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Preface

The basic function of the eye is to distinguish light from dark. Human eye has been
greatly evolved so that we can sense lights and discriminate colors in a broad
wavelength range (known as the visible range) with a great sensitivity in low light
levels, and an ability to detect motion and resolve objects for locomotion and
navigation. The most fundamental of developing and evolving light sensing (also
known as sight sensing) is the information richness of the optical properties of an
object we observe when our eyes look at it. The other fundamental of light (sight)
sensing is that we can look at the object without physically touching it. (The latter is
also true concerning hearing and smell.)

The success of the human eye evolution is self-evident,1 and the persistent
development to assist, enable, and extend our light sensing is breathtaking.
2017 Nobel Prize in Physics was awarded to Rainer Weiss, Barry C. Barish, and
Kip S. Thorne “for decisive contributions to the LIGO detector and the observation
of gravitational waves.” The LIGO detector is a laser-based interferometer con-
sisting of two arms that form an L. A single laser beam is split at the corner of the L
into two identical beams that travel along the arms and reflect back from the mirrors
mounted at the ends of the arms and then meet again at the corner. When the
lengths of the two arms are equal, the two beams meet at the corner synchronously.
A passing gravitational wave will compress one arm while stretch the other,
resulting in the loss of the synchronization where the beams meet, thereafter
becoming captured by the LIGO detector. “The world’s first captured gravitational
waves were created in a violent collision between two black holes, 1.3 billion light
years away.”2

This identifying a material by measuring (synonyms: quantifying) optical
properties of the material is the essence of the optical spectroscopy. Light looks so
obvious but its quantitative description can be very mysterious. Though the

1On the Origin of Species by Means of Natural Selection, or the Preservation of Favoured
Races in the Struggle for Life, Charles Darwin, published on 24 November 1859.
2http://www.nobelprize.org/nobel_prizes/physics/laureates/2017/.
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mechanism of the LIGO detector can be fully described by the Maxwell’s equations
(Sect. 1.3) that have been thoroughly studied and validated for a very broad
spectrum of physical phenomena, it is well known that the Maxwell’s equations are
limited. Quantum electrodynamics describes fully how light and matter interact to
an unprecedented accuracy (1965 Nobel Prize in Physics was awarded to Sin-Itero
Tomonaga, Julian Schwinger, and Richard P. Feynman “for their fundamental work
in quantum electrodynamics, with deep-ploughing consequences for the physics of
elementary particles”3). However, the microscopic equations of the quantum
electrodynamics are difficult to solve as well as to understand in many cases. We
take a look at the systems to be studied in this book and observe that we study in the
realm of non-relativity. Since the Maxwell’s equations can be derived from non-
relativistic quantum electrodynamics, while the dynamics of the nonrelativistic
light–matter interaction has been well-explained quantum mechanically, we
describe the light in the following way in this book. Light in transport is an
electromagnetic wave described by the Maxwell’s equations in terms of the
amplitude and the wavelength of the electromagnetic wave, while it is a photon
when interacting with matter quantified by the number of photons and the energy
carried per photon.

Optical spectroscopy of matter is the study of interaction between light and
matter as a function of the wavelength of the light, which is commonly represented
by the wavelength-dependent optical spectrum. Spectroscopy, i.e., recording and
analyzing wavelength-dependent optical spectrum of an object (sample) under a
probing light (in advanced setups, the object can be subjected simultaneously to
various modulations such as an electric field or heat or mechanical force), is
probably the best and most important tool for studying the world where we live.
Our eyes sense the light around us, such as solar light transmitted through atmo-
sphere, reflected and diffracted from various objects, in the visible range of ca 390–
700 nm, which coincides of course with the wavelength range of the solar light
most abundant on the earth surface. We have never stopped extending our light
sensing, from the passive sensing, i.e., seeing the light available, to the active
sensing such as night vision by lighting a fire. We have greatly extended the optical
wavelength range of our light sensing down below 10−5 nm (c rays) as well as up
above 1012 nm (radio waves).

Spectroscopy is widely used in basic research in laboratory, in industrial sectors,
e.g., for routine quality assessment, as well as in our daily life (e.g., radio-frequency
identification and smartphone-based glucose monitor), least to mention to under-
stand our universe. There has been an ever-growing demand to estimate optical
spectra of various bulk and composite materials more accurately, which is made
technically possible by the continuous development of novel optoelectronic devices
as light sources and detectors. For instance, the scientific as well as industrial
interest in the optical properties of novel nanomaterials comes from their wide-
spread presence and relevant importance both in strategic engineering and life

3http://www.nobelprize.org/nobel_prizes/physics/laureates/1965/.
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sciences sectors. Another nonconventional and very recent area of interest for the
methodologies of optical investigation is in the field of bio-optical medicine, where
the interaction of light with different biomaterials can be exploited in novel drug
development.

The book focuses on the spectroscopy of semiconductors, i.e., unraveling the
microscopic light–matter interactions in semiconductors, both bulk materials (in-
cluding thin films) and nanostructures (quantum well, quantum wire, and quantum
dot), by measuring and analyzing various optical spectra of the semiconductors. We
first introduce physical parameters to define the spectroscopy in Chap. 1, discuss the
microscopic light–matter interactions in semiconductors in Chap. 2, and then the
fundamental principles of reflection, transmission, photoluminescence, modulation,
and photocurrent spectroscopies in terms of the microscopic light–matter interac-
tions in Chaps. 3–6. The reason of the variety of the spectroscopies is just that one
spectral analysis cannot usually provide every aspect of the microscopic light–
matter interaction of the sample under investigation. For example, the transmission
spectroscopy based on the Beer–Lambert law is not proper to measure the refractive
index of a sample. The combination of the various spectroscopies in studying one
sample is highlighted in Chap. 6 where we learn the functioning of
quantum-well-based infrared photodetector. We close the book by introducing the
latest applications and developments of semiconductor spectroscopy in the field of
bio-nanophotonics in Chap. 7 where semiconductor colloidal quantum dots are
described for research and development of novel biomarkers using absorbance,
fluorescence, time-resolved fluorescence (ns scale), fluorescence blinking (ms), and
bioimaging.

The unique feature of the book is the two-way highway of numerical analysis
bridging microscopic quantum physics and macroscopic spectroscopic setups and
measuremental results, which distinguishes this book from many books on this
topic. Built mostly on the knowledge of university physics (e.g., Young and
Freedman, University Physics with Modern Physics, 13th edition. Addison-Wesley
Boston 2012), the book is largely self-contained. Details of theoretical analysis of
spectroscopy (physics analysis, mathematical operations, and physics-based
numerical approximations) are clearly presented stepwise in light of experimental
details and results.

The book is an introduction for studying the physics of spectroscopy and
spectroscopic analysis of materials. All studied cases presented in the book are
about real materials and devices with valid physical parameters so that the book can
be further used as a toolbox for researching and developing nanomaterials based on
spectroscopy.

Despite our best efforts, it is inevitable that there will be errors in the book. We
encourage readers who find errors to let us know so that we can correct them in the
future printing.

Shanghai, China Wei Lu
Ying Fu
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Chapter 1
Optical Spectral Measurement

Abstract A monochromatic light is quantified by its brightness and color, i.e., its
optical power and wavelength. And a light beam is normally composed of many
monochromatic lights of different powers and wavelengths. In this chapter we dis-
cuss three optical dispersive devices, namely, prism, diffraction grating, and Fourier
transform spectroscopy, to resolve the compositing monochromatic lights of a light
beam. Prism and diffraction grating disperse the compositing monochromatic lights
in the light beam into different spatial regions, and are therefore denoted as spatial
dispersion, while Fourier transform spectroscopy disperses the light beam in the time
domain.

Just like human eye senses light by its color and brightness, we describe quanti-
tatively a light beam as an electromagnetic field (or electromagnetic wave) using
two physical parameters, one is the wavelength λ (color), measured in meters and
the other the optical power of the electromagnetic field denoted as S (brightness),
measured in watts per meter squared (W/m2). Theoretically we can assign one wave-
length to a light beam, resulting in the so-called monochromatic light denoted as
S(λ). A typical green light-emitting diode (LED) can be described as its emission
wavelength λ = 550 nm and its light output power 20 mW. However no real light
beam is purely monochromatic, therefore scientifically speaking, monochromatic
light only refers to a light beam of a narrow band of wavelengths. A more precise
description is that the green LED emits a light beam with a peak wavelength 550
nm, a wavelength bandwidth 20 nm and light output power 20 mW, or something
similar. Mathematically, S(λ) of the green LED is a function of λ which is maximal
at λ = 550 nm. S(λ = 540 nm) is nonzero because of the finite bandwidth. And

∫ [∫
S(λ) dλ

]
da = 20 mW (1.1)

where a is a geometric surface enclosing the green LED. Discussions about the
spatial dependence of S(λ) in the above equation may lead us to imaging, which will
be looked at in Chaps. 4 and 7, while the dependence of S(λ) on λ, known as the
optical spectrum of the light beam, is the central theme of this book.

© Springer International Publishing AG, part of Springer Nature 2018
W. Lu and Y. Fu, Spectroscopy of Semiconductors, Springer Series
in Optical Sciences 215, https://doi.org/10.1007/978-3-319-94953-6_1
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Fig. 1.1 a Schematics of quantum dot spectral characterization. b Optical spectra of the quantum
dots under different excitations of different wavelengths. Note that the color in the figures does not
represent the true color associated with the light in reality, it is only used for clear presentation

Figure 1.1 shows an optical spectrum obtained from the following experimental
setup: There is a drop of water-soluble CdSe-ZnS core-shell quantum dots [1] in an
Eppendorf tube, an excitation laser beam, represented by the blue arrow in Fig. 1.1a,
incidents to the quantum dot solution in the Eppendorf tube and the quantum dot
photoluminescence, the violet arrow, is collected and recorded by a spectrometer (we
will extensively discuss these quantumdots inChap. 7). The spectrometer is normally
positioned at a 90◦ angle relative to the excitation laser to avoid directly reading
the excitation laser which in many cases may be too strong for the spectrometer.
The excitation laser light can reach the spectrometer via reflection, diffraction etc.,
which may be blocked by putting a proper optical filter in front of the spectrometer.
Figure 1.1b is the readout from the spectrometer, i.e., the optical spectrum S(λ) of
the CdSe-ZnS core-shell quantum dots. The horizontal axis is the wavelength λ in
unit of nm (10−9 m), and the vertical axis is S(λ) in units of photon counts, i.e., the
number of photons that are recorded per a certain wavelength interval. There is no
optical filter in Fig. 1.1a so that the excitation laser light, mostly scattered by the
quantum dots in the Eppendorf tube, is also detected and appeared in the optical
spectrum of Fig. 1.1b. We use different excitations of different wavelengths, namely,
300, 350, 400, 450 and 500 nm, respectively, to excite the quantumdots. The resulting
quantum dot photoluminescence peak is centered at 580 nm (vertical dash line) with
a bandwidth of about 20 nm (which is known to be the full width at half maximum,
FWHM), independent of the wavelength of the excitation laser. Quite interestingly
we also observe a double-wavelength excitation light at 600 nmmarked by a vertical
arrow in Fig. 1.1b accompanying the 300 nm excitation laser light. We will discuss
this accompanying light shortly in Sect. 1.2.

We can see directly fromFig. 1.1b that the quantumdot’s photoluminescence spec-
trum characterized by the photoluminescence peak wavelength and FWHM of the
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photoluminescence peak does not depend on the wavelength of the excitation laser,
at least within the excitation strength and wavelength range in Fig. 1.1b. Moreover,
bandwidths (measured by FWHM) of the excitation laser lights are much narrower
than that of the quantum dot’s photoluminescence peak. We may ask why and how
these optical properties are correlated with the electronic properties of quantum dots
and later on how can we utilize these properties. Optical spectrum is the result of
the interaction between material, i.e., quantum dots in Fig. 1.1, and light, normally
referred to as the light-matter interaction, so that the precise and correct spectral mea-
surement and thereafter the spectral analysis are two key factors to understand the
light-matter interaction. The principal object of the spectral measurement and anal-
ysis is to extract the relationships between optical power S and wavelength λ before
and after the light-matter interaction, and the experimental setup of the spectral mea-
surement consists of a light source, its incidence to the sample (the material under
investigation), and the recording of light before and after the light-matter interaction,
schematically shown in Fig. 1.1.

The basic quantification of our visual perception is the brightness versus darkness,
i.e., the optical power. Light is further categorized by its wavelength such as radio
wave,microwave, infrared light, visible light (red, yellow, green, blue etc.), ultraviolet
light, X ray, and Gamma ray. By these we define the optical spectrum S(λ) of a light
beam, e.g., Fig. 1.1b, showing quantitatively how the light beam is composed of
monochromatic lights of different optical powers and wavelengths.

We normally need a device, generally denoted as an optical spectrometer, to
decompose the light beam into monochromatic lights. Human eye, naturally one of
the optical spectrometers, has three types of cones that response red (wavelength 500–
700 nm), green (450–630 nm), and blue (400–500 nm) lights, the whole response
wavelength range is 400–700 nm, which is referred to as the visible spectral range.
Figure 1.1b display a spectrum in thewavelength range of 280–670 nmwith a spectral
resolution of 1 nm, i.e., dλ in (1.1), which is defined as the smallest difference
in wavelength that can be distinguished by the spectrometer. There are different
spectrometers with different response wavelength ranges and spectral resolutions
depending on the eventual applications of the spectrometers.

Now we know that the measurement of an optical spectrum is first to decompose
the light beam into its constituent monochromatic lights then measure the optical
powers of the monochromatic lights. Light decomposition is normally realized by an
optical dispersive device. Optical filters selectively transmit monochromatic lights
in particular ranges of wavelengths while blocking the remainder, they are generally
referred to as direct optical dispersions.

Below we introduce three optical dispersive devices which can provide us with
optical spectra in broad wavelength ranges, namely, prism dispersion, diffraction
grating, and Fourier transform spectroscopy. Through the following sections we will
see that the dispersing strategies of these dispersive devices are different, prism
dispersion and diffraction grating disperse monochromatic lights in the light beam
into different spatial regions, thus can be denoted as spatial dispersion, while Fourier
transform spectroscopy disperses the light beams in the time domain.
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1.1 Prism to Disperse Light

Themost well-known optical dispersive device is the triangular prismwith an isosce-
les triangular base and rectangular sides. It is also knownas theCornu prism, as shown
schematically in Fig. 1.2a. Another commonly-used triangular prism is a half of the
Cornu prism with a reflective mirror, known as the Littrow prism, see Fig. 1.2b.

Let us take a close look at theCornu prism to understand its dispersingmechanism.
Refer to Fig. 1.2a, the Cornu prism is described geometrically by a vertex angle α and
a base length AC = �, and physically by the refractive index of the prism material
as a function of the wavelength denoted as n(λ). Let a monochromatic light beam
of wavelength λ incident to facet ABB’A’ of the prism of Fig. 1.2a from vacuum or
air at an incident angle θi. The light will exit the prism from facet CBB’C’ after two
refractions. Here we implicitly assume that the prism has perfect geometric surfaces
so that we apply Snell’s law (see more in Sect. 3.1) to describe the optical path of
the light beam, which is shown in Fig. 1.3.

Since the refractive index of air is 1 (very close to 1.0 in the optical range of our
interest), the angles of the optical path in Fig. 1.3 are correlated by Snell’s law of
refraction

(a) Cornu prism (b) Littrow prism

White
light

White
light

Red
Orange
Yellow
Green
Blue

Mirror

A

B

C

A’
C’

B’



Fig. 1.2 Schematics of a Cornu prism and b Littrow prism that disperse light

Fig. 1.3 Schematics of the light refraction in a Cornu prism described geometrically by its vertex
angle α and base length AC = �. δ is the deflection angle between the directions of the incident
light and the deflected light
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sin θi = n(λ) sin βi, sin θo = n(λ) sin βo (1.2)

where θi is the incident angle and θo the output angle.
A deflection angle δ, also known as the deviation angle, is normally introduced

here to describe how much the light is deflected by the prism, see Fig. 1.3. Since the
refractive index n(λ) of the prism material is a function of wavelength λ, deflection
angle δ therefore also depends on λ, explicitly expressed as δ(λ), which represents
the ability of the prism to break the light down into its constituent monochromatic
lights, i.e., the light dispersion. In common applications, the geometric setup of the
prism and the light beam is designed in such a way that θi = θo, whichmeans βi = βo

as well. Under such a condition,

θi = α + δ(λ)

2
, βi = α

2
(1.3)

Differentiate the first equation of (1.2) with respect to wavelength λ results in

cos

[
α + δ(λ)

2

]
dδ(λ)

dλ
= 2 sin

(α

2

) dn(λ)

dλ
(1.4)

from which we obtain the angular dispersion of the prism

dδ(λ)

dλ
=

2 sin
(
α
2

)
√
1 − n2(λ) sin2

(
α
2

) dn(λ)

dλ
(1.5)

which shows that the angular dispersion of the prism is determined by vertex angle
α and the dependence of the refractive index on wavelength λ, i.e., dn(λ)/dλ.

Thus far, we have studied the prism from the geometric-optics point of view,
meaning that the optical path of a light beam in a uniform space is a straight line.
Let us take a look at the implication of light’s wave nature. When a light beam
passes through a single slit of width d, the spatial distribution of the output light
at an observation plane, which is also known as the image of the slit, forms the
so-called diffraction pattern, as shown in Fig. 1.4a, which can be easily obtained
by the following considerations. Refer to Fig. 1.4b, we divide the light (with a total
electric field amplitude E0) from the slit into sub-beams (amplitude E0dy/d) such
as beam 1 with a width dy originating at y. The length of its optical path to the point
y′ at the observation plan is

√
D2 + (y′ − y)2. In practice, however, the distance D

between the slit and the observation position is much larger than d (y′ � d), so that
all beams between y ∈ (−d/2, d/2) reach point y′ with the same angle θ as beam
2. The electric field of the light reaching y′ is then

E(θ, t) = E0

d

∫ d/2

−d/2
sin

(
ωt + 2πy sin θ

λ

)
dy (1.6)
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Fig. 1.4 a Schematics of the
light diffraction through a
single slit. Numerical values
near peaks denote peak
optical powers. b Optical
paths. See text for details

(a)

(b)

where ω is the frequency of the light. Simple mathematical manipulations result in

E(θ, t) = E0 sin
(
ωt + β

) sin β

β
(1.7)

where β = πd sin θ/λ. Since the optical power of the light S ∝ 〈|E(t)|2〉t , where
〈. . .〉 denotes time average, we obtain

S(θ) = S0

⎡
⎣ sin

(
πd sin θ

λ

)
πd sin θ

λ

⎤
⎦

2

(1.8)

In the observation plane the Fraunhofer diffraction pattern of the slit, i.e., the numer-
ical profile of the above equation, appears as shown in Fig. 1.4a.

It is then easy to identify the first power minimum closest to the principal peak at
an angle δθ , see Fig. 1.4a,

πd sin(δθ)

λ
= π � sin(δθ) = λ

d

which is well approximated as
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δθ = λ

d
(1.9)

since d � λ in practice.
For the prism of Fig. 1.3, the incident light strikes side AB of the prism with an

equivalent slit width
d = ABcos θi

Since the width of base AC is

� = 2AB sin
(α

2

)

we re-formulate (1.5) to be
dδ(λ)

dλ
= �

d

dn(λ)

dλ
(1.10)

By the well-established Rayleigh criterion, the minimum resolvable detail occurs
when the first diffraction minimum of the output of one light beam coincides with
the maximum of another. Thus, we need to have

dδ(λ) ≥ δθ (1.11)

in order to distinguish two monochromatic lights whose wavelengths are separated
by dδ(λ). Insert (1.5) and (1.10) to (1.11),

λ

dλ
≤ �

dn(λ)

dλ
(1.12)

The above equation shows that the maximal spectral resolution

R ≡ λ

dλ

of a dispersing prism, known as the resolving power, is then given by

R = �
dn(λ)

dλ
(1.13)

Thus, a broad base AC, i.e., a large �, results in a large resolving power. However,
(1.13) shows that the resolving power is also proportional to the dependence of the
refractive index n(λ) on wavelength λ, which unfortunately is quite small for most
commonly used prismmaterials, which therefore is the critical limiting factor for the
light-dispersing prism. Assume that we make a prism with � = 15 cm using glass
N-BK7HT from SCHOTT [2]. Figure 1.5 show the refractive index n(λ), resolving
power R(λ), and spectral resolution dλ as functions of λ. Here we see that depending
on dn/dλ, we can reach a spectral resolution of ca 0.5 nm when λ = 300 nm, 5 nm
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Fig. 1.5 a Refractive index n(λ) of glass N-BK7HT from SCHOTT [2]. b Resolving power R(λ)

and c spectral resolution dλ of a prism with � = 15 cm using glass N-BK7HT

at 500 nm, 10 nm at 600 nm within the visible range, but 100 nm at 2 µm in the
short-wavelength infrared range.

The above analysis about the resolving power of the prism is based on the fun-
damental principles of physics, which sets the upper limit for the resolving power
that can be reached by the prism. There are many other limiting factors in reality
that can significantly deteriorate the performance of a dispersing prism. Two most
important technical issues are the spatial uniformity of the prism material (which
will cause the non-uniformity of the refractive index) and the surface roughness in
the facets, especially when we want to increase the geometric size of the prism, i.e.,
�, to compensate the weak dependence of the refractive index n(λ) on wavelength λ

of many materials that make the prisms.
The advantage of the dispersing prism is its capability of light dispersion over a

broad wavelength range. The refractive indices of commonly used prisms are mostly
monotonic functions of wavelength over a broad wavelength range, so, as long as
the incident light is composed of monochromatic lights of different wavelengths,
the monochromatic lights will, in principle, always exit at different deviation angles
and thus are resolved in space (thus is referred to as spatial dispersion, as mentioned
before).
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1.2 Diffraction Grating

The principle of the dispersing prism is largely based on geometric optics that because
the refractive index depends on the wavelength, the propagations of monochromatic
lights of different wavelengths are dispersed into different spatial directions (the
resolving powerwas however discussed in terms of thewave nature of light). Grating,
also known as diffraction grating, disperses monochromatic lights to different exit
directions by utilizing the interference effects of the diffracted lights. In other words,
the principle of the diffraction grating is based totally on the wave optics of light.

There are two diffraction grating configurations, one is the transmission and the
other the reflection. In the transmission grating configuration, the optical energy is
largely concentrated in the zeroth order of the diffraction which is not dispersive, so
that the reflection grating is commonly used to disperse lights. In the following we
focus on the light dispersion of the reflective diffraction grating.

Figure 1.6 shows schematically a blazed grating which is one special type of the
reflective diffraction grating. The grating has a constant line spacing d. The grating
is alternatively defined by N = 1/d, called the grating constant, which is the number
of lines per unit length. The grating lines normally possess a triangular, sawtooth-
shaped cross-section, forming a step structure. The steps are tilted at the so-called
blaze angle α with respect to the grating surface.

Let a light incident to the grating surface at an incident angel θi with respect to the
normal direction n of the grating surface. The light will be diffracted by various steps
in the step structure on the grating surface. Consider two diffracted beams, beam 1
and 2 in Fig. 1.6, outgoing at a diffraction angle θo. The two beams have a phase

difference d
(
sin θi − sin θo

)
after diffraction as a function of the diffraction angle

θo. When the phase difference satisfies the following equation

d
[
sin θi − sin θ(m)

o

]
= mλ (1.14)

the two beams will interfere constructively at the observation plane perpendicular to
the outgoing direction. Equation (1.14) is normally referred to as the grating equation,

α
d

θi

θo

n

Beam 2
θo

Beam 1

Fig. 1.6 Schematics of a reflective diffraction grating specified by its grating constant N = 1/d
and blaze angle α. A light incidents to the grating at an incident angle θi and becomes diffracted.
The two diffracted beams, beam 1 and 2 interfere constructively at a certain outgoing angle θo
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where m, a positive integer, is the diffraction order, and θ(m) is the diffraction angle
of the constructive interference of order m.

Equation (1.14) shows that for a fixed θi andm, θ(m)
o is a function of λ. Now, when

a light beam, a mixture of two monochromatic lights of two different wavelengths
λ1 and λ2, strikes to the grating surface with the same incident angle θi = θi1 = θi2,
the two monochromatic lights are spatially separated via the two different diffraction
angles of the constructive interference

θ
(m)
o1 �= θ

(m)
o2 (1.15)

This is the dispersing mechanism of the diffraction grating to disperse lights of
different wavelengths.

Note that by (1.14), when a light of λ interferes constructively at θo, lights of
λ� = λ/�, where � = 1, 2, . . ., also interfere constructively at the same diffraction
angle (of different diffraction orders which are m�, of course). Let us denote the
optical power S(m)(λ) which is constructive at θo of a diffraction order m. What we
observe at θo is the sum of lights

∞∑
�=1

S(m�)

(
λ

�

)
(1.16)

A more thorough analysis shows that the above equation is not complete. If the
diffraction order m is larger than 1, say m = 2, we expect constructive interferences
of lights of λ� = λ/� with � = 1/2, 1, 2, . . . by (1.14). Thus, the total sum of lights
observed at θo is

S(θo) =
∞∑

m�=1

S(m�)

(
λ

�

)
(1.17)

where m and m� are integers.
This is commonly referred to as the overlapping effects of diffraction. Recall

Fig. 1.1 that we use excitation lights of different wavelengths to excite quantum dots.
When an excitation light of 300 nm is selected, a light of 600 nm is also recorded
by the spectrometer, see the vertical arrow in Fig. 1.1b. In the optical spectrometer
(FluoroMax-3, HORIBA JOBIN YVON in the case of Fig. 1.1b) that excites the
quantum dots then records the quantum dot photoluminescence, the selection of the
excitation light is made by a diffraction grating from a broad light source of a xenon
arc lamp. Amonochromatic light of 300 nm is then expected to be accompanied by a
monochromatic light of 600 nmwhen the diffraction orderm is larger than 1, and the
600 nm is exactly recorded by the spectrometer in the wavelength range of Fig. 1.1b.

By the way, in practice, the grating operates normally at the so-called blazing
order such that

θi + θo = 2α (1.18)
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For a certain diffraction order of m, (1.14) shows that the diffraction angle θ(m)
o is

a function of wavelength λ. For a fixed incident angle θi, differentiating (1.14) with
respect to wavelength λ results in

dθ(m)
o

dλ
= − m

d cos θ
(m)
o

= − sin θi − sin θ(m)
o

λ cos θ
(m)
o

(1.19)

which is known as the angular dispersion of the grating, representing the ability of
the grating to disperse lights of different wavelengths. A larger angular dispersion
means a better ability to separate lights of different wavelengths.

A good angular dispersion can be achieved by optimizing the geometric structure
of the grating. Take a close look at (1.19), a large angular dispersion can be obtained
by a large diffraction order m and a small d (i.e., a large grating constant N = 1/d).
At the blazing order of (1.18) and when the light incidents normal to the grating
(θi = 0), θo = 2α so that

dθ(m)
o

dλ
= − m

d cos(2α)
(1.20)

which shows that a larger blazing angle α means a better angular dispersion.
However, the dispersion capability of the diffraction grating is limited by not only

its angular dispersion but also the diffraction limit because of the wave nature of
light, very much alike the prism discussed in the previous section. When a light of
wavelength λ strikes the grating of a total widthW at an incident angle θi, the grating
is equivalent to a single slit of width W cos θi. By (1.11), the angle between the two
power minima close to the principal power peak is

δθ = λ

W cos θi
(1.21)

Applying the Rayleigh criterion, we need to have

dθ(m)
o ≥ δθ

in order to be able to distinguish the two diffracted monochromatic lights. By (1.19)
and (1.21),

λ

dλ
≤

W cos θi

[
sin θ(m)

o − sin θi

]

λ cos θ
(m)
o

(1.22)

Similar to the previous section, we define the resolving power R

R =
W cos θi

[
sin θ(m)

o − sin θi

]

λ cos θ
(m)
o

(1.23)
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showing that a broad grating (i.e., a large grating width W ) will result in a good
resolving power R. In other words, we need a broader grating to achieve a better
dispersion capability. In reality, the fabrication of a broad grating with uniform and
periodic lines is not trivial.

In comparison with the prism, the diffraction grating can reach a much higher
resolving power. However, it has the overlapping effect of (1.17) so that supplemental
optical filters are commonly used in the diffraction grating applications (such as to
filter away the 600 nm light in Fig. 1.1b) to realize light dispersion in a restricted
optical wavelength range. Another different aspect about the prism dispersion and
the diffraction grating is that the diffraction grating is normally made of metallic
materials with high refractive indices, while the materials of prism are normally
highly transparent.

To obtain a basic picture about a realistic diffraction grating,we go to thorlabs.com
and look at the typical 500 nm blaze wavelength reflective diffraction grating, say
Item nr GR25-0305: width × height × depth = 25 × 25 × 6mm3, blaze wavelength
= 500nm (the wavelength of light that yields the greatest absolute efficiency of the
diffraction grating), N = 300 per mm, blaze angle α = 4◦18′, and dispersion= 3.32
nm/mrad (which is the inverse of the angular dispersion defined by (1.19)).

1.3 Fourier Transform Spectroscopy

The principle of the Fourier transform spectroscopy is totally different from the ones
of the dispersing prism and the diffraction grating that decompose a multi-colored
light into its compositing monochromatic lights along different spatial output direc-
tions. Fourier transform spectroscopy is realized through the Michelson interferom-
eter shown schematically in Fig. 1.7.

Stationary 
mirror

Movable mirror

Beam splitter

Incident light Si

Output light So

Optical path scanning

Beam 1

Beam 2

Observation

Fig. 1.7 Schematics of the Michelson interferometer. An incident light is split into two beams by
the beam splitter then merged after the optical path of beam 1 is modified by a movable mirror.
Mathematical analysis, i.e., Fourier transform, of the output light So(Δ) in terms of the optical path
difference Δ between beam 1 and 2 gives us information of Si(λ)
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When an incident monochromatic light Si(λ) of wavelength λ is introduced into
the Michelson interferometer, it is split into two beams by the beam splitter, one of
them, beam 1, strikes to the reflecting movable mirror, and the other, beam 2 goes
to the stationary mirror. When the movable mirror is controlled in such a way to
introduce an optical path difference Δ to the two beams, the output light So(Δ) at
the observation plane is a function of Δ

So(Δ) = Si(λ)

[
1 + cos

(
2πΔ

λ

)]
(1.24)

Since λ in the above equation is a denominator, we commonly introduce 1/λ = ν

as the wavenumber of the monochromatic light in order to simplify mathematical
expressions. When the incident light is composed of many monochromatic lights,
i.e., a polychromatic light, the output light is

So(Δ) =
∑

ν

Si(ν)
[
1 + cos

(
2πνΔ

)]
(1.25)

For a distributed polychromatic light such that Si(ν) is a continuous function of ν,
the summation in the above equation becomes integration

So(Δ) =
∫ ∞

0
Si(ν)

[
1 + cos

(
2πνΔ

)]
dν (1.26)

Figure 1.8a shows a typical relationship between the output light and the optical
path difference Δ, normally known as the interferogram, while (b) shows the part of
the interferogram in the vicinity of the interference maximum, and (c) displays the
situation when Δ is very large. Zero optical path difference means that the optical
paths of the two beams are equal after passing through theMichelson interferometer,
and the output light is the most strongest, since all monochromatic lights are at
the constructive interference state. The output signal oscillates as a function of Δ,
its optical power also decreases gradually until the signal is eventually drowned
by the noise. We observe strong oscillations of the output light in the vicinity of
the interference maximum. The interference effect persists even the optical power
oscillation is weak when the optical path difference is long. Figure 1.8a is obtained
by measuring So(Δ) as a function of Δ, which is deduced from the speed of the
movable mirror and the measurement time.

The optical spectrum of the original incident light Si(λ) is finally extracted from
So(Δ) by the mathematic Fourier transform of either (1.25) when the spectrum is
discrete or (1.26) for the continuous spectrum. Consider only the modulated part of
the continuous spectrum, (1.26) becomes

So(Δ) =
∫ ∞

0
Si(ν) cos

(
2πνΔ

)
dν (1.27)
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Fig. 1.8 a A typical interferogram So(Δ); b Interferogram around interference maximum; c Inter-
ferogram when the optical path difference is large

by which the spectrum of the incident light beam is obtained by the inverse Fourier
transform

Si(ν) = 4
∫ ∞

−∞
So(Δ) cos

(
2πνΔ

)
dΔ (1.28)

therefore the name of Fourier transform spectroscopy. The above mathematic oper-
ation can be easily performed via either software or hardware.

