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Setting the Scene

J.L. Vincent

Introduction - What is the Cause of Death in Multiple Organ Failure?

Multiple organ failure (MOF) is a common cause of death in intensive care unit
(ICU) patients [1]. But what are the mechanisms underlying the development of
MOF? Why, when we can support many of the individual organs, e.g., the kidneys
with extracorporeal renal support, the lungs with mechanical ventilation, etc., do
we all too often end up withholding/withdrawing these life-supporting therapies
when we feel that there is no chance of recovery, or more precisely that the “multiple
organ failure” state has become irreversible.

Early therapyofpatientswith sepsis is associatedwith improvedoutcomes [2,3]
andworseningorgan functionearly in thecourseofdisease is associatedwithworse
outcomes. Lopes Ferreira et al. [4] reported that worsening organ dysfunction, as
assessed by an increasing sequential organ failure assessment (SOFA) score in
the first 48 hours was associated with a mortality rate of at least 50% regardless
of the baseline SOFA sore. More recently, we reviewed the time course of organ
failure in two placebo-controlled sepsis clinical trials with Eli-Lilly and Co [5]. We
found that improved cardiovascular, renal, or respiratory organ function within
the first 24 hours following development of sepsis-induced organ dysfunction was
associated with increased survival. Improved understanding of the mechanisms
underlying the development of organ dysfunction and MOF may enable us to de-
velop therapies targeted at preventing or limiting the early events associated with
later development of fatal organ dysfunction, and hence improve outcomes. In this
chapter, we will briefly explore some of the possible mechanisms involved in the
terminality and irreversibility of organ failure.

The Role of Tissue Hypoxia

The lack of oxygen availability to the cell is perhaps the most obvious cause of organ
failure, typically occurring in a patient with decreased blood flow as a result of ad-
vanced cardiovascular failure. Cells are able to withstand considerable reductions
in oxygen concentration, but with prolonged or severe hypoxia, mechanisms are
put into place to prevent oxygen depletion and to maintain cellular ATP levels and
avoid cell death [6]. Various strategies are employed including increasing glycolysis
to produce ATP and upregulating vascular endothelial growth factor (VEGF) which



2 J.L. Vincent

stimulates angiogenesis and hence oxygen delivery. Many of these mechanisms are
controlled by the transcription factor, hypoxia-inducible factor (HIF)-1α which
accumulates in hypoxia as its degradation is inhibited and its transcription is acti-
vated [7]. Activation of HIF during hypoxia results in the expression of glycolytic
enzymes, membrane glucose transporters, VEGF, and erythropoietin, and many
other genes involved in oxygen homeostasis and cell survival [7]. HIF-1 is also
involved in coordinating the immune response to bacterial infection with effects
on nitric oxide (NO) production and tumor necrosis factor (TNF)-α [8]. Although
the role of HIF-1 in hypoxia is now relatively well understood, the mechanisms by
which cells sense oxygen concentrations and the presence of hypoxia remain unde-
fined. Potential candidates include prolyl hydroxylases and the mitochondria [9].
Whatever the underlying mechanisms, hypoxia can have deleterious effects locally.
In the alveolar epithelium, for example, hypoxia impairs transepithelial sodium
and fluid transport, may increase apoptosis, and disturbs tight junctions [6].

The Role of Cellular Alterations

Hypoxia is not the only phenomenon involved in cell death and organ dysfunction.
Patients may die with normal or high cardiac output, normal or high mixed venous
oxygen saturation (SvO2), although admittedly these are surrogate measures of
local tissue hypoxia. Nevertheless, increased tissue oxygen tensions have been
found in animals and patients with sepsis [10,11], suggesting that the problem may
bewith theway inwhichcellsuseavailableoxygenrather than(or inaddition to) the
actual oxygen availability. Cellular hibernation may also play a role. Hibernation is
a process whereby cells down-regulate oxygen consumption, energy requirements,
and ATP demand, a potentially protective mechanism in hypoxia and ischemia,
which may become pathologic if the threat is prolonged. This has been shown to
occur in myocardial cells during hypoxia, ischemia and sepsis, and it is interesting
to speculate that hibernation may also occur in cells of other organs [12].

The Role of the Mitochondrion

The role of the mitochondrion has been debated for decades, and these cellular
‘power plants’ are now believed to play a central role in cell and organ damage
during various disease processes [13]. Mitochondrial oxidative phosphorylation
is responsible for over 90% of oxygen consumption and ATP generation [14], and
the respiratory chain is inhibited by reactive oxygen and nitrogen species that are
produced in large quantities in sepsis. Endotoxin injection in cats caused liver
mitochondrial injury with damage to the inner and outer mitochondrial mem-
branes [15]. In rats, intraperitoneal injection of endotoxin reduced diaphragm
mitochondrial oxygen consumption and selective components of the electron
transport chain, resulting in diminished electron flow, ATP formation and pro-
ton pumping [16]. The incubation of human umbilical vein endothelial cells in
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serum from patients with septic shock was associated with depressed mitochon-
drial respiration and reduced cellular ATP levels, effects which were attenuated by
pre-treatmentwithaNOsynthase (NOS) inhibitororablockerofpoly(ADP-ribose)
synthase [17]. In a clinical study, Brealey et al. [14] reported that mitochondrial
dysfunction in skeletal muscle was associated with increased shock severity and
mortality in patients with sepsis and MOF.

The Role of Necrosis and Apoptosis

Cells can die in one of two ways – necrosis or apoptosis. In necrosis, cells die
as the result of exposure to a physiological stress, with cellular swelling and dis-
integration – this has been termed cellular ‘murder’ as the cell is an unwilling
participant [18]. Apoptosis, or programmed cell death, on the other hand, has
been described as cell ‘suicide’ as the cell is actively involved in its own death [18].
Apoptosis can be physiologic or pathologic and occurs via two main pathways.
The first, the extrinsic pathway, is initiated by the activation of cell death receptors,
e.g., Fas and TNF receptors 1 and 2, which results in the activation of caspase
8, which activates other caspases, ultimately leading to the cleavage of DNA and
membrane lysis. The other pathway, the intrinsic pathway, involves the release of
pro-apoptotic substances from mitochondria, leading to the activation of caspase
3 [19]. Increased apoptosis has been demonstrated in lung, liver, spleen, kidney
and myocardium in animal models of septic or endotoxic shock [20, 21]. Human
serum from patients with septic shock can activate apoptosis in human cardiomy-
ocytes [22], and human studies of septic shock have suggested increased apoptosis
primarily in cells of the immune system although intestinal epithelial cells have also
been implicated [23, 24]. A number of factors can delay apoptosis, including the
pro-inflammatory cytokines interleukin (IL)-1, IL-8, TNF and interferon (IFN)-γ.

The Role of pH

The role of pH is complex. Although acidosis was long considered as harmful, work
in the seventies showed that it may, in fact, have more protective than detrimental
effects. Acidosis may occur as a result of increases in arterial PCO2 (respiratory
acidosis) or from a variety of organic or inorganic fixed acids (metabolic acido-
sis). Metabolic acidosis occurs wherever there is inadequate oxygen delivery to
support energy metabolism and the most vulnerable organs are those that have
the highest energy requirements, e.g., the brain and the kidney. Within organs,
different cell types will be affected differently by acidosis as they have different
energy requirements. Importantly, arterial pH may not reflect cellular pH, and
the underlying cause of the acidosis may be more important than the acidosis
itself [25]. Several studies have documented the effects of decreased extracellular
pH on the synthesis and release of inflammatory mediators, especially TNF and
NO [26, 27]. Because protein function is sensitive to the [H+] of its environment,
an increase in arterial [H+] might be expected to have important detrimental ef-
fects on a host of bodily functions [28]. Lowering the arterial pH has been shown
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to cause a decrease in cardiac contractility, and a decrease in the responsiveness
of adrenergic receptors to circulating catecholamines. Nevertheless, experimental
data suggest that acidosis can be protective; a low pH delays the onset of cell death
in isolated hepatocytes exposed to anoxia [29] and to chemical hypoxia [30], and
acidosis during reperfusion limits myocardial infarct size [31]. In addition, many
patients with acute respiratory distress syndrome (ARDS) or status asthmaticus
are now treated with permissive hypercapnia or hypercapnic acidosis, in which
hypercapnia and acidemia are tolerated to avoid alveolar overdistention, and this
therapy has been associated with a reduced 28-day mortality in patients with acute
lung injury (ALI) or ARDS [32].

Role of Oxygen Free Radicals

Oxygen free radicals have been widely studied and it is well established that they
can be very cytotoxic. Under normal physiological conditions, a homeostatic bal-
ance exists between the formation of reactive oxygen species and their removal by
endogenous antioxidant scavenging compounds. Oxidative stress occurs when this
balance is disrupted by excessive production of reactive oxygen species, including
superoxide, hydrogen peroxide and hydroxyl radicals, and/or by inadequate an-
tioxidative defences including superoxide dismutase (SOD), catalase, vitamins C
andE, and reducedglutathione (GSH) [33].Oxidative stress causesdamage toDNA,
cellular proteins, and lipids. It also affects cellular calcium metabolism. Uncon-
trolled rises in intracellular free calcium can result in cell injury or death. Damage
to DNA strands can occur directly by free radicals in close proximity to the DNA or
indirectly, for example, by impairing production of protein needed to repair DNA.
Free radicals can attack fatty acid side chains of intracellular membranes and
lipoproteins causing lipid peroxidation. The products of lipid peroxidation can
further damage membrane proteins, disrupting membrane integrity. In health,
a balance of the reduction and oxidation (redox) of free radicals is maintained
by endogenous antioxidant systems present extra- and intracellularly. Primary
antioxidants prevent oxygen radical formation, whether by removing free radical
precursors or by inhibiting catalysts, e.g., glutathione peroxidase and catalase. Sec-
ondary antioxidants react with reactive oxygen species which have already been
formed, either to remove or inhibit them, e.g., vitamins C and E [33]. Anti-oxidant
therapies have been proposed as treatment for a wide variety of diseases and con-
ditions associated with cell death and organ dysfunction, from aging to arthritis to
Alzheimer’s disease, but despite the harmful effects of oxygen free radicals, they are
an important component of mitochondrial respiration, prostaglandin production,
and host defence. It is possible that excessive anti-oxidant administration may have
negative effects. Clinical trials of various antioxidants, including N-acetylcysteine,
in sepsis have given conflicting results but none has been associated with in-
creased survival [34, 35]. The precise role of anti-oxidant therapies thus remains
undetermined.
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The Role of Nitric Oxide

The place of NO in cellular death and organ dysfunction is very complex! NO
has many molecular targets and can have both beneficial and detrimental effects
on many organ systems in sepsis [36]. Many of the effects of NO are mediated
by the activation of guanylyl cyclase, resulting in the formation of guanosine
monophosphate (cGMP). The reaction of NO with oxygen or superoxide can result
in the formation of reactive nitrogen and oxygen species that can damage the cells.
Particularly important is the reaction of NO with the superoxide ion, generating
peroxynitrite, that can damage cell DNA, although NO may also protect cells from
oxidative damage by scavenging oxygen free radicals and inhibiting oxygen free
radical production [37].

The Role of Carbon Monoxide

Carbon monoxide and NO share a number of common characteristics, includ-
ing involvement in vasodilation, bronchodilation, and platelet anti-aggregating
effects [38]. Like NO, carbon monoxide binds to the heme moieties of hemopro-
teins, and at high concentrations induces tissue hypoxia. Some activities of carbon
monoxide are mediated by cGMP, while others involve mitogen-activated protein
kinase (MAPK) and other undefined pathways. Carbon monoxide possesses anti-
inflammatory actions including the down-regulation of TNF, IL-1 and IL-6, and
augmentation of IL-10 [39]. Carbon monoxide is produced in the body from heme
degradation catalyzed by heme oxygenases (HO). HO-1 activity is increased by
lipopolysaccharide (LPS) [40]. In animal models of ALI/ARDS [41] and in patients
with ARDS, HO-1 levels were raised in bronchoalveolar lavage fluid and lung
biopsy tissue [42]. HO-1 has been shown to have anti-inflammatory, antiapop-
totic, and antiproliferative effects, with salutary effects in diseases as diverse as
atherosclerosis and sepsis [43]. HO-1 and its major downstream product, carbon
monoxide, are generally believed to have primarily cytoprotective effects [44]: Rats
exposed to hyperoxia in the presence of a low concentration of carbon monoxide
(250 ppm) exhibit less lung injury than control rats exposed to oxygen alone [45];
in mice, carbon monoxide protects against ischemic lung injury [46]; in mouse-
to-rat cardiac transplants exogenous carbon monoxide suppressed graft rejection,
associated with inhibition of platelet aggregation, thrombosis, myocardial infarc-
tion, and apoptosis [47]; and carbon monoxide pretreatment in a pig model of
LPS-induced ALI improved the derangement in pulmonary gas exchange, reduced
the development of disseminated intravascular coagulation (DIC) and completely
suppressed serum levels of IL-1, while augmenting the anti-inflammatory cytokine
IL-10, and blunted the deterioration of kidney and liver function [48]. However,
given the known toxic effects of higher doses of carbon monoxide further research
is needed before carbon monoxide moves into the clinical arena.
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Other Pathways

There are multiple other potential pathways involved in the cellular alterations
that lead to organ dysfunction, many of which remain to be discovered. Some ex-
amples include: leptin with reduced leptin levels contributing to a decreased host
response [49]; bombesin/gastrin-releasing peptide (GRP), which is secreted by
activated macrophages and may be involved in the control of central nervous sys-
tem and gastrointestinal system functions, cancer growth and immune cell regula-
tion [50]; and glycogen synthase kinase (GSK)-3, a serine-threonine protein kinase,
inhibition of which attenuated the renal dysfunction, hepatocellular injury, pan-
creatic injury and neuromuscular injury induced by endotoxemia in the rat [51].

Immune Dysregulation

Cytokines like TNF are essential to protect ourselves from microbial invasion,
but at the same time can be the cause of organ damage. TNF administration in
animals can reproduce all the elements of MOF, with shock, ARDS, coagulation
abnormalities, etc. [52]. The roles of some cytokines, e.g., TNF and IL-1, have been
well demonstrated as promoting the inflammatory response. However, almost in
parallel with the surge of pro-inflammatory mediators, there is a rise in anti-
inflammatory substances, e.g., IL-10, the result being a state of immunoparalysis
(or ‘monocyte hyporesponsiveness’) [53]. During sepsis, monocyte/macrophage
desensitization may result from depletion of protein kinase Cα [54].

Apart from the key cytokines, multiple other mediators and cells play a role
in the immune dysregulation that leads to organ dysfunction. For example, trans-
forming growth factor (TGF)-β plays an important role in the development
of ALI [55]. Other mediators are released later, like high mobility group box
1 (HMGB1) and macrophage migration inhibitory factor (MIF) [56, 57]. The neu-
trophil is an important cell, playing a critical role in host defence, but also releas-
ing a number of toxic products including reactive oxygen species, proteases, and
eicosanoids [58].

As techniques become available that can assess and monitor the immune status
better, the effects of immune dysregulation on organ function and outcomes will
become clearer.

The Role of Fever

Although attempts are often made to reduce fever, fever may be protective. In
a mouse model of Gram-negative pneumonia, fever was associated with increased
neutrophil accumulation, pro-inflammatory cytokine release, and pulmonary en-
dothelial and epithelial injury [59]. Antipyretic therapy may contribute to worse
outcomes, with Schulman et al. [60] suggesting an increased risk of infections and
increased mortality rates in trauma patients treated to maintain body temperature
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less than 38.5 ◦C as compared to those in whom anti-pyretic treatment was not ini-
tiated until a temperature of 40 ◦C. Hypothermia may increase the risk of infection
with subsequent organ dysfunction, and this may account for the disappointing
results of induced hypothermia in severe head trauma [61].

Influence of Organ Systems

The Role of the Endothelium

The endothelium is a vast organ lining all the organs and may, therefore, represent
a link to account for the development of MOF. Endothelial cells are involved in
a range of vascular activities including vasoconstriction and vasodilation, throm-
bosis and fibrinolysis, atherosclerosis, angiogenesis, and inflammation. Damage
to the pulmonary vascular endothelium occurs in patients with ARDS [62] and
endothelial damage has been implicated in many other disease processes leading
to organ dysfunction, although the mechanisms underlying these alterations are
still largely undefined. Microvascular abnormalities have been well described in
sepsis with reduced vessel density and fewer perfused small vessels [63]. Insuf-
ficient availability of sphingosine 1-phosphate, a potent barrier enhancing lipid
produced by numerous cell types including platelets, can participate in alterations
in vascular permeability leading to vascular leakage and compromised endothe-
lial integrity [64]. The availability of growth factors is very important to normal
endothelial function, and decreased availability of VEGF may contribute to cap-
illary leak syndrome, even though its overexpression may be deleterious [65].
The release of endothelial progenitor cells, involved in the repair of damaged
vasculature, into the circulation is associated with improved survival in patients
with ALI [66]. Angiotensin may also play a role in endothelial dysfunction [67],
and adrenomedullin may help stabilize endothelial barrier function [68]. Mark-
ers like endocan (endothelial cell specific molecule-1) are associated with dis-
ease severity in sepsis, and may be useful in monitoring endothelial dysfunc-
tion [69].

The Role of Coagulation Abnormalities

Many patients with organ failure develop coagulation abnormalities secondary to
DIC. Teleogically, this reaction aims at reducing the spread of an infection. Co-
agulation abnormalities are related to the development of organ failure and the
severity of organ dysfunction [70]. The mechanisms underlying this again remain
largely unknown, although microvascular thrombosis has been suggested to play
a role. Thrombin, levels of which are increased in sepsis, can impair alveolar fluid
clearance and increase endothelial permeability [71]. A number of studies have
documented a complex interplay between the coagulation response and the inflam-
matory response, hence the suggestion that anti-coagulation may limit the severity
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of organ failure. Studies have shown the beneficial effects of activated protein C
(APC, drotrecogin alfa [activated]) [72], but these have not been demonstrated
conclusively for antithrombin [73] or tissue factor pathway inhibitor (TFPI) [74].
Further investigation reveals that even though these three agents are all natural
anti-coagulants, they have different modes of action. The mode of action of APC is
very complex, largely mediated by the endothelial PC receptor (EPCR) [75]. Recent
studies have even suggested that APC derivatives may be developed that keep the
beneficial cytoprotective effects but have a reduced anticoagulant action [76].

The Role of the Epithelium

The epithelium also plays an important role in the pathophysiology of lung injury
and other disease processes [77]. Derangements in the formation or function of
tight junctions in epithelial cells may be a key factor leading to lung, liver, gut, and
perhaps kidney dysfunction in conditions such as sepsis and ALI [78]. Epithelial
apoptosis may also play an important role [79].

The Role of the Gut

While the gut has long been proposed as the motor of organ failure [80], this
remains a hypothesis, although splanchnic hypoperfusion may contribute to im-
munosuppression [81]. Many studies have focused on the role of vasoactive agents
on the distribution of blood flow [82], but the clinical implications of these findings
are still questionable. Perhaps the most compelling evidence supporting the gut
theory is the protective effects of selective digestive decontamination (SDD) [83].

The Role of the Brain

Much is mediated by the brain and nervous systems, and brain death can induce
profound disturbances in endocrine function and an intense inflammatory re-
action [84]. Brain injury may alter bone metabolism following trauma [85] and
massive head trauma can also exacerbate lung injury [86]. Neuroimmunological
pathways have recently been identified, which may be influenced by nutrition [87].

The Role of the Endocrine System

The importance of relative adrenal insufficiency has been underlined recently [88],
as has the role of hyperglycemia [89]. Acute, even transient, hyperglycemia can
significantly alter innate immunity and result in immunosuppressive effects [90].
Exposure to glucose-rich solutions has been associated with increased neutrophil
apoptosis although this may have been due to the increased osmolarity [91]. Hy-
perglycemia can increase the expression of adhesion molecules on leukocytes as
well as on endothelial cells [92], and may also contribute to permeability alter-
ations by increasing endothelial glycocalyx permeability [93]. Van den Berghe and
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colleagues recently showed that tight blood sugar control can provide endothe-
lial protection and limit hepatic mitochondrial damage [94,95]. Insulin itself may
have anti-inflammatory effects, by inhibition of nuclear-factor-kappa B (NF-κB)
and stimulation of inhibitor kappa B (I-κB) [96]. Insulin can also increase high-
density lipoproteins (HDL).

Interorgan Interplay

We have discussed these organ systems separately, but clearly complex interac-
tions exist between organs. For example, endotoxin-induced lung injury requires
interaction with the liver. In an experimental piglet preparation, Siore et al. noted
that endotoxemia caused pulmonary vasoconstriction and neutrophil sequestra-
tion but not lung injury in isolated lungs; for cytokine release, oxidant stress and
lung injury to occur, the presence of the liver was necessary [97].

Therapeutic Interventions – the Iatrogenic Component

Various interventions that have been used in intensive care medicine have, in fact,
been found to have negative effects in some patients (Table 1). For example, ther-
apies instituted with the intent of raising oxygen delivery (DO2) to supranormal
levels may have had deleterious effects [98]. Mechanical ventilation with exces-
sive tidal volumes may result in harmful effects not only on the lungs [99] but
also on other organs, by the release of pro-inflammatory mediators [100]. Me-
chanical ventilation per se may promote bacterial growth [101]. Inotropic agents
with beta-adrenergic properties can have immunosuppressive effects, and, like-
wise, anesthetic and sedative agents may influence a patient’s immunity [102].
Propofol, a commonly used sedative agent, may have anti-inflammatory effects,
anti-arrhythmic drugs may have pro-arrhythmic effects, and diuretics may alter
renal function [103].

Table 1. Some potentially iatrogenic effects and their mechanisms

Potentially iatrogenic effect Mechanism

Excessive tidal volumes Pro-inflammatory effects on the lung and remote organs
Excessive use of inotropic agents Excessive increase incardiacwork, immunosuppressiveeffects
Parenteral nutrition Hyperglycemia, risk of infections
Excessive sedation Prolonged alteration in consciousness, immunosuppression
Antipyretic agents Decreased immune response
Blood transfusions Errors, immunomodulation
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Conclusion

The mechanisms underlying MOF are complex and intertwined. Cellular alter-
ations combine with immune dysregulation and individual organ factors to pro-
duce tissue dysfunction and death. What or if there is a final common element in
this process remains to be determined. In addition, all these factors are influenced
by genetic factors, with increased risks of developing disease and associated or-
gan dysfunction dependent in part on genetic makeup. The pre-existing degree
of inflammatory stimulation may also influence the development of sepsis [104].
Clearly there is much we do not know about how the various mechanisms are
triggered and then work together to their MOF endpoint, but new insights and
inroads are being made on an almost daily basis. With these developments comes
the exciting challenge of converting the science into clinical strategies that can
assist in preventing or reversing organ dysfunction.
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Genetics and Severe Sepsis

J. Texereau, V. Lemiale, and J.-P. Mira

Introduction

Despite significant advances in understanding the molecular basis of host-
pathogen relationships and associated immunological responses, severe sepsis
remain a problem world-wide, associated with multiple organ dysfunctions and
elevated mortality [1]. Annually, more than 100,000 people in the USA die from
septic shock, the most severe form of sepsis, which thereby represents the most
common cause of death in the intensive care unit (ICU). Morbidity and mortality of
severe sepsis are usually ascribed to incorrect or delayed diagnosis, inadequate an-
timicrobial therapy and underlying illnesses [2,3]. More recently, the host-specific
immune response has been shown to be another important determinant of out-
come of infectious diseases [4]. Genetically-determined differences in immune
responses might explain why some people get sick and die when they encounter
a pathogen whereas others stay perfectly healthy. The aim of this chapter is to
review current knowledge regarding genetic variability associated with increased
susceptibility to severe sepsiswithemphasisonselectedpolymorphismsassociated
with a poor outcome. More extensive reviews have been recently published [4–9].

Rationale for Genetics in Sepsis and Infectious Diseases

The influence of genetic factors in determining susceptibility and resistance to
severe infectious diseases has long been suspected. Numerous reports in animal
models, ethnic groups, familial cases, twin and adoptee studies have definitively
proved the importance of genetics in severe infections [10].

The use of animal models, which mimic human severe sepsis, is important
in elucidating the molecular mechanisms of sepsis. Genetic factors differentiate
inbred strains, and epigenetic factors elicit variations within a strain. In this re-
gard, the prevalence of genetic strain differences, contributing to susceptibility to
microbial infections has been well recognized in rodents. These models, essentially
mice, are genetically well defined and may be easily genetically-modified (using
genetically-engineered strains such as knock-outs) to demonstrate the physiolog-
ical importance of a suspected gene [4,11,12]. The interest in studies of mice lies in
the fact that nearly all of the murine genes involved in the response to sepsis have
human homologs. Analysis of susceptibility to certain infectious diseases in mice
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has led to the mapping and identification of candidate genes for human studies.
Hence, some groups have shown that Toll-like receptor 2 (TLR2) knock-out mice
do not respond to Staphylococcus aureus infection. After bacterial challenge, these
mice have decreased production of cytokines, increased concentration of bacteria
in blood and kidneys, and a higher mortality rate than wild-type mice [13,14]. Sim-
ilarly, when infected by Mycobacterium tuberculosis, TLR2 knock-out mice have
deficient bacterial clearance and develop chronic pneumonia [15]. Interestingly,
similar susceptibility to S. aureus infection and tuberculosis have been reported
in human populations carrying TLR2 polymorphisms [16–20]. Identification of
the effects in such human states validates the use of murine knockout models to
identify key pathways controlling predisposition to infection.

Studies in twins have also provided arguments for ‘genetically programmed’
susceptibility to infection, when homozygous twins who have the same genome
are compared with heterozygous twins who are genetically different. Such studies
clearly demonstrate that, in case of infection of the first twin, the risk for the second
one to be infected by the same pathogen was higher for homozygous pairs versus
heterozygous pairs [21–23].

Estimates of genetic predisposition, independent of environmental effects,
have been obtained also from adoptee studies. Sorensen et al. [24] reported a large
study of etiologies of premature death in 1,000 families with children adopted
early in life. Adoptees with a biological parent who died before the age of 50 from
an infectious disease had a 5.8-fold increase in the relative risk of dying from an
infection. In contrast, the death of an adoptive parent from an infectious cause
had no significant effect on the adoptee’s risk of such a death, clearly indicating
that host genetic factors are major determinants of susceptibility to infectious
diseases [24].

Genetic Predisposition to Severe Sepsis:
Mendelian or Non-Mendelian Genetics?

Genetic predisposition to severe sepsis may be either a monogenic or a complex
multifactorial disorder.

Single Gene Defects

In monogenic diseases, mutation in a single gene is necessary and sufficient to
produce the clinical phenotype. More than 100 rare major genetic defects of the
immune system have been identified [25–31]. They are most commonly associated
with unusual and recurrent bacterial infections detected in childhood. Recent
genetic defects have been shown to be responsible for lethal tuberculosis or severe
bacterial infections [27]. Thus, predisposition to rare and atypical mycobacteria
(M. cheloniae, M. fortuitum, M. avis) or disseminated Bacille Calmette-Guerin
(BCG) vaccine infections have been described in children that lack either chain of
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interferon-gamma (IFN-γ) IFN-γ receptor or the interleukin (IL)-12 receptor [32].
Single gene defects provide valuable insights into the molecular and cellular basis
of host immunity against specific pathogens.

Even a single mutated locus may generate a large spectrum of phenotypes in
terms of disease severity. Cystic fibrosis is a classical example of such a monogenic
trait with more than 1,000 identified mutations in the cystic fibrosis transmem-
brane conductance regulator (CFTR) gene [33]. Each of these mutations has been
associated with the development of clinical signs of cystic fibrosis, but large varia-
tions in the severity of the phenotype exist for each genotype. Indeed, modifying
the effects of other genes may result in marked variations in the symptoms of
patients with the same disease [34].

Complex Multifactorial Disorders

Common diseases, such as diabetes, asthma or hypertension, are thought to result
from a combination of diverse genetic and environmental factors [35]. Genetic
predisposition to severe sepsis is also considered to be a non-Mendelian disease
[10]. These complex diseases differ dramatically from illnesses associated with
single-gene defects. The complexity of common diseases results from the fact that
penetrance (the frequency at which a genotype gives rise to a disease) is highly
variable. Hence, even if an identical twin has a multi-factorial disease, the second
twin may not develop the trait.

Additional definitions are necessary to understand the molecular basis of ge-
netic predisposition to severe sepsis. A polymorphism is a region of the genome that
varies between individual members of a population and is present in more than
1% of the population. A single nucleotide polymorphism (SNP) is a polymorphism
caused by the change of a single nucleotide. The difference may be an inversion (G
to C or A to T), a transition (G/C to A/T or inverse), an insertion or a deletion of
one base. Most genetic variations between individual humans are believed to be
due to SNPs, but other variants are important, such as duplicate genes or repeat
DNA sequences. Humans carry two sets of chromosomes, one from each parent.
Equivalent genes in the two sets might be different, because of SNPs or other
polymorphisms. An allele is one of the two (or more) forms of a particular gene.
A particular combination of alleles or sequence variations that are closely linked
on the same chromosome is named haplotype.

Complex diseases, such as sepsis, are characteristically caused by interacting
genetic and environmental determinants. To identify genes that might confer
susceptibility or resistance to severe sepsis, different approaches may be used
depending on historical evidence, ease of recruiting study populations, and cost
of genotyping [36]. Currently, most studies in the field of sepsis are association
genetic studies. These involve a binary disease trait (such as development of septic
shock, acute respiratory distress syndrome [ARDS], multiple organ failure [MOF],
or mortality) and a functional gene with two alleles. They require an adequate
number of unrelated individuals to have been typed for the gene of interest and
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classed as having, or not having, the trait and have to fulfill all recommended
criteria from published guidelines [37, 38].

The validity of genetic association studies relies on basic rules [39]. Studied
populations have to be homogeneous: allele frequencies and frequency-dependent
measures like linkage disequilibrium can only be estimated accurately from prop-
erly identified and sampled populations. Control groups should be in Hardy-
Weinberg equilibrium. Sample design is crucial and an adequate study size and
study power are also necessary to exclude false conclusions. Definition of the phe-
notype is a key issue in the design of any genetic study whose goal is to detect
gene(s) involved in thecourseof thedisease.Forexample, selectingmoreseverely ill
septic patients without significant comorbidities may help to identify the candidate
genes responsible for septic shock. Inclusion of patients with severe co-morbidities
or who received treatment that can contribute to mortality, such as inappropriate
antibiotics, can lead to false negative studies. Despite these limitations, association
study design is simple and provides high power to detect common genetic vari-
ants that confer susceptibility to sepsis. However, interpretation of their results is
complex (Table 1).

Table 1. Interpretations of genetic association studies

1) Significant association:
a) True positive association

Variant is causal
Variant is in linkage disequilibrium with causal variant

b) False positive association
False positive due to multiple testing
False positive due to systematic genotyping error
False positive due to population stratification or other confounder

2) Reasons for lack of replication
a) Original report is a false positive
b) False negative

Phenotypes differ across studies
Study populations differ in genetic or environmental background
Replication study is under powered

Genetic Polymorphisms in Severe Sepsis and Septic Shock

Antimicrobial host defense is a complex process that relies both on innate and
adaptive components [40, 41]. The generation of a large repertoire of antigen-
recognition receptors and immune memory, hallmarks of acquired immunity,
depends on the presence of an efficient innate immunity. Hence, innate immunity
represents the first-line of host defense necessary to limit infection in the early
hours after pathogen invasion and controls adaptive immune responses. Early
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protection against microorganisms involves three mechanisms: 1) recognition of
the pathogen; 2) phagocytosis and elimination of invading microorganisms; and
3) development of an inflammatory response necessary for resolution of the infec-
tion. Each step of this immune reaction may be affected by gene polymorphisms
of individual components of the immune system which lead to susceptibility or
resistance to infection and have been associated with organ failure and/or risk of
death [42].

Gene Polymorphisms Altering Pathogen Recognition (Table 2)

Table 2. Gene polymorphisms modifying pathogen recognition receptors

Gene Polymorphisms Type of Infection

MBL Codon 52, 54, 57 Respiratory infections, meningococcal disease, pneumococcal
disease, sepsis in ICU

Fc-γRIIA H131R Meningococcal disease, pneumococcal disease, SARS infection,
cerebral malaria

CD14 C159T Septic shock
TLR5 Legionnaire’s disease
TLR4 D299G Gram negative sepsis, malaria
TLR2 R753Q Gram positive sepsis, Borrelia sepsis, tuberculosis, Leprosy
CCR5 CCR5-∆32 HIV-1 ‘resistance’

Throughout evolution, innate immunity has developed a very efficient system that
recognizes invariant molecular constituents of infectious agents called pathogen-
associated molecular patterns (PAMPs) [40]. This system of detection is currently
referred to as pattern recognition receptors (PRR) and can be divided into three
classes: 1) soluble receptors, such as mannose binding lectin (MBL) and the com-
ponents of the complement system; 2) endocytic receptors, such as Fcγ receptors
and scavenger receptors (including MARCO and DC-SIGN); and 3) and signaling
receptors such as TLR and nucleotide-binding oligomerization domain (NOD)
receptors. Almost all of these receptors have functional polymorphisms that have
beenassociatedwith increasedsusceptibility tosevere infectionsprimarily through
decreased clearance of pathogens. However, only MBL and CD14 variants are po-
tentially associated with the severity of, and mortality from, septic shock.

Mannose Binding Lectin

MBL is a member of the collectin family of proteins. This calcium-dependent
plasma lectin binds to sugars and possibly endotoxin on microbial surfaces, and
then activates complement, acting as a so-called ante-antibody [9]. MBL can also
directlyact asanopsoninandbind tospecific receptorsexpressedonthecell surface
of various cell types, including monocytes, thereby potentiating TLR responses.
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Thus, MBL clearly appears to be a pluripotent molecule of the innate immune
system.

For maximal efficacy, proteins of the innate immune system have to be present
at physiologically significant levels. The concentrations of MBL in human plasma
are genetically determined and are profoundly reduced by either structural gene
mutations or by promoter gene polymorphisms [43]. Three different alleles, result-
ing in structurally variant proteins, have been identified in codons 52, 54 and 57 of
the exon 1 of the MBL gene. Structural variants within the MBL gene are common,
with frequencies ranging between 0.11 and 0.29, and reduce complement activation
independent of the MBL plasma level. Whereas MBL deficiencies can be explained
by these three mutations, these structural gene mutations do not explain why MBL
serum levels vary so widely between individuals. Genetic variations have also been
detected in the promoter region of the MBL gene. These variations have been re-
ported to control the plasma levels of structurally normal MBL [43]. In particular,
G to C inversions at position −550 or −221 in the promoter region are associated
with varying expression levels of MBL. Furthermore, these SNPs are always linked
with the structural variants in most populations creating relevant haplotypes. As
an example, the median serum concentrations of MBL for Caucasians were found
to be 1,630 ng/ml for wild-type genotype; 358 ng/ml in patients heterozygous for
the codon 54 mutation; and 10 ng/ml in patients homozygous for the codon 54
mutation.

A large number of studies have attempted to define the role of MBL in predis-
posing to severe infection [9]. Hibberd et al. reported a large cohort of patients with
meningococcal disease admitted to a pediatric ICU and a second cohort of chil-
dren who had survived meningococcal disease in the UK [44]. Both studies showed
a clear association between MBL polymorphisms and susceptibility to meningo-
coccal disease, with an odds ratio (OR) of 6.5 for the homozygous patients in the
hospital study and of 4.5 in the national study. Heterozygous patients were also
at increased risk of meningococcal infection, but to a lesser degree since the OR
ranged from 1.7 in the hospital study to 2.2 in the national study. Using the popu-
lation attributable fraction assessment, it is possible to calculate that gene variants
could account for as many as a third of meningococcal disease cases. Similarly in
the UK, adult patients homozygous for MBL structural variants, who represent
about 5% of northern Europeans and North Americans, have a substantially in-
creased risk of developing invasive pneumococcal disease [45]. Furthermore, in
272 prospectively monitored critically ill patients with systemic inflammatory re-
sponse syndrome (SIRS), the presence of MBL variant alleles was associated with
the development of sepsis, severe sepsis, and septic shock. An increased risk of fatal
outcome was observed in patients carrying variant alleles [46]. All these data show
that genetic variants contributing to inadequate MBL levels play an important role
in the susceptibility of critically ill patients to the development and progression of
severe sepsis and confer a substantial risk of fatal outcome.
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Fcγ Receptor Polymorphism and Encapsulated Bacteria Infections

Antibodies, antibody receptors, and complement are essential components in de-
fense against invasive encapsulated bacteria (S. pneumoniae, Haemophilus influen-
zae, Neisseria meningitidis). Fcγ receptors are located on the phagocytic cell sur-
face, bind the Fc region of IgG, and mediate binding, phagocytosis, and destruction
of bacteria opsonized with IgG. Certain genetically determined variations of IgG
receptors on neutrophils (FcγIIa, FcγIIIb) as well as monocytes and macrophages
(FcγIIa, FcγIIIa) are associated with reduced binding of antibodies and an in-
creased risk of bacteremia and meningitis. In a study of 50 surviving meningo-
coccal disease patients, 183 first-degree relatives of patients with meningococcal
disease, and 239 healthy controls, the combination of low affinity polymorphisms
of FcγIIa, FcγIIIa, and FcγIIIb was present significantly more often in relatives of
patients than in the healthy control group [47]. Moreover, the distribution of FcγIIa
and FcγIIIa differed between patients presenting with sepsis and those presenting
with meningitis.

LPS Complex Receptor

Lipopolysaccharide (LPS) recognition by TLR4 on the cell surface is achieved in co-
operation with several protein components, including LPS-binding protein (LBP),
CD14, and MD-2, and leads to the activation of nuclear transcription factors, such
as nuclear factor-kappa B (NF-κB) [40]. Modulation of cytokine expression as
a result of the initial host–microbial interaction is important in the pathophysi-
ology of sepsis. TLR4, CD14, and MD-2 have been reported to have polymorphic
sites associated with altered functioning of the LPS receptor complex and with
susceptibility to severe sepsis [27, 48].

In 2000, Arbour et al. identified two polymorphisms of the TLR4 gene
(Asp299Gly and Thr399Ile), associated with hyporesponsivness to inhaled LPS in
humans [49]. In 2002, Lorenz and colleagues studied the association between these
two mutations and the outcome of patients with septic shock. First, these authors
genotyped 91 patients with septic shock and 73 healthy controls. They found that
the TLR4 Asp299Gly allele was present exclusively in patients with septic shock and
also that patients with the TLR4 Asp299Gly/Thr399Ile co-mutation had a higher
prevalence of Gram-negative infections [50]. Other studies have confirmed this
result and shown that these variants are associated with mortality in SIRS [51].
Interestingly, these two frequent SNPs showed no association with susceptibility
to, or severity of, meningococcal disease, although rare TLR4 mutations have been
implicated in meningococcal susceptibility [52]. Despite these reports and the cen-
tral role played by TLR4 in the development of Gram-negative sepsis, additional
controlled studies, with increased numbers of patients are required to determine
whether TLR4 SNPs are associated with risk or severity of Gram-negative sepsis.

The CD14 gene contains a promoter polymorphism (–159C/T) that has been
reported to modulate both the density of CD14 expression on the membrane of
monocytes and circulating levels of soluble CD14. CD14-159C/T polymorphisms
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have been reported to be associated with susceptibility to septic shock and with
the mortality rate from this condition [53–55]. However, evidence against this
association has been found in trauma patients with severe sepsis as a secondary
complication [56]. As mentioned above, the disparity in the results from these
studies may be due to study differences, including the number of patients analyzed,
the types of patients included (trauma, pneumonia, surgery), and heterogeneity
in the patient populations (ethnicity or co-morbidities).

Gene Polymorphisms Modifying the Inflammatory Immune Response

The inflammatory reaction is an essential component of host defense mechanisms.
Inflammation is tightly regulated by mediators that initiate and maintain the in-
flammatory process as well as others required for its resolution [57]. Cytokines
are key protein regulators of inflammation. These small proteins, with molecu-
lar weights ranging from 8 to 40 kDa, are primarily involved in host response
to infection and inflammation. Cytokines initiate and orchestrate immune re-
actions as local and/or systemic intercellular regulatory factors. Within minutes
of an infectious challenge, pro-inflammatory cytokines, such as tumor necro-
sis factor (TNF)-α, IL-1, and IL-6, are secreted leading to strong activation of
monocytes, chemokine-recruited polymorphonuclear cells, and endothelial cells.
This initial pro-inflammatory state is followed by release of anti-inflammatory
cytokines, such as IL-10, and inhibitory proteins, such as IL-1 receptor antagonist
(IL-1ra), which are able to suppress the expression or actions of pro-inflammatory
cytokines, chemokines, or adhesion molecules. Both pro-inflammatory and anti-
inflammatory cytokines co-exist in infected sites and in the bloodstream in
markedly increased amounts. Their relative concentrations correlate with the
severity and the outcome of septic shock [40, 57, 58].

In humans, most cytokine genes are polymorphic and there is increasing
evidence that the host’s cytokine production is genetically determined [59]. Since
most cytokines are not expressed spontaneously and have to be synthesized de
novo in response to pathogens, functional promoter variants of their genes can
have dramatic consequences. Hence, genetic variability of cytokines underlies the
complexity of interindividual differences in the immune response to microbial
invasion.

Pro-inflammatory Cytokines: TNF-α

TNF-α is a pro-inflammatory cytokine with a central role in many inflammatory
diseases, including severe sepsis and septic shock. TNF may be produced by many
different cell types and is one of the first mediators to appear in response to
a diverse range of infectious stimuli. Once secreted, TNF-α elicits a wide spectrum
of immune and inflammatory responses responsible for fever, shock, and tissue
injury, and induces the release of additional inflammatory mediators, including
other cytokines, nitric oxide (NO), and free oxygen radicals, and up-regulates
adhesion molecule expression. Neutralization of TNF production by anti-TNF
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antibodies or in TNF-knock-out mice has been associated with increased mortality
in several models of infection, demonstrating that TNF is a critical mediator of host
defense against infection [60]. However, TNF may cause severe pathology when
produced in excess. In vivo injection of TNF produces clinical manifestations
mimicking those observed after injection of bacteria. Hemodynamic disturbances
and mortality have been shown to be correlated with TNF plasma levels. Hence,
excessive production of TNF may be associated with tissue injury, shock, and death
due to an imbalance between pro-inflammatory and anti-inflammatory cytokines.

Given TNF’s role as a central element in the host defense response, its pro-
duction has to be tightly regulated to preserve cellular homeostasis. Interestingly,
marked inter-individual variability in TNF production in response to different
stimuli has been reported in healthy subjects. Since the TNF response to infection
is partly regulated at the transcriptional level, TNF promoter polymorphisms have
been the subject of intense research and are probably the most extensively studied
of all cytokines involved in sepsis pathophysiology (more than 25 publications).

Two polymorphisms in the TNF-α locus have been linked to variability in TNF
production. The first TNF-α polymorphism consists of a G (called TNF1) to A
(called TNF2) 308 base pairs upstream from the transcriptional start of TNFA.
TNF2 was associated with higher TNF-α secretion than TNF1. The second TNF-α
polymorphism is located within the TNFB gene, but still affects TNF-α synthesis.
It was identified in 1991 by Pociot et al. who reported a biallelic Nco1 restriction
enzyme fragment length polymorphism (RFLP) in the TNF gene locus that was
associated with increased TNF-α production [61]. This site has been mapped to
the first intron of the LT gene (TNFB) at position +250 and allows the definition
of two alleles, TNFB1 and TNFB2. The latter does not possess the Nco1 RFLP and
seems to be associated with increased TNF-α plasma concentrations. The precise
mechanisms underlying this result remain unclear; the Nco1 polymorphism may
not be directly related to TNF production, but rather serve as a major histocom-
patibility complex (MHC) marker because of its location in the class III region of
the MHC. Significant linkage disequilibrium between the two TNF SNPs has been
reported with almost all individuals homozygous for TNFB2 (high TNF producer)
also being homozygous for TNF1 (low TNF producer), adding some complexity to
the final schema of TNF production [62].

Both TNF2 and TNFB2 polymorphisms have been associated with greater
severity and worse outcome in a variety of infectious diseases. For example, TNF2
was described as an independent risk factor for cerebral malaria in large case-
control studies of African populations [63]. Homozygosity for the TNF2 allele is
associated with a relative risk of 6.8 for death or severe neurological sequelae due to
cerebral malaria. A strong association has also been reported between TNF poly-
morphisms and mucocutaneous leishmaniasis, scarring trachoma, lepromatous
leprosy, nephropathia epidemica, and with death from meningococcal disease,
severe meliodosis, community-acquired pneumonia, and septic shock [64]. In
septic shock, the TNF2 allele increases the risk of death by 3.7 fold even after
controlling for age and severity of illness [65]. TNF2 is also clearly associated
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with increased mortality from sepsis in neonates and ventilated, very low birth
weight infants [66]. However, other studies have failed to demonstrate associa-
tions between either TNF2 or TNFB2 and mortality [67]. This discordance may
arise, at least in part, from methodological problems such as incorrect genotype
assignment and differences in study populations or inclusion and exclusion crite-
ria [68].

Anti-inflammatory Cytokine SNPs: IL-10

Sepsis induces an initial pro-inflammatory response followed by an important
release of anti-inflammatory cytokines (IL-4, IL-10, IL-13) responsible for a down-
regulation of humoral and cellular immunity that has been called immunoparalysis
or compensatory anti-inflammatory response syndrome (CARS). Genetic poly-
morphisms responsible for uncontrolled and intense CARS may have the same
dramatic consequences on outcome from sepsis as an overwhelming inflamma-
tory response.

IL-10 is expressed and secreted by a variety of cell types, including T and B cells,
monocytes/macrophages, and epithelial cells, usually after an activation stimulus
such as infection. It suppresses the function of macrophages (down-regulation of
Th1 cytokines) and indirectly inhibits the activity of B cells. High IL-10 production
also inhibits IFN-γ expression and delays clearance of intracellular pathogens, such
as Chlamydia [69]. The potent anti-inflammatory effects of IL-10 indicate that this
cytokine might play a crucial role in both the resolution and pathogenesis of severe
sepsis and septic shock. Concentrations of IL-10 correlate with the severity of the
inflammatory response as assessed by the APACHE score, MOF, or death [70, 71].
The risk of fatal outcome from meningococcal disease is increased in families with
high IL-10 production. Although both genetic and non-genetic factors contribute
to IL-10 production, twin studies suggest that genetics could account for up to 75%
of the variability in IL-10 production [72, 73].

The human IL-10 gene demonstrates several polymorphisms resulting in in-
terindividual differences in cytokine production. Within the IL-10 proximal pro-
moter, two CA-repeat microsatellites, and three SNPs at −1,082 (G/A), −819 (C/T),
−592 (C/A) upstream of the transcription start site, have been reported [69]. More
SNPs in the distal IL-10 promoter have been identified recently with either a high-
or a low IL-10 production phenotype, thereby creating eight distal promoter hap-
lotypes [74]. In vitro, the IL10-1082G polymorphism has been associated with high
IL-10 production by lymphocytes. Within the Mandikas ethnic group, the IL10-
1082G homozygous genotype is significantly more common among trachoma pa-
tients than controls (odds ratio 5.1; confidence interval, 1.24–24.2; p = 0.009) [75].
In contrast, the IL10-1082G allele appears to be more common in persons with
mildly symptomatic or asymptomatic Epstein-Barr Virus (EBV) diseases than in
patients with EBV infections requiring hospitalization [76]. These findings suggest
that high IL-10 producers are partially protected from severe EBV infection and
show clearly that changes at the level of a given cytokine do not exert the same
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effects on all infectious agents. This may explain why the results from genetic
association studies of IL-10 polymorphisms in sepsis are contradictory.

The IL-10 −1,082 G/G genotype, which is linked with greater expression of IL-
10, has been associated with higher severity scores and worse outcome in patients
with community-acquired pneumonia [77]. Similarly, another IL-10 polymor-
phism (the −592 A allele, associated with low levels of IL-10) was associated with
death both in patients with sepsis and in critically ill patients without sepsis [78]. In
that study, although the IL-10 −1,082 allele frequencies were significantly different
between cases and controls at admission to an ICU, no association was observed
between the IL-10 −1,082 allele and the risk of death from sepsis. Recently, a new IL-
10 haplotype, −592C/734G/3367G, has been associated with increased mortality
and organ dysfunction in critically ill patients with sepsis secondary to a pul-
monary source of infection, but not in similarly ill patients with extrapulmonary
sepsis [79]. Overall, the data suggesting a role for genetic variation in the IL-10
gene on death due to severe sepsis remain inconsistent.

Hemostatic Gene Polymorphisms and Severe Sepsis

The inflammatory response observed during severe sepsis leads to a strong acti-
vation of coagulation and fibrinolysis. However, early increases in the anticoagu-
lant tissue plasminogen activator are rapidly followed by sustained elevations in
plasminogen-activator-inhibitor-1 (PAI-1) leading to a prolonged antifibrinolytic
and a net procoagulant state. Activation of coagulation together with inhibition
of fibrinolysis are responsible for the development of fibrin deposition and mi-
crothrombi that cause extensive endothelial damage associated with MOF [57].
High plasma concentrations of PAI-1 have been associated with an adverse out-
come in patients with sepsis and septic shock [8]. Several polymorphisms have
been described within the human PAI gene, which is located on chromosome 7,
including a common single-base-pair polymorphism (four or five guanine bases)
in the promoter region of the gene, 675 bp upstream of the transcriptional start
site (4G/5G). The 4G allele (or deletion polymorphism) has been associated with
higher plasma concentrations of PAI-1. Individuals homozygous for the 4G allele
have higher basal and inducible concentrations of PAI-1 than those with one or
two copies of the 5G allele that contains an additional G at location –675 of the
PAI-1 promoter gene (insertion polymorphism) [52]. In addition to its antifibri-
nolytic properties, the 4G PAI-1 variant also seems to influence pro-inflammatory
cytokine production. The 4G/4G patients not only had higher PAI-1 concentra-
tions, but also demonstrated significantly higher plasma levels of TNF-α and IL-1
compared to the other genotypes [80]. Emonts et al. confirmed, in a population
of 175 children with meningococcal disease and 226 controls, that those with the
4G/4G genotype had significantly higher PAI-1 concentrations compared to those
with the 4G/5G or 5G/5G genotype (1051 [550-2440] versus 370 [146-914] ng/ml,
p < 0.0001). In addition, the 4G/4G patients had an increased relative risk of death
(2.0; 95% CI 1.0–3.8) [52]. Three studies reported similar results, indicating that
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the PAI-1 ‘deletion’ promoter polymorphism influences the prognosis of meningo-
coccal disease and severely injured patients [80–82]. The latter study investigated
the relationship between outcome from severe trauma and the PAI-1 genotype; it
found that 58% of injured patients with the 4G/4G genotype died, whereas only
28% with the heterozygous genotype 4G/5G and 15% of patients with genotype
5G/5G did not survive [80].

Perspectives and Conclusions

Severe sepsis is a complex multifactorial and polygenic disorder that is thought to
result from an interaction between an individual’s genetic makeup, co-morbidities
(such as diabetes mellitus, obesity, cardiac failure), and environmental factors,
such as the invasive microorganism responsible for the infection. In recent years,
several studies have correlated genetic variations with the risk of, or outcome
from, severe sepsis. However, the results of these studies are too inconsistent to
enable useful conclusions to be drawn. This inconsistency can be attributed to
the heterogeneity of the selected patients, the methods used to select cases and
controls, study sizes, the genetic (racial) makeup of the populations studied, and
the variability of the microorganisms causing the infections. As more and more
polymorphismsare reported, the realmultigenic scopeof severe sepsiswill emerge,
and the polymorphisms present in an individual will have increasingly complex
clinical implications. The development of technologies that allow high-throughput,
fast, and low-cost genotyping will lead to greater insights into host susceptibility
at the level of the individual patient.

Genetic markers are not like most biological markers that have wide ranges of
values that overlap in people with and without a disease; rather, they are either
present or absent. However, the interactions between environmental effects and
the molecular mechanisms that influence outcome from sepsis remain poorly
understood. An inherited predisposition to sepsis may remain clinically silent
until an additional environmental factor occurs. Large-scale association studies
that examine many polymorphisms simultaneously are required to allow reliable
predictions to be made concerning the risks incurred by genetic factors in severe
infection.

As genetic screening to evaluate the individual risk factors for infectious
diseases becomes available, insights into the molecular interaction between
a pathogen and its host will reveal novel molecular targets for drugs or vaccines.
Increased understanding of molecular medicine will shift clinical practice from
empirical treatment to therapy based on specific cellular mechanisms of infectious
disease. Such approaches are already used in oncology, in which genetic testing
can clearly identify persons at high risk, allowing for targeted intervention while
sparing the personal and economic cost of unnecessary intervention in those who
do not carry a relevant mutation. Detection of the genetic differences which affect
drug response, commonly referred to as pharmacogenomics, may also result in fur-
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ther classification of diseases, and consequently, the development of ‘personalized’
therapies.

Another important consequence of the development of genomics will be to
begin incorporating genetic markers into severity scores and the design of clinical
trials. A diagnosis that lacks sufficient power often results in treatment failure.
Other factors such as the genetic characteristics of the host (polymorphisms in
genes regulating drug bioavailability or in genes regulating production of the
target) can also contribute to a heterogeneous response to therapy in a group
of patients. Genetic screening and improved understanding of host–pathogen
interactions will allow selection of the best treatment option for a given patient.

The last, but not the least important, point to consider concerns the ethical
implications of research on the human genome. When the Human Genome Project
was launched in 1990, a parallel program named ELSI (Ethical, Legal, and Social
Implications) was established, to identify the various consequences of genetic
information being available. Among its goals, ELSI includes practical ethical issues,
such as preparation of guidelines for clinicians and enhancing public awareness of
the ethical issues related to the human genome project. Whereas research into the
genetic predisposition to severe sepsis could have beneficial effects, it also carries
with it important ethical issues, such as the use of presymptomatic screening, as
well as possible subsequent social discrimination due to ‘at-risk polymorphisms’.
Genetic data should not be used to predict outcomes or limit treatments; rather,
identification of high-risk patients should help us to look for new preventive and
therapeutic interventions for those who need them most [83, 84].
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Cell Signaling Pathways of the Innate Immune
System During Acute Inflammation

S.M. Opal and P.A. Cristofaro

Introduction

The innate immune response has evolved in multi-cellular organisms to initiate
a coordinatedhost response tomicrobial challenge.Abreach across the integument
of the metazoan host by a potential microbial pathogen represents an immediate
threat to the viability of the host. Rapid recognition of danger signals and an
orchestrated antimicrobial host response are of vital importance in a world covered
with microorganisms. In vertebrate species, the innate immune system is the
primary immediate host defense system in response to foreign invaders. These
early, non-clonal, innate immune signaling events also prime the highly specific,
adaptive immune response.

Many of the critical elements that constitute the early recognition and signaling
networks of innate immunity have recently been identified. These phylogenetically
ancient pattern recognition receptors (PRR) can be traced back hundreds of mil-
lions of years and antedate the evolutionary separation between plants, inverte-
brates and vertebrate species [1,2]. The highly conserved nature of these signaling
mechanisms attests to their quintessential survival value. A fuller appreciation of
these early signaling pathways should provide insights into how to protect vulnera-
ble patients with congenital and acquired immune defects. An understanding of the
molecular mechanisms underlying innate immune activation should also provide
new treatment options for patients who manifest deleterious systemic immune
reactions from infectious and non-infectious inflammatory states. Disordered im-
mune responses from inappropriate cell signaling events underlie a diverse array
of inflammatory states such as Crohn’s disease [3], arthrosclerosis [4], asthma [5],
rheumatoid arthritis [6], and psoriasis [7]

The fundamental detection strategy for the cellular elements of innate immu-
nity was formulated by Janeway and colleagues [8,9]. Detection of non-self molec-
ular patterns of highly conserved structures intrinsic to microorganisms is the
central signaling mechanism of innate immunity. The discovery of the Toll-like re-
ceptors (TLRs) over the past decade [10] and advances in defining the early events
of complement-mediated phagocytosis [11] have linked theory with the actual
structural elements of cell signaling. While acute inflammatory events provide an
essential role in early recognition and clearance of microbial pathogens, the same
system left unchecked, or activated inappropriately by endogenous molecules,
results in disordered inflammation injurious to the host.
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Under resting conditions, the cellular elements of innate immunity (neu-
trophils, monocyte/macrophage cell types and natural killer [NK] cells) are main-
tained in a quiescent, inhibitory state. This is mediated, in part, by continued
expression of intracellular phosphatases that remove signal inducing phosphate-
linked amino acids from signal transducer proteins [12]. These phosphatases are
induced by specialized regions found within the intracellular domains on ubiq-
uitous immunoglobulin-like and lectin-like superfamily receptors. These endoge-
nous and constitutively expressed receptors recognize major histocompatibility
complex (MHC) class I antigens found under physiologic conditions on nearly
all normal cells. Specialized regions of these receptors are called immunoreceptor
tyrosine-based inhibitory motifs (ITIMs). Under basal conditions these phos-
phatases maintain innate immune cells in an inactive state. As soon as non-self,
microbial pattern molecules are recognized, networks of newly activated kinases
rapidly overwhelm these inhibitory influences, and cellular activation rapidly en-
sues.

A Survey of the Currently Recognized Pattern Recognition Receptors

Nuesslein-Volhard and Wieschaus first described the Toll receptor as a type 1
transmembrane receptor that controls dorsal-ventral polarity during embryogen-
esis in Drosophila flies in 1991 [13]. It was quickly realized that this same receptor
played an essential role in antimicrobial defense in adult flies. Toll-deficient flies are
exquisitely susceptible to fungal infection but not bacterial infection [10]. Analo-
gous structures were shown to exist throughout the plant and animal kingdom with
remarkable homologies to the previously characterized interleukin-1 (IL-1) sig-
naling pathways [8,10,14]. It is now evident that a number of human Toll homologs
(known as Toll-like receptors or TLRs) exist and function as pattern recognition
molecules. They sense conserved elements expressed by microbial pathogens and
alert the host to the presence of this critical danger signal [8, 10]. The central
elements comprising the pattern recognition system of the human innate immune
system are enumerated in Table 1.

There are 10 recognized human TLRs and numerous associated co-receptors
and adaptor molecules that make up the TLR family. The highly conserved and
homologous nature of the TLR system and the IL-1 signaling pathways are depicted
in Fig. 1 [15–19].

TLR share a common intra-cellular domain with the type one IL-1 recep-
tor. This conserved region is termed the Toll/IL-1R (TIR) domain [14]. The TIR
domain, when activated by the surface receptor, initiates an enzyme cascade in-
volving MyD88 (myeloid differentiation factor), IRAK 4 (IL-1 receptor associated
kinase), TRAF6 (tumor necrosis factor [TNF] receptor associated factor), a series
of MAP (mitogen-activated protein) kinases, IKK-1 (inhibitor κB kinase) and IKK-
2. This network of signal activators eventually catalyzes the phosphorylation of IκB
(inhibitor kappa B-cell). This phosphorylation reaction disassociates IκB from nu-
clear factor-kappa B (NF-κB), freeing the nuclear localization sequence of NF-κB
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Fig. 1. The shared signaling pathways of human interleukin-1 (IL-1) and the Toll-like receptors
(TLRs). LPS: lipopolysaccharide; IL-1Rap-interleukin-1 receptor associated protein; LRR: leucine
rich repeat, TIR: Toll/interleukin receptor; MyD88: myeloid differentiation factor; TIRAP: Toll-
interleukin receptor adapter protein; TRIF: TIR domain adapter inducing interferon-β; TRAM:
TRIF related adaptor molecule; PI3K: phosphoinositide-3 kinase; IRAK: interleukin 1 receptor
associated kinase; TRAF: tumor necrosis factor receptor associated factor; TAK: transforming
growth factor associated kinase; RIP-1: receptor interacting protein; JNK: Janus N-terminal-
linked kinase; IRF: interferon regulatory factor; IFN: interferon; IKK: IκB kinase; IκB: inhibitory
subunit κB; NF-κB: nuclear factor-κB; NEMO: NF-κB essential modulator; TAB1,2: TAK binding
protein 1 and 2; MKK: mitogen activated protein kinase kinase; APP: acute phase proteins; NOS:
nitric oxide synthases. Other TLRs share similar intracellular pathways. (Adapted from [15] with
permission)
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Table 1. Toll-like receptors (TLRs), nucleotide oligomerization domain proteins (NODs) and
other pattern recognition receptors and ligands

TLR Cell types Likely natural ligands Other possible ligands
(comments)

CD14 Myeloid cells LPS, LTA, PGN,
fungal antigens

Hyluronan

CR1, CR3 Myeloid cells Opsonized microbial
antigens with C3bi

Immune complexes,
C3 fixed human cells

Dectin- 1 Myeloid Beta-glucan from fungi
TLR1 Myeloid, T, B,

natural killer cells
With TLR2- BLP, OSP
of Borrelia spp.

TLR2 Myeloid, T cells,
epithelial cells

PGN, BLP, MALP-2, LAM,
LTA, OMP, HSV, β-glucan,
GPI-linked parasite proteins

Leptospira LPS, fungal GXM,
LPM, viral antigen, HMGB-1,
Hyluronan

TLR3 Epithelial cells,
dendritic cells

Vral dsRNA Some ssRNA viruses,
schistosome RNAs

TLR4 Myeloid,
epithelial cells

LPS, RSV F protein,
Candida antigens

HSP60, fibrinogen,
Hyluronan, HMGB-1

TLR5 Myeloid,
epithelial cells

Flagellin Gram+ or - bacteria

TLR6 Myeloid,
dendritic cells

With TLR2-MALP-2, PGN Fungal antigen-Zymosan

TLR7 B cells, PDC ssRNA (in mice) imidazoquinolines
TLR8 Myeloid ssRNA (in humans) imidazoquinolines
TLR9 Epithelial cells,

B cells, PDC
Unmethylated CpG motifs
in bacterial DNA

Some DNA viruses

TLR10 PDC,
epithelial cells

Unknown, may form
heterodimers with TLR2

TLR11 Myeloid,
uroepithelial cells

Uropathogenic bacteria
and parasite proteins (mice)

(Human TLR11 gene
is inactivated)

NOD1 Epithelial cells Diamino pimelate in PGN Gram– PGN
NOD2 Epithelial cells Muramyl dipeptide in PGN Gram+ and Gram- PGN

LPS: lipopolysaccharide; LTA: lipoteichoic acid; PGN: peptidoglycan; OSP: outer surface protein;
BLP: bacterial lipopeptide; MALP-2: macrophage activating lipopeptide; LAM: lipoarabinoman-
nan; OMP: outer membrane protein; HSV: herpes simplex virus; GPI: glycosyl phosphatidylinos-
itol; GXM: glucuronoxylomannan; LPM: lipophosphomannan; RSV: respiratory syncytial virus;
PDC: plasmacytoid dendritic cells; HSP: heat shock protein; HMGB1: high mobility group box 1;
CpG: cytidine-phosphate-guanosine; ds: double-stranded; ss: single stranded

to bind to the nuclear membrane and translocate to the nucleus. NF-κB along with
other activators (see Fig. 1) initiates the transcription of inflammatory cytokines
chemokines, acute phase proteins, and other host response elements [15].

The extracellular ectodomains of the TLRs are distinctly different from the IL-1
receptor. While the IL-1 receptor consists of a chain of loop-like immunoglobulin
(Ig) domains, theTLRectodomains exist as tubular structures composedof stacked
leucine rich repeat (LRR) domains. Each TLR shares this LRR configuration but
differs in the intrinsic binding region to their cognate, natural ligands [10].
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Human genome searches for TIR domain homologs have identified ten TLRs.
Micehaveat leastoneadditionalTIRopenreading frame,TLR-11,whichrecognizes
uropathogenic bacteria. Human genome surveys thus far indicate that a stop codon
is present in the open reading frame (ORF) of the candidate TLR11 gene, rendering
it inactive [20]. The human TLR5 gene also contains a common polymorphism
resulting in premature chain termination and gene inactivation. The location
of these receptors in various tissues, their known natural ligands and principal
functions are summarized in Table 1.

The nature of the primary ligands and basic arrangement of the TLRs within
the cell or on the cell surface segregates the human TLRs into three groups. The
TLRs that recognize protein ligands (TLR 2, 4 and 5) primarily reside on the exter-
nal surface of human cells. TLRs 1, 2, 4, 6 and 10, along with their co-receptors and
adaptor proteins (CD14 for TLR4 and TLR2, CD36 for TLR6, and MD2 for TLR4)
recognize a variety of ligands including phospholipids, and glycopeptides. These
receptors are located on the cell membrane with direct access to the extracellular
environment. Another set of receptors (TLRs 3, 7, 8, 9) recognizes nucleic acid lig-
ands. These TLRs are primarily found within the endosomal component following
phagocytosis of microbial antigens. Intracellular signaling following engagement
with pathogen-associated molecular patterns (PAMPs) within the cytosolic space
is mediated by a related set of pattern recognition molecules known as the NODs
(nucleotide binding oligomerization domain) (Table 1).

The TLR2 Complex

TLR2 is a pivotal member of the TLR family that features the capacity to recognize
the broadest array of exogenous ligands. TLR2 is expressed on many different
cell types including immune effector cells and epithelial surfaces [16]. TLR2 is
readily upregulated by a variety of inflammatory stimuli and stress hormones. It
is markedly downregulated by vigorous exercise [15–17].

TLR2 is unique in that it partners with two different TLRs to form het-
erodimers as the functional elements for cell signaling. TLR2 pairs with TLR1
to engage the triacyl lipopeptides found in a large number of bacterial outer mem-
branes (known as bacterial lipopeptide (BLP). TLR2-TLR6 heterodimers recognize
(along with CD36) diacylated lipopeptides from Mycoplasma species, peptidogly-
can from the outer membrane of most bacterial organisms, and zymosan, a cell
wall component found in fungi [21, 22]. TLR2 also binds to the lipoteichoic acid
of Gram-positive bacteria, lipoarabinomannan found in mycobacterial species,
mannans found in the polysaccharide capsules of fungal pathogens, and glycosyl-
phosphatidylinositol-linked products from protozoan pathogens [10,15,18,23,24].
Numerous viral proteins are also recognized by TLR2 [25, 26]. Thus, TLR2 and its
signaling partners represent a highly versatile PRR complex that recognizes a wide
spectrum of pathogens and their products.

TLR2-mediated signaling events appear to be primarily funneled through
MyD88-dependent pathways. A MyD88-independent pathway may also exist with
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the use of a second adaptor known as TIRAP (Toll IL-1 receptor domain containing
adaptor protein). TLR2 intracellular signaling is also facilitated by activation of
phosphoinositide 3 kinase (PI3K) [10].

TLR3

TLR3 recognizes double-stranded (ds) RNA found in some RNA viral genomes
(i.e., reoviruses) and the standard immunostimulant poly I:C (polyinosine-
polycytidylic acid) [10]. This TLR functions primarily within endosomes and
induces an antiviral type 1 interferon (IFN) response to dsRNA viral pathogens
and perhaps other non-viral pathogens. It shares an intracellular signaling pathway
with TLR4 initiated by an adaptor protein known as TRIF (TIR domain adapter
inducing IFN-β) [27]. This common signaling pathway may explain some of the
similarities between severe systemic viral infections and the generalized inflam-
matory response to lipopolysaccharide (LPS).

TLR3 may actually be exploited by some viruses to gain access to host tissues.
West Nile Virus (WNV) is a single-stranded RNA flavivirus but has dsRNA as
part of its replication cycle. TLR3 deficient mice are less susceptible to WNV
encephalitis [28]. The inflammatory response induced by TLR3-mediated cytokine
generation promotes enhanced entry of WNV into the central nervous system
(CNS) leading to severe encephalitis.

Recent studies indicate that TLR3 may recognize other RNA moieties besides
double stranded RNA viruses. RNA particles from the eggs of the helminthic
parasite Schistosoma mansoni activate NF-κB signaling in dendritic cells [29].
Schistosome eggs possess RNAse resistant dsRNA sequences that can activate
TLR3. TLR3 deficient mouse strains have reduced host responses to schistosome
eggs compared to wild type animals.

TLR4

TLR4 is theLPSreceptoronhuman immuneeffector cells.Thecurrently recognized
ligands for TLR4 are listed in Table1 and the major components that mediate TLR4
signaling are illustrated in Figure 1. TLR4 has both MyD88-dependent and MyD88-
independent pathways. In the MyD88 independent pathway, TRIF is activated
through TLR4 and an adaptor molecule known as TRAM (TRIF related adaptor
molecule). This pathway follows a similar cascade of intracellular signals as TLR3
resulting in the production of IFN-β [19].

LPS is also a major stimulus for induction of septic shock from Gram-negative
bacteria [8–10]. This TLR4 agonist is also implicated in reactive airways disease [5],
inflammatory bowel disease [3], and a host of other inflammatory disease states
including coronary artery disease [4]. Single-nucleotide polymorphisms (SNPs) in
the coding region for the human TLR4 gene that result in reduced signaling, may
be protective against atherosclerosis and coronary artery disease [30]. The statin,
cholesterol-lowering drugs decrease TLR4 expression and downstream signaling
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in monocytes [31]. Much of the cardioprotective effects of this class of drugs may
relate to its effects on TLR4 signaling and immune modulation rather than its
effects on cholesterol metabolism. SNPs in the TLR4 gene have also been shown to
lower the risk of acquiring Legionella infection [32]

LPS signaling is a complex and highly regulated process that rapidly affects the
transcript frequencyofoverone thousandgeneswithinhoursof cell activation.The
pattern recognition molecule CD14 receives the LPS ligand from a plasma carrier
protein known as LPS binding protein (LBP). Since CD14 has no intracytoplasmic
signaling domain, a co-receptor which spans the cell membrane is necessary for
signaling. TLR4 are of critical importance as the membrane spanning signaling
receptor for LPS. A third essential protein known as MD-2 [33], also lacking an
intracellular domain, interacts with TLR4, CD14 and LPS to complete the cell
membrane LPS signaling complex.

A second type of LPS receptor, RP105, has been found on B cells and plasmacy-
toid dendritic cells [10]. Its ectodomain, a series of leucine-rich repeats, is similar
to the TLRs, but it lacks the intracellular TIR domain. It does possess a short
cytosolic tail which contains an ITAM (immunoreceptor tyrosine based activa-
tion motif). The ITAM induces tyrosine phosphorylation motif which activates src
kinases. Activation is dependent on MD-1, a protein similar to MD-2 [15, 21].

TLR5

Bacterial flagellin proteins are highly conserved structures, and structural homol-
ogy makes them a potential pattern recognition system for immune effector cells.
Motility is an important virulence property of numerous bacterial pathogens, in-
cluding Gram-negative bacteria (e.g., Vibrio, Salmonella and Pseudomonas spp.)
andGram-positivepathogens, suchasListeriamonocytogenes. Flagellinmonomers
from both Gram-negative and Gram-positive bacteria are highly inflammatory and
signal through TLR5 [34]. Purified flagellar proteins derived from bacterial cul-
tures stimulate monocyte/macrophage cells in a TLR5-specific, CD14-independent
manner.

Along epithelial surfaces, TLR5 is normally expressed on the basolateral sur-
face rather than apical position. In this position, TLR5 can generate danger signals
in response to invasive rather than commensal bacteria residing upon the lumi-
nal surface. TLR5-signaling generates a Th-2 biased immunity favoring secretory
antibody secretion appropriate for gut mucosal immunity [35].

The role of TLR5 in human disease pathogenesis is incompletely understood.
Complex interactions with other TLRs and other signaling receptors are noted with
multiple pathogens in the gut, bronchial mucosal, and genitourinary tract [15].
A polymorphism in the TLR5 receptor confers increased susceptibility to Legion-
naire’s disease but not typhoid fever [36].
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TLR7 and TLR8

The natural ligands for TLR7 and TLR8 have recently been identified as single
stranded (ss)RNA. There are numerous ssRNA viruses and TLR7/8 is instrumental
in the activation of antiviral defenses such as type 1 IFN generation and other pro-
inflammatory cytokines (IL-12, TNF) and chemokines (IFN-γ-inducible protein-
10 [IP-10]) [37]. TLR7 is the primary ssRNA receptor in mice, while TLR8 plays
the dominant role for ssRNA recognition in human cell lines. Both TLR7 and
TLR8 require acidified endosomes for signal transduction. TLR7/8 recognizes
both foreign and human ssRNA moieties (including ‘self’ mRNA or rRNA) when
delivered to the endosomal compartment. This may have therapeutic implications
as tumor RNA transfected dendritic cells are known to induce strong cytotoxic T
cell responses in cancer immunotherapy treatments [15].

Small molecule agonists for TLR7/8 are already in clinical use as antiviral
agents against papillomavirus-induced genital warts. The imidazone quinolines,
imiquimod and resiquimod, are effective as immunoadjuvants in eliminating gen-
ital warts and a related compound loxoribine, also a TLR8 agonist, has anti-tumor
activity [18].

TLR9

TLR9 is the receptor for specific sequences found in both bacterial and viral DNA.
Bacterial DNA stimulates pro-inflammatory cytokines, nitric oxide (NO) and MHC
class II expression by macrophage/monocyte cell lines, promotes B cell activation,
and induces a Th1 type cytokine response by T cells [10]. Unmethylated CpG motifs
are widespread sequences in bacterial DNA, but these motifs are rarely found in
human DNA. When these sequences do occur in mammalian DNA, they are usually
modified by methylation. When unmethylated CpG sequences are flanked by two
purines on the 5′ side and two pyrimidines on the 3′ end, they induce a strong
pro-inflammatory signal for human immune effector cells. The specific sequence
that is optimally recognized by human cells is GT-C-p-G-TT.

TLR9-deficient mutants have markedly impaired TNF-α, IL-12, IL-6 and IFN-γ
responses to CpG motifs [38]. TLR9 knockout mice are refractory to lethal shock
from synthetic oligonucleotides bearing unmethylated CpG motifs, which rapidly
induce refractory hypotension and death in wild-type mice.

The intracellular signaling pathways induced by CpG DNA are CD14 inde-
pendent, MyD88 dependent, and necessitate endocytosis of the CpG DNA-TLR9
complex. TLR9 ligation with CpG motifs strongly promotes B cell responses and
a vigorous Th1 response to selected antigens, making TLR9 agonists potential
targets for development as vaccine adjuvants [15].
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TLR10

The natural ligand and physiologic role of human TLR10 remains unclear. The
mouse genome (but not the rat genome) lacks TLR10 and this has delayed the
search to define the natural TLR10 ligands. Mice have a non-functional partial
gene structure for TLR10 that has a retroviral insertion in the open reading frame
(ORF) [39].Thehumangene forTLR10 is locatedon theshort armofchromosome4
in close proximity to the genes for TLR1 and TLR6, both known partners with
TLR2. TLR10 can heterodimerize with either TLR1 or TLR2 and associate with
MyD88 [40]. Polymorphisms in the TLR10 gene are strongly linked to asthma,
suggesting a functional role in the detection of airway antigens.

TLR11

TLR11 in the mouse appears to have a critically important role in recognition of
urinarypathogensbyuroepithelial cells [20], yethumans lacka functionalhomolog
of TLR11. Perhaps the propensity of humans to develop urinary tract infection is
explained by the loss of a functional TLR11. Murine TLR11 also functions as
a pattern recognition sensor for a profilin-like protein isolated from Toxoplasma
gondii and related proteins found in other clinically relevant protozoan pathogens
including Cryptosporidium parvum and Plasmodium spp [41]. How these functions
are compensated for in human immunology in the absence of TLR11 remains to
be defined.

The NOD Proteins

The cytosolic space has a related set of PRRs consisting of two major intracel-
lular proteins known as NOD1 and NOD2. These proteins contain a N-terminal
CARD (caspase recruitment domain) sequence, a central NOD core region, and
a C-terminal leucine rich repeat region that functions as a PRR. NOD1 recog-
nizes diamino-pimelate containing moieties found within the peptidoglycan of
Gram-negative bacteria. NOD2 recognizes muramyl dipeptide, a ubiquitous struc-
ture found in the peptidoglycan of nearly all Gram-negative and Gram-positive
bacteria [42].

These NOD proteins synergize with each other and with TLRs in activating
the innate immune response to invasive bacterial pathogens. Deficiencies in TLR4
signaling appear to increase the risk of inflammatory bowel disease and variants
of NOD2 have been highly linked to Crohn’s disease [43]. Delayed or ineffective
clearance of bacterial antigens from variants of TLR4 or NODs may contribute
to a chronic inflammatory state within the gut mucosal surfaces characteristic
of inflammatory bowel disease [3]. The signaling pathways that are activated by
NOD proteins are incompletely understood but it is evident that NODs do not use
MyD88 as an adapter molecule.
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A specific phosphorylating enzyme known as RICK (receptor interacting ser-
ine/threonine kinase) is critical for NOD signaling. Many of the late signaling
molecules for NF-κB nuclear translocation are shared by both TLRs and NODs.

Coordination of TLR Signals in Response to Bacterial Pathogens

Multiple TLRs are available to detect the myriad of PAMPs available on bacterial
pathogens. Figure 2 depicts the TLR and NOD structures that recognize molecular
patterns expressed on Gram-positive pathogens. TLR2 is likely to be the key recog-
nition receptor along with TLR5 for flagellated Gram-positive organisms. NOD2 is
critically important in the detection of bacterial pathogens that have invaded into
the intracellular space.

Gram-negative bacterial pathogens activate a markedly different set of genes
in human immune effector cells than do Gram-positive organisms. These dif-
ferences are related to a disparate array of TLRs and NODs that interact with
Gram-negative molecular patterns (Fig. 3). TLR4 is the dominant receptor in the
detection of Gram-negative pathogens as a result of LPS in the Gram-negative
outer membrane. TLR4 is exquisitely sensitive to LPS within the cell microen-
vironment and immediately activates a network of signal transducing molecules.
TLR2 also recognizes a number of molecular patterns expressed on Gram-negative
pathogens [44]. TLR5 further contributes to cellular activation signals in response
to flagellar antigens in motile strains of gram-negative bacteria. TLR9 adds acti-
vation signals from bacterial DNA within the endosomal compartment and both
NOD1 and NOD2 recognize peptidoglycan components found in Gram-negative
bacteria that escape detection and reach the cytosolic space.

Coordination of TLR Signals in Response to Viral Pathogens

Signaling pathways differ significantly when viral pathogens, rather than bacterial
organisms, invade thehost.Dependingon theviral genomiccharacteristics, viruses
may signal via TLR3 (dsRNA viruses), TLR7/8 (ssRNA viruses), or TLR9 (DNA
viruses). Numerous viral proteins may also signal via TLR2 including herpes
viruses, influenza, and measles virus [25, 26]. The TLR2 signal pathway appears
to be the dominant detection system when these viruses engage the susceptible
host [45]. Remarkably, respiratory syncytial virus (RSV) F protein is recognized by
TLR4 and appears to be the principal signaling receptor following RSV infection.
Signaling pathways following recognition of viral or fungal pathogens are depicted
in Fig. 4.
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Fig. 2. The signaling pathways for Toll-like receptors (TLRs) and nucleotide oligomerization do-
mains (NODs) upon exposure to Gram-positive bacterial pathogens. BLP: bacterial lipopeptide;
LTA: lipoteichoic acid; PGN: peptidoglycan; CARD: caspase recruitment domain; LRR: leucine
rich repeats; PGN: peptidoglycan; MDP: muramyl dipeptide; RICK: receptor interacting ser-
ine/threonine kinase; JNK: Janus N-terminal-linked kinase; IRF: interferon regulatory factor;
IFN: interferon; IKK: IκB kinase; IκB: inhibitory subunit-κB; NF-κB: nuclear factor-κB; NEMO:
NF-κB essential modulator; APP: acute phase proteins; NOS: nitric oxide synthases
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Fig. 3. Signaling pathways for Toll-like receptors (TLRs) and nucleotide oligomerization domains
(NODs) upon exposure to Gram-negative bacterial pathogens. BLP: bacterial lipopeptide; OMP:
outer membrane protein; OSP: outer surface protein; PGN: peptidoglycan; LPS: lipopolysaccha-
ride; TIR: Toll/interleukin-1 receptor; DAP: diamino-pimelate; MDP: muramyl dipeptide; RICK:
receptor interacting serine/threonine kinase; ssRNA: single-stranded RNA; CpG DNA: cytidine-
phosphate-quanosine DNA; JNK: Janus N-terminal-linked kinase; IRF3: interferon regulatory
factor; IFN: interferon; IKK: IκB kinase; NF-κB: nuclear factor-κB; NEMO: NF-κB essential mod-
ulator; APP: acute phase proteins; NOS: nitric oxide synthase
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Fig. 4. Toll-like receptor (TLR) signaling pathways for viral and fungal pathogens. GXM: glu-
curonoxylomannan; HSV: herpes simplex virus; LPM: lipophosphomannan; RSV: respiratory
syncytial virus; TRIF: TIR domain adapter inducing interferon-β; TRAM: TRIF related adap-
tor molecule; dsRNA: double-stranded RNA; ssRNA: single-stranded RNA; CpG DNA: cytidine-
phosphate-quanosine DNA; IRAK: interleukin 1 receptor associated kinase; TRAF6: tumor necro-
sis factor receptor associated factor 6; JNK: Janus N-terminal-linked kinase; IRF3: interferon
regulatory factor; IFN: interferon; NF-κB: nuclear factor-κB; APP: acute phase proteins; NOS:
nitric oxide synthase
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Coordination of TLR Signals in Response to Fungal Pathogens

Fungal pathogens are detected by multiple PRRs including CD14, TLR2, TLR4, and
TLR6 [23, 46]. Zymosan, a component of the fungal cell membrane, and multiple
phospholipid and polysaccharide elements in the capsular structures of Candida
and Cryptococcus spp. are recognized ligands for TLRs (see Fig. 4). Dectin-1 is
a phagocytic receptor for beta-glucan, a unique polysaccharide intrinsic to the
cell wall of fungi. It functions in concert with TLRs to orchestrate the initial host
response to fungal pathogens [46]. TLR2-deficient mice exhibit increased sus-
ceptibility to Aspergillus fumigatus supporting the importance of TLR2 in fungal
antimicrobial defense mechanisms [47].

TLR2 ligation by C. albicans elements may actually impair host defenses to
this common fungal pathogen. TLR2-deficient mice are less susceptible to dis-
seminated candidal infection than wild-type mice [48]. TLR2 signaling promotes
IL-10 synthesis in candidiasis and contributes to the expansion of CD4+ CD25+
T regulatory (Treg) cells. TLR2 deficient mice have a greater capacity to elim-
inate C. albicans, as Treg cells impaired the candidacidal activity of activated
macrophages. It is conceivable that Candida species have evolved substances like
lipophosphomannan as a mechanism to subvert host defense systems by this form
of TLR2 activation.

Coordination of TLR Signals in Response to Parasitic Pathogens

The signaling events that follow exposure to potentially pathogenic protozoan and
helminthic pathogens are poorly understood at present. It has been determined
that some protozoa such as Trypanosoma cruzi, the etiological agent responsible
for the Central and South American form of trypanosomiasis, may activate in-
nate immune responses through engagement of TLR2 [24]. Glycosyl-phosphatidyl-
inositol-linked peptides expressed by T. cruzi have been demonstrated to function
as TLR2 ligands. Similar antigenic structures exist in other parasites and may serve
a similar function in the host response to protozoan parasites.

TLR11 is of critical importance to parasite recognition in the murine system
but no such TLR structure is found in humans [41]. These functions must be com-
pensated for in the human immune system but the details of alternative recognition
and signaling pathways have yet to be defined.

TLR3 detects partial dsRNA sequences found in the eggs of the widespread
human pathogen Schistosoma mansoni [29]. Whether similar TLR3 ligands are
found in other parasitic organisms has yet to be determined. The mechanisms
by which parasites activate the innate immune system are under active basic and
clinical investigation currently.
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The Contribution of the TLRs to Phagocytosis by Immune Effector Cells

Pattern recognition by the TLR and NOD systems of highly conserved molecules
found on microbial pathogens is quite distinct from phagocytosis and intracellu-
lar killing of pathogens by phagocytic cells. Phagocytosis is an essential feature of
innate immunity and is characteristic of neutrophils, monocyte/macrophage cell
lines, and immature dendritic cells. Phagocytosis not only eliminates pathogens
by oxidative and non-oxidative cidal actions, but it also initiates partial antigen di-
gestion, processing, and presentation by innate immune cells. Immature dendritic
cells are highly phagocytic. Activation by TLR signaling and/or active phagocyto-
sis of microbial antigens induces dendritic cell maturation. Mature dendritic cells
lose much of their phagocytic capacity but gain the ability to effectively present
processed epitopes with co-stimulatory molecules for recognition by elements of
the adaptive immune system [50].

TLR ligands are optimally presented as soluble, monomeric structures that are
released from pathogens during growth or upon cell death. In contrast, phagocytic
signals induced by cell surface scavenger receptors, complement receptors or im-
munoglobulin Fc receptors necessitate direct contact with the pathogen for active
endocytosis to begin. A comparison of common and contrasting features of TLR
events and phagocytic events are listed in Table 2.

Table 2. Comparison of signaling events between human TLRs and phagocytic receptors

Property Toll-like receptors (TLR 1–10) Phagocytic receptors
(CR3, Dectin-1, FcγR)

Preferred ligand type Soluble Particulate
Ligand expression Released during microbial growth

or cell lysis
Surface expressed on intact,
viable microbes

Proximity to ligand source May be distant Must be local
Size of ligand Small, monomeric Large, often multimeric
Net inflammatory effect Activates cytokines, chemokines

and cellular recruitment,
NET formation

Stimulates phagocytosis
and intracellular killing

Extracellular processing
and transfer

May need carrier proteins (LBP,
CD14, MD2, etc)

May need antibody
or complement (opsonization)

CR3: complement receptor 3; FcγR: immunoglobulin crystallizable fragment gamma receptor;
NET: neutrophil extracellular traps; LBP: lipopolysaccharide binding protein

The process of phagocytosis induces the synthesis of numerous genes whose
products mediate actin formation, cell remodeling, phagosome formation, and
proteolytic activity. TLRs are not directly involved in phagocytosis as TLR deficient
cells show no evidence of impaired phagocytosis to the cognate ligand [50].
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Fig. 5. Other signaling pathways that affect innate immune responses. Trem: triggering re-
ceptor expressed on myeloid cells; PAF: platelet activating factor; Pur R: purinergic receptor;
CXC: cysteine-any amino acid-cysteine; TNF: tumor necrosis factor; IL: interleukin; IL-1Rap:
interleukin-1 receptor associated protein; IgG: immunoglobulin G; FcγR: immunoglobulin crys-
tallizable fragment gamma receptor; HMGB-1: high mobility group box-1; RAGE: receptor for
advanced glycation end products; AC’: alternative complement pathway; MBL: mannose binding
lectin pathway; PAR: protease activated receptor; MyD88: myeloid differentiation factor; IRAK:
interleukin 1 receptor associated kinase; TRAF6: tumor necrosis factor receptor associated factor
6; TAK-1: transforming growth factor associated kinase-1; TAB2: TAK binding protein 1 and 2;
NEMO: NF-κB essential modulator; IFN: interferon; IKK: IκB kinase; IκB: inhibitory subunit κB;
NF-κB: nuclear factor-κB; ITAM: immunoreceptor tyrosine based activation motif; ITIM: im-
munoreceptor tyrosine based inhibitory motif; ROI: reactive oxygen intermediates; RNI: reactive
nitrogen intermediates; JNK: Janus N-terminal-linked kinase; IRF3: interferon regulatory factor;
APP: acute phase proteins; NOS: nitric oxide synthase
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Conclusion

The discovery of the human TLRs over the past decade represents a major advance
in our understanding of the cellular immunology of the early events of acute in-
flammation. This knowledge creates an opportunity to fundamentally understand
the molecular details that initiate the acute inflammatory response. Integration of
signaling events that follow engagement of the TLRs by microbial ligands in the
presence of a myriad of modulating factors remains a major challenge. Some of
those modulating features are enumerated in Fig. 5.

Some of the related events, such as TREM-1 [51] and phagocytic activa-
tion [52, 53], can significantly amplify TLR signaling. Other elements such as
Fcγ II receptor activity, glucocorticoid receptors, or beta-adrenergic receptors
may downregulate cell activation networks. Complex, polygenetic, direct and in-
direct, non-linear signaling circuits with positive and negative feedback loops exist
in cell activation pathways. The magnitude of the cellular response to a given stim-
ulus changes over time, with ligand dose, receptor density, cell type and baseline
level of tissue responsiveness. Integration of this information will be critical if
we are to intelligently utilize these data and optimize their clinical value in acute
inflammatory states in the future.
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Early-Onset Pro-inflammatory Cytokines

C. Kaech and T. Calandra

Introduction

Cytokines are a key family of effector molecules that coordinate the innate and
acquired host antimicrobial defense responses [1, 2]. The cytokine family of mes-
senger molecules comprises tumor necrosis factor (TNF), the interleukins, the
chemokines, the interferons, and the colony stimulating factors. The cytokines are
small molecules (typically less than 30 kDa), whose expression is induced by infec-
tious and inflammatory stimuli, but can also be constitutive. Two typical features
of this class of mediators are pleiotropism (i.e., the capacity for a given cytokine to
stimulate several cell types) and redundancy (i.e., the ability of different cytokines
to exert similar effects). In addition, cytokines frequently stimulate each other’s
expression, which results in the production of a broad network of interacting
molecules. They are released by a wide range of immune and non-immune cells
and are key players in the pathogenesis of sepsis. Cytokines interact with specific
receptors expressed on target cells and exert autocrine, paracrine, and endocrine
activities. Pro-inflammatory cytokines recruit and activate cells of the immune
system and induce the production of numerous mediators. They up-regulate the
expression of the major histocompatibility complex (MHC) class I and II molecules
and participate in the activation and proliferation of B and T lymphocytes. Anti-
inflammatory cytokines, on the other hand, mitigate the inflammatory process
either by inhibiting or by counteracting these effects.

Tumor Necrosis Factor

TNF, a secreted 17 kDa cytokine produced by a broad range of cells, including
myeloid cells (monocytes, macrophages, dendritic cells, and neutrophils), lym-
photoxins α and β, and Fas ligand, belongs to a family of ligands that bind to
a group of structurally related receptors, comprising the two TNF receptors, the
lymphotoxin beta receptor (LTβR), and the TNF/nerve growth factor family (re-
viewed in [3]). TNF binds to the TNF type I receptor (TNFRI, also designated as
p55-TNFR) and to the TNF type II receptor (TNFRII, also designated as p75-TNFR)
that are co-expressed on many cells and tissues. TNF activates myeloid cells and
triggers the synthesis of pro-inflammatory mediators such as cytokines (includ-
ing TNF itself), eicosanoids, nitric oxide (NO), platelet activating factor (PAF),
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and free radicals. TNF recruits immune cells to inflammatory and infectious sites
through induction of endothelial adhesion molecules and chemokines. TNF also
plays an important role in the synthesis of hepatic acute phase proteins. It is a po-
tent inducer of apoptosis of inflammatory cells, fibroblasts, and myocytes. TNF
is a pyrogenic cytokine; it causes anorexia and can induce shock by decreasing
vascular resistance, causing capillary leak and depressing myocardial function.

Upon cell activation by TNF, the p55-TNFR and the p75-TNFR are shed from
the cell membrane and circulate as soluble molecules in the bloodstream [4, 5].
Soluble TNF receptors bind TNF and function as decoy receptors preventing cell
activation. Shedding of TNF receptors is, therefore, a physiological mechanism
whereby cells are protected from TNF overstimulation. However, binding of TNF
to its soluble receptors may prolong its half-life, and TNF may be released from
the receptor at a later stage of disease, as shown for p75-TNFR [6–9].

Experimental Animal Models (Table 1)

The recognition of the critical role played by TNF as a proximal mediator in exper-
imental endotoxemia and live bacterial infections was a major step forward in our
understanding of the pathogenesis of sepsis. Infusion of TNF in animals mimicked
the symptoms and signs of sepsis [10]. Subsequently, several groups of investiga-
tors have shown that anti-TNF antibodies confer protection against experimental
sepsis induced by large amounts of microbial toxins (lipopolysaccharide [LPS],
peptidoglycan, staphylococcal enterotoxin B, or toxic shock syndrome toxin 1).
However, it is worth noting that the protective effects of anti-TNF antibodies were
generally lost when therapy was started after exposure to microbial toxins. In
contrast, in all but one study, TNFR deficient mice were not protected from endo-
toxemia. In models of systemic sepsis caused by live bacteria, the results obtained
with anti-TNF antibodies have varied in function of the inoculum, of the microor-
ganisms used, and of the site and severity of sepsis. Neutralization of TNF was
protective in some, but not all models of Gram-negative or Gram-positive sepsis.
In focal sepsis models and in models of sepsis caused by fungi or intracellular
bacteria, inhibition of TNF profoundly impaired innate immune responses and
resulted almost uniformly in increased morbidity and mortality.

Four chimeric fusion proteins comprised of either the extracellular portion of
the p55- or p75-TNFR and of the Fc portion of human IgG1 or IgG3 (soluble p55-
TNFR-IgG1, p55-TNFR-IgG3, p75-TNFR-IgG1, and p75-TNFR-IgG3) have been
created. The TNF neutralizing activity of these constructs has been tested in
mouseandbaboonmodelsof endotoxemiaandsepsis. Prophylactic administration
of soluble p55-TNFR-IgG constructs reduced mortality from endotoxic shock or
Gram-negative sepsis. In some experiments, delayed administration of soluble
p55-TNFR-IgG was protective. However, no protection was observed when soluble
p75-TNFR-IgG constructs were used.
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Table 1. Evaluation of the role of TNF, IL-1, and IL-6 in animal models of endotoxemia and sepsis.
Adapted from [2] with permission

Animal Model Treatment or Condition Effect on Mortality

Endotoxemia
Low dose LPS,
with D-galactosamine

anti-TNF, TNF ko,
p55-TNFR-IgG1/3, p55-TNFR ko

Beneficial

p75-TNFR-IgG3, p75-TNFR ko No effect
High dose LPS anti-TNF, p55-TNFR-IgG1 Beneficial

p55-TNFR ko, p75-TNFR ko, IL-6,
IL-6 ko

No effect

IL-1ra Beneficial // No effect
Very high dose LPS anti-TNF No effect

Gram-positive cell walls
or exotoxins
Peptidoglycan (S. pneumoniae) anti-TNF Beneficial
Staphylococcal enterotoxin B anti-TNF, IL-6 Beneficial
Toxic shock syndrome toxin 1 anti-TNF Beneficial

Systemic bacterial sepsis
E. coli i.v. anti-TNF, p55-TNFR-IgG1/3,

IL-1 ra
Beneficial

p75-TNFR-IgG1, anti-IL1-β No effect
IL-6 ko Harmful

K. pneumoniae i.v. anti-TNF No effect
S. aureus i.v. anti-TNF Beneficial

TNF ko Harmful
S. epidermidis i.v. IL-1 ra Benefical
S. pyogenes i.v. anti-TNF No effect

ko: knockout

Clinical Studies

The pivotal role played by TNF in experimental sepsis and the fact that elevated
concentrations of TNF were detected in the circulation of septic patients, served as
the basis of adjunctive anti-TNF therapy in patients with severe sepsis and septic
shock [11–13]. Eight clinical trials of anti-TNF monoclonal antibodies have been
performed in more than 6,000 patients with severe sepsis or septic shock (reviewed
in [2]). There was no significant difference in mortality between patients treated
with placebo and patients treated with anti-TNF antibodies in these trials. In
a subgroup analysis of one trial, anti-TNF therapy led to a significant reduction
of mortality in patients with elevated interleukin (IL)-6 serum levels (defined as
IL-6 > 1,000 pg/ml) [14]. When the results of these eight studies are pooled, anti-
TNF therapy is associated with a 2.9% absolute reduction in mortality (36.7% vs.
39.6%) [2]. However, one should always be cautious with this kind of crude meta-
analysis, as patients’ characteristics and prognostic factors may differ between the
two pooled treatment groups.
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Table 1. (continued)

Focal bacterial sepsis
Cecal ligation puncture anti-TNF No effect // Harmful
E. coli peritonitis anti-TNF, p55-TNFR ko No effect

IL-6 ko Harmful
N. meningitidis peritonitis anti-TNF Beneficial
S. pneumoniae peritonitis p55-TNFR ko Harmful

p55-TNFR-IgG3, p75-TNFR ko No effect
group B streptococci peritonitis anti-TNF No effect
P. aeruginosa pneumonia anti-TNF Harmful
K. pneumoniae pneumonia p55-TNR-IgG1 Harmful
S. pneumoniae pneumonia anti-TNF, IL-6 ko Harmful
K. pneumoniae s.c. IL-1ra Harmful
group B streptococci s.c. IL-6 Beneficial
P. aeruginosa p.o. anti-TNF Beneficial
Intracellular and fungal infections
S. typhimurium anti-TNF Harmful
L. monocytogenes anti-TNF, TNF ko, p55-TNFR ko,

IL-6 ko
Harmful

p75-TNFR ko No effect
IL-6 Beneficial

M. tuberculosis IL-6 ko Harmful
C. trachomatis anti-TNF Harmful
C. albicans anti-TNF, TNF ko Harmful
C. neoformans TNF ko Harmful

The efficacy and safety of the soluble p55- and p75-TNFR-IgG fusion proteins
were evaluated in three clinical trials including a total of 1927 patients (reviewed
in [2]). In the first of these trials, a statistically significant, dose-dependent increase
in mortality was observed in 141 patients with septic shock who had been treated
with three doses of soluble p75-TNFR-IgG1 [15]. Mortality was 30% in patients
treated with placebo or low-dose p75-TNFR-IgG1, and 48% and 53% in patients
treated with medium or high doses of p75-TNFR-IgG1, respectively. It is possible
that the increased mortality observed in the high dose p75-TNFR-IgG1 treatment
group was related to a detrimental effect of prolonged neutralization of TNF. In the
other two studies, patients with severe sepsis or septic shock were randomized to
receive either a single dose of p55-IgG1 or placebo [16,17]. A reduction in mortality
approaching significance was observed in a prospectively defined subgroup of
patients with severe sepsis or early septic shock, but not in patients with refractory
septic shock.

