependent
variable was 1 for trees that were alive at both ends of the measurement interval
and 0 for trees that were alive at the first measurement but dead prior to the
second. Iteratively reweighted least squares was used to achieve homogeneity of
variance. The weight was the inverse of the variance P t .1 � P t / where P is the
annual probability of survival predicted by the logistic model and t is the number
of years in the measurement period. An annual mortality prediction equation was
desired; consequently, because the remeasurement intervals were not the same for
all plots, the logistic model was raised to a power equal to the number of years in the
measurement interval when estimating the parameters. Model (14.8) was selected to
predict probability of survival in natural shortleaf pine stands:

Pi D 1

1 C exp
h
�
�

b0 C b1

Ri
C b2Gs C b3hdom

�i (14.8)

where Pi is the probability of annual survival for tree i; hdom is the average height
of dominant and codominant trees; b0; b1; : : : ; b3 are coefficients to be estimated;
and other variables are as defined in Eq. 14.7.

Lynch and Murphy (1995) developed a compatible height prediction and projec-
tion system for individual shortleaf pine trees (see, also, Sect. 12.2). Their equation
for predicting either current or future individual shortleaf pine tree heights is:

.hi � hd / D b1.hdom � hd /b2 exp.b3di
b4 / (14.9)

where hi is total height of tree i; hd is height to dbh, di is dbh of tree i; and hdom is
as defined for Eq. 14.8.

Prediction of future tree heights may be more accurate if information from
previous tree heights can be used as a predictor variable. Since the shortleaf pine

http://dx.doi.org/10.1007/978-90-481-3170-12
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data set contained two height measurements, it was possible to develop the following
projection equation that can be used to predict future heights based on previously
measured heights:

.h2i � hd / D .h1i � hd /

	
hdom2 � hd

hdom1 � hd


b2

exp
h
b3

�
d

b4

2i � d
b4

li

�i
(14.10)

where h1i and h2i are time 1 and 2 total height of tree i; hdom1 and hdom2 are time
1 and 2 average total heights of dominant and codominant trees; and d1i and d2i are
time 1 and 2 dbh values of tree i.

Equation 14.10 uses measured height at time 1, if available, to predict future
heights at time 2, leading to better predictions than could be obtained with Eq. 14.9.
Equations 14.9 and 14.10 are compatible in the sense that when Eq. 14.9 is used to
generate a height at time 1, the predicted height at time 2 given by Eq. 14.10 is the
same as would be predicted by Eq. 14.9.

A representative subsample of trees was selected for developing an individual
tree crown ratio prediction model. The data set consisted of 3,132 shortleaf pine
trees on which total height and height to live crown were measured. The crown
ratio equation, which is a form previously used by Dyer and Burkhart (1987) and is
constrained to give estimates between zero and one, had the form:

cri D 1 � exp
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where cri is crown ratio of tree i; b0; b1; and b2 are parameters to be estimated; and
other variables are as previously defined.

Equations 14.7, 14.8, 14.9, 14.10 and 14.11 plus the site index equation of
Graney and Burkhart (1973) and the taper function of Farrar and Murphy (1987)
were incorporated into a ShortleafPineStandSimulator (SLPSS) to simulate growth
and yield of even-aged, naturally-regenerated shortleaf pine stands (Huebschmann
et al. 1998). The basic input to the simulator consists of current stand conditions in
the form of either a stand table (number of trees by dbh classes) or inventory data
from field plots.

Each tree (or group of trees in a dbh-class interval) is grown on a year-by-year
basis. Yearly basal area increment is estimated by Eq. 14.7 and the probability of
survival by Eq. 14.8. A tree survives the year if its probability of survival exceeds
the value of a uniformly distributed random number (restricted to the interval 0–1)
generated for that tree.

Equation 14.9 or 14.10 is used to estimate total height for each tree, and Eq. 14.11
is applied to calculate the crown ratio. The height and crown ratio estimates
determine which of Farrar and Murphy’s (1987) taper functions is used to compute
the tree’s volume. The simulator is capable of conducting low or free thinning
to specified levels of residual stand basal area. Other types of thinning can be
accomplished by specifying a desired residual stand table.
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14.7.2 A Distance-Independent Modeling Platform
for Complex Stand Structures

The Forest Vegetation Simulator (FVS) had its beginning as the Prognosis Model
for Stand Development (Stage 1973). The modeling structure of Prognosis did not
include site index or age in order that stands of mixed species and irregular age
structure could be projected, if desired. When the Prognosis Model was adopted
as a common modeling platform by the United States Department of Agriculture,
Forest Service, it was soon thereafter designated the Forest Vegetation Simulator or
FVS. Geographic specific versions of FVS are called variants. Over 20 FVS variants
have been developed for forested areas in the United States and for part of British
Columbia, Canada (Crookston and Dixon 2005).

Stand development is simulated by predicting changes in dimensions of trees that
compose the stand. Tree growth is predicted separately for large trees and for small
trees. For large trees diameter increment is predicted, then height growth is predicted
as a function of diameter increment and other variables. In the case of small trees,
height growth is predicted first and diameter increment is estimated as a function of
height growth and other variables.

Prediction of diameter increment is central to FVS. All facets of projections of
large-tree development are dependent in part on diameter or diameter increment.
The overall behavior of FVS is strongly influenced by the behavior of the diameter
increment model and the subsequent use of dbh and dbh increment in the prediction
of other tree attributes (Crookston and Dixon 2005).

Wycoff (1990) presented a detailed derivation of the diameter increment model
that is at the core of most FVS variants. Individual-tree basal area increment is
modeled as a function of tree size, site variables, and competition. Tree size is
expressed by dbh; site effects are captured with habitat type, location, slope, aspect,
and elevation. When modeling competition, the overall level of stand density is
quantified by crown competition factor CCF (Sect. 8.6.2). Crown ratio was included
for individual trees along with CCF to further reflect tree vigor, treatment history,
and overall stand density. Finally, relative tree size was expressed in terms of basal
area in trees larger than the subject tree.

Mortality predictions in FVS are intended to reflect competition-induced or
typical mortality rates. Mortality from insects, pathogens, and fire are accounted
for in extensions to FVS. Mortality from causes such as logging damage, animal
damage, or wind storms can be simulated by user-specified commands.

A distinguishing feature of FVS is its ability to automatically calibrate internal
models to reflect local deviations from the regional growth trends represented in
the variant. If three or more tree records for a species have measured heights, the
model parameters of the height-diameter function for that species are adjusted.
When growth increment data are provided on five or more sample trees per
species, parameters of the large-tree diameter increment model, the small tree height
increment model, or both will also be scaled (Crookston and Dixon 2005).

http://dx.doi.org/10.1007/978-90-481-3170-8
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Random effects are incorporated into FVS projections. A random component is
assigned to the distribution of errors associated with the prediction of the logarithm
of basal area increment. The effects of this variation propagate in highly nonlinear
ways through most of the remaining components of FVS.

14.8 Annualized Growth Predictions from Periodic
Measurements

Most individual-tree models are calibrated to produce annual increments of tree
characteristics. The data available for estimating coefficients in the component
equations, however, generally come from periodic measurements. Furthermore, the
time between measurements may be variable. Hence, the modeller is faced with the
problem of determining the most appropriate values for annual increments to use in
equation fitting.

When the desired time interval for prediction is not the same as the interval at
which the data used for equation fitting were collected, some kind of interpolation is
required. Linearity assumptions, while convenient and easy to apply, are generally
inconsistent with the growth function selected and can lead to biased growth
projections. McDill and Amateis (1993) developed two interpolation methods based
on the assumption that the estimated functional form provides useful information for
making interpolations and that interpolation should be consistent with the functional
form of the growth equation. An empirical application using tree height growth
data indicated that the proposed interpolation methods provided better results than
methods based on an assumption of linear growth.

Cao (2000) developed an iterative method for estimating annual diameter growth
and survival for individual trees from periodic measurements. The iterative method
out-performed the averaging (constant growth rate) approach for predicting tree
survival, tree diameter growth, and stand basal area. The superior performance
of the iterative method was attributed to its accounting for the variable rate of
diameter growth and tree survival probability as functions of changing stand and
tree attributes. These methods were subsequently extended and applied by Cao
et al. (2002) when developing an individual tree growth modeling system for the
loblolly pine-shortleaf pine forest type in Louisiana, USA. The Cao et al. (2002)
growth system includes models for individual tree survival, diameter growth, height
growth, and change in crown ratio. A multivariate extension of a two-step, model-
based interpolation method was used to estimate parameters of annual tree growth
equations based on measurements from 7-year growth periods.

Models of individual tree annual diameter and height growth, as well as annual
mortality, of beech in Denmark were developed by Nord-Larsen (2006). An iterative
method for continuously updating individual-tree and stand attributes using the
hypothesized functional form of a system of difference equations was applied due
to irregular measurement intervals in the data.
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Weiskittel et al. (2007) used a variation of the iterative technique suggested
by Cao (2000) to estimate annualized diameter and height growth equations for
plantations of Douglas-fir, western hemlock, and red alder in the Pacific Northwest
region of the United States. The inclusion of multi-level mixed effects improved
the model fits, but the random effects were not closely related with physiographic
features, climate variables, or soil properties.

Cao and Strub (2008) developed an approach to simultaneously estimate param-
eters of an annual tree growth model in which the sum of log-likelihood functions
for tree survival and diameter growth was maximized. Four methods for acquiring
interim values of stand density were evaluated with periodic measurement data
from a loblolly pine seed source study. Updating attributes, in which individual tree
values were summarized at the end of each year within the growth period to predict
interim stand-level attributes, and predicting attributes, in which stand attributes
were predicted annually using a stand-level model, performed better in predicting
tree survival and diameter growth than did linear interpolation or using initial values
of stand attributes at the beginning of the growth period.

An individual-tree growth model was developed by Crecente-Campo et al. (2010)
with data from 54 permanent plots of Scots pine located in Galicia (northwestern
Spain). The study involved two model fitting approaches, one assuming constant
growth and mortality rates in the period between two consecutive inventories
and another considering variable growth and mortality rates in the same period.
Evaluation of the model via simulation of growth and mortality in the period
between inventories showed that the variable growth rate approach provided slightly
better results than the constant growth rate assumption.

Nunes et al. (2011) developed an annual individual tree survival and growth
model for pure, even-aged stands of maritime pine in Portugal using a large data set
containing irregularly time-spaced measurements. Two approaches were compared
for modeling annual tree growth: direct estimation of future diameter or height
using well-known growth functions formulated in difference form and estimation of
diameter or height using a function in differential form for estimating the increment
over an annual period. In both approaches the function parameters were related to
tree and stand variables reflecting the competition status of individual trees. The
second approach performed slightly better than the first.

14.9 Simultaneous Estimation of Model Component
Equations

Typically, the component equations of individual-tree models have been fitted
individually using ordinary least squares. However, because individual-tree growth
models are based on multivariate attributes observed on the same individuals, the
resulting set of growth equations can be considered a simultaneous system and
simultaneous regression techniques can be considered for parameter estimation.
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Hasenauer et al. (1998) compared results from fitting an individual tree basal area
increment model, a height increment model, and a crown ratio model separately
using ordinary least squares (OLS) and simultaneously by applying two-stage
and three-stage least squares (2SLS, 3SLS). The general formulation of the three
equations followed the approach of Wykoff (1990) and Monserud and Sterba (1996)
by predicting y as a function of tree size (SIZE), competition (COMP), and site
descriptors (SITE):

y D a C f1.SIZEI b/ C f2.COMPI c/ C f3.SITEI d/ (14.12)

with y a response variable that is typically a logarithmic transformation of some
measure of increment or dimensional change, a the intercept, b the vector of
coefficients for tree size variables, c the vector of coefficients for the competition
variables, and d the vector of coefficients for the site variables. Site descriptors were
restricted to basic topographic features: elevation, slope, and aspect.

The specific model forms fitted were

(a) Basal area increment

y1 D a1 C b11 ln d � b12d 2 C b13 ln C C c11G>di � c12CCF

C d11ELEV2 � d12SL2 (14.13)

where y1 D ln.�g/, �g is 5-year basal area increment; d the diameter at breast
height; C D .1=cr/ � 1 where cr is the crown ratio; G>di the basal area of trees
larger in diameter than the subject tree; CCF the crown competition factor;
ELEV is elevation and SL is the tangent of the slope angle.

(b) Height Increment
The second model predicts the logarithm of height increment y2 D ln.�h/:

y2 D a2 C b21 ln d C b22h
2 C b23 ln C C c21G>di C c22CCF

C d21ELEV2 C d22SL (14.14)

where h is total tree height, �h D h2 � h1, and others variables remain as
defined for Eq. 14.13.

(c) Crown Ratio

y3 D a3 C b31h=d C b32h C b33d
2 C c31G>di C c32 ln CCF C d31ELEV

C d32SL2 C d33SL cos AZ C d34SL sin AZ (14.15)

where y3 D ln ..1cr / � 1/, h/d is the height/diameter ratio, AZ is the azimuth,
and all other parameters are as previously defined.

When an endogenous (dependent) variable appears on the right hand side of
another equation in the system, multistage estimation techniques (such as 2SLS
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or 3SLS) are necessary to obtain parameter estimates that are consistent and
asymptotically efficient. In the system of Eqs. 14.13, 14.14 and 14.15 an endogenous
variable, crown ratio, appears as a predictor variable rendering OLS estimates
biased.

Results from fitting the system (14.13, 14.14 and 14.15) using data from more
than 7,500 Norway spruce trees indicated the presence of strong cross-equation
correlations, especially between the basal area and height increment models.
Correlations between basal area increment and crown ratio predictions were weak.
Using 3SLS resulted in improved standard error of the estimates for the basal area
increment model but the gain in precision for the height increment and crown ratio
models was negligible.

Huang and Titus (1999) fitted a system of three interdependent, tree-level non-
linear equations for white spruce grown in boreal mixed-species stands in Alberta,
Canada. The system consisted of equations to predict total tree height, periodic
diameter increment and height increment. Because variables that were on the left-
hand side of the equations also appeared on the right-hand side of the equations
in the system, the system was estimated using nonlinear simultaneous techniques.
Testing of cross-equation correlations indicated that the error terms of the related
equations in the system were significantly correlated, suggesting that the parameter
estimates obtained from simultaneous techniques are consistent and asymptotically
more efficient than those obtained from ordinary least squares procedures applied to
individual equations of the system. Parameter estimates obtained by applying non-
linear ordinary least squares, nonlinear two-stage least squares, nonlinear three stage
least squares and seemingly unrelated nonlinear regression were, however, similar.

Compatible height and diameter increment models for lodgepole pine, trembling
aspen, and white spruce were developed by Nunifu (2009). For each species the
diameter and height growth models were considered as a system and seemingly
unrelated regression was applied to account for cross-equation correlation. The
growth model developed by Nunes et al. (2011) also involved simultaneous fitting of
components. The individual tree diameter growth model and the survival probability
model were fitted simultaneously using seemingly unrelated regression (SUR);
parameters of the height function were obtained separately.

14.10 Incorporating Stochastic Components

The growth of individual trees differs by microsite, environment, spacing and
genetic attributes. Deterministic growth functions attempt to capture the mean re-
sponse to site, competition, and genetic inputs, but inevitably residual, unexplained
variation will remain. Random or stochastic components are often incorporated in
individual-tree models as a means of dealing with unexplained variation. Adding
random components is expected to increase variation in the predicted tree sizes so
that size attributes from models more nearly match what is observed in the field.
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One common means of incorporating stochastic variation is to add a random
component with mean zero and variance equal to the residual mean square error
from equations fitted to diameter and height increment.

Stage and Wycoff (1993) developed a model of the stochastic process affecting
individual-tree increments in diameter that included the serial correlation of errors.
The sensitivity of projections in the Prognosis Model for Stand Development was
tested by simulation. Results showed that incorporation of stochasticity into diam-
eter increment predictions reduced bias in projected stand volumes and diameter
ranges.

In a study of residual variation associated with tree diameter growth predictions
in Scots pine and Norway spruce, Miina (1993) modeled the variation in residuals
by four random parameters which described level, trends, autocorrelation and error
variance of the time series of the residuals. The modeled residual variation can
be added as a stochastic component to growth estimates to take into account the
total variation in diameter growth. Simulations showed that adding the modeled
stochastic variation to diameter growth resulted in more rapid differentiation of
trees into diameter classes than in deterministic growth simulations. Addition of
the stochastic residual variation to the diameter growth estimates did not, however,
notably affect estimates of the volume growth of the stand.

In a review of stochastic structure and individual-tree growth models, Fox et al.
(2001) pointed out that past applications have relied on deterministic predictions
or have added an unstructured random component to predictions. They identified
the important components of stochastic structure as spatial, temporal, and nested
and described methodologies for incorporating stochastic structure in growth model
estimation and prediction. Benefits from incorporation of stochastic structure
include valid statistical inference, improved estimation efficiency, and more realistic
and theoretically sound predictions (Fox et al. 2001).

14.11 Relating Predictions from Whole-Stand
and Individual-Tree Models

Growth and yield models for forest management decision support range from
relatively simple whole-stand models to models that aggregate individual tree values
to obtain stand estimates. Due to accumulation of error in detailed tree-level models,
the stand-level predictions are generally not as reliable as those from whole-stand
models. On the other hand, stand-level models do not provide the level of detail
about stand structure that is often required. Hence, there has been considerable
interest in constraining individual-tree models with whole-stand characteristics to
obtain well-behaved projections of overall values while maintaining stand detail.

Somers and Nepal (1994) linked stand-level and individual-tree models via an
algorithm based on the assumption that stand-level estimates of basal area, trees
per unit area, and average diameter are correct and that the projected individual
tree values should be adjusted to equate to the stand-level values. A disaggregation
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function based on relative-size growth was developed by Zhang et al. (1993) for
Douglas-fir to distribute stand volume growth to a list of individual trees. Qin
and Cao (2006) used data from loblolly pine plot measurements to fit whole-stand
and individual-tree equations. Outputs from the individual-tree model were then
adjusted to match observed stand attributes (number of trees, basal area, and volume
per ha) by four disaggregation methods: proportional yield, proportional growth,
constrained least squares, and coefficient adjustment techniques were applied to
disaggregate predicted stand growth among trees in a tree list. Results showed that,
compared to the unadjusted individual-tree model, the adjusted model performed
better in predicting stand attributes, while providing comparable predictions of tree
diameter, height, and survival probability.

In an effort aimed at ensuring that individual tree growth models provide both
precise tree-level and stand-level predictions, Zhang et al. (1997) developed a model
based on conceptual relationships between basal area of each diameter class and
the diameter increment in the same class. An algorithm estimating multiresponse
regressions was used to fit the constrained regression equation system to data from
loblolly pine plantations. The simultaneous equation system provided essentially the
same individual tree increment estimates as the unconstrained model but superior
estimates for basal area of each diameter class and for total stand basal area.

Cao (2006) described past approaches used to adjust or condition summation
of individual-tree values to be consistent with whole-stand estimates. The first
approach, called a disaggregative approach, involves adjusting predictions from
individual-tree models to equal that predicted by a whole-stand model (e.g., Zhang
et al. 1993; Somers and Nepal 1994; Qin and Cao 2006). In the second approach,
multiresponse regression techniques are used to constrain an individual-tree model
to optimize for tree and diameter class levels (e.g., Zhang et al. 1997). A third
approach was developed in which an individual tree model was constrained by
stand attributes so that the model is optimized at the tree and stand levels (Cao
2006). Fitting the three alternative approaches to data from a loblolly pine seed
source study showed that the third approach (individual-tree/whole stand) produced
results that were comparable to those from the same tree model constrained with
number of trees and basal area in each diameter class. Both constrained tree models
were slightly better than the unconstrained tree model in predicting tree and stand
attributes. The disaggregative approach, in which outputs from the individual tree
model were adjusted with stand growth predictions from a whole-stand model,
provided the best predictions of tree- and stand-level survival and growth.

14.12 Comparisons of Growth and Yield Models
with Varying Levels of Resolution

The primary difference between spatially-explicit and non-spatially explicit models
is the measure of inter-tree competition employed. Consideration of the spatial
arrangement of trees is inherent in certain forest management decisions (such as,
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effect of rectangularity of planting spacing on subsequent growth, impact of
clumpiness following thinning on future yields, etc.). Spatial information is expen-
sive to obtain and it is generally not available from inventory plots commonly used
when implementing growth and yield models. Consequently, the additional value, in
terms of predictive ability of spatially-explicit as opposed to non-spatially explicit
models, has been a topic of considerable interest.

Pukkala (1989b) compared spatial and non-spatial growth models for even-aged
stands of Scots pine. In the non-spatial models competition was described at the
stand level only; the spatial models considered competitors within 5 m of the subject
tree. The use of spatial predictors increased the coefficient of determination for
estimation of the logarithm of diameter increment from 43% to 56% if past growth
was not known and from 62% to 75% if past growth was known (the respective
decreases in the standard error of estimate were 10% and 15% points).

Various comparisons of individual-tree and alternative model structures have
been conducted. Daniels et al. (1979a) used an independent data set to eval-
uate and compare three models for predicting merchantable yields of loblolly
pine plantations. Their analysis included a whole-stand, diameter-distribution, and
individual-tree model. The observed number of trees and dominant height on
the test plots were used and merchantable yield was estimated by each model.
Deviations of estimated from observed yields reveals that (1) all three models
provided accurate estimates; (2) all three models were free from prediction bias
due to stand attributes; and (3) the whole-stand and diameter-distribution models
exhibited greater precision than the individual-tree model.

A comparison of a distance-dependent, individual-tree and a diameter-class
model for describing changes in stand density and structure of Lake States’ northern
hardwoods was carried out by Ek and Monserud (1979). Projections were made
by each model for 5–26 years over a range of stand conditions and harvest
treatments. Results from numerous performance tests and comparisons of actual
and predicted diameter distributions, basal areas, and numbers of trees indicated
that the individual-tree model was considerably more sensitive to harvest treatments
and reproduction response than the diameter-class model.

Knowe et al. (1997) used data from a red alder planting spacing study to compare
three modeling approaches. The diameter-distribution model was based on the
Weibull function with percentile-based parameter recovery (Chap. 12), the stand-
table-projection approach relied on changes in relative tree size (defined as the
ratio of individual-tree basal area to average basal area per tree in the stand) over
time (Chap. 13), and the distance-independent, individual-tree growth function was
patterned after that used in the Prognosis model (Wycoff 1990). When these three
approaches were used to predict stand structures and dynamics in plantings of 7–
16 years of age with densities ranging from slightly less than 1,000 to nearly 14,000
trees/ha, the individual-tree model provided the best representations of observed
diameter distributions at all planting densities, stand ages, and growth intervals.

http://dx.doi.org/10.1007/978-90-481-3170-9_12
http://dx.doi.org/10.1007/978-90-481-3170-9_13
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14.13 Developing Growth and Yield Models with
Consistency at Varying Levels of Resolution

Growth and yield models form a continuum of complexity and detail, or ‘reso-
lution’, ranging from relatively simple whole-stand yield prediction equations to
more complex simulation models of the development and interactions of individual
trees in a stand. In choosing appropriate stand models for growth and yield
estimation, users should consider the reliability of estimates, flexibility to reproduce
desired management alternatives, ability to provide sufficient detail for decision
making, and efficiency in providing this information. In forestry practice models of
varying levels of resolution may be applied, and it is often important that numeric
consistency among the estimates be exhibited.

Ritchie and Hann (1997a) evaluated the efficiency of six disaggregative methods
and two individual-tree methods in terms of their ability to predict 5-year basal
area increment for Douglas-fir stands in western Oregon, USA. In general, the
individual-tree approach was superior to the disaggregative approach for prediction
of both stand and tree growth.

Three approaches to characterizing the diameter distribution of a future stand
were constructed by Qin et al. (2007). The first approach was the “parameter-
recovery” method, which links a whole-stand model to a diameter-distribution
model. Two additional approaches provided linkages between an individual-tree
model and a diameter-distribution model. Tree survival and diameter-growth equa-
tions were applied to the tree list (the “tree-projection” method) or to the diameter
distribution (the “distribution-projection” method) at the beginning of the growth
period. When evaluated with data from a loblolly pine seed source study, all three
methods produced similar results in terms of Reynolds et al.’s (1988) error indices,
whereas the distribution-projection method outperformed the other two methods in
predicting total and merchantable volumes per hectare. The analysis of Qin et al.
(2007) demonstrated that the diameter-distribution model could be linked to either
a whole-stand model or an individual-tree model with comparable success.

Numerous investigations have been conducted to elucidate specific relationships
between growth and yield predictions at different levels of resolution. There has
been, however, relatively little effort devoted to developing integrated systems of
stand models of different levels of resolution that are related in an overall unified
mathematical structure. An exception is the Forest Resources Evaluation Program,
or FREP (Leary 1979), which was designed to include a general system of models
to project forest growth from inventory records, at varying levels of resolution,
for various stand types in the Great Lake States region of the United States. The
FREP approach is based on a system of simultaneous-difference equations. In the
simplest case one difference equation may be used for whole-stand growth estimates
for stands of single-species composition. Mixed stands are modeled using two or
more equations of the same form. The system was designed so that it could be
expanded to include one equation for each tree to yield an individual-tree-level
model. The difference equation employed uses a growth potential multiplied by
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a modifier to estimate realized individual or aggregated tree growth. When the
size of and distance to neighbors are included in the growth modifier function the
model becomes distance-dependent. Thus, the system provides a unified theoretical
structure for models ranging from whole-stand models to individual-tree distance-
dependent models. Although the FREP system was conceived as being capable of
operating at multiple levels of resolution, in actual application the individual-tree
distance-independent approach has been used almost exclusively.

Daniels and Burkhart (1988) developed an integrated system of stand models—
ranging from distance dependent, individual-tree, to whole-stand levels—by ap-
plying a unified mathematical structure. The point density measure used in the
distance-dependent model was area potentially available. The mean area per tree
was estimated as the inverse of the number of trees per unit area, so that point density
reduces to stand density and a distance-independent individual-tree model results.
Trees were grouped in size classes to collapse the distance-independent tree level
model in a size-class projection model. Continuing, the dimensions of the model
were collapsed to an “average” tree to produce a stand-level projection model.
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Soares P, Tomé M, Soares P (2003) GLOBTREE, an individual tree growth model for Eucalyptus
globulus in Portugal. In: Amaro A, Reed D (eds) Modelling forest systems. CAB International,
Wallingford, pp 97–110

Somers GL, Nepal SK (1994) Linking individual-tree and stand-level growth models. For Ecol
Manage 69:233–243

Stage AR (1973) Prognosis model for stand development. USDA Forest Service, Intermountain
Forest and Range Experiment Station, Ogden, Research Paper INT-137

Stage AR, Wycoff WR (1993) Calibrating a model of stochastic effects on diameter increment for
individual-tree simulations of stand dynamics. For Sci 39:692–705

Stage AR, Wycoff WR (1998) Adapting distance-independent forest growth models to represent
spatial variability: effects of sampling design on model coefficients. For Sci 44:224–238

Stauffer HB (1978) Aggregating points to fit Pielou’s index of nonrandomness. Can J For Res
8:355–363

Sterba H, Monserud RA (1997) Applicability of the forest stand growth simulator PROGNAUS
for the Austrian part of the Bohemian Massif. Ecol Mod 98:23–34

Strub MR, Vasey RB, Burkhart HE (1975) Comparison of diameter growth and crown competition
factor in loblolly pine plantations. For Sci 21:427–431

Subedi N, Sharma M (2011) Individual-tree diameter growth models for black spruce and jack pine
plantations in northern Ontario. For Ecol Manage 261:2140–2148

Tomppo E (1986) Models and methods for analysing spatial patterns of trees. Commun Ins For
Fenn 138:1–65, Helsinki

Vettenranta J (1999) Distance-dependent models for predicting the development of mixed conifer-
ous forests in Finland. Silva Fennica 33:51–72

Weiskittel AR, Garber SM, Johnson GP, Maguire DA, Monserud RA (2007) Annualized diameter
and height growth equations for Pacific Northwest plantation-grown Douglas-fir, western
hemlock, and red alder. For Ecol Manage 250:266–278

West PW (1980) Use of diameter increment and basal area increment in tree growth studies. Can J
For Res 10:71–77

Wycoff WR (1990) A basal area increment model for individual conifers in the northern Rocky
Mountains. For Sci 36:1077–1104

Zhang L, Moore JA, Newberry JD (1993) Disaggregating stand volume growth to individual trees.
For Sci 39:295–308

Zhang S, Amateis RL, Burkhart HE (1997) Constraining individual tree diameter increment and
survival models for loblolly pine plantations. For Sci 43:414–423



Chapter 15
Growth and Yield Models
for Uneven-Aged Stands

15.1 Special Considerations for Modeling
Uneven-Aged Stands

Some forests are managed with selective harvests applied on a particular cutting
cycle. Thus a continuous forest cover is maintained, but the cover is composed of
trees that differ markedly in age. Such forests, which are often composed of multiple
species, are termed “uneven-aged” to distinguish them from forests managed on a
rotation or even-aged basis.

Because age has nebulous meaning in the context of uneven-aged forests, it is
not usable as a variable for growth and yield prediction purposes. Also, site quality
assessment by the site index method is questionable because of initial suppression of
advanced reproduction, especially for shade tolerant species, and because site index
is an age-dependent variable. Hence models that include uneven-aged structures
generally do not involve age or site index as predictor variables.