It is easily realized that Si(λ) depends on the whole data set of So(Δ) as a function
of Δ, which is the speed of the movable mirror multiplied by the measurement time.
In other words, during the Fourier transform spectroscopy measurement, any error
or mistake at any time will affect the determination of the whole spectrum Si(λ).
This is rather different from the dispersing prism and diffraction grating measure-
ments where we measure directly as well as independently Si(λ) as a function of
λ. One error or mistake at one wavelength can be corrected by a new measurement
at that specific wavelength, while the correction or revision of a Fourier transform
spectroscopic spectrum is much more involved. Therefore, the measurement of the
Fourier transform spectroscopy is in general muchmore complicated and demanding
as compared with the prism dispersion and diffraction grating measurements.

The optical spectrum Si(λ) after Fourier transforming the interferogram So(Δ) of
Fig. 1.8 is presented in Fig. 1.9. This is an optical spectrum in the infrared range,
consisting of discrete monochromatic lights below 1000 cm−1 as well as a broad
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Fig. 1.9 Optical spectrum
Si(λ) obtained by Fourier
transforming the
interferogram So(Δ) of
Fig. 1.8
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continuous band above 1000 cm−1. As implicated by the Fourier transform, a broad
spectrum will be reflected in the interferogram as a fast decay of the interference
oscillation as a function of the optical path difference. Conversely, a narrow peak
in the optical spectrum will be reflected as a slow decay in the interferogram. At
the extreme situation, a monochromatic light, i.e., a single δ function of wavelength
corresponds to amonotonic cosine function in the interferogram.All these are clearly
reflected in Figs. 1.8 and 1.9. In Fig. 1.9, the broad and continuous spectrum above
1000 cm−1 is related to the fast oscillating and quick decaying feature in Fig. 1.8b in
the vicinity of the zero optical path difference. The periodic and slowdecaying feature
in Fig. 1.8c results in the discrete and sharp peaks below 1000 cm−1 in Fig. 1.9.

The resolving power of the Fourier transform spectroscopy is determined by the
maximal optical path difference Δmax (unit = cm) in the Michelson interferometer
that its inversion 1/Δmax (unit = cm−1) is denoted as the spectral resolution δν of
the Fourier transform spectroscopy. Physically, the spectral resolution δν means to
introduce a phase difference of 2π between two monochromatic lights of ν1 and ν2,
ν1 − ν2 = δν, i.e.,

2π
(
ν2 − ν1

)
Δmax = 2πδνΔmax = 2π (1.29)

so that

δν = 1

Δmax
(1.30)

Thus, for a Fourier transform spectroscopy with a spectral resolution of 2 cm−1, the
maximal optical path difference between the two split beams is 0.5 cm; For a high
resolution of 0.01 cm−1, Δmax needs to be 100 cm, i.e., Δmax = 1 m! For whatever
the optical path difference, (1.27) and (1.28) requires an absolute error less than half
the wavelength since

cos
(
2πνΔ

)
= cos

[
2πν(Δ + λ)

]
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For a monochromatic light of 2 µm wavelength (short-wavelength infrared), the
mechanical motion and the position of the movable mirror is to be controlled within
an error range of less than 1 µm. We understand immediately the meaning of this
1 µm in terms of 1 m for the Fourier transform spectroscopy, both the mechanical
precision control as well as the resistance to the disturbance from environment during
the measurement.

Note that in a common interferogram such as Fig. 1.8, the amplitude of the optical
power oscillation decreases following the increase of the optical path difference.
Let us denote the value of the optical path difference Δnoise when the oscillation
amplitude equals the noise level of the spectroscopy. Further increasing Δ will not
give us new information. Thus, the noise level of the spectroscopy also sets an upper
limit for the spectral resolution. When Δnoise < Δmax, the final spectral resolution of
the spectroscopy is determined by Δnoise. In other words, the spectral resolution will
be reduced when the measurement sensitivity becomes deteriorated because of the
decrease of the sensitivity of the photodetector, the efficiency of the light source, the
reflectivity of the mirrors along the optical path, the efficiency of the beam splitting,
etc.

2017 Nobel Prize in Physics was awarded to Rainer Weiss, Barry C. Barish, and
Kip S. Thorne “for decisive contributions to the LIGO detector and the observation
of gravitational waves.” The LIGO detector is a laser-based interferometer consisting
of two arms that form an L. A single laser beam is split at the corner of the L into
two identical beams that travel along the arms and reflect back from the mirrors
mounted at the ends of the arms then meet again at the corner. When the lengths of
the two arms are equal, the two beams meet at the corner synchronously. A passing
gravitational wave will compress one armwhile stretch the other, resulting in the loss
of the synchronization where the beams meet, thereafter becoming captured by the
LIGO detector. With various careful noise considerations and because the changes of
the arm length caused by the gravitational wave was estimated to be very small and
proportional to the arm length, the arm length in the LIGO detector was 4 km long,
and the light beam originated from a pre-stabilized Nd:YAG laser with a wavelength
of 1064 nm [3].

1.4 Modulation Spectroscopy Based on Fourier Transform

When measuring an optical spectrum in the infrared range, especially in the long-
wavelength (8–15µm) and far infrared range (15–1000 µm), many factors start to
affect the measurement capability as well as the sensitivity. The factors in the top list
include light sources, photodetectors and various optical components. Prism disper-
sion and diffraction grating are to be replaced by the Fourier transform spectroscopy
in order to reach the necessary spectral resolution in the infrared range since we
simply cannot use a dispersing prism or a diffraction grating with a geometric size
of 1 m in order to reach a spectral resolution of 0.01 cm−1, see (1.13) and (1.23).
Fourier transform spectroscopy is thus developed to circumvent this issue in space
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Fig. 1.10 Schematic optical
setup of the modulation
spectroscopy based on the
Fourier transform
spectroscopy
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(large device size) by obtaining the optical spectrum in the time domain (optical path
modulation by the movable mirror in the Michelson interferometer).

We briefly discussed the noise issue in the previous section which can be a dom-
inant limiting factor in determining the spectral resolution of the Fourier transform
spectroscopy. In order to detect weak signals, modulation spectroscopy is developed
that a periodically modulated signal is added to the sample, which will induce a peri-
odic response(s) from the sample. The periodic response(s), which may be rather
weak, can be detected via frequency and/or phase lock-in techniques that suppress
noises which are in principle random in both the space and time domains. We shall
learn the modulation spectroscopy in details in Chap. 5.

Figure 1.10 shows schematically the optical setup of a modulation spectroscopy
based on the Fourier transform spectroscopy. A probing continuous light beam from
the light source, normally polychromatic, is split into two beams that strike to the
stationary andmovablemirrors, respectively. The reflected beams are then introduced
to the sample. At the same time, a monochromatic light from a laser is introduced
to the sample through a light chopper (thus periodical modulation). Light from the
sample is collected by the detector, forming S(Δ). Both S(Δ) and the modulating
light are fed into the lock-in amplifier which extracts the signal Slock−in(Δ) from
S(Δ) that has the same frequency and same phase as the modulating light.
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Let us be a bit more specific in order to understand the functioning mechanism
of the modulation spectroscopy. We say that we want to measure the reflectivity of
the material, which is the response of electrons inside the material to the external
light, i.e., the so-called light-matter interaction. Slock−in(Δ) from the modulation
spectroscopy is then the change of the reflectivity of the material caused by the
modulating light, which can be further traced back to the most fundamental light-
matter interaction inside the material.

Fourier transform modulation spectroscopy can work in two modes. One is the
so-called rapid scan (RS) mode. In this RS mode, the movable mirror moves at a
constant velocity v, and the optical path difference at time t is given byΔ = 2vt . The
interferogram, always an explicit function of time t , is now determined by both the
speed of the movable mirror and the frequency of the modulating light, for which,
the RS mode is also known as the double-modulation mode. The RS mode works
well when the optical signal does not change or changes very slowly relative to the
time needed to complete the measurement. In most practical infrared applications,
the optical response frequency is not high, normally only tens kHz. Therefore, a
proper choice of scanning speed is very critical for the RS operation [4, 5].

The other operation mode is the step scan (SS) mode. Here the movable mir-
ror is moved incrementally stepwise. When the sample is modulated, the temporal
dependence of the response signal, i.e., the interferogram, is totally determined by
the modulating light. Fourier transform spectroscopy commonly uses highly-stable
He-Ne laser to calibrate the optical path difference Δ. And during the operation, the
same laser light may be scattered to the sample and subsequently acquired by the
photodetector. Moreover, background radiation from ambient environment may also
be acquired, contributing to the output signal S(Δ). In the SS mode, real signal from
the sample is expected to have the same temporal dependence as themodulating light,
while all other signals do not. A lock-in amplifier can therefore easily extract the
true sample signal from others such as due to background radiation or the calibration
He-Ne laser [6].

1.5 A Few Key Notes in Spectral Measurement

In the previous two sections we have listed a few critical factors in spectral measure-
ments. As we all know, there are millions of details in any experiment that need to
be totally under control. For spectral measurements, the photodetector acquires any
light that reaches the photodetector without any discrimination, including the light
from the sample, as well as lights from the light source via reflection and diffraction
etc. Moreover, the geometric size of the photodetector is normally small so that light
collection/focus is always a key issue. To stably keep the whole measurement setup
at its optimal operation status, especially for field operations in various and vary-
ing environments, is a daunting task. It is generally known that the absolute optical
power is the most difficult parameter to be properly assessed, while the wavelength
is almost the easiest to be absolutely measured, and the next easiest is the geometric
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shape of an optical spectrum such as the width of the quantum dot photolumines-
cence peak in Fig. 1.1b. This is normally why most spectral analysis focuses on the
peak wavelength and the spectral peak width, while the analysis of the optical power
is secondary.

The measurement of a reflection spectrum is much vulnerable than the transmis-
sion spectrum since it depends much on the surface roughness of the sample as well
as the geometric control of the incident and reflected lights with respect to the sample
surface. The sample positioning in the reflection spectrum needs further care such
that its reflection surface should be aligned with the calibration mirror (to acquire
the background signal of the system). The calibration mirror is highly reflective with
a metal coating for a reflectivity of as close to 100% as possible, free of dust, and
most importantly, free of diffraction.

In infrared spectral measurement, the whole measurement setup is commonly
put into a vacuum chamber to avoid absorption by CO2 and H2O in the atmosphere,
which can significantly modify the optical path of the measurement setup if the setup
was previously optimized in another ambient environment. Therefore, the calibration
of the reference spectrum is to be performed in the same environment as acquiring
the spectrum of the sample. This can be illustrated by the following spectral analysis
procedures.

By impinging a probing light Si(λ) on a sample we measure the optical response
such as reflection spectrum Ssample(λ) of the sample. Ideally, it is only Si(λ) that
strikes the sample to induce Ssample(λ) and the optical signal we measure is

Dideal
sample(λ) = Ssample(λ) Si(λ) (1.31)

Here we take the linear optics as an example where the output signal is proportional
to the probing light and the optical response of the sample. Happily we deduce
Ssample(λ) as

Ssample(λ) = Dideal
sample(λ)

Si(λ)
(1.32)

However, Si(λ) can induce many secondary lights before striking the sample
which will also contribute to the output signal. In real measurement therefore,

Dreal
sample(λ) = Ssample(λ) S(λ) (1.33)

where S(λ) includes all the lights that strike the sample. The determination of S(λ)

is not trivial and experimentally the problem is circumvented by calibrating the
measurement setup through measuring the signal from a reference sample such that
Dreference(λ) ≈ S(λ) and

Ssample(λ) ≈ Dreal
sample(λ)

Dreference(λ)
(1.34)
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Many spectrometers output Ssample(λ) directly from their softwares. However
we notice by (1.34) that Dreference(λ) is the denominator so that even a very small
error or fluctuation in Dreference(λ) in some frequencies or frequency ranges where
Dreference(λ) is close to zero, such as absorption lines of CO2 and H2O in the infrared
range, will result in a huge peak in Ssample(λ)which is not necessarily originated from
the sample. Thus, a proper reference about Dreference(λ) when analyzing Ssample(λ) is
of critical importance. We will present an example of the reference measurement in
Sect. 6.3.

As we have learned before, Fourier transform spectroscopy measures indirectly
the optical spectrum. It first measures the interferogram then converts the inter-
ferogram into the optical spectrum through mathematical Fourier transform. When
environmental perturbations, such as electromagnetic radiations from a nearby AC
power source, are accidentally acquired, theywill appear in the output spectrum from
the Fourier transform. The simplest way to check and double check the final result
is to run repeatedly the measurement by varying the scanning speed. Normally, true
spectral features do not depend on the scanning speed, while any features that depend
on the scanning speed should be deleted.

The vertical axis of an optical spectrum is normally the optical power (equiva-
lently, photon count), while the horizontal axis differs in different measurements,
which can be either the photon energy or the wavenumber (such as Fig. 1.9 from
Fourier transform spectroscopy), or the wavelength (such as Fig. 1.1 from a grat-
ing). When analyzing optical spectra from semiconductors we normally prefer to
use the photon energy as the unit for the horizontal axis, since physical models are
commonly based on the energy band structures of the semiconductors. For example,
absorption peaks are normally correlated to the electron transition from one energy
level to another so that the photon energy of an absorption peak corresponds directly
to the energy difference between the two energy levels. Another example for using
the photon energy as the unit of the horizontal axis is that optical interference induces
a series of peaks equally distanced in energy. This is very useful when analyzing opti-
cal spectrum of a thin film since the film’s geometrical structure can easily induce
light interference effects. A further example about the unit is that the absorption
and emission peaks are commonly described by either Lorentz or Gaussian peaks,
depending on the dominant energy-relaxation processes, when the photon energy is
used as the unit of the horizontal axis. On the contrary, the energy feature of the
electron transition becomes vague when wavelength is used as the unit; or we cannot
assess directly the interference feature; or the absorption and/or emission peak will
not be symmetric in a horizontal axis using the unit of wavelength.

The photon energy is normally in the unit of electron volt (eV) or wavenumber
(cm−1), while the wavelength can be nm or µm. The conversion between photon
energy E and wavelength λ is straightforward:

E [eV] = 1.2398

λ [µm] (1.35)

and 1 [eV] = 8.066 × 103 wavenumber [cm−1].
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Chapter 2
Introduction to Physics and Optical
Properties of Semiconductors

Abstract As the theoretical basis for the whole book, we introduce fundamental
physics and optical properties of semiconductors in this chapter. We start the chapter
by describing the electrons and their energy band structures in semiconductors based
on quantum mechanics, then the electromagnetic field by the Maxwell’s equations.
The focus of the chapter, and actually the central theme of the book, namely, the light-
matter interaction, is studied in terms of first quantizing the electromagnetic field in
terms of the number of photons and the energy carried per photon then calculating
the optical transition of the electron between energy bands in semiconductors after
either absorbing or emitting one photon. We also describe the phonon spectrum of
the semiconductor which is responsible for many key features in the infrared spectra
of the semiconductors.

Semiconductors are materials that have moderately good conductivities, which are
higher than those of insulators and lower than those of metals, resulting in the name
of semi-conductor. Various semiconductors exhibit different optical properties. Here
are just a few of these optical properties: Irradiationwith light can transform the semi-
conductor from insulator-like behavior tometal-like behavior. The optical absorption
spectra of semiconductors normally exhibit a threshold. Below the threshold fre-
quency, light can pass through with practically no losses, whereas above it the light
is strongly absorbed. Silicon is the main-stream material in semiconductor elec-
tronics industry. Its optical applications are however limited since it is an indirect
energy bandgap material; While III–V semiconductors are main actors in photonics,
crystalline silicon solar panels dominate worldwide markets.

All these macroscopic properties of a semiconductor can be traced back to a com-
mon microscopic origin: its energy band structure of electrons and electron-photon
interaction. In this chapter we present a brief introduction and quantum mechanical
description of electrons and photons in semiconductor materials. The chapter starts
with the basic electronic energy band structure of a single atom, the modifications of
the energy band structure when more atoms are brought together to form bulk mate-
rials, i.e., solid states. We study the light-matter interaction in the following way.
Quantum electrodynamics describes fully the light-matter interact to an unprece-
dented accuracy. It is a relativistic theory. Since our study is non-relativistic and the
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classical Maxwell’s equations can be derived from the quantum electrodynamics in
the realm of non-relativity, light in transport is described as an electromagnetic field
by the Maxwell’s equations in terms of the amplitude and the wavelength of the
electromagnetic field, while it is a photon when interacting with matter quantified by
the number of photons and the energy carried per photon. The focus of the chapter,
and actually the central theme of the book, namely, the interaction between the elec-
tron and the photon, the so-called light-matter interaction, is studied in terms of the
optical transition of the electron between energy bands in semiconductors after either
absorbing or emitting one photon, at the end of the chapter. In the following chapters,
we will introduce other physical processes related to various optical spectra such as
plasmon oscillation of free electrons in Sect. 3.5, multiphoton excitation in Sect. 4.6
and ultra-fast (femtosecond) optical transitions in Sect. 6.4.

Themathematical equations presented in the chapter look tough.They are however
straightforward results of careful (and many times, tedious) systematic analysis,
mathematical operations and numerical considerations. For example, we present the
Bloch theorem about the energy band structures of electrons in a bulk semiconductor
by discussing the periodic lattice structure. The Maxwell’s equations are studied in
very detail in order to introduce a complete picture, as fundamental as possible, about
the light-matter interaction in semiconductors of our interest. Many realistic physical
parameters are also considered and discussed so that the pre-conditions of our studies
can be checked and consistent with the final conclusions.

2.1 Energy Band Structure of Electron State

Apure semiconductor, also referred to as an intrinsic semiconductor, has an electrical
conductivity whose value is normally between the ones of a metal (conductor) and an
insulator. The wide applications of the semiconductor are mainly due to the tunabil-
ity of its electrical conductivity by many means including modulating temperature,
illumination and doping. The electrical conductivity of an extremely pure semicon-
ductor decreases following the decrease of its temperature, it may reach zero at zero
Kelvin, while a highly-doped semiconductor can have an electrical conductivity as
high as that of a metal. Furthermore, a semiconductor will absorb light that impinges
on it when the photon energy is higher than a certain threshold value. Photons whose
energies are smaller than the threshold value will pass through the semiconductor
without significant loss.

Ge andSi, i.e., group IVmaterials, are dominating semiconductormaterialsmostly
for electronics ever since the beginning of the semiconductor industry marked by the
invention of PNP point-contact Ge transistor in 1947 by John Bardeen, William
Shockley, and Walter Brattain in Bell Labs. GaAs and other III–V materials have
now been widely used because of their direct energy bandgaps and high electron
mobilities. At room temperature, the direct bandgap of GaAs is 1.42 eV and its
electron mobility is 8500 cm2/V·s, while Si is an indirect-bandgap material with a
typical value of the electron mobility about 1400 cm2/V·s.
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All these properties and applications of semiconductors are solely determined by
a commonmicroscopic origin: the energy band structures of electrons in the periodic
lattice structures of atoms in semiconductors. Today, we study and develop semicon-
ductor nanotechnology within which we position atoms of semiconductor materials
in constrained three-dimensional spaces to modify/tailor the energy band structures
as well as construct totally novel energy band structures for various applications.
For example, [1] reports in 2016 nanostructured amorphous In-Ga-Zn-O field-effect
network to sense glucose, while colloidal semiconductor quantum dots, to be closely
studied in Chap. 7, have been extensively studied and developed (many of these
quantum dots have already been commercialized) in the past 20 years.

Let us focus on the energy band structure of electrons in a semiconductor. In a
semiconductor, atoms, either single atoms or groups of different atoms, are positioned
in a periodic lattice in space. Energy levels of electrons in a single atom in vacuum are
discrete and very narrow (infinitely narrow in theory).Moving two single atoms close
to each other will make the wave functions of energy levels of the electrons in the
two individual atoms overlap, resulting in interactions between electrons originally
confined to their parental atoms. Quantum mechanically, one energy level of the
electron in a single atom and the corresponding level in another identical atom (the
two energy levels are degenerate when the two identical atoms are well separated
in space) will split into two energy levels separated in the energy domain when
the two atoms are brought together in the space domain. And the energy difference
between the two split energy levels represents the interaction strength between the
two energy levels of the individual atoms, it increases following the decrease of the
spatial distance between the two atoms. Pure theoretically, degenerate energy levels
of individual atoms will split into a number of energy levels when atoms are placed
closely with each other. And the number of split energy levels equals the number
of atoms, and the energy separations between the split energy levels are inversely
proportional to the space distances between atoms. At room temperature, the lattice
constant (see below about its precise definition) of GaAs is a = 5.65Å, it is 5.43Å
in Si. The density of atoms in these materials is therefore as high as 1/a3 ∼ 1028

atoms/m3. At such a high density of atoms, the split energy levels are so densely
populated in the energy domain that they form continuous energy bands.

Table 2.1 lists the atomic structures of elements that compose common semi-
conductors. Electrons in one individual atom are normally categorized into core
electrons and valence electrons. Core electrons are tightly bound to the nucleus so
that they normally do not interact significantly with valence electrons and electrons
of other atoms, while valence electrons interact with each other in the same atom,
they also interact with valence electrons of other atoms such as forming chemical
bonds between atoms. Core electrons are normally not responsible for the unique
properties of semiconductors so are not directly relevant for semiconductor appli-
cations. Lattice structures, electronic and optical properties of semiconductors and
devices are mostly determined by the valence electrons. Table 2.1 shows that the
valence electrons of commonly used semiconductor elements are all either s or p
type, which is the major reason that electron states close to the valence bandedges
and conduction bandedges in semiconductors are similarly s or p type.
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Table 2.1 Atomic structures of elements that compose common semiconductors

Element Core electrons Valence electrons

IV-Si 1s22s22p6 3s23p2

IV-Ge 1s22s22p63s23p63d10 4s24p2

III-Ga 1s22s22p63s2sp63d10 4s24p1

V-As 1s22s22p63s2sp63d10 4s24p3

II-Cd 1s22s22p63s23p63d104s24p64d10 5s2

VI-Se 1s22s22p63s23p63d10 4s24p4

Fig. 2.1 a Schematics of
energy levels of electron
orbitals in an individual Si
atom. Electrons in 1s, 2s and
2p levels are categorized as
core electrons and electrons
in 3s and 3p are valence
electrons. b Schematic
energy band structure of a Si
crystal in the k space

In general, when atoms exchange or share valence electrons so that the outmost
shells are completely filled, they have a lower electrostatic energy than when they are
spatially separated. For example, an individual Si atom has four valence electrons, 2
electrons occupying the single 3s energy level and 2 electrons occupying the three
degenerate 3p energy levels, constituting the outmost shell, see Table 2.1 andFig. 2.1.

In an infinitely large Si bulk material, the four valence electrons in the s and
p levels of one Si atom first hybrid to form four degenerate sp-hybrid electrons
then share with four neighboring Si atoms, resulting in a three-dimensional cubic
atomic lattice structure in which the outmost sp hybrid states of every Si atom are
completely occupied, see Fig. 2.2a. Most semiconductors used in electronics and
photonics have this cubic crystal structure. This crystal structure can be decomposed
into two interlaced face-centered cubic (FCC) lattices, see Fig. 2.2b, with a spatial
displacement of one quarter of the cubic diagonal. The structure can also be viewed
as one FCC lattice with a basis composed of two atomic sites at

d1 = (000), d2 = a

4
(111)
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Fig. 2.2 a Zincblende crystal structure. d1 and d2 may be occupied by two different types of atoms,
such as Ga and As, respectively, in GaAs; When they are of same type of atoms, e.g., two Si atoms
in a Si crystal, the crystal structure is called the diamond structure. b Face-centered cubic (FCC)
crystal. a1, a2, and a3 are basis vectors of the crystal. a is the so-called lattice constant

respectively, see Fig. 2.2a, where a is the so-called lattice constant. When two atoms
sitting at d1 and d2 are identical, such as Si atoms in a pure Si crystal, also other
group IVmaterials, the structure is called the diamond structure. If the two atoms are
different, such as GaAs, AlAs and CdS, the structure is referred to as the zincblende
structure. Note that the crystal structures of group II–VI materials such as CdSe
are normally more complicated than group IV and III–V materials, e.g., β-CdSe is
zincblende shown in Fig. 2.2a, while α-CdSe is wurtzite.

In short, atoms in semiconductors are periodically positioned at lattice points in
space, which can be mathematically expressed

Rm = m1a1 + m2a2 + m3a3 (2.1)

where Rm is the space position of lattice point m, m = (m1,m2,m3) are three inte-
gers (may be negative), and (a1, a2, a3) are basis vectors of the semiconductor crys-
tal structure. The three basis vectors of the face-centered cubic lattice is shown in
Fig. 2.2b.

We now turn to quantum mechanics to study the valence electrons in semicon-
ductor crystals. The Hamiltonian of one electron (we focus on the valence electrons
which are simply referred to as electrons from now on), say electron i denoted by
its spatial position r i , in a semiconductor whose crystal lattice structure is described
by (2.1), is

H(r i ) = −�
2∇2

i

2m0
−
∑

m

Z∗
me

2

4πε0|r i − Rm | +
∑

j �=i

e2

4πε0|r i − r j | (2.2)

where Z∗
m is the effective atomic number of atom m at lattice position Rm defined as

the atomic number minus the number of core electrons. Z∗ = 4 for Si atom, Z∗ = 3
for Ga atom, Z∗ = 5 for As atom, and so on. m0 is the free electron mass. The first
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term on the right side of the above equation represents the kinetic energy of electron
i , the second term is the Coulombic potential energy due to its interactions with
nuclei plus core electrons, i.e., Z∗e, and the last term is the Coulombic potential
energy due to its interactions with other valence electrons. The next step is to solve
the following Schrödinger equation

[
∑

i

H(r i )

]
Ψ (r1, r2, . . . r i . . .) = E Ψ (r1, r2, . . . r i . . .) (2.3)

which in practice is very difficult.What we actually do now is to carefully analyze the
situation: Atoms are positioned periodically in space, see (2.1), which implicates that
the spatial distributions of electrons, both the core electrons and valence electrons, are
also periodically distributed in space! Electron i therefore will “feel” the Coulombic
fields from Z∗e which are periodic in space as well as the Coulombic fields of other
valence electrons which are also periodic in space. We therefore can formulate the
following single-electron Schrödinger equation

[−�
2∇2

2m0
+ V0(r)

]
Ψ (r) = E Ψ (r) (2.4)

where the second term V0(r) on the left side of the above equation is the effective
potential of the crystal which is periodic in space

V0(r) = V0(r + Rm) (2.5)

Note that now we work on the single electron, we drop off subscript i and j that
distinguish electrons in the crystal in (2.2) and (2.3).

Consider a one-dimensional model crystal in Fig. 2.3. Atoms are periodically
positioned along the z axis at a spatial interval a, which is the lattice constant of this
one-dimensional crystal. There are totally N atoms so that the size of the crystal is
Na. The whole crystal can be viewed as a composition of N unit cells centered at
atoms with a size of a. Naturally there can be more than one atom in each cell, such
as the zincblende lattice in Fig. 2.2. Back to Fig. 2.3, the crystal is defined within z ∈
(0, Na), and the effective periodic potential V0(z + Rm) = V0(z), m = 1, 2, . . . N ,
Rm = ma is the spatial position of lattice site m (it becomes vector Rm of (2.1) in a
three-dimensional crystal). In practice the crystal is very large so that we can extend
Na along the z axis such that V0(z + ma) = V0(z) with any integer m.

A real crystal extends in the three dimensional space. Moreover, the three basis
vectors (a1, a2, a3) are not necessarily orthogonal to each other, similar to the case of
Fig. 2.2b. Let us simplify the situation by assuming a basis set of orthogonal vectors
(ax , 0, 0), (0, ay, 0), (0, 0, az), along the three axes of a Cartesian coordinate, and the
numbers of unit cells are Nx , Ny and Nz .We then extend the three dimensional crystal
into the whole mathematical space so that the crystal is now translational symmetric,
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Fig. 2.3 A one-dimensional model crystal

rigorously, V0(r + R) = V0(r), where R is the spatial position of any lattice site, i.e.,
(2.5). Here we drop off the subscript “m” in R to simplify mathematical expressions.

Refer to Fig. 2.3. Since V0(r) is periodic in space, the distribution of an electron
in this periodic potential must be periodic too.Without losing generality, the solution
of (2.4) can be expressed as

Ψk(r) = uk(r) eik·r , uk(r) = uk(r + R) (2.6)

so that the electron distribution, which is |Ψk(r)|2 quantum mechanically, satisfies
the requirement to be periodic. This is the well-known Bloch theorem by which we
describe the wave function of the electron in a crystal by a plan wave eik·r modulated
by a periodic function uk(r), see Fig. 2.3. Here k is normally known as the wave
vector of the electron in a crystal.

Insert (2.6) into (2.4) to obtain the following equation for uk(r)

[
�
2k2

2m0
+ −i�2k · ∇

m0
+ −�

2∇2

2m0
+ V0(r)

]
uk(r) = Ek uk(r) (2.7)

which shows that uk(r) depends on k. This is very important, see more below when
we study the light-matter interaction. This iswhywedenoteuk(r)by subscript “k”, so
is the case for the eigen energy E = Ek that is k-dependent. uk(r) is commonly called
the periodic function, or Bloch function. Possible numerical values of k depend on
the lattice structure which form the so-called k space, which was already introduced
in Fig. 2.1 where a schematic energy band structure Ek is shown in the k space.

Because of the large number of unit cells existed in a crystal, there are a lot of
eigen solutions from the above equation (recall the discussion of energy level split
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Fig. 2.4 Energy band
structures of crystal C (a)
and Si (b) calculated from
the sp3s∗ tight-binding
theory. kc denotes the wave
vector of the conduction
bandedge

when atoms are brought together). It is found from numerical calculations that the
eigen solutions form energy bands, which can be denoted by band index � such that

Ψ�k(r) = u�k(r) eik·r , u�k(r) = u�k(r + R) (2.8)

with eigen energy E�k. The relationship between E�k and k is known to be the energy
dispersion relationship, or energy band structure. Moreover,

E�,k = E�,−k (2.9)

because of the periodicity of the crystal lattice in space. Figure 2.4 shows the energy
band structures of crystal C and Si calculated by using the so-called sp3s∗ tight-
binding theory [2].

A little explanation is needed to understand Fig. 2.4. The vertical axis is the
electron energy in unit of eV. The horizontal axis is “k direction”. For the FCC
lattice of Fig. 2.2b, the k space, i.e., the numerical values of k in (2.6), are denoted
by points of symmetry such as

� = (0, 0, 0), X = (1, 0, 0), L =
(
1

2
,
1

2
,
1

2

)
(2.10)

in terms of unit vectors along kx , ky and kz directions (whose lengths are 2π/a, where
a is the lattice constant of the FCC lattice). Thus in Fig. 2.4, the k value from � to
X symmetry point changes linearly

(0, 0, 0) →
(
2π

a
, 0, 0

)
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From � to L,
(0, 0, 0) →

(π

a
,
π

a
,
π

a

)

Now we know the energy band structure, the next step is to fill electrons of the
crystal to the energy levels in the band structure, starting from the lowest energy level.
According to the Pauli exclusion principle, each energy level can be maximally
occupied by two electrons, one spin up and one spin down. It just happens that
for intrinsic semiconductors and insulators at a not-too-high temperature, valence
electrons fill completely energy bands up to the so-called the valence band (VB). In
other words, the valence band is the highest occupied band. All those energy bands
which are higher than the valence band are totally empty. The lowest unoccupied
band is called the conduction band (CB). In a metal, however, the conduction band
is partially filled. Note that the temperature of the semiconductor affects the electron
occupation of the energy level.We put a condition of a not-too-high temperature here
temporarily.

By these we are able to understand, at least qualitatively, the property differences
among an insulator, a semiconductor and a metal that we read at the beginning of
this chapter: First of all, the electron transport is described quantum mechanically
by its electric current density vector

j k(r) = −e�

2im0

[
Ψ ∗

k (r)∇Ψk(r) − Ψk(r)∇Ψ ∗
k (r)

]
(2.11)

which for electron state Ψk(r) of (2.6) becomes

j k =
∫

j k(r) dr = −e�k
m0

(2.12)

after a few simple but necessary mathematical operations. The above equation indi-
cates that the electrical conductivities of insulators and intrinsic semiconductors are
in theory zero since their energy bands up to the valence bands are completely filled.
k and −k states, whose energies are equal, see (2.9), are equally occupied but their
contributions to the electrical conduction cancel with each other, i.e.,

j k + j−k = 0 (2.13)

Metal, on the other hand, has electrons that partially fill the conduction band, thus is
highly conducting.