Interleukin-1

The IL-1 gene family comprises seven members, of which three (IL-1α, IL-1β,
and IL-1ra) have been investigated in septic patients (reviewed in [18]). IL-1α
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and IL-1β are agonists, whereas IL-1ra is a receptor antagonist. Synthesized as
a 31 kDa precursor protein (pro-IL-1α), IL-1α is a biologically active membrane-
bound cytokine. In contrast, IL-1β is a secreted cytokine produced by enzymatic
cleavage of a cytoplasmic precursor protein (pro-IL-1β). A cysteine protease called
the IL-1β-converting enzyme (ICE), also known as caspase-1, is responsible for
the cleavage of pro-IL-1β. There are three IL-1 receptor chains. When IL-1 binds
to the ubiquitously expressed type I receptor (IL-1RI), a complex is formed which
then binds to the IL-1 receptor accessory protein (IL-1R-AcP), resulting in a high
affinity signal transducing heterodimer. The type II receptor (IL-1RII) functions
as a decoy receptor for IL-1β, as binding of IL-1 to IL-1RII, which is devoid of an
intracellular signal transducing domain, does not trigger cell activation. IL-1 and
TNF exert overlapping biological activities. IL-1ra, a naturally occurring specific
receptor antagonist, is the third member of the IL-1 gene family. A variety of
microbial products or pathogens (viruses, bacteria and yeasts) and IL-1 and TNF
induce the production of IL-1ra. As its name suggests, IL-1ra competes with IL-1
by binding to the IL-1 type I receptor, but not to the IL-1R-AcP, therefore blocking
the biological effects mediated by IL-1. Even when injected at high concentrations,
IL1-ra does not have agonist activity.

Experimental Animal Models (Table 1)

Administrationof IL-1β inmiceor rabbits inducedashock-like state [19,20].Unlike
TNF or p55-TNFR deficient mice, mice with deletion of the IL-1β gene were not
resistant to the lethal effect of endotoxin, indicating that IL-1β is not an essential
mediator of the systemic responses to LPS [21]. IL-1ra therapy improved survival
in experimental models of endotoxemia, Gram-negative (Escherichia coli) and
Gram-positive (Staphylococcus epidermidis) sepsis. However, IL-1ra only partially
inhibited cytokine production induced by endotoxemia in baboons [22–24].

Clinical Studies

Elevated concentrations of IL-1β and of IL-1ra have been detected in the circulation
of patients with septic shock [12, 13]. The concentrations of IL-1ra measured in
septic patients are usually below 20 ng/ml, and much higher concentrations of
IL-1ra are needed to block the binding of IL-1 to target cells. The impact of a
72-hour infusion of human IL-1ra on mortality of patients with severe sepsis and
septic shock has been investigated in three clinical studies (reviewed in [2]). In
a 99-patient phase II study, IL-1ra reduced day 28 mortality in a dose-dependent
fashion (44% in the placebo group versus 32%, 25%, and 16% in the three IL-1ra
treatment groups, respectively) [25]. However, two subsequent phase III clinical
trials including 893 and 696 patients did not confirm the beneficial effects of IL-
1ra [26, 27]. In the first phase III trial, day 28 mortality was 31% and 29% in the
two IL-1ra groups (1 and 2 mg/hour) and 34% in the placebo group [26]. A post-
hoc analysis indicated that patients with a predicted mortality greater than 24%
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did benefit from IL-1ra. However, a confirmatory phase III study was stopped for
futility after an interim analysis as the mortality rates in the placebo group and
IL-1ra group were 36% and 33%, respectively [27].

Interleukin-6

IL-6 is considered to be a prototypic pro-inflammatory cytokine (reviewed in [28]).
This postulate is based on the fact that IL-6, like TNF and IL-1, is produced abun-
dantly after LPS exposure. IL-6 circulates in high concentrations in patients with
acute infections, but unlike TNF and IL-1, IL-6 does not up-regulate the expression
of pro-inflammatory effector molecules such as NO, prostaglandins, or adhesion
molecules (such as intercellular adhesion molecule [ICAM]-1). Also unlike TNF
and IL-1, administration of large doses of IL-6 does not cause shock. Moreover,
IL-6 inhibits TNF, IL-1 and chemokine production in vitro and in vivo and might,
therefore, also be considered to be an anti-inflammatory cytokine. IL-6 induces
acute phase protein synthesis in hepatocytes and plays a key role in the differentia-
tion of myeloid cells. IL-6 binds to the IL-6 receptor, composed of a ligand-binding
chain (gp80) and a ubiquitously expressed signal transducing peptide (gp130).

Experimental Animal Models (Table 1)

IL-6 is a marker of inflammation, but does not appear to be a critical cytokine
of experimental shock induced by LPS or staphylococcal enterotoxin B. IL-6 was
shown to play a beneficial role in the resolution of experimental sepsis caused by
live bacteria, including intracellular pathogens.

Clinical Studies

Of all the cytokines studied in patients with sepsis, severe sepsis, or septic shock,
IL-6 is one of the best predictors of disease severity and patient outcome. In
several studies, high levels of IL-6 were associated with an increased risk of fatal
outcome [29–31]. IL-6 levels have thus been used as an enrolment criterion in
sepsis trials [14, 31].

Interferon Gamma, Interleukin-12, and Interleukin 18

Interferon-gamma (IFNγ), IL-12, and IL-18 are three closely related cytokines.
IFNγ, a 17 kDA protein produced primarily by activated T lymphocytes and natu-
ral killer (NK) cells, is induced upon exposure to microbial toxins (LPS and Gram-
positive superantigenic exotoxins) (reviewed in [32]). IFNγ binds to a unique re-
ceptor. IFNγ exerts very powerful priming effects on monocytes and macrophages
and enhances the microbicidal activity of macrophages. It upregulates the expres-
sion of the MHC class I and II molecules and of the Fc receptor and promotes
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the production of cytokines, hydrogen peroxide, and NO by cells exposed to pro-
inflammatory stimuli.

IL-12 is a heterodimeric cytokine composed of two covalently linked subunits
(p35 and p40) (reviewed in [33]). IL-12 is produced by myeloid cells (monocytes,
macrophages, and dendritic cells) and B lymphocytes when exposed to microbial
products or intracellular parasites. IL-12 binds to the IL-12 receptor, a member
of the gp130-like cytokine receptor superfamily. It plays an important role in the
initiation of the inflammatory response. One of its main effects is the upregulation
of IFNγ production by NK and T cells. IL-12 also stimulates the proliferation of
activated NK and T cells and sustains the generation of cytolytic T cells. Conversely,
IFNγ promotes the release of IL-12 by macrophages, thereby inducing a critical
positive feedback loop for the phagocytosis of microbial pathogens and for the
differentiation of T cells.

Identified as an IFNγ-inducing factor, IL-18 is expressed by a broad range
of cells (including macrophages, T and B cells) stimulated with microbial prod-
ucts (reviewed in [34]). Like IL-1β, IL-18 is produced as a precursor pro-IL-18
molecule and is processed to the mature bioactive IL-18 by enzymatic cleavage
by ICE/caspase-1. Similarly to IL-12, IL-18 stimulates the production of IFNγ by
NK and T cells. However, it first requires the upregulation of the IL-18 receptor by
IL-12.

Experimental Animal Models (Table 2)

IFNγ, IL-12, and IL-18 have been shown to be important cytokines of experimen-
tal endotoxemia. Treatment of endotoxemic mice with anti-IFNγ, anti-IL-12 or
anti-IL-18 antibodies improves survival. Likewise, anti-IFNγ antibodies reduced
mortality in animal models of E. coli sepsis, even when treatment was started after
the onset of shock [35]. IL-18 knockout mice were protected from death induced
by S. aureus sepsis. Inhibition of IFNγ, IL-12 or IL-18 had harmful effects in all but
one model of focal sepsis and of sepsis caused by fungi or intracellular bacteria. In
models of E. coli peritonitis, neutralization of IL-12 or IL-18 activity led to a de-
crease in bacterial clearance, faster dissemination of bacteria into the bloodstream,
and more organ injury. However, anti-IL-12 and anti-IL-18 therapies did not have
an impact on survival.

Clinical Studies

Elevated concentrations of IFNγ, IL-12, and IL-18 are detected in the circulation of
septic patients. HLA-DR expression and cytokine production by monocytes from
septic patients improves after treatment with IFNγ [36,37]. Yet, since IFNγ-treated
patients were compared to historical controls, it is difficult to assess the impact of
IFNγ on patient outcome. Randomized, placebo-controlled studies are needed to
determine whether IFNγ may improve the outcome of septic patients.
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Table 2. Evaluation of the role of IFNγ, IL-12, IL-18, and MIF in animal models of endotoxemia
and sepsis. Adapted from [2] with permission

Animal Model Treatment or Condition Effect on Mortality

Endotoxemia
Low dose LPS,
with D-galactosamine

anti-IFNγ No effect

IFNγR ko Beneficial
Low dose LPS, priming with P. ac-
nes

anti-IL-18, IL-18 ko Beneficial

Low dose LPS, priming with BCG anti-IL-12 Beneficial
High dose LPS anti-IFNγ, IFNγ ko, anti-IL-12,

anti-IL-18, anti-MIF, MIF ko
Beneficial

Gram-positive cell walls or exotox-
ins
Staphylococcal enterotoxin B MIF ko Beneficial
Toxic shock syndrome toxin 1 anti-MIF Beneficial
Systemic bacterial sepsis
E. coli i.v. anti-IFNγ Beneficial
group B streptococci i.v. anti-IL-12 Harmful
S. aureus i.v. IL-18 ko Beneficial
Focal bacterial sepsis
Cecal ligation puncture anti-IL-12 Harmful

anti-MIF Beneficial
E. coli peritonitis anti-IFNγ, anti-MIF Beneficial

anti-IL-12, IL-12 ko, IL-18 ko No effect
K. pneumoniae pneumonia anti-IL-12 Harmful
Intracellular and fungal infections
S. typhimurium anti-IFNγ, anti-IL-18 Harmful
L. monocytogenes anti-IFNγ, IFNγR ko Harmful
Y. enterocolitica anti-IFNγ, anti-IL-12, anti-IL-18 Harmful
M. tuberculosis, M. bovis IFNγ ko, IL-12 ko, IL-18 ko Harmful
C. neoformans IL-12 ko Harmful

ko: knockout

Macrophage Migration Inhibitory Factor (MIF)

MIF has recently emerged as an important effector molecule of the host antimi-
crobial defense and stress responses [38]. Identified in the 1960s as a T cell cy-
tokine [39,40],MIFwas rediscovered in the early 1990s as a constitutively expressed
cytokine released by endocrine cells (pituitary gland and adrenals) in a hormone-
like fashion after exposure to endotoxin and stress [41–43]. Also released by cells
of the myeloid lineage after stimulation with microbial products or with pro-
inflammatory mediators [44], MIF acts in an autocrine, paracrine, and endocrine
fashion to promote pro-inflammatory and immune responses. The biological activ-
ities ascribed to MIF (reviewed in [38]) include the upregulation of the expression
of Toll-like receptor 4 (TLR4) to facilitate sensing of endotoxin-bearing bacteria
and the maintenance of pro-inflammatory functions of macrophages through the
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inhibition of p53-dependent apoptosis. MIF also activates the extracellular signal-
regulated kinase-1/2 (ERK-1/2) mitogen-activated protein kinase (MAPK) path-
way and inhibits the activity of JAB1/CSN5, a co-activator of the activator protein 1
(AP-1). Glucocorticoids were observed to induce MIF release by immune cells,
which then acts as a counter-regulator of the anti-inflammatory and immunosup-
pressive effects of glucocorticoids [43]. Recent data have shown that MAPK phos-
phatase 1 (MKP-1) is a critical target of MIF-glucocorticoid crosstalk [45]. Con-
sistent with its modulatory effects on inflammatory and innate immune reactions,
MIFhasbeen implicated in thepathogenesisof severe sepsis andseptic shock, acute
respiratory distress syndrome (ARDS), rheumatoid arthritis, glomerulonephritis,
and inflammatory bowel diseases (reviewed in [38]).

Experimental Animal Models (Table 2)

MIF is an important mediator of experimental endotoxemia and sepsis. Co-
administration of LPS and recombinant MIF increased mortality, while anti-MIF
therapy or deletion of the MIF gene decreased the production of pro-inflammatory
cytokines (such as TNF) and improved survival. Administration of recombinant
MIF or anti-MIF antibodies exerted similar effects in experimental shock induced
by Gram-positive toxins. Bacterial peritonitis models showed that concentrations
of MIF increased at the primary site of infection and in the systemic circulation
during sepsis. Neutralization of MIF activity with anti-MIF antibodies protected
mice from lethal peritonitis induced by cecal ligation and puncture (CLP) or by in-
traperitoneal injection of E. coli. Of note, protection occurred even when treatment
was delayed several hours after the onset of peritonitis [46]. Similar to what had
been observed in the endotoxic shock model, improved survival was associated
with a reduction in circulating TNF levels. Conversely, administration of recom-
binant MIF during the acute phase of sepsis potentiated mortality from E. coli
peritonitis [46].

Clinical Studies

Elevated serum levels of MIF have been detected in several studies of patients with
severe sepsis or septic shock caused by Gram-negative or Gram-positive bacteria.
Consistent with the notion that high levels of MIF are harmful in the context of an
acute inflammation or infection, MIF levels were significantly higher in patients
with septic shock than in patients with severe sepsis, or control patients and
healthy subjects [46]. MIF concentrations were more elevated in non-survivors
than in survivors and were correlated with levels of cortisol and IL-6.
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Conclusion

An abundant literature indicates that cytokines play an essential role in host innate
anti-microbial defences and, therefore, in the pathogenesis of sepsis. Cytokines
are key players in the initiation of the host inflammatory response and in the
orchestration of the cellular and humoral responses needed to either wall off or
eliminate invading microorganisms. Yet, deregulated cytokine responses can cause
shock, organ failure, and death, indicating that tight control of cytokine production
is critical to keep the immune response in check. In that respect, severe sepsis and
septic shock can be viewed as clinical manifestations of failing innate immune
responses.

In contrast to the promising results of cytokine-directed therapies obtained
in pre-clinical sepsis models, clinical trials in patients with severe sepsis or sep-
tic shock have been largely disappointing. Many factors, including the enormous
complexity of the sepsis syndrome only partially mimicked in experimental animal
models, inappropriate dosing and timing of cytokine-directed therapy, hetero-
geneity of the target population, and limitations of outcome measures, may have
contributed to these unsatisfactory clinical results (reviewed in [47]). Translation
of basic research progress and of previous lessons learned in experimental animal
models into future clinical investigations remains one of the major challenges of
medical research in the twenty-first century.
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The Significance of HMGB1, a Late-Acting
Pro-inflammatory Cytokine

E. Abraham

Introduction

Multiple organ failure is a frequent occurrence after sepsis or multisystem acci-
dental trauma associated with severe hemorrhage [1–4]. Acute lung injury (ALI),
characterized by the accumulation of activated neutrophils into the lungs as well
as epithelial and endothelial dysfunction that leads to the development of in-
terstitial edema, is a common organ dysfunction in these clinical settings. Pro-
inflammatory cytokines, such as tumor necrosis factor (TNF)-α and interleukin
(IL)-1β, are increased in the lungs after blood loss, endotoxemia, or sepsis and
appear to contribute to the development of ALI in this setting, but the mechanisms
by which they induce ALI are incompletely characterized [5–7]. Although these
same cytokines have been shown to participate in organ dysfunction and mortality
associated with sepsis, recent data indicate that many of their actions may actually
be through inducing the downstream release of high mobility group box 1 protein
(HMGB1), a late acting pro-inflammatory mediator [8–18].

There are three HMGB chromosomal proteins: HMGB1 (previously known
as HMG1), HMGB2 (previously HMG2), and HMGB3 (previously HMG4 or
HMG2) [8, 10, 13, 19, 20]. HMGBs are composed of three different domains, in-
cluding the homologous DNA binding boxes A and B, and the C-terminal do-
main [8–10, 13, 19, 21, 22]. The amino acid sequence within the HMGB family
members exhibits 85% similarity, but the proteins have a distinctly different tis-
sue expression pattern. HMGB1 is ubiquitously present in all vertebrate nuclei,
but the expression of HMGB2 and HMGB3 is more restricted. HMGB2 is widely
present during embryonic development, but is expressed only in the testes and
lymphoid tissue of the adult mouse. HMGB3 expression is only present during
embryogenesis.

HMGB1 is a 215 amino acid protein with a uniquely conserved sequence among
species. Mouse HMGB1 differs from the human form by only two amino acids [10,
16,19,23]. HMGB1 deficient mice die within a few hours of birth, demonstrating the
crucial role of this protein in cellular function. The two homologous DNA binding
domains, HMGB boxes A and B, are each approximately 75 amino acids in length.
The C terminal domain is highly negatively charged, consisting of a continuous
stretch of glutamate or aspartate residues.

The truncated HMGB1 protein containing the B box motif is a potent inducer
of TNF-α production in cultured macrophages [8, 13, 21, 22]. Similarly, synthe-
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sized B box protein also stimulates TNF-α release [8]. Affinity purified anti-B box
antibodies inhibit TNF-α release induced by either full length HMGB1 or the B
box protein, showing that the macrophage stimulating effects of HMGB1 are B
box specific. In vivo experiments have also shown that the HMGB1 B box has
pro-inflammatory effects. In particular, administration of the HMGB1 B box to
lipopolysaccharide (LPS)-resistant C3H/HeJ mice was lethal and also significantly
increased serum levels of TNF-α, IL-1β, and IL-6 [8]. Mice given anti-HMGB1 B
box antibodies were significantly protected against lethal endotoxemia, indicating
that selective inhibition of the HMGB1 B box decreases the toxicity of endogenous
HMGB1 [8].

Unlike the B box of HMGB1, the A box does not stimulate pro-inflammatory
cytokine production by cultured macrophages [8, 13, 21, 22]. In contrast, the
A box functions as a competitive inhibitor of HMGB1. Such inhibitory actions
of the HMGB1 A box are demonstrated by the fact that addition of the A box to
macrophage cultures decreases HMGB1 induced release of IL-1β and TNF-α in
a dose dependent manner and displaces 125I-labelled HMGB1 from macrophage
binding [8]. The HMGB1 A box also has in vivo anti-inflammatory effects. In par-
ticular, administration of recombinant A box protein to mice subjected to sepsis
induced by cecal ligation and puncture (CLP) improved survival [8]. Remarkably,
injection of the A box of HMGB1 as late as 24 hours after cecal perforation still
rescued mice from the lethal effects of sepsis [8].

HMGB1 appears to have two distinct functions in cellular systems. First, it has
been shown to have an intracellular role as a regulator of transcription and, second,
an extracellular role in which it promotes tumor metastasis and inflammation
[8–10, 12, 19, 20, 24, 25]. Monocytes/macrophages stimulated by LPS, TNF-α, or
IL-1 secrete HMGB1 [24,26]. Addition of HMGB1 to monocytes in culture induces
the release of TNF-α, IL-1α, IL-1β, IL-1 receptor antagonist (IL-1ra), IL-6, IL-
8, macrophage inflammatory protein (MIP)-1α, MIP-1β, but not IL-10 or IL-12
[24, 26]. Activation of macrophages by HMGB1 occurs with delayed kinetics as
compared to LPS-induced stimulation. For example, culture of macrophages with
LPS results in increases in TNF-α that are apparent within less than one hour,
whereas TNF-α synthesis after HMGB1 exposure only begins to occur after 2 hours
and then persists for as long as 8 hours [12, 26]. In the in vivo setting, increases
in circulating HMGB1 levels are found after serum TNF-α and IL-1β levels have
returned to basal levels [8–12, 20, 26]. Administration of anti-HMGB1 antibodies
decrease the severity of LPS induced ALI, even though pulmonary concentrations
of pro-inflammatory cytokines, such as IL-1β or TNF-α, remain elevated [27].
Similarly, in septic mice with peritonitis, mortality can be reduced even if anti-
HMGB1 antibodies are given as long as 24 hours after CLP [8, 28]. Such results
indicate that HMGB1 is a late mediator of lethal inflammation, whose effects are
independent of those of early acting pro-inflammatory mediators, such as TNF-α
or IL-1β.
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HMGB1 and Sepsis

Serum concentrations of HMGB1 increase 8 to 32 hours after administration of
LPS or TNF-α to mice [8, 26]. Systemic administration of purified recombinant
HMGB1 is lethal in LPS sensitive C3H/HeN mice as well as in the LPS resistant
C3H/HeJ mice, indicating that HMGB1 can mediate lethal toxicity in the absence
of signal transduction by LPS [26]. These results also indicate that receptors other
than the type 4 Toll-like receptor (TLR4), which is responsible for LPS-induced
cellular activation, are involved in the inflammatory response initiated by HMGB1.

Administration of anti-HMGB1 antibodies protects mice from LPS-induced
lethality even if the therapy is delayed several hours, and is administered after
the appearance of the early pro-inflammatory cytokine response [8, 12, 13, 26].
Similarly, anti-HMGB1 antibodies can improve survival of mice subjected to peri-
tonitis induced by CLP, even if administered 24 hours after the initiation of the
septic insult [28].

In patients with severe sepsis, serum HMGB1 levels are increased, and the
highest levels were initially reported to be present in non-survivors [26]. However,
more recent studies have brought the relationship between HMGB1 levels and
outcome from sepsis into question. In particular, although Sunden-Cullberg et al.
found persistent increases in circulating HMGB1 levels in septic patients, there was
no apparent relationship between HMGB1 levels and mortality in that study [29].

An important question is the mechanism through which HMGB1 may con-
tribute to organ dysfunction and lethality in sepsis. Interestingly, there is evidence
that HMGB1 itself does not cause hypotension, but rather may induce organ dys-
function through its effects on the epithelium and, in particular, through produc-
ing epithelial dysfunction that results in interstitial edema [15, 21]. Such findings
are somewhat surprising, given the ability of HMGB1 to induce macrophages to
produce TNF-α, which itself causes profound hypotension.

In addition tobeing secretedbyactivatedmacrophages,HMGB1 is also released
into the extracellular milieu when cells die by necrosis, but not when cellular
death occurs through apoptosis, when it remains bound to chromatin [23, 25].
In this respect, HMGB1 appears to function as a true ‘danger signal’, indicating
when cells meet a fate that results in unexpected death. While enhanced apoptosis,
particularly of lymphocytes and epithelial cells, is found in sepsis [30], the presence
of increased circulating HMGB1 levels in this setting may also reflect enhanced
rates of cell death by necrosis, a hypothesis that will require confirmation in future
experiments.

HMGB1, Hemorrhage, and Burns

As with sepsis, persistent elevations in serum HMGB1 levels are present in humans
after life threateninghemorrhage,with increasesoccurringwithin thefirst 24hours
after the onset of blood loss and then continuing for more than 72 hours [31].
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Of note, serum levels of HMGB1 after hemorrhage, up to 70 µg/l, are similar to
those found in severe sepsis. Additionally, increased HMGB1 expression is found
in experimental burn injury models [32]. In those thermal injury experiments,
significant correlations were found between pulmonary HMGB1 expression and
MPO activity, suggesting a role for HMGB1 in burn-induced ALI.

Hemorrhage results in increased expression of multiple pro-inflammatory cy-
tokines in the lungs, includingTNF-αandIL-1β [33–39].Becausepro-inflammatory
cytokines, including TNF-α, are known to stimulate the production of HMGB1 by
macrophages, endothelial cells, and other cell populations [9, 10, 12, 24, 26, 40, 41],
it seemed likely that hemorrhage would be associated with increased generation of
HMGB1 in the lungs. Recent experiments in murine models of hemorrhage have
confirmed increased pulmonary levels of HMGB1 in this setting [42]. Addition-
ally, anti-HMGB1 antibodies decreased the severity of hemorrhage-induced ALI,
demonstrating a role for HMGB1 in this pathophysiologic process.

HMGB1 and Acute Lung Injury

Intratracheal administration of HMGB1 produces ALI, and antibodies against
HMGB1 decrease LPS- or hemorrhage-induced lung edema and neutrophil accu-
mulation [27, 42]. Anti-HMGB1 antibodies did not significantly reduce the levels
of the pro-inflammatory cytokines TNF-α, IL-1β, or MIP-2 in LPS-induced ALI,
indicating that HMGB1 occupies a more distal position in endotoxin-induced
pro-inflammatory cascades. In addition, these results suggest that the previously
described roles of early appearing pro-inflammatory cytokines, such as TNF-α
and IL-1β, in inducing LPS and perhaps sepsis-induced ALI may not all have been
due to direct effects, but rather to their ability to produce generation of HMGB1.

Receptors for HMGB1 Include RAGE, TLR2, and TLR4

The receptor for advanced glycation end products (RAGE), a multiligand mem-
ber of the immunoglobulin superfamily of cell surface molecules, interacts with
HMGB1 and triggers activation of key cell signaling pathways [43–47]. Binding
of HMGB1 to RAGE leads to neurite outgrowth and enhanced expression of plas-
minogen activator by macrophages [40,48–53]. Although RAGE is a major receptor
for HMGB1 in neural tissue and some malignant cells [44,48–50,54], this receptor
appears to be less important in HMGB1 signaling among other cell populations. For
example, incubation of microvascular endothelial cells with anti-RAGE antibodies
only decreased HMGB1-induced IL-8 production by 14% and TNF-α production
by 17% [40].

Because the pattern of kinase activation and release of pro-inflammatory cy-
tokines induced by HMGB1 in macrophages is similar to that which occurs after
incubation with the Gram-negative bacterial product LPS that interacts with TLR4
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or with the Gram-positive products peptidoglycan or lipotechoic acid that interact
with TLR2, it seemed possible that HMGB1 might interact with these same recep-
tors. Subsequent experiments, using transfection of TLR2 or TLR4 into HEK cells
that normally do not bear these receptors, as well as studies that directly exam-
ined the interaction of HMGB1 with TLR2 or TLR4 on macrophages, showed that
HMGB1 does produce cellular activation through TLR2 and TLR4 [55]. Interest-
ingly, RAGE appears to be less important than either TLR2 or TLR4 for macrophage
stimulation by HMGB1 [56].

Cellular Activation Pathways Induced by HMGB1

Interaction of bacterial products with TLR2 or TLR4 leads to enhanced nuclear
translocation of nuclear factor kappa B (NF-κB), occurring through activation of
the IKKα/β kinase complex. In neutrophils and macrophages, the p38 mitogen
activated protein kinase pathway (p38 MAPK) as well as the phosphoinositide-3
kinase (PI3-K) pathways are also activated when signaling is induced through
TLR2 and TLR4, and also appear to contribute to inducing nuclear translocation
of NF-κB [57].

Since theprimarysignaling initiatedbyHMGB1inneutrophils andmacrophages
occurs through TLR2 and TLR4, it is not surprising that exposure of these cell
populations to HMGB1 produces nuclear translocation of NF-κB and activation
of the p38 and PI3-K kinase pathways with patterns resembling those induced
by LPS [40, 41, 56]. However, gene array studies show that the patterns of gene
expression induced by LPS and HMGB1, although similar in many respects, also
demonstrate significant differences, consistent with the use of receptors other than
TLR4 by HMGB1 [41].

Signaling pathways involving cellular activation by HMGB1 are shown in Fig. 1.

Release of HMGB1 from Necrotic Cells Triggers Inflammation

When cells die by necrosis rather than apoptosis, they lose their membrane in-
tegrity and release intracellular contents. Necrotic cell death is common in the
setting of trauma and blood loss. HMGB1 is passively released by necrotic or
damaged cells [23,25]. Transgenic cells lacking HMGB1 (HMGB1 -/-) have greatly
reduced ability to promote inflammation when they die by necrosis, showing that
the release of HMGB1 by necrotic cell death can initiate inflammatory responses in
neighboringcells [19,25,58]. Incontrast, apoptotic cellsdonot releaseHMGB1even
after undergoing secondary necrosis, and fail to promote inflammation even if not
cleared promptly by phogocytic cells. In apoptotic cells, HMGB1 remains bound
to chromatin because of generalized underacetylation of histones. If chromatin
deacetylation is prevented during the apoptosis process, HMGB1 is released into
the intracellular space and can promote inflammation. The in vivo role of HMGB1
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Fig. 1. Signaling pathways activated by high mobility group box protein 1 (HMGB1)

in mediating inflammation after cellular necrosis is shown in experiments where
anti-HMGB1 antibodies reduce damage and inflammatory cell recruitment to the
liver after acetaminophen-induced necrosis [25].

Conclusion

HMGB1 is a novel late mediator of inflammatory responses that contributes to
ALI and lethal sepsis. It appears to interact with at least three receptors, including
RAGE,TLR2, andTLR4,potentially explaining the similarities in cellular activation
inducedbyHMGB1andbacterial products, suchasLPSorpeptidoglycan.However,
the multiple receptors involved in HMGB1 signaling also provide insights into the
differences in gene expression produced by cellular interaction with this mediator.
Unlike the situation with classically described pro-inflammatory cytokines, such
as TNF-α or IL-1β, where blockade is only effective in improving outcome from
experimental sepsis if administered before or very early in the course of sepsis,
inhibition of HMGB1 with specific antibodies or the HMGB1 A box sequence still
reduces mortality even if performed up to 24 hours after the initiation of the septic
insult. Such findings suggest that HMGB1 may be an appropriate therapeutic target
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in patients with sepsis or ALI, since it may participate in the pathogenesis of organ
dysfunction and mortality even at later time points when such patients present for
hospital or ICU admission.
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Introduction

Progression of sepsis to septic shock and multiple organ failure (MOF) is clinically
characterized by (i) a hyperdynamic state with a high cardiac output; (ii) decreased
vascular reactivity towards pressor agents, leading to vasodilatory shock despite
adequate fluid resuscitation; (iii) myocardial depression (despite the often elevated
cardiac output); and (iv) development of organ dysfunction. MOF carries a mor-
tality of between 20–80%, with survival being inversely correlated to the number
of dysfunctional organs [1]. Respiratory, cardiovascular, renal and hematological
dysfunction are the most prevalent. The mechanisms underlying the pathogenesis
of MOF remain to be fully elucidated but excess production of nitric oxide (NO)
plays a central role.

Early indications of the involvement of nitrogen species during infection came
from observations in the 1980s of elevated urinary nitrate levels in humans with
diarrhea and fever [2]. Subsequently, urinary nitrate levels in rats treated with
lipopolysaccharide (LPS, bacterial endotoxin) were found to correlate with the
degree of fever [3]. Interest in the function of NO in the causation of septic shock
escalated following the discovery of its role in vasorelaxation [4–6] and several re-
ports of nitrate production by immune-stimulated macrophages (reviewed in [7]).
As of December 2005, nearly 2,000 of the 72,000 PubMed listed abstracts citing ‘NO’
also contained the keyword ‘sepsis’. Host production of NO has been modulated in
a multitude of animal models and in clinical trials. Despite considerable interest in
the use of NO synthase (NOS) inhibitors to reverse catecholamine-resistant septic
shock, a phase III randomized, double-blind, placebo-controlled study was termi-
nated prematurely because of increased mortality in the treatment group [8]. The
conflicting results generated by these studies have heightened awareness of the
cytopathic and cytoprotective roles that NO plays in sepsis and MOF. Significantly,
the role of NO in the development of mitochondrial dysfunction, which appears
to be a fundamental pathophysiological mechanism in the development of MOF,
is being increasingly appreciated.
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Reactivity and Cellular Targets of NO and its Derivatives

Direct Effects of NO

NO is a highly diffusible, lipophilic gas with a half-life of 6-10 seconds in aqueous
environments. It can interact directly with ferrous iron in heme-containing pro-
teins, resulting in either activation or inhibition of target proteins. A first target is
the enzyme, soluble guanylate synthase (sGC). This enzyme is directly activated by
NO binding to produce the second messenger molecule cGMP, resulting in a chain
of events leading to NO-dependent vasorelaxation (Fig. 1). Second, NO competes
with oxygen for the mitochondrial cytochrome c oxidase (complex IV), resulting
in reversible inhibition of the complex at physiological NO concentrations [9–11]).
Finally, activity of the family of NO synthase enzymes themselves is regulated by
product-inhibition by NO [12].

NO Derivatives and Their Molecular Targets

Although a free radical by virtue of possessing an uneven number of electrons,
NO is relatively unreactive at physiological (nM) concentrations. Its reactivity
increases at higher concentrations (low µM), such as would occur in biological
membranes or upon inflammatory release of NO. In such cases, NO can react
with molecular oxygen to generate nitrogen dioxide (NO2) or dinitrogen trioxide
(N2O2), or with superoxide (O−

2 ) to yield peroxynitrite (ONOO−). These derivatives
can either nitrosylate and/or nitrate various molecules, including proteins and
lipids. Reaction with thiol groups results in generation of nitrosothiols (see [7,13]
for review).

Peroxynitrite can react with various amino-acid side chains of different pro-
teins, including mitochondrial enzymes ([14] reviewed in [15]), catalase, ion chan-
nels, receptors, cell signaling proteins, and transcription factors [16]. Additionally,
whileNO itself appears to inhibit thepropagationof lipidperoxidation (by scaveng-
ing peroxyl radicals), the highly oxidizing peroxynitrite can react with unsaturated
fatty acids and initiate lipid peroxidation directly, through scavenging of antiox-
idants, or by reaction with low-density lipoproteins (LDLs) [17]. Peroxynitrite
can also shear DNA, thus causing recruitment and direct activation of poly(ADP-
ribose) polymerase (PARP), an enzyme involved in DNA repair which may deplete
NAD+ stores (reviewed in [18]).

Generation of Nitric Oxide: The Nitric Oxide Synthases

NO is primarily synthesized by the NOS family of proteins, by reaction of 1 mol of
l-arginine with 1.5 mol NADPH and 2 mol of molecular oxygen to yield one mol
each of l-citrulline and NO and 2 mol of water. There are three members of the
family, numerically designated according to the order in which they were cloned:
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Fig. 1. Role of nitric oxide (NO) in cGMP-mediated vasorelaxation and in platelets. Endothelial
cell activation by interaction of agonist (A, e.g., bradykinin, acetylcholine, insulin, estrogen)
with cell-surface receptors (R), results in transient calcium-dependent and/or phosphoinositol-
3-kinase (PI3)-dependent activation of eNOS. The NO produced rapidly diffuses into vascular
smooth muscle cells (VSM) (and other nearby cells including platelets), where it activates sol-
uble guanylate cyclase (sGC) directly, elevating cGMP levels. cGMP has numerous targets in
different cells (arrows), including ion-channels, receptors (G), phosphatases, kinases, phospho-
lipase C (PLC) and phosphodiesterases. In the VSM, cGMP acts on calcium channels and on
myosin light-chain phosphatase (MLCP) via protein kinase G (PKG). In this way, the myosin
contractile apparatus is dephosphorylated and desensitized to calcium, resulting in relaxation.
In platelets, NO stimulates cGMP-mediated decreases in cytosolic Ca2+ which, in combination
with prostaglandins, prevent platelet activation and aggregation by negative regulation of, for
example, glycoproteinIIb/IIIa receptors



80 J. Carré, M. Singer, S. Moncada

NOS1 (neuronal, or nNOS), NOS2 (inducible, or iNOS) and NOS3 (endothelial or
eNOS). Additionally, the existence of a mitochondrial isoform (mtNOS) has been
proposed [19,20]. Each NOS isoform is dimeric and requires several cofactors and
prosthetic groups: heme, tetrahydropterin, NADPH, FAD, FMN and calmodulin.
Characteristics of the three NOS isoforms that have been identified are outlined in
Table 1.

Table 1. Expression and regulatory aspects of nitric oxide synthase (NOS) isoforms

Isoform expression regulation

nNOS
(NOS1)

neurons (CNS, PNS), skeletal muscle,
some blood vessels, pulmonary
epithelium, gastrointestinal
and genitourinary systems

• constitutive expression
• transcriptional activation:
ischemic preconditioning, wounding
• regulation of enzyme activity:
receptor agonists affecting calcium/
calmodulin; NO (feedback inhibition)

iNOS
(NOS2)

induced in activated macrophages,
neutrophils, monocytes, eosinophils,
hepatocytes, vascular smooth muscle,
epithelium, endothelium, myocytes,
fibroblasts, osteoblasts
constitutive expression: intestinal,
bronchial & renal tubular endothelium

• some constitutive expression
• transcriptional activation:
immunoactivation (LPS, interferon γ,
TNF-α, IL-1); shear stress, l-arginine
• transcriptional downregulation:
steroids; NO; heat shock response
• protein activity: calcium-independent

eNOS
(NOS3)

vascular endothelium, blood platelets,
cardiomyocytes

• constitutive expression
• transcriptional activation:
shear stress, rho kinase pathways
• post-transcriptional: mRNA stability
• enzyme activity: receptor agonists
affecting calcium/ calmodulin;
NO (feedback inhibition); HSP90

CNS: central nervous system; PNS: peripheral nervous system; LPS; lipopolysaccharide; TNF:
tumor necrosis factor; IL: interleukin; HSP: heat shock protein

Whereas iNOS has been classically viewed as the inducible NOS isoform (ex-
pressed in response to immunoactivation), with nNOS and eNOS as constitutively
expressed isoforms, it is becoming apparent that all three isoforms are subject
to regulation at the level of expression (Table 1) [21, 22]. Both eNOS and nNOS
produce briefly elevated (pM to low nM) physiological concentrations of NO in
response to Ca2+ transients. NO produced under these conditions serves to act
as a neurotransmitter (nNOS), as a signaling molecule (eNOS), and as a physio-
logical regulator of cellular functions such as mitochondrial respiration (reviewed
in [23]). On the other hand, expression of iNOS occurs over several hours and
results in sustained synthesis of elevated levels of NO (high nM to low µM).

Mechanistic and regulatory characteristics of specific NOS isoforms are com-
plex (reviewed in [24]). The different enzymes may be physiologically regulated
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to varying extents by local NO concentration and oxygen tension. Some of the
physiological consequences of NOS isoform activity are discussed below.

Cellular Effects of NO

Vasorelaxant Effect

Vasorelaxation was one of the first physiological effects of NO to be described
[4–6] (reviewed in [25]). Stimulation of the calcium/calmodulin-dependent eNOS
isoform by factors such as endothelial shear stress or exogenous vasodilators
(e.g., acetylcholine, histamine, bradykinin) releases picomolar levels of NO in the
endothelium through transient rises in endothelial Ca2+. NO rapidly diffuses to
the vascular smooth muscle where it binds and activates sGC to generate cGMP.
Amongst its key actions, this second messenger mediates uptake of Ca2+ into the
sarcoplasmic reticulum which, in turn, promotes vasorelaxation and also inhibits
platelet aggregation and leukocyte adhesion (Fig. 1). Thus, through its effects on
the vascular system, NO is intricately involved in modulating oxygen delivery to
tissues.

NO and the Immune Response

In response to stimuli such as endotoxin, interferon (IFN)-γ or expression of
Toll-like receptors, various cells of the innate immune response system (including
macrophages, neutrophils, vascular endothelial cells, and hepatocytes) release
a host of inflammatory mediators, including cytokines such as tumor necrosis
factor (TNF)-α and interleukin (IL)-1β, chemokines, clotting factors, proteases,
and NO. The latter is produced due to an induction of the iNOS isoform that
occurs via a nuclear factor-kappa B (NF-κB)-dependent transcription pathway in
response to cytokine stimulation [26,27]. Induction of iNOS expression is inhibited
by glucocorticoids [28]. Interestingly, NF-κB activation and the induction of iNOS
inmurinemacrophageshasbeen foundtobesignificantlydependenton theactivity
of constitutive eNOS, in part via an sGC and cGMP-dependent mechanism [29].

Effects of NO on Mitochondria

Mitochondria provide the majority of the cell’s energy requirement in the form of
ATP; furthermore, mitochondria are known to play a role in defining cell fate. NO
affects mitochondrial function through the following interdependent mechanisms:
(i) inhibition of mitochondrial respiration (both reversible and irreversible); and
(ii) increasing concentrations of reactive oxygen intermediates (Fig. 2).
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Fig. 2. Effects of nitric oxide (NO) on mitochondrial respiration. The respiratory chain, housed
in the inner mitochondrial membrane, couples the energy released from oxidation of NADH- or
FADH2-linked substrates to the pumping of protons (H+) across the membrane (gray arrows).
The resulting membrane potential ∆ψ (and ∆pH) is used to drive both the synthesis of ATP
by F0F1ATPase, and the transport of ions and proteins into the mitochondrial matrix. Proton
pumping is performed by the action of three protein complexes: NADH dehydrogenase complex
(Complex I); the bc1 complex (Complex III) and cytochrome c oxidase complex (Complex IV).
The effects of NO mitochondrial respiration are indicated with thick black arrows (see text for
details) andcomprise (i) inhibitionof respiratory chainand tricarboxylic acid (TCA) cycle leading
to (ii) decreased ATP synthesis, (iii) increased ROS production and (iv) gradual depolarization
of the mitochondrial inner membrane. Depending on the extent to which it occurs, dissipation
of ∆ψ may lead to hydrolysis of ATP by the ATPase, disruption of ion transport and calcium
homeostasis, and persistent mitochondrial permeability transition

Inhibition of mitochondrial respiration

At physiological concentrations of tissue oxygen (approximately 30 µM) NO is
a potent, reversible inhibitor of cytochrome c oxidase (mitochondrial respiratory
complex IV) [9–11] (reviewed in [23,30]), with half-maximal inhibition occurring
at 60 nM [9]. This inhibition may represent a physiological means of regulation
of respiration by influencing the affinity of cytochrome c oxidase for oxygen
(see [31]). The source of NO for potential regulation of mitochondrial respira-
tion remains uncertain. Although relatively short-lived, the highly diffusible and
lipophilic nature of NO means that non-mitochondrial or even transcellular gen-
eration of NO may be sufficient to affect mitochondria. Under hypoxic conditions,
NO outcompetes O2, thus increasing the sensitivity of cytochrome c oxidase to NO
inhibition [9, 30, 32].
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Increasing concentrations of reactive oxygen intermediates

Interaction of NO with complex IV of the respiratory chain can result in leakage
of electrons leading to the formation of superoxide, thus increasing the release of
reactive oxygen species (ROS) by the respiratory chain. Under these conditions,
the formation of peroxynitrite may be favored. Persistent exposure of cells or mi-
tochondria to elevated NO leads to the formation of peroxynitrite, resulting in
replacement of the reversible inhibition of complex IV by an irreversible inhibi-
tion of respiration at respiratory complex 1 (NADH dehydrogenase) (see [14]) and
probably other sites such as aconitase (a tricarboxylic cycle enzyme) and GAPDH.
In addition to increasing the production of ROS by blocking the electron trans-
fer chain, peroxynitrite-induced inhibition of defense mechanisms (e.g., catalase,
mitochondrial MnSOD) further exacerbates oxidative stress (see [14]; reviewed
in [15,30]). Peroxynitrite can be scavenged by high concentrations of antioxidants,
such as glutathione and ascorbic acid, which can decrease the extent of mitochon-
drial damage. Consequently, insufficient antioxidant capacity (which may occur
when ROS production is high) will result in lasting detrimental effects on mito-
chondrial respiration. Mitochondrial dysfunction induced by prolonged exposure
to elevated NO or peroxynitrite is becoming increasingly implicated in a number
of pathological states, including sepsis (below) [33].

Apoptosis and Necrosis

NO has been shown either to stimulate or prevent apoptosis, depending on the
cell type and conditions. At physiological levels, NO may protect cells including
cardiomyocytes, hepatocytes, thymocytes, and lymphocytes from apoptosis by
inhibition of executor proteins including the caspase family of proteases, regula-
tion of receptor or Ca2+ channel activity, and upregulation of protective proteins
such as Bcl-2, heme oxygenase and heat-shock proteins. On the other hand, NO
participates in apoptosis of some cortical neurons and macrophages, while pro-
longed exposure to NO, such as occurs in inflammation, can result in increased
apoptosis by several mechanisms including increasing Fas death receptor expres-
sion and down-regulation of apoptotic-inhibitor proteins. At the mitochondrial
level, activation of apoptotic factors and disruption of Ca2+ homeostasis by NO
or peroxynitrite leads to an increase in mitochondrial membrane permeability
and the subsequent release of cytochrome c (reviewed in [15,18,34]). NO-induced
oxidation of lipids can also lead to apoptosis.

Necrosis may be induced in cells when ATP levels decrease to the extent that
plasma membrane ion pumps fail, depolarization occurs, and cells swell and rup-
ture due to loss of ion homeostasis. With prolonged exposure to NO, inhibition
of mitochondrial respiration or, possibly, excess activation of the NAD-depleting
DNA repair protein PARP, necrosis may ensue when demand for ATP cannot be
met by glycolysis. By contrast, apoptotic pathways require a certain amount of ATP,
so this process is prevented under conditions of severe ATP depletion, resulting in
a necrotic mode of cell death.
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Mitochondrial Biogenesis

Although mitochondria carry their own DNA, this encodes less than 5% of the
proteins located in this organelle. The majority are encoded by the nucleus and
imported into themitochondriausingprotein translocationmachinery.Theperox-
isome proliferator-activated receptor-γ coactivators, PGC-1α and PGC-1β, appear
to play a key role by triggering expression of the transcription factors NRF-1
and NRF-2. These factors regulate expression of nuclear-encoded mitochondrial
respiratory proteins and proteins involved in expression of the mitochondrial
genome. NO stimulates mitochondrial biogenesis in various cell types through
cGMP-mediated activation of PGC-1α [35].

Measurement of NO Production

Although a NO-sensitive electrode has been employed in some in vitro studies, it is
inherently difficult to directly measure concentrations of NO produced in animal
models or in patients, due to the relatively short half-life of this gas. Rates of NO
production can be measured indirectly in vitro in tissue sample homogenates by
the rate of transfer of radiolabel from [3H]-l-arginine to [3H]-l-citrulline. Most
commonly, experimental and clinical studies assess the concentration of the NO
breakdown products, NO−

3 and NO−
2 (often collectively referred to as NOx) in

plasma or urine. The extent to which determinations of plasma or urinary NOx
are a true reflection of NO production may be limited by the existence of renal
failure, plasma protein levels, the type of food intake, and the half-life of the NOx
species. Also, the reactions of NO described above result in the formation of other
products, for example nitrotyrosine and nitrosothiols, which are not detected by
this method [36]. Furthermore, while plasma NOx can be a useful indicator of
altered NO metabolism, rates of production and accumulated concentrations of
NO and its derivatives are likely to vary significantly between different tissues and
organs during the progression of sepsis.

NO Production in Sepsis

Overproduction of NO

Large increases in NOx are frequently observed in rodent models of endotoxic
shock or sepsis. However, in studies involving larger animals and patients, in-
creases in plasma NOx concentrations occur to a much lesser extent. Plasma NOx
concentrations in control patients are typically reported to be between 14 and
40 µM [36–39]. A 3.5-fold increase in plasma NOx was reported in septic patients
with hypotension [39], and 6- to 8-fold increases during recurrent episodes of
shock [36]. Arnalich et al. [38] noted that the peak increase in NOx (6-fold) oc-
curred after several hours. An inverse correlation was found between plasma NOx
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and mean arterial pressure (MAP) [37]. Further correlations have been reported
between plasma NOx and low systemic vascular resistance (SVR), high endotoxin
levels [40, 41] and cardiac output [40].

NOx levels are also elevated in tissues from septic patients. Brealey et al. [42]
reported a 2- to 4-fold increase in NOx levels in skeletal muscle biopsies taken
from patients with septic shock, which correlated with severity of illness assessed
by norepinephrine requirements and the sequential Organ Failure Assessment
(SOFA). Annane et al. [37] found that rates of [3H]-citrulline synthesis (an indi-
rect measure of NO production) were dramatically increased in skin, muscle, fat
(> 70-fold) and arteriolar tissues (> 1,200-fold) compared to normal tissue.

In summary, NO over-production appears to be characteristic of patients with
sepsis and MOF. The degree of overproduction appears to be less than that seen
in rodents, but an equivalent effect is seen on blood pressure, cardiac output and
illness severity.

Sources of NO in Sepsis: Involvement of the Different NOS Isoforms

In rodent models of endotoxic shock, high levels of iNOS protein expression
have been found in lung, liver, spleen, and duodenum, as well as kidney, thy-
mus, ileum, and heart [27, 43]. It is interesting to note that total NOS activity
is high in the brains of LPS-treated rats, whilst iNOS is barely detectable [43],
suggesting activation of the constitutive enzyme in this tissue. In rodents, it ap-
pears that a rapid increase in NO production by calcium-sensitive constitutive
NOS is followed after 2-6 hours by a more sustained expression and activity of
iNOS.

In human sepsis, expression of specific NOS isoforms varies in different tis-
sues. Induction of iNOS, concomitant with a downregulation of the constitutive
isoforms, has been demonstrated in some septic tissues, including vascular smooth
muscle. A reciprocal relationship between eNOS and iNOS expression has been
documented in vitro during inflammation [44], whilst a similar observation has
been made between nNOS and iNOS expression and activity in skeletal muscle of
septic patients [45]. A correlation between disease severity, a reduction in contrac-
tility of rectus abdominis muscle, and the level of iNOS protein in this tissue has
been reported [45]. In post-mortem samples of brain taken from septic patients,
Sharshar et al. noted that, whilst iNOS expression was barely detectable in neurons
and microglial cells, endothelial iNOS expression was significant and correlated
with the extent of apoptosis in the autonomic centers [46].
Earlier, a localized, rather than widespread, upregulation of iN OS had been sug-
gested in tissues of patients with necrotizing fasciitis; activity of iNOS was limited
to the nidus of infection in muscle, fat and artery, with approximately 70-fold
increases in iNOS activity in putresecent tissues compared to normal muscle or fat
tissue, and a > 1,200-fold increase in the aorta [37].
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Effects of NO in Sepsis-induced MOF

NO and the Circulatory System

Decreased Systemic Vascular Resistance and Vascular Hyporeactivity

NO is implicated in vasodilatory shock by both cGMP-dependent and independent
mechanisms [25,47].Themajor effectofNOis likely tobemediatedbysustainedac-
tivation of sGC and the vasorelaxant mechanism depicted in Fig. 1. However, cGMP
also activates calcium-dependent and ATP-dependent plasma membrane potas-
sium channels (KCa and KATP), allowing potassium efflux from the cell. Prolonged
channel activation would lead to hyperpolarization of the plasma membrane, inhi-
bition of voltage-gated calcium channels and decreased cytosolic calcium content,
further contributing to vasorelaxation and promoting a hyporeactive response of
the systemic vasculature to catecholamines. The contribution of this latter mecha-
nism to the vasodilation and vascular hyporeactivity of septic shock has not been
fully evaluated; however the KATP channel is being increasingly implicated. This is
the result of observations such as those demonstrating that sulfonylurea inhibitors
of this channel result in a significant increase in MAP and SVR in endotoxic shock
and other shock states (reviewed in [47]). Besides the loss of vascular tone, en-
dothelial permeability is also compromised in sepsis, resulting in tissue edema and
increased flux of circulating factors to the extravascular compartments.

Myocardial Depression

Myocardial depression is frequently found in fluid-resuscitated septic patients,
despite the presence of a persistent hyperdynamic state. Although the cause of
myocardial depression in sepsis is not fully understood, it is likely that the con-
dition is not simply due to hypoperfusion and ischemia, and circulating depres-
sant substances, including TNF-α, IL-1β and NO, appear to be involved [48].
Increases in iNOS expression correlating with cardiovascular depression were ini-
tially demonstrated in a model of septic shock in the rat [49]. This finding was
later confirmed in isolated cardiac myocytes [50]. These observations, which have
since been confirmed in other laboratories, indicate that NO plays a central role in
sepsis-associated cardiac dysfunction, similar to that which it plays in producing
vasodilation in septic shock.

Myocardial depression in septic patients is thought to involve both NO-
independent adrenergic signaling defects and a stimulation of myocardial eNOS
activity by cytokines and other circulating factors, producing cGMP-dependent
loss of systolic contractile force and enhanced diastolic relaxation. As the inflam-
matory response is sustained, myocardial iNOS is expressed. In combination with
sGC activation, NO may also be involved at this stage in adrenoreceptor dysfunc-
tion [48]. Whether in the late stages of septic shock depletion of l-arginine, and
therefore low NO, plays a role in cardiac depression (as has been suggested by the
experiments of Price et al. [51]) remains to be established.
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NO and Metabolism

A Subsequent Bioenergetic Shutdown?

The concept of NO-mediated inhibition of mitochondrial function in septic organs
is now firmly established. At the physiological level, an elevation in tissue oxygen
tension (PO2) is observed in sepsis (reviewed in [52]), in contrast to other shock
states where tissue hypoxia occurs. Thus, whilst some maldistribution of microvas-
cular blood flow undoubtedly occurs [53], tissue oxygenation in fluid-resuscitated,
pressor-treated patients does not appear to be compromised. Two large clinical tri-
als designed to optimize tissue oxygen delivery in patients with established MOF
failed to demonstrate benefit [54, 55], and a later retrospective analysis concluded
that, despite improved oxygen delivery, non-survivors displayed a lesser ability to
increase tissue oxygen consumption following inotropic stimulation [56].

Although, at the biochemical level, alterations in mitochondrial function in
human sepsis and in animal models have been described over the last 40 years
(see [52, 57] for reviews), the mechanisms by which this may occur have only
become apparent following the observations which indicated that persistent inhi-
bition of complex IV by NO leads to a sequence of events including generation of
ROS, depletion of glutathione, and subsequent inhibition of complex I [14]. In a re-
cent study of septic patients, non-survivors exhibited depressed levels of skeletal
muscle ATP and phosphocreatine, while ATP levels were significantly increased in
survivors compared to controls [42]. An inverse correlation between tissue NOx
levels and mitochondrial complex I activity or levels of reduced glutathione was
seen [42]. Similar results were subsequently found in liver and muscle in a long-
term resuscitated rat model of MOF [58], whilst reversible inhibition of complex
IV by NO was observed in endotoxin- and IFN-induced aortic inflammation in the
rat [59].

NO-dependent depression of mitochondrial respiration is thus clearly an im-
portant contributory factor to organ dysfunction in sepsis to such an extent that
tissues obtained from iNOS knockout animals injected with endotoxin do not show
impaired respiration [60]. Yet despite the decrease in ATP levels seen in severe long-
termanimalmodels andhumannon-survivors, cell death isnot a significant feature
in most failed organs (discussed below). Furthermore, organ recovery does not
appear to be limited by the regenerative capacity of the tissue. It appears probable
that where glycolysis is able to compensate for the decrease in mitochondrial ATP
production and maintain cell viability (see [30]), the likelihood of organ recovery
is increased. Whether the bioenergetic depression observed in organ failure repre-
sents an adaptive response analogous to hibernation would be worth investigating
since, as recently suggested [61], a metabolic shutdown would increase the chances
of cell (and organ) survival.
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Hypoxia, Mitochondrial Metabolism, and Cell Death

In situations where microcirculatory disruption does lead to localized tissue hy-
poxia, it is likely that the effects of NO are detrimental to the survival of the cell.
Direct competitive inhibition of respiration by NO will be enhanced at low oxygen
tensions and ROS production increased. Peroxynitrite formation and irreversible
inhibition of the respiratory chain and other mitochondrial enzymes will be fa-
vored. Under these conditions, ATP levels may decrease to an extent that glycolysis
can no longer maintain cell viability, and cell death may become a feature. Indeed,
hypoxia is known to sensitize mitochondria to inhibition by NO in both isolated
inflamed aorta [62, 63] and in activated macrophages [64], resulting in increased
necrosis [62].

Differential regulation of neutrophil and lymphocyte apoptosis is a feature of
sepsis. Neutrophils, the shortest-lived cells in the body, are normally constitutively
apoptotic. In sepsis, however, delayed apoptosis of these cells has been observed.
Conversely, more extensive apoptosis has been observed in lymphocytes, intestinal
epithelium, and spleen [65]. While the mechanism for dysregulated apoptosis in
the immune system is unclear, glucocorticoids and NO have been implicated [66].

Pharmacological Modulation of NO Levels in Sepsis

Modulation of NO levels can be achieved pharmacologically in a number of ways
(Table 2).

Modulation of NOS Protein Expression

Expression of iNOS protein can be induced by the presence of toxic bacterial com-
ponents, such as endotoxin, and by the presence of pro-inflammatory cytokines,
such as TNF-α, IL-1, and IL-6, and by the presence of its substrate, l-arginine.
A meta-analysis of five prospective, randomized trials found that low-dose gluco-
corticoid treatment has a beneficial effect on survival and shock reversal [67]. It
is unclear to what extent these findings reflect effects on NOS activity or, indeed,
other immune-linked consequences of glucocorticoid administration.

Inhibition of NOS Isoforms

NO production can be inhibited directly by a number of agents (Table 2). Effectors
that prevent interaction of NOS with its substrate (such as l-arginine analogs or
other amino-acid derivatives, e.g., l-NAME, l-NMMA) are often poorly selective
for different NOS isoforms. A number of agents that are highly selective for iNOS
have been identified, including 1400W, GW274150 and GW273629 [68] (Table 2).
Partially selective inhibition of NOS can also be achieved with citrulline analogs,
including l-thiocitrulline (eNOS, nNOS) and S-methyl-l-citrulline (nNOS) [22].
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Table 2. Examples of pharmacological modulators of NO. Highly selective iNOS inhibitors are
marked *

Selectivity/type of agent examples

Non-selective NOS inhibitors
l-arginine analogs l-NNA (l-NA; N-nitro-l-arginine);

l-NAA (N-amino-l-arginine);
l-NMMA (546C88;
NG-methyl-l-arginine-hydrochloride);
l-NAME (N-nitro-l-arginine methyl ester)

Partially-selectiveNOSinhibitors
l-citrulline analogs l-thiocitrulline (eNOS, nNOS);

S-methyl-l-citrulline (nNOS)

Selective iNOS blockers
gene expression glucocorticoids
enzyme activity:
amino acid derivatives l-NIL (l-N6-(1-iminoethyl)-lysine);

GW274150
((S)-2-amino-1-iminoethylamino)-5-thioheptanoic acid)*

amidines ONO-1714*
guanidines aminoguanidine;

2-mercaptoethylguanidine
isothioureas AE-TIU (aminoethyl-isothiourea);

S-methylisothiourea
bis-isothioureas 1400W (N-3-aminomethyl-benzylacetamidine)*

Selective nNOS inhibitors
Indazoles 7-NI (7-nitroindazole)

Downstream effectors
soluble guanylate cyclase blockers methylene blue;

ODQ (1H-(1,2,4)oxadiazole(4,3-[alpha])quinoxalin-1-one)
NO scavengers hemoglobin; albumin; methylene blue
NO donors S-nitrosothiols, NONOates

Administration of l-arginine Analogs (Non-selective NOS Inhibitors)

Early use of NOS inhibitors as pharmacological agents appeared promising; ap-
plication of l-arginine analogs in animal models and in small series of patients
improved blood pressure and increased the SVR. Detrimental effects, however,
were revealed in subsequent studies, such as decreases in cardiac output and in-
creases in pulmonary vascular resistance [69–71].

A multicenter, randomized, placebo-controlled double-blind study of the non-
selective NOS inhibitor l-NMMA (also known as 546C88) was carried out in
patients with septic shock. Results of the phase II trial were promising: a decrease
in plasma nitrate levels in the treatment group was associated with a decreased
requirement for vasopressors, earlier shock resolution, and an improvement in
vascular resistance [72,73]. However, the subsequent phase III trial was terminated
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prematurely due to an increase in 28-day mortality in the treatment group [8],
with a higher proportion of deaths from cardiac dysfunction related to pulmonary
hypertension. The reasons for this finding are not clear; however, high doses of
the compound may have led to excessive vasoconstriction and further mismatch
of the circulation, increasing the severity of shock. Alternatively, the non-selective
nature of the inhibition of NOS by 546C88 (which affects both iNOS and eNOS)
may have abrogated not only the deleterious effect of iNOS-derived NO, probably
due to peroxynitrite generation, but at the same time any protection afforded by
NO generated by the constitutive enzyme. Rather overlooked was the post hoc
finding that patients given low doses (≤ 5 mg/kg/h) of the drug actually showed
a significant survival benefit [8].

On the basis that totally inhibiting NO release is harmful, and to elucidate the
roles of different NOS isoforms, the use of selective iNOS inhibitors (e.g., 1400W
and ONO-1714) has been employed in a number of rodent studies of endotoxemia
and bacteremia (see [16]). In many cases, the effects of selective iNOS inhibition
have improved the responsiveness of the cardiovascular system to pressors without
the negative effects seen with non-selective inhibitors, presumably by permitting
some continued function of eNOS. To date, however, patient studies with selective
iNOS inhibitors have not been reported.

Use of Soluble Guanylate Cyclase (sGC) Inhibitors

Attempts have been made to target cGMP-mediated effects of NO specifically
by modulation of sGC activity. Since the first preliminary report of its use in
patients [74], methylene blue, a non-specific inhibitor of sGC, has been shown
in a number of rodent models and small human studies to improve vascular
contractility and decrease hypotension in septic shock. A small-scale randomized
pilot study of septic patients receiving an infusion of methylene blue reported an
increase in blood pressure, a decrease in catecholamine requirements, but no rise
in pulmonary vascular resistance [75]. However, no significant improvements in
organ function were seen and platelet counts decreased.

Methyleneblue isnowknown topossessotherpharmacological actions, includ-
ing inhibition of NOS, generation of oxygen radicals, and inhibition of potassium
channels. A more specific and potent inhibitor of sGC, 1H-(1,2,4)oxadiazole(4,3-
[alpha])quinoxalin-1-one (ODQ), has been used in a limited number of studies
of septic shock. Zingarelli et al. [76] reported increased survival in LPS-treated
mice while Zacharowski et al. [77] found that pre-treatment with ODQ prior to the
induction of sepsis decreased organ dysfunction and improved histology in their
rat model.

Theextent towhichsGC-inducedcGMP-dependentprocesses representauseful
therapeutic target in MOF remains unclear at present. Given that targeting sGC
affects the actions of both constitutive and inducible forms of NOS, the potential
for disruption of these processes by inhibiting sGC emphasizes the need for caution
when applying non-selective inhibition of divergent pathways.
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Manyquestions remainunanswered, for example, the effective concentrationof
these pharmacological agents in different tissues (and organelles), and the degree
of NOS inhibition both overall and for individual isoforms. It may be the case that
a non-selective, partial inhibition of NOS isoforms provides an improved outcome
or that selective inhibition of iNOS may prove beneficial. It should be stressed that
evidence is currently lacking for both of these possibilities and further study is
warranted.

Conclusion

Over the last ten years or so, a role of NO in sepsis and MOF has been established.
A number of studies have been performed in animals and in patients in which the
generation of NO in sepsis has been pharmacologically manipulated. While im-
provements in hemodynamics have generally been reported, to date none of these
investigations has clearly demonstrated improved organ function or outcomes in
human sepsis.

It is becoming increasingly clear that NO mediates both cytoprotective and
cytopathic roles in sepsis. However, much remains to be elucidated in terms of how
NOmediates these effects andalsowhether the consequencesofNOare causativeor
reactive to organ dysfunction. Future therapies, better targeted towards selectively
inhibiting iNOS,will nodoubthelp to clarify this question. In addition, it is possible
that targeting downstream effects of NO, such as mitochondrial dysfunction or
promoting mitochondrial biogenesis, may emerge as possible approaches to the
management of this complex and widespread condition.
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Involvement of Reactive Oxygen and Nitrogen Species
in the Pathogenesis of Acute Lung Injury

S. Matalon, I.C. Davis, and J.D. Lang Jr

Introduction

Lung injury can present with different signs and symptoms and emanate from a va-
riety of etiologies. However, whether it is the acute respiratory distress syndrome
(ARDS) or other formsof lung injury, inflammatory stimuli giving rise to thegener-
ation of reactive oxygen species (ROS) and reactive oxygen-nitrogen species (RNS)
contribute to lung pathophysiology [1]. These species, generated by activated in-
flammatory cells, circulating enzymatic generators (such as xanthine oxidase) and
multiple other sources, damage the alveolar and capillary endothelia, lung sur-
factant and connective tissue contributing to the formation of non-cardiogenic
pulmonary edema, the development of the multiple organ dysfunction syndrome
(MODS) and death.

Formation of Oxidative and Nitrosative Species

Reactive Oxygen Species

ROS implicated in pulmonary pathophysiology include superoxide anions (·O−
2 ),

hydrogen peroxide (H2O2), hydroxyl radical (.OH), and hypochlorous acid (HOCl)
(Fig. 1). Superoxide anion generation has been demonstrated from a number of
biological sources. An important enzymatic source of superoxide is nicotinamide
adenine dinucleotide phosphate oxidase (NADPH oxidase) which catalyzes a one-
electron reduction of molecular oxygen to form ·O−

2 . NADPH oxidase is vital
for yielding ROS in phagocytic cells that inhabit the lung (e. g., macrophages
and polymorphonuclear cells) where these species play a role in host defense
mechanisms that target killing and removal of invading microorganisms. It is
not surprising then that a variety of systems are present to prevent and/or limit
oxidative tissue injury. Four types of superoxide dismutase (SOD) catalyze the
conversion of two moles of ·O−

2 to H2O2,which is then converted to water by
catalase and glutathione peroxidase (Fig. 1). Copper (Cu) and zinc (Zn) SODs
(CuZn) are present in the cytosol, while manganese (Mn) SOD is found in the
mitochondria. An extracellular form of SOD (ECSOD) has also been identified
and may play an important role in converting extracellular ·O−

2 to H2O2 as well
as in controlling blood pressure by modulating the reaction of ·O−

2 with NO.
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Fig. 1. Generation of reactive oxygen intermediates by the incomplete reduction of oxygen
in the mitochondria, cytoplasm and cell membrane and extracellular space. O2: oxygen; ·O−

2 :
superoxide radical; H2O2: hydrogen peroxide; ·OH: hydroxyl radical; SOD: superoxide dismutase;
Cat: catalase; GPx: glutathione peroxidase, LO., LOO.: lipid peroxides; X: xanthine; XO: xanthine
oxidase; NADH: nicotinamide adenine dinucleotide; NADPH: nicotinamide adenine dinucleotide
phosphate. From [37] with permission

In newborns, ECSOD exists both intracellularly and extracellularly and plays an
important role in intracellular antioxidant defenses.

Production of Nitric Oxide and Reactive Nitrogen Species

Nitric oxide (NO) synthases (NOS) catalyze the formation of NO and L-citrulline
from L-arginine, and oxygen via a 5-electron redox reaction that also involves
cofactors including NADPH, FAD and tetrahydrobiopterin. Various forms of NOS
have been identified: NOS-1 or neuronal NOS (nNOS), NOS-2 or inducible NOS
(iNOS), and NOS-3 or endothelial NOS (eNOS). nNOS and eNOS are expressed
constitutively, and their activity is regulated largely by changes in intracellular Ca2+

concentration. Although previous studies claimed that iNOS was not constitutively
expressed, more recent findings show expression of iNOS in inflammatory cells
and lung tissue of humans and mice under baseline conditions (Fig. 2) [2] with
significant upregulation of mRNA, protein, and activity following exposure to
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Fig. 2. iNOS is present and active under basal conditions in C57BL/6 mouse lungs. Representative
western blots of (A) azygous lobes and (B) ATII cells isolated from iNOS(+/+) and iNOS(-/-) mice.
Equal amounts of proteins were separated on a 7.5% SDS-PAGE, transferred to polyvinyldidene
difluoride membranes, followed by probing with anti-mouse iNOS antibody, and then anti-rabbit
horseradish peroxidase (HRP) conjugate as the secondary antibody, and finally developed by
enhanced chemiluminescence (ECL) reagents. These measurements were repeated with proteins
derived from five different mice with identical results. (C) Nitrite levels in the BAL of iNOS (+/+)
and iNOS(-/-) mice. Some of the iNOS (+/+) mice were injected with either saline or 1400W. All
mice were euthanized and their lungs were lavaged with sterile saline. NO−

3 was first converted to
NO−

2 with Escherichia coli reductase and concentrations of NO−
2 were measured using fluorescence

utilizing 2,3-diaminonaphthalene (DAN). Values are means ± SEM. The number of samples for
each group is shown in parentheses. *p < 0.01 as compared to the uninjected iNOS (+/+) value.
From [2] with permission

cytokines and LPS. A form of NOS also has been identified in the mitochondria
and may play an important role in regulating mitochondrial function.

Reactive nitrogen species (RNS) are a variety of nitrogen containing molecules
that are typically derived via nitric oxide (NO) reactions. Those implicated in
pulmonary pathology include peroxynitrite (ONOO−), nitrogen dioxide (NO2),
and nitroxyl (HNO) which can be formed via NO-reactions as discussed below but
also through environmental exposure and inhalation (Fig. 2) [3]. Peroxynitrite is
formedby the rapid reactionofNOwith superoxideandwhenprotonated (addition
of H+), will decompose into NO.

2 and ·OH, as well as nitrate (NO−
3 ). These species

may then interact with each other, as well as with O2 or ROS, forming higher
oxides of nitrogen which may oxidize thiols, nitrate aromatic amino acids, most
notably tyrosines, nitrosate and glutathionylate cysteines and oxidize a variety
of amino acids including methionine and cysteines (Table 1). Myeloperoxidase
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Fig. 3. Generation of reactive nitrogen species. Nitric oxide synthases (NOS) catalyze the forma-
tion of nitric oxide (NO) and l-citrulline from l-arginine. NO either binds to the heme center
of soluble guanylate cyclase (sGC) leading to increased production of guanosine 3’,5’-cyclic
monospate (cGMP) and activation of cGMP-dependent protein kinases (PKGs), binds to oxy-
genated hemoglobin (Hb-Fe+2) to form nitrate (NO−

3 ) or interacts with superoxide (·O−
2 ), molecu-

lar oxygen (O2), thiols (RS), or lipid peroxides (LOO.) to form various intermediates. ONOO-: per-
oxynitrite; ONOOH: peroxynitrous acid; .NO2: nitrogen dioxide; RSNO: nitrosothiols; LOONO:
nitrated unsaturated fatty acids; OH: hydroxyl radicals; NO−

2 : nitrite; MPO: myeloperoxidase; M:
metal. From [37] with permission

(MPO), present in pulmonary neutrophils and secreted during their activation,
catalyzes the production of nitrating, oxidizing and chlorinating species from
H2O2, chloride and nitrite (Fig. 3).

Nitrite has also emerged as a key player in supporting NO-formation during
hypoxemia and tissue ischemia, and in this context protects against reperfusion in-
jury. Moreover, nitrite reactions in vivo also lead to diverse NO-dependent protein
adducts including S-nitrosothiols and C-/N-nitrosamines, underscoring the rich
biochemical interplay between distinct RNS and ROS. The therapeutic potential
for this inorganic anion in replenishing NO during low oxygen states has also been
demonstrated in the lung, with inhalation of nitrite reversing pulmonary hyper-
tension in a manner analogous to inhaled NO. A key difference between nitrite and
NO, however, was the lack of rebound hypertension upon withdrawing inhaled
nitrite.
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Table 1. Actions of reactive nitrogen species. From [37] with permission

Signal Transduction

Activation of cGMP/PKG Vessel relaxation
Bronchodilation
Modification of ion channel function
Inhibition of platelet aggregation

cGMP-independent Activation of NF-κb; MAPkinases

S-thiolation
S-nitrosation

NMDA, PKC, adenylate cyclase, complex I,
cardiac ryanodine receptor, L-type calcium
channels, GPx + others, Caspase-3, p21ras,
CFTR

Interactions/modifications

Binding to heme protein metal centers Inhibition of protein and DNA synthesis
Inhibition of mitochondria respiration and
ATP production
Increased methemoglobin levels
Deactivation of NOS
Enzyme inhibition (lipooxygenase, cyclooxy-
genase; ribonucleotide reductase)

Post-translational modifications

Nitration Proteins: Cerulsoplasmin; SP-A; transferrin;
albumin; α1-protease inhibitor; actin; α1-
antichymotrypsin;MnSODβ-chainfibrinogen
Lipids

Oxidation/deamination Lipids, sulfhydryls, DNA base

Reactive Oxygen/Nitrogen Species as Signaling Molecules

Formation of RNS is related to the inflammatory environment within the lung at
specific points in time, which has the potential to generate noxious concentrations
of products detrimental to lung function. Production of NO in the lung serves as an
important regulator of local functions, including airway tone, pulmonary vascular
tone, mucin secretion, ciliary function, and ion channel activity. A number of
studies have demonstrated that transcriptional factors (e. g., OxyR [4, 5]), ion
channels (e. g., olfactory cyclic nucleotide-gated channel [6]) and enzymes can
be activated or regulated by RNS via redox-based modifications of specific thiols
within these proteins.

Thiols

NO-derived species, such as nitrosonium ion (NO+), N2O3 and ONOO− may re-
act with thiols to form nitroso-thiols (RS-NO) [7]. Micromolar concentrations of
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S-nitrosoglutathione have been detected in the airway fluid of normal subjects and
significantly higher levels were observed in the lungs of patients with pneumonia
or during inhalation of 80 ppm NO [8]. Formation of RS-NO adducts stabilizes NO,
decreasing its cytotoxic potential while maintaining its bioactive properties. .NO
can also be transported on cysteine residues of hemoglobin which may facilitate ef-
ficient delivery of oxygen to tissues [9]. Nitrosylation of the N-methyl-D-aspartate
(NMDA) receptor in the brain leads to decreased calcium transport and neuropro-
tection [10]. On the other hand, .NO-induced S-nitrosylation of glyceraldehyde-
3-phosphate dehydrogenase stimulated the apparent auto-ADP ribosylation and
inhibited enzymatic activity [11]. It is important to note that the direct reaction of
.NO with thiol groups is unbalanced and can only occur in the presence of a strong
electron acceptor.

Activation of Protein Kinases

NO binds to the heme group of soluble guanylate cyclase (sGC) leading to an
increase in cGMP levels. Many effects of cGMP are mediated by various isoforms
of cGMP-dependent protein kinase which phosphorylate various substrate pro-
teins, thereby reducing intracellular Ca+2 and causing smooth muscle relaxation.
NO-mediated increases in cGMP levels also decrease platelet aggregation and ad-
hesion of neutrophils to endothelial cells, thus reducing oxidant load [12]. At lower
concentrations, RNS function as signaling molecules (Table 1) regulating funda-
mental cellular activities such as cell growth and adaptation responses; at higher
concentrations they can induce significant cellular injury, apoptosis, and death.

Activation of Nuclear Factor-kappa B (NF-κB)

Among the most important transcription factors responsive to ROS during inflam-
mation and oxidant stress is NF-κB, a transcriptional regulating protein. NF-κB is
one member of a ubiquitously expressed family of Rel-related transcription fac-
tors. This is a family of structurally related eukaryotic transcription factors that
are involved in the control of a vast array of processes, including immune and
inflammatory responses, growth, development, and apoptosis. The production of
ROS, cytokines, or other inflammatory stimuli can activate NF-κB and induce
gene expression, eliciting a response generally observed to be pro-inflammatory
in nature [13].

Intracellular Ca+2, PKC and MAPK

Evidence also indicates that ROS lead to an increase in intracellular calcium con-
centrations which correlate with endothelial permeability [14]. Some observations
suggest that Ca2+ influx occurs through membrane Ca2+channels that are regulated
by ·OH generation. Myosin light chain kinase phosphorylation also increases when
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endothelial cells are treated with H2O2,suggesting that endothelial contraction may
playanessential role inoxidant-inducedendothelial barrierdysfunction. It appears
that an important fundamental requirement for vascular endothelial permeability
is the activation of endothelial contraction.

Additional signaling molecules, such as protein kinase C (PKC), mitogen-
activated protein kinase (MAPK), tyrosine kinases and Rho GTPases appear vital
in mediating endothelial barrier dysfunction. PKC (a family of serine/threonine
protein kinases consisting of at least 12 isoforms) is activated in response to
oxidants and increases endothelial permeability. Inguineapig lungs [15]pretreated
with H-7 ( a non-specific PKC inhibitor acting on the catalytic site of the enzyme),
there was no increase in the pulmonary capillary filtration coefficient in response
to perfusion of H2O2. Increases in pulmonary microvascular permeability were
accompanied by reorganization of actin cytoskeleton, a process inhibited by PKC
inhibitors. The exact mechanism(s) for the role PKC plays in endothelial barrier
function is complex but appears due to activation of ROS and probably involves
only a few select PKC isoforms. The MAPK pathway is activated by ROS and is an
important mediator of cellular responses to oxidant stress. The ERK (extracellular
signal-regulated kinases), JNK (c-JUN NH2-terminal kinase), and p38 cascades
all contain the same series of three kinases. A MEK kinase phosphorylates and
activates a MAPK, and then MEK phosphorylates and activates a MAPK. Various
ROS, most notably H2O2, have been demonstrated to mediate endothelial injury
via stimulation of ERK pathways. This H2O2-mediated action was inhibited by PD-
98059, an ERK kinase (MEK) inhibitor. Furthermore, both ROS and RNS induce
a variety of actions that are potentially detrimental and include abnormal cell
differentiation/proliferation, apoptosis, and DNA damage, with the ERK pathway
implicated as playing the predominant role.

Adhesion Molecules

ROS have been shown to promote cellular and molecular events that result in en-
hancedaggregationandadhesionof leukocytes to endothelium.Prominent inflam-
matory participants emanating from these investigations include ICAM-1 (inter-
cellular adhesion molecule-1) and selectins (a family of transmembrane molecules,
expressed on the surface of leukocytes and activated endothelial cells involved in
enhancing leukocyte-endothelial interactions). Investigations in diverse models
using a variety of oxidant-generating systems (such as hypoxanthine/xanthine ox-
idase, H2O2,or prolonged hyperoxia) have demonstrated consistent increases in
ICAM-1 and P-selectin expression in the vascular endothelium, which promote
leukocyte adhesion. Interestingly, expression of these biomolecules is not uniform
throughout the vasculature.
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Functional Consequences of Protein Nitration In Vitro

Surfactant Protein-A (SP-A)

Protein nitration and oxidation by ROS and RNS in vitro have been associated
with the diminished function of a variety of crucial proteins. Considerable levels of
protein-associated nitrotyrosine (∼ 400−500 pmol/mg protein), as well as nitrated
SP-A were present in pulmonary edema fluid from patients with either acute
lung injury (ALI)/ARDS or hydrostatic pulmonary edema, and in bronchoalveolar
lavage (BAL) fluid of patients with ARDS [16]. In vitro studies have indicated
that nitrated SP-A loses its ability to enhance the adherence of Pneumocystis
carinii to rat alveolar macrophages. Thus, nitration of SP-A may be one factor
responsible for the increased susceptibility of patients with ARDS to nosocomial
infections. The use of inhaled NO in patients with ARDS was shown to increase
both 3-nitrotyrosine and 3-chlorotyrosine (an index of neutrophil activation)
concentrations compared to comparable patients who did not receive inhaled NO.

Current In Vivo Evidence Implicating RNS and ROS as Contributors to Lung Injury

Toxicity from oxygen-nitrogen metabolites released by stimulated neutrophils,
macrophages and other cells has been proposed as one of the significant mech-
anisms of lung injury. One of the initial studies published described the effects
of inflammation on alpha-1-proteinase inhibitor (α-1-PI), which was found to be
inactivated in BAL fluid samples from patients with ARDS [17]. This contrasted
to plasma samples from the same patients which retained > 90% α-1-PI activity.
The activity of α1-PI IN BAL fluid could be restored by the reducing agent, dithio-
threitol, implicating oxidants generated in BAL as being responsible for its loss of
function. Shortly after this study, a different group measured expired fractions of
H2O2, a more stable membrane permeable and volatile oxidant [18]. These sam-
ples were collected in patients with normal lungs undergoing elective surgery and
critically ill patients suffering from acute hypoxemic respiratory failure. Expired
breath condensates of H2O2were observed to be significantly greater in patients
suffering from acute hypoxemic respiratory failure and focal pulmonary infiltrates
than those without pulmonary infiltrates, indirectly implicating increased oxida-
tion. Interestingly, H2O2 concentrations were greatest in patients with head injury
and sepsis, whether pulmonary infiltrates were present or not. This unexpected
finding suggested the participation of oxidants in sepsis and other forms of vital
organ injury, such as in brain trauma.

Further studies have continued to create a solid foundation that implicates
oxidant generation as a significant contributor to inflammatory-mediated lung
injury. In fact, inoneof themost recent studies, levelsofplasmahypoxanthine, akey
cofactor that accumulates during intervals of hypoxia leading to the production of
O.−

2 and H2O2, were found to be significantly elevated in patients with ARDS [19].
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However, the highest concentrations occurred in patients who did not survive,
implicating oxidative damage as an influential contributor to mortality. Higher
levels of nitrate and nitrite were also noted in the BAL fluid of patients with ARDS
as compared to those of normal volunteers, as well as in the edema fluid of patients
with either ARDS or cardiogenic pulmonary edema (Fig. 4) [20, 21].

Fig. 4. Evidence for increased levels of reactive oxygen-nitrogen intermediates and nitrated
proteins in the bronchoalveolar lavage (BAL), edema fluid (EF), and plasma (Pl) of patients with
ARDS and hydrostatic pulmonary edema. (A) Nitrate and nitrite concentration in BAL from
normal volunteers (NL), patients at-risk for ARDS (RISK), and patients with established ARDS
(ARDS) studied at sequential times. The horizontal axis shows the patient group and the day on
which the BAL was performed. (n) = number of subjects in each group. The data are presented
as box plots showing the 10th, 25th, 75th, and 90th percentiles and the median. (*) p < 0.005 vs.
normal subjects (From [20] with permission). (B) Nitrate and nitrite in pulmonary edema fluid
and plasma samples from patients with acute lung injury (ALI), patients with hydrostatic edema
(hydr.), and normal volunteers. Numbers in parenthesis are sample numbers. Values are means
± SEM (from [16] with permission). (C) Levels of nitrated proteins (measured by ELISA) in the
plasma of patients with ALI, hydrostatic edema (hydrost) as well as normal volunteers (normal).
Values are means ± SEM (n = number of patients or volunteers) (data adapted from [16] with
permission). (D) Nitration of surfactant protein A (SP-A) in pulmonary edema fluid samples
from ALI/ARDS patients. SP-A was immunoprecipitated from EF or Pl from four patients with
ALI/ARDS. Immunoprecipitated SP-A was probed with polyclonal antibodies to SP-A (anti-SP-A)
or nitrotyrosine (anti-NT). Nitrated SP-A was detected in the pulmonary edema fluid but not in
the plasma of all patients. Vertical arrow shows purified human SP-A from a patient with alveolar
proteinosis. Notice the lack of nitration in the control sample. From [16] with permission
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Substantial evidence supports the notion that ROS and RNS are injurious to
the pulmonary epithelium in a number of pathological conditions. Induction of
immune complex alveolitis in rat lungs results in increased alveolar epithelial
permeability, which is associated with the presence of NO decomposition prod-
ucts in the BAL fluid [22]. Moreover, alveolar instillation of the NOS inhibitor,
N (G)-monomethyl-l-argnine, ameliorates NO production and alveolar epithelial
injury [22]. Infection with pathogens such as Bordetella pertussis and influenza is
associated with significant increases in NO production [23] and animals infected
with Bordetella pertussis demonstrated a significant reduction in NO production
with NOS inhibition.

The ‘Good’ Side of NO

Although formation of ONOO− can result in tissue damage, NO can ameliorate
tissue injury by several mechanisms. As mentioned above, NO increases steady
state levelsof cGMPresulting invasodilation, anddecreasedplatelet andneutrophil
adhesion to endothelium, thereby reducing cell-mediated inflammatory damage.
Additional anti-inflammatory mechanisms include downregulation of the NF-κB
pathway. The reaction of NO with ·O−

2 reduces steady-state levels of O−
2 and limits

H2O2 buildup, which may be especially important under conditions favoring O−
2 -

dependent hydroxyl radical formation. Finally, by scavenging lipid radical species,
such as alkoxyl (LO·) and peroxyl (LOO·) radicals, NO can inhibit oxidant-induced
membrane and lipoprotein oxidation and terminate chain radical propagation
reactions. These reactions may be of particular importance, since NO concentrates
in lipophilic cellular compartments. However, species resulting from the reaction
of NO with lipid peroxides may themselves have biological activity which could be
either pro- or anti-inflammatory.

Inhaled NO and ARDS: An ongoing debate

NO initially appeared to possess ideal properties for a selective pulmonary artery
vasodilator in patients suffering from ALI/ARDS. In theory, selective pulmonary
vasodilation would act on the endothelial surface of the lung to produce regional
vasodilation in ventilated lung units, with the net effect being improved PaO2/FiO2

ratios and reduced pulmonary artery pressures. In a review of inhaled NO com-
pared to placebo or no therapy administered to patients with acute hypoxemic
respiratory failure, it was concluded that inhaled NO produced only moderate
improvements in oxygenation and demonstrated no reduction in patient venti-
lator days or mortality [24]. However, there is agreement that oxygenation gen-
erally improves for 24–36 hours, which under certain clinical circumstances and
combined with alternative treatment strategies, may lend itself to a multimodal
approach to treatment in an individual patient with ALI/ARDS. Potential pitfalls
of the recent clinical studies using inhaled NO in the treatment of patients suffer-
ing from inflammatory–mediated lung injury include: (1) Oxygenation may have
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very little to do with survival in patients suffering from inflammatory-mediated
lung injury (as very few patients die of refractory hypoxemia); (2) benefits may
have been masked by the negative effects of ventilator-induced lung injury (VILI);
(3) long-term inhalation of NO may damage the lung by increasing steady state
concentrations of RNS/ROS and thus overshadow their acute physiologic benefit;
(4) inhaled NO may have been applied too late after the onset of injury since most
enrollment occurred up to 72 hrs after patients presented with ALI. Currently, the
only recognized and FDA-approved application for inhaled NO is for the treatment
of hypoxic respiratory failure of the term and near-term newborn.

Hypercapnia: An Example of a Radical Quandary?

The effect of carbon dioxide (CO2) in excess (hypercapnia) and its impact on the
generation of ROS/RNS is generating increased clinical interest. Due to the rela-
tively higher concentration of CO2 in plasma (1.2 mM), the majority of ONOO−

generated in biological fluids will react with CO2 to form the nitrosoperoxycar-
bonate anion (O=N-OOCO−

2 ) [25, 26]. These species are more likely to nitrate and
less likely to oxidize proteins. Thus, hypercapnia may either protect or enhance
oxidant injury. For example, hypercapnia augmented LPS-induced injury across
fetal alveolar epithelial cells in vitro [27] and rabbit lungs in vivo [28]. On the other
hand, hypercapnia and acidosis decreased the inactivation of pulmonary surfac-
tant by plasma proteins [29]. Thus, the precise mechanisms and consequences of
hypercapnia are still unknown.

Therapies to Attenuate RNS/ROS-Mediated Lung Injury

While the direct measurement of oxidants poses problems, monitoring of an-
tioxidant concentrations and/or oxidant-antioxidant balance can also be assessed.
For instance, levels of selected antioxidants, including plasma ascorbate, a major
plasma antioxidant, were significantly decreased in patients with ongoing ARDS
when compared to healthy controls [30]. In addition, ubiquinol, a key lipid-soluble
antioxidant residing in the membranes of the mitochondria, was significantly
decreased in patients suffering from ARDS. Interestingly, α-tocopherol, another
plasma antioxidant, was unchanged. In a series of separate experiments, after
plasma from a healthy donor was incubated with activated polymorphonuclear
cells (PMNs), rapid oxidation of ascorbate was observed. The ubiquinol concen-
tration slowly and steadily decreased over time, whereas α-tocopherol levels re-
mained virtually unchanged. Glutathione (GSH), which is the most abundant non-
protein thiol, is also an important antioxidant, especially for reducing H2O2and
HOCl, which are produced by activated neutrophils. Recently, samples of BAL fluid
and epithelial lining fluid were analyzed for GSH in ten patients with ARDS and
found to be decreased when compared to healthy controls [31]. Administration of
N-acetylcysteine to patients with ARDS significantly improved oxygenation, pul-
monary mechanics, and increased total plasma GSH concentrations [31]. Catalase,
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a scavenger of H2O2, was found to increase in patients with sepsis with and with-
out the eventual progression to ARDS [32]. Interestingly, GSH peroxidase activity
was unchanged when compared between control subjects, septic patients without
ARDS, and septic patients with ARDS. Additional studies [33] have confirmed that
in sepsis and lung injury, antioxidant responses are significantly elevated when
compared to control patients. Recently, eight patients with ARDS receiving ‘stan-
dardized’ total parenteral nutrition were compared to 17 healthy individuals, on
standard diets without vitamin or trace element supplementation, in an attempt to
assess the influence of micronutrients on the oxidative system [34]. Plasma antiox-
idants and antioxidant enzyme systems were measured at baseline and on days 3
and 6. In addition, the lipid peroxidation product, malondiadehyde (MDA), super-
oxide anion, and H2O2 were measured over the same time points. Plasma levels of
α-tocopherol, ascorbate, β-carotene, and selenium were reduced when compared
to controls. MDA was significantly increased and was observed to increase signif-
icantly over the 6-day interval. The authors concluded that in patients with ARDS,
the antioxidant systems are severely compromised, and there is evidence of pro-
gressive oxidant stress, as per the steady increase in MDA. Thus, administration of
‘standardized’ total parenteral nutrition seems inadequate to compensate for the
increased requirement for antioxidants in ARDS.

In a contrasting study [35], when patients with ARDS were entered into
a prospective, multicentered, double-blind, randomized controlled trial compar-
ing a specialized enteral formulation (Oxepa®) containing fish oil (eicosapentanoic
acid), borage seed oil (γ-linoleic acid), and elevated antioxidants (vitamin A,
α-tocopherol, ascorbate, and β-carotene) versus an isonitrogenous, isocaloric
standard diet, beneficial anti-inflammatory effects were observed, which trans-
lated into a reduction in mechanical ventilator days, a decreased length of stay in
the ICU, and a reduction in new organ failure. When administered over a 4–7 day
interval, the formulation significantly increased the PaO2/FiO2 ratio, decreased the
production of neutrophils in BAL fluid, and decreased the total cell count in the
BAL fluid. Oxidants and antioxidants per se were not directly measured, but a de-
crease in pulmonary inflammation with reduced neutrophil adhesion and oxidant
production was observed. In a subsequent study conducted retrospectively by the
same group [31], enteral feeding with the same formulation (Oxepa®) resulted
in decreased BAL fluid interleukin (IL)-8 and leukotriene B4 levels, together with
a trend towards decreased BAL fluid total protein and neutrophils.

Albumin also has potential antioxidant ability, as a consequence of an exposed
thiol group (Cys 34). Quinlan et al. [36] therefore, administered 25 g of albumin
solution every 8 hours for a total of 9 doses to patients meeting criteria for ARDS
and compared them to a placebo group. In this cohort of patients, supplementation
withalbumin increased totalplasmaalbuminconcentrationsanddecreasedplasma
protein carbonyls ( a marker of protein oxidation). Positive correlations were found
between albumin and plasma thiol concentrations, and thiols and antioxidant
capacity. This result was not observed in the placebo group.
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Conclusion

Reactive oxygen and nitrogen intermediates, produced by the interaction of NO
with partially reduced oxygen species, affect lung function and homeostasis in
a variety of different ways. They act as signaling agents and play an essential role
in pathogen killing. On the other hand, they may contribute to tissue injury by
upregulating genes responsible for the production of inflammatory mediators and
by directly nitrating and oxidizing proteins, events known to adversely affect crit-
ical functions. A significant challenge to defining their role in lung injury results
from their short biological half-lives, and lack of sensitive detection techniques,
and the difficulty in deciphering the relevance of the various substrate concen-
trations to a particular measured response. Thus, many questions relating to the
chemical, physiological, pathobiological, and clinical consequences of ROS and
RNS generation remain unanswered. Therapeutic strategies, such as enhanced
anti-inflammatory and antioxidant therapies are in their infancy in the clinical
arena. Hence, this discussion of what is known leads one to realize how much is
not known with regard to the role of RNS/ROS in lung injury.
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Heat Shock Proteins in Inflammation

Z. Bromberg, Y.G. Weiss, and C.S. Deutschman

Introduction

From roundworms to mammals, living organisms have evolved strategies to permit
survival in divergent environments. Evidence shows that some of these adaptive
biological features are evolutionarily conserved; among these is heat acclimation.
This phenomenon was described first as inducing physiological and biochemical
adaptations to protect against extreme changes in environmental temperature [1].
This “heat shock response” is now accepted widely as a key mechanism to protect
cells from untoward environmental perturbations [2].

The heat shock response was first identified in Drosophila melanogaster [3].
Early experiments showed that exposure to heat led to “chromosomal puffing”
that correlated with a dramatic increase in the synthesis of a previously unrecog-
nized group of proteins [3]. This finding was later extended to other eukaryotic
organisms. These ‘heat shock proteins’ (HSPs) appeared to mediate a molecu-
lar mechanism that protected living cells from the untoward effects of heat [3].
Of these, one of the most widely studied is the 70 kDa HSP (HSP70). The genes
encoding members of the HSP70 family are a key evolutionary adaptation that
is conserved across species. The HSP70 gene is genetically simple, with a single
exon and no introns, which permits rapid transcription and translation [4, 5]. Of
the 70 kDa subfamily members, the inducible HSP72 is highly expressed during
stress while the constitutive heat shock cognate protein (HSC)70 (also known as
HSP73) is constitutively expressed, with basal levels present in the cytosol at most
times [6].

Within the cytosol of eukaryotic cells, members of the 70 to 78 kDa subfamily
of HSPs bind to and release both non-native protein aggregates and native pro-
teins with incomplete or damaged tertiary structures [6]. In this sense, HSP70
family members act as molecular chaperones to ‘guide’ proteins to their ultimate
fate–degradation, elimination, repair, or completion of the synthetic process. The
chaperone’s ‘guiding’ mechanism relies on recognition of hydrophobic regions of
non-native proteins or unstructured back-bone regions of proteins. They promote
the correct protein folding through cycles of substrate binding and release. This
is regulated through a catalytic site by an energy-requiring ATPase dependent
mechanism [3, 5, 7, 8].