Models such as SILVA (Pretzsch et al. 2002) and FVS (Crookston and Dixon
2005) that were presented in the previous chapter were developed to accommodate
pure and mixed stands of even- and uneven-aged structures. Another notable
example is MOSES, a distance-dependent growth simulator that has been calibrated
for all major tree species in Austria and Switzerland (Hasenauer et al. 2006). The
MOSES model was designed to include forest types ranging from even-aged, pure
stands with no treatment to uneven-aged, mixed-species stands with thinning. Palahı́
et al. (2008) used different modeling approaches and predictors when developing
an individual-tree-based simulator for growth of even- and uneven-aged Pinus
brutia growing in pure or mixed stands in Greece. The model for even-aged forests
consists of site index, diameter growth, height growth, and mortality components.
For uneven-aged forests, a past growth index is used instead of site index.

The focus of this chapter, however, is on modeling methods that have been devel-
oped specifically for application to uneven-aged forests. The basic frameworks of
whole-stand, diameter-distribution, size-class, and individual-tree modeling struc-
tures have been adapted to stand types that are age indeterminate. Matrix models,
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340 15 Growth and Yield Models for Uneven-Aged Stands

which are a type of size-class model, are well suited to modeling uneven-aged
forests; hence they are described in this chapter. An overview of growth and yield
models for uneven-aged stands can be found in the review paper by Peng (2000).

The most common approaches to modeling uneven-aged forests include: (i)
whole-stand models based on elapsed time from specified initial conditions, (ii)
models that produce size class information from continuous distributions, (iii)
size-class models that rely on discrete distributions (stand table projection and
matrix models), and (iv) models that aggregate individual tree values for stand-level
estimates.

15.2 Whole-Stand Models

15.2.1 Equations Based on Elapsed Time

Moser and Hall (1969) developed a volume growth-rate model for uneven-aged
stands of mixed northern hardwoods by fitting a basal area growth equation and a
stand volume function. Murphy and Farrar (1982a) applied the Moser-Hall approach
to develop models for basal area and volume projection of uneven-aged loblolly-
shortleaf pine stands. Basal area growth rate was described by Richards (1959)
generalized form of Bertalanffy’s differential equation, namely

dG=dt D nGm � kG (15.1)

where

dG/dt D periodic annual basal area growth
G D average basal area during the period
n, m, k D parameters to be estimated

The stand volume function fitted was:

V D b0G
b1 (15.2)

where

V D volume per unit area
G D basal area per unit area
b0; b1 D parameters to be estimated

Basal area at the end of the growth period can be estimated using the integrated
form of (15.1):

Gt D
n
n=k �

h
n=k � G

.1�m/
0

i
e�.1�m/kt

o1=.1�m/

(15.3)
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where Gt is the projected basal area, G0 is the initial basal area, and t is elapsed
time. Initial basal area, G0, can be substituted in Eq. 15.2 to predict stand volume at
the start of the period, and projected basal area, Gt , can be predicted from Eq. 15.3
and then used in Eq. 15.2 to estimate projected stand volume.

The use of elapsed time from specified initial conditions, as pioneered by Moser
and Hall (1969), has been a highly useful construct in modeling uneven-aged forests.
Moser (1972) further developed the approach by modeling the components of net
growth for number of trees and basal area by a system of first-order, ordinary
differential equations for an uneven-aged forest stand. An additional expansion of
the approach to include the distribution of stand growth by both size classes and
individual growth components for all-aged forest stands was presented by Moser
(1974).

15.2.2 Whole-Stand Models with Stand-Table Information

Lynch and Moser (1986) developed a growth model for two species groups in a
mixed stand. Future stand conditions for each species group are determined by
integrating a system of differential equations which relate rates of change in per
unit area values of basal area, sum of diameters, and numbers of trees to current
amounts of basal area, sum of diameters, and numbers of trees. Solutions to the
system at future times include estimates of basal area, sum of diameters, and number
of trees for each species group. Parameter recovery (Chap. 12) was used with the
Weibull distribution to develop predicted stand tables.

Building on the methods of Moser (1974) for using a system of differential equa-
tions to project uneven-aged stand dynamics, Lynch and Moser (1986) proposed the
following system for stands with two species groups (softwood and hardwood):

dNk1=dt D fk1.N1; N2; S1; S2; G1; G2/ (15.4)

dSk1=dt D ˇk1.dNk1=dt/ (15.5)

dGk1=dt D ˛k1.dNk1=dt/ (15.6)

dNk2=dt D fk2.N1; N2; S1; S2; G1; G2/ (15.7)

dSk2=dt D gk2.SkNkdNk2=dt/ (15.8)

dGk2=dt D zk2.GkNkdNk2=dt/ (15.9)

dSk3=dt D gk3.N1; N2; S1; S2; G1; G2/ (15.10)

dGk3=dt D zk3.N1; N2; S1; S2; G1; G2/ (15.11)

http://dx.doi.org/10.1007/978-90-481-3170-9_12
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dNk=dt D dNk1=dt � dNk2=dt (15.12)

dSk=dt D dSk1=dt � dSk2=dt C dSk3=dt (15.13)

dGk=dt D dGk1=dt � dGk2=dt C dGk3=dt (15.14)

where

k D 1 if species group is softwood and 2 if species group is hardwood,
i D 1 if ingrowth, 2 if mortality, 3 if survivor growth,
Nki D number of species k trees of type i,
Ski D sum of diameters on species k trees of type i,
Gki D basal area on species k trees of type i,
Nk D number of species k trees,
Sk D sum of diameters on species k trees,
Gk D basal area on species k trees.

The system of Eqs. 15.4, 15.5, 15.6, 15.7, 15.8, 15.9, 15.10, 15.11, 15.12,
15.13, and 15.14 is designed to relate stand conditions at a particular time (initial
conditions) to rates of change in these conditions. Ingrowth, mortality, and survivor
growth rates are used to determine net change rates. Since the equations in the
system do not depend explicitly on age, this system could be used to model even-
aged as well as uneven-aged stands.

A solution to the system of Eqs. 15.4, 15.5, 15.6, 15.7, 15.8, 15.9, 15.10, 15.11,
15.12, 15.13, and 15.14 can be used to obtain the parameters of a two parameter
probability density function representing the diameter distribution for each species
group. Basal area and sum of diameters per unit area are related to diameter
distribution parameters through the following equations:

Sk D Nk

�
E.d jbk; ck/

�
(15.15)

Gk D cNk

�
E.d 2 jbk; ck/

�
(15.16)

where

d D individual tree diameter at breast height, (bk; ck) are diameter distribution
parameters,

E.d jbk; ck/ D the expected value of individual tree diameter at breast height,
E.d 2 jbk; ck/ D the expected value of the square of individual tree diameter at

breast height.

If predictions for Sk and Gk are obtained by solving Eqs. 15.4, 15.5, 15.6, 15.7,
15.8, 15.9, 15.10, 15.11, 15.12, 15.13, and 15.14 at a particular time, Eqs. 15.15
and 15.16 can be solved simultaneously for the diameter distribution parameters.
These parameters can be used to obtain predicted stand tables. Unit area values
for number of trees, sum of diameters, and basal area for each species group are
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used as initial conditions for the system of Eqs. 15.4, 15.5, 15.6, 15.7, 15.8, 15.9,
15.10, 15.11, 15.12, 15.13, and 15.14. Integration of the system to some subsequent
time provides predicted number of trees, basal area, and sum of diameters for each
species group that can be used in Eqs. 15.15 and 15.16 to obtain predicted diameter
distribution parameters, and subsequently, stand tables. In their application, Lynch
and Moser (1986) obtained predicted diameter distribution parameter for each of
two species groups by using the left-truncated Weibull distribution. The authors
stated that their approach may be thought of as a method of predicting future
plot attributes from their present values with the added capability of characterizing
diameter distributions from the means of certain attributes.

Khatouri and Dennis (1990) used the general structure proposed by Lynch
and Moser (1986) to develop a model to predict growth and yield in uneven-
aged cedar stands in the Ajdir Forest in Morocco. The model predicts yield from
differential equations and diameter distributions. Rates of change of ingrowth,
mortality, and survivor growth are related to stand conditions. Numerical integration
gives growth and yield projections through time. Predicted stand tables are produced
by estimating Weibull distribution parameters from the results of the system of
stand-level equations.

15.3 Diameter Distribution Approach

Diameter distributions in uneven-aged forests typically follow a reverse J-shaped
curve in which the numbers of trees decrease as diameter increases (Fig. 15.1). The
exponential function (Moser 1976) and the doubly truncated exponential probability
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density function (Murphy and Farrar 1982b) have been proposed to specify a
diameter distribution for a given stand density level. The Weibull function has also
been found highly useful for describing diameter distributions in uneven-aged stands
because it assumes a reverse J-shape when the shape-parameter, c, is less than 1 (for
c D 1, the negative exponential results).

While stand-table values are sometimes produced as auxiliary information to
whole-stand predictions, the continuous distribution approach focuses on devel-
opment of the stand table itself for yield estimation. Hyink and Moser (1983)
generalized the diameter distribution approach (Chap. 12) for projecting yields and
stand structure in even-aged stand to include stands of indeterminate age. Attention
was focused on developing parameter prediction models (PPM) and parameter
recovery models (PRM) for both even- and uneven-aged situations. Parameter
prediction models consist of forecasting future number of trees and the associated
values of the parameters of a probability density function (pdf) describing the
diameter distribution of those trees. Parameter recovery models use the future values
of particular yield attributes directly to compute implied parameter values of the pdf
characterizing the underlying diameter distribution.

Hyink and Moser (1983) developed methodology for calculating yield attributes
as a function of tree diameter at any specified time, t, by generalizing the work of
Strub and Burkhart (1975) as:

yij D Nt

Z Duj

Dlj

gi .x/fx.xI 
t/dx (15.17)

where

fx.xI 
t/ D a probability density function (pdf), describing the diameter
distribution,

x D tree diameter at breast height (dbh),

t D a vector of length m, containing the parameters of the pdf specifying the

diameter distribution at time t,
Nt D total number of trees per unit area at time, t, distributed by fx.xI 
t/,
gi .x/ D any yield attribute that is a function of tree dbh, indexed by i

Duj D upper dbh limit of jth size class,
Dlj D lower dbh limit of the jth size class, and
yij D per unit area value of the yield attribute given by the ith function of tree dbh

in the jth size class, (Dj W Dlj < Dj � Duj ).

If N is replaced by

1=

Z Duj

Dlj

fx.xI 
t/dx

in Eq. 15.17, the yij ’s represent mean tree values.

http://dx.doi.org/10.1007/978-90-481-3170-9_12


15.3 Diameter Distribution Approach 345

Assuming that the diameter distribution is adequately characterized by fx.xI 
t/,
use of Eq. 15.17 with any given gi .x/ requires only knowledge of Nt and 
t. In
the case of applications of the PPM to even-aged stands, number of trees surviving
at age t (years since stand establishment) is specified and the parameters of the
pdf used to describe frequencies by dbh are predicted as a function of stand age,
site index (or height of the dominant stand), and trees surviving. Hyink and Moser
(1983) extended the PPM to uneven-aged stands. The three-parameter Weibull
function with location parameter (a) fixed was chosen as the diameter distribution
model. Then the average annual change in numbers of trees (dN/dN) and in the
Weibull parameters (d
=dt) were approximated from remeasurement data. Linear
and nonlinear least squares techniques were used to estimate coefficients for the
differential equations required by the model.

Hyink and Moser (1983) also developed a generalized parameter recovery model
by noting that when omitting the time subscript, t, Eq. 15.17 may be rewritten as

hij .Nj ; 
/ D N

Z Duj

Dlj

fx.xI 
/dx

Z Duj

Dlj

gx.x/fx.xI 
/dx

Z Duj

Dlj

fx.xI 
/dx

D yij (15.18)

Let Nj D N
R Duj

Dlj
fx.xI 
/dx for any hij .Nj ; 
/ i.e., Nj is the number of

stems per unit area associated with the corresponding yij . If the jth class interval
is coincident with the full range of fx.xI 
/dx then Nj D N . The reminder of
Eq. 15.18 is a general formula for the expected value of any gi .x/ given fx.xI 
/

for any diameter class interval, Dj .
Given Nj ; yij and k D 1 values of 
 for a particular hij .Nj ; 
/, one may solve

for the kth value of 
 ,


k D Fk.yij ; Nj ; 
/

If one further assumes that a distinct (yij ; Nj ) pair is known for each of the
khij .Nj ; 
/’s such that no hij .Nj ; 
/ is a linear combination of any other, a system
of equations may be formed, such as,


1 D F1

��
yij ; Nj

�
1
; 

�


2 D F2

��
yij ; Nj

�
2
; 

�

:::


k D Fk

��
yij ; Nj

�
k
; 

�
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that results in a unique solution for 
 , given Œ.yij ; Nj /
m

; m D 1; k�. By assuming
that the diameter distribution underlying the Œ.yij ; Nj /

m
; m D 1; k� is adequately

characterized by fx.xI 
/, the system represents a general model for the “recovery”
of diameter distribution parameters (Sect. 12.1.3) from stand-average attributes.

A distribution-based growth and yield model for uneven-aged loblolly-shortleaf
pine stands was developed by Murphy and Farrar (1988). Stand-level equations
for merchantable basal area, sawtimber basal area, quadratic mean diameter, and
maximum tree diameter were derived first. Parameters for the doubly truncated
Weibull distribution were obtained by the “parameter recovery” technique by using
estimates of maximum diameter, quadratic mean diameter, and the sawtimber-
merchantable basal area ratio. Compatibility for basal area estimates was main-
tained between the stand-level estimates and those produced from the Weibull
distribution.

15.4 Size-Class Models

15.4.1 Stand-Table Projection Equations

In lieu of continuous distributions, discrete size classes can be projected using
a generalized stand table projection procedure. (Sect. 13.2 contains a general
description of the stand table projection concept.) Ek (1974) presented equations
to predict periodic ingrowth, mortality, and survivor growth, by diameter classes, in
northern hardwood stands. Net 5-year change (i.e., the change from t0, the time of
initial measurement, to t1, the time of final measurement, where t1 is 5 years after t0)
in the number of trees in a diameter class � nc was defined as

�nc D stand ingrowth � mortality � upgrowth C ingrowth

The component equations of this generalized stand-table projection model are

nis D b0N b1e.b2Gb3 N �1/ (15.19)

nm D b0Œ.G=N / =.gc=nc/�
b1 (15.20)

nu D b0nb1
c SŒ.gc=nc/=.G=N /�b2eb3G (15.21)

where

nis D stand ingrowth (merchantable trees at t1 that were nonmerchantable at t0)
nm D mortality (trees present in diameter class at t0 but dead at t1)
nu D upgrowth (trees present in a diameter class at t0 but growing into next larger

diameter class at t1)
ni D ingrowth (upgrowth from next lower measured diameter class)

http://dx.doi.org/10.1007/978-90-481-3170-9_13
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N D number of trees per unit area in the stand
G D stand basal area per unit area
nc D number of trees in a specified diameter class
gc D basal area of trees in a specified diameter class
S D site index (dominant height at index age)

Equations 15.19, 15.20, and 15.21 can be used to project observed or hypothetical
stand tables which can then be converted to stock tables. Because of the growth
rates involved for northern hardwood stands, ingrowth nis would be added only to
the smallest merchantable class (15-cm dbh class) when 5-cm groupings are used.
Diameter-class ingrowth, ni , is equal to the upgrowth nu computed from the next
lower diameter class (e.g., upgrowth computed for 20-cm class is ingrowth to 25-cm
class). For projections longer than 5 years, a new stand table must be constructed
at 5-year intervals. The new stand table is prepared by adding ingrowth trees from
smaller size classes to the number of survivors in a class that did not move to the next
larger class. Basal areas can be computed by using the class midpoint diameters. The
new stand table then serves as the initial conditions for the next 5-year projection.
Volumes can be computed by applying an appropriate size-class volume equation,
such as

Vm D b1gb2
c Sb3Gb4

where Vm is merchantable volume in a specified diameter class, the bi ’s are
constants to be estimated from data, and the other variables remain as previously
defined.

15.4.2 Matrix Model Approach

The stand table projection (STP) method can be formalized and implemented by
computation of a transition matrix. In the simplest form of transition matrix, a
sequence of events, each with a finite number of possible outcomes, is represented
by probabilities. It is assumed that the probability of transition from a given state
to any given outcome is dependent only on the value of the preceding state and
that the transition probabilities are stationary (i.e., do not change) over time. The
outcomes, called states, are finite, mutually exclusive, and exhaustive. This special
case of projection by use of the type of transition matrix just described is called
a Markov chain, and the assumptions on which it is based coincide with those of
classic stand table projection methodology (Sect. 13.2) that has been widely applied
in forestry.

The difference between STP and the Markov chain approach is that instead
of collecting increment core data from the forest of interest to derive diameter
movement data, observations from growth plots in a timber type of interest are
used to estimate transition probabilities. As with the inventory-based STP approach,
information on ingrowth and mortality is needed to complete a Markov chain stand
projection system.

http://dx.doi.org/10.1007/978-90-481-3170-9_13
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Three variations, which differ in the underlying assumptions invoked when
developing the transition matrix, will be recognized: Markov chains, Usher matri-
ces, and generalized transition matrices.

15.4.2.1 Markov Chains

When constructing a Markov model for stand table projection one assumes that
at any time the system can be represented by a finite number of states. Further
assumptions are that the probability of movement to a given future state depends
only upon the current state and transition probabilities do not change over time.
These assumptions are restrictive but are tenable for short-term projection of
uneven-aged forests, especially if a regular cutting cycle is imposed to maintain
a relatively constant forest structure.

Trees of any given initial diameter in the stand table must remain in the same
class, grow into another class, die, or be cut. The Markov chain in forestry
applications has two types of states, transient and absorbing. Transient states
are finite in duration; diameter classes are transient states because all trees must
eventually grow into a larger class, die, or be harvested. The mortality and harvest
states are considered absorbing states since trees that enter these states can not leave
them. Probabilities of movement can be expressed as a matrix (M) to predict change
during a single time interval:

V1 D MV0

The probabilities for multiple time steps can be captured as

Vn D MnV0

where M represents the Markov matrix containing the probabilities of movement, n

represents the number of steps, and V0 and Vn are vectors describing the initial and
final states respectively.

Two primary assumptions are required. First, the markov assumption requires
that the probability of any event occurring depends only on the initial state (in the
case of STP, this implies that the probability of remaining, moving up, dieing or
becoming part of a harvest cut depends only on tree dbh). Second, the stationarity
assumption requires that the movement probabilities do not change over time.

Bruner and Moser (1973) used data from permanent growth plots in uneven-aged
mixed hardwood stands in Winconsin, USA, to apply a Markov chain approach
to diameter distribution projection. The transition matrix involved 25 states: 23
dbh classes and one class each for mortality and harvest. This study showed that
number of survivor trees was accurately predicted, but predictions of diameter
distributions, number of mortality trees, and number of harvested trees were less
accurate. Discrepancies between observed and predicted values were larger for
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projections beyond one period. The authors conjectured that the loss of predictive
ability over longer time periods may be attributable to failure to satisfy the
stationarity assumption. An examination of 19 years of remeasurement data showed
that the transition probabilities were fairly constant for diameter classes with a high
initial frequency of trees. This was not true, however, for diameter classes with a
small initial number of trees which suggests that accurate predictions require good
estimates of transition probabilities, which, in turn, depend on a sufficiently large
number of trees in the sample data.

15.4.2.2 Usher Matrices

Leslie (1945, 1948) pioneered the use of matrix models for studying animal
populations where the animals are grouped into age classes. Usher (1966, 1969)
adapted the Leslie approach for applications to selection-managed forests by using
tree size rather than age classes. Tree diameters are more readily obtained and
more generally available for uneven-aged forests than ages. In addition, the Usher
approach involves choosing a time interval and class width so that during a
projection period trees can grow no more than one class; these restrictions allow
for a substantial reduction in the number of parameters to be estimated.

Markov models contain only transition probabilities, but recruitment can be
predicted by employing non-zero values in the top row of the matrix. These
values, termed fecundity, reflect the number of offspring for each individual in
the corresponding cell of the state vector. Fecundity values in the matrix allow
recruitment to vary according to the presence of trees in various size classes. Thus,
the matrix may be reduced to four vectors: growth (trees move into the next class or
remain in their present class), fecundity (recruitment), mortality, and harvest.

Most forestry applications of transition matrices for stand table projection have
been built on the Usher approach as opposed to a strictly Markov process because
of the increased flexibility and efficiency that the Usher model offers.

15.4.2.3 Generalized Matrices

The Buongiorno and Michie Model

Buongiorno and Michie (1980) modified the Usher model approach to construct
a model for uneven-aged forest management which would describe growth more
accurately. Modifications included making ingrowth only partially dependent on
harvest and allowing for ingrowth to respond to changes in stand density and
diameter distribution. Consequently, stands could grow at an increasing, constant,
or decreasing rate, depending upon their attributes. Because the Buongiorno and
Michie construct has been widely adopted and applied for transition matrix model-
ing of uneven-aged forests, it will be described in some detail here.
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Trees in a stand are divided into a finite number, n, of diameter classes. The
expected number of living trees within each size class at a specific time, t, is denoted
by y1t ; y2t ; : : : ; ynt. Therefore the entire stand of living trees is represented at time t
by the column vector

yt D Œyit� i D 1; : : : ; n

During a specific growth period 
 the trees in a given diameter class i may remain
in the same class or advance to a larger size class. They may also die during the
interval 
 , or they may be harvested. The number of trees harvested from diameter
class i during the interval 
 is denoted by hit, and is represented by the column
vector

ht D Œhit� i D 1; : : : ; n:

Furthermore, let ai denote the probability that a live tree in size class i at time t
which is not harvested during the interval 
 will be alive and in the same size class
at time t C 
 . Also, let bi denote the probability that a live tree in size class i – 1 at
time t which is not harvested during the interval 
 will be alive and in size class i at
time t C 
 . Finally, It designates the expected ingrowth, i.e., the expected number
of trees entering the smallest size class during the interval 
 . The projected stand at
time t C 
 may then be entirely determined from the attributes at time t, the harvest
during 
 , and the ingrowth during 
 by the n equations:

y1tC
 D It C a1.y1t � h1t /

y2tC
 D b2.y1t � h1t / C a2.y2t � h2t /

� � �
yntC
 D bn.yn�1t � hn�1t / C an.ynt � hnt/ (15.22)

The ingrowth function incorporated by Buongiorno and Michie assumes that
abundance of ingrowth is inversely related to stand basal area and that, for a given
basal area, is directly related to number of trees (i.e., ingrowth is favored by stands
of small trees). These considerations led to an expected ingrowth function of the
form:

It D ˇ0 C ˇ1

nX
iD1

gi .yit � hit/ C ˇ2

nX
iD1

.yit � hit/ (15.23)
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with It � 0. Where gi is the basal area of the tree of average diameter in size
class i, while ˇ0; ˇ1 and ˇ2 are constraints which are expected to be, respectively,
positive, negative, and positive. Using (15.23) as the expression for It leads to a
new expression for the number of trees in the smallest size class as a function of the
number of trees in all size classes and of the harvest.

y1tC
 D ˇ0f1.y1t � h1t / C � � � C fn.ynt � hnt/ (15.24)

where

f1 D a1 C ˇ1g1 C ˇ2

fi D ˇ1gi C ˇ2 for i > 1

The final model takes then the form

ytC™ D G.yt � ht/ C c (15.25)

where G and c are respectively a matrix and a column of constant coefficients:

G D

2
666664

f1 f2 � � � fn

b2 a2

b3 a3

� � �
bn an

3
777775

; c D

2
666664

ˇ0

0

0
:::

0

3
777775

(15.26)

The differences between model (15.25) and Usher’s model were enumerated by
Buongiorno and Michie. First, in (15.25) harvest is represented by a variable vector,
ht , instead of being represented by the coefficients of matrix G. This allows for
the harvest strategy to vary, instead of being always a specific fraction of the stock
in each diameter class. Second, in (15.25), part of the mortality is lost, even if the
stand is harvested. Third, and most important, in model (15.25), ingrowth is set to a
constant ˇ0, modified by coefficients in the first row of G which reflect the changes
in ingrowth due to changes in stand structure.

Data from permanent growth plots in northern hardwoods stand in Wisconsin and
Michgan, USA, were used to estimate the elements of G and c denoted in (15.26).
Trees were grouped into seven diameter classes. Estimation of the probabilities
a and b in (15.22) consisted of simple proportions because the data set used
indicated for each plot the number of trees in each diameter class which between
two successive inventories either remained in the same diameter class, moved up
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one class, were harvested, or were lost to mortality. The resulting matrix of a and b
coefficients, as identified in (15.22), was

2
6666666664

0:72

0:23 0:70

0:26 0:67

0:30 0:65

0:30 0:66

0:30 0:81

0:19 0:86

3
7777777775

(15.27)

The ingrowth Eq.15.23 was estimated by linear regression from data on ingrowth,
number of trees in each size class and harvested trees, with the following results:

It D 109:0 � 9:65

7X
iD1

gi .yit � hit/ C 0:27

7X
iD1

.yit � hit/ (15.28)

Although the coefficient of determination was small (0.15), all coefficients were
highly significant.

While ingrowth appears to be a highly random process there is a systematic and
predictable feedback of stand conditions on it, which may be altered by harvest.
This feedback process is represented by the first row in the matrix G and the vector
c which can be computed from (15.27) and (15.28) using Eq. 15.24. The resulting
estimated matrices are:

G D

2
6666666666664

0:81 �0:043 �0:22 �0:43 �0:69 �0:98 �1:3

0:23 0:70 0 0 0 0 0

0 0:26 0:67 0 0 0 0

0 0 0:30 0:65 0 0 0

0 0 0 0:30 0:66 0 0

0 0 0 0 0:30 0:81 0

0 0 0 0 0 0:19 0:86

3
7777777777775

; c D

2
6666666666664

109:0

0

0

0

0

0

0

3
7777777777775

(15.29)

In matrix G in (15.29) the top row represents fecundity, the main diagonal
indicates trees remaining in a diameter class, and the second diagonal shows
upgrowth. In vector c, 109.0 represents the average ingrowth observed (trees per
ha per 5 years) for the data used.

The bi-diagonal Usher matrix approach of Buongiorno and Michie (1980) has
been applied to a variety of forest types, including oak-hickory stands in the USA
(Michie and McCandless 1986), natural stands of dipterocarp trees in Indonesia
(Mendoza and Setyarso 1986), a tropical rain forest of Nigeria (Osho 1991), and a
subtropical forest in southern Brazil (Spathelf and Durlo 2001).
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Estimating Transition Probabilities

When applying the matrix modeling approach, analysts must adopt a method for
estimating the transition probabilities. Michie and Buongiorno (1984) evaluated
four methods for computing the coefficients of their matrix model (Buongiorno
and Michie 1980). Applying ordinary least squares (OLS) to each equation and
use of seemingly unrelated regression (SUR) techniques produced biased results.
Constraining transition probabilities and mortality rates for a particular diameter
class to add to unity alleviated the bias found in the OLS and SUR alternatives.
However, the best method consisted of using the individual tree data directly to
determine the proportion of trees which stayed in the diameter class they were in at
the beginning of the growth period and the proportion which grew into the next size
class.

Lowell and Mitchell (1987) proposed that logistic regression be used to simulta-
neously estimate growth and mortality. A logistic model to predict the probability
that a tree will attain a future diameter class can be specified. Given the initial
diameter distribution of a forest stand, the future diameter distribution can be
projected by estimating the proportion of the stems in each diameter class which
attain a specified future diameter and the proportion which fails to achieve at least
zero growth (i.e. mortality). The authors used permanent plot data for an oak-
hickory forest in Missouri, USA, to calibrate such a logistic model. Validation
results indicated that the model performs satisfactorily (i.e. estimates are unbiased)
for individual trees over a 5-year prediction period, and for stand characteristics over
5-, 10-, 15-, and 20-year predictions, although precision declines as the prediction
period lengthens.

Projecting for Fractional Time Intervals

A drawback of the matrix modeling approach is that projections can only be made in
integer multiples of the measurement interval for the plot data. However, Harrison
and Michie (1985) presented a matrix factorization approach whereby a one-year
matrix (M1) may be estimated from a n-year matrix (Mn) such that Mn

1 	 Mn. In
a case example, the approximated 1-year matrix reasonably replicated the original
matrix model (of the bi-diagonal, Usher matrix form of Buongiorno and Michie
1980) in terms of numbers of trees and basal area growth.

Relating Transition Probabilities to Stand Density

The stationarity assumption is not always tenable when developing matrices of
transition probabilities. In an application of the bi-diagonal Usher matrix modeling
approach for the forests of the Jura Mountains in France, Buongiorno et al. (1995)
found that the probabilities of transition between size classes were affected strongly
by the basal area of the stand. Consequently they developed an upgrowth matrix
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which depends on the stand basal area after the cut. Virgilietti and Buongiorno
(1997) noted that the probabilities of transition (trees moving from one size to
the next) was affected by stand density and tree size when modeling forests in the
Italian Alps. Regression equations fitted to data showed a negative effect of basal
area on the upgrowth rate of spruce and fir and a significant negative relationship
between transition probabilities and the size of larches. However, the coefficients
of determination (R2) for the fitted equations were low, and in the final model the
transition probabilities were set at their mean for spruce, fir and beech, and at their
mean for a given diameter for larch.