The valence band and the conduction band is separated in the energy domain
by the so-called energy bandgap, see the energy ranges between horizontal dashed
lines in Fig. 2.4. The energy bandgaps of common semiconductors are about 1.0 eV,
while they are normally higher than 3.0 eV for insulators. Electrons that originally
occupy the valence band can be thermally excited to the conduction band if the
energy bandgap is not too wide, which is the case for a semiconductor (think about
the thermal excitation energy of kBT which is 25 meV at room temperature of
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T = 300 K), therefore, an intrinsic semiconductor can conduct at a temperature with
a corresponding thermal excitation energy comparable to the energy bandgap, while
an insulator needs to be heated up to an extremely high temperature (may already
exceeds its melting temperature) in order to conduct. Doping can induce impurity
levels inside the energy gap that narrows the energy bandgap that contributes to the
electrical conductivity. Furthermore doping a certain amount Si atoms to replace
Ga atoms in GaAs will introduce extra valence electrons which occupy partially the
conduction band, making the Si-doped GaAs conducting.

One property about the semiconductor we introduced at the beginning of this
chapter is that impingement of light with an energy larger than a certain value on
a semiconductor makes the semiconductor conducting and light below this certain
photon energy will pass through the semiconductor without significant loss. We
now understand this that this certain photon energy value corresponds to the energy
bandgap. When the photon energy is larger than the energy bandgap, the photon
will be absorbed by the electron initially occupying the valence band, exciting the
electron to jump to the conduction band. The process is called an optical transition,
which makes the conduction band partially filled and leaves some valence-band
states unoccupied, resulting in the absorption of the photon and an increased electrical
conductivity. Electron cannot absorb photon whose energy is smaller than the energy
bandgap because there is no available state in the energy bandgap for the electron
to stay (this is the so-called one-photon excitation and we shall discuss multiphoton
excitation later).

We need to dig a bit deeper about the energy band structure in order to understand
the optical spectrum in the coming chapters. Quantummechanically, the amplitude of
an electronwave function represents the distributionof the electron in space. Thus, the
wave function should be normalized in space. Consider a three-dimensional crystal
defined by lattice vectors (ax , 0, 0), (0, ay, 0), (0, 0, az), and the numbers of unit
cells are Nx , Ny and Nz along the x , y, and z directions, respectively. The volume
of the unit cell is Ωcell = axayaz , and N = Nx NyNz is the total number of unit cells
in the crystal with a total crystal volume Ω = NΩcell. The spatial integration of the
electron distribution in space is

∫

Ω

|Ψ�k(r)|2dr =
∫

Ω

|u�k(r)|2dr =
∑

R

∫

cell
|u�k(r + R)|2dr

=
∑

R

∫

cell
|u�k(r)|2dr = N

∫

cell
|u�k(r)|2dr (2.14)

where we first insert (2.6), convert the integration over the crystal space
∫
Ω

to a
summation over unit cells and an integration over one unit-cell space

∫
cell, then utilize

the translational symmetry of the crystal lattice, i.e., (2.8), and the final equality is
due to the fact that there are N unit cells (we neglect difference between surface unit
cells and unit cells deep in the crystal since the number of surface cells is relatively
very small as compared with the number of cells deep in the crystal).
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Normally we set the Bloch function as normalized within the unit cell

∫

cell
|u�k(r)|2dr = 1 (2.15)

so that the result of (2.14) equals N , resulting in the textbook expression of the Bloch
theorem

Ψ�k(r) = 1√
N

u�k(r) eik·r , u�k(r) = u�k(r + R) (2.16)

As we now understand, an intrinsic semiconductor has a completely filled valence
band and a totally empty conduction band at low temperature. It can be thermally or
optical excited, or doped for various electronics and photonics operations so that one
or both of the valence and conduction bands become partially occupied (for n-type
doping, only the conduction band becomes partially occupied). The populations of
electrons in the conduction band and missing electrons (called holes) in the valence
band are normally low compared with a metal (the electron density in a highly doped
GaAs for Ohmic contact with a metal electrode is about 1018 cm−3, while it is about
1022 cm−3 in gold).When we either take away these electrons in a filled valence band
starting from the valence bandedge (marked by vertical down arrows in Fig. 2.4), or
fill in these electrons to an empty conduction band from the conduction bandedge,
we will find that the k values of these electrons are either very small, such as the ones
near the valence bandedge, or close to kc of the conduction bandedge (see vertical
up arrows in Fig. 2.4). Note here that in Fig. 2.4, kc �= 0 of the conduction bandedge
and k = 0 of the valence bandedge are not equal, the corresponding material is
denoted as an indirect energy bandgap material. Figure 2.5 shows the energy band
structures of GaAs and InAs. Quite differently from C and Si in Fig. 2.4, both the
conduction band and valence band of GaAs and InAs have their optimal points at the
� symmetry points in the k space, so that GaAs and InAs are called direct energy
bandgap materials. We will discuss shortly the impact of this energy band character
on the optical properties. For the moment let us discuss the consequences of small k
around either � or kc.

Equation (2.16) shows that the wave function consists of two parts. The first part
describes the periodicity of the electron wave function in the crystal in the form of

eik·r

around � or
ei(k+kc)·r

around kc. Both k in the above two expressions are very small so that

eik·r
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Fig. 2.5 Energy band
structures of GaAs (a) and
InAs (b) calculated from the
sp3s∗ tight-binding theory

is a slow-varying function in space. The second part in the electron wave function,
u�k(r) represents the orbital nature of atoms in the crystal, see its schematic represen-
tation in Fig. 2.3. Its spatial variations are limited within one unit cell. It is normally
difficult to describe numerically the two parts with the same numerical precisions
(the lattice constant of Si is 5.4 Å and 5.6 Å for GaAs while the geometric sizes of
Si and GaAs semiconductors in applications are surely much large). One solution is
to separate the two parts. Consider the wave function of (2.16) and its corresponding
Schrödinger equation (2.4)

[
p2

2m0
+ V0(r)

]
Ψ�k(r) = E�kΨ�k(r) (2.17)

Let us assume kc = 0 while the reader is encouraged to follow the coming dis-
cussion for the case of a nonzero kc to see its effects. Since quantum mechanically
p = −i�∇ and mathematically ∇eik·r = ik eik·r ,

− i�∇
[
eik·ru�k(r)

]
= −i� eik·r

(
∇ + ik

)
u�k(r) = eik·r

(
p + �k

)
u�k(r) (2.18)

The result of the secondoperationof themomentumoperator is eik·r
(
p + �k

)2
u�k(r)

and the Schrödinger equation becomes

eik·r

⎡

⎢⎣

(
p + �k

)2

2m0
+ V0(r)

⎤

⎥⎦ u�k(r) = eik·rE�ku�k(r) (2.19)

By removing eik·r from the two sides of the above equation and expanding
(
p + �k

)2

we obtain
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[
p2

2m0
+ V0(r) + �k · p

m0
+ �

2k2

2m0

]
u�k(r) = E�ku�k(r) (2.20)

By comparing the above equation with (2.17), we see that the first two terms
remain the same, which is denoted as

H0 = p2

2m0
+ V0(r)

Since k is small (this is our current interest that we focus on the energy states close
to the band edges), the last two terms can be treated as perturbations so that (2.20)
becomes (

H0 + H1 + H2

)
u�k(r) = E�ku�k(r) (2.21)

where

H1 = �k · p
m0

, H2 = �
2k2

2m0

are the first-order and the second-order perturbation, respectively.
At the symmetry point� where k = 0, only H0 is nonzero.We denote its solutions

as u�(r), where � is the energy band index of H0, i.e.,

H0u�(r) = E�u�(r) (2.22)

Surprisingly (or maybe not at all!), it is found that for most commonly used semi-
conductors, there are three u�(r) at � in the valence band which are largely p-type,
and one u�(r) at the conduction bandedge (remember that the conduction bandedge
does not always sit at �) is s-type. Recall Table 2.1 when we are bringing together
individual atoms to form a crystal, eigen energy levels of the valence electrons of
an individual atom are no longer eigen because of the interactions among valence
electrons, but the s and p characters of the valence electrons of the semiconductor
atoms are well preserved in the Bloch functions in crystal.

Back to (2.21). The solutions u�k(r) for nonzero k are in principle linear combi-
nations of um(r)

u�k(r) =
∑

m

c�m(k)um(r) (2.23)

In the above equation we used m as the band index (the same � in (2.22)) in order to
distinguish the band index of finite k from the band index at k = 0. Insert the above
equation in (2.20),

H
∑

m

c�m(k)um(r) =
∑

m

c�m(k)H um(r) = E�k

∑

m

c�m(k)um(r) (2.24)

Multiply u∗
�(r) then integrate over space
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∑

m

c�m(k)〈u�|H |um〉 = E�k

∑

m

c�m(k)〈u�|um〉 = E�kc��(k) (2.25)

Here we utilize the relation 〈u�|um〉 = δ�m , i.e., the Bloch functions are orthogonal
and normalized. Note that δ�m = 1 when � = m, it is zero otherwise.

Insert the Hamiltonian of (2.20),

(
E� + �

2k2

2m0

)
c��(k) +

∑

m

�

m0
〈u�|k · p|um〉c�m(k) = E�kc��(k) (2.26)

Since u� and ∇u� have opposite parities, the spatial integration of their product is
zero, i.e., 〈u�| p|u�〉 = −i�〈u�|∇|u�〉 = 0. Thus,

(
E� + �

2k2

2m0

)
c��(k) +

∑

m �=�

�

m0
〈u�|k · p|um〉c�m(k) = E�kc��(k) (2.27)

Neglect the k · p terms, we have

(
E� + �

2k2

2m0

)
c��(k) = E�kc��(k) (2.28)

which implies

E�k = E� + �
2k2

2m0
, c��(k) = 1 (2.29)

Now include the k · p terms, it is easy to obtain by the first-order perturbation
theory of quantum mechanics that the eigen energy is

E�k = E� + �
2k2

2m0
+ �

2

m2
0

∑

m �=�

|〈um |k · p|u�〉|2
E� − Em

(2.30)

and the corresponding wave function is

u�k(r) = u�(r) + �

m0

∑

m �=�

〈um |k · p|u�〉
E� − Em

um(r) (2.31)

Here we observe the relationship between u�k(r) and k, which has a deep impact on
the optical transition (see below).

We study more carefully the eigen energy E�k of (2.30). To mimic (2.29), we
introduce the so-called effective mass m∗

� so that
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E�k = E� +
∑

i j

�
2

2m∗
�,i j

ki k j (2.32)

where i, j = x, y, z, and

m0

m∗
�,i j

= δi j + 2

m0

∑

m �=�

〈m|pi |�〉〈�|p j |m〉
E� − Em

(2.33)

It is very important to observe that the effective mass can be anisotropic, which is
closely related to the operation of photodetection using quantum well structures [3].

Normally the interaction between two energy levels is small when the energy
separation between the two levels is large. Thus, focus only on the conduction-band
state uc(r) and the valence-band state uv(r),

m0

m∗
c,i j

≈ δi j + 2

m0

〈uv|pi |uc〉〈uc|p j |uv〉
Ec − Ev

(2.34)

Moreover, since Ec − Ev = Eg is the energy bandgap,

Eck = Ec +
∑

i j

�
2

2m∗
c,i j

ki k j

m0

m∗
c,i j

≈ δi j + 2

m0

〈uv|pi |uc〉〈uc|p j |uv〉
Eg

(2.35)

The above equations show that the effective mass of the conduction-band electron is
small when the energy bandgap is narrow. This is exactly so in reality. For commonly
used semiconductors, the effective mass of the conduction-band electron and the
energy bandgap of InSb are all small. Note that the valence band is more complicated
due to interactions among the valence-band levels at the � point so that there is not
a clear dependence of the effective masses of the valence band levels on the energy
bandgap.

It is of interest to take an extra look at the wave function of (2.31) which, after
careful study, is actually

u�k(r) ≈ u�(r) + ik · ru�(r) (2.36)

Recall that we have so far restrained us to small k so that one more step further from
the above equation is

u�k(r) ≈
(
1 + ik · r

)
u�(r) ≈ eik·ru�(r) (2.37)

which is exactly the Bloch theorem when k is very small.
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We have studied thus far the energy states of electrons close to the conduction
bandedge and the valence bandedge, which are basically all we need to know about
semiconductors for utilizing semiconductors.More specifically, the relevant physical
parameters that we need to know are: lattice constant a, energy bandgap Eg, effective
masses of conduction-band electrons and valence-band holes.

A few further mathematical derivations and physical discussions lead us to the
well-established effective mass approximation which is important for studying semi-
conductor nanostructures. Though details are beyond the scope of this book, the
reader can refer to literatures including many monographs in the field, e.g., [4]. One
simple way of reasoning is that we replace k in (2.35) by −i∇ such that

Ec +
∑

i j

�
2

2m∗
c,i j

ki k j → Ec +
∑

i j

−�
2

2m∗
c,i j

∂2

∂xi∂x j
(2.38)

When we adopt it as a Hamiltonian and try to find its eigen solutions

⎛

⎝Ec +
∑

i j

−�
2

2m∗
c,i j

∂2

∂xi∂x j

⎞

⎠ψc(r) = E ψc(r) (2.39)

for a bulkmaterial, i.e., a single crystal that extends over thewhole space, the solution
of ψc(r) is in the form of eik·r since Ec is constant in space. k is the wave vector
whichmay depend on E in a complicatedmanner because of the anisotropic effective
mass.

By referring to (2.39) we construct the well-known effective mass approximation
for nanostructures: We call ψc(r) from (2.39) the envelope wave function of the
conduction-band electron, or simply the envelope function. The total wave function
of E is Ψc(r) = ψc(r)uc(r). For a nanostructure composed of one semiconductor
in one space region and another semiconductor in another space region, Ec varies
from one space region to another. Thus, in addition to the lattice constant a, energy
bandgap Eg and effective masses that we have already specified, one extra parameter
is needed that defines the relative energy positions of either the conduction bandedge
or the valence bandedge. References [5–7] list the energies of valence bandedges of
commonly used semiconductors, known as the valence-band offsets (VBOs). The
conduction bandedge is simply VBO + Eg.

The Schrödinger equations of the effective mass approximation for various mate-
rials including nanostructures are therefore

[−�
2∇

2m∗
c

+ Eg(r) + VBO(r)
]

ψc(r) = Ecψc(r)
[

�
2∇

2m∗
hh

+ VBO(r)
]

ψhh(r) = Ehhψhh(r)
[

�
2∇

2m∗
�h

+ VBO(r)
]

ψ�h(r) = E�hψ�h(r) (2.40)
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Fig. 2.6 Spatial variations
of VBO, energy bandgap Eg,
conduction bandedge
Vc = VBO + Eg and
valence bandedge
Vv = VBO in an
AlGaAs/GaAs quantum
barrier/well nanostructure

where Eg(r) and VBO(r) can be functions of space r such as in an AlGaAs/GaAs
quantumwell of Fig. 2.6, Eg and VBO assume the values of bulk AlGaAs in AlGaAs
barriers, they assume the values of bulk GaAs in the GaAs quantum well. The above
expressions show that in a crystal that extends over the whole three-dimensional
space, the potential energy is constant so that the carrier, either an electron in the
conduction band or a hole (either a heavy hole denoted as “hh” or a light hole denoted
as “�h”) in the valence band, moves as a free carrier with a mass m∗

c orm
∗
hh orm

∗
�h in

the form of eik·r , its kinetic momentum is �k. Thus, �k is further known as the quasi
momentum of the electron motion in crystal (“quasi” since the real wave function of
the carrier also contains the Bloch function uc(r) or uv(r)).

In (2.40), m∗
c , m

∗
hh and m∗

�h are effective masses of electrons, heavy holes and
light holes, respectively. In nanostructures, the values of these effective masses are
determined in the similar manner of Eg(r) and VBO(r) but not exactly the same.
When the effective mass becomes spatial dependent, (2.40) is no longer Hermitian
[8, 9]. In practice, the effective mass can be evaluated by the energy level and the
wave function. For example, in an AlGaAs/GaAs quantum well, the effective mass
of an electron in a state confined in the GaAs region adopts the one of bulk GaAs.

The conduction bandedges of Si do not locate at the � point in the k space,
see Fig. 2.4. Electrons in the conduction bandedges in Si are commonly described
by 6 ellipsoids, with a longitudinal effective mass m∗

� = 0.9163 and a transverse
effective mass m∗

t = 0.1905 in terms of free electron mass m0 [10]. The 6 ellipsoids
are grouped into 3 groups, each 2-fold degenerate:

1. (m∗
x ,m

∗
y,m

∗
z ) = (m∗

t ,m
∗
t ,m

∗
�)

2. (m∗
x ,m

∗
y,m

∗
z ) = (m∗

�,m
∗
t ,m

∗
t )

3. (m∗
x ,m

∗
y,m

∗
z ) = (m∗

t ,m
∗
�,m

∗
t )

wherem∗
x ,m

∗
y andm

∗
z are effectivemasses along x , y and z direction, respectively. By

(2.38)we then obtain the following effective-massHamiltonian for the Si conduction-
band electron

H = − �
2

2m∗
x

∂2

∂x2
− �

2

2m∗
y

∂2

∂y2
− �

2

2m∗
z

∂2

∂z2
+ Vc(r) (2.41)
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Back to (2.27): This is actually the well-established k · p theory. Since we care
mostly electrons and holes in the close vicinities of the conduction- and valence
bandedges, and the interaction between two bandedge states that are well separated
in energy is small, we follow Kane [11] to choose only eight u�(r) to formulate the
eight-band k · p theory, i.e., the eigen functions of (2.22), as the basis functions to
describe conduction- and valence-bandedge electrons and holes, which are normally
denoted as

|S ↑〉, |X ↑〉, |Y ↑〉, |Z ↑〉, |S ↓〉, |X ↓〉, |Y ↓〉, |Z ↓〉

where the up and down arrows denote spin up and down, respectively. |X,Y, Z〉
are the p-type states and |S〉 is s-type. Interactions between these basis functions,
i.e., 〈u�| p|um〉, are obtained by fitting various experimentally data such as energy
bandgap and effective mass. Energy band structure parameters of various group
IV, III–V and II–VI semiconductors can be found in review books and articles,
e.g., [5–7]. The characteristic s- and p-type features of these basis functions
are also the foundations of the sp3s∗ tight-binding theory [2] used to calculate
Figs. 2.4 and 2.5.

2.2 Lattice Vibration and Phonon Spectrum

In Sect. 3.3 we will try to extract information about the interaction between an elec-
tromagnetic field and a lattice vibration (phonons, their frequencies, strengths and
damping rates of interactions with the electromagnetic field, etc.) from an optical
spectrum in the infrared range. Let us get know the lattice vibration and phonon
spectrum in this section.

In the study of energy levels of electrons in individual atoms and the energy band
structure of valence electrons in a semiconductor crystal we implicitly assume that
the nuclei and core electrons sit motionlessly at the crystal lattice sites, which is valid
as long as the motions of the nuclei and core electrons are much smaller than the
valence electrons.

In reality, the lattice constant of a semiconductor material varies as a function
of external environmental condition, most noticeable, the temperature due to the
thermal motion of the atoms that the lattice constant becomes large when thematerial
temperature is high. At normal device operation state, the lattice positions defined
by the lattice constant, i.e., (2.1), are statistic average positions of atoms in the time
domain, commonly referred to as equilibrium positions. In other words, atomsmove,
or oscillate, around these equilibrium positions. Let the instantaneous spatial position
of an atom, denoted by its equilibrium position R, at time t be r(R, t) so that

〈r(R, t)〉t = R (2.42)

where 〈. . .〉t represents the time average operation. We can also use the displacement
u(R, t) to represent the motion of the atom
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r(R, t) = R + u(R, t), 〈u(R, t)〉t = 0 (2.43)

Note that we use the conventional notation u to represent the displacement, which
should not be too difficult to get distinguished from the notation of the Bloch function
by context.

We now study u(R, t)which is known to be the lattice vibration. In common semi-
conductors, the nucleus-nucleus interaction φ[r(R, t) − r(R′, t)] between atoms
located at R and R′ dominantly determines the lattice vibration (note that the energy
band structure of valence electrons is determined jointly by the electron-nucleus and
electron-electron interactions). The total potential energy of the lattice atoms is

U = 1

2

∑

RR′
φ[r(R, t) − r(R′, t)] (2.44)

By including the kinetic energies of atoms we obtain the Hamiltonian of the lattice
vibration

Hlattice =
∑

R

P2
R

2MR
+U (2.45)

where MR is the mass of the atom located at R and PR is the momentum.
Normally u(R, t) is small compared with the lattice constant so that we can do

the following Taylor expansion of U with respect to the equilibrium position of the
lattice site

U = 1

2

∑

RR′
φ[r(R, t) − r(R′, t)] = 1

2

∑

RR′
φ[R − R′ + u(R, t) − u(R′, t)]

= 1

2

∑

RR′
φ(R − R′) + 1

2

∑

RR′

[
u(R, t) − u(R′, t)

]
· ∇φ(R − R′)

+1

4

∑

RR′

{[
u(R, t) − u(R′, t)

]
· ∇
}2

φ(R − R′) + . . . (2.46)

The first term is a constant while the second term can be expressed as

1

2

∑

RR′

[
u(R, t) · ∇φ(R − R′) − u(R′, t) · ∇φ(R − R′)

]

= 1

2

∑

R

u(R, t)

[
∑

R′
∇φ(R − R′)

]
− 1

2

∑

R′
u(R′, t)

[
∑

R

∇φ(R − R′)

]
(2.47)

Since ∇φ(R − R′) is the force applied on the atom at R′ by the atom at R,

∑

R′
∇φ(R − R′)
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is the sum of forces on the atom at R from all other atoms, which should be zero at
equilibrium. In other words, the second term in (2.46) is zero.

By neglecting the first constant potential term we obtain the harmonic oscillator
model for the lattice vibration

Uharm = 1

4

∑

i jRR′

[
ui (R, t) − ui (R′, t)

]
φi j (R − R′)

[
u j (R, t) − u j (R′, t)

]
(2.48)

under the second-order approximation, i.e., including only the second-order expan-
sion term in (2.46). In the above equation, i, j = x, y, z, and

φi j (R − R′) = ∂2φ(R − R′)
∂xi∂x j

(2.49)

Equation (2.48) shows that by the harmonic oscillatormodel, the force that induces
the lattice vibration is proportional to the lattice displacement. We thus can apply
Newtonian mechanics to study the lattice vibration. The acceleration of the atom
equals to the sum of external forces

MR
∂2ui (R, t)

∂t2
=
∑

jR′
φi j (R − R′)u j (R′, t) (2.50)

When we include only nearest neighbour interactions, the above equation will
be significantly simplified. Consider a one-dimensional monatomic chain composed
of N atoms (n = 1, 2, . . . N ) with a lattice constant a, see Fig. 2.7a, the potential
energy of the lattice vibration is

Uharm = α

2

∑

n

[
u(na, t) − u(na + a, t)

]2
(2.51)

under the harmonic oscillator approximation, (2.50) becomes

M
∂2u(na, t)

∂t2
= −α

[
2u(na, t) − u(na − a, t) − u(na + a, t)

]
(2.52)

Here we denote α = φi j (R − R′).
Very much alike the wave function of an electron in a translationally symmetric

crystal, the lattice displacement is also spatially periodic

u(Na + a, t) = u(a, t), u(0, t) = u(Na, t) (2.53)

Note that there are only N atoms in the crystal, i.e., n = 1, 2, . . . N , Atoms at 0 and
Na + a are hypothetical only for the periodic boundary condition. One critical point
as compared with the Bloch theorem is that the lattice displacement here is a physical
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parameter, while the wave function in (2.6) is not, so there is an extra phase factor
existed in the wave function which disappears when we try to obtain the electron
distribution which is physically periodic.

The general form of the solution of (2.52) is

u(na, t) = s ei(kna−ωt) (2.54)

where s is the amplitude of the lattice vibration. As expected, the displacement u of
atom R is not only a function of space R, it is also a function of time t . Insert the
above expression into (2.52),

k = 2π

a

m

N
, m = integer

ωk = 2

√
α

M

∣∣∣∣ sin
(
ka

2

)∣∣∣∣

u(na, t) = s cos
(
kna − ωk t

)
(2.55)

The second expression is normally known as the dispersion relationship of the lattice
vibration in the one-dimensional atomic chain.

Consider a one-dimensional diatomic chain of Fig. 2.7b where the equilibrium
positions of the two atoms are na and na + d, respectively, where d ≤ a/2. Let
the atomic displacements of the two atoms be u1(na, t) and u2(na, t). Moreover,
we assume that the interaction between atom na and its left-side atom na − a + d
is α and the interaction with its right-side atom na + d is β. There are two lattice
vibration equations

(a)

(b)

Fig. 2.7 a One-dimensional monatomic chain. b One-dimensional diatomic chain. a is the lattice
constant, N is the number of unit cells contained in the crystal
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M
∂2u1(na, t)

∂t2
= −β

[
u1(na, t) − u2(na, t)

]
− α
[
u1(na, t) − u2(na − a, t)

]

M
∂2u2(na, t)

∂t2
= −β

[
u2(na, t) − u1(na, t)

]
− α
[
u2(na, t) − u1(na + a, t)

]
(2.56)

Since we already assume that d ≤ a/2, i.e., the distance to the right-side atom is
shorter than the left-side atom, α ≤ β. Again we assume the general solution

u1(na, t) = s1 e
i(kna−ωt), u2(na, t) = s2 e

i(kna−ωt) (2.57)

so that there are two solutions of (2.56), one is

ω2
k = α + β

M
− 1

M

√
α2 + β2 + 2αβ cos (ka),

s2
s1

= β + αeika

|β + αeika| (2.58)

and the other is

ω2
k = α + β

M
+ 1

M

√
α2 + β2 + 2αβ cos (ka),

s2
s1

= − β + αeika

|β + αeika| (2.59)

Figure 2.8a shows the dispersion relationships (2.58) and (2.59) of a one-
dimensional diatomic chain, and Fig. 2.8b is its corresponding density of vibrational
states. Equations (2.55), (2.58) and (2.59) show that the eigen solutions of the lat-
tice vibrations are wave-like characterized by wave vector k. Analogous to the Bloch
electron state, the eigen lattice vibrational state is known as a phonon, and the density
of vibrational states is thereafter denoted as the density of phonon states.

We observe two solutions, also known as phonon bands, or phonon branches,
in (2.58), (2.59), and in Fig. 2.8. The low-energy one, i.e., (2.58), is similar to the
dispersion relationship (2.55) of the monatomic chain. Most importantly, when k is
relatively small such that

Fig. 2.8 Dispersion
relationship ωk (a) and
density of phonon states (b)
of a one-dimensional
diatomic chain.
ω1 = √

2α/M ,
ω2 = √

2β/M ,
ω3 = √

2(α + β)/M

(a) (b)
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cos (ka) ≈ 1 − (ka)2

2
(2.60)

Equation (2.58) become

ωk = ka

√
αβ

2(α + β)M
,

s2
s1

= 1 (2.61)

namely, ωk is linearly proportional to k, and the amplitudes of displacements of
adjacent atoms are the same. These are actually the acoustic waves. The above two
relationships remain valid numerically in a quite wide range of k until k reaches π/a
(and ωk → ω1, see Fig. 2.8), so that this whole low-energy phonon branch is called
acoustic.

As we shall see in the following section, the wave vector of a photon of our
interest is quite small. If a semiconductor lattice is to absorb a photon thereafter
emit a phonon (i.e., to start a lattice vibration), or convert a phonon into a photon,
the momentum of the phonon must be very small in order to fulfill the momentum
conservation requirement. The k value of the acoustic phonon in Fig. 2.8 spans quite
widely between 0 and π/a, see Fig. 2.8. However, the corresponding density of the
acoustic phonon states when k → 0 is also small so that the interaction between
acoustic phonons and photons is negligible.

On the other hand, we notice that the density of phonon states of the high-energy
branchwith small k, i.e.,ωk → ω3, is very high, see Fig. 2.8b.More critically, the sign
of s2/s1 is negative in (2.59). In plain words, the motions of neighboring atoms either
move towards each other or away from each other, forming electric dipole waves,
which can be rather strong especially in ionic crystals such as III–V compound
semiconductors, and therefore interact strongly with electromagnetic fields. Thus,
the high-energy phonon branch is called optical due to its strong interaction with
electromagnetic fields and thus is very important in many device applications. We
come back to this in Sect. 3.3.

In the one-dimensional models of Fig. 2.8, displacements u of atoms are con-
strained along the z direction, parallel to wave vector k. Such a vibration mode is
called longitudinal so that phonons are designated as either longitudinal acoustic
(LA) phonons or longitudinal optical (LO) phonons. In three dimensional structures,
displacements u can be perpendicular to the phonon propagation direction, i.e., k.
Such vibrations are called transverse and there are transverse acoustic (TA) and
transverse optical (TO) phonons.

Expressions for interactions of (2.49) are complicated for three-dimensional lat-
tice. In a zincblende lattice, the interaction between atom at (0, 0, 0) and atom
(a/4, a/4, a/4), i.e., the two atoms at d1 and d2 in Fig. 2.2, is in the following
matrix form ⎡

⎣
φxx φxy φxz

φyx φyy φyz

φzx φzy φzz

⎤

⎦ =
⎡

⎣
α β β

β α β

β β α

⎤

⎦ (2.62)
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Fig. 2.9 The density of
phonon states of bulk GaAs
using the local Green’s
function theory
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whereα andβ can be obtained byfitting the the theoreticalmodelwith experimentally
determined energies of phonons at symmetry points, see [7, 12, 13]. To solve (2.50)
for a three-dimensional lattice with an interaction matrix of (2.62), we can do the
following mathematical transform. Let ω be the vibration frequency as before,

ui (R, t) = ψi (R)√
MR

e−iωt , Hi j (R − R′) = φi j (R − R′)√
MRMR′

(2.63)

Equation (2.50) then becomes an eigen-value problem

H |ψ〉 = ω2|ψ〉 (2.64)

There are many different numerical methods to solve the above eigen-value equa-
tion. One may try periodic trial functions for phonons in isotropic and translational
symmetric bulkmaterials. Calculations of phonons in a nanostructure can be difficult.
One numericalmethod is called the recursionmethod based on the localGreen’s func-
tion theory, see for example [14–17], which can solve the above equation indirectly
but obtain directly the density of phonon states. Figure 2.9 shows the calculation
result of the density of phonon states of bulk GaAs using the local Green’s function
theory, where we notice the massive density of phonon states of transverse optical
(TO) phonons in the energy range of 270–290 cm−1.

2.3 Light-Matter Interaction and Optical Spectrum

We first describe light as an electromagnetic field by Maxwell’s equations. Table 2.2
lists principal wave bands, radio waves, microwaves, terahertz waves, infrared, vis-
ible, ultraviolet, X rays and γ rays, in the electromagnetic spectrum and typical
physical processes of our interest. Wave bands can be categorized in more details
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Table 2.2 Electromagnetic spectrum

Wave band Wavelength λ (m) Frequency ω/2π (Hz) Typical physical
processes

Radio waves 103–0.3 105–109 Electron spin, nuclear
spin

Microwaves 0.3–10−3 109–1011 Molecular motion

Terahertz waves 10−3–3.3 × 10−5 3 × 1011–10 × 1012 Macromolecular
motion, rotation and
vibration

Infrared 10−3–7.8 × 10−7 3 × 1011–3.8 × 1014 Lattice vibration, free
carrier transitions and
electron transition in
impurity levels

Visible 7.8–3.8 × 10−7 3.8–7.8 × 1014 Optical transitions of
electron between
valence- and
conduction bands

Ultraviolet 10−7–10−9 3 × 1015–1017 Optical transitions
between valence- and
conduction bands in
wide-band material

X rays 10−9–10−12 3 × 1017–1020 Optical transitions of
core electrons

γ rays 10−11–10−14 3 × 1019–1022 Nuclei decays from
high energy states

such as near infrared (750–1400 nm), short-wavelength infrared (1.4–3µm),middle-
wavelength infrared (3–8µm), long-wavelength infrared (8–15µm), and far infrared
(15–1000 µm). Moreover, the divisions between wave bands are not sharp, there can
be overlaps. For example, terahertz (1 THz = 1012 Hz) waves span from far infrared
to millimeter waves which are normally categorized as microwaves. They become
a distinguished hot spot in research and technical development since the terahertz
band is a transition region frommacroscopic classical theory tomicroscopic quantum
theory as well as from electronics to photonics [18].