Under environmental stress conditions, misfolded protein intermediates may
accumulate. [9]. The self-association of non-native protein intermediates to nearby
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proteins may induce the formation of protein aggregates [10]. In contrast to mis-
folding, aggregation is a highly cooperative inter-molecular process that strongly
depends on the concentration of misfolded monomers. Aggregates may be com-
posed of different oligomers over a wide distribution of sizes. The presence of these
aggregates is common in a number of disease processes, including neurodegener-
ative disorders such as Alzheimer’s, Parkinson’s, and Huntington’s diseases. The
exposure of hydrophobic protein domains to unaffected proteins or membranes
may disrupt normal activity. For example, association of the hydrophobic region
of a damaged protein with a neuronal cell membrane may change ion flux and
alter function. HSP70 may prevent this and this may be a key mechanism by which
HSPs limit or prevent intra-cellular pathological processes. This underscores the
fundamental importance of the HSPs to normal living cells [11].

While this review will focus on HSP70, other subclasses among the HSPs
play important roles. These are organized by their molecular size: HSP100,
HSP90, HSP60, HSP40 (J-domain proteins) and small HSP families, such as
HSP22/27 [12,13]. Most HSPs are constitutively and ubiquitously expressed molec-
ular chaperones that guide the normal folding, intracellular disposition, and pro-
teolytic turnover of many of the key regulators of cell growth and survival [14].
Thus, the protective process involves the interaction of many different HSPs. For
example, HSP90, which comprises 1–2% of total cellular protein in non-stress
conditions [15], supports meta-stable protein conformations and expresses a high
affinity binding state to hormone receptors. This involves both HSP70, which par-
ticipates in assembly of multiprotein complexes, and HSP40, a co-chaperone that
stimulates HSP70 ATPase activity [14].

At the transcription level, HSPs, such as HSP70 and HSP90, are regulated by
the activities of a family of heat shock transcription factors (HSF). One of these,
HSF-1, normally is expressed in a negatively regulated state as an inert monomer
in either the cytoplasm or nuclear compartments [16]. Upon exposure to a variety
of stresses, HSF-1 trimerizes and accumulates in the nucleus. HSF-1 trimers bind
DNAregions calledheat shockelements (HSEs)withhighaffinity. SomesmallHSPs
are transcribed constitutively due to multiple binding of low levels of HSF1 [16].

The great divergence in HSP70 expression explains the multiple function of
these proteins. Elevated levels of HSP70 following diverse inciting causes have
led researchers to conclude that HSP70 is involved in cellular protection in the
normothermic environment [4, 17, 18]. A wide range of noxious stimuli, such as
hypoxia, ischemia/reperfusion, hypoglycemia, endotoxemia, inflammation, and
exposure to heavy toxic metals or reactive oxygen species (ROS), induce HSP70
expression in a large number of tissues. Since HSPs respond to environmental
changes, expression in organs that are ‘outside’ the organism (for example, skin,
lung, gastrointestinal epithelium) may occur in the absence of any apparent in-
sult [17–24].

It has been demonstrated, both in vivo and in vitro, that exposure to a mild
stress, such as heat pretreatment, induces high levels of HSP70. Increased HSP70
levels may confer protection from subsequent noxious stimuli and result in ‘cyto-
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protection’.This shouldbeofbenefit against cellular injury causedby inflammation
and infection [17–23]. Thus, altering HSP70 expression might be of importance in
modulating highly lethal inflammatory diseases.

Heat Shock Proteins as ‘Disease Regulators’:
Sepsis and Acute Respiratory Distress Syndrome (Fig. 1)

Sepsis, as well as the related systemic inflammatory response syndrome (SIRS),
and multiple organ dysfunction syndrome (MODS), are the leading causes of death
in patients in surgical intensive care units (ICUs) [24, 25]. The lung is the organ
most affected in MODS, with pulmonary dysfunction taking the form of the acute
respiratory distress syndrome (ARDS), an often lethal inflammatory disorder of
the lung [26]. Recent data from the USA indicate that the mortality rate associated
with ARDS is greater than 35% [26].

ARDS is characterized by an increased inflammatory process in the lungs.
In this disorder, alveolar epithelial cells are damaged and ultimately may be de-
stroyed [27,28]. While some contributory pathophysiologic mechanisms have been
identified, most remain obscure. Therefore, a better understanding of the funda-
mental biological changes leading to ARDS would be of scientific and therapeutic
value.

Several papershave explored the roleofHSP70 inamodel of lipopolysaccharide
(LPS)-induced lung injury. These investigators concluded that heat pre-treatment

Fig. 1. Cytoprotective functions of heat shock protein (HSP)-70 of potential importance in lung
injury and organ failure
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induced HSP70 expression that protected the lungs against ventilator-induced lung
injury (VILI) by decreasing cytokine transcription in the lung [29].

LPS stimulates the production and the release of many endogenous mediators
of sepsis. These include tumor necrosis factor alpha (TNF-α), interleukin (IL)-1
and IL-6 [29]. A distinct profile in the expression of genes encoding members of
the HSP70 family was demonstrated in leukocytes obtained from different phases
of the disease course in septic patients [30]. These findings strongly suggest that
HSP70 may play a role in the outcome of septic shock patients [30]. Further,
studies proved that in an animal model of ARDS, heat pretreatment prevented
mortality [31].

Previous studies had revealed that sepsis induced by cecal ligation and dou-
ble puncture (CLP) resulted in an ARDS-like state characterized by neutrophil
accumulation and protein-rich interstitial edema formation [27, 31, 32-38]. Us-
ing this model, we found impaired hepatic expression of several essential liver-
specific genes, including those encoding proteins that catalyze gluconeogenesis,
β-oxidation of fatty acids, ureagenesis, and bile acid transport [39–41]. Further, we
have demonstrated inappropriate downregulation of the expression of several key
genes within the lung. These include surfactant proteins (SP)-A and (SP)-B and,
most importantly, HSP70 [27,42,43]. We found that HSP70 mRNA increased after
a sham operation but failed to increase after CLP [27]. HSP70 protein levels were
unchanged after either CLP or sham operation. Therefore, HSP70 mRNA fails to
increase after CLP despite significant damage to alveolar cells. This lack of increase
in HSP70 implies profound pulmonary epithelial dysfunction, similar to our find-
ings in the liver, and is supported by several other studies indicating that sepsis
and endotoxemia impair HSP70 expression [23, 27, 32, 44]. These experiments led
us to investigate in depth the role of HSP70 in ARDS and inflammation, by using
an adenovirus (AdHSP) to enhance HSP70 expression [38].

We have demonstrated that intratracheal administration of AdHSP signifi-
cantly attenuates lung injury in rats with sepsis-induced respiratory distress [38].
AdHSP, when compared to phosphate buffer saline (PBS) or a virus expressing
a marker protein (AdGFP), attenuated CLP-induced neutrophil accumulation, sep-
tal thickening, interstitial fluid accumulation, and alveolar protein exudation [38].
More importantly, AdHSP treatment significantly decreased mortality in rats sub-
jected to CLP [38]. In contrast to studies that provoked the entire heat shock
response [31, 45, 46], our investigations present a unique approach to explore the
effects of HSP70 on a single tissue, the lung [32]. We previously documented
that AdHSP preferentially increases HSP70 expression in pulmonary epithelial
cells [38]. An interesting finding was that 48 hours following CLP, virus uptake oc-
curred primarily in pulmonary epithelial cells, especially type II pneumocytes [32].
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HSP70 Inhibits Pro-inflammatory Cell Signaling Pathways in ARDS

The heat shock response is known to modulate inflammation [2]. The mechanisms
that have been investigated involve the attenuation of both cytokine-induced in-
flammatory mediator production and apoptosis [2, 22, 31, 45]. Both processes are
important in the pathogenesis of ARDS [48–50]. This involves cytokines such as
TNF-α and IL-1β [48–50, 54].

HSP70 inhibits the apoptotic machinery including the apoptosome, the caspase
activation complex, and apoptosis inducing factor [55–57]. HSP70 also participates
in the proteasome-mediated degradation of apoptosis-regulatory proteins [58].

TNF-α and IL-1β exert their effects in part via cell signaling pathways involving
thenuclear transcription factor, nuclear factor-κB(NF-κB) [59–61].This important
acute inflammatory pathway is modulated by HSP70. NF-κB is a dimeric protein,
most often consisting of two subunits, p50 and p65 (Rel A). Normally, this dimer
is retained in the cytoplasm by an inhibitory molecule, IκBα [62]. An essential
step in NF-κB activation is IκBα degradation. This permits the migration of NF-κB
into the nucleus where it can initiate transcription [61, 62]. Degradation of IκBα
involves three sequential biochemical reactions. The first is phosphorylation of
IκBα by IκB kinase (IKK). IKK is a complex molecule that contains two catalytic
subunits, IKKα and IKKβ, an essential regulatory subunit IKKγgalso called NF-κB
essential modulator (or NEMO) [63], and a recently identified co-modulator, the
105 kDa protein, ELKS [64–66]. The dominant catalytic subunit in inflammation is
IKKβ [61]. Phosphorylationof IκBα is followedbypoly-ubiquitinationbySCFβ-TrCP

ubiquitin ligase and, finally, proteolysis by the 26S proteasome [67–70].
Several in vitro models have proven that heat shock or elevated levels of HSP70

suppresses NF-κB activity and that this inhibition of NF-κB results in a general
reduction in the inflammatory response [44,46,71,73]. However, the exact molec-
ular mechanism of the HSP70–NF-κB interaction is still unknown. Ran et al. [74]
demonstrated that HSP70 promotes rather than inhibits TNF-mediated cell death,
by binding to IKKγ. This resulted in inhibition of IKK activity and consequently
inhibited NF-κB-dependent antiapoptotic gene induction [74]. Earlier, Yoo et al.
demonstrated that HSP70 prevented phosphorylation of IκBα by IKKβ [71].

Both activation and modulation of inflammation require coupling of extra-
cellular signals with intra-cellular events, processes involving a number of specific
biochemical pathways. We investigated the hypothesis that AdHSP limits sepsis-
induced acute inflammation within alveolar epithelial cells in part by suppressing
NF-κB activation. In contrast to the observations of others [71, 74], we found that
HSP70 reduced, but did not abolish, IKKβ activity. More importantly, we have un-
covered a novel mechanism of IκBα stabilization that results from an association
with HSP70 [75]. HSP70 binds to an incomplete protein degradative complex com-
posed of phosphorylated-ubiquitinated IκBαsgF-κB, and partial IKK complexes
that contain ELKS, IKKβs and/or IKKγg(NEMO). The association of HSP70 leads
to stabilization of these intermediate complexes in a way that prevents proteaso-
mal degradation of IκBα. Consequently, NF-κB is retained in the cytoplasm and is
unable to induce inflammatory responses.
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Conclusion

HSPs are important mediators of a number of key intracellular reactions. Of im-
portance to the care of the critically ill are their involvement in protein repair and
tertiary structure. HSP70 is known to modulate inflammation and apoptosis. In
models of acute lung injury and ARDS, over-expression of HSP70 improves out-
come, ameliorates lung injury and attenuates inflammation. The involvement of
HSP70 in other aspects of lung injury and in other components of MODS is under
investigation.
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Fibrosis in the Acute Respiratory Distress Syndrome

D.C.J. Howell, R.C. Chambers, and G.J. Laurent

Introduction

Sepsis often leads to severe pulmonary dysfunction and a large proportion
of patients will develop acute lung injury/acute respiratory distress syndrome
(ALI/ARDS) [1]. Although sepsis is frequently an initiating factor in the devel-
opment of ALI/ARDS, the etiology of ALI/ARDS is diverse and the disorders
associated with the condition can broadly be divided into those which cause direct
or indirect lung injury (Table 1). The current American/European definition of the
condition has been designed to reflect the underlying severity of lung injury in
ALI/ARDS (Table 2). Although not specifically part of the diagnostic criteria, it is
well documented that a proportion of patients with ALI/ARDS develop aggressive
pulmonary fibrosis that ultimately leads to their demise.

Table 1. Etiology of ALI/ARDS

Direct Lung Injury Indirect Lung Injury

Bronchopneumonia Sepsis
Gastric aspiration Multiple trauma with shock
Pulmonary contusion Drug overdose
Inhalational injury Acute pancreatitis
Near-drowning Transfusion-associated acute
Reperfusion injury lung injury (TRALI)
Fat emboli Cardiopulmonary bypass

Pathogenesis of ALI/ARDS

ALI/ARDS is classically thought to exhibit threephases: i) exudative/inflammatory;
ii) proliferative; and iii) fibrotic (reviewed in [2]). Briefly, the exudative phase
is characterized histologically by diffuse alveolar damage as the microvascular
endothelial and alveolar epithelium, which form the alveolar-capillary barrier, are
disrupted. Intense neutrophil infiltration is also a major feature of this phase of
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Table 2. Diagnostic criteria in ALI/ARDS

Acute lung injury Acute respiratory distress
syndrome

Chest Xray Bilateral infiltrates Bilateral infiltrates
Clinical scenario Acute onset Acute onset
Pulmonary artery
wedge pressure

< 18 mmHg < 18 mmHg

Oxygenation PaO2/FiO2 ratio
< 300 mmHg

PaO2/FiO2 ratio
< 200 mmHg

ALI/ARDS. Once injured, the endothelial barrier becomes increasingly permeable
resulting in highly proteinaceous, hemorrhagic pulmonary edema fluid flooding
into alveoli, with resultant formation of fibrinous hyaline membranes. Epithelial
integrity is also breached, as a result of damage to type I and II pneumocytes, which
leads to exacerbation of alveolar edema as permeability of the epithelium increases
and its resorptive function ceases. In addition, as type II cells are also injured,
surfactant production is reduced. Lack of efficient endothelial and epithelial repair
is thought to be critical in the progression of ALI/ARDS as the endothelium
plays a vital role in remodeling of the alveolar capillary barrier [3], and an intact
epithelial layer plays an important role in suppressing fibroblast proliferation and
matrix production.

During the proliferative phase of ALI/ARDS, damage to the delicate capillary
network of the lung is a major feature with intimal proliferation in small blood
vessels. Following necrosis of type I pneumocytes, the epithelial basement mem-
brane is exposed and type II cells proliferate in an attempt to repair the damaged
epithelium. Fibroblasts/myofibroblasts emerge in the interstitial space and alveo-
lar lumen. As fibrinous exudates become organized, they are replaced by collagen
fibrils. The fibrotic phase is characterized by extensive alveolar septal and intra-
alveolar fibrosis, as well as myointimal thickening and mural fibrosis of vessels,
which contribute to the degree of pulmonary hypertension observed in this con-
dition. There is a progressive increase in lung collagen with the duration of the
condition, the severity of which correlates with increase in mortality.

A concept that has been challenged over recent years concerns the sequential
relationship of the three phases of ALI/ARDS. Whereas it was once thought that
these were distinct and develop as the condition progresses, there is now increasing
evidence that there is much overlap between the three phases. In particular, a num-
ber of studies have shown that the fibrotic/fibroproliferative response occurs much
earlier than previously thought. For example, N-terminal procollagen peptide III
(N-PCP-III), which is a marker of collagen turnover, is elevated in bronchoalveolar
lavage (BAL) fluid and tracheal aspirates from patients with ALI/ARDS within 24
hours of diagnosis [4–6]. In addition, fibroproliferation has been shown to occur
early in ALI/ARDS and also predicts a poor outcome [7]. Another more recent
study has further shown that extensive thin-section computed tomography (CT)
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changes, indicative of fibroproliferation, are independently predictive of a poor
prognosis in patients with clinical early-stage ALI/ARDS [8].

What Drives the Fibrotic Response in ALI/ARDS?

A number of factors, including genetic influences, oxidant stress, anti-apoptotic
agents, and excessive mechanical ventilation, leading to shear-stress of alveoli, are
likely to play critical roles in orchestrating the fibrotic response to lung injury in
ALI/ARDS. Inaddition,pro-inflammatoryandpro-fibrotic cytokines, chemokines,
and growth factors are released from resident and recruited inflammatory cells
that influence the progression of this condition. Although many potential fibrotic
mediatorshavebeenproposed toplay a role in chronic formsofpulmonary fibrosis,
such as usual interstitial pneumonia [9,10], less is currently known about specific
factors that directly affect fibroproliferation and the resultant fibrotic response in
ALI/ARDS. However, a number of candidates have been identified from human
and animal studies. For example, levels of the potent pro-fibrotic mediators, trans-
forming growth factor-α (TGF-α) and platelet derived growth factor (PDGF), are
increased in BAL fluid obtained from patients with ALI/ARDS [11, 12]. Further-
more, expression of a tumor necrosis factor-α (TNF-α) transgene in murine lung
leads to an alveolitis that steadily progresses to fibrosis, suggesting the possible
importance of this cytokine in ALI/ARDS [13]. In addition, we have recently ob-
tained evidence that angiotensin II, possibly generated locally within the lung,
may play an important role in the fibrotic response to experimentally-induced
lung injury, at least in part via the action of TGF-β [14]. Th-2 cytokines, including
IL-4 and IL-13, have also been implicated in the pathogenesis of fibroproliferative
lung disorders [15]. More recently, BAL fluid from patients with ALI/ARDS was
shown to contain active TGF-β1 which was capable of inducing procollagen I pro-
moter activity in human lung fibroblasts in vitro [16]. Finally, there is increasing
evidence that a prevailing procoagulant microenvironment with generation of co-
agulation proteinases such as thrombin and factor Xa, may also play a crucial role
in regulating the fibrotic response in this condition.

Evidence for the Role of the Coagulation Cascade in ALI/ARDS

Consistent with the concept that the coagulation cascade is activated in ALI/ARDS,
extravascular and intra-alveolar accumulation of fibrin is a characteristic feature of
this condition [17,18]. The excessive procoagulant activity observed in the lung in
ALI/ARDS is thought to arise from an imbalance between pro- and anti-coagulant
factors. For example, BAL fluid from patients with ALI/ARDS has been shown to
contain tissue factor/factor VII/VIIa complexes [18], which can activate factor X
and trigger activation of the extrinsic pathway of coagulation.

The prevailing balance between the pro- and anti-coagulant state in the lung
following injury is also affected by regulatory mechanisms, which control the
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clearance of deposited fibrin (fibrinolysis). This process, which occurs at all sites
ofwoundhealing, is initiatedwhenplasminogen is converted toplasminby thepro-
teinases, urokinase-type plasminogen activator (u-PA) or tissue-type plasminogen
activator (t-PA). Plasmin subsequently cleaves fibrin into a range of fibrin degra-
dation products (FDPs). Fibrinolytic activity in the vasculature is largely under
the control of t-PA; whereas extravascular fibrinolysis in the lung is controlled
by u-PA. The conversion of plasminogen to plasmin by t-PA and u-PA is reg-
ulated by the endogenous inhibitor, plasminogen activator inhibitor-1 (PAI-1).
PAI-1 activity is increased in ALI/ARDS, particularly in the alveolar compartment,
thus favoring fibrin persistence [19]. The fibrinolytic system is also influenced by
the plasma glycoprotein thrombin-activatable fibrinolysis inhibitor (TAFI). Dur-
ing fibrin degradation, plasmin exposes C-terminal lysine residues on the fibrin
molecule to potentiate its clearance. TAFI cleaves these residues, which, there-
fore, favors fibrin persistence. Although it has not been shown in patients with
ALI/ARDS, it is noteworthy that levels of TAFI are increased in BAL fluid from
patients with interstitial lung disease [20].

In terms of a deficiency of anticoagulant factors, levels of antithrombin are
reduced in patients with ALI/ARDS [21]. In addition, it has been shown that lev-
els of protein C in the intra-alveolar compartment from patients with ALI/ARDS
are reduced compared with plasma levels and correlate with a poor clinical out-
come [22,23]. Levels of the major endogenous inhibitor of the extrinsic coagulation
cascade, tissue factor pathway inhibitor (TFPI), are markedly increased following
experimental lung injury [24]. However, studies by Gando and colleagues [25]
suggest that systemic activation of the tissue factor-dependent pathway is not
adequately balanced by TFPI in patients with ARDS.

A number of studies performed in experimental animal models have ex-
amined the effects of modulating the coagulation cascade in ALI/ARDS. For
example, exogenous delivery of the highly specific direct thrombin inhibitor,
hirudin, or of antithrombin, have been shown to be protective in animal mod-
els of ALI/ARDS [26–28]. In addition, administration of heparin, which inhibits
coagulation proteinases by potentiating the formation of antithrombin/serine pro-
teinase complexes, but also has anti-inflammatory properties, leads to improved
gas exchange in an animal model of ALI/ARDS [29]. Heparin has also been shown
to attenuate bleomycin-induced pulmonary fibrosis in mice [30], although in this
study, it was uncertain whether heparin was delivered at an anticoagulant dose
and whether the protective effects were due to its direct anti-proliferative effects,
or due to blocking proteinase activity. The animal model of bleomycin-induced
fibrosis, based on intratracheal delivery of this agent, is a well-established model of
ALI/ARDS. Characteristic pathogenetic features of ALI/ARDS are observed in the
lung following bleomycin instillation, including the rapid influx of inflammatory
cells, an increase in microvascular permeability, and aggressive fibroproliferation,
culminating in established interstitial fibrosis. Of note, intratracheal administra-
tion of activated protein C (APC) and intratracheal gene transfer of TFPI both
attenuate bleomycin-induced fibrosis in rodent studies [31, 32]. BAL fluid levels
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of the coagulation proteinase, thrombin, are increased in this animal model of
ALI/ARDS [33].

Thrombin and Proteinase Activated Receptors (PARs)

In addition to its critical role in blood coagulation, thrombin exerts potent cellular
responses via its ability to activate the family of proteinase activated receptors
(PARs). A number of these cellular effects are likely to play important roles in
inflammatory and tissue repair processes in ALI/ARDS and will, therefore, be
discussed in greater detail.

The PARs belong to the family of seven transmembrane G-protein coupled
receptors, which exhibit a unique mechanism of activation that involves the un-
maskingof a tethered ligandby limitedproteolysis of specific aminoacid sequences
from the N-terminus of the receptor [34]. Following proteolytic cleavage, the newly
generated tethered ligand binds intramolecularly to the second extracellular loop
of the receptor, inducing a conformational shape change that allows it to interact
with heterotrimeric G-proteins and initiate downstream signaling responses. To
date, four PARs have been characterized, of which three, PAR-1, -3, and -4, are
activated by thrombin. Synthetic peptides corresponding to the tethered ligands of
PAR-1, -2 and -4 are capable of mimicking a number of cellular responses elicited
by their respective endogenous activators. The first PAR to be cloned and char-
acterized was PAR-1 [34], which has subsequently been shown to be the major
receptor involved in mediating thrombin’s cellular effects, in particular in terms of
fibroblast responses [35–37]. PAR-1 has a wide tissue distribution and is present
on a number of cell types including platelets, endothelial cells, epithelial cells,
fibroblasts, smooth muscle cells, monocytes, lymphocytes, mast cells, and certain
tumor cell lines (reviewed in [38]). PAR-2 and PAR-4 are similarly expressed on
numerous cell types in the airways, blood, and cardiovascular system, whereas
PAR-3 appears to have a more restricted expression pattern.

PAR-Mediated Cellular Effects of Thrombin Pertinent to Fibrosis in
ALI/ARDS

PAR-1 is the major high-affinity thrombin signaling receptor and is abundantly ex-
pressed in the injured lung. PAR-1 mediated cellular responses elicited by thrombin
that are likely to be important in the pathogenesis of ALI/ARDS include the ability
of thrombin to promote platelet aggregation, influence vascular tone and perme-
ability, stimulate angiogenesis and vascular repair, and promote inflammatory cell
trafficking. Of particular importance to the fibrotic response in ALI/ARDS, throm-
bin is a fibroblast mitogen and chemoattractant [39–41]. In addition, thrombin
stimulates lung fibroblast differentiation to the myofibroblast phenotype [42, 43]
and mesenchymal cell procollagen production and gene expression [36,44]. These
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effects can be mimicked with PAR-1 agonists; whereas fibroblasts derived from
PAR-1 deficient mice are unresponsive to thrombin in terms of MAP kinase signal-
ing, proliferation [35], and procollagen α1(I) gene promoter activity [45]. Throm-
bin has been shown to be a major fibroblast mitogen in BAL fluid from patients with
pulmonary fibrosis associated with systemic sclerosis [46, 47]. To our knowledge,
similar studies in patients with ARDS/ALI have not yet been reported.

There is goodevidence thatmostof thecellular effectsof thrombinaremediated
via the induction and release of secondary mediators [38]. For example, PAR-1
activation by thrombin induces the production and release of PDGF, connective
tissue growth factor (CTGF), TGF-β and pro-inflammatory mediators, such as IL-
6, IL-8 and monocyte chemotactic protein-1 (MCP-1/CCL2). These mediators are,
in turn, responsible for thrombin’s mitogenic, pro-fibrotic, and pro-inflammatory
effects via both autocrine and paracrine mechanisms.

We have specifically examined the procoagulant and downstream cellular ef-
fects of thrombin and PAR-1 activation in the bleomycin model of ALI in vivo using
the direct thrombin inhibitor, UK-156406, in rats [48] and comparing responses in
wild type and PAR-1 knockout (PAR-1 -/-) mice [49]. These studies revealed that
thrombin and PAR-1 immunoreactivity in the lung were markedly increased fol-
lowing bleomycin instillation and were predominantly associated with fibroblasts
and infiltrating macrophages. This is, to our knowledge, the first demonstration
that expression of thrombin and PAR-1 is increased in a model of ALI/ARDS.
In animals given bleomycin, lung collagen content characteristically doubled and
was preceded by significant elevations in α1(I) procollagen and CTGF mRNA
levels. However, in bleomycin-treated animals receiving an anticoagulant dose of
UK-156046, lung collagen accumulation was significantly attenuated, a feature that
was also preceded by a significant reduction in α1(I) procollagen and CTGF gene
expression.

The protective effect of direct thrombin inhibition in this model may have been
due to blocking thrombin’s procoagulant (fibrin generation) or PAR-mediated cel-
lular effects. In order to specifically dissect the potential contribution of PAR-1
activation in this model, we examined the response of PAR-1 -/- mice. Total lung
collagen accumulation following bleomycin injury was dramatically reduced in
PAR-1 -/- mice compared with that found in correspondingly injured wild type
animals, as was BAL fluid inflammatory cell recruitment and microvascular per-
meability. This protection was associated with attenuation in lung levels of the
potent PAR-1 inducible pro-inflammatory and pro-fibrotic growth factors, MCP-1,
CTGF, and TGF-β [49]. Taken together, these data provide evidence that thrombin
and PAR-1 play a critical role in inflammation, microvascular leak, and fibrotic re-
sponses in this model of ALI and may, therefore, also contribute to the pathogenesis
of ALI/ARDS in humans.
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Emerging Concepts Regarding PARs and Fibrosis

A number of important studies have been published that have challenged conven-
tional dogma on coagulation cascade proteinases and PAR activation (Fig. 1). It
was previously thought that thrombin was the only major activator of PAR-1, -3
and -4 and that trypsin and mast cell tryptase activated PAR-2 [50]. However, it is
now known that thrombin is not the only coagulation proteinase that is capable of
exerting functional responses via proteolytic cleavage of PAR-1. Limited proteoly-
sis of PAR-1 by factor Xa initiates downstream functional effects, such as fibroblast
proliferation and procollagen production [45,51]. Furthermore, plasmin has been
shown to activate PAR-1 to induce the expression of Cyr 61, a member of the CCN
family of proteins which includes CTGF [52]. Riewald and Ruf have also shown that
nascent factor Xa, in the procoagulant transient tissue factor-factor VIIa-factor Xa
ternary complex generated following activation of the extrinsic coagulation cas-
cade, signals via both PAR-1 and PAR-2 in endothelial cells [53]. This study raises
the possibility that tissue factor dependent initiation of the coagulation cascade is
mechanistically coupled to PAR-dependent cellular signaling.

There is good evidence that PAR-2 can be transactivated by cleaved PAR-1 [54]
and that the tissue factor-factor VIIa complex can also signal via PAR-2 in en-
dothelial cells [55]. Non-coagulation proteinases, such as trypsin, elastase, and the
neutrophil proteinase, cathepsin G, have also been shown to cleave PAR-1. This
was previously thought to occur at non-activating sites producing no functional
effects [38, 56]. However, neutrophil elastase has recently been shown to induce
apoptosis in human lung epithelial cells via a PAR-1 dependent mechanism. Since
epithelial cell apoptosis is a central process in ALI/ARDS [57,58], this observation
may be particularly relevant in the context of this condition.

Fig. 1. Potential activators of proteinase activated receptors (PARs) in ALI/ARDS
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Of particular pertinence to the pathogenesis of sepsis, the anticoagulant, APC,
has recently also been shown to be capable of activating PAR-1 on endothelial
cells, via a process that utilizes the endothelial protein C receptor (EPCR) as
a co-receptor [59]. These studies suggest that rather than producing deleterious
effects, activation of PAR-1 by APC on the endothelium is cytoprotective and anti-
inflammatory. A model has been proposed based on the existence of different
threshold concentrations of thrombin within the vasculature, exerting opposing
effects. This model suggests that at low concentrations of thrombin, below the
procoagulant threshold, thrombin binds to thrombomodulin. Formation of the
resultant stoichiometric complex inhibits the enzymatic activity of thrombin and
blocks direct PAR-1 activation. Thrombin bound to thrombomodulin can then fa-
vorably cleave zymogen protein C to its product, APC. Both substrate and product
of this reaction bind to the EPCR. Endogenous production of APC by thrombin is
dependent on EPCR binding. EPCR-bound APC subsequently cleaves PAR-1 and
induces anti-inflammatory events. When thrombin is generated at higher concen-
trations that exceed the procoagulant threshold, PAR-1 is activated via the transient
tissue factor-factor VIIa-factor Xa complex when coagulation is initiated and in
the propagation phase of thrombin generation, which is required for the conver-
sion of fibrinogen to fibrin. In terms of the relevance of these events to excessive
intravascular coagulation, such as in sepsis, once the procoagulant threshold is
exceeded, disease progression is rapid and this may negate the protective effects
of EPCR-bound APC activation of PAR-1 [60]. This may be a plausible mechanism
by which APC exerts the favorable effects observed in the PROWESS trial in hu-
mans [61]. However, this theory is not universally accepted and is currently at the
center of a very interesting debate [62, 63]. In contrast to a clear role for PAR-1 in
the bleomycin model of ALI, two murine studies have shown that PAR-1 deficiency
is not protective in models of endotoxemia [64, 65]. However, the former study
showed that a combination of PAR-2 deficiency and thrombin inhibition was asso-
ciated with a favorable outcome [64], suggesting that blockade of all PAR-mediated
cellular effects may be necessary for protection in endotoxemia. The contribution
of PAR-1 (and other PARs) may, therefore, be dependent on both the nature and
the initiating site of lung injury.

Clinical Implications and Conclusion

Despite intense research efforts, there are still no pharmacological agents which
havebeen shown to improvemortality rates inALI/ARDS.The recentNorthAmeri-
can Late Steroid Rescue Study (LaSRS), conducted by the ARDSNet group, assessed
the role of methylprednisolone based on previous favorable results in a smaller
study [5]. Patients receiving steroids had early physiologic and clinical benefit,
displaying improved oxygenation and lung compliance, and earlier withdrawal of
mechanical ventilation. However, there was no difference in mortality at 60 and
180 days compared with the control group. Subgroup analysis showed that if BAL
fluid procollagen III peptide levels were high at enrolment into the study, there was
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a survival benefit with steroid therapy, suggesting that identification of patients
with an early fibrotic phenotype may be vital to aid the development of success-
ful pharmacological strategies in the future (presented at the American Thoracic
Society Conference, San Diego, 2005).

A number of fibrotic mediators have been identified in ALI/ARDS, including
TGF-α, TGF-β and TNF-α, which, if successfully targeted, may lead to a therapeutic
breakthrough for the treatment of this condition. We further propose that modu-
lation of the coagulation cascade, and more specifically, PAR-1 mediated cellular
effects of coagulation proteinases, may also warrant further evaluation as poten-
tial therapeutic targets in this condition (Fig. 2). As described above, a number
of anticoagulant agents, such as TFPI, site inactivated factor VIIa, heparin, and
APC, have shown promise in animal models of ALI/ARDS, but successful clini-
cal trials using these agents have yet to be described. Furthermore, the potential
risk of bleeding complications observed in the recent PROWESS trial of APC in
sepsis [61] suggests that the use of direct thrombin inhibitors or other antico-
agulants in ALI/ARDS may prove problematic. PAR-1 antagonists and blocking
antibodies have been developed as potential anti-thrombotic agents [66, 67] and
PAR-1 antagonist peptides have been shown to be anti-thrombotic and successful
in preventing restenosis in an animal model of vascular thrombosis in non-human
primates [68, 69], suggesting that a suitable agent for use in humans is a realistic

Fig. 2. Potential mechanism for the interaction of the coagulation cascade in the fibrotic pathway
in ALI/ARDS. TGF: transforming growth factor
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possibility. Strategies aimed at blocking PAR-1 may provide a unique opportu-
nity for the treatment of ALI/ARDS by selectively interfering with the pro-fibrotic
and pro-inflammatory effects of excessive proteinase signaling, whilst avoiding
potential hemostatic complications associated with direct proteolytic inhibitors.
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Resolution of Inflammation

G. Bellingan

Introduction

Although sepsis is one of the leading causes of death world-wide, by far the most
typical outcome is for the body to mount an effective inflammatory response
overcoming the inciting challenge and for inflammation to then fully resolve. Until
recently, inflammatory resolution had simply been assumed to occur passively by
‘switching off’ the influx signals, a response that ignored the need for many active
processes to occur. A multitude of processes are now recognized as playing a part
in both limiting the extent of inflammation and driving resolution. Despite this,
research into the actual process of resolution, rather than simply those mediators
knownto limit theextentof theacutepro-inflammatory response,hasuntil recently
been very sparse. In addition to anti-inflammatory cytokines, new families of anti-
inflammatory agents, such as the resolvins and lipoxins, are nowcoming to the fore.
Likewise, for leukocyte clearance, the contributionof apoptosis and the importance
of cellular emigration are being increasingly recognized as vital. Key changes in
cellular programming and pro-resolution cell profiles are also being described.

The Course of Inflammation

To understand resolution, we first need to outline some of the processes involved
in the inflammatory process itself. Generally the body aims to keep inflammatory
responses compartmentalized. However, loss of membrane and cellular integrity
can allow inflammation to become systemic. Severe systemic inflammation has
a high mortality, with death typically due to ongoing organ dysfunction and new
nosocomial sepsis rather than inability to clear the initial pathogens. It is now
accepted that an aggressive inflammatory responses is central to the development
of multi-organ dysfunction syndrome (MODS) although the mechanisms whereby
this occurs are not clear. The nosocomial sepsis that is so typical of the later
course of such patients in the intensive care unit (ICU) can occur as a consequence
of organ dysfunction prolonging their stay and increasing the risk of infection.
We also recognize that such infections develop in the context of a failure of the
body to mount an effective response to nosocomial infection due to temporary,
though often prolonged, depression of the immune system; a condition termed
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immunoparesis [1]. Not all patients with severe sepsis progress to immunopare-
sis or multi-organ dysfunction or fibrosis; indeed, the most common course for
inflammation is for it to successfully clear the inciting pathogen and to resolve.

Normal Inflammatory Resolution

The most fundamental requirement for the successful resolution of either acute
innate or acute adaptive immunity is to neutralize and eliminate the initiating inju-
rious agent. Failure to achieve thiswill lead to chronic inflammationwith thenature
of the agent in question dictating the etiology of the developing chronic immune
response. Successfully dispensing with the inciting stimulus signals a cessation
of pro-inflammatory mediator synthesis (eicosanoids, chemokines, cytokines, cell
adhesion molecules, etc.) and leads to their catabolism, halting further leukocyte
recruitment and edema formation. These are probably the very earliest require-
ments for the resolution of acute inflammation, the outcome of which signals the
next stage, that of cell clearance. Inflammation is typified by neutrophil (PMN)
then mononuclear leukocyte influx and resolution requires the elimination of these
PMNs and subsequent clearance of the mononuclear cells. During these evolving
stages, there is a variable myofibroblast presence, depending on the inciting chal-
lenge, the persistence of the inflammatory response, and the cytokine milieu. The
cytokine profile evolves in parallel with the inflammatory response and this is, in
part, due to the presence of different effector cells and also to the phenotype of the
cells present.

This chapter reviews the process of resolution under three general headings.
First, those ‘stop’ signals – cytokines, chemokines and other mediators – that are
known to limit the pro-inflammatory response and may also contribute directly to
resolution. Second, the process of apoptosis, which, if induced either too early or
too extensively, is implicated in both persisting inflammation and immunoparesis.
Apoptosis is also central to the normal resolution of the inflammatory process once
the inciting stimuli have been eliminated. Finally, the process of cellular emigration
which is assuming increasing importance in leukocyte clearance and the return of
the tissue to normal structure and function.

Endogenous Anti-inflammatory Processes

Anti-inflammatory Cytokines

It is well recognized that the body attempts to balance inflammation by elaborat-
ing a range of endogenous compensatory anti-inflammatory peptides including
interleukin (IL) receptor antagonist (IL-1ra), IL-4, IL-10, and IL-13 [2]. These are
typically expressed later during the inflammatory response than the early tumor
necrosis factor-alpha (TNF-α), IL-1, and IL-6 response. These anti-inflammatory
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cytokines can act both to limit inflammation and to promote resolution. They
have also been implicated in the process of immunoparesis, although the extent to
which they are involved in, or essential for, these different roles is not clear.

IL-1ra is a naturally occurring inhibitor of IL-1, produced during inflamma-
tion and has a significantly greater avidity than IL-1 in binding to the IL-1 type
I receptor. IL-1ra thus acts as a competitive antagonist of IL-1α and IL-1β, at-
tenuating IL-1 activity in vitro and in vivo. A dynamic balance between IL-1
agonists and IL-1ra appears to exist [3]. Experimental models suggested a pow-
erful anti-inflammatory effect from an infusion of IL-1ra that should be effective
for Gram-positive, Gram-negative, and other pro-inflammatory states. A major
clinical trail of IL-1ra, however, was unable to demonstrate any significant survival
benefit for this agent in sepsis.

IL-4 and IL-10 are both T helper cell type 2 (Th2)-derived cytokines that are
usually considered to be anti-inflammatory in nature. The role of IL-4 in sepsis
is more complicated than initially believed. Hultgren et al. have shown that the
outcome from sepsis and arthritis in IL-4 knockout mice depends on the genetic
background of the mouse; IL-4 deficiency caused 70% lethality after staphylococ-
cal challenge in 129SV mice compared to full survival in 129SV wild types while
in C57BL/6, deficiency of IL-4 increased survival compared to the wild type [4].
Using murine malaria as the challenge, Saeftel et al. showed that 60 to 80% of IL-4
deficient mice survived whilst all BALB/c controls succumbed and the surviving
knockout mice had increased natural killer (NK) cells and enhanced inducible ni-
tric oxide synthase (iNOS) expression and were able to eliminate parasites. These
findings suggested that interferon-gamma (IFN-γ) producing NK cells and NO are
vital for clearance of parasite load [5].

IL-10, in particular, has been shown to inhibit a variety of innate and adaptive
immune activities, including blocking synthesis of a number of pro-inflammatory
mediators, including IFN-γ, IL-1, TNF, IL-12, and CXC and CC chemokines. IL-10
also acts at the post-translational level to increase endocytosis of monocyte hu-
man leukocyte antigen (HLA)-DR and this may augment other mechanisms of
immunoparesis. Exogenous administration of IL-10 has been shown to protect
from injury in response to lipopolysaccharide (LPS) and other challenges. More-
over, IL-10 has been shown to enhance resolution of pulmonary inflammation by
promoting PMN apoptosis [6].

IL-10 can be detrimental to the host under conditions of microorganism inva-
sion and this is a major concern [7]. Indeed, both protective and harmful effects
have been demonstrated for IL-10, depending upon the time of intervention. It
has been postulated that IL-10 functions as a temporal regulator of the transition
from a reversible phase of sepsis to a later irreversible phase of shock. Using a cecal
ligation and puncture (CLP) model, Latifi et al. demonstrated that the onset of
lethality in IL-10 knockout mice occurred earlier than in wild-type mice and was
associated with significant elevations in TNF-α and IL-6. Furthermore, refractory
shock developed earlier in the IL-10 knockout animals and IL-10 administration
could rescue this phenotype [8].
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IL-13 is a 12 kDa cytokine that is a potent stimulator of eosinophil, lymphocyte,
and macrophage-rich inflammation and is integral to tissue fibrosis and parenchy-
mal proteolysis [9]. IL-13 dysregulation is thought to play an important role in the
pathogenesis of a variety of diseases, including asthma, pulmonary and hepatic
fibrosis, fungal pneumonitis, viral pneumonia, and chronic obstructive pulmonary
disease (COPD). It can induce vascular cell adhesion molecule (VCAM)-1 expres-
sion and activate and inhibit the apoptosis of eosinophils; activation of signal
transducer and activator of transcription-6 (STAT6) is believed to mediate these
biological effects [10]. IL-13 levels are elevated in patients with the systemic in-
flammatory response syndrome (SIRS) and are also higher in those with infectious
rather than non-infectious causes of SIRS. However, a low IL-13 level may be as-
sociated with a worse outcome in sepsis, certainly for children [11, 12]. IL-13 and
IL-4 have overlapping effector profiles; this is at least partially due to the shared
use of receptor components. However, IL-13 and IL-4 can be produced by different
cells and are differentially regulated by mediators such as IFN-α. IL-13 acts via
macrophages to stimulate the production of mRNA for wound repair proteins,
such as matrix metalloproteases (MMPs), and is important for the production of
collagen. Hence IL-13 is believed to have a key function in tissue repair and fibrosis.

Even pro-inflammatory cytokines can have anti-inflammatory effects and vice
versa. For example, IL-12 is produced by macrophages and is a potent inducer
of IFN-γ, which acts in a positive feedback fashion inducing further IL-12. IFN-γ
does, however, also lead to inhibition of key chemokines, such as macrophage
inflammatory protein (MIP)-1α. TNF-α exposure will inhibit IFN-γ driven IL-12
production through both IL-10 dependent and independent mechanisms. Experi-
ments using TNF-α knockout mice suggest that this TNF-α response is important
in limiting the extent of inflammation over time [13]. IL-18 is another IFN-γ in-
ducing factor produced by macrophages. IL-18 can decrease IL-12 production, and
is also important in pathogen elimination [14].

A newly emerging group of proteins, the suppressor of cytokine signaling
(SOCS) family (discovered in 1997), is now understood to regulate innate immu-
nity at the level of cytokine signaling. This family has been demonstrated to play
a role in the negative regulation of interleukins, interferons, and TNF and it is
conceivable that they also regulate the Toll-like receptor (TLR) ligands and, thus,
innate immunity. SOCS-1 acts as a negative regulatory molecule of the JAK-STAT
signal cascade and a critical negative regulating factor for LPS signal pathways.
SOCS-1 expression is induced in macrophages stimulated with LPS and SOCS-
1-deficient mice are highly sensitive to LPS-induced shock, producing increased
levels of inflammatory cytokines [15].

Cytokine Receptors and Anti-inflammatory Signals

Decoy Receptors

The biology of many cytokines, as well as the interactions with their receptors,
is complex. IL-1, for example, binds to both IL-1 type I receptor, through which



Resolution of Inflammation 141

signal transduction occurs, and to an IL-1 type II or ‘decoy’ receptor that does not
signal [16]. The exact role of such receptors in regulating the immune response is
not clear at present.

Soluble Receptors

A number of cytokine receptors are found circulating in truncated forms. Typ-
ically, these remain able to bind their cytokine ligand, but are unable to trans-
duce a signal because they lack a cytoplasmic tail [17]. They thus act to com-
petitively inhibit the activity of the cytokine and, in this way, can limit the
pro-inflammatory responses to the cytokines. Such soluble receptors can be
produced in two ways. Differential mRNA splicing can lead to elaboration of
soluble receptors lacking the membrane-spanning domains for cell-associated
protein receptors, such as the TNF receptor 2 (p75 or TNF-R2), IL-4, granu-
locyte macrophage colony stimulating factor (GM-CSF), and IL-11. Proteolytic
cleavage of the membrane-anchored receptors by metalloproteases from the
cell surface is the second major route for generation of soluble receptors. This
mechanism includes generation of soluble TNF receptor 1 (sTNF-R1), IL-1 type
II receptor, CD62 ligand, transforming growth factor (TGF)-β receptor, and
platelet-derived growth factor (PDGF) receptor. For TNF, for example, cellu-
lar activation by agents, such as LPS, induces rapid shedding of membrane
TNFR. sTNFR are present constitutively in serum at concentrations that in-
crease significantly in infectious diseases. Soluble TLR2 is another example;
these are released constitutively from monocytes and are able to modulate cell
activation and could provide a powerful mechanism for regulating cell activa-
tion [18, 19].

Receptor-driven Apoptosis

Anothermechanismwhereby cytokine receptors can limit inflammation is through
the induction of apoptosis, should this process occur at the appropriate time. The
archetypal receptors for this include the TNF-R1, along with the Fas receptor [20].
These receptors contain a domain, known as the ‘death domain’, that is essential for
the transductionof apoptotic signals (see later fordetaileddiscussionof apoptosis).

Balance of Pro- and Anti-inflammatory Mediators

The degree to which anti-inflammatory cytokines, soluble receptors, and decoy
receptors balance the actions of pro-inflammatory cytokines and modulate in-
flammation are not clear. Investigators are increasingly reporting that the ratios of
pro and anti-inflammatory counterparts correlate with outcomes in inflammatory
states [21,22]. What is not understood yet is whether anti-inflammatory cytokines
simply balance the pro-inflammatory ones or is there a temporal relationship, with
early pro-inflammatory elaboration being dampened down and later switched off
by anti-inflammatory cytokines and if so what are the molecular mechanisms for



142 G. Bellingan

this? Finally it isnot clear if thesemechanismsactually lead tocellular clearanceand
resolution or simply act as a ‘stop’ signal to the pro-inflammatory responses [23].

Other Endogenous Immunomodulatory Agents

Adenosine

Adenosine is a purine nucleoside that has been increasingly recognized as an im-
portant negative regulator in inflammation [24]. Inflammation causes tissue dam-
age leading to adenosine release. Adenosine binds to G-protein coupled adenosine
A2A receptors (A2AR) and increases intracellular cyclic AMP, reducing the activ-
ity of nuclear factor-κB (NF-κB) and downregulating the inflammatory response.
Stimulation of the adenosine receptor also decreases TLR-induced release of cy-
tokines. Importantly, inflammation also acts to increase expression of the A2AR.
It has now been shown that inflammation is dramatically enhanced in A2AR defi-
cient mice. Thiel et al. recently proposed that tissue inflammation induced local
hypoxia and this could be important in augmenting the adenosine-driven pro-
tective response; in addition, they postulated that hyperoxia would abolish the
protective hypoxic response and could enhance tissue damage [25]. Using an en-
dotoxin challenge that significantly impaired gas exchange, this group showed that
endotoxin-challenged mice breathing 10% oxygen (hypoxia) had a low mortality
and, in the survivors, lung inflammation was less severe than in those breathing
room air. Hypoxia also significantly reduced pulmonary PMN accumulation and
improved gas exchange compared with normoxia, suggesting it acted to protect
the lung from additional inflammatory damage. Hypoxia was also associated with
elevated adenosine concentrations. In contrast, when mice were exposed to 100%
oxygen, the toxicity of the challenge was dramatically increased compared to those
challenged in normoxic conditions. Moreover, PMN expression of A2AR mRNA
was reduced when exposed to high concentrations of oxygen.

Lipoxins, Epilipoxins, and Resolvins

Lipoxins serve as anti-inflammatory signals that regulate key steps in leukocyte
trafficking [26]. They are trihydroxytetraene-containing eicosanoids generated
rapidly during cell-cell interactions in the blood stream or through leukocyte-
epithelial cell interactions at the mucosa. The primed PMN is a key player in
lipoxin biosynthesis which involves the insertion of molecular oxygen and then
conversion into 15-hydroperoxyeicosatetraenoic acid (15-HPETE) which is rapidly
converted to either lipoxin A4, or lipoxin B4. These agents are vasodilators and
can inhibit leukocyte chemotaxis, block NK cell cytotoxicity, and can reduce the
vascular permeability changes associated with sepsis [27]. In vivo, they have been
shown to prevent leukocyte infiltration. There is some evidence that lipoxins
may promote inflammatory cell resolution [28]. Linked with lipoxin synthesis is
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a decrease in leukotriene synthesis, providing a positive feedback to their anti-
inflammatory effects. Aspirin also is implicated as it may acetylate cyclooxygenase
(COX)-2, resulting in theconversionofarachidonicacid to15R-HETE.15R-HETEis
releasedand transformedthrough transcellular routes to form15-epilipoxin,which
has similar anti-inflammatory actions. Lipoxins and aspirin-triggered epi-lipoxins
also have been shown to regulate dendritic cell migration and IL-12 production.
Despite pathogen clearance, absence of the lipoxin A4 biosynthetic pathways still
results in uncontrolled inflammation and is lethal. There is a link to the SOCS
family as lipoxins activate dendritic-cell triggered expression of SOCS-2. Absence
of SOCS-2 leads to dendritic-cell hyper-responsiveness, refractory to inhibitory
actions of lipoxin A4, although IL-10 can still provide downregulatory signals.
SOCS-2 is also a crucial intracellular mediator of the anti-inflammatory actions of
aspirin-induced lipoxins in vivo [29].

Other recently described local pro-resolution agents include the resolvins, do-
cosatrienes, and neuroprotectins which all appear to have protective and pro-
resolution actions [30]. Resolvins are derived from oxygenation of omega-3
polyunsaturated fatty acids (PUFAs), are capable of protective biological actions,
and are present in exudates from resolving inflammation. Resolvin E1 is synthe-
sized in the presence of aspirin, protects tissues from leukocyte-mediated injury,
and may underlie any omega-3 protective actions [31].

Galectin-3

Galectin-3 is a lectin with specificity for beta-galactosidase and is produced by
inflammatory macrophages, endothelial, and epithelial cells [32]. Of interest to the
field of resolution of inflammation, galectin-3 deficient mice show no difference
in the number of leukocytes in the peritoneal cavity early after an inflammatory
challenge [33]. However, after four days the galectin-3 deficient mice had signifi-
cantly less recoverable PMN. Absence of galectin-3 did not induce more rapid cell
death nor increased uptake by macrophages; this may indicate a specific role in
the resolution phase of inflammation. These data indicate that galectins may play
critical roles in the modulation of chronic inflammatory diseases. Galectin-3 has,
however, also been shown to induce L-selectin shedding and IL-8 production in
naive and primed PMN and can induce a respiratory burst [34], suggesting a role
in the pathogenesis of inflammatory disease [35].

Leptin

The adipocyte-derived hormone leptin, encoded by the obese (ob) gene, is an
important regulator of energy expenditure and several endocrine and metabolic
pathways. Plasma leptin levels rise in acute sepsis, whereas during chronic critical
illness, leptin loses its diurnal variability and plasma levels fall [36, 37]. Leptin
deficient ob/ob mice and fasted wild type mice are both hypersensitive to the lethal
effects of endotoxin, an effect which is blunted by pre-treatment with exogenous
leptin. Human congenital leptin deficiency is also associated with an increased
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predisposition to lethal infections and, in acute human sepsis, non-survivors had
significantly lower circulating leptin levels compared to survivors [38]. These
findings suggest that leptin is a key component of the host’s immune/inflammatory
response to sepsis andrestorationof leptinmayallow inflammatory resolution [39].

Regulation of Inflammation by Local Inflammatory Cell Subpopulations

T Helper Cells: Th1 and Th2 Cytokines and T Cell Switching

The local T cell population at the inflamed site plays a critical role in determining
the cytokine milieu in that compartment. T cells recognize MHC bound antigen
and are involved in cell mediated immunity. Following interaction with antigen,
helper T cells undergo differentiation to effector cells [40–42]. Antigen-presenting
cells, such as dendritic cells, facilitate this differentiation using the Notch pathway.
Dendritic cells recognizing RNA, DNA, or LPS will promote Th1 differentiation,
whereas dendritic cells recognizing more chronic infestations, such as nematodes,
promote Th2 differentiation. Dendritic cells from specific tissues are also more
likely to promote different T cell responses; with dendritic cells from bronchial
and intestinal mucosa promoting development towards Th2 and splenic dendritic
cells towards Th1. Notch is a receptor involved in decisions regarding cell fate.
Mammals express 4 notch receptors, with five genes encoding ligands for Notch
(Jagged1, Jagged2, Delta1, Delta3 and Delta4). Delta promotes Th1 responses while
Jagged promotes Th2 responses. [43].

Th1 cells typically produce IFNγ and IL-2 while Th2 cells secrete IL-4, IL-5,
and IL-13 (Table 1). Th1 responses are thought of as pro-inflammatory while Th2
responses are typically anti-inflammatory. Th2 is also an important regulator of
extracellular matrix remodeling and is involved in activating collagen deposition
while Th1 responses inhibit this process. The Th2 response should be thought of as
an adaptive tissue healing mechanism rather than just an opposing mechanism to
Th1. Th1 cells are involved in the defense against intracellular pathogens, such as
bacteria, viruses, and parasites; these cells produce a delayed type hypersensitivity
reaction, fight cancer cells, and are integral to the cell mediated immune response.
A Th1 response usually involves complement fixing antibodies, activation of NK
cells and further Th1 cytokine secretion. Th2 cells, meanwhile, produce an extra-
cellular, humoral response that results in the upregulation of antibody production,
particularly IgE. Th1 is responsible for organ specific autoimmune reactions such
as diabetes and multiple sclerosis; Th2 is implicated in allergic responses [44, 45].

Sandler et al. used oligonucleotide microarray technology to look at the genes
responsible for Th1 and Th2 cytokine profiles. They found that Th2-polarized mice
upregulated genes associated with wound repair, arginase, MMPs and collagens
while Th1-polarized mice upregulated genes associated with tissue damage [46].

Several factors are involved in determining whether a naive Th cell becomes
a Th1 or Th2 cell, with the cytokines IL-12 and IL-4 being the most potent regula-
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tors. Other factors involved include the antigen, co-stimulation, and the affinity of
the T cell receptor [47].

Th2 maturation may also be influenced by IL-6, released by antigen present-
ing cells or other cells, such as fibroblasts and macrophages. Both Th1 and Th2
cytokines are able to upregulate proliferation of their own subset of T cells in a pos-
itive feedback loop and downregulate the opposite subset. Th1 and Th2 responses
are not usually balanced; one will usually far outweigh the other. Some effector
T cells can produce both IL-4 and IFNγ, suggesting that ‘Th1’ and ‘Th2’ cytokines
can be produced by the same cell. This can lead to problems when assessing the
cytokine response in plasma or brochoalveolar lavage (BAL) fluid and then refer-
ring to the response as Th1 or Th2 on the basis of cytokines. Commitment to Th1
or to Th2 is thought to be final; any switch in the levels of Th1 cells to Th2 cells,
or vice versa in an immune response is thought to be due to new polarization of
naive cells.

A Th2 cell response can be polarized to a Th1 cell response through the deple-
tion of intracellular glutathione. A Th1 cell response can be polarized to a Th2 cell
response by oxidized glutathione (GSH) [48]. High GSH in macrophages results in
IL-12 secretion. GSH can be raised further by the interaction of these macrophages
with IFNγ. IL-4 results in the reduction of GSH levels and therefore a polariza-
tion towards a Th2 response [49]. Hormones, such as melatonin, progesterone, or
dehydroepiandrosterone, and nutrients, such as selenium or zinc, are also able to
influence Th1/Th2 balance. For example, evidence suggests that progesterone pro-
motes the production of IL-4 and IL-5 [50]. Some suggest that the overall control
of these effects may occur via glucocorticoids and catecholamines. [51].

Th1 and Th2 cells express distinct patterns of death domain receptors following
activation. The TNF-related apoptosis-inducing ligand (TRAIL) is seen only on
Th2 cells, whereas CD95L is observed only in Th1 cells. Th2 cells are significantly
more resistant to both TRAIL and CD95L induced apoptosis than Th1 cells. Hence,
apoptosis may be important in determining the fate of T helper cells [52].

A third set of T cells has more recently been found to exist. These cells are
known as T regulatory cells [53]. These CD4+CD25+ cells are the main producers
of IL-10 and are thought to be involved in the regulation of fibrosis. T regula-
tory cells also produce TGF-β1. Gamma delta T cells also appear to be able to
terminate host immune responses to infection and prevent chronic disease [54].
An interaction between peripheral gamma delta T cells and a population of pro-
inflammatory macrophages occurs late in infection leading to the acquisition of
cytotoxic activity by the T cells. Some data suggest that removal of macrophages
either by emigration or local death is required to reduce inflammation [55]. Local
apoptotic death of macrophages has also been demonstrated in the kidney in cres-
centic glomerulonephritis [56] and in the resolution of muscle inflammation [57],
although, interestingly, only in one population of macrophages, those which were
ED-1 positive, were numbers potentially controlled through apoptosis.
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Macrophage Switching

Macrophages are exposed to signals from the external milieu that alter their acti-
vation state. For example TGF-β generally acts in a pro-inflammatory fashion early
in inflammation; it recruits monocytes, and activates them and leads to cytokine
production. Later, however, TGF-β will act on macrophages to elicit more specific
immunosuppressive actions [58]. This ability of macrophages to be programmed
into specific phenotypes is called macrophage switching or alternative activation.
Macrophages are involved in a variety of different functions in host defense and
immunity despite being derived from a relatively homogeneous precursor popula-
tion and specific stimuli, especially cytokines, lead to macrophages with different
effector phenotypes [59, 60].

The question arises: does inflammatory resolution need the presence of new
macrophages destined to undertake new responses or can macrophages already
present at the inflamed site switch to facilitate an anti-inflammatory and resolu-
tion role? CD163, a member of the scavenger receptor cysteine rich family, and
CD206 are two surface markers which exhibit mutually exclusive induction pat-
terns after stimulation by a panel of anti-inflammatory molecules. Porcheray et
al. assessed the capacity of macrophages to switch from one activation state to
another by determining the reversibility of CD163 and CD206 expression and of
CCL18 production, indicating an intermediate or overlapping state [61]. These
authors demonstrated that every activation state was rapidly and fully reversible,
suggesting that a given cell may participate sequentially in both the induction and
the resolution of inflammation.

Apoptosis

What Is Apoptosis?

Apoptosis progresses through distinct stages with cytoplasmic membrane ruffling
and bleb formation which is accompanied by loss of cell volume. In the nucleus the
chromatin condenses and the nucleus compacts [62–64]. Normally the next step is
for apoptotic cells to be rapidly phagocytosed by tissue macrophages prior to any
loss of cell membrane integrity. Haslett and Savill have shown that macrophages
phagocytose only apoptotic PMNs and the phagocytosis of apoptotic cells at sites
of inflammation has now been shown for the lung, gut, joint peritoneum, pleura,
and kidney [65, 66].

Apoptosis canbe induced throughanumberofdifferentmechanisms, including
withdrawal of survival factors, the action of drugs, such as steroids and cytotoxics,
irradiation, or free radicals. A number of genes specifically regulate apoptosis,
including c-myc, p53, bak, bad and bcl-Xs, which induce apoptosis, and a number
of suppressor genes, including bcl-2, bcl-Xl and mcl-1 [67,68]. Apoptotic death can
also be signaled through one of a family of receptors known as death receptors.
These are members of the TNF receptor super-family including CD120a (TNFR1),
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Fas (Apo 1 or CD95), Fas ligand (FasL), and TRAIL or Apo2. [69, 70]. These
receptors all contain a 60 amino acid intracellular death domain through which
signals leading to the induction of programmed cell death are transduced.

Caspases are a family of 13 cysteine proteases that exist in inactive precursor
form and can be placed into three major groups. The initiators (caspases 2, 8,
9, and 10) are activated in response to apoptotic signals and they in turn cleave
the effector caspases (3, 6, and 7) into their active forms which drive the pro-
apoptotic pathways (Fig. 1). There are a number of other caspases (1, 4, 5, 11, 12,
and 13) which are involved in regulation of inflammatory rather than apoptotic
pathways [71–75].

Apoptotic cells are specifically recognized through surface receptors including
CD36, CD44 and phosphatidyl serine [76–78]. Many of the molecules involved in
apoptotic cell uptake, including CD14, C-reactive protein (CRP) and complement,
are components of the innate immune system [79]. A fundamental fact to recognize
is that when macrophages phagocytose apoptotic cells they do not release pro-
inflammatory mediators. This contrasts with their phagocytosis of pathogens or
opsonized particles which elicits the release of pro-inflammatory mediators such
as leukotrienes, and pro-inflammatory cytokines, like IL-8 and TNF-α [80,81]. The
phagocytosis of apoptotic cells leads to the release of mediators such as TGF-β,
IL-10, and PGE2, which are all anti-inflammatory. Moreover, FasL is also released
which induces further apoptosis in bystander cells [82–84].

The phagocytosis of apoptotic cells is extremely rapid and for this reason
the accurate quantification of free apoptotic cells in vivo can be problematic.

Fig. 1. Some of the complex controls regulating the induction of apoptosis
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Fig. 2. Different effects of macrophage ingestion of apoptotic cells vs. opsonized pathogens

Macrophages are the main cells involved in clearance of apoptotic cells (Fig. 2), but
are not the only cell populations capable of this. For example fibroblasts have also
been shown to participate in the clearance response. Thus, apoptotic cell death
and clearance by macrophages, as well as other cell populations, is a powerful anti-
inflammatory mechanism and is uniquely suited to the resolution of inflammation.

Apoptosis and Normal Inflammatory Resolution

PMNs have a life span of approximately 24 hours or less in the circulation before
they undergo constitutive apoptosis. Thus, we should recognize that apoptosis is
thenormal fateof thePMNandwhatweare really considering in sepsis is the timing
of this cell death. Similarly, eosinophils, like PMNs undergo constitutive apoptosis
although over a more prolonged time span [85]. Apoptosis is also an essential part
of normal lymphocyte maturation with up to 90%of immature T cells being deleted
by apoptosis during positive and negative selection; a similar fate awaits B cell
precursors that do not productively rearrange their immunoglobulin genes [86].
Monocytes also normally undergo constitutive apoptosis unless exposed to pro-
inflammatory survival stimuli such as LPS, TNF-α, or M-CSF in which case they
migrate into the site of inflammation to mature into macrophages [87]. Hence for
the bulk of leukocytes, apoptosis is their normal fate and it is the understanding of
when and how this silent and potentially powerful pro-resolution response should
be activated that is important. Macrophages appear to be different; they can die by
apoptosis, but this seems to require a significant noxious stimulus [88]. The normal
fate of the inflammatory macrophage in successfully resolving acute inflammation
is not to die at the inflamed site by apoptosis but instead to emigrate to the draining
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lymph nodes [89]. Finally, parenchymal cells probably undergo slow but steady
apoptosis as part of normal repair and regeneration mechanisms.

Rather than excessive apoptosis, the usual response to sepsis is for the multiple
pro-inflammatory signals (elevated TNF-α, IFN-γ, or even decreased levels of
IL-10) to prolong leukocyte survival. This has been well documented in conditions
as diverse as sepsis, acute respiratory distress syndrome (ARDS), trauma, burns,
bronchiectasis, and cystic fibrosis [90, 91]. Drugs used in the treatment of sepsis,
such as steroids, can also prolong PMN survival [92]. Delayed PMN apoptosis can
ensure a vigorous inflammatory reaction and thus protect the host. However it
is feasible that, through increased PMN numbers and persisting PMN activation,
delayedPMNapoptosis is also responsible, at least inpart, for some for theexcessive
tissue injury seen in severe sepsis.

Phagocytosis of apoptotic PMNs is part of the normal resolution response and
this has been shown in vivo both in models of resolving inflammation and clinically
in man. This feature is seen in many sites including in pulmonary inflammation,
in the inflamed joint, the inflamed peritoneum, and in wound PMNs. For example,
Meszaros et al. have shown that early in the inflammatory response, PMN in
wounds have an increased resistance to apoptotic cell death; however, later in
the inflammatory process they die by apoptosis and are phagocytosed locally by
macrophages [93]. Similarly, Ishii et al. examined mechanisms controlling the
elimination of PMNs during the resolution of acute pulmonary inflammation in
rats [94], and again showed little evidence for any PMN apoptosis on day 0 but
an increasing number of apoptotic PMN on day 1 to 3 as the lung inflammation
subsided.

Macrophage ingestion of apoptotic cells can be modulated. This has been ele-
gantly demonstrated by Godson and colleagues who showed that aspirin-triggered
epilipoxins promote macrophage phagocytosis of apoptotic PMNs; steroids also
increase the ability of macrophages to clear apoptotic cells [95, 96].

Emigration

Apoptosis and subsequent phagocytosis of PMNs still leaves the inflamed site
populated by macrophages and lymphocytes. As noted earlier, macrophages can
undergo apoptosis. However, in successfully resolving acute inflammation, they
have been shown to be cleared not by apoptosis, but by emigration, passing into the
lymphatics and draining specifically to the regional lymph nodes [89]. Only live
macrophages can pass into the lymphatics, illustrating that this process is active
and, more interestingly, resident macrophages are cleared at a very much slower
rate than inflammatory macrophages. It has now been shown that part of the regu-
lation of the rate of macrophage clearance resides in adhesion molecule expression
on both the macrophages and the cells at the site of entry into the draining lymphat-
ics [97]. For the peritoneum this site is the milky spot, a collection of mesothelial
cells overlying the draining lymphatics and the site both for leukocyte entry into
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the peritoneum with the onset of inflammation and of exit with resolution. Un-
like the studies by Hotchkiss et al. where the introduction of apoptotic cells prior
to the induction of sepsis was harmful [98], it has recently been shown that the
rate of inflammatory macrophage clearance from the inflamed site with resolution
can be enhanced by phagocytosis of apoptotic cells [99]. Indeed, the instillation of
apoptotic cells into the peritoneum drives a very rapid macrophage ‘disappearance
reaction’ with rapid phagocytosis of all instilled apoptotic cells and localization
of those macrophages that have phagocytosed these apoptotic cells to the milky
spots of the greater omental lymphoid organ. Very late activating antigen (VLA)4
and VLA5, two beta1 integrin adhesion molecules involved in cell transmigration,
are important in regulating the adherence and subsequent lymphatic clearance of
such macrophages. These adhesion molecules are also involved in the enhanced
clearance of macrophages that have engulfed apoptotic cells. The beta2 integrins
also have a role in macrophage lymphatic emigration upon further activation of
the macrophages [100]. Macrophage emigration into the draining lymphatics has
not just been shown for the peritoneum but also with the resolution of kidney
inflammation and with lung inflammation. Even Kupffer cells, long believed to be
tissue fixed macrophages, have been shown to migrate using high resolution video
microscopy [101].

Monocytesmigrate into the inflamedsite andadoptapro-inflammatorypheno-
type where, along with the resident macrophages, they are vital in the phagocytosis
and killing of pathogens and the orchestration of the pro-inflammatory response
through their cytokine and chemokine elaboration [102–104]. With the waning of
the inflammatory response, macrophages adopt different roles; they can undergo
alternative activation, contribute to wound healing, and clear apoptotic cells, which
then drives their emigration to the draining lymph nodes. Here they present anti-
gen and thus further regulate the immune response. Of note, when macrophages
are mixed into a co-culture of primed lymphocytes and antigen-laden dendritic
cells, macrophages will downregulate the lymphocyte proliferation response. This
suggests that the emigration of macrophages to the draining lymph nodes may have
an anti-inflammatory action, dampening down non-compartmentalized activated
adaptive immune response.

Macrophages are not the only cells in which emigration is important. Den-
dritic cells emigrate to regional lymph nodes very early during the inflammatory
process, presenting antigen and initiating adaptive immune responses. Apoptotic
cell ingestion can even modulate maturation of dendritic cells [105]. Similarly,
lymphocytes, like macrophages, can be cleared by both apoptosis and emigration.
Mature lymphocytes participate in a complex pattern of trafficking, passing from
sites of inflammation into the lymph ducts to the regional lymph nodes. This T
cell emigration is under specific chemokine control as CCR7 is required for T cell
exit [106]. This same chemokine is induced on dendritic cells after interaction with
apoptotic cells [107]. The presence of antigens can lead to expansion of specific
cell populations. These cells can then cross back from the circulation into tissue
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or lymph nodes under the regulation of specific vascular and lymphocyte homing
receptors as part of the pattern of lymphocyte recirculation [108].

The rate of lymph flow may also be important for inflammatory resolution.
For example, it is known that NO is generated by lymphatic endothelial cells. This
eNOS-generated NO regulates lymphatic fluid velocity. Hence, the possibility exists
that NO may govern the rate of lymphatic leukocyte clearance.

Fibrosis

Another consequence of dysregulated inflammation and inflammatory resolution
is that of fibrosis and loss of tissue function. As with the rest of the inflammatory
response, fibrosis is a vital part of normal healing, which, when excessive, can lead
to severe consequences. This occurs in ARDS, but is also a feature of more chronic
inflammation, such as cirrhosis and glomerulosclerosis. It is now apparent that
the fibrotic response begins far earlier than previously recognized with profibrotic
mediators apparent in lung lavage on the first day of ARDS [109]. Cytokines
traditionally thought of for fibrosis include TGF-α and TGF-β, but more typical
pro-inflammatory cytokines, such as TNF-α, may also have important roles. ARDS
is the only known lung fibrotic condition in which fibrosis can reverse. How this
happens needs to be understood, harnessed, and developed as a therapy.

Conclusion

Inflammation requires clearance of the inciting pathogen, then orchestrated re-
moval of the burden of leukocytes and other cells influxed into the inflamed site
along with dissipation of the pro (or anti) inflammatory mediator cascades. We
now recognize that this resolution process is strictly controlled by a number of
mediators and adhesion molecules. Apoptotic cell death, when timed appropri-
ately, allows the non-phlogistic clearance of PMNs, monocytes and eosinophils.
Macrophage engulfment of these apoptotic cells signals further anti-inflammatory
processes, including additional programmed cell death, anti-inflammatory medi-
ator release, and promotes active macrophage emigration which is the final route
by which cell clearance is effected. Should these processes evolve successfully, then
the tissue will return to its normal structure and function, but should this not
proceed effectively then the body will limit further damage by evoking a fibrotic
response to ‘heal and seal’ the damaged tissue.
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Compartmentalized Activation of Immune Cells During
Sepsis and Organ Dysfunction

J.-M. Cavaillon and M. Adib-Conquy

Introduction

Bacterial sepsis is associated with the activation of immune cells by whole bacteria
and by bacterial derived products resulting in a local and systemic inflamma-
tion. Very soon after the insult and the release of pro-inflammatory mediators,
a regulatory anti-inflammatory response occurs. A subtle balance exists between
pro- and anti-inflammatory mediators both locally and systemically. This balance,
which evolves with time, is the reflection of a complex network of amplifying
and down-regulating signals, and is modulated by specific surrounding cells that
differ from one compartment to another. For example, the nature of mononuclear
phagocytes differs greatly from one place to another, and circulating monocytes,
resident macrophages in tissues, and adherent macrophages in cavities display
specific properties. Accordingly, the inflammatory response varies from one com-
partment to another. The most striking differences exist between tissues and the
blood compartment. In this chapter, we will focus on the activation of leukocytes
during sepsis and systemic inflammatory response syndrome (SIRS), with the em-
phasis that leukocytes are present in most tissues and that their responsiveness
and their contribution may differ from one compartment to another.

Activating Stimuli

Immune Cell Activation by Bacteria

During infection, live bacteria and whole bacteria killed following the action
of complement, defensins, anti-microbial peptides, or antibiotics interact with
immune cells. Furthermore, bacterial-derived products, either actively secreted
(exotoxins), released from the cell surface (e.g., lipopolysaccharide [LPS], pepti-
doglycan), or derived from inside cells (e.g., bacterial DNA, heat-shock proteins
[HSP]) are also present within the cellular microenvironment. Whole bacteria and
pathogen-associated microbial products (PAMPs) are potent activators of immune
cells and following their interaction with specific sensors (e.g., Toll-like receptors
[TLR], NOD1 and NOD2 molecules) induce the production of inflammatory cy-
tokines. For example, in in vitro cultures of human mononuclear cells, the levels
of tumor necrosis factor (TNF), one of the main inflammatory cytokines, induced
by whole Streptococcus pyogenes are higher than those reached in response to



162 J.-M. Cavaillon, M. Adib-Conquy

streptococcal exotoxins; in contrast the levels of induced IL-8 are similar, and only
exotoxins induce lymphotoxin-alpha [1]. Similarly, the levels of TNF induced by
whole Gram-negative bacteria are far higher than those obtained in the presence
of corresponding amounts of LPS [2]. However, while the intensity of the response
may vary between whole bacteria and some isolated PAMPs, the spectrum of ac-
tivity may be rather similar. This was the case when dendritic cells were studied
by microarray technology after activation with Escherichia coli and LPS. Huang
et al. [3] showed that LPS was able to mimic whole bacteria and accounted for
almost the entire bacterial response. Indeed, among the different ligands of TLR,
endotoxin (LPS) that specifically induces TLR4-dependent signaling, leads to the
highest gene transcription in macrophages. The major role of endotoxin during
Gram-negative infection can account for the differences observed between Gram-
negative and Gram-positive infections. For example, the gene expression pattern
of human blood leukocytes activated with either LPS or heat-killed Staphylococ-
cus aureus, revealed that 155 identical genes were upregulated in response to LPS
but downregulated after activation with S. aureus; in contrast 208 identical genes
were downregulated in response to LPS but upregulated upon exposure to S. au-
reus [4]. Surprisingly, only 17 genes were differentially expressed in the liver of
mice after Gram-negative or Gram-positive sepsis, while 166 common genes were
upregulated and 130 downregulated [5].

Role of Endotoxin and Other Pathogen-associated Microbial Products

As expected, circulating endotoxin is found in patients with Gram-negative sepsis,
but it can also be detected in patients with Gram-positive and fungal infection [6].
Most importantly, similar to the likely situation with circulating cytokines [7], it
is probable that detectable endotoxin within the blood stream of SIRS and sepsis
patients may be underestimated. Indeed, in sepsis the presence of large amounts
of endotoxin has been described linked to platelets, erythrocytes, and monocytes.
Thus, it is possible that even in the absence of detectable circulating endotoxin, all
patients deal with this powerful microbial agent. Thus, the presence of endotoxin
in non-infectious SIRS patients may contribute to the generalized activation seen
in tissues, similar to what has been described in models of sepsis and septic shock.

It is worth mentioning that many of the severe insults that require admission of
patients to intensive care units (ICU) are associated with the presence of detectable
amounts of endotoxin within the blood stream, independent of any infection. For
example, plasma endotoxin has been found in 92% of patients after cardiac surgery
with cardiopulmonary bypass [8], in 71% of patients undergoing abdominal aortic
surgery after clamp release [9], in 61% of burn and trauma patients [10], in 57%
of ICU patients [11], and in 46% of patients resuscitated after cardiac arrest [12].
The biological relevance of these levels of circulating endotoxin has been shown
in different clinical settings. In patients resuscitated after cardiac arrest, the levels
of circulating interleukin (IL)-6, IL-10, and IL-1 receptor antagonist (IL-1ra) were
higher among patients with detectable circulating endotoxin [12]. In meningococ-
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cal disease, the plasma levels of LPS positively correlated with those of circulating
chemokines [13].

In addition to translocated endotoxin, it is obvious, although poorly demon-
strated, that other PAMPs can reach the blood stream. For example, bacterial
peptidoglycan-associated lipoprotein can be detected in the blood of mice with
peritonitis [14]. Bacterial peptidoglycan has been detected in the blood of rats
after hemorrhagic shock [15], and it is most probable that fragmented bacterial
DNA could also be found in the blood compartment.

Failure of the gut barrier remains central to the hypothesis that endotoxin
reaches the systemic circulation via the portal route or via lymphatic vessels.
Endotoxins escaping from the gut lumen contribute to activation of the host’s
inflammatory mechanisms, leading subsequently to tissue injury and multiple
organ failure (MOF). In addition, local activation of the immune inflammatory
system occurs, accompanied by a local production of cytokines and other immune
inflammatory mediators [9]. These intestinal-derived mediators may result in
a further exacerbation of the systemic inflammatory response. As stated by Swank
and Deitch [16], “even if the immune inflammatory system, rather than the gut,
is the “motor of” MOF, the gut remains one of the major pistons that turns the
motor.”

Within tissues, cells are exposed to more than one signal, and multiple stimuli
act in synergy leading to an enhanced production of inflammatory cytokines.
For example, synergy has been reported between endotoxin and other microbial
TLR agonists or NOD ligands, Gram-positive-derived exotoxins, viral infection,
hypoxia, glucose, anaphylatoxin C5a, or thrombin. In most cases, these synergies
lead to more severe organ failure. Similarly, the addition of inflammatory cytokines
(e.g., interferon [IFN]-γ, granulocyte-macrophage colony-stimulating factor [GM-
CSF], TNF), further increases LPS-induced macrophage activity and LPS-induced
lethality.

Nature of Immune Cells Activated Within Tissues

Macrophages

Within tissues, resident macrophages are undoubtedly an important source of in-
flammatory cytokines and mediators. However, very little information is available
concerning these cell populations and most reports have addressed macrophages
obtained from cavities.

In the case of hemorrhage, alveolar macrophages produce IL-1β and TNF-α
(Table 1). Following injection of LPS in human volunteers [17] or in rats [18], the
ex vivo production of IL-1 or TNF by alveolar macrophages was enhanced. This
was not observed in mice [19], but it is most probable that the timing between the
systemic delivery of LPS and the time when broncho-alveolar macrophages were
collected and studied was responsible for this difference, rather than a difference
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between species. When a non-infectious insult was localized to the lungs, as in
the case of human acute respiratory distress syndrome (ARDS), or after lung
irradiation in baboons [20], ex vivo cytokine production was also enhanced. In
contrast, during local or remote infections, alveolar macrophage responsiveness
was significantly reduced [21]. The activation of intracellular signaling pathways
has been studied in ex vivo analysis. Schwartz et al. [22] observed an increased
activationofnuclear factor-kappaB(NF-κB) inalveolarmacrophages frompatients
with ARDS. Moine et al. [23] subsequently showed decreased cytoplasmic levels of
p50, p65, and c-Rel in alveolar macrophages from patients with ARDS, consistent
withanenhanced translocationofNF-κBdimers fromthecytoplasmto thenucleus.

In humans, the study of peritoneal macrophages obtained from continuous
ambulatory peritoneal dialysis patients revealed that LPS-activated cells released
significantly more IL-1β during peritonitis as compared with the infection-free
period [24]. In women with endometriosis, spontaneous and LPS-induced pro-
duction of TNF-α, IL-6, IL-8, IL-10, IL-12, and nitric oxide (NO) by peritoneal
macrophages was higher than in controls [25]. Following trauma/hemorrhage,
LPS-induced production of TNF and IL-6 by liver Kupffer cells was enhanced [26].
This was also the case for IL-6 production in a burn model [27].

Macrophage reactivity has been mainly associated with the pro-inflammatory
response, although these cells most probably also contribute to the release of
anti-inflammatory mediators such as IL-1ra, IL-10, transforming growth factor-β
(TGF-β), soluble TNF receptor (sTNFR), and heme oxygenase-1 (HO-1). HO-1
serves as a ‘protective’ molecule by virtue of its anti-inflammatory, anti-apoptotic,
and anti-proliferative actions. HO-1 was expressed by peritoneal macrophages
in a rat hemorrhagic shock model, and by Kupffer cells in human sepsis, HO-1
(Table 1).

Neutrophils

In murine models of hemorrhage or of endotoxemia, activation of NF-κB, cAMP
responsiveelementbindingprotein (CREB),mitogenextracellular signal-regulated
kinase (MEK-1/2), and extracellular signal-regulated kinase (Erk2) was found in
alveolar neutrophils but not in blood neutrophils [28, 29]. These reports further
illustrate the profound differences that exist from one compartment to another for
a similar cell population. Similarly, in human sepsis the production of both IL-12
isoformsafter exvivo stimulationwas significantlyhigherwithalveolarneutrophils
thanwithautologousbloodneutrophils [30]. Studyinghumanbloodandperitoneal
neutrophils, Chollet-Martin’s group [31] showed that TNF-α converting enzyme
(TACE) was upregulated at the neutrophil surface during severe peritonitis. This
finding could be related to a paracrine regulatory loop involving some TACE
substrates such as TNF, L-selectin, and TNF receptors.
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Lymphocytes

In contrast to the hyporeactivity of the circulating lymphocytes observed in sepsis
and SIRS (see below), it has been reported that lymphocytes derived from inflamed
tissues are activated, primed, and fully responsive to ex vivo stimulation. This has
been particularly well illustrated in studies of intraepithelial lymphocytes from
small intestinal mucosa after laparotomy and hemorrhage, or after endotoxemia
(Table 1).

Natural Killer Cells

Natural killer (NK) cells contribute to the pathogenesis of sepsis and SIRS [32,33].
NK cells are a major source of IFNγ, produced in response to different cytokines
such as IL-12, IL-15, IL-18, and IL-21 or by high mobility group box protein
(HMGB)-1. NK-derived IFNγ and NK cells contact prime macrophages that con-
tribute to bacterial clearance and inflammatory cytokine production.

Mast Cells

One of the striking parameters of inflammation is its rapid occurrence and
the fast release of inflammatory cytokines and mediators. Numerous experi-
mental approaches suggest that cells containing preformed TNF, such as mast
cells, play a central role. The contribution of mast cells has been established in
zymosan-induced peritoneal inflammation, and inflammation following myocar-
dial ischemia-reperfusion (Table 1). Mast cell degranulation is a key event in the
granulocyte infiltrationand tissuedysfunctionassociatedwith intestinal ischemia-
reperfusion [34]. It is noteworthy that TNF-producing mast cells are required to
achieve an efficient innate immune response in peritonitis after cecal ligature and
puncture (CLP), and after peritoneal or intranasal infection with Klebsiella pneu-
moniae [35, 36]. Mast cells are directly activated by microbial derived compounds
such as peptidoglycan and endotoxin and subsequently release a vast array of
cytokines that govern innate immunity and inflammation.

Differences between Compartments

In sepsis and SIRS, the response varies from one organ to another. The most
convincing proof of this concept has been provided by Peter Ward’s group [37]
who examined the gene expression in different tissues in a CLP model of sepsis
in rat. They reported that the sepsis response elicited gene expression profiles
that were either organ-specific, common to more than one organ, or distinctly
opposite in some organs. For example, in the latter case, the expression of about
15 genes was increased in the liver and decreased in the spleen. The nature of the
specific chemokines expressed after insult differed from one tissue to another. For
example, in the CLP murine model, macrophage-inflammatory protein-2 (MIP-2)
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was mainly expressed in the lung while keratinocyte-derived chemokine (KC) was
found in the liver [38]. After injection of LPS in mice, regulated upon activation,
normal T-cell expressed and secreted (RANTES) was far more abundant in the
lung than in the liver [39]. Furthermore, the cascade of events may also vary from
one compartment to another. For example, after injection of LPS, NF-κB activation
in the liver was mediated through TNF- and IL-1 receptor-dependent pathways,
but, in the lungs, LPS-induced NF-κB activation was largely independent of these
receptors [40]. Most interestingly, neutralization of TNF, by pretreatment with an
adenovirus-mediated TNF receptor fusion protein before injection of LPS in the
mouse, reduced plasma levels of IL-6, MCP-1, and IL-12, whereas heart expression
of these cytokines was unaffected [41].

In the lungs, alveolar macrophages behave differently as compared to macro-
phages from other tissues. Although data are still missing in humans, mouse
alveolar macrophages do not produce IL-10, do not express TLR9, and are thus
insensitive to bacterial DNA, and fail to produce IFNβ in response to TLR4 or
TLR3 agonists. Another specificity of the lungs may explain why this organ is
often the first and the most common to fail in septic shock and SIRS. One of the
characteristics of the lungs is the local presence of GM-CSF, a cytokine essential
for normal pulmonary physiology and resistance to local infection. However, the
critical role for GM-CSF in pulmonary homeostasis may well be a disadvantage in
the case of endotoxin-induced lung inflammation. The synergy between GM-CSF-
and LPS-induced signaling is well recognized, and, interestingly, neutralization of
GM-CSFsuppressesLPS-induced lung inflammation.Another strikingobservation
is the absence of deactivation after a preliminary exposure to heat-killed Gram-
negative bacteria or repeated exposure to LPS. In models where one would have
expected an induction of endotoxin tolerance, a priming effect to live E. coli-
induced lung injury or chronic pulmonary inflammation was induced. We suspect
that there is a parallel between these observations and the capacity of GM-CSF to
prevent or reverse the induction of endotoxin tolerance.

Another aspect of the cell reactivity within one given organ is its specific
microenvironment. A fascinating observation was made years ago by Callery et
al. [42]. These investigators reported that a high hepatic arginase activity oc-
curs within the liver, resulting in negligible local arginine levels. Accordingly,
they performed LPS-stimulated cultures of Kupffer cells in media with or with-
out (-) l-arginine. In arginine (-) cultures, TNF production was significantly re-
duced, whereas prostaglandin-E2 (PGE2) production was amplified. Cyclooxyge-
nase blockade upregulated the production of TNF. This influence of arginine on the
production of TNF-α appeared unique to Kupffer cells because both TNF and PGE2
levels increased when peritoneal, pleural, and alveolar macrophages were stimu-
lated by LPS in arginine (-) medium. The authors suggested that this response may
reflect an evolutionary adaptation of Kupffer cells to their local hepatic environ-
ment; thus, despite continuous exposure to gut-derived endotoxin under normal
conditions, Kupffer cells fail to generate detrimental cytokine responses.
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Local Detection of an On-going Process of Inflammation

During a localized and moderate infection, inflammatory mediators are released
at the site of infection. In contrast, with systemic inflammation, most tissues
contribute to the release of inflammatory mediators. As shown in Table 1, in sepsis
and in sepsis-like experimental models, inflammatory mediators can be produced
by immune cells present in most organs. Mediators were identified in tissues
using mRNA levels, by immunochemistry, ELISA, or with bioactivity assays, and
following their release in ex vivo culture.

Lungs

There are numerous examples that illustrate the presence of enhanced levels of
pro-inflammatory cytokines in bronchoalveolar lavages (BAL) following chest in-
jury, ventilator-associated pneumonia, and in patients with ARDS or bacterial
pneumonia. In the latter case, Dehoux et al. [21] elegantly demonstrated com-
partmentalized cytokine production. They showed higher levels of inflammatory
cytokines in BAL fluid recovered from the involved lung of patients with unilateral
pneumonia as compared to the contralateral, non-involved lung. Inflammatory
cytokines were also found in pleural effusions of patients with pneumonia [43].
Thermal injury led to the expression of TNF mRNA in lung [44]. In MOF patients
with ARDS, the presence of higher IL-1β levels in pulmonary capillary blood than
in peripheral vein blood strongly suggested the production of this cytokine within
the tissue and its pouring out in the downstream vein [45].

Systemic injection of endotoxin induced gene expression of IL-1α, IL-1β and
IL-1ra in lungs of rats, and of TNF in mice and sheep. In murine lungs, TNF was
also produced after peritonitis, or after injection of S. aureus (Table 1). In con-
trast, intravenous administration of endotoxin in human volunteers did not lead
to an enhanced expression of TNF, IL-1, IL-6 or IL-8 mRNA among bronchoalve-
olar cells [46]. An elegant in vivo imaging study performed in transgenic mice
by Carlsen and coworkers [47] showed NF-κB activation in numerous tissues fol-
lowing intravenous injection of LPS, particularly in lungs, skin, spleen, and small
intestine. In contrast, liver, kidney, heart, muscle, and adipose tissues displayed less
intense activities. Following LPS-injection in mice, we studied cells derived from
different compartments and showed that tolerance to endotoxin, as monitored
by ex vivo TNF production in response to LPS, was compartmentalized. Indeed,
bronchoalveolar cells were less prone than splenocytes, peritoneal cells, and bone
marrow cells to develop tolerance to endotoxin. Another interesting approach was
reported by Molina et al. [48] who studied the levels of TNF after an LPS injection
in rats that had previously undergone hemorrhagic-shock. When compared to
sham animals, plasma levels of TNF were lower, whereas levels of TNF in BAL were
far higher. From these observations, it appears that remote or systemic infection
leads to an inflammatory response within the lungs.

The inflammatory process is also accompanied by the release of anti-inflamma-
tory mediators. Soluble TNFR levels were increased in BAL fluid of patients who
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developed ARDS. Similarly, after chest trauma, sTNFRI and II and IL-1ra were
present in plasma and in BAL fluid. Soluble TNFR was present in greater amounts
in pleural effusion than in plasma of septic and non-septic ICU patients. Donnelly
and colleagues [49] reported that low concentrations of the anti-inflammatory cy-
tokines IL-10 and IL-1ra in BAL fluid obtained from patients with early ARDS were
closely associated with poor prognosis. These results stand in apparent contrast to
the relationship between high plasma levels of anti-inflammatory cytokines and
poor outcome in SIRS patients.

Liver

Douzinas et al. [45] showed in MOF patients with hepatic involvement that IL-
6 levels were higher in hepatic sinusoidal blood than in peripheral vein blood.
These results strongly suggest the production of the mentioned cytokine within
the tissue and its pouring out in the downstream vein. Thermal injury led to the
expression of TNF mRNA in liver. Similarly, injection of endotoxin induced gene
expression of IL-1α, IL-1β and IL-1ra in rat liver, and TNF mRNA expression in
mice. TNF was also induced in liver after S. aureus injection and in peritonitis
models. Concomitantly, IL-10 mRNA expression was rapidly induced in murine
liver (1 hour), and to a lesser extent in lungs and kidney. Kupffer cells contribute
to the production of inflammatory cytokines and HO-1 (Table 1).

Spleen

In the case of hemorrhage or thermal injury in mice, the spleen contributed to
the production of TNF and IL-1β. In mice and rats, experimental peritonitis, and
injection of LPS, E. coli, or Staphylococcal exotoxin led to TNF, IL-1α, IL-1β and
IL-1ra expression in the spleen (Table 1), and to NF-κB activation [47]. However,
IL-10 mRNA expression was also rapidly induced in spleen (1 hour).

In contrast, the ex vivo LPS-induced production of TNF by spleen cells was re-
duced in hemorrhage, trauma/hemorrhage, abdominal surgery, and sepsis mod-
els. This stands true also when IL-1 and IL-6 were investigated as well as for
concanavalin A-induced IL-2 and IFNγ. In contrast, in most studies that addressed
thermal injury, TNF, IL-1, and IL-6 production was increased upon LPS stimula-
tion. A similar upregulation of the production of these three cytokines was also
reported using a T-cell mitogen. This clear cut difference between various SIRS and
burn models should encourage investigators to address whether putative circulat-
ing mediators could deactivate or prime spleen cells depending upon the nature of
the insult.

Gut

In the case of hemorrhage, elevated levels of IL-6 and TNF in the portal vein suggest
a contribution from the gut to the inflammatory response [50]. High levels of portal
vein TNF have been found during abdominal aortic surgery in man [9]. Both of
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these studies illustrate that hypoperfused gut can be a source of circulating TNF.
Following intravenous injection of LPS in mice, NF-κB activation was observed
in the small intestine [47]. In rats, TNF mRNA was expressed in the wall of the
jejunum, and gene expression of IL-1α, IL-1β, and IL-1ra was found in the bowel.

Peritoneum

Inflammatorycytokineswere found in theascitesfluidofpatientswithpancreatitis,
as well as in the peritoneal fluid of patients with appendicitis and peritonitis.
Soluble TNF receptors I and II were also present in great excess as compared to
TNF in ascites of patients with acute pancreatitis [51], illustrating the concomitant
expression of both pro- and anti-inflammatory mediators.

Brain

Pro-inflammatory cytokines and IL-1ra. were found in the cerebrospinal fluid
(CSF) of patients with bacterial meningitis. TNF and TGFβ were found within
leukocytes derived from the CSF of patients with meningitis (Table 1). In brains
of patients who died from septic shock, immunohistochemical analysis revealed
the expression of TNF in glial cells and of inducible NO synthase (iNOS) in vessel
walls [52]. TNF mRNA was found in rat brain after intravenous injection of LPS.
Low expression of IL-10 mRNA, but high TGFb mRNA expression was found in
brain following Haemophilus influenzae-induced meningitis in infant rats [53].

Heart

In the case of hemorrhage, the heart contributes to TNF and IL-1β production.
Injection of LPS in mice led to the appearance of TNF in the heart as well as to
the expression of HO-1. Immunochemistry analysis revealed that TNF production
was mainly due to inflammatory and interstitial cells [54]. TNF expression was
also observed in the heart after injection of S. aureus (Table 1).

Bone Marrow

Endotoxin treatment resulted in the appearance of TNF in the secretory granules
of all eosinophils, neutrophils, and monocytes in the bone marrow (Table 1).

Muscle

Injection of LPS induced the expression of inflammatory cytokines in muscle, and
led to NF-κB activation [47]. An increased expression of the inducible isoforms
of cyclooxygenase (COX-2) was detected by Western-blot in muscle biopsies of
septic patients, as compared to controls [55]. Furthermore, TNF was found in
muscle biopsies of patients with septic cellulitis [56], and HO-1 was detected in
the skeletal muscle of patients with septic myopathies [55]
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Other Tissues

In human septic shock caused by cellulitis, TNF, IL-1β and iNOS were found in
skin, muscle fat, artery at the very site of infection, and in inflamed and putrescent
areas [56]. LPS injection led to the appearance of TNF in mesangial cells of the
kidney. Using the CAT reporter gene expression, Giroir et al. [57] also showed gene
activation in kidney, in uterus, and in islet of Langherans. Finally, subcutaneous in-
jection of LPS induced the expression of inflammatory cytokines in ocular tissues.
Thus, almost all tissues can contribute to the production of inflammatory media-
tors during systemic inflammation. In numerous cases, the resident or infiltrating
leukocytes are the main activated cells.

The Blood Compartment

Proof of activation of circulating leukocytes is rare, as, probably, in most cases the
analysis occurred once activated cells have marginated towards tissues. We showed
in an ex vivo analysis that the spontaneous production of TNF by murine blood
leukocytes was significantly enhanced 1 h after intravenous injection of LPS. At
a later time (8 h), after intraperitoneal injection of LPS in mice, peripheral blood
mononuclear cells (PBMC) also expressed IL-10 mRNA. In humans, IL-8 mRNA,
but not IL-6 or TNF mRNA, was found in circulating leukocytes of patients with
localized and septicemic Pseudomonas pseudomallei infection (Table 1).

Many events contribute to modify the nature of circulating leukocytes. During
infection, a boost of hematopoiesis leads to a rise in newnaive cells within the blood
stream. Following an encounter with microbial products, circulating cells may be
activated and marginate towards the tissues. Accordingly, numerous modifications
in circulating leukocytes have been reported in sepsis and SIRS. This includes up-
and down-regulation of many membrane markers. Decreased human leukocyte
antigen D-related (HLA-DR) surface expression on monocytes is a well-known
phenomenon, but the expression of other surface markers was found to be reduced
(e.g., TNFR p75, CD14, CD71, CD86). In contrast, expression of TNFR p50, CD40,
CD48, CD64, CD89, TLR4, triggering receptor expressed on myeloid cells (TREM)-
1, and tissue factor was increased.