FIBER – A Two-Stage Model

Solomon et al. (1986) developed a model called FIBER based on the matrix ap-
proach with dynamic transition probabilities for mixed species stands with frequent
harvests in the New England region of the United States. Periodic remeasurements
were available for trees classified by species and diameter class. A diameter
distribution for each species at time t was written in matrix notation as a column
vector:

yt D .y1t ; y2t ; : : : ; ynt/
0

where yit denotes the number of trees prior to harvest in the ith diameter class at
time t.

The number of trees that were harvested from the ith diameter class at time t was
denoted by hit; therefore, the set of harvests at time t can be written as:

ht D .h1t ; h2t ; : : : ; hnt/
0

To project the growth and mortality of trees within a stand, ait denoted the
proportion of survivor trees in the ith diameter class at time t that remain in diameter
class i at time t C k. The proportion of survivor trees in the ith diameter class at time
t that are in the (i C 1)th diameter class at time t C k was denoted by bit, and cit

denoted the proportion of survivor trees in the ith diameter class at time t in the
(i C 2)th diameter class at time t C k. The proportion of trees in diameter class i that
die by time t C k was denoted by mit. Ingrowth, the number of live trees that grow
into the smallest diameter class during the time interval from t to t C k, was denoted
by ItCk. The ingrowth was expressed as a function of residual basal area (GR) at
time t by the following form:

ItCk D ˛0 C ˛1GRt D ˛0 C ˛1

nX
iD1

gi .yit � hit/ (15.30)

where gi is the basal area of the tree of average diameter in diameter class i and ˛0

and ˛1 are regression coefficeients to be determined.
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The model FIBER was developed as a two-stage model. Tree growth and
mortality were related to tree size and density, both before and after thinning, using
information from growth studies in New England. Therefore, the proportion of
trees remaining in a diameter class (ait), the proportions of trees growing out of
a diameter class (bit; cit) and the mortality rate (mit) are also related to tree size and
stand density. These proportions are assumed to have a multinomial distribution.
The first stage consists of a set of four simultaneous linear regression equations that
are used to estimate the proportions from independent stand variables. Specifically,
the equations in FIBER are:

ait D ˇ01 C ˇ11GIt C ˇ21GRt C ˇ31di

bit D ˇ02 C ˇ12GIt C ˇ22GRt C ˇ32di

cit D ˇ03 C ˇ13GIt C ˇ23GRt C ˇ33di

mit D ˇ04 C ˇ14GIt C ˇ24GRt C ˇ34di (15.31)

where ˇjk is the regression coefficient to be estimated, GIt is the stand basal area
prior to harvest at time t, GRt is the stand basal area after harvest at time t, and di is
the midpoint of the diameter class i.

In the second stage, the diameter distribution of the stand is projected from time
t to time t C k. The number of trees in the first or smallest class at time t C k is the
number of trees that stay in the class from time t plus the ingrowth. Therefore,

y1;tCk D a1t .y1t � h1t / C ItCk D ˛0 C .a1t C ˛1g1/.y1t � h1t /

C ˛1

nX
iD2

gi .yit � hit/

The number of trees in the second class at time t C k is the number of trees that
moved from the first class at time t into the second class at time t C k plus the number
of trees that stayed in the second class:

y2;tCk D b1t .y1t � h1t / C a2t .y2t � h2t /

Similarly, for i � 3,

yi;tCk D ci�2;t .yi�2;t � hi�2;t / C bi�1;t .yi�1;t � hi�1;t / C ait.yit � hit/
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Fig. 15.2 Actual (-) and
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diameter distributions after
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managed at a residual density
of 27.5 m2/ha (From
Solomon et al. 1986)

Hence, the second stage of the model can be written in matrix form:

2
666666666664

y1;tCk

y2;tCk

y3;tCk

y4;tCk

�
�
�

yn;tCk

3
777777777775

D

2
666666666664

f1t f2t f3t f4t � � fnt

b1t a2t 0 0 � � 0

c1t b2t a3t 0 � � 0

0 c2t b3t a4t � � 0

� � � � � � �
� � � � � � �
� � � � � � �
0 0 0 0 � � � cn�2;t bn�1;t ant

3
777777777775

�

2
666666666664

y1t � h1t

y2t � h2t

y3t � h3t

y4t � h4t

�
�
�

ynt � hnt

3
777777777775

C

2
666666666664

˛0

0

0

0

�
�
�
0

3
777777777775

(15.32)

where fjt D


a1t C ˛1g1; when j D 1

˛1gj ; when j D 2; 3; : : : ; n

Using matrix notation (15.32) can be written more compactly as follows:

ytCk D Gt.yt � ht/ C A (15.33)

Given the initial diameter distribution and parameter estimates, (15.31), the diam-
eter distribution at any subsequent time can be calculated by successive application
of (15.33). This model overcomes the stationarity assumption because new proba-
bilities are computed prior to each projection step.

The FIBER model has been applied to a variety of species and management
practices found in New England. Figure 15.2 shows actual and predicted average
diameter distributions after 15 years for softwood stands managed at a residual
density of 27.5 m2ha�1. Mengel and Roise (1990) used a similar approach to that
of Solomon et al. (1986) to develop a diameter-class matrix model for bottomland
hardwood stands in the southern United States.
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Combinations with Other Modeling Approaches

Transition probabilities were related to stand density by Pukkala and Kolström
(1988) when simulating the development of Norway spruce stands in Finland.
An individual-tree growth model was used to generate stands with different
densities. Next regression analysis was used to relate the transition probabili-
ties calculated for different diameter classes from the growth model to stand
density.

In another application that combined different modeling approaches, Picard
et al. (2002) developed a matrix model for smaller trees and an individual-based
component for trees above a threshold diameter. The combined model utilized the
simplicity and efficiency of matrix modeling approaches where tree frequencies
are high (as in small diameter classes in uneven-aged forests) and the strengths
of individual-tree models for high-valued trees occurring at lesser frequencies (as
in large diameter classes in uneven-aged forests). The individual-based component
for trees above the threshold diameter was built from data so as to ensure continuity
with the matrix component.

15.5 Individual-Tree Models

Because of their inherent flexibility in handling a wide variety of stand structures,
individual tree models have been found useful for characterizing uneven-aged
forests. Models that do not incorporate age and site index as predictors have been
developed to accommodate age indeterminate stands and have been applied to even-
aged stands as well. Some representative examples of such models are described
in the previous chapter. Peng (2000) tabulated a chronology of selected growth
and yield models for uneven-aged stands for the pre-1960s period to the time of
publication of his review paper. In this section an example of a distance-dependent
model that was developed to be applicable to forests of mixed species and uneven
age is briefly described. The general structure of a distance-independent model
formulated specifically for uneven-aged stands is then presented.

15.5.1 A Distance-Dependent Approach

The FOREST model published by Ek and Monserud (1974) is a spatially-explicit
simulator for mixed species, uneven-aged stands (it can also be applied in even-aged
monocultures).

Input for FOREST, a distance-dependent model, is a set of tree coordinates and
associated tree characteristics (e.g., height, diameter, age, clear bole length, and
species). Tree coordinates and tree characteristics may also be generated by the
simulator. Each tree is then “grown” for a number of projection periods based on
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potential growth functions, modified by an index of competition. The competition
index is based on the assessment of relative tree size, crowding, and shade tolerance.
Mortality results when the probability of survival for a stem falls below a threshold
value, which is dependent on the competitive status of a tree. In any “year” of the
simulation, optional reproduction routines may be called to allow for regeneration
by seed and sprout production of the overstory. Silvicultural treatments, including
site alteration, cutting, or pruning operations, may also be implemented as the stand
develops. Output of the model is in the form of periodic stand tables with yield and
mortality for various products.

15.5.2 A Distance-Independent Model

Pukkala et al. (2009) developed a distance-independent diameter growth model,
a height prediction model, a survival model, and an ingrowth model for uneven-
sized forest stands in Finland. They described the stands as uneven-sized rather
than uneven-aged because information on tree ages was not available. Regardless,
the modeling principles and concepts applied fall within the context of growth and
yield models for uneven-aged stands.

Data were available from two long-term experiments, a set of temporary sample
plots, and sample plots from the third National Forest Inventory of Finland. Models
were fitted for a range of growing sites and tree species. Additional detail, with
coefficients for the fitted equations, is provided by Pukkala et al. (2009).

The potential predictors of diameter increment included tree size, competition
(stand basal area and basal area in larger trees), forest site type, and temperature
sum (sum of degree days over 5ıC). The ages of trees and stands were not used as
predictors since stand age is not defined for uneven-aged stands, and tree ages are
seldom measured in inventories of uneven-sized stands. Therefore, it was assumed
that, in a given stand, trees of a specified size and with a certain level of competition
will grow similarly regardless of their age. Due to the omission of age, site index
based on age and dominant height was not included.

The model for the 5-year diameter increment was of the following form:

ln.�d/ D a1 C a2G>spruce C a3G>other C a4 ln G C a5

p
d C a6d

2 C a7MT

C a8VT C a9CT C a10CIT C a11 ln TS (15.34)

where �d is the 5-year over-bark diameter increment (cm), d is the diameter at
breast height (cm), G is the total basal area of trees larger than 5 cm in dbh (m2ha�1)
and TS is the temperature sum (degree days); MT, VT, CT and CIT are indicator
variables which indicate whether the site type is Myrtillus (MT), Vaccinium (VT),
Calluna (CT) or Cladonia and poorer (CIT). In each stand, only one indicator
variable equals one while the others are zeroes. If all indicator variables are zeroes,
the model predicts the growth on Oxalis-Myrtillus type. G> is the basal area of trees
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larger than the subject tree (m2ha�1), which was computed separately for spruce
(G>spruce) and other tree species (G>other).G> describes the competitive position of
a tree within a stand.

In height modeling, variables were selected to describe tree size and site. The
height model was a modification of the Hossfeld function:

h D a1 C a2MTC C a3VT C a4CT C a5CIT

1 C .b1=d/ C .b2=d 2/
(15.35)

where h is tree height (m) and d is the diameter at breast height (cm). MTC is an
indicator variable, which equals 1 if the site type is Myrtillus or better (otherwise
MTC D 0).

Survival was modeled with a logistic function which guarantees that the predicted
probability of survival will be between zero and one. The survival model was as
follows:

p6 D 1

1 C exp
h
�.a1 C a2

p
d C a3 ln G C a4G>spruce C a5G>/

i (15.36)

where p6 is the probability of survival for the following 6-year period. The 6-year
survival probability can be converted into a 5-year probability as: p5 D p

5=6
6 .

The ingrowth limit was taken as 5 cm. Thus, the ingrowth model predicts the
number of trees that will exceed the 5-cm dbh limit during the following 5-year
period. The model form was:

ln.NI C 1/ D a1 C a2

p
G C a3 ln G C a4

p
Nspruce C a5

p
Nother C a6M T �

(15.37)

where NI is the number of ingrowth trees per hectare, Nother is the number of non-
spruce trees (dbh > 5 cm) per hectare, and Nspruce is number of spruce trees per
hectare (dbh > 5). M T � is an indicator variable for sites which are Myrtillus type
or poorer. G is the basal area of trees larger than 5 cm dbh (m2ha�1).

The model for the diameter of ingrowth predicts the mean diameter of the
ingrowth trees at the end of the 5-year period. The model was as follows:

ln. Nd/ D a1 C a2 ln G C a3M T C a4V T � (15.38)

where Nd is the mean diameter of ingrowth trees at the end of the 5-year period. V T �
is an indicator variable which equals 1 if the site type is Vaccinium or poorer. The
model predicts smaller diameters for stands with high basal area, i.e., increasing
stand basal area decreases the diameter growth of ingrowth.
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Chapter 16
Modeling Response to Silvicultural Treatments

16.1 Need to Model Response to Silvicultural Treatments

Silvicultural practices such as thinning, control of competing vegetation, application
of fertilizers, and use of genetically improved planting stock are commonly applied
when wood production is the principal management goal. Growth and yield models
that allow for varying management inputs are essential for making informed
decisions about which treatments to apply at what times and at what levels. General
model structures for even-aged stands are described in Chapters 10, 11, 12, 13
and 14. While model parameters may be estimated using data from plots that have
received specific treatments, forest managers frequently wish to consider a wide
range of treatment options.

Silvicultural treatments are often-times applied in combination. At the time of
thinning, for example, vegetation control and fertilizer application might also be
implemented. Studies that encompass all combinations of treatments that might be
of interest do not exist, nor is it feasible to install such studies. The data available
will generally be for one specific silvicultural practice, or perhaps a combination of
two. Thus, the inclusion of silvicultural treatment effects is a modeling problem that
goes far beyond fitting equations to data.

This chapter focuses on approaches for modeling growth response to silvicultural
practices – primarily thinning, vegetation control, fertilizer applications, and genetic
improvement – in even-aged structures. The impact of silvicultural practices on
wood characteristics is touched upon in the chapter that follows. Most of the past
work on modeling response to silvicultural inputs has been on mid rotation (that
is between crown closure and final harvest) treatments. However, many important
silvicultural decisions are also made at stand establishment.

The site preparation method used, initial spacing, extent of competition control
and other cultural treatments during the stand establishment phase greatly influence
subsequent stand development and the type and timing of subsequent silvicultural
interventions. Thus, we will first consider modeling the impacts of cultural treat-
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ments during the stand establishment phase and then address methods for predicting
response to mid rotation silvicultural treatments.

16.2 Modeling Response of Juvenile Stands

Spacing trials have provided valuable data for modeling juvenile stand development
especially for trials where measurements began at an early age and were acquired
at frequent intervals. Zhang et al. (1996) used data from a loblolly pine spacing
trial to estimate juvenile tree growth in diameter, height and crown ratio prediction.
Analyses indicated that effects of stand density on diameter and crown ratio
development became significant soon after planting. Stand density also affected
height growth, but to a much lesser extent than diameter growth.

Peracca and O’Hara (2008) studied relationships between growing space per
tree and growth components for giant sequoia, ponderosa pine, and Douglas-fir in
the Sierra Nevada region of the USA. Relationships between growing space and
tree height, diameter, and percentage of live crown all showed increasing trends
as growing space per tree increased. Hybrid poplar plantations at two locations in
southern British Columbia, Canada, were examined by Johnstone (2008) 9 years
after planting to determine the effects of plantation spacing on tree and stand growth.
Spacing had a direct, significant effect on individual-tree characteristics; however,
for a given amount of growing space per tree, rectangularity (within row to between
row spacing ratio) had no significant effect on individual-tree diameter, height or
total tree volume.

Models of the juvenile phase of stand development are relatively rare, but
there are some notable exceptions. Belli and Ek (1988) published a framework of
prediction equations for growth and survival of red pine and white spruce during
the first 5 years after planting. Their model incorporated data synthesized from
published reports of planting experiments in the Great Lakes region of the United
States. The authors characterized their model as a “first step” in modeling the brief,
but crucial, establishment phase of planted conifers.

Management of competing vegetation is a standard practice for ensuring suc-
cessful establishment of conifer plantations in the Pacific Northwest region of the
United States. To be effective, vegetation treatments must be applied at young
ages. Accordingly, models for response to vegetation management treatments were
developed for juvenile Douglas-fir stands (Knowe et al. 1992, 1997b; Knowe
1994a, b; Knowe and Stein 1995). The salient aspects of models for juvenile
Douglas-fir will be briefly described here. These components of young-stand growth
were structured so that they could be interfaced with growth models for more mature
stands, thus enabling managers to make rotation-age projections of the effects of
treatments during the establishment/juvenile stage.

Knowe et al. (1992) published a parameter recovery procedure for the Weibull
distribution, based on diameter percentiles and modified it to incorporate the effects
of interfering vegetation in young Douglas-fir plantations. Four percentiles (0, 25th,
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50th, 95th) of the cumulative probability distribution were predicted as functions of
quadratic mean diameter and age.

In a subsequent analysis, Knowe (1994a) incorporated the effect of inter-specific
competition and vegetation management treatments in stand table projection models
for Douglas-fir saplings. A projection equation was developed for relative tree
size, defined as the ratio of individual-tree diameter to quadratic mean diameter.
An additional equation was developed to project quadratic mean diameter in order
that individual-tree diameters could be projected from relative size. The stand table
projection system performed similarly to the diameter distribution prediction system
(Knowe et al. 1992) based on the Weibull function.

Height-age and height-diameter functions (Knowe 1994b) that may be used
in conjunction with diameter distribution or stand table projection models were
fitted to data from young Douglas-fir plantations. Analysis of height growth
patterns for dominant trees indicated significant differences between total vegetation
control treatment and operational release treatments or no treatment. Different
height-diameter curve shapes were associated with total vegetation control and the
operational release and no treatments.

Knowe and Stein (1995) developed prediction models based on the Weibull
distribution function and stand-table projection models using changes in relative
diameter for 2- to 10-year-old Douglas-fir plantations. Both modeling approaches
incorporated the effects of site preparation, animal protection, and competing
vegetation. Equations were derived for predicting survival, height growth of domi-
nant trees, height-diameter relationships and the development of woody vegetation
over time to facilitate estimating stand structure and dynamics after various site-
preparation and animal-protection treatment conditions.

Cover-projection models based on algebraic difference formulations of an
exponential-power function to describe shrub recovery and development patterns
after clearcutting and site preparation were elaborated by Knowe et al. (1997b). The
effect of six treatments on shrub growth patterns was investigated by incorporating
indicator variables into the rate and shape parameters of the models.

Variations of variables and equations developed for young plantations of
Douglas-fir (Knowe et al. 1992, 1997b; Knowe 1994a, b; Knowe and Stein 1995)
were integrated to predict current tree size distributions and project stand dynamics
of planted Douglas-fir with hardwood competitors in the coast ranges of the Pacific
Northwest, USA (Knowe et al. 2005). Stand-level equations were included for
the following components: dominant height and survival projection of planted
Douglas-fir; basal area of planted Douglas-fir; hardwood basal area projection;
diameter distribution prediction function for planted Douglas-fir; and height, crown
width and height to crown base prediction equations for individual planted Douglas-
fir trees. Prediction equations provide estimates of current size and stand structure
based on stand characteristics and age, while projection equations provide estimates
of future size based on current size and future stand characteristics.

Ritchie and Hamann (2006), noting the need to model the dynamics of com-
peting vegetation, published growth equations for competing vegetation in young
plantations. Their growth equations were developed to be consistent with individual
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tree model architecture. Response variables were height increment, basal diameter
increment, and crown width. Three common competing shrub and three competing
hardwood species were included in the analysis. Fit statistics for hardwoods were
generally much better than those obtained for shrub species. The equations were
developed for use in an individual-tree plant growth model for young plantations in
southern Oregon and Northern California, USA, where the primary planted species
are ponderosa pine and Douglas-fir.

Mason et al. (1997) used data from 27 site preparation experiments to construct
a model that predicts growth, survival and size class distributions for radiata pine
in New Zealand with respect to altitude, weed control, cultivation, fertilization, and
initial stocking during the first 5 years after planting. The question of linking the
model with existing growth and yield models for older crops was discussed and a
theoretical structure was proposed that clarified assumptions required if the models
are jointly used to evaluate establishment practices throughout a complete rotation.
Subsequently, Mason (2001) added effects of initial seedling diameter and plant
handling to the overall structure of the model of juvenile growth and survival of
radiata pine.

Westfall et al. (2004) developed a system of equations to simulate growth of
loblolly pine before the onset of intraspecific competition. Treatment response
functions were included for various site preparation, herbaceous weed control, and
fertilization practices. These functions modify the baseline model predictions to
simulate the effects of treatments on tree growth and stand development. This
system was incorporated into a distance-dependent growth-and-yield simulator to
make growth projections from time of planting through rotation age for intensively
managed stands of loblolly pine in the southeastern United States.

16.3 Frameworks for Modeling Stand Level Response

16.3.1 Response Functions

Continued progress in genetic improvement and site-specific silvicultural prescrip-
tions necessitates perpetual adjustment of existing yield prediction models to reflect
responses to these practices. Pienaar and Rheney (1995) proposed a methodology
for modeling stand level growth and yield response to silvicultural treatments. The
core of their proposed system is a dominant height growth model that consists of a
treatment response term to accommodate different response patterns. The model of
height growth response is then used as a vehicle for modeling the resultant effects
on stand basal area and volume production.

Various silvicultural practices may have differential effects on height growth
over the life of a stand. In addition to the absolute magnitude of the effect, some
treatments may have only a relatively brief effect compared to a baseline or standard
treatment, while others may have a longer lasting effect. Pienaar and Rheney (1995)
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developed the following height growth model that is capable of reflecting such
differential effects of silvicultural practices:

hdom D a0.1 � e�a1t /
a2 C b1tst e

�b2tst (16.1)

where hdom is dominant height, t is plantation age, tst is years since the treatment
was applied, and a0; a1; a2; b1 and b2 are parameters that define a particular growth
curve. The expected treatment response is explicitly represented in the model in
terms of readily interpretable parameters, rather than implicitly by attempting to
relate the parameters of the basic height growth model (a0; a1; a2) to different
silvicultural treatments. When no additional treatment is applied, the second term
in Eq. 16.1 is zero, so that the first term represents the baseline, or standard height
growth for a given site. The second term represents the cumulative effect of an
additional treatment on dominant height over time. Such a treatment can be applied
at the time of stand establishment (in which case tst D t) or at some later time.
In either case the parameters b1 and b2 determine the magnitude and pattern of the
response. When different levels of a treatment are involved, one or both of these
parameters are considered to be a function of the treatment level.

Model (16.1) provided an accurate description of the average dominant height
growth response of slash pine plantations that received a variety of different silvi-
cultural treatments. With a satisfactory description of the height growth response
to silvicultural treatment, attention was turned to accounting for the basal area
and volume growth response in the context of existing stand level basal area and
volume prediction models. A stand level basal area prediction model (Pienaar and
Rheney 1993) that includes average dominant height as a predictor, in addition
to age and trees per unit area, did not adequately account for the effect of all
treatments on basal area growth and accordingly an adjustment term was added. For
a stand level volume prediction model that includes both average dominant height
and basal area as predictor variables, in addition to age and trees per unit area, no
additional adjustment factors were required for the treatments evaluated in Pienaar
and Rheney’s analyses.

Snowdon (2002) described the concepts of Type 1 and Type 2 responses to
silvicultural treatments. Type 1 responses are those that advance the stage of stand
development but do not change the inherent productivity of the site. An example
would be weed control. Type 2 responses occur from treatments which result in
a long-term change in site properties. For example, correction of a phosphorus
nutrient deficiency.

Schumacher-type yield and projection models that incorporate Type 1 and Type 2
concepts were developed and tested with data from field experiments and compared
with the model of Pienaar and Rheney (1995). The model formulation of Snowdon
(2002) performed better than the Pienaar-Rheney model in yield form but the
Pienaar-Rheney model tended to have superior performance in projection form. The
consequences of assuming Type 1 and Type 2 responses for experimental design,
optimal management regimes, model development, and subsequent applications are
discussed by Snowdon (2002).



368 16 Modeling Response to Silvicultural Treatments

16.3.2 Distributing Stand Growth Response to Individual Trees

Modeling response to intermediate silvicultural treatments has generally focused on
whole-stand or individual-tree relationships. An alternative approach, consisting of
distributing within-stand basal area growth following silvicultural treatment using
a relative size-relative growth (RSG) function, was investigated by Moore et al.
(1994). Relative growth was defined as the ratio of individual tree basal area growth
to stand total basal area growth on a unit area, and relative size was defined similarly,
giving:

ig

iG
D b0 C b1

g

G
C b2

� g

G

�2

where ig is tree basal area growth, iG is stand basal area growth, g is tree basal area
and G is stand basal area. The parameters b0; b1 and b2 were expressed as linear
functions stand density, quadratic mean dbh and the coefficient of variation of tree
basal area distribution.

Results showed that the RSG function performed well for distributing stand
basal area growth to individual trees following silvicultural treatments in even-aged
Douglas-fir stands in the Inland Northwest United States. Thinning and fertilization
treatments did not change the relationship between relative tree basal area growth
and relative tree basal area and did not alter the relationship between average tree
size, stand density and structure. Hence, the authors concluded that there is no need
to develop treatment specific RSG functions.

When applying the methodology of Moore et al. (1994) the absolute growth
effects of silvicultural treatments must first be estimated at the stand level. Growth
is then subsequently distributed to a list of individual trees using a RSG function.

16.4 Modeling Response to Selected Silvicultural Treatments

Studies of tree and stand response to silvicultural practices are often focused on a
single cultural treatment. Hence it may be necessary to model response to given
treatments separately and then to integrate these response functions into an overall
model structure. This approach may prove satisfactory for estimating response
to specific inputs, but the modeling of interactions among treatments remains
problematic. In the sections that follow, an overview of methods for estimating
growth response to thinning, vegetation control, fertilizer application, and genetic
improvement is presented.
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16.4.1 Thinning

Thinning alters stand density, mean tree size, and stand structure. Tree and stand
response to thinning depends on species, site variables, stand age and the intensity
and type of thinning imposed. All aspects of tree and stand growth dynamics are
affected by an abrupt modification of stand density, with some characteristics being
more affected than others. Here we present a brief overview of selected reports on
modeling specific aspects of tree and stand response to thinning.

16.4.1.1 Dominant Height

Sharma et al. (2006) used data from a thinning study installed in loblolly pine
plantations across the southeastern United States to evaluate thinning impact on
height growth of dominant and codominant trees. Height growth was reduced
initially by thinning but was increased after 3 years following thinning. The average
total height of dominant and codominant trees in thinned stands exceeded its
counterpart in unthinned stands after 12 years following treatment. Initial growth
response to thinning was less at older stand ages than at younger ages. A model
was constructed to characterize the development of height in thinned and unthinned
stands. The model reflects the initial suppression of dominant and codominant
height growth followed by acceleration as a result of thinning. However, the impact
of thinning on dominant height development was relatively minor (Fig. 16.1), and,
for many practical applications, it can be ignored.

16.4.1.2 Basal Area

Pienaar (1979) proposed a procedure by which the predicted basal area growth
and yield in thinned plantations is derived from unthinned plantations of the
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same age, site index, and number of stems per hectare as remain in the thinned
plantation immediately after thinning. An estimate of growth after thinning is
obtained by adjusting the projected growth of the unthinned plantation to allow
for the degree of suppression that existed in the thinned plantation, relative to the
unthinned counterpart. Different thinning intensities and thinning methods can be
accommodated within the proposed general formulation.

Further analyses of basal area projection for thinned and unthinned pine planta-
tions were published by Pienaar and Shiver (1984, 1986) and Pienaar et al. (1985).
In their paper published in 1986, Pienaar and Shiver further generalized stand-
level basal area and basal area growth equations for unthinned as well as thinned
plantations.

Long term remeasurement data from both thinned and unthinned slash pine plots
in South Africa were used in the analyses. Pienaar and Shiver (1986) observed that
the magnitude of the difference in basal area between thinned and unthinned stands
of the same age, trees per unit area, and average dominant height depends on the age
when the thinning occurred and the intensity of the thinning. Thus, the following
general prediction equation was proposed to accommodate both unthinned and
thinned plantations:

ln G D b0 C b1

1

t
C b2 ln N C b3 ln hdom C b4

ln N

t
C b5

ln hdom

t
C b6

Nt tt

Nat t

(16.2)

where

t D plantation age at last thinning
N D present number of trees per unit area
Nt D number of trees removed in last thinning
Nat D number of trees remaining after last thinning
G D basal area per unit area
t D plantation age
hdom D average dominant height

The term b6.Nt tt /=.Nat t/ modifies the basal area of unthinned plantations of
given age, stems per unit area, and average dominant height to predict the basal area
for comparable thinned plantations. In the nonlogarithmic form of the prediction
equation, it is a multiplicative modifier theoretically between 0 and 1. For any given
age, t, the earlier a thinning of given intensity (Nt=Nat ) occurs, the larger (closer
to 1) the modifier will be. If thinnings of different intensities occur the same time
ago, so that (tt =t) and Nat are the same, then the modifier will be larger for the less
intensive thinning.
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A basal area projection equation was derived from the prediction Eq. 16.2:
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Bailey and Ware (1983) developed a thinning index based on the ratio of
quadratic mean diameter of trees removed in thinning to the quadratic mean
diameter of all trees before thinning in order to reflect kind and level of thinning
employed. The ratio was transformed into an indexing variable. The new variable,
or thinning index, was conditioned to increase from negative to positive as thinnings
progress from removing large trees to removing small trees. Further, the index is
equal to zero when no thinning is imposed or when thinning does not affect stand
mean tree diameter, as in row thinning. The thinning index resulted in improved
predictions when incorporated as a multiplier in a basal-area projection model. A
comparison of cumulative basal area production of thinned stands and basal area
development of unthinned stands is shown in Fig. 16.2.

Hasenauer et al. (1997) investigated basal area growth in loblolly pine plantations
after thinning and developed a generalized equation for projecting stand basal area
development for a range of thinning treatments, site conditions and stand ages
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at time of thinning. Data from a region-wide thinning study installed across the
southeastern United States were analyzed. Each installation of the study consisted
of a control plot, a lightly thinned plot and a heavily thinned plot. All thinning
was from below; analyses were conducted after four re-measurements, taken at
3-year intervals, were completed. The results of the study indicated that basal
area of thinned plots approaches that of their unthinned counterparts. Based on
these findings, Hasenauer and co-authors developed a basal area projection equation
that includes a thinning response factor and accounts for the effects of competing
hardwood vegetation by including basal area of the hardwood component in the total
stand basal area variable.