The wavelength of light spans from zero to infinity, and light generation, prop-
agation and interactions with matter are vastly different. Divisions of wave bands
in Table 2.2 are largely characterized by physical processes that are predominant in
the corresponding wavelength ranges. In radio and microwave bands, light-matter
interactions are mostly in the form of polarizations that light induces or modifies
motions (vibrations and/or rotations) of electrons, and/or atoms, and/or ions in the
matter that in their turns induce or modify electric dipoles and thereafter modify
the incident light. Common semiconductors interact with light mostly via optical
transitions of electrons between different energy bands (inter-band transition) and
within the same energy band (intra-band transition) by either absorbing or emitting
photons in infrared and visible ranges, which is the central theme of this section.
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Light can be used to transfer information, the mostly well-known application is
surely the radio, it is however the mobile communication that is dominating today.
Light is also used to obtain information. Our eyes collect light around us that lets us
know the world around us. We may see the world directly by naked eyes, we also
invent tools such as telescopes to see things indirectly that are far awayormicroscopes
to observe tiny things. We want to see not only the surface (color, geometric size,
geometric structure etc.) of a matter, we also want to see microscopic structures
(lattice structure of crystal, how atoms and electrons interact with each other to form
the lattice etc.) inside the matter.

The electromagnetic field is described by the Maxwell’s equations

∇ × H = J + ∂D
∂t

∇ × E = −∂B
∂t∇ · D = ρ

∇ · B = 0 (2.65)

where H is the magnetic field, J is the electric current density, D electric dis-
placement field, E electric field, B magnetic flux, and ρ charge density. Charge
conservation law

∇ · J = −∂ρ

∂t
(2.66)

is implicit in theMaxwell’s equations. In a linear, isotropic and non-dispersive mate-
rial,

D = εE = ε0E + P
B = μH = μ0H + M
J = σ E (2.67)

where P is the polarization, i.e., the density of electric dipoles, M is the mag-
netization. ε0 and μ0 are free-space permittivity and permeability, respectively.
In the International System of Units (SI), ε0 = 107/4πc20 = 8.854 × 10−12 F/m,
μ0 = 4π × 10−7 = 1.257 × 10−6 H/m. ε0μ0 = 1/c20, c0 = 2.997925 × 108 m/s is
the speed of light in vacuum. ε, μ and σ are the dielectric coefficient, permeability
and electrical conductivity of the material.

Three principal physical processes are explicit in the Maxwell’s equations:

1. The electric charge density ρ is the source of the electric displacement field D,
while there is no magnetic monopole so that ∇ · B = 0;

2. The temporal variation of D (B) accompanies the spatial variation in H (E),
forming the propagating electromagnetic field;

3. Light-matter interaction induces polarization P and/or magnetization M which
modify electric displacement field D and magnetic flux B and thereafter the
light.
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This book focuses on “seeing”, both directly and indirectly, themicroscopic struc-
tures of semiconductors by comparing the optical spectra of the incident light and
the light after light-matter interaction. For the majority of semiconductor photonic
applications, the semiconductor materials are nonmagnetic so M = 0 and thereafter
μ = μ0.

We introduce a vector field A and a scalar field φ such

E = −∇φ − ∂A
∂t

B = ∇ × A (2.68)

and in the Coulomb gauge
∇ · A = 0 (2.69)

we obtain the following equations for the vector and scalar fields

∇2A − εμ0
∂2A
∂t2

− εμ0
∂∇φ

∂t
= −μJ

∇2φ = −ρ

ε
(2.70)

The charge density of conducting (freelymoving) electrons in the conduction band
of a typical metal is about 1022 cm−3, while even in heavily-doped semiconductors,
the corresponding charge density is well below 1020 cm−3. At 300 K, the resistivity
of GaAs is about 10−4 �·m when GaAs is n-type doped to a doping concentration
of 1020 cm−3, it drastically reaches 0.15 �·m when the doping level is reduced to
1016 cm−3 [19]. The electrical conductivity of a semiconductor is therefore very
low compared with those of metals. Moreover, ρ in (2.65) represents the net charge
density, which is the sumof charges of free carriers and charges of ions that contribute
the free carriers. Thus, ρ can be well approximated as 0 for most materials. With all
these considerations we may simply set ρ = 0 and J = 0 so that (2.70) become

∇2A − εμ0
∂2A
∂t2

− εμ0
∂∇φ

∂t
= 0

∇2φ = 0 (2.71)

By a simple gauge transformation, we can eliminate the scalar potential then reduce
the above first equation to the wave equation of A

∇2A − εμ0
∂2A
∂t2

= 0 (2.72)

with a general solution

A(r, t) = A0e
i(s·r−ωt) + c.c. (2.73)
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where c.c. in the above expression represents the complex conjugate of the first term
on the right side of the expression tomake sure that vector field A, which is a physical
parameter, is real.

As we will see shortly, the amplitude of the electric field of the electromag-
netic field of our interest is very small as compared with the electric field we apply
externally to drive a semiconductor device in many applications. This leads to the
negligence of the roles of the scalar field φ.

Insert (2.73) into (2.72) and we obtain

s · s = εμ0ω
2 (2.74)

which is the dispersion relationship of light, ω/2π is the frequency of light, ω is the
angular frequency, s is the wave vector. We use s to denote the wave vector of an
electromagnetic field to differentiate it from the wave vector k of an electron.

In general, the dielectric coefficient ε is a function of the angular frequency ω of
the electromagnetic field. And most critically, it can be complex such that

ε(ω) = ε′(ω) + iε′′(ω) (2.75)

where �ε = ε′, �ε = ε′′. In the following we only write ε instead of its explicit
ω-dependent expression ε(ω) to simplify equations. In an anisotropic material, ε is
a tensor, while in commonly used semiconductors, it is usually a scalar.

The wave vector s in (2.74) in general is complex because of the complex ε. By
introducing a complex refractive index

ñ ≡ n + iκ =
√

ε

ε0
(2.76)

where the real part of the complex refractive index n is called the refractive index
(which was introduced in Chap.1), while the imaginary part κ is known as the
extinction coefficient.

A relative dielectric coefficient is commonly introduced

εr ≡ ε

ε0

Many times, people do not express the distinction between εr and ε clearly, especially
in equations. Reader can check their physical units or numerical values in order to
differentiate the two. For example, εr is numerically around12 (unit-less) for common
semiconductors; while ε0 = 8.85 × 10−12 F/m so that ε = 12 × 8.85 × 10−12 F/m
when εr = 12. It is easy to see the follow relations

ε′
r = n2 − κ2, ε′′

r = 2nκ (2.77)
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After the introduction of the complex refractive index, the dispersion relationship
of light becomes

s = ωñ

c0
s0 =

(
ωn

c0
+ i

ωκ

c0

)
s0 (2.78)

where s0 is the unit vector of wave vector s. Insert the above dispersion relationship
into (2.73),

A(r, t) = A0 exp

[
i

(
ωñ

c0
s0 · r − ωt

)]
+ c.c.

= A0 exp

[
i

(
ωn

c0
s0 · r − ωt

)]
exp

(
−ωκ

c0
s0 · r

)
+ c.c. (2.79)

The above expression shows that light propagates in an infinitely extendedmaterial
at a speed of c = c0/n. At the same time, the amplitude of the vector field gradually
decays along its propagation due to the extinction coefficient κ .

Inserting (2.79) into the Coulomb gauge (2.69) results in

A0 · s0 = 0 (2.80)

since φ = 0. This indicates that the wave vector of the photon, i.e., the propagation
direction of the photon, is perpendicular to the vector field.

By (2.68),

E = −∂A
∂t

= ωA0 exp

[
i

(
ωñ

c0
s0 · r − ωt

)]
+ c.c.

B = ∇ × A = −iωñ

c0
A0 × s0 exp

[
i

(
ωñ

c0
s0 · r − ωt

)]
+ c.c. (2.81)

so that

H = B
μ0

= −iωñ

μ0c0
A0 × s0 exp

[
i

(
ωñ

c0
s0 · r − ωt

)]
+ c.c. (2.82)

We may also write

E(r, t) = E0 exp

[
i

(
ωñ

c0
s0 · r − ωt

)]
+ c.c.

H(r, t) = H0 exp

[
i

(
ωñ

c0
s0 · r − ωt

)]
+ c.c.

E0 = ωA0, H0 = −i ñ

μ0c0
E0 × s0 (2.83)

Note that H0 in the above expression is complex while E0 is real. One way of
understanding the above equation is that E0 and H0 in a lossy medium (with a
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nonzero κ) are out of phase. It is anyway easy to see that H(r, t) in the above
equation is real.

By a straightforward but careful mathematical operations, we obtain the Poynting
vector S that represents the directional energy flux density of light

〈S〉t = 〈E × H〉t = 2n|A0|2 ω2

μ0c0
exp

(
−2ωκ

c0
s0 · r

)
s0 (2.84)

In the above expression, 〈S〉t denotes the time average of S. Since light travels at the
speed of c = c0/n in the material, the optical energy density is

〈S〉t
c

= 2ε0n
2ω2|A0|2 exp

(
−2ωκ

c0
s0 · r

)
s0 (2.85)

which propagates along s0. Note that vector field A, electric field E, as well as mag-
netic field H all propagate along the direction of s0, which is the unit vector of wave
vector s.Moreover, A and E are perpendicular to s0, H is perpendicular to both E and
s0, and the Poynting vector S and the optical energy density 〈S〉t/c propagate along
s0. The spatial orientations of these vectors are schematically presented in Fig. 2.10,
which is elementary but critical for understanding the light-matter interaction.

Equation (2.84) is normally expressed as the Beer–Lambert law

S = S0 e
−α(ω)z (2.86)

where S is the amplitude of the Poynting vector, also known as the optical power
after the light (with an initial power S0) transmits through a layer of the material of
thickness z. Here

α = 2ωκ

c0

is known to be the absorption coefficient.

Fig. 2.10 Electromagnetic
field in a homogeneous
medium. The directions of
the electric field (red
arrows), magnetic field (blue
arrows), and the Poynting
vector (black arrow along the
z axis) form a Cartesian
coordinate

x
y

z
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Next we quantize the electromagnetic field by the number of photons and the
energy carried per photon to study the dynamics of the non-relativistic light-matter
interaction. Let Ω be the space where the light-matter interaction occurs, Nω is the
number of the photons inside Ω and the photon energy is �ω, so that the optical
energy density in Ω is

Nω�ω

Ω

Because of the decay along s0 in (2.85), we expect that Nω decreases in the same
manner. Not getting into details right now (see more below) let us simply write the
optical energy density as

Nω�ω

Ω
exp

(
−2ωκ

c0
s0 · r

)
s0 (2.87)

By combining the above equation with (2.85) we obtain the amplitude of the
vector field

|A0|2 = Nω�

2ε0n2ωΩ
(2.88)

The density of photons, i.e., Nω/Ω , is measurable from which we can determine the
vector field. Insert the above expression into (2.73)

A(r, t) =
√

Nω�

2ε0n2ωΩ

[
ei(s·r−ωt) + e−i(s·r−ωt)

]
es (2.89)

es is the unit vector of A. And es ⊥ s0 by (2.80).
In quantizing the electromagnetic field, the state of the photon, |Nω〉 is denoted

by the angular frequency ω and the number of photons Nω. Photon can be created or
annihilated so we introduce the corresponding creation operator b+ and annihilation
operator b

b+|Nω〉 = √Nω + 1|Nω + 1〉, b |Nω〉 = √Nω|Nω − 1〉 (2.90)

The Hamiltonian of the photon state is

Hω = �ω

(
b+b + 1

2

)
(2.91)

By (2.90), it is easy to obtain

Hω|Nω〉 = �ω

(
Nω + 1

2

)
|Nω〉 (2.92)
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For polychromatic light composed of photons with different angular frequencies
ω1, ω2 . . ., the photon state is expressed as |Nω1 , Nω2 . . .〉 and the corresponding
Hamiltonian ∑

i

�ωi

(
b+

ωi
bωi + 1

2

)

For simplicity, we focus on a monochromatic light, i.e., Hamiltonian of (2.91). The
vector field of (2.89) now becomes a quantum mechanical operator

A =
√

�

2ε0n2ωΩ

[
b+ei(s·r−ωt) + b e−i(s·r−ωt)

]
es (2.93)

The correspondence between (2.89) and (2.93) is found in the expectation value of
quantum mechanical operator A in (2.93) to be compared with the physical observ-
able A(r, t) in (2.89). It is easy to show that in the eigen state of (2.92), 〈A〉 = 0
and 〈A2〉 = Nω�/2ε0n2ωΩ . The same results are obtained for 〈A(r, t)〉 = 0 and
〈A(r, t)2〉 by (2.89).

The electron is a fermion restrained by the Pauli exclusion principle. The average
number of electrons at equilibrium occupying a single-particle state |k〉 is given by
the Fermi-Dirac distribution function

fFD(Ek) = 1

e(Ek−E f )/kBT − 1
(2.94)

where E f is the Fermi level. The photon, on the other hand, is a boson obeying the
Bose-Einstein distribution statistics

fBE(�ω) = 1

e�ω/kBT − 1
(2.95)

such that there can more than one photon occupying the same photon state, i.e., Nω

can be any positive integer.
We are now ready to study the light-matter interaction in semiconductor materials

and devices. Light can be transmitted, reflected, refracted, diffracted, and absorbed
when impinging on a semiconductor.Moreover, light can be emitted from a semicon-
ductor. All these are generally referred to optical properties, which can be quantified
by reflectance, transmittance, absorption coefficient, etc. And their dependences on
the wavelength of light are our optical spectra such as the reflection or transmis-
sion spectrum. Different optical spectrum reflects different aspect of the light-matter
interaction thus constitutes optical fingerprint features of the material under investi-
gation. Figure 2.11 shows schematically the three principal optical transitions of an
electron from its initial electron state k to a final state q, (a) absorption, (b) stim-
ulated emission, and (c) spontaneous emission. At resonant steady-state processes,
the photon energy equals the energy difference between the two electron states.
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Fig. 2.11 Principal
light-matter interactions due
to the optical transition of an
electron from its initial state
k to the final state q.
a Photon absorption,
b stimulated photon
emission, and c spontaneous
photon emission

In the presence of an electromagnetic field (interchangeably we may also say a

photon field), the electron momentum p becomes
(
p + eA

)
, where A is the vector

field of the electromagnetic field. Refer to (2.4), the Hamiltonian of the electron now
becomes

1

2m0
( p + eA)2 + V0(r)

= p2

2m0
+ e

m0
A · p − ie�

2m0
∇ · A + e2

2m0
A2 + V0(r) (2.96)

where m0 is the free electron mass. There should be a potential term −eφ on the
right side of the equals sign in the above equation, where φ is the scalar potential of
the electromagnetic field, but is neglected here based on the numerical estimation to

be presented shortly. Note that the expansion of
(
p + eA

)
in the above equation is

not trivial. p = −i�∇ is an operator not only on a wave function ψ but also on A
such that (

p + eA
)
ψ = pψ + eAψ

(
p + eA

)2
ψ =

(
p + eA

)
·
(
pψ + eAψ

)
= p2ψ + e p ·

(
Aψ
)

+ eA · pψ + e2A2ψ

p ·
(
Aψ
)

= ψ p · A + A · pψ

so that (
p + eA

)2
ψ = p2ψ + eψ p · A + 2eA · pψ + e2A2ψ

The third term in (2.96) equation is zero under the Coulomb gauge of (2.69). Let
us estimate the ratios between the second and first term and between the fourth and
the second term:
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∣∣∣eA · p
m0

∣∣∣
∣∣∣∣
p2
2m0

∣∣∣∣
≈ 2eA

p
,

∣∣∣∣
e2A2

2m0

∣∣∣∣
∣∣∣eA · p

m0

∣∣∣
≈ eA

2p
(2.97)

Consider a light beam with an optical power of 1.0 W/cm2 (this is a very strong
light source! Consider a 60-W light bulb in our daily life which illuminates at
a distance r = 1 m away from you, the optical power that reaches you is only
60 W/4πr2 = 4.8 × 10−4 W/cm2) and a photon energy �ω = 2.0 eV (wavelength
equals 620 nm, i.e., a red light), the photon density by (2.85) is

Nω

Ω
= |〈S〉t |

c0�ω
= 1.0 W/cm2

2.997925 × 108 m/s × 2 × 1.60219 × 10−19 J
= 1.041 × 1014 m−3 (2.98)

so that

eA =
√

e2�Nω

2ε0n2ωΩ
= 0.24 × 10−36 kg · m/s (2.99)

Here we let n = 3 (for common semiconductors). We mentioned at the beginning of
this chapter that the electron mobility μ of GaAs is 8500 cm2/V·s, it is about 1400
cm2/V·s in Si. Under common device operation conditions, we apply an external bias
of 1.0 V across a device with an effective length of ca 1.0 µm so that the speed of the
electron is about v = μE ≈ 107 cm/s, where E is the electric field (=1.0 V/1.0 µm
= 106 V/m in our estimation). (Note that 107 cm/s is actually close to the saturation
velocity in GaAs and Si.) Take that the effective mass of the electron is 0.1m0, we
obtain the amplitude of the electron momentum

p = m∗v = 0.1 × 9.1096 × 10−31 kg × 107 cm/s = 9.1 × 10−27 kg · m/s
(2.100)

thus
eA

p
= 0.24 × 10−36

9.1 × 10−27
= 2.6 × 10−11

so that we can treat the second term in (2.96) as a perturbation and neglect the fourth
term, and the Hamiltonian of the electron in the presence of an electromagnetic field

is now
(
H0 + H ′

)
, where

H0 = −�
2∇2

2m0
+ V0(r), H ′ = ie�

m0
A · ∇ (2.101)

where H ′ is known tobe thefirst-order light-matter interaction. Ifwe increase the light
power, or when the optical transitions due to this first-order light-matter interaction
is forbidden, we shall need to study the term containing A2, which is beyond the
scope of this book.
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We now have enough information to estimate the scalar potential φ of the electro-
magnetic field under discussion. By (2.83) and (2.99), the amplitude of the electric
field of the electromagnetic field is

A

ω
= 0.24 × 10−36 × 2

1.05459 × 10−34
= 4.5 × 10−3 V/m (2.102)

for �ω = 2.0 eV, while the electric field induced by our externally applied bias is
106 V/m (1.0 V across a length of 1.0 µm). Thus, −eφ is neglected in (2.96).

The steady-state eigen equation of H0 is straightforward

H0Ψk(r) = EkΨk(r) (2.103)

which we have studied extensively in Sect. 2.1. Here,Ψk(r) is the total wave function
of an electron state defined by a set of quantum numbers denoted by k. For Bloch
states in a bulk semiconductor, k represents both the wave vector k as well as the
band index �;While for electron states in a quantumwell which is one-dimensionally
confined along the z direction, k = (kxy, i), where kxy is the wave vector in the xy
plane and i is the energy sublevel index along the z direction. Furthermore, we
will also write the wave function Ψk as |k〉, i.e., the bra-ket notation, to simplify
mathematical expressions.

When studying the light-matter interaction, it is easier to combine the electron
and the photon into one composite system with a total Hamiltonian

H0 + Hω + H ′ = −�
2∇2

2m0
+ V0(r) + �ω

(
b+b + 1

2

)
+ ie�

m0
A · ∇ (2.104)

When H ′ = 0, the electron and the photon are not interacting so that the final state
of the composite system, i.e., (H0 + Hω), is simply the product of the electron’s
eigen state and the photon’s eigen state. After introducing a nonzero light-matter
interaction H ′, there will be optical transitions between eigen states of (H0 + Hω).
At steady-state, we can list the initial eigen state |i〉 and final eigen state | j〉 of
(H0 + Hω) for the optical transitions of Fig. 2.11:

• Photon absorption: the electron transits from its initial state k to a final state q by
absorbing one photon while the photon number decreases by 1

|i〉 = |k, Nω〉, | j〉 = |q, Nω − 1〉 (2.105)

• Photon emission: the electron transits from k to q by emitting one photon so that
the photon number increases by 1

|i〉 = |k, Nω〉, | j〉 = |q, Nω + 1〉 (2.106)
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After careful mathematical manipulations, the probability of the optical transition
(the transition is called optical since a photon is involved) from electron state |k〉 to
|q〉 is

wj←i (ω) = 2π

�

∣∣〈 j |H ′|i〉∣∣2 Γqk
(
Eq − Ek ± �ω

)2 + Γ 2
qk

(2.107)

which is the well-known Fermi’s golden rule. “−” represents photon absorption and
“+” photon emission. Γqk is proportional to the transition matrix element 〈q|H ′|k〉.
For more details, please see [20]. One critical issue, however, must be specifically
pointed out here.

We do not find the wave vector s of the photon in (2.107). The reason is very
simple. Inmost optical spectral studies of semiconductors, the optical rangeof interest
spans from the visible to far infrared range, maybe even to the terahertz range.
Refer to Table 2.2, we see that the corresponding wavelengths of these photons span
from about 380 nm to 33 µm so that the amplitudes of the photon wave vectors
(|s| = 2π/λ) range (0.02 ∼ 1.65) × 10−2 nm−1. The amplitudes of k and q of the
electron states in semiconductors can be estimated from (2.100) that

p

�
= 9.1 × 10−27

1.05459 × 10−34
m−1 = 8.6 × 10−2 nm−1 (2.108)

We thus simply neglect the photon wave vector for most photonics applications. This
result has a profound effect on the light-matter interaction, namely, themomentum of
the electron is conserved during optical transition. We will come back to this shortly.

By (2.93) we can easily calculate the matrix elements of the light-matter interac-
tions:

• Photon absorption

〈 j |A · ∇|i〉 =
√

�Nω

2ε0n2ωΩ
〈q|es · ∇|k〉 (2.109)

• Photon emission

〈 j |A · ∇|i〉 =
√

�(Nω + 1)

2ε0n2ωΩ
〈q|es · ∇|k〉 (2.110)

Here es is the unit vector of the electric field of the photon, see (2.89). The probability
of absorbing one photon is

wabs
q(Nω−1)←kNω

(ω) = π�
2e2Nω

m2
0ε0n

2ωΩ
|〈q|es · ∇|k〉|2 Γqk

(
Eq − Ek − �ω

)2 + Γ 2
qk

(2.111)
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And the probability of emitting one photon is

wem
q(Nω+1)←kNω

(ω) = π�
2e2(Nω + 1)

m2
0ε0n

2ωΩ
|〈q|es · ∇|k〉|2 Γqk

(
Eq − Ek + �ω

)2 + Γ 2
qk

(2.112)
We see clearly here that the number of photons after the electron absorbs one

photon to transit from state k to state q is decreased by 1; It is increased by 1
when the electron emits one photon to transit from k to q. In the following we write
simplywabs

q←k(ω) andwem
q←k(ω). Reader can understand themodification of the photon

number Nω by superscript “abs” (for “absorption”) or “em” (“emission”).
We separate the photon emission probability into a stimulated emission term and

a spontaneous emission term

wem
q←k(ω) = wst

q←k(ω) + wspon
q←k(ω) (2.113)

such that

wst
q←k(ω) = π�

2e2Nω

m2
0ε0n

2ωΩ
|〈q|es · ∇|k〉|2 Γqk

(
Eq − Ek + �ω

)2 + Γ 2
qk

(2.114)

wspon
q←k(ω) = π�

2e2

m2
0ε0n

2ωΩ
|〈q|es · ∇|k〉|2 Γqk

(
Eq − Ek + �ω

)2 + Γ 2
qk

(2.115)

Optical transition processes of (2.111), (2.114) and (2.115) are depicted already in
Fig. 2.11.

So far we only study the probabilities of transitions between two electron states k
and q. We need to include the occupations f (Ek) and f (Eq) of these electron states
since the electron is fermion obeying the Pauli exclusion principle, i.e., an electron
occupying state k will transit to an empty state q with a certain transition probability
wq←k. The net transition from state k to q is

Wqk(ω) = wq←k(ω) f (Ek)
[
1 − f (Eq)

]
− wk←q(ω) f (Eq)

[
1 − f (Ek)

]
(2.116)

Normally, Nω is much larger than 1 so that wq←k = wk←q , and

Wqk(ω) = wq←k(ω)
[
f (Ek) − f (Eq)

]
(2.117)

Summarizing all electron states results in the net number of optical transitions of
electrons

W (ω) =
∑

qk

wqk(ω) (2.118)



60 2 Introduction to Physics and Optical Properties of Semiconductors

Note that in (2.116), (2.117), we write the occupation of electron state k as f (Ek),
not fFD(Ek)which is expressed as (2.94) representing the occupation at equilibrium.
Electrons in a semiconductor device under operation are no longer at equilibrium,
while in many cases, they are at steady state. See more in Sect. 4.1.

We have learned early that the light propagates along the direction of its wave
vector s0, see (2.85). Without loss of generality, let us focus on a light beam which
is propagating along the z axis, i.e., s0 = z0. The net change of the photon number
Nω in an spatial interval between z and z + dz is

dNω(z)

dt
= ∂Nω(z)

∂t
− ∂Nω(z)

∂z

∂z

∂t
(2.119)

where the first term on the right side represents either the generation or annihilation
of photons in this spatial region, which equals the total number of optical transitions
of electrons, i.e., (2.118), such that

∂Nω

∂t
= −W (ω) (2.120)

The second term on the right side of (2.119) represents the spatial propagation of
the photons at the speed of ∂z/∂t = c, which is the speed of light in the material.
c = c0/n, where c0 is the speed of light in vacuum and n is the refractive index of
the material. At steady state, dNω/dt = 0 so that (2.119) becomes

0 = −W (ω) − c
∂Nω

∂z
(2.121)

with a general solution
Nω(z) = Nω(0) eg(ω)z (2.122)

where g(ω) is commonly referred to as the optical coefficient of the material

g(ω) =
∑

qk

π�
2e2

m2
0ε0c0nωΩ

|〈q|es · ∇|k〉|2 Γqk

(Eq − Ek ± �ω)2 + Γ 2
qk

[
f (Eq) − f (Ek)

]
(2.123)

Equation (2.122), the same as (2.87), indicates that if g(ω) ≥ 0, the number of
photons in the light beam increases during the light propagation through thematerial,
which is called optical gain (such is the function of a light-emitting diode or a
laser), while if g(ω) < 0, the number of photons is reduced, meaning that the light
becomes absorbed (e.g., a photodetector). Equation (2.123) shows that a population
inversion, i.e., f (Eq) > f (Ek) when Eq > Ek, is needed to attain the optical gain
(g(ω) > 0),while at equilibrium, fFD(Eq) < fFD(Ek) for Eq > Ek, see (2.94), so the
semiconductor at equilibrium will be always lossy for light transmission. Moreover,
the absorption coefficient introduced in the Beer–Lambert law, i.e., (2.86),
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α(ω) = −g(ω)

Equation (2.123) is the quantitative description about the fundamental optical
properties of semiconductor materials and devices. Almost all optical spectra to
be closely studied in the forthcoming chapters of this book are originated from
this. Here we see that various optical spectra, such as reflectance, transmittance,
photoluminescence or modulation spectroscopy, are composed of many Lorentzian
peaks

Γqk

(Eq − Ek ± �ω)2 + Γ 2
qk

corresponding to optical transitions between twoelectron states k and q. By analyzing
the optical spectrum, i.e., decomposing the light beams, both the incident beam (also
known as the probing beam) and the output beam (after light-matter interaction), into
monochromatic lights, findingpeakpowers (∝ |〈q|∇|k|〉2), peakwavelengths (|Eq −
Ek|) and peak widths (Γqk), we will identify, though indirectly, then understand the
electron states in the semiconductormaterials and devices, thereafter optimize aswell
as design the light-matter interaction for better and/or novel materials and devices.

By looking at (2.85) and (2.87) together with (2.122), it is easy to obtain the
optical coefficient

g(ω) = −2ωκ

c0
= −ωε′′

nc0
(2.124)

The second equality in the above equation utilizes the second relation in (2.77).
Equation (2.124) shows that the extinction coefficient κ shows how strong the light
becomes either absorbed (optical loss) or amplified (optical gain) when propagating
through the material.

By inserting (2.123) into (2.124) we obtain the expression of ε′′(ω) as a function
of microscopic electron transitions

ε′′(ω) =
∑

qk

π�
2e2

m2
0ω

2Ω
|〈q|es · ∇|k〉|2 Γqk

(Eq − Ek ± �ω)2 + Γ 2
qk

[
f (Ek) − f (Eq)

]

(2.125)

Equation (2.85) shows that the refractive index n modifies the spatial variation
(the temporal variation in the time domain remains unchanged, i.e., the same angular
frequency), which is due to the polarization of the material induced by the elec-
tric field of light. For common semiconductors, the refractive index is in general
inversely proportional to the energy bandgap, i.e., a narrow-bandgap material nor-
mally has a large refractive index. For example, narrow-bandgap Hg0.67Cd0.33Te,
which is commonly used as an infrared optoelectronicmaterial, has a refractive index
of ca 3.3 in the infrared range, while the wide-bandgap GaN has a refractive index of
2.3. Reader may correlate this macroscopic phenomenon to the microscopic energy
band structure of the semiconductor: (2.125) shows that the polarization is propor-
tional to 〈q|∇|k〉, which is proportional to pcv = 〈c|∇|v〉 when discussing optical
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transition between the conduction band and the valence band, i.e., the interaction
between conduction- and valence-bandedge states uc and uv in (2.35), see more
details in Chap.4. pcv is large if the energy distance between uc and uv is small,
which is the energy bandgap. Thus, a narrow energy bandgap is normally associated
with a large pcv, resulting in a large ε′′. A large ε′′ normally implies a large ε′ due
to the Kramers–Kronig relationship to be introduced in Sect. 3.4, thereafter a large
refractive index. This is one example of spectral analysis.

2.4 Polariton and Spectral Analysis

In the above section we learned that the electron transits from state k to state q in the
presence of a photon field, see Fig. 2.11. The effect of such an electron transition on
the photon field is that the number of photons is either decreased by 1 or increased
by 1. But the story does not end here. Consider an intrinsic semiconductor with
a completely occupied valence band and a totally empty conduction band. After
absorbing one photon, one electron transits from an occupied valence-band state
to an empty conduction-band state. More specifically, the initial electron state is
composed of an occupied valence-band state and an empty conduction-band state,
and the final electron state is composed of one empty valence-band state, which
is called a hole in the valence band and is positively charged, and one occupied
conduction-band state. In the electron-hole picture, the initial electron state does not
compose any occupied hole state in the valence band and any occupied electron state
in the conduction band, which is viewed as a vacuum state. The final electron state
composes an occupied hole state in the valence band and an occupied electron state in
the conduction band. Since the effective masses of electron and hole are different so
that their wave function distributions are also different, this results in a polarization.
This polarization will certainly affect the photon field via the Maxwell’s equations.

Let us elaborate carefully and quantitatively the electron-hole concept we just
introduced. For an intrinsic semiconductor, the conduction band is totally empty,
thus there is no electron. The valence band is totally occupied, i.e., no empty state,
meaning no hole. Thus, in the electron-hole picture, the intrinsic semiconductor is
quantitatively described as a vacuum stateΨ0, i.e., no electron-hole pair. We impinge
a light of E(r, t) starting from t = 0. Because of the light-matter interaction, one
electron originally occupying one valence-band state will transit to an originally
empty conduction-band state, leaving the valence-band state empty, i.e., a hole in
the valence band. As compared with Ψ0, we now have a final state composed of one
electron in the conduction band and one hole in the valence band. Such an electron-
hole pair is known as an exciton. We denote it by wave function Ψn(re, rh, t), where
re and rh represent the electron in the conduction band and the hole in the valence
band, respectively.

We start with Ψn(re, rh). By Sect. 2.1, we formulate (2.40) for the conduction-
band electron and a similar equation for the valence-band hole then merge them
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to form the following Hamiltonian and the Schrödinger equation for the envelope
function of the electron-hole pair, i.e., exciton:

H0 = −�
2∇2

e

2m∗
e

− �
2∇2

h

2m∗
h

− e2

4πε∞|re − rh | + Ve(re) + Vh(rh) (2.126)

H0 ψn(re, rh) = Enψn(re, rh) (2.127)

where Ve(re) and Vh(rh) are potential energies for the electron and the hole, respec-
tively, ε∞ is the high-frequency dielectric coefficient of the semiconductor material.
The total wave function of the exciton is (including the temporal factor)

Ψn(re, rh, t) = ψn(re, rh)uc(re)uv(rh) e−i En t/� (2.128)

uc(re) and uv(rh) are Bloch functions at the conduction and valence bandedges.
In bulk material, Ve(re) and Vh(rh) are constant in the whole space so that the

Hamiltonian of (2.126) is similar to the one of a hydrogen atom. Alike the Bohr
model of a hydrogen atom, the ground state of the exciton is characterized by the
so-called exciton Bohr radius:

aBr = 4πε∞�
2

e2

(
1

m∗
e

+ 1

m∗
h

)
= ε∞m0

ε0m∗
r

a0 (2.129)

where 1/m∗
r = 1/m∗

e + 1/m∗
h is known to be the reduced effective mass. The deriva-

tion of the above equation can be found in quantummechanics and solid-state theory
textbooks. Here

a0 = 4πε0�
2

m0
= 0.529 Å

is the Bohr radius of the hydrogen atom (while it is called the exciton Bohr radius in
(2.129)). In Si, the exciton Bohr radius is 4.5 nm, it is 11.6 nm in GaAs, and 38.1nm
in InAs.