As a consequence of bathing within an immunosuppressive milieu, circulating
blood leukocytes display a major alteration of their immune status [58]. Lym-
phocytes show a reduced capacity to proliferate in response to mitogen and to
produce cytokines upon ex vivo activation. In response to bacterial stimuli, mono-
cytes from septic patients exhibit an attenuated respiratory burst, and monocytes
from critically ill patients synthesize less leukotriene C4 than healthy controls in
response to calcium ionophore. The main feature of blood monocytes, lympho-
cytes, and neutrophils from septic patients is their reduced capacity to produce
pro-inflammatory cytokines when further activated in in vitro cultures. In fact,
the same observation has been found in all types of SIRS. Attempts to decipher
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the mechanisms underlying the altered responsiveness to LPS revealed an im-
paired activation of NF-κB that was reminiscent of the observation made in cells
rendered tolerant to LPS [59, 60]. Furthermore, the expression of interleukin-1
receptor-associated kinase (IRAK)-M, a negative regulator of TLR-dependent sig-
naling, was more rapidly upregulated following a second endotoxin challenge in
monocytes isolated from septic patients than from healthy controls [61]. However,
it is important to mention that the responsiveness to certain agonists is main-
tained and that the production of anti-inflammatory cytokines (e.g., IL-1ra, IL-10)
is often enhanced. For example, leukocytes from trauma patients and from pa-
tients resuscitated after cardiac arrest produced similar amounts of TNF as did
healthy controls when exposed to heat-killed S. aureus, while their response to
LPS was dramatically reduced [12, 62]. More recently, we made a similar observa-
tion with monocytes from sepsis patients (Adib-Conquy et al., unpublished data).
Accordingly, the reduced capacity of circulating leukocytes to produce cytokines
upon activation is not a global defect, and the terms ‘anergy’, ‘immunodepression’,
and ‘immunoparalysis’, often used to qualify the phenomenon, are excessive, and
probably the term ‘leukocyte reprogramming’ best defines the exact nature of the
phenomenon [63].

Leukocyte Recruitment as a Key Factor of Local Inflammation

Following LPS injection, or in sepsis models (e.g., CLP), injury and altered func-
tions of heart, lung, kidney, or liver have been regularly reported. These alterations
are associated with an important influx of leukocytes. This recruitment within
tissues implies the adhesion of circulating leukocytes to endothelium, a step in-
volving numerous adhesion molecules. Targeting many of these molecules with
specific antibodies resulted in an improvement in organ function, reduced local
inflammation, and, in some models, improved survival. For example, beneficial
effects of anti-intercellular adhesion molecule-1 (ICAM-1), anti-vascular cell adhe-
sion molecule-1 (VCAM-1), anti-P-selectin, anti-L-selectin, anti-E-selectin, anti-
lymphocyte function associated antigen (LFA1), anti-CD18, and anti-CD11b have
been reported following LPS administration in rabbit, rat, or mouse. However, in
some experimental models, these antibodies failed to induce any improvement.
For example, in a baboon model of sepsis after infusion of live E. coli, anti-ICAM-
1, anti-L selectin, and anti E-selectin did not protect against lung injury and did
not improve survival. Similarly, anti-LFA-1 did not protect against a lethal injec-
tion of LPS in mice, and anti-CD18 worsened cardiovascular function in a canine
model of septic shock. The involvement of different adhesion molecules may be
specific to each compartment and probably also depends upon the experimental
model used. This complexity is underscored by experiments in which antibody
blockade or absence of ICAM-1 (gene knockout) abrogated LPS-induced cardiac
dysfunction but did not reduce neutrophil accumulation. The deleterious effect of
leukocyte recruitment within tissues is further illustrated by the beneficial effect
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of substances targeting alpha-chemokine receptors (CXCR), and more precisely
CXCR1 and CXCR2.

Recruited neutrophils are undoubtedly key players in the perpetuation of the
inflammatory process. Reduced apoptosis, priming, and enhanced activity are
hallmark features of neutrophils in SIRS patients. For example, neutrophil de-
pletion before burn injury prevented the early vascular leakage of albumin and
edema in the ileum and jejunum; although their depletion had less effect on the
later stages of burn-induced microvascular injury in the intestine [64]. Neutrophils
also contribute to the release of inflammatory cytokines. Data indicate that IL-1β-
producing neutrophils rapidly traffic to the lungs in response to hemorrhage or
endotoxemia, andmay contribute to thedevelopment of lung injury after blood loss
and sepsis [65]. Other mediators are specifically released by neutrophils. In a model
of TNF-induced acute lung injury (ALI), neutrophil elastase inhibitor attenuated
the inflammatory process by inhibiting the alveolar epithelial and vascular en-
dothelial injury triggered by activated neutrophils. Peripheral blood neutrophils
derived from animals 24 hours post-hemorrhage, exhibited an ex vivo decrease in
apoptotic frequency and an increase in respiratory burst capacity. Interestingly,
adoptive transfer of neutrophils from hemorrhaged, but not control animals, to
neutropenic recipients reproduced ALI when subsequently challenged with sepsis,
implying that this priming was mediated by neutrophils.

The Cross-talk Between Compartments

How Does the Inflammatory Response Spread from Organ to Organ?

The presence of circulating endotoxin may explain how so many tissues are acti-
vated in the setting of sepsis. As previously mentioned, the gut may be a source
of systemic endotoxin in a variety of clinical settings. In some circumstances, the
lungs may also be a source of endotoxin: in a rabbit model, it was shown that
ventilator strategy can favor endotoxin translocation from the lungs after an en-
dotracheal instillation of LPS [66]. Insulted organs can be a site for synthesis of
inflammatory mediators and the associated increase in vascular and epithelial per-
meability favors the leakage of mediators from one compartment to another. For
example, following lung injury or pneumonia, it was demonstrated that systemic
TNF originated from a pulmonary source. Another example of cross-talk between
compartments was illustrated by the significant correlation we found between lev-
els of TGF-β in pleural effusion and BAL fluid [43]. However, it is worth mentioning
that this may not always be the case since we failed to find any correlation between
the levels of cytokines in pleural effusion and in plasma. Numerous experimen-
tal models have shown that limb, liver, intestinal, or renal ischemia-reperfusion
induced-injury lead to acute inflammatory lung injury. It was reported that this
phenomenon was induced by macrophage-derived products such as IL-1 and TNF.
In contrast, neither TNF nor LPS were responsible for pulmonary inflammation
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following induction of peritonitis in mice. Other mediators, locally released and
present in the blood stream, may contribute to the spreading of the inflammatory
process, igniting local pathologies. Potential candidates are: C5a anaphylatoxin
generated after complement activation as illustrated by the capacity of anti-C5
antibodies to reduce remote organ injury after intestinal ischemia/reperfusion;
HMGB1 released by necrotic cells; IFNγ that contributes to endotoxin-induced
death, and to lung inflammation after CLP; macrophage migration inhibitory fac-
tor (MIF), a circulating inflammatory cytokine in SIRS patients; leukotriene B4
(LTB4) as illustrated by the blunted lung injury following limb ischemia in sheep
treated with lipoxygenase inhibitors; soluble MD2 that participates in the activa-
tion of TLR4-positive epithelial cells by endotoxin; and microbial products other
than LPS, such as bacterial DNA, that possess a strong capacity to induce inflamma-
tory mediators and induce septic shock. Activated circulating leukocytes can also
propagate the inflammatory processes, as previously mentioned for neutrophils
from hemorrhaged animals. Of course, one should not forget the well recognized
deleterious effects of IL-1 and TNF either in the periphery or within the tissues.
Systemic TNF has been shown to induce ARDS, while IL-1 has been suggested to
be the main local inflammatory actor in ARDS.

A recent investigation demonstrated the cross-talk between liver and lungs
during endotoxemia in piglets. When only lungs were perfused, endotoxin caused
pulmonary hypertension and neutropenia, but oxygenation was maintained, TNF
and IL-6 levels were minimally elevated, and there was no lung edema. In contrast,
when both the liver and lungs were perfused with endotoxin, marked hypoxemia,
a large increase in perfusate levels of TNF and IL-6, and severe lung edema were
observed. NF-κB activation in lungs was also greatest when the liver was in the
perfusion circuit.

The Peripheral Nervous System as a Link Between Compartments

Besides thecross-talkbetweencompartments thatoccursbyanexportation/impor-
tation of inflammatory mediators via the blood stream, another link exists, or-
chestrated by the brain via the pain fibers, the cholinergic neurons, and the
sympathetic neurons. The release of pro-inflammatory neuromediators (e.g.,
substance P, norepinephrine) or anti-inflammatory neuromediators (e.g., acetyl-
choline, epinephrine) within the tissues, contributes to favor or limit the inflam-
matory response [67]. However, the effects of catecholamines on inflammation
are complex. This is illustrated by the observation that epinephrine favors IL-8
production but represses that of NO, and decreases TNF production in vitro via
β2-adrenergic receptors. Tracey’s group reported that vagal nerve stimulation at-
tenuated hypotension and reduced levels of TNF in plasma and liver of LPS-treated
rats [68]. These protective effects were mediated by acetylcholine and the α7 sub-
unit of nicotinic receptors found on the surface of macrophages [69]. A similar
receptor was also identified on endothelial cells, and in response to acetylcholine,
the expression of adhesion molecules and chemokine production induced by TNF
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was reduced [70]. In vivo, cholinergic stimulation blocked recruitment of leuko-
cytes. These findings identify the endothelium as a target of anti-inflammatory
cholinergic mediators.

Studies that make use of chemical sympathectomy reveal an opposite effect of
the sympatheticnervoussystemonthecontrolof intraperitoneallydeliveredGram-
negative or Gram-positive bacteria [71]. Ablation of the sympathetic nervous
system decreased the dissemination of Gram-negative bacteria through a mecha-
nism of increased secretion of peritoneal TNF, improved phagocytic response of
peritoneal cells, and increased influx of monocytes into the peritoneal cavity. In
contrast, sympathectomy increased the Gram-positive bacterial tissue burden that
was caused by a reduction in corticosteroid release, and was associated with a de-
crease in IL-4 secretion from peritoneal cells and in the influx of lymphocytes into
the peritoneal cavity. In both models, the peritoneal wall was the critical border
for systemic infection. These results show the dual role of the sympathetic ner-
vous system in sepsis. It can be favorable or unfavorable, depending on the innate
immune effector mechanisms necessary to overcome infection.

Conclusion

Compartmentalization of the inflammatory response is a key feature of sepsis and
SIRS. Tissue injury can be initiated far away from a distant insult. Blood borne
elements are supposed to prevent initiation of deleterious inflammatory response
within tissues. However, other circulating elements contribute to the ignition of
inflammation at remote sites.

Note For additional references, the reader is referred to the paper by Cavaillon JM
and Annane D. Compartmentalization of the inamma tory response in sepsis and
SIRS. J Endotoxin Res 12 151 70, 2006

References

1. Müller-Alouf H, Alouf J, Gerlach D, Ozegowski J, Fitting C, Cavaillon JM (1994) Compar-
ative study of cytokine release by human peripheral blood mononuclear cells stimulated
with Streptococcus pyogenes superantigen erythrogenic toxins, heat-killed streptococci and
lipopolysaccharide. Infect Immun 62:4915–4921

2. Cavaillon JM (1994) Cytokines and macrophages. Biomed Pharmacother 48:445–453
3. Huang Q, Liu D, Majewski P, et al (2001) The plasticity of dendritic cell responses to pathogens

and their components. Science 294:870–875
4. Feezor RJ, Oberholzer C, Baker HV, et al (2003) Molecular characterization of the acute in-

flammatory response to infections with gram-negative versus gram-positive bacteria. Infect
Immun 71:5803–5813



Compartmentalized Activation of Immune Cells During Sepsis and Organ Dysfunction 179

5. Yu SL, Chen HW, Yang PC, et al (2004) Differential gene expression in gram-negative and
gram-positive sepsis. Am J Respir Crit Care Med 169:1135–1143

6. Opal SM, Scannon PJ, Vincent JL, et al (1999) Relationship between plasma levels of
lipopolysaccharide (LPS) and LPS-binding protein in patients with severe sepsis and septic
shock. J Infect Dis 180:1584–1598

7. Cavaillon JM, Munoz C, Fitting C, Misset B, Carlet J (1992) Circulating cytokines: the tip of
the iceberg ? Circ Shock 38:145–152

8. Suojaranta-Ylinen R, Ruokonen E, Pulkki K, Mertsola J, Takala J (1997) Preoperative glu-
tamine loading does not prevent endotoxemia in cardiac surgery. Acta Anaesthesiol Scand
41, 385-91.

9. Cabie A, Farkas JC, Fitting C, et al (1993) High levels of portal TNFα during abdominal aortic
surgery in man. Cytokine 5:448–453

10. Kelly JL, O’Sullivan C, O’Riordain M, et al (1997) Is circulating endotoxin the trigger for the
systemic inflammatory response syndrome seen after injury ? Ann Surgery 225:530–543

11. Marshall JC, Foster D, Vincent JL, et al (2004) Diagnostic and prognostic implications of
endotoxemia in critical illness: results of the MEDIC study. J Infect Dis 190:527–534

12. Adrie C, Adib-Conquy M, Laurent I, et al (2002) Successful cardiopulmonary resuscitation
after cardiac arrest as a “sepsis like” syndrome. Circulation 106:562–568

13. Moller AS, Bjerre A, Brusletto B, Joo GB, Brandtzaeg P, Kierulf P (2005) Chemokine patterns
in meningococcal disease. J Infect Dis 191:768–775

14. Hellman J, Roberts JDJ, Tehan MM, Allaire JE, Warren HS (2002) Bacterial peptidoglycan-
associated lipoprotein is released into the bloodstream in gram-negative sepsis and causes
inflammation and death in mice. J Biol Chem 277:14274–14280

15. Shimizu T, Tani T, Endo Y, Hanasawa K, Tsuchiya M, Kodama M (2002) Elevation of plasma
peptidoglycanandperipheralbloodneutrophil activationduringhemorrhagic shock:plasma
peptidoglycan reflects bacterial translocation and may affect neutrophil activation. Crit Care
Med 30:77–82

16. Swank GM, Deitch EA (1996) Role of the gut in multiple organ failure: bacterial translocation
and permeability changes. World J Surg 20:411–417

17. Smith PD, Suffredini AF, Allen JB, Wahl LM, Parrillo JE, Wahl SM (1994) Endotoxin admin-
istration to humans primes alveolar macrophages for increased production of inflammatory
mediators. J Clin Immunol 14, 141–148

18. Christman JW, Petras SF, Hacker M, Absher PM, Davis GS (1988) Alveolar macrophage
function is selectively altered after endotoxemia in rats. Infect Immun 56:1254–1259

19. Simpson SQ, Modi HN, Balk RA, Bone RC, Casey LC (1991) Reduced alveolar macrophage
production of tumor necrosis factor during sepsis in mice and men. Crit Care Med 19:1060–
1066

20. Cavaillon JM, Adib-Conquy M, Cloëz-Tayarani I, Fitting C (2001) Immunodepression in
sepsis and SIRS assessed by ex vivo cytokine production is not a generalized phenomenon:
a review. J Endotoxin Res 7:85–93

21. Dehoux MS, Boutten A, Ostinelli J, et al (1994) Compartmentalized cytokine production
within the human lung in unilateral pneumonia. Am J Respir Crit Care Med 150:710–716

22. Schwartz MD, Moore E, Moore FA, et al (1996) Nuclear factor-kappa B is activated in alveolar
macrophages from patients with acute respiratory distress syndrome. Crit Care Med 24:1285–
1292

23. Moine P, McIntyre R, Schwartz MD, et al (2000) NF-κB regulatory mechanisms in alveolar
macrophages from patients with acute respiratory distress syndrome. Shock 13:85–91

24. Fieren MWJA, Van Den Bemd GJ, Bonta IL (1990) Endotoxin-stimulated peritoneal
macrophages obtained from continuous ambulatory peritoneal dialysis patients show an
increased capacity to release interleukin-1b in vitro during infectious peritonitis. Eur J Clin
Invest 20:453–457



180 J.-M. Cavaillon, M. Adib-Conquy

25. Wu MY, Ho HN, Chen SU, Chao KH, Chen CD, Yang YS (1999) Increase in the produc-
tion of IL-6, IL-10 and IL-12 by LPS stimulated peritoneal macrophages from women with
endometriosis. Am J Reprod Immunol 41:106–111

26. Wichmann MW, Ayala A, Chaudry IH (1997) Male sex steroids are responsible for depressing
macrophage immune function after trauma-hemorrhage. Am J Physiol 273:C1335-C1340.

27. Wu JZ, Ogle CK, Fisher JE, Warden GD, Ogle JD (1995) The mRNA expression and in
vitro production of cytokines and other proteins by hepatocytes and Kupffer cells following
thermal injury. Shock 3:268–273

28. Shenkar R, Abraham E (1999) Mechanisms of lung neutrophil activation after hemorrhage
or endotoxemia: roles of reactive oxygen intermediates, NF-κB and cyclic AMP response
element binding protein. J Immunol 163:954–962

29. Abraham E, Arcaroli J, Shenkar R (2001) Activation of extracellular signal-regulated kinases,
NF-κB, and cyclic adenosine 5’-monophosphate response element binding protein in lung
neutrophils occurs by differing mechanisms after hemorrhage or endotoxemia. J Immunol
166:522–530

30. Ethuin F, Delarche C, Gougerot-Pocidalo MA, Eurin B, Jacob L, Chollet-Martin S (2003)
Regulation of interleukin 12 p40 and p70 production by blood and alveolar phagocytes
during severe sepsis. Lab Invest 83:1353–1360

31. Kermarrec N, Selloum S, Plantefeve G, et al (2005) Regulation of peritoneal and systemic
neutrophil-derived tumor necrosis factor-alpha release in patients with severe peritonitis:
role of tumor necrosis factor-alpha converting enzyme cleavage. Crit Care Med 33:1359–1364

32. Badgwell B, Parihar R, Magro C, Dierksheide J, Russo T, Carson WE 3rd (2002) Natural
killer cells contribute to the lethality of a murine model of Escherichia coli infection. Surgery
132:205–212

33. Goldmann O, Chhatwal GS, Medina E (2005) Contribution of natural killer cells to the patho-
genesis of septic shock inducedbyStreptococcuspyogenes inmice. J InfectDis 191:1280–1286

34. Kanwar S, Kubes P (1994) Mast cells contribute to ischemia-reperfusion-induced granulocyte
infiltration and intestinal dysfunction. Am J Physiol 267:G316–G321

35. Echtenacher B, Männel D, Hültner L (1996) Critical protective role of mast cells in a model
of acute septic peritonitis. Nature 381:75–77

36. Malavija R, Ikeda T, Ross E, Abraham S (1996) Mast cell modulation of neutrophil influx and
bacterial clearance at sites of infection through TNFα. Nature 381:77–80

37. Chinnaiyan AM, Huber-Lang M, Kumar-Sinha C, et al (2001) Molecular signatures of sepsis:
multiorgan gene expression profiles of systemic inflammation. Am J Pathol 159:1199–1209

38. Mercer-Jones MA, Shrotri MS, Peyton JC, Remick DG, Cheadle WG (1999) Neutrophil seques-
tration in liver and lung is differentially regulated by C-X-C chemokines during experimental
peritonitis. Inflammation 23:305–319

39. VanOtteren GM, Strieter RM, Kunkel SL, et al (1995) Compartmentalized expression of
RANTES in a murine model of endotoxemia. J Immunol 154:1900–1908

40. Koay MA, Christman JW, Wudel LJ, et al (2002) Modulation of endotoxin-induced NF-kappa
B activation in lung and liver through TNF type 1 and IL-1 receptors. Am J Physiol Lung Cell
Mol Physiol 283:L1247-L1254

41. Kadokami T, McTiernan CF, Kubota T, et al (2001) Effects of soluble TNF receptor treatment
on lipopolysaccharide-induced myocardial cytokine expression. Am J Physiol 280: H2281-
H2291

42. Callery MP, Mangino MJ, Flye MW (1991) A biologic basis for limited Kupffer cell reactivity
to portal-derived endotoxin. Surgery 110:221–230

43. Marie C, Losser MR, Fitting C, Kermarrec N, Payen D, Cavaillon JM (1997) Cytokines and
soluble cytokines receptors in pleural effusions from septic and nonseptic patients. Am
J Respir Crit Care Med 156:1515–1522

44. Fang WH, Yao YM, Shi ZG, et al (2003) The mRNA expression patterns of tumor necrosis
factor-alpha and TNFR-I in some vital organs after thermal injury. World J Gastroenterol 9:
1038–1044



Compartmentalized Activation of Immune Cells During Sepsis and Organ Dysfunction 181

45. Douzinas EE,Tsidemiadou PD,Pitaridis MT, et al (1997) The regional productionof cytokines
and lactate in sepsis-related multiple organ failure. Am Respir Crit Care Med 155:53–59

46. Boujoukos AJ, Martich GD, Supinski E, Suffredini AF (1993) Compartmentalization of the
acute cytokine response in humans after intravenous endotoxin administration. J Appl
Physiol 74:3027–3033

47. Carlsen H, Moskaug JO, Fromm SH, Blomhoff R (2002) In vivo imaging of NF-κB activity.
J Immunol 168:1441–1446

48. Molina PE, Bagby GJ, Stahls P (2001) Hemorrhage alters neuroendocrine, hemodynamic,
and compartment-specific TNF responses to LPS. Shock 16:459–465

49. Donnelly SC, Strieter RM, Reid PT, et al (1996) The association between mortality rates and
decreased concentrations of interleukin-10 and interleukin-1 receptor antagonist in the lung
fluids of patients with the adult respiratory distress syndrome. Ann Intern Med 125:191–196

50. Deitch EA, Xu D, Franko L, Ayala A, Chaudry IH (1994) Evidence favoring the role of the gut
as a cytokine-generating organ in rats subjected to hemorrhagic shock. Shock 1:141–145

51. Dugernier TL, Laterre PF, Wittebole X, et al (2003) Compartmentalization of the inflamma-
tory response during acute pancreatitis: correlation with local and systemic complications.
Am J Respir Crit Care Med 168:148–157

52. Sharshar T, Gray F, Lorin de la Grandmaison G, et al (2003) Apoptosis of neurons in car-
diovascular autonomic centres triggered by inducible nitric oxide synthase after death from
septic shock. Lancet 362:1799–1805

53. Diab A, Zhu J, Lindquist L, Wretlind B, Link H, Bakhiet M (1997) Cytokine mRNA pro-
files during the course of experimental Haemophilus influenzae bacterial meningitis. Clin
Immunol Immunopathol 85:236–245

54. Tanaka N, Kita T, Kasai K, Nagano T (1994) The immunocytochemical localization of tumor
necrosis factor and leukotriene in the rat heart and lung during endotoxin shock. Virchows
Arch 424:273–277

55. Rabuel C, Renaud E, Brealey D, et al (2004) Human septic myopathy: induction of cyclooxy-
genase, heme oxygenase and activation of the ubiquitin proteolytic pathway. Anesthesiology
101:583–590

56. Annane D, Sanquer S, Sebille V, et al (2000) Compartmentalised inducible nitric-oxide
synthase activity in septic shock. Lancet 355:1143–1148

57. Giroir BP, Johnson JH, Brown T, Allen GL, Beutler B (1992) The tissue distribution of tumor
necrosis factor biosynthesis during endotoxemia. J Clin Invest 90:693–698

58. Cavaillon JM, Fitting C, Adib-Conquy M (2004) Mechanisms of immunodysregulation in
sepsis. Contrib Nephrol 144:76–93

59. Adib-Conquy M, Adrie C, Moine P, et al (2000) NF-κB expression in mononuclear cells of
septic patients resembles that observed in LPS-tolerance. Am J Respir Crit Care Med 162:
1877–1883

60. Adib-Conquy M, Asehnoune K, Moine P, Cavaillon JM (2001) Longterm impaired expression
of nuclear factor-kB and IkBa in peripheral blood mononuclear cells of patients with major
trauma. J Leukoc Biol 70:30–38

61. Escoll P, del Fresno C, Garcia L, et al (2003) Rapid up-regulation of IRAK-M expression
following a second endotoxin challenge in human monocytes and in monocytes isolated
from septic patients. Biochem Biophys Res Commun 311:465–472

62. Adib-Conquy M, Moine P, Asehnoune K, et al (2003) Toll-like receptor-mediated tumor
necrosis factor and interleukin-10 production differ during systemic inflammation. Am
J Respir Crit Care Med 168:158–164

63. Annane D, Bellissant E, Cavaillon JM (2005) Septic shock. Lancet 365:63–78
64. Sir O, Fazal N, Choudhry MA, Goris RJ, Gamelli RL, Sayeed MM (2000) Role of neutrophils

in burn-induced microvascular injury in the intestine. Shock 14, 113–117
65. Parsey MV, Tuder RM, Abraham E (1998) Neutrophils are major contributors to intra-

parenchymal lung IL-1 beta expression after hemorrhage and endotoxemia. J Immunol
160:1007–1013



182 J.-M. Cavaillon, M. Adib-Conquy

66. Murphy DB, Cregg N, Tremblay L, et al (2000) Adverse ventilatory strategy causes pulmonary-
to-systemic translocation of endotoxin. Am J Respir Crit Care Med 162:27–33

67. Tracey KJ (2002) The inflammatory reflex. Nature 420:853–859
68. Borovikova LV, Ivanova S, Zhang M, et al (2000) Vagus nerve stimulation attenuates the

systemic inflammatory response to endotoxin. Nature 405:458–462
69. Wang H, Yu M, Ochani M, et al (2003) Nicotinic acetylcholine receptor alpha7 subunit is an

essential regulator of inflammation. Nature 421:384–388
70. Saeed RW, Varma S, Peng-Nemeroff T, et al (2005) Cholinergic stimulation blocks endothelial

cell activation and leukocyte recruitment during inflammation. J Exp Med 201:1113–1123
71. Straub RH, Pongratz G, Weidler C, et al (2005) Ablation of the sympathetic nervous system

decreases gram-negative and increases gram-positive bacterial dissemination: key roles for
tumor necrosis factor/phagocytes and interleukin-4/lymphocytes. J Infect Dis 192:560–572



The Neutrophil in the Pathogenesis
of Multiple Organ Dysfunction Syndrome

Z. Malam and J.C. Marshall

Introduction

Circulating neutrophils play a cardinal role in early host defenses against bacte-
rial and viral pathogens. Originating from hematopoietic stem cells in the bone
marrow, neutrophils – also known as polymorphonuclear neutrophils (PMNs) –
mature to become terminally differentiated phagocytes that are incapable of cell
division, and that synthesize only low levels of RNA and protein. They are recog-
nized histologically by their multi-lobed nuclei and abundant cytoplasmic gran-
ules. The first description of neutrophils was by Elie Metchnikoff. Upon inserting
rose thorns into the larvae of starfish, he observed that wandering mesodermal
cells aggregated at the insertion site. These cells revealed phagocytic abilities, with
the larger phagocytes termed macrophagocytes, more commonly known today
as macrophages. The smaller phagocytic cells were termed microphagocytes, and
subsequently granulocytes; neutrophils were the predominant cell type [1].

Antimicrobial Defenses of the Neutrophil

Neutrophil Localization at an Inflammatory Focus

The eradication of microbial pathogens is a complex and coordinated process.
Initiation of neutrophil defense requires their recruitment from the circulation
and from bone marrow reserves to the site of microbial invasion; this process is
facilitated by a combination of host- and pathogen-derived chemotactic signals
that include chemokines, cytokines, matrix metalloproteases, and products of the
invading microbe [2]. Activated vascular endothelial cells and fibroblasts produce
chemokines such as interleukin (IL)-8, which possess potent neutrophil chemo-
tactic ability [3]. A concentration gradient at the site of inflammation induces neu-
trophils to migrate toward the source of chemokine release. Expression of surface
chemokine receptors varies among neutrophils, and influences which neutrophil
subsets are recruited. Host-derived and microbial factors such as lipopolysaccha-
ride (LPS), tumor necrosis factor (TNF)-α, and platelet-activating factor (PAF)
also enhance the response of neutrophils to subsequent stimuli [2]. For example,
neutrophils primed with LPS produce significantly greater amounts of superoxide
after exposure to the bacterial peptide, N-formyl-methionyl-leucyl-phenylalanine



184 Z. Malam, J.C. Marshall

(fMLP) [4]. Furthermore, during inflammatory reactions, membrane receptor ex-
pression is augmented by selective exocytosis of cellular vesicles and granules
enriched in membrane proteins mediating neutrophil recruitment and phagocy-
tosis [5].

Recruitment of neutrophils to the microenvironment of microbial challenge
is followed by their extravasation through the vascular endothelium, and accu-
mulation in targeted tissue. Adhesion to activated endothelium results from the
co-ordinated activities of selectins, selectin ligands, integrins, and members of the
immunoglobulin superfamily [6]. Selectins are composed of three carbohydrate-
recognizing members: E- and P-selectin expressed on activated endothelium, and
L-selectin constitutively found on the surface of neutrophils [7]. Selectin ligands
are characterized by intense glycosylation through N-linked carbohydrates and
O-linked side chains [8]. Integrins are heterodimers that recognize extracellular
matrix and cell surface glycoproteins, in addition to soluble molecules such as
complement factor C3bi [6]. The β2 integrins (CD11/CD18) are of particular im-
portance in the neutrophil. Following stimulation, they undergo a conformational
change that optimizes their interaction with members of the immunoglobulin su-
perfamily, including intercellular adhesion molecule (ICAM)-1 and -2, vascular
cell adhesion molecule (VCAM)-1, and platelet-endothelial cell adhesion molecule
(PECAM)-1 [9].

Leukocyte-endothelial cell adhesion occurs in a coordinated and sequential
fashion. The initial attachment between the neutrophil and the endothelial surface
entails a loose tethering mediated by cell-surface L-selectin [10]. The primary lig-
and for selectins has been identified as the tetrasaccharide sialyl Lewis-X, although
others include fucosylated and sulfated structures. During neutrophil activation, L-
selectin is shed from the surface, facilitating extravascular passage: when shedding
is blocked by a metalloprotease inhibitor, endothelial adherence and intravascular
accumulation of neutrophils is increased [11]. Moreover, newly recruited neu-
trophils arriving at microvascular endothelium covered with leukocytes can at-
tach to already adherent neutrophils via L-selectin-dependent mechanisms [12],
perhaps through cell-surface P-selectin glycoprotein ligand-1 (PSGL-1) on neu-
trophils. Interestingly, L-selectin-deficient mice exhibited no defect in leukocyte
adhesionand rolling following surgical tissue exteriorization [13], aprocess known
to promote expression of P-selectin, suggesting that high P-selectin expression may
provide an alternative to L-selectin-mediated adhesion.

Loosely attached neutrophils roll along the endothelial surface until firmer ad-
hesioncan takeplace.EndothelialP-selectin isnecessary for early leukocyte rolling,
since P-selectin antibodies can block constitutive [14] and trauma-induced [13]
rolling. A P-selectin-independent rolling mechanism also exists; mice lacking P-
selectin expression show no leukocyte rolling immediately following exterioriza-
tion of the mesentery, but do manifest rolling by 60-120 minutes following tissue
trauma. The P-selectin ligand, PSGL-1, on neutrophils is necessary for P-selectin-
dependent rolling; rolling was almost completely inhibited when neutrophils were
pretreated with monoclonal blocking antibody to PSGL-1 [15]. E-selectin and
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P-selectin demonstrate redundant roles in neutrophil rolling. Mice deficient in
E-selectin and wild type mice pretreated with P-selectin antibody exhibited no
deficiency in neutrophil recruitment into the peritoneal cavity during the first
6 hours following thioglycollate injection, but recruitment was blocked when E-
selectin deficiency was combined with anti-P-selectin pretreatment [16].

Selectins mediate more than cell-cell adhesion. Ligation and cross-linking of
L-selectin on neutrophils primes them for increased superoxide production and
calcium influx following exposure to a chemoattractant [17]. L-selectin is also
associated with increased adhesive properties of CD11a and CD11b and L-selectin
clustering triggers p38 MAPK-mediated signal transduction to effect neutrophil
shape change and release of secondary, tertiary, and secretory granules [18]. Sim-
ilarly, P-selectin on endothelial cells supports superoxide production, neutrophil
degranulation, and polarization in response to inflammatory mediators and bac-
terial peptides.

Firm adhesion of the neutrophil to the vascular endothelium is a prerequisite
to extravascular migration into the tissues. Members of the β2-integrin family,
particularly LFA-1 (CD11a/CD18) and Mac-1 (CD11b/CD18), mediate this state
of firm adhesion. Patients with leukocyte adhesion deficiency I (LAD-I), charac-
terized by the absence of CD18 integrins, show an inability to sustain neutrophil
recruitment and experience recurrent life-threatening bacterial infections [19].
Severely compromised firm neutrophil adhesion and recruitment is also evident
in mice with reduced CD18 expression [20]. Activated by mediators released from
stimulated endothelium (for example IL-8 and PAF), the integrins bind to ICAM-1,
their immunoglobulin ligand on the endothelial surface, although differing inte-
grins bind different regions of the molecule. Circulating inflammatory mediators,
such as IL-1, serve to upregulate ICAM-1 expression on activated endothelium.
Neutrophil adhesion to ICAM-1 occurs sequentially, with LFA-1 binding first fol-
lowed by Mac-1-mediated stabilization [21]. Confocal microscopy studies show
that Mac-1 rapidly accumulates at the neutrophil-endothelium interface during
initial contact and subsequently redistributes away from the site as the neutrophil
spreads. During migration, this redistribution is directed to the leading edge with
rapid formation and dissociation of Mac-1-dense macroaggregates [22].

Following firm adhesion, neutrophils traverse the endothelium paracellu-
larly [23] or transcellularly [24]. PECAM-1 is essential for transendothelial migra-
tion, and is expressed at low levels on leukocytes but high levels (>106 molecules
per cell) on the endothelium, localized in particular at endothelial intercellular
junctions. Antibodies to PECAM-1 can block neutrophil transmigration through
TNF-α-activated endothelial cell monolayers but exert no effect on adhesion. In
vivo experiments demonstrate that PECAM-1 expression in mesenteric veins is
critical for peritoneal neutrophil accumulation [25]. Recently, junctional adhesion
molecule C (JAM-C) was identified as a novel receptor for Mac-1 on neutrophils.
JAM-C localizes within interendothelial junctions and is co-distributed with the
tight junction component, zonula occludens-1. Inhibiting JAM-C can significantly
reduce transendothelial neutrophil migration; simultaneous blockade of PECAM-
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1 almost completely abolishes this effect in vitro. In an in vivo murine model of
acute thioglycollate-induced peritonitis, inhibition of JAM-C with soluble mouse
JAM-C results in 50% reduced neutrophil transmigration [26].

Pathogen Recognition and Uptake

Neutrophils recognize conservedmoleculeson the surfaceof invadingmicroorgan-
isms (for example, peptidoglycan on Gram-positive bacteria, and LPS on Gram-
negative bacteria) through pattern recognition receptors that include CD14 and
members of the Toll-like receptor (TLR) family [27]. Phagocytosis occurs through
the extension of pseudopodia containing enzymes such as cathepsin G, myeloper-
oxidase, lactoferrin, gelatinase, and elastase [28]. Pathogen binding and uptake
are facilitated by opsonization of the pathogen with host serum antibody and
complement; opsonization of Staphylococcus aureus with human serum results in
an eightfold increase in neutrophil phagocytosis within 10 minutes. Activation of
the complement cascade promotes the deposition of serum complement proteins
C3b, iC3b, and C1q on the pathogen surface. Neutrophils, in turn, possess recep-
tors such as C1qR, CR1, and Mac-1 that recognize complement and FcεRI, FcεRII,
FcαR, FcγRI, FcγRIIa, and FcγRIIIb that recognize the Fc-region of antibody [2].
Engagement of these receptors triggers individual signaling cascades that result in
actin polymerization and localized membrane remodeling for particle ingestion.
Together, they drive the formation of the phagosomal cup and its sealing following
pathogen engulfment [29].

Phagosome maturation follows engulfment. The phagosome, through multi-
ple and dynamic fusion events with potent secretory vesicles and granules, se-
questers microbicidal peptides and proteolytic enzymes that facilitate microbial
degradation. Neutrophil granules are classified into four categories: primary or
azurophilic granules contain myeloperoxidase and membrane CD63; secondary
or specific granules contain lactoferrin and membrane CD66b; tertiary granules
contain gelatinase; and secretory vesicles contain albumin and express membrane
alkaline phosphatase and CD35 (Table 1). For granular fusion with the phagosome
to occur, changes in free cytosolic calcium must occur either by release from endo-
plasmic reticulum stores which in turn triggers an extracellular calcium influx [30]
or by release from the phagosome itself [31]. Granules exhibit differential sensitiv-
ity to calcium, with secretory vesicles having the lowest threshold and azurophilic
granules the highest. Calcium may exert its permissive effect on granule fusion
through the rapid depolymerization of periphagosomal actin, which allows gran-
ules to access the phagosome [29]. Alternatively, calcium may catalyze coalescence
of the apposed phagosome and granule membrane bilayer [32]. In addition to
calcium, protein kinases such as protein kinase C isoforms [33] and members of
the Src-family kinases [34] have been implicated in membrane fusion; however,
their roles are still unclear.
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Table 1. Neutrophil granule constituents

Protein Azurophil Specific Gelatinase Secretory

Membrane Proteins
CD11b/CD18 • • •
CD16 •
CD45 •
CD63 •
CD66, CD67 •
CR1 •
Vacuolar H+-ATPase • • •
Enzymes
Collagenase •
Elastase •
Gelatinase • •
Heparanase •
Myeloperoxidase •
Proteinase-3 •
Antimicrobial Peptides
Bactericidal permeability-increasing protein •
Cathepsins •
Defensins •
hCAP-18 •
Lysozyme • • •
Others
α1-antitrypsin •
β2-microglobulin • •
Lactoferrin •

Pathogen Killing

Neutrophil cytotoxic mechanisms can be broadly characterized as oxygen-depen-
dent and oxygen-independent. The former – effected through the generation of
highly reactive oxygen species (ROS) – is termed the ‘respiratory burst’. NADPH
oxidase, a multi-unit membrane protein, assembles at the phagosome membrane
following pathogen ingestion and neutrophil activation. Of the five glycoprotein
subunits thatmakeupNADPHoxidase, cytochromeb558 is themostabundant, and
localizes in lipid raftson themembrane.Theremainingsubunits translocate to lipid
rafts in response to phagocytic stimulation, with the lipid rafts serving to anchor
the NADPH oxidase subunits for optimal enzyme activation [35]. NADPH oxidase
transfers electrons from cytoplasmic NADPH to oxygen, generating the superoxide
anion (O−

2 ) which subsequently can be converted to other ROS, including hydrogen
peroxide (H2O2) and hypochlorous acid (HOCl) [29] (Fig. 1). HOCl oxidizes amino
acids and nucleotides and exerts the strongest bactericidal effects. The importance
of NADPH oxidase in antimicrobial activity is underlined by the observation that
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Fig. 1. Generation of reactive oxygen species by the neutrophil occurs following assembly of
the multi-complex NADPH oxidase, that catalyzes the reduction of molecular oxygen through
a series of intermediates to water. These intermediates are highly reactive oxidants, capable of
inducing irreversible damage to proteins and lipids. From [111] with permission

patientswith chronic granulomatousdisease inwhichoxidase function isdefective,
are highly susceptible to recurrent bacterial infection [36].

Microbial killing also proceeds through oxygen-independent mechanisms
involving anti-microbial peptides from azurophilic granules, proteolytic en-
zymes, and acidification of the pathogen-containing endosome [37]. Antimicro-
bial proteins and peptides such as defensins, permeability-increasing protein, and
lysozyme increase bacterial permeability by disrupting anionic surfaces. Proteases
such as neutrophil elastase and cathepsin G serve to breakdown bacterial proteins.
Vacuolar ATPase is responsible for proton transport that leads to acidification,
which then activates hydrolytic enzymes that function optimally under conditions
of low pH (4.5-6.0) [37].

Pathogens are degraded and fragments are transported from early endosomes
to late endosomes. Non-host peptides processed via the endosomal pathway be-
come antigens that, in turn, are presented to T-cells. The antigen-presenting nature
of macrophages and dendritic cells has been well characterized; however the role of
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the neutrophil as an antigen-presenting cell has traditionally been dismissed. Rest-
ing neutrophils harbor major histocompatibility complex (MHC) class I molecules
on their surface and contain intracellular stores of both costimulatory and MHC
class II molecules that bind to processed exogenous peptides, facilitating their traf-
ficking to the cell surface, a key characteristic of a professional antigen-presenting
cell [37]. Additional evidence for antigen-presenting function derives from the
fact that neutrophils contain reserves of cathepsins B and D, lysosomal proteases
necessary for antigen presentation [38]. Moreover antigen presentation during
inflammation is facilitated by prolonged neutrophil survival resulting from the
inhibition of apoptotic death by inflammatory cytokines that include IL-1, IL-6,
TNF-α, and interferon (IFN)-γ [39,40]. Antigen presentation is rendered substan-
tially more efficient when neutrophils travel to regional lymph nodes [37].

Apoptosis and the Termination of Neutrophil-Mediated Inflammation

Clearance of neutrophils from an inflammatory focus occurs through apoptosis,
or programmed cell death, of the neutrophil, followed by its uptake by fixed
tissue macrophages [41]. Neutrophils are constitutively apoptotic cells, and the
apoptotic program is activated within hours of their maturation and release from
bone marrow stores [42].

Cellular Mechanisms of Neutrophil Apoptosis

There are two major pathways of apoptosis or programmed cell death, termed the
extrinsic and intrinsic pathways, and mediated through signals from the exter-
nal environment, and endogenous cell stress, respectively. Cell death is effected
through the activity of a family of intracellular enzymes known as caspases, a fam-
ily of intracellular proteases that cleave their target proteins at conserved sites
adjacent to the amino acid, aspartic acid.

Apoptosis, in response to stimuli in the external environment of the cell, is
effected through the CD95 family of death receptors that includes the transmem-
brane proteins Fas and TNF receptor-1 having cysteine-rich extracellular domains
and conserved cytoplasmic death domains [43]. Fas is activated by the bind-
ing of Fas ligand which initiates cross-linking of three receptor molecules and
subsequent clustering of intracellular death domains [44]. Fas-associated death
domain-containing protein (FADD) is recruited and binds to the cluster; this com-
plex interacts with procaspase-8 through its death effector domain (DED). The
resultant union of the three molecules forms the death-inducing signaling complex
(DISC). Likewise, TNF-α binding to TNF receptor 1 results in receptor trimeriza-
tion, bringing death domains nearer, and allowing TNF receptor-associated death
domain-containing proteins (TRADDs) to bind to the receptor cluster via their
death domains; this complex can then associate with FADD and procaspase-8 [43].
Binding of procaspase-8 via Fas or TNF receptor activation induces autocleavage
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and activation of caspase-8, which in turn, cleaves procaspase-3 to yield caspase-3.
Caspase-3, in turn, cleaves a large number of substrates, from nuclear proteins
to cytosolic structures and cytoskeletal elements, and also catalyzes the degrada-
tion of proteins crucial for neutrophil survival. Clustering of death receptors in
ceramide-rich lipid rafts can also activate caspase-8 in the absence of ligand bind-
ing [45]. Intriguingly, TRADD proteins can bind TNF receptor-associated factor-2
(TRAF2) and receptor interacting protein (RIP) to activate the anti-apoptotic tran-
scription factors, nuclear factor-kappaB (NF-κB) andactivator protein (AP)-1 [43].
Since NF-κB and AP-1 commonly promote the expression of survival proteins,
TNF-α has the ability to either promote or delay apoptosis [46].

Caspase-9 is the apical caspase of the intrinsic pathway, and its activation also
results in activation of caspase-3 [47]. Caspase-9 is activated by stimuli that induce
the release of cytochrome c from the mitochondrion, where it complexes in the
cytoplasm with pro-caspase-9, and cytosolic apoptotic protease-activating factor
(APAF), resulting in catalytic cleavage and activation of caspase-9 [48]; formation
of this complex results in progression of apoptosis. Cytochrome c release from the
mitochondrion is regulated by the levels and activities of pro-and anti-apoptotic
membersof theBcl-2 family. For example, anti-apoptoticmembersBcl-XandMcl-1
are down-regulated during apoptosis [49], while pro-apoptotic members Bax, Bid,
Bak, and Bad are constitutively expressed [50]. The pro-apoptotic function of these
members results from their redistribution from the cytosol to the mitochondrion,
resulting in disruption of mitochondrial membrane integrity and an increase in
pore formation.

Constitutive neutrophil apoptosis is associated with increased mitochondrial
inner membrane permeability, a reduction in mitochondrial transmembrane po-
tential, and opening of mitochondrial permeability transition pores [51]. As a con-
sequence, cytochrome c is released from the mitochondrion. Activation of the
membrane-bound caspase, caspase-8, is also implicated in the induction of apop-
tosis [52].

Inhibition of Neutrophil Apoptosis During Inflammation

Neutrophil survival is prolonged through the active inhibition of apoptosis during
acute inflammation. A number of host-derived cytokines including TNF-α, IL-1β,
IL-6, and granulocyte-macrophage colony-stimulating factor (GM-CSF) prolong
neutrophil survival during acute inflammation (Table 2). Additionally, bacterial
factors such as endotoxin, phenol-soluble modulins from S. epidermidis [53],
lipotechoic acid from S. aureus [54], Escherichia coli verotoxin [55], Helicobacter
pylori water-soluble surface proteins [56], and butyric acid and propionic acids
from Gram-negative bacteria [57] all promote neutrophil survival. Furthermore,
the process of endothelial transmigration can also signal delayed apoptosis. En-
dotoxin from the invading pathogen has been prominently implicated in different
facets of delayed neutrophil apoptosis. TLR-1, -2, -4, -5, and -6 are present on neu-
trophils, and recognize a number of pathogen-specific molecular patterns [58].
TLR stimulation, in particular engagement of the LPS-receptor, TLR4 [59], delays
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neutrophil apoptosis. LPS induces expression of cellular inhibitor of apoptosis
protein-2 (cIAP-2) resulting in accelerated degradation of caspase-3 [60]. Inhibi-
tion by LPS, or direct stimulation of TLR4, requires involvement of the PI3 kinase
and Akt signaling pathways [61]; Erk and PI3 kinase/Akt signaling are necessary,
but not sufficient for this delay. LPS and direct TLR4 stimulation also activate
NF-κB [61]. Under normal conditions, this transcription factor is sequestered in
the cytoplasm under control of its inhibitor, IκB. Stimuli that converge on the IκB
kinase complex trigger phosphorylation and degradation of IκB, and expose the
NF-κB nuclear localization sequence. This sequence promotes the translocation of
activated NF-κB into the nucleus where it binds to consensus sites of responsive
genes including genes encoding the Bcl-2 family of survival proteins, and members
of the inhibitor of apoptosis proteins (IAP) family [62].

GM-CSF activates JAK-2/STAT-3 signaling pathways which upregulate cIAP-2
to delay programmed cell death in neutrophils [63], through signaling pathways
involving PI3 kinase, Akt, and Erk [64]. An observed increase in levels of survival
protein Mcl-1 may occur through one of two mechanisms: increased stability of the
normally short-lived protein [64], or activation of the NF-κB transcription path-
way [65]. GM-CSF may alternatively phosphorylate pro-apoptotic Bad at Ser-112

Table 2. Factors that delay neutrophil apoptosis

Microbial Products
Lipopolysaccharide (endotoxin)
Mannan
Lipoteichoic acid
Modulins from S. epidermidis
E. coli verotoxin
H. pylori surface proteins
Butyric acid
Propionic acid

Host-derived Mediators
Interleukin-1β
Interleukin-2
Interleukin-3
Interleukin-4
Interleukin-6
Interleukin-8
Tumor necrosis factor
Interferons
G-CSF
GM-CSF
Leptin
Pre-B cell colony-enhancing factor (PBEF)

Physiologic Processes
Integrin engagement and transendothelial migration
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and Ser-136, inducing cytosolic translocation [66]. Phosphorylated Bad is unable
to bind Bcl-2 and Bcl-X, with the result that apoptosis is inhibited [67]. Addition-
ally granulocyte-colony stimulating factor (G-CSF) inhibits the translocation of
pro-apoptotic Bax to mitochondria, with the result that cytochrome c release and
caspase 3 activation are reduced [68]. An ROS-dependent mechanism of apoptotic
delay caused by GM-CSF has also been proposed, but whether GM-CSF causes
prolonged life by decreasing or increasing ROS generation is uncertain.

Other circulating factors from the inflammatory milieu that exert anti-
apoptotic activity include type I and II IFNs. Both serve to upregulate cIAP-2,
Mcl-1, and AP-1 via STAT-3 and JAK-2 signaling [63], and type I IFN-mediated
delay occurs in a PI3 kinase-dependent manner necessitating PKC-δ and NF-κB
activation [40]. Among the interleukins, IL-1β, IL-2, IL-3, IL-6, and IL-8 [69] show
substantial capacity to inhibit apoptosis. A novel inflammatory cytokine, pre-B
cell colony-enhancing factor (PBEF), has also been shown to play a late, but req-
uisite, role in delayed neutrophil apoptosis, by reducing activity of caspases-3 and
-8 [70]. Other pro-survival mediators associated with neutrophil longevity include
C5a, fMLP, leukotriene B4 [71], and TNF-α [72], although studies of TNF-α have
shown that it can both induce and inhibit apoptosis. Interestingly, downregulation
of TNF-α receptors initiated during neutrophil transmigration is necessary for the
delay. In fact, endothelial contact causes downregulation of all receptor-mediated
apoptosis pathways, including Fas-activated cell death [73], implying that the neu-
trophil lifespan is determined as early as cell recruitment to the inflammatory
site.

Finally, neutrophil proteins directly participating in apoptosis are differentially
regulated during inflammation. Activated neutrophils display increased mitochon-
drial stability and diminished caspase-3 activity [74], and septic neutrophils main-
tain mitochondrial membrane integrity and the organelle further accumulates el-
evated levels of cytochrome c [75]. Caspase-3 transcription is downregulated, and
caspase-9 transcription inhibited [75]. Since both mitochondria and caspases play
pivotal roles in the control of cell fate, even minor perturbations of their abundance
or activity in the cell can alter the expression of apoptosis.

Activation of Neutrophil Apoptosis by Microbial Phagocytosis

In contrast to the inhibitory influences described above, bacterial phagocytosis
activates neutrophil apoptosis, and reverses the cytokine-induced delay [76]. Cell
death by apoptosis rather than necrosis limits local host tissue damage [50]. During
apoptosis, the capacity of the neutrophil for chemotaxis, oxidative burst potential,
and degranulation is lost, and cells manifest such hallmarks of apoptosis as cell
shrinkage, chromatin compaction, and loss of the multilobed nuclear morphol-
ogy [49].

Induction of apoptosis by bacterial ingestion appears to occur through two
mechanisms: the engagement of surface death receptors [77], and the phagocy-
tosis of opsonized pathogen targets [78]. Phagocytosis of E. coli results in the
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generation of ROS that have pro-apoptotic effects in neutrophils [79]. Apoptosis is
also increased by immune complex or Fc-receptor-mediated phagocytosis, both of
which generate ROS [79]. In fact, ROS production is crucial for both phagocytosis-
induced cell death and the induction of apoptosis [80], and critical for normal
clearance of neutrophils from inflammatory sites [81]. Further evidence support-
ing a role for ROS in inducing apoptosis lies in the upregulated expression of the
pro-apoptotic Bax proteins following phagocytosis [82]; ROS can directly or indi-
rectly modulate Bax expression [83]. However, the mechanism of the pro-apoptotic
effects of ROS has yet to be defined, and a correlation between ROS production
and apoptosis in phagocytosing neutrophils has not been found [84].

β2-integrins have also been implicated in phagocytosis-induced neutrophil
death. Although β2-integrin engagement during endothelial transmigration de-
lays apoptosis, β2-integrin-dependent phagocytosis promotes apoptosis by re-
ducing activation of Akt. Patients with β2-integrin deficiency exhibit neutrophilia,
suggesting that these receptors play a critical role in maintaining neutrophil home-
ostasis [85]. In murine peritonitis models, Mac-1 deficiency results in neutrophil
accumulation and delayed neutrophil apoptosis; circulating neutrophil counts and
their rates of apoptosis are normal, however, implying that Mac-1 regulation of
neutrophil apoptosis is limited to inflamed tissue [80]. ROS have been associated
with Mac-1-mediated phagocytosis as well, since this phagocytic pathway results
in ROS production and a specific ROS threshold must be met for phagocytosis-
induced apoptosis to occur [86]. Patients with chronic granulomatous disease
(CGD) who lack functional NADPH oxidase show impaired phagocytosis-induced
cell death [86]. Finally, caspases-8 and -3 are activated by Mac-1-dependent phago-
cytosis, and ROS are established requisites in caspase-8 cleavage and activation.

Neutrophil apoptosis following microbial phagocytosis is fundamental to
the resolution of inflammation [2]. Oligonucleotide microarrays have identi-
fied transcriptional responses to the phagocytosis of microbes by neutrophils.
Phagocytosis-induced apoptosis commences soon after pathogen ingestion [2].
Within 90 minutes of receptor-mediated phagocytosis, 256 genes undergo induc-
tion or repression; more than 30 of these genes encode proteins participating in
three distinct pathways of apoptosis [87]. At 3 hours and 6 hours, gene expression
analysis identified differential expression of 94 genes involved in cell fate, includ-
ing upregulation of BAX, TLR2, and CASP-1 [87]; more than 20 pro-apoptotic
molecules are upregulated, whereas genes encoding anti-apoptotic factors show
either downregulation or no change in expression [87]. In contrast, genes encoding
133 important pro-inflammatory mediators or signal transduction molecules are
downregulated during the induction of phagocytosis-induced neutrophil apopto-
sis, including IL-8, IL-10, C1q, and TLR-6 [2]. Thus, differential expression of genes
that are central to the regulation of apoptosis plays a critical role in the resolution
of inflammation, modulating both programmed cell death and pro-inflammatory
capacity [2].
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The Role of the Neutrophil in Clinical Inflammation

A balance between neutrophil recruitment and removal at the site of injury or
infection supports the divergent biologic imperatives of optimizing host defenses
whilst minimizing host cytotoxicity. In vivo, disruption of apoptotic clearance
contributes to sustained inflammation [88, 89], while deficiencies in apoptosis-
promoting molecules such as NADPH oxidase and Mac-1 result in sustained neu-
trophil accumulation [80, 90, 91]. Neutrophils harvested from the systemic circu-
lation [75] (Fig. 2), or lungs [92], of patients with sepsis show profound inhibition
of apoptosis.

Neutrophils have been implicated in injury of the lung [93], liver [94] intes-
tine [95], and kidney [96] following experimental infectious insult as well as in
clinical sepsis, a state of prolonged systemic inflammation and the leading cause
of death for patients in intensive care units (ICUs). Patients with sepsis exhibit
widespread neutrophil infiltration of the lung [97] (Fig. 3) and distant organs [98].
Neutrophil apoptosis is profoundly inhibited in patients with sepsis [99,100], mul-
tiple trauma and burn injury [101, 102], pancreatitis, and the acute respiratory
distress syndrome (ARDS) [92]. The extent to which inappropriately prolonged
neutrophil survival contributes to the expression of the multiple organ dysfunction

Fig. 2. Neutrophils harvested from the systemic circulation of patients with sepsis show profound
inhibition of the constitutive apoptotic program, with the result that survival after 24 hours of in
vitro culture exceeds 90%. From [75] with permission
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Fig. 3. Photomicrograph of the lung of a patient dying with acute respiratory distress syndrome
(ARDS). Massive neutrophil infiltration is evident

Fig. 4. Induction of neutrophil apoptosis improves survival in experimental intestinal is-
chemia/reperfusion (I/R) injury. Rats underwent laparotomy and intestinal I/R injury by oc-
clusion of the superior mesenteric artery. Survival was 100% in sham-treated animals, but only
40% in those with intestinal I/R; pulmonary neutrophilia was prominent in these animals. In-
tratracheal instillation of heat-killed E. coli prior to intestinal I/R resulted in attenuation of
neutrophilia, and a significant improvement in survival. * p < 0.05 vs sham-treated animals;
** p < 0.05 vs animals with I/R alone. From [103] with permission
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syndrome is unknown. In animal models of intestinal ischemia/reperfusion injury,
however, acceleration of apoptosis of neutrophils infiltrating the lung by the intra-
tracheal instillation of heat-killed E. coli results in improved rates of survival [103]
(Fig. 4).

Conclusion

The neutrophil is a key contributor to the innate immune response. The anti-
microbial activity of the neutrophil is non-selective, and so the resolution of
neutrophil-mediated inflammation must be regulated to prevent tissue injury. The
execution of a controlled cell death program after phagocytosis serves this dual
role – resolving inflammation, and preventing damage to healthy host tissue [2].
While the process of neutrophil apoptosis is increasingly well understood, the
molecular pathways involved remain incompletely characterized. A better under-
standing of the processes underlying programmed cell death in neutrophils will
aid in the development of therapies for treatment of neutrophil-mediated inflam-
matory disease states.

A variety of therapeutic interventions have been proposed that target differing
aspects of the neutrophil response to infection. Preventing neutrophil recruitment
across the vascular endothelium may potentially involve the selectins, since P-
and E-selectins are solely expressed on endothelial cells after induction by cy-
tokines [104]. Small sized inhibitors of selectin-mediated capture and rolling are
under development, and studies in a rat model show promising results with the
inhibitor molecule, bimosiamose [105]. Downregulating the activation of neu-
trophils through manipulation of intracellular signaling molecules, such as NF-κB
or PI3 kinase, has also been proposed although, to date, no specific inhibitors have
yielded efficacy in this regard [104]. Studies targeting the cytotoxic products of
neutrophil activation suggest that the antioxidants vitamin C and E can reduce su-
peroxide production by neutrophils in patients with anti-neutrophil cytoplasmic
antibody-associated vasculitis, though further studies are necessary [106]. Finally,
manipulating neutrophil apoptosis for safe disposal of neutrophils is paramount
in resolving inflammation, and compounds that promote this have been identified
including lipoxins [107], annexin 1 [108], and prostaglandin D2 [109]. Specifically,
lipoxinB4 and15-epi-lipoxinB4 can stimulate the removal of apoptotic neutrophils
by macrophages [110].
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The Role of the Macrophage

J. Pugin

Introduction

Ilia Metchnikoff made the first description of macrophages and their function in
innate immunity at the end of the 19th century, and was awarded the Nobel Prize in
1908 for this discovery. Macrophages are phagocytic cells of myeloid lineage that
originate fromcirculatingmonocytes andhave transmigrated into tissues.Theyare
present in virtually all tissues of the body where they carry out essential functions
in maintaining normal homeostasis but also participate in pathological condi-
tions [1]. Tissue macrophages are responsible for the non-inflammatory clearance
of dying cells and debris [2]. Macrophages also sense their surrounding milieu for
the presence of unusual stresses and/or the presence of non-self molecules and
micro-organisms, recognized as dangerous to the body [3]. The engagement and
activation of macrophages lead to responses that are typical of innate immunity,
such as the rapid generation of an inflammatory response, and they also play
a role as efficient effectors for the clearance of microorganisms [1]. Macrophages
are also important in communicating with the adaptive arm of immunity, either
as macrophages or as monocyte- or macrophage-derived dendritic cells [3]. They
also participate in the presentation of non-self antigens to lymphocytes and secrete
mediators, boosting adaptive immune responses. Finally, macrophages play a key
role in wound healing and tissue repair, and possess natural tumoricidal activity.

Origin of Tissue Macrophages

Circulating monocytes originate from myeloid bone marrow progenitors after
a differentiation process under the control of cytokines and growth factors, par-
ticularly the stem cell factor, macrophage colony stimulating factor (M-CSF), and
interleukin (IL)-3 [1]. Two different monocyte subpopulations are found in the
circulation, recognizable by their expression of certain chemokine receptors and
L-selectins [1]. The first population naturally migrates into tissue where they
can settle for several months up to years, and acquire tissue specificity as resi-
dent peritoneal macrophages, alveolar macrophages, Kupffer cells, or microglial
cells). Alternatively, under the control of cytokines and growth factors (essentially
IL-4 and granulocyte-macrophage colony stimulating factor [GM-CSF]), mono-
cytes can also transform into undifferentiated dendritic cells, such as Langerhans
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cells in the skin [3]. These cells will eventually migrate to lymphoid organs and
become ‘professional antigen-presenting cells’ after adequate stimulation. An-
other phenotypically distinct monocyte sub-population can be recruited to tissues
during inflammatory processes [1]. The recruitment process involves a series of
precise mechanisms (specific chemokines of the CC family) and upregulation of
leukocyte-endothelial adhesion molecules [4]. Such adhesion molecules are, at
least in part, different under constitutive conditions compared to those involved in
inflammation-induced trafficking of monocytes to tissues. The tissue microenvi-
ronment is key to the differentiation of the macrophage into a tissue-specific cell.
The end-function of a hepatic Kupffer cell will be markedly different from that of
a microglial cell or an alveolar macrophage, for example. The level of activation of
these sentinel cells is also determined by the local balance between activator and
de-activator cytokines (such as interferon [IFN]γ and IL-10, respectively). These
mediators originate principally from epithelial cells and other cell populations of
adaptive immunity in the surrounding tissue.

Macrophages Express an Armada of Receptors

One of the major functions of the macrophage is to sense molecules and physical
stresses in their microenvironment, in order to recognize the presence of foreign
molecules [3]. Macrophages express a wide variety of receptors of innate immunity
that recognize generally conserved microbial molecules. For example, they express
high levels of CD14, a glycosyl-phosphatidylinositol glycoprotein, which binds
several pathogen-associated molecular patterns (PAMPs), such as lipopolysac-
charide (LPS), peptidoglycan, lipopeptides, mycobacterial lipoarabinomannan,
and double-stranded RNA [5, 6]. It is believed that CD14 ‘concentrates’ microbial
molecules at themacrophage surface allowing interactionswith signaling receptors
such as Toll-like receptors (TLRs). CD14 also enhances endocytosis of PAMPs and
phagocytosis of osponized bacteria and yeasts [7]. The scavenger, complement,
beta-glucan, mannose, and Fc receptors are among the receptors important for the
clearance of microbial products. Importantly, although macrophages are capable
of ingesting bacteria, this is performed more efficiently by another myeloid cell, the
polymorphonuclear neutrophil, or PMN. Conversely, monocyte/macrophages are
by far thebestproducersof inflammatorymediators in thebody.Among thevarious
monocyte/macrophage products are pro-inflammatory cytokines (tumor necrosis
factor [TNF], IL-1, IL-6, macrophage migration inhibitory factor [MIF]), anti-
inflammatory cytokines (IL-4, IL-10, IL-13, transforming growth factor [TGF]-β);
chemokines (IL-8), growth factors (G-CSF), anti-microbial peptides (defensins,
cathelicidins), lipid mediators (prostanoids, leukotrienes, platelet-activating fac-
tor [PAF]), oxygen and nitrogen radicals, and enzymes (lipases, proteases) [1].
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Role of Macrophages as Sentinel Cells

Although specific roles can be attributed to subclasses of macrophages depending
on their location in various organs, a common feature of the macrophage is its
sentinel role. They sense various noxious stimuli in their environment and elicit
responses depending on the nature of the stimulus. In addition to microbial prod-
ucts, it has been shown that macrophages react to stimuli typical of tissue injury or
stress, such as acidosis, extracellular ATP, tissue hypoxia, cell stretching, substance
P, high mobility group box protein (HMGB)-1, uric acid, and proteolytic enzymes,
including thrombin (Fig. 1). Compared with bacterial products, the magnitude of
the macrophage activation is usually not as great with these latter stimuli. This
introduces the important concept that these stimuli are sensed as ‘danger signals’
by macrophages. They may be considered as warning signs of tissue and cellular
injury or dysfunction, and indicate that a foreign intruder, such as bacteria, might
be dangerous [8, 9]. The host should then be mounting an inflammatory reaction
and an immune response. Synergistic responses between danger signals and bac-
terial molecules have been demonstrated both in animal and in in vitro studies.
These effects could be the result of a synergism between transcription factors at
the level of the promoter region of macrophage pro-inflammatory genes. It has
also been demonstrated recently that danger signals induce the assembly of a cy-
toplasmic inflammasome, recruiting and activating caspase-1 [10–12]. This results
in a massive increase in the production of the very potent local pro-inflammatory
molecule, IL-1β.

The tissue macrophage is also believed to play a significant role in the patho-
genesis of ventilator-induced lung injury (VILI), and possibly in the subsequent
remote organ dysfunction [13,14]. The only perceptible effect of positive pressure
mechanical ventilation, when applied to normal lungs with ‘reasonable’ volumes,
is the recruitment of alveolar macrophages, dependent on the lung production of
monocyte chemoattractant protein (MCP)-1 [15]. In these experiments, alveolar
macrophages are primed by the mechanical stimulus to increase their cytoplasmic
concentration of pro-inflammatory cytokine mRNAs, but do not secrete the pro-
teins. It is only with a second hit, such as the presence of bacteria, for example, that
they will respond with a rapid and massive local pro-inflammatory response, and
a possible systemic spillover of mediators [16]. In many animal models, bacterial
sepsis becomes lethal only when associated with burns, trauma, cerebral hemor-
rhage, aggressive mechanical ventilation, or hypovolemic shock. This leads to the
concept of synergistic effects of noxious stimuli, and the necessity for two hits on
the macrophage to observe a full-blown, clinically relevant inflammatory response
plus end-organ dysfunction.
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Fig. 1. Macrophages sense and are activated by molecules from the microbial world and by ‘dan-
ger’ signals from tissue injury. TLR: Toll-like receptor; NOD: nucleotide-binding oligomerization
domain proteins; NALP: NACHT-, LRR- and pyrin domain (PYD)-containing proteins; PAR:
protease-activated receptor; ORE: oxygen-responding element; RAGE: receptor for advanced
glycation endproducts; NK-1: neurokinin-1; FAK: focal adhesion kinase; MAPK: mitogen acti-
vated protein kinase; NF-kB: nuclear factor-kappa B; P2X7R: purinergic P2X7 receptor; HSP: heat
shock protein; HMGB-1: high-mobility group box-1 protein

Macrophages Play a Central Role in the Pathogenesis of Sepsis

Because of their involvement in innate immunity, it is not a surprise that
macrophages play a critical role in bacterial sepsis and in subsequent organ dys-
function. It is believed that excessive macrophage-induced inflammation is respon-
sible for the loss of some organ functions, such as gas exchange in the lung [17]. Ac-
tivated lung macrophages produce large amounts of pro-inflammatory cytokines,
such as TNF and IL-1. In turn, these cytokines will stimulate pneumocytes and
capillary endothelial cells to generate a strong chemokine gradient and recruit
PMNs to the interstitium and the airspace [18]. In addition to its sentinel role, the
macrophage plays a crucial role as an amplifier of the inflammatory and immune
response. This inflammatory response is necessary for rapid and efficient clear-
ance of a bacterial infection, but when such a response is excessive, it may become
detrimental to lung integrity and function. Interestingly, neutrophilic infiltration
in the lung (but also in some cases in the pleural space and the peritoneum) is not
observed in other organs during severe sepsis and septic shock. Inflammatory cells
are, for example, absent in the liver, the kidney, the central nervous system (CNS),
or the gut despite evident dysfunction of these organs during bacterial sepsis [19].
Gut translocation of bacteria is not accompanied by massive hepatic (neutrophilic)
inflammation, but drives an acute phase response, that is essentially dependent
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on macrophage IL-6 production [20]. In addition, Kupffer cells play an essential
role in clearing bacteria and bacterial products from the portal circulation without
generating a massive hepatic inflammatory reaction. This shows that the function
of tissue macrophages depends on the organ involved, and that the Kupffer cell
reaction to bacteria, for example, is markedly different from what is observed with
alveolar macrophages.

Monocytes in the vascular compartment are also activated during bacte-
rial sepsis. Interestingly, circulating monocytes are ‘reprogrammed’ and produce
more anti-inflammatory mediators (IL-10, IL-1 receptor antagonist [IL-1ra], IL-
4) than pro-inflammatory cytokines [21]. When stimulated ex vivo, monocytes
from critically ill patients, and particularly from septic patients, have defective
pro-inflammatory responses. The net inflammatory activity in septic plasma is in
fact anti-inflammatory [17,22,23]. This systemic anti-inflammatory response may
prevent excessive, non-specific, and deleterious systemic endothelial and leuko-
cyte activation where it is unwanted, i.e., in the vascular compartment [22]. It
may, therefore, help modulate effector leukocytes and focus inflammation at the
infected site [22]. In addition, decreased surface expression of major histocom-
patibility complex (MHC) class II antigens, such as human leukocyte antigen
(HLA)-DR, on the surface of circulating monocytes from patients with sepsis has
been reported by several groups. This is mainly due to an IL-10-dependent se-
questration of MHC class II molecules intracellularly [24], and is associated with
poor outcome in patients with septic shock [25]. It remains unclear as to whether
this phenotype persists in tissue macrophages after monocyte migration, and
whether it is associated with impaired antigen presentation in monocyte-derived
macrophages and dendritic cells.

Activation of coagulation and decreased fibrinolysis are important pathways
in the pathogenesis of sepsis and related organ dysfunction [26, 27]. This has re-
cently been highlighted by the PROWESS trial showing that a recombinant form
of activated protein C improved survival in patients with severe sepsis and septic
shock [28]. During sepsis, coagulation is activated both in the vascular compart-
ment (disseminated intravascular coagulation [DIC]) and in (some) organs, such
as the alveolar compartment of the lung. The ‘aberrant’ expression of tissue fac-
tor is key to the initiation of DIC and in-organ coagulation [29]. Tissue factor is
upregulated in monocytes and macrophages – but also in endothelial cells – af-
ter exposition to bacteria, bacterial products, and pro- inflammatory cytokines,
and is responsible for the observed increased in “procoagulant activity” [29, 30].
Local and systemic inhibition of the fibrinolytic pathway, mainly dependent on
the plasminogen-activation inhibitor (PAI)-1 protein may also participate in in-
creased procoagulant activity during sepsis. PAI-1 is produced by activated mono-
cyte/macrophages, among many other cell types [31]. Finally, monocytic cells
express protease-activated receptors (PARs), which are receptors for serine pro-
teases, such as thrombin. These receptors, at the interface of inflammation and
coagulation pathways, can modulate the inflammatory response of monocytes and
tissue macrophages [32–34].
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It has recently been suggested that vagus nerve stimulation attenuates macro-
phage activation [35–37], as part of the newly discovered cholinergic anti-
inflammatory pathway [38]. The acetylcholine α7-nicotinic receptor seems to be
essential to modulate macrophage activation during sepsis [39].

Finally, although macrophages are involved in tissue remodeling and repair
in various illnesses, this has been poorly studied in sepsis and related-organ
dysfunction. Conceptually, macrophages are likely to play an important role in the
resolution phase of sepsis and organ failure.

Macrophage Products and Receptors: Therapeutic Targets?

Eventhoughtherapeutic strategiesbasedonthesystemicblockadeofmonocyte/ma-
crophage-derivedpro-inflammatorymediatorshave failed in thepast, considerable
interest still exists in developing modulators of macrophage function as potential
therapies in sepsis and related organ dysfunction. TNF and IL-1 blockade in the
lung has not been completely explored in sepsis-associated acute lung injury (ALI)
or acute respiratory distress syndrome (ARDS), for example, despite ampledemon-
stration that an intense pro-inflammatory reaction takes place in the lungs during
sepsis. Blockade of late mediators associated with mortality in pre-clinical mod-
els of sepsis, such as HMGB-1, is also a valuable hypothesis to be tested [40, 41].
There may still be room in early septic shock for interventions that are directed to
receptors recognizing bacterial products, but not interfering with bacterial clear-
ance, such as TLRs [42]. Alternatively, therapies aimed at boosting the depressed
immune functions of septic monocyte/macrophages, such as IFNγ and GM-CSF,
have also been recently proposed and tested in small numbers of patients [43,44].
Finally, therapeutic studies based on modulation of the macrophage α7 nicotinic
receptor or triggering receptor expressed on myeloid cells (TREM)-1 are also
underway [45].
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The Role of the Endothelium

W.C. Aird

Introduction

The endothelium is a key modulator of systemic inflammation in critical illness.
The goals of this chapter are to discuss how endothelial cells contribute to and are
affected by the host response to infection and multiple organ dysfunction.

A Primer in Endothelial Biology

When considering the role of the endothelium in health and disease, several im-
portant themes emerge:

The Endothelium is a Spatially Distributed Organization

The endothelium, which lines blood vessels of the vascular tree, is a spatially
distributed organ, extending to all recesses of the human body. The endothe-
lium weighs 1 kg in an average-sized human and covers a surface area between
4,000–7,000 square meters. If arteries and veins are considered the conduits of
the cardiovascular system, the capillaries are the ‘business end’ of the circulation,
mediating the exchange of nutrients and gases between blood and underlying
tissue. In keeping with Fick’s law of diffusion, capillaries (and their endothelial
lining) comprise the vast majority of the surface area of the circulation. Also in
keeping with Ficks law of diffusion, capillaries are extraordinarily thin. They are
basically three dimensional tubes of endothelium surrounded to a variable extent
by occasional pericytes and extracellular matrix.

The Endothelium is Derived from Lateral Plate Mesoderm

During embryogenesis, the endothelium is derived from lateral plate mesoderm.
Hemangioblasts differentiate into angioblasts, which then migrate to the midline
and coalesce to form the aorta and posterior cardinal vein to form the primary
vascular plexus. This process, which is called vasculogenesis, is followed (and
accompanied) by a highly coordinated series of steps that include angiogenesis,
branching, establishment of arterial-venous identity, and stabilization and matu-
ration of the vascular wall.
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The Endothelium Evolved in Concert with the Closed Circulation

In our need for oxygen, we are no different than the simplest organisms that inhabit
the planet. For example, single cell aerobic organisms and tiny multicellular or-
ganisms (such as the flat worm) obtain their oxygen by simple diffusion. In larger
multicellular organisms, the time-distance constraints of diffusion appear to man-
date the existence of a pump (i. e., heart) that provides bulk flow delivery of oxygen
to the various tissue of the body. In invertebrates, the cardiovascular system is said
to be ‘open’ in the sense that the heart pumps blood (‘hemolymph’) into an open
body cavity where it directly bathes all tissue cells. In vertebrates (fish, amphib-
ians, reptiles, birds and mammals), blood is maintained within a closed vascular
space. The open cardiovascular system of the invertebrate lacks an endothelial lin-
ing. In contrast, all vertebrates possess endothelium. Based on phylogenetic data,
it appears that the closed circulation and the endothelium co-evolved approxi-
mately 550 million years ago. An interesting question is what were the selective
pressures underlying the evolution of the endothelium? Did the high pressures as-
sociated with a closed circulation initially lead to the selection of a cell lining that
limited leakage (by optimizing hydraulic conductivity and reflection co-efficient
variables), prevented exsanguination (through the expression of procoagulants),
and/or modulated regional flow (via release of nitric oxide [NO])?

The Endothelium is a Multifunctional Organ

The endothelium is not an inert nucleated layer of cellophane, but rather partici-
pates in many physiological activities. The endothelium functions as a ‘gatekeeper’,
regulating the transfer of cells and nutrients between blood and underlying tissue.
The endothelium plays a key role in regulating hemostasis. Indeed, endothelial
cells are mini-factories of hemostatic factors. On the procoagulant side, they ex-
press von Willebrand factor (vWF), plasminogen activator inhibitor (PAI)-1, and
tissue factor. On the anticoagulant side, endothelial cells express thrombomodulin,
endothelial protein C receptor (EPCR), heparan, tissue factor pathway inhibitor
(TFPI), and tissue-type plasminogen activator (t-PA). The endothelium governs
vasomotor tone, by releasing vasomotor molecules, most notably NO. Endothelial
cells express pattern recognition receptors, including Toll-like receptor (TLR)-2
and TLR4, and thus participate in the earliest stages of innate immunity. In addi-
tion, endothelial cells are capable of releasing many inflammatory mediators.

Endothelial Cell Heterogeneity

Endothelial cell phenotypes are differentially regulated in space and time, giv-
ing rise to the phenomenon of endothelial heterogeneity or vascular diversity
(reviewed in [1, 2]). For example, from a functional standpoint, the endothelium
displays remarkabledivisionof labor.Endothelial cell-mediated regulationofwhite
blood cell trafficking is primarily a property of postcapillary venules; endothelial-
dependent vasomotor relaxation occurs in arterioles; barrier properties differ in
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different capillary beds across the body (e. g., compare the tight junctions of the
blood brain barrier versus the loose, fenestrated, discontinuous endothelium of
liver sinusoids); and each vascular bed employs unique formulas to balance lo-
cal hemostasis [3]. For example, TFPI is expressed predominantly in capillary
endothelial cells [4, 5], EPCR is preferentially expressed in venous and arterial
endothelium [6], and thrombomodulin is expressed in blood vessels of all calibers
in every organ, with the notable exception of the brain, where levels are virtually
undetectable [7].

Mechanisms of Endothelial Cell Heterogeneity

Each and every endothelial cell is analogous to a miniature adaptive input-output
device. Input arises from the extracellular environment and may include biochem-
ical and biomechanical forces. Output represents the cellular phenotype, and may
include changes in cell shape, calcium flux, protein and/or mRNA expression,
vasomotor tone, hemostatic balance, permeability, leukocyte trafficking, cell mi-
gration, proliferation, apoptosis, and/or release of inflammatory mediators. Input
is coupled to output via non-linear signaling pathways that typically begin at the
level of the cell surfaceandendat the level of transcriptionalorpost-transcriptional
changes. Input differs across the vascular tree. For example, the blood brain bar-
rier is exposed to paracrine mediators derived from surrounding astroglial cells,
whereas endothelial cells lining capillaries of the heart are exposed to special
regional forces and cardiomyocyte-derived paracrine factors. Since input varies
across the vascular tree, so does output. In fact, if one could color code endothelial
cell phenotypes according to the cell’s proteome, transcriptome, and functional
profile, the endothelium would display a rich color palette. If one were to then
‘roll the film’ the colors would fade in and fade out in concert with changes in the
extracellular environment.

If the microenvironment were the sole cause of endothelial heterogeneity, then
endothelial cells would be akin to a ‘blank slate’, blindly marching to the tune of the
local tissue environment. Accordingly, if endothelial cells were removed from their
native tissues and cultured in vitro under identical conditions, their phenotypes
would drift towards one another, ultimately reaching identity. However, most data
suggest that while cellular phenotypes do indeed drift towards each other, they
never quite reach identity [8–10]. In other words, while some site-specific proper-
ties (i. e., those that ‘wash out’ in culture) are dependent on ongoing signals from
the microenvironment, other vascular bed-specific properties are epigenetically
fixed and mitotically heritable [10]. The relative contribution of microenvironment
and epigenetic DNA modification in mediating endothelial cell heterogeneity may
change with age or during disease.
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Endothelium in Disease

In traversing each and every organ/tissue in the body, the endothelium establishes
a dialog that is unique to the underlying tissue. The endothelial-tissue interface
is not only critical in homeostasis, but also plays a key role in mediating many
focal vascular disease states. Based on our current knowledge, it may be argued that
endothelial cells are involved in every disease state, either as a primary determinant
of pathophysiology or as a victim of collateral damage (reviewed in [11]).

The two most common terms to describe endothelial cells in disease are en-
dothelial cell activationandendothelial cell dysfunction.Endothelial cell activation
is used to describe the phenotypic response of the endothelium to inflammatory
stimuli. Endothelial cell activation is not an on-off switch. Rather, endothelial
cells display a spectrum of response. That caveat notwithstanding, the activation
phenotype usually consists of some combination of increased leukocyte adhesive-
ness, a procoagulant surface, and reduced barrier function. Importantly, the term
activation does not address the cost of the phenotype to the host; the activation
phenotype may be adaptive or non-adaptive.

For many physicians, the term endothelial cell dysfunction is synonymous
with impaired endothelial-mediated vasomotor tone in atherosclerotic arteries.
However, dysfunction is not limited in scope to one particular activity, disease,
or vascular bed. Indeed, endothelial cell dysfunction may be defined as any en-
dothelial phenotype – whether or not it meets the definition of activation – which
represents a net liability to the host, as occurs, for example, locally in coronary
artery disease or systemically in severe sepsis.

Endothelial Diagnostics and Therapeutics

The endothelium has remarkable, yet largely untapped, diagnostic and therapeutic
potential. From a diagnostic standpoint, few assays are currently available for
monitoring endothelial cell health. The endothelium is not amenable to physical
diagnostic maneuvers, such as inspection, palpation, percussion or auscultation.
Unlike the kidney or liver, endothelial cell dysfunction is not associated with
reliable changes in circulating biomarkers. Finally, the wide spatial distribution
and thinness of the endothelium preclude conventional diagnostic imaging. An
important, and urgent, goal is to develop a comprehensive diagnostic platform for
dysfunctional endothelium.

The endothelium is an attractive therapeutic target. It is strategically situated
between blood and underlying tissue, and thus is rapidly and preferentially ex-
posed to systemically delivered agents. The endothelium is highly malleable and,
therefore, responsive to therapeutic modalities. Finally, because the endothelium
is tightly linked to the underlying tissue, it provides the pharmacotherapist with
a direct ‘line of communication’ with each and every organ in the body.
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Endothelium in Critical Care

In keeping with the themes developed above, the following section will center on
the endothelial cell as an input-output device, and in doing so will emphasize
the critical role of the endothelium as a signal transducer in the host response to
infection. An important caveat is that most of the evidence supporting a role for
the endothelium in sepsis is derived from animal models. Although this represents
an important and necessary starting point, the extent to which these data apply to
the human condition remains to be determined.

Input

Sepsis is associated with many changes in the extracellular environment that are
sensed by endothelial cells. These include both biomechanical and biochemical
forces.

Biomechanical

Under in vivo conditions, endothelium is normally exposed to protective levels
and patterns of shear stress. Among the many benefits of laminar shear stress are
the promotion of NO synthesis and release. In severe sepsis, a reduction in blood
pressure may compromise levels of shear stress. Areas of no-flow are particularly
vulnerable because the endothelial lining experiences both loss of shear stress and
anoxia. An obligate feature of the cardiovascular system, as blood vessels branch
and then merge, and as they twist and turn to conform to the closed-loop geometry
of the circulation, is the existence of heterogeneous flow patterns across the vas-
cular tree. For example, endothelial cells lining the straight segments of arteries
are normally exposed to undisturbed laminar flow, whereas endothelial cells at
bifurcations and curvatures experience disturbed laminar, and at times turbulent,
flow [12,13]. Atherosclerotic lesions preferentially form at these sites of disturbed
flow. Endothelial cells in these regions have been shown to be primed for activa-
tion [12,14]. For example, they express increased levels of p65 nuclear factor-kappa
B (NF-κB) in their cytoplasm [14]. Since NF-κB must translocate to the nucleus to
exert its pro-inflammatory effects, these cells are analogous to a loaded gun. It has
been argued that in atherosclerosis, systemic risk factors such as hypertension,
hyperglycemia, and/or hyperlipidemia serve to ‘pull the trigger’, leading to nu-
clear translocation of NF-κB, upregulation of NF-κB-dependent genes, and plaque
formation. An interesting question is whether an acute insult, such as sepsis, also
has the capacity to push these cells over the edge. The answer appears to be yes. For
example, endotoxin administration in mice resulted in significant nuclear translo-
cation of NF-κB in regions of disturbed flow [14]. Interestingly, a recent study
of septic baboons revealed selective induction of tissue factor at branch points
of arteries [15]. The latter study is the first to convincingly demonstrate tissue
factor expression in intact endothelium in response to sepsis, and suggests that
flow-dependent hot spots of endothelial-derived tissue factor may contribute to
activation of coagulation in sepsis.
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Biochemical

Sepsis is associated with the release of many soluble mediators from non-
endothelial cells and endothelial cells, which may then operate in paracrine and
autocrinepathways, respectively, toactivate theendothelium. Inanimal andhuman
models of endotoxemia, the systemic administration of lipopolysaccharide (LPS)
leads to a predictable and highly reproducible pattern of circulating inflammatory
mediators, including, but certainly not limited to, cytokines and chemokines (for
examples, see [16–20]). These are normally assayed by ELISA. In patients with se-
vere sepsis, the pattern is less predictable. Of the various inflammatory biomarkers,
interleukin (IL)-6 seems to be the most sensitive, being elevated in close to 100%
of patients [21,22]. Similarly, the clotting cascade is activated in every patient with
severe sepsis. Clotting is initiated by tissue factor (expressed by monocytes, and
possibly endothelial cells), which activates factor VIIa, ultimately leading to in-
creased thrombin generation, fibrin formation, and – at the extreme – clotting fac-
tor consumption. An elevated prothrombin time and partial thromboplastin time
reflect consumption of clotting factors, and elevated D-dimers indicate increased
production and degradation of fibrin. There are sensitive markers for thrombin
generation, including thrombin-antithrombin complexes or F1+2. However, these
assays remain investigational. It is important to recognize that the various serine
proteases in the clotting cascade (most notably thrombin) are capable not only
of activating their downstream substrate in the cascade, but also of binding to
protease-activated receptors present on several cell types, including endothelial
cells, resulting in a pro-inflammatory and procoagulant phenotype [23].

In large clinical studies, circulating levels of inflammatory and coagulation
biomarkers have been correlated with severity of illness (for example, see [21]).
However, at present, single markers do not exist for predicting outcome or tailoring
therapy in individual patients. Such an eventuality will likely depend on two
advances. One is the use of large scale ELISAs or proteomics to simultaneously
survey dozens or hundreds of biomarkers in blood from patients with sepsis and
then to apply state-of-the-art bioinformatics to interpret these data. Second is the
need to leverage the wealth of information that is inherent in time series analyses,
recognizing that the host response to infection is a highly dynamic process. For
example, it is well established that temporal patterns of biomarker release vary on
the order of hours (e. g., IL-6/IL-1 vs. tumor necrosis factor [TNF]-α) or days (e. g.,
high mobility group box protein [HMGB]-1 vs. IL-1/IL-6/TNF-α).

Like all multicellular organisms, the human body is a giant consortium of
highly interactive cells, which creates all types of information highways and vir-
tual organ systems. The endothelium is exposed on the luminal side to circulating
cells, including leukocytes, red blood cells, and platelets. There is ample evidence
supporting a role for cross-talk between the endothelium and each of these blood
cell lineages.On theabluminal side, endothelial cells communicatewith supporting
cells (vascular smooth muscle cells and pericytes) and underlying parenchymal
cells. Endothelial cells also communicate with each other at their lateral borders.
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In sepsis, the communication lines break down and the dialog turns sour. As
just one example, NADPH-mediated bursts of reactive oxygen species (ROS) from
neutrophils have been shown to act in a juxtacrine manner to activate endothelial
cells, resulting in phenotypic changes that include expression of TLR2 in endothe-
lium [24].

There are other extracellular signals which do not fall neatly into the above
categories and/or which interact with endothelial cells via receptor-independent
mechanisms, yet are capable of activating the endothelium. These include hypoxia,
high glucose, changes in osmolarity/pH, hypothermia/hyperthermia, and certain
drugs.

Role of Signal Input in Pathogenesis, Diagnostics, and Therapeutics

Sepsis is associated with many changes in the extracellular environment that may
influence endothelial cell behavior. As mentioned above, no single marker or panel
of markers is adequate for predicting clinical course in individual patients. Ther-
apeutic strategies, aimed towards one or another mediator, have largely failed to
improve survival in patients with severe sepsis. One interpretation of these disap-
pointing results is that the inflammatory and coagulation cascades are sufficiently
pleiotropic, redundant, and inter-dependent as to preclude single modality ther-
apy. However, it is possible – indeed, likely – that many of the established therapies
in sepsis exert their benefit at least partially through the endothelium (Table 1).
For example, early intervention may promote rapid restoration of shear stress; low
tidal volume ventilation may attenuate barotrauma to pulmonary endothelium;
aggressive blood glucose control may be predicted to prevent deleterious effects of
hyperglycemia on endothelial cells, and recombinant human activated protein C
may reduce activation of inflammatory and coagulation pathways.

Output

Inputs are pathogenic only insofar as they elicit a maladaptive response by the
endothelium. Such phenotypes may be separated into two categories: structural
and functional.

Structural Changes

A number of studies have demonstrated that in response to sepsis, endothelial
cells undergo morphological changes including contraction, swelling/blebbing,
and frank denudation [15, 25]. The loss of endothelial surface may have several
consequences. First, circulating blood is exposed to a procoagulant underlying ex-
tracellular matrix and tissue factor-expressing abluminal cells, leading to platelet
adhesion and aggregation, and activation of the clotting cascade. Second, it is con-
ceivable that dislodged endothelial cells contribute to the pool of circulating en-
dothelial cells (normal circulating endothelial cell counts are 2–5 per ml of blood).
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Table 1. Sepsis therapy targeted towards endothelial input-output

Treatment Comments Ref

INPUT
Oxygen Supplemental oxygen

to maintain oxygenation
Endothelial cells are highly
sensitive to hypoxia

[56]

pH Correction of acidosis There is increasing evidence
that endothelial cells are capable
of sensing acidosis independent
of hypoxia

[57, 58]

Shear stress Fluid resuscitation
and maintenance
of blood pressure

Endothelial cells are highly sen-
sitive to changes in shear stress;
early goal-directed therapy may
exert its benefit partly through
promoting shear stress

[59, 60]

Hyperthermia Body temperature control Fever induces heat shock
response

[61]

Hyperglycemia Tight glucose control Hyperglycemia may have delete-
rious effects on endothelial cells

[62–64]

Cytokines
TNF-α Anti-TNF-antibodies;

receptor antagonists
TNF-α is a strong activator
of endothelial cells; clinical trials
have demonstrated inconsistent
results

[65, 66]

IL-1, -6, -8 Anti-IL-antibodies;
receptor antagonists

Interleukins activate endothelial
cells; clinical trials have failed

[67]

Chemokines
PAF PAF receptor antagonists;

PAF acetylhydrolases
PAF is a potent phospholipid
agonist that induces endothelial
cell proliferation
and permeability

[68–70]

MCP-1 Anti-MCP antibodies; recep-
tor antagonists

MCP binds to CCR2 on en-
dothelial cells, inducing numer-
ous pro-inflammatory signals

[71, 72]

Serine proteases Anticoagulants Thrombin binds to PAR on sur-
face of endothelial cells, result-
ing in pro-inflammatory phe-
notype; selective anti-thrombin
agents do not improve sepsis sur-
vival; rhAPC may exert its ben-
efit partly through inhibition of
thrombin-mediated signaling

[73, 74]

Complement Anti-C5a-antibodies;
receptor antagonists

C3a and C5a bind to receptors
on endothelial cells

[75, 76]

HMGB1 Anti-C5a-antibodies;
receptor antagonists

Late marker of sepsis; produced
by and activates endothelial cells

[77–79]

Bradykinin/HMWK Antagonists Bradykinin and HMWK activate
endothelial cells; clinical trials
have failed

[80, 81]

VEGF Anti-VEGF antibodies;
receptor antagonists

VEGF binds to endothelial cell-
specific receptors, and results in
a pro-inflammatory phenotype

[82]
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Table 1. (continued)

Treatment Comments Ref

ROS Antioxidants Endothelial cells are highly sen-
sitive to changes in redox state

[83, 84]

LPS Anti-endotoxin
antibodies

Clinical trials have failed

OUTPUT
Leukocyte adhesion
and transmigration

Anti-adhesion molecule
antibodies

ICAM-1, VCAM-1, P-selectin,
E-selectin are expressed
by activated endothelial cells
and mediate increased adhesion
of leukocytes to endothelium;
PECAM-1 plays role in leukocyte
transmigration

[85–87]

Barrier dysfunction Sphingosine
1-phosphate
administration; rhAPC;
phosphodiesterase 2
inhibition

Sphingosine 1-phosphate
appears to play a critical role
in mediating barrier function;
rhAPC may exert its benefit
partly through sphingosine
1-phosphate-dependent
reduction in endothelial
cell permeability

[55, 88, 89]

Vasomotor tone
NOS/NO Nitric oxide

donors/inhibitors
Recent evidence suggests that
eNOS has a pro-inflammatory
role in sepsis

[38,81,90,92]

Inflammatory
mediators

See above under input Endothelial cells express TNF-α,
interleukins and many
chemokines

Apoptosis Caspase inhibitors,
rhAPC

Sepsis is associated with
increased apoptosis
of endothelial cells

[93, 94, 96]

COUPLING
p38 MAPK Chemical inhibitors [97–99]
NF-kB Double-stranded

oligodeoxynucleotides
rhAPC may exert its benefit
partly through inhibition
of NF-κB activity

[100–102]

GSK3b Chemical inhibitors [103]

This table isnotexhaustivebut rather showsrepresentativeexamplesundereachcategory.TNF, tu-
mor necrosis factor; IL, interleukin; PAF, platelet activating factor; MCP, monocyte chemoattrac-
tant protein; PAR, protease-activated receptor; rhAPC, recombinant human activated protein C;
HMGB1, high mobility group box 1; HMWK, high molecular weight kininogen; VEGF, vascular
endothelial growth factor; ROS, reactive oxygen species; LPS, lipopolysaccharide; ICAM-1, inter-
cellular adhesion molecule; VCAM, vascular cell adhesion molecule; NOS, nitric oxide synthase;
NO, nitric oxide
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Circulating endothelial cells may be identified using special stains for cell-specific
markers, and theymaybeenumerated eithermanually orbyfluorescence-activated
cell sorter (FACS). Circulating endothelial cell levels have been shown to be in-
creased in a number of pathological conditions associated with vascular injury,
including sickle cell disease, thalassemia, cancer, pulmonary hypertension, vas-
culitides, and sepsis (reviewed in [26]). In one study, circulating endothelial cells –
as measured by indirect immunofluorescence of the endothelial markers vWF and
Fl-1 – were increased in patients with sepsis compared with normal volunteers
and ICU patients who did not have sepsis [27]. Repair of denuded segments of the
vasculature may occur by one of two mechanisms. First, neighboring endothelial
cells may proliferate and migrate, thus sealing the hole. Second, circulating bone-
marrow derived endothelial progenitor cells may become incorporated into the
vascular wall. The latter mechanism has received much attention in the field of
cardiology where studies show that the number of circulating endothelial progen-
itor cells correlates with positive outcomes and reflects the repair capacity of the
host (reviewed in [28]). Few, if any such studies have been carried out in animal
or human models of sepsis.

Another injury response is the release of microparticles. These tiny (0.5–3 M)
submicroscopic membrane-bound particles are shed from multiple cell types, in-
cluding endothelial cells. These microparticles may carry tissue factor, and there-
fore contribute to sepsis pathophysiology. Endothelial microparticles, which are
assayed using FACS, have been shown to be increased in patients with severe
sepsis [29].

Functional Changes

The endothelium plays a central role in innate immunity and inflammation. For
example, endothelial cells release vasomotor molecules, which result in increased
blood flow to the site. Endothelial cells express increased levels of adhesion
molecules on their cell surface, including E-selectin, P-selectin, vascular adhe-
sion molecule (VCAM)-1, and intercellular adhesion molecule (ICAM)-1. These
adhesion molecules bind to cognate ligands on the surface of leukocytes, and
mediate their tethering, rolling, firm adhesion, and transendothelial migration
(reviewed in [30, 31]). Normally, this process leads to the regulated transport of
leukocytes into the extravascular space where they may engage pathogens, and
contribute to tissue repair. An increase in endothelial permeability allows for the
passage of plasma proteins into the interstitium, including complement proteins,
immunoglobins, and clotting factors. Activated endothelial cells also express in-
creased procoagulants and decreased anticoagulants. It is possible that the net
shift in hemostatic balance towards the procoagulant side plays an essential role
in ‘walling off’ the infection.

Sepsis represents an exaggerated/disseminated host response to infection. In
preclinical models, there is a marked increase in the expression of cell adhesion
molecules on the surface of the endothelium (for example, see [32]). The pattern
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of response differs between different vascular beds [33]. The induction of cell
adhesion molecules correlates with increased trafficking of leukocytes. A biopsy
is required to demonstrate induced levels of cell adhesion molecules on the sur-
face of the endothelium. These are seldom carried out except for experimental
purposes [34]. However, the various cell adhesion molecules may be released or
cleaved at the cell surface by proteases such as neutrophil elastase. These soluble
forms of the receptors circulate in the blood and may be measured using im-
munoassays (reviewed in [35]). However, levels of soluble receptors in the blood
do not always correlate with in situ expression in the endothelium [33,34]. A limi-
tation of these assays as surrogate markers for endothelial activation/dysfunction
is that P-selectin, ICAM-1, and VCAM-1 are also expressed in non-endothelial
cells. Only E-selectin is specific to the endothelial lineage. Of the various adhe-
sion molecules, ICAM-1 has been shown to play a particularly important role in
mediating leukocyte infiltration and sepsis mortality [33, 36].