With the assumption that basal area of the thinned plots may eventually converge
toward, but not exceed, that of the unthinned plots, using height to describe
the time trend, and considering hardwood competition effects, Hasenauer et al.
(1997) proposed the following model for projecting basal area for loblolly pine per
hectare, Gp2:

Gp2 D Gp1
.hdom1=hdom2/ exp

�
.Gp1=Gt1/b0b1S

b2TR

	
1 � hdom1

hdom2


�
(16.4)

where Gp1 is the basal area of the pines at the beginning of the growing period,
Gt1 is the total basal area including hardwood trees, and hdom1 is the corresponding
dominant height; hdom2 is the dominant height at the end of the growing period, S is
the site index, and TR is the thinning response variable, which is defined as

TR D
	

Gpat

Gpbt


b3.hdomt=hdom2/

(16.5)

The ratio between Gpat , the pine basal area after thinning, and Gpbt , the pine
basal area before thinning, indicates the relative thinning intensity. hdomt is the
dominant height at the time of thinning and hdom2 remains as previously defined.
Depending on the parameter b3, TR (Eq. 16.5) has the following effect within
Eq. 16.4: if b3 is zero (i.e. not significant), the basal area development of the
thinned plots is the same as that of the unthinned counterparts with the same initial
basal area. If b3 is positive, the basal area of the thinned plots diverges from that
of the unthinned plots, and if b3 is negative, the basal area of the thinned plots
converges toward that of the unthinned plots. The thinning effect itself decreases
with increasing time since thinning because hdom2 of Eqs. 16.4 and 16.5 increases.

In unthinned stands TR equals 1. Thus (16.4) assumes that, depending on
the dominant height and the site index, the maximum possible stand basal area
development occurs in unthinned stands and will reach an upper asymptote because
the tree height increment of taller trees tends towards zero. The maximum basal area
of thinned stands will not exceed the maximum basal area of unthinned plots. In
thinned stands, however, the thinning response function, TR, will always be greater
than 1 (with b3 negative) and gives the rate at which the basal area of the thinned
plots converges toward that of the unthinned plots. Figure 16.3 provides the basal
area development following thinning using the mean statistics at plot establishment.
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16.4.1.3 Survival

Avila and Burkhart (1992) fitted logistic functions separately to data from thinned
and unthinned loblolly pine plots to estimate the probability of survival of individual
trees. The fitted function, with distance-dependent and distance-independent mea-
sures of competition in conjunction with crown ratio, can be used in individual-tree
based growth and yield simulators.

Stand-level survival functions have been fitted to observations from thinned
stands. For example, Clutter and Jones (1980) fitted the following function to
remeasured plots in slash pine plantations in the Coastal Plain regions of the USA:

N2 D �
N

a1

1 C a2

�
t
a3

2 � t
a3

1

��1=a1 (16.6)

where N2 is trees per unit area at age t2, N1 is trees per unit area at age t1, and t2 > t1.
When estimating survival in thinned loblolly pine plantations, Lemin and Burkhart
(1983) found Eq. 16.6 best among the alternatives evaluated. In both instances (slash
pine and loblolly pine) the stands were thinned from below and site index, thinning
intensity, type of thinning, and age at time of thinning were not explicitly included
in the model.

In an analysis with data from the same study as that used by Clutter and Jones,
Bailey et al. (1985) developed a survival function for thinned and unthinned stands
that directly incorporated a measure of thinning, age at the time of thinning, and site
index. The model of Bailey et al. (1985) is of the form:

N2 D N1

	
t2

t1


b1

e

h
.b0Cb2S/.t2�t1/Cb3

dgrt
dgbt

It22:5

�
1=t2�1=t1

tt

�i
(16.7)

where:

It22:5 D 1 if t2 <22.5 year; D 0 if t2> 22.5
dgrt D quadratic mean diameter of the trees removed in thinning
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dgbt D quadratic mean diameter of the whole stand before thinning
tt D age of stand at last thinning
Ni D number of trees surviving per hectare at age i
ti D stand age at time i
S D site index

16.4.1.4 Height-Diameter

Zhang et al. (1997) fitted Eq. 16.8 to data from unthinned, lightly thinned, and
heavily thinned plots in loblolly pine plantations:

h D b1h
b2

dom e

h
b3
t C

�
1
d � 1

dmax

�
.b4Cb5

ln N
t /

i
(16.8)

where h is the predicted total tree height for a tree with dbh equal to d in a stand
of age t, in which maximum dbh equals dmax and number of trees per unit area
equals N.

Three thinning response models were incorporated into model (16.8) to account
for the effect of thinning. There was little difference in mean square error for the
base Eq. 16.8 and equations fitted with a thinning response variable. Consequently,
the authors concluded that the influence of thinning on height-diameter relationships
can be explained by thinning effects on variables of average dominant height (hdom),
maximum stand diameter (dmax), and number of trees per unit area (N).

In a subsequent analysis that utilized additional measurements of the study plots
used by Zhang et al. (1997), Russell et al. (2010) found that including geographic
coordinates in addition to a thinning response modifier improved predictions of
individual tree heights as compared with a baseline model without these covariates.

16.4.1.5 Crown Measures

Studies have shown that reducing stand density through thinning slows the recession
of height to the crown base in shade-intolerant conifers (Kramer 1966; Siemon
et al. 1976). These results suggest that crowns develop differently for thinned and
unthinned stand conditions. With results on differential crown recession in mind,
Short and Burkhart (1992) developed a function using percentage of basal area
removed to express thinning effect in a crown height recession model. Their results
indicated that including a thinning variable improved the fit of the model and
produced a substantial increase in accuracy for predictions from the model.

Liu et al. (1995) developed a thinning response function that includes thinning in-
tensity, stand age at time of thinning, and elapsed time since thinning. Biologically,
there should be no immediate response at the time of thinning. Instead, response
to thinning should begin at zero and increase to some maximum as the crowns
of the residual trees respond to the extra growing space and additional sunlight.
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Then, as the stand again closes, the response should diminish and approach that of
an unthinned condition. With these considerations in mind, the following thinning
response function was derived:

TR D
	

Gat

Gbt


�.t�tt /2Ck.t�tt /

t2

(16.9)

where:

TR D thinning response
t D stand age
tt D age of stand at time of thinning
Gat D basal area after thinning
Gbt D basal area before thinning
k D duration parameter for the thinning effect

The duration of thinning response (in years) is determined by the value of the
duration parameter, k. The first derivative of the exponential part of the Eq. 16.9
with respect to t � tt , the time elapsed since thinning, indicates that the maximum
thinning response will occur at

ktt

k C 2tt

years after thinning. Thus, age of maximum response depends on age of the stand
at time of thinning and k. Using Eq. 16.9, an allometric crown ratio model was
specified:

cr D 1 �
	

Gat

Gbt


 rŒ�.t�tt /2Ck.t�tt /�
t2

eŒ�.boCb1=t/d=h� (16.10)

where cr is crown ratio, d is dbh, h is total tree height, r is a rate parameter, and
other variables are as previously defined. The rate parameter, r, is dimensionless
and along with Gat =Gbt , t and tt defines the shape of the response function.

In a similar way, Liu et al. (1995) specified a crown increment equation by
substituting Eq. 16.9 for the original Short and Burkhart (1992) thinning response
function, giving:

�hcb D b0

	
Gat

Gbt


 rŒ�.t�tt /2Ck.t�tt /�
t2

h
b1

dom e.b2c0:5
r Cb3CICb4t/ (16.11)

where �hcb is increment in height to the base of the crown, CI is a competition
index, and all other variables remain as previously defined.
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Eqs. 16.10 and 16.11 were fitted using data from a region-wide set of thinning
plots in loblolly pine plantations located across the southeastern United States. Each
location of the thinning study consisted of a control plot and a lightly-thinned and
a heavily-thinned plot (thinnings were from below). The thinning response rate
parameter, r, was positive indicating that trees in heavily thinned plantations will
have less crown-height recession or larger crown ratio than trees in lightly thinned
or unthinned stands. Likewise, the thinning response duration parameter, k, was also
positive ensuring that thinning impact gradually increases after thinning to some
level and then generally decreases. Figure 16.4 shows the behavior of the thinning
response function (16.9) with regard to crown ratio for two hypothetical stands
thinned at age 12 with after-to-before thinning basal area ratios of 0.3 and 0.7 and for
two stands thinned at age 18 with the same 0.3 and 0.7 thinning intensities. Response
to other silvicultural treatments, such as fertilizer applications, also exhibit behavior
that can be modeled via a rate and duration parameter. Function (16.9) might serve
as a more general response to silvicultural treatment expression.

In their analysis of crown response to thinning, Liu et al. (1995) found that the
allometric model approach (16.10) and the increment function for height to base of
crown (16.11) gave approximately equivalent results.

16.4.1.6 Stem Profile/Volume

The form exponent was used by Tassissa and Burkhart (1998) to evaluate thinning
effects on stem form of loblolly pine trees. Any solid of revolution can be generated
by rotating a curve of the form

y D k
p

xr

around the X-axis where y is radius, x is height or length, k is a constant relating
the rate of change in radius with height (length) and r is the form exponent. As the
form exponent changes, different solids are generated. When r is 1 a paraboloid is
obtained; when r is 2 a cone; when r is 3 a neiloid.
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Thinning significantly increased the form exponent particularly in the lower bole
leading to a more neiloid form. A stem profile model that accounts for changes in
stem form due to thinning effects was developed by incorporating a variation of the
thinning modifier function of Liu et al. (1995).

In an analysis of the same loblolly pine data as that used by Tasissa and
Burkhart (1998), Tasissa et al. (1997) found that total stem volume and implied
taper functions were significantly different for trees from thinned and unthinned
stands.

16.4.1.7 Product Proportions

In addition to increasing diameter growth and average tree size, thinning treatments
are also imposed to remove defective stems and thus to improve tree quality in
the residual stand. To accurately reflect product distributions and stand values,
growth and yield models must account for both number of trees by size classes and
proportions of trees in each class that qualify for conversion to specified products.
Burkhart and Bredenkamp (1989) modeled the proportion of trees in three product
classes (pulpwood, sawtimber, peelers) in thinned and unthinned loblolly pine
plantations using the Chapman-Richards function. The function was constrained
to go through zero when dbh was at the lower limit for specified products and to
exhibit an upper asymptote of one:

Pd D �
1 � eb1.d�dlower /

�b2

where:

Pd D proportion of trees with dbh d having a specified product classification
d D dbh class
dlower D lower dbh limit of product size class
b1; b2 D parameters to be estimated

In a later analysis of plot data from the same thinning study as that anal-
ysed by Burkhart and Bredenkamp (1989), Amateis and Burkhart (2005) applied
proportional odds modeling methods to develop equations for predicting product
proportions (pulpwood, sawtimber, peelers) from tree dbh, stand basal area before
and after thinning (thinning intensity), and number of thinnings imposed. Thinning
had its greatest impact on the product distribution in the larger diameter classes. The
more intensive thinning treatments removed almost all the lower valued (pulpwood)
trees from the larger diameter classes. In the intermediate diameter range, comprised
of a mix of pulpwood- and sawtimber-sized trees, the thinning intensity had little
influence on the product distribution (Fig. 16.5).

The system of product classification developed by Amateis and Burkhart (2005)
can be incorporated into individual tree growth and yield models to predict the
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probability that a particular tree qualifies for a certain product category. The system
can also be used with diameter distribution models to estimate the proportion of
trees in each of the product categories identified for specified diameter classes.

16.4.1.8 Incorporating Thinning Response into Stand Simulators

Westfall and Burkhart (2001) used data from a long-term thinning study in loblolly
pine to develop thinning response variables that were subsequently incorporated
into a distance-dependent, individual-tree model, PTAEDA2 (see Sect. 14.4.1 for
a description of the model structure). Height increments and mortality components
needed no additional refinement to account for response to effects of thinning. The
diameter increment and crown ratio components, however, could not account for
thinning effects in their original form and thinning response functions were added
to these equations. Results showed significant improvements in predictive ability
when a thinning response function was added to the diameter increment model.
There was no significant improvement in crown ratio prediction due to adding a
thinning response function.

While incorporating thinning response variables can improve predictive ability,
Westfall and Burkhart (2001) cautioned that the thinning response modifications
can result in unanticipated model behavior when incorporated into stand simulators.
Improvements in predictive ability exhibited by a given equation outside a stand
simulator do not necessarily equate to a similar level of performance when incor-
porated into the overall stand model. Interrelationships among various components
within stand simulators such as PTAEDA2 are complex and changes to any of the
equations can have a large effect on the behavior of the other components. The
best combination of growth equations for simulating stand dynamics cannot be
fully determined by evaluating individual equations. Candidate equations should
be evaluated through analysis of systems output and the appropriate combination
chosen that provides the best predictive result for the attributes of primary interest.

http://dx.doi.org/10.1007/978-90-481-3170-9_14
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16.4.2 Vegetation Control

Unwanted vegetation in commercial forests competes with the crop trees for space,
water, nutrients and light. The benefit to crop plants from controlling weeds is
well recognized and there have been numerous studies aimed at assessing growth
response to competition control. Wagner et al. (2006) reviewed results from 60 of
the longest-term studies on vegetation management in Canada, the United States,
Brazil, South Africa, New Zealand and Australia. A majority of the studies reported
substantial gains (30–500% increases in wood volume) from the most effective
vegetation treatments. More recently, McCarthy et al. (2011) summarized the state
of forest vegetation management practices in Europe.

Many vegetation management studies involve a limited number of experimental
treatments (often just with and without weed control). From a growth modeling
standpoint, response to various levels of weed control is needed. Further, a
preponderance of the research of growth response to competition control has been
aimed at light-demanding pioneer species. The emphasis in North America has been
on loblolly pine in the southeastern USA and on conifers (especially Douglas-fir)
in the west (Walstad and Kuch 1987). We draw extensively on modeling work from
these regions to illustrate principles and methods that are applicable to estimating
crop tree response to weed control.

A model developed by Burkhart and Sprinz (1984) predicts survival and growth
and yield of unthinned loblolly pine plantations with varying levels of hardwood
competition in the main canopy. The approach taken to modeling hardwood com-
petition effects on yield was to regard values observed in plantings on essentially
weed-free former agricultural land as upper limits and to compute reduction factors
based on the level of hardwood competition measured in a region-wide set of plots
in plantations established on cutover, site-prepared areas. Of the stand components
examined (i) height-age development (ii) height diameter equations, (iii) individual
tree volume relationships, (iv) diameter distributions, and (v) survival relationships,
the major impact of competing hardwoods was a reduction in pine survival and
diameter growth. An equation was estimated to relate pine survival to percent of
basal area in the main canopy. Moments of the Weibull distribution were related
to hardwood competition level such that the variance of the dbh distribution of
pines remains constant regardless of the amount of hardwood competition but
the mean diameter and mean squared diameter (and thus basal area) are reduced
with increasing levels of hardwood in the main canopy. With pine survival and
diameter development related to percent of total basal area in hardwood in the
main canopy, the behavior of stand composition in terms of pine and hardwood
competition needed to be considered. Data on percent basal area composition of
pine and hardwood were available for ages 11 and 24 from measurements in a site
preparation study. The fitted relationship to estimate percent basal area in hardwoods
at age 24 to percent at age 11 gave a slope coefficient of 0.97 (not significantly
different from 1.0), hence, the composition by basal area, after crown closure, was
assumed constant. This assumption can hold only for relatively short time periods.
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Other analyses have found composition of basal area of the main canopy to be a
useful predictor (Smith and Hafley 1987; Knowe 1992a), but the projection of stand
basal area composition through time remains a relatively uncertain component in
the models.

A loblolly pine simulator that accounts for hardwood competitors was developed
by Smith and Hafley (1987). Their model is based on a bivariate distribution of
height and diameter in which the minimum and modal height and diameter are
adjusted for amount of hardwood basal area. The proportion of total stand basal
area that is composed of hardwoods is allowed to vary over time.

Knowe (1992a) fitted basal area and diameter distribution models for loblolly
pine plantations with hardwood competition in the Piedmont and Upper Coastal
Plain of Alabama, Georgia, and South Carolina in the USA. A model for pine
basal area yield was developed to account for the effects of varying hardwood
levels. Percentiles of the diameter distribution needed to recover the parameters
of a Weibull function were predicted from stand characteristics and proportion of
hardwoods defined by the ratio of hardwood basal area to total basal area per unit
area.

The basal area yield model employed was:

Gp D b0h
b1

dome.b2RsCb3Gh=G/ (16.12)

where:

Gp D pine basal area per unit area
hdom D mean height of the dominant and codominant pines
Rs D relative spacing (mean distance between trees divided by hdom)
Gh D hardwood basal area
G D total basal area

Figure 16.6 shows basal area yield for site index 20 m (base age 25 years) for
ages 10–30 years and with hardwood percentage of basal area of 0, 10, 20 and 30.

A parameter recovery procedure based on the 0th (minimum dbh) 25th, 50th,
and 95th percentiles of the diameter distributions was used to estimate diameter
distributions for pine plantations with varying levels of hardwood competition
(Fig. 16.7). Diameter distributions predicted by procedures developed by Knowe
(1992a) were compared with those for comparable stand conditions from the models
of Burkhart and Sprinz (1984) and Smith and Hafley (1987). Figure 16.8 illustrates
the range in shapes exhibited by the three models for diameter distributions of
plantations of site index 20 m (25-year base) with 0% and 20% basal area in
hardwood species.

In an analysis focused on predicting the impact of inter-specific competition in
young loblolly pine stands, Knowe (1992b) found very little difference among three
types of models to predict the effects of hardwoods and total vegetation control
on quadratic mean diameter. The percentile-based parameter recovery system
for the three-parameter Weibull function included direct and indirect effects of
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competition. The effects of increasing inter-specific competition included skewing
the distributions toward smaller diameters, decreasing the variation in diameters,
and increasing the coefficient of variation in diameters.

Shiver and Brister (1996) used data from yield plots in naturally regenerated,
even-aged loblolly pine stands in the Georgia Piedmont, USA, to fit the following
function to estimate pine volume per unit area (Vp) for stands with varying amounts
of hardwood competition:

Vp D b0G
b1 h

b2

domN b3
p eb4Gh=G (16.13)

where G is total stand basal area (pine and hardwood), hdom is height of dominant
and codominant loblolly pine trees, Np is number of pine trees per unit area, and Gh

is basal area of hardwoods.
Volume by product classes was determined by utilizing the model introduced by

Amateis et al. (1986) to predict the merchantable portion of total stand volume from
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threshold diameter (dT ), quadratic mean diameter ( Ndg), merchantable top diameter
limit to (dt ), and trees per unit area, namely:

Vm D V e
b1

	
dt
Ndg



Cb2N b2

	
dT
Ndg


b3

(16.14)

where Vm is merchantable pine volume per unit area for trees with dbh � dT to top
diameter limit of dt .

Using 5-year remeasurement data from the same plots as those originally
analyzed by Shiver and Brister, Martin and Brister (1999) developed a system of
growth equations to project yield over time that accounts for hardwood competition.
Their system allows for an increase in the proportion of hardwood basal area over
time. The projected pine basal area and trees per hectare are adjusted to account for
increased hardwood levels.
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The following equation form was fitted to project the proportion of hardwood
basal area from t1 to t2:

Gh2

G2

D
	

Gh1

G1


.t1=t2/b1

(16.15)

where Ghi =Gi D proportion of hardwood basal area at age ti .
Pine basal area was projected using an equation form with two components; the

first is a basal area projection equation and the second is a multiplicative reduction
factor that reduces the pine basal area according to the projected proportion of
hardwood basal area in the stand at age t2:

Gp2 D
h
G

.t1=t2/
p1 eb1.1�t1=t2/

i	
1 � Gh2

G2


.1�t1=t2/

0 <
Gh2

G2

< 1 (16.16)

where Gpi is pine basal area per unit area at age ti . Using Eq. 16.16, basal
area growth curves were generated for selected values of Gp1; Gh2=G2; t1 and t2
(Fig. 16.9).

Martin and Brister (1999) also formulated a function to project number of trees
per unit area for stands with varying levels of hardwood basal area:

Np2 D
�
Nmin C .Np1 � Nmin/e

b1.t2�t1/

�	
1 � Gh2

G2


.1�t1=t2/

(16.17)

where Npi is pine trees per unit area at age ti and Nmin is defined by an arbitrarily
fixed lower bound for number of trees per unit area.

The yield equations of Shiver and Brister (1996), which were fitted to the initial
plot measurements, were found to be accurate for stands with a low proportion
of hardwoods but as the proportion of hardwoods increased above 0.3 the yield
functions over estimated pine volume. Hence, Martin and Brister (1999) fitted a
new yield function (16.18):

Vp D b0G
b1 h

b2

domN b3
p (16.18)
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where variables remain as defined previously. Equation 16.18 does not explicitly
account for the proportion of hardwoods in the stand, but rather stand composition
is accounted for in the estimation of projected pine basal area and trees per unit area
(16.16 and 16.17). Merchantable volumes can be obtained by utilizing equations
published in Shiver and Brister (1996).

The Stand Prognosis Model structure (Stage 1973), which is now designated
FVS or Forest Vegetation Simulator (Sect. 14.7.2), can be used to calculate expected
yield for mixed-conifer forests in the Inland Northwest of the USA for management
regimes that include vegetation management. Stage and Boyd (1987) provide an
overview, with examples, of how the FVS system might be applied to simulate
vegetation management practices in the Inland Northwest which include site
preparation, early conifer release from shrub and herb competition, and cleaning
and thinning to favor particular conifer species while controlling stand density.

Because of the importance of individual tree height development in models of
conifer stands, Salas et al. (2008) developed and evaluated an individual-tree height
growth model for Douglas-fir in the Inland Northwest. The model predicts growth
for all tree sizes continuously, rather than requiring a transition from models of
juvenile to mature growth phases. Effects of overstory and understory vegetative
competition on height growth are included. The model requires attained height
rather than tree age as a predictor variable, thus avoiding the necessity of specifying
site index. Site effects are expressed as a function of ecological habitat type,
elevation, aspect, and slope.

The model of Salas et al. (2008) is intended for incorporation into stand models
with an individual-tree level of organization. The Richards growth model with a
power transformation

dhc

dt
D b.ac � hc/ (16.19)

was analytically integrated to obtain a yield equation (i.e. cumulative growth).
Integrating (16.19) between t0 and t1 gives height at t1, that is:

h1 D a
h
1 � .1 � .h0=h1/

c/e�b.t1�t0/
i1=c

(16.20)

where a, b and c are parameters to be estimated, with a being the upper asymptote,
b a rate parameter and c a shape parameter.

Salas et al. (2008) introduced competition effects on height growth by modeling
the b parameter in (16.20) as a function of overstory and understory vegetation. The
modified growth parameter denoted by b0 has the expression:

b0 D b0

	
b1 � 1

1 C eb2




b2 D b20 C b21

Covs0p
h0

C huns0

h2
0

b23Cuns0 (16.21)

http://dx.doi.org/10.1007/978-90-481-3170-9_14
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where b0 is a parameter related to the maximum growth rate, Covs is a variable that
represents the overstory competition (a stand density measure such as basal area
per unit area), huns is the average height of the understory and Cuns is a measure
of the amount of competing vegetation (e.g. understory cover or understory crown
volume). The 0 subscript of the variables means that those are measured at the
beginning of the period. Parameters to be estimated are b0; b1; b20; b21 and b23.

Due to the hierarchical nature of the data available, Salas et al. (2008) used
a mixed-effects approach to estimating model parameters. The complexity of the
model and diversity of the data sets used precluded estimating optimum values of all
parameters simultaneously. Consequently, the required parameters were estimated
in stages. Results from the fitted model showed that both overstory and understory
density affect height growth.

In a review of modeling applied to vegetation management, Mason and Dzierzon
(2006) discussed models that range in resolution from single yield equations to
complex representations of processes affecting growth and competition for light,
water, and nutrients. Six generic model forms were identified. Models were further
categorized by whether they focus on weed population dynamics or on processes
directly affecting growth of crop plants. The need persists for models that accurately
forecast forest crop yields for a wide variety of sites and vegetation management
practices.

16.4.3 Fertilizer Applications

Fertilizer applications are an important silvicultural tool for increasing tree growth
and accelerating stand development. Growth and yield projections that accurately
reflect response to fertilizer treatments are required when determining prescriptions
for nutrient amendments during various stages of stand development.

Duzan et al. (1982) related response of loblolly pine plantations in the Coastal
Plain and Piedmont regions of the southeastern USA to stand conditions. Volume
increment equations were developed using basal area, site index and fertilizer
treatment as predictor variables. Response to fertilization was calculated as the
difference between growth estimates for control and fertilized stands at given levels
of basal area and site index.

A simple model was formulated by Ballard (1984) for predicting Douglas-
fir growth response to nitrogen fertilizer applications in western North America.
Cumulative volume growth response, resulting from fertilizer application, was
predicted by:

R D ktf AN ScSsS

where k is a constant, tf is time since fertilizer treatment; AN is amount of fertilizer
nutrient applied, Sc is stand composition, Ss is a stocking factor, and S is site quality
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as expressed by site index. The model includes information on amount of nutrient
applied, the temporal aspect of response to fertilizer, and indicates that response is
conditional on stand characteristics and site variables.

Shafii et al. (1990) developed individual-tree diameter growth models for
quantifying within-stand response to nitrogen fertilization of grand fir and Douglas-
fir in northern Idaho, USA. Because the Prognosis model (Stage 1973) is widely
used in the Inland Empire region, Shafii et al. (1990) first specified a Prognosis-type
diameter increment model as follows:

ln .i2
du/ D b0 C Ihab C Itrt C Isp C b1.sl cos.asp// C b2.sl sin.asp//

C b3sl C b4sl2 C b5el C b6el2 C b7cr C b8c
2
r C b9CCF>d

C b10

d

Nd C b11Itrt ln d C b12GItrt (16.22)

where:

idu D inside-bark diameter growth
b0 D constant term representing the overall regression intercept
Ihab D dummy variable representing habitat type
Itrt D dummy variable representing treatment type (control, fertilized, thinned,

thinned and fertilized)
Isp D dummy variable representing species (grand fir, Douglas-fir)
sl D stand slope percent
asp D stand aspect
el D stand elevation
cr D individual-tree percent live crown
CC F>d D crown competition factor in trees larger than the subject tree
d D initial dbh of subject tree
Nd D average stand diameter

G D initial stand basal area
b1 � b12 D regression coefficients

Model (16.22) includes three categorical variables expressing the differential
effects (direction of shift in the intercept as well as change in the slope) of habitat
type, treatment and species on diameter growth. The site factors included in the
model, i.e. slope, aspect, habitat type, and elevation, are the same as those given in
the Prognosis diameter-increment model specification.

Since site index is a commonly used method for estimating site quality, Shafii
et al. (1990) formulated a second diameter-increment model by replacing the seven
site-dependent terms in (16.22) with site index. Using site index as the measure of
site quality makes the model more parsimonious, eliminates collinearity among the
site factors, and reduces the potential for ill conditioning between these and other
regression variables in the model.
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The diameter-increment model with site index as a predictor took the form:

ln .i2
du/ D b0 C Itrt C Isp C b1S C b2cr C b3c

2
r C b4CCF>d C b5

d

Nd
C b6Itrt ln d C b7GItrt (16.23)

where S is grand fir site index and all the other terms are as previously defined.
Regression results for models (16.22) and (16.23) were similar over the specified

growth periods. All slope coefficients associated with the continuous variables were
significant and had comparable standard errors for all three growth periods. The R2

values associated with (16.22) for 14-, 10-, and 5-year growth periods were 0.71,
0.72, and 0.69, respectively. For Eq. 16.23 the R2 values were 0.70, 0.70 and 0.68
for the three growth periods. Residuals from both models showed no bias when
displayed by all tree, density, and competition variables as well as the predicted
value of diameter growth.

The individual-tree growth response analysis conducted by Shafii et al. (1990)
showed that nitrogen fertilizer changes the distribution of diameter increment across
tree size classes within a stand. Larger trees showed more growth response to
nitrogen treatments than smaller trees. Carlson et al. (2008) reported similar results
for response of loblolly pine in the southeastern USA to mid-rotation fertilizer
treatments of nitrogen and phosphorous. Both absolute growth response and relative
growth response of individual trees were greater for the larger trees.

Hynynen (1993) reported on individual-tree models for predicting tree basal area
growth response following nitrogen fertilization in middle-aged, managed stands of
Scots pine in southern Finland. Data from unfertilized control plots were used to
develop a reference model for basal area growth. Growth response of fertilized trees
was calculated as the difference between observed growth and predicted reference
growth. The temporal distribution of tree basal area growth response was modeled
using the Weibull function. Parameters of the Weibull distribution were expressed
as a function of stand characteristics.

Diameter and height growth models for fertilized loblolly pine were developed
by Hynynen et al. (1998) using data from mid-rotation plantations throughout the
southeastern United States. Tree growth in fertilized stands was predicted with a
reference growth model multiplied by an equation predicting the relative growth
response following fertilization. The temporal distribution of growth responses
was modeled by the Weibull function. Information about dose, nutrients, and time
elapsed since treatment is needed to predict the relative growth response following
fertilization. The resultant equations for growth response are compatible with
individual-tree based model structures.