We now try to calculate the impact of the exciton generation on the optical proper-
ties of the semiconductor, similar to the previous section where the optical transition
of one electron from one state to another is studied. We first list the initial and final
exciton states:

H0Ψ0(t) = E0Ψ0(t) = �ω0Ψ0(t)
H0Ψn(re, rh, t) = EnΨn(re, rh, t) = �ωnΨn(re, rh, t)
Ψ0(t) = Ψ0e

−iω0t

Ψn(re, rh, t) = Ψn(re, rh)e−iωn t (2.130)

Note that Ψ0(t) denotes the vacuum state so that E0 = �ω0 = 0.
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The electric dipole of the electron-hole pair (the exciton) is

d(r) = −ereδ(r − re) + erhδ(r − rh) (2.131)

where e is the unit charge.
Initially (defined mathematically as t < 0), the semiconductor is at its vacuum

state. For t ≥ 0 we switch on an excitation light defined by its electric field E(r, t).
An excitonwill be created after the semiconductor absorbs one photon and the electric
dipole of the exciton interacts with E(r, t) in the form of

H ′ =
∫

d(r) · E(r, t) dr (2.132)

In the previous section, we expressed the electromagnetic field by its vector poten-
tial then obtain the light-matter interaction in the form of (2.101). It is easy to show
that the two expressions are equivalent. Here we choose (2.132) just because from
here it is easier to calculate the electric dipole and then the polarization.

Denote the wave function of the exciton as |re, rh, t〉 which obeys the following
time-dependent Schrödinger equation

i�
∂

∂t
|re, rh, t〉 = (H0 + H ′)|re, rh, t〉 (2.133)

where H0 is the same Hamiltonian of (2.126).
Assume that the semiconductor is initially in its vacuum state |Ψ0〉. Under the

excitation of E(r, t), the exciton will be excited to excited state |Ψn〉. By the first-
order approximation,

|re, rh, t〉 = |Ψ0(t)〉 + cn(t)|Ψn(re, rh, t)〉 (2.134)

where |cn(t)| � 1 (we will come back to this assumption shortly).
Insert (2.134) into (2.133)

i�
∂Ψ0(t)

∂t
+ i�

∂cn(t)

∂t
Ψn(re, rh, t) + i�cn(t)

∂Ψn(re, rh, t)
∂t= H0Ψ0(t) + cn(t)H0Ψn(re, rh, t) + H ′Ψ0(t) + cn(t)H

′Ψn(re, rh, t)

And by (2.130)

�ω0Ψ0(t) + i�
∂cn(t)

∂t
Ψn(re, rh, t) + �ωn cn(t)Ψn(re, rh, t)

= E0Ψ0(t) + cn(t)EnΨn(re, rh, t) + H ′Ψ0(t) + cn(t)H
′Ψn(re, rh, t)

Eliminate identical terms from the two sides of the equation



2.4 Polariton and Spectral Analysis 65

i�
∂cn(t)

∂t
Ψn(re, rh, t) = H ′Ψ0(t) + cn(t)H

′Ψn(re, rh, t) (2.135)

Multiply the above equation by 〈Ψn(re, rh, t)| then do the spatial integration

∂cn(t)

∂t
= 1

i�
〈Ψn(re, rh, t)|

∫
d(r) · E(r, t) dr|Ψ0(t)〉 (2.136)

Note that there is a term on the right-side of the equation

〈Ψn(re, rh, t)|
∫

d(r) · E(r, t) dr|Ψn(re, rh, t)〉

which is zero and thus not shown in (2.136) since the parity of the product of
Ψ ∗
n (re, rh, t)Ψn(re, rh, t) is even with respect to re and rh , while the parity of d(r)

is odd.
We express the temporal dependence of the electromagnetic field as

E(r, t) = E(r, ω)
(
e−iωt + eiωt

)

where E(r, ω) is real. Again we focus on a monochromatic light. And the above
expression simply means that the energy of the photon remains the same while
the wavelength, the speed, and spatial distribution (reflection, diffraction etc. as we
learned in Chap.1) of light vary when light travels in different medium. Integrate
(2.136) in the time domain to obtain coefficient cn(t)

cn(t) = ei(ωn−ω0−ω)t

�(ωn − ω0 − ω)
〈Ψn(re, rh)|

∫
d(r) · E(r, ω) dr|Ψ0〉

+ ei(ωn−ω0+ω)t

�(ωn − ω0 + ω)
〈Ψn(re, rh)|

∫
d(r) · E(r, ω) dr|Ψ0〉 (2.137)

Let us analyze the above expression carefully. For an optical excitation that the
semiconductor absorbs one photon then creates an exciton, we expect

�ωn − �ω0 = �ω

due to energy conservation consideration. The denominator of the first term on the
right side of (2.137) then approaches zero so that the probability of such an optical
transition is very large. Such a situation is known as resonance. At this resonant
condition, the first term on the right side of the equation becomes time independent.
On the other hand, the denominator of the second term will never be zero physically.
And for a light beam with a wavelength 700 nm in vacuum (4.3 × 1014 Hz), this
term oscillates extremely fast. Physically what we do when we try to observe (mea-
sure) cn(t) is to do an integration over a finite time interval (called exposure time
considering taking a photograph). We thus need to go beyond a time resolution of
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femtosecond (1 fs= 10−15 s) in order to observe this fast oscillating term. Therefore,
for practical material and device applications, we can neglect the second term.

Focus now on the first term. We notice that at resonance �ωn − �ω0 = �ω, the
denominator becomes zero so cn approaches infinite. Physically, the maximal value
of cn is of course only 1, i.e., the exciton state can be maximally occupied by one
exciton (in the electron-hole picture, it is one electron in the conduction band and one
hole in the valence band). What happens in reality is that long before cn becomes
significantly large, the photon emission process starts that the electron which has
been optically excited to the conduction band from the valence band by E(r, ω) will
now transit back to the vacant valence-band state under the excitation of the same
E(r, ω), which is the stimulated emission we learned in the previous section. To
include this process, we modify (2.134) to

|re, rh, t〉 = c0(t)|Ψ0(t)〉 + cn(t)|Ψn(re, rh, t)〉 (2.138)

then obtain an equation for c0(t) similar to (2.136). Careful mathematical manipu-
lation results in the following expression

cn(t) = ei(ωn−ω)t

�(ωn − ω − iγn)
〈Ψn(re, rh)|

∫
d(r) · E(r, ω) dr|Ψ0〉 (2.139)

which turns out to be limited, i.e., |cn(t)| � 1 even at resonance �ωn = �ω, under
most material and device working conditions. Here

�γn ∝ 〈Ψn(re, rh)|
∫

d(r) · E(r, ω) dr|Ψ0〉 ∝ 〈c|∇|v〉 (2.140)

which is the same 〈c|∇|v〉 in the effective mass expression of (2.35).
Note that we have neglected the second term on the right side of (2.137) which is

fast oscillating in the time domain. Moreover, we simply let �ω0 = 0.
Knowing the wave function of the excited exciton, the polarization of the exci-

ton is simply Pn(r, ω) = 〈re, rh, t |d(r)|re, rh, t〉t . After detailed mathematical and
quantum mechanical operations (reader is recommended to read more, e.g., [21]),
the final result is

Pn(r, ω) = ε∞ωLTπ a3Br
ωn − ω − iγn

ψn(r, r)
∫

ψ∗
n (r ′, r ′)E(r ′, ω)dr ′ (2.141)

where ωLT is defined by

ε∞ωLTa
3
Br = e2 p2cv

π�ω2
nm

2
0

(2.142)

and is known as the exciton longitudinal-transverse splitting and aBr is the exciton
Bohr radius defined by (2.129). Both are fundamental physical parameters that char-
acterize the semiconductor. Here pcv = 〈c| p|v〉. As we are mostly interested in the
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visible range where the wavelength is about 500 nm, while the spatial extension of
the exciton wave function, i.e., the exciton Bohr radius in a semiconductor is only
tens of nanometers, see (2.129), the electric field within the spatial extension of an
exciton can be treated as uniform. We can therefore move E(r, ω) out of the spatial
integration

Pn(r, ω) = E(r, ω)
ε∞ωLTπ a3Br
ωn − ω − iγn

ψn(r, r)
∫

ψ∗
n (r ′, r ′)dr ′ (2.143)

Now, back to the Maxwell’s equations where we relate the electric displacement
field to the polarization so that we introduce an effective dielectric constant

D(r, ω) = ε∞E(r, ω) + Pn(r, ω) = εn(r, ω)E(r, ω) (2.144)

where ε∞ is the dielectric constant at high frequency, the same as in (2.126). Insert
(2.143) into the above equation

εn(r, ω) = ε∞
(
1 + ωLTn(r)

ωn − ω − iγn

)
(2.145)

ωLTn(r) = ε∞ωLT ψn(r, r)
∫

ψ∗
n (r ′, r ′)dr ′ (2.146)

When there is more than one exciton state,

ε(r, ω) = ε∞

(
1 +

∑

n

ωLTn(r)
ωn − ω − iγn

)
(2.147)

We have discussed the spectral resolution of an optical spectrum, which is defined
as the minimal interval between the wavelengths of two monochromatic lights that
we are able to distinguish, either in space such as by using a prism dispersion or a
diffraction grating, or in the time domain by using Fourier transform spectroscopy.
Such a spectral resolution is reflected by parameterω in ε(r, ω) in the above equation.
We also notice here that ε(r, ω) depends on r , which is referred to as the spatial res-
olution. One example is the well-known microscopic photoluminescencespectrum,
or µ-PL. Here we focus a probing light on to a very small area of the sample then
detect the luminescence from the focusing area. In practice, we make the probing
spot as small as possible and detect the light signal from the proving spot. We move
the probing spot to scan the sample.Wewill study a two-dimensionalµ-PL spectrum
in Sect. 4.4.

In many cases we encounter physical processes of bulk natures that ψn(r, r) is a
weak function of r . In this case, we can neglect the spatial dependence of ωLTn(r) in
(2.146).Another extreme situation is thatψn(r, r) is strongly localized in a very small
spatial region such as an exciton in a quantum dot with a radius of less than 10 nm,
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which is beyond the resolution (about one wavelength) of any optical measurement
setup (which is known to be the diffraction limit). Thuswhat we observe is an average
of the dielectric constant over the probing space. For these two cases,

ε(ω) = ε∞

(
1 +

∑

n

ωLTn

ωn − ω − iγn

)
(2.148)

Note that the above expression is similar to (2.125), but not exactly the same!
It is reminded that (2.148) is derived under the assumption that the wave function
of the exciton is much confined in space, i.e., the step from (2.141) to (2.143).
Equation (2.125) is thus always used in the rest of the bookwhenwe perform spectral
analysis at the microscopic level.

As mentioned before, a semiconductor is composed by atoms with a density of
approximately 1023/cm3. The responses from a semiconductor to an external probing
are results of various transitions of electrons and/or atoms between their initial states
and final states, which can be expressed mathematically similar to the exciton in
the form of (2.147). Not being able to go in details within the scope of the book,
we simply state the final result that the dielectric coefficient of a material can be
expressed as

ε(ω) = ε0

(
1 +

∞∑

n=1

ωLTn

ωn − ω − iγn

)
(2.149)

where ωn denotes various transition energy of the electron and/or atom. And instead
of ε∞ in (2.147) which is the case when we focus on the exciton effect out of all
other transitions, ε0 appears in (2.149). Moreover, to distinguish the two cases, we
specifically write the summation in (2.149) from 1 to ∞.

Note that the dielectric coefficient expressed by (2.149) is complex. Its imaginary
part is actually equivalent to the optical coefficient g(�ω) of (2.123) in Sect. 2.3. We
will discuss it further in the next chapter.

Reader may see a different but equivalent form of (2.149) in the context of the
damped harmonic oscillator. In the close vicinities of resonance, ω ≈ ωn ,

1

ωn − ω − iγn
= (ωn + ω)

(ωn + ω)(ωn − ω − iγn)
= (ωn + ω)

ω2
n − ω2 − iγn(ωn + ω)

≈ 2ωn

ω2
n − ω2 − 2iωγn

(2.150)

i.e., we multiply the numerator and the denominator simultaneously by (ωn + ω),
approximate it in the numerator as ωn + ω ≈ 2ωn , and the term that multiplies γn
in the denominator as 2ω (both are valid as long as ω ≈ ωn). Re-define relevant
parameters we obtain the dielectric constant in the picture of the damped harmonic
oscillator model

ε(ω) = ε∞ +
∑

n

fn ω2
n

ω2
n − ω2 − iωγn

(2.151)
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where ωn is the frequency of the harmonic oscillator, i.e., the experimental peak
frequency (easily convertible to peak wavelength), 1/γn is the width of the peak,
representing the lifetime of the harmonic oscillator, also known as the damping rate.
Without damping, the spectral peak becomes a sharp spectral line. fn is known as
the oscillator strength, representing the strength of the response of an electron and/or
atom in the semiconductor to the external probing.

We now know that an optical spectrum is composed by spectral peaks character-
ized by their wavelengths, strengths, and widths. The peak width, i.e., γn in (2.151) is
proportional to the light-matter interaction, see (2.140). The geometric shape of the
spectral peak in (2.151) is called Lorentzian. In reality, there are many factors that
collectively determine the geometric shape of a spectral peak. There are basically
two categories.

• Homogeneous broadening:
Lifetime, i.e., γn in (2.151), is the principal factor that shapes the spectral peak
into the Lorentzian form

1

(ωn − ω)2 + γ 2
n

(2.152)

• Inhomogeneous broadening:
Doppler effect is expected when there is a relative motion between the light source
and the photon absorber. Let the light frequency be ωn when there is no relative
motion between the light source and the photon absorber.With a relative motion of
speed v (move close which is defined as v > 0 and move away defined as v < 0),
the frequency of the light that reaches the photon absorber is

ωn

(
1 + v

c

)
(2.153)

Electrons move at different speeds in a semiconductor so that photons emitted
from these electrons will appear at different frequencies when they reach the
spectrometer, resulting in the so-called Doppler broadening. There are other types
of broadening such as impurity and defect scatterings. All these factors can shape
the spectral peak into the following Gaussian peak

e(ω−ωn)
2/2γ 2

n (2.154)

We normally quantify the peak width by the so-called full width at half maximum
(FWHM). For a Lorentzian peak of (2.152), FWHM = 2γn , and for a Gaussian peak
of (2.154), FWHM = 2

√
2 ln 2 γn ≈ 2.355γn . Figure 2.12 displays the Lorentzian

and Gaussian peaks. The former has two broad sides, while the latter decreases
much fast when moving away from the peak center. In most cases of our interest,
the spectral peaks are Lorentzian. In practices, however, the recorded spectrum can
be much complicated, see more discussions in Sect. 4 and various spectral fittings in
the coming chapters.
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Fig. 2.12 Lorentzian (black
solid line) and Gaussian (red
dashed line) spectral peaks.
ωn is the frequency of the
harmonic oscillator and
FWHM is the full width at
half maximum
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Chapter 3
Reflection and Transmission

Abstract In this chapter we study how amaterial reflects and transmits a light beam
in terms of the macroscopic effective dielectric coefficient of the material. The focus
of the chapter is to extract the effective dielectric coefficient of the material using
the harmonic oscillator model and the Kramers–Kronig relationship by properly
designing the reflection and transmission spectroscopic measurements including the
reflection and transmission spectra from and through a thin film and the reflection
spectrum from a thin film on a substrate.

An incident plane wave is reflected, refracted and partly transmitted by a sample. The
optical power of the reflected light as a function of the wavelength of the light beam
is the reflection spectrum, and the optical power of the transmitted light as a function
of the wavelength is the transmission spectrum. These two most common, may
even be called the simplest, spectra have been key tools in exploring and exploiting
semiconductor materials and devices.

Recall Table 2.2 in the previous chapter, we notice words “wave” and “ray” that
describe characteristic natures of light in different wavelength ranges. While “wave”
emphasizes the wave nature of light in terms of the wave optics, “ray” is in the field
of the geometric optics (which is also known as the ray optics). What we do in this
chapter is to restrain us to the semiconductor materials and devices whose geometric
sizes are much larger than the wavelength of the light beam so that the geometric
optics applies when we discuss the propagation of the light beam. This is to be done
by studying the reflection and transmission of the light beam at/through boundaries
of the semiconductors using the Maxwell’s equations.

The reflection spectrum includes not only a single reflected light beam. There can
be several reflected beams, such as multiple reflected light beams from a rough or a
structured surface, e.g., see Sect. 1.2, or from two surfaces of a thin film (see discus-
sions below). Similar situations occur in the transmission spectrum. The addition of
multiple light beams is described by the wave optics.

A monochromatic light beam is described by its electric field

E(r, t) = E0 e
i(s·r−ωt) + c.c. (3.1)
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i.e., the first equation of (2.83), where E0 is the amplitude, s the wave vector, and
ω the angular frequency. c.c. represents the complex conjugate of the first term on
the right side of the expression. Another light beam is similarly expressed but with
some modifications

E′(r, t) = E′
0 e

i(s′·r−ω′t)+iδ + c.c. (3.2)

where δ is a phase factor with respect to E(r, t). E0 and E′
0 can be r-dependent due

to, e.g., the light-matter interaction studied in Sect. 2.3. E(r, t) and E′(r, t) can be
the two beams in Fig. 1.6 where s = s′, ω = ω′, and δ is the phase factor due to the
difference in optical paths of the two beams. The addition of the two beams is

E(r, t) + E′(r, t) (3.3)

There are many factors that contribute the phase factor δ in (3.2). In a laser
operation, δ of the stimulated emitted photon is the same as that of the stimulating
photon in resonance amplification, while the spontaneously emitted photon has a
random phase. When a light beam impinges on an interface between one spatially
uniform region (e.g., air) and another spatially uniform region (e.g., a semiconductor),
the momentum of light, �s, changes its direction due to the collision of photons
with the densely packed atoms in the semiconductor, thus the light beam becomes
either reflected or diffracted. The collision is normally instant so does not introduce
any phase change (which is also denoted as a phase shift). Note that light-matter
interaction is a complex phenomenon described fully by quantum electrodynamics.
A proper presentation of the quantum electrodynamics is outside the scope of this
book. The phases of the emitted photons mentioned here cannot be studied by the
theoretical frame we have described in the previous chapter.

The phrase “spatially uniform” in the previous paragraph is actually defined at the
macroscopic level. Consider a light beam composed of many photons propagating
in the air at the microscopic level. Initially, all photons have the same phase, such
as when they leave the cavity of a laser under resonance amplification operation.
Some photons in the light beam will collide with atoms and molecules in air which
are randomly distributed in space. The detector will receive photons that have not
collided with atoms and molecules which maintain their original optical paths, as
well as photons that were collided with atoms and molecules. These photons will
have different optical paths when they reach the detector. We eventually will detect
the light beam composed of photons with a phase distribution as a function of the
densities of atoms and molecules in the air.

People introduce a macroscopic property called the coherence length to describe
the propagation of a light beam through a macroscopically uniform medium. The
coherence length is the propagation distance within which the light beam largely
maintains its sinusoidal character of (3.1). Beyond the coherence length, the phase
factor δ in (3.2) is no longer solely determined by the geometric length that the light
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beam travels. In extreme cases, it becomes simply a random number due to the huge
number of collision events at the microscopic level. This will modify significantly
the optical spectrum.

Having briefly mentioned a few words about the propagation of the light beam,
let us try to quantify the reflection and transmission spectra.

3.1 Fresnel’s Equations

In the previous chapter we used the Maxwell’s equations to describe the light prop-
agation in a free space and in a semiconductor that is extended theoretically in the
whole space. When a light beam impinges on an interface between two media, such
as from the free space to a semiconductor, the light beam will become reflected and
refracted, diffracted, i.e., the propagation direction of the light beamwill be changed.
There can also be further polarization changes. All these are well described by the
Maxwell’s equations.

As we learn from the previous chapter, the propagation of a light beam through a
material can be described by the effective dielectric coefficient, i.e., ε in (2.67) and
(2.149), which is a macroscopic physical parameter summarizing all microscopic
light-matter interactions when the light beam propagates through the material. Its
measurement is therefore a common means to understand microscopic light-matter
interactions and thereafter design and apply these light-matter interactions for various
applications.

In Sect. 2.3 we study the light propagation in a bulk material which extends
infinitely, i.e., (2.81) describe a decaying or growing plane wave in a three-
dimensional space. Now we study a light beam that incidents from one medium
described by ñ1 to another medium of ñ2, the two media are separated by a flat inter-
face, see Fig. 3.1. The light will be reflected and refracted, resulting in a reflected
beam back to ñ1 and a refracted beam in ñ2. The refracted beam is also referred to as
transmitted (from ñ1 to ñ2). It is straightforward by applying Maxwell’s equations
to obtain reflection and transmission coefficients.

Let θi and θt be the incident and refraction angle, respectively. The reflected
angle is denoted as θr which will be shown to equal to θi. The wave vectors of the
incident and reflected beams define the plane of incidence. With respect to the plane
of incidence, there are two polarization situations for the electric field. The electric
field of the incident light may lies parallel to the plane of incidence, i.e., the E‖ field
in Fig. 3.1, which is called p-polarized (“parallel” in German, same in English). It
may either sticks out of or into the plane of incidence which is called s-polarized
(“senkrecht” in German, “perpendicular” in English), i.e., the E⊥ field in Fig. 3.1.

We would like to compute the fractions of a light wave reflected and a light
wave transmitted by the flat interface between two media with different refractive
indices, which are the reflection and transmission coefficients mentioned before.
Fresnel was the first to do this calculation so the reflection and refraction equations
are known to be Fresnel’s equations. Let E‖i, E‖r, and E‖t be the amplitudes of
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Fig. 3.1 Fresnel’s reflection and refraction at the interface between medium ñ1 and medium ñ2.
The plane of incidence is defined by the wave vectors of the incident and reflected beams. θi is the
incident angle, θr the reflection angle, and θt the refraction angle (also known as transmission angle
thus subscript “t”). The electric field of p-polarization lies parallel to the plane of incidence, while
for s-polarization it sticks out of (in this figure) or into the plane of incidence

p-polarized electric fields of the incident, reflected and transmitted lights, respec-
tively. It is straightforward to obtain the reflection and transmission coefficients

r‖ = E‖r
E‖i

= ñ1 cos θt − ñ2 cos θi

ñ1 cos θt + ñ2 cos θi
, t‖ = E‖r

E‖i
= 2ñ1 cos θi

ñ1 cos θt + ñ2 cos θi
(3.4)

The reflection and transmission coefficients of the s-polarized lights E⊥i, E⊥r , and
E⊥t

r⊥ = E⊥r

E⊥i
= ñ1 cos θi − ñ2 cos θt

ñ1 cos θi + ñ2 cos θt
, t⊥ = E⊥t

E⊥i
= 2ñ1 cos θi

ñ1 cos θi + ñ2 cos θt
(3.5)

Equations (3.4) and (3.5) are the so-called Fresnel’s equations of light reflection
and refraction.

Along with the derivations of Fresnel’s equations come also the Snell’s law

θi = θr, ñ1 sin θr = ñ2 sin θt (3.6)

The first one is called Snell’s law of reflection and the second one is Snell’s law of
refraction.

In practical spectral measurements, the incident light impinges on the interface at
a zero incident angle called the normal incidence (θi = θt = 0) for which
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r⊥ = r‖ ≡ r = ñ1 − ñ2
ñ1 + ñ2

, t⊥ = t‖ ≡ t = 2ñ1
ñ1 + ñ2

(3.7)

by (3.4) and (3.5).
For an interface between two lossless media, i.e., κ1 = κ2 = 0, (3.7) become

r = n1 − n2
n1 + n2

, t = 2n1
n1 + n2

(3.8)

We can calculate the reflectance R and transmittance T at this single flat interface

R = |〈Sr〉t |
|〈Si〉t | = n1E2

r

n1E2
i

= (n1 − n2)2

(n1 + n2)2
, T = |〈St〉t |

|〈Si〉t | = n2E2
t

n1E2
i

= 4n1n2
(n1 + n2)2

(3.9)

And R + T = 1, i.e., there is no loss of the optical power when the light beam is
being reflected and refracted. In the above equations, 〈. . .〉t denotes time average, as
always.

Fresnel’s equations of (3.4), (3.5) and Snell’s law of (3.6) are generally valid
for both lossless and lossy media. However, the mathematical manipulation and
relevant physical interpretation become much more complicated when lossy media
are involved. We may retrieve the common textbook expressions by letting κ = 0 so
that the reflection and refraction angles are real, whereas for nonzero κ the angles in
the equations will be complex valued and do no longer have the obvious geometrical
interpretations. The theme is very interesting, however, it is beyond the scope of this
book.

We consider a light beam incident from vacuum or air (ñ1 = 1) to amediumwith a
complex refractive index ñ2 = n + iκ , which is the most relevant model of common
reflection and transmission measurements (see the next section). It is easy to obtain
from (3.7) the reflectance R and transmittance T of the light beam at the single flat
interface between air (ñ1 = 1) and the medium (ñ2 = n + iκ)

R = (n − 1)2 + κ2

(n + 1)2 + κ2
, T = 4n

(n + 1)2 + κ2
(3.10)

Again R + T = 1 indicating energy conservation at the reflection-refraction
interface.

Before we move on to analyze experimental reflectance and transmittance
spectra, let us take a theoretical/numerical example. Assume that within the opti-
cal range of interest, the material of interest has three absorption peaks at photon
energies of �ω1 = 150, �ω2 = 268.5, and �ω3 = 522.6 cm−1, respectively, with
oscillator strengths of f1 = 0.005, f2 = 2.1 and f3 = 0.0005, and the correspond-
ing damping rates are �γ1 = 10, �γ2 = 2.5, and �γ3 = 10 cm−1. We further assume
a high-frequency dielectric coefficientof ε∞ = 11.56. It is easy to calculate the com-
plex refractive index of the material by (2.151), which is repeated below
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(a) (b)

Fig. 3.2 Refractive index n and extinction coefficient κ of a sample material as functions of photon
energy �ω. Solid black line is κ and dashed red line is n. Same data in a linear vertical scale (a) and
a logarithmic vertical scale (b)

ε(ω) = ε∞ +
3∑

�=1

f� ω2
�

ω2
� − ω2 − iωγ�

(3.11)

and the numerical results of n and κ (n + iκ = √
ε) are presented in Fig. 3.2.

In Fig. 3.2a where a linear vertical scale is used, only one peak at �ω2 = 268.5
cm−1 is visible in both n and κ , while the extinction coefficient peaks at �ω1 = 150
and �ω2 = 522.6 cm−1 are visible only in the logarithmic vertical scale in Fig. 3.2b.
In both linear and logarithmic vertical scales, the refractive index n is dominated by
a single peak at �ω2 = 268.5 cm−1.

Insert the complex refractive index of Fig. 3.2 into (3.10) we obtain the reflectance
and transmittance spectra presented in Fig. 3.3a at the single flat interface between
air ñ1 = 1 and medium ñ2 = n + iκ . We observe clearly the dominant peak at
�ω2 = 268.5 cm−1, while the two weak peaks at �ω1 = 150 and �ω3 = 522.6 cm−1

are only observable in the differential spectrum using the logarithmic vertical scale,
see Fig. 3.3b where it is shown that the variations are below 10−4, which is beyond
the sensitivities of common optical spectrometers.
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(a) (b)

Fig. 3.3 aReflectance R(ω) (black solid) and transmittance T (ω) (red dashed line) at the single flat
interface between air ñ1 = 1 and ñ2 = n + iκ of Fig. 3.2.bVariation of the reflectance, |dR(ω)/dω|
as a function of the photon energy. Inset in a shows the geometry of measuring R(ω) and T (ω)

3.2 Reflection and Transmission by a Thin Film

Equation (3.10) shows that we are able to extract in principle the microscopic opti-
cal properties of the material, i.e., ñ2 = n + iκ , from measuring optical spectra of
reflectance R and transmittance T . In reality we cannot measure directly T since it is
simply not possible, at least not practical, to put a photodetector in a solid material.
A more practical situation is that a light beam incidents to a thin film of the material
with a thickness d, see Fig. 3.4. The incident light beam can either bemonochromatic
or polychromatic. In the latter case, we need a dispersion device (Chap. 1) to separate
one light beam of a specific wavelength of interest from the rest of the polychromatic
light beam.

For simplicity, let us focus on a monochromatic light with a single angular
frequency ω. Assume that the light beam impinges on the upper interface of the
thin film at an incident angle θi. It will be reflected back to the same side of the light
incidence at a reflection angle θr; It will also refract into the thin film at a refraction
angle θt , pass through the thin film then exit the thin film from the lower interface.

In the previous section we learn the reflection and transmission of light at a
single interface between two media. In Fig. 3.4 however, the thin film, i.e., medium
2, has two interfaces. Because of the multiple reflections and refractions within
the two interfaces, the net reflected and transmitted light beams that reach the two
photodetectors Sr and St are composed of two different series of light beams with
different optical paths. Depending on the wavelength of the incident light beam and
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Fig. 3.4 Schematic optical
paths of a typical reflection
and transmission spectral
measurement setup on a thin
film (medium 2)

the phase relationships, the series of the reflected and transmitted light beams may
interfere constructively or destructively.

Let ñ = n + κ be the complex refractive index of the thin film (denoted asmedium
2 in Fig. 3.4), and the measurement is performed in the air so that the refractive
indices of the spaces above the upper interface (medium 1) and below the lower
interface (medium 3) are 1. Moreover, we assume that the light beam strikes the
upper interface at the zero incident angle, i.e., the normal incidence. By (3.7), the
reflection and refraction coefficients at the upper and lower interfaces are

r12 = 1 − ñ

1 + ñ
, t12 = 2

1 + ñ
, r21 = r23 = ñ − 1

ñ + 1
, t21 = t23 = 2ñ

ñ + 1
(3.12)

for a single beam. Here r12 is the reflection of the light beam from medium 1 back to
medium 1 reflected by the upper interface of the thin film, t12 is the refraction from
medium 1 into medium 2 at the upper interface. r23 and t23 are likewise defined but
at the lower interface. Note that r12 = −r23.

The most important aspect about the thin film are the multiple reflections and
refractions at the upper (lower) interface for the light beams that are reflected from
the lower (upper) interface, denoted as r21 and t21 (r23 and t23).

Let Ei be the electric field of the incident light beam. Since we work on the
normal incidence, we do not need to care about the vector nature of the fields (see
the previous section that the p- and s-polarized fields are identically reflected and
refracted at the normal incidence condition). The direct reflected light beam from the
upper interface, called the zeroth-order reflected light beam, is Eir12. The first-order
reflected light beam, that comes from one refraction through the upper interface, one
reflection from the lower interface, and one refraction through the upper interface, is

Eit12e
iδr23e

iδt21 (3.13)

where δ = ωñd/c0 is the extra phase due to the optical path from the upper interface
to the lower interface then back to the upper interface. We can similarly construct all
other multiple-reflected light beams. The total reflected electric field thus becomes

Er = Eir12 + Eit12e
iδr23e

iδt21 + Eit12e
iδr23e

iδr21e
iδr23e

iδt21 + · · · (3.14)
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It is easy to see that the result of the above infinite summation is

Er = Ei
r12 + e2iδr23
1 + e2iδr12r23

(3.15)

Similarly we obtain the total electric field of the series of the transmitted light
beams

Et = Ei
eiδt12t23

1 + e2iδr12r23
(3.16)

Knowing the amplitude E of the electric field E in the air, it is easy to calculate
the optical power, i.e., the time-averaged amplitude of the Poynting vector

|〈S〉t | = |〈E × H〉t | = 2c0ε0|E |2 (3.17)

by (2.83), (2.84). Note that the light beams under study are now in the air.

Sr = 2c0ε0|Er|2, St = 2c0ε0|Et|2 (3.18)

are therefore the optical powers of the reflected and transmitted lights measured

in Fig. 3.4. And the amount of the absorbed light beam is
(
Si − Sr − St

)
, where

Si = 2c0ε0|Ei|2.
Equations (3.15), (3.16) show that the optical powers of reflected and transmitted

light beams are direct functions of n and κ , which is exactly the purpose of measuring
the reflected light beam Sr and the transmitted light beam St to find information about
ñ = n + iκ , and thereafter microscopic processes related to ñ.