Two major isoforms contribute to the generation of NO in the vasculature:
endothelial NO synthase (eNOS) and inducible NOS (iNOS). In animal models
of sepsis, iNOS levels have been shown to be increased in many organs [37, 38],
whereas eNOS levels are generally downregulated [39, 40]. Previous studies of ar-
teries dissected from septic rodents have shown hyporesponsiveness of endothelial
cells to acetylcholine [40]. In a rat model of cecal ligation and puncture, NOS inhi-
bition reversed arteriolar hyporesponsiveness to catecholamines and endothelin
in cremaster muscle [41]. eNOS and iNOS null mice are resistant to LPS-mediated
shock, suggesting that NO plays a role in mediating hemodynamic instability in
sepsis [38]. In addition, eNOShasbeen shown topromotepro-inflammatory effects
of iNOS [38]. In contrast, iNOS contributes to impaired eNOS-mediated vasomo-
tor reactivity [40]. Importantly, eNOS may protect against organ failure [42]. The
benefit of eNOS-derived NO may be explained – at least in part – by its attenuating
effect on platelet-endothelial and leukocyte-endothelial interactions [43–46].

Although every patient with severe sepsis has activation of their clotting cas-
cade, it is not clear to what extent the endothelium contributes to the hemostatic
imbalance. This gap in knowledge reflects the difficulty in assaying intact endothe-
lium for hemostatic function. In mouse models, the systemic administration of LPS
leads to vascular bed-specific changes in vWF expression in the endothelium [47].
Animal models of sepsis have also revealed widespread reduction in thrombo-
modulin expression. In patients with meningococcemia, skin biopsies revealed
decreased expression of thrombomodulin and EPCR protein levels in dermal mi-
crovascular endothelium [48]. Like the cell adhesion molecules, thrombomodulin
also circulates in soluble form. Previous studies have demonstrated that soluble
thrombomodulin is elevated in ≈ 70% of patients with severe sepsis [21].

Of the various functions of the endothelium, the least understood – and possi-
bly the most important in the context of sepsis – is the regulation of permeability.
Bulk flow transfer of solutes and fluids occurs between (paracellular) or through
(transcellular) endothelial cells. These routes are likely regulated by overlapping
yet distinct molecular mechanisms. Platelet-endothelial cell adhesion molecule
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(PECAM)-1 plays an important role in mediating inter-endothelial junctional
integrity. Two recent studies have shown that deletion of PECAM-1 from mice
results in increased permeability and sepsis mortality [49, 50].

Role of Endothelial Output in Pathogenesis, Diagnostics, and Therapeutics

If sepsis is associated with significant denudation of endothelium, and if bone
marrow-derived endothelial progenitor cells are capable of homing to these sites
of injury, thenperhaps therapiesaimed towardspromoting themobilizationand/or
uptake of these progenitor cells will facilitate healing. From the standpoint of func-
tional changes, it is not always clear which endothelial phenotypes are adaptive
and which are maladaptive. In the case of NO, an argument may be made for
inhibiting eNOS as a means of protecting against shock [51], while the counterar-
gument – namely to increase eNOS levels – might be supported by the importance
of minimizing microdomains of no-flow and/or to attenuate endothelial-blood cell
interactions [52]. Despite evidence for a pathogenic role of cell adhesion molecules
in animal models, there is little evidence supporting the use of anti-adhesion ther-
apy in humans. Although it seems intuitive that clotting activation in sepsis is
a maladaptive response (consider the patient with severe disseminated intravascu-
lar coagulation [DIC]), there are surprisingly few data to support this conclusion.
Indeed, one interpretation of existing data is that activation of coagulation – pro-
vided that it is not excessive – is beneficial in sepsis [53, 54]. Recent evidence
suggests that recombinant human activated protein C, a serine protease critically
involved in the regulation of coagulation and inflammatory processes, prevents
increased endothelial cell permeability and restores vascular integrity following
inflammatory insult. These effects were shown to involve EPCR-mediated transac-
tivation of the sphingosine 1-phosphate (S1P) receptor [55].

Conclusion

In summary, the endothelium is a spatially distributed cell layer that displays
significant heterogeneity inboth structure and function.Endothelial heterogeneity
reflects the capacity of the endothelium to meet the diverse needs of the underlying
tissues. The endothelium plays an important role in mediating the host response to
infection. Not only do endothelial cells express pattern recognition receptors, but
they also govern local blood flow and vectorial transport of cells, solutes, and fluids
across the vascular wall. The normal response to infection involves activation of
endothelial cells without dysfunction. In sepsis, the endothelial response becomes
excessive, sustained, and/or disseminated, at which point the activation phenotype
poses a liability to the host and may be characterized as dysfunctional. Important
goals for the future are to develop reliable diagnostic assays for monitoring the
health of the endothelium and to elucidate those components of the endothelial
response that are maladaptive and amenable to therapeutic targeting.



The Role of the Endothelium 223

References

1. Aird WC (2005) Spatial and temporal dynamics of the endothelium. J Thromb Haemost
3:1392–1406

2. Aird WC (2003) Endothelial cell heterogeneity. Crit Care Med 31 (Suppl 4):S221–S230.
3. Rosenberg RD, Aird WC (1999) Vascular-bed–specific hemostasis and hypercoagulable

states. N Engl J Med 340:1555–1564
4. Broze GJ Jr (2003) The rediscovery and isolation of TFPI. J Thromb Haemost 1:1671–1675
5. Osterud B, Bajaj MS, Bajaj SP (1995) Sites of tissue factor pathway inhibitor (TFPI) and

tissue factor expression under physiologic and pathologic conditions. Thromb Haemost
73:873–875

6. Laszik Z, Mitro A, Taylor FB Jr, Ferrell G, Esmon CT (1997) Human protein C receptor is
present primarily on endothelium of large blood vessels: implications for the control of the
protein C pathway. Circulation 96:3633–3640

7. Ishii H, Salem HH, Bell CE, Laposata EA, Majerus PW (1986) Thrombomodulin, an en-
dothelial anticoagulant protein, is absent from the human brain. Blood 67:362–365

8. Lacorre DA, Baekkevold ES, Garrido I, et al (2004) Plasticity of endothelial cells: rapid
dedifferentiation of freshly isolated high endothelial venule endothelial cells outside the
lymphoid tissue microenvironment. Blood 103:4164–4172

9. Chi JT, Chang HY, Haraldsen G, et al (2003) Endothelial cell diversity revealed by global
expression profiling. Proc Natl Acad Sci USA 100:10623–10628

10. Aird WC (2006) Mechanisms of endothelial cell heterogeneity in health and disease. Circ
Res 98:159–162

11. Hwa C, Sebastian A, Aird WC (2005) Endothelial biomedicine: its status as an interdisci-
plinary field, its progress as a basic science, and its translational bench-to-bedside gap.
Endothelium 12:139–151

12. Passerini AG, Polacek DC, Shi C, et al (2004) Coexisting proinflammatory and antioxidative
endothelial transcription profiles in a disturbed flow region of the adult porcine aorta. Proc
Natl Acad Sci USA 101:2482–2487

13. Dai G, Kaazempur-Mofrad MR, Natarajan S, et al (2004) Distinct endothelial phenotypes
evoked by arterial waveforms derived from atherosclerosis-susceptible and -resistant re-
gions of human vasculature. Proc Natl Acad Sci USA 101:14871–14876

14. Hajra L, Evans AI, Chen M, Hyduk SJ, Collins T, Cybulsky MI (2000) The NF-kappa B
signal transduction pathway in aortic endothelial cells is primed for activation in regions
predisposed to atherosclerotic lesion formation. Proc Natl Acad Sci USA 97:9052–9057

15. Lupu C, Westmuckett AD, Peer G, et al (2005) Tissue factor-dependent coagulation is
preferentiallyup-regulatedwithinarterial branchingareas inababoonmodelofEscherichia
coli sepsis. Am J Pathol 167:1161–1172

16. Derhaschnig U, Reiter R, Knobl P, Baumgartner M, Keen P, Jilma B (2003) Recombinant
human activated protein C (rhAPC; drotrecogin alfa [activated]) has minimal effect on
markers of coagulation, fibrinolysis, and inflammation in acute human endotoxemia. Blood
102:2093–2098

17. Pajkrt D, van der Poll T, Levi M, et al (1997) Interleukin-10 inhibits activation of coagulation
and fibrinolysis during human endotoxemia. Blood 89:2701–2705

18. de Jonge E, Dekkers PE, Creasey AA, et al (2000) Tissue factor pathway inhibitor dose-
dependently inhibits coagulation activation without influencing the fibrinolytic and cy-
tokine response during human endotoxemia. Blood 95:1124–1129

19. Derhaschnig U, Bergmair D, Marsik C, Schlifke I, Wijdenes J, Jilma B (2004) Effect of
interleukin-6 blockade on tissue factor-induced coagulation in human endotoxemia. Crit
Care Med 32:1136–1140

20. van der Poll T, Coyle SM, Levi M, et al (1997) Effect of a recombinant dimeric tumor necrosis
factor receptor on inflammatory responses to intravenous endotoxin in normal humans.
Blood 89:3727–3734



224 W.C. Aird

21. Kinasewitz GT, Yan SB, Basson B, et al (2004) Universal changes in biomarkers of co-
agulation and inflammation occur in patients with severe sepsis, regardless of causative
micro-organism. Crit Care 8:R82–R90

22. Bernard GR, Ely EW, Wright TJ, et al (2001) Safety and dose relationship of recombinant
human activated protein C for coagulopathy in severe sepsis. Crit Care Med 29:2051–2059

23. Pawlinski R, Mackman N (2004) Tissue factor, coagulation proteases, and protease-activated
receptors in endotoxemia and sepsis. Crit Care Med 32 (suppl 5):S293–S297

24. Fan J, Frey RS, Malik AB (2003) TLR4 signaling induces TLR2 expression in endothelial
cells via neutrophil NADPH oxidase. J Clin Invest 112:1234–1243

25. Cybulsky MI, Chan MK, Movat HZ (1988) Acute inflammation and microthrombosis in-
duced by endotoxin, interleukin-1, and tumor necrosis factor and their implication in
gram-negative infection. Lab Invest 58:365–378

26. Khan SS, Solomon MA, McCoy JP Jr (2005) Detection of circulating endothelial cells and
endothelial progenitor cells by flow cytometry. Cytometry B Clin Cytom 64:1–8

27. Mutunga M, Fulton B, Bullock R, et al (2001) Circulating endothelial cells in patients with
septic shock. Am J Respir Crit Care Med 163:195–200

28. Liew A, Barry F, O’Brien T (2006) Endothelial progenitor cells: diagnostic and therapeutic
considerations. Bioessays 28:261–270

29. Ogura H, Tanaka H, Koh T, et al (2004) Enhanced production of endothelial microparticles
with increasedbinding to leukocytes inpatientswithsevere systemic inflammatory response
syndrome. J Trauma 56:823–830

30. Ley K (2003) The role of selectins in inflammation and disease. Trends Mol Med 9:263–268
31. Weber C (2003) Novel mechanistic concepts for the control of leukocyte transmigration:

specialization of integrins, chemokines, and junctional molecules. J Mol Med 81:4–19
32. Lush CW, Cepinskas G, Sibbald WJ, Kvietys PR (2001) Endothelial E- and P-selectin ex-

pression in iNOS-deficient mice exposed to polymicrobial sepsis. Am J Physiol Gastrointest
Liver Physiol 280:G291–297

33. Laudes IJ, Guo RF, Riedemann NC, et al (2004) Disturbed homeostasis of lung intercellular
adhesion molecule-1 and vascular cell adhesion molecule-1 during sepsis. Am J Pathol
164:1435–1445

34. Leone M, Boutiere B, Camoin-Jau L, et al (2002) Systemic endothelial activation is greater
in septic than in traumatic-hemorrhagic shock but does not correlate with endothelial
activation in skin biopsies. Crit Care Med 30:808–814

35. Reinhart K, Bayer O, Brunkhorst F, Meisner M (2002) Markers of endothelial damage in
organ dysfunction and sepsis. Crit Care Med 30 (Suppl 5):S302–S312

36. Xu H, Gonzalo JA, St Pierre Y, et al (1994) Leukocytosis and resistance to septic shock in
intercellular adhesion molecule 1–deficient mice. J Exp Med 180:95–109

37. Cunha FQ, Assreuy J, Moss DW, et al (1994) Differential induction of nitric oxide synthase
in various organs of the mouse during endotoxaemia: role of TNF-alpha and IL-1-beta.
Immunology 81:211–215

38. Connelly L, Madhani M, Hobbs AJ (2005) Resistance to endotoxic shock in endothelial
nitric-oxide synthase (eNOS) knock-out mice: a pro-inflammatory role for eNOS-derived
no in vivo. J Biol Chem 280:10040–10046

39. Scott JA, Mehta S, Duggan M, Bihari A, McCormack DG (2002) Functional inhibition of
constitutive nitric oxide synthase in a rat model of sepsis. Am J Respir Crit Care Med
165:1426–1432

40. Chauhan SD, Seggara G, Vo PA, Macallister RJ, Hobbs AJ, Ahluwalia A (2003) Protection
against lipopolysaccharide-induced endothelial dysfunction in resistance and conduit vas-
culature of iNOS knockout mice. Faseb J 17:773–775

41. Hollenberg SM, Piotrowski MJ, Parrillo JE (1997) Nitric oxide synthase inhibition reverses
arteriolar hyporesponsiveness to endothelin-1 in septic rats. Am J Physiol 272:R969–R974



The Role of the Endothelium 225

42. Wang W, Mitra A, Poole B, et al (2004) Endothelial nitric oxide synthase-deficient mice
exhibit increased susceptibility to endotoxin-induced acute renal failure. Am J Physiol
Renal Physiol 287:F1044–1048

43. Radomski MW, Vallance P, Whitley G, Foxwell N, Moncada S (1993) Platelet adhesion to
human vascular endothelium is modulated by constitutive and cytokine induced nitric
oxide. Cardiovasc Res 27:1380–1382

44. Cerwinka WH, Cooper D, Krieglstein CF, Feelisch M, Granger DN (2002) Nitric oxide
modulates endotoxin-induced platelet-endothelial cell adhesion in intestinal venules. Am
J Physiol Heart Circ Physiol 282:H1111–H1117

45. Kubes P, Suzuki M, Granger DN (1991) Nitric oxide: an endogenous modulator of leukocyte
adhesion. Proc Natl Acad Sci USA 88:4651–4655

46. Mitchell DJ, Yu J, Tyml K (1998) Local L-NAME decreases blood flow and increases leukocyte
adhesion via CD18. Am J Physiol 274:H1264–H1268

47. Yamamoto K, de Waard V, Fearns C, Loskutoff DJ (1998) Tissue distribution and regulation
of murine von Willebrand factor gene expression in vivo. Blood 92:2791–2801

48. Faust SN, Levin M, Harrison OB, et al (2001) Dysfunction of endothelial protein C activation
in severe meningococcal sepsis. N Engl J Med 345:408–416

49. Carrithers M, Tandon S, Canosa S, Michaud M, Graesser D, Madri JA (2005) Enhanced
susceptibility to endotoxic shock and impaired STAT3 signaling in CD31-deficient mice.
Am J Pathol 166:185–196

50. Maas M, Stapleton M, Bergom C, Mattson DL, Newman DK, Newman PJ (2005) Endothelial
cell PECAM-1 confers protection against endotoxic shock. Am J Physiol Heart Circ Physiol
288:H159–H164

51. Lopez A, Lorente JA, Steingrub J, et al (2004) Multiple-center, randomized, placebo-
controlled, double-blind study of the nitric oxide synthase inhibitor 546C88: effect on
survival in patients with septic shock. Crit Care Med 32:21–30

52. Buwalda M, Ince C (2002) Opening the microcirculation: can vasodilators be useful in
sepsis? Intensive Care Med 28:1208–1217

53. Kerlin BA, Yan SB, Isermann BH, et al (2003) Survival advantage associated with heterozy-
gous factor V Leiden mutation in patients with severe sepsis and in mouse endotoxemia.
Blood 102:3085–3092

54. Aird WC (2003) Thrombin paradox redux. Blood 102:3077–3078
55. Finigan JH, Dudek SM, Singleton PA, et al (2005) Activated protein C mediates novel lung

endothelial barrier enhancement: role of sphingosine 1-phosphate receptor transactivation.
J Biol Chem 280:17286–17293

56. Ten VS, Pinsky DJ (2002) Endothelial response to hypoxia: physiologic adaptation and
pathologic dysfunction. Curr Opin Crit Care 8:242–250

57. D’Arcangelo D, Facchiano F, Barlucchi LM, et al (2000) Acidosis inhibits endothelial cell
apoptosis and function and induces basic fibroblast growth factor and vascular endothelial
growth factor expression. Circ Res 86:312–318

58. Agullo L, Garcia-Dorado D, Escalona N, et al (2002) Hypoxia and acidosis impair cGMP
synthesis in microvascular coronary endothelial cells. Am J Physiol Heart Circ Physiol
283:H917–H925

59. Barakat A, Lieu D (2003) Differential responsiveness of vascular endothelial cells to different
types of fluid mechanical shear stress. Cell Biochem Biophys 38:323–343

60. Rivers E, Nguyen B, Havstad S, et al (2001) Early goal-directed therapy in the treatment of
severe sepsis and septic shock. N Engl J Med 345:1368–1377

61. Hasday JD, Bannerman D, Sakarya S, et al (2001) Exposure to febrile temperature modifies
endothelial cell response to tumor necrosis factor-alpha. J Appl Physiol 90:90–98

62. Wang L, Xing XP, Holmes A, et al (2005) Activation of the sphingosine kinase-signaling
pathway by high glucose mediates the proinflammatory phenotype of endothelial cells. Circ
Res 97:891–899



226 W.C. Aird

63. Han J,MandalAK,HiebertLM(2005)Endothelial cell injurybyhighglucoseandheparanase
is prevented by insulin, heparin and basic fibroblast growth factor. Cardiovasc Diabetol 4:12

64. van den Berghe G, Wouters P, Weekers F, et al (2001) Intensive insulin therapy in the critically
ill patients. N Engl J Med 345:1359–1367

65. Panacek EA, Marshall JC, Albertson TE, et al (2004) Efficacy and safety of the monoclonal
anti-tumor necrosis factor antibody F(ab’)2 fragment afelimomab in patients with severe
sepsis and elevated interleukin-6 levels. Crit Care Med 32:2173–2182

66. Pober JS (2002) Endothelial activation: intracellular signaling pathways. Arthritis Res 4
(suppl 3):S109–S116

67. Opal SM, Fisher CJ Jr, Dhainaut JF, et al (1997) Confirmatory interleukin-1 receptor an-
tagonist trial in severe sepsis: a phase III, randomized, double-blind, placebo-controlled,
multicenter trial. The Interleukin-1 Receptor Antagonist Sepsis Investigator Group. Crit
Care Med 25:1115–1124

68. Opal S, Laterre PF, Abraham E, et al (2004) Recombinant human platelet-activating factor
acetylhydrolase for treatment of severe sepsis: results of a phase III, multicenter, random-
ized, double-blind, placebo-controlled, clinical trial. Crit Care Med 32:332–341

69. Minneci PC, Deans KJ, Banks SM, Eichacker PQ, Natanson C (2004) Should we continue to
target the platelet-activating factor pathway in septic patients? Crit Care Med 32:585–588

70. Hudry-Clergeon H, Stengel D, Ninio E, Vilgrain I (2005) Platelet-activating factor increases
VE-cadherin tyrosine phosphorylation in mouse endothelial cells and its association with
the PtdIns3’-kinase. Faseb J 19:512–520

71. Zisman DA, Kunkel SL, Strieter RM, et al (1997) MCP-1 protects mice in lethal endotoxemia.
J Clin Invest 99:2832–2836

72. HongKH,Ryu J,HanKH(2005)Monocyte chemoattractantprotein-1-inducedangiogenesis
is mediated by vascular endothelial growth factor-A. Blood 105:1405–1407

73. Bernard GR, Vincent JL, Laterre PF, et al (2001) Efficacy and safety of recombinant human
activated protein C for severe sepsis. N Engl J Med 344:699–709

74. Minami T, Sugiyama A, Wu SQ, Abid R, Kodama T, Aird WC (2004) Thrombin and pheno-
typic modulation of the endothelium. Arterioscler Thromb Vasc Biol 24:41–53

75. Buras JA, Rice L, Orlow D, et al (2004) Inhibition of C5 or absence of C6 protects from sepsis
mortality. Immunobiology 209:629–635

76. Czermak BJ, Sarma V, Pierson CL, et al (1999) Protective effects of C5a blockade in sepsis.
Nat Med 5:788–792

77. Kim JY, Park JS, Strassheim D, et al (2005) HMGB1 contributes to the development of acute
lung injury after hemorrhage. Am J Physiol Lung Cell Mol Physiol 288:L958–965

78. Yang H, Ochani M, Li J, et al (2004) Reversing established sepsis with antagonists of en-
dogenous high-mobility group box 1. Proc Natl Acad Sci USA 101:296–301

79. Andersson UG, Tracey KJ (2004) HMGB1, a pro-inflammatory cytokine of clinical interest:
introduction. J Intern Med 255:318–319

80. Guo YL, Colman RW (2005) Two faces of high-molecular-weight kininogen (HK) in an-
giogenesis: bradykinin turns it on and cleaved HK (HKa) turns it off. J Thromb Haemost
3:670–676

81. Fein AM, Bernard GR, Criner GJ, et al (1997) Treatment of severe systemic inflammatory
response syndrome and sepsis with a novel bradykinin antagonist, deltibant (CP-0127).
Results of a randomized, double-blind, placebo-controlled trial. CP-0127 SIRS and Sepsis
Study Group. JAMA 277:482–487

82. Nolan A, Weiden MD, Thurston G, Gold JA (2004) Vascular endothelial growth factor block-
ade reduces plasma cytokines in a murine model of polymicrobial sepsis. Inflammation
28:271–278

83. Armour J, Tyml K, Lidington D, Wilson JX (2001) Ascorbate prevents microvascular dys-
function in the skeletal muscle of the septic rat. J Appl Physiol 90:795–803

84. Heller AR, Groth G, Heller SC, et al (2001) N-acetylcysteine reduces respiratory burst but
augments neutrophil phagocytosis in intensive care unit patients. Crit Care Med 29:272–276



The Role of the Endothelium 227

85. Harlan JM, Winn RK (2002) Leukocyte-endothelial interactions: clinical trials of anti-
adhesion therapy. Crit Care Med 30 (suppl 5):S214–S219

86. Bless NM, Tojo SJ, Kawarai H, et al (1998) Differing patterns of P-selectin expression in lung
injury. Am J Pathol 153:1113–1122

87. Bogen S, Pak J, Garifallou M, Deng X, Muller WA (1994) Monoclonal antibody to murine
PECAM-1 (CD31) blocks acute inflammation in vivo. J Exp Med 179:1059–1064

88. Peng X, Hassoun PM, Sammani S, et al (2004) Protective effects of sphingosine 1-phosphate
in murine endotoxin-induced inflammatory lung injury. Am J Respir Crit Care Med
169:1245–1251

89. Seybold J, Thomas D, Witzenrath M, et al (2005) Tumor necrosis factor-alpha-dependent
expression of phosphodiesterase 2: role in endothelial hyperpermeability. Blood 105:3569–
3576

90. Szabo C, Southan GJ, Thiemermann C (1994) Beneficial effects and improved survival in
rodent models of septic shock with S-methylisothiourea sulfate, a potent and selective
inhibitor of inducible nitric oxide synthase. Proc Natl Acad Sci USA 91:12472–12476

91. Cobb JP, Natanson C, Hoffman WD, et al (1992) N omega-amino-L-arginine, an inhibitor
of nitric oxide synthase, raises vascular resistance but increases mortality rates in awake
canines challenged with endotoxin. J Exp Med 176:1175–1182

92. Laubach VE, Shesely EG, Smithies O, Sherman PA (1995) Mice lacking inducible nitric
oxide synthase are not resistant to lipopolysaccharide-induced death. Proc Natl Acad Sci
USA 92:10688–10692

93. Choi KB, Wong F, Harlan JM, Chaudhary PM, Hood L, Karsan A (1998) Lipopolysaccharide
mediates endothelial apoptosis by a FADD-dependent pathway. J Biol Chem 273:20185–
20188

94. Hotchkiss RS, Tinsley KW, Swanson PE, Karl IE (2002) Endothelial cell apoptosis in sepsis.
Crit Care Med 30 (Suppl 5):S225–228

95. Kawasaki M, Kuwano K, Hagimoto N, et al (2000) Protection from lethal apoptosis in
lipopolysaccharide-induced acute lung injury in mice by a caspase inhibitor. Am J Pathol
157:597–603

96. Cheng T, Liu D, Griffin JH, et al (2003) Activated protein C blocks p53-mediated apoptosis
in ischemic human brain endothelium and is neuroprotective. Nat Med 9:338–342

97. Kan W, Zhao KS, Jiang Y, et al (2004) Lung, spleen, and kidney are the major places for
inducible nitric oxide synthase expression in endotoxic shock: role of p38 mitogen-activated
protein kinase in signal transduction of inducible nitric oxide synthase expression. Shock
21:281–287

98. Badger AM, Bradbeer JN, Votta B, Lee JC, Adams JL, Griswold DE (1996) Pharmacological
profileof SB203580, a selective inhibitorof cytokine suppressivebindingprotein/p38kinase,
in animal models of arthritis, bone resorption, endotoxin shock and immune function.
J Pharmacol Exp Ther 279:1453–1461

99. Branger J, van den Blink B, Weijer S, et al (2002) Anti-inflammatory effects of a p38 mitogen-
activated protein kinase inhibitor during human endotoxemia. J Immunol 168:4070–4077

100. Zingarelli B, Sheehan M, Wong HR (2003) Nuclear factor-kappaB as a therapeutic target in
critical care medicine. Crit Care Med 31 (suppl 1):S105–S111

101. Matsuda N, Hattori Y, Jesmin S, Gando S (2005) Nuclear factor-kappaB decoy oligodeoxynu-
cleotides prevent acute lung injury in mice with cecal ligation and puncture-induced sepsis.
Mol Pharmacol 67:1018–1025

102. Gadjeva M, Tomczak MF, Zhang M, et al (2004) A role for NF-kappa B subunits p50 and p65
in the inhibition of lipopolysaccharide-induced shock. J Immunol 173:5786–5793

103. Dugo L, Collin M, Allen DA, et al (2005) GSK-3beta inhibitors attenuate the organ in-
jury/dysfunction caused by endotoxemia in the rat. Crit Care Med 33:1903–1912



Differential Effects of Pro-Inflammatory Mediators
on Alveolar Epithelial Barrier Function

M.A. Matthay and J.-W. Lee

Introduction

There has been considerable progress in understanding how the alveolar epithe-
lium regulates fluid balance under normal and pathologic conditions [1]. There
is a growing understanding of the important role of the alveolar epithelium in
regulating inflammatory responses as well as in responding to several pathologic
stimuli. Progress has been made possible because of the availability of excellent an-
imal models for in vivo studies as well as several in vitro models including studies
of cultured human alveolar epithelial type II cells. This chapter will focus on how
fourdifferent inflammatorymolecules (tumornecrosis factor [TNF]-α, leukotriene
D4 (LTD4), interleukin [IL]-1β, and transforming growth factor [TGF]-β) can ex-
ert differential effects on the barrier and fluid transport capacity of the alveolar
epithelium with a particular focus on their relevance to acute lung injury (ALI).

Normal Alveolar Epithelial Barrier

The normal alveolar epithelial barrier is very tight, resisting the passive movement
of even small molecules and solutes such as electrolytes. Thus, the alveolar epithe-
lium can be viewed as mostly impermeable to macromolecules such as proteins
including albumin and immunoglobulins. Tight junctional proteins maintain this
tight barrier between alveolar type I and type II epithelial cells [1].

In addition to these tight barrier properties, the alveolar epithelium has spe-
cialized functions that facilitate gas exchange. First, the alveolar epithelial type II
cell is the source of surface active material, which is necessary for the maintenance
of normal alveolar stability in the gas filled lung. Secondly, alveolar epithelial
type II cells, as well as alveolar epithelial type I cells, have the capacity to re-
move excess alveolar fluid by vectorial ion transport. Sodium is taken up by apical
ion channels and extruded actively by the basolateral Na/K-ATPase [1]. Chlo-
ride follows by unknown pathways under normal conditions and via the cystic
fibrosis transmembrane conductance regulator (CFTR) under cAMP stimulated
conditions [2, 3]. Water follows the mini-osmotic gradient produced by vectorial
transport of sodium and chloride into the interstitium and results in isomolar
alveolar fluid clearance. Both catecholamine-dependent and catecholamine inde-
pendent mechanismscanupregulate alveolarfluid clearance [2,4]. Thebest studied
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mechanisms are cAMP-dependent fluid clearance [1], which also has relevance at
the time of birth when endogenous catecholamines upregulate alveolar fluid clear-
ance [5]. Endogenous release of catecholamines has the capacity to upregulate
alveolar fluid clearance under pathologic conditions of severe shock when there is
a large increase in plasma catecholamine levels [6]. Delivery of a beta 2-adrenergic
agonist to the distal airspaces of the lung markedly increases the rate of alveolar
fluid clearance in several species, including the human lung [1].

The Alveolar Epithelial Barrier to Pathologic Stimuli

Prior studies from our research group indicated that the alveolar epithelial bar-
rier is remarkably resistant to injury. In these early studies, we instilled either
autologus plasma or autologus serum into the distal airspaces of sheep. We found
that large numbers of neutrophils and monocytes were chemoattracted to the
alveoli, presumably secondary to release of chemotactic molecules from alveolar
macrophages. The large numbers of inflammatory cells did not result in a change
in alveolar epithelial permeability to protein [7]. Furthermore, fluid transport
mechanisms were intact with a normal rate of alveolar fluid clearance.

A subsequent study in human volunteers was carried out to further assess the
responseof thealveolar epithelial to inflammatory stimuli [8].LeukotrieneB4 (LTB4

was instilled into the distal airspaces of human volunteers with a fiberoptic bron-
choscope. The volunteers were lavaged subsequently at 4 and 24 hours in the LTB4-
instilled right middle lobe as well as in the contralateral control saline-instilled
lingula. The results showed that large numbers of neutrophils were attracted to
the alveoli, similar to the numbers of neutrophils lavaged from patients with acute
respiratory distress syndrome (ARDS), but there was no increase in permeability
to protein across the alveolar epithelium (Table 1). These results indicated that the
epithelial barrier was resistant to injury and could permit the passage of inflam-
matory response cells, neutrophils and monocytes, to chemotactic stimuli in the
airspaces without injuring the alveolar epithelium.

A subsequent experimental study in our laboratory demonstrated that instilla-
tion of Escherichia coli endotoxin into the distal airspaces of the sheep lung resulted
in a large influx of neutrophils at both 4 hours and 24 hours in anesthetized as

Table 1. Bronchoalveolar lavage fluid cells and proteins after LTB4 instillation in human lungs [8]

Variable NaCl LTB4 P value

Total Cells (106) 6.8 ± 1.0 26.4 ± 5.0 0.002
Neutrophils (%) 12.2 ± 4.6 55.7 ± 6.0 0.001
Macrophages (%) 82.7 ± 5.9 40.5 ± 6.1 0.001
Total Protein (mg) 15.4 ± 4.8 23.4 ± 3.5 NS

The data are the mean ± SE of data from 11 human subjects.
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well as unanesthetized sheep. Again, similar to the studies with LTB4, there was no
change in alveolar epithelial permeability to protein in either the alveolar to the
interstitial direction or from the vascular compartment to the airspaces. Also, the
normal rate of alveolar fluid clearance was well preserved in these sheep studies
over 24 hours [9].

When live bacteria were instilled into the airspaces, specifically Pseudomonas
aeruginosa, there was evidence of a modest bidirectional increase in alveolar ep-
ithelial permeability. This finding was evident at both 4 and 24 hours in studies in
sheep. Further, the rate of alveolar fluid clearance was diminished by the presence
of bacteria and the alteration in epithelial barrier permeability. Nevertheless, there
still was measurable net alveolar fluid clearance, although the rate of clearance
was reduced [9]. Follow-up studies demonstrated that several products of Pseu-
domonas were responsible for the decrease in fluid clearance and the increase in
lung epithelial permeability.

Several other studies in experimental animals using clinically relevant models
of acute lung injury (ALI) demonstrated, as expected, that the alveolar epithelial
barrier can be injured and that alveolar fluid clearance is reduced. For example,
acid-induced lung injury, as a model of aspiration in humans, resulted in a reduc-
tion in alveolar fluid clearance proportionate to the degree of alveolar epithelial
injury. In one study in rabbits, we found that an anti-IL-8 monoclonal antibody
reduced acid-induced lung injury by reducing neutrophil mediated injury [10].
Also, in a more recent study, treatment with a beta-2 adrenergic agonist upregu-
lated alveolar fluid clearance and decreased lung endothelial permeability in rats
with acid-induced lung injury [11].

Pro-inflammatory Molecules and Alveolar Epithelial Fluid Transport

We and other investigators have measured several pro-inflammatory mediators
in the airspaces of patients with ALI as well as in animal models [12, 13]. The
acute pro-inflammatory response is an important part of innate immunity that
regulates neutrophil and monocyte influx designed to neutralize a variety of in-
fectious agents and microbial products. The effects of some of these inflammatory
moleculesonalveolar epithelial functionhave resulted in several interesting effects.

For example, we discovered several years ago that TNF-α can markedly upreg-
ulate the rate of alveolar fluid clearance in rats with Pseudomonas pneumonia [14].
Another group of investigators confirmed this finding with a different model of
ischemia-reperfusion and shock in rats [15]. Finally, additional studies by our
group demonstrated that TNF-α has the capacity to upregulate sodium-dependent
transport in both human type II cells as well as in the rat lung [16, 17]. There is
also some evidence that prolonged exposure to TNF-α in vitro can have a depres-
sant effect on gene expression and ion transport in the alveolar epithelium [18].
Thus, the presence of a pro-inflammatory molecule may upregulate alveolar fluid
clearance, perhaps an adaptive response that is useful for the alveolar epithelium
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to minimize the quantity of excess fluid in the airspaces of the acutely injured and
inflamed lung.

Another group of investigators discovered that LTD4, a pro-inflammatory
molecule, has the capacity to upregulate alveolar epithelial sodium and fluid trans-
port [19]. Previous studies from our research group demonstrated that markedly
elevated levels of LTD4 are found in patients with ALI [20]. At that time we thought
that the effects of LTD4 were simply to increase vasoconstriction and broncocon-
striction as part of the inflammatory response in the lung. However, this recent
work indicates that LTD4 can upregulate alveolar fluid clearance through increased
activity and membrane localization of the Na/K-ATPase. The effect is mediated
through the CysLT receptor 2, which was identified in both A549 cells and rat
alveolar epithelial type II cells. Thus, both TNF-α and LTD4 have the capacity to
upregulate alveolar fluid clearance at the same time that they are enhancing the
inflammatory responses in the airspaces of the lung.

There are other inflammatory molecules that we have studied that have the
opposite effect on alveolar epithelial fluid transport. The best studied and perhaps
the most relevant are IL-1β and TGF-β1. Both of these cytokines are important in
the pathogenesis of ALI and interestingly both of them appear to have deleterious
effects on alveolar epithelial barrier function and the capacity of the epithelium to
reabsorb edema fluid.

IL-1β is one of the most biologically active cytokines in pulmonary edema and
bronchoalveolar lavage (BAL) fluids of patients with ALI [21,22]. There is evidence
that IL-1β increases microvascular lung epithelial permeability based on both in
vitro and in vivo models of ALI. IL-1β also enhances alveolar epithelial repair by
increasing cell spreading [23] and fibroblast proliferation [22]. In recent studies, we
found that IL-1β decreases expression of the epithelial sodium channel α-subunit
in alveolar epithelial cells via a p38 mitogen activated protein kinase (MAPK)-
dependent signaling pathway. IL-1β significantly reduced the amiloride-sensitive
fraction of the transepithelial current and sodium transport across rat alveolar
type II cell monolayers. IL-1β also decreased both basal and dexamethasone-
induced epithelial sodium channel α-subunit (αENaC) mRMA levels and total and
cell surface protein expression. The inhibitory effect of IL-1β on αENaC expression
was mediated by the activation of p38-MAPK in both rat and human alveolar type II
cells [24]. These results provide evidence that IL-1β may play an important role in
reducing the resolution of alveolar edema in the acutely injured lung.

Another important cytokine with pro-inflammatory properties is TGF-β1. Re-
cent work from our research group using mouse studies with both bleomycin and
endotoxin-induced lung injury indicated that TGF-β1 is an important early me-
diator of lung injury by increasing permeability across the lung endothelium and
epithelium [25]. In more recent studies, we determined that TGF-β1 significantly
reduces the amiloride-sensitive fraction of sodium uptake and fluid transport
across monolayers of both rat and human alveolar type II cells. TGF-β1 also signif-
icantly decreased αENaC mRNA and protein expression and inhibited expression
of a luciferase reporter downstream of the αENaC promoter in lung epithelial cells.
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The inhibitory effect was mediated by activation of the MAPK, ERK1/2 [26]. Also,
TGF-β1 inhibited the amiloride-sensitive alveolar fluid transport in an in vivo rat
model at a dose that was not associated with a change in epithelial protein perme-
ability. These results, therefore, indicate that TGF-β1 can decrease the capacity of
the alveolar epithelium to remove excess fluid from the distal airspace the lung.

Gene Expression of Inflammatory and Transport Molecules
in Human Alveolar Type II Cells

In order to explore the specific capacity of the alveolar epithelium to regulate
the production of pro-inflammatory and ion transport genes, we have carried
out a series of studies in cultured monolayers of human alveolar type II cells.
Several experimental preparations have been used including the use of cytomix,
a combination of IL-1β, TNF-α, and interferon (IFN)γ as well as authentic hu-
man pulmonary edema fluid from patients with ALI. In these studies, the cytomix
preparation and the human edema fluid induce a marked increase in gene expres-
sion for several pro-inflammatory genes while at the same time inducing a marked
decrease in gene expression for ion transport molecules as well as molecules that
regulate epithelial cell permeability.

Conclusions

In summary, there is convincing evidence that alveolar fluid clearance and the
resolution of alveolar edema is driven by active vectorial ion transport (sodium
and chloride) across the alveolar epithelium of the lung. Mortality in patients with
ALI is significantly higher in the presence of impaired alveolar fluid clearance
(Fig. 1) [27]. Several catecholamine dependent and independent mechanisms can
markedly upregulate alveolar fluid clearance. Interestingly, evidence accumulated
in the last 10 years indicates that several pro-inflammatory molecules that have
a role in the pathogenesis of ALI by increasing lung vascular permeability can
also play an important role in the capacity of the alveolar epithelium to modulate
lung fluid balance. Specifically, TNF-α and LTD4 can upregulate alveolar fluid
clearance at the same time that they have pro-inflammatory effects in the nearby
lungparenchyma.On theotherhand, IL-1βandTGFβhavenowbeendemonstrated
to decrease alveolar epithelial fluid transport, thus probably contributing to the
magnitude of ALI by diminishing the resolution of alveolar edema as well as
enhancing the formation of lung edema. There is much to be learned about the
differential effects of pro-inflammatory genes and their protein projects on lung
fluid balance in the setting of ALI.
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Fig. 1. These data demonstrates that submaximal or impaired alveolar fluid clearance in patients
with acute lung injury is associated with a higher mortality when compared to patients with
maximal alveolar fluid clearance. From [26] with permission
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Macrocirculatory Disturbances

D. De Backer

Introduction

Severe sepsis and septic shock are associated with a state of inadequate supply
or inappropriate use of oxygen and nutrients by the cells, which may result in
tissue hypoxia and lactic acidosis. Unless transient, this will lead to irreversible
tissue damage and death. As tissue necrosis is uncommon in patients with septic
shock [1], adaptationsoforganmetabolismare likely tooccur inorder to shutdown
some less essential metabolic pathways and to preserve vital functions. This will
lead to the development of multiple organ failure (MOF), which can be reversed
if the underlying sepsis can be cured. MOF is frequent in patients with severe
sepsis, despite the restoration of whole-body hemodynamics. Early interventions
aiming at normalizing some specific hemodynamic end-points improve outcome
of patients in septic shock [2]. Nevertheless, many patients will still develop MOF
and will ultimately die, suggesting that other factors were not corrected. Global
hemodynamic alterations, blood flow redistribution, microvascular blood flow
alterations, and direct cellular toxicity may play a crucial role in the development
of MOF in these patients.

Global Hemodynamic Alterations

Septic shock is a complex syndrome characterized by profound cardiovascular
derangements, with alterations in cardiac function, blood flow redistribution be-
tween organs, and microcirculatory alterations (Table 1).

Decreased Vascular Tone

Hypotension is a typical finding in sepsis. The endothelial dysfunction is respon-
sible for a marked resistance to vasopressors. The contractile response of arteries
and arterioles to norepinephrine or phenylephrine is decreased in sepsis [3], and
this effect is mediated by circulating factors. Several factors have been implicated
in this vasodilatory state. The role of nitric oxide (NO) has been clearly demon-
strated [4, 5] but NO inhibitors have failed to improve survival in patients with
septic shock even though these compounds increased arterial pressure. Vaso-
pressin deficiency has also been reported [6, 7], but it is unlikely that vasopressin
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Table 1. Principal hemodynamic alterations in septic shock

Systemic hemodynamic alterations:

Decreased vascular tone
Hypovolemia

Absolute (increased permeability)
Relative (blood pooling, especially in the splanchnic bed)

Decreased venous compliance
Myocardial dysfunction

Systolic
Diastolic

Regional blood flow alterations:

Hepatosplanchnic area
Kidneys
Brain

Microvascular blood flow alterations

deficiency takes a prominent role in the early phases of sepsis as vasopressin levels
are usually elevated at the onset of sepsis [7]. In addition to vasopressin deficiency,
vasopressin resistance may also occur as there is desensitization of the vasopressin
receptor, both in arteries and in venules [8, 9]. Inadequate cortisol levels or re-
sistance to corticosteroids has also been suggested, especially in the late stages
of sepsis, and hydrocortisone administration may help to restore the pressor re-
sponse to norepinephrine in patients with septic shock [10]. Thus, it is likely that
several mechanisms are implicated in the sepsis-induced vasodilatory state, but
the contribution of each of these factors may vary over time.

Decreased Venous Return

A decrease in venous return is always present in sepsis. Pinsky et al. [11] reported
that endotoxin administration caused a marked decrease in venous tone within
5 min. At this time, endotoxin did not yet alter arterial vasomotor tone. The venous
congestion is not equally distributed, with the splanchnic area more prone to
develop venous pooling. By studying portal pressure/flow relationships, Ayuse et
al. [12] reported that endotoxin increased the closing pressure without changes in
the slope of the relationship. This leads to portal hypertension and venous pooling,
which is further exacerbated since the veno-arterial response in the mesenteric
artery is abolished.

In addition, vascular permeability is increased in sepsis [13,14], and the combi-
nation of venous pooling and plasma losses results in severe hypovolemia. Finally,
Stephan et al. [15] observed that the venous vascular compliance is decreased in
septic patients, so that central venous pressure may underestimate the severity of
hypovolemia.
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The consequences of hypovolemia include low or inadequate cardiac output
and redistribution of regional blood flows, especially at the expense of splanchnic
and renal blood flows.

Myocardial Depression

Septic shock is characterized by a high cardiac output and peripheral vasodilata-
tion. However, various studies have demonstrated that myocardial contractility
may be altered despite a normal or increased cardiac output. After administration
of low doses of endotoxin to human healthy volunteers, Suffredini et al. [16] re-
ported that the left ventricular ejection fraction was decreased although cardiac
output increased. Myocardial depression is always observed in septic patients,
whatever the method used to investigate cardiac function (e. g., echocardiogra-
phy, isotopes), but its severity is variable and is related to outcome. Myocardial
depression is related to the liberation of mediators of sepsis (e. g., cytokines, NO,
etc), however the mechanisms responsible for myocardial depression are unclear.
Myocardial contractility and relaxation are both affected. Histological changes are
common and troponin can be released although coronary blood flow is increased
and lactate is usually consumed by the heart. Nevertheless, myocardial depression
resolves completely after resolution of sepsis.

Altered Oxygen Extraction and VO2/DO2 Dependency

A large number of experimental studies have shown that oxygen extraction ca-
pabilities are impaired in sepsis and that this may lead to the development of
dependence of oxygen consumption (VO2) on oxygen delivery (DO2), or VO2/DO2

dependency, even at normal values of DO2 [17, 18]. Several factors may account
for the altered extraction capabilities, including blood flow redistribution between
the organs (due to the altered vascular tone), redistribution of blood flow within
each organ (due to microvascular alterations), and altered use of oxygen by the
cells (also called cytopathic hypoxia). The contribution of each of these factors is
difficult to separate. As oxygen extraction is preserved in a perfused capillary [19],
the role of decreased vascular tone and microcirculatory alterations seems to be
prominent, at least in the early phases of sepsis. Due to methodological limitations,
the reality of this phenomenon in humans has been difficult to demonstrate [20].

Consequences of Global Hemodynamic Alterations

To what extent doe the hypotension induced by the decrease in vascular tone
contribute to organ hypoperfusion and dysfunction in sepsis? In experimental
studies, correction of hypotension by adrenergic agents has been shown to im-
prove survival [21]. In patients, several studies have reported that the severity of
hypotension is related to outcome [22]. In addition, the more severe the resis-
tance to catecholamines, the greater the likelihood of developing organ failure and
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death [23, 24]. In a recent study, Varpula et al. [25] showed that a mean arterial
pressure (MAP) level below 65 mmHg on arrival, during the first 6 hours, and
the first 48 hours were independently associated with 30 day-mortality. Raising
blood pressure above this level may not be associated with improved tissue perfu-
sion [26, 27]. Accordingly, it may be considered that maintaining blood pressure
above 65 mmHg is sufficient.

The combination of hypovolemia and myocardial dysfunction may be severe
enough to impair cardiac output, leading to an inadequate DO2 (whether VO2/DO2

dependency occurs or not). Many experimental studies have shown that cardiac
output is initially low and that the hyperdynamic state can only be observed after
fluid resuscitation [28,29]. To what extent does impaired DO2 play a role in the de-
velopment of organ dysfunction? Several studies have reported that cardiac output
and DO2 are higher in survivors than in non-survivors [30–32]. In addition, it has
been shown that early hemodynamic optimization is associated with a decreased
risk of new onset organ failure and death [2]. What component of the decreased
DO2 is the most relevant? Early fluid administration prolongs survival time in ani-
mals [33], but its role in patients with septic shock, especially in prolonged shock,
remains unclear. The role of inotropic agents is also controversial. Combining the
findings of the studies by Rivers et al. [2] and Gattinoni et al. [34], it may be
proposed that hemodynamic optimization using fluids, inotropic agents, and red
blood cell transfusions may be beneficial in the early phases of sepsis. In the late
stages of sepsis, maintaining DO2 at high levels seems not to be beneficial, even
though it seems reasonable to avoid tissue hypoperfusion. The lowest tolerable
level of DO2 has to be defined on an individual basis.

Regional Blood Flow Alterations

In addition to systemic hemodynamic alterations, sepsis can induce profound
alterations in blood flow distribution. These can lead to cerebral blood flow alter-
ations, with possible loss of cerebral autoregulation, and alterations in renal and
hepatosplanchnic blood flow.

Hepatosplanchnic Hemodynamics

Important histological alterations can be observed in the gut [35] and the liver [36]
during sepsis. Although a direct cytotoxic effect of NO or cytokines can be en-
visaged, an imbalance between oxygen supply and demand in the splanchnic area
may participate in the development of organ failure [37].

Anatomic and Physiologic Considerations

The liver is supplied by a dual circulation. Hepatic artery and portal blood flow
mix at the entry of the hepatic acinus, the functional liver unit, which is 2 mm
wide. Before being drained by the hepatic vein, blood will provide oxygen and
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nutrients to the hepatocytes located in the sinusoids, but a wide PO2 gradient can
be observed between the periportal and the centrilobular zones, so that the latter is
much more sensitive to decreases in oxygen supply. In normal circumstances, the
hepatic vein saturation (ShO2) is close to mixed venous oxygen saturation (SvO2)
so that the gradient between ShO2 and SvO2 is usually less than 10% [38].

The vascularization of the gut is also complex. In normal conditions, the
distribution of blood flow to the different components is related to metabolic
requirements. The amount of blood flow (by unit of weight) directed to the small
intestine is twice the amount directed to the stomach or the colon, the mucosal and
submucosal regions receiving 70% of total gut blood flow. Metabolism is also very
high in this area since the gut mucosa accounts for 10–15% of total body protein
production. In addition, the gut mucosa is particularly sensitive to alterations in
blood flow due to the typical vascularization of the microvilli. The artery to the
villus forms a right angle with the mesenteric artery so that plasma skewing occurs
and hematocrit is lower in the mucosa than in the submucosa and serosa. Also, the
artery is located in the center of the villus, surrounded by laces of veins in which the
flows are in the opposite direction. This particular anatomical vascular network
allows better absorption of the nutrients but also leads to countercurrent exchange
of oxygen from the artery to the vein along their parallel course. Consequently, PO2

decreases from the base of the villus to its tip, reaching values as low as 30 mmHg. In
healthy humans, Temmesfeld-Wollbrück et al. [39] reported that oxygen saturation
ranged from 50 to 100%.

Effects of Sepsis on Hepatosplanchnic Blood Flow and Metabolism

The normal splanchnic VO2 represents 20–35% of total VO2 while splanchnic
blood flow is equal to 25% of cardiac output. In sepsis, various studies [40,41] have
reported a disproportionate increase in metabolic requirements in the splanchnic
area (and especially in the liver with an increase in glucose output, lactate uptake,
andprotein synthesis).This increase inhepatosplanchnicmetabolismexceeded the
increase in splanchnic blood flow so that the gradient between SvO2 and ShO2 was
increased, ranging between 20 and 40% [38,42]. We [43] reported that an increased
gradient (higher than 10%) was associated with covariance of hepatosplanchnic
VO2 and DO2 during dobutamine administration or application of positive end-
expiratory pressure (PEEP) in septic patients.

The effects of sepsis on the gut are more difficult to investigate. In experi-
mental studies on septic shock, mesenteric blood flow has been reported to be
reduced, unchanged, or increased. Such differences may depend on the animal
species, the technique used to investigate regional blood flow, and the amount
of fluid administered. Even in experimental models in which mesenteric blood
flow was increased, alterations in gut mucosal permeability, gut mucosal acidosis,
and histological lesions can be observed [35]. Tugtekin et al. [44] reported that
perfusion of the villi was markedly decreased and heterogeneous, and the authors
ascribed the increase in gut mucosal PCO2 to these alterations in mucosal blood
flow. In addition, oxygen extraction capabilities are impaired by endotoxin, both
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in the liver and in the gut, and this could possibly be related to increased blood flow
heterogeneity [45]. In septic patients, Temmesfeld-Wollbrück et al. [39] reported
that gut oxygen saturation heterogeneity was increased and ranged from 0 to 70%.

In humans, liver dysfunction [46] and gut mucosal acidosis [47] are associated
with a poor outcome.Even though therapeutic strategies using gastric mucosal
pH as a goal yielded controversial results [48, 49], it seems reasonable to avoid
interventions that could further impair hepatosplanchnic blood flow.

Renal Perfusion

Renal failure frequently occurs in sepsis and several mechanisms have been im-
plicated, including renal hypoperfusion [50]. The involvement of renal blood flow
impairment in sepsis has been reviewed recently by Langenberg et al. [51]. These
authors reported that renal blood flow was impaired in 62% of the 159 animal stud-
ies identified; in most of these studies renal blood flow impairment was associated
with signs of under-resuscitation (hypodynamic shock). As the measurement of
renal blood flow is difficult in critically ill patients, it remains uncertain whether
renal blood flow alterations have a role in the development of acute renal failure in
hyperdynamic sepsis. Indirect evidence suggests that afferent and efferent arterial
tone in sepsis may be affected differently. Increasing MAP from 65 to 85 mmHg
with norepinephrine, which acts primarily on the afferent arteriole, is not accom-
panied by any change in urine output or creatinine clearance [27], while partially
replacing norepinephrine by vasopressin administration, which acts mostly on the
efferent arteriole, increased both urine output and creatinine clearance [52].

Cerebral Perfusion

The role of cerebral hypoperfusion in the development of septic encephalopathy is
also controversial [53–55]. Although cerebral autoregulation theoretically protects
the brain from whole body hemodynamic alterations [53], some authors have
found that this regulatory mechanism may be lost in sepsis [56, 57]

Conclusion

Sepsis induces profound metabolic and cardiovascular derangements. Although
some indices indicate that cytopathic hypoxia may coexist, early correction of
global hemodynamic alterations is essential. Regional blood flow alterations may
persist after correction of systemic hemodynamics. Although a systematic increase
in splanchnic blood flow may not be warranted, several arguments suggest that
the maintenance of an adequate balance between oxygen supply and demand in
the splanchnic area may be useful.
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The Microcirculation Is a Vulnerable Organ in Sepsis

P.W.G. Elbers and C. Ince

Introduction: The Microcirculation as a Key Organ in Septic Shock

There is now increasing evidence that the microcirculation is one of the key organs
in the pathophysiology of sepsis and septic shock [1, 2]. However, its importance
does not seem to be reflected in current clinical practice. In addition, the surviving
sepsis campaign, a world wide effort to decrease sepsis related mortality, focuses
only minimally on the importance of the microcirculatory organ [3]. By definition,
sepsis is initiated by an infectious agent and the ultimate therapeutic strategy will
therefore be its removal from the body. However, the systemic hostile inflammatory
response that ensues from sepsis is the real culprit of this disease. The microcir-
culation is severely affected by this inflammatory response. At the same time, it
is responsible for maintaining or even fueling the devastating disease process of
sepsis and septic shock. Even in the face of stable systemic hemodynamics, the
microcirculation may be at risk giving rise to regional dysoxia, causing multiple
organ failure (MOF) and ultimately death.

Monitoring the microcirculation provides sensitive information on the severity
of disease and the effect of therapies [4]. In addition, if sepsis is a disease of
the microcirculation [5], resuscitating this organ may become as important as
antibiotic therapy.

The Microcirculation as a Functional System

The microcirculation is one of the largest organs in the body and by definition
comprises vessels with a diameter roughly smaller than 100 micrometers, i. e.,
arterioles, capillaries, andvenules, and thebloodflowing in them.Theentire length
of the organ is lined with endothelial cells, which are surrounded by smooth muscle
cells mainly in arterioles. Red blood cells (RBCs) and the various types of white
blood cell (WBC) complete the cellular picture. However, the microcirculation also
embraces a large number of other components including platelets, coagulation
factors, and a plethora of cytokines and chemokines [6].

Among the many different microcirculatory functions, the delivery of oxygen
to tissue is paramount. This is part of the microcirculation’s larger function as
an exchanger of nutrients and waste products and chemical or cellular signals.
Pertaining to sepsis, however, it is also important to realize the pathogenic interplay
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Fig. 1. Microcirculatory and mitochondrial distress syndrome is the condition whereby distribu-
tive alterations of microcirculatory control result in shunting and regional mis-match of oxygen
supply and demand leading to cellular distress and organ failure. Circulatory failure as a result
of sepsis can be initiated by various insults such as trauma, infection, and shock. The treatment
of circulatory failure is initially based on correction of systemic variables. In distributive shock,
however, systemic variables may be normal and regional hypoxia can persist due to microcircu-
latory shunting and dysfunction. Here, time and therapy contribute to the definition and nature
of microcirculatory and mitochondrial distress syndrome. Left uncorrected, the different cel-
lular and inflammatory components of the distressed microcirculation interact and increase in
severity, fueling the respiratory distress of the parenchymal cells and ultimately leading to organ
failure (adapted from [2] with permission)

of WBCs, RBCs, endothelium, and messenger molecules in inflammation and
coagulation in the microcirculation [6].

It is, therefore, not surprising that this organ is a highly regulated one. Central
to coordinating microcirculatory perfusion, and hence oxygen delivery (DO2), is
the endothelium. In order to meet the oxygen requirements of the cells, the en-
dothelium will ultimately control arteriolar smooth muscle cell tone, both directly
and via neurohumoral mechanisms, resulting in altered microcirculatory perfu-
sion. This is achieved by mechanisms such as stress and strain sensing as well
as detection of oxygen and metabolic waste products [7]. Endothelium produced
nitric oxide (NO) deserves special attention in this context. Apart from its role
as a mediator of the inflammatory cascade, the vasodilating properties of NO are
important in regulating the distribution of perfusion.
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The endothelium, helped by WBCs, platelets, and messenger molecules, is
also involved in the regulation of inflammation and coagulation [8]. Interestingly,
RBCs are nowadays considered to regulate perfusion by releasing vasodilators,
such as NO [9] and ATP [10], when encountering oxygen deprived environments.
In addition it has been shown that deoxyhemoglobin can convert nitrite to NO,
causing arteriolar dilatation [11]. Thus, apart from transporting oxygen, RBCs
effectively redirect flow and oxygen where it is needed.

Scientific Importance of the Microcirculation

Realization of the importance of the microcirculation is growing, although the
concept of microcirculatory disturbances in sepsis is not new. For several decades
now, microcirculatory alterations have been recognized as important in patho-
physiology [12, 13], and given attention as potential therapeutic targets [14].

One reason why the microcirculation has become an organ of increasing inter-
est in critical care medicine is the validation [15] and clinical introduction [16] of
orthogonal polarization spectral (OPS) imaging, which has allowed direct visual-
ization of the human microcirculation in solid organs and mucous membranes for
the first time. OPS imaging has revealed the important role of microcirculatory ab-
normalities inpatientswith sepsis, confirming results fromanimalmodels [17–19].
In addition, we recently validated a scoring system for quantification of microcir-
culatory abnormalities in sepsis [20] and introduced side stream dark field (SDF)
imaging [2, 21] as a successor to OPS imaging.

The Septic Microcirculation

In their hallmark clinical study of 50 patients with severe sepsis, De Backer and
colleagues showed that functional vessel density and the proportion of perfused
vessels smaller than 20 micrometer were significantly lower than in healthy con-
trols, non-septic patients, and post-cardiac surgery patients [17]. In addition,
microvascular deterioration was more severe in non-survivors. A later study by
the same group showed that septic patients who did not survive their disease
showed no improvement in microvascular perfusion whereas survivors did [18].
Our group reported comparable observations of sluggish microcirculatory perfu-
sion in a small group of septic patients. These observations also independently
showed sustained flow in larger vessels confirming that shunting of the capillaries
of the microcirculation is a key feature of sepsis [2, 19, 22].

Thesefindings are important because they show that there is indeedamicrovas-
cular problem in human sepsis, which is associated with organ dysfunction and
death. It also shows the importance of looking at the actual vessels. There has been
some confusion in the past, where plethysmography [23], xenon dilution [24], and
laser Doppler flux [25] have been used as surrogate markers for microcirculatory
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perfusion. While observations using these techniques have brought useful data,
it should be remembered that they cannot account for any degree of microcir-
culatory heterogeneity, a characteristic property of sepsis. For this reasons, these
techniques should be considered as indicators of regional rather than microcircu-
latory perfusion.

Of particular note is that the clinical picture of a disturbed microcirculation
in sepsis is paralleled by the abnormalities found in various animal models using
intravital microscopy and carbon injection. Observations in mice, rats, and dogs
invariably show a reduction in perfused capillary density, and stopped flow next to
areas of hyperdynamic blood flow, resulting in increased heterogeneity in skele-
tal and intestinal microvascular beds, despite normotensive conditions [26–29].
It has also been shown experimentally that hemorrhagic shock does not affect
microvascular perfusion as much as endotoxic shock for the same degree of hy-
potension [27].

An increased heterogeneity of the microcirculation was shown to provoke areas
of hypoxia and generally impaired oxygen extraction, both mathematically and
in a porcine model of septic shock [30]. This means that while some parts of the
microcirculation may do relatively well after an insult, there may be other more
vulnerable areas that are underperfused; we called these areas, microcirculatory
weak units [22].

Dysfunction of Individual Microcirculatory Components

To understand the causes of microcirculatory abnormalities in sepsis, the impact of
sepsis on the different components of the microcirculation needs to be considered.
A common finding has been the decreased reactivity of smooth muscle cells to
vasostimulating drugs in experimental sepsis. This applies to both vasoconstric-
tors [31, 32] and vasodilators [33]. However, observations in humans show that
the response to nitroglycerin and acetylcholine is still preserved, at least partially
[17, 19]. Vasoconstrictor activity can be improved by inhibiting the formation of
NO [34]. This is in agreement with observations of a severely deregulated state of
the endothelium in sepsis, in which there is massive overexpression of inducible
NO synthase (iNOS). As this expression is not homogeneous within tissues, the
resulting heterogeneous vasodilatation may partly explain the variation in micro-
circulatory perfusion observed clinically [35–37].

Apart from its central role in sepsis, the endothelium also serves a passive role
lining the vessel wall. In sepsis, this barrier becomes swollen and leaky allowing
fluids to extravasate passively [38]. This leads to pooling of blood, which is lost
from the macrocirculation, and edema formation, which is aggravated by a pos-
sible impairment in the glycocalyx [39] and a reduction in the anionic charge on
endothelial cells [40, 41], allowing charged proteins to pass.

There are numerous interactions of WBCs and the endothelium during sepsis,
representing the crossroads between inflammation and coagulation. Essentially
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a complex defense system against infectious agents, this interaction is responsible
for the inflammatory response. Many mediators are released, including tumor
necrosis factor (TNF)-α, interleukin (IL)-1β, IL-8, E-selectin, P-selectin, and the
intercellular adhesion molecules (ICAMs) [6,42]. All are responsible for activating
neutrophils, while the latter three, produced both in endothelium and monocytes,
are also associated with the initiation of a procoagulant state [43]. While leukocytes
themselves become less deformable [44], and have a prolonged capillary transit
time [45], potentially blocking microcirculatory flow, the procoagulant state can
give rise toacoagulopathyof consumption,disseminated intravascular coagulation
(DIC).This coagulopathygives rise tomicrothrombi in the smallest of vessels, again
disrupting flow, in addition to the induced risk of bleeding as a result of diminished
levels of platelets andclotting factors, both in themicro- andmacrocirculation [46].

The RBC is an underappreciated cell. By virtue of its hemoglobin content,
it is responsible for the bulk transport of oxygen. RBCs have to pass through
capillaries smaller than the cell itself, meaning that they have to deform to be
able to pass in single file through the smallest vessels, where there is an effective
capillary hemodilution, with hematocrits far lower than that in arterial blood [47].
In addition, a consistent finding both clinically and experimentally is that RBC
deformability is decreased in sepsis. This decrease may be caused by direct binding
of endotoxin to the RBC, complement coating of RBCs, membrane alterations
associated with intracellular ATP changes or the formation of schistocytes in
DIC [48–50]. Of specific interest is that the reduction in RBC deformability has
been shown to be NO dependent [51], suggesting that the excessive NO production
in sepsis may contribute to RBC dysfunction.

Dysoxia and the Oxygen Extraction Paradox

The factors discussed above lead to a disturbed microcirculation which, if not
corrected adequately, is associated with a very poor prognosis [18]. From this
perspective, the microcirculation may be considered as the motor of sepsis [2].
The model that fits this viewpoint is that a disturbed microcirculation in sepsis will
lead to an uneven distribution of tissue oxygenation leading to regional dysoxia
in microcirculatory weak units, loss of cell viability, organ failure and death. It
may, therefore, be meaningful to see if there is evidence linking microcirculatory
abnormalities and dysoxia.

In terms of clinical practice, it is perhaps surprising that regional monitoring
is not more routinely applied. Usually, clinicians rely on global parameters such as
DO2, oxygen uptake (VO2), cardiac output, and arterial and central venous blood
pressure. Urinary output, lactate levels and skin color or temperature are only
nonspecific markers of regional perfusion. Circumstantial evidence of abnormal
regional perfusion and dysoxia comes from the fact that patients can be dying even
in the light of normal or even improving global parameters.

It is a common finding in clinical sepsis that there is a deficit in oxygen ex-
traction rate. This is illustrated by a normal or high mixed venous oxygen satu-
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ration (SvO2). However, trials aimed at maximizing tissue DO2 did not improve
outcome [52, 53]. This means that either the oxygen is not reaching the micro-
circulation or that cells and their mitochondria are simply not using it. Indeed
mitochondrial dysfunction has been found to be associated with the severity
and outcome of clinical sepsis [54]. This type of mitochondrial malfunction in
the presence of normal to high amounts of tissue oxygenation has been termed
cytopathic hypoxia [55]. Postulated mechanisms include reverse cytochrome in-
hibition by NO and peroxynitrite. One important study supporting the existence
of cytopathic hypoxia examined pigs in which oxygen availability, as assessed by
Clark electrodes, remained high while metabolic distress persisted as evidenced
by a high intragastric CO2 [56]. While cytopathic hypoxia may be one of the causes
of metabolic dysfunction, evidence is gathering that microcirculatory blood flow
is the main determinant of metabolic disturbance. Microcirculatory PO2, assessed
by palladium porphyrin phosphorescence, revealed that tissue PO2 was less than
venous PO2 in a similar pig model [22]. These findings were direct evidence of
shunting of oxygen transport from the microcirculation. Further evidence for this
theory comes from a recent study by Creteur et al. in which they showed, amongst
other findings, that increasing microcirculatory blood flow, as assessed by OPS
imaging, with dobutamine, led to an increase in tissue CO2 levels, confirming that
capillary blood flow was an important factor in the metabolic challenge in this
setting [57].

Microcirculatory and Mitochondrial Distress Syndrome (MMDS)

The pathophysiology of severe sepsis unresponsive to treatment is determined at
the level of the microcirculation and probably at the mitochondrial level. The time
factor and the nature of treatment being applied are also important elements. We
have termed these deleterious changes, the microcirculatory and mitochondrial
distress syndrome(MMDS), inwhich timeand therapyareconsideredas important
modulating co-factors [2]. It is important to realize that MMDS is caused by the
initial septic hit but then acts to maintain the septic process. Keeping in mind the
pathophysiological mechanisms described previously, the microcirculation may
be considered a motor of sepsis, effectively shutting down oxygen, nutrient, and
medication supply to regions of tissue.

In addition, it should be remembered that the intricate process of microcir-
culatory organ function is very much dependent on the stage of the disease and
the therapy given [2]. An intensive care unit (ICU) physician treating many septic
patients will only rarely see one in whom at least some form of therapy has not
been started, e. g., fluids, vasoactive agents, antibiotics, or steroids. This will also
apply to the microcirculation in sepsis, where it would be more correct to take
into account time and therapy when defining microcirculatory disorders. Since
the microcirculatory organ can now be visualized in humans more readily, it is
possible to directly observe the microscopic consequences of sepsis in man.



The Microcirculation Is a Vulnerable Organ in Sepsis 255

Monitoring the Microcirculation

The hallmark of global hemodynamics in septic shock is that of a hyperdynamic
circulation. This means an increased cardiac output, low arterial blood pressure,
and decreased total peripheral resistance. However, this increased flow does not
necessarily result in adequate tissue oxygenation in weak microcirculatory beds in
vulnerable organs or their compartments. This paradox can only be explained by
extreme heterogeneity of the microcirculation or massive arteriovenous shunting
of blood flow, effectively bypassing at least some microcirculatory areas.

As has been pointed out above, it is very easy to miss regional perfusion and
oxygenation deficits if solely relying on monitoring global parameters. Important
studies by LeDoux et al. [58] and Bourgoin et al. [59] emphasize this idea, showing
that resuscitating septic patients to a higher mean arterial pressure (MAP) using
norepinephrine actually reduced urinary excretion, increased gastric PCO2, and
worsened capillary blood flow.

There is already a myriad of techniques to monitor the microcirculation or
at least some form of regional tissue perfusion or oxygenation. Although a de-
tailed overview is not within the scope of this chapter, some methods should be
mentioned. The easiest available today is probably SvO2 [60]. Although classically
considered a global parameter, low SvO2 values are indicative of tissue at risk of
anaerobic metabolism. In the absence of a pulmonary artery catheter the clini-
cian may use the central venous or right atrial oxygen saturation, ScvO2 or SraO2.
Interpretation of these values should, however, be made with caution, as they do
not correlate with individual SvO2 values. However, following their trend may be
useful in clinical practice [61]. Also of interest is the ateriovenous PCO2 difference,
essentially monitoring whether cells are actually doing their job and receiving
the energy to do so, especially when combined with the arteriovenous O2 content
difference [62].

Monitoring regional oxygenation can be done by gastric pH or gastric, sub-
lingual, buccal, esophageal, or tissue PCO2 measurement, informing us about the
splanchnic vascular bed [36,58,64,65]. For measurement of tissue oxygenation the
clinician may use methods based on different forms of spectroscopy to measure
microcirculatory hemoglobin saturation [36]. For the moment, the best available
monitors of the human microcirculation are SDF and OPS imaging. The SDF imag-
ing technique [21] seems promising as it completely avoids tissue reflectance by
illuminating tissue from the side, rendering sharp images of the microcircula-
tion, especially capillaries. An important point to remember, however, is that even
though microcirculatory distress, especially measured sublingually, is a serious
clinical observation which is associated with a bad prognosis, the microcircu-
lation of other organs may remain unresponsive to therapy and need different
recruitment procedures to return to normal function.

It should be noted that images of the septic microcirculation show considerable
variation. Again, time and therapy play a very important role here. For example,
we observed stagnant capillaries in pressure guided resuscitation in sepsis. In
contrast, capillaries with continuous or even hyperdynamic flow may be observed
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next to capilliaries with stopped flow in ongoing fluid resuscitated sepsis. We are
currently trying to classify these flow abnormalities in distributive shock based
on actual moving pictures. This may be helpful in identifying the causes of these
microcirculatory disturbances and perhaps in fine tuning our therapies.

Resuscitating the Microcirculation

Knowledge of the pathophysiology of microcirculatory disturbances in sepsis can
be used to resuscitate this organ. Loss of barrier function resulting in edema
and the heterogeneity of the microcirculation will cause an effective loss of fluids
to the global circulation. In addition, there is a flow redistribution at a regional
level, predominantly away from vulnerable organs such as those of the splanch-
nic region [65]. In order to recruit microcirculatory units that are not adequately
perfused, it is important to administer fluids and inotropic agents as a first step
in microcirculatory resuscitation. Fluids have been shown to increase tissue oxy-
genation in an animal model [66]. In addition, dobutamine has been shown to
increase microcirculatory perfusion and oxygenation in humans [57, 67]. How-
ever, this may not hold later on in sepsis underscoring the importance of time in
MMDS. In addition, fluids are not effective in consolidating pathological shunting
and cause redistribution of blood flow due to both hemorheological effects and
altered regulatory properties of the vasculature [36].

While normalizing the systemic hemodynamic profile can be considered the
first step in rescuing the microcirculation in shock, apparently adequate resuscita-
tion based on systemic variables is not always affective in recruiting the microcir-
culation. That is why direct monitoring of the microcirculation may be so crucial.
Under such conditions other microcirculatory recruitment maneuvers may be
considered.

The roleofNOin sepsis is complexand incompletelyunderstood [35].However,
it is now generally accepted that nonselective inhibition of NOS is not a good thing
as it led to increased mortality in human sepsis as shown by the early termination
of a phase III trial [68]. This is perhaps also the basis of ambiguous results of
administering steroids, which non-selectively inhibit NOS in sepsis. However, as
mentioned before, from a microcirculatory point of view, selective iNOS inhibition
could be favorable in redistributing blood flow away from where it is not needed
towards dysoxic regions. In fact, in a porcine model of septic shock, selective iNOS
inhibition led to improved intestinal tissue oxygenation and normalization of the
gastric PCO2 gap [36]. Still, the need for a more robust understanding of iNOS
inhibition, including issues such as the best timing and the degree of blockade,
calls for cautiousness in clinical use of this strategy.

As far as the microcirculation is concerned, one should probably be careful
with vasopressor therapy in sepsis. Although it is obvious from Ohm’s law that
at least some perfusion pressure is necessary for blood flow to different organs,
resuscitating septic patients to fixed blood pressure endpoints using vasopressor
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agents may actually jeopardize microcirculatory flow. This was shown by Boerma
et al. who administered a relatively high dose of vasopressin to a septic shock
patient [69]. While urine output and blood pressure improved, sublingual micro-
circulation came to a halt and the patient died. When using vasopressors it may
be advisable to monitor the microcirculation in some way. This has been done
by Dubois et al. who showed that vasopressin at lower doses did not affect the
sublingual microcirculation [70].

Vasodilators could resuscitate the microcirculation by improving flow and by
raising capillary hematocrit [71]. As previously mentioned, it has been shown that
the septic microcirculation is still responsive to acetylcholine [17]. Experimentally,
we have shown that the NO donor, SIN-1, improved gastric PCO2 in a porcine
model of fluid resuscitated shock [36]. Commonly used NO donors in intensive
care medicine are nitroglycerin and nitroprusside. In septic patients, marked
improvement of microcirculatory flow was indeed observed after nitroglycerin
infusion [19].

It may be counterintuitive that NO donating vasodilators and iNOS inhibiting
agents can both be beneficial for the microcirculation, although theoretically,
they can be combined. This problem can be circumvented, however, by using
other vasodilators such as ketanserin, a 5-hydroxytryptamine antagonist. We used
this agent in hypertension after cardiopulmonary bypass and preliminary results
show a marked improvement in microvascular perfusion suggesting this approach
may prove useful in sepsis. Another potentially useful agent in this respect is
prostacyclin, which has been shown to improve oxygen consumption and delivery
as well as improve gastric intramucosal pH (pHi) in human studies [72, 73].

The vasodilator, pentoxifylline, is a phosphodiesterase inhibitor and has multi-
ple modes of actions that could resuscitate the microcirculation. Pentoxifylline has
experimentally been shown to improve cardiac output, RBC and WBC deforma-
bility and to interfere with leukocyte endothelial interaction, causing less WBC
stasis [74–78]. In addition, recent research shows that pentoxifylline may act as an
iNOS inhibitor thus possibly correcting microcirculatory perfusion maldistribu-
tion in sepsis [79]. Indeed, pentoxifylline improved oxygen extraction in an animal
model [80], and in septic neonates it was even shown to induce a survival benefit.
However, a large clinical trial, in adults or children, has not been conducted so
far [81].

Interest in activated protein C (APC) started because of its anticoagulant ac-
tivity, inactivating factors Va and VIIIa and increasing fibrinolysis [42]. As such
it could counteract DIC and may help resuscitate the microcirculation. APC is
currently the only drug that has shown a survival benefit in human sepsis; tri-
als with other anticoagulant drugs have failed to do so [82]. This finding may
be explained by the fact that APC also has anti-inflammatory properties. From
a microcirculatory perspective, this is beneficial as APC has been shown to reduce
endotoxin-induced leukocyte rolling and adhesion as well as improving small ves-
sel blood flow [83]. In addition, APC is also known to block iNOS, which may be
another explanation for the observed microcirculatory improvements [84].
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Conclusion

The microcirculation is a vulnerable organ in sepsis. At the same time, the dis-
eased microcirculation fuels sepsis, leading to organ failure. Direct monitoring of
the microcirculation itself or at least some indicator of regional perfusion may,
therefore, be useful in assessing the course of disease.

However, it should be noted that the effectiveness of many microcirculatory
recruitment maneuvers has not yet been confirmed in appropriate clinical trials.
Similarly, although there is strong evidence that an improving microcirculation
is associated with a better outcome, this is not necessarily a cause and effect
relationship and resuscitation of the microcirculation has not been the subject of
clinical investigation at the present time. Nevertheless, it is important to remember
that normal or improving global hemodynamics or oxygen-derived parameters
do not preclude microcirculatory dysfunction, multiple organ failure, and fatal
outcome.Themicrocirculationmaybe themuch-neededend-pointof resuscitation
of clinical sepsis and septic shock. In addition to accepted therapies, such as
fluidresuscitationand inotropic support,promisingmicrocirculatory resuscitating
maneuvers includingvasodilatation, iNOS inhibition, andmulti-actiondrugs, such
as APC, could complement the armamentarium of tomorrow’s ICUs.
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The Cholinergic Anti-inflammatory Pathway:
Connecting the Mind and Body

C.J. Czura, S.G. Friedman, and K.J. Tracey

When the parts of the body and its humors are not in harmony, then the
mind is unbalanced and melancholy ensues, but on the other hand, a quiet
and happy mind makes the whole body healthy.

Papai Pariz Ferenc, 1680

Introduction

The recent discovery of the ‘cholinergic anti-inflammatory pathway’ – the efferent
arm of an inflammatory reflex through which the central nervous system (CNS)
can monitor and regulate peripheral inflammation – has identified several possible
therapeutic approaches for inflammatorydiseases.Acetylcholine, theprimaryneu-
rotransmitter of the vagus nerve, interacts with nicotinic acetylcholine receptors
expressedonmacrophages toprevent cytokine release, therebyattenuating thehost
response to inflammatory stimuli [1–3]. This neurotransmitter receptor system on
cells of the innate immune system may explain, at least in part, the therapeutic
effects of several cholinergic agonists, including nicotine, which have proven effi-
cacious in inflammatory bowel disease [4]. Animals devoid of cholinergic-immune
system communication, either by surgical vagotomy or genetic disruption of the
α7 subunit of the acetylcholine receptor, are exquisitely sensitive to inflammatory
stimuli [2, 3]. These observations suggest that the vagus nerve, via acetylcholine,
regulates inflammatory responses to maintain immunological homeostasis.

Studies in animal models of systemic inflammation suggest that the choliner-
gic anti-inflammatory pathway can be harnessed therapeutically, because direct
electrical stimulation of the cervical vagus nerve attenuates pro-inflammatory
cytokine release and hypotension during endotoxemia or ischemia/reperfusion
injury [2, 3, 5]. The cholinergic anti-inflammatory pathway has enabled develop-
ment of at least two therapeutic approaches to treat inflammatory diseases. Vagus
nerve stimulators are safe, clinically approved implantable devices used to treat
epilepsy that is refractory to medical therapy [6, 7]. Direct electrical stimulation
of the cervical vagus nerve in animals inhibits the release of pro-inflammatory
cytokines such as tumor necrosis factor (TNF) and interleukin (IL)-1β in en-
dotoxemia, ischemia/reperfusion injury, and hemorrhagic shock, suggesting that
devices similar to those already in clinical use may be useful for inflammatory
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disease. It is plausible to consider that modulation of vagus nerve activity through
biofeedback may provide a method to rationally suppress inflammation. Biofeed-
back can be used to effectively modulate vagus nerve activity, as evidenced by
alteration of heart rate, skin temperature, and the galvanic skin response. This
raises the theoretical possibility that biofeedback may be used to modulate va-
gus nerve activity, which in turn controls the immune response in inflammatory
disease.

Identification of the Cholinergic Anti-inflammatory Pathway

Evolution has conferred redundant mechanisms to inhibit inflammation and pre-
vent excessive release of TNF and other cytokines [8]. These anti-inflammatory
mechanisms provide a critical level of control that restrains inflammation at the
site of activation. An optimal inflammatory response leads locally to host defense
against infection, stimulation of tissue remodeling and wound healing, and recov-
ery. These beneficial inflammatory responses are mediated in part by TNF and
other cytokines produced by inflammatory cells. Failure of the anti-inflammatory
mechanisms to control the cytokine responseduring local inflammationcan lead to
systemic cytokine release, which induces wide-spread organ dysfunction, diffuse
coagulation, hypotension, and death. Thus, uncontrolled systemic inflammatory
responses can become more deleterious to the host than the initial insult.

TNF has been validated as a clinically important therapeutic target, because
anti-TNF antibodies have significantly improved the lives of many patients with
rheumatoid arthritis [9] and Crohn’s disease [10]. Recent studies revealed that
acetylcholine, the principle neurotransmitter of the vagus nerve, significantly
attenuates the release of TNF and other pro-inflammatory cytokines (IL-1β,
IL-6, IL-18, and high mobility group box protein 1 [HMGB1]) from human
macrophages [2, 3, 11]. Direct electrical stimulation of the peripheral vagus nerve
in vivo, during lethal endotoxemia in rodents, inhibits organ TNF synthesis, at-
tenuates peak serum TNF levels, and prevents the development of shock [2, 3].
Electrical vagus nerve stimulation and cholinergic agonists protect against in-
flammatory responses, at least in part, by inhibiting endothelial cell activation
and leukocyte migration into local sites of inflammation [12]. The molecular in-
teraction of acetylcholine with macrophages has been localized to the α7 subunit
of the nicotinic acetylcholine receptor, and subsequent downstream signaling in-
hibits the activity of the transcriptional activators, nuclear factor kappa B (NF-κB),
JAK2, and signal transducers and activators of transcription 3 (STAT3) [3, 11–13].
Mice rendered genetically deficient in the α7 subunit produce significantly more
endotoxin-induced TNF as compared to wild-type mice, and vagus nerve stimu-
lation fails to attenuate TNF release. These studies suggest that the CNS regulates
peripheral inflammation via the cholinergic anti-inflammatory pathway in real
time to maintain immunological homeostasis, and that this activity is critically
dependent upon the α7 subunit of the acetylcholine receptor.



The Cholinergic Anti-inflammatory Pathway: Connecting the Mind and Body 265

Functional Anatomy of the Vagus Nerve

The vagus nerve is well positioned at the interface of the immune and central ner-
vous systems because it innervates the liver, spleen, lungs, kidneys, digestive tract,
and other visceral organs that act as routes of entry or filters for pathogens and their
products. The vagus nerve has motor functions in the larynx, diaphragm, stomach,
and heart; and sensory functions in the ears, tongue, and visceral organs, includ-
ing the liver. Inflammatory signals in peripheral tissues activate afferent signals in
the vagus nerve that are relayed to the hypothalamus and stimulate the release of
ACTH [14]. Afferent vagus nerve signaling has been implicated in the development
of fever after administration of endotoxin [15]. It now appears that the vagus nerve
is an integral component of a reflex loop that can detect and regulate inflammatory
responses in real-time. Inflammation activates an ascending signal that can be
relayed to the hypothalamus to activate humoral anti-inflammatory mechanisms;
efferent vagus nerve signals can rapidly and specifically inhibit macrophages in
tissues [1]. This new knowledge of the cholinergic anti-inflammatory pathway sug-
gests that it may be possible to target peripheral cholingeric macrophage receptors.

Clinically Approved Vagus Nerve Stimulators

The recent discovery that electrical stimulation of the vagus nerve protects against
the lethal sequelae of endotoxemia suggests that this modality may be used to
treat other inflammatory diseases [1–3, 5]. Application of either 1V or 5V to the
cervical vagus nerve in endotoxemic rats prevents the development of significant
hypotension, without suppressing heart rate. This vagus nerve stimulation pro-
tocol significantly inhibits TNF synthesis in the liver, heart, and other organs,
and reduces serum cytokine levels in murine models of endotoxemia, sepsis, and
peritonitis [2, 3, 16]. Vagus nerve stimulation is also effective in animal models
of inflammation that are independent of endotoxin, including transient aortic oc-
clusion with reperfusion injury [5], myocardial ischemia/reperfusion injury [17],
carrageenan-induced hindlimb edema [18], and hypovolemic shock [19, 20].

Vagus nerve stimulation has been approved for clinical use by the Food and
Drug Administration (FDA) for patients who suffer from complex partial seizures
or generalized seizures where consciousness is lost, and do not respond to anti-
convulsant medication, as well as for patients who are ineligible for brain surgery.
It is also used as a treatment for photosensitive epilepsy and epilepsy resulting
from head injury. Vagus nerve stimulation showed early promise in an open, acute
phase pilot study of adults in a treatment-resistant major depressive episode [7,21].
Clinical experience with vagus nerve stimulators in over 30,000 patients world-
wide indicates that the modality is safe, and can reduce seizure rates by up to
45%; complications of immunosuppression or secondary infection have not been
reported [22, 23].
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Vagus Nerve Stimulators as Anti-inflammatory Devices

The identification of the cholinergic anti-inflammatory pathway as an endogenous
inflammatory control mechanism suggests that it may be possible to manipulate
cytokine activity to therapeutic advantage. Preclinical studies using vagus nerve
stimulation have shown that augmentation of efferent vagus nerve signaling at-
tenuates cytokine release in several rodent models of inflammation [2,3,5,16–20].
Because inflammatory responses are an important component of many diverse
diseases, and products of the innate immune system are being pursued as new
therapeutic targets [24], it is intriguing to consider the use of vagus nerve stimu-
lators as anti-inflammatory devices.

Presently available vagus nerve stimulation devices are implanted subcuta-
neously in the left chest wall, and a lead tunneled to the left vagus nerve. The
generator is about the size of a small tape measure; three small leads are attached
to the nerve in a procedure that takes 1 to 2 hours. For a few days following the
procedure, the generator is programmed to stimulate the vagus nerve at regu-
lar intervals (e. g., for 30 seconds every 5 minutes) at a frequency established by
the physician using a computer. If a seizure begins between intervals, the patient
activates the stimulator by swiping a magnet over the chest where the device is
implanted. Complications of the stimulator are restricted to tingling in the neck,
hoarseness, and a slight cough during nerve stimulation, in addition to those asso-
ciated with the surgery itself, such as injury to the vagus nerve, carotid artery, and
internal jugular vein. It is now interesting to consider whether a modified device
could be used in the future to treat inflammation.

Inflammatory Bowel Disease

Several studies have demonstrated a reduced risk of developing ulcerative colitis
in cigarette smokers as compared to nonsmokers [25, 26]. Nicotine, a cholinergic
agonist, controls inflammation in ulcerative colitis by inhibiting pro-inflammatory
cytokines (IL-2, IL-8, and IL-10) and by stimulating increased mucus production
in the colon [27]. Ex-smokers with ulcerative colitis experience improvement in
symptoms with nicotine gum, and transdermal nicotine patches combined with
mesalamine or steroids result in clinical improvement in other patients [28].

Therapeutic targeting of cytokine activity has recently been validated as a treat-
ment of Crohn’s disease. Hommes et al. investigated inhibition of mitogen activated
protein kinases (MAPKs), which are critical effectors mediating cytokine release,
with the experimental therapeutic agent CNI-1493 in patients with Crohn’s dis-
ease [29]. Twelve patients with severe Crohn’s disease were randomly assigned to
receive either 8or 25 mg/m2 CNI-1493daily for 12days.Clinical endpoints included
safety, Crohn’s Disease Activity Index, Inflammatory Bowel Disease Questionnaire,
and the Crohn’s Disease Endoscopic Index of Severity. Colonic biopsies prior to
enrollment displayed enhanced JNK and p38 MAPK activation as compared with
non-Crohn’s disease samples. Treatment with CNI-1493 resulted in diminished
JNK phosphorylation and TNF production, as well as significant clinical benefit
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and rapid endoscopic ulcer healing, with clinical responses observed in 67% of
patients at four weeks, and 58% at eight weeks. Endoscopic improvement occurred
in all but one patient. Fistula healing occurred in 80% of patients and steroids
were tapered in 89% of patients. These observations suggest that inhibition of cy-
tokine activity can improve the clinical course of patients suffering from Crohn’s
disease [29].

In subsequent experiments in rodent models of inflammation, CNI-1493 was
observed to cross the blood-brain barrier and act as a pharmacological vagus nerve
stimulator [30]. Parasympathetic efferent neurons derived from the vagus nerve
providemajormodulatory input to thegastrointestinal tract, and information from
the gut reaches the CNS via the vagus nerve. Thus, pharmacologic vagus nerve
stimulation, as well as electrical vagus nerve stimulation, may alter the clinical
course of inflammatory bowel disease.

Rheumatoid Arthritis

Recent studies have demonstrated that the microenvironment of rheumatoid syn-
ovial fluid is a pro-inflammatory milieu that contains high levels of TNF. TNF
occupies a major pathogenic role in the development of rheumatoid arthritis joint
destruction [31, 32]. Autonomic neuropathy occurs with increased frequency in
patients with rheumatoid arthritis [33]. Toussirot et al. found a significant dif-
ference between the R-R interval variation during the Valsalva maneuver when
rheumatoid arthritis patients were compared with control patients [34]. Tan et
al. used sympathetic skin response (SSR) and tests of R-R interval variation to
assess dysautonomia in patients with rheumatoid arthritis and frequent abnor-
malities were noted, regardless of whether or not there were clinical symptoms of
autonomic dysfunction [35]. Our new understanding of the regulatory influence of
vagus nerve activity on inflammation suggests that insufficient vagus nerve activity
may underlie excessive TNF production in the joints of patients with rheumatoid
arthritis. Patients may eventually be taught to control SSR and R-R interval vari-
ation through biofeedback, and they may reap the benefit of self-inhibition of
TNF.

Diabetes

TNF has been implicated in the development of autoimmune diabetes in stud-
ies of mice that are genetically susceptible to develop diabetes, and in clinical
studies [36]. TNF also plays an important role in gestational diabetes, and is as-
sociated with dyslipidemia and hypertension in type 1 diabetes [37, 38]. Early
activation of the inflammatory immune response may be a critical factor in juve-
nile type 1 diabetes [39,40]. A recent study revealed that administration of nicotine
to diabetes-prone mice prevents hyperglycemia, a finding that is consistent with
a role for cholinergic regulation of this complication of inflammation [41]. Other
complications of diabetes may be dependent upon excessive cytokine responses.
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For example, Ohara et al. have shown that IL-6 and vascular endothelial growth
factor (VEGF) are produced within the intraocular area, and contribute to the
hyperpermeability of retinal vessels in preproliferative diabetic retinopathy [42].
High vitreous levels of soluble TNF receptors relate to retinopathy severity, and
may be reactive products of inflammation [43]. Doganay et al. compared cytokine
levels with grades of diabetic retinopathy and concluded that these molecules
(TNF, NO, IL-1β, sIL-2R, IL-6, and IL-8) act together during the course of dia-
betic retinopathy, and may serve as therapeutic targets for this disease [44]. As
with rheumatoid arthritis, autonomic dysfunction is also associated with diabetes.
The potential contribution of diabetic neuropathy to reduced vagal regulation of
inflammation during diabetes is unknown.

Atherosclerosis

Excessivecytokineresponseshavebeen implicated in thepathogenesisofatheroscle-
rosis [45].Macrophages representasignificantcellular componentof theatheroscle-
rotic plaque, and synthesis of pro-inflammatory cytokines is necessary for fatty
streak development. Elevated TNF receptor levels are associated with carotid
atherosclerosis inpatients less than70yearsold, suggesting that chronic subclinical
inflammation could account for this association, and modification of these inflam-
matory pathways could be used to prevent atherosclerosis-associated stroke [46].
Atherogenesis is the consequence of a variety of effector mechanisms rather than
the result of a single functional molecule or cell type; however, inflammation
is pivotal to plaque formation. It will be interesting to determine if cholinergic
modulation can retard this process and prevent or delay the complications of
atherosclerosis.

Biofeedback and Inflammation

For centuries patients and physicians have believed in the vague notion that an in-
dividual’s ‘state of mind’ can influence somatic health. Folklore, art, and literature
are replete with the themes that grief and depression are associated with increased
disease susceptibility, and positive beliefs and expectations augur wellness. A fa-
miliar example is the death of a devoted spouse shortly after he or she buries
their loved one. To students and some philosophical individuals, the fundamental
relationship between a sense of well-being and health is indisputable.

The vagus nerve is a mixed nerve composed of approximately 80% sensory
fibers relaying information between the brain from the head, neck, thorax and
abdomen. The sensory afferent cell bodies of the vagus nerve reside in the no-
dose ganglion and transmit information to the area postrema and nucleus trac-
tus solitarius (NTS), two regions that are active during peripheral inflammation.
Ascending vagus nerve signals excite second-order neurons within the NTS via
glutamate activity [47]. The NTS forms the apex of a vagus feedback loop that
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modulates visceral activity through two mechanisms: NTS neurons inhibit a sub-
set of neurons within the dorsal motor nucleus of the vagus (DMV), which provide
cholinergic excitatory signals to the viscera and the digestive tract; the NTS also
suppresses visceral activity by activating other inhibitory DMV efferent neurons
through nonadrenergic, noncholinergic pathways [37]. The NTS and DMV both
contain blood vessels that lack a functional blood brain barrier, making these
important circumventricular organs. This may allow these brain regions to receive
sensory input from diffusible circulating factors such as lipopolysaccharide (LPS),
TNF, or IL-1, in addition to afferent vagus nerve signals [48].

From the NTS, information is relayed to the rest of the brain via an auto-
nomic feedback loop, direct projections to the medullary reticular formations,
and through the parabrachial nucleus and the locus ceruleus. From the latter,
connections emanate to the hypothalamus, the amygdala (mood regulation), and
the entire forebrain (for a review see [49]). Recognition of common molecules
and receptors in the immune, endocrine, and nervous systems validates the time-
less supposition that the mind and body are connected. The cholinergic anti-
inflammatory pathway may provide the neural substrate that links higher cortical
function (mind) and immune responses (body). Some recent insight into central
mechanisms that regulate efferent vagus nerve activity has been gained from phar-
macological studies of the cholinergic anti-inflammatory pathway, which indicate
that although nicotinic receptors are essential for neural regulation of inflamma-
tion in the periphery, muscarinic receptors within the brain can activate efferent
vagus nerve signaling and inhibit cytokine release [50].

One implication of the anti-inflammatory activity of the efferent vagus nerve
is that subjects may be trained to rationally augment vagus nerve activity;
it may one day be possible to use this approach to modulate peripheral in-
flammatory and immune responses. This approach has been used in the treat-
ment of headache [51], temporomandibular joint disorders [52], Raynaud’s dis-
ease [53], hypertension [54], diabetes [55], urinary [56] and fecal incontinence [57],
asthma [58], and intermittent claudication [59] with varying success. Electronic
sensors and graphic displays monitor physiologic parameters such as heart rate,
skin temperature, and muscle tension. Subjects learn to associate visual and audi-
tory signals from a computer interface with changes in involuntary functions, and
to recognize mental and physical states that induce desired physiologic changes
regulated by the parasympathetic (vagus) nervous system (e.g., blood pressure
reduction, warming of extremities, slowing of heart rate).

Classical teaching indicates that the parasympathetic nervous system rarely
works in isolation; in most instances, the sympathetic nervous system, via
epinephrine and norepinephrine, interacts with parasympathic acitivity, and the
two systems working together finely tune homeostasis. Similarly, sympathetic
and parasympathetic activities collaborate to maintain immunological home-
ostasis [1]. The sympathetic nervous system can increase circulating levels of
catecholamines, which stimulate the release of the anti-inflammatory cytokine
IL-10 via β-adrenergic receptors. The activities of the sympathetic nervous sys-
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tem are diverse; although the two branches of the autonomic nervous system act
synergistically to control inflammation via catecholamine-induced IL-10 release,
in different contexts epinephrine and norepinephrine can stimulate the release of
pro-inflammatory cytokines and counteract the predominantly anti-inflammatory
activity of the parasympathetic nervous system [60].

Conclusion

As reviewed above, there is abundant evidence implicating autonomic dysfunction
or cytokine excess in diseases with inflammatory pathology such as sepsis, Crohn’s
disease, and rheumatoid arthritis. The identification of a vagus nerve mechanism
that regulates cytokine activity and immune cell activation now suggests that some
neurological or nervous system disorders may in fact manifest as inflammatory
conditions, and thus alter the optimal treatment. The ability to rationally modulate
vagus nerve activity through biofeedback techniques now makes it plausible to
consider how to study the regulation of cytokine synthesis in volunteer subjects
and patients under varying states of vagus nerve activity.
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Coagulation in Sepsis

W.J. Wiersinga, M. Levi, and T. van der Poll

Introduction

Activation of inflammatory and coagulation pathways is an important event in
the pathogenesis of sepsis. In sepsis, which can be defined as the disadvantageous
systemic host response to infection, the blood coagulation system is triggered. Ac-
tivation of coagulation and deposition of fibrin as a consequence of inflammation
can be considered instrumental in containing inflammatory activity to the site
of infection. However, inflammation-induced coagulation may be detrimental in
those circumstances when the triggered blood coagulation system is insufficiently
controlled, which can lead to the clinical syndrome of disseminated intravascular
coagulation (DIC) and microvascular thrombosis. In recent years, the vital roles
of several elements of the hemostatic mechanism have, in part, been unraveled,
including those of tissue factor, thrombin, protease-activated cell receptors (PARs),
and activated protein C (APC). Clinical trials of recombinant anticoagulants for
sepsis have been conducted, of which only recombinant human APC reduced the
28-day mortality of sepsis patients.