The strategy adopted by Hynynen et al. (1998) in modeling tree diameter growth,
id , following fertilizer application was to incorporate the effects of fertilization into
a base growth model. Thus, a single growth model was developed using data from
both non-fertilized and fertilized stands. The following multiplicative model form
was chosen as the basic model structure:

idF D id RF
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where idF is the increment in diameter with incorporation of the effect of fertil-
ization. The first part of the model (id ) predicts tree growth without fertilization
(reference growth). It includes the effects of site as well as tree and stand
characteristics.

The second part of the model (RF ) includes the direct fertilization effects on
tree growth. It predicts the relative growth responses following fertilization. Thus,
RF is a multiplier which is applied to reference growth to predict the growth of
fertilized trees. The RF function was developed in such a way that it can be used in
conjunction with reference growth models other than the one parameterized for the
overall model of Hynynen et al. (1998).

Information on the duration and distribution of growth response in mid-rotation
loblolly pine stands following fertilization (e.g. Ballard 1981) indicates that the
response increases with a peak response occurring during the first 4 year after
fertilization. There is a fairly rapid decline in response following the peak. The
Weibull function was applied in modeling the temporal distribution of the response
to the fertilizer treatments in loblolly pine. Hynynen et al. (1998) modeled tree
height growth as the product of potential height growth multiplied by a modifier
function. Increment of stand dominant height was assumed to represent the stand-
level potential height increment. Height growth of an individual tree was regarded
to be either smaller or greater than dominant height increment depending on the
tree’s competitive status and vigor. In modeling height growth response following
fertilization, a similar strategy to that applied in developing the diameter growth
model was adopted.

The fertilizer response functions (RF ) for diameter and dominant height in-
crement account for direct fertilization response; these response functions are
conditioned to be greater than or equal to one. The RF functions, which predict
growth response due to fertilizer application, will not, however, by themselves
provide estimates of growth increase due to nutrient amendments. Growth response
is also affected by the predicted reference growth. Because fertilization changes
the patterns of stand development, e.g., the development of stand basal area, it has
a strong effect on the reference growth prediction. The magnitude and duration
of the total absolute growth response can only be obtained by simulating the
stand development using the reference growth model and the fertilization response
function together.

Although the fertilization response function is always �1, it is possible to obtain
negative absolute growth responses in the simulation of individual tree development.
After the fertilization response has diminished only the reference growth model
affects growth prediction. Actual growth of a fertilized tree can then be either greater
or smaller than what it would be if the tree had not been fertilized, depending on
relative tree size and stand basal area. Therefore, the models can take into account
the effects of changed patterns of stand development in fertilized stands during long-
term simulations (Hynynen et al. 1998).

The temporal pattern of the growth response to fertilization indicated that stand
basal area growth peaks at around 2 years after fertilization. Thereafter, the response
starts to decrease and levels off around 8 years after fertilization (Fig. 16.10a).
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Fig. 16.10 Predicted
response in loblolly pine
stand basal area growth (a),
and stand dominant height
increment (b) with varying
fertilizer treatments (From
Hynynen et al. 1998)

For stand dominant height, growth response reaches its maximum level somewhat
later than basal area, around 2–4 years after fertilization (Fig. 16.10b).

The magnitude of the growth response is strongly affected by the dose and the
elements added. Fertilization with phosphorous and nitrogen results in much greater
response than nitrogen applications alone (Fig. 16.11). In the fertilized stands,
phosphorous application gave significant growth response only when added with
nitrogen; the models will predict no growth response after fertilization with only
phosphorous application. The increase in phosphorous doses from 28 to 56 kg ha�1

had no significant effect on the response. Consequently, the effect of phosphorous
was included in the models using a categorical variable.

Bailey et al. (1989) used data from a regional fertilization study of mid-rotation
slash pine plantations in the USA to fit prediction equations for basal area and
trees per unit area, stand dominant height, diameter distributions and individual tree
heights. Prediction equations include nitrogen and phosphorous fertilization rates
and soils groups as predictor variables. The integrated system of equations allows
calculation of expected yields by diameter class.
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The model of Bailey et al. (1989) was based on measurement data from early
fertilizer trials in slash pine. Subsequent trials on intensively prepared sites showed
greater growth response than what was exhibited in the plots analyzed by Bailey
et al. (1989). Accordingly, Martin et al. (1999) developed an updated system of
equations for slash pine plantations in the lower Coastal Plain fertilized at mid-
rotation that express the combined effects of soil group and nitrogen (N) and
phosphorous (P) fertilization on survival, basal area growth and yield, dominant
height growth, and the stand diameter distribution. A diameter growth model that
accepts an initial diameter distribution (or tree list) provides the ability to predict
future diameter distributions. Predictor variables include combinations of three mid-
rotation fertilizer treatments (no fertilizer, N only, N and P).

Data from a fertilizer response study in loblolly pine plantations at different sites
in the southeastern United States were used by Amateis et al. (2000) to develop
response models for dominant height and basal area following mid-rotation nitrogen
(N) and phosphorous (P) fertilization. Nonlinear regression models developed from
the data predict total cumulative response as a function of the interaction of N and
P application rates, drainage class of the site, stand conditions when fertilized,
and time since fertilization. Stand variables that were found to be significant
predictors of response included site index, age, basal area, number of surviving
trees, and dominant height at fertilization. The response models can be applied
in conjunction with baseline models developed with data from unfertilized stands
to estimate volume response to mid-rotation fertilizer applications. For dominant
height, Amateis et al. (2000) applied the general response model

hdomFt � hdomt D a0t
a1
t ea2tt (16.24)

where hdomF t and hdomt are the dominant height for fertilized and unfertilized
conditions, respectively, at time t following treatment; tt is the time since treatment,
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in years; a0; a1 and a2 are parameters. Equation 16.24 combines a power function
and an exponential function, is conditioned to be zero when tt is zero, and increases
to a maximum value and then diminishes asymptotically toward zero. The shape of
the response curve is strongly influenced by a2 and the maximum response and the
time to maximum response depend on the values of a0; a1, and a2.

Nutrient factors found to affect the magnitude of response to fertilization
included the amount of N and P applied. Stand conditions at time of fertilization that
affected response included site index, age, dominant height, and number of trees. In
addition, somewhat poorly, poorly, and very poorly, drained sites exhibited a greater
dominant height response than moderately well, well, and somewhat excessively
drained sites. Therefore, the parameter b0 was defined as a function of the amount
of N and the particular stand and site characteristics at fertilization. After including
the drainage class, the model to be fitted was:

a0 D .1 � ea01AN /h
a02

dom ta03 Sa04N a05 C a6Idrain (16.25)

where AN is the amount of nitrogen applied; hdom is the dominant height at
fertilization; t is stand age at fertilization, in years; S is site index; N is number of
trees per unit area at fertilization. Idrain is 1 if the site is somewhat poorly, poorly,
or very poorly drained, 0 otherwise, and a01 � a06 are parameters to be estimated.

Since phosphorous (P) affects both the magnitude of the response and the time
to maximum response, a2 was defined as:

a2 D a21 � a22 ln.1 C AP / (16.26)

where AP is the amount of phosphorous applied, and a21 and a22 are parameters. If
a21 is negative and a22 is positive, then Eq. 16.26 implies that increasing amounts
of P will increase the magnitude of the response and the time to maximum
response. The logarithm transformation ensures that the relative effect diminishes
with increasing amounts of P. Equations 16.25 and 16.26 were incorporated into
Equation 16.24 to give:

hdomFt � hdomt D
h
.1 � ea01AN /h

a02

domta03 Sa04N a05 C a6Idrain

i
ta
t e

.a21Ca22 ln.1CAP //tt

(16.27)

For modeling basal area response Amateis et al. (2000) found the combined
power-exponential model of Eq. 16.24 was also suitable:

GF t � Gt D b0t
b1
t eb2tt (16.28)

where GF t and Gt are the basal area for fertilized and unfertilized conditions,
respectively, at time t following treatment; b0; b1, and b2 are parameters, and all
other variables are as previously defined. As with dominant height, b0was made a
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function of the amount of N and of stand characteristics at fertilization, which were
significant predictors of response:

b0 D �
1 � eb01AN

�
h

b02

domN b03Gb04 (16.29)

In general, the data indicated that the amount of P has a positive effect on both
the magnitude and duration of basal area response. However, very poorly drained
sites were found to be responsive only to N and somewhat excessively, well, and
moderately well drained sites exhibited an even greater response than average to the
combined N and P treatments. Therefore, the amount of P and drainage class were
included in the basal area response model in the function of b2:

b2 D b21 C .b22 C b23Idrain1 C b24Idrain2/ ln .1 C AP / (16.30)

where Idrain1 D 1 for very poorly drained sites, 0 otherwise; Idrain2 D 1 for somewhat
excessively, well and moderately well drained sites, 0 otherwise; and b21 � b24 are
parameters.

Combining Eqs. 16.28, 16.29 and 16.30 defines the final basal area response
function:

GFt � Gt D
h
.1 � eb01AN /h

b02

domN b03Gb04 tb1
t

i
e.b21C.b22Cb23Idrain1Cb24Idrain2/ ln.1CAP //tt

(16.31)

The equations fitted by Amateis et al. (2000) indicate that: (1) additional amounts
of N will increase response but at a decreasing rate, (2) adding N and P together has
a synergistic effect producing a greater response than N alone, (3) the magnitude of
the response increases to some maximum after application and then diminishes, and
(4) the magnitude and duration of the response is determined by the amount of N
and P applied and the drainage class of the site.

Stand and site conditions at fertilization were also found to affect the response
to treatment. For dominant height response, site index, dominant height, age, and
number of stems at time of fertilization influenced the magnitude of response.
Poorly drained sites were found to have a greater height response than other sites.
For basal area, important stand characteristics were dominant height, number of
stems, and basal area at fertilization. Very poorly drained sites had little basal area
response to a combined N and P fertilizer treatment, whereas well-drained sites
exhibited a greater than normal response to N and P. The specific response after
fertilization for any particular stand results from a complex interaction of nutrients
applied, rates of application, stand and site condition at time of application, and
years since application (Amateis et al. 2000).
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16.4.4 Genetic Improvement

Forecasting yields of stands established with improved trees requires that genetic
effects be incorporated into growth and yield models. Typically, the genetic gain
information available is for individual trees measured at young ages. The challenge,
then, is to predict rotation-age yields on a per unit area basis by appropriately
incorporating information from young trees. In addition, the process of identifying
and selecting genetically superior trees is ongoing and continuous; by the time
rotation-age yields are available for given genotypes, it is likely that those genotypes
will have been supplanted by more advanced stock. Hence, the quantification of
genetic improvement effects on forest stand dynamics, growth and yield has been
and remains one of the most vexing problems of forest modeling.

Buford and Burkhart (1987) developed and tested a series of hypotheses concern-
ing stand dynamics and growth patterns in loblolly pine plantations of improved
stock relative to plantations of unimproved stock. Data available were from three
sources: (1) a loblolly pine seed source study measured to age 25, (2) a 15-year-old
block-plot open-pollinated progeny test, and (3) temporary plots in 34 operational
plantings of improved loblolly pine stock. Results from this study indicated that at
the seed source and family levels: (i) the shape of the height-age curve is influenced
by the site, but the level is dependent on the genetic material planted, and (ii) the
shape of the height-diameter relationship at a given age is dependent on the site and
initial density, whereas the level is affected by genetics and is directly related to
the dominant height of the seed source or family at that age. These results indicated
differences in development among seed sources and first generation open-pollinated
families on a given site can be represented by altering the level (site index) of the
height-age equation.

In the analysis of Buford and Burkhart (1987), the logarithm of height-reciprocal
of age model was used to describe dominant height development. Sprinz et al.
(1989) reported differences in shape as well as level when the Chapman-Richards
form of a height-age model was fitted to data from a loblolly pine source study in
Arkansas, USA.

An approach for predicting genetic gains in loblolly pine using data from
progeny tests with height-age models and stand simulations was presented by
Knowe and Foster (1989). When the Chapman-Richards model was fitted to periodic
remeasurements of height for a block-plot, open-pollinated progeny test, significant
differences among families were detected in asymptote and rate parameters but not
for the shape parameter. Differences in survival, height, and diameter were com-
bined to examine trends in volume production associated with families. Predicted
volume for each family was simulated by applying a bivariate distribution model of
height and diameter (Hafley and Buford 1985) and using a family-specific height-
age curve. Since height, diameter, and survival functions in the stand simulation
model are inter-related, a change in one component such as the height-age curve
would affect the other components.
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Adams et al. (2006) examined differences in survival, diameter, dominant height,
and stem profile among eight open-pollinated families and a commercial check
of loblolly pine. Measurements from three spacings obtained over 17 years were
evaluated for family-specific effects when applying a growth and yield model.
Actual stand volume at age 17 years was compared with the volume predicted
from age nine measurements using the stand models without modification and
after modifications for family differences. Use of family-specific stem profile and
site index equations in combination with density effects on survival and diameter
prediction provided the best estimates of future stand volumes. Adams et al. (2006)
concluded that incorporation of genetic effects in growth and yield models should
focus on quantifying differences in family response to competition (i.e. ability to
survive and growth at varying levels of stand density).

A stand simulation model (Prognosis model version 5.2) was used by Rehfeldt
et al. (1991) to project yields per unit area from the progenies of western white
pine selections made in year 7. Results of simulations suggested that the amount of
increase in yield depends on the stand density, rotation length, and manner by which
genetic gains accrue beyond year 25. Hamilton and Rehfeldt (1994) expanded the
methods described by Rehfeldt et al. (1991) and provided a more general approach
to the use of individual tree growth models for estimating anticipated stand-level
gains in yield. The approach proposed by Hamilton and Rehfeldt (1994) consists of
four steps:

1. Use growth data available from tree improvement plots to calibrate an existing
model for the observed performance of unimproved stock and for anticipated
performance of genetically improved stock.

2. Formulate assumptions and hypotheses about how genetic gains estimated from
measures of early growth rates of individual trees will be expressed throughout
the stand development process.

3. Run the calibrated model for the desired time interval (rotation) with and without
modifications for genetic gain.

4. Evaluate the sensitivity of growth prediction to changes in assumptions and
hypotheses about genetic gain and about stand development for improved stock.

Hamilton and Rehfeldt used a distance-independent individual-tree model (ver-
sion 6.0 of the Inland Empire variant of the Stand Prognosis model) in their
analyses, but they pointed out that their basic approach could be applied with any
individual tree growth model that permits modification of growth rates of individual
components. The Prognosis model has four basic growth components: basal area
increment, height increment, mortality, and change in crown ratio. The model
also includes a set of growth modifiers that facilitate simulation of the effects of
changes in individual tree mortality rates and in individual tree growth rates for
either height or basal area. Calibration of the Prognosis model for unimproved
and improved stock of ponderosa pine was accomplished with growth multipliers.
In addition to the cautions on use of growth multipliers given by Hamilton and
Rehfeldt (1994), Hamilton (1994) provides a detailed description of the types
of multipliers incorporated in the Prognosis model and limitations on their use.
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Because of interdependence of model components, a change in height or basal area
increment will affect the other. Problems may arise in selecting the proper set of
multipliers or in determining appropriate values to assign to selected multipliers. If
multipliers are used incorrectly, they can produce stand development patterns that
are not realistic.

Data from radiata pine seed lots of varying genetic quality planted in block-
plot genetic gain trials at 10 locations in New Zealand were analyzed by Carson
et al. (1999). Permanent sample plots were measured annually for growth from
ages 6–8 years since planting to ages 15–17 (mid-rotation). Seedlots from first
generation open-pollinated seed orchards and a mix of crosses that all involved
the top-performing parent were taller, larger in mean diameter, and with larger
basal area and stem volume than seedlots originating from mild mass selection in
harvested stands. The observed growth increases were quantified as changes in the
rate of growth from that predicted by extant growth models in order to account
for tree size and stocking differences. Seedlots from first-generation seed orchards
and crosses of the top clone grew faster in height. Functions for basal area and
stocking showed disproportionally larger changes than the baseline growth models,
thus implying that basal area growth must be taken into account in order to obtain
accurate predictions of gain in stand volume. The observed increases in growth rates
were incorporated into stand growth models as “genetic-gain multipliers” in order to
extrapolate predictions of growth of genetically improved seedlots beyond the sites,
silvicultural regimes, and seedlots represented in the genetic gain trials.

Carson et al. (1999) calculated differences in growth among different genetic
stocks using existing growth models (described by Garcı́a 1984, 1994; Goulding
1994). The growth models developed for radiata pine in New Zealand include as
state variables dominant height (hdom), basal area (G), and number of stems per
hectare (N):

dhdom

dt
D f1.hdom/

dG

dt
D f2.hdom; G; N /

dN

dt
D f3.hdom; G; N / (16.32)

Differences in growth rates with genetic improvement for both height and basal
area were allowed to vary since the processes of growth are different for height
and diameter (shoot-tip extension from apical meristem versus radial growth from
cambial activity), and they are affected differently by intertree competition. Because
of the form of the models, the basal area and stocking equations are difficult to
separate; thus change in growth rate estimated for the basal area equation was
assumed to be the same as that for the tree stocking equation. This assumption
implied that when trees die as a result of competition from neighboring trees, an
increase in the rate of basal area growth accelerates mortality at the same rate
(Carson et al. 1999).
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Although estimation of separate multipliers for basal area and stocking would
be difficult to achieve with the structure of model (16.32), Carson et al. (1999)
noted that multipliers could be similarly added to the last two equations by
assuming a common multiplier for basal area and stems per hectare. A model
incorporating genetic effects could be constructed by multiplying each of the
growth-rate equations of (16.32) by a genetic-gain multiplier (mi ), where m1 is
the height equation multiplier, m2 is the basal area equation multiplier, m3 is the
stocking equation multiplier, and m2 D m3. The multipliers would represent the
relative growth improvement for the various state variables. An alternative and
slightly different formulation was used because it was easier to implement, but the
authors noted that the difference between the two approaches is unlikely to be of
practical importance.

Xie and Yanchuk (2003) described the procedures used in British Columbia,
Canada, for predicting breeding values of parents, estimating genetic worth of
orchard seedlots, and projecting yields in genetically improved stock. Breeding
value is a measure of the genetic quality of an individual as a parent. In British
Columbia, breeding value for growth potential is expressed as percent gain of stem
volume over the unimproved population at a designated rotation age.

Genetic worth represents the average level of genetic gain expected for the trait
of concern at a designated rotation age when a seedlot is used for reforestation.
Currently, the genetic worth of a seedlot is estimated in British Columbia by the
mean breeding value of all the parents.

The yield of a genetically improved plantation is projected by incorporating
the genetic worth of the seedlot into the existing growth model developed using
extensive data from managed unimproved stands. This approach takes account of
the stand dynamics determined by site conditions and silivicultural regimes and the
declining nature of expected gain over time because of imperfect age-age genetic
correlation.

In the procedure described by Xie and Yanchuk (2003), genetic worth is
translated into an increase in site index at the designated rotation age; site index
is then increased accordingly when projecting stand yields with a model designated
TIPSY (Table Interpolation Program for Stand Yields). Xie and Yanchuk reasoned
that since selection for timber production of commercially important conifers in
British Columbia has been primarily based on height, the height-diameter or height-
volume relations of the selected trees would not be expected to differ significantly
from the unimproved stocks under the same stand conditions. Increases in height
from genetic improvement are, thus, converted to volume gain using the height-
volume relationship observed in unimproved trees. Accurate prediction of height
gain is then the key for accurately projecting volume gains of genetically improved
stocks. Similar assumptions, as noted previously, have been applied when modeling
volume gains in open-pollinated southern pine in the USA, where the emphasis in
genetic selection has also been on height development.

By contrast, Carson et al. (1999) found that the change in the rate of increase
of basal area was much greater than the change in the rate of increase in dominant
height, making increases in basal area and volume growth much greater than would
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Fig. 16.12 Response of a highly productive family (solid line and diamonds) compared to an
average family (dashed line and open boxes) across a range of sites at age 8 years. While the
relative volume differences are the same across sites, the absolute volume differences are higher
on the more productive sites (From McKeand et al. 2006)

be predicted from increasing site index alone. It is important to note, however, that
diameter has been a main selection trait for improved growth potential of radiata
pine in New Zealand.

Gould et al. (2008) developed methods to calculate genetic gain multipliers for
use in individual tree models that predict periodic height and diameter growth of
coast Douglas-fir for the Pacific Northwest region of the USA. Nonlinear mixed-
effect models were initially developed to predict the average growth of trees in all
families, which, taken together, represented unimproved populations. Phenotypic
differences in growth rates were then calculated at the family level. Differences
among families in height and diameter growth rates were analyzed using methods
from quantitative genetics and raw phenotypic values. Because gain in total height
and diameter at age 10 years is commonly available genetic information for
improved Douglas-fir, equations were developed to predict genetic-gain multipliers
from family breeding values for these traits. Incorporating multipliers in growth
projection reduced the mean-square error of predicted growth of selected families.

Selection criteria for tree improvement generally consider much more that just
volume traits. Stem straightness, form, branch size and branch angles, disease
resistance, and wood properties usually enter into selection decisions as well.
Consequently, modifications to growth and yield model predictions of product
volumes and values may require adjustments of several components.

In a review of the performance of improved genotypes of loblolly pine planted
across different soils and climates and with varying silvicultural inputs in the
southeastern United States, McKeand et al. (2006) showed that open-pollinated (OP)
families typically display a high degree of rank stability for productivity and quality
traits (Fig. 16.12). With only a few exceptions families were generally stable in
performance across all sites within a climatic zone. The authors conjectured that
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as tree improvement progresses towards deployment of more intensively selected
genotypes and less genetically diverse sibling families or clones, consideration
of genotype by environment (G � E) interactions may become more important.
However, evidence was presented from numerous trials with full-sib families and
clones demonstrating that G � E interaction for growth and other traits is no more
significant than for OP families. Accordingly, McKeand et al. (2006) concluded that
at present and for the foreseeable future, G � E interaction does not appear to be a
major factor for the majority of deployed genetic sources under most silvicultural
systems.
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Chapter 17
Modeling Wood Characteristics

17.1 Need for Information on Wood Characteristics

In addition to affecting tree growth and stand productivity, silvicultural treatments
also affect characteristics of the wood produced. To fully evaluate the feasibility of
various management alternatives, quantitative information on both wood quantity
and quality is required. Wood quality is a term that is commonly used to denote
wood characteristics that can be quantified and used to evaluate suitability for
specified end uses. Modeling systems that encompass both volume growth and wood
characteristic responses to silvicultural inputs allow managers to better understand
interconnections between quantity and quality and thus to refine silvicultural
practices for achieving maximum value.

Variation in wood properties within the stem has major implications for
processing and utilizing wood for specific products. The patterns of variation differ
among species, sites, individual genotypes, and for specified wood characteristics.
Variation within the stem occurs from a pith to bark and along the stem for a
given ring number. In pines within tree variation in wood properties is often very
pronounced, with pith-to-bark trends being particularly marked (Zobel and van
Buijtenen 1989). The strong radial variation within the stem can be related to ring
age (number of rings from pith). However, variation in wood properties along the
stem for a given ring age, while generally less pronounced than the pith-to-bark
variation, can also be important. These considerations led Burdon et al. (2004) to
advocate joint use of two separate concepts, corewood versus outerwood in the
radial direction and juvenile versus mature wood in the vertical direction, the latter
relating to the botanical concepts of juvenility and maturity.

Numerous wood characteristics affect wood quality, but those that are most
commonly quantified include size of the juvenile wood core, specific gravity, the
number, size and location of knots. A brief overview of modeling methods that have
been employed for quantifying wood characteristics is given; examples where these
types of equations have been incorporated into growth and yield simulators are also
provided.

H.E. Burkhart and M. Tomé, Modeling Forest Trees and Stands,
DOI 10.1007/978-90-481-3170-9 17,
© Springer ScienceCBusiness Media Dordrecht 2012

405



406 17 Modeling Wood Characteristics

17.2 Juvenile Wood

17.2.1 Characteristics of Juvenile Wood

Juvenile wood is that formed in the central core of the stem (Fig. 17.1). This portion
is also commonly referred to as corewood or crown-formed wood. The zone of
juvenile wood extends outward from the pith; wood characteristics change rapidly
in successively older growth rings and then eventually level off (Fig. 17.2). All tree
species produce juvenile wood, but differences in properties of juvenile and mature
wood tend to be more pronounced in conifers – especially in pine – and hence much
effort has been devoted to modeling the transition from juvenile to mature wood
in commercially important species such as radiata pine and the US southern pines.
The transition is not abrupt but rather is gradual. A radial cross-section typically
consists of three zones: a core or zone of crown-formed wood, a zone of transition
wood, and a zone of mature wood. (Figs. 17.1 and 17.2).

Because juvenile wood has inferior characteristics (e.g. lower percentage of
summerwood, lower specific gravity, shorter tracheids with larger fibril angles) for
many uses, one must estimate where the transition from juvenile to mature wood

Crown-formed wood

Transition wood

Mature wood

Fig. 17.1 Schematic diagram
of core of crown-formed
wood surrounded by band of
transition wood and mature
wood in standing tree (From
Clark and Saucier 1991)
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Fig. 17.2 General relationship of radial change in wood properties with age from pith and pattern
of maturation (Adapted from Clark and Saucier 1989)

occurs in order to develop management regimens that limit the size of the juvenile
wood core. While the transition is largely a function of tree-ring age, initial planting
density strongly affects the size of the juvenile wood core that is produced.

Zobel and Sprague (1998) published an extensive review of juvenile wood
in forest trees. A report on juvenile wood in coniferous trees was released by
Thörnqvist (1993), and a synopsis of formation and properties of juvenile wood
in US southern pines was compiled by Larson et al. (2001).

17.2.2 Estimating Juvenile-Mature Wood Demarcation

Knowing the age of transition from juvenile to mature wood characteristics and
having information on diameter growth allows computation of the size of the
juvenile core and the proportion of stand volume that consists of juvenile wood.
Hence, a great deal of effort has been focused on establishing this boundary.
The task is complicated because the transition is gradual, not abrupt, and the
inherent variability is large. Because of the lack of a clearly defined border between
juvenile and mature wood, visual inspection of data plots has sometimes been
judged most appropriate (e.g. Bendtsen and Senft 1986; Clark and Saucier 1989).
Several investigators, however, have successfully applied statistical modeling for
estimating the demarcation between the juvenile and mature zones (Abdel-Gadir
and Krahmer 1993; Tasissa and Burkhart 1998a; Sauter et al. 1999; Koubaa et al.
2005; Clark et al. 2006; Mora et al. 2007). Typically a radial profile at dbh is used
in the analyses, but profiles at other stem heights have been used as well. The most
commonly used variable for analyzing the transition is specific gravity, but other
wood characteristics have also been included in some analyses.

Bendtsen and Senft (1986) determined the age of demarcation between juvenile
and mature wood for plantation-grown eastern cottonwood and loblolly pine.
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Several wood properties, including modulus of rupture (MOR), modulus of
elasticity (MOE), compression strength, specific gravity, cell length, and fibril
angle were analyzed using samples taken at a height of 1.8 m. None of the
quantitative analysis methods considered produced acceptable results due to the
gradual transition and high degree of variably in the data and the authors resorted to
visual inspection of graphs to determine the age of demarcation. The demarcation
between juvenile and mature wood was better defined in pine than in cottonwood
and better defined in mechanical properties (MOR, MOE, compression strength)
and in specific gravity than in cell length and fibril angle. The proportion of juvenile
wood expected at various rotation ages was estimated to decrease rapidly for both
pine and cottonwood, however, with juvenile wood constituting around 60% of the
stem volume for pine at 20 years and 80% for cottonwood; the proportion declined
to 24% for both species at age 40 (Fig. 17.3).

The influence of initial planting density on the age of transition from juvenile to
mature wood of loblolly and slash pine was reported by Clark and Saucier (1989).
Wood specific gravity of growth increments at breast height showed that planting
density did not significantly affect the age of transition but it did affect the diameter
of the juvenile core. Average diameter of the juvenile core at breast height ranged
from 10 cm in slash pine planted at 1.8 � 1.8 m spacing to 16 cm in trees planted at
4.6 � 4.6 m. In loblolly pine, the average juvenile core diameter ranged from 13 cm
in trees planted at 1.8 � 1.8 m to 20 cm in trees planted 3.6 � 3.6 m. The results
of Clark and Saucier further showed that trees producing large annual diameter
increments after converting to mature wood will contain proportionally less juvenile
wood than slower growing trees (Fig. 17.4). And, in a separate but related phase of
the study, the authors showed that the difference in the period of juvenility between
slash and loblolly pine was not related to species but rather due to geographic
location.
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Abdel-Gadir and Krahmer (1993) applied piece-wise linear regression of specific
gravity values to determine the demarcation point between juvenile and mature
wood for Douglas-fir. The regression of density on age was assumed to follow
one linear relation in the juvenile-wood stage but another in the mature-wood
stage. The age of demarcation between juvenile and mature wood was estimated
by minimizing the overall residual sum of squares with respect to the regression
coefficients and the change point.