Now let us take a look at the reflected and transmitted light beams from the thin
film of the material with ñ = n + iκ in Fig. 3.2, i.e., the reflection and transmission
spectra of Fig. 3.4. The numerical results of (3.15), (3.16), (3.18) are presented in
Fig. 3.5 as reflectance R = Sr/Si and transmittance T = St/Si for three different film
thicknesses d = 0.1, 1.0 and 10.0 cm, respectively.

We first observe strong oscillations in both the reflection and transmission spectra
and the oscillations depend strongly on the photon energy. This is due to the con-
structive and destructive interferences of the multiple reflected and refracted light
beams.

The dominant peak at �ω2 = 268.5 cm−1 in Figs. 3.2 and 3.3 exists always clearly
in the reflection spectrum, independent of the film thickness d. And the reflectance
of the thin film approaches the one shown in Fig. 3.3a when d becomes large. The
reason is mathematical and very simple. For a very thick sample, the imaginary part
of the extra phase

δ = ωdñ

c0
= ωd(n + iκ)

c0
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Fig. 3.5 a Reflectance (black solid line) and transmittance (red dashed line) of a thin film (inset in
c) with a complex refractive index shown in Fig. 3.2 obtained under the normal incidence condition
(θi = 0while inset in c shows amuch tilted incidence only for easy visualization). The film thickness
is d = 0.1 cm. b and c: same as a but for d = 1.0 and d = 10.0 cm, respectively. The numerical
results are obtained by using (3.15), (3.16), (3.18)

becomes very large so that eiδ → 0, and therefore Er = Eir21 by (3.15), resulting
in Sr/Si = |r21|2 = R(ω). This result is of course limited to the case of a very thick
film (in theory) and/or a film with a large extinction coefficient. The first condition,
i.e., a thick thin film, may not be sufficient. As mentioned at the very beginning of
this chapter, the light transmission through a long distance in a medium depends
strongly on the coherence length of the light in the medium. In other words, the
coherence length of the light should be long enough in order to see the effect of the
light extinction effect. We will discuss shortly the issue more carefully.

All three peaks in ñ(ω) are in the form of valleys in the transmission spectrum.
And the valley width and depth depend on the values of κ at these photon energies
when the film is not too thick. This is understandable since the light beam cannot
transmit through a very thick material (here we mean a lossy material, i.e., with a
nonzero κ). The absorption at �ω2 = 268.5 cm−1 is already too strong even for a
film with a thickness of only d = 0.1 cm, which results in an opaque band of 250–
300 cm−1 in the transmission spectrum, see Fig. 3.5a. The opaque band becomes
much wide when the film thickness is increased to 1.0 cm, under which situation,
transmission valleys at peaks at �ω1 = 150 and �ω3 = 522.6 cm−1 are still well
defined, i.e., very sharp. For a thin film of 10 cm (very much alike a bulk material
now), basically all lights are absorbed and the transmission spectrum measurement
is rendered useless.

However, all three peaks can be clearly distinguished in the reflection spectrum
when the film is not too thick, i.e., not the film of d = 10.0 cm. Even the two weak
peaks in the refractive index n and extinction coefficient κ in Fig. 3.2 at �ω1 = 150
and �ω2 = 522.6 cm−1 are clearly revealed when the film thickness is properly
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chosen, see Fig. 3.5b where d = 1.0 cm. This is the action of the multiple reflections
and refractions by the upper and lower interfaces.

By comparing Fig. 3.5a–c one concludes that all peaks can be extracted from
the reflection and transmission spectra when the film thickness is properly chosen,
even the two very weak peaks at �ω1 = 150 and �ω3 = 522.6 cm−1 which are only
observable in the logarithmic scale in ñ and in the differential spectrum of R(ω) in
Fig. 3.2.

In reality, a bulk material is nominally defined to have a thickness in the order of
0.1 cm and beyond, which is already the one in Fig. 3.5a. And the typical thickness
of the material for the epitaxial substrate is about 0.3–0.5 mm. The coherence length
of common light sources cannot cover these thicknesses, mostly because of the high
densities of atoms in the solid material. To simulate such a situation, we can reset the
real phase of the reflected and refracted lights in (3.15), (3.16). More specifically,
for the coherence situation,

δcoherence = ωñd

c0
(3.19)

while for the incoherence condition,

δincoherence = −ωκd

c0
(3.20)

The results of the incoherence condition are presented in Fig. 3.6. As compared
with Fig. 3.5, strong oscillations due to constructive and destructive interferences
of the multiple reflections and refractions are all gone so that the three peaks in the
reflection spectrum and the three valleys in the transmission spectrum are all clearly
visible, especially in the thin film case. Again, the light beam at �ω2 = 268.5 cm−1

is strongly absorbed before it can reach the lower interface for further reflections and
transmissions. Therefore, it is only observable in the reflection spectrum.

What we have been doing so far is to obtain the reflection and transmission spectra
of a thin film as the results of multiple reflections and refractions at the two interfaces
of the thin film from the reflectance and transmittance spectra of a single interface,
which are the results of the refractive index n(ω) and extinction coefficient κ(ω) of
the material expressed by (3.11), while the ultimate goal of the spectral analysis is
actually the other way around.

The procedure of the spectral analysis is thus the following: We first measure the
reflection and transmission spectra of the thin film. Look at the spectra to access and
estimate the positions of peaks in the spectra. Modify ωi , fi and γi in the computer
code as fitting parameters, run the computer code repeatedly by adjusting the fitting
parameters so that the calculated spectra agree best with the experimental data. Here
is one example.

Room-temperature reflection Rexp and transmission T exp spectra of an intrinsic
(001) GaAs substrate film (thickness d = 0.05 cm, both the upper and lower inter-
faces are well polished) are obtained from a Fourier transform spectrometer, which



84 3 Reflection and Transmission

100 200 300 400 500 600
0.0

0.2

0.4

0.6

0.8

1.0

100 200 300 400 500 600 100 200 300 400 500 600

R
ef

le
ct

an
ce

 a
nd

 tr
an

sm
itt

an
ce

(a) d=0.1 cm

R

T

Photon energy [cm-1]

(b) d=1.0 cm

R

T

(c) d=10.0 cm

T

R R

T

d

Fig. 3.6 Same as Fig. 3.5 but under the incoherence condition
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Fig. 3.7 a Room-temperature reflection Rexp (black solid line) and transmission T exp (red dashed
line) spectra of an intrinsic (001) GaAs substrate film (thickness d = 0.05 cm). b Theoretically
extracted reflectance R(ω) (black solid line) and transmittance T (ω) (red dashed line) spectra

are presented in Fig. 3.7a, while theoretically extracted reflectance and transmittance
spectra are presented in Fig. 3.7b.

First of all, we notice that the photon energy range of the measurement is 200–650
cm−1 (24.8–80.6 meV, in the infrared optical range), which is the energy range of
the optical phonon dispersion in the bulk GaAs material, see Fig. 2.9.
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The general agreements between the experimental data and theoretical fitting are
good. However, deviations exist. The most prominent ones are in the range from
350 to 550 cm−1, which is originated from the strong dielectric function modulation
induced by the transverse optical (TO) phonons (Fig. 2.9). There are many valleys in
Rexp, such as 206, 413, 442, 455, 494, 509 and 525 cm−1, corresponding to various
two-phonon excitations. Two-phonon excitations (or other multiphonon excitations)
are caused by anharmonic effects in the lattice vibrations. Unlike one-phonon exci-
tations, multiphonon excitations occur mostly at energies with high densities of
phonon states, they are also temperature dependent [1]. The valley at 525 cm−1 in
T (ω), marked by a vertical arrow in Fig. 3.7b, is related to the absorption of two TO
phonons at the Γ symmetric point in the k space [2].

3.3 Harmonic Oscillator Model

In the previous section we briefly mentioned the phonon absorptions in the reflection
spectrum in the infrared optical range. Infrared reflection spectrum has been widely
and effectively used to study phonons, especially optical phonons, in semiconductors.
As we have learned from the previous section, the relationship between the reflection
spectrum and the dielectric coefficient is rather complicated. Harmonic oscillator
model and Kramers–Kronig relationship analysis are commonly used to analyze the
infrared reflection spectrum for extractingmacroscopic optical parameters (dielectric
coefficient) and microscopic physical parameters such as resonance frequencies,
oscillator strengths, damping rates of the optical phonons. In this sectionwe introduce
the harmonic oscillator model. The Kramers–Kronig relationship analysis will be
studied in the next section.

In the harmonic oscillator model, the dielectric coefficient is expressed by

εTO(ω) = ε∞ +
∑

�

fTO,�ω
2
TO,�

ω2
TO,� − ω2 − iωγTO,�

(3.21)

i.e., (2.151). In the above equation, the first term is the high-frequency dielectric
coefficient ε∞ which includes contributions of optical transitions of electrons in their
energy band structures. The second term sums contributions from various transverse
optical (TO) phonon contributions, where ωTO,�, fTO,� and γTO,� denote the energy,
the oscillator strength and the damping rate of TO phonon �. Many compound semi-
conductors have the zincblende lattice structure so that there is normally only one
principal reflection peak in the infrared reflection spectrum. In this case, the summa-
tion over � in the above expression is limited to just 1.

The solid black line in Fig. 3.8 is a reflection spectrum R(ω) of a GaAs bulk
material. It is to be fitted by using (3.12), (3.15), (3.16), (3.18), (3.21) in order to
find the fundamental physical parameters about the TO vibrational mode. The flow
chart of the fitting procedure is summarized below
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Fig. 3.8 The fitting of the
infrared reflection spectrum
of bulk GaAs TO phonons
by the harmonic oscillator
model. Solid black line is the
experimental data, and
dashed red line is the fitting
spectrum
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εTO(ω) = ε∞ +
∑

�

fTO,�ω
2
TO,�

ω2
TO,� − ω2 − iωγTO,�

� ñ = √
εTO, δ = ωñd

c0

� r12 = 1 − ñ

1 + ñ
, t12 = 2

1 + ñ
, r21 = r23 = ñ − 1

ñ + 1
, t21 = t23 = 2ñ

ñ + 1

� Er = Ei
r12 + e2iδr23
1 + e2iδr12r23

, Et = Ei
eiδt12t23

1 + e2iδr12r23
� Sr = 2c0ε0|Er|2, St = 2c0ε0|Et|2

� R = Sr
Si

, T = St
Si

(3.22)

By following the flow chart of spectral fitting of (3.22) we obtain fTO = 2.28,
ωTO = 267.6 cm−1, and γ = 3.4 cm−1. The fitted spectrum is shown in Fig. 3.8 as
the red dashed line. The fitting in general is quite good except in the range below
200 cm−1. The higher experimental reflection in this range comes from secondary
reflections (mostly, reflections from the lower interface of the sample) which is not
described properly in (3.22) (such as the geometric structure of the film, scatterings of
photons travelling in the material), resulting in the fitting line below the experimental
data.

More critical is the discrepancy in the grey area in Fig. 3.8 that the fitted spectral
line is well below the measurement data. This is actually due to the simplification of
the harmonic oscillator model. In principle, the damping rate γ in (3.21) is a function
of ω. Experimental data show that γ reaches its maximal value when ω = ωTO

(resonance), it becomes smallwhenω deviates fromωTO (off resonance). Readerwho
is interested in this may refer to (7.15) in Sect. 7.2 where we show both theoretically
and experimentally that the energy relaxation of an exciton radiative recombination
is a Lorentzian function of the photon energy centered at the exciton energy. The
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Fig. 3.9 Infrared reflection
spectrum of a sapphire
substrate. Black solid line is
the measured spectrum, and
red dashed line is the fitting
line. Inset shows the
reflection spectrum in the
range of 450–650cm−1
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phonon-photon interaction may be studied similarly, which however is beyond the
scope of the book.

When there is more than one TO phonon in the materials such as the many ternary
and quaternary alloys, there will be many reflection peaks in the infrared reflection
spectra. The solid line in Fig. 3.9 is the reflection spectrum of a sapphire substrate
with many reflection peaks. The fitting line is red dashed, with extracted TO phonon
energies of 384, 444, 564, and 635 cm−1 [3].

A closer analysis shows that there is a weak vibrationalmode at 575 cm−1, marked
by a vertical arrow in Fig. 3.9, see also the inset, verymuch alike the vibrational mode
along the c axis of the hexagonal lattice of the sapphire substrate. Since the c axis
is aligned with the normal direction of the sapphire substrate, this vibrational mode
is not expected to response to the light of normal incidence, i.e., light incidents to
the sapphire substrate along the c axis. In practical reflection measurement setup,
we simply cannot align both the light source and the photodetector, which detects
the reflected light beam, along the same line normal to the sample surface. Thus, the
incidence angle is small, but not zero, commonly around 15◦. For many vibrational
modes in isotropic materials, this small incident angle can well be approximated
as zero. But for anisotropic materials such as the sapphire with an in-plane lattice
constant a = 4.785 Å and a lattice constant 12.991 Å along the c axis, the setup can
no longer be approximated as normal incidence. The weak 575 cm−1 peak in Fig. 3.9
(more clearly in the inset) is the result of the interaction between the optical phonon
along the c axis with the photon which comes to the sample at a small incident angle.

In this section so far, we apply directly the harmonic oscillator model of only
transverse optical (TO) phonons. In Sect. 2.2, lattice vibrations of a semiconductor
crystal are much more complicated. They are described by (2.63), (2.64) which are
repeated below

ui,�(R, t) = ψi,�(R)√
MR

e−iω�t (3.23)
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H |ψ�〉 = ω2
� |ψ�〉 (3.24)

where R denotes the spatial position of the lattice site which is occupied by an atom
with mass MR. ui,�(R, t) is the lattice displacement along axis i (i = x, y, z). A little
different from (2.63), (2.64) is that we add eigen state index � in (3.23), (3.24) for a
better narration. Hamiltonian H is a two-dimensional matrix whose elements are

Hi j (R − R′) = φi j (R − R′)√
MRMR′

where φi j (R − R′) is the interaction between atom R and atom R′ defined by (2.49).
This model is denoted as the harmonic oscillator model, as introduced in Sect. 2.2.
Since this model is derived by neglecting high-order terms in the Taylor expansion
of the lattice potential energy, see (2.46), it is also commonly known as the pseudo-
harmonic oscillator model. As shown by (3.23), (3.24), the eigen lattice vibration is
characterized by its eigen frequencyω�, i.e., the angular frequency of the phonon. As
shown in Fig. 2.8, the phonon spectrum consists of mainly two branches, acoustic-
phonon and optical-phonon branches.

Exactly alike what we learned in Sect. 2.3 that an electron initially occupying
one electron state can interact with one photon in an incident light beam to transit
to another initially empty electron state, the semiconductor crystal lattice can also
interact with a photon, either absorbing or emitting one photon, then transits from
one vibrational state to another vibrational state.

We can conclude, by simply considering both energy and momentum conserva-
tions without going into all mathematical and physical details (reader is encouraged
to either do a similar analysis about phonon-photon interaction by following the
example of Sect. 2.3, or read relevant literatures), that the phonon-photon interaction
occurs most probably for the optical phonon branch, since the photon momentum is
very small. Recall that in the case of the light-matter interaction, the small photon
momentum results in the requirement of the electron vertical transition in the k space.
The same requirement is asked for an significant phonon-photon interaction. Refer
to the phonon dispersion relationship of Fig. 2.8a, we understand immediately that
only the optical phonons (in the vicinity of ω3) have very small momenta as well as
a significant density of phonon states in Fig. 2.8b. Acoustic phonons have also small
momenta close to ω = 0 with however a very low density of phonon states.

Since the optical phonon energies of common semiconductor materials are about
20–50 meV (160–400 cm−1), the corresponding photons are in the infrared optical
range, optical-phonon-photon interaction is therefore expected to be reflected mostly
in the infrared spectrum.

As briefly mentioned in Sect. 2.2, there are both the transverse optical (TO)
phonons whose displacements are perpendicular to the propagation directions of the
vibrational waves, and the longitudinal optical (LO) phonons whose displacements
are parallel to the propagation directions of the vibrational waves, as schematically
presented in Fig. 3.10. Both the TO and LO phonons can interact with photons. How-
ever, the electric and magnetic fields of an electromagnetic field are perpendicular
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Fig. 3.10 Displacements
(red arrows, lengths of the
arrows represent the
amplitudes of the
displacements) of atoms in
an optical lattice vibrational
mode. a Transverse optical
(TO) mode, b longitudinal
optical (LO) mode

to the propagation of the light, see Fig. 2.10 in Sect. 2.3. We can conclude, again
without going into mathematical and physical details, that the interaction between a
TO phonon and a photon is much stronger than the one between a LO phonon and a
photon, simply because the displacements of atoms in a TO mode are aligned with
the electric field of the photon. In other words, the oscillator strength fTO is expected
to be very large, and thus a strong peak in many spectra such as the refractive index,
extinction coefficient, and reflectance, transmittance, reflection, and transmission
spectra, based on (3.11). This is the principal reason of the strong absorption in the
range of 260–300 cm−1 in Fig. 3.7 in the previous section. The same reason applies
for (3.22).

In other words, we may introduce the reflections due to harmonic oscillators
of LO phonons by letting oscillator strength fLO to be zero. What we can expect
then is that when we scan the photon energy from low to high in measuring the
reflection spectrum of a semiconductor, the reflection is first very small when the
photon energy iswell belowωTO. R(ω) starts to increase and canmaximally reach 1.0
when the photon energy approaches ωTO because of the large fTO, i.e., a very large
ε, see (3.11) and Fig. 3.3. When the energy of the photons reaches ωLO, the photons
will easily transmit through the semiconductor since LO phonons do not interact
with the photons, resulting a drastic drop in the reflection spectrum. For common
semiconductors, the energy differences between �ωTO and �ωLO are normally less
than 10 meV, and there are not many fine structures in the energy range between ωTO

and ωLO in their phonon dispersions as well as the densities of phonon states, see,
e.g., the density of phonon states of GaAs shown in Fig. 2.9. We therefore expect to
see that the reflection increases when the photon energy approaches ωTO from below,
it decreases when the photon energy increases further to approach ωLO.

Figure 3.11 is the same reflection spectrum of the bulk GaAs material in the
infrared range as Fig. 3.8 except in a narrow photon energy range (100–600 nm in
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Fig. 3.11 Reflection
spectrum in the optical
phonon energy range of a
bulk GaAs material. Vertical
arrows mark the energies of
the TO and LO phonons
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Fig. 3.8, 230–330 nm in Fig. 3.11). Based on the above analysis, we can determine
the energy of the TO phonon by the ascent side and the energy of the LO phonon by
the descent side of the reflection peak.

In a brief summary, we apply the harmonic oscillators of TO phonons to fit the
experimental reflection spectrum, while the energy of the related LO phonon is
obtained by the descent side of the reflection peak (oscillator strength of the LO
phonon is zero). In the following we discuss only the TO phonons.

3.4 Kramers–Kronig Relationship

In the previous section we use the harmonic oscillator model to analyze the infrared
reflection spectrum of lattice vibrations (mostly optical phonons). However, when
there are strong anharmonic effects such that the oscillator strength of the lattice
vibration depends strongly on ω, fitting the measured optical spectrum by a set of
harmonic-oscillator parameters is no longer valid. In this case, what we have is
only the ratio between the optical powers of two light beams, either the reflectance
spectrum R(ω) or the transmittance spectrum T (ω), see Sect. 3.1. On the other
hand, the reflection and transmission coefficients are in general complex, so are the
complex refractive index ñ as well as the dielectric coefficient ε. The well-known
Kramers–Kronig relationship, commonly abbreviated as the K–K relationship, is
widely used to obtain the phase factor of the optical spectrum.

Take χ(t) as a temporal response of the material to an external field. It is a real
function of time t , i.e., �χ(t) = 0. Denote χ(ω) = χ ′(ω) + iχ ′′(ω) as its Fourier
transform, i.e., χ(ω) = χ ′(ω) and �χ(ω) = χ ′′(ω). To satisfy causality,

χ ′(ω) = 1

π
P

∫ ∞

−∞
χ ′′(ω′)
ω′ − ω

dω′, χ ′′(ω) = 1

π
P

∫ ∞

−∞
χ ′(ω′)
ω′ − ω

dω′ (3.25)
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These are the most general forms of the Kramers–Kronig relationships. P is the
principal value of the singularity at ω′ = ω, i.e.,

P
∫ ∞

0
dω′ = lim

δ→0

[∫ ω−δ

0
dω′ +

∫ ∞

ω−δ

dω′
]

(3.26)

The time reversal invariance gives χ(−ω) = χ∗(ω) resulting in the following
integrations over positive ω

χ ′(ω) = 2

π
P

∫ ∞

0

ω′χ ′′(ω′)
ω′2 − ω2

dω′, χ ′′(ω) = −2ω

π
P

∫ ∞

0

χ ′(ω′)
ω′2 − ω2

dω′ (3.27)

The Kramers–Kronig relationships for the relative dielectric function (εr=1+χ )
are

ε′
r (ω) = 1 + 1

π
P

∫ ∞

−∞
ε′′
r (ω

′)
ω′ − ω

dω′, ε′′
r (ω) = 1

π
P

∫ ∞

−∞
ε′
r (ω

′)
ω′ − ω

dω′ (3.28)

Let us check the expression of the dielectric function (2.148), repeated below

ε(ω)

ε∞
= 1 + 1

ωn − ω − iγn
= ε′

r + iε′′
r (3.29)

Recall the Sokhatsky’s formula

lim
γ→0+

1

x ∓ iγ
= P

1

x
± iπδ(x) (3.30)

so that

ε′
r = 1 + P

1

ωn − ω
, ε′′

r = πδ(ωn − ω) (3.31)

which satisfy the Kramers–Kronig relationships of (3.28).
To avoid the evaluation of the principal value at singularity, we can write

ε′
r = 1 + ωn − ω

(ωn − ω)2 + γ 2
n

, ε′′
r = γn

(ωn − ω)2 + γ 2
n

(3.32)

Wemay compare the above macroscopic expressions with (2.125), which is repeated
below

ε′′(ω) =
∑

qk

π�
2e2

m2
0ω

2Ω
|〈q|es · ∇|k〉|2 Γqk

(Eq − Ek ± �ω)2 + Γ 2
qk

[
f (Ek) − f (Eq)

]

(3.33)
derived in Sect. 3.1 as a function of microscopic electron transitions.
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The reflection coefficient r(ω), defined as the ratio between optical powers of the
reflected electromagnetic field and the incident electromagnetic field, is complex and
can be expressed as

r = r0e
iδ (3.34)

where r0(ω) is the amplitude of the reflection coefficient, and δ(ω) is the phase factor.
And R(ω) = r20 (ω) is the reflectance spectrum. For simple and clear presentation we
do not explicitly display the ω-dependence of r(ω), r0(ω) and δ(ω) in equations.

We reformulate (3.34)

ln r = ln r0 + iδ = 1

2
ln R + iδ (3.35)

so that using the second equation of (3.27) we obtain

δ(ω) = −ω

π

∫ ∞

0

ln R(ω′) − ln R(ω)

ω′2 − ω2
dω′ (3.36)

Under the normal incidence condition, r0(ω) and δ(ω) can be expressed as func-
tions of the complex refractive index by Fresnel’s equation (3.7):

r = 1 − ñ

1 + ñ
� ñ = 1 − r

1 + r
= 1 − r20 − 2ir0 sin δ

1 + r20 + 2r0 cos δ
(3.37)

so that by measuring r0 = √
R then calculating δ by (3.36) we obtain the complex

refractive index ñ = n + iκ , where,

n = 1 − r20
1 + r20 − 2r0 cos δ

, κ = 2r0 sin δ

1 + r20 + 2r0 cos δ
(3.38)

And the dielectric coefficient ε = ñ2 can be further obtained.
In practice we are not able to measure any optical spectrum fromω = 0 toω = ∞

as required by (3.36) such that the application of the Kramers–Kronig relationships
cannot bemathematically rigorous. Equation (3.36) however indicates that the contri-

bution to δ(ω) from R(ω′) atω′ is inversely proportional to
(
ω′2 − ω2

)
. Furthermore,

formany common semiconductors, R(ω) ismore or less constant and relatively small
when ω is very low or very high. Let us define the low and high boundaries of ω

such that for ω < ω1 or ω > ω2, R(ω) depends weakly on ω. We use the following
approximation to calculate δ in the optical range ω1 < ω < ω2

δ(ω1 < ω < ω2) ≈ −ω

π

∫ ω2

ω1

ln R(ω′) − ln R(ω)

ω′2 − ω2
dω′ (3.39)
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Fig. 3.12 Phase spectrum
δ(ω) and dielectric
coefficient ε = ε′ + iε′′
obtained from
Kramers–Kronig
relationships as functions of
the optical range of the
reflection spectrum. The
original ε = ε′ + iε′′ is
shown as dashed lines in f
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To demonstrate the numerical practice, let us do a simulation

ε = ε2 + f2ω2
2

ω2
2 − ω2 − iωγ2

, ñ = √
ε, r12 = 1 − ñ

1 + ñ
, R = |r12|2 (3.40)

where f2 = 2.0, ω2 = 268.7, γ2 = 10.0, ε2 = 10.24. We generate three incomplete
reflection spectra in optical ranges of (250, 300), (150, 400), and (1, 1000) cm−1

then apply the Kramers–Kronig relationship to retrieve the dielectric coefficient.
The effect of the finite optical range of the reflection spectrum is shown in Fig. 3.12.
Even the general shape of δ(ω) and its magnitude are already well converged when
the optical range expands from ω ∈ (250, 300) cm−1 to ω ∈ (150, 400) cm−1, the
magnitude of the dielectric coefficients agree with the original ones (dashed lines in
Fig. 3.12f) only for ω ∈ (10, 1000) cm−1.

Let uswork on the reflection spectrumof the bulkGaAsmaterial shown in Fig. 3.8.
The phase spectrum from the above Kramers–Kronig relationship is presented as the
red dashed line in Fig. 3.13. The major peak in R(ω) is close to ωTO, as expected,
while δ(ωTO) is close to zero. Moreover, δ(ω) has a peak atωLO. The physics of these
major features is straightforward that the dielectric coefficient at ωTO is the largest
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Fig. 3.13 Infrared reflection
spectrum (black solid line,
same as in Fig. 3.8) of bulk
GaAs and the phase
spectrum δ(ω) (red dashed
line) obtained from the
Kramers–Kronig
relationship of (3.39)
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so that the reflection is also the strongest at this photon energy. Since the light at ωTO

is directly reflected from the sample without being much refracted in the sample,
the phase shift, i.e., δ(ωTO), is minimal. At ωLO, the light transmits into the sample
easily, resulting in a large phase shift due to multiple reflections and refractions.

We also observe a side peak at the low-frequency side of the major peak, which
is due to the secondary reflections, as mentioned before in Fig. 3.8. Similarly, the
phase is nonzero on the high-frequency side, largely caused by deviations from ideal
measurement setup such as that the light incidents to the sample at a very small (to
approach the normal incidence condition) but still finite angle.

Knowing the reflectance r0(ω) = √
R(ω) (direct measurement) and the phase

factor δ(ω) obtained from the Kramers–Kronig relationship of (3.39), we can eas-
ily calculate the dielectric coefficient of the material by (3.38), which is shown
in Fig. 3.14a corresponding to the infrared reflection spectrum in Fig. 3.13. The
dielectric coefficient can be obtained as well by using the harmonic oscillator model
introduced in the previous section and the results are presented in Fig. 3.14b. The
two sets of spectra are very similar, while they differ numerically by 20–30%.

In general, the dielectric coefficient obtained by the harmonic oscillator model
is quite symmetric with respect to ωTO, as shown by Fig. 3.14b compared with the
spectra in (a). This is simply the result of the mathematics of the harmonic oscillator
model, i.e., (3.21). The Kramers–Kronig relationship, on the other hand, does not
have any assumptions (at least physically, see more below) so its results should be
more information richer provided that the reflection spectrum is properly measured
and pre-assessed. One major issue in assessing the spectrum measurement is about
the calibration of the system. As briefly discussed in Sect. 1.5, we normally have a
reference spectrum, see (1.34), which may introduce extra signals into the optical
spectrumof the sample. In addition, the geometric structure and the size of the sample
are also critical. We see the effect of geometric structure as the secondary reflections
in Figs. 3.8 and 3.13. The geometric size of the sample is related to the size of the
probing light spot that strikes the sample. We may ask a few questions about the



3.4 Kramers–Kronig Relationship 95

200 250 300 350
-150

-100

-50

0

50

100

150

200

250

200 250 300 350

D
ie

le
ct

ric
 c

oe
ffi

ci
en

t

Photon energy [cm-1]

By Kramers-Kronig relationship

TO

(a) (b)

By the harmonic oscillator model 

TO

Fig. 3.14 Dielectric coefficient ε = ε′ + iε′′ of a bulk GaAs material from its infrared reflection
spectrum by a the Kramers–Kronig relationship and b the harmonic oscillator model

measurements such as: Does the light spot cover the whole sample? Is the surface of
the sample covered by the light spot flat and smooth?

There is a theoretical aspect about the Kramers–Kronig relationship that it has
one mathematical limit that in principle, a reflection spectrum over the entire
optical range, i.e., 0 < ω < ∞, is needed in order to obtain the phase spectrum.
This is impossible in reality, see (3.39), the real spectrum measurement is limited
within ω1 < ω < ω2. This may cause errors which are hardly possible to be prop-
erly assessed since we simply do not have the knowledge about the spectrum in
0 ≤ ω ≤ ω1 and ω2 ≤ ω ≤ ∞.

To estimate the effect of the limited optical range on the results of the Kramers–
Kronig relationship, let us do a computer experiment. Assume an optical spectrum
composed of two harmonic oscillators described by ω1 = 300 cm−1, f1 = 1.0, γ1 =
10.0 cm−1, ω2 = 360 cm−1, f2 = 4.0, and γ2 = 20.0 cm−1. Moreover, ε∞ = 10.0.
It is then easy to calculate the dielectric coefficient and eventually the reflection
spectrum by (3.22) which is presented as the solid line in Fig. 3.15. It is observed that
far away from the frequencies of the two harmonic oscillators such as ω ≤ 100 cm−1

and ω ≥ 1000 cm−1, the reflection is relatively small and the reflection spectrum is
feature-less. So we use (3.39) to calculate the phase spectrum using the reflection
spectrum between ω1 = 100 cm−1 and ω2 = 1000 cm−1 and the result is presented
as the red dashed line in Fig. 3.15.

Knowing the reflection and phase spectra, we can calculate the dielectric coeffi-
cient. Figure 3.16, (a) in a linear scale and (b) logarithmic scale, shows the resulting
ε′′(ω), i.e., the imaginary part of the dielectric coefficient. There are a few lines.
The black solid line is the calculation result using the reflection and phase spec-
tra (100 < ω < 1000 cm−1) from Fig. 3.15, it coincides with the curve obtained
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Fig. 3.15 Infrared reflection spectrum (black solid line) of two harmonic oscillators and their phase
spectrum (red dashed line) calculated from the Kramers–Kronig relationship using the reflection
spectrum between ω1 = 100 cm−1 and ω2 = 1000 cm−1
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Fig. 3.16 The imaginary part ε′′(ω) of the dielectric coefficient. a Linear vertical scale, b loga-
rithmic vertical scale. Black solid line is obtained by using the Kramers–Kronig relationship in the
optical range of 100 < ω < 1000 cm−1, red dotted line: 200 < ω < 580 cm−1, blue dashed line:
280 < ω < 700 cm−1

from (3.22). Now we reduce the optical range to 200 ≤ ω ≤ 580 cm−1, the resulting
ε′′(ω) becomes the red dotted line in Fig. 3.16. The peak position remains largely
unchanged, while the peak powers and geometric shapes (much clearer in the log-
arithmic scale) are much modified. If we choose an optical range 280 ≤ ω ≤ 700
cm−1 or 0 ≤ ω ≤ 460 cm−1 which is not symmetric with respect to ω1 and ω2 (this
is highly likely in reality since the sensitivity of the spectrometer varies in different
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optical ranges), the obtained ε′′(ω) becomes asymmetric as well (such as the negative
ε′′(ω) below ω1 for 280 ≤ ω ≤ 700 cm−1).

A rule of thumb when assessing the numerical results of the Kramers–Kronig
relationship is to check the features of the phase factor in the low and high frequency
ranges. If the phase factor approaches zero smoothly in a symmetric manner in these
optical ranges, it is fairly safe to say that the numerical results of the Kramers–
Kronig relationship are good. Otherwise, more involved analysis about the reflection
spectrum is necessary.