Coagulation and Tissue Factor

Tissue factor is regarded as one of the primary initiators of the inflammation-
induced coagulation cascade [1, 2]. Tissue factor is constitutively expressed by
different cell types in the extravascular compartment, including pericytes, car-
diomyocytes, smooth muscle cells, and keratinocytes. As a consequence of a dis-
ruption in the vascular integrity, tissue factor-expressing cells located in the un-
derlying cell layers come into contact with bloodstream. In addition, during severe
inflammation, cells present in or lining the circulation, in particular monocytes
and endothelial cells, will also start expressing tissue factor. Interaction of tissue
factor with factor VIIa, which circulates at low levels in the bloodstream, results
in the activation of factor X either directly, or indirectly through the activation
of factor IX. Activated factor X converts prothrombin (factor II) to thrombin,
which finally induces the conversion of fibrin to fibrinogen, thereby inducing the
formation of a blood clot. Amplification is required for adequate clot formation,
which in particular takes place on phospholipid surfaces presented by activated
platelets. Besides this more traditional role for cell-associated tissue factor, more
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recent evidence points to a role for blood-borne tissue factor in blood clotting. In-
deed, microparticles bearing tissue factor and the P-selectin glycoprotein ligand-1
(PSGL-1, a protein expressed by leukocytes) have been found to be essential for
the formation of thrombi at sites of injury (Fig. 1). Such microparticles, which can
be released by monocytes upon activation by bacterial agonists or cytokines, read-
ily bind to activated platelets through an interaction between PSGL-1 within the
particle and itsnatural counter receptor,P-selectin, expressedbyplatelets.Asacon-
sequence, at sites of injury, activated platelets and tissue factor rich microparticles
assemble, allowing for a potent and concentrated procoagulant response. Hence,
activation of platelets may accelerate fibrin formation in several ways: by providing
a phospholipid surface at which amplification of coagulation is facilitated and by
concentrating tissue factor rich microparticles.

Fig. 1. Role of monocytes, platelets, and tissue factor rich microparticles in coagulation. Upon
activation of monocytes by bacteria, endotoxin or cytokines, tissue factor (TF) expression is
increased and microparticles containing tissue factor and the adhesion molecule P selectin
glycoprotein ligand 1 (PSGL-1) are released. Tissue factor rich microparticles bind to activated
platelets via an interaction between PSGL-1 and P selectin

The pivotal role of tissue factor in the activation of coagulation during a sys-
temic inflammatory response syndrome, such as produced by endotoxemia or
severe sepsis, has been established by many different experiments. Generation of
thrombin in humans injected intravenously with a low dose of endotoxin, docu-
mented by a rise in the plasma concentrations of the prothrombin fragment F1+2
and of thrombin-antithrombin (TAT) complexes, was preceded by an increase in
tissue factor mRNA levels in circulating blood cells, enhanced expression of tissue
factor on circulating monocytes and the release of tissue factor-containing mi-
croparticles [3,4]. In line with this observation, baboons infused with a lethal dose
of Escherichia coli demonstrated a sustained activation of coagulation, which was
associated with enhanced expression of tissue factor on circulating monocytes, and
patients with severe bacterial infection have been reported to express tissue factor
activityon the surfaceofperipheralbloodmononuclear cells [5].More importantly,
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a number of different strategies that prevent the activation of the VIIa-tissue factor
pathway in endotoxemic humans and chimpanzees, and in bacteremic baboons
abrogate the activation of the common pathway of coagulation. In healthy humans
injected with endotoxin, intravenous infusion of recombinant tissue factor path-
way inhibitor (TFPI) at two different doses caused a dose-dependent inhibition of
coagulation activation [6]. Strategies that potently inhibited coagulation activation
in endotoxemic or bacteremic primates include antibodies directed against tissue
factor or factor VII/VIIa, active site inhibited factor VIIa (Dansyl-Glu-Gly-Arg
chloromethylketone or DEGR-VIIa), and TFPI [7–10].

Anticoagulant Mechanisms

Blood clotting is controlled by three major anticoagulant proteins: TFPI, an-
tithrombin, and APC [1, 2]. TFPI is an endothelial cell derived protease inhibitor
that inactivates factor VIIa bound to tissue factor. Antithrombin inhibits factor Xa,
thrombin, and factor IXa, as well as factor VIIa bound to tissue factor; these
anticoagulant activities of antithrombin are accelerated by vascular heparin-like
proteoglycans. The protein C system provides important control of coagulation
by virtue of the capacity of APC to proteolytically inactivate factors Va and VI-
IIa, thereby preventing the procoagulant activities of factors Xa and IXa. In the
protein C system, thrombin functions as an anticoagulant: this pathway is trig-
gered when thrombin binds to thrombomodulin on the vascular endothelium
(Fig. 2) [11, 12]. Thrombomodulin-bound thrombin mediates the activation of
protein C, an event that is augmented by the endothelial protein C receptor (EPCR).
Thrombin bound to thrombomodulin is efficiently inhibited by antithrombin and
protein C inhibitor. Hence, thrombomodulin inhibits coagulation in various ways:
by conversion of thrombin into an activator of protein C and by accelerating the
inhibition of thrombin. Moreover, the thrombin-thrombomodulin complex can
activate thrombin-activatable fibrinolysis inhibitor (TAFI), an endogenous fib-
rinolysis inhibitor that removes C-terminal lysine residues from fibrin thereby
rendering fibrin less sensitive to the action of plasmin. Protein S serves as an
essential cofactor for APC. Hemostasis is further controlled by the fibrinolytic sys-
tem. Plasmin is the key enzyme of this system, which degrades fibrin clots. Plasmin
is generated from plasminogen by a series of proteases, most notably tissue-type
plasminogen activator (t-PA) and urokinase-type plasminogen activator (u-PA).
The main inhibitor of plasminogen activator is plasminogen activator inhibitor-1
(PAI-1), which binds to t-PA and u-PA.

Several preclinical studies have supported the anticoagulant potencies of TFPI,
antithrombin, and the protein C system in vivo. As discussed above, exogenous
TFPI attenuated consumptive coagulopathy in septic primates [8]. Similarly, an-
tithrombin treatment inhibited the procoagulant response during severe sepsis in
baboons [13]. Infusion of APC into septic baboons prevented hypercoagulability
and death, while inhibition of activation of endogenous protein C by a mono-
clonal antibody exacerbated the response to a lethal E. coli infusion, and converted



276 W.J. Wiersinga, M. Levi, T. van der Poll

Fig. 2. Multiple functions of the thrombomodulin-thrombin complex. Thrombomodulin is es-
sential for thrombin (IIa)-mediated activation of protein C (PC), a step that is further amplified
by the endothelial cell protein C receptor (EPCR). Activated protein C (APC) inactivates coagula-
tion cofactors Va and VIIIa, thereby reducing thrombin generation, and also directly impacts on
inflammation (see text). Thrombomodulin also more directly suppresses inflammation. In ad-
dition, thrombomodulin is a cofactor for thrombin-mediated activation of thrombin-activatable
fibrinolysis inhibitor (TAFI).ActivatedTAFI (TAFIa) cleavesbasicC-terminal aminoacid residues
of its substrates, including fibrin, and thereby impairs efficient transformation of plasminogen
to plasmin. TAFIa also inactivates the pro-inflammatory factors C3a, C5a, and bradykinin. Lines
endingwithanarrow indicateactivation/generation. Lines endingwithabullet indicate inhibition

a sublethal model produced by a LD10 dose of E. coli into a severe shock re-
sponse associated with DIC and death [14]. Furthermore, treatment of baboons
with an anti-EPCR monoclonal antibody, thereby reducing the efficiency by which
protein C can be activated by the thrombin-thrombomodulin complex, was also
associated with exacerbation of a sublethal E. coli infection into lethal sepsis with
DIC [15]. Furthermore, interference with the bioavailability of protein S by ad-
ministration of C4b binding protein, causing a decrease in free protein S levels,
resulted in similar changes [16].

Severe sepsis is characterized by activation of tissue factor-dependent coagu-
lation with concurrent inhibition of anticoagulant mechanisms: while tissue factor
procoagulant activity is markedly enhanced, the activities of TFPI, antithrombin,
the protein C-APC system and fibrinolysis are all impaired, resulting in a shift
toward a net procoagulant state [17]. During a severe systemic inflammatory re-
sponse syndrome, antithrombin levels are markedly decreased due to impaired
synthesis (as a result of a negative acute phase response), degradation by elastase
from activated neutrophils, and – quantitatively most importantly – consumption
as a consequence of ongoing thrombin generation [1]. Pro-inflammatory cytokines
can also cause reduced synthesis of glycosaminoglycans on the endothelial sur-
face, which will also contribute to reduced antithrombin function, since these
glycosaminoglycans can act as physiological heparin-like cofactors of antithrom-
bin. The impairment of the protein C system during sepsis is the result of increased
consumption of protein S and protein C, and decreased activation of protein C by
downregulation of thrombomodulin on endothelial cells. Furthermore, protein S
can be bound by the acute phase response protein, C4b-binding protein, thereby
reducing the biological availability of this important cofactor for protein C. In
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patients with severe meningococcal sepsis this downregulation of thrombomod-
ulin and consequent impaired activation of protein C was confirmed in vivo [18].
Finally, fibrinolysis is impaired in sepsis, primarily due to exaggerated release of
PAI-1 [1, 17].

Interaction Between Coagulation and Inflammation

It is now generally accepted that bidirectional interactions exists between coagu-
lation and inflammation [1, 2]. Cytokines are crucial soluble mediators of inflam-
mation. Several pro-inflammatory cytokines can activate the coagulation system
in vivo, including tumor necrosis factor (TNF)-α, interleukin (IL)-1, IL-6 and
IL-12 [19–22]. Importantly, although anti-TNF-α treatment is highly protective
against mortality in experimental sepsis induced by intravenous administration
of live bacteria [23], elimination of TNF-α does not influence activation of co-
agulation in models of endotoxemia and sepsis [24, 25]. These data indicate that
mortality and activation of coagulation are not necessarily linked phenomena. En-
dogenous IL-6 may be involved in coagulation activation; in chimpanzees injected
with low dose endotoxin, treatment with an anti-IL-6 antibody prevented coagula-
tion activation [26], although this IL-6 mediated procoagulant effect could not be
confirmed in healthy humans challenged with endotoxin using another anti-IL-6
antibody [27].

Interestingly, inhibition of coagulation by some, but not all, interventions also
influences the inflammatory response during experimental bacteremia. Interven-
tions inhibiting the tissue factor pathway in lethal E. coli sepsis in baboons not
only prevented DIC, but also resulted in an increased survival [7, 8, 10]. These
findings contrast with interventions that block the coagulation system further
downstream: administration of factor Xa blocked in its active center by DEGR
failed to influence the outcome of bacteremic baboons, although completely in-
hibiting the development of DIC [28]. Moreover, administration of exogenous
APC or interference with the bioavailability of endogenous APC also impacts on
survival in this model [14–16]. In agreement with these finding, heterozygous pro-
tein C deficient mice demonstrated higher levels of pro-inflammatory cytokines
and increased neutrophil invasion in their lungs after intraperitoneal injection of
endotoxin [29]. These observations have led to the hypothesis that inhibition of
the VIIa-tissue factor pathway and exogenous or endogenous APC protect against
death not merely by an effect on the coagulation system, but (at least in part)
through effects on inflammatory responses different to the procoagulant response.

Proteases of the coagulation system, as well as anticoagulant proteins, can di-
rectly influence inflammatory processes. In this respect, PARs seem to play a pivotal
role in linking coagulation and inflammation [30, 31]. A typical feature of PARs
is that they serve as their own ligand. Proteolytic cleavage by an activated coag-
ulation factor, including thrombin, factors VIIa and Xa, and APC (Table 1), leads
to exposure of a neo-amino terminus, which activates the same receptor, initiat-
ing transmembrane signaling (Fig. 3). Conversely, cathepsin G from granulocytes
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Table 1. Proteases that activate the different protease-activated receptors (PARs)

PAR-1 thrombin, factor Xa, APC, granzyme A, trypsin
PAR-2 trypsin, tryptase, factor VIIa, factor Xa, proteinase 3, Der P3 D9, acrosien
PAR-3 thrombin
PAR-4 thrombin, trypsin, cathepsin G

cleaves PAR-1 at a different site from thrombin to generate a disabled receptor that
cannot respond to thrombin.

Fig. 3. Activation of protease-activated receptors (PARs). The general mechanism by which
proteases cleave and activate PARs is the same: proteases cleave at specific sites within the
extracellular amino terminus of the receptors; this cleavage exposes a new amino terminus that
serves as a tethered ligand domain, which binds to conserved regions in the second extracellular
loop of the cleaved receptor, resulting in the initiation of signal transduction

The PAR family consists of four members, PAR-1 to PAR-4, that are localized in
the vasculature on endothelial cells, mononuclear cells, platelets, fibroblasts, and
smooth muscle cells [30]. Low concentrations of thrombin activate PAR-1, whereas
high concentrations are required to activate PAR-3 and PAR-4. In humans, throm-
bin activates platelets by cleavage of PAR-1 and PAR-4, whereas thrombin activates
mouse platelets by cleavage of a PAR-3–PAR-4 complex. In primary endothelial
cells, APC signaling is mediated through PAR-1, whereas tissue factor-factor VIIa-
factor Xa can signal when PAR-1 is blocked, indicating that this signaling occurs
through PAR-2. PAR-1 dependent APC signaling induces a number of genes that
are known to downregulate pro-inflammatory signaling pathways and that in-
hibit apoptosis [32]. Thrombin activation of PAR-1 has been shown to induce the
expression of pro-inflammatory cytokines and chemokines in vitro. In addition,
endotoxin and TNF-α induction of IL-6 expression by cultured endothelial cells is
enhanced by the activation of PAR-1 and PAR-2. Endotoxin and inflammatory cy-
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tokines also induce PAR-2 and PAR-4 expression in cultured endothelial cells. The
activation of multiple PARs by coagulation proteases most probably enhances in-
flammation during sepsis. This is further underscored by a recent study in a mouse
model of endotoxemia that showed that genetically modified mice expressing low
levels of tissue factor exhibited reduced IL-6 expression and increased survival
compared with control mice [33]. In contrast, hirudin inhibition of thrombin or
a deficiency in either PAR-1 or PAR-2 did not affect IL-6 expression or mortality in
this model. However, combining hirudin treatment to inhibit thrombin signaling
through PAR-1 and PAR-4 with PAR-2 deficiency reduced endotoxin-induced IL-6
expression and increased survival [33]. Taken together, these studies suggest that
activation of multiple PARs by coagulation proteases may contribute to inflamma-
tion in endotoxemia and sepsis. In vivo evidence for a role of coagulation-protease
stimulation of inflammation comes from recent experiments showing that the ad-
ministration of recombinant factor VIIa to healthy human subjects causes a small
but significant 3 to 4-fold rise in plasma levels of IL-6 and IL-8 [34].

Antithrombin has also been found to impact on inflammation [2]. For example,
antithrombin can diminish the expression of β2 integrins on leukocytes and, by
binding to syndecan 4 (a proteoglycan on neutrophils), can inhibit chemokine-
induced neutrophil migration. In addition, antithrombin can enhance prosta-
cyclin formation and inhibit nuclear factor-κB (NF-kB) signaling in endothelial
cells and can decrease tissue factor expression and IL-6 production by monocytes
and endothelium. Much effort has been put into elucidating the mechanisms by
which APC exerts its anti-inflammatory properties. APC inhibits inflammation
indirectly through reducing thrombin generation and, thereby, thrombin-induced
inflammation via PARs. However, APC also directly attenuates inflammation by
inhibiting monocyte expression of tissue factor and TNF-α, NF-κB translocation,
cytokine signaling, TNF-α induced upregulation of cell surface leukocyte adhesion
molecules, and leukocyte-endothelial cell interactions [2, 12]. Thrombomodulin
exerts anti-inflammatory effects at multiple levels (Fig. 2). First, thrombomodulin
is essential for the activation of protein C to APC; as such, thrombomodulin is
key to the anti-inflammatory properties of APC. Second, the activation of TAFI
requires the thrombomodulin-thrombin complex, and activated TAFI has been
demonstrated to suppress bradykinin activity and complement activation [35].
Furthermore, the lectin domain of thrombomodulin likely plays a direct role in
theorchestrationof inflammatory reactions. Indeed, geneticallymodifiedmice that
lack the N-terminal lectin-like domain of thrombomodulin displayed a reduced
survival after systemic endotoxin administration, showed increased neutrophil
recruitment to the lungs, and responded with larger infarcts after myocardial is-
chemia/reperfusion injury [36]. Importantly, deletion of the lectin-like domain of
thrombomodulin did not influence the capacity of thrombomodulin to activate
protein C, indicating that the anti-inflammatory effects of this part of thrombo-
modulin are not mediated by APC. Finally, multiple interactions exist between
inflammation and mediators of the fibrinolytic system [1, 37]. Fibrinolytic acti-
vators and inhibitors may modulate the inflammatory response by their effect on
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inflammatory cell recruitment and migration. For instance, uPAR (the receptor
for u-PA) mediates leukocyte adhesion to the vascular wall or extracellular ma-
trix components and its expression on leukocytes is strongly associated with their
migratory and tissue-invasive potential. This is illustrated in a mouse model of
bacterial pneumonia where uPAR deficient mice displayed a profoundly reduced
neutrophil influx in the pulmonary compartment [38]. The plasma concentrations
of PAI-1 are elevated in patients with sepsis, and such elevated circulating PAI-1
levels are highly predictive of an unfavorable outcome in sepsis patients [39]. It
remains to be established whether the elevated PAI-1 levels are merely indicative of
a strong inflammatory response of the host, rather than having any pathophysio-
logical significance. Recent findings that a sequence variation in the gene encoding
PAI-1 influences the development of septic shock in patients and in relatives of
patients with meningococcal infection has provided circumstantial evidence that
PAI-1 might play a functional role in the host response to bacterial infection [40].
Figure 4 presents a global overview of the bimodal interactions between coagula-
tion and inflammation in sepsis.

Coagulation Activation and Organ Failure

Patients with sepsis almost invariably show evidence of activation of the coagu-
lation system. Although the majority of these patients do not have clinical signs
of DIC, patients with a laboratory diagnosis of this syndrome are known to have
a worse outcome than patients with normal coagulation parameters. A number
of small clinical studies have suggested that sepsis-related DIC is associated with
not only a high mortality but also with organ dysfunction and that attenuation of
coagulation may ameliorate organ failure in this condition. In the placebo group
of the PROWESS study (which addressed the efficacy of recombinant human APC
in severe sepsis), patients with DIC displayed a mortality rate of 43% versus 27%
in patients without DIC [41]. Similarly, in the KyberSept trial (addressing the ef-
ficacy of antithrombin in severe sepsis), 28-day mortality among placebo-treated
patients with DIC was 40%, versus 22% in patients without this syndrome [42].
Data obtained from a large clinical study in 840 patients with severe sepsis have
further suggested a direct relationship between coagulopathy and organ failure and
death [43]. In this cohort, both baseline coagulation abnormalities (on admission)
and first-day changes in the coagulation biomarkers, antithrombin, prothrombin
time, and D-dimer, correlated with 28-day mortality. In addition, shifts in these
coagulation markers during the first day of severe sepsis correlated with new organ
dysfunctions, progression from single to multiple organ failure, and delayed reso-
lution of existing organ dysfunction [43]. Thrombocytopenia is a common feature
of DIC and in sepsis the extent of thrombocytopenia is correlated with an adverse
outcome [44]. These findings have led to the hypothesis that systemic activation
of coagulation can contribute to organ failure by inducing tissue hypoxia. How-
ever, the causal link between DIC and organ failure is still a matter of debate, one
argument being that if micovascular thrombosis contributes to organ dysfunction
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Fig. 4. Proposed bidirectional relation between inflammation and coagulation in sepsis. (1) In-
vading pathogens are recognized by the immune system through the Toll-like receptors (TLRs).
After recognition, the coagulation cascade is activated by inducing tissue factor (TF) expression
on monocytes and granulocytes. In sepsis decreased levels of free protein S and activated pro-
tein C (APC) are seen, ultimately leading to enhanced thrombin formation. (2) A fibrin clot with
activated mononuclear cells is formed. In severe cases this may lead to disseminated intravas-
cular coagulation. (3) The activated counteracting plasmin-mediated fibrinolysis leads to the
formation of fibrin degradation products (FDP). (4) Furthermore, after binding to urokinase-
type plasminogen activator (u-PA) the upregulated protease-activated receptors for u-PA (uPAR)
on monocytes and granulocytes will enhance the fibrinolytic pathway. Plasminogen activator
inhibitor-1 (PAI-1), which is strongly upregulated in sepsis, inhibits these fibrinolytic events.
(5) Binding of, among others, tissue factor and thrombin to specific PARs on inflammatory cells
may affect inflammation by inducing release of pro-inflammatory cytokines, which will further
modulate coagulation and fibrinolysis. Straight and dashed arrows indicate stimulatory and
inhibitory effects, respectively

in sepsis, anticoagulants would reduce organ failure and improve outcome [45];
as already alluded to above, down stream intervention in the coagulation cascade
by DEGR-Xa did not influence lethality of bacteremic baboons, while completely
inhibiting coagulation activation [28].

Clinical Trials with Anticoagulants in Sepsis

After promising results from animal studies and small Phase II trials, three spe-
cific anticoagulant proteins were evaluated in large multinational clinical trials to
test their efficacy in the treatment of severe sepsis: recombinant human APC, an-
tithrombin, and TFPI [46–48]. As discussed above, during inflammation-induced
activation of coagulation, such as seen in severe sepsis, the function of all of these
endogenous anticoagulant pathways is impaired, which provides a clear rationale
for exogenous administration of these agents.
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Recombinant human APC, also known as drotrecogin alfa (activated), pos-
sesses anti-inflammatory, antithrombotic, and profibrinolytic properties. In the
PROWESS study, in which 1690 patients with severe sepsis were randomized to
receive APC or placebo, APC significantly reduced morbidity and mortality [46].
Patients treated with APC had a statistically and clinically significant reduction in
28-day mortality (24.7% in the treatment group and 30.8% in the placebo group;
relative risk reduction, 19.4% [95% CI, 6.6%–30.5%]), this study, therefore, being
the first published trial in sepsis to show a clear survival benefit. Importantly, APC
is not effective in reducing mortality in patients with severe sepsis and a low risk of
death (defined by an Acute Physiology and Chronic Health Evaluation [APACHE
II] score < 25 or single-organ failure) [49].

Antithrombin was studied in a large phase III clinical trial involving 2,314
patients (the KyberSept study) [47]. Despite encouraging results obtained in earlier
smaller trials [50], the phase III study failed to demonstrate a benefit of the
use of exogenous antithrombin concentrate in patients with severe sepsis. After
completion of this trial questions were raised about the dose of antithrombin used,
which was lower than used in preclinical animal studies and may have influenced
the possible anti-inflammatory effects of antithrombin. In addition, the concurrent
useofheparinmayhaveaffected the trial results: therewasa trend towarda survival
benefit in patients who received antithrombin without heparin [47]. A recent
posthoc analysis of this trial has indicated that antithrombin may improve outcome
in patients with DIC not receiving heparin. In these patients, antithrombin reduced
28-day mortality by 14.6% when compared with placebo [42]. These findings await
confirmation in a prospectively designed clinical trial.

TFPI (recombinant human TFPI, tifacogin) is the third anticoagulant that has
been tested in a large, multicenter, phase III trial in patients with severe sepsis
(the OPTIMIST trial) [48]. In spite of promising phase II data [51], treatment
with TFPI failed to affect all-cause 28-day mortality. Remarkably, TFPI appeared
to be relatively effective in the first half of the trial, but ineffective in the second
half. Several post-hoc exploratory analyses were unable to explain this changing
mortality pattern.

Heparin had a clear beneficial impact on the outcome in all the three phase III
trials described. However, a firm conclusion cannot be drawn from these data since
the administration of heparin was a post-randomization event. However, the use of
heparin in sepsis remains an appealing (and cheap) treatment option. In a murine
model of DIC, it was recently shown that low molecular weight heparin could atten-
uate LPS-induced multiple organ failure (MOF) [52]. Therefore, a well-conducted
randomized, placebo-controlled trial of heparin administration in severe sepsis is
warranted.
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Conclusion

Severe sepsis triggers clotting, diminishes the activity of natural anticoagulant
mechanisms, and impairs thefibrinolytic system.Augmented interactionsbetween
inflammation and coagulation can give rise to a vicious cycle, eventually leading
to dramatic events such as manifested in severe sepsis and DIC. Unraveling the
role of coagulation and inflammation in sepsis will pave the way for new treatment
targets in sepsis that can modify the excessive activation of these systems. At
present it remains unclear whether anticoagulant therapy improves survival in
severe sepsis; in addition, it remains uncertain whether the beneficial effect of
recombinant human APC derives from its anticoagulant properties. These issues
will be clarified as our understanding of the interplay between coagulation and
inflammation during sepsis improves further in the very near future.
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The Role of Insulin and Blood Glucose Control

L. Langouche, I. Vanhorebeek, and G. Van den Berghe

Introduction

Patients who are critically ill, either as a results of a septic complication after
extensive surgery or trauma, or those who present with organ failure often due to
primary sepsis, have a high risk of death and suffer from substantial morbidity. The
hypermetabolic stress response that usually follows any type of major trauma or
acute illness is associated with hyperglycemia and insulin resistance, often referred
to as ‘stress diabetes’ or ‘diabetes of injury’ [1, 2]. In critically ill patients, even in
those who were not previously diagnosed with diabetes, glucose uptake is reduced
in peripheral insulin sensitive tissues, whereas endogenous glucose production
is increased, resulting in hyperglycemia. It has long been generally accepted that
a moderate hyperglycemia in critically ill patients is beneficial to ensure the supply
of glucose as a source of energy to organs that do not require insulin for glucose
uptake, such as the brain and the immune system. However, an increasing body
of evidence associates the upon-admission degree of hyperglycemia, as well as the
duration of hyperglycemia during critical illness, with adverse outcome. The first
evidence against the concept of tolerating hyperglycemia during critical illness
came from two large, randomized, controlled trials, one in a group of surgical
intensive carepatients [3] andanother in strictlymedical intensive carepatients [4].
The studies demonstrated that tight blood glucose control with insulin therapy
significantly improves morbidity and mortality. Both blood glucose control and
glucose-independent actions of insulin appear to contribute to the beneficial effects
of the therapy [5].

Hyperglycemia and Outcome in Critical Illness

The development of stress-induced hyperglycemia is associated with several clin-
ically important problems in a wide array of patients with severe illness or injury.
An increasing number of reports associate the upon-admission degree of hyper-
glycemia, as well as the duration of hyperglycemia during critical illness, with
adverse outcome. In patients with severe brain injury, hyperglycemia was asso-
ciated with longer duration of hospital stay, a worse neurological status, pupil
reactivity, higher intracranial pressures, and reduced survival [6, 7]. In severely
burned children, the incidence of bacteremia and fungemia, the number of skin
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grafting procedures, and the risk of death were higher in hyperglycemic than in
normoglycemic patients [8]. In trauma patients, elevated glucose levels early after
injury have been associated with infectious morbidity, a lengthier ICU and hos-
pital stay, and increased mortality [9, 10]. Furthermore, this effect appeared to be
independent of the associated shock or the severity of injury [10]. Trauma patients
with persistent hyperglycemia had a significantly greater degree of morbidity and
mortality [11]. A meta-analysis of studies on myocardial infarction revealed an
association between hyperglycemia and increased risk of congestive heart failure
or cardiogenic shock and in-hospital mortality [12]. Higher blood glucose levels
predicted a higher risk of death after stroke and a poor functional recovery in those
patients who survived [13]. A retrospective reviewof a heterogeneous group of crit-
ically ill patients indicated that even a modest degree of hyperglycemia occurring
after admission to the intensive care unit (ICU) was associated with a substantial
increase in hospital mortality [14]. A retrospective study on non-diabetic pedi-
atric critically ill patients revealed a correlation of hyperglycemia with a greater
in-hospital mortality rate and longer length of stay [15].

Blood Glucose Control with Intensive Insulin Therapy

The landmark prospective, randomized, controlled clinical trial of intensive in-
sulin therapy in a large group of patients admitted to the ICU after extensive or
complicated surgery or trauma revealed major clinical benefits on morbidity and
mortality [3]. In the conventional management of hyperglycemia, insulin was only
administered when blood glucose levels exceeded 220 mg/dl, with the aim of keep-
ing concentrations between 180 and 200 mg/dl, resulting in mean blood glucose
levels of 150–160 mg/dl (hyperglycemia). In the intensive insulin therapy group,
insulin was administered to patients by insulin infusion titrated to maintain blood
glucose levels between 80 and 110 mg/dl which resulted in mean blood glucose
levels of 90–100 mg/dl (normoglycemia). This intervention appeared safe as no
hypoglycemia-induced adverse events were reported. Maintaining normoglycemia
with insulin strikingly lowered ICU mortality by 43% (from 8.0% to 4.6%), the ben-
efit being most pronounced in the group of patients who required intensive care
for more than 5 days, with a mortality reduction from 20.2% to 10.6% (Fig. 1).
Also, in-hospital mortality was lowered from 10.9% to 7.2% in the total group and
from 26.3% to 16.8% in the group of long-stayers. Besides saving lives, insulin
therapy largely prevented several critical illness-associated complications. The de-
velopment of blood stream infections was reduced by 46%, of acute renal failure
requiring dialysis or hemofiltration by 41%, of bacteremia by 46%, the incidence
of critical illness polyneuropathy was reduced by 44%, the number of red blood
cell (RBC) transfusions by 50%. Patients were also less dependent on prolonged
mechanical ventilation and needed fewer days in intensive care. Although a large
number of patients included in this study recovered from complicated cardiac
surgery, the clinical benefits of this therapy were equally present in most other
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Fig. 1. Effects of intensive insulin therapy in the intensive care unit (ICU). Kaplan-Meier survival
plots of patients from the Leuven study who received intensive insulin treatment (blood glucose
maintained below 110 mg/dl; black) or conventional treatment (insulin administration only when
blood glucose exceeded 220 mg/dl; gray) in the ICU. The upper panels display results from all
patients; the lower panels display results for long-stay (> 5 days) ICU patients only. P values were
determined with the use of the Mantel-Cox log-rank test. Adapted from [35] with permission

diagnostic subgroups. In the patients with isolated brain injury tight glycemic
control protected the central and peripheral nervous system from secondary in-
sults and improved long-term rehabilitation [16]. An important confirmation of
the clinical benefits of intensive insulin therapy was recently obtained with the
demonstration, by a large randomized controlled trial, that the Leuven protocol
of glycemic control with insulin in adult surgical critically ill patients [3] was
similarly effective in a strictly medical adult ICU patient population [4]. In this
exclusively medical ICU population, in which sepsis is the most common trigger
for ICU admission, intensive insulin therapy during ICU stay reduced morbid-
ity among all intention-to-treat medical ICU patients and in those patients who
were treated at least for a few days, it improved morbidity and reduced mortality.
Morbidity benefits included prevention of kidney injury, reduced duration of me-
chanical ventilation, shorter ICU stay and shorter hospital stay, but not prevention
of blood-stream infections. Among the long-stay patients, in-hospital mortality
was reduced from 52.5% to 43.0%. These data indicate that the preventive effect
on severe infections, observed in the surgical study, is not the most important
pathway by which mortality is reduced with intensive insulin therapy.

In ‘real-life’ intensive care medicine, Jamie Krinsley evaluated the impact of
implementing strict blood glucose control in a heterogeneous medical/surgical
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ICU population [17]. A less strict blood glucose control was aimed for, a regimen
chosen primarily to avoid inadvertent hypoglycemia; in this setting insulin therapy
lowered mean blood glucose levels of 152 mg/dl in the baseline period to 131 mg/dl
in the protocol period. Comparison with patient data before the implementation of
the protocol showed a 29.3% reduction in hospital mortality, and a 10.8% decrease
in length of ICU stay. Development of new renal insufficiency was 75% lower, and
18.7% fewer patients required RBC transfusion. Again, the number of patients
acquiring infections did not change significantly, but the incidence was already
low at baseline in this patient group [17]. Another small, prospective, random-
ized, controlled trial by Grey and Perdizet conducted in a predominantly surgical
ICU, confirmed the beneficial effect of tight blood glucose control on the number
of serious infections [18]. In this study, insulin therapy was targeted to glucose
levels between 80 and 120 mg/dl, which resulted in a mean daily glucose levels of
125 mg/dl versus 179 mg/dl in the standard glycemic control group. A significant
reduction in the incidence of total nosocomial infections, including intravascu-
lar device, bloodstream, intravascular device-related bloodstream, and surgical
site infections was observed in the insulin group compared to the conventional
approach [18].

Insulin Resistance and Hyperglycemia

The stress imposed by any type of acute illness or injury leads to the develop-
ment of insulin resistance, glucose intolerance, and hyperglycemia. Hepatic glu-
cose production is upregulated in the acute phase of critical illness, despite high
blood glucose levels and abundantly released insulin. Elevated levels of cytokines,
growth hormone, glucagon, and cortisol might play a role in the increased gluco-
neogenesis [19–23]. Several effects of these hormones oppose the normal action of
insulin, resulting in increased lipolysis and proteolysis which provide substrates
for gluconeogenesis. Catecholamines, which are released in response to acute in-
jury, enhance hepatic glycogenolysis and inhibit glycogenesis [24]. Apart from
the upregulated glucose production, glucose uptake mechanisms are also affected
during critical illness and contribute to the development of hyperglycemia. Due
to immobilization of the critically ill patient, exercise-stimulated glucose uptake
in skeletal muscle is supposedly absent [25, 26]. Furthermore, due to impaired
insulin-stimulated glucose uptake by the glucose transporter 4 (GLUT-4) and due
to impaired glycogen synthase activity, glucose uptake in heart, skeletal muscle,
and adipose tissue is compromised [27–30]. However, total body glucose uptake
is massively increased, but is accounted for by tissues that are not dependent on
insulin for glucose uptake, such as brain and blood cells [1, 31]. The higher lev-
els of insulin, impaired peripheral glucose uptake, and elevated hepatic glucose
production reflect the development of insulin resistance during critical illness.

The mechanism by which insulin therapy lowers blood glucose in critically
ill patients is not completely clear. These patients are thought to suffer from
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both hepatic and skeletal muscle insulin resistance, but data from liver and skele-
tal muscle biopsies harvested from non-survivors in the Leuven study, suggest
that glucose levels are lowered mainly via stimulation of skeletal muscle glu-
cose uptake. Indeed, insulin therapy did increase mRNA levels of GLUT-4, which
controls insulin-stimulated glucose uptake in muscle, and of hexokinase-II, the
rate-limiting enzyme in intracellular insulin-stimulated glucose metabolism [32].
On the other hand, hepatic insulin resistance in these patients is not overcome
by insulin therapy. The hepatic expression of phospoenolpyruvate carboxykinase,
the rate-limiting enzyme in gluconeogenesis, and of glucokinase, the rate-limiting
enzyme for insulin-mediated glucose uptake and glycogen synthesis, was un-
affected by insulin therapy [32, 33]. Moreover, circulating levels of insulin-like
growth factor binding protein-1, normally under the inhibitory control of insulin,
were also refractory to the therapy in the total population of both survivors and
non-survivors [32].

Preventing Glucose Toxicity with Intensive Insulin Therapy

It is striking that during the relatively short period that patients need intensive care,
avoiding even a moderate level of hyperglycemia with insulin improves the most
feared complications of critical illness. In critically ill patients, hyperglycemia thus
appearsmuchmoreacutely toxic than inhealthy individualswhose cells canprotect
themselves by downregulation of glucose transporters [34]. This acute toxicity of
high levels of glucose in critical illness might be explained by an accelerated cellular
glucose overload and more pronounced toxic side effects of glycolysis and oxidative
phosphorylation [35].

Hepatocytes, gastro-intestinal mucosal cells, pancreatic beta cells, renal tubu-
lar cells, endothelial cells, immune cells, and neurons are insulin-independent
for glucose uptake, which is mediated mainly by the glucose transporters GLUT-1,
GLUT-2, or GLUT-3 [1]. Cytokines, angiotensin II, endothelin-1, vascular endothe-
lial growth factor (VEGF), transforming growth factor (TGF)-β and hypoxia, all
induced in critical illness, have been shown to upregulate the expression and
membrane localization of GLUT-1 and GLUT-3 in different cell types [36–40].
This upregulation might overrule the normal downregulatory protective response
against hyperglycemia. Moreover, GLUT-2 and GLUT-3 allow glucose to enter
cells directly in equilibrium with the elevated extracellular glucose level which
is present in critical illness [41]. Therefore, one would expect increased glucose
toxicity in tissues where glucose uptake is mediated by non-insulin-dependent
transport. Hyperglycemia has been linked to the development of increased oxida-
tive stress in diabetes, in part due to enhanced mitochondrial superoxide produc-
tion [42–44]. Superoxide interacts with nitric oxide (NO) to form peroxynitrite,
a reactive species able to induce tyrosine nitration of proteins which affects their
normal function [45]. During critical illness, cytokine-induced activation of NO
synthase (NOS) increases NO levels, and hypoxia-reperfusion aggravates superox-
ide production, resulting in more peroxynitrite being generated [45]. When cells
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in critically ill patients are overloaded with glucose, high levels of peroxynitrite
and superoxide are to be expected, resulting in inhibition of the glycolytic enzyme
GAPDH, and mitochondrial complexes I and IV [42].

We recently demonstrated that prevention of hyperglycemia with insulin ther-
apy protected both the ultrastructure and function of the hepatocytic mitochon-
drial compartment of critically ill patients, but no obvious morphological or pro-
nounced functional abnormalities were detected in skeletal muscle of critically
ill patients [46]. Mitochondrial dysfunction with disturbed energy metabolism
is a likely cause of organ failure, the most common cause of death in the ICU.
Prevention of hyperglycemia-induced mitochondrial dysfunction in other tissues
that allow glucose to enter passively might explain some of the protective effects
of intensive insulin therapy in critical illness.

Metabolic and Non-Metabolic Effects of Blood Glucose Control
with Intensive Insulin Therapy

Similar to the serum lipid profile of diabetic patients [47], lipid metabolism in criti-
cally ill patients is strongly deranged. Most characteristic are elevated triglycerides
together with very low levels of high-density lipoprotein (HDL) and low-density
lipoprotein (LDL) cholesterol [48–50]. Insulin therapy almost completely reversed
this hypertriglyceridemia and substantially elevated HDL and LDL and the level
of cholesterol associated with these lipoproteins [32]. Insulin treatment also de-
creased serum triglycerides and free fatty acids in burned children [51]. Multi-
variate logistic regression analysis revealed that improvement of the dyslipidemia
with insulin therapy explained a significant part of the reduced mortality and
organ failure in critically ill patients [32]. Given the important role of lipoproteins
in transportation of lipid components (cholesterol, triglycerides, phospholipids,
lipid-soluble vitamins) and endotoxin scavenging [52–54], a contribution to im-
proved outcome might indeed be expected.

Critically ill patients become severely catabolic, with loss of lean body mass,
despite adequate enteral or parenteral nutrition. Intensive insulin therapy might
attenuate this catabolic syndrome of prolonged critical illness, as insulin exerts
anabolic actions [55–58]. Intensive insulin treatment indeed resulted in higher
total protein content in skeletal muscle of critically ill patients [46] and prevented
weight loss in a rabbit model of prolonged critical illness [59].

Intensive insulin therapy prevented excessive inflammation, illustrated by de-
creased C-reactive protein (CRP) and mannose-binding lectin levels [60], inde-
pendent of its preventive effect on infections [3]. Insulin therapy also attenuated
the CRP response in an experimental animal model of prolonged critical illness
induced by third degree burn injury [59]. Moreover, critically ill rabbits showed
an increased capacity of monocytes to phagocytose and an increase in their ability
to generate an oxidative burst when blood glucose levels were kept normal [59].
In burned children, administration of insulin resulted in lower pro-inflammatory
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cytokines and proteins, whereas the anti-inflammatory cascade was stimulated,
although these effects were largely seen only late after the traumatic stimulus [51].
Insulin treatment attenuated the inflammatory response in thermally injured rats
and endotoxemic rats and pigs [61–63]. Next to these anti-inflammatory effects of
insulin, prevention of hyperglycemia may be crucial as well. Hyperglycemia inac-
tivates immunoglobulins by glycosylation and, therefore, contributes to the risk of
infection [64].Highglucose levels alsonegatively affectedpolymorphonuclearneu-
trophil (PMN) function and intracellular bactericidal and opsonic activity [65–68].

Critical illnessalsoresemblesdiabetesmellitus in itshypercoagulationstate [69,
70]. In diabetes mellitus, vascular endothelium dysfunction, elevated platelet ac-
tivation, increased clotting factors, and inhibition of the fibrinolytic system all
might contribute to this hypercoagulation state [71–75]. Insulin therapy indeed
protected the myocardium and improved myocardial function after acute myocar-
dial infarction, during open heart surgery, and in congestive heart failure [76].
Prevention of endothelial dysfunction also contributed to the protective effects of
insulin therapy in critical illness in part via inhibition of excessive iNOS-induced
NO release [77] and via reduction of circulating levels of asymmetric dimethy-
larginine, which inhibits the constitutive enzyme, endothelial NOS (eNOS), and
hence the production of endothelial NO [78].

Glucose Control or Insulin?

Multivariate logistic regression analysis of the results of the Leuven study [3] indi-
cated that blood glucose control and not the insulin dose administered statistically
explains most of the beneficial effects of insulin therapy on outcome of critical
illness [5]. It appeared crucial to reduce blood glucose levels below 110 mg/dl
for the prevention of morbidity events such as bacteremia, anemia, and acute
renal failure. The level of hyperglycemia was also an independent risk factor for
the development of critical illness polyneuropathy [5]. Finney et al. confirmed
the independent association between hyperglycemia and adverse outcome in sur-
gical ICU patients [79]. Our recent experiments in an animal model of critical
illness, in which we independently manipulated the level of blood glucose and
insulin [80], confirm the superior role of strict blood glucose control over the
glycemia-independent effects of insulin, in obtaining the survival benefit as well
as most of the morbidity benefits.

Conclusion

Hyperglycemia in critically ill patients is a result of an altered glucose metabolism.
Apart from the upregulated glucose production (both gluconeogenesis and
glycogenolysis), glucose uptake mechanisms are also affected during critical illness
and contribute to the development of hyperglycemia. The higher levels of insulin,
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impairedperipheral glucoseuptakeandelevatedhepatic glucoseproduction reflect
the development of insulin resistance during critical illness.

Hyperglycemia in critically ill patients has been associated with increased mor-
tality. Simply maintaining normoglycemia with insulin therapy improves survival
and reduces morbidity in surgical and medical ICU patients, as shown by two large,
randomized controlled studies. These results obtained from clinical studies were
also confirmed in ‘real-life’ intensive care of a heterogeneous patient population
admitted to a mixed medical/surgical ICU.

Prevention of glucose toxicity by strict glycemic control appears to be crucial,
although other metabolic and non-metabolic effects of insulin, independent of
glycemic control, may contribute to the clinical benefits.
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Dysfunction of the Bioenergetic Pathway

M. Singer

Introduction

Sepsis represents a whole-body inflammatory response to infection that often
progresses to multiple organ failure (MOF). In this condition, organ function
is altered in an acutely ill patient such that homeostasis cannot be maintained
without interventions, including pharmacological and mechanical support, in the
hope that recovery will eventually ensue once the severe inflammatory insult has
subsided.

Despite three decades of intensive research and billions of pharmaceutical
company dollars searching for immunotherapeutic magic bullets, mortality rates
for sepsis-induced MOF have not changed dramatically. The incidence of sepsis is
rising [1], and predicted to increase still further as elderly and immunosuppressed
populations grow.

The syndrome of sepsis presents numerous paradoxes and many questions
that remain unanswered. Why are some people more susceptible than others to
a septic insult? How does excessive inflammation actually cause the organs to fail?
Why do these failed organs look remarkably normal with minimal evidence of cell
death [2]?Unlikemanyotherconditions that cause singleorgan failure,why is there,
in general, (near-) total recovery of organ function should the patient survive? Why
is this recovery seen even in organs with poor regenerative capacity [3]?

This chapter will attempt to address at least some of these points, adopting
the stance that mitochondrial dysfunction lies at the core of organ dysfunction
(Fig. 1.). Recovery is thus contingent on the restoration of an adequately function-
ing bioenergetic pathway. I will suggest that this assumed ‘failure’ may actually
represent an adaptive, last-ditch, protective response to enable eventual survival
of the patient should they be ‘fit’ enough to endure the prolonged inflammatory
insult.

How Does Inflammation Lead to Organ Failure?

Genetic, immune, and exogenous factors (e. g., more pathogenic bacteria) are
responsible for triggering an excessive degree of inflammation, yet precise mecha-
nisms and interactions remain poorly understood. There is an increasing apprecia-
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Fig. 1. A postulated mechanism of organ dysfunction and recovery

tion of the importance of other systems, such as the hormonal, immune, metabolic,
and bioenergetic pathways in inducing organ dysfunction. The degree of pertur-
bation of each of these systems has been independently associated with increased
mortality. Furthermore, many of the conventional paradigms that have attempted
to explain the underlying pathophysiology of organ failure have been successfully
challenged in recent years. For example, the traditional belief held that organ fail-
ure was directly related to inflammatory mediator-induced release of vasoactive
agents, activation and aggregation of neutrophils and platelets, and a disseminated
intravascular coagulation (DIC) that would result in an abnormal microvasculature
with consequent tissue hypoxia, cell death, and organ dysfunction. However, this
dogma has been undermined by the findings of normal histology in the majority
of affected organs [2], and a paradoxical rise in oxygen tension in tissues as varied
as gut epithelium, bladder, and skeletal muscle [4–6]. As the tissue oxygen tension
represents the local balance between supply and demand, this infers that oxygen
is actually freely available but is not being utilized. Thus, the major problem in
sepsis may lie at a cellular level. As cytochrome oxidase is by far the predominant
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consumer of molecular oxygen (> 90% of total body utilization), a mitochon-
drial pathology is, therefore, implicated in the pathophysiology of sepsis-induced
MOF.

Mitochondria in Health

The mitochondrion is the powerhouse of the body, being responsible for > 95%
of ATP in most cell types. A number of other roles are increasingly appreciated,
such as initiation of cell death pathways (apoptosis and necrosis), intracellular
calcium regulation, oxygen sensing, steroidogenesis, and signaling. The latter is
probably mediated by production of reactive oxygen species (ROS). Production
of superoxide at complexes I and III of the electron transport chain is considered
to be responsible for approximately 2% of mitochondrial oxygen consumption in
healthy cells. As will be discussed later, production of ROS increases significantly
during sepsis and may be responsible for mediating many of the pathological
effects seen in this syndrome.

Mitochondrial ATP production is a highly sophisticated and regulated pro-
cess (Fig. 1). It was first described as the chemiosmotic proposal (the coupling
of biological electron transfer to ATP synthesis) by Peter Mitchell in the 1960s.
Substrate is provided by oxidation of glucose (glycolysis), fats, and amino acids
(notably alanine) from which acetyl co-enzyme A (acetyl CoA) is produced within
the mitochondrion. This is incorporated within the tricarboxylic acid (Krebs’)
cycle, generating reducing equivalents in the form of NADH and FADH2. These
molecules provide electrons to complexes I and II, respectively, of the electron
transport chain. Passage of electrons from NADH to complex I is considered the
primary route. As electrons are passed down the chain to complexes III and IV, pro-
tons move across the inner mitochondrial membrane to generate a proton gradient
that can drive ATP synthase to generate ATP from ADP. Complex IV (cytochrome
oxidase) is the only point in the whole process where oxygen is consumed. For
every glucose molecule metabolized, 2 molecules of ATP are generated during
glycolysis, 2 in the Krebs’ cycle, and approximately 25 in the electron transport
chain.

Rich [7] assumed that if 90% of human power is provided by the protons trans-
ferred through ATP synthase, then the trans-membrane proton flux would have to
represent roughly 3 × 1021 protons per second and ATP would be reformed at a rate
of around 9 × 1020 molecules per second. This is equivalent to an ATP turnover rate
of 65 kg per day, a figure that would rise considerably during periods of activity.
He further calculated that to support an average adult oxygen consumption rate
of 380 liters O2 per day, 2 × 1019 molecules of cytochrome oxidase are needed.
The amount of inner mitochondrial membrane necessary to hold this amount of
respiratory enzyme equates to a surface area of approximately 14,000 M2.
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Mitochondria in Sepsis

Mitochondrial abnormalities – both biochemical and ultrastructural – have been
recognized in in vivo and in vitro models of sepsis for more than 30 years. Of
note, a systematic review of these models [8] showed variable findings in short-
term models of varying severity lasting several hours, with increased, decreased,
or unaltered mitochondrial function being reported. However, when the study
duration exceeded 16 hours, dysfunction and/or injury were consistent features.
Corresponding functional changes were noted that supported the concept of mi-
tochondrial dysfunction. For example, Rosser et al. found that maximal oxygen
consumption was markedly increased in a hepatocyte cell line exposed to endo-
toxin after six hours, but was significantly depressed by 24 hours [9]. In a patient
study, Kreymann et al. noted that increasing sepsis severity was associated with
progressive falls in oxygen consumption [10].

Human data are still relatively scanty. Initially, small case series reported de-
creases inATPordecreasedactivityofvarious respiratorychaincomplexes [11–16].
A larger study published in 2002 consisted of a group of 28 patients in septic shock,
and a control group of patients undergoing elective hip surgery [17]. A significant
association was seen between sepsis severity and complex I inhibition in muscle
biopsies taken within 24 hours of admission to intensive care. Interestingly, there
was a clear delineation between subsequent survivors and non-survivors, with ATP
levels being preserved in the former (compared to the orthopedic controls) and
significantly reduced in the latter. This was found notwithstanding the lack of any
clinical differentiation between the two septic groups at the time of biopsy. This
human study prompted the development of a long-term (3-day) rat model of fecal
peritonitis that remained adequately fluid resuscitated throughout to ensure an
adequate circulating blood volume. This model mimics many of the physiological,
biochemical, histological, and outcome characteristics of the human patient and
enables comparison of muscle data with other ‘vital’, deeper organs, such as liver
and kidney [18]. Mitochondrial results were comparable to the human muscle data
in both liver and kidney with the more severely septic animals also demonstrat-
ing greater degrees of complex I inhibition and a fall in ATP levels. Importantly,
recovery in mitochondrial function paralleled clinical and biochemical recovery.
A crucial question that will be addressed later in this review is whether such mito-
chondrial recovery is fundamental to the restoration of organ function and, if so,
how this could arise?

Nitric Oxide: A Mechanism for Mitochondrial Inhibition

An important step in unraveling the mechanism of mitochondrial inhibition in
sepsis arose from the discovery of nitric oxide (NO). This reactive species is pro-
duced in greater quantities in sepsis than in any other clinical condition and is
largely responsible for the characteristic hypotension and vascular hyporeactivity
(i. e., decreased responsiveness to vasoconstrictor catecholamines) of septic shock.
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The subsequent recognition that NO and, more particularly, peroxynitrite (formed
from the reaction between NO and superoxide), were potent inhibitors of the elec-
tron transport chain [19–21] suggested its likely relevance in sepsis. In both the
septic patient and fecal peritonitis animal model studies described earlier [17,18],
raised NO production (measured as tissue nitrite/nitrate) correlated with the de-
gree of sepsis severity and complex I dysfunction. Glutathione, an endogenous
mitochondrial antioxidant that protects complex I from nitrosative damage, was
correspondingly reducedand the inability to reverse this inhibitionwithexogenous
glutathione suggested nitration of the enzyme leading to a longer-lasting, if not
irreversible, inhibition. In a macrophage cell line incubated with endotoxin [22],
a progressive decrease in oxygen consumption and complex I inhibition was found.
In conjunction with these findings, early nitrosylation was followed by a progres-
sive increase in nitration which was accentuated in the presence of concurrent
hypoxia. Similar findings have been reported in isolated rat aorta exposed to en-
dotoxin and interferon (IFN)-γ where mild hypoxia significantly enhanced the
damage induced by NO to the vessel [23].

If the above findings can be extrapolated to patients, coexisting tissue hypoxia
(for example,due todelayedfluid resuscitation)wouldhavea synergistic effectwith
systemic inflammation and would reduce the competition between NO and oxygen
for the same binding site on cytochrome oxidase. Boulos et al. [24] incubated an
endothelial cell line with plasma taken from septic patients and found a decrease
in mitochondrial respiration and ATP levels compared to that seen following
incubation with plasma from healthy controls. This depression could be reversed
by inhibition of either NO synthase (NOS) or poly-ADP-ribose polymerase (PARP),
a nuclear repair enzyme that depletes NAD stores yet also has anti-inflammatory
actions. Excessive NO has also been implicated in the skeletal and cardiac muscle
contractile failure seen in sepsis, for which a mitochondrial etiology has been
suggested [25, 26].

Influence of Hormones on Mitochondrial Activity in Health and Sepsis

Numerous hormones impact on different aspects of mitochondrial function in
health, for example, oxidative phosphorylation activity (insulin, thyroid, cate-
cholamines), efficiency and uncoupling (thyroid, growth hormone, testosterone),
free radical formation, and lipid peroxidation (insulin, dehydroepiandrosterone)
and biogenesis (leptin).

During sepsis and other critical illness, there are well-recognized perturbations
in endocrine, metabolic, and bioenergetic activity. For example, most patients de-
velop the low T3 (‘sick euthyroid’) syndrome, the severity of which will distinguish
eventual non-survivors from survivors, even on admission to intensive care [27].
As many of the actions of thyroid hormones on metabolism are mediated through
their actions on mitochondrial activity, the low T3 syndrome in sepsis may also
have direct implications on cellular respiration. Furthermore, thyroid status also
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has effects on NO production. In hypothyroidism, hypothalamic expression of NOS
is significantly reduced [28], whereas liver and skeletal muscle mitochondrial NOS
activities are significantly increased, correlating inversely with both serum T3 lev-
els and oxygen uptake [29]. Adrenal insufficiency is also well recognized in sepsis,
and corticosteroid replacement is now broadly applied to critically ill populations.
However, while short-term dosing of corticosteroids increased rat skeletal muscle
mitochondrial mass and respiratory complex activity [30], chronic administration
had the opposite effect [31]. This may be pertinent in view of the critical illness
myopathy that has been linked with steroid use. Yet another example of a hormonal
perturbation in sepsis is that of leptin. Plasma leptin levels are increased in even-
tual survivors of sepsis [32]. As prolonged starvation is associated with marked
decreases in leptin levels, fasted mice will show increased lethality to endotoxin
which can be partly reversed by exogenous leptin administration [33]. We have
reproduced this finding in a long-term mouse model and found an associated
improvement in mitochondrial function (unpublished data).

The Role of Mitochondria in Sepsis-induced Cell Death

Although most organs affected in sepsis demonstrate minimal, if any, evidence of
cell death, a notable exception is the immune pathway. In post-mortem studies of
patients dying from MOF, Hotchkiss et al. found evidence of increased apoptosis
in spleen, lymphocytes, and gut epithelium [2]. In subsequent studies of isolated
lymphocytes, they reported evidence of activation of mitochondrial cell death
pathways [34]. Inhibition of caspase activation was related to improved outcomes
in a mouse model of sepsis [35]. On the other hand, a number of investigations
have shown that neutrophil apoptosis is profoundly depressed in sepsis [36] and
burns [37]. Decreased activation of mitochondria-related death pathways was
noted, with maintenance of mitochondrial transmembrane potential. Reasons for
these contrasting responses in different immune cells need to be better understood,
particularly in respect to potential application of therapies, e. g., caspase inhibitors
that may affect both cell types. Increased lymphocyte apoptosis is associated with
a shift in Th1:Th2 ratios and enhanced immunosuppression, whereas resolution
of neutrophil (PMN)-mediated inflammation occurs through apoptosis.

Other specific cell types also show increased apoptosis. In one septic rat
model [38], increased apoptosis was detected in neurons within the hippocampus,
choroid plexus, and cerebellar Purkinje cells. Both mitochondrial Bax (a member
of the pro-apoptotic Bcl-2 family) and cytochrome c were upregulated in the early
stages of sepsis (6–12 hrs), but decreased later on (48–60 hrs). Increased neu-
ronal and glial apoptosis was also found within the autonomic centers of the brain
in post-mortem studies of patients dying of septic shock, and this was strongly
associated with endothelial iNOS expression [39].
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Changes in Mitochondrial Phenotype

Other than direct inhibition of mitochondrial respiratory enzymes, recent data
suggest that changes in phenotype during sepsis will also decrease the amount
of mitochondrial protein expressed. In two related papers using a rat endotoxin
model studied after 48 hours [40, 41], Callahan and Supinski described a down-
regulation of genes encoding components of both the electron transport chain
and glycolysis, with corresponding decreases in enzyme activities, mitochondrial
oxygen consumption, and ATP formation. Calvano and colleagues [42] assessed
changes in leukocyte gene expression patterns over a 24 hour period in volunteers
given a single dose of endotoxin, thus allowing precise timing of the initiating
inflammatory insult. Of 44,000 probe sets, the signal intensity of 5,093 probe sets
(representing 3,714 unique genes) was significantly affected. A minority of probe
sets was induced by 2 hours; over half showed reduced abundance at 2–9 hours but
returned to baseline by 24 hours, while the remainder showed a delayed response,
peaking at 4–9 hours but returning to baseline by 24 hours. Of note, these authors
reporteda suppressionof genes involved inenergyproduction (e. g., componentsof
mitochondrial respiratory chain complexes I, III, and V) with a concurrent down-
regulation of genes encoding for both protein synthesis and protein degradation.

Mitochondrial Recovery

In the afore-mentioned studies in septic shock patients [16] and in long-term rat fe-
cal peritonitis [17], a decrease in complex I activity was noted, however complex IV
activity showed a tendency to rise. This may be misleading, as rapid reversibility
of competitive NO inhibition of this enzyme in the room air environment in which
the in vitro assay was prepared and performed may belie any in vivo inhibition
present in an environment where the oxygen tension is more than 20-fold lower.
On the other hand, it may possibly represent a true result and be due to an increase
in activity of the enzyme per unit mass due, for instance, to a conformational
change. More likely, however, is the possibility that total enzyme protein has in-
creased. Although other recent studies have reported a decrease in complex IV
protein [43] and mitochondrial content [44], these were performed in severe, high
mortality rodent models. On the other hand, Suliman et al. found that bacterial
lipopolysaccharide (LPS, endotoxin) injected into rats produced early DNA dam-
age followed by stimulation of new mitochondrial protein (‘biogenesis’) [45]. NO
has been recently shown to be a crucial component in the production of new mi-
tochondria [46, 47]. This is consistent with the finding of Elfering et al. [48] that
nitration induced a greatly accelerated turnover in new mitochondrial protein.
Thus, prolonged and excessive NO production may result in an initial inhibition
of mitochondrial activity followed, if the organism survives, by a stimulation of
recovery of function. This dual role is consistent with the notion we have proposed
that MOF may actually represent a protective, adaptive response to a prolonged
and severe inflammatory insult [49]. The acute phase of sepsis is marked by an
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abrupt rise in secretion of stress hormones with an associated increase in mito-
chondrial and metabolic activity. The combination of severe inflammation, with
excess ROS formation, and secondary changes in the endocrine profile and an
alteration in phenotype, will then diminish energy production, metabolic rate,
and normal cellular processes, leading to multiple organ dysfunction. However,
reduced cellular metabolism could increase the chances of survival of cells, and
thus organs, in the face of this overwhelming insult. This is analogous to hiberna-
tion, estivation, and other environmental stressors. Levy and colleagues [50] have
recently demonstrated biochemical, functional, and bioenergetic changes in septic
hearts that reflect the hibernatory response to a cold environment.

Mitochondrial Protection

If mitochondrial dysfunction and/or damage is central to the pathogenesis of
MOF, strategies to protect the mitochondria may prevent the progression, or at
least ameliorate, the development of organ failure.

An important advance in the clinical management of patients either with, or
at high risk of developing sepsis, is the concept of intensive insulin therapy. The
package of tight glycemic control (4.5–6.1 mmol/l) allied to additional insulin and
glucose resulted in an impressive reduction in both mortality and morbidity [51].
A variety of putative mechanisms of action for the beneficial effects of intensive
insulin therapy have been suggested. In an important follow-up paper examining
liver andmusclebiopsies taken soonafterdeath [52],minimal cell deathwas seen in
both intensive insulin therapy and conventionally-treated groups. However, inten-
sive insulin therapy resulted in almost complete protection against the significant
ultrastructural damage to liver mitochondria and the corresponding decrease in
respiratory enzyme activity frequently seen in the control group. This suggests
that better glycemic control, leading to reduced glycation of mitochondrial pro-
tein, and/or additional insulin and glucose, enhancing glycolysis and having direct
effects on mitochondrial function, represent potential protective mechanisms.

There are a number of other possible protective approaches to maintain mi-
tochondrial function. As much of the injury to the organelle is considered to be
mediated by reactive species, levels of intra-mitochondrial antioxidants, such as
glutathione [53] or manganese superoxide dismutase [54], could be supplemented
at an early stage. Melatonin is also an efficient scavenger of reactive oxygen and
nitrogen species and will increase the mitochondrial glutathione pool. After sep-
sis, administration of melatonin reduced expression and activity of the inducible
isoform of NOS (iNOS) and improved mitochondrial function [55]. There may be
a role for specific inhibitors of iNOS which have been shown to ameliorate cardiac
depression and improve mitochondrial activity and structure in an endotoxic rat
model [56].

Induction of heat shock protein (HSP) may also prove beneficial. A short period
of hyperthermia 24 hours before a septic insult was protective for both heart [26]
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and liver [57] mitochondrial function. The precise mechanism(s) of action remains
to be determined as the heat shock response offers broad cytoprotective properties
with effects on apoptosis, NO production, and heme oxygenase induction. Among
the various HSPs, HSP32 (heme oxygenase 1) has received considerable attention
as its induction generates significant amounts of carbon monoxide and the potent
antioxidant bilirubin which have been shown to have protective effects in a variety
of shock models. Recently, hemin, a pharmacological inducer of heme oxygenase,
was shown, in an endotoxic rat model, to increase tissue heme oxygenase levels,
prevent alterations in mitochondrial function, and attenuate increases in plasma
nitrite/nitrate levels and tissue markers of free radical generation [58].

PARP-1 is a DNA repair enzyme that is activated when nuclear damage oc-
curs. It consumes NAD and may potentially deplete this vital electron carrier, and
thus ATP production, within the mitochondria. PARP inhibitors were developed
with the aim of preventing this energy depletion but, more recently, they have
also been recognized to have potent anti-inflammatory properties. For example,
in an oxidative stress model, PARP inhibition provided mitochondrial protection
through inducing phosphorylation and activation of Akt [59]. In various sep-
tic models, PARP inhibition prevented mitochondrial dysfunction and improved
outcomes [24, 60].

In the situation of established sepsis, such protective strategies may prove less
effective. Consideration should be given to approaches that provide substrate able
to bypass the site of mitochondrial inhibition (e. g., succinate [61]) or stimulate
recovery pathways such as accelerating mitochondrial biogenesis, e. g., through
activation of the transcriptional coactivator, peroxisome proliferator-activated re-
ceptor gamma coactivator-1γ (PGC-1γ) [62]

Conclusion

Prolonged sepsis will induce mitochondrial dysfunction and damage. As a con-
sequence of decreased energy availability, metabolism must decrease or the cell
will soon die. As cell death is not a major feature, it is thus feasible that the cells
enter a hibernation-like state as a late protective response and this biochemi-
cal/physiological shutdown is manifest as multiple organ dysfunction/failure. Re-
covery would then be contigent upon restoration of mitochondrial function, either
through repair of existing damaged mitochondria or production of new organelles.
Excess production of NO and other reactive species appears likely to be the main
‘culprit’ of the initial injury and altered bioenergetics, yet, paradoxically, may pro-
vide the stimulus for eventual recovery of function. Therapeutic strategies could
thus be geared towards mitochondrial protection or accelerating recovery.
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Metabolic Pathways
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Introduction

With a better understanding of sepsis induced organ dysfunctions, metabolic ori-
ented treatments as well as the metabolic effects of currently available treatments
are coming into focus. Good examples of this are tight glucose control with feeding
and insulin treatment, as well as intravenous glutamine supplementation [1, 2].
Understanding of metabolic pathways is therefore crucial in optimizing treatment
in sepsis. In all phases of sepsis this is obvious – resuscitation, low flow phases as
well as high flow phases, multiple organ failure (MOF), and during recovery. How-
ever, timing and relation to nutrition are important, and, therefore, insights into
metabolic derangements in relation to nutrition may help to improve outcomes.
Energy metabolism in sepsis is mainly characterized by an increase in insulin
resistance. In addition, lipid oxidation is increased, and in protein metabolism it is
the increase in net protein degradation that dominates. This overview will focus on
protein metabolism, glutamine metabolism, glutathione metabolism, and finally
mitochondrial metabolism.

Protein Metabolism

In sepsis, a large proportion of the whole body energy expenditure is used on
protein metabolism [3, 4]. This is particularly true in patients with MOF when
severalorgan functionsaremoreor lessmanagedbyexternalmedical support, such
as ventilators, dialysis machines and blood transfusions. Nevertheless, whole body
expenditure is often elevated above the expected level of basal energy expenditure.
Also, when techniques are used to estimate the whole body turnover of a labeled
amino acid (usually leucine or phenylalanine) in order to estimate whole body
protein turnover, values above what are found in healthy individuals are seen. In the
basal state, humans are able to adapt to under-nutrition or starvation by decreasing
energy expenditure, which mainly reflects a decrease in protein metabolism. This
is, unfortunately, not an option for the septic patient. If the septic patient is under-
nourished, no such adaptation is seen. Therefore an under-nourished patient is
rapidly energy depleted and the incidence and seriousness of complications that
ensue are related to this energy deficit [5–7].
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So far there is no direct evidence that failure of protein metabolism is related
to such under-nutrition. It is more likely that prioritized protein synthesis is
maintained at the expense of endogenous protein mainly in skeletal muscle, which
continues as long as there are any endogenous reserves. On the other hand, there is
some evidence that over-nutrition is harmful. Over-nutrition is a situation where
calories are given in excess of the actual energy expenditure, and/or when large
quantities of proteins or amino acids are administered. Employing enteral feeding
usually eliminates the danger of over-feeding; however the concept of enteral
feeding does not eliminate the risk of under-feeding. These aspects are related to
the general success rate of enteral feeding, which is typically around 60% of the
prescribed amount.

Protein depletion is a strong predictor of outcome in sepsis. Attenuation of
ongoing protein depletion in septic states is, therefore, a cornerstone in treatment.
In general terms, during sepsis this protein depletion is the result of increased
protein synthesis in combination with an even greater increased protein degra-
dation at the whole body level [8]. This is perhaps not the case during the initial
low flow phase, a period not very well characterized in clinical studies. However,
later on during the high flow phase and MOF this mechanism is definitely true. It
is also well known that these changes in protein metabolism are not equally dis-
tributed between organs and tissues, and that in individual organs or tissues the de
novo synthesis and degradation of individual proteins is altered in a non-uniform
way [9]. The complexity of these changes has encouraged modern techniques to be
used in this field. Genomics and proteomics provide information regarding genetic
regulation of protein metabolism as well as the presence or absence of individual
proteins. This information gives insight into how these processes are regulated at
a tissue level as well as a cellular level. However, these measures should ideally
be combined with quantification of the related metabolic pathways. Quantitative
estimates are possible at the whole body level, at the tissue level and at the level of
individual proteins.

It is generally recognized that liver protein synthesis is enhanced in septic
patients. This enhancement is usually attributed to the so-called ‘acute phase’
reaction, involving proteins that appear in increased concentrations in the serum,
which are synthesized in increased amounts, and which have functions in the
acute inflammatory reaction. In contrast, the plasma concentration of albumin
decreases. This decrease is, however, not a reflection of low albumin synthesis
(Fig. 1). On the contrary, albumin synthesis is elevated and there are even indices
that albumin synthesis is increased to a maximum in these situations [10,11]. The
low plasma concentration of albumin is rather related to capillary leakage and to
the degradation of albumin. The latter is a process not very well characterized
and its assessment carries considerable methodological problems. In addition,
increased protein synthesis rates are seen in circulating immune cells in septic
patients (Fig. 1) [12, 13]. This is no surprise, as these cells are supposed to be
activated, to produce export proteins and to undergo cell division.
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Fig. 1. Fractional synthesis rate (%/24 hours) in skeletal muscle proteins [16,51], albumin [11,52,
53], and proteins of circulating leukocytes [13,54] in sepsis (open bars), healthy controls (hatched
bars), and during cholecystitis (filled bars). In muscle there is no change, while in albumin and
leukocyte proteins a considerable increase is seen. For albumin the increase is much larger in
sepsis than that seen in an acute inflammatory state such as cholecystitis. Values are given as
means ± SD

Muscle tissue undergoes considerable wasting in septic patients. This is related
to physical inactivity, but also to metabolism, which places muscle as a provider
and net exporter of free amino acids. This is particularly true for alanine and
glutamine, which will be elaborated on below. The amino acids are produced from
a net degradation of muscle proteins. Muscle tissue decreases rapidly in the septic
patient related to this export of amino acids, even in the fully fed state [14]. This
is quite different from the situation in healthy individuals, who have a net uptake
of amino acids in the fed state. In septic patients, protein synthesis is unaltered
and degradation of muscle is increased [12, 15–20]. The unaltered rate of mus-
cle protein synthesis is a bit unexpected, as the protein synthesis rate in muscle
decreases following elective surgery trauma [21]. However, it seems that with in-
creasing size of trauma, protein synthesis in muscle moves from being decreased
to being unaltered [22]. In septic patients, however, it remains unaltered (Fig. 1),
and in some individuals it is actually markedly increased [23]. Protein degrada-
tion, on the other hand is generally increased. Due to methodological difficulties,
quantification of this increase in degradation is still problematic, but qualitative
assays clearly indicate that proteasome activity is increased, that the synthesis of
proteasome subunits increased, and that the de novo synthesis and gene expression
of ubiquitin is increased [15,17–20]. The few quantitative estimates on muscle pro-
tein degradation in septic patients further confirm this pattern [24]. Techniques
used to investigate protein degradation quantitatively, involve the incorporation
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and/or balance of labeled amino acids across tissues. This opens the possibility
of evaluating the natural course of sepsis as well as the effects of treatments in
the septic patient. The initial phase of sepsis may be studied in man by the use
of an endotoxic challenge in healthy volunteers. During the initial 4 hours fol-
lowing endotoxemia, protein metabolism mainly displays a low flow phase with
decreases rather than increases in muscle protein synthesis and protein degra-
dation [25]. This is a pattern that does not correspond to what is seen later on
during MOF.

Glutamine Metabolism

Among the amino acids, glutamine has a special role. It is a non-essential amino
acid, but there are indices that endogenous production is insufficient during crit-
ical illness and also that exogenous intravenous supplementation has beneficial
effects on outcome. In general terms, glutamine has a central role in amino
acid metabolism and in the interface between amino acids and carbohydrate
metabolism. It is a main transporter of carbon skeletons as well as amino groups
between skeletal muscle and the ‘central’ organs in the splanchnic area. The carbon
skeleton of glutamine, α-ketoglutarate, is also a constituent of Kreb’s cycle and con-
sequently is involved in energy production. In addition, glutamine is the precursor
for nucleotide synthesis, and the availability of glutamine is crucial when cell di-
vision is prioritized. Cells that are rapidly dividing commonly utilize glutamine
as an energy substrate, such as cells in the intestinal mucosa and immune cells.
The slight disadvantage in terms of moles ATP per mole substrate in comparison
with glucose is easily counterbalanced by the opportunity of having a substrate
flow which can be turned easily into nucleotide synthesis when necessary. It is well
documented that in various stressed states, cells are more likely to use glutamine
as an energy substrate. In the basal state, endogenous glutamine production is 50–
70 grams per 24 hours, mainly taking place in muscle tissue [26, 27]. Glutamine is
constantly exported from muscle and taken up in the splanchnic area, preferably
as an energy substrate where the amino groups are transaminated to other amino
acids or turned into urea in the liver. In sepsis, this turnover of glutamine is not
changed [28–30]. However, it does not increase either, although the demand for
glutamine may be elevated. This is the situation where availability of glutamine
may be a limiting factor.

In the early phase of sepsis, as reproduced by an endotoxin challenge in healthy
volunteers, glutamine plasma concentration decreases, free glutamine concentra-
tion in muscle decreases, and the export of glutamine from muscle increases [31].
Later on during MOF, the export of glutamine from muscle is relatively con-
stant, while the concentrations of glutamine in plasma and in muscle tissue stay
low [30,32]. The uptake of glutamine across the splanchnic area is related to plasma
concentration. Plasma glutamine concentration on admission to the ICU is a prog-
nostic factor [33]; a low value indicates a much worse prognosis. This factor is
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unrelated to the prognostic elements summarized in the APACHE II score. Intra-
venous glutamine supplementation can normalize plasma glutamine level in all
patients [16]. An exogenous supply of amino acids does not increase the endoge-
nous production of glutamine [29,34]. On the other hand, an exogenous supply of
intravenous glutamine does not suppress de novo production but makes more glu-
tamine available [28]. For muscle tissue, a short term exogenous glutamine supply
does not restore the intracellular glutamine depletion and the efflux of glutamine
from muscle is also unaltered [16, 29, 35]. Exogenous glutamine supplementation,
therefore, does not per se save muscle protein, but makes more glutamine available
for other organs. On a long term perspective, glutamine may also be beneficial
in terms of saving muscle protein, but this remains to be demonstrated in septic
patients. The clinical evidence for a beneficial effect of glutamine on mortality is
so far limited to studies of intravenous supplementation of glutamine to patients
with MOF [36,37]. The effects of enteral supplementation during earlier phases of
sepsis are less well documented, but there are several reports of beneficial effects
on morbidity [1]. There are also animal studies showing beneficial effects of glu-
tamine supplementation during resuscitation [38]. Furthermore, the expression
and production of heat shock proteins are enhanced in response to exogenous
glutamine supplementation [38,39]. The clinical relevance of these findings is still
not settled, however.

To evaluate the need for glutamine supplementation, as well as the optimal
dose and the best route of administration, it is necessary to be able to measure
endogenousglutamineproduction.This isbestdoneasameasurementof the rateof
appearance of glutamine. The conventional technique is to give a primed constant
infusion of isotopically labeled glutamine and estimate the rate of appearance at
steady state [27, 34]. An alternative approach is to use the decay curve, which
can also be obtained after a single injection of glutamine [26, 29, 40]. This latter
approach avoids the problem related to the large distribution volume of glutamine,
and also makes it possible to do estimates when a steady state is not possible. This
technique has enabled us to estimate the rate of appearance of glutamine, and will
also make it possible to evaluate glutamine supplementation by the entral route.

Glutathione Metabolism

Glutathione is a tri-peptide (glutamyl–cysteinyl–glycine) that is synthesized in
all cells. As a thiol it appears in a reduced and an oxidized form. The oxidized
form is a dimer, with the residues are connected via sulfhydryl bonds. Glutathione
has many functions, but the most important is attributed to its ability to remove
reactive oxygen species (ROS) as an antioxidant. In this capacity, glutathione is
quantitatively the most important antioxidant in man. In plasma, the glutathione
concentration is very low, but intracellularly it appears in mmole concentrations
in all tissues. The reduced form of glutathione is the dominant form representing
> 80% of the glutathione in most tissues.



316 O. Rooyackers, J. Wernerman

In sepsis, glutathione depletion is seen in erythrocytes as well as in muscle
tissue (Fig. 2) [41–43]. In addition to a low concentration, the redox status of
glutathione is altered into a more oxidized state. In erythrocytes, these changes
are constant over time during MOF [42]. In acute sepsis, as represented by an
endotoxin challenge to healthy volunteers, there is no immediate change in glu-
tathione concentration or glutathione redox status in the erythrocytes. In muscle,
glutathione is also left unaffected by an endotoxin challenge in the acute phase,
but on admission to the ICU, septic patients show reduced glutathione concentra-
tions and an altered redox status with a more oxidized state. The extent of this
depletion is associated with short-term mortality [44]. Those surviving the acute
phase of sepsis and developing MOF, show a gradual normalization of glutathione
concentration in muscle over subsequent weeks (Fig. 2) [43]. The more oxidized
state of glutathione, however, remains throughout the ICU stay. These are descrip-
tive findings, which cannot be explained by a shortage of the constituent amino
acids, in particular not by a shortage of cysteine [43, 45]. If anything, glutathione
depletion is statistically correlated to simultaneous glutamate depletion. On the
other hand, although glutamate concentrations are low, it is still quite abundant.
Following elective surgery, a similar decrease in glutathione is seen on the first
and third post-operative days [46]. This finding applies to the reduced form of
glutathione only, with the redox status being unaffected. In addition, the decrease
in glutathione concentration is statistically related to a decrease in free glutamate.
Supplementation with intravenous glutamine counteracts the glutathione deple-

Fig. 2. Reduced glutathione concentrations in muscle (circles) [43] and in whole blood
(squares) [42] over time in septic patients during their ICU stay (open symbols). Values are
compared to those of controls (closed symbols). Initially, a decrease is seen in muscle as well
as in erythrocytes. During the late course of sepsis a normalization is seen in muscle but not in
erythrocytes. Values are given as means ± SD
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tion to some degree following surgical trauma [47]. When patients with MOF in the
ICU are given extra glutamine, the low glutathione concentration seen in muscle
is not restored in response to this supplementation [16].

In addition to the obvious anti-oxidative effects of glutathione, a role in the
overall regulation of protein metabolism has been suggested. In particular there
is evidence from animal studies concerning the level of protein degradation [48].
However, the exact function of glutathione in this setting remains to be established.

Mitochondrial Metabolism

Mitochondrial metabolism is mainly energy production, although active protein
synthesis also occurs in the mitochondrion. The majority of proteins in the mi-
tochondrion, however, are synthesized within the cellular cytoplasm encoded for
by the cellular genome and not by mitochondrial DNA. These proteins are actively
transported into the mitochondrion, and they are, for example, necessary for pro-
tein degradation in the mitochondrion. In sepsis, reduced mitochondrial function
is described in the acute phase as well as during MOF [44,49]. In the acute phase, it
is potentially difficult to distinguish between a shortage of oxygen at the tissue level
or at the mitochondrial level and functional impairment of the mitochondrion. In
man, these pathways have been most extensively studied in skeletal muscle. In the
acute phase, failure in energy production has been attributed to reduced function
of complexes I and IV within the respiratory chain [44]. The reduced function
is usually expressed as in vitro activity of complexes I and IV related to citrate
synthase activity as an index of mitochondrial mass. If this functional depression
is not reversed, energy collapse ensues and mortality is very high. Septic patients
who develop MOF have reduced mitochondrial content in terms of a low citrate
synthase activity related to DNA or protein content [49]. This decrease progresses
with time [50]. In this situation, in the phase of MOF, the activity of the mito-
chondrial complexes I and IV as related to citrate synthase activity is not different
from that in healthy controls. This is true for thigh muscle as well as for intercostal
muscle. It can be hypothesized that this reduction in mitochondrial metabolism
and the consequent decrease in energy-rich phosphates during MOF is related to
muscle fatigue [49]. Hence, the underlying mechanism of reduced mitochondrial
function in terms of energy production seems to be different in the acute phase of
sepsis and in the later phase involving MOF.

Conclusion

The understanding of sepsis-induced organ dysfunction has advanced consid-
erably over the last few years. The interaction between signaling systems and
metabolic pathways is a particularly ‘hot’ area of ongoing research. Energy pro-
duction and the availability of substrates in the acute phase seem to have a crucial
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impact on the course of sepsis and on mortality and morbidity. Later on, dur-
ing MOF, the same metabolic pathways determine outcome, but the mechanisms
and clinical picture are different. Knowledge of these mechanisms is, therefore,
necessary for optimal clinical practice.
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Cell Death and Acute Lung Injury

T.R. Martin, N. Hagimoto, and G. Matute-Bello

Introduction

Life and death are inextricably intertwined and homeostasis in adult organisms
depends on death and renewal of tissues throughout the body. In normal cells,
death occurs by two different processes, necrosis and apoptosis. Necrosis is an
unregulated form of cell death that results in cell lysis and the escape of intra-
cellular constituents into the surrounding environment. In contrast, apoptosis is
a regulated form of cell death mediated by a series of cysteine proteases called
‘caspases’, that ultimately results in DNA cleavage [1]. Necrotic cell death is both
inflammatory and toxic to surrounding cells, depending on what is released from
the dying cells. In contrast, apoptosis is characterized by cellular involution and
ingestion of the apoptotic cell by nearby leukocytes or other cells [2]. Apoptosis
and necrosis overlap to some extent, as apoptotic cells can undergo secondary
necrosis, so the dividing line is not always clear. Additional mechanisms of cell
death have been described in neoplastic cells [3].

Cell death has important consequences in the lungs, particularly in the gas
exchange parenchyma. The alveolar membrane is a simple structure, consisting at
the minimum of a flattened Type I alveolar epithelial cell covering an intermedi-
ate layer of connective tissue matrix, which in turn overlies a flattened capillary
endothelial cell. The alveolar membrane spreads approximately 95% of the right
ventricular output over a very large surface, permitting rapid oxygen uptake and
carbon dioxide elimination. Injury to endothelial or epithelial cells poses a ma-
jor problem, as airspaces flood with plasma, inactivating surfactant and causing
alveolar collapse. The consequent ventilation-perfusion (VA/Q) imbalance causes
life-threatening hypoxemia. The way in which cellular injuries lead to the death of
the epithelium and endothelium is not well understood, but accumulating evidence
suggests that apoptosis and necrosis are both important.

Epithelial Function in the Lungs

Epithelial and endothelial function are critical for normal lung function. The
pulmonary epithelium consists of the mucociliary epithelium in the nasopharynx
and tracheobronchial tree, and the specialized alveolar epithelium, which is the
largest surface area in the body that is in contact with the outside environment.
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A great deal of progress has been made in clarifying the physiological role of
alveolar epithelial cells in homeostasis [4]. The Type I alveolar epithelial barrier
differs from the endothelial barrier, because it is nearly impermeable to water and
its permeability is not regulated. By contrast, the capillary endothelium is more
permeable, and endothelial cells undergo rapid and reversible changes in cell shape
in response to thrombin and other pro-inflammatory stimuli, permitting plasma
to move through intracellular gap junctions into the interstitium of the lungs. If
interstitial pressures are moderate and the Type I alveolar epithelium is intact,
the extracellular fluid is cleared via lymphatic channels along bronchovascular
bundles to the hila of the lungs. Interstitial and lymphatic fluid accumulation can
alter ventilation/perfusion relationships, with concomitant hypoxemia, but these
changes are reversible if endothelial permeability reverses and the interstitial fluid
is cleared from the lungs.

When fluid accumulates in the airspaces, as in hydrostatic pulmonary edema,
alveolar water is absorbed across the Type I cell epithelium through specialized
water channel proteins, named aquaporins, aquaporin V being the primary aqua-
porin in the alveolar epithelium [5]. Paracellular water transport also occurs, and
helps to explain why aquaporin V knockout mice do not have a prominent lung
phenotype [6]. Type I epithelial cell injury leads to the destruction of this tight
epithelial boundary layer, and interstitial fluid floods into alveolar spaces at low
interstitial pressures.Type IIpneumocytes secrete surfactant,which stabilizes alve-
olar units at low lung volumes, and also contain specialized ion transport channels,
which reabsorb sodium and chloride through catecholamine sensitive apical and
basolateral transporters [7]. Separate protein transport systems also exist in the
alveolar epithelium, but protein reabsorption is much slower than water and elec-
trolyte reabsorption. Because the intact alveolar epithelium reabsorbs fluid more
rapidly than protein, the protein concentration in intra-alveolar fluid rises with
time, when alveolar fluid clearance is normal. Clinical studies in intubated patients
with lung injury have shown that patients whose alveolar protein concentration
rises over the first 6 hours after the onset of clinical acute lung injury (ALI) have
a significantly better prognosis than patients whose protein concentration does not
change, supporting the idea that intact alveolar epithelial function is a prognostic
marker in patients with ALI [8, 9].

Alveolar Membrane Damage in Acute Lung Injury

Ultrastructural studies by Bachofen and Weibel showed that patients who died fol-
lowing ALI had evidence of epithelial and endothelial injury in the lungs, although
the epithelial injury appeared to be more severe, with many areas of exposed alve-
olar basement membrane visible by electron microscopy [10]. Endothelial damage
and areas of microvascular thrombosis also occur but are not as prominent [11].
Light microscopic studies of injured lungs commonly show fibrinous alveolar in-
filtrates, alveolar hemorrhage, and acute neutrophilic inflammation in the first



Cell Death and Acute Lung Injury 323

2–3 days after the onset of ALI. At later times, the pathology is characterized by
mononuclear cell infiltrates, the proliferation of Type II pneumocytes, and intra-
alveolar fibrosis.

Morphologic studies showing alveolar membrane damage are supported by
functional studies showing that there is amajor increase inalveolarprotein concen-
tration, with a loss of the normal sieving characteristics of the alveolar membrane,
and an acute inflammatory profile in bronchoalveolar lavage (BAL) fluid [12]. The
BAL protein and cell concentrations are elevated at the onset of acute respiratory
distress syndrome (ARDS), remain elevated for at least three days, and then fall
with time in patients who remain mechanically ventilated [13–15].

The cause of the alveolar membrane injury is not clear, but necrosis and apopto-
sis areboth likely tobe involved [16,17].Necrosis canoccurwhenalveolar epithelial
cells are ruptured by shear and/or distending forces due to relative over ventilation
of the injured lungs. When a standard tidal volume (e. g., 10 ml/kg) is introduced
into injured lungs, which have heterogeneous areas of alveolar flooding and/or
atelectasis, the open alveolar units receive much larger tidal volumes than antic-
ipated, resulting in large local shear and distending forces [18–22]. These forces
can rupture the alveolar walls; studies by Dreyfuss et al., showed ultrastructural
evidence of alveolar epithelial rupture in an animal model of ventilator-induced
lung injury (VILI) [23] (reviewed in [22]). The NIH ARDSnet trial of low tidal
volume in ARDS is consistent with the interpretation that lower distending and
shear forces reduce injury to the alveolar epithelium [24]. While this ARDSnet trial
was a major advance, the mortality in the treatment group in this and a subse-
quent ARDSnet clinical trial ranged from 25-31%, providing clear evidence that
new ideas and approaches are still needed to further reduce mortality [24, 25].

Apoptosis and Inflammation in ALI.

Evidence from BAL fluid studies of patients with ARDS shows that apoptotic path-
ways are activated in the lungs, suggesting that apoptosis is an important deter-
minant of the fate of the epithelium, in addition to stress failure and necrosis [26].
Apoptosis in lung cells can be initiated by at least two different routes, receptor-
mediated and mitochondrial pathways (Fig. 1) [reviewed in [27–29]]. A family
of ‘death’ receptors can be triggered by protein ligands either on the surface of
effector cells, or in the soluble phase of extracellular fluids [1, 28]. Fas (CD95) is
a membrane receptor protein that mediates apoptosis via activation of a series
of intracellular cysteine proteases (caspases), resulting in the cleavage of nuclear
DNA [1, 30]. Ligation of membrane Fas activates the death pathway by clustering
the intracellular tails of adjacent Fas molecules and recruiting molecules with the
Fas-associated death domain (FADD). This growing complex recruits molecules of
pro-caspase-8 from the cytoplasm, which dimerize and autoactivate to yield active
caspase-8. Caspase-8 activates caspase-3, which in turn activates distal caspases-6
and -7, leading to DNA fragmentation. The caspases can be grouped into three
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Fig. 1. Simplified view of receptors and pathways mediating cellular apoptosis. From [17] with
permission

groups: the initiator caspases, which include caspases-8 and -9; the effector cas-
pases, which include caspases-3, -6, and -7; and the inflammatory caspases. The
inflammatory caspases, of which caspase-1 is the prototype, activate interleukin
(IL)-1β and IL-18. The caspase family of proteins was discovered as part of efforts
to understand how IL-1β was activated in inflammatory cells. The caspases are
homologous to proteins in Caenorhabditis elegans that mediate cell death during
development. Caspases exist as pro-forms in the cytoplasm, which prevents acci-
dental activation. Once activated, caspases are regulated by specific inhibitor of
apoptosis (IAP) proteins. The Bcl family members are mitochondrial membrane
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proteins that inhibit the mitochondrial apoptosis pathway [31]. The Fas-ligand
(FasL) inhibitory proteins are proximal regulators of Fas activation [32].

FasL is a membrane protein on effector lymphocytes and other cells that
accumulates inextracellularfluidswhen it is shed fromcellmembranesbyactivated
metalloproteinases (soluble FasL, sFasL) [33, 34]. Monomeric sFasL is a relatively
inefficient activator of membrane Fas, but multimeric forms of sFasL activate Fas
and initiate intracellular signaling in vitro [35, 36]. Fine et al. reported that Fas
is detectable on airway epithelial cells (Clara cells) and alveolar type II cells in
rodents, and that activation of membrane Fas caused apoptosis of murine Type II
cells in vivo [37, 38]. Other apoptosis pathways also exist, as Wang et al. have
found that angiotensin peptides produced by fibroblasts from fibrotic human
lungs (but not normal lungs) initiate apoptosis of alveolar epithelial cells via the
angiotensin II receptor [39, 40]. Mice with deletion of angiotensin converting
enzyme (ACE) develop less severe ALI in a sepsis model, whereas mice deficient in
ACEII, which destroys ACEI, are relatively protected [41]. Mechanical stretch and
major changes in oxygen concentration also induce apoptosis in lung epithelial
cells and fibroblasts [42–46]. The effects of hyperoxia and hypoxia are mediated
largely by the mitochondrial death pathway in epithelial and endothelial cells, with
the release of mitochondrial cytochrome c and activation of caspase-9, which in
turn activates the terminal caspases -3, -6, and -7 [45, 47–49]. Our own studies
have indicated that sFasL is present in the BAL fluid of many patients with ARDS
in a biologically active form which induces apoptosis of primary human lung
epithelial cells in vitro (Fig. 2) [16]. Albertine, et al. confirmed and extended
these findings by showing that sFasL is detectable in the pulmonary edema fluids
of patients with ALI, and that membrane Fas appears to be upregulated on the
alveolar epithelium of patients with ARDS who do not survive [50]. Soluble FasL
also has been detected in the BAL fluid of patients with pulmonary fibrosis, as
well as patients with chronic organizing pneumonia [51]. The intratracheal or
endobronchial instillation of recombinant human sFasL causes lung injury and
epithelial apoptosis in rabbits, and activation of membrane Fas in mouse lungs
using a specific anti-Fas monoclonal antibody (JO-2) causes injury and epithelial
apoptosis that is followed by fibrosis in the lungs [52–54].

We and others have found that activation of Fas pathways in the lungs is
pro-inflammatory in vivo, consistent with experimental studies showing that Fas
pathway intermediates like caspase-8 are linked to nuclear factor-kappa B (NF-
κB) activation [55–57]. For example, instillation of human sFasL into rabbit lungs
caused the production of IL-8 by alveolar macrophages [54], and activation of
Fas in the lungs of mice caused histologic evidence of acute inflammation, with
the production of macrophage inflammatory protein (MIP)-2 [53]. Park et al.
showed that human monocyte-derived macrophages do not undergo apoptosis
when stimulated with sFasL, even though they express the membrane Fas receptor.
Instead, they become pro-inflammatory, releasing substantial quantities of IL-8
and tumor necrosis factor (TNF)-α [58] Normal alveolar macrophages have the
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Fig. 2. Soluble Fas ligand (sFasL) in bronchoalveolar lavage (BAL) fluid from patients before and
after the onset of lung injury, measured by ELISA. From [16] with permission

same characteristics, producing IL-8, a potent chemoattractant for neutrophils,
when stimulated with sFasL in vivo [54].

Experimental Links between Pro-Apoptotic Pathways and Fibrosis

Several different observations provide clues about the links between apoptosis,
inflammation, and fibrosis. As cells become apoptotic, they become less adher-
ent to the underlying matrix in the alveolar wall. Apoptotic Type I and Type II
pneumocytes loosen, or ‘fall away’ (Greek, apoptosis), from the alveolar base-
ment membrane, thereby exposing underlying matrix components in the alveolar
wall. Because stimulation of Fas on monocyte/macrophages and human alveo-
lar macrophages is pro-inflammatory, the accumulation of sFasL in the alveolar
spaces is likely to create a pro-inflammatory phenotype in alveolar macrophages
and newly recruited monocyte/macrophages in the airspaces [58]. The pro-
inflammatory effects of Fas activation are evident in epithelial cells as well as
alveolar macrophages, providing several different routes by which Fas activation
can generate or amplify neutrophilic inflammation in the lungs [59]. Oxidants
produced by activated polymorphonuclear cells (PMN) in the airspaces directly
trigger mitochondrial death pathways, providing a means of amplifying apoptotic
cell death at sites of inflammation [60,61]. Metalloproteinases and their natural in-
hibitors are known to accumulate in the BAL fluid of patients with ARDS [62–64],
and activated alveolar macrophages release several different metalloproteinases
which can degrade the basement membrane and interstitial components of the
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alveolar walls [65, 66]. The macrophage specific metalloproteinase, MMP-12, at-
tacks elastin in alveolar walls [65]. Growth factors released by activated alveolar
macrophages, such as transforming growth factor (TGF)-α and TGF-β, are also
detectable in BAL fluid from ARDS patients [67]. These cytokines stimulate fibrob-
last proliferation and collagen production and have been linked with experimental
lung injury [67–69].

Hagimoto et al. showed that repeatedly stimulating Fas by exposing mice to
aerosols of the JO-2 mAb (which aggregates membrane Fas) every other day for
14 days resulted in increased lung hydroxyproline production and histological
evidence of fibrosis [52]. Treatment of mice with intratracheal bleomycin causes
Fas-dependentfibrosis, becausefibrosis ismarkedly reduced in lpr mice, anaturally
occurring strain in which membrane Fas is inactive [70]. The macrophage product,
TGF-β enhances sFasL-dependent apoptosis of primary lung epithelial cells in
vitro [71], and TGF-β is activated in bleomycin-induced fibrosis [72, 73].

Thus, accumulating evidence suggests that the Fas pathway triggers lung
macrophage activation in vitro and in vivo, and that Fas activation in the lungs
of mice causes delayed fibrosis. More information is needed about the specific
mechanisms involved in this process so that specific steps in this pathway can be
targeted in order to reduce or prevent some of the fibrotic consequences of ALI.

Endothelial Cell Apoptosis

Endothelial cell death in the lungs also is likely to be important in the patho-
genesis of ALI, but little specific information is available about endothelial cell
apoptosis in the lungs. Endothelial apoptosis has a role in the systemic circulation
and has been implicated in atherosclerosis and vascular remodeling, and it may
also be important in sepsis (reviewed in [74, 75]). Like alveolar epithelial cells,
apoptotic endothelial cells loosen from attachments in vessel walls, exposing the
thrombogenic surface of underlying matrix. Because apoptotic endothelial cells
lose intracellular adherens junctions, the apoptotic death of only a small number
of endothelial cells could have a significant effect on microvascular permeabil-
ity. Apoptotic endothelial cells become adhesive for platelets and leukocytes and
promote coagulation, consistent with the microvascular thrombotic lesions seen
in the lungs of patients dying following ALI [13, 76, 77]. As with lung epithelial
cells and other types of cells, ligation of membrane death receptors on endothelial
cells by TNF-α and related peptides kills endothelial cells in vitro. Although some
endothelial cells are relatively resistant to Fas ligation in vitro, ligation of Fas in
vivo using either an agonistic anti-Fas mAb, or aggregated sFasL, caused diffuse
endothelial apoptosis in mice, and the lesions were preventable by an inhibitor of
caspase-8, confirming that the Fas-dependent death pathway was involved [78].
Activation of Toll-like receptor 4 (TLR4) by bacterial lipopolysaccharide (LPS)
and TLR2 by bacterial lipoproteins causes endothelial apoptosis in vitro, linking
activation of innate immunity and endothelial cell death [79].
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Endothelial cells are protected from apoptosis in vitro by growth and an-
giogenic factors such as vascular endothelial growth factor (VEGF), fibroblast
growth factor-2, hepatocyte growth factor, and others that activate the phospho-
inositide 3-OH kinase (PI3-K)/AKT pathway, which leads to phosphorylation and
inactivation of caspase-9 and other proapoptotic intermediates [75, 80]. Some
types of endothelial cell have a constitutive anti-apoptotic pathway which pro-
tects against LPS-induced apoptosis via activation of FLIP (FLICE-like inhibitory
protein), which blocks NF-κB activation [81, 82].