Specific gravity data from loblolly pine trees in a region-wide thinning study in
southern United States were used by Tasissa and Burkhart (1998a) to determine age
of demarcation between juvenile and mature wood. Iterative solutions in which the
join point of two regressions is specified as an integer and segmented regression
where the join point is estimated using nonlinear estimation techniques produced
similar results after rounding the estimated age of demarcation from the segmented
fit to an integer value. Demarcation ages determined at heights of 0.2, 1.4, 2.6, and
5.0 m were similar, indicating that within-tree variation in the age of demarcation
is minor and that using measurements from a single height, such as breast height,
should generally be adequate when quantifying the proportion of juvenile wood in
loblolly pine. Thinning did not significantly affect the age of demarcation. There
were differences in the age of demarcation across physiographic regions.

Sauter et al. (1999) applied segmented models to estimate the cambial age of
juvenile-mature wood transition in samples taken at 4 m stem height from Scots
pine trees in southwest Germany. The transition was estimated using latewood
density profiles. The time series nature of the density data was considered by using
generalized nonlinear regression and restricted likelihood regression procedures.
A quadratic-linear fit showed the transition at cambial age of about 22 years with a
standard deviation of 5–7 years.

Clark et al. (2006) estimated the age of transition from juvenile to mature
wood in loblolly pine trees based on ring specific gravity, proportion of annual
ring in latewood, and ring average microfibril angle. Threshold and segmented
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regression modeling approaches using measurement data collected at 1.3 m stem
height showed that the age of transition differed by wood property and varied among
geographic regions.

Koubaa et al. (2005) used polynomials to model radial patterns of several
intra-ring traits of black spruce plantation-grown trees in Canada and to estimate
the transition age from juvenile to mature wood. A modified logistic function was
adopted by Mora et al. (2007) for modeling specific gravity profiles in loblolly
pine trees in the southeastern USA. The function was used for demarcating
corewood, transitional, and outerwood zones. No effects of silvicultural treatments
(site preparation, fertilization, weed control) on the demarcation points were noted;
however, the diameter of the juvenile core was increased as a result of treatments.
A geographical trend for demarcation was observed with the northern sites requiring
more time to reach a plateau in specific gravity than the southern sites.

17.3 Importance of Specific Gravity

Specific gravity is the most widely used criterion for evaluating quality of wood
and its strength properties. In addition to modeling profiles of specific gravity
to define the juvenile wood core, wood density is also important for predicting
mechanical properties of wood and pulp yields. Although specific gravity has great
utility as a predictor of the quality and strength properties of wood, it is highly
variable by species, within and among trees of a given species, edaphic factors,
climatic conditions, silvicultural treatments, and genetic stock. Hence, modeling
wood specific gravity has presented significant challenges and it continues to
command considerable attention from modelers.

Initial efforts were aimed at estimating average tree specific gravity from easily
measured variables. With the advent of x-ray densitometry techniques (Cown and
Clement 1983), determination of ring densities for large samples became feasible.

Specific gravity is the ratio of the weight of wood to the weight of an equal vol-
ume of water at a standard temperature; it is dimensionless and is usually expressed
on an ovendry weight and green volume basis. A comprehensive compilation of
published work on quantifying tree specific gravity was published by Zobel and van
Buijtenen (1989). Consequently, the primary focus of this section is on more recent
efforts to model specific gravity and to determine the extent to which it varies by
environmental and silvicultural influences.

17.3.1 Models for Estimating Wood Specific Gravity

Because of inherent variability in specific gravity, and hence relatively low pre-
dictability, a number of past studies have correlated density of wood samples
(typically increment cores taken at breast height) with stem specific gravity.
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As an example, Burkhart and Beckwith (1970) related the specific gravity of a single
circumferentially random increment core taken bark to pith at breast height to stem
values to three top diameters for plantation-grown loblolly pine in the Piedmont
region of Georgia, USA. Simple linear regressions of stem specific gravity on
increment core specific gravity produced r2 values 0.41, 0.45, and 0.47 for the stem
to top diameters of 10, 8, and 0 cm, respectively. Because of the time and expense
involved in taking wood samples, simple linear regressions were also fitted relating
stem specific gravity to the reciprocal of age. The r2 values for these regressions
were, respectively, 0.28, 0.35, and 0.39 for the stem to top diameters of 10, 8, and
0 cm.

Repola (2006) used linear mixed-effects techniques to model wood density
vertically along the stem of Scots pine, Norway spruce, and birch trees located on
mineral soil sites in southern Finland. The constructed model can be calibrated for
any stem using one or more density measurements at a freely chosen height; the
calibrated model can then be used to determine the average wood density of a stem.

Data from loblolly pine plantations in the southeastern United States were used
by Tasissa and Burkhart (1998b) to develop a ring specific gravity prediction model.
Predictor variables included ring position, tree, stand and site attributes. The general
framework of the specific gravity prediction model considered was:

Specific gravity D f .tree; stand; site; and ring attributes/

where

tree attributes included dbh, total height, crown size, competition index
stand attributes included basal area per unit area, relative spacing, relative density,

number of trees per unit area, quadratic mean diameter
site attributes included site index, and
ring attributes included physiological age, relative vertical position within a tree.

Much of the variation in ring specific gravity was due to within-tree variation;
consequently, stand and site factors accounted for a limited proportion of variation
in ring specific gravity. As the within-tree observations used in the study tended to
be correlated, a direct covariance modeling approach was used to account for the
correlation among observations. The selected model was:

Rsg D b0 C b1 ln tpa C b2.hi=h/ C b3Plw C b4Rw C b5CI

where

Rsg is ring specific gravity
tpa is ring physiological age (the number of rings from the pith)
.hi =h/ is relative height (height above ground divided by total tree height)
Plw is percent latewood within a ring (latewood width divided by ring width)
Rw is ring width
CI is competition index (quadratic mean diameter of the stand divided by tree dbh)
bi (i D 0,1, : : : ,5) are regression coefficients
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17.3.2 Impacts of Silviculture and Site on Specific Gravity

Results from Tasissa and Burkhart’s (1998b) analyses showed that thinning
treatments (30% and 50% of basal area removed; and 0% removed, or control)
in loblolly pine did not alter the proportions of the annual ring in earlywood
or latewood and thus did not affect ring specific gravity. There was, however,
significant regional variation in average ring specific gravity. In an analysis of the
impact of commercial thinning on selected wood properties of jack pine in eastern
Canada, Schneider et al. (2008) reported that thinning increased ring width but
thinning intensity did not influence ring density. Further, ring density followed the
same pattern as percentage of latewood in which cambial age, relative height, and
ring width were found to be important effects.

The impact of various silvicultural practices on wood specific gravity has been
evaluated, including effects of initial spacing of red pine (Larocque and Marshall
1995) and of Japanese larch (Fujimoto and Koga 2009). Analyses of data from
thinned and fertilized Scots pine stands in northern Sweden (Mörling 2002) and of
loblolly pine stands in the coastal plain of North Carolina, USA (Antony et al. 2009)
showed that fertilization greatly increased radial growth but did not significantly
affect specific gravity. Nyakuengama et al. (2002) found that the responses in ring
width and density of radiata pine to fertilizer application varied with fertilizer type
and site; however, growth gains did not result in a marked change in wood density.
Using data from slash and loblolly pine in the lower coastal plain of Georgia and
Florida, Love-Myers et al. (2009) observed that fertilization treatments had similar
short-term effects on the specific gravity of slash and loblolly pines, particularly
in latewood, but the trees returned to a specific gravity pattern consistent with
unfertilized trees within 2 or 3 years.

In general, silvicultural treatments do not result in changes in wood density
unless the earlywood/latewood proportions are altered. Geographic variability in
specific gravity, however, is very pronounced for some species. Using annual ring
specific gravity of breast height increment cores from 3,957 trees across the natural
range of loblolly pine, Jordan et al. (2008) showed that specific gravity increased
significantly with age and varied significantly among physiographic regions. Antony
et al. (2010) developed a three segment quadratic model and a semiparametric model
to explain the vertical and regional variation in specific gravity of loblolly pine;
maps showing regional variation in disk specific gravity at a specified height were
then generated.

17.3.3 Relating Specific Gravity to Pulp Yields
and Mechanical Properties

Increased wood density results in higher pulp yields and specific gravity is positively
correlated with key wood mechanical properties of stiffness (modulus of elasticity,
MOE) and strength (modulus of rupture, MOR). Specific gravity equations, coupled
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with volumetric measures, can be applied to determine yields in terms of dry weight
or weight of actual wood substance, which is a much better indicator of pulp yields
than wood volume or green weight (Burkhart and Beckwith 1970).

Empirical models relating MOE and MOR to specific gravity have been pub-
lished by Pearson and Gilmore (1971, 1980), Zhang (1994, 1997), McAlister et al.
(2000), Biblis et al. (2004), Schneider et al. (2008), and others.

Zhang (1994, 1997) observed that simple linear regressions of MOE and MOR
on specific gravity explained approximately the same amount of variation as a
curvilinear regression of the form y D ˛Xˇ where y represents MOE or MOR
and X is specific gravity. While it is possible to estimate strength and stiffness of
wood from specific gravity alone, many of the fitted models explained 50% or less
of the variation. Because MOE and MOR are also affected by other factors, such
as knots, slope of grain, and ring widths, additional predictors are often included.
Biblis et al. (2004) found that MOR and MOE of lumber from 40-year-old loblolly
pine plantations were significantly influenced by specific gravity, ring width, and
percent latewood. In an analysis of wood properties of jack pine, Schneider et al.
(2008) determined that wood stiffness (MOE) and strength (MOR) increased with
cambial age and specific gravity and that MOR was also affected by ring width.

17.4 Modeling Ring Widths

Uniformity of growth rate affects wood structure and density variation both within
and between growth rings (Bowyer et al. 2007). Ring widths are not uniform along
the tree bole and the distribution is related to silvicultural treatments (Farrar 1961;
Larson 1963). Hence, modeling of ring width distribution for various management
treatments is an important aspect of quantifying wood quality for specified product
objectives.

Tree ring width distribution can be determined by incrementing tree dbh, total
height and other predictors if required and substituting into a tree taper function to
describe the inside-bark stem profile each year. These annual stem profiles provide
a distribution of the ring-width distribution throughout the bole. Alternatively, tree
ring width distributions can be modeled directly.

Tasissa and Burkhart (1997) developed a ring width prediction model for loblolly
pine that accounts for position in the tree, tree size, stand and site factors, as well
as thinning effects. Thinning significantly increased ring width over most of the
tree bole and its effects persisted over the 12 years since thinning was imposed.
Significant regional variation in average ring width was also evident. Ring widths
varied considerably within trees and among trees; the fitted model accounted for
about 50% of the total variation.

The general framework for the ring-width prediction model of Tasissa and
Burkhart was:

Rw D f .tree; stand; site; ring attributes/
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Empirical models that included various factors (variables) that have been shown
to affect ring width distribution along the stem were evaluated, and the following
expression was judged best overall:

Rw D b0 C b1.hi =h/ C b2Rtpa C b3.hi =h/Rtpa C b4.d=h/ C b5S C b6CI

where

Rw is ring width
.hi =h/ is relative height where hi is height above ground to the point of

measurement
h is total tree height
Rtpa is relative physiological age (ring physiological age/disk physiological age)
d/h is a surrogate for stem taper
S is site index
CI is the stand-level competition index (quadratic mean diameter divided by tree

dbh)
bi (i D 0, : : : ,6) are regression coefficients

Since thinning significantly affects ring width, it was necessary to account for
thinning effects to improve ring width prediction. A number of alternative thinning
response functions were evaluated. Among the various specifications considered, a
modification of the Liu et al. (1995) thinning variable appeared reasonable in that it
enables accounting for the thinning intensity and time elapsed since thinning. The
model with effect of thinning was:

Rw D b0 C b1.hi =h/ C b2Rtpa C b3.hi =h/Rtpa C b4.d=h/ C b5S C b6CI

C b7THIN

where THIN is a thinning response function and other symbols are as defined
previously.

Thinning substantially increased ring width over the stem of loblolly pine trees
(Fig. 17.5). Following thinning, ring width first increased in the lower bole and then
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proceeded up the stem. The magnitude of increase in ring width was not constant
over the entire bole; hence, basing diameter growth increases to response at dbh
alone would not be adequate for many purposes.

17.5 Modeling Branches and Knots

In addition to specific gravity, the size and frequency of knots is central to
assessing wood quality for structural timber. Knots greatly affect both appearance
and strength; their occurrence is a primary factor when determining log and lumber
grades.

Harris et al. (1975) noted that development of large knots in radiata pine could
be compensated for by an increase in specific gravity. They calculated that bending
resistance can be maintained when knot diameters increase 60% if there is an
accompanying increase of 10% in wood density. Silvicultural practices influence
branch, and hence knot, size. Branch development is influenced by initial planting
spacing, timing and intensity of thinning, and by fertilizer applications. Pruning is
sometimes applied to increase the amount of clear wood produced, and branch size
and angle have been used as selection criteria in tree breeding programs.

17.5.1 Number, Size and Location of Branches

Colin and Houllier (1991) developed a model of the vertical trend of maximum
branch diameter of Norway spruce in France. Their fitted equation consisted of a
segmented polynomial with a join point at the height of the largest branch diameter
of each sample tree. Subsequently, they published equations to describe the main
characteristics of Norway spruce crowns from usual tree measurements (Colin and
Houllier 1992). In particular, branch size, angle, number, and vertical position were
predicted as a function of the tree diameter at breast height, total height, age and
position along the stem.

Data from thinning experiments in Scots pine in Finland were used to construct
models for predicting vertical trends of branch angle and branch diameter along
the stem (Mäkinen and Colin 1998). Stand density measures were significant
variables in the models; however, they could be excluded without loss of accuracy
if variables describing tree dimensions were included as predictors. Relative crown
length and stem diameter were adequate tree-level variables for describing branch
characteristics. In a follow-up analysis of branchiness of Scots pine that used the
same sample tree data, Mäkinen and Colin (1999) constructed models for (i) number
of new branches on the stem apex, (ii) probability of a branch being alive, and (iii)
proportion of the actual number of dead branches out of the predicted initial number
of branches on the whorls below the crown base. The number of new branches
was closely related to the height increment of the current year; the probability
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of a branch being alive was correlated with its age, tree age, height/dbh ratio,
and its relative diameter within the branch whorl. Indices describing stand density
and spatial arrangement of neighboring trees around the sample tree reduced the
residuals slightly. Meredieu et al. (1998) further developed the models of Colin and
Houllier by taking into account the within-tree correlation of branch characteristics
when analyzing data from Corsican pine in France.

Mäkinen and Mäkelä (2003) developed models of cross-sectional area of
branches in Scots pine at different heights within the live crown. The models
were constructed to be applicable as submodels in growth simulators in order to
predict the effects of silvicultural treatments on wood quality. Models were fitted for
predicting cross-sectional area of the largest and smallest live branches in a whorl,
relative cross-sectional area distribution on the basis of the largest branch, and
cross-sectional area branches and its variance. Random variation of the dependent
variables was partitioned into variance components at the stand, plot, tree, whorl,
and branch level.

Using data from Finland and Sweden, Mäkinen et al. (2003b) predicted branch
characteristics of Norway spruce from simple stand and tree measurements. Models
were constructed to predict (i) crown ratio, (ii) the self-pruning ratio, (iii) number of
living branches in a whorl, (iv) total number of branches in a whorl, (v) diameter of
the thickest living branch of a whorl, (vi) diameters of smaller living branches
of a whorl, and (vii) branch angle. Including stand-level variables as regressors
in the models improved performance slightly. Similar procedures were applied by
Mäkinen et al. (2003a) to develop models of branch characteristics along the stem of
silver birch. The resultant models provide a framework for quantifying wood quality
and evaluating application of silvicultural treatments to control branch development.

Spacing trials provide valuable information on the effects of stand density on
branch development because extremes of density are included. Mäkinen and Hein
(2006) and Hein et al. (2007), when analyzing data from three spacing experiments
in Norway spruce in southwestern Germany, found that the most pronounced effect
of stand density was an increase in branch diameter with a decrease in numbers of
trees per unit area. At a density of 350 trees per ha, the maximum branch diameter
of all sample trees exceeded the diameter limit of quality class B in the European
quality standards for round wood. Benjamin et al. (2009b) used a combination of
nonlinear multi-level mixed effects and generalized nonlinear modeling techniques
to develop a series of equations to predict size and number of knots with respect
to vertical location in black spruce trees from a spacing trial in Thunder Bay,
Ontario, Canada. As growing space available for a given tree increased, crown size
and branch size (and thus knot size) generally increased. Results of the analyses
indicated that black spruce knot properties can largely be accounted for by tree bole
and crown size variables.

In an analysis of several data sets of branch measurements from Douglas-fir
trees, Weiskittel et al. (2007) found significant effects due to fertilization, thinning,
pre-commercial thinning, vegetation control, and foliar disease (Swiss needle cast)
for key crown structural attributes. Maximum branch size and total non-foliated
crown radii were sensitive to the various stand factors, whereas no treatment effects
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were found for the number of branches within an annual segment or branch angle.
When the data sets were combined and used to develop a single prediction equation,
treatment effects were largely accounted for by changes in bole and crown size.
In general, crown structural attributes were readily predicted from tree diameter
at breast height, total height, and height to the crown base. Because specific
combinations of these variables reflect the silvicultural regime under which the
tree was grown, and because the allometric relationships between these tree-level
variables and crown structural attributes were not greatly altered by the treatments,
Weiskittel et al. concluded that general empirical equations can be expected to
perform adequately for many purposes when integrated into models of forest growth
and yield.

Kershaw et al. (2009) compared fixed- and mixed-effects nonlinear models for
modeling vertical distribution of maximum knot size in black spruce. Mixed models
are well suited for modeling knots because they are inherently nested at multiple
levels including individual whorl, tree, and stand levels. Kershaw et al. derived six
fixed-effects models of maximum knot size, ranging from a simple form to a more
fully developed specification. Inclusion of random effects significantly improved all
model fits; however, improvement in fit declined as the fixed-effects portion of the
models incorporated variables related to trends observed in residual patterns. With
the simple model form the nonlinear mixed-effects approach showed a reduction in
root mean square error of 16% as compared to the generalized nonlinear model.
In contrast, when a model form that accounted for primary covariates with a
robust model form was used, the difference in root mean square error between
nonlinear mixed-effects and generalized nonlinear models was approximately 6%.
Although mixed-models are effective analytical tools for accounting for within- as
well as between-subject correlation and for enhancing model flexibility, they are not
necessarily a good substitute for robust model forms.

Most efforts to model branch locations have focused on location along the
bole, with location around the bole being assigned by a random process. Because
of the circular nature of branch azimuth data, conventional methods of statistical
analysis cannot be applied. Circular statistics consist of converting observations to
unit vectors or points on a unit circle. Doruska and Burkhart (1994) used circular
statistics to examine branching patterns around the bole of loblolly pine trees.
Analysis of branch azimuths on a whole-tree basis indicated that a uniform, or
regular, distribution was appropriate. Circular correlation was applied to analyze
rotational patterns within and between whorls, and a strong positive correlation was
found for consecutive whorls of the same number of branches. In an analysis of the
circular distribution of branches from plantation grown black spruce, Benjamin et al.
(2009a) found that a random assignment (from a uniform distribution) of branches
around the stem within each whorl was sufficient.

Most past studies have focused on modeling the vertical trend of external
characteristics of branches located within the live crown. External characteristics
of interest include branch diameter, angle, and length. While these types of models
provide valuable information, they do not allow for the recovery of spatially explicit
information or knot characteristics. Spatial information on internal branches (knots)
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is essential for simulation of recovery of solid wood products by grade. Although
limited in number, there are examples of forest-management-oriented simulation
systems capable of modeling the complete process of branch dynamics. Two
systems – one for radiata pine, the other for loblolly pine – will be briefly described.

Grace et al. (1999) presented the essential characteristics of a management-
oriented system for modeling branch development in radiata pine. The model is
based on a series of functions to predict branch initiation and development. These
functions predict the number and location of branch clusters within each annual
shoot; the number, orientation, and size of branches within each cluster; the change
in branch diameter overtime; and branch mortality and stem cone occurrence.

Trincado and Burkhart (2009) reported on a model to represent the dynamics of
branch and knot formation for loblolly pine, based on long-term measurements of
crown dynamics from a spacing study and destructive analysis (whorl sections)
of selected trees. The objectives were to (i) develop a framework to simulate
the dynamics of first-order branches (initiation, growth, death, and self pruning),
(ii) model internal stem structure over time in relation to branches contained within
the stem (i.e., knots), and (iii) link the resulting equations and algorithms to an
individual-tree growth and yield model. This integrated simulation system permits
evaluation of the effects of silvicultural practices on sawlog quality and linkage
with industrial conversion process (e.g., sawing simulation). A schematic diagram
showing the relationships among components of the model is displayed as Fig. 17.6.

Information produced by the model of Trincado and Burkhart includes (i) trend
of branch diameters along and around the stem, (ii) volume of knots (live and
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dead portions), and (iii) spatial location, size and type (live and dead) of knots.
Figure 17.7 shows a three-dimensional representation of internal branches, indicat-
ing live and dead portions, produced by the model for a representative tree.

17.5.2 Models of Knots

In past applications, internal branches (knots) have often been treated as cones, or,
in some instances, the live portion was regarded as a cone and the dead portion as
a cylinder. Stem dissection techniques have been applied to measure the internal,
three-dimensional structure of knots within stems (e.g. Maguire and Hann 1987).
Non-destructive methods involving computer tomography (or CT-scanning) and
digital image analysis techniques have also been applied in a number of instances to
develop models of internal knot properties (Moberg 1999, 2000, 2001, 2006; Pinto
et al. 2003).
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Moberg (2006) developed tree models whereby stem shape and internal knot
structure of Scots pine and Norway spruce stems could be predicted using site, stand
and tree variables. Knot properties included knot diameters, number of knots per
whorl, sound knot length, and vertical knot inclination.

Trincado and Burkhart (2008) presented a model for representing the internal
knot shape and structure for loblolly pine trees. Information on knot shape was
recovered using a destructive analysis technique, the shape and structure (live/dead
portion) of knots was characterized by a mathematical model, and analytical
expressions were derived to predict the volume of individual knots. In their study
the live portion was modeled using a simple one-parameter equation, and the dead
portion was modeled assuming a cylindrical shape. It was assumed that knots (not
external branches) produced in fast-growing plantations do not exhibit significant
curvature. The general expression of the model was

r2
.l/ D R2

	
l

L


ˇ

0 � l � L (17.1)

where r.l/ is the radius of the live portion of a knot at length l, R is the maximum
radius of the live portion of a knot, L is the total length of the live portion of a
knot, and ˇ is the shape parameter. If ˇ D 1,2, or 3, the geometrical shape generated
is a paraboloid, cone, or neiloid, respectively. This equation meets two conditions:
r.l/ D 0 when l D 0 and r.l/ D R when l D L. Thus, if L and R are known, it is
possible to estimate r.l/ at any point. Additionally, the volume of this portion of a
knot can be estimated by applying integral calculus:
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Based on model (17.2) analytical expressions were derived for estimating the
volume of knots (live and dead portions) for three types of knot conditions on
simulated trees: (i) live knots, (ii) nonoccluded dead knots, and (iii) occluded
dead knots. Because multiple measurements were taken on each individual knot,
the model was fitted using nonlinear mixed-effects modeling techniques. The
within-individual errors were assumed homoscedastic, normally distributed, and
uncorrelated with mean 0 and variance �2. Later, the random-effects parameter
was related to other knot variables to incorporate covariates to explain additional
between-individual variation in knot shape.

17.6 Incorporating Wood Quality Information into Growth
and Yield Models

Forest management decision making involves using growth and yield models in
an optimization context. To evaluate optimal economic returns, models of wood
quality can be linked to growth and yield models through input variables that
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are output from the model of tree or stand development. Numerous equations for
estimating tree or ring specific gravity, knot size and distribution, ring widths, and
related characteristics that constitute wood quality have been published. This section
provides examples of linking predictions of wood characteristics with growth and
yield models in order to provide decision support for management on a value, rather
than a volume, basis.

Maguire et al. (1991) incorporated wood quality variables into an individual-
tree, distance- independent growth and yield model (designated ORGANON) that
includes a crown development subcomponent. The model was developed for mixed
conifer forests of southwestern Oregon, USA. Noting that crowns of conifers are
dominated by annual whorls of branches, Maguire et al. obtained position of major
branches or knots from height growth predictions. Mean maximum branch diameter
was predicted as crown base receded past each whorl; branch diameter estimates
were based on current depth of the whorl into the crown, tree diameter, stand
relative density, and site index. Diameter of crown wood core was established
as diameter inside bark of the stem at time of crown recession past each branch
whorl. Simulations carried out to estimate harvested log distribution by branch size,
whorl frequency, and crown wood indices for several thinning regimes showed good
agreement with the limited field trial data available and with current understanding
of stand and tree development. The authors concluded that individual-tree growth
models that contain a crown recession component can be readily modified to predict
crown wood core and indices of branch size.

Houllier et al. (1995) proposed a framework for analyzing the influence of
silviculture and site quality on wood production of Norway spruce from both
a quantitative and qualitative point of view (Fig. 17.8). The system consists of
submodels that range from primary growth factors (site, stand density, and genetics)
to quality of sawn boards. Tree and stand volume, stem taper, wood density,
proportion of juvenile wood, and extent of knots were considered as the result of
growth processes. Initially, a simple average tree growth model for pure, even-aged
stands of Norway spruce in northeastern France was used to demonstrate how pieces
of knowledge from silviculturalists, forest biometricians, and wood scientists can be
brought together through computer simulation techniques.

Empirical ring-based models were developed by Ikonen et al. (2008) to predict
the distribution of early wood percentage, wood density and fiber length along
the stems of Scots pine and Norway spruce as affected by silvicultural treatments.
Simulations by a process-based growth and yield model were used to analyze how
thinning affects the growth and wood properties of Scots pine trees over a rotation
as an average for the tree stem and also along the stem. The ring-based models for
annual earlywood percentage (explained by ring width), wood density (a function
of early wood percentage and cambial age) and fiber length (related to radial growth
percentage and cambial age) predicted wood properties reasonably well at both an
intra-ring and a cross-sectional level.

Mäkelä et al. (2010) reviewed methods for simulating wood quality in forest
management models. Approaches were classified on the basis of their complexity,



422 17 Modeling Wood Characteristics

Genetics Site

Quality of sawn boards

Height growth

Crown development

Silviculture

Ring distribution

Wood density

Mechanical properties

Branch growth

Knotiness

Visual aspect

Fig. 17.8 General
framework of a system for
linking growth modeling to
timber quality (From Houllier
et al. 1995)

underlying principle and intended application. Examples were given of three types
of dynamic models – empirical, hybrid, and mechanistic – applied for prediction of
both sawn timber and fiber properties.

17.7 Linking Growth and Yield Models
with Sawing Simulators

Output of log characteristics from growth and yield models can be linked to sawing
simulators to obtain estimates of lumber yield by grade. These simulators allow for
flexibility in studying different conversion rates from different types of mills and for
varying product specifications.

The sawing simulation system called AUTOSAW published by Todoroki (1990)
has been applied in a number of lumber recovery studies, including those of Barbour
et al. (2003) and Weiskittel et al. (2006). A lumber recovery simulation system
called Optitek (Forintek 1994) has been used in modeling lumber volume recovery
in jack pine (Zhang and Tong 2005; Tong and Zhang 2006) and black spruce (Liu
and Zhang 2005). One of the most comprehensive systems for linking silviculture
to lumber yield and value is called SYLVER (Mitchell 1988; Di Lucca 1999).
Developed in British Columbia, Canada, SYLVER integrates several subsystems to
predict wood quality, product recovery, and financial return for various management



References 423

regimes. An individual-tree model (TASS) provides tree height, diameter and knot
size information that is passed to a log bucking program and then to a sawing
simulator to cut logs into lumber using predefined cutting patterns.

Ikonen et al. (2003) demonstrated how tree stem properties can be linked to
the properties of sawn timber through simulation of the structural growth of the
tree and the sawing of the stem pieces subjected to quality grading. The growth
and development of individual Scots pine trees was modeled in terms of the three-
dimensional structure of the tree crown as determined by the influence of local light
conditions on branch growth, which influences the distribution of the properties of
the stem and wood such as stem form and knots. The three-dimensional distribution
of these properties allows simulated cutting of the stem into logs and further into
sawn pieces which can be graded based on quality. The part of the stem to be cut
into logs is defined by the height of the stump and the minimum top diameter for a
log acceptable for sawing. Stems are characterized by the number of logs obtainable
for sawing, the length of the logs, the top and butt diameters of the logs, their volume
and their taper. The wood is characterized primarily in terms of the occurrence of
knots and their size and type (sound, dead). The sawing algorithm evaluates the
knots in terms of diameter and type and calculates the grade and value of each
piece. This procedure is repeated log by log, and a summary of the sawing is made
for the whole stand, with a report on the total yield and value of the sawn timber
obtained.
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Chapter 18
Model Implementation and Evaluation

18.1 Model Implementation in Forest Simulators

A forest growth model is a simplification of the forest and its dynamics that allows
forecasting of forest development under different management alternatives. State
variables are used to describe the status of the forest at selected points in time.
Forest growth models include a set of interrelated functions and algorithms that
mimic the development of the forest. The functions may be growth functions, if they
predict the changes of state variables over time, or functions that predict the value
of a state variable from the value of other state variables. The previous chapters
of this book described methodologies used to develop either growth or prediction
functions for the stand and tree variables that are commonly part of forest growth
models. Before a model can be used in practice, the set of functions developed
to predict the changes in the state variables over time has to be implemented via
a computer program that, when given the values of the state variables, uses the
growth and prediction functions to forecast the dynamics of the state variables and,
consequently, the forest dynamics. Each growth and/or prediction function is usually
designated as a model component or module. Forest growth models also include
other components such as algorithms to mimic silvicultural treatments that the user
wants to consider during the planning horizon. These algorithms range from simple
modifications of the values of some state variables to prediction functions for the
values of the state variables after applying the treatment (see Chap. 16) or to more
complex algorithms that take individual trees into consideration as is the case for
the simulation of thinning in individual tree models.