3.5 Thin Film on Substrate

Thus far we have studied the reflection and transmission spectra of a light beam
through a thin filmwhose refractive index is characterized by a few absorption peaks.
Let us apply the spectral analysis to characterize some as-grown semiconductor
structures non-invasively.

First we assess the quality of a multiple-layer structure where the refractive index
of each layer is uniform. A good example is the layer-by-layer structure of a quantum
well infrared photodetector (QWIP) (whose device function is closely studied in
Chap. 6). Figure 3.17a is the schematic structure of the multiple GaAs/AlxGa1−xAs
quantum well structure, (b) is the transmission measurement setup along the z axis,
and (c) is a typical transmission spectrum.

After measuring the transmission spectrum, we do numerical fitting to obtain
the layer thicknesses using the basic formulae we develop in this section. The
GaAs/AlxGa1−xAs QWIP structure of Fig. 3.17a contains more than 100 different
layers, it is possible to write down all equations then do numerical fitting properly
by today’s computation facilities. A better way however is to analyze closely to find
principal layers that are relevant in terms of the transmission spectrum of Fig. 3.17c.

The back electrode underneath the multiple GaAs quantum wells consists of a
Si-doped GaAs layer, a semi-insulating GaAs buffer layer, and a n-type Si-doped
GaAs back electrode (the doping level is about 1.5 × 1018 cm−3). The dielectric
coefficients of these three layers do not differ significantly in the optical range of the
transmission spectrum in Fig. 3.17c so they can be treated as one composite substrate
layer. The designed GaAs quantum well is about 5 nm, and the AlxGa1−xAs barrier
is ca 60 nm, i.e., the period of the multiple GaAs/AlxGa1−xAs quantum wells is
about 65 nm, which is far smaller than the wavelength, which is about 1 μm, see the
horizontal axis of Fig. 3.17c, of the transmission measurement. (This is fundamental
in imaging resolution, see, e.g., super-resolutionmicroscopy [4].) Thewholemultiple
GaAs/AlxGa1−xAs quantum wells can therefore be approximated as one composite
layer with an effective dielectric coefficient by averaging the ones of GaAs wells and
AlxGa1−xAs barriers. The last principal layer is the front electrode layer. The QWIP
structure is by now approximated as two composite layers, i.e., the front electrode
layer and the composite layer of multiple quantum wells and barriers, on a very
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Fig. 3.17 a Schematic structure of a GaAs/AlxGa1−xAs quantum well infrared photodetector
(QWIP), b normal-incidence transmission spectrum measurement setup along the z axis, c one
typical transmission spectrum (solid black line) and its numerically fitted spectrum (dashed red
line)

thick substrate layer. And because of the large thickness of the substrate layer, the
secondary reflections from the bottom side of the substrate layer can be neglected.

Denote the thickness of the front electrode as d1, the thickness of the multiple
GaAs/AlxGa1−xAs quantum wells as d2 with an effective dielectric coefficient nQW
also as a fitting parameter. Because the AlxGa1−xAs barrier is much thicker than the
GaAs quantum well,

nQW ≈ x nAlAs + (1 − x)nGaAs (3.41)
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It is now easy to obtain the transmittance

Tt(n1,2, d1,2, λ) = 1 + r20r
2
1 + r20r

2
2 + r21r

2
2

+2
(
r0r1 + r0r1r

2
2

)
cos (2δ1) + 2

(
r1r2 + r20r1r2

)
cos (2δ2)

+2r0r2 cos [2(δ1 + δ2)] + 2r0r
2
1r2 cos [2(δ1 − δ2)] (3.42)

where

r0 = n0 − n1
n0 + n1

, r1 = n1 − n2
n1 + n2

, r2 = n2 − n3
n2 + n3

, δ1,2 = 2π

λ
n1,2d1,2 cos θ1,2

n0 = 1 is the refractive index of the air. n1,2 and d1,2 are refractive indices and
thicknesses of layer 1 (front electrode) and layer 2 (multiple quantumwells/barriers),
respectively. n1 = nGaAs, n2 = nQW, n3 = nGaAs. θ1,2 are incident angles, which are
zero, as the transmission spectrum of Fig. 3.17c is obtained at the normal incidence.

The numerical fitting starts with inputting the designed values of d1, d2 and nQW as
initial conditions thenmodifying the three parameters so that the numerical spectrum
Tt (n1,2, d1,2, λ) fits best with the experimental spectrum Texp(λ), i.e.,

min

{
∑

i

[
Texp(λi ) − Tt(n1,2, d1,2, λi )

]2
}

(3.43)

where the sum runs over all wavelengths of the transmissionmeasurement. The result
of the fitted transmission spectrum is presented in Fig. 3.17c as the dashed red line,
and the fitted values of the Al mole fraction x in AlxGa1−xAs barriers, d1, and d2 are
listed in Table 3.1 of five QWIP samples.

The purpose of the transmission spectral characterization of the QWIP structure
is to assess the basic qualities of the structure directly after its epitaxial growth
but before device processing. And the spectral assessment is non-invasive, namely,
the as-grown structure is characterized directly. When the assessment shows good

Table 3.1 Comparison of designed and fitted values of a few GaAs/AlxGa1−xAs QWIP samples
(the unit of thickness d1 and d2 is nm)

Sample
index

Design Fitted values

d1 d2 x d1 d2 x

QWIP-a 1750 3360 0.11 1906.1 3722.8 0.084

QWIP-b 1750 3375 0.11 1863.3 4142.0 0.085

QWIP-c 1750 3390 0.11 2122.4 3724.1 0.059

QWIP-d 1750 3405 0.11 2047.0 4016.1 0.095

QWIP-e 1750 3435 0.11 2048.6 3999.8 0.098
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Fig. 3.18 Schematic optical
paths of reflected and
refracted light beams in a
thin-film on a
half-infinite-substrate
reflection measurement setup
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structure quality, device processing will be carried out. (If the assessment has to
be invasive, not all as-grown structures can be assessed, some bad structures will
be device processed, resulting in a low productivity.) The thickness of the front
electrode is not critical for the QWIP performance, while d2 and x are. Since the
QWIP device processing is very expensive, this non-invasive assessment about d2
and x is very helpful. In Chap. 4 we study the QWIP structure, also non-invasively,
by the photoluminescence spectroscopy.

The QWIP structure is a very illustrative example of a thin film structure epitax-
ially grown on a substrate which is the most common material structure for today’s
electronics and photonics devices. Let us study this thin film on a substrate in more
details using the reflection and transmission spectroscopies. Refer to the schemat-
ics in Fig. 3.18, the situation is much alike the thin film we study in Sect. 3.2, see
Fig. 3.4, that the light beam incidents from the air to the thin film (complex refractive
index ñ = n + iκ) except that medium 3 in the structure is now a substrate with an
complex refractive index ñs .

The calculation of the reflection of the light beam from such a thin film on a
substrate is performed similarly to the light reflection from a single thin film in
Sect. 3.2. Consider a normal incident light beam with an amplitude Ei, the total
amplitude of the reflected light beam is

Er = Ei
r12 + e2iδr23
1 + e2iδr12r23

(3.44)

which is exactly the same as (3.15), except that the reflection and refraction coeffi-
cients are a bit different:

r12 = 1 − ñ

1 + ñ
, r23 = ñ − ñs

ñ + ñs
, δ = ωñd

c0
(3.45)

while they reduce to the ones in (3.12) when ñs = 1 of the substrate, as expected.
The amplitude of the reflected electric field is
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Fig. 3.19 a Reflection spectrum of an epitaxial GaN thin film on a sapphire substrate, b reflection
spectrum of the sapphire substrate. In both a and b, black solid lines are measured spectra and red
dashed lines are fitted spectra. c Theoretical reflection spectrum of GaN thin film based on fitting
a and b

Er = Ei
(1 − ñ)(ñ + ñs) + e2iδ(ñ + 1)(ñ − ñs)

(1 + ñ)(ñ + ñs) + e2iδ(1 − ñ)(ñ − ñs)
(3.46)

and themeasured optical power of the reflected light is Sr = |Er|2.We are not going to
measure the transmitted light beamat the other side of the substrate since the substrate
is normally rather thick. Thus Sr is the only physical parameter to be measured and
from which we calculate the reflection spectrum.

We now analyze the reflection spectrum of an epitaxial GaN thin film grown
on a sapphire substrate. GaN is a widely applied wide-bandgap material. Typical
experimental infrared reflection spectra of the GaN thin film on sapphire and the
sapphire substrate are shown in Fig. 3.19a, b [5].

We know from the growth condition that the GaN thin film whose reflection
spectra are presented in Fig. 3.19 is Si-doped to a doping level of 1017–1019 cm−3

so that the density of electrons in the conduction band is very high. In our early
studies about the light-matter interaction in Sect. 2.3 and the electromagnetic field
propagation in medium in Sect. 3.1 we neglect the electric current and the electron
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density. Now the conduction-band electron density is so high that we have to take it
into account when analyzing the reflection spectra of Fig. 3.19.

The effect of a high electron density on the propagation of the electromagnetic field
is mainly characterized by the excitation of the collective motions of the electrons,
known as plasmons. Before we do detailed analysis on the GaN reflection spectra in
Fig. 3.19, let us introduce the classical Drude model about the plasmons and their
effect on the dielectric coefficient.

Refer to Sect. 2.1, the electrons in a crystal structure are classified into core
electrons and valence electrons. Here we focus only on the valence electrons. Ga is a
group III atom and N group V. In forming GaN, each Ga atom contributes 3 valence
electrons and each N atom contributes 5 valence atoms. In an intrinsic GaN crystal,
the valence band is completed occupied and the conduction band is completely
empty. When GaN is doped with Si atoms, the doped Si atoms substitute Ga atoms
then contribute 4 valence electrons per Si atom. The extra valence electron from one
doped Si atom has to occupy one of the electron states in the conduction band. These
conduction-band electrons make the Si-doped GaN electrically conducting. This is
what we learn in Sect. 2.1. A higher Si-doping level means a higher electron density
in the conduction band.

In the classical Drude model, these conduction-band electrons are approximated
as independent point charges. (The model applies also to the valence-band holes for
p-type dopedmaterials.) They collidewith each other (electron-electron interaction),
as well as with lattice atoms (thus induce lattice vibrations) in the crystal structure.
The collisions are random, and the direction of the electronmotion directly after each
collision is also random.Let the statistical probability of the collision be characterized
by a damping rate denoted as γp. Let a monochromatic light beam E(t) = E0e−iωt z0
impinge on the semiconductor material which is polarized along the z direction,
where z0 is the unit vector of the z axis. Note that there is the complex conjugate
term in (3.1) to describe the electric field of an electromagnetic field. We adopt
this expression here since the same result will be obtained with much simplified
mathematical operations. The motion of one conduction-band electron is described
by

d2z

dt2
+ γp

dz

dt
= − e

m∗ E0e
−iωt (3.47)

where m∗ is the effective mass of the conduction-band electron, −e is the electric
charge carried by the electron. The equation is just Newton’s second law of motion
where the right side is the electric force the electron experiences in the electric field
of the light beam, while the first term on the left side is the acceleration of the electron
and the second term the statistical collision effect. It is easy to see that the solution
of the above equation is

z(t) = z(ω) e−iωt , z(ω) = eE0

m∗(ω2 + iωγp)
(3.48)
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Let ρ be the density of the conduction-band electrons. The polarization P of these
electrons per unit volume is

P = −ρez(ω) = − ρe2

m∗
(
ω2 + iωγp

) E0 (3.49)

and the electric displacement field becomes

D = ε∞E0 + P = ε(ω)E0 (3.50)

Let

ω2
p = ρe2

m∗ε∞
(3.51)

we then obtain the contribution of the conduction-band electrons to the dielectric
coefficient ε(ω)

ε(ω) = ε∞

(
1 − ω2

p

ω2 + iωγp

)
(3.52)

Here ωp is known to be the plasmon frequency. It represents the collective motion
of the conduction-band electrons in the crystal. As shall be observed below, ωp is
normally in the infrared optical range, and thus is frequently present in the infrared
reflection spectrum.

We are ready to analyze the reflection spectrum of the Si-doped GaN epitaxial
film on sapphire. The total dielectric coefficient is now

ε(ω) = ε∞ +
∑

�

f� ω2
TO,�

ω2
TO,� − ω2 − iωγTO,�

− ε∞ω2
p

ω2 + iωγp
(3.53)

which includes the transverse optical (TO) phonons and the plasmon of the
conduction-band electrons. By modifying various parameters in (3.53) to fit the
experimental reflection spectrum we will be able to study the plasmon in the thin
filmwhich is further related to other physical properties such as the electronmobility.

The reflection spectrum of the pure GaN thin film on a sapphire substrate is rather
simple, see Fig. 3.19c to be discussed in detail below. It is the reflection spectrum
of the substrate that is more complicated, see Fig. 3.19b, which is also present in
the total reflection spectrum of the GaN thin film on a substrate. Thus, a critical step
in analyzing the reflection spectrum of a thin film on a substrate is to find ways to
separate/extract the spectrum of the pure thin film from the one of the thin film on
the substrate. More specifically, we need to measure the reflection spectrum of the
substrate.

For a thin film on a thick substrate sample, the method is very simple that we
basically measure the reflection spectra from the thin film side then measure again
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Fig. 3.20 Infrared reflection spectra of GaN thin films on sapphire doped to different Si-doping
levels. Black solid lines are experimental data and red dashed lines are theoretical fitting spectra

after flipping the sample so the other side of the substrate now facing the incident
light. This was exactly how the two spectra, black solid lines in Fig. 3.19a and b,
were obtained [5]. The next step in the spectral analysis is to fit the spectrum of the
sapphire substrate, then fit the spectrum of theGaN thin film on the sapphire substrate
by modifying only the GaN parameters without modifying the sapphire parameters
obtained before. Figure 3.19c is the theoretical spectrum of the pure GaN thin film.

Let us move on to more complicated samples. Figure 3.20 shows the reflection
spectra of four samples, both experimental and numerically fitting spectra. The four
samples are Si-doped to four different nominal doping levels, which are indicated
in their respective spectra. Numerical values of fitting parameters for the transverse
optical phonons and the plasmon in the GaN thin films are listed in Table 3.2. The
doping level in sample 1 is relatively low so that its reflection spectrum is very similar
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Table 3.2 Physical parameters of transverse optical (TO) phonon and plasmon (subscript p)
obtained by fitting infrared reflection spectra of GaN thin films. Units of the Si doping level and
density ρ of conduction-band electrons are cm−3, units of the frequency and damping rate are cm−1,
and the mobility unit is cm2/V·s. ρIR and μIR denote the electron density and mobility obtained
from infrared reflection spectra, while ρHall and μHall are obtained from Hall measurements

Sample Doping
level

ρIR ωTO γTO fTO ωp γp μIR ρHall μHall μHall/μIR

1 5.7 ×
1017

8.4 ×
1017

557 11.2 4.43 261 227 205 5.3 ×
1017

370 1.80

2 1.5 ×
1018

1.6 ×
1018

559 13.5 4.36 365 253 184 1.5 ×
1018

320 1.74

3 3.7 ×
1018

4.8 ×
1018

561 14.5 3.84 631 347 134 3.7 ×
1018

234 1.75

4 1.3 ×
1019

1.4 ×
1019

560 10.5 3.56 1062 514 91 1.3 ×
1019

178 1.95

to the one of intrinsic GaN material, see Fig. 3.19a. Increasing the doping level, the
reflection below 500 cm−1 increases, while the reflection band of 550–800 cm−1 is
blue-shifted. There is a peak at 890 cm−1 originated from the interference of the thin
film (multiple reflections between two interfaces), which disappears in the highly-
doped sample 3 and 4 because of the doping-induced absorption enhancement. The
460 cm−1 peak originates from the sapphire substrate, see Fig. 3.19b.

A little extra work leads us to the relationship between the damping rate and the
electron mobility commonly denoted as μ (note that it is also common to use the
same Greek character to denote permeability). The electric current is j = −ρev,
where ρ is the electron density and v the average velocity of electrons, which is
dz/dt . By (3.48),

j = −ρe
dz

dt
= iρe2Eω

m∗(ω2 + iωγp)
(3.54)

where E = E0e−iωt .
Before further analysis, we need to check more carefully the validity of the above

expression. When we formulate (3.48), we implicitly assume that the collective
motion of the electrons can follow the oscillation of the electric field of the light
beam. This is actually only valid when the angular frequency ω of the electric field
is much lower than the plasmon frequency ωp of the electrons. This is also reflected
in the above equation that only when ω � ωp, the resulting j is real

jω�ωp = ρe2E

m∗γp
(3.55)

We therefore restrain us to the low-frequency condition of ω � ωp.
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On the other hand, the electric current is also expressed as j = ρμE , where
μ is the electron mobility. We thus obtain the following relationship between the
low-frequency mobility μIR and the plasmon damping rate γp

μIR = e2

m∗γp
(3.56)

From the frequency and the damping rate of the plasmon in Table 3.2 we can
calculate the density of the conduction-band electrons and their mobility by (3.51)
and (3.56), respectively. The results are listed in Table 3.2 when m∗ = 0.2m0 and
ε∞ = 5.35 [6].We also list electric characterization results of the electron density and
themobility using electricHallmeasurements. It is commonly believed that the doped
Si atoms in GaN are all ionized so that the density of electrons in the conduction
band equals the Si doping level. This is quite correct, as confirmed by both the
infrared optical characterization and the electric Hall measurements, however with
certain deviations. One important issue is that what we know about the doping level
is actually the nominal level, which is not exactly the same as the real doping level.

Table 3.2 shows that the optically characterized μIR is about one half of the
Hall mobility μHall, it is however very close to the drift mobility μdrift which is about
0.52μH [7]. Physically, the optically characterized mobility is different from the Hall
mobility. Moreover, the electric mobility involves many physical processes which
depend on electron energy band structures [8].
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Chapter 4
Photoluminescence

Abstract Quantum mechanics theory about photoluminescence is first introduced
then applied to various case studies to understand the microscopic processes, namely
photon excitation, energy relaxation and radiative recombination, involved in the
photoluminescence spectroscopy in semiconductor structures ranging from bulk to
nanoscale. The study is further deepened by analyzing the photoluminescence spectra
of quantum dots under the multiphoton excitation.

In the previous chapter, we have studied the mechanisms of reflection and transmis-
sion spectral measurements of how a monochromatic light beam with a particular
photon energy after impinging on a material becomes reflected by and transmitted
in/through the material. In other words, the energies of the photons in the incident,
reflected and transmitted light beams are all the same. In the photoluminescence
(PL) spectral measurement, however, we commonly send a probe light beam of rel-
atively high-energy photons to the sample under investigation then collect photons
of different energies emitted from the sample. In most common cases, the energies
of the emitted photons are lower than the energies of the probing photons. There
are extraordinary cases that the energies of the emitted photons are higher than the
energies of the probing photons.

The optical path layout of the photoluminescence measurement is quite similar to
the reflection and transmission measurement, except that we can collect the emitted
photons from any side of the sample, either the front side where the probing light
incidents, or the back side, or the edges. We even integrate the emitted photons
collected from all different angles if the total number of the emitted photons is
relatively low. Under the latter situation, we have to avoid the geometric alignment
of the photodetectionwith the light incidence to avoid the strong signal of the incident
light which may saturate or even damage the photodetector, such as at the 90◦ angle
relative to the probing laser in Fig. 1.1. Alternatively we add an optical filter to
blockade the probing photons from reaching the photodetector (remember that the
energies of the emitted photons are normally different from the energies of the probing
photons).
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Fig. 4.1 Schematics of photoluminescence process in an intrinsic semiconductor. A probing photon
�ω′ incidents to the sample to photo-excite an electron to transit from a valence-band state to a
conduction-band state (process 1); The excited electron and hole relax to their respective ground
states, i.e., the conduction-bandedge and the valence-bandedge states (process 2); the energy-relaxed
electron and hole recombine radiatively to emit a photon �ω (luminescence, also called florescence)

Refer to Fig. 4.1, the most common microscopic mechanisms of the photolumi-
nescence in an intrinsic semiconductor consists of the following three major physical
processes

1. Excitation: an external probing photon with energy �ω′, which is normally higher
than the energy bandgap of the semiconductor, comes into the semiconductor to
excite an electron to transit from its initially occupied valence-band state to an
empty conduction-band state, forming an electron-hole pair (when the electron
and hole stay close to each other within the so-called exciton Bohr radius, they
form an exciton, see Chap. 2).

2. Energy relaxation: the photogenerated electron and hole from the excitation pro-
cess are in general in excited states in the conduction and valence bands. They
go through various energy relaxation processes such as electron-phonon inter-
actions to relax to their respective ground states, namely, the conduction- and
valence-bandedge states.

3. Radiative recombination: the energy-relaxed electron and hole recombine,
namely, the electron at the conduction-bandedge state transits to the empty
valence-bandedge state, radiatively emits a photon with an energy �ω. This is
the same spontaneous emission studied in Sect. 2.3.

In Fig. 4.1, the excitation is induced by a probing photon so that the final lumines-
cence is named photoluminescence. However, the excitation of an electron initially
occupying a valence-band state to transit to an initially empty conduction-band state,
i.e., process 1, can be induced differently, such as thermally or electrically, resulting
in different types of luminescence:

1. Photoluminescence: We have just described the process. In general, the energy
of the probing photon is larger than the energy bandgap of the semiconductor.
Common lasers used for photoluminescence excitation are the 632.8 nm beam
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fromHe-Ne laser, the 514.5 nmbeam fromargon ion laser, and lasers in ultraviolet
(UV) range. When the optical power of the laser is high enough, there is the
so-called multi-photon excitation that even the energy of one probing photon is
smaller than the semiconductor energy bandgap, the electron initially occupying a
valence-band state can absorbmore than one photon in order to reach the available
conduction-band state (we will discuss this multiphoton excitation in Sects. 4.6
and 6.4).

2. Electroluminescence, also known as electric-field-induced luminescence. Light-
emitting diode (LED) is one example. A LED consists of an n-type doped region
and a p-type doped region separated by an intrinsic i-region. When an external
bias applies, electrons in the conduction band in the n-type region are driven into
the i-region,while the holes in the valence band in the p-type region are driven into
the i-region from the other direction. These electrons and holes will radiatively
recombine to luminescence when they meet in the i-region. LED is widely used
in various displays and has been intensively studied and developed for lighting.
The Nobel Prize in Physics 2014 was awarded jointly to Isamu Akasaki, Hiroshi
Amano and Shuji Nakamura for the invention of efficient blue light-emitting
diodes which has enabled bright and energy-saving white light sources.

3. Thermoluminescence: Heating an intrinsic semiconductor also induces the transi-
tions of electrons from the occupied valence-band states to the empty conduction-
band states (recall the Fermi-Dirac distribution of electrons at equilibrium). Such
thermally excited electrons in the conduction band can radiatively recombinewith
holes in the valence band to luminescence, resulting in this thermoluminescence.

4. Cathodoluminescence: High-energy electrons that impinge on the semiconductor
from a cathode ray tube will transfer their energies to the valence-band electrons
for them to transit to un-occupied conduction-band states. Eventual radiative
recombinations of the conduction-band electrons and valence-band holes result
in the cathodoluminescence.

One common critical aspect about all these luminescences is of course the final
step, namely, the radiative recombination of the electron-hole pair. In reality, the
recombination of the electron-hole pair can also be non-radiative, such that the energy
from the electron-hole recombination is transferred to the crystal lattice (and heat
sink is commonly amust for high-power LED). Therefore, the eventual luminescence
power is a measure about the radiative versus non-radiative recombinations of the
electron-hole pairs.

In a brief summary, a photoluminescence spectrum can measure the energy
difference between the conduction and valence bandedges which is approximately
the energy of the photoluminescence peak (for the processes in Fig. 4.1, and we dis-
cuss other cases shortly). We can also use the photoluminescence spectrum to study
the excitation, the radiative and non-radiative recombination processes, to measure
the lifetime of the photoluminescence signal when we use a laser pulse to excite the
electrons then measure the so-called time-resolved photoluminescence. There are
many different photoluminescence measurement setups, which is the central theme
of this chapter.
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4.1 Basic Photoluminescence Theory

In Sect. 2.1 we have briefly discussed the photon absorption, stimulated photon emis-
sion and spontaneous photon emission shown in Fig. 2.11. In normal photolumines-
cence processes of Fig. 4.1, the photogenerated electron and hole may radiatively
recombine directly after their photogeneration. However, the probability of such a
direct radiative recombination is relatively low. The photogenerated electron and
hole normally go through various energy relaxation processes within their respec-
tive energy bands, such that the electron relaxes in the conduction band, while the
hole relaxes in the valence band. The electron and hole recombine after they reach
their respective ground states. Thus, photoluminescence is widely used to study low-
energy electron states that are close to either the conduction- or the valence-bandedge
state. For high-energy states, we may use reflection-transmission spectra (which we
studied in the previous chapter) and modulation spectroscopy (to be studied in the
next chapter).

In common photoluminescence measurement setup, we use a continuous-wave
(CW) laser to excite the electrons in a semiconductor sample and the lumines-
cence signal is recorded continuously as well. All processes involved reach a so-
called steady state in close correlations with each other: An electron in a valence-
band state absorbs one exciting photon then transits to an empty conduction-band
state, leaving the valence-band state unoccupied (which is a hole). This is process
1. The conduction-band electron and the valence-band hole relax to conduction-
and valence-bandedge states (which are initially empty), leaving the high-energy
conduction-band and the valence-band states empty. This is process 2. The electron
at the conduction bandedge and the hole at the valence bandegde recombine to emit
a photon. This is process 3. We then return to process 1, followed by step 2 and
so on and so forth. We may also have an interlaced scenario such that as soon as
process 2 is finished, process 1 may start in parallel with process 3. All depend on
the probabilities of the involved processes, as well as the fundamental requirement
that each electron state can be maximally occupied by one electron at one time (Pauli
exclusion principle). The general mathematical analysis of this steady state consists
of formulating then solving rate equations (see Sect. 7.2).

In the following we study the photoluminescence stepwise. Refer to (2.16), the
total wave functions of a valence-band state denoted by eigen energy Evk and a
conduction-band state Ecq are

Ψvk(r) = 1√
N

e−ik·ruv(r), Ψcq(r) = 1√
N

e−iq·ruc(r) (4.1)

where N is the number of unit cells. We have neglected the dependence of uc(r) and
uv(r) on k since we focus on only low-energy electron and hole states (thus small
amplitude of k). We have studied this condition early in Chap. 2 and will return to
examine this condition again shortly.
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By Sect. 2.3, the probability of the spontaneous emission is expressed as

w
spon
q←k(ω) = π�

2e2

m2
0ε0n

2ωΩ
|〈Ψcq |es · ∇|Ψvk〉|2 Γqk(

Ecq − Evk − �ω
)2 + Γ 2

qk

(4.2)

i.e., (2.115). As we will see shortly that the photoluminescence is dominant by
the radiative recombination of the electrons and holes occupying states close to
conduction- and valence bandedges, i.e., �ω is close to Eg, while the energy of the
exciting photon �ω′ is commonly much higher than Eg, the stimulated emission
probability at �ω′ is negligible when the above spontaneous emission probability of
�ω around Eg is significant. And initially there is no light with photon energy �ω so
Nω = 0 so we focus on only the spontaneous emission of (4.2) for a while.

Let us just focus on the optical transition matrix element

〈Ψcq |es · ∇|Ψvk〉 = 1

N
es ·

[∫

Ω
ei(q−k)·ru∗

c (r)∇uv(r)dr − ik
∫

Ω
ei(q−k)·ru∗

c (r)uv(r)dr
]

(4.3)

by (4.1). The second term on the right side of the above equation is zero due to the
wave function orthogonality. uc and uv are periodic functions of unit cells in the
crystal structure, while ei(q−k)·r varies slowly in space since both q and k are small
(remember that this is the condition of our studies), so that we substitute r by the sum
of unit cell position R and its spatial coordinate r ′ with respect to R, i.e., r ≡ R + r ′.
The integration of the first term on the right side of the above equation becomes the
summation over R over the whole volume Ω of the semiconductor sample under
investigation and the spatial integration over r ′ within unit cell R

∫

Ω

ei(q−k)·ru∗
c(r)∇uv(r)dr =

∑
R∈ Ω

ei(q−k)·R
∫

cell
u∗
c(r

′)∇uv(r ′)dr ′ (4.4)

Since the integration of the Bloch functions within one unit cell is commonly
designated as ∫

cell
u∗
c(r

′)∇uv(r ′)dr ′ = pcv
�

(4.5)

where | pcv| = √
2m0Ep is a material parameter known as the optical dipole moment

whose values of different semiconductors have been well-documented [1],

∫

Ω

ei(q−k)·ru∗
c(r)∇uv(r)dr = pcv

�

∑
R∈ Ω

ei(q−k)·R (4.6)

Let Ωcell be the volume of the unit cell. Since Ωcell � Ω , the summation over R
over Ω can be evaluated in the following way:
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∑
R∈ Ω

ei(q−k)·R = 1

Ωcell

∑
R∈ Ω

ei(q−k)·R Ωcell ≈ 1

Ωcell

∫

Ω

ei(q−k)·R dR

= δqk
1

Ωcell

∫

Ω

dR = δqk
Ω

Ωcell
= δqkN (4.7)

Here δqk = 1 when q = k, it is otherwise zero. Since N is the number of unit cells
in Ω , NΩcell = Ω .

With all these we obtain the optical transition matrix element

〈
Ψcq(r) |es · ∇| Ψvk(r)

〉 = δqk
es · pcv

�
(4.8)

Insert it into (4.2)

w
spon
k (ω) = πe2|es · pcv|2

m2
0ε0n

2ωΩ

Γk(
Eck − Evk − �ω

)2 + Γ 2
k

(4.9)

Here we include δqk by putting the wave vector of the destination conduction-band
state as the one of the initial valence-band state. This is the very reason that the
optical excitation and the radiative recombination (process 1 and 3) in Fig. 4.1 are
presented vertical in the k space.

The total optical transition rate is obtained by summing (4.9) over all occupied
electron states available for optical transitions

W (ω) =
∫

w
spon
k (ω)

[
1 − f (Evk)

]
f (Eck)

2dk
(2π)3/Ω

= πe2|es · pcv|2
m2

0ε0n
2ω

∫ Γk

[
1 − f (Evk)

]
f (Eck)

(
Eck − Evk + �ω

)2 + Γ 2
k

2dk
(2π)3

(4.10)

Here 2dk/[(2π)3/Ω] is the density of electron states in the k space. f (Evk) and
f (Ecq) are probabilities of electrons occupying state Evk and Ecq , respectively.
Note that f (Evk) normally refers to the electron occupation of state Evk so that[
1 − f (Evk)

]
means the probability that Evk is un-occupied by one electron, it is

then the probability that Evk is occupied by one hole.
We know that the occupation of one electron state E by one electron is described

by Fermi-Dirac distribution function when electrons are at equilibrium

fFD(E) = 1

exp

(
E − E f
kBT

)
+ 1

(4.11)
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where E f is the well-defined Fermi level, and T is the temperature of the system.
When E � E f , fFD = 0; E � E f , fFD = 1. And most importantly, when E = E f ,
fFD = 1/2. In other words, the probability of the Fermi level being occupied by one
electron is 1/2.

Not going too deep into details, let us simplify the steady state of photolumi-
nescence measurement by introducing the concept of a quasi-equilibrium state. For
most semiconductor samples of interest, we can use different lasers of different
wavelengths for measuring their photoluminescence spectra and the resulting pho-
toluminescence spectra are not very sensitive to the wavelength of the excitation
laser (as long as the photon energy is quite large as compared with the semicon-
ductor energy bandgaps). Photoluminescence lifetime measurement shows that the
luminescence persists for quite a long time after switching off the excitation laser
(see more in Sects. 4.4 and 7.2). Refer back to Fig. 4.1 we can conclude that the
excitation (process 1) and energy relaxation (process 2) must be much faster than
the radiative recombination (process 3). And the photoexcited electrons and holes
accumulate at their respective ground states (conduction and valence bandedges).
In the first-order approximation we may therefore assume that the accumulations of
the electrons and holes in the conduction and valence bands are described by two
different quasi Fermi levels, one for the electrons in the conduction band and one for
the holes in the valence band. This is the quasi-equilibrium-state approximation:

f (E	k) = 1

exp

(
E	k − E	

f
kBT

)
+ 1

(4.12)

where E	
f is the quasi Fermi level of band 	 (either conduction band “c” or valence

band “v”). Note that we denote the occupation probability at quasi-equilibrium-state
by f and fFD for equilibrium state. Without any external field such as the excitation
laser so the electrons in the semiconductor are at equilibrium, Ec

f = Ev
f = E f and

f = fFD, see Fig. 4.2a.
In an n-type semiconductor there are more electrons in the conduction band than

holes in the valence band and the equilibrium-state Fermi level E f is close to the
conduction bandedge (the situation of Fig. 4.2a). Similarly, a p-type material has
less electrons in the conduction band than holes in the valence band so that its E f is
close to the valence bandedge. Under the excitation of an external photon field �ω′,
electrons that initially occupy the valence band are now excited to the conduction
band, leaving holes in the valence band. Together with the initial electrons in the
conduction band and holes in the valence band, the photogenerated electrons and
holes will reach their respective quasi equilibrium states described by two quasi
Fermi levels Ec

f and Ev
f , see Fig. 4.2b.