The role of endothelial cell apoptosis in sepsis is still being defined, because it
has been difficult to detect apoptotic endothelial cells in vascular walls of patients
dying with sepsis, or in mice following cecal ligation and puncture [83,84]. Apop-
totic endothelial cells may be difficult to detect in vivo because they detach from
vessel walls and are cleared in the circulation. Apoptosis of capillary endothelial
cells in the lung was detectable but infrequent in mice with pseudomonas pneu-
monia [85]. Treatment of septic animals with caspase inhibitors improves survival
and reduces lung injury, but it is not clear whether this effect involves protection
from endothelial apoptosis, or lymphocyte apoptosis, or both [86,87]. Overexpres-
sion of the anti-apoptotic protein, Bcl-2, protects mice from death following cecal
ligation and puncture, possibly by reducing endothelial cell apoptosis [88]. The
importance of endothelial cell apoptosis in the pulmonary circulation in patients
with ALI and in animal models of lung injury needs to be defined, and there is no
information linking endothelial cell apoptosis with the delayed consequences of
lung injury.

Should Epithelial and Endothelial Apoptosis be Inhibited?

If apoptosis is part of normal tissue development and plays a role in repair and
regeneration of injured tissues, then a major unanswered question is whether
apoptotic pathways should be inhibited in ALI, and if so, for how long? The obser-
vation that sFasL is present and biologically active in the lungs of patients at the
onset of ALI suggests that sFasL has an important initial role in the injury [16].
Experimental evidence that Fas activation in the lungs is associated with delayed
fibrosis, and that injury from agents such as bleomycin is associated with apoptosis
and fibrosis suggests that inhibiting apoptosis pathways might limit fibrosis. How-
ever, these findings are limited to very specific experimental models, and questions
remain about the mechanistic importance of apoptosis in clinical settings that are
significant risk factors for ALI, such as mechanical ventilation, bacterial pneumo-
nias, sepsis, and trauma. Inhibition of apoptosis pathways improves survival in
several different murine models of sepsis [86, 87]. In the cecal ligation and punc-
ture model, ‘knock down’ of either membrane Fas or caspase-8 using systemic
administration of specific small interfering RNAs (siRNAs) in vivo improved sur-
vival, but whether this strategy would modify the long term effects of lung injury
in surviving animals is difficult to determine [89]. Rabbits treated with injurious
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mechanical ventilation developed lung injury and renal dysfunction associated
with apoptosis of renal tubular epithelium, suggesting that blockade of apoptosis
pathways might limit secondary renal injury in the setting of VILI [90]. In order
to support the rationale for anti-apoptotic treatments in ALI, more information
is needed about the relative contributions of apoptosis and necrosis to acute and
delayed outcomes in different experimental models. While methods exist to mea-
sure apoptosis in tissues and individual cells in vivo, accurate methods to measure
necrosis with the same level of detail are lacking. Because apoptosis is regulated, it
makes sense to target key intermediates in apoptosis pathways, such as caspases.
Studies of the effects of inhibiting apoptosis pathways in vivo must include mea-
surement of organ-specific physiological endpoints and evidence of apoptosis in
tissues, in order to prove that observed changes in outcome are actually linked to
changes in apoptosis in tissue and to relevant physiological functions.

Although experimental evidence suggests that inhibition of apoptosis in some
clinical settings might be beneficial, the possible adverse effects of inhibiting cell
death also need to be considered. Apoptosis pathways in the lungs may be critical
in the repair phase after ALI, as Fas pathways are likely to be involved in clearing
proliferating Type II pneumocytes, as well as fibroblasts that accumulate during the
repair phase [91, 92]. Some evidence suggests that repair processes begin almost
immediately after the onset of ALI, as the collagen precursor pro-collagen III is
detectable in the lungs at the onset as well as during the course of ALI [93, 94].
Early inhibition of these repair processes could have adverse consequences, which
must be evaluated carefully when apoptosis is inhibited in animal models of lung
injury.

Conclusion

The concept that apoptosis pathways are involved in the onset and long-term
consequences of lung injury is important, but significant questions remain. More
information is needed about the factors that control the balance between tissue
injuryand tissue repair in the lungs. For example,weneed toknowmoreaboutwhat
determines when the Fas pathway leads to tissue injury versus when Fas activation
leads to the orderly removal of excess tissue at sites of tissue repair. Cell death
pathways are complex and interlocking, and more information is needed about
how different cellular activation pathways interact either to enhance or inhibit cell
death in the lungs. Activation of innate immunity via TLR receptors modulates Fas
pathway activity, and more information is needed about the mechanisms involved.
At inflammatory sites, it seems likely that receptor-mediated death pathways and
mitochondrial death pathways are activated almost simultaneously, and it is not
clear whether strategies to inhibit one of the death pathways will be successful
without simultaneously modulating all other death pathways. Importantly, it is not
clear how long apoptosis pathways should be inhibited. Nevertheless, new ideas
are needed to further reduce mortality in patients with ALI. Because apoptosis
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pathways are a tightly regulated mode of cell death, targeting specific control
points in these pathways offers new opportunities to reduce the initial severity of
ALI and improve long-term outcomes.
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Mechanisms of Immunodepression
after Central Nervous System Injury

C. Meisel and H.-D. Volk

Introduction

Infections are a leading cause of death in patients suffering from acute central
nervous system (CNS) injury, such as stroke, traumatic brain injury, or spinal cord
injury. Infections not only increase morbidity and mortality after CNS trauma
but also worsen the neurological recovery of affected patients. Several risk factors
have been attributed to the increased susceptibility to infections after CNS injury,
including the exposure of patients to invasive medical procedures and hospitaliza-
tion, and the loss of protective reflexes leading to bladder dysfunction, dysphagia,
and aspiration. However, experimental and clinical studies have also demonstrated
profound suppression of immune responsiveness after brain injury. It has become
evident that CNS injury induces a disturbance of the normally well balanced in-
terplay between the CNS and the immune system. As a result, CNS injury leads
to secondary immunodeficiency (CNS injury-induced immunodepression, CIDS)
and infection.

The CNS senses inflammation in the body through the autonomic nervous
system, and mounts a strong counterregulatory response in case of infection and
severe injury. This acute response is anti-inflammatory in nature, and can be con-
sidered adaptive, as it helps contain infection and injury-induced inflammation
when they occur in the periphery. Brain or spinal cord injury can lead to the
production of inflammatory mediators within the CNS, or disruption of signaling
within the control circuitry of neural-immune interactions, both of which may
also lead to systemic downregulation of innate and adaptive immunity. In the ab-
sence of immune stimulation by peripheral inflammation, however, this leads to
profound deficiencies of the body’s defense systems, leaving the host vulnerable to
invading microorganisms.

Infections after CNS Injury

Infection is a frequent medical complication in patients suffering from stroke,
traumaticbrainor spinal cord injuries.Themost common infectious complications
after CNS injury are pneumonia and urinary tract infections [1–4]. Between 10
and 60% of patients with injuries of the CNS develop nosocomial infections, with
a particularly high prevalence in patients requiring mechanical ventilation after
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neurotrauma [2–7]. The incidence of infections in patients with CNS injury is thus
significantly higher than the general prevalence of hospital acquired infections
(4% to 9% of all hospitalized patients) and that reported among surgical patients
(3%) [8]. Infectious complications frequently occur within the first days after CNS
injury [1,3,6,7]. However, the increased risk of infections persists beyond the acute
phase and infections are common complications also during the rehabilitation
phase [4, 5].

Infections are a major determinant of outcome after CNS injury. Although
early mortality in brain injured patients is due to direct complications of CNS
and other organ system dysfunction, infections are the leading cause of death
in the post-acute phase of CNS injury. In stroke patients, the 30-day mortality
in patients who developed pneumonia was increased up to three fold compared
to patients not suffering from pneumonia [9]. Reines and Harris [10] reported
an attributable mortality rate of 11% for patients with spinal cord injury due to
pulmonary complications, and pneumonia was the leading cause of death over
a period of 12 years after injury [11]. In addition, pneumonia is associated with
fever, hypoxemia, arterial hypotension, and intracranial hypertension, which are
known to worsen the neurological outcome of patients with brain injury [6]. In
summary, there is ample evidence that CNS injury is associated with a high risk of
infections that, in turn, have profound consequences for patient outcome.

Why are patients with CNS injury at such a high risk of infection? They of-
ten have complicating peripheral injury (polytrauma), undergo invasive medical
treatment (surgery, catheterization, mechanical ventilation), may be immobilized
and exposed to various multiple drug resistant bacteria, and may have CNS le-
sions that specifically impair their ability to swallow, leading to aspiration. These
factors, alone or in combination, seem sufficient to explain a high incidence of
infections. In particular, aspiration is the commonly cited explanation for pneu-
monia in patients with CNS injury. However, aspiration alone is not sufficient to
induce pneumonia; approximately half of all healthy adults aspirate during sleep
without developing pneumonia [12].

Impaired Cell-mediated Immune Responses after CNS Injury

Ahostof studieshavedemonstrated immunedysfunctionafterCNS injury [13–16].
While the initial local response to brain damage is pro-inflammatory and accom-
panied by a systemic response comprising features of the systemic inflammatory
response syndrome (SIRS), patients with CNS injury concurrently show signs of
systemic immunodepression. Commonly reported defects in immune functions
in patients after stroke, traumatic brain injury, or spinal cord injury, include re-
duced peripheral blood lymphocyte counts and impaired T- and natural killer
(NK) cell activity. It has been demonstrated that peripheral blood T-lymphocytes
obtained from patients with CNS injury show reduced mitogen-induced cytokine
production and proliferation in vitro [13, 14, 17, 18]. The rate of anergic delayed-
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type hypersensitivity (DTH) skin test responses to recall antigens in brain trauma
patients was found to correlate with trauma severity [18,19]. Moreover, decreased
NK cell counts and cytotoxic activity was observed in these patients [13, 20]. In
contrast to impaired T and NK cell functions, humoral immune responses seem
less affected after CNS injury [17,20]. Trauma-induced immunodepression is also
reflected by impaired phagocytotic activity of granulocytes and by monocyte
deactivation [16, 21, 22]. Circulating monocytes from patients with acute brain
injury have decreased major histocompatibility complex (MHC) class II expres-
sion and a profoundly reduced capacity to produce pro-inflammatory cytokines
after ex vivo stimulation with endotoxin [16, 22]. Impaired monocyte functions
result in insufficient antigen-presentation and decreased expression of secreted
or membrane-bound co-stimulatory molecules and, therefore, may contribute to
reduced lymphocyte responses [23]. In general, changes in cellular immune re-
sponses correlate with severity of brain injury. They occur rapidly within hours
after the injurious insult and can last for up to several weeks [13, 14, 17]. In ad-
dition, the extent and duration of impaired cell-mediated immune responses in
CNS injured patients correlated to an increased risk of infections and poor out-
come [16, 24].

In summary, substantial clinical evidence points towards a major role of im-
paired cell-mediated immune responses in the high incidence of infectious com-
plications after CNS injury. To understand how and why CNS injury induces im-
munodepression, we have to explore the mechanisms by which the immune system
and the CNS interact.

Communication Between the CNS and Immune System

The nervous and immune systems are engaged in intense bidirectional commu-
nication to response to environmental challenges. The basis for this interaction
is provided by the rich innervation of lymphoid tissues and visceral organs by
the autonomous nervous system as well as by the expression of receptors for neu-
rotransmitters, endocrine hormones, and cytokines on both CNS and immune
cells. Sensors within the peripheral and central autonomic nervous systems relay
information on the status of the immune system in response to environmental
stressors. This input is processed by the CNS and results in homeostatic signals
via three major thoroughfares of neuroimmunomodulation: the hypothalamo-
pituitary adrenal (HPA) axis, the sympathetic and the parasympathetic nervous
systems [25–27].

Sensing of Inflammation by the CNS

There are at least two major afferent pathways by which the brain senses inflam-
mation: a neural (mainly by the vagus nerve) and a humoral pathway [28, 29].
Activation of innate immune cells in response to invading pathogens or tissue
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trauma leads to the release of cytokines (e.g., interleukin [IL]-1β, tumor necrosis
factor [TNF]-α), which activate afferent sensory fibers of the vagus nerve located
in the vicinity [30]. Afferent vagal fibers predominantly terminate in the nucleus
tractus solitarius (NTS), from which signals are relayed through neural projec-
tions to other brain sites, including the paraventricular nucleus (PVN) of the
hypothalamus, the rostral ventrolateral medulla (RVM), and the locus coeruleus,
that modulate the activity of the HPA axis and the sympathetic nervous system.

The second, humoral pathway of immune-to-brain communication, which
may be primarily operational during systemic inflammatory responses, involves
the transportation of cytokines via the circulation into the brain. Cytokines in
the blood stream may bind to receptors on brain endothelial cells, where they
induce the abluminal release of diffusible mediators, such as nitric oxide (NO) and
prostaglandin E2 (PGE2). PGE2 has been suggested to act as a central mediator
of fever and HPA axis activation. Alternatively, cytokines may enter the brain
either actively through carrier mediated mechanisms [31], or passively through
the capillary endothelium of circumventricular organs which lack blood-brain
barrier properties [32]. The circumventricular organs include the pineal gland,
the subfornical organ, the median eminence, the neural lobe of the pituitary, the
subcommissural organ, the area postrema, and the organum vasculosum of the
lamina terminalis (OLVT) [33]. The circumventricular organs, in particular the
area postrema and OLVT have been suggested as central relays of cytokine-to-brain
signaling, through which information is fed into hypothalamic, sympathetic, and
parasympathetic processing.

Cytokines arising from injury-induced inflammation within the CNS may ac-
cess control centers of neural-immune interaction via diffusion in the extracellular
space and cerebrospinal fluid (CSF), or indirectly via the bloodstream. In gen-
eral, cytokine receptors relevant for CNS-immune communication in the brain
are preferentially located in the circumventricular organs and the medial preoptic
area, from which the signal is relayed to the paraventricular nucleus of the hy-
pothalamus through neural projections [34]. In addition to signals through neural
connections, hypothalamic neurons can directly respond to cytokines. Through
the release of corticotropin releasing factor (CRF) from specialized neurons in
the PVN, the hypothalamus modulates the HPA axis and the sympathetic nervous
system. In addition, descending projections from the PVN to brain stem centers
(e.g., NTS) also affect vagal output.

Modulation of Immune Responses by the CNS

Immune responses are modulated by the CNS through at least three major effer-
ent pathways: the HPA axis, the sympathetic nervous system, and the cholinergic
anti-inflammatory pathway. High circulating levels of glucocorticoids and cate-
cholamines, the end products of the HPA axis and the sympathetic nervous system,
respectively, mobilize leukocytes from the marginal pool within the vasculature,
thereby rapidly increasing the number of available immune cells to enter infected



Mechanisms of Immunodepression after Central Nervous System Injury 339

tissues and potentially reducing the migration of these cells into uninflamed tis-
sue. Glucocorticoids and catecholamines downregulate inflammatory responses
by suppressing the production of many pro-inflammatory mediators including
cytokines (IL-1β, TNF-α), and by enhancing the release of anti-inflammatory me-
diators such as IL-10 [16, 35–37].

Glucocorticoids also enhance the resolution of inflammation by stimulating the
production of acute phase reactants and by promoting antigen uptake by phago-
cytes [38–40]. On the other hand, glucocorticoids and catecholamines can decrease
the capacity of antigen-presenting cells to induce antigen-specific T cell responses
by downregulating the expression of MHC class II and co-stimulatory molecules
(e.g., CD86) [41,42]. Moreover, they can alter the balance of type 1/type 2 T helper
(Th) cell responses. Glucocorticoids and catecholamines suppress the production
of IL-12 and enhance the release of IL-10 from monocyte/macrophages and den-
dritic cells, thereby preferentially inhibiting the inductionofTh1 responses [43,44].
In addition, catecholamines can directly inhibit cytokine production by Th1 cells
by binding to the β2-adrenoreceptor which is expressed on Th1, but not Th2
cells [45]. Glucocorticoids and catecholamines can also induce apoptosis in lym-
phocytes [46].

The cholinergic anti-inflammatory pathway is a recently described neural-
based circuit that can rapidly downregulate the activation of resident macro-
phages [28,47]. Increased activity of efferent vagus nerve fibers leads to a local re-
lease of acetylcholine, the principal neurotransmitter of the parasympathetic ner-
vous system that binds to specific nicotinic receptors on macrophages and inhibits
the release of pro-inflammatory cytokines, such as TNF-α. While these observa-
tions indicate that the mediators of the HPA axis, sympathetic and parasympathetic
nervous systems have predominantly anti-inflammatory effects, substantial exper-
imental evidence suggests that the actions of these mediators can be sometimes
pro-inflammatory depending on the context, the site of release, and their con-
centration. It should also be mentioned that various other neurotransmitters and
neuroendocrine mediators, including the sensory neuropeptides, calcitonin gene-
related peptide (CGRP), substance P, neuropeptide Y (NPY), vasoactive peptide
(VIP), CRF, and α-melanocyte-stimulating hormone (α-MSH) have been found
to modulate immune responses by binding to specific receptors expressed on im-
mune cells.

Immunodepression as a Result of CNS Injury

The release of pro-inflammatory cytokines in response to endogenous or exoge-
nous stressors plays a central role in bacterial defense and tissue regeneration.
However, excessive production of pro-inflammatory cytokines can lead to an over-
whelming systemic inflammatory response which may result in shock and multiple
organ failure (MOF). As mentioned above, in addition to autoregulatory mecha-
nisms of immune cells, the CNS mounts a counterregulatory anti-inflammatory
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response to control inflammation (compensatory anti-inflammatory response syn-
drome, CARS). Ideally, inflammatory and anti-inflammatory responses to stress
are balanced to allow containment of pathogens and wound healing, while prevent-
ing hyperinflammation. A well balanced anti-inflammatory action of the nervous
system therefore appears to be beneficial to overcome the injurious insult and
to restore homeostasis. An excessive neuroendocrine response particularly when
triggered in the absence of systemic inflammation, may be detrimental, shutting
down defense mechanisms and rendering the organism susceptible to infection.
As described earlier, patients with acute CNS injury often demonstrate profound
suppression of cell-mediated immune responses associated with an increased risk
of infectious complications.

Clinical and experimental studies have provided evidence for the involvement
of neuroendocrine pathways in the immunodepressive alterations after CNS injury.
Highplasma levelsof adrenocorticotropichormone(ACTH)andcortisolhavebeen
found in patients with traumatic brain injury, cerebral ischemic stroke, spinal cord
injury, and neurosurgical patients [13, 48–50]. Activation of the HPA axis was as-
sociated with decreased lymphocyte functions, monocyte deactivation (downreg-
ulation of monocytic human leukocyte antigen [HLA]-DR and secretion capacity
of pro-inflammatory cytokines), and increased susceptibility to infections [13,50].
In a rat model of acute brain injury, Woiciechowsky et al. [16] demonstrated that
sympathetic activation after brain injury triggers the rapid systemic release of
IL-10, a cytokine with potent immunosuppressive activities. In the same study,
brain injured patients showed strong signs of sympathetic activation associated
with increased IL-10 plasma levels and strongly reduced monocytic HLA-DR ex-
pression. In accordance with marked signs of immunodepression, the majority
of these patients developed severe infections [16]. Direct evidence for a causative
link between a CNS injury-induced suppression of cell-mediated responses and
the development of bacterial infections was recently provided in a mouse model
of focal cerebral ischemia [51]. All mice spontaneously developed pneumonia and
bacteremia about 3 days after cerebral ischemia. Infections were preceded by signs
of profound inhibition of cell-mediated immunity which were observed as early
as 12 hours after ischemia. Stroke induced a rapid and extensive apoptotic loss
of lymphocytes in lymphoid organs and peripheral blood. Suppression of cellular
immune functions was evident by decreased lymphocytic interferon-γ (IFNγ) and
monocyte/macrophage TNF-α production. Adoptive transfer of IFNγ-producing
lymphocytes (i.e., T and NK, but not B cells) from healthy littermates or treatment
with recombinant IFNγ greatly diminished bacterial burden. Importantly, the de-
fective IFNγ response and the occurrence of bacterial infections were prevented
by blocking the sympathetic nervous system, but not the HPA axis, suggesting
that a catecholamine-mediated lymphocyte dysfunction plays a major role in the
impaired antibacterial defense after CNS injury. In summary, substantial clinical
and experimental data support the notion that CNS injury-induced immunode-
pression is caused by an excessive neuroendocrine stress response, and that this is
the major mechanism by which CNS injury results in infection (Fig. 1).
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Fig. 1. Mechanisms of CNS injury-induced immunodepression and increased risk of infection
after CNS injury. CNS injury induces a disturbance of the normally well balanced interplay be-
tween the immune system and the CNS. CNS injury leads to the release of inflammatory cytokines
(e.g., interleukin [IL]-1β) in the damaged tissue, or the activation of ‘neurogenic’ mechanisms,
resulting in the activation of the hypothalamo-pituitary-adrenal (HPA) axis and the sympathetic
nervous system (SNS). Through the release of glucocorticoids and catecholamines, a systemic
anti-inflammatory response is mounted that severely impairs antimicrobial defenses and results
in increased riskof infections.Additional factors including the lossofprotective reflexes leading to
dysphagia, aspiration, and bladder dysfunction, and invasive medical procedures (e.g., catheters,
mechanical ventilation) increase the risk of infection further. Systemic infection increases mor-
bidity and mortality in patients with CNS injury, and leads to worsening of outcome. Although
not yet proven by experimental evidence, it is proposed that the parasympathetic nervous system
may be an important contributor to CNS injury-induced immunodepression. CNS injury may also
result in enhanced activation of efferent vagus nerve fibers, leading to the release of acetylcholine
and inhibition of macrophage function through binding to specific nicotinic acetylcholine recep-
tors. CA: catecholamines; GC: glucocorticoids; Ach: acetylcholine; GR: glucocorticoid receptor;
β2-AR: beta-2 adrenoreceptor; α7nAChR: alpha-7 subunit-containing nicotinic acetylcholine re-
ceptors; TH1: type 1 T helper cell; NK: natural killer cell; APC: antigen-presenting cell; TNF-α:
tumor necrosis factor-α; IFNγ: interferon-γ; MHCII: major histocompatibility class II molecules



342 C. Meisel, H.-D. Volk

A disturbance of the normally well balanced interplay between the CNS and the
immune system may also contribute to the pathophysiology of other medical con-
ditions, including severe sepsis and major surgery. Impaired CNS-mediated anti-
inflammatory mechanisms would favor excessive production of pro-inflammatory
mediators, resulting in shock, MOF, and death. In line with this, disruption of the
HPA axis by hypophysectomy, or ablation of the cholinergic anti-inflammatory
pathway by vagotomy, significantly increases the sensitivity of animals to the
lethal effects of endotoxin due to enhanced production of pro-inflammatory cy-
tokines [52]. On the other hand, an excessive stimulation of counterregulatory
efferent CNS pathways in response to overwhelming systemic inflammation may
result in severe immunodepression, rendering the host unable to mount an ef-
ficient antibacterial defense. Patients after major surgery or persistent sepsis, in
which neuroendocrine activation is common, frequently show signs of temporary
immunodepression including monocyte deactivation, lymphopenia, and impaired
antigen-specific T cell responses [23, 53–55]. In its severest form, this immunode-
pression has been described as ‘immunoparalysis’, which is associated with an
unfavorable outcome [56].

Induction of CNS Injury-induced Immunodepression
by Humoral Signaling?

The mechanisms by which CNS injury triggers SIRS remain to be elucidated. Sev-
eral lines of clinical and experimental evidence indicate that pro-inflammatory
cytokines produced within the damaged brain tissue can directly induce HPA axis
and sympathetic nervous system activation. Increased levels of cytokines like IL-
1β, TNF-α, and IL-6 in brain parenchyma and CSF have been found in various
brain disorders including trauma, subarachnoid hemorrhage, and ischemia [57].
In patients with brain injury or stroke, elevated levels of IL-6 released into the CSF
and plasma have been shown to correlate with increased plasma ACTH and cortisol
concentrations [48,58,59]. Intracerebroventricular administration of IL-1β results
in rapid increases in plasma ACTH, glucocorticoid, and catecholamine levels in rats
and primates [60, 61]. Furthermore, various cellular immune responses including
NK cell activity, mitogen-induced T-cell proliferation and cytokine production, as
well as monocyte/macrophage functions, were found to be suppressed after ad-
ministration of IL-1β into the brain [60–63]. The partial or total prevention of IL-1β
induced changes by adrenalectomy, hypophysectomy, or β2-adrenoceptor antago-
nists demonstrates the involvement of HPA axis and sympathetic nervous system
activation in brain IL-1β-induced systemic immunosuppressive effects [60,62,63].
While these findings confirm the ability of raised intracerebral pro-inflammatory
cytokine levels to activate the sympathetic nervous system and HPA axis, formal
proof that pro-inflammatory cytokines are the primary trigger of immunodepres-
sion after CNS injury is lacking so far.
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Induction of CNS Injury-induced Immunodepression
by ‘Neurogenic’ Mechanisms?

As outlined above, the release of pro-inflammatory cytokines within the CNS in the
course of injury may result in CNS injury-induced immunodepression. Thus, the
mechanisms for triggering CNS injury-induced immunodepression considered so
far are very similar to those responsible for triggering anti-inflammatory responses
when injury or infection occurs outside the CNS (CARS). In contrast to CARS, how-
ever, there may be additional, alternative pathways by which anti-inflammatory
response and immunodepression are induced after CNS injury, pathways which do
not rely on cytokine signaling. Damage to sites within the nervous system control-
ling neural-immune interactions (e.g., the hypothalamus) may lead to ‘neurogenic’
anti-inflammatory signals, without initial involvement of immune mechanisms.

As the autonomous system of the CNS is ‘hard wired’ with secondary lymphoid
organs, it comes without surprise that interruption of these circuitries can result in
immune dysfunction. Most types of CNS injury can lead to direct damage of sym-
pathetic CNS structures involved in neuroimmunomodulation. These are located
in the brain (frontal pre-motor cortex, thalamus, hypothalamus, formatio reticu-
laris, hippocampus, cerebellum and brain stem) and spinal cord (columna lateralis
and nucleus intermediolateralis). Sympathetic neurons in the spinal cord innervate
the adrenal medulla, thymus, spleen and lymph-nodes [64]. Damage of sympa-
thetic control centers in the spinal cord may directly affect immunity: After spinal
cord injury the peripheral vegetative nervous system may escape supraspinal con-
trol and display segmental sympathetic autonomy. This results in a ‘sympathetic
reflex-like condition’, which, for example, may give rise to hypertensive episodes,
headache, or even cardiac arrest [65]. These symptoms of autonomic dysfunction
result from stimulation of the sympathetic nervous system below the level of in-
jury and are a consequence of pre-ganglionic injury, resulting in deafferentation
of the CNS from the peripheral vegetative nervous system [65]. As sympathetic
mediators can downregulate innate and adaptive immune responses, autonomic
dysfunction may be accompanied by immunodepression. Thus, disruption of pre-
ganglionic sympathetic pathways may cause ‘reflex-like’ sympathetic outflow to
the lymphatic organs, resulting in immunodepression. This may not only apply to
spinal cord injury, as autonomic dysfunction also occurs by similar mechanisms
following stroke or transient ischemic attacks when brainstem or midbrain struc-
tures of sympathetic control are affected [66, 67]. For example, because the direct
neural connection from the medial preoptic area to the paraventricular nucleus is
inhibitory [68], a lesion of the preoptic area or its fibers is predicted to trigger the
release of CRF from the PVN, with resultant HPA and sympathetic nervous system
activation and reduction in cellular immunity.

Further support for the conceptof theneurogenicnatureofCNS injury-induced
immunodepression comes from studies on the lateralization of the autonomic
nervous system within the brain. Lateralization of the structures of the vegetative
nervous system [69,70] might serve to explain some localization dependent effects
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of neural-immune interactions subsequent to a brain lesion [71,72]. Furthermore,
lateralization is also reflected in vegetative dysfunction following stroke [73, 74].
Interestingly, post-injury activation of the sympathetic nervous system was most
pronounced when the insular cortex of the right-hemisphere was affected [67].

The insular cortex receives projections from the NTS of the dorsal vagal com-
plex in the medulla oblongata and sends fibers to the amygdala and lateral hypotha-
lamus. The insular cortex thereby plays an important role in the higher control
of the autonomic nervous system [75]. Thus, localization (e.g., insular infarction)
and, to a lesser extent, sizeof infarctionmay differentially affect thedegree and type
of autonomic dysfunction in stroke patients [76]. Similarly, following spinal cord
injury, the extent of vegetative dysfunction and corresponding immunodeficiency,
which depends on lesion level, is correlated with the extent of sympathetic outflow
deafferentation [65,77]. Spinal cord injury above thoracic level 6 results in marked
reduction of intact sympathetic fibers and supraspinal control of the spleen, as well
as the vasculature of the lower extremity [65]. With regards to the immune sys-
tem, complete tetraplegics, who are injured above the level of sympathetic outflow
tracts, show a pronounced reduction in lymphocyte proliferation, responsiveness,
and NK cell function. Moreover, the degree of immune dysfunction in spinal cord
injury patients correlated well with the extent of deafferentation of the sympathetic
outflow, with higher injuries inducing more severe immune dysfunction [21].

Only a few studies have directly addressed the issue of neurogenic mechanisms
by which CNS lesions affect immune function. However, the existing evidence
suggests that damage to vegetative control structures in the CNS may play an
important role in the induction of CNS injury-induced immunodepression.

How to Measure Immunodepression?

Because temporary immunodepression by itself does not present with clinical
symptoms, paraclinical parameters are required for its early diagnosis. Several
markers, including soluble plasma mediators (e.g., the ratio between pro- and
anti-inflammatory cytokines), functional tests (e.g., endotoxin-induced cytokine
production in whole blood, mitogen-induced T cell cytokine production and pro-
liferation), and cell surface markers (e.g., HLA-DR expression on monocytes),
have been evaluated for monitoring temporary immunodepression in critically
ill patients. In particular, monocytic HLA-DR expression has been found to be
a promising diagnostic tool for assessing the magnitude and persistence of im-
munodepression [54–56, 78].

HLA-DR belongs to the family of MHC II molecules constitutively expressed
on antigen presenting cells, including monocytes. The level of HLA-DR expres-
sion on monocytes is influenced by immuno-stimulatory and -inhibitory me-
diators. For example, it is increased by the immunostimulatory cytokine IFNγ
and downregulated by anti-inflammatory mediators, such as IL-10, and the stress
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hormones glucocorticoids and catecholamines. Diminished monocytic HLA-DR
expression has been shown to correlate with impaired cellular functions (partic-
ularly pro-inflammatory cytokine secretion capacity and induction of antigen-
specific Th cell responses), indicating that monocytic HLA-DR expression may
serve as a global marker for immunodepression/immunoparalysis [23]. Dimin-
ished monocytic HLA-DR expression was found to correlate with an increased
risk of infections, for example, in patients with severe burns [78], following car-
diopulmonary bypass (CBP) surgery [55], and in neurosurgical patients [50].
Ongoing studies in patients with cerebral ischemia from our laboratory also in-
dicate that low monocytic HLA-DR early after stroke (i.e., already on day 1 after
ischemia) can predict the development of infectious complications (unpublished
results, C. Meisel, 2006). However, other studies have failed to demonstrate a prog-
nostic value for HLA-DR in predicting secondary infections [79]. Similarly, many
sepsis patients show severely reduced monocytic HLA-DR expression as a sign of
immunoparalysis, but this only predicts poor outcome if persistent for more than
3 days [56].

Several reasons may explain the conflicting results regarding the predictive
value of monocytic HLA-DR in critically ill patients. First, the consequences of
immunodepression for clinical outcome of these patients appear to depend on the
magnitude of immunodepression, its time course, and the underlying trigger. For
example, at early time points following CPB surgery, all patients presented with
low monocytic HLA-DR expression indicating severe immunodepression [55].
Whereas most patients recovered within 2 to 3 days after surgery without infec-
tious complications, some patients showed persistent signs of severe immunode-
pression, leading to the development of infection. Secondly, all above mentioned
studies were single center studies. In fact, no multicenter trials have been per-
formed so far to ascertain the diagnostic value of monocytic HLA-DR expression,
because of the lack of a standardized flow-cytometric assay. Differences in the
pre-analytical handling of samples, the use of different HLA-DR antibodies, differ-
ent flow cytometer and instrument settings, and different quantification strategies
(HLA-DR levels expressed as either percentage of positive monocytes or mean
fluorescence intensity) have made it difficult to compare the results of the various
studies.

In collaboration with Becton Dickinson (Franklin Lakes, NJ, USA), our labo-
ratory has recently developed a standardized assay for the quantification of mono-
cytic HLA-DR expression, independent of the flow cytometer and instrument
settings [80]. A multicenter comparison demonstrated excellent interassay and
interlaboratory coefficients of variance of less than 10 and 25%, respectively [80].
The availability of a standardized assay for HLA-DR quantification will permit
multicenter trials to further evaluate the diagnostic value of monocytic HLA-DR
to predict infectious complications and outcome in critically ill patients.
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Conclusion

CNS injury is associated with an increased risk of infectious complications, which
are important contributors to outcome in patients suffering from CNS injury. Clin-
ical and experimental studies over recent years have provided substantial evidence
that CNS injury downregulates the immune system through neural and neuroen-
docrine mechanisms, a mechanism which at least in part underlies the increased
susceptibility to infections. Although the concept that brain-immune interactions
after CNS injury have serious clinical implications is supported by increasingly
more substantive data, many questions remain unanswered. For example, what
are the mediators, receptors, anatomical structures, and pathways by which the
CNS senses that it is injured? Does the parasympathetic nervous system contribute
to CNS injury-induced immunodepression? Does CNS injury-induced immunode-
pression protect the CNS against autoaggressive immune responses by invading
immune cells? Which parameters are useful in monitoring immunodepression
and in predicting infectious complications in patients with CNS injury? How can
we prevent or treat CNS injury-induced immunodepression without doing harm?
CNS injury-induced immunodepression is a prototypical example for pathological
brain-immune interactions. CNS injury-induced immunodepression after exper-
imental stroke, traumatic brain injury, or spinal cord injury may also serve as
a model to study the mechanisms and mediators by which the brain controls
immunity during other pathophysiological conditions. A better understanding of
CNS injury-induced immunodepression may eventually result in effective strate-
gies that can improve outcome after CNS damage.
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Pulmonary Dysfunction

N.S. MacCallum, G.J. Quinlan, and T.W. Evans

Introduction

Definitions

The host response to infection and other forms of tissue injury has been
termed the systemic inflammatory response syndrome (SIRS). Although con-
troversy exists concerning the optimal defining criteria for SIRS, traditionally
these have reflected changes in thermoregulation (body temperature > 38 ◦C or
< 36 ◦C), cardiovascular (heart rate > 90 beats/min) and respiratory (tachyp-
nea > 20 breaths/min) stability, and alterations in white blood cell count
(> 12,000 cells/mm3, < 4,000 cells/mm3 or the presence of > 10% immature
forms) [2]. When SIRS is attributable to an identifiable infectious process, it
is termed sepsis. Sepsis complicated by predefined organ system dysfunction,
through tissue or systemic hypotension, is regarded as severe [1]. Together, SIRS,
sepsis, and septic shock have been termed the ‘sepsis syndromes’.

SIRS, Sepsis, and Severe Sepsis: Precipitating Factors

SIRS is seen in association with a wide variety of non-infectious insults, including
major trauma and surgery [3]. The incidence of SIRS is high, and may affect up
to 33% of all patients requiring hospital admission. It is also insult-dependent,
and is particularly common following surgery. There is a progression between the
different stages of the sepsis syndromes. Thus, the prevalence of infection and
bacteremia increase with the number of SIRS criteria fulfilled, and some 30% and
25% of cases eventually evolve to meet the defining criteria for sepsis and severe
sepsis, respectively [4].

Incidence, Morbidity, and Mortality of Sepsis

Incidence and Characteristics of Sepsis

In the USA, the national estimate of the incidence of severe sepsis was recently
estimated to be 300 per 100,000 population per year, with a projected annual
increase of 1.5% per annum [5]. In a parallel retrospective study, an annualized
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increase in incidence from 82.7 to 240.4 cases per 100,000 population was identified
over a 22 year period. Although in-hospital mortality fell during the accounting
period (from 27.8% to 17.9%), the total number of deaths rose [6]. Published
statistics for the United Kingdom (UK), albeit for patients with severe sepsis cared
for within intensive care units (ICUs), reveal a similar pattern. Thus, 27.1% of adult
ICU admissions met the defining criteria for severe sepsis in the first 24 hours,
producing an overall incidence of 51 cases per 100,000 population per year [7].

Organ Failure in Sepsis

Patients with sepsis syndromes are characterized clinically by reduced systemic
vascular resistance that is refractory to pressor agents, and display diminished car-
diac compliance.Tissuehypoperfusionensues,with cellularhypoxiaandmetabolic
dysfunction. Consequently, the majority of patients with SIRS and its sequelae who
fail to survive succumb tomultiple organdysfunctions. Indeed,multiple organdys-
function contributes cumulatively to mortality in patients with sepsis in that some
15% of patients without organ failure die compared to 70% of those with 3 or more
failing organs. The proportion of patients with organ failure complicating sepsis
increased from 19.1–30.2% over the preceding 22 years from 1979–2000 [6].

Lung Failure in Sepsis

The increased metabolic rate associated with sepsis necessitates a high minute vol-
ume requirement. The compliance of the respiratory system is diminished. Airway
resistance is increased and muscle efficiency impaired [8]. Consequently, approx-
imately 85% of patients with severe sepsis and septic shock require mechanical
ventilatory support, typically for 7 to 14 days [9]. Such pulmonary dysfunction
can be ‘primary’, resulting from, for example, a respiratory tract infection; or ‘sec-
ondary’ following some distant, non pulmonary infective insult and is classified
by severity as acute lung injury (ALI) or its more extreme manifestation the acute
respiratory distress syndrome (ARDS) (Table 1). ALI is characterized by increased
pulmonary capillary permeability, and is defined clinically by arterial hypoxemia
refractory to oxygen therapy alone (PaO2/FiO2 ratio ≤ 300 mmHg) and on chest
radiography by diffuse bilateral chest abnormalities indicative of alveolar edema.
Patients with ARDS have more severe hypoxemia (PaO2/FiO2 ≤ 200 mmHg) [1].
The lung is the most frequently failing organ in sepsis [10,11]; some 50% of patients
suffering from sepsis complicated by respiratory failure meet the defining criteria
for ARDS [12, 13]. Although functional impairment can take months to resolve
and sub-clinical spirometric changes are sometimes permanent, unremitting lung
failure is uncommon [14].
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Table 1. Definitions of acute lung injury (ALI) and the acute respiratory distress syndrome
(ARDS) [2]

Pathophysiology of Sepsis

The Dysfunctional Inflammatory Response

The precise pathophysiology of the sepsis syndromes remains unclear. However,
evidence from a large number of sources and using a variety of experimental sys-
tems, indicates that both physical and infective insults lead initially to leukocyte
recruitment to inflammatory foci. Leukocyte recruitment is mediated via the con-
certed action of adhesion molecules and chemo-attractants, termed chemokines,
which provide a directional cue. How this host response is controlled once acti-
vated is less clear. Thus, individual cells possess the unique and altruistic ability
to initiate self-destruction if their continued presence proves detrimental to the
organism as a whole. Evidence suggests that this highly conserved process of self-
initiated death, or apoptosis, is delayed in neutrophils taken from patients with
sepsis [15, 16]. Thus, in patients undergoing rapid post-mortem examination fol-
lowingdeathattributable to the septic syndromes theseprocesses aredemonstrable
in lung and other tissues [17], although the results are inconsistent. The relative
contribution of apoptotic cell loss to pulmonary and other organ dysfunction is
not known. Indeed, apoptosis may even be protective, by removing the potential
of injured cells to necrose and further propagate the inflammatory response. Thus,
an excessive and prolonged inflammatory host response is thought to lead to the
vascular and cellular dysfunction and tissue hypoxia that characterizes the sepsis
syndromes.
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Reactive Oxygen Species and the Inflammatory Response

The term reactive oxygen species (ROS) defines oxygen free radicals and related
oxidizing/reducing oxygen intermediates. The production of such species in bio-
logical systems, whilst known to be essential for aerobic life, can lead to deleterious
consequences when they are inadequately controlled. Indeed, the manifestation
and accumulation of oxidative damage to biological molecules attributable to ROS
has been shown in association with numerous inflammatory disease states [18].
Such findings have led to the hypothesis that excessive production of ROS, at levels
that overwhelm endogenous (antioxidant) protective substances and stratagems,
plays a causative role in the onset and progression of a range of conditions. Specif-
ically, clear associations have been identified between a range of markers of oxida-
tive stress and morbidity and mortality amongst the critically ill. More recently,
these hypotheses have evolved beyond the concept that ROS are responsible for
direct, oxidant-mediated cytotoxicity alone (reviewed in [19,20]). Rather, it is now
recognized that the production of ROS at subtoxic levels signals a variety of changes
in cell function. This so-called ‘redox signaling’ function of ROS has been linked
to the regulation of the inflammatory response, with significant implications for
both the development and resolution of inflammation (Fig. 1).

Role of ROS, Cytotoxicity, Iron, and Cell Signaling in the Pathophysiology
of the Sepsis Syndromes and Lung Failure

For some years, it has been known that free iron can catalyze the formation of
ROS, but it has also recently been shown to play a crucial role in modulating cell-
signaling, either directly or via a modulating effect on redox regulation. Indeed,
oxidant/anti-oxidant imbalance, redox signaling, and iron-mediated catalytic re-
actions are now implicated in the inflammatory processes that characterize the
sepsis syndromes. Thus, plasma concentrations of thiobarbituric acid reactant
substances (TBARS), an index of oxidative stress, have been shown to correlate
positively with rising severity of illness scores (e. g., Sequential Organ Failure As-
sessment [SOFA]) in the critically ill. TBARS were significantly higher in those with
organ system failure. Moreover, the duration of SIRS was significantly associated
with the percentage increase in plasma TBARS concentration [21]. Second, neu-
trophil accumulation in patients with SIRS and ALI complicating surgery involving
cardiopulmonary bypass (CPB) is associated with elevated indices of neutrophil-
derived pro-oxidant activity [22]. Third, dynamic changes in the regulation of iron
metabolism significantly influence morbidity and mortality in patients with sepsis,
SIRS, and ALI/ARDS and are associated with oxidative damage to proteins and
lipids (reviewed in [23]), and changes to redox-regulated cell signaling moieties.
Fourth, the role of oxidative stress in the pathogenesis of ALI/ARDS attributable to
a wide variety of infective and non-infective insults now seems established. Thus,
oxidative damage to plasma proteins and lipids is detectable, and a mortality
predictor, in patients with established ARDS [24–27]. Deficiencies in anti-oxidant



Pulmonary Dysfunction 357

Fig.1.The roleof reactiveoxygen (ROS)andnitrogen (RNS) species in the inflammatory response.
ROS/RNS initiate pro and anti-oxidant responses, the equilibrium of which determines redox
balance, which in turn affects the outcome of the disease process. Nrf-2: NF-E2-related factor 2;
ARE: anti-oxidant response elements; NF-κB: nuclear factor kappa B; AP-1: activator protein 1;
SP-1: stimulating transcription factor 1

protection against the catalytic effects of iron in these patients have been demon-
strated [28]. Fifth, plasma iron mobilization is significantly associated with the
development of ALI in patients with SIRS following CPB surgery [29]. Such pa-
tients had low molecular mass redox active iron detectable in plasma as a result
of the surgical procedure [30]. Significant associations between iron levels and the
specific marker of lipid oxidation 4-hydroxy-2-nonenal have also been shown in
these patients [31], a result strongly indicative of pronounced iron-catalyzed oxida-
tive stress. Indeed, low molecular mass iron is measurable in plasma from patients
with sepsis and ARDS [32]. Sixth, markers of hydroxyl-radical mediated oxidative
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damage (peroxynitrite and hypochlorous acid) were detectable in bronchoalveo-
lar lavage (BAL) fluid from patients with ARDS [33, 34]. Moreover, aberrant iron
chemistry and significantly increased levels of non-heme iron was demonstrated
in BAL from those who failed to survive [35].

Indeed, iron mobilization before and during critical illness appears to form
a key part of the susceptibility to, and pathogenesis and clinical manifestations of,
the sepsis syndromes. Why such pronounced alterations in body iron mobilization
and chemistry occur during the onset of acute inflammatory episodes is unclear,
but may represent a defensive need to limit microbial invasion and virulence; iron
being an absolute requirement for bacterial growth. The anti-microbial properties
of blood and other tissues cannot be maintained unless there are exceptionally
low levels of iron available. An atypical availability of iron is responsible for fatal
septicemia, due to inundation of the phagocytic system by rapidly multiplying
organisms when iron is freely available [36, 37].

Results obtained from observational studies in patients with the sepsis syn-
dromes ‘at risk’ of, and with established ALI/ARDS, indicate that the formation of
ROS occurs in these populations at levels that overwhelm endogenous antioxidant
defenses. They also suggest that iron mobilization before and during critical illness
contributes to these processes and forms a key part of the susceptibility to, and
pathogenesis and clinical manifestations of, the sepsis syndromes (Fig. 2).

Fig. 2. Key biologic roles of iron. Iron can signal directly via iron regulatory protein (IRP) activity,
be stored and used for biosynthesis, or effect cell proliferation and act as a microbial virulence
factor. Iron can also act indirectly via redox signaling potentially causing organ dysfunction and
damage, but in controlled signaling events it may have beneficial effects. ROS: reactive oxygen
species
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Trials of Anti Oxidants in Patients with ALI/ARDS

In promising early studies, n-acetylcysteine (NAC) improved static lung compli-
ance, pulmonary vascular resistance, and chest X-ray scores as well as reducing
the number of days that patients suffered from a low PaO2/FiO2 ratio [38]. Patients
with mild to moderate lung injury showed similar improvements [39], although no
difference was found in mortality, length of ventilatory support, or improvement
in oxygenation in those with established ARDS [40–43]. A large phase III trial of
procysteine was stopped early due to concern over mortality in the treatment arm
of the study. Currently, there is little evidence that intravenous NAC or procys-
teine are of benefit to patients with ARDS. This lack of a survival advantage may
reflect naivety in terms of the nature and dose of the interventions employed, and
concerning their ability to modify both the cytotoxic consequences of pro-oxidant
stress, and the influence of redox imbalance on cell signaling processes.

Direct and Indirect Iron-Regulated Cell Signaling Mechanisms:
Role of Iron Regulatory Proteins and Hemoxygenases

Direct Mechanisms

Recently, interest in the role of ROS and reactive nitrogen species (RNS) at subtoxic
levels and their subsequent involvement in redox signaling has increased substan-
tially. Indeed, the expression of numerous substances implicated in the inflam-
matory response, including apoptosis, may be regulated by such mechanisms
(reviewed in [44, 45]. Low molecular mass iron is a key signaling determinant for
the activity of the iron regulatory proteins (IRP-1,2) that control the expression of
synthesis proteins containing iron-responsive elements, and in particular trans-
ferrin receptors and ferritin, both of which are intimately involved in cellular iron
uptake and storage.

Associations between iron-signaling and the onset and progression of criti-
cal illness are emerging. Specifically, there may be circumstances in which the
heme oxygenases (HO)-1 and -2, known enzymatic sources of low molecular mass
iron, initiate regulatory responses in the IRPs via an iron-signaling mechanism.
Catabolism of heme by the HOs produces iron, carbon monoxide and bilirubin. To
date, little research effort has centered on investigating the role of iron produced
by HOs in directing functional changes in cell signaling moieties. Constitutive
enzymatic activity and iron-production by HO-2 may be significant in this regard,
but the upregulation of (inducible) HO-1, which is now known to occur in critical
illness, is likely the primary mediator in this process (Fig. 3).

HO-1 induced by oxidative stress as part of the inflammatory response is
usually considered to be cytoprotective [46], but can produce lung injury in animal
models relevant to critical illness by mechanisms related to the formation of low
molecular mass redox active iron [47]. HO-1 is upregulated in rats subjected to
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Fig. 3. The role of heme oxygenase (HO) in the sepsis induced inflammatory process. HO gener-
ates bilverdin, carbon monoxide (CO) and ferrous iron (Fe2+) in equimolar amounts from the
oxidation of heme. Positive and negative signs denote stimulation and inhibition of processes. CO
downregulates pro-inflammatory cytokines, tumor necrosis factor (TNF)-α, interleukin (IL)-1β,
IL-6, and upregulates anti-inflammatory cytokine, IL-10. Fe2+ induces the synthesis of ferritin,
which it in turn sequesters, representing a possible anti-inflammatory role for ferritin

iron overload, and more rapidly in lung than in other organs [48]. Further, organ-
specific regulation of ferritin and transferrin receptor synthesis occurs in response
to challenge with lipopolysaccharide (LPS). In this rodent model, HO inhibition
or iron chelation had pronounced effects on steady state IRP activity. In terms of
enzymatic activity, the iron-mediated pro oxidant affects of HO outweighed its
anti-oxidant effects.

Upregulation of such cellular iron accumulation mechanisms could have pro-
oxidant implications specific to the lung which is exposed to the external environ-
ment of microbes and toxins, with a mandatory requirement for anti-oxidant and
anti-microbial defenses. In this context, elevated HO-1 protein has been demon-
strated in lung tissue and plasma of patients with ARDS compared with controls.
Moreover, a significant association between iron mobilization and HO-1 levels,
and HO-1 and ferritin or soluble transferrin receptors can be demonstrated in
BAL fluid from patients with established ARDS [49] (Fig. 4).
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Fig. 4. Intense heme oxygenase HO-1 staining in macrophages from a patient with acute respira-
torydistress syndrome (ARDS) (40xmagnification). (ReproducedcourtesyofDr.R.L. Upton [78])

Iron-regulated Cell Signaling Moieties

Some such signaling responses are mediated via the effects of iron on redox-
sensitive signaling processes [23, 50]. Indeed, the activity of several transcription
factors can be regulated by iron of various forms under particular circumstances
and in specific cell types. For instance, the activity of nuclear factor-kappa B (NF-
κB) [51–53], activator protein (AP)-1 and specificity protein (SP)-1 [54, 55] can
be influenced either through increasing the supply of iron or restricting the use
of chelators. Iron availability also regulates activity of the nuclear transcription
factor, hypoxia inducible factor (HIF). The hypoxia response pathway senses levels
of ambient oxygen and responds to low oxygen tensions by upregulating the tran-
scription of numerous genes including vascular endothelial growth factor (VEGF),
erythropoietin and HO-1. HIF activation is now recognized to direct these tran-
scriptional events leading to the expression of a variety of bio-active substances
and the regulation of functional aspects including apoptosis. HIF is itself regu-
lated by the hydroxylation of key prolyl residues which, when hydroxylated, inhibit
transcription activity and lead to proteasomal destruction. This regulatory action
is an enzyme-driven process catalyzed by key prolyl hydroxylases with an absolute
requirement for 2-oxoglutarate and ferrous iron [56]. HIF is often described as
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an oxygen sensing transcription factor, but could equally be regarded as an iron
sensing moiety.

HIF is likely to be key in regulating the cellular response to inflammation in
critical illness, given that a redistribution of microcirculatory perfusion and tis-
sue hypoxia characterize the sepsis syndromes [57]. Second, cyclical stretch in
endothelial and epithelial cells, as occurs in the pulmonary circulation during me-
chanical ventilation, is now known to influence HIF activity [58]. Iron availability
may also impact on the anti-oxidant response pathway, as it is also regulated by
ROS/RNS (see Fig. 1).

Substrate Availability and Cell Signaling Processes

Evidence suggests that a number of cellular iron-signaling processes implicated in
the inflammatory response are regulated by the HOs. Substrate availability for these
enzymes is likely to be of key importance in determining the nature of the response.
Exposure of isolated healthy human neutrophils to hemin or oxyhemoglobin, over
a biologically relevant dose range for 24 hours, results in significantly decreased
levels of apoptosis [59]. Results obtained are comparable to those achieved using
granulocyte macrophage stimulating factor (GM-CSF). Further, neutrophil per-
sistence is associated with increased expression of (inducible) HO-1, a known
anti-apoptotic factor [60].

A diverse array of heme containing substances are potential substrates for the
HOs. Extracellular sources include hemoglobin, myoglobin, myeloperoxidase, and
free heme, and intracellular sources include cytochrome c, catalase, and an array
of other heme containing proteins. The conditions and clinical scenarios under
which substrates are presented for heme catabolism are equally diverse, but all
represent a significant risk for the onset and progression of ALI.

Such data have profound implications for the sepsis syndromes and their
sequelae, in that neutrophil longevity has been linked with the development of SIRS
and sepsis, and has adverse prognostic significance in patients with ARDS [61].
These experimental and clinical data suggest an important relationship between
HO-1 induction, and iron availability and regulation in the lungs of patients with
the sepsis syndromes complicated by ARDS. The ability of HO-1 and HO-2 to
produce ROS and oxidative damage via iron catalysis clearly demonstrates the
potential for this enzymatic pathway to influence redox signaling processes via
an indirect iron-signaling mechanism. Moreover, the ability of HOs to regulate
the IRP network strongly suggests that this pathway also has the ability to signal
regulatory change directly via iron.

Endothelial and Epithelial Dysfunction

Loss of Barrier Function

The consequence of the pathophysiological mechanisms outlined above is in-
creased permeability of the alveolar-capillary membrane, which is composed of
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the microvascular endothelium and the alveolar epithelium. The epithelium, which
serves as a barrier to the systemic circulation and regulates both formation and
removal of fluid in the lung, is less permeable than the endothelium. It is com-
posed of type I flat cells and type II cuboidal cells, constituting 90% and 10% of
the alveolar surface area, respectively. Type II cells, which are easily injured in
comparison to the more resistant type I cells, are responsible for surfactant pro-
duction, ion transport, proliferation, and differentiation into type I cells. Damage
and repair of the alveolar epithelium is important in both the development of and
recovery from lung injury [62–64]. Indeed, the degree of alveolar injury is a key
predictor of outcome [65, 66]. Loss of epithelial integrity and injury to type II
cells disrupts normal epithelial fluid transport, impairing removal of edema fluid
from the alveolar space contributing to alveolar flooding. Additionally, injury to
type II cells reduces production and turnover of surfactant [67, 68]. Disorganized
and insufficient epithelial repair leads to fibrosis in cases where epithelial injury is
severe.

Endothelial injury results in increased vascular permeability, resulting in the
influx of protein rich edema fluid into alveolar airspaces and interstitium during
the acute phase of ALI [69]. Initially this is balanced by an increase in alveolar fluid
clearance, potentially allowing recovery from the initial precipitant of lung injury.
Patients with higher alveolar fluid clearance in ALI have improved survival [70,71].
However, loss of this steady state leads to formation of pulmonary edema, which
can be compounded by elevated pulmonary vascular volume and pressure. There
is a current NHLBI trial investigating whether lowering lung vascular pressures in
patients with ALI/ARDS improves outcome by reducing extravasated protein-rich
edema fluid.

Loss of Pulmonary Vascular Control

Patients with ARDS demonstrate refractory hypoxemia. Under physiological cir-
cumstances, the distribution of pulmonary blood flow is regulated by a local action
of alveolar oxygen tension on pre-capillary pulmonary vessels. Thus, the reflex of
hypoxic pulmonary vasoconstriction ensures that blood flow is diverted away
from areas of damaged lung, thereby preserving the matching of ventilation (V)
and perfusion (Q). However, patients with ARDS demonstrate diminished hypoxic
pulmonary vasoconstriction leading to adverse changes in V/Q matching, which
accounts in substantial degree for the refractory hypoxemia which characterizes
the clinical syndrome [72]. This is thought due at least in part to an imbalance
in the release of endothelially-derived vasodilator (e. g., NO) and vasoconstrictor
(e. g., endothelins) substances [73]. It is possible that changes in redox balance also
modulate hypoxic pulmonary vasoconstriction.
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Repair and Fibrosis

The reparative or fibroproliferative phase of ARDS is characterized by histologi-
cal evidence of fibrosis with acute and chronic inflammatory cellular infiltration
and partial resolution of pulmonary edema. Newly formed blood vessels, mes-
enchymal cells, and their products fill the alveolar spaces. There is accumulation
of collagen and fibronectin in the lung. Transforming growth factor-β (TGF-β)
is capable of enhancing mesenchymal cell proliferation and extracellular matrix
formation. Three isoforms have been identified in humans, of which TGF-β1 is
most associated with the development of pulmonary fibrosis. Functionally active
TGF-β1 has been documented within the first 24 hours of diagnosis of ARDS [74].
Macrophages are also able to release a variety of cytokines capable of regulating the
fibrotic process. Macrophage-produced platelet derived growth factor (PDGF) is
a potent mitogen and chemoattractant of fibroblasts and smooth muscle cells, and
is capable of stimulating collagen synthesis. Insulin like growth factor-1 (IGF-1)
increases fibroblast proliferation. Tumor necrosis factor (TNF)-α is responsible for
the production of IGF-1 and TGF-β [75,76]. There is also collagen deposition early
in the evolution of lung injury. BAL fluid from patients with ARDS contains ele-
vated levels of type I pro-collagen coupled with a decrease in markers of collagen
degradation, favoring net type I collagen deposition [77]. Fibrosis and elevated
levels of pro-collagen III peptide are associated with an increased mortality.

Conclusion

Sepsis is increasing in incidence and is commonly complicated by organ fail-
ure, of which the lung is the most common. Pronounced changes in cellular iron
regulation occur in such patients, leading to dysregulation of the inflammatory
response through the regulation of pro-oxidant potential and apoptotic function.
The availability of heme substrate determines the nature of a range of responses
to pro-inflammatory stimuli, especially in endothelial cells and neutrophils. HO-1
expression accompanies these changes and early indications suggest that fluxes in
cellular iron levels direct the responses. Clinically relevant mechanical and bio-
logical stimuli result in similar pro-inflammatory responses in alveolar epithelial
(like) cells, suggesting that a common signaling pathway directs iron-mediated
responses. Finally, damage to alveolar epithelial cell and the microvascular en-
dothelium leads to changes in pulmonary structure and function that characterize
ALI/ARDS.
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Introduction

Thegutprobablyparticipates in thepathogenesisof themultipleorgandysfunction
syndrome (MODS) in many different ways. In order to keep this chapter focused
and concise, the author will focus on three potential mechanisms: 1) alterations
in intestinal epithelial permeability, leading to the systemic absorption of pro-
inflammatory mediators or toxins derived from luminal microbes; 2) release into
the lymphatic drainage from the gut of toxic materials; 3) release from enterocytes
of pro-inflammatory cytokines, especially high mobility group box 1 (HMGB1).

Intestinal Epithelial Permeability is Increased in Critically Ill Patients

Alterations in the barrier function of the intestinal epithelium could permit the
leakage of bacteria or microbial products, such as lipopolysaccharide (LPS) or
exotoxin A (ETA), from the lumen of the gut into the systemic compartment,
leading to the initiation or amplification of a deleterious inflammatory response
and/or direct toxic effects on distant tissues. The notion that this process actually
occurs in patients with MODS is supported by results from a number of clinical
studies, which have documented increases in intestinal epithelial permeability in
a variety of acute conditions that are associated with systemic inflammation [1–7].
Moreover, in several recent studies, increased intestinal permeability in critically ill
patients has been shown to be associated with an increased risk of complications,
MODS, or even mortality [3, 4, 7–9].

The strong association between increased gut mucosal permeability and MODS
and mortality in critical illness suggests the existence of a causal linkage: i. e., the
gut is the ‘motor’ that drives development of MODS [10]. There is, however, an-
other, equally plausible, possibility. According to this second notion, altered gut
mucosal permeability during critical illness is just one aspect of a more general-
ized phenomenon that affects epithelial barrier function in a variety of organs,
including the lungs, liver, and kidneys [11]. This more global view suggests the
pathophysiological mechanisms that are responsible for the derangements in gut
barrier function also pertain to epithelia in other organs. Moreover, this view
suggests that many of the clinical features of MODS, such as alveolar flooding in
the lung, cholestatic jaundice, and azotemia, can be explained – at least in part –
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by a single unifying cellular mechanism: impaired expression and/or targeting
of some or all of the proteins that form the tight junctions (see below) between
adjacent epithelial cells.

Alterations in Intestinal Epithelial Permeability

The normal functioning of the lungs, liver, kidneys, and intestine, among other
organs, depends on the establishment and maintenance of compositionally dis-
tinct compartments that are lined by sheets of epithelial cells. An essential element
in this process is the formation of tight junctions between adjacent cells making
up the epithelial sheet. The tight junction serves as a fence that differentiates the
cytosolic membrane into apical and basolateral domains. This fence function pre-
serves cellular polarity and, in combination with transcellular vectorial transport
processes, generates distinct internal environments in the opposing compartments
that are formed by the epithelial sheet. In addition, the tight junction acts as a regu-
lated semi-permeable barrier that limits the passive diffusion of solutes across the
paracellular pathway between adjacent cells. Thus, the barrier function of the tight
junction is necessary to prevent dissipation of the concentration gradients that
exist between the two compartments defined by the epithelium. In some organs,
notably the gut and the lung, this barrier function is also important to prevent
systemic contamination by microbes and toxins that are present in the external
environment [12].

Multiple Proteins are Necessary for the Assembly and Function
of Tight Junctions

The formation of tight junction involves the assembly of at least nine different
peripheral membrane proteins and at least three different integral membrane
proteins [13]. Among the peripheral membrane proteins associated with tight
junctions are the membrane-associated guanylate kinase-like (MAGUK) proteins,
ZO-1, ZO-2, and ZO-3. The integral membrane proteins involved in tight junction
formation include, but are not limited to, occludin, and members of a large class of
proteins called claudins. Both occludin and the claudins contain four transmem-
brane domains and are thought to be the actual points of cell-cell contact within
the tight junction [14]. ZO-1 has been shown to interact with the cytoplasmic tails
of occludin and the claudins [15]. In addition, ZO-1 interacts with ZO-2 and ZO-3,
which then interact with various actin-binding proteins, such as pp120CAS [16,17],
thereby linking the tight junction with the cytoskeleton. Studies of mouse embryos
indicate that ZO-1 localizes in plasma membrane plaques well before occludin is
incorporated [18, 19], suggesting that ZO-1 probably plays a central role in the
assembly of mature tight junctions.
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Nitric Oxide (NO) and/or Peroxynitrite (ONOO−) Are Involved
in the Regulation of Tight Junction Protein Expression and Function

We [20–22] and others [23–25] have shown that the permeability of cultured
epithelial monolayers increases when the cells are incubated with various pro-
inflammatory cytokines. The mechanisms responsible for cytokine-induced ep-
ithelial hyperpermeability are incompletely understood. It is known, however, that
compounds that spontaneously release NO increase the permeability of cultured
intestinal epithelial cell monolayers [26,27]. This observation is pertinent, since in-
cubating Caco-2 human enterocyte-like cells with the pro-inflammatory cytokine,
interferon (IFN)-γ, or a mixture of the pro-inflammatory cytokines, IFNγ + tu-
mor necrosis factor (TNF) and interleukin (IL)-1β, leads to increased expression
of inducible NO synthase (iNOS) and increased production of NO [21, 28, 29].
Moreover, compounds that inhibit iNOS have been shown to ameliorate the de-
velopment of hyperpermeability induced by exposing Caco-2 cells to IFNγ [21]
or ‘cytomix’ (IFN-γ + TNF + (IL)-1β) [29]. Similarly, L-N(6)-(1-iminoethyl)lysine
(L-NIL), an isoform-selective iNOS inhibitor, blocks the development of hyper-
permeability when Calu-3 (human alveolar epithelial) monolayers are incubated
with cytomix [30]. Thus, IFN-γ or cytomix appear to increase intestinal epithelial
permeability, at least in part, by increasing the production of NO by enterocytes.

NO reacts rapidly with superoxide (O−
2 ) to form the potent oxidizing and ni-

trating species, ONOO− [31, 32]. Several lines of evidence support the view that
ONOO− (or some related species) rather than NO per se is responsible for the
deleterious effects of NO on intestinal epithelial barrier function. Thus, when
Caco-2 monolayers are incubated with the NO donor, SNAP, permeability is sig-
nificantly increased, but the magnitude of the effect is small [27]. Furthermore,
the permeability of Caco-2 monolayers is not affected when the cells are incu-
bated with pyrogallol, a compound that spontaneously generates O−

2 in aqueous
solutions [27]. However, if Caco-2 cells are co-incubated with both SNAP and py-
rogallol, then epithelial permeability is dramatically increased [27]. SNAP-induced
hyperpermeability is also markedly enhanced by co-incubating the cells with di-
ethyldithiocarbamate, a compound that is known to inactivate Cu-Zn superoxide
dismutase and would thereby be expected to increase the concentration of en-
dogenously generated O−

2 [27]. Taken together, these findings support the view
that NO-induced hyperpermeability is enhanced by the simultaneous availability
of O−

2 ; i. e., conditions favoring the formation of ONOO−. Since ONOOH is a weak
acid (pKa∼6.8) and many of the effects of ONOO− are thought to be mediated
by an unstable form of the protonated species, studies from our group showing
that NO-induced hyperpermeability is enhanced under mildly acidic conditions
further support the notion that ONOO−/ONOOH is the responsible moiety [20,33].

The mechanism(s) responsible for NO- or ONOO−-mediated intestinal ep-
ithelial hyperpermeability remain to be elucidated. However, our laboratory re-
ported that NO generated endogenously as the result of iNOS expression induced
by incubating Caco-2 cells with cytomix, or exogenously from the NO donor
DETA-NONOate [(Z)-1-[2(2-aminoethyl)-N-(2-ammonioethyl) amino]diazen-1-
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ium-1,2-diolate] decreased the expression and impaired proper localization of
the tight junction proteins, ZO-1, ZO-3, and occludin [22]. We also showed that
incubating Caco-2 cells with either DETA-NONOate or cytomix increases the ex-
pression of another key tight junction protein, claudin-1, and promotes the ac-
cumulation of this protein in what appear to be vesicles within the cells. These
findings support the view that NO (or a related reactive species) increases epithe-
lial permeability by causing derangements in the expression and/or localization of
several key tight junction proteins.

NO-dependent Changes in Na+,K+-ATPase Activity can Affect Tight Junction
Assembly and Function

Sugi et al. proposed that one way that NO might alter the expression or localiza-
tion of various tight junction proteins is by modulating the activity of the mem-
brane pump, Na+,K+-ATPase [34]. In a series of studies using monolayers of T84
enterocyte-like cells, these investigators reported that intracellular sodium con-
centration and cell volume increase following exposure to the pro-inflammatory
cytokine, IFNγ.Additionally, Sugi et al. showed that incubatingT84cellswith either
NO or IFNγ decreases the expression and activity of Na+,K+-ATPase. Remarkably,
growing the monolayers in medium with low sodium concentration inhibits the
development of hyperpermeability following exposure to IFNγ and also prevents
IFNγ-induced alterations in occludin expression. These findings suggest a pathway
that involves the following steps: IFNγ (and/or other pro-inflammatory cytokines)
→ iNOS induction → NO production → inhibition of Na+,K+-ATPase expres-
sion and function → cell swelling → altered expression and/or targeting of tight
junction proteins (e. g., occludin) → hyperpermeability.

Qayyum et al. reported that treatment of rat brain membranes with ONOO−

in vitro decreases the activity of the Na+,K+-ATPase, and hypothesized that this
effect may be caused by nitration of the Na+,K+-ATPase [35]. However, these
authors did not demonstrate that ONOO− actually modifies the Na+,K+-ATPase.
In an earlier report, the same authors also implicated lipid peroxidation in the
inactivation of the Na+, K+-ATPase [36], but only showed an association between
lipid peroxidation and altered Na+,K+-ATPase activity in their studies. However,
these authors convincingly showed that ROS decrease the affinity of the Na+,K+-
ATPase for Na+ and K+, inhibiting transport of these ions [35,36]. Taken together,
these results support the notion that oxidative or nitrosative post-translational
modifications of Na+,K+-ATPase can lead to decreased epithelial barrier function.

Functional iNOS Expression is Essential for LPS-induced Alterations
in Intestinal Permeability in Mice

Several years ago, our laboratory showed that gut mucosal permeability to a flu-
orescent macromolecule, fluorescein isothiocyanate-labeled dextran (molecular
mass, 4 kDa; FD4), was increased 24 hours after injecting rats with a low dose of
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LPS [37]. However, when rats were treated with either of two chemically dissimilar
isoform-selective iNOS inhibitors, aminoguanidine or S-methylisothiourea, the
injection of LPS failed to increase gut mucosal permeability.

In a more recent study, the biochemical basis for the increase in gut mucosal
permeability was investigated by our laboratory. Specifically, C57Bl/6J mice were
injected with a sublethal (2 mg/kg) dose of E. coli LPS, and ileal mucosal perme-
ability to FD4 was assessed 18 hours later [38]. Although mucosal permeability
increased significantly when mice were injected with LPS, treatment with L-NIL,
an isoform-selective iNOS inhibitor [39], reversed this effect. Basal ileal mucosal
permeability in control (PBS-treated) iNOS knockout (iNOS−/−) mice on a C57Bl/6J
background was greater than that measured in control (wild-type) iNOS+/+ mice,
a finding that is consistent with reports that basal levels of NO are required for
normal gut homeostasis [40, 41]. Despite a basal defect in intestinal barrier func-
tion in iNOS−/− mice, permeability to FD4 failed to increase further when these
mice were challenged with LPS.

In these studies [38], we used a portion of ileal tissue to prepare total and
NP-40 (detergent)-insoluble protein extracts, the latter being enriched for tight
junction-associated and other cytoskeletal proteins [42]. Total protein extracts
were subjected to immunoblotting. NP-40 insoluble proteins were first solubilized
with detergent-containing buffer and concentrated by immunoprecipitation prior
to immunoblotting. The expression of occludin in NP-40 insoluble extracts was
decreased in samples obtained 6 hours after injecting mice with LPS [38]. Occludin
expression in NP-40 insoluble extracts decreased still further at 12 hours, but was
starting to return toward normal 18 hours after LPS challenge. In total protein
extracts, changes in occludin levels were less dramatic, and the maximal decrease
was observed at 12 hours. ZO-1 expression decreased slightly in total protein
extracts from ileal mucosa of mice exposed to LPS. However, there was a large
decrease in ZO-1 levels in the NP-40 insoluble fraction. This finding suggests that
the ZO-1 that is present in the cells of endotoxemic animals is unable to assemble
into tight junctions. Consistent with our observations obtained using the Caco-2
system [22], claudin-1 expression increased in total protein extracts prepared from
ileal mucosa. Immunoblotting total protein extracts for actin revealed equivalent
loadingof the samples in thesegels.Asexpected, iNOSproteinexpression increased
in total protein extracts from ileal mucosa of LPS-treated mice.

Endotoxemia is Associated with Derangements in Ileal Mucosal Tight Junction
Protein Localization

Immunohistochemical studies of ileal tissue from endotoxemic mice were per-
formed using samples harvested 12 hours after injection of LPS. ZO-1 formed
a continuous staining pattern around the enterocyte layer near the apical region of
the lateral membrane of crypt and villous cells of the epithelium and the endothe-
lium of the lamina propria from normal mice. Following injection of mice with LPS,
ZO-1 staining was maintained in the crypts, but staining progressively decreased
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over the tips of the villi. In sections from endotoxemic mice, the staining patterns
for ZO-1 were disrupted only in focal regions of the ileum; approximately 60% of
the villi in a given section stained normally. If the endotoxemic mice were treated
with L-NIL to pharmacologically block iNOS-dependent NO production, then the
correct targeting of ZO-1 in the ileal mucosa was preserved. Similar findings were
obtained when staining was carried out for occludin instead of ZO-1.

Parallel experiments were performed using iNOS−/− mice. The levels of oc-
cludin and ZO-1 in ileal mucosa from control iNOS−/− mice (i. e., those not chal-
lenged with LPS) were reproducibly lower than the levels of these proteins in
control iNOS+/+ mice. To some extent, these basal differences in occludin and ZO-
1 expression confounded interpretation of the results obtained in LPS-challenged
animals. Nevertheless, it was apparent that injecting iNOS−/− mice with LPS failed
to cause a further decrease in the expression of ZO-1 or occludin in ileal mucosa.
The localizationofZO-1andoccludinwaspreserved in ileal sectionsprepared from
LPS-treated iNOS−/− mice, being essentially unchanged from what was observed
in sections from iNOS−/− animals injected with vehicle.

Surgical Stress Leads to Systemic Absorption of Gut-derived Toxins

Dating back to the era of Jacob Fine [43, 44], investigators have recognized that
the gut represents a huge reservoir of bacteria-derived products, especially LPS,
and that derangements in gut barrier function might lead to systemic absorption
of these agents. Although Moore et al. were unable to detect LPS in the portal
venous or peripheral venous blood samples obtained from critically ill trauma
victims [45], other clinical and laboratory findings provide strong support for the
notion that LPS can be systemically absorbed in patients or animals with acute
conditions, such as hemorrhagic shock [46], necrotizing pancreatitis [5–7], or
cardiopulmonary bypass [47, 48], that are associated with derangements in gut
mucosal permeability.

Despite its other name, endotoxin, LPS is not really a toxin in the true sense of
the word. Rather LPS is toxic because it is capable of activating intracellular signal-
ing pathways in a variety of cell types, leading to the production of a variety of po-
tentially cytotoxic mediators, including ROS and cytokines, such as TNF. However,
in addition to releasing LPS and other pro-inflammatory molecules, many bacteria
also produce extremely potent true toxins. For example, Pseudomonas aeruginosa
are known to secrete at least 19 different soluble exoproteins, including several
exotoxins (A, S, U and Y), elastase, staphylolytic protease, lipase, and phospholi-
pase C. ETA is distantly related to diphtheria toxin produced by Corynebacterium
diphtheriae [49]. Both ETA and diphtheria toxin kill the eukaryotic cells of the host
by promoting mono-ADP-ribosylation and, thereby, inactivation of a key protein,
translation elongation factor 2 (eEF2), which is essential for protein synthesis [49].
ETA is an extremely potent toxin, possessing a LD50 (dose that kills 50% of treated
animals) of 0.2 g/kg following intraperitoneal injection into mice [49].

Based on a remarkable series of publications from Alverdy and colleagues at
the University of Chicago as well as other investigators, data have accumulated to
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support the hypothesis that surgical stress (or presumably other forms of critical
illness) lead to twosynergistic gut-related consequences thatpromotedevelopment
of distant organ dysfunction and even mortality. First, P. aeruginosa within the
gut lumen respond to signals from the host, such as the cytokine, IFNγ [50], other
factors released by hypoxic enterocytes [51], or norepinephrine [52]. In response
to these signals, the bacteria increase their expression of virulence proteins, such
as the PA-I lectin, a protein that is capable of causing derangements in gut epithelial
permeability. Second, when P. aeruginosa are incubated under hypoxic conditions,
secretionofETAincreases substantially [53]. It is likely that IFNγalso increasesETA
secretion by P. aeruginosa, although this hypothesis remains to be tested. Thus,
through a variety of mechanisms, critical illness can both increase elaboration
within the gut lumen of a very potent toxin (ETA) and increase the permeability
of the intestinal epithelium, permitting systemic absorption of this protein. The
validity of this concept has been directly verified in a series of elegant in vivo
studies using mice [52].

Release of Toxic Materials into the Lymphatic Drainage from the Gut

Although many lines of investigation suggested that the gut might be the “motor
of multiple organ system failure” [10], the failure in some key clinical studies to
observe clear evidence of LPS in portal venous blood [45] or bacteria in mesen-
teric lymph nodes [54] in trauma victims led to skepticism about this concept.
Nevertheless, two research groups, one directed by Deitch in Newark and another
directed by Moore in Denver, formulated a novel hypothesis to explain the data:
rather than the portal venous system, the draining mesenteric lymphatics might
be the source of key gut-derived factors that promote distant organ dysfunction
in critical illness [55,56]. Over the past few years, an impressive body of evidence,
obtained mostly by studying rat models of hemorrhagic shock or burn injury, has
accumulated in support of this concept. Briefly, it has been shown that post-shock
(but not control) mesenteric lymph primes or activates neutrophils in vitro [56,57],
and is toxic to various cell types in culture [57]. Furthermore, ligation of the main
draining mesenteric lymphatic in rats ameliorates hemorrhagic shock- or burn-
induced distant organ injury [55,56,58]. Finally, administration of post-shock (but
not control) mesenteric lymph is capable of inducing distant organ dysfunction in
rodents [55].

The precise nature of the factor (or factors) in post-shock lymph that is re-
sponsible for its deleterious actions remains elusive. Both lipophilic [59–61] and
hydrophilic [61,62] factors have been implicated. One of the factors may be a pep-
tide, derived from the action of serine proteases on albumin [61, 63].
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Release from Enterocytes of Pro-inflammatory Cytokines

The gastrointestinal tract is the largest immune organ in the body. Numerous spe-
cialized lymphocytes, intraepithelial lymphocytes (IELs), reside between adjacent
enterocytes within the epithelium. Plasma cells, lymphocytes, macrophages, mast
cells, and neutrophils are present within the lamina propria even under basal con-
ditions, and, following the induction of a local or systemic inflammatory response,
many more immune cells migrate into this layer of the bowel wall as well as into
the muscularis propria. These immune cells are capable of producing a wide ar-
ray of cytokines and other mediators, such as platelet activating factor (PAF) and
histamine.

Although they are not ‘professional’ immune cells, enterocytes making up
the epithelial layer of the gut are capable of secreting chemokines [64, 65], cy-
tokines [66,67] and other pro-inflammatory mediators [68]. Recent data from our
laboratory suggest that HMGB1, a recently discovered cytokine-like protein, is
among the pro-inflammatory substances that are released by immunostimulated
enterocytes.

High-mobility group proteins are small DNA-binding proteins that serve an
important role in transcriptional regulation [69]. One of these proteins, HMGB1,
has been identified as a late-acting mediator of LPS- [70] or sepsis-induced [71]
lethality in mice. HMGB1 also has been implicated as a mediator LPS- [72] or
hemorrhagic shock-induced acute lung injury (ALI) in mice [73]. Additionally,
our laboratory showed that adding recombinant HMGB1 to the culture medium
for Caco-2 human enterocyte-like monolayers increases the permeability of the ep-
ithelial barrier to a fluorescent macromolecule, fluorescein isothiocyanate-labeled
dextran with an average molecular mass of 4,000 Da (FD4) [74]. Moreover, we
showed that injecting mice with HMGB1 induces gut mucosal hyperpermeability
to FD4 and promotes bacterial translocation to mesenteric lymph nodes [74]. Ad-
ditional studies have documented that HMGB1 is a cytokine-like molecule that
can promote TNF release from mononuclear cells [75].

HMGB1 also has been implicated in the pathogenesis of human disease. In
the original report describing HMGB1 as a mediator of LPS-induced lethality,
Abraham et al. reported that circulating levels of this protein are increased in
patients with severe sepsis [72]. Shortly thereafter, Ombrellino and co-workers
described a patient with high circulating levels of HMGB1 following an episode of
hemorrhagic shock [76]. More recently, increased levels of HMGB1 mRNA have
been detected in whole blood samples from patients with septic shock, particularly
among non-survivors [77]. Similarly, persistently high serum levels of HMGB1
protein have been detected in patients with septic shock [78]

HMGB1 is actively secreted by immunostimulated macrophages [70, 79–81],
natural killer cells [82], and pituicytes [83]. This protein is also released by necrotic,
but not apoptotic, cells [84]. Because HMGB1 has been shown to modulate in-
testinal epithelial barrier function [74], we hypothesized that active secretion by
enterocytes might be yet another source for this cytokine-like protein. Recently, we
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reported that stimulating either Caco-2 cells or primary cultures of murine ente-
rocytes with cytomix induced secretion of HMGB1 [85]. Additionally, we showed
that addition of a neutralizing polyclonal anti-HMGB1 antibody partially blocked
the increase in permeability caused by incubating Caco-2 monolayers with cy-
tomix [85]. The data also indicate that HMGB1 is secreted in soluble form as
well as a particulate form that is sequestered within exosomes. These data sup-
port the view that enterocyte-derived HMGB1 may be an autocrine amplifier of
derangements in epithelial barrier function initiated by other pro-inflammatory
stimuli.
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Endogenous Danger Signals in Liver Injury:
Role of High Mobility Group Box Protein-1

A. Tsung, G. Jeyabalan, and T.R. Billiar

Introduction

The liver is a central regulator of the systemic immune response following acute
traumatic or surgical insult. It is the primary site for clearance of bacterial endo-
toxin and is also subject to injury and dysfunction during sepsis or following local
insults such as warm ischemia/reperfusion. Recent advances in the study of mech-
anisms for the activation of the innate immune system have pointed to the Toll-like
receptors (TLRs) as a common pathway for immune recognition of microbial in-
vasion and tissue injury. By recognizing either microbial products or endogenous
molecules, the TLR system is capable of alerting the host of danger by activating
the innate immune system. Initially, this is manifested by the production of inflam-
matory mediators and the rapid uptake of invading microbes and their products.
When excessive, this inflammatory response can contribute to organ damage and
dysfunction. In this chapter, we will discuss the role of endogenous danger signals,
specifically high mobility group box ptotein-1 (HMGB1), as a signaling molecule
that activates inflammatory pathways in a TLR-dependent manner in response to
liver injury.

Endogenous Proteins and Toll-like Receptors

Innate immunity typically refers to the initial pro-inflammatory response that
occurs in response to an invading microorganism. This response serves as the
front-line defense mechanism against infection. Tissue injury activates many of
the same inflammatory pathways. This observation, among others, led to the
hypothesis proposed by Polly Matzinger [1, 2] that the immune system is de-
signed to recognize any substance that is potentially dangerous to the host. In
this scenario, both pathogens and tissue damage represent a threat that leads to
disruption of homeostasis. Recent observations show that both microbial prod-
ucts (pathogen-associated molecular patterns [PAMPs]) or endogenous molecules
(damage-associated molecular patterns [DAMPs]) can be recognized through the
TLRs, a family of receptors crucial to the innate immune system [3–8].

To date, 13 TLRs have been described in mice, and 10 in humans [9]. TLRs are
a family of proteins which are mammalian homologs to the Drosophila Toll, a pro-
tein that functions in development and immunity [10]. The cytoplasmic portion of
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TLRs is similar to that of the interleukin (IL)-1 receptor (IL-1R) family and is called
the Toll/IL-1 receptor (TIR) domain. Unlike the IL-1 receptor extracellular portion
that consists of an immunoglobulin-like domain, the TLR have leucine-rich repeats
in their extracellular portion [11]. The TLR have many structural similarities both
extracellularly and intracellularly, but they differ from each other in ligand speci-
ficities, expression patterns, and with some variability in the signaling pathways
they activate [12].

Perhaps more than any of the other TLR family members, TLR4 sits at the
interface of microbial and sterile inflammation. It is required for signal initiation
for both bacterial endotoxin and many DAMPs. Whereas the role of TLR4 in the
recognition of lipopolysaccharide (LPS) is well established [10], only recently has
it become apparent that TLR4 also participates in the recognition of DAMPs. In
vivo evidence for TLR4-mediated danger signaling comes from studies of acute
tissue injury in hemorrhagic shock [13] as well as cardiac [14], renal [14, 15],
and hepatic [7, 16] ischemia/reperfusion models. In each case, TLR4-mutant an-
imals exhibited reduced injury or inflammation compared to wild-type controls.
We [7] and others [16] recently reported that liver damage following warm is-
chemia/reperfusion was markedly decreased in TLR4-mutant animals. Further-
more, HMGB1, a nuclear protein released after necrotic cell death, has been iden-
tified as one of the mediators of this TLR4-dependent activation of the innate
immune responses.

Danger signals or DAMPs can be classified as normal cell constituents released
by damage or dying cells or components of the extracellular matrix, released by the
action of proteases at the site of tissue damage. These molecules are recognized by
antigen-presenting cells which can become activated and initiate primary immune
responses. Endogenous danger signals can be divided into those that serve as
primary initiators of the immune response and those that act as feedback signals.
Furthermore, some of these signals can function both as initiators and as positive-
feedback mediators.

Muchof theworkonactivationof the immunesystembyendogenousmolecules
has been with immune cells, specifically dendritic cells. The activation of TLRs on
dendritic cells by danger signals may be partly responsible for the induction of cy-
tokine and chemokine production as well as the maturation of this cell population.
Substances releasedby necrotic, but not apoptotic, cell death appear tobe primarily
responsible for interacting with resting dendritic cells in various tissues [17–19].
Dendritic cells initiate adoptive immune responses through antigen presentation
in the setting of co-stimulation. Whereas DAMPs can activate dendritic cells for
antigen presentation, a process important to adoptive microbial defenses, antigen
presentationdoesnot appear tobepart of the typical tissue injury response. Instead
the lack of antigen may lead to a state of immune depression. In a variety of cell
systems, TLR4-dependent signaling has been observed following exposure to heat
shock proteins (HSPs) [8], fibrinogen [5], hyaluronic acid [3], heparin sulfate [4],
and HMGB1 [6,7]. Concerns over the possible contribution of contaminating LPS
linger [20], but the data for the LPS-independent activation of TLR4-signaling by
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these proteins are becoming more convincing. HSPs are one of the most exten-
sively studied endogenous danger signals and can serve as both constitutive and
inducible danger signals. Various forms of constitutively active or stress-induced
HSPs are released from different cellular compartments during necrotic cell death
and activate resting dendritic cells via different receptors, including the TLR fam-
ily [8]. As mentioned before, certain cellular adhesion molecules on dendritic cells
can become activated when bound to the degradation products of their normal
ligands. An example is the extracellular matrix glycosaminoglycan, hyaluronan,
which is seen in the course of both normal matrix turnover of lung epithelium and
in acute lung injury (ALI). Pro-inflammatory cytokine production and immune
cell activation can occur through interaction of hyaluronan and its degradation
products with TLRs as part of the innate immune response [21].

High Mobility Group Box Protein-1:
Mediator of Inflammation in Liver Ischemia/Reperfusion

HMGB1 is a fascinating protein with multiple functions. Evolutionarily ancient,
HMGB1 predates speciation and is highly conserved across species [22]. It was ini-
tially identified in 1973, and the early studies focused on its role as a DNA-binding,
nuclear protein that co-purified with chromosomal DNA since HMGB1 is loosely
bound to chromatin (unlike the more tightly bound histones) [23, 24]. HMGB1
is present in almost all eukaryotic cells, functions to stabilize nucleosomes, and
acts as a transcription factor that regulates the expression of several genes [25,26].
During the course of experiments to identify late-acting mediators of endotoxemia
and sepsis, HMGB1 was discovered to be secreted by activated macrophages [27].
HMGB1 release occurred significantly later than macrophage secretion of the clas-
sical early pro-inflammatory mediators, TNF and IL-1 [28]. In an endotoxemia
model in mice, serum HMGB1 levels begin to increase 12-18 hours after the peak
of TNF, which occurs at 2 hours, and of IL-1 (4–6 hours) [29]. Neutralizing HMGB1
markedly improved survival in these septic mice. HMGB1 is also readily released
from necrotic or damaged cells and serves as a signal for inflammation [30, 31].
Thus, HMGB1, in addition to its nuclear role, is a critical mediator of the response
to infection, injury, and inflammation.

Whereas HMGB1 is a late mediator of systemic inflammation in sepsis, recent
studies from our laboratory demonstrate that HMGB1 also acts as an endogenous
danger signal, serving as a key link between the initial damage to cells and the
activation of inflammatory signaling. This role of HMGB1 as an early mediator
of inflammation is in clear contrast to sepsis where the action of HMGB1 is de-
layed. We utilized a model of warm, partial hepatic ischemia/reperfusion in mice
previously characterized in our laboratory to study the role of HMGB1 in the set-
ting of acute, local organ damage [32]. Ischemia/reperfusion is a pathophysiologic
process whereby hypoxic organ damage is accentuated following return of blood
flow and oxygen delivery. Transient episodes of hepatic ischemia are encountered



386 A. Tsung, G. Jeyabalan, T.R. Billiar

during solid organ transplantation, trauma, hypovolemic shock, and elective liver
resection, when inflow occlusion or total vascular exclusion is used to minimize
blood loss. In our model, hepatic ischemia is initiated with the occlusion of only the
left hepatic artery and left branches of the portal vein, preserving flow though the
right side and avoiding intestinal venous congestion. We have found that marked
hepatic injury to the ischemic lobes becomes apparent at 3–6 h of reperfusion
following 45–60 min of ischemia [32].

The pathophysiology of liver ischemia/reperfusion injury includes both direct
cellular damage as the result of the ischemic insult as well as delayed dysfunction
and damage resulting from activation of inflammatory pathways [33,34]. Although
the distal cascade of inflammatory responses resulting in organ damage after is-
chemia/reperfusion injury has been studied extensively, the extent to which the
initial cellular injury contributes to activation of the inflammatory response and
leads to further tissue damage is poorly understood. We hypothesized that the
key link between the initial damage to cells and the activation of inflammatory
signaling involves release of HMGB1 from ischemic cells. This was based on ini-
tial observations that following 60 minutes of hepatic ischemia, HMGB1 protein
expression was upregulated as early as 1 hour after reperfusion and then in-
creased in a time-dependent manner up to 24 hours. Previous studies have shown
that HMGB1 localizes predominantly in the nucleus of macrophages [31]. Thus,
to determine the cellular localization of HMGB1 in the liver, we performed im-
munofluorescence staining in normal livers and in livers undergoing ischemia and
reperfusion. As expected, expression of HMGB1 was noted predominantly in the
nucleus of hepatocytes in normal livers. However, after ischemia and reperfusion,
HMGB1 expression was found to be enhanced in the nucleus as well as the cy-
toplasm of hepatocytes. Similar findings of HMGB1 being upregulated by stress
was also seen in vitro. Since hypoxia is believed to be the initiating event in the
ischemia/reperfusion insult, we assessed the expression of HMGB1 in cultured
hepatocytes exposed to hypoxia. Primary hepatocytes exposed to normoxia (21%
oxygen) have a basal level of HMGB1 expression which did not change significantly
up to 24 hours of incubation. However, exposure of the hepatocytes to hypoxia
(1% oxygen) resulted in a time-dependent increase in cellular HMGB1 expression
as well as increased HMGB1 release into the media. The findings that HMGB1 is
rapidly upregulated in hepatocytes in hepatic ischemia/reperfusion and in hepa-
tocytes made ischemic in vitro, suggested that stressed or damaged hepatocytes
in hepatic ischemia/reperfusion provide the danger signal to the neighboring im-
mune cells in the liver. Further support for the role of HMGB1 in the inflammation
and injury seen after hepatic ischemia/reperfusion included studies demonstrat-
ing that inhibition of HMGB1 activity with neutralizing antibody significantly
decreased liver damage after ischemia/reperfusion while administration of re-
combinant HMGB1 worsened ischemia/reperfusion injury.

To investigate the mechanism by which local injury is sensed by the liver,
TLR4- and CD14-deficient mouse strains were subjected to ischemia/reperfusion.
The CD14 knockout-(CD14−/−) mouse strain did not exhibit a reduction in
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ischemia/reperfusion-induced damage compared to wild-type controls. The re-
sults using the CD14−/− mice were of particular importance because they argued
against a role for intestinal derived LPS in the early ischemia/reperfusion-induced
inflammation. In contrast to the results obtained with CD14−/− mice, TLR4-
mutant (C3H/HeJ) or deficient (TLR4−/−) mice exhibited a dramatic reduction
in ischemia/reperfusion-induced damage and cytokine production. These results
were similar to those reported by Zhai et al. who also showed that TLR4, but not
TLR2, was required for hepatic ischemia/reperfusion injury [16].

We hypothesized that if TLR4 was involved in the recognition of HMGB1 and
that the HMGB1 neutralizing antibody functioned by preventing TLR4-mediated
HMGB1 signaling, then the antibody should provide no further protection in the
TLR4-mutant mice; this indeed was the case. Although the ischemia/reperfusion-
induced damage in TLR4-mutant mice was only 40% of wild-type mice, anti-
HMGB1 treatment afforded no additional protection in the TLR4-mutant mice
while reducing damage in the wild-type mice to a level similar to that seen
in the mutant animals. Further proof that HMGB1 is recognized via a TLR4-
dependent mechanism came from an experiment showing that exogenous re-
combinant HMGB1 worsened the ischemia/reperfusion-induced damage only in
wild-type and not in TLR4-mutant mice. Taken together, these results demon-
strate that HMGB1 is an early mediator of injury and inflammation in liver is-
chemia/reperfusion and implicates TLR4 as one of the receptors involved in the
process.

Sensing the Danger in the Liver

As previously described, TLR4 appears to respond to both bacterial endotoxin
and multiple other endogenous ligands, including hyaluronic acid [3], heparin
sulphate [4], fibrinogen [5], HMGB1 [6,7], and HSPs [8]. In addition, both inflam-
mation and injury responses in warm hepatic ischemia/reperfusion are partially
TLR4 dependent [7, 16]. The liver is well equipped to respond to these potential
endogenous ligands. The liver consists of parenchymal cells (hepatocytes) and
non-parenchymal cells, including Kupffer cells, sinusoidal endothelial cells, stel-
late cells, and hepatic dendritic cells. TLR4 is present on both hepatocytes and
non-parenchymal cells and both cell populations possess intact TLR4 signaling
pathways [35,36]. Our above studies [7] suggested a central role for HMGB1 in the
TLR4 dependent component associated with hepatocyte damage and the resultant
enhanced inflammation associated with hepatic ischemia/reperfusion injury. Our
working hypothesis was that endogenous danger signals such as HMGB1 are re-
leased from stressed and injured hepatocytes, and in the context of ischemia and
reperfusion, these molecules activate phagocytic cells via TLR4 for inflammatory
mediator production. Thus, the next question we sought to answer was which cell
type in the liver expressing TLR4 was required for ischemia/reperfusion-induced
injury.
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To elucidate the cell type mediating the TLR4-dependent inflammatory re-
sponse after hepatic ischemia/reperfusion, we needed to be able to differentiate
between the responses of hepatocytes and non-parenchymal cells in the intact liver.
To do this, we turned to a chimeric mouse model in which recipient mice receive
lethal irradiation to eradicate bone marrow cells, followed by bone marrow trans-
plantation [37]. This procedure allowed for the reconstitution of the bone marrow
with syngeneic bone marrow from mice with mutations in specific components
of the TLR4 response system. After 8–10 weeks, the immune cells within the liver
were replaced with the cells expressing the new bone marrow’s phenotype, while
the long-lived parenchymal cells retained the host’s phenotype. Our experiments
required two test groups and two control groups. Control groups included wild-
type (WT:WT, host:bone marrow) and TLR4-mutant (Mutant:Mutant) strains. In
these studies, the host mouse received bone marrow identical to the host to control
for the experimental manipulation. Test groups included wild-type mice receiv-
ing TLR4-mutant bone marrow (WT:Mutant) and TLR4-mutant mice receiving
wild-type bone marrow (Mutant:WT).

After confirming that the administration of bone marrow resulted in a con-
version of the non-parencyhmal cells to the donor phenotype in our chimeric
mice, we subjected these animals to our model of partial hepatic warm is-
chemia/reperfusion. In agreement with previous studies, WT:WT mice exhib-
ited significant hepatocellular damage after ischemia/reperfusion where as Mu-
tant:Mutant mice were protected from injury [37]. Interestingly, Mutant:WT mice
exhibited similar damage to the wild-type control group and WT:Mutant mice
were protected from ischemia/reperfusion injury. Thus, functional TLR4 on non-
parenchymal cells, regardless of hepatocyte phenotype, was required for inflam-
mation and organ damage after ischemia/reperfusion.