Computer programs that implement growth and prediction functions, jointly with
algorithms for the simulation of silvicultural treatments and user-friendly interfaces,
are commonly known as forest simulators. Forest simulators operate at different
spatial levels, from the stand to landscape or even larger regions. Here we emphasize
implementation and evaluation of stand simulators.

When selecting a growth and yield model for application, forest managers
should consider the reliability of the estimates, the flexibility to reproduce desired

H.E. Burkhart and M. Tomé, Modeling Forest Trees and Stands,
DOI 10.1007/978-90-481-3170-9 18,
© Springer ScienceCBusiness Media Dordrecht 2012
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management alternatives, the ability to provide sufficient detail for decision making,
and the efficiency for providing this information. Buchman and Shifley (1983)
provide a set of criteria to assist users in evaluating and selecting forest projection
systems. Factors such as data requirements, computing capacity required, and cost
all enter the evaluation, but the most important factor is the intended application.
As noted by Buchman and Shifley, in practice, evaluation is often an iterative
process of (1) defining the intended application, (2) specifying critical performance
requirements, and (3) evaluating the capacity of candidate systems.

18.1.1 Input/Output

Many examples of input/output functions for forest stand simulators exist, but
software for implementing a model for growth and yield of even-aged yellow-
poplar stands (Knoebel et al. 1986) is representative of computer programs that
are commonly developed and used in practice. The model can be operated at the
stand level (Chap. 11) or it can be used to produce estimates by diameter classes
by employing a continuous distribution function (Chap. 12). Full documentation of
the model development, source code for the computer program for implementation,
and model evaluation is published in Knoebel et al. (1986). (A summary of
the underlying model structure is given in Chap. 12, Sect. 12.1.3.1.) Figure 18.1
provides a flow chart diagram of the yellow-poplar growth and yield model. A brief
summary of the input/output functions follows.

Input data required by the program are:

• Age at the beginning of the projection period
• Age at the end of the projection period
• Site index
• Basal area at the beginning of the projection period
• Number of trees per unit area at the beginning of the projection period
• Number of previous thinning

Given the input data, the following stand attributes are computed:

• Average height of the dominant and codominant trees
• Minimum diameter (at breast height)
• Arithmetic mean diameter
• Quadratic mean diameter

If stand-level estimates are desired, they are computed at this point:

• Number of trees per unit area
• Basal area
• Volumes

http://dx.doi.org/10.1007/978-90-481-3170-9_11
http://dx.doi.org/10.1007/978-90-481-3170-9_12
http://dx.doi.org/10.1007/978-90-481-3170-9_12
http://dx.doi.org/10.1007/978-90-481-3170-9_12
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Fig. 18.1 Flow chart diagram of a computer program developed to provide stand level or diameter-
distribution level estimates of growth and yield for yellow-poplar stands (Knoebel et al. 1986)
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Once the stand-level attributes are generated and displayed, the user has the
option to:

• Produce the corresponding stand/stock table
• Impose thinning
• Make another projection, or
• Terminate the growth and yield program

18.1.2 Visualization

While stand and stock tables provide adequate information for many types of
decision analyses, a visual representation can enhance the usefulness of models
for forest managers. With a visual image of the forest stand at various stages
of development, managers can quickly grasp the need for, and consequences of,
management actions such as thinning. A model that provides visual representations
of forest development is valuable for presenting various management options to
landowners, forest managers, and the general public. All aspects of different treat-
ments (including the visual quality of stands produced under different management
regimes) can be considered and integrated into the decision process.

Visual display can also enable stand modelers to gain new insights into the
dynamics of forest stand development and to study the impact of various manage-
ment treatments. Vast amounts of abstract data can be reduced to visual imagery
to help scientists understand complex relationships more easily. Insights into
stand development that may not be possible when using tables of numbers may
become more apparent when visualization is employed. Although stand models are
available for many forest types, scientific visualization capabilities are often not
included. The addition of visualization capabilities has the potential for facilitating
improvements in stand modeling, biological understanding of stand development,
and forest management decision making.

Visualization software that can be linked to output from forest stand simulators
is readily available (McGaughey 1998).1 A list of tree diameters and heights (and
sometimes crown measures) is passed from the growth and yield model to the
visualization program. If the growth model is spatially explicit, tree attributes are
represented at each individual’s spatial coordinates. An example visualization of
output produced by a distance-dependent growth model for loblolly pine is shown in
Fig. 18.2. If spatial information is not included in the growth model, a spatial pattern
can be assumed and the characteristics of trees in the list produced by the model can
be distributed to the coordinate locations to produce an image of the stand.

1The USDA Forest Service stand visualization system (SVS) can be accessed at www.fs.fed.us/
pnw/svs/.

www.fs.fed.us/pnw/svs/
www.fs.fed.us/pnw/svs/
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Fig. 18.2 Image of a loblolly pine stand created by linking the distance-dependent growth and
yield model PTAEDA to the stand visualization system (SVS)

Visual imagery is a useful adjunct to numeric information produced by growth
and yield models, but it cannot compensate for inherent weaknesses in the model
itself. Regardless of the detail and attractiveness of output, users must carefully
evaluate models for suitability for specific applications.

18.2 Model Evaluation

Growth and yield models are an essential tool for forest management planning.
However, no matter how sophisticated the forest management planning method
may be, the adequacy of the decisions depends to a great extent on the accuracy
of the predictions provided by the models employed in planning. Any model is a
simplification of reality and cannot be correct in every sense. Therefore each model
should be evaluated and its limitations ascertained before it is adopted. Models
used in decision support require a firm foundation in science and should produce
predictions with quantified accuracy; furthermore they should be free of artifacts
that confound choice of management alternatives (Stage 2003).

The terms model validation and model verification are sometimes used to
indicate model evaluation. Validation involves a process to determine if a model
performs at an acceptable level for its intended purpose; it is just one component
of the larger task of model evaluation (Rykiel 1996). Van Horn (1971) defined
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validation as “the process of building an acceptable level of confidence that an
inference about a simulated process is a correct or valid inference for the actual
process”. In this context model validation can never result in the acceptance of a
model as right or wrong. It is instead a thorough analysis of model performance,
including several procedures, that provides information that can be used to assess
its adequacy for a particular use. Model evaluation should therefore provide as much
information as possible about the model’s behavior and predictive ability to allow
users to decide if it is adequate for their intended uses. It should also reveal where
future data collection and model revision efforts may be most useful (Vanclay and
Skovsgaard 1997). Evaluation should be considered at every stage of model design
and construction, when component functions are formulated and fitted to data, and
when these components are assembled to provide the completed model. Most forest
growth modelers are aware of the importance of model evaluation as a part of model
construction, both when fitting each of the model components and when conducting
an overall assessment of the model after implementing it via a computer program. In
practice, however, additional evaluation is often needed when users are faced with
selecting a model from those available for a particular objective.

Several authors have discussed the evaluation of models for natural systems.
Some focused on the philosophical aspects of model validation (e.g. Reckhow and
Chapra 1983; Oreskes et al. 1994), others applied a structured approach to model
evaluation (e.g. Oderwald and Hans 1993; Soares et al. 1995; Janssen and Heuberger
1995; Vanclay and Skovsgaard 1997); in some cases, the proposed approach has
been used to validate one or more existing models (e.g. Oderwald and Hans 1993;
Soares et al. 1995; Tomé and Soares 1999).

Model evaluation involves several steps that are sometimes grouped in qualitative
and quantitative tests (commonly designated model verification and validation,
respectively). The first deals with a critical appraisal of model structure and
biological realism while quantitative assessment implies comparisons of predictions
with observations independent of those used to fit the model, usually including
statistical evaluation of the magnitude of differences between the model and the real
world. The importance of qualitative evaluation is stressed by some (e.g. Oderwald
and Hans 1993; Soares et al. 1995) while statistical validation of the model has been
dealt with by others (e.g. Reckhow and Chapra 1983; Mayer and Butler 1993; Power
1993).

The importance of including several procedures in model evaluation has been
highlighted in the literature on forest growth models evaluation (e.g. Soares et al.
1995; Vanclay and Skovsgaard 1997), including qualitative as well as quantitative
examinations of the model and going from theoretical to empirical issues.

According to Soares et al. (1995) and Vanclay and Skovsgaard (1997) validation
procedures may be grouped as: (1) theoretical and biological aspects; (2) statistical
properties; (3) characterization of model error; (4) statistical testing; (5) sensitivity
analysis. When applying this framework to a practical problem, Tomé and Soares
(1999) noted that some of the procedures apply mainly at the model building stage,
as they are not problem-dependent, while others need to be implemented every
time the model is going to be used for a different purpose, region or application.
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The grouping of validation procedures proposed by Tomé and Soares (1999) was:
(1) theoretical aspects of model building; (2) logic of model structure and biological
aspects; (3) characterization of model errors. An elaboration on these three aspects
follows.

18.2.1 Theoretical Aspects of Model Building

Theoretical aspects of model building include the analysis of the statistical proper-
ties of the model and sensitivity and uncertainty analyses. Modelers usually deal
with these aspects of model evaluation, as they are not problem-dependent and
they are highly technical. However, clear descriptions of the analytical methods
employed also help users make informed choices regarding which models to adopt.

Analysis of statistical properties includes verification of the assumptions made
when fitting statistical models. The nature of the error term (i.e. additive or
multiplicative, independence of errors, etc.), errors associated with the independent
variables, and the properties of parameter estimates in model functions are examples
of issues that may need to be taken into account (for more details see Vanclay and
Skovsgaard 1997). These analyses are usually made for each model component or
set of components simultaneously fit to data.

Sensitivity analyses are conducted to determine those model components –
parameters, initial values of state variables – which have the greatest influence on
predictions (e.g. Liu et al. 1989; Botkin 1993; Jørgensen 1994). In practice the
sensitivity analysis is carried out by changing the parameter or component and
observing the corresponding effect on predicted outputs:

Sb D @ Oy
@b

where b is a parameter estimate. Sometimes sensitivity is expressed in relative terms:

Srelb D @ Oy
@b

b

Oy
Results reveal parameters critical to model predictions, and parameters which

may be redundant. Knowledge of sensitive parameters may guide applications
(especially extrapolations) and the planning of model enhancements.

Gertner (1987, 1988) studied the estimation of the variance of growth and
yield predictions and suggested the use of an error budget to evaluate the relative
importance of each model component in the precision of the whole model.

Uncertainty analysis focuses on the impact of uncertainty in model inputs on
its outputs (predictions). Uncertainty is commonly assessed using Monte Carlo
methods, in which the model is run multiple times for combinations of different
values of the parameters randomly selected from their distribution. The output of the
model, for a certain input, is then a range of values instead of a unique prediction.
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18.2.2 Logic of Model Structure and Biological Aspects

The analysis of the logic behind the model structure, including the model compo-
nents, and of the compatibility of the model predictions with existing biological
theories are usually referred to as qualitative evaluation. The model must be
biologically realistic, agree with existing theories of forest growth and predict sen-
sible responses to management actions. These aspects are not problem-dependent,
but some of them are more relevant for certain applications than others. It is
also important that, before employing a model as a decision aid tool, users gain
knowledge of the model structure and the characteristics of each model component.
Oderwald and Hans (1993) used the term “corroboration” to designate this type of
analysis and listed the following items to be checked:

1. Do variables included in, and omitted from, the model agree with expectations?
2. Do the sign and magnitude of coefficients agree with expectations?
3. Are extrapolations outside the range of the development data reasonable?
4. Are transformations of model predictions reasonable (e.g. do model forecasts of

future diameters also provide reasonable estimates of diameter increments, future
volumes, mean increment curves, etc.)?

5. Are any contradictions present within the model?
6. Do derivatives, limits, maxima, minima, inflections, and the like, agree with

expectations?

Figure 18.3 shows simulations of mean annual increment for different initial
stand densities and site indices provided by the PTAEDA model. It can be seen that
mean annual increment culminates earlier at higher densities and site indices, thus
behaving according to biologic knowledge. Experienced foresters and other experts
can be helpful in qualitative analysis, indicating areas where model predictions are
contrary to expectations.

Matrix plots of simulated stand development trajectories showing a range of
property-time and property-property relationships (Leary 1988, 1997) can offer use-
ful insights into model behavior and provide an efficient way to reveal discrepancies
in model predictions.

Simulations at extremes of stand conditions are often particularly revealing. Such
simulations may encompass not only the upper and lower limits of site quality and
stand density represented in the data, but also alternative stand structures (e.g. even-
vs. uneven-aged, pure vs. mixed, thinned vs. unthinned, pruned vs. unpruned, etc.)
(Vanclay and Skovsgaard 1997).

One important point raised by Soares et al. (1995) is that a model should not
be rejected simply because it behaves in a counter-intuitive fashion; it may be our
preconceptions that are wrong. Discrepancies should, however, cause us to critically
reappraise the model, the data, and our preconceptions.
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Fig. 18.3 Predicted mean annual increment for loblolly pine plantations from the PTAEDA model
for site indices 15, 18, 21 and 24 m with 1,500 (a) and 3,000 (b) trees per ha at planting

18.2.3 Characterization of Model Errors

Characterization of model error refers to all the procedures for model evaluation that
imply the comparison of model predictions with evaluation data. Knowing starting
points of different stands (permanent plots or detailed continuous forest inventory)
as well as the treatments that were applied during the time period described by the
real data is provided as input to the model and the stand is simulated over that
time period. Analysis of model error is based on the computation of prediction
residuals or model errors, the differences between the observed and predicted values
of all variables of interest. Error characterization may involve statistical testing or
be based mainly on the computation of selected statistics and graphical analyses.

Model error characterization is clearly problem-dependent, as the evaluation
data used should be in agreement with the region and conditions for which model
predictions are needed.

The analysis of model error must be done for each of the model components
as well as for the model as a whole. The analysis of different model components
helps identify the main sources of the model error and also uncovers possible error
compensation among model components that might hide real errors.

18.2.3.1 Evaluating Model Bias and Precision

Model error should be assessed in terms of two characteristics: bias and precision.
The first refers to the deviation of the average of the model errors from zero and
the second to the size of the model errors. Obviously both characteristics must be
analyzed in order to assess model performance. Several statistics may be used to
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assess bias and precision (see Janssen and Heuberger 1995 for a complete list), but
the most commonly used are the average model error to assess model bias and the
mean absolute difference or mean squared error to assess model precision:

Model bias:

Nrp D

nP
iD1

.yi � Oyi /

n
average model prediction error or average bias

Model precision:

j Nrpj D

nP
iD1

jyi � Oyi j
n

mean absolute prediction error

mse D

nP
iD1

.yi � Oyi /
2

n
mean squared prediction error

where rp is the prediction residual, yi and Oyi are, respectively, the observed and
predicted values, and n is the number of observations in the evaluation data set.

The analysis of histograms of errors provides a good picture of model bias and
precision, which may be complemented by quantiles of the distribution of residuals.
The 5% and 95% percentiles are commonly chosen as they are not overly sensitive
to extreme points in the data.

Plots of observed versus predicted values have often been used to characterize
bias and precision. One simple statistic for assessing a model’s performance is
the correlation coefficient (r) between y and Oy. Another common analysis is the
linear regression of y on Oy to check whether the intercept (a) is near 0 and the
slope (b) is near 1. Kobayashi and Salam (2000) and Gauch et al. (2003) argue that
the correlation coefficient and the linear regression are not entirely satisfactory for
model evaluation and suggest that the mean squared error (they identified it as mean
squared deviation) is more informative. Gauch et al. (2003) proposed partitioning
of mse into:

mse D sb C nu C lc

sb D
�

Ny � NOy
�2

squared bias .sb > 0 if b D 1 and a ¤ 0/

nu D .1 � b/2

nP
iD1

�
Oy � NOy

�2

n
non � unity slope .nu > 0 if b ¤ 1/
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lc D �
1 � r2

�
nP

iD1

.y � Ny/2

n
lack of correlation .lc > 0 if r2 ¤ 1/

where symbols are as before.
These components have a simple geometric interpretation that reinforces the

meaning of their names, as shown in Fig. 18.4. Departures from the ideal 1:1 line
that corresponds to mse D 0 (shown on the top left of the figure) may occur due
to translation, rotation or scatter (shown in the other three plots in the figure).
Translation occurs when b D 1 but a ¤ 0 and is indicated by a sb > 0. A slope
different from 1 implies rotation and scatter is indicated by a low value of r2. The
resulting mse for any combination of these three problems is simply additive which
makes this methodology particularly useful for model comparisons. In Fig. 18.5
models 2 and 3 have similar values of mse, but the sources of deviation are quite
different; lack of correlation is prevalent in model 2 but all sources of deviation are
roughly equal in model 3.

18.2.3.2 Computing Modeling Efficiency

Another useful technique is to compare predictions directly with observed data
using a statistic analogous to R2, and sometimes called modeling efficiency:

ef D 1 �
P

.y � Oy/2

P
.y � Ny/

2

where symbols are as before. This statistic provides a simple index of performance
on a relative scale, where 1 indicates a ‘perfect’ fit, 0 reveals that the model is no
better than a simple average, and negative values indicate a poor model indeed.

18.2.3.3 Looking for Tendencies in Model Error

One of the most efficient ways to examine model performance is to plot residuals
or standardized residuals for all possible combinations of tree and stand variables
to detect possible autocorrelation and other dependencies or systematic patterns.
Figure 18.6 shows an example of the graphical analysis undertaken by Soares et al.
(1995) when validating the PBRAVO model. Care is needed in interpreting these
plots, as it is easy to focus on a few outliers and hard to see how many points
are within the big “clouds”. An analysis of the plots in Fig. 18.6 provides insight
into the most important tendencies of model errors for the variables considered.
For instance, the bias of volume estimations, which increases with stand volume, is
immediately detected in both short term and long term predictions. It can be seen
that the projection length has a rather small influence on bias or on the magnitude
of the residuals but precision tends to deteriorate.
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Fig. 18.4 Discrepancies between model predictions ( Oy) and real data (y). (a) Perfect equality
between y and Oy leading to mse D 0; (b) Translation with y D 1 C Oy, causing sb D 1; (c) Non-
unity slope, in this case y D 2 Oy, causing nu D 2; (d) In this case lack of correlation is present, with
y D " C Oy and lc D 0.67 (Adapted from Gauch et al. 2003)

An efficient way to screen for major dependencies involves using multiple linear
regression algorithms such as stepwise selection to find relationships between the
residuals and site and stand variables. This procedure is an alternative to examining
a large number of residual plots; it is not, however, a substitute for graphical
inspection but rather serves as a way to highlight explanatory variables against
which residuals should be plotted (Soares et al. 1995).

18.2.3.4 Statistical Tests

Characterization of model error may be complemented by several statistical tests
that help to assess the magnitude of the deviations between model predictions and
reality. The most common assessments include:
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1. bias and precision of the model and its components (test if mean prediction error
is significantly different from zero (bias) and if the variance of prediction is larger
than a specified critical value (precision));

2. goodness-of-fit of predicted size distributions (test if predicted size distributions
significantly differ from observed values);

3. patterns in, and distribution of, residuals;
4. correlations over time and between components.

Many statistical tests of model performance have been suggested, but no single
criterion can incorporate all aspects of model evaluation; it is desirable to use several
simple tests to examine different facets of model behavior.

Yang et al. (2004) evaluated the usefulness of various statistical tests for forest
biometric models. Ten tests, five parametric and five nonparametric, were selected
for inclusion in the evaluation. Nine data sets were used to assess the behavior
of 10 diagnostic tests. Results from this study demonstrated that the statistical
tests have limited usefulness in model validation. None of the tests seemed to be
generic enough to work well across a diverse range of models, data, assumptions, or
constraints.

Given the results from their evaluation, Yang et al. (2004) recommended that
analysts look at how well a model fits new, independent data rather than apply a
statistical test to determine whether or not the model is good enough, because results
will vary depending on the data, model types, study objectives, and the statistical
test applied. Model validation is an attempt to judge whether or not a model is an



442 18 Model Implementation and Evaluation

-3

0

3

6

0 10 20 30

e (m)

hdom (m)

-3

0

3

6

0 10 20 30

e (m)

hdom (m)

-12

0

6

12

0 20 40

-6

e (m2ha-1)

G (m2ha-1)

-12

0

6

12

0 20 40

-6

e (m2ha-1)

G (m2ha-1)

-12

0

6

12

0 20 40

-6

e (m2ha-1)

G (m2ha-1)

-8

0

4

0 4020 60

-4

e (cm)

dg (cm)

-8

0

4

0 4020 60

-4

e (cm)

dg (cm)

-8

0

4

0 4020 60

-4

e (cm)

dg (cm)

-75

0

75

0 400200

e (m3ha-1)

V (m3ha-1)

-75

0

75

0 400200

e (m3ha-1)

V (m3ha-1) 

-75

0

75

0 400200

e (m3ha-1)

V (m3ha-1)

Fig. 18.6 Prediction residuals (" D y � Oy) versus observed dominant height (hdom), stand basal
area (G), quadratic mean diameter ( Ndg) and standing volume (V) for various projection lengths (top
row: no projection; middle row: 1–10 years; bottom row: 11–20 years)

acceptable representation of reality for some stated purpose. Statistical tests can be
a valuable part of validation, but a composite process, rather than a simple pass-fail
criterion of any particular test, is generally required.

18.2.4 Data for Model Validation

Quantitative evaluation of forest growth models requires comparison of predicted
values with real data. To be rigorous the comparison must be made with a data
set independent from the one used for model fitting. This poses the problem of
acquiring an independent data set. When comparing models for an intended practical
application, a new data set may purposely be gathered; however, this is generally not
the case.
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The need to base quantitative evaluation of models on an independent data set
leads to the question of deciding whether two data sets are independent. Even if two
data sets are taken at different time points or by different crews they are generally not
totally independent. During model construction it is common to set aside a portion
of the data for validation purposes (further details are given in Snee 1977; Myers
1990). This technique, known as cross-validation, has been questioned by several
authors (including Yang et al. 2004; Cieszewski and Strub 2007) arguing that cross-
validation of fitted models on so-called “independent data” is merely an example
of the possible performance of the model with other data and of the magnitudes
of the expected errors. Even if data splitting techniques have shortcomings, growth
modelers often have to decide whether it is worthwhile splitting the data available
into two subsets, one for developing and the other for testing of the model. This is
not a trivial decision, especially when data are scarce. Setting some data aside may
provide for a better test of the model, but it may also result in inferior parameter
estimates (Vanclay and Skovsgaard 1997).

Double cross validation is a version of cross validation in which the total number
of observations, n, is divided into k equal subsets. The model is fitted k times, each
time setting aside one of the k subsets and using the observations not used in fitting
to calculate the validation statistics. An extreme case occurs when k D n, so that
each iteration of the model is derived from n � 1 observations, and the validation
data set contains only one observation. This special case of double cross validation,
widely used in model selection, results in what is known as the prediction sum of
squares (PRESS) statistic (Myers 1990). One alternative is to form the subsets for
the double cross validation according to some variable of the data such as plot age,
geographic location, or other criteria that are relevant to a particular problem. Other
re-sampling techniques, such as boot-strapping (Davison and Hinkley 1997), may
also be used.

Kozak and Kozak (2003) studied the advantages of performing diverse types of
cross-validation and double cross validation using seven data sets with two tree
volume estimating models and a height–diameter model. The authors computed
several fit and lack of fit statistics and concluded that cross validation by data
splitting and double cross validation provide little, if any, additional information
in the process of evaluating regression models over the fit of the models with the
whole data set and corresponding computation of the fit and lack-of-fit statistics.

An independent sample was established by Burkhart (1971) to evaluate the ac-
curacy and precision of a diameter distribution yield estimation technique (Bennett
and Clutter 1968) for slash pine plantations. Analyses showed the yield estimates to
be unbiased but not precise. Overall 80% of the estimated yields were within plus
or minus 25% of the observed values; the plus and minus deviations were fairly
well balanced and no trends over age, site index or stand density were detected. It
was concluded that, for large samples, yields can be reliably predicted by the model
tested.

Daniels et al. (1979) evaluated and compared three stand models (whole stand
model of Burkhart et al. 1972; diameter distribution model of Burkhart and Strub
1974; individual tree model of Daniels and Burkhart 1975) with independent data
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on the basis of merchantable volume predictions for loblolly pine plantations.
Analysis of deviations of estimated from observed yields revealed that all three
models provided accurate estimates, and all were free from prediction bias due
to stand characteristics. The whole stand and diameter distribution models were
higher in precision than the individual tree simulation model. The authors opined
that the selection of a model depends on the amount of stand detail desired and the
management practices to be evaluated.

18.3 Applying Growth and Yield Models

When applying growth and yield models, it is assumed that stands are relatively
homogenous with regard to independent variables (e.g. site index, stand density)
used to predict stand values. If there is significant variation in predictors such as site
index or stand density for a given tract, the area must be stratified into reasonably
homogeneous stands and predictions made separately for each of these units to
ensure accurate results.

Moeur and Ek (1981) used a distance-independent, individual-tree growth model
to project changes in stand structure on aspen, red pine, and jack pine cover types
in northern Minnesota, USA. Projections were made with 0.058-ha plots, plots
aggregated within stands, and plots aggregated within cover types and compared
with observed plot conditions. Plot by plot projections were most accurate in
comparison with observed conditions, followed by stand and then cover-type
aggregations.

Smith and Burkhart (1984) conducted a simulation study to assess the effect of
sampling for predictor variable values on estimates of stand yield. Simple random
and stratified random samples of stand density and tree height were drawn from
simulated pine plantations containing nine strata. Sample outcomes were substituted
into a yield function to produce estimates of mean yield. Stratifying by both site
index and number of trees per unit area improved the precision of yield estimates
by 2/3 over simple random samples. Site index was the more important of the
two stratifying variables, but synergistic effects between the two attributes for
stratification were found. Estimating mean yield with the average of the sample
plot yields produced values with less bias and with smaller average error than using
the alternative of applying the mean values of the independent variables to obtain an
estimate of mean yield.

Users should also keep in mind that growth and yield predictions apply to net
area. Forested tracts commonly have portions that are not occupied by forested
cover; all nonproductive areas must be deducted from the overall tract area to avoid
over estimates.