To further characterize the non-parenchymal cell type responsible for TLR4-
mediated injury, we performed phagocytic depeletion studies. Gadolinium chlo-
ride (GdCl3) pretreatment is toxic to phagocytic cells in the liver, thereby erad-
icating Kupffer cells and dendritic cells [38]. To determine if these cells ac-
counted for the TLR4-dependent responses in hepatic ischemia/reperfusion, wild
type and TLR4-deficient mice were treated with GdCl3 prior to hepatic is-
chemia/reperfusion.GdCl3 markedly reduced ischemia/reperfusion-induceddam-
age in wild-type mice but afforded no further protection in the TLR4-mutant mice.
Taken together, our results indicated that TLR4 signaling in non-parenchymal cells,
most likely Kupffer and dendritic cells, is required for the ischemia/reperfusion-
induced injury and inflammation.

Conclusion

The liver is acomplexorganwithanextraordinary spectrumof functions.Although
the TLR system equips the liver to sense and clear bacteria, this system also partic-
ipates in the inflammatory response to local liver injury through the recognition



Endogenous Danger Signals in Liver Injury: Role of High Mobility Group Box Protein-1 389

Fig. 1. Model for Toll-like receptor 4 (TLR4) activation in liver ischemia/reperfusion. HMGB1:
high mobility group box protein 1

of endogenous danger molecules such as HMGB1. Figure 1 outlines our current
view of the role of the HMGB1-TLR4 pathway in the hepatic ischemia/reperfusion
response. Ischemic stress leads to passive HMGB1 release from injured cells or
to active secretion. Both are likely to occur but the specific pathways leading to
HMGB1 release remain unknown. HMGB1 is then recognized by TLR4 through
a CD14-independent mechanism by Kupffer cells and dendritic cells. Park et al.
have recently reported that HMGB1 directly interacts with TLR4 and TLR2 [39].
Since TLR2 knockout mice show no reduction in injury or inflammation, the
key interaction in liver ischemia/reperfusion is through TLR4. The recognition of
HMGB1 by TLR4 leads to production of pro-inflammatory mediators in the context
of ischemia/reperfusion and these mediators lead to activation of toxic signaling
pathways in stressed hepatocytes. Many steps in these series of events remain to
be defined. In addition, several simultaneous signaling events clearly take place
and may serve as the key co-signaling events that amplify or even permit HMGB1
recognition. This paradigm suggests that HMGB1 and TLR4 are potential targets
for therapeutic intervention in both acute liver injury and ischemia/reperfusion
insults.
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Sepsis-induced Acute Renal Failure and Recovery

M. Raghavan, R. Venkataraman, and J.A. Kellum

Introduction

Acute renal failure remains a common syndrome in the setting of critical illness,
and is associated with a high risk of death. Approximately 1–25% of patients in the
intensive care unit (ICU) develop acute renal failure depending on the criteria used
to define its presence [1]. Severe sepsis plays a major factor in the development of
acute renal failure in the ICU. The mortality from sepsis-induced acute renal failure
remains high despite our increasing ability to support vital organs. Unfortunately
our understanding of the pathogenesis of sepsis-induced renal dysfunction is
quite limited. It is, therefore, very important for critical care physicians to have
an appreciation of what is known and not known about this condition in order to
implement rational therapies.

Epidemiology of Sepsis-induced Acute Renal Failure in the ICU

Sepsis and severe sepsis are currently the major contributing factors in the evo-
lution of acute renal failure in ICU patients and account for nearly 50% of acute
renal failure observed in the ICU [2]. Acute renal failure occurs in approximately
19% of patients with moderate sepsis, 23% with severe sepsis, and 51% with septic
shock when blood cultures are positive [3]. Despite considerable improvements in
medical treatment of various critical illnesses over the last three decades, the ther-
apy of acute renal failure is rather disappointing and mortality rates due to acute
renal failure exceed 60% in many published series [2]. It remains unclear, however,
whether acute renal failure plays a significant role in the subsequent development
of multiple organ failure (MOF) through its effects on metabolic homeostasis, or
if acute renal failure is merely a manifestation of MOF. Patients who develop acute
renal failure in the setting of sepsis are more likely to die than dialysis-dependent
patients with sepsis admitted to the ICU [4]. This suggests that new onset acute
renal failure during critical illness by itself has an ‘attributable’ mortality, and that
the poor outcome associated with the development of new onset renal dysfunction
is independent of the poor outcome associated with sepsis syndrome [5].
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Pathophysiology of Sepsis-induced Acute Renal failure:
‘Time for a Paradigm Shift’

In the past, acute renal failure during critical illness was essentially considered
a ‘hemodynamic disease’ caused by renal ischemia, a view largely influenced by
findings in animal models, at least some of which had questionable relevance to
the clinical state. Indeed, most models inducing so-called acute tubular necrosis
(ATN) are based on ischemia/reperfusion (e. g., renal artery clamping). Such mod-
els produce very different physiology compared to the high cardiac output, low
systemic vascular resistance state typically seen during human sepsis. Recent re-
search however, underscores the importance of other mechanisms of renal injury
such as acute renal tubular cell apoptosis [6,7], renal tubular epithelial barrier dys-
function [8], and endothelial dysfunction [9] in the pathogenesis of sepsis-induced
acute renal failure. These concepts fit well with the typical paucity of histologic
findings seen in ATN and with growing evidence of varying mechanisms of organ
injury during sepsis and inflammation in general [8, 10]. Thus, the pathophysio-
logic mechanisms whereby sepsis-induced acute renal failure occur can be divided
into four broad areas: 1. renal perfusion; 2. inflammation; 3. cellular mechanisms;
and 4. coagulation.

Renal Perfusion

The concept of renal hypoperfusion as the primary cause of acute renal failure
is so thoroughly engrained in the literature of critical care and nephrology as to
elevate to the status of dogma. Even the terms that we use, (e. g. acute tubular
necrosis) suggest an ischemic etiology. For many years, empiric treatment of renal
hypoperfusion with dopamine, a renal vasodilator, was seen as standard care not
only for patients with acute renal failure but even for patients thought to be at high
risk of acute renal failure. This practice has largely ceased after evidence accrued
that dopamine is not helpful [11, 12] but other vasodilators (e. g., fenoldopam)
are still being investigated. Furthermore, many clinicians shun agents such as
norepinephrine over concerns that renal vasoconstriction will result in further
deterioration in renal function. In this context, it is perhaps important to recall
that blood flow to the kidneys is normally many times greater than metabolic need.
This is because total or ‘global’ renal blood flow is in the service of glomerular
filtration rather than oxygen delivery.

Global Renal Blood Flow

Traditionally, the observation of an association between acute renal failure and
‘low flow’ states, such as cardiogenic, hemorrhagic, or even septic shock, led to the
belief that renal ischemia plays a key role in the evolution of acute renal failure.
This construct implies that restoration and maintenance of adequate renal blood
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flow should therefore be the primary target for renal protection in the critically ill.
Several experimental studies of sepsis-induced acute renal failure have shown that
global renal blood flow declines after induction of sepsis or endotoxemia [3,13,14].
Current evidence, however, suggests that most of sepsis-induced acute renal failure
arises not due to renal hypoperfusion but indeed in the setting of adequate, or
even increased renal perfusion [15]. Therefore, while renal hypoperfusion might
be important in ‘low flow’ shock states, it is unlikely to play a key role in the
development of acute renal failure during hyperdynamic states such as sepsis. The
observation of acute renal failure in hyperdynamic models of septic shock suggests
that renal blood flow-independent mechanisms of renal injury must exist and may
be more important in the pathogenesis of sepsis-induced acute renal failure.

Intrarenal Hemodynamics

It is possible that even though there is preserved or increased global renal blood
flow during sepsis, regional redistribution of blood flow favoring the cortex, so-
called ‘cortico-medullary redistribution’, may occur [16]. However recent studies
by Di Giantomasso and colleagues found that both cortical and medullary blood
flows remain unchanged in sheep with hyperdynamic septic shock, conditions
closely resembling those of clinical sepsis [17]. Interestingly, the administration
of norepinephrine resulted in a significant increase in flow to both regions. These
observations challenge the view that the medulla is ischemic during hyperdynamic
sepsis but simultaneously highlight that hemodynamic factors are indeed at work,
and can be modified by interventions that affect systemic blood pressure and
cardiac output. Furthermore, although cortico-medullary redistribution could be
an important mechanism of renal injury in certain settings, it is likely to repre-
sent only one of the potential mechanisms responsible for loss of renal function.
Although these studies do not completely discount the possible role of regional
hypoperfusion (particularly in the microcirculation) in the pathophysiology of
sepsis-induced acute renal failure, they do suggest that other factors, such as me-
diators of cellular injury, rather than lack of blood flow, may be closer to center
stage in this unfolding drama [6].

Inflammation

Since neither global renal hemodynamic changes nor intrarenal hemodynamic
changes have been consistently shown to be predominant contributors to sepsis-
induced acute renal failure, there must, therefore, be other mechanisms at work
during the evolution of sepsis-induced acute renal failure that are not hemody-
namic in nature. Sepsis is characterized by the release of a vast array of inflam-
matory cytokines, arachidonate metabolites, vasoactive substances, thrombogenic
agents, and other biologically active mediators. A large body of experimental data
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suggests that these various mediators, along with neuroendocrine mechanisms,
might be involved in the pathogenesis of organ dysfunction in sepsis [10].

Cytokines

Cellular and humoral factors are integral to organ dysfunction in sepsis syndrome,
with the kidney being especially vulnerable to cytokine-mediated injury. The
mesangial cells are capable of expressing multiple pro-inflammatory cytokines
and chemokines, such as interleukin (IL)-1, IL-6, tumor necrosis factor (TNF), and
platelet activating factor (PAF) (Fig. 1). Tubular cells are also capable of releasing
pro-inflammatory cytokines after stimulation by lipopolysaccharide (LPS) [18].
Studiesof isolatedkidneysperfusedexvivowithLPSdonotdemonstrate adecrease
in glomerular filtration rate (GFR) despite increased mRNA expression for pro-
inflammatory cytokines. However, in vivo experiments involving LPS stimulation
demonstrate the expected renal dysfunction, suggesting that the acute renal failure
in this setting involves host factors outside the renal parenchyma [19, 20].

Major mediators of cytokine-induced renal injury include TNF and IL-1, both
of which promote further cytokine release, induce vasoconstriction, neutrophil
aggregation, production of reactive oxygen species (ROS), and induction of tissue
factor and promotion of thrombosis [21]. TNF is produced and circulated system-
ically, whereas IL-1 is expressed in the glomerular endothelial cells early in animal
models of sepsis. In the kidney, endotoxin also stimulates release of TNF from
glomerular mesangial cells [22]. When infused into animal models, TNF and IL-1
result in renal damage and decreased renal blood flow and GFR [23]. Messmer et
al. [24] have shown that TNF and LPS elicit apoptotic cell death of cultured bovine
glomerular endothelial cells,which is timeandconcentrationdependent.Theeffect
of these compounds was characterized by an increase in proapoptotic proteins and
a decrease in antiapoptotic proteins such as Bcl-xL. Furthermore, these pleiotropic
cytokines are capable of inducing mesangial and endothelial production of PAF,
endothelin, adenosine, nitric oxide (NO), and prostaglandin E2.

More recently, the direct toxic role of TNF to the kidney has been become evi-
dent. Knotek et al. [25] using soluble TNF receptor 55 (TNFsRp55)-based neutral-
ization of TNF, achieved protection against LPS-induced renal failure in wild-type
mice. With pretreatment using TNFsRp55, GFR decreased by only 30%, compared
with a 75% decrease without TNF neutralization, suggesting that TNF plays an
important role in sepsis-induced acute renal failure. Furthermore, van Lanschot et
al. [26] infused TNF in sublethal doses in dogs. TNF induced an increase in water
and sodium excretion, an effect that could be prevented by prior cyclooxygenase
inhibition, suggesting that vasodilatory prostaglandins mediated some of the renal
response to sublethal TNF in this model. Cunningham and colleagues [27] used
Escherichia coli LPS as an intraperitoneal injection to establish a mice model of
sepsis, and showed that LPS-induced acute renal failure can be attributed to TNF
acting directly on its receptor, TNF Receptor-1 (TNFR1), in the kidney. Mice defi-
cient in TNF receptor were resistant to LPS-induced renal failure, had less tubular
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Fig. 1. Pathophysiology of acute renal failure and recovery during sepsis. Sepsis induces renal
injury by a variety of mechanisms. Injured cells may recover promptly or undergo apoptosis
or, rarely, necrosis. They may undergo de-differentiation and proliferation to replace lost cells.
Control over these processes is complex and involves numerous factors. RTC: renal tubular cells;
TNF: tumor necrosis factor; IL: interleukin; PAF: platelet activating factor; RBF: renal blood
flow

apoptosis, and had fewer infiltrating neutrophils. Although TNF receptor-negative
mice implanted with TNF receptor-positive kidneys developed LPS-induced renal
failure, TNF-positive mice implanted with TNF receptor-negative kidneys did not.
TNF thus seems to be an important direct mediator of endotoxin’s effects during
sepsis-induced acute renal failure. However, despite all the above findings, TNF
blockade with monoclonal antibodies fails to protect animal or kidney during en-
dotoxemia [28]. These observations suggest that toxic/immunologic mechanisms
are important in mediating renal injury during sepsis.

Nitric Oxide

During hyperdynamic septic shock renal blood flow is preserved, with apparent
redistribution of flow from cortex to medulla, maintaining oxygen delivery to the
most vulnerable portions of the renal parenchyma, while also decreasing the work
of the tubules. This redistribution of blood flow coincides with an increase in
NO in the medulla [29]. Inducible NO synthase (iNOS) can be expressed locally,
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in glomerular mesangial cells and endothelial cells, after stimulation with pro-
inflammatory cytokines, including TNF and IL-1, and endotoxin [30]. Nonselective
or selective blockade of iNOS decreases renal blood flow while increasing mean
arterial pressure (MAP). This suggests that iNOS plays a role in maintaining renal
blood flow in the setting of shock through its vasodilatory effects at the afferent
arteriole. The mechanism of vasodilation by NO is dependent on the synthesis of
cyclic guanosine monophosphate (cGMP) by soluble guanylate cyclase. Studies of
LPS stimulation in mice leading to shock and acute renal failure have demonstrated
a decrease in cGMP to basal levels at 24 hours, despite an early rise in and sustained
iNOS levels, suggesting that desensitization of soluble guanylate cyclase results
in loss of regulatory vasodilation in the kidney [31]. NOS inhibition in animal
models of endotoxemia results in glomerular thrombosis and decline in creatinine
clearance. The glomerular thrombosis in the setting of NOS inhibition seems
related to the antithrombotic qualities of NOS, by inhibiting leukocyte interactions
with endothelial cells and inhibiting platelet aggregation [32].

Endothelins

The production of endothelins, which are potent vasoconstrictors, by endothe-
lial, mesangial, and tubular cells is stimulated by pro-inflammatory cytokines,
including TNF. The vasoconstrictors, vasopressin and angiotensin II, also stimu-
late endothelin release. Endothelins cause vigorous constriction of the afferent and
efferent arterioles, and mesangial cell contraction. The effects of endothelin may
be secondary to its induction of PAF synthesis in the mesangium or thromboxane
A2 by the endothelium. PAF is a vasoconstrictor that additionally is chemotactic
for activated inflammatory cells, including neutrophils. Increases in PAF lead to
a reduction in GFR. Blockade of PAF receptors lessens the deterioration of renal
function in animal models of endotoxemia [33].

Additionally, endothelin also induces some vasodilators, counteracting its
vasoconstricting effect, including prostacyclin, NO, and prostaglandin E2. Two en-
dothelin receptors are active in the renal parenchyma: the endothelin-A receptor is
found mainly in the vascular compartment, and the endothelin-B receptor is found
mainly in the tubular compartment. In an animal model of glycerol-mediated toxic
renal injury, selective antagonism of the endothelin-A receptor lessened the reduc-
tion in GFR [34]. Preliminary evidence suggested that the endothelin-B receptor is
integral to clearing endothelin-1, and probably plays a beneficial role in ischemia.
Studies of selective endothelin-A receptor blockade and nonselective endothelin
receptorblockade (bothendothelin-Areceptorandendothelin-Breceptor)demon-
strated improved outcomes only for the selective blockade in a chronic ischemia
animal model, further supporting the beneficial effects of intact endothelin-B
receptor function [35].

Oxidative Stress

Endotoxemia is known to be associated with the generation of reactive oxygen
radicals and thus may contribute to oxidative renal injury [3, 36, 37]. Endogenous
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scavengers of ROS have been shown to attenuate renal tubular injury during en-
dotoxemia. During endotoxemia, levels of endogenous scavengers of ROS such as
extracellular superoxide dismutase, which is found predominantly in blood ves-
sels and the kidney, have been noted to be decreased [36]. In a murine model
of septic shock and acute renal failure, administration of a superoxide dismu-
tase mimetic that had properties of oxygen-radical scavengers decreased deaths
in the animals [36]. Oxygen radicals also scavenge NO to produce peroxynitrite,
an injurious ROS. This excess burden of protein oxidation is significantly greater
in patients with acute renal failure as compared with critically ill patients with
preserved renal function. The levels of protein oxidation are improved by dialy-
sis, but only transiently, and oxidized proteins continue to accumulate during the
intradialytic period [37]. The oxidative burden in patients who have acute renal
failure in the setting of critical illness may be a target for potential therapies to
decrease the excess mortality in these patients.

Cellular Mechanisms

Epithelial Dysfunction

The clinical syndrome of acute renal failure in the setting of sepsis manifests itself
by a decreasing urine output and rising serum creatinine. It is highly improbable
that loss of cell mass per se (either by necrosis or apoptosis) accounts for the de-
velopment of renal dysfunction. Since the histopathology of acute renal failure in
humans is remarkably bland, the final step in the development of acute renal failure
is probably the widespread dysfunction of renal tubular epithelial cells as a result
of the deleterious effects of a poorly controlled sepsis-induced inflammatory re-
sponse [8]. An important step in this process is the dysfunction of specialized
structures in tubular epithelial cells namely the tight junctions [38]. During the
evolution of sepsis-induced acute renal failure, dysfunction of tight junctions leads
to backleakage of tubular fluid across the epithelium [8, 39]. Loss of cell adhesion
to the tubular basement membrane and subsequent shedding into the lumen re-
sults in denuded cells appearing in the urine as tubular epithelial cell casts. Such
casts may cause micro-obstruction to urine flow. The damaged tubular basement
membrane may fill with cast material, cellular debris, and Tamm-Horsfall protein.
Sublethal injury results in loss of the brush border, which is the site of much energy
consuming metabolic activity. All of the above mechanisms collectively induce re-
nal dysfunction in the absence of overt histological features of renal tubular cell
loss.

The Endothelium

Endothelial activation induced by circulating cytokines and activated complement
is likely a key instigator in the evolution of sepsis-induced acute renal failure.
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The changes induced in endothelial function by this stimulation enhance the
inflammatory process by increasing the production of inflammatory mediators.
Endothelial activation is an early host response to circulating pathogens, and likely
is triggered by activated and adherent neutrophils and their degradation products.
The dysfunctional endothelium is more severely damaged and results in the leaky
capillaries associated with sepsis. The process by which endothelium evolves from
activated and physiologic to damaged and dysfunctional is relatively unknown
and represents a key area for research and a potential target for therapy.

Apoptosis

Cells can die by one of two pathways: necrosis or apoptosis. Apoptosis is an energy-
requiring form of cell death that is mediated by a genetically determined bio-
chemical pathway and is characterized morphologically by cell shrinkage, plasma
membrane blebbing, chromatin condensation, and nuclear fragmentation [6,7,40].
Necrosis, however, results from severe ATP depletion and leads to uncoordinated
and rapid collapse of cellular homeostasis. Because apoptosis does not result in
the release of intracellular material into the extracellular space, it does not result
in an inflammatory response [7]. Apoptotic cells are present in tissue sections for
a very short period of time (1±3 hours) before being phagocytosed and destroyed.
By contrast, it may take days for histologic evidence of cell necrosis to resolve.
Therefore, counting the number of apoptotic and necrotic cells in tissue sections is
likely to substantially underestimate the contribution of apoptosis to cell death [7].
Current evidence suggest that human renal tubular cells die by apoptosis as well
as necrosis in patients with acute renal failure [41]. Apoptosis is more commonly
seen in distal tubular cells, both in animals and in allografts of patients with
biopsy-confirmed ATN [42]. It is not yet possible, however, to quantify the relative
contributions made by necrosis and apoptosis during acute renal failure in vivo.

Schumer et al. [43] have demonstrated that after a very brief period of is-
chemia (5 minutes), apoptotic bodies could be found 24 hours and 48 hours after
reperfusion, and without any evidence of necrosis. After more prolonged periods
of ischemia, areas of necrosis became evident, but substantial numbers of apop-
totic bodies were still seen after 24 to 48 hours of reperfusion. Until recently the
mode of cell necrosis following ischemia was thought to be entirely related to the
severity of ATP depletion [40]. Dagher and colleagues [44] however, have shown
that ischemia causes depletion of ATP as well as guanine triphosphate (GTP) in
cultured renal tubular cells and in the ischemic kidney in vivo. Using selective
depletion techniques of either ATP or GTP these authors showed that isolated ATP
depletion induces necrosis and GTP depletion induces apoptosis. Although GTP
supplementation has been shown to reduce apoptosis and ameliorate ischemic
renal dysfunction, the mechanisms responsible for the differences in the mode of
cell death induced by ATP and GTP depletion remains to be elucidated [45]. The
evidence of whether apoptosis plays an important role in tubular injury in vivo
remains controversial. Particularly controversial is whether renal cell apoptosis
occurs in any large measure during sepsis.
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‘Death Receptors’

The most extensively characterized ‘death receptors’ belong to the TNF receptor
family and include CD95 (Fas) and TNFR-1 [46]. The intracellular domains of
these receptors contain ‘death domains’. The binding of Fas ligand (FasL) and
TNF to their respective receptors, Fas and TNFR-1, leads to oligomerization of the
receptors and subsequent activation of caspase 8. While renal tubular cells con-
stitutively express Fas and TNFR-1 [47, 48], they are normally relatively resistant
to FasL- and TNF-induced apoptosis. However, during sepsis and endotoxemia
renal tubular cells are exposed to inflammatory cytokines or to ATP depletion
(which induces cytokine release from these cells) [49], the expression of Fas/FasL
and TNF-α/TNFR-1 is upregulated, and the cells become sensitized to Fas and
TNF mediated apoptosis [48]. Jo et al. [50] have recently shown that apoptosis of
tubular cells by inflammatory cytokines and LPS is a possible mechanism of renal
dysfunction in endotoxemia. They found that if high-dose TNF was added to cul-
tured kidney proximal tubular cells, there was increased expression of Fas mRNA,
the Fas associated death domain protein, as well as increased DNA fragmentation.

These findings suggest that constitutively expressed death receptors, FasL and
TNFR-1, are provided with their appropriate ligand during acute renal injury, and
therefore may contribute to apoptosis of renal tubular cells in acute renal failure.
Interestingly, increased production of TNF by renal tubular cells during ischemia
appears to be mediated by activation of p38, a member of the mitogen-activated
protein kinase (MAPK) family of kinases [48]. Almost all current evidence to
support a role for Fas and TNF in acute renal failure is derived from studies in vitro
in cultured renal tubular cells. More studies using experimental models of acute
renal failure are needed to firmly establish the importance of FasL and TNFR-1 in
acute renal failure in vivo during sepsis.

Coagulation

The activation of coagulation and deposition of fibrin in the tissues is a well-
defined component of sepsis-related MOF. Increased expression of tissue factor in
response to LPS and TNF stimulation of inflammatory and endothelial cells may
contribute to organ injury in sepsis, including renal injury. Tissue factor binds
activated factor VII. This complex activates factor X, which cleaves prothrombin to
thrombin, which in turn cleaves fibrinogen to fibrin. The activation of the coagula-
tion cascade increases the tissue inflammatory response. Fibrin is often deposited
in the intravascular space in animal models of sepsis, including the glomerular
capillaries. For these reasons, anticoagulant therapies, or therapies that interfere
with initiation of coagulation, are of potential interest in ameliorating organ dys-
function, including renal failure. In a primate model of sepsis, animals were treated
with site-inactivated factor VIIa, which serves as a competitive inhibitor of tissue
factor, to block the initiation of the coagulation cascade. The treated animals
showed preserved renal function at 48 hours, less metabolic acidosis, and better
urine output. Histologic examination of the kidneys demonstrated less tubular
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injury and inflammatory cell infiltration, and fewer fibrin clots than in untreated
animals [51]. Activated protein C improves outcomes in sepsis, and it is currently
unclear whether it also attenuates sepsis-associated acute renal failure [52].

Renal Recovery following Acute Renal Failure

Following sub-lethal cell injury, renal tubular cells undergo repair, regeneration,
and proliferation (Fig. 1). The first phase of this regeneration process consists of
the death and exfoliation of irreversibly injured cells and is characterized by stress
response gene expression and infiltration by mononuclear cells [53]. Subsequently
many quiescent renal tubular cells enter the cell cycle and undergo either repair
or death. This decision point is carefully regulated and cyclin-dependent kinase
inhibitors, especially p21, play an important role [54]. Growth factors may play
a role in determining the fate of the epithelial cells and may contribute to the
generation of signals that result in neutrophil and monocyte infiltration. In the
second phase, poorly differentiated epithelial cells appear, which are believed to
represent a population of stem cells residing in the kidney [55]. This stage is
a dedifferentiation stage. In the third phase, a marked increase in proliferation of
the surviving proximal tubule cells is evident and here growth factors may play
an important role in this response [56]. In this last phase, the regenerative tubular
cells regain their differentiated character and produce a normal proximal tubule
epithelium.

A number of growth factors that have anti-apoptotic as well as pro-proliferation
effects have been evaluated in acute renal failure. Unfortunately, early clinical tri-
als have not yielded consistent results. However, two agents, bone morphogenic
protein-7 (BMP-7) and erythropoietin, have promising, albeit largely hypothetical,
effects on renal tubular cells [57]. Recent stem cell research shows that hematopoi-
etic stem cells and other tissue specific stem cells are capable of crossing tissue and
even germ-line barriers and can give rise to a remarkable range of cell types [58].
Thisplasticityof stemcells is thought tobeuseful in therapeutic strategiesdesigned
to enhance tissue regeneration after severe organ injury. Traditionally, stem cells
were believed to be organ specific. However, experiments with whole-bone marrow
transplantation demonstrated that bone marrow-derived stem cells could populate
the renal tubular epithelium [59]. More recently, injection of mesenchymal stem
cells of bone marrow origin has been shown to protect from severe tubular injury
and subsequent renal failure in animal models of acute renal failure [60].

Conclusion

Development of acute renal failure during sepsis syndrome is common and por-
tends a poor outcome. The interplay between systemic host responses, local insults
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in the kidney, vascular bed, and immune system, all play a role in the development
of sepsis-induced acute renal failure. Despite advances in critical care, mortality
rates have remained high for sepsis-associated acute renal failure. This may be, in
part, a function of our poor understanding of the mechanisms of sepsis-induced
acute renal failure, leading to misguided management strategies for acute renal fail-
ure. Improved understanding of various emerging mechanisms of sepsis-induced
acute renal failure such as epithelial barrier dysfunction, apoptosis, and cytokine-
mediated injury, should open newer avenues of therapeutic targets in this field.
As has often been the case in the study of sepsis, simple universal mechanisms
such as tissue perfusion, have failed to explain the diverse and complex clinical
response, and therapeutic strategies aimed at single mechanisms have not been
successful. The pathophysiologic mechanisms now understood to be operative in
sepsis-induced acute renal failure overlap and interact at many levels. Therefore,
therapeutic strategies to prevent acute renal failure or to facilitate recovery will
likely need to be multifaceted.
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Sepsis-Induced Brain Dysfunction

C. Guidoux, T. Sharshar, and D. Annane

Introduction

The central nervous system (CNS) controls a wide range of physiological func-
tions [1, 2] that are crucial to maintain homeostasis and to orchestrate the host
response to stress at behavioral, neuroendocrine, andautonomic levels [2]. Interac-
tions between the immune system and the CNS are considered to play a major role
in the host response in septic shock. It is well established that brain centers involved
in neuroendocrine [3] and autonomic control, wakefulness, awareness, and behav-
ior are signaled during sepsis. This signaling, which involves various inflammatory
mediators and neurotransmitters, can foster an adaptive response, optimizing the
host response to stress, but also a maladaptive one, through inappropriate activity
or damage to these centers. It has been shown that encephalopathy, and neuroen-
docrine or autonomic dysfunction, occur frequently during septic shock and may
contribute to organ dysfunction and death.

Definition

Sepsis is defined as infection with systemic inflammation, consisting of two or
more of the following: increased or decreased temperature, increased or decreased
leukocyte count, tachycardia, and rapid breathing [4]. Septic shock is sepsis with
hypotension that persists after resuscitation with intravenous fluid. Normally, the
immune and neuroendocrine systems control the local inflammatory process to
eradicate pathogens. When this local control mechanism fails, systemic inflamma-
tion occurs, allowing the progression from infection to sepsis, severe sepsis, and
septic shock.

Cerebral Mechanisms Involved During Sepsis

Brain Structures

Multiple brain structures orchestrate the responses to a stressful challenge (Fig. 1).
The systemic response to infection depends on a complex, organized, and co-
herent interaction between immune, autonomic, neuroendocrine, and behavioral
systems [3, 5, 6]. The main brain structures involved in this response are, briefly:
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Fig. 1. Brain structures involved in the response to inflammation. PVN: parvocellular nucleus;
SON: supraoptic nucleus; CRF: corticotropin releasing factor; VP: vasopressin; ACTH: adrenocor-
ticotropinhormone;CVO: circumventricular ovale; BBB: blood-brainbarrier;AP: areapostrema;
PB: parabrachial nucleus; NTS: nucleus tractus solitarius; Nam: nucleus ambiguus

1. The medullary autonomic nuclei (i. e., solitary tract nuclei, the dorsal motor
nucleus of the vagus, and the nucleus ambiguus), which control parasym-
pathetic output directly and sympathetic activity indirectly, through the
intermedio-lateral cell column in the thoracic spinal cord. These nuclei are
controlled by the parabrachial nuclei, A5 cell group, and the area postrema,
which are located in the brainstem and control the medullary autonomic nu-
clei.

2. The reticular formation which contains various nuclei that are the core of
the specific neurotransmitter network involved in the control of sleep and
arousal. Thus, midbrain raphe nuclei, the basal Meynert nuclei, and the locus
coeruleus are the core of the serotonergic, cholinergic, and noradrenergic
networks. The locus coeruleus is connected to the hypothalamus and to the
medullar autonomic nuclei.

3. The hypothalamus and pituitary gland. The hypothalamic paraventricular
and supraoptic nuclei play an important role in the stress response as they
synthesize and release corticotrophin-releasing factor (CRF) and vasopressin.
These hypothalamic nuclei are linked directly or indirectly to the brainstem
nuclei, locus coeruleus, and the amygdala, which is located in the hippocampus
and connected to the limbic system [3].
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Neuroendocrine Mechanisms

The stress response includes, among others, activation of the renin–angiotensin
systemandactivationof thehypothalamic–pituitary–adrenocortical axis.A typical
neuroendocrine response is characterized by [3]:

– within seconds, an increase in the secretion of catecholamines (epinephrine and
norepinephrine) from the sympathetic nervous system and adrenal medulla,
the release of CRF and vasopressin from parvicellular neurons into the portal
circulation, and the secretion of oxytocin from the neural lobe of the pituitary

– 5–10 seconds later, the secretion of pituitary ACTH
– a fewseconds later, decreased secretionofpituitary gonadotropins and increased

secretion of prolactin and growth hormone (in primates) from the anterior
pituitary, as well as increased secretion of renin and glucagon from the kidneys
and pancreas, respectively.

– a few minutes later, an increase in the plasma levels of glucocorticoids and
inhibition of the secretion of gonadal steroids.

Various neuropeptides and neurotransmitters regulate the stress response in
a coordinated way, each following a particular time course and being specific for
a given stressor. These neuropeptides comprise in the main vasopressin, serotonin,
norepinephrine, vasoactive intestinal polypeptide, neuropeptide Y, substance P,
and estrogen.

The Immune System

The immune system can be considered as a diffuse sensory system, which informs
the brain of the presence of microorganism constituents or inflammation through
three main pathways: [2–7]:

1. cerebral structures which are deprived of the blood-brain barrier so that
microorganisms and inflammatory components can easily diffuse into the
brain. These structures are the circumventricular organs, which include, at
the level of the fourth ventricle, the area postrema, and at the level of the third
ventricle, the median eminence, neurohypophysis, pineal gland, subfornical
organ, and lamina terminalis. These structures are strategically located as they
are very close to the autonomic or neuroendocrine centers.

2. the vagus nerve, which acts as a reflex loop as it senses peripheral inflam-
mation (presumably through cytokine receptors on the nerve surface), con-
veys immune-related information to the medulla, and then suppresses the
inflammatory response at the site of infection (through nicotinic acetylcholine
receptors on the monocyte surface).

3. endothelial activation and leakage, which enables release or passive diffusion
of mediators.
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The brain is, therefore, physiologically signaled during sepsis because it is
reached by constituents of microorganisms and inflammatory mediators and be-
cause it is able to detect these molecules through specific receptors. Physiologically,
there is in fact a sort of inflammatory signal (so-called migratory pattern of brain
activation) that is characterized by expression of mediators and their receptors,
and that originates from vagus nerve nuclei, from the blood-brain barrier-deprived
structures, or from activated endothelial cells, and spreads to deeper brain areas
controlling neuroendocrine and autonomic functions, involving both glial cells
and neurons. Alteration of the blood-brain barrier, which may occur during sep-
sis, favors brain edema and inflammation.

Blood-brain Barrier

The blood-brain barrier is a diffusion barrier [8], controlling entry of plasma
substances. It is composed of endothelial cells, astrocyte end-feet, and pericytes.
The tight junctions between the cerebral endothelial cells form a diffusion barrier,
which selectively excludes most blood-borne substances from entering the brain.

Diffuse endothelial activation or ‘panendothelitis’ is a hallmark of septic shock.
Lipopolysaccharide (LPS) and pro-inflammatory cytokines induce expression of
CD40 [9], and of adhesion molecules by endothelial cells from human brain. They
also cause transcriptional activation of the cyclooxygenase 2 gene and stimula-
tion of the IκB-α/nuclear factor-κB (NF-κB) pathway. Although brain endothelial
cells do not express surface CD14, LPS triggers the mitogen-activated protein ki-
nase (MAPK) cascade through soluble CD14. LPS-activated brain endothelial cells
exhibit interleukin (IL)-1 and tumor necrosis factor (TNF)-α receptors; produce
IL-1β, TNF-α, and IL-6; and exhibit endothelial and inducible nitric oxide synthase
(NOS). These mediators are able to interact with surrounding brain cells, relay-
ing the inflammatory response into the brain. Septic shock-induced endothelial
activation may result in alteration in the blood-brain barrier and cerebrovascular
dysfunction, an effect which is attenuated by glial cells, dexamethasone, or NOS
inhibition. Nevertheless, contradictory results have been obtained in animal and
human studies that have assessed cerebral blood flow, endothelial reactivity, and
oxygen consumption during sepsis.

Apoptosis

Inflammatory signals may result in neuronal and glial apoptosis [10]. Indeed,
TNF-α and NO, which are expressed in the brain during sepsis, are pro-apoptotic
factors. Apoptotic neurons and microglial cells have been found in neuroendocrine
and autonomic nuclei of patients who have died from septic shock. The intensity
of apoptosis is correlated with iNOS expression in endothelial cells. This result
suggests that sepsis-induced activation of astro- and microglia in the brain and
subsequent production of NO initiates apoptosis and necrosis of neurons and
glial cells. However, it cannot be inferred that apoptosis is detrimental, even if it
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has been reported that it correlates with antemortem duration of hypotension in
humans. For example, neuronal cytochrome C, which is a pro-apoptotic factor,
might favor survival of rats with sepsis. Further studies are needed to assess the
mechanisms and consequences of apoptosis and the pathogenic role of NO and
other inflammatory mediators in sepsis-related encephalopathy, neuroendocrine
and autonomic dysfunction. It remains speculative to claim that strategies based
on NO inhibition or apoptosis prevention will be neuroprotective.

Neuropathology

In a prospective autopsy study of 23 patients who had died from septic shock [11],
various lesions were found, including ischemia (in all cases), hemorrhage (in
26% of cases), micro-thrombi (in 9%), micro-abscesses (in 9%) and multifocal
necrotizing leukoencephalopathy (in 9%), which were associated with both local
expression and high circulating levels of pro-inflammatory cytokines. The latter
finding demonstrates that the brain can be damaged through pure inflammatory
processes during septic shock and not only through ischemia or coagulation dis-
turbances. However, the incidence and features of brain lesions in the ante-mortem
period and in patients surviving septic shock remain to be explored.

Clinical Features: Sepsis-associated Encephalopathy

Introduction

Sepsis and its complications are the leading causes of mortality accounting for 10
to 50% of intensive care unit (ICU) deaths [12]. The characterization of inflam-
matory cascades leading to multiple organ failure (MOF) and ultimately death has
attracted much interest. Studies have mostly focused on peripheral organs such
as the lung, liver, gut, and kidney, and much less on the brain whose role in the
pathophysiological mechanisms of shock is far from fully understood.

Septic encephalopathy is the clinical manifestation of sepsis- or SIRS (systemic
inflammatory response syndrome)-related brain dysfunction [13]. It is the most
common cause of encephalopathy in the critically ill. The severity of encephalopa-
thy correlates with the severity of illness, as assessed by the Acute Physiology and
Chronic Health Evaluation (APACHE) II score or organ failure scores and mortality.
Septic encephalopathy is an independent predictor of death.

The most immediate complication of septic encephalopathy is impaired con-
sciousness, and the patient may require ventilation. The etiology of septic en-
cephalopathy involves disruption of the blood-brain barrier as a result of the
interaction of inflammatory mediators with the cerebrovascular endothelium, ab-
normal neurotransmitter composition of the reticular activating system, impaired
astrocyte function and neuronal degeneration, reduced cerebral blood flow and
oxygen extraction, and cerebral edema.
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Definition

Septic patients often develop encephalopathy, defined as a deterioration in mental
status or level of consciousness. This encephalopathy may occur without evidence
of bacterial blood stream invasion. Wilson and Young [14] prefer the term “sepsis-
associated encephalopathy” rather than “septic encephalopathy”, as it suggests
a diffuse cerebral dysfunction induced by the systemic response to infection with-
out clinical or laboratory evidence of direct infection of the CNS, whereas the latter
signifies a cerebral infection.

Clinical Features

Sepsis associated encephalopathy can be classified as ‘early’ or ‘late’ [1], depending
on whether it occurs before or after development of MOF. Hepatic and renal failure
may obviously exacerbate the brain dysfunction in advanced sepsis.

Neurological symptoms range, according to severity, from fluctuating con-
fusion, inattention and inappropriate behavior, to delirium and then deteriora-
tion in conscious level or coma. Motor signs such as asterixis, myoclonus, or
tremor, are rarely observed and more frequent in metabolic – than in septic-
encephalopathy. More common is ‘paratonic rigidity’, which is a velocity depen-
dent resistance to passive movements and requires moving the limbs rapidly in or-
der to demonstrate it.

Seizures are uncommon in sepsis-associated encephalopathy and the cranial
nerves are usually spared [14]. Neuroimaging is mandatory if focal neurological
signs are present as they are exceptional in septic encephalopathy and suggest
a cerebral lesion.

Evaluation

Different scores can be used to assess the severity of encephalopathy induced by
sepsis. The Glasgow Coma Scale (GCS) is certainly the most used [15] and is useful
as it clearly correlates with mortality [16]. As the GCS score drops from 15 to
below 8, the mortality rate increases from 16% to 63%. However, we believe that
the Confusion Assessment Method for Intensive Care Unit (CAM-ICU) is more
sensitive than the GCS to detect brain dysfunction, especially in mechanically
ventilated patients.

Investigations

Electroencephalogram and Somatosensory Evoked Potentials

Electroencephalogram (EEG) is better than GCS for detecting sepsis-associated
encephalopathy [17], as it may reveal mild diffuse reversible slowing in patients
with normal neurological examination. Five classes of progressively worsening
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EEG pattern have been identified: 1 = normal EEG; 2 = excessive theta; 3 =
predominant delta; 4 = triphasic waves; 5 = suppression or burst suppression.
The mortality rate is proportional to the severity of the EEG abnormality, ranging
from 0 to 67% as EEG abnormalities progress from class 1 to 5. The bispectral index
(BIS) of the EEG (a statistically derived variable that allows an easier interpretation
of the EEG) might be useful for assessment of neurological status in non-sedated
critically ill patients [18]. The main limitation of the EEG is that it cannot detect
brain dysfunction in sedated patients.

Incontrast, somatosensoryevokedpotentials (SEPs)arenotaffectedbysedative
drugs [19]. An increase in subcortical and cortical peak latencies of SEPs has
been reported in patients with SIRS related or not to sepsis. The impairment of
subcortical and cortical pathways was correlated with severity of illness, but did
not differ between patients with severe sepsis and those with septic shock. In
a pig model of pancreatitis-related SIRS [20], SEP amplitude attenuation preceded
hemodynamic SIRS criteria by at least four hours.

Magnetic Resonance Imaging (MRI)

No study has determined whether septic encephalopathy is associated with actual
radiographic lesions. Computed tomography (CT) scan is limited for this purpose,
with magnetic resonance imaging (MRI) being a better tool for screening early
abnormalities. Indeed, the new sequences, such as diffusion-weight and apparent
diffusion coefficients, are highly sensitive. The main limitation is that unstable and
mechanically ventilated patients need to be transported to the MRI room.

Biological Investigations

Cerebrospinal fluid (CSF) analysis is generally normal, except for an inconstant
elevation in protein concentration. Neurone-specific enolase, a marker of brain
injury, may be of some prognostic value in septic shock [21].

Conclusion

Sepsis is often associated with CNS dysfunction that is frequently unrecognized.
This dysfunction is not due to direct infection of the CNS, so is better termed
‘sepsis-associated encephalopathy’. An altered mental status may be present in the
early stage of sepsis, even preceding common clinical signs of sepsis. EEG and other
neurophysiologic techniques may help to detect sub-clinical alterations and to es-
tablish clinical outcome. The pathophysiological mechanism of sepsis-associated
encephalopathy is not perfectly understood and is very likely multifactorial, in-
volving direct toxicity of microorganisms or byproducts, and the effects of inflam-
matory mediators, metabolic alterations, and impaired cerebral circulation. There
are no specific or symptomatic treatments for sepsis-associated encephalopathy.
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Myocardial Depression in Sepsis and Septic Shock

A. Kumar and J.E. Parrillo

Introduction

Sepsis and septic shock represent a major cause of mortality and morbidity in the
developed world. The most widely accepted estimate of incidence of severe sepsis
in the United States suggests 750,000 cases per year, with 215,000 annual deaths [1].
Over the past 40 years, the incidence of sepsis has increased at approximately 8.7%
per year [2]. During the same time period, total mortality has increased, even
though the overall mortality rate has fallen from 27.8% to 17.9% [2]. Age adjusted
mortality has increased from 0.5–7 per 100,000 episodes of sepsis and septic shock.
Much of that mortality occurs in the as many as 60% of severely septic patients
who develop circulatory shock with organ failure and hypotension refractory to
fluid resuscitation. In these patients, mortality may exceed 60%. Despite major
advances in our understanding of the pathophysiology of septic shock, the associ-
ated mortality of septic shock appears not to have changed substantially over the
past 40 years.

Sepsis has been defined as the systemic inflammatory response to infection [3].
The inciting focus of sepsis, via either exotoxins or a structural microbial com-
ponent (endotoxin, teichoic acid, peptidoglycans, bacterial nucleic acids) causes
local and systemic release of a wide variety of endogenous inflammatory medi-
ators like tumor necrosis factor-α (TNF-α), interleukin-1α (IL-1α), platelet acti-
vating factor (PAF), oxygen free radicals, interferon gamma (IFN-γ) and arachi-
donic acid metabolites from monocytes/macrophages and other cells. In order to
maintain homeostasis (and likely as part of a feedback mechanism), several anti-
inflammatory mediators are also released, including IL-10, transforming growth
factor-β (TGFβ) and IL-1 receptor antagonist (IL-1ra). If homeostasis cannot be
maintained, there can be progressive and sequential dysfunction of various organ
systems, termed the multiple organ dysfunction syndrome (MODS). If the inflam-
matory stimulus is particularly intense or if there is limited cardiovascular reserve,
effects on the cardiovascular system as manifested by septic shock may dominate
the clinical presentation. Sepsis-associated myocardial depression occurs as one
manifestation of cardiovascular dysfunction in septic shock.

This chapter reviews the following aspects of septic myocardial dysfunction –
right and left ventricular failure, systolic and diastolic dysfunction and cardiovas-
cular prognosticating factors. Potential pathophysiologic mechanisms of myocar-
dial depression from organ to molecular/cellular level are also examined.
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Clinical Manifestations of Cardiovascular Dysfunction

Historical Perspectives

The last 30 years have yielded substantial information about the underlying ab-
normalities in septic shock, but many unanswered questions remain. Prior to the
introduction of the balloon-tipped pulmonary artery catheter (PAC) to assess car-
diovascular performance, much of our understanding of septic hemodynamics
was based on clinical findings. There were two distinct clinical presentations of
septic shock: warm shock characterized by high cardiac output, warm dry skin,
and bounding pulses; and cold shock characterized by low cardiac output, cold
clammy skin and diminished pulses [4]. Clowes et al. [5] described the relationship
between warm and cold shock as a continuum in which either recovery or progres-
sion to death occurred. Other clinical studies also supported a correlation between
survival and a high cardiac index (CI). The concept was further reinforced by
experimental animal studies that demonstrated low CI in endotoxic shock. How-
ever, all the clinical studies used central venous pressure (CVP) as a reflection of
left ventricular (LV) end-diastolic volume (LVEDV) and adequacy of resuscitation.
Based on evidence collected over the past four decades, we now know that CVP is
a poor measure of preload in critically ill patients, particularly septic patients [6].
With respect to the animal studies, endotoxic shock was found to be a poor model
of the cardiovascular response to clinical infection with live organisms in a defined
focus of infection. Prior to the widespread adoption of the PAC, the direct linkage
between adequacy of intravascular volume and CI and their relationship to survival
was suggested in only a handful of studies.

In addition to allowing the routine measurement of cardiac output, the intro-
duction of the PAC enabled the routine measurement of preload as pulmonary
artery occlusion pressure (PAOP). Human studies performed since the introduc-
tionof thePAChaveconsistentlydemonstrated that adequately volumeresuscitated
septic shock patients consistently manifest a hyperdynamic circulatory state with
high cardiac output and reduced systemic vascular resistance (SVR), with this
hyperdynamic profile usually persisting until death in non-survivors (Fig. 1) [7,8].
These findings have now been confirmed in several live infection animal models
of sepsis.

In the years following the introduction of the PAC, radionuclide cineangiogra-
phy (RNCA) and its application to critically ill patients have offered insight into
the relative contribution of decreased contractility and compliance in myocardial
depression. More recently, bedside transthoracic and transesophageal echocardio-
graphic techniques have further expanded our understanding of cardiac dysfunc-
tion during sepsis and septic shock.
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Fig. 1. The mean (SEM) cardiac index plotted against time for all patients, survivors, and non-
survivors. The hatched areas show the normal range. All groups maintained an elevated cardiac
index throughout the study period. The difference between the survivors and non-survivors was
not statistically significant. Open circles, survivors; closed circles, non-survivors. From [11] with
permission

Ventricular Function

After the typical high cardiac output, low SVR pattern of septic shock was demon-
strated, MacLean and colleagues [4] were among the first to argue that heart
failure remained an issue during septic shock because metabolic demand exceeds
myocardial performance. The concept of septic myocardial depression despite
a hyperdynamic circulatory state was reinforced by both Weisel et al. [9] and
Rackow et al. [10]. These groups examined responses to fluid resuscitation in sep-
tic shock patients using PACs. Each demonstrated similar evidence of myocardial
depression in septic shock patients, showing decreased stroke work response to
fluid resuscitation.

The two studies were hampered by inherent limitations in standard PAC-
derived data. Changes in myocardial contractility or compliance can identically
produce the depression of the Frank-Starling curve derived from PAC-derived
filling pressures. This problem was solved by the application of RNCA to critically
ill patients [11, 12].
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Fig. 2. The mean (i SEM) left ventricular ejection fraction (LVEF) plotted versus time for all
patients, survivors, and non-survivors. Overall, septic shock patients showed a decreased LVEF
at the time of initial assessment. This effect was due to marked early depression of LVEF among
survivors that persisted for up to 4 days and returned to normal within 7 to 10 days. Non-
survivors maintained LVEF in the normal range. The hatched area represents the normal range.
Open circles, survivors; closed circles, nonsurvivors. From [11] with permission

Left Ventricular Function

Systolic dysfunction has been shown to be impaired in septic patients in a number
of studies. Parker et al. [11]demonstrated that septic shock survivorshaddecreased
LV ejection fraction (LVEF) and acute LV dilatation evidenced by increased LVEDV
index (LVEDVI) (Fig. 2) using RNCA. These changes in survivors corrected to
baseline in 7–10 days. Non-survivors sustained normal LVEF and LVEDVI until
death.Despite systolicdysfunction, septic shockpatientsmaintainedahighcardiac
output and low SVR as shown by the PAC. In a later study, Ognibene et al. compared
LV performance curves (plotting LVSWI vs. LVEDVI) of septic and non-septic
critically ill patients (Fig. 3). They showed a flattening of the curve in septic
shock patients, with significantly smaller LVSWI increments in response to similar
LVEDVI increments when compared to non-septic critically ill controls [13]. In
the years since these observations, other studies have confirmed the presence
of significant LV systolic dysfunction in septic patients using both RNCA and
echocardiographic techniques [12,14,15]. Raper and colleagues in particular have
confirmed myocardial depression in septic patients without shock [16].

LV diastolic dysfunction in septic patients is less clearly defined. The acute LV
dilatation shown by Parker et al. [11] and a concordant relation between PAOP and
LVEDV do not support the presence of significant diastolic dysfunction. However,
Ellrodt and colleagues [12] suggested the possibility of significant variations of
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Fig. 3. Frank-Starling ventricular performance relationships for each of the 3 patient groups. Data
points plotted represent the mean prevolume and postvolume infusion values of end-diastolic
volume index (EDVI) and left ventricular stroke work index (LVSWI) for each patient group.
Control patients showed a normal increase of EDVI and LVSWI in response to volume infusion.
The absolute increases of EDVI and LVSWI in patients with sepsis without shock were less than
those of control subjects, but the slope of the curve is similar to control patients. Patients with
septic shock had a greatly diminished response and showed a marked rightward and downward
shift of the Frank-Starling relationship. From [13] with permission

diastolic compliance in septic patients, based on a lack of correlation between
measured PAOP and any parameter of LV performance or volume. Jafri et al. [17],
using doppler echocardiographic techniques, demonstrated reduced rapidity of
ventricular filling and greater reliance on atrial contributions to LVEDV in patients
with either normotensive sepsis or septic shock, when compared with controls. Re-
cently, using transesophageal echocardiography (TEE) of vasopressor-dependent
septic shock, Poelaert and colleagues [18] demonstrated a continuum of LV patho-
physiology ranging from isolated diastolic dysfunction to combined systolic and
diastolic abnormalities. This was subsequently confirmed by Munt and colleagues
who demonstrated aberrant LV relaxation by Doppler echocardiography in a group
of patients with severe sepsis [19]. These investigators have further documented
a more severe defect in non-survivors than in survivors of severe sepsis.

The concept of preload adaptation by acute LV dilatation in septic shock has
been questioned by Jardin and colleagues in recent years [20]. TEE was performed
in patients with septic shock following fluid and pressor resuscitation. LVEDV
appeared to remain in normal range and low LVEF correlated with stroke index in-
dependently of LVEDV. A subsequent longitudinal echocardiographic study found
significantly smaller LVEDV in non-survivors than in survivors [15]. Unfortu-
nately, the authors did not utilize PAC monitoring as a measure of fluid loading
so direct comparison with the series of studies by Parker and colleagues is diffi-
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cult [11,13]. However, differences in the two groups’ observations may potentially
be explained by more modest fluid loading in these recent echocardiographic
studies [15, 20].

Right Ventricular Function

Although the output of the ventricles cannot differ in the absence of anatomic car-
diopulmonary shunts, the right ventricle may be subject to substantially different
influences than the left ventricle particularly in pathophysiologic conditions such
as shock. For that reason, right ventricular (RV) function in sepsis and septic shock
cannot be assumed to closely parallel LV function. In the systemic circulation, sep-
tic shock is associated with a decreased vascular resistance and blood pressure,
almost always resulting in decreased LV afterload which in turn tends to maintain
or elevate cardiac output despite the presence of depressed LV contractility. In
contrast, RV afterload is often elevated in sepsis and septic shock due to increases
in pulmonary vascular resistance (PVR) associated with acute lung injury (ALI)
and acute respiratory distress syndrome (ARDS), tending to decrease RV output.
Further, it has also been suggested that differentially reduced RV perfusion and
contractility could potentially result from a decrease in the RV perfusion gradient
during septic shock associated with pulmonary hypertension.

Systolic RV dysfunction has been shown by decreased RVEF and RV dilatation
in volume resuscitated patients. Kimchi et al. [21] and Parker et al. [22] showed
that RV dysfunction can occur even in the absence of increased pulmonary artery
pressures and PVR suggesting that increased RV afterload may not be the sole
explanation for RV dysfunction in septic shock. Parker et al. [22] also showed that
RV and LV function paralleled each other in dysfunction and recovery (Fig. 4). In
this study, survivors showed RV dilatation and decreased RVEF and RVSWI which
normalized in 7–14 days. As with the left ventricle, the right ventricle was only
moderately dilated and RVEF marginally decreased; both persisted through their
course of sepsis.

Since RV dysfunction occurred independently of changes in PVR and pul-
monary artery pressures, increased RV afterload could not be the dominant cause
of RV depression in human septic shock. Another hypothesis suggested that sepsis-
associated RV dilation caused septal displacement (due to pericardial constraint)
thereby decreasing LV compliance, preload, and performance. The study by Parker
et al. [22] also argued against this proposal since biventricular dilation makes
that possibility highly unlikely. Newer technologies, using newly developed PACs
equipped with fast response thermistors coupled to computerized analytic equip-
ment, have generated confirmatory data regarding RV dysfunction in sepsis.

Available evidence suggests that despite the differences between the ventricles
in structure and function, RV dysfunction in septic shock closely parallels LV
dysfunction. RV function in both sepsis and septic shock is characterized by ven-
tricular dilation and decreased RVEF, changes that resolve over 7–14 days in septic
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Fig. 4. Serial changes in right ventricular ejection fraction and end-diastolic volume index
during septic shock in humans. (A) Mean initial and final right ventricular ejection fractions for
survivors (closed circles, p<0.001) and non-survivors (open circles, p<0.001). (B) Mean initial
and final right ventricular end-diastolic volume index for survivors (closed circles, p<0.05) and
nonsurvivors (open circles, p = not significant). The right ventricle, similar to the left, undergoes
dilation with a drop in ejection fraction with the acute onset of septic shock. In 7 to 10 days, right
ventricular dilation and decreased ejection fraction revert to normal in survivors. From [87] with
permission, data from [22]

shock survivors. The cardiovascular profiles of non-survivors are characterized by
persistence of RV dysfunction.

Diastolic (compliance) dysfunction of the right ventricle has also been demon-
strated in a number of studies. Kimchi et al. [21] noticed a lack of correlation
between right atrial pressure and RVEDV, suggesting altered RV compliance. In
another study, a subgroup of patients who were volume loaded demonstrated
increase in CVP but not in RVEDVI [23]. As in the left ventricle, the relative con-
tribution of systolic and diastolic dysfunction in the right ventricle is unknown.

Cardiovascular Prognostic Factors in Septic Shock

CI appears not to be a reliable predictor of mortality in septic shock. Despite
early evidence suggesting low CI as a poor prognostic factor [5], introduction of
the PAC has shown that septic shock patients, both survivors and non-survivors,
when adequately fluid-resuscitated have a high CI and low SVR. Armed with the
PAC, other hemodynamic parameters were investigated as prognostic indicators.

Baumgartner et al. [24] recognized that patients with extremely high CI
(> 7.0 l/min/m2) and accordingly low SVR had poor outcomes. Groeneveld et al.
also found that non-survivors had lower SVR than survivors after matching other
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characteristics, concluding that there may be a link between outcome in septic
shock and the degree of peripheral vasodilation [25].

Parker et al. [7] reviewed hemodynamic data from septic shock patients
on presentation and at 24 hours to identify prognostic value. On presentation,
only heart rate < 106 beats/min suggested a favorable outcome. At 24 hours,
heart rate< 95 beats/min, SVRI> 1,529 dynes/sec/cm5/m2, a decrease in heart
rate> 18 beats/min and a decrease in CI > 0.5 l/min/m2 all predicted survival. In
a subsequent study [8], the same authors confirmed previous findings of decreased
LVEF and increased LVEDVI in survivors of septic shock but not in non-survivors,
a finding that has been confirmed by other groups [14, 15]. Although myocardial
depression has been historically linked to increased mortality, these data may
imply that depression, at least as manifested by decreased ejection fraction with
ventricular dilatation, may actually represent an adaptive response to stress rather
than a maladaptive manifestation of injury.

From the studies of Parker and Parillo [7, 8], it is apparent that, despite not
developing significant LV dilatation overall, non-survivors can be divided into
two patterns: those with progressively declining LVEDVI and CI, and those with
incremental increases in LVEDVI while maintaining CI. Based on this, Parker et
al. described different hemodynamic collapse profiles leading to death in septic
shock [7, 8]. First, some patients die from refractory hypotension secondary to
distributive shock with preserved or elevated CI. The other pattern consists of
a cardiogenic form of septic shock with decreased CI and a mixture of cardiogenic
and distributive shock patterns. The explanation of the two patterns came from
a study by Parker et al. [8]. It appears that patients who cannot dilate their left
ventricle (decreasing CI and LVEDVI) die from a cardiogenic form of septic shock.
The other fatal pattern consists of those patients who can dilate their left ventricle
and preserve CI (increase LVEDVI while maintaining CI) but eventually die of
distributive shock

The prognostic value of RV hemodynamic parameters has been debated.
A number of studies have shown that RV dilatation and decreased RVEF, if per-
sistent, is associated with poor prognosis [22, 26]. However, Vincent et al. [26]
suggested that high initial RVEF portends a good prognosis. On the other hand,
Parker et al. [22] found that survivorshada lower RVEF.Theanswer to this question
requires additional investigation.

The other prognostic parameter is response of hemodynamic parameters to
dynamic challenges, namely dobutamine. Non-survivors of septic shock have
a blunted response to dobutamine [27, 28], whereas survivors demonstrated in-
creased SVI (stroke work index), increase mixed venous oxygen saturation (SvO2),
ventricular dilatation and a decrease in diastolic blood pressure after a dobutamine
challenge. The above response to dobutamine predicts survival in patients with
septic shock.
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Etiology of Myocardial Depression in Sepsis and Septic Shock

Two major theories regarding the nature of septic myocardial depression in hu-
mans and animals have existed in the past. The first theory, which held dominance
for decades, suggested that sepsis was associated with globally decreased my-
ocardial perfusion resulting in ischemic injury to the septic heart. This position
was supported over the years by animal models of endotoxic shock (mostly ca-
nine) which had demonstrated evidence of global myocardial hypoperfusion [29].
However, it gradually became apparent that endotoxic shock was not the most
appropriate model through which to study septic myocardial dysfunction. With
this realization, the second major theory regarding the nature of myocardial de-
pression in septic shock, that a circulating depressant substance was responsible,
emerged [30]. The origins of this theory can be traced to Wiggers’ classic 1947
report proposing the presence of a myocardial depressant factor in experimental
hemorrhagic shock [31].

Organ Level

Myocardial Hypoperfusion

The potential of myocardial hypoperfusion leading to myocardial depression via
global ischemiahasbeen largelydismissedbyanumberof clinical studies.Cunnion
et al. [32] placed thermodilution catheters into the coronary sinus of septic shock
patients and measured serial coronary flow and metabolism (Fig. 5). Normal or
elevated coronary flow was present in septic patients in comparison to normal
controls with comparable heart rates. In addition, septic shock patient’s hearts
exhibited an absence of net lactate production. Dhainaut et al. [33] confirmed
these findings while employing similar methods. In addition to human studies,
myocardial high energy phosphates and oxygen utilization were preserved in
a canine model of septic shock [34]. Other studies employing different models and
methodologies have demonstrated similar results.

Despite these data, there is evidence for myocardial cell injury evidenced by
increased troponin I levels in septic shock. Some initially took this to indicate
evidence of myocardial hypoperfusion. A study by ver Elst et al. [35] examined
levels of troponin I and T in patients with septic shock. A correlation between LV
dysfunction and troponin I positivity (78% vs. 9% in troponin I negative patients
p<0.001) existed. They also found that older patients with underlying cardiovascu-
lar disease more often had both troponin positivity and LV dysfunction. Similarly
Mehta et al. [36] demonstrated that serum cardiac troponin I is elevated in 43%
of patients with septic shock (without creatine kinase isoenzyme MB [CK-MB]
elevation or ischemic electrocardiographic [EKG] changes). Serum cardiac tro-
ponin I correlated with LV dysfunction and was an independent predictor of need
for inotropic/vasopressor support, adverse outcome and mortality in septic shock
patients. Although troponin is used as a marker of myocardial injury particularly
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Fig. 5. Mean coronary sinus blood flow (CSBF) in seven patients with septic shock compared
with normal subjects. Flow measurements were stratified into heart rates above and below 100
beats/min. Coronary blood flow in septic shock patients equaled (heart rate < 100/min) or ex-
ceeded (heart rate>100/min) coronary blood flow in control patients. From [32] with permission

in the context of myocardial ischemia, elevation of this marker does not specifi-
cally suggest myocardial hypoperfusion in other contexts. Increased troponin can
occur as a consequence of myocardial injury from a variety of potential sources.
Further, whether the clinically unapparent myocardial cell injury that is the source
of elevated troponin contributes to or is a consequence of septic shock is yet to be
determined.

In summary, myocardial perfusion and myocardial energetics studies argue
against global myocardial ischemia and hypoperfusion despite that fact that my-
ocardial troponins are clearly elevated in septic shock.

Myocardial Depressant Substances

The presence of a “myocardial depressant factor” as originally postulated by Wig-
gers [31] in 1947 in the context of hemorrhagic shock was supported by Brand
and Lefer [37] in 1966. This work prompted extensive further research into septic
myocardial depressant substances [37–44].

A number of exogenous and endogenous substances have been implicated
as potential causes of septic myocardial depression. Among the exogenous sub-
stances, endotoxin stands out. Studies have associated endotoxemia with a lower
mean LVEF, lower SVR, as well as increased mortality, and infusion of intravenous
endotoxin in human volunteers has been shown to mimic the hemodynamic effects
of spontaneous human sepsis [45,46]. Available data clearly support a central role
for endotoxin in the pathogenesis of Gram-negative sepsis and septic shock.
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There is much less compelling evidence for the role of endotoxin as a direct
mediator of cardiovascular dysfunction in sepsis and septic shock. In vitro appli-
cation of endotoxin, by itself, at high doses does not directly damage or otherwise
adversely affect myocardial tissues, despite the fact that nanogram quantities of
endotoxin have been shown to cause endotoxic shock in rats, guinea pigs and rab-
bits with ex vivo depression of contraction of isolated ventricular myocytes from
these animals [47]. Of note, 1 ug/ml endotoxin does not directly depress cardiac
myocyte contractility in vitro while far lower concentrations (0.1 ng/ml), when co-
incubated with phorbol 12-myristate 13-acetate (PMA)-activated macrophages,
result in a cellular culture supernatant that contains marked depressant activ-
ity [48].

The significant hemodynamic depressant effects of endotoxin when infused
in vivo into animals but the lack of such effects on cardiovascular tissue exposed
to endotoxin directly in vitro makes it clear that endogenously produced factors
must mediate in vivo responses to endotoxin. A number of endogenous substances
have been suggested as potential causes of septic myocardial depression. These
have included estrogenic compounds, histamine, eicosanoids/prostaglandins and
most recently, leukocyte lysozyme. However, a number of these apparent novel
substances could never be effectively isolated [37–44, 49–51] (for review [52])
(Table 1).

In one of the seminal studies in the field, Parrillo et al. in 1985 [53] showed a link
betweenmyocytedepressionandseptic serumfromapatientwith sepsis associated
myocardial depression. The serum from patients demonstrated concentration-
dependent depression of in vitro myocyte contractility (Fig. 6). Parrillo et al.
were also able to correlate a temporal and qualitative relationship between in vivo
myocardial depression (decreased LVEF) and in vitro cardiac myocyte depression
inducedbyserumfromcorrespondingpatients. Inanother study [54], investigators
noted that higher levels of myocardial depressant activity correlated with higher
peak serum lactate, increased ventricular filling pressures, increased LVEDVI, and
mortality when compared with patients with lower or absent activity levels. Early
filtration studies [54] found that the substance was water soluble, heat labile and
greater than 10 kDa consistent with a protein or polypeptide including cytokines
such as TNF-α and IL-1β.

TNF-α likely has a role as a myocardial depressant substance for a number
of reasons. TNF-α shares the same biochemical profile as myocardial depressant
substances [53]. Clinically, TNF-α is associated with fever, increased lactic acid,
disseminated intravascular coagulation (DIC), ALI, and death. The hemodynamic
(and metabolic) effects of TNF-α administered to animals and human are similar to
septic shock with hypotension, increased cardiac output and low SVR. Experimen-
tally, animal and human myocardial tissue exposed to increasing concentrations
of TNF-α demonstrate a concentration dependent depression of contractility [39].
Kumar et al. [55] have shown that removal of TNF-α from the serum of patients
with septic shock decreased the septic serum-induced myocardial depression. In
addition, Vincent et al. [56] in a pilot study showed improved LVSWI with admin-
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Fig. 6. The effect of serum from septic shock patients and control groups on the extent of myocar-
dial cell shortening of spontaneously beating rat heart cells in vitro. Septic shock patients during
the acute phase demonstrated a statistically significant lower extent of shortening (p<0.001)
compared with any other group. Open circles, survivors; closed circles, non-survivors; horizontal
line, mean for each group. From [53] with permission

istration of anti-TNF-α monoclonal antibody even though there was no survival
benefit.

IL-1β produces similar hemodynamic responses to TNF-α. IL-1β levels are also
elevated in sepsis andseptic shock [57]. Invitroand exvivomyocardial contractility
is depressed when cardiac tissue is exposed to IL-1β [58]. Removal of IL-1β via
immunoabsorption from septic human serum attenuates the depression of cardiac
myocytes [55]. However, the effects of IL-1β antagonists on cardiac function and
survival are unimpressive even though metabolic derangements are attenuated by
IL-1β antagonists.

It is likely that cytokines such as TNF-α and IL-1, rather than working in
isolation synergize to exert their depressant effects. In isolation, TNF-α and IL-1β
require very high concentrations to induce in vitro rat myocyte depression [55].
However, when combined, they act synergistically and require concentrations 50–
100 times lower than those required individually [55,59]. These concentrations are
within the range of those found in septic shock patients.

Parallel to the earlier work of Parrillo and colleagues [53], Pathan and col-
leagues have confirmed the presence of a circulatory myocardial depressant sub-
stance in the blood of children with meningococcal septic shock [60]. Pathan and
colleagues have strongly implicated circulating IL-6 as an important myocardial
depressant substance in human meningococcal septic shock [60,61]. These inves-
tigators have demonstrated that meningococcal sepsis is associated with induction



428 A. Kumar, J.E. Parrillo

of IL-6 expression in blood mononuclear cells. In addition, they have shown that
the level of serum IL-6 corresponds with the severity of illness (Pediatric Risk of
Mortality [PRISM] score) and magnitude of pressor requirement in such patients.
Degree of septic cardiac dysfunction (e.g., via echocardiography or radionuclide
ventriculography) was not directly assessed in this study. Further, this group have
recently shown that IL-6 depresses contractility of myocardial tissue in vitro and
that neutralization of IL-6 in serum from patients with meningococcal septic
shock neutralizes this effect [61]. In contrast to the work suggesting that syn-
ergistic activity of TNF-α and IL-1β drives septic myocardial depression, these
findings implicating IL-6 may arise from the fact that meningococcal septic shock
may be more physiologically analogous to endotoxic shock than the clinically and
microbiologically mixed forms of septic shock assessed by Kumar et al. [55]

Evidence for other potential myocardial depressant substances continues to
be developed. Recently, Mink et al. have implicated lysozyme c (consistent with
that found in leukocytes in the spleen or other organs) as a potential myocardial
depressant substance [38]. In a canine model of E. coli sepsis, lysozyme c caused
myocardial depression and attenuated the response to beta-agonists [38]. The po-
tential mechanism proposed was lysozyme binding or hydrolyzing the membrane
glycoprotein of cardiac myocytes, thereby affecting signal transduction (linking
physiologic excitation with physiologic contraction). The levels of lysozyme c were
found to be elevated in the heart and spleen, but not in lymphocytes when com-
pared to preseptic levels [38]. Mink et al. went on to show that pretreatment with
an inhibitor of lysozyme (N,N′,N′′-triacetylglucosamine) prevented myocardial
depression in canine sepsis [62]. However, the effect of this lysozyme inhibitor
was only seen in pretreatment and early treatment groups (1.5 hours after onset
of septic shock) and not in late treatment groups (greater than 3.5 hours). The
relevance of this work is limited by the fact that it has only been isolated to date
in experimental endotoxin-equivalent canine models. Isolation of this substance
during human septic shock will be required to ensure clinical relevance.

An important microbial factor that has recently been shown to potentially exert
hemodynamic and myocardial depressant activity in sepsis and septic shock is
bacterial nucleic acid. Several investigators have demonstrated that unique aspects
of bacterial nucleic acid structure may allow bacterial DNA to generate a shock
state similar to that produced by endotoxin [63]. Extending these observations, we
have recently demonstrated depression of rat myocyte contraction with bacterial
DNA and RNA [64]. This effect was more marked when DNA and RNA came from
pathogenic strains of S. aureus and E. coli. These effects were not seen when the
rat myocyte was pretreated with DNase and RNase. Again, the direct relevance to
septic shock will not be defined until measurements of bacterial nucleic acid in the
circulation can be made and, if present, the effect of elimination of these antigens
assessed.

Other factors may also play a role in septic myocardial depression. Natriuretic
peptides have emerged as valuable marker substances to detect LV dysfunction in
heart failure of different origins including critical illness. Both brain natriuretic
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peptide (BNP) and atrial natriuretic peptide (ANP) have been found to be signif-
icantly elevated in patients with septic shock in comparison with controls [65].
Others have made similar observations for BNP in patients with severe sepsis or
septic shock who have echocardiographic evidence of systolic myocardial dysfunc-
tion [66]. High plasma BNP levels appear to be associated with poor outcome of
sepsis. Available evidence suggests that NT-proBNP (the N-terminal prohormone
of BNP) could be an even more sensitive indicator of sepsis-induced ventricular
dilatation [67]. Whether natriuretic peptides may have any kind of direct role in
sepsis-induced myocardial dysfunction is entirely unknown.

Cellular Level

The sequence of mechanisms leading from a circulating myocardial depressant
substance to cellular dysfunction remains unclear. There are several potential
mechanisms that may play a role at the cellular level. Overproduction of nitric
oxide (NO) and derangements of calcium physiology in the myocardial cell are
two non-exclusive potential cellular mechanisms.

In vitro, myocyte depression in response to inflammatory cytokines can be
divided into early and late phases. Early depression of cardiac myocyte depres-
sion occurs within minutes of exposure to either TNF-α, IL-1β, TNF-α and IL-1β
given together, or septic serum [55, 68]. TNF-α also has the ability to cause rapid
myocardial depression in dogs [69]. Besides the early effects, TNF-α, IL-1β and
supernatants of activated macrophages also have a later, prolonged effect on in
vitro myocardial tissue [58, 70, 71]. This late phase establishes within hours and
lasts for days. This suggests the possibility of a different mechanism from early
myocardial depression.

Production of NO may be a potential explanation for both early and late my-
ocardial depression. NO is produced from conversion of L-arginine to L-citrulline
by NO synthase (NOS). NOS has two forms: one is constitutive (cNOS) and the
other is inducible (iNOS). NO produced by cNOS appears to have a regulatory role
in cardiac contractility. However, when cardiac myocytes are exposed to supra-
physiologic levels of NO or NO donors (nitroprusside and SIN-1) there is a re-
duction in myocardial contractility [72]. Paulus et al. [73] infused nitroprusside
into coronary arteries which decreased intraventricular pressures and improved
diastolic function.

Current evidence suggests that early myocyte dysfunction may occur through
generation of NO and resultant cGMP via cNOS activation in cardiac myocytes
and adjacent endothelium [59,68,74]. We have further demonstrated that the early
phase may also involve an NO-independent defect of β-adrenoreceptor signal
transduction [52, 74–76]. Late myocardial depression appears to be secondary
to induction of iNOS [58, 68]. In addition, the generation of peroxynitrite via
interaction of the free radical NO group and oxygen may also play a role in more
prolonged effects [77]. Kinugawa et al. have shown that IL-6 can cause both early
and late NO-mediated myocardial depression in an avian myocardial cell model
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via sequential activation of cNOS followed by induction of iNOS [78,79], a finding
that could explain recent human data implicating IL-6 in meningococcal septic
myocardialdysfunction [60,61].Thesedata suggest a role for sequentialproduction
of NO from cNOS and iNOS in the pathogenesis of myocardial depression from
cytokines.

Although NO may be central, the biochemical mechanisms underlying septic
myocardial depression are clearly complex with redundant, branching pathways.
Some of these pathways may represent intermediate steps to NO generation. Others
maybeable tomediatemyocardialdepressionentirely independentlyofNO.Forex-
ample, the neutral sphingomyelinase pathway involving the sequential generation
of ceramide and sphingosine in adult feline cardiac myocytes has been implicated
in early TNF-α-induced cardiac myocyte depression [80]. Guinea pig cardiac my-
ocyte depression by TNF-α appears to involve similar mechanisms although a role
for NO in IL-6-mediated depression of contractility of avian and guinea pig cardiac
myocytes has also been proposed [78,81]. In a study using human adult atrial tissue
exposed to TNF-α, sphingosine and NO pathways were simultaneously implicated
suggesting a mechanistic link [59]. Other data suggest that PAF, a phospholipid
with marked activity in the cardiovascular system, may play an intermediate role
between the depressant activity of TNF-α and NO [82]. Leukocyte lysozyme has
also demonstrated some evidence of NO-dependent responses [38, 62]. Cyclooxy-
genase products, leukotrienes, protein kinase C, altered energy metabolism, and
impairment of sarcoplasmic reticulum function may also play a role in septic
myocardial depression. Although human data have been contradictory, there is
emerging evidence to suggest that a variety of transcription factors, adhesion
molecules, and apoptotic mechanisms may also be involved in septic myocardial
dysfunction. Marked increases in myocardial apoptosis, often in association with
contractile dysfunction, have been documented in a variety of experimental endo-
toxic shock models. Neviere et al., utilizing an endotoxic shock model, observed an
approximate 3-fold increase in rat myocyte apoptosis and activation of caspases 3,
8 and 9 [83]. Caspase inhibitors when administered 2 h after endotoxin challenge,
improved endotoxin-induced myocardial dysfunction, reduced caspase activation
and reduced myocyte apoptosis [84]. Stimulation of cardiac myocytes with pro-
inflammatory cytokines (such as those produced in septic or endotoxic shock)
results in myocyte apoptosis [85]. We have recently demonstrated that human sep-
tic serum with marked myocardial depressant activity activates the transcription
factors signal transducers and activators of transcription 1 (STAT1), interferon
regulatory factor-1 (IRF1) and nuclear factor-kappa B (NF-κB) in human fetal my-
ocytes [86]. Both reporter and electrophoretic mobility shift assays demonstrated
a substantial increase in activation of transcription factors STAT1, IRF1 and NF-κB
in response to incubation with human septic serum. Further, addition of human
septic serum to human fetal myocytes induced apoptosis in the myocytes.

Although overt increased apoptosis in the human heart has not been noted in
spontaneous disease or in live infection models of sepsis and septic shock, pre-
apoptotic signaling may occur in many cells of dysfunctional organs affected by
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sepsis including the heart. In this view of the pathophysiology of sepsis, widespread
pre-apoptotic signaling leads to cellular dysfunction that can lead to organ fail-
ure including myocardial depression during septic shock and sepsis-associated
multiple organ dysfunction.

Conclusion

Myocardial dysfunction is an important component in the hemodynamic collapse
induced by sepsis and septic shock. A series of inflammatory cascades triggered
by the inciting infection generate circulatory myocardial depressant substances,
including TNF-α, IL-1β, PAF and lysozyme. Current evidence suggests that septic
myocardial depression in humans is characterized by reversible biventricular di-
latation, decreased systolic contractile function, and decreased response to both
fluid resuscitation and catecholamine stimulation, all in the presence of an overall
hyperdynamic circulation. This phenomenon is linked to the presence of a circu-
lating myocardial depressant substance or substances which probably represents
low concentrations of pro-inflammatory cytokines including TNF-α, IL-1β and
perhaps IL-6 acting in synergy. These effects are mediated through mechanisms
that include but are not limited to NO and cGMP generation. The mechanism
through which NO depresses cardiac contractility is largely unknown. Recent data
suggest that pre-apoptotic signaling involving transcription factors STAT1, IRF1
and NF-κB leading to apoptotic pathways may play a role in septic myocardial de-
pression related to inflammatory cytokines circulating during septic shock. Links
between this response and NO generation are postulated but have not been fully
delineated.
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Skeletal Muscle

R.D. Griffiths, T. Bongers, and A. McArdle

Introduction

Muscle weakness and muscle wasting are common and debilitating phenomena in
intensive care and seen most profoundly in multiple organ failure (MOF) follow-
ing severe sepsis and severe burn injuries. Intensive care clinicians recognize that
muscle weakness contributes to prolonged mechanical ventilation, a prolonged
ICU and hospital stay, and adds considerably to the cost of caring for these pa-
tients [1]. This dysfunction goes beyond fatigue and weakness of the muscle, and
also includes changes in muscle metabolism, muscle as a nutrient store, and in
the inflammatory state of the whole body. The last 25 years has brought a greater
appreciation of the mechanisms, structural and metabolic characteristics, the con-
sequences, and possible avenues for therapy of muscle dysfunction as a component
of MOF.

Contractile Dysfunction

Muscle contraction (force generation) is the final step in a complex chain of com-
mand that runs from the higher centers of the central nervous system (CNS) via
the spinal cord and peripheral nerves to the muscle. From here an action potential
must be generated, calcium released, and cross bridge cycling activated, resulting
in muscle force generation via actin and myosin interactions. Loss of strength ob-
served clinically can arise secondary to an interruption at any point in this chain,
such as a loss of contractile proteins, reduced membrane excitability, or distur-
bance in neural signaling. Clinically, it is important not to consider dysfunction
of muscle force generation separately from the existing activity level and the en-
ergy supply side since the endurance capacity of muscle with repetitive activity is
thought to be determined by, at least in part, the number of mitochondria per unit
mass of muscle [2]. A trained muscle may contain five times more mitochondria
than a healthy sedentary subject and a low mitochondrial content is associated
with lower ATP content, increased glycogen breakdown, and lactate production
with limitations in performance.

The difficulty in understanding muscle dysfunction in the ICU is the contribu-
tion of disuse-mediated muscle loss to the overall muscle wasting and breakdown.
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Inactivity is an abnormal, even ‘diseased’, state of muscle in man, with normal ac-
tivity acting as a potent stimulus for metabolism and protein synthesis. The human
genome developed over 10,000 years ago when it was associated with a cycle of
hunting and rest, feasting and famine, such that muscle was structured as a cyclical
organ, highly plastic to synthesis and degradation, storage and utilization. These
changes can be very rapid with a 50% decline in peripheral insulin-stimulated
glucose utilization after as little as 72 hrs of bed rest [3]. After 20 days of bed
rest, maximal muscle blood flow is reduced [4]. Skeletal muscle shows an adaptive
reductive remodeling with continued decreased usage (bed rest, spaceflight or
old age) [5]. This is associated with a shift in myosin isoforms from slow (fibers
that have more oxidative metabolism with more mitochondria) to faster isoforms
(fibers that are more glycolytic with fewer mitochondria). This may also result in
a shift in fuel metabolism away from lipids and towards glucose. Metabolically,
this impacts on fuel utilization and is manifested in marked changes in hepatic
metabolism with an increase in gluconeogenisis. Such an adaptive process pro-
duces a muscle capable of high-intensity, short duration activity at the expense of
endurance, making the tissue easily fatigable. How much of this change is substrate
or hormonal driven is unclear but the impairment in peripheral (skeletal muscle)
insulin-mediated glucose uptake has become a significant target for management
with insulin as shown in the ‘Leuven study’ [6]. During catabolic stress, the gluco-
neogenicpotential (andhyperglycemia) arises fromincreasedaminoacids released
by proteolysis but not efficiently reutilized [7]. In skeletal muscle, increased lactate
production occurs through exaggerated glycolysis with septic stimulation of Na+,
K+ ATPase activity [8]. Triglyceride accumulation is seen in muscle of ICU patients
[9, 10]. The precise mechanisms for the fat accumulation, its lack of utilization, and
insulin resistance remain unclear but may involve dysregulation of malonyl CoA
and inhibition of carnitine palmitoyl transferase-1 preventing long chain fatty
acids from entering mitochondria [11].

Impairment of Muscle Metabolism in Sepsis

The debate of whether there is a primary defect in the microcirculation [12],
with shunting [13] compromising oxygen energy substrate delivery, or a cellular
mitochondrial dysfunction limiting utilization in muscle during sepsis, either as
a result of toxic damage [14] (endotoxin mediated [15] or adaptive [16]), is prob-
ably best settled by accepting that both occur. Which of these occurs first and
to what extent each contributes to the septic cascade is the challenging question.
Skeletal muscle has a highly variable blood flow depending on the contractile
state. The regulation and distribution of blood flow is disturbed in sepsis, affect-
ing microcirculatory flow. Phase-modulated near-infrared spectroscopy (NIRS) in
septic patients showed that while blood volume was increased, the oxygen con-
tent remained unchanged with reduced microvascular compliance and impaired
re-saturation after ischemia [17]. Reduced muscle oxygen consumption is also con-
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firmed during stagnant ischemia [18] and correlates closely to worsening organ
failure scoring (sequential organ failure assessment, SOFA). A similar outcome re-
lationship was seen with abnormalities in mitochondrial function [19]. However,
it appears that muscle mitochondrial structure and function is more protected
than in other tissues such as the liver [20] and, therefore, the changes observed
in muscle are likely to be more adaptive. Trying to resolve the contribution of
the hypotension that arises during sepsis to force generation is clearly a challenge
since no septic animal studies examining function appear to have studied this in
detail [21]. Nevertheless, various forms of contractile dysfunction occur indepen-
dent of the cross-section of muscle [22], some developing early within minutes
to hours (possibly related to altered membrane potential and excitability), while
others occur later within hours to days (possibly reflecting impairment of calcium
activation or energy production). The resting membrane potential of muscle is
reduced by 10–50% in the critically ill. This is sufficient to change muscle sodium
and potassium content [23, 24] and this will impact on contractility. In critically
ill patients [25] and in animal studies [26] there is a major and rapid decrease
in activity of several mitochondrial enzymes. Cytochrome C oxidase decreases to
very low levels within days after arrival in the ICU, reflecting a rapid decrease in
mitochondrial content.

Neuropathy and Myopathy

Early descriptions of muscle pathology in critically ill patients focused on either
electrophysiological (critical illness polyneuropathy, CIP [27]) or histological (crit-
ical illness myopathy, CIM [28]) manifestations. However, time has shown that both
coexist with a spectrum of tissue involvement to various extents [29–32]. The key to
appreciating these pathological changes has been the association with inflamma-
tory states and the evidence of a vasculopathy with marked endothelial activation
in both nerve [33] and muscle [34]. In the ‘Leuven’ study, good nutrition and strict
glycemic control in the critically ill improved survival and reduced the incidence
of neuropathy [6]. Subsequent investigation suggested that this was manifested
through protection of the endothelium with a reduction in endothelial cell acti-
vation with lower intercellular adhesion molecule (ICAM)-1 and E-selectin levels,
possibly through a more regulated induced nitric oxide (NO) synthase (iNOS) gene
expression [35]. The ability to reduce the incidence of the neuropathy is encourag-
ing. In the short, term critical illness neuropathy can compromise weaning from
mechanical ventilation and prolong hospital stay with increased ICU mortality.
However, once discharge from hospital occurs there is no discernable increased
mortality risk [36]. Although follow-up experience suggests that in very long stay
ICU patients electromyographic (EMG) evidence of chronic denervation may be
detected many years later, the clinical consequences of this are usually minor, and
despite initial profound weakness (probably more due to the myopathy) in these
patients, only a very few show clinical weakness or limitations in the activities of



440 R.D. Griffiths, T. Bongers, A. McArdle

daily living when followed up 1–2 years later [37]. Recovery of the myopathy with
restoration of muscle bulk remains the major determinate of functional recovery.

Muscle Loss

Muscle wasting can be extreme. Over a three week period following either se-
vere trauma or sepsis, an average of 16% of total body protein is lost [38]. The
total loss of skeletal muscle mass was estimated to be ∼ 3 kg. Such loss of lean
body mass (whole body water and protein) ranging from 0.5–1.0% loss per day
is far greater than that due to bed rest alone. In the very severely ill patient, the
catabolic breakdown of muscle proteins shows losses approaching 2% per day [9],
with a daily decrease in the fiber area of 3% to 4% [10]. Muscle biopsies show the
greatest atrophy in the contractile myosin filaments with relative preservation of
other structural proteins. The septic ICU patient shows increased proteosome pro-
teolytic activity [39]. Increased expression of this ubiquitin proteolytic pathway is
well characterized in sepsis and is promoted through a number of transcription
factors including activator protein-1 (AP-1), nuclear factor-kappa B (NF-κB) and
CCAAT/enhancer binding protein (C/EBP) [40]. The key proteolytic enzymes are
the E3 ubiquitin ligases that act as the substrate recognition component. Increased
calcium levels occur in muscle in sepsis [41] and this is likely to influence protein
metabolism through the regulation of the calpain-calpastatin system. Increased
calpain activity provides an early step in muscle wasting with degradation of Z-
band associated proteins, in particular titin and alpha actinin, leading to release
of myosin which is ubiquinated and degraded through the proteosome [42]. The
targeted loss of mysosin, with the retention of other structural proteins, suggests
that these fibers may have the potential to recover. Immobility and absence of the
normal stretch and stresses, however, adds to this process, since passive stretching
alone in neuromuscularly paralyzed ICU patients has been shown to reduce pro-
tein loss and maintain structure [43].

Pathogenetic Factors in Myopathy of Critical Illness

From the above one can see that a number of factors may come together to result in
muscledysfunction.These factors includeacombinationof inflammatorycatabolic
or even toxic triggers and physiological adaptive mechanisms. During sepsis, the
upregulation of several hormones and numerous pro- and anti-inflammatory me-
diators makes the identification of any single factor clinically worthless. Neverthe-
less, excess prostaglandins, tumor necrosis factor (TNF)-α, reactive oxygen species
(ROS), such as NO, have all been implicated [21]. Hypercortisolemia is responsible
for a significant catabolic effect on muscle after trauma or in sepsis [44] which
is amplified by inactivity. In normal subjects, protein breakdown is not increased
any more than during starvation. However, if cortisol is given after 14 days of bed
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rest, the net catabolic state is similar to a patient with 70% burn injury [45]. The
effect of steroids may combine with locally produced cytokines, such as TNF-α
and interleukin (IL)-6 [46], to produce a potent stimulus. It has been suggested
that there is a more generalized systemic process with the identification of a low
molecular weight neurotoxic factor in the serum from patients who have a neu-
romyopathy [47] that appears to block intracellular Ca2+ release channels and
depolarize the resting membrane potential. This combination leads to impaired
force development and membrane hypoexcitability with impaired recovery from
repetitive action potentials [48].

In the wear and tear of normal exercise activity and following ischemic injury,
neutrophils and macrophages dominate the basic inflammatory response [49].
Superoxide-dependent mechanisms appear to be involved, though probably medi-
ated through conversion of hydrogen peroxide to highly reactive radicals, a mecha-
nism involving myeloperoxidase. Neutrophils, however, are also involved in repair
through the eventual phagocytosis of debris. Clinically, however, the invasion of
neutrophils into skeletal muscle in the critically ill patient is less apparent than
occurs following exercise-related muscle damage and is seen only in the extreme
necrotic stages that occur in severe MOF [28]. In vitro, muscle-derived NO reduces
neutrophil-mediated lysis of muscle cells [50] and the leukocyte interaction with
the vascular endothelium [51]. Removal of normal muscle loading by inactivity
causes a decrease in the expression and activity of neuronal NO synthase (nNOS)
in muscle [52]. The same authors subsequently suggested a link with muscle wast-
ing with disuse through studies of dystrophies [53]. NO appears to modify the
active site of calpains that initially cleave myosin in degradation. Reduction in NO
through reduced nNOS production could contribute to muscle wasting through
the loss of a regulatory role for NO on calpain-mediated proteolysis.

While the systemic inflammatory process may impact on skeletal muscle, it is
also important to realize that activation of systemically released mediators from
within skeletal muscle tissue can lead to disturbances in distant organ systems.
During infrarenal aortic abdominal aneurysm repair, an ischemia/reperfusion in-
jury response occurs in the lower limbs. After 30 mins of clamping, increased
expression of genes for angiotensinogen, angiotensin converting enzyme (ACE)
and IL-6 occur in muscle. Increased IL-6 levels were detectable systemically for
12 hours after reperfusion and were associated with impaired pulmonary func-
tion [54].

Failed Protective Responses in Skeletal Muscle During Sepsis: A Role for
Heat Shock Proteins and Glutamine in Mediating Muscle Function

The rapid increased expression of stress or heat shock proteins (HSPs) is one
of the most highly conserved mechanisms of cellular protection. HSPs may be
central to protect muscle against the assault from systemic inflammation and are
critical for cell survival. Increased HSP expression has been reported following is-
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chemia/reperfusion and shock. Further, enhanced HSP expression has been shown
to be associated with cyto-protection in a wide variety of experimental injury
models. These include models of experimental sepsis, lung injury, transplantation
injury, and cardiac ischemia/reperfusion injury.

Skeletal muscle normally adapts following stress, such that it is protected
against subsequent damage [55]. This adaptation occurs following a variety of
insults, including exercise. The mechanism of activation of the stress response
is not fully understood, but increased ROS generation has been implicated as
a major signal. The adaptive responses of muscle to exercise stress are by far the
most studied. In this instance, increased ROS are produced and these in turn lead
to activation of redox-sensitive transcription factors, such as NF-κB, AP-1 and
heat shock factor-1 (HSF1), and subsequent increases in the activity of protective
enzymes, such as superoxide dismutase and catalase, and an increase in the cellular
content of HSPs [57]. Only once the increased ROS production becomes excessive
or chronic does failure in adaptation and subsequent damage occur. A putative
model of how sepsis can affect the cellular adaptive and protective mechanisms of
muscle from young and older patients is illustrated in Fig. 1.

The increase in protective enzymes and HSPs protects the tissue against sub-
sequent exposure to damage [56]. The HSP70 family of proteins has been most
studied in skeletal muscle. Major components of this family are a constitutively
expressed but inducible HSP, known as HSC70, and a highly inducible HSP (HSP70

Fig. 1. A putative model of how sepsis can affect the cellular adaptive and protective mechanisms
of muscle from younger and older patients. Glutamine may restore these adaptive mechanisms.
ROS: reactive oxygen species; HSF: heat shock factor; AP: activator protein; NF-κB: nuclear
factor-kappa B
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or HSP72). Other HSPs include HSP60, primarily located within the mitochondria
and the small HSPs such as αB-crystallin and HSP25/27, which appear to play a role
in maintenance of cytoskeletal integrity.

All HSPs act to preserve cellular integrity. Cells stressed by a sub-lethal insult
that induces the expression of HSPs are rendered more resistant to a subsequent
extreme stress. One of the possible mechanisms underlying stress tolerance in-
volves the concept that the proper folding of proteins in a cell requires an intricate
set of folding machinery known as molecular chaperones, of which HSPs are
members. Thus, when induced following cellular stress, HSPs appear to repair de-
natured/damaged proteins, when possible, or may promote degradation of these
proteins following irreparable injury [57].

In addition to their local intracellular role, HSPs participate in cytokine signal-
ing, cytokine gene expression, and enhanced antigen presentation to T lympho-
cytes [58]. This modification of the inflammatory response coupled with increased
HSP content of cells results in an increased resistance to cytokine-mediated toxic-
ity. Increased HSP expression has been shown to attenuate plasma concentrations
of the pro-inflammatory cytokines, IL-1β and TNF-α, in both in vitro and in
vivo models and this appears to correlate with improved survival from a septic
insult [59].

Glutamine appears to be a potent facilitator of HSP production [60–62] with
induction as early as 1 hour post-glutamine administration. This enhanced HSP
expression was protective against cecal ligation and puncture-induced sepsis in
the rat and markedly decreased end-organ injury and overall mortality [63]. The
survival benefit from glutamine was abrogated if an inhibitor of HSP was admin-
istered. Glutamine appears to regulate protein turnover in muscle cell cultures,
increasing the half-life of long-lived proteins and this may be related to an increase
in HSP70 [64]. Importantly this effect of glutamine at physiological concentrations
was not seen in the unstressed state, only in the myotubes exposed to heat stress.

In ICU patients, trauma or sepsis causes circulating plasma glutamine to de-
cline by about 50%, with a 75% decline in the free glutamine pool in muscle [65].
The mechanism for depletion of muscle glutamine represents a demand for in-
creased rates of glutamine utilization at the whole body level and a relative im-
pairment of de novo synthesis in skeletal muscle leading to a deficiency [66]. A low
plasma glutamine is an independent predictor for a poor ICU outcome [67] and
low glutamine concentration correlates with advanced age. Further, a recent study
regarding serum HSP72 concentrations after severe trauma illustrated a correla-
tion between HSP concentrations and survival, but again low HSP concentrations
correlated with advanced age [68]. This is not surprising and animal models have
demonstrated an attenuated HSP response after non-damaging stress in older an-
imals [69]. It has been suggested that glutamine substitution can induce a HSP
response. Glutamine added to parenteral nutrition to meet this deficiency sig-
nificantly increased serum HSP70 in critically ill patients and the magnitude of
HSP70 enhancement showed a correlation with improved clinical outcomes [70].
These findings support clinical evidence that overcoming the relative deficiency of
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glutamine improves survival from MOF [71,72]; whether it can augment the HSP
response in the elderly and act as a HSP inducing agent remains to be seen (Fig. 1).

Half of severely ill ICU patients are over 65 years of age with upwards of 25%
over 75 years of age. The ability to withstand sepsis is particularly dependent upon
available skeletal muscle mass. The normal age-related loss of skeletal muscle
between the years of 20 to 80 produces a 40% reduction in muscle cross-sectional
area [73]. Thus, in the elderly, many physical activities may be conducted at near
the critical threshold of failure [74]. The rate of muscle loss in septic ICU patients
with MOF is between 2 and 4% per day. This substantial rate of muscle loss, taken
together with an already compromised muscle in the elderly, is catastrophic. This
is seen in the inability to wean from a ventilator and becomes a determinant of
survival.

Conclusion

Skeletal muscle is a significant player in MOF, showing marked metabolic and
structural changes and contributing to the metabolic and inflammatory fluxes
in the body. Muscle function is severely compromised, but muscle is a resilient
organ and shows an excellent ability to recovery. As a highly plastic organ, mus-
cle shows marked adaptation to activity levels and immobility, and in situations
of whole body stress provides a major store of amino acids through controlled
degradation. However, muscle provision of certain, conditionally essential amino
acids can become limiting. The opportunity for specific nutritional interventions
is encouraging.
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