Finally, in most growth and yield models, no allowance is made for logging
breakage or other losses during harvest; it is assumed that all material meeting
minimum merchantability standards will be utilized. Adjustments must often be
made in predicted values from models to approximate volumes that are likely to be
realized under local harvesting and utilization conditions.
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Tomé M, Soares P (1999) A comparative evaluation of three growth models for eucalypt plantation

management in coastal Portugal. In: Amaro A, Tomé M (eds) Empirical and process-based
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H.E. Burkhart and M. Tomé, Modeling Forest Trees and Stands,
DOI DOI 10.1007/978-90-481-3170-9,
© Springer ScienceCBusiness Media Dordrecht 2012

447



448 Index

Boles
volume equations for, 100
weight equations for, 66

Branch, models for
angle, 93–95, 97, 98, 415, 416
inclination, 93, 94
increment, 94
length, 91, 94–96
location

along stem, 94
around stem, 417, 418

maximum diameter, 95
number, 41–419
size, 415–419
vertical trend, 415, 417

Buongiorno and Michie model, 349–353

C
Calibration, model, 161, 394
CCF. See Crown competition factor (CCF)
CDF. See Cumulative distribution function

(CDF)
Clumping, 219–221, 318
Combined-variable equation, 45–48, 51, 66, 67
Compatible

growth and yield equations, 249–252
stem volume and taper functions, 55–59

Competition
aboveground, 227
asymmetric, 215–218, 224
belowground, 227
components of, 201
distance-dependent, 225, 226, 228
distance-independent, 26, 228
indices, 201–228
interspecific, 218–219, 227, 285, 365, 380,

381
intraspecific, 285, 313, 366
one-sided, 215–218
relative measures, 211, 212, 312
two-sided, 215

Competition measures
area potentially available, 212–214, 226
basal area in larger trees, 358
competitive influence zones, 207
crown competition factor, 190–192,

194
crown interference, 214
growing space, 212–214
in larger trees, 215, 358
light-interception, 215, 227
limitations, 210

point density, 4, 176, 208, 213, 225, 226,
228, 333

predictive power, 228
relative density, 176
size-distance relationships, 224
stand density, 190–196
tree-area ratio, 190–191

Constant form factor equation, 45
Coppice stands, 79, 258
Corewood. See Juvenile wood
Crown

area, 6, 191, 203
foliated length, 89
geometric shape, 85–86
length, 6, 26, 71, 75, 79, 85–87, 93–95,

100, 202–204, 219, 225, 415
morphology, 93–99
profile, 85–98, 100
ratio

compacted, 100–101
uncompacted, 100–101

recession, 102, 106, 374, 421
rise, 106
shape, 9, 87–90, 93, 94, 97, 100, 316
surface area, 85, 90, 100, 203, 211, 218
volume, 6, 85, 86, 90, 94, 100, 203, 204,

211, 385
width, 6, 43, 85–88, 100, 106, 191, 192,

197, 204, 212, 226, 227, 365, 366
Crown class, 27, 61, 132, 216, 218, 224, 226
Crown closure, 106, 196, 197, 285, 320, 363,

379
Crown competition factor (CCF), 105, 106,

190–192, 194, 203, 324, 327, 386
in larger trees, 203, 386

Crown-formed wood. See Juvenile wood
Crown volume, 6, 85, 86, 90, 94, 100, 203,

204, 211, 385
Cumulative distribution function (CDF), 265,

271, 275–277
Current annual growth (increment), 246

D
Data

edge effects, 222
empirical, 113, 126
for implementing models, 313, 320, 430
increment cores, 347
measurement

errors, 134
mortality, 136



Index 449

permanent plots, 104, 133–134, 166, 217,
226, 256, 300, 303, 326, 353

plot size, 132
quality, 37, 237
requirements, 430
sample size requirements, 273
stem analysis, 55, 59, 112, 134–137, 151
stem location, 317
temporary plots, 133, 138, 139, 240, 241
variability, 282, 408

Decomposition of growth functions, 127–128
Decurrent (deliquescent) form, 9, 43, 60
Density-integral, 68–70
Diameter

average, 85, 93, 189, 197, 267, 268, 303,
304, 329, 351, 354, 356, 408

at breast height (dbh), 5, 6, 11, 22, 24, 43,
45, 46, 55, 61, 66, 71, 77, 78, 87, 95,
100–102, 104, 111, 185, 191, 208,
212, 234, 235, 303, 312, 327, 342,
344, 358, 359, 415, 417, 430

class, 4, 187, 188, 192, 226, 234–236, 261,
264–266, 269, 270, 278, 280, 281,
289, 299, 300, 303–308, 329–331,
345–357, 377, 378, 389, 430

increment, 166, 221, 226, 236, 302, 312,
314, 315, 317, 320, 321, 324,
328–331, 358, 366, 378, 386–388,
408, 418, 436

measurement, 24, 28, 29
minimum, 52, 265, 266, 268, 269, 272,

274, 275, 288, 303, 304, 430
potential increment, 314
quadratic mean, 6, 177, 178, 180, 181,

184–187, 189, 268, 270–272, 274,
279, 288, 302, 304, 321, 346, 365,
371, 373, 374, 380, 382, 411, 414,
430, 442

realized increment, 166, 221, 226, 236,
302, 312, 314, 315, 317, 320, 321,
324, 328–331, 358, 366, 386–388,
408, 436

relative, 12, 15, 34, 365, 416
relative increment, 226

Diameter at breast height (dbh), 5, 6, 11, 22,
24, 43, 45, 46, 55, 61, 66, 71, 77, 78,
87, 95, 100–102, 104, 111, 185, 191,
208, 212, 234, 235, 303, 312, 327,
342, 344, 358, 359, 415, 417, 430

Diameter-class models, 331
Diameter-distribution models

bivariate approach
diameter and height, 278–279
two points in time, 279–280

even-aged stands, 261–291
finite mixture models (FMM), 277,

278
mixed-species stands, 277–278
moments, 267–271, 274
parameter prediction, 264–266,

274
parameter recovery, 266–272
percentile-based, 286–289
ratio approach, 289–291
segmented models, 277
uneven-aged stands, 343, 344

Differential equations, 20, 120, 121, 126, 134,
137, 141–145, 147, 153, 190, 254,
257, 284, 340, 341, 343, 345

Differentiation, 128, 218–221, 301, 302, 329
Dimensionally compatible, 14, 146, 147
Disaggregation methods, 330
Distance-dependent competition indices

area overlap, 204, 208
area potentially available, 214, 333
distance-weighted size ratio, 209, 212, 217,

218
formulation of, 207–215
light interception, 215
point density, 204, 208, 213
selection of competitors, 204–207
sum of angles, 226

Distance-dependent models, 214, 223, 237,
312–317, 319–321, 333, 357

Distance-independent models, 236, 311,
320–325, 357–360

Distribution methods
parameter prediction, 264–266
parameter recovery, 266–272

Distributions
beta, 264
bimodal, 277
exponential, 265
gamma, 263, 264, 302
Johnson’s, 280
lognormal, 34, 262, 264
normal, 264, 265
uniform, 417
Weibull, 263, 265, 270–273, 276–278, 285,

289–291, 301–307, 313, 341, 343,
346, 364, 365, 379, 387

Dominant height, 6, 102–105, 131, 133,
134, 136–138, 147, 151, 152, 155,
160, 161, 163–164, 166, 167, 254,
255, 273, 274, 276, 279, 331, 347,
358, 365–367, 369, 370, 372, 374,
388–396, 442

Dry weight, 65, 67–71, 413



450 Index

E
Ecological field theory (ETF), 214–215, 226,

227
Edge-effect bias

border trees, 222, 319
linear expansion, 222, 223, 320

Empirical
data, 113, 126
model, 1–4, 112, 413, 414
yield tables, 245

Equation
allometric, 65
Bertalanffy, 152
biomass, 9, 72–75, 78
branch recession, 421
Chapman-Richards, 140, 147, 167,

248–249
crown profile, 86
crown ratio, 25, 26, 59, 86, 102, 105, 314,

323
crown recession, 102, 106
diameter increment modifier, 328, 358,

378, 387
fertilization effects, 388
genetic gain multipliers, 396, 397
Gompertz, 120, 127
height-diameter, 44, 58, 265, 281, 311, 320,

321, 374
height to crown base, 95, 365
individual-tree, 366
individual-tree-level mortality, 332
largest crown width, 86, 87
mean bias, 33
model form, 102, 147, 150, 285
potential diameter increment, 314, 315
potential height, 314
potential height modifier, 388
potential x modifier, 322

limitations, 320, 332–333, 388
realized diameter increment, 314, 315, 317
realized height increment, 106, 314
Richards, 104, 118–123, 129, 147
root mean square error, 417
sigmoidal forms, 115
stand-level mortality, 190, 236
stem taper, 24
stem volume, 14, 24, 30, 45, 54, 55
thinning effects, 103, 374, 378

ETF. See Ecological field theory (ETF)
Even-aged stands, 1, 5, 6, 128, 132, 137, 175,

177, 179, 180, 184, 187, 189, 193,
194, 227, 234, 244–258, 261–291,
299–308, 311–333, 344, 345, 357,
363, 421

Even-aged stands, growth and yield models for
diameter-distribution, 261–291
individual-tree, 311–333
size-class, 299–308
whole-stand, 245–258

Excurrent form, 9, 43, 44, 97
Expansion factor, 312

F
Fertilization, 226, 315, 366, 368, 385–392,

410, 412, 416
Fertilizer applications, response in

dominant height, 391
stand basal area, 386, 388
stand volume, 385
tree basal area, 387
tree diameter growth, 386–388
tree height, 388

FIBER model, 355, 356
Field of neighborhood (FON), 214–215
Foliage distribution, 94
Foliar volume, 97
FON. See Field of neighborhood (FON)
FOREST model, 357
Forest resources evaluation program (FREP),

332
Forest stands, 1, 4, 5, 175, 177, 188, 215,

233–242, 263, 265, 273, 281, 291,
341, 353, 393, 430, 432

Forest vegetation simulator (FVS), 105, 321,
324, 325, 339, 384

Form
decurrent (deliquescent), 9, 10, 43, 60
excurrent, 9, 10, 43, 44, 69, 97
shrub, 9, 10, 43, 44, 60

FREP. See Forest resources evaluation program
(FREP)

FVS. See Forest vegetation simulator
(FVS)

G
GADA. See Generalized algebraic difference

approach (GADA)
Generalized algebraic difference approach

(GADA)
applications, 150–154
complex equations, 150
growth intensity factor, 148
parameter estimation, 154–156
simple equations, 149–150

Generalized matrix models, 349–357



Index 451

Genetic improvement
genetic gain, 393–395
genetic-gain multipliers, 395–397
genetic worth, 396
G x E interaction, 398

Geographic
coordinates, 166, 374
effects on specific gravity, 324
locale, 166

Green weight, 6, 65–67
Growth

annual, 136, 193, 246, 253
branch, 97, 423
height, 88, 94, 97, 98, 106, 131, 134–138,

141–145, 147, 151–153, 155,
158–161, 164–167, 203, 224, 225,
282, 311, 314, 317, 322, 324–326,
328, 339, 364–367, 369, 384, 385,
387–390

periodic, 236, 300
relative, 100, 113, 116, 119, 120, 146, 226,

254, 368, 387, 388, 396
Growth and yield models

classification, 234–235
components, 234
data for

interval plots, 240
permanent plots, 240
temporary plots, 240

linked with models of wood quality,
420

Growth functions
age independent, 128
annualized, 325–326
Chapman-Richards, 248–249
decomposition, 127–128
empirical, 112–115
Gompertz, 120
Hossfled, 113–115, 123–126, 128, 129,

146, 147, 151, 153, 154, 166, 359
Levakovic, 126
logistic, 119–120
Lundqvist-Korf, 116–118
McDill-Amateis, 124–126
monomolecular, 118–119
Richards, 120–123
Schumacher, 116
Sloboda, 127
theoretical, 112–115
Weibull, 104, 127

Growth intercept, 89, 189, 386

H
Habitat type, 166, 324, 384, 386
Height

average, 131, 132, 136, 144, 159, 177, 180,
197, 279–281, 290, 313, 314, 322,
385, 430

crown base, 89, 95, 106, 226, 316, 317,
365, 374, 417

diameter equations, 281, 379
dominant and top, 133, 136
growth, 88, 94, 97, 98, 106, 131, 134–138,

141–145, 147, 151–153, 155,
158–161, 164–167, 203, 224, 225,
282, 311, 314, 317, 322, 324–326,
328, 339, 364–367, 369, 384, 385,
387–390

increment, 68, 91, 102, 106, 141, 142, 219,
236, 314, 315, 320, 324, 327–329,
366, 372, 376, 388, 394, 412, 415

measurement, 59, 101, 281
potential increment, 314
realized increment, 444
relative, 12, 14, 15, 21, 23, 25, 29, 31, 32,

36, 61, 69, 70, 321, 411, 412, 414
tree, 6, 13, 14, 19–21, 26, 32, 43, 45, 46,

50, 52, 54, 56, 59, 60, 67, 75, 77, 79,
86, 87, 89, 95–97, 100, 102, 106,
124, 135, 136, 159, 193, 196, 202,
203, 210, 212, 227, 255, 261, 266,
278, 280–282, 307, 314, 317, 322,
324, 325, 327, 328, 359, 364, 372,
374, 375, 384, 388, 389, 411, 414,
423, 444

Height-age equations, 144, 155, 157, 393
Height-diameter relationships, 265, 278,

280–282, 311, 321, 325, 365, 374,
393

Height to crown base, 95, 226, 316, 317, 374,
417

measurement, 374–376
Honer volume equation, 50
Hybrid models, 2

I
Implied taper functions, 30, 53, 55, 377
Increment

basal area, 105, 189, 312, 321, 323, 325,
327, 328, 394, 395

bole volume, 100
cores, 128, 410
cross-sectional area, 416



452 Index

Increment (cont.)
diameter, 166, 219, 221, 226, 236, 302,

312, 314, 315, 317, 320, 321, 324,
328–331, 358, 366, 386–388, 408,
418, 436

distribution of radial, 227
height, 68, 91, 102, 141, 142, 219, 237,

314, 320, 327, 328, 366, 372, 378,
394

potential diameter, 314, 315, 317, 358
potential height, 314, 388
radial, 395
realized diameter, 166, 221, 226, 236, 302,

312, 314, 315, 317, 320, 321, 324,
328–331, 358, 366, 386–388, 408,
436

realized height, 68, 91, 102, 106, 141, 142,
219, 221, 236, 314, 315, 320, 324,
327–329, 366, 372, 375, 378, 388,
394, 415

relative diameter, 15
Individual-tree models

components, 311–312
controlling plot edge bias, 319–32
distance-dependent, 312–313, 357–358
distance-independent, 320–321, 358–359
even-aged stands, 311–333
generating spatial patterns, 317–319
increment equations, 320
mortality functions, 312
simultaneous estimation of components,

326–328
stochastic components, 328–329
uneven-aged stands, 357

Ingrowth, 354
Irregular

age structure, 324
crown profiles, 85
measurement intervals, 325
spatial patterns, 213
tree-size distributions, 277

J
Johnson’s distribution, 264, 276, 277, 280
Juvenile-mature wood demarcation, 407–410
Juvenile wood, 406–410, 421

characteristics, 406–407

K
Knots

dead, 418
live, 418–419

maximum size, 416, 417
nonoccluded, 420
occluded, 420
shape, 420
volume, 418–420

kurtosis, 262, 264

L
Law of self-thinning, 179, 184, 189, 190
Least squares

constrained, 270, 304–306, 330
generalized, 72, 73, 76, 160
nonlinear, 17, 22, 26, 51, 95, 141, 145, 284,

315, 345
ordinary, 45, 46, 48, 54, 70, 138, 139, 159,

181–183, 252, 253, 326–328, 353
three-stage, 95, 96, 253, 255, 327, 328
two-stage, 255, 328
weighted, 73, 158

Leslie matrices, 349
Linked stand and size-class models, 299–308
Linked stand and tree-level models, 329
Logarithmic

bias correction factor, 72
transformation, 22, 33, 34, 49, 72, 247, 327
volume equations, 48–50

Log quality, 423

M
MAI. See Mean annual increment (MAI)
Markov chain, 347–349

stationarity assumption, 348, 349
Matrix models, 5, 157, 235, 236, 308, 339,

340, 347–349, 353, 356, 357
Mean annual increment (MAI), 317, 436, 437

maximum, 246
Mean bias, 33, 307
Mechanistic, 112–115, 422

model, 112–114
Merchantable

stem volume, 10, 30, 45, 51, 53–56
tree height, 6, 43, 60

Mingling, 219–221
Mixed effects models

best linear unbiased predictions, 15, 37,
161

calibration, 29, 37, 161
growth and yield prediction, 247
height prediction, 162
taper model, 29, 35

Mixed species stands, 188, 227, 277–278, 313,
321, 328, 339, 354
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Model
components, 77, 78, 157, 326–328, 395,

429, 434–437
development, 2, 182, 367, 430
evaluation, 5, 430, 433–435, 437, 438, 441
generality, 237
implementation, 429–444
level of resolution, 234, 299
parsimony, 15, 75, 237, 238
precision, 437–439
prediction, 34, 37, 160, 190, 247, 276, 281,

323, 344, 358, 365–367, 397, 411,
413, 435–438, 440

reality, 237, 440, 442
validation, 353, 433, 434, 441–444
verification, 433, 434

Model calibration, 161
Model evaluation

biological realism, 434
compatibility, 436
components, 429, 433–437, 441
criteria, 443
efficiency, 430, 439
equation form and parameterization, 150
error, 434, 435, 437–441, 444
goodness-of-fit, 441
mean bias, 307
precision, 435, 437–439, 441, 443, 444
prediction comparison, 437
prediction sum of squares, 443
reliability, 429
residuals, 438, 440
root mean square error, 430
selecting components, 433–436
sensitivity analysis, 434, 435
size-density trajectory, 185
statistical tests, 441
theoretical aspects, 435
validation

cross-validation, 443
data splitting, 443
double cross validation, 443

variable selection, 429
verification, 433–435

Model form, 102, 105, 147, 150, 163, 285,
359, 387, 417

potential-modifier, 322
Model implementation

input/output, 430–432
visualization, 432–433

Model resolution
functional, 234, 235

linked stand and size-class models, 234,
236

linking models of different resolution, 234
stand and tree-level models, 329

Modulus of elasticity (MOE), 408, 412, 413
Modulus of rupture (MOR), 408, 412, 413
MOE. See Modulus of elasticity (MOE)
Monte Carlo method, 435
MOR. See Modulus of rupture (MOR)
Mortality

individual tree, 189, 394
individual-tree-level equations, 330
irregular, 324–326
probability, 285
regular, 324
stand-level, 190
stand-level equations, 343
stochastic models, 91
tree-and stand-level factors, 189

MOSES model, 339

N
Net growth, 341
Nonlinear seemingly unrelated regression

(NSUR), 76–78, 282, 328
Nonparametric statistics, 277
Nonparametric tests, 441
Normal yield tables, 245
NSUR. See Nonlinear seemingly unrelated

regression (NSUR)

O
Ockham’s hill, 237, 238
ORGANON model, 421

P
Parameter estimation

annualization, 325, 326
best linear unbiased, 159
generalized algebraic difference approach,

151
generalized linear regression, 17, 32, 33,

45, 50, 137, 157
maximum likelihood estimates, 266
mixed effects models, 184
moment-based, 271, 273, 276, 277
nonparametric, 277
percentile, 261, 271–273
quantile regression, 183
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Parameter estimation (cont.)
regression, 25, 70, 71, 73, 75, 137, 155,

261, 280, 328, 438, 443
simultaneous equations, 267
systems of equations, 70, 253
unbiased, 34, 72, 132, 159

Parameterization, 150
Parameter prediction, 140, 261, 264–266, 273,

274, 276, 277, 279, 280, 291, 344
Parameter recovery, 262, 266–273, 276, 277,

279, 280, 291, 301, 303, 305, 306,
331, 332, 341, 344–346, 364, 380

Parsimony, 15, 75, 237–238
pdf. See Probability density function (pdf)
Plant indicators in forest productivity, 405
Plots

permanent, 104, 132–134, 166, 217, 226,
238–242, 300, 303, 326, 437

temporary, 133, 239–241, 245, 393
Polynomials, 14, 16, 17, 19, 25, 93, 95, 141,

142, 256, 410, 415
Precision, 26, 28, 29, 43, 58, 59, 135, 137, 210,

224, 228, 237, 239, 289, 301, 328,
331, 353, 436–439, 441, 443, 444

Probability density function (pdf), 235, 261,
265, 274, 277, 286, 287, 291, 301,
307, 342, 344

Process-based models, 2
Prognosis model, 324, 329, 331, 384, 386, 394
PTAEDA model, 378, 433, 436, 437

R
Regression

assumptions, 31, 34, 45–49, 71, 73, 86,
138, 273, 278, 291

autoregressive error structure, 153
effects of measurement errors, 134, 137
generalized least squares, 73, 76
logistic, 285, 353
logit, 62
log-transformation, 155
mixed-effects, 26, 32, 36, 157, 184
multicollinearity, 22, 26, 32, 33
nonlinear seemingly unrelated, 76–78, 282,

328
ordinary least squares, 252
quantile, 183
seemingly unrelated, 70, 73, 75–78, 252,

266, 273, 288, 328, 353
variance inflation factor, 33
weighted, 46, 48

Reineke’s self-thinning rule, 191
Relative growth rate (RGR), 100, 116, 119,

120, 146, 226, 254
Relative spacing, 180–181, 190, 203, 274, 276,

380, 411
Resolution

linking models of different, 366
spatial, 238, 330, 331
temporal, 329

Resource depletion, 228
Resource preemption, 228
Retransformation bias, 32–35
RGR. See Relative growth rate (RGR)
Ring width models, 413–415

thinning effects, 413
Root mean square error, 156, 278, 417
3/2 Rule of self thinning, 179–180,

189

S
Sampling design

edge effects, 222
plot size, 132

Sawing simulators
AUTOSAW, 422
SYLVER, 422

SDI. See Stand density index
Seemingly unrelated regression (SUR), 70,

73–75, 78, 100, 252, 266, 273, 288,
328, 353

Segmented taper functions, 12, 16, 19, 20
Self-thinning

boundary, 184, 189, 190
line, 181, 184, 187

3/2 Self-thinning rule, 190
Sensitivity, 329, 394, 434, 435

model, 329, 394, 434, 435
Sensitivity analysis, 434, 435
Shade tolerance, 358
Shrub form, 44
SILVA model, 218, 315–317
Silvicultural treatments

impact on specific gravity, 363, 369
impact on wood quality, 368
response functions

Pienaar and Rheney, 367
relative size-relative growth, 368
type 1, type 2, 367

response models for
fertilizer applications, 363, 376,

385–392
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genetic improvement, 363, 366, 368,
393–398

juvenile stands, 364–366
thinning, 363, 368–378
vegetation control, 363, 365, 368,

379–385
Simple taper functions, 12, 69
Single species stands, 312
Single-tree models, 2, 99, 112, 159, 214, 221
Site index

anamorphic equations, 138
base age, 133, 141, 142, 148, 150, 151,

154–156, 166, 358
base age invariant, 145, 148, 150, 151,

153–156, 166
dominant height-age, 273, 391, 392
estimation in uneven-aged stands, 339
generalized algebraic difference approach,

148–154
genetic effects, 393, 394, 396
guide curves, 133, 137–140
influence of silviculture, 421
instrumental variable estimation, 138
limitations, 394
polymorphic equations, 150
stem analysis, 134–137, 139–141, 151, 158

Site index data sources
permanent plots, 132–134
stem analysis

height correction methods, 134–136
selection of sample trees, 136–137

temporary plots, 133, 138, 139
Site index equations

age and height at index age, 140–141, 154
algebraic difference, 145–147
difference equations, 144–145
differential equations, 142–143
generalized algebraic difference, 148–149
generalized least squares, 160

serial correlation, 160, 161
mixed-effects models, 157–162, 167

calibration of, 161
population-averaged, 161–162
segmented models, 141–142
stochastic differential equations, 137, 143
subject-specific, 161–164
varying parameter, 158, 159, 163

Site quality (productivity)
direct measures, 131, 134
habitat type, 165, 166
indirect measures, 131
physiographic regions, 165, 166
site index, 131–134, 136–142
soils groups, 165

topographic features, 327
volume productivity, 131

Size-class models
cohort, 299, 307
diameter-class, 299, 304–308
even-aged stands, 299–308
matrix models, 308
percentile-based, 307–308
stand table projection

diameter growth incorporated,
302–307

distribution independent, 301–302
relative basal area, 300–301

uneven-aged stands, 308
Size-density

maximum, 177, 181–189
relationships

Hart, 177
Reineke, 177–179, 181, 185, 188–190,

196
Yoda, 177, 216

trajectory, 184–187, 190
Spacing, 62, 75, 94, 104, 167, 184, 186, 190,

203, 217, 226, 228, 242, 274, 276,
300, 313, 320, 328, 331, 363, 364,
380, 408, 409, 411, 412, 415, 416,
418

relative, 180–181
Spatial

autocorrelation, 32, 91, 329
coordinates, 235, 237, 238, 432
correlation, 91
distribution, 176, 228, 317
location, 93, 419
models, 331
pattern, 213, 223, 313, 317–320, 432
periodicities, 319
structure, 219, 222, 223, 317–319

Specific gravity
geographic variability, 412
models, 67, 68, 409, 410, 413
silvicultural impacts, 412

Spurr’s point density index, 225
Stand density

absolute, 175
concepts underlying, 196–197
effects on dominant height, 392
measures

basal area per unit area, 176–177
crown competition factor, 190–192,

194
Reineke’s stand density index,

177–178
relative spacing, 180–181
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Stand density (cont.)
3/2 rule of self-thinning, 179–180
tree-area ratio, 190–192
trees per unit area, 176

relative, 180, 191, 192, 421
Stand density index

free hand fitting, 181–182
frontier functions, 182–184
maximum, 189
mixed models, 184
reduced major axis regression, 182
Reineke’s, 177–179, 247
segmented models, 185–187
specific gravity weighted, 410
summation method, 187, 188

Stand structure generator, 319
Stand table projection

even-aged stands
change in relative basal area, 300–301
diameter growth incorporated, 302–307
distribution independent, 301–302

uneven-aged stands, 340, 346–347
Stand visualization (SVS), 317, 432, 433
Stand volume, 5, 6, 50, 233, 235, 247,

250–252, 258, 261, 307, 311, 329,
330, 340, 341, 381, 394, 395, 407,
421, 439

State-space models, 256–258
Statistical model, 70, 73, 76, 407, 435
Stem analysis, 55, 59, 112, 134–137, 139–141,

151, 158, 240
Stem diameter, 9, 11, 12, 22, 24, 26, 28–31,

34–37, 53, 55, 59, 66, 67, 124, 196,
197, 415

Stem quality assessment, 61–62
Stem taper functions, 9–24
Stem volume equations, 14, 30, 43–62
Stochastic

ARMA models, 92
components, 301, 328–329
differential equations, 137, 143
frontier models, 93, 183
models, 93
structure, 329
variation, 90–92, 317, 329

Stocking
average, 176–180, 188, 189, 191, 192, 197
full, 176, 180, 186, 193, 194
measures of, 190–192

STRUGEN. See Stand structure generator
Suppression index, 166, 217, 339, 370
SUR. See Seemingly unrelated regression

(SUR)
Survival function, 301–303, 373, 393

SVS. See Stand visualization (SVS)
SYLVER. See Sawing simulators
Symbols, 5, 6, 15, 16, 23, 28, 31, 33, 66, 138,

209, 210, 212, 217, 241, 414, 439
Systems of equations, 2, 30, 70, 253

T
Taper

functions (equations), 9–25, 29, 53–59, 67,
236, 271, 323, 377

implied, 14, 30, 53–55, 377
mixed-effects, 29, 32, 35–38
polynomial, 14, 16, 17, 19, 25
segmented, 12, 15–20, 25, 26, 28, 29, 31,

38, 55, 56, 59
simple, 12–16, 69
switching, 23, 24
trigonometric, 15, 23, 70
variable-exponent, 12, 20–24, 27, 28, 32,

33
Taper-volume compatible systems, 30–31
TAR. See Tree-area ratio (TAR)
TASS model, 423
Temporal

distribution, 387, 388
pattern, 388

Thinning effects on
basal area, 369–373
crown measures, 374–376
dominant height, 369
height-diameter, 374
product proportions, 377–378
stem profile, 376–377
survival, 373–374

Thinning response functions, 102, 103, 372,
374–376, 378, 414

TIPSY model, 396
Tolerance, shade, 358
Top height, 131–133, 136, 162, 165, 282, 370,

373
Total stem volume, 10, 27, 30, 44–51, 53–59,

377
Transition matrix models, 349
Tree

biomass, 1, 71–79
form, 4, 9–38, 43, 44, 59, 60, 69, 89
taper, 16, 35, 36, 55, 236, 255, 265, 280,

413
volume, 5, 13, 14, 30, 45–47, 49, 59, 60,

131, 179, 182, 193, 261, 266, 267,
312, 320, 364, 379, 443

weight, 4, 54, 65–79, 209
Tree-area ratio (TAR), 190–192
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Tree list, 236, 270, 271, 277, 300, 301, 330,
332, 390

Trees per ha. See Stand density

U
Uneven-aged stands, 5, 128, 175, 187, 191,

242, 265, 308, 339–359
Uneven-aged stands, growth and yield models

diameter distribution approach, 343–346
individual-tree models

distance dependent, 357–358
distance independent, 358–359

matrix models
Buongiorno and Michie model,

349–352
estimating transition probabilities, 353
FIBER model, 354–356
fractional time intervals, 353
generalized matrices, 349–357
Markov chain, 347–349
stand density, 353–354
transition probabilities related to, 347,

353–354
Usher matrices, 349

size-class models, 340, 346–357
whole-stand models

equations based on elapsed time,
340–341

with stand-table information, 341–343
Usher matrices, 348, 349

V
Variable-density yield tables, 245
Variable-exponent functions, 20–24, 27
Variable selection, 111, 151, 210, 279, 395,

396, 415, 440, 443, 444
Vegetation control, effects on

diameter distributions, 242, 365, 379, 380
growth, 242, 363, 365, 368, 379, 380
height-age, 241, 365, 379
height-diameter, 365
survival, 365
tree diameter, 365, 418
tree volume, 379

Vegetative competition

hardwood competition, 384
overstory vegetation, 384
understory vegetation, 384

Visualization
landscape, 429
stand, 317, 319, 432, 433

Volume
foliar, 97
irregular stems, 60–61
stand, 5, 6, 50, 233, 235, 247, 250–252,

258, 261, 307, 311, 329, 330, 340,
341, 381, 394, 395, 407, 421, 439

tree, 5, 13, 14, 30, 45–47, 49, 59, 60, 131,
179, 182, 193, 261, 266, 267, 312,
320, 364, 379, 443

Volume ratios equations, 51–54, 56–59

W
Weibull distributions, 263, 264, 270–273, 276,

277, 285, 289–291, 301–307, 313,
341, 343, 346, 364, 365, 379, 387

Weighting functions, 47, 77, 211
Weight ratio equations, 66, 70
Whole-stand models

Chapman-Richards equations, 248–249
compatible growth and yield equations

analytic compatibility, 249–250
numeric consistency, 250–252

empirical yield tables, 245
invariance, 251
mixed-effects models, 255–256
normal yield tables, 245
Schumacher equations, 247–248
simultaneous fitting, 252, 328
state-space, 256–258
systems of equations, 253
variable-density yield models, 247–249
yield equations, 247–252
yield tables, 245

Wood properties, variation in, 405, 412, 413
Wood quality, 5, 61, 62, 93, 94, 244, 405, 413,

415, 416, 420–422

Y
Yield projection, 288, 301
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