In an intrinsic or lightly-doped semiconductor, the numbers of electrons in the con-
duction band and holes in the valence band are all small. E f is close to the middle
point of the energy bandgap, it is also far away from the conduction and valence
bandedges. Under the optical excitations of many common photoluminescence
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(a) (b)

Fig. 4.2 The equilibrium-state Fermi level and steady-state quasi Fermi levels of electrons and holes
in a semiconductor. CB denotes the conduction band and VB for the valence band. a Without any
external field, Ec

f = Ev
f = E f . b Quasi equilibrium state under a continuous-wave �ω′ excitation

measurement setups, the numbers of photogenerated electrons and holes are small
so that the energy separation between Ec

f and Ev
f is far less than Eg. In other words,

Eck − Ec
f � kBT (implicitly, the temperature is not high, mostly room temperature

or below), Ev
f − Evk � kBT so that the Fermi-Dirac distribution function (4.11) can

be approximated by Boltzmann distribution function

f (Eck) ≈ exp

(
− Eck − Ec

f

kBT

)

1 − f (Evk) = 1 − 1

exp

(
− Evk − Ev

f
kBT

)
+ 1

= 1

exp

(
− Ev

f − Evk

kBT

)
+ 1

≈ exp

(
− Ev

f − Evk

kBT

)
(4.13)

Moreover, as what we have learned in Chap. 2, the energy band structures of the
conduction and valence bandedges of many semiconductors can be well approxi-
mated as spherical and parabolic

Eck = Ec + �
2k2

2m∗
c

, Evk = Ev − �
2k2

2m∗
v

(4.14)

where E	 is the energy of the bandedge (	 = c, v) so that Ec − Ev = Eg, m∗
	 is the

effective mass of electron or hole of band 	.
By (4.14),

Eck − Evk = Eg + �
2k2

2m∗
r

(4.15)

is the optical transition energy at k,
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1

m∗
r

= 1

m∗
c

+ 1

m∗
v

where m∗
r is called the reduced effective mass, the same as in (2.129). We invoke

again the weak excitation condition that the energy separation between Ec
f and Ev

f
is much smaller than Eg so that

[
1 − f (Evk)

]
f (Eck) ≈ exp

(
− Eck − Ec

f + Ev
f − Evk

kBT

)
= exp

⎛
⎜⎝−

Eg + �
2k2
2m∗

r

kBT

⎞
⎟⎠

(4.16)
Since the numbers of electrons and holes are small, electrons and holes are

expected to stay closely to the bandedges, i.e., the amplitudes of the wave vec-
tors of electrons and holes are small so that we may neglect the k-dependences of
uck and uvk, therefore also pcv, see (2.31).

Putting all these together into (4.10)

W (ω) = πe2|es · pcv|2
m2
0ε0n

2ω

∫
Γk(

Eg + �
2k2

2m∗
r

− �ω

)2
+ Γ 2

k

exp

⎛
⎜⎜⎝−

Eg + �
2k2

2m∗
r

kBT

⎞
⎟⎟⎠

2dk

(2π)3
(4.17)

By (4.15),

2dk
(2π)3

= 1

4π3
2πk2dk = 1

2π2

(
2m∗

r

�2

)3/2√
E − Eg dE ≡ N a

3 (E − Eg)dE

(4.18)
where N a

3 (E) is the three-dimensional density of associated electron states, which
is valid for E ≥ Eg, i.e., k must be real. To avoid possible mistakes, we introduce a
step function θ(x) such that for x ≥ 0, θ = 1, otherwise θ = 0. By this, the three-
dimensional density of associated electron states can be expressed as

N a
3 (E − Eg) = 1

2π2

(
2m∗

r

�2

)3/2√
E − Eg θ(E − Eg) (4.19)

Note that N a
3 (E − Eg) is named as the three-dimensional (thus the subscript “3”)

density of associated (superscript “a”) electron states. This is not the density of
electron states in either the single conduction band or the valence band, rather, it is
about both the electron state in the conduction band and the hole state in the valence
band which are associated by the light-matter interaction, see (4.15), and E here is
optical transition energy, and m∗

r is the reduced effective mass.
Finally, the rate of transitions of electrons from the conduction band to the valence

band in an intrinsic or a lightly-doped semiconductor is
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W (ω) = πe2|es · pcv|2
m2
0ε0n

2ω

∫
Γ

(E − �ω)2 + Γ 2 exp

(
− E − Eg

kBT

)
N a
3 (E − Eg)dE

= π2e2|es · pcv|2
m2
0ε0n

2ω
exp

(
−�ω − Eg

kBT

)
N a
3 (�ω − Eg) θ(�ω − Eg)

∝
√

�ω − Eg exp

(
−�ω − Eg

kBT

)
θ(�ω − Eg) (4.20)

In the above derivations, we use the following mathematical relationship

lim
Γ →0

Γ

(E − �ω)2 + Γ 2
= π δ(E − �ω) (4.21)

In Sect. 2.3,we have learned thatW (ω) represents the number of photons absorbed
or generated from the optical transitions of electrons from the conduction band to the
valence band, see (2.120). Therefore, the photoluminescence signal that is recorded
by a photodetector is determined by W (ω) such

Sbulk(ω) = A
√

�ω − Eg exp

(
−�ω − Eg

kBT

)
θ(�ω − Eg) (4.22)

where we use a parameter A that includes many factors such as the reduced effective
mass m∗

r and optical dipole moment pcv which cannot be determined directly from
the photoluminescence spectrum. We denote this spectrum of a bulk semiconductor
by the subscript “bulk”. Since it is directly related to the optical transition between
the conduction band and valence band, it is also commonly known as inter-band
photoluminescence spectrum.

Figure 4.3 shows the characteristic features of the photoluminescence spectrum
of an intrinsic or lightly-doped bulk semiconductor. Here we see that the photolu-
minescence directly reflect the energy band structure of the semiconductor under
investigation, namely, the energy bandgap Eg, the density of associated electron
states as well as the occupation of the associated electron states.

One may be a bit cautious when matching a measured photoluminescence spec-
trum with Fig. 4.3. We can expect that photons are emitted uniformly in space in
an optically excited bulk semiconductor when electrons and holes recombine radia-
tively. The emitted photons need to travel from where they are created to the semi-
conductor surface then refract into air before they reach the photodetector to be
recorded. Since photons whose energies are larger than Eg will be absorbed by the
semiconductor, we would expect that the measured photoluminescence strength at
higher photon energies (such as these above 1.5 in Fig. 4.3) will be weaker than what
is expected by (4.20) since the emitted high-energy photonswill be partially absorbed
during their propagation through the semiconductor before reaching the photodetec-
tor, while the photoluminescence strength close to Eg will be a bit stronger due to the
extra optical excitation by the absorption of the emitted high-energy photons. The
situation is depicted in Fig. 4.4.
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Fig. 4.3 Characteristic feature (black solid line) of the inter-band photoluminescence spectrum of
an intrinsic or lightly-doped bulk semiconductor, where

√
E − Eg (red dashed line) represents the

density of associated electron states while exp[−(E − Eg)/kBT ] (red dotted line) is the occupation
probability of the associated electron state at E

A typical experimental photoluminescence spectrum from a II-VI ternary CdZnTe
semiconductor is shown as the black solid line in Fig. 4.5, which shows in general
the same peak shape as the theoretical spectrum in Fig. 4.3.

As shown by (4.20), there should be no emitted photons whose energies are
smaller than Eg, see the step function θ(�ω − Eg). The photoluminescence spectrum
in Fig. 4.5 shows that in the region close to Eg, the change of the photoluminescence
spectrum as a function of �ω is not the step function. In theory, the step function is
the result of the three-dimensional density of associated electron states which says
that there is no electron states in the energy bandgap. In reality, the energy bandgap
is not totally void of any electron states. There are impurity states, lattice defect
states, exciton states etc. We can use the following exponentially decaying function
to describe the density of these bandgap states [2]:

N0

E0
exp

(
− Eg − E

E0

)
θ(Eg − E) (4.23)

where N0 is the total number of bandgap states, E0 represents the diffusion of these
states in the energy bandgap. And E < Eg, i.e., the bandgap states.

Similar to the derivation of (4.22), we can find that the luminescence from the
bandgap states

Sbandgap−states(�ω) = B exp

(
− Eg − �ω

E0

)
θ(Eg − �ω) (4.24)

where B contains information about the density of bandgap states and optical
transitions between bandgap states.
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Fig. 4.5 A typical
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photoluminescence spectrum
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with the fitting Eg marked by
the vertical arrow
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Finally, the total photoluminescence spectrum of an intrinsic or lightly-doped
semiconductor can be expressed as

S(�ω) = Sbulk(�ω) + Sbandgap-states(�ω) (4.25)

We use the above expression to fit the experimental photoluminescence spectrum
in Fig. 4.5 with five independent fitting parameters, T , A, B, Eg, and E0. T , the
temperature of the electrons and holes, should be the same as the temperature of the
environment where the sample locates. It may needmodifications when a strong laser
beam is used to excite the photoluminescence spectrum under which conditions the
energy relaxations (process 2 in Fig. 4.1) will significantly increase the temperature
in the region under the laser irradiation.

The fitted spectrum of the experimental data is shown in Fig. 4.5 as the red dashed
line and Eg is marked by a vertical arrow, indicating that our microscopic picture
about the photoluminescence spectrum is rather satisfactory.

Note that by the end of Sect. 2.4 we understand that that basic form of a single
photon emission process is either Lorentzian or Gaussian, while the photolumines-
cence peaks described by (4.22), (4.24) and shown in Figs. 4.3 and 4.5 are much
more complicated. They are composed of many Lorentzian peaks weighted by the
occupation probabilities and the densities of the associated electron states.

The II-VI ternary Cd1−xZnxTe semiconductor is widely used as an epitax-
ial substrate which is lattice-structure matched with the most important infrared-
photodetector material HgyCd1−yTe. The mole fraction x of Zn in Cd1−xZnxTe is
a critical parameter for the final device performance of HgyCd1−yTe-based infrared
photodetector. Any deviation of the Zn mole fraction in the Cd1−xZnxTe substrate
from its device design value and non-uniformity of its surface distributionwill induce
significant lattice distortions and lattice mismatches with the HgyCd1−yTe epitaxial
layer to be grown on the Cd1−xZnxTe substrate.

We know from this section that we can obtain the energy bandgap from measur-
ing the inter-band (between the valence and conduction band) photoluminescence
spectrum. And theoretically the energy bandgap Eg(x) of Cd1−xZnxTe depends on
the Zn mole fraction x [3]

Eg(x) = 1.494 + 0.606x + 0.139x2 eV (4.26)

at room temperature. Notice the difference in the above equation to that in the
reference, where the first term is now 1.494 eV. The reason is that the Eg in the
above expression is derived from the physical model fitting from the measurements
of Fig. 4.7 (see below), which reflects the cut-off energy of the band-to-band tran-
sition, while the commonly cited Eg (as in [3]) is taken as the peak position of the
photoluminescence spectrum, and Fig. 4.3 shows that Eg is not the same as the energy
of the photoluminescence peak.

A simple effective, also noninvasive, method to evaluate the Zn mole fraction in
a Cd1−xZnxTe substrate is to measure its inter-band photoluminescence spectrum.
In order to find the surface distribution of the Zn mole fraction, we measure the
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Fig. 4.6 Schematics of the
microscopic
photoluminescence
measurement setup

photoluminescence spectrum as a function of the surface position. This position-
dependent photoluminescence measurement is the so-called microscopic photolu-
minescence spectrum, also known as the µ-photoluminescence, or simply µ-PL.

The basic principle of the µ-photoluminescence is very simple: we impinge the
surface on a sample by using a laser beam with a tiny laser spot having a diameter at
the µm scale (thus the name µ-photoluminescence) to excite the photoluminescence
signal from the tiny region under the laser spot.Moving the laser spot across thewhole
sample surface or the area of interestwill give us the needed surface distribution of the
Zn mole fraction. A schematic structure of the µ-photoluminescence measurement
setup is shown in Fig. 4.6.

Using the spectral line of 632.8 nm from a He-Ne laser and a 100× microscopic
objective to focus the laser beam into a spot with an approximate diameter of 1
µm, we make a µ-photoluminescence scan across the surface of one Cd1−xZnxTe
epitaxial substrate. The µ-photoluminescence spectra are fitted by using (4.25) to
obtain Eg. The resulting two-dimensional maps of Eg are shown in Fig. 4.7, where
(a) is the Eg map for the Cd1−xZnxTe epitaxial substrate before bromine polishing
and (b) is the Eg map after bromine polishing. The Eg map can be easily converted
into the map of the Zn mole fraction by using (4.26).

Note that the scales of Fig. 4.7a, b are different, 1.509–1.518 eV (range 9 meV)
versus 1.5115–1.5155 eV (range 4 meV). Moreover, the fluctuations of Eg in (b) are
much lower than (a), indicating a significant improvement in the distribution of Eg

and therefore the x of Zn atoms in the substrate by bromine polishing.
To assess the improvement quantitatively in another way, we do a further data

processing that we count the number of pixels within a certain Eg range then present
the count as a function of Eg in Fig. 4.8. The visualization about the improvement
of the uniformity is even better.
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Fig. 4.8 Statistical counts of local energy bandgaps in the Cd1−xZnxTe substrate before (a) and
after bromine polishing (b)

4.2 Optical Transitions in Low-Dimensional Structures

The fast development of the microelectronics, nanoelectronics, microphotonics, and
nanophotonics relies completely on low-dimensional semiconductor structures. And
photoluminescence is one of the best methods to characterize these low-dimensional
structures. One obvious reason is that optical characterization does not require phys-
ical contacts with the sample under investigation, while electrodes are needed for
electric characterizations, which become more and more difficult to be made on tiny
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low-dimensional structures. This also means that the optical characterization is non-
destructive (non-invasive). We only take a look literally (!) at the sample (with a safe
dose of the probing light intensity, of course, as not to optically damage the sample).

In this section we study the photoluminescence as a function of the dimension-
ality of the low-dimensional structure. We will then analyze the photoluminescence
spectra of a quantum well, quantum wire and quantum dot in the coming sections,
respectively.

As we know from Chap. 2, the wave function of a conduction-band electron in a
bulk material is described by

Ψck(r) = 1√
N

eik·ruck(r), uck(r) = uck(r + R) (4.27)

where k is the wave vector and R the lattice vector. The wave function of a valence-
band hole is similar. The term of 1/

√
N in the above expression is due to the wave

function normalization. Without it, the spatial integration of the wave function over
the extension of the material which is denoted as Ω is

∫

Ω

Ψ ∗
ck(r)Ψck(r)dr =

∫

Ω

u∗
ck(r)uck(r) dr (4.28)

Here we have utilized (2.16). Because uck(r) is a periodic function of unit cells in
Ω , we replace r by the lattice vector R of the unit cell and the spatial coordinate r ′
inside the unit cell, i.e., r ≡ R + r ′,

∑
R

∫

cell
|uck(r ′ + R)|2dr ′ =

∑
R

∫

cell
|uck(r ′)|2dr ′ (4.29)

∫
cell represents the integration over r ′ over the unit cell. Bloch function uck(r) is
commonly normalized within the unit cell

∫

cell
|uck(r)|2dr = 1 (4.30)

which indicates that by the SI unit (the Meter-Kilogram-Second MKS unit), the unit
of uck(r) is [m]−3/2.

Equation (4.28) now becomes

∫

Ω

Ψ ∗
ck(r)Ψck(r)dr =

∫

Ω

u∗
ck(r)uck(r)dr =

∑
R

1 = N (4.31)

where N is the number of unit cells in Ω . And the normalized wave function of the
conduction-band electron in the bulk material is
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Ψck(r) = 1√
N

eik·ruck(r) (4.32)

This is exactly (2.16) in Chap. 2, the most common expression of the Bloch theorem
in solid-state textbooks.

Nowwe study the electron and hole states in low-dimensional structures.Whenwe
reduce the spatial extension along one direction of the three-dimensional Cartesian
coordinate system down to tens of nm, or even a few nm, we obtain the so-called
quantum well which is confined along the direction of the reduced extension (it
is thus also called one-dimensionally confined quantum well, one may read “two-
dimensional quantum well” in literature which means two-dimensionally extended
quantumwell in the context of a three-dimensional bulkmaterialwhichmeans a three-
dimensionally extended bulk material). Further reduction of the spatial extension in
another Cartesian direction results in a two-dimensionally confined quantum wire.
When the third Cartesian direction is further reduced, what we have is a three-
dimensionally confined quantum dot.

In general, the size of the reduced extension, commonly tens of nm, maybe even
a few nm, as mentioned before, is still much larger than the lattice constants of
semiconductors (approximately only 0.5 nm). By the envelope function and the
effective mass approximation we study in Sect. 2.1, the total wave function of an
electron state can be expressed as

Ψc(r) = ψc(r) uc(r)

so that the Schrödinger equation of the effectivemass approximation for the envelope
function ψc(r) is [−�

2∇2

2m∗
c

+ Vc(r)
]

ψc(r) = Ecψc(r) (4.33)

i.e., (2.40), where Vc(r) is the potential energy for the conduction-band electron.
It is necessary to note that the above equation is, in principle, valid bothmathemat-

ically and physically only for bulk material, while its application in low-dimensional
structures is anyway very successful. One major physical reason is the finite spatial
diffusion of atoms so that mathematically sharp interfaces do not exist in the physical
world, Vc(r) and thereafter ψc(r) are all slowly varying functions of space. This is
especially true for most electronics and photonics applications of low-dimensional
structures where only low-energy electron and hole states (thus small wave vectors)
close to the conduction- and valence-bandedges are occupied. This is the principal
condition for the validity of the envelope function theory of (4.33).

Consider the one-dimensionally confined quantum well in Fig. 2.6. It is confined
along the z axis and extended in the xy plane.Because of the extension in the xy plane,
the envelope wave function of the electron in this quantum well can be expressed as

ψi (z) e
i(kx x+ky y) (4.34)
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ψi (z) is the envelope function along the z direction

[−�
2

2m∗
d2

dz2
+ V (z)

]
ψi (z) = Eiψi (z) (4.35)

where i is the quantum index along the z direction. Here we neglect the subscript
“c” that denotes the conduction band (also “v” for the valence band) for simple
mathematical expressions. The extension in the xy plane is now represented by wave
numbers kx and ky . It is easy to see that the removal of V (z) in the z direction results
in

ψi (z) = ψkz (z) = eikz z

so that (4.32) is retrieved.
Envelope function ψi (r) in (4.33) and (4.35) is commonly normalized in its

extension space Ω , i.e., ∫

Ω

|ψi (r)|2dr = 1 (4.36)

for which, the unit ofψi (r) is [m]−3/2, the same as that of Bloch function uk(r). eik·r
in (2.16) and (4.32) is unit-less.

For the sake of a unified way to express envelope wave functions in low-
dimensional structures, let us take a close look at the wave function normalization
issue. We have the Bloch function u(r) normalized in one unit cell, i.e., (4.30), and
envelope wave function ψi (r) normalized in Ω , i.e., (4.36). The normalization of
the total wave function Ψi (r) = ψi (r)u(r) means

∫

Ω

|Ψi (r)|2dr =
∫

Ω

|ψi (r)|2|u(r)|2dr = 1 (4.37)

As mentioned before, ψi (r) is a slowly-varying function of space so that replacing
r by R + r ′, the integration in the above equation becomes

∑
R

|ψi (R)|2
∫

cell
|u(r ′)|2dr ′ =

∑
R

|ψi (R)|2 (4.38)

Here we utilize the normalization of u(r) in the unit cell. Similar to Sect. 2.1, let
the lattice constants along the three Cartesian directions x , y, and z be ax , ay , and
az , and the numbers of unit cells Nx , Ny , and Nz , respectively. Ωcell = axayaz is the
volume of the unit cell. With these,

∑
R

|ψi (R)|2 = 1

Ωcell

∑
R

|ψi (R)|2Ωcell = 1

Ωcell

∫

Ω

|ψi (r)|2dr = 1

Ωcell
(4.39)

The last equality comes from the normalization of ψi (r) in Ω , see (4.36).
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Fig. 4.9 Schematics of various low-dimensional structures. a Bulk material, b quantum well with
well width LQW, c quantum wire with cross section SQWR, and d quantum dot with confinement
volume ΩQD

The above expression indicates that the normalized total wave function must be

Ψi (r) = √
Ωcell ψi (r) u(r) (4.40)

where ∫

cell
|u(r)|2dr = 1,

∫

Ω

|ψi (r)|2dr = 1 (4.41)

We now can go in details to study the electron states in low-dimensional structures
schematically shown in Fig. 4.9.

Bulk material: To model a bulk material, we let Vc(r) = Vc in (4.33), where Vc

is the conduction bandedge of the bulk material. The general solution of (4.33) is
ψk(r) = C eik·r , where C is the normalization factor

∫

Ω

|ψk(r)|2dr =
∫

Ω

|C |2dr = |C |2
∫

Ω

dr = |C |2Ω (4.42)

so that C = 1/
√

Ω and the normalized envelope function is

ψk(r) = 1√
Ω

eik·r (4.43)

Insert this into (4.40) we retrieve (4.32).
As shown by the above equation, the quantumnumber of the electron states in bulk

material is wave vector k. Inserting the above equation into (4.33) with Vc(r) = Vc

and the energy dispersion relationship is

Ek = Vc + �
2k2

2m∗ (4.44)

by which we easily obtain the density of electron states N3(E)
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2dk
(2π)3

= N3(E − Vc) dE

N3(E − Vc) = 1

2π2

(
2m∗

�2

)3/2√
E − Vc θ(E − Vc) (4.45)

Quantum well: For a quantum well which is confined along the z direction by
an effective well width LQW, Vc(r) = Vc(z) in (4.33) so that the envelope function
can be expressed as ψ(r) = ψ(z)ψ(x, y). Insert it into (4.33)

[−�
2∇2

2m∗ + Vc(z)

]
ψ(z)ψ(x, y) = Eψ(z)ψ(x, y) (4.46)

we obtain Schrödinger equations for the z direction and the xy plane

[−�
2

2m∗
d2

dz2
+ Vc(z)

]
ψi (z) = Eiψi (z)

−�
2

2m∗

(
d2

dx2
+ d2

dy2

)
ψkx ky (x, y) = Ekxkyψkx ky (x, y) (4.47)

Here we have already denoted the two envelope functions by their quantum
indices. ψi (z) and Ei are eigen functions and values of the first Schrödinger equa-
tion, respectively, known as the energy sublevels in the quantum well, denoted by
quantum index i . By (4.41),

∫

LQW

|ψi (z)|2dz = 1 (4.48)

The general solution of the second Schrödinger equation is ψkx ky (x, y) =
Cei(kx x+ky y). And the energy of the total envelope function ψi (z)ψkx ky (x, y) is

Eikx ky = Ei + Ekxky , Ekxky = �
2(k2x + k2y)

2m∗ (4.49)

The total envelope function is

C ψi (z) e
i(kx x+ky y) (4.50)

where C is the normalization factor to be determined by

|C |2
∫

LQW

|ψi (z)|2dz
∫

xy
dxdy = |C |2SQW = 1 (4.51)

where SQW is the extension surface of the quantum well in the xy plane, resulting
in C = 1/

√
SQW so that the normalized envelope function of an electron state in the

quantum well is
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ψikx ky (r) = 1√
SQW

ψi (z) e
i(kx x+ky y) (4.52)

and the density of electron states corresponding to the energy dispersion relationship
(4.49) is

∑
i

2dkxdky
(2π)2

=
∑
i

N2(E − Ei ) dE

N2(E − Ei ) = m∗

π�2
θ(E − Ei ) (4.53)

Quantum wire: Similarly, we can discuss the electron states in a quantum wire
which is extended along the z direction with a length of LQWR and confined in the
xy plane with a confinement area SQWR

∫

SQWR

|ψi (x, y)|2dxdy = 1

ψikz (r) = 1√
LQWR

ψi (x, y) e
ikz z

∑
i

2dkz
2π

=
∑
i

N1(E − Ei ) dE

N1(E − Ei ) = 1

2π

√
2m∗

�2

1√
E − Ei

θ(E − Ei ) (4.54)

Quantum dot: For a quantum dot confined within ΩQD,

∫

ΩQD

|ψi (r)|2dr = 1

N0(E) =
∑
i

δ(E − Ei ) (4.55)

In other words, the density of electron states in a quantum dot is composed of a series
of δ functions.

Let us visualize the energy states in aGaAs-based low-dimensional sample defined
by its dimension Lx × Ly × Lz , which in principle is a quantum dot if Lx , Ly and
Lz are in the order of nanometers. When Lx = Ly = Lz = ∞, the sample is a bulk
material. Reducing significantly Lz results in the quantum well . . .. We can eas-
ily write a computer code about the electron states in the conduction band or
valence-band holes. The effective mass of the conduction-band electron in GaAs
ism∗

c = 0.067m0, wherem0 is the free electron mass. For simplicity, we assume that
Vc = 0 inside the GaAs region and Vc = ∞ otherwise. The general solution for the
Schrödinger equation is
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ψ	x	y	z (x, y, z) = 1√
Lx L yLz

sin

(
	xπx

Lx

)
sin

(
	yπy

L y

)
sin

(
	zπ z

Lz

)

E	x	y	z = �
2π2

2m∗

(
	2x

L2
x

+ 	2y

L2
y

+ 	2z

L2
z

)
(4.56)

for 0 ≤ x ≤ Lx , 0 ≤ y ≤ Ly , and 0 ≤ z ≤ Lz . 	x , 	y , and 	z are nonzero integers.
They are the three quantum indices in the x , y, and z direction, respectively. In other
words, i in (4.55) is now (	x , 	y, 	z). The numerical results of the densities of electron
states are presented in Fig. 4.10. Do we retrieve the cases of quantum wire, quantum
well, and bulk when we increase Lx , Ly , and Lz gradually?

Figure 4.10 shows clearly the model sample Lx × Ly × Lz works fine to simulate
various low-dimensional samples. Note that the δ function in (4.55) is replaced by

δ(E − Ei ) → Γ

(E − Ei )2 + Γ 2
(4.57)

where Γ is the relaxation energy.
Knowing the wave functions and their corresponding energies that describe the

electron states in low-dimensional structures, we now discuss the optical transitions
in these structures. Refer to (2.115) in Sect. 2.3, which is valid for structures of any
confinement dimensions. We repeat some basic equations here. For a valence-band
state Evk with a total wave function

Ψvk(r) = ψvk(r)uv(r)

and a conduction-band state Ecq and

Ψcq(r) = ψcq(r)uc(r)

the spontaneous emission rate is

wq←k(ω) = π�
2e2

m2
0ε0n

2ωΩ
|〈Ψcq |es · ∇|Ψvk〉|2 Γqk(

Ecq − Evk − �ω
)2 + Γ 2

qk

(4.58)

Here we summarize quantum indices as k and q. For bulk material, k = (kx , ky, kz);
For a quantum well confined along the z direction, k = (kx , ky, i). We can write
down similar expressions for quantum wire and quantum dot.

For simplicity, we assume that the energy band structures are spherical and
parabolic, and u(r) is k-independent. These two assumptions are valid for the
conduction bands of many commonly used semiconductor materials such as Si,
GaAs, and GaN, while the valence bands are normally much complicated. However,
as well as fortunately, for most electronics and photonics applications, the electron
states that are occupied by the active electrons and holes in the devices are very close
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Fig. 4.10 Density of conduction-band electron states of a GaAs-based low-dimensional sample
Lx × Ly × Lz . a Bulk material, b quantum well, c quantum wire, d quantum dot. Γ = 10 meV.
The conduction bandedge in GaAs is set to be zero

to the conduction and valence bandedges for whichwhenwemake Taylor expansions
for these energy bandedge states of very small k values, the above two assumptions
are quite alright.

Similar to the discussions in Sect. 4.1 about photoluminescence from inter-band
transitions, the photoluminescence spectrum is generally expressed as

g(ω) =
∑

qk,Ecq>Evk

π�
2e2

∣∣〈Ψcq |es · ∇| Ψvk
〉∣∣2 Γkq

[
f (Ecq) − f (Evk)

]

m2
0ε0c0nωΩ

[(
Ecq − Evk − �ω

)2 + Γ 2
kq

] (4.59)

i.e., (2.123) in Sect. 2.3, where f (Ecq) and f (Evk) are occupations of state Ecq and
Evk, respectively.
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Bulk material: We study the photoluminescence spectrum of a bulk material in
Sect. 4.1 and the results are

Ψk(r) = √
Ωcell ψk(r) uk(r), ψk(r) = 1√

Ω
eik·r (4.60)

〈
Ψcq(r) |es · ∇| Ψvk(r)

〉 = δqk
es · pcv

�
(4.61)

so that

gbulk(ω) =
∑
qk

π�
2e2

∣∣〈Ψcq |es · ∇| Ψvk
〉∣∣2 Γkq

[
f (Ecq) − f (Evk)

]

m2
0ε0c0nωΩ

[(
Ecq − Evk − �ω

)2 + Γ 2
kq

]

=
∑
k

π�
2e2 |〈Ψck |es · ∇| Ψvk〉|2 Γcv

[
f (Eck) − f (Evk)

]

m2
0ε0c0nωΩ

[(
Eck − Evk − �ω

)2 + Γ 2
cv

]

= πe2Γcv|es · pcv|2
m2

0ε0c0nωΩ

∫
f (Eck) − f (Evk)(

Eck − Evk − �ω
)2 + Γ 2

cv

2dk
(2π)3/Ω

= πe2Γcv|es · pcv|2
m2

0ε0c0nω

∫
f (Eck) − f (Evk)(

Eck − Evk − �ω
)2 + Γ 2

cv

2dk
(2π)3

(4.62)

Quantum well: As discussed before, the quantum well is confined along the z
direction with a confinement width LQW. It is extended in the xy plane with an
extension surface area SQW. The wave functions of the electron and hole states are

Ψik(r) = √
Ωcell ψik(r) u(r), ψik(r) = 1√

SQW
ψi (z) e

i(kx x+ky y) (4.63)

so that the optical transition matrix element is

〈
Ψ jq |es · ∇| Ψik

〉

= Ωcell

SQW
es ·

∫

Ω

ei
[
(kx−qx )x+(ky−qy)y

]
ψ∗

j (z)ψi (z)u
∗
c(r)∇uv(r)dr

− i(exkx + eyky)Ωcell

SQW

∫

Ω

ei
[
(kx−qx )x+(ky−qy)y

]
ψ∗

j (z)ψi (z)u
∗
c(r)uv(r)dr

+ezΩcell

SQW

∫

Ω

ei
[
(kx−qx )x+(ky−qy)y

]
ψ∗

j (z)
∂ψi (z)

∂z
u∗
c(r)uv(r)dr (4.64)

where es = (ex , ey, ez) is the propagation direction of the electromagnetic field. The
second term on the right side of the equals sign in above equation is zero due to
wave function’s orthogonality. The third term can be studied by replacing r with
R + r ′ since the envelope function is a slowly-varying function of space. We have
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performed similar mathematical manipulations before, such as (4.28), which results
in a quantity ∫

cell
u∗
c(r)uv(r) dr

and it is zero since uc and uv are eigen functions so are orthogonal. Only the first term
on the right side of the equals sign remains, which is called the inter-band transition
(between the conduction band and the valence band).

There is a novel phenomenon in low-dimensional structures which does not exist
in the bulk material. Let us replace the valence-band state by a new conduction-band
state, i.e., replace uv in (4.64) by uc. We now see that the first term on the right side of
the equals sign in (4.64) becomes zero since the parities of uc and ∇uc are opposite
so that their spatial integration is zero. The second term is also zero because ψi and
ψ j are orthogonal. Only the third term remains, which is known as the intra-band
transition (within the same conduction band). The discussion can be extended to
the intra-band transition of the valence band. We will discuss it more extensively in
Chap. 6 about the photocurrent spectrum of a quantum well infrared photodetector.

Back to the inter-band transition.

Ωcell

SQW

∫

Ω

ei
[
(kx−qx )x+(ky−qy)y

]
ψ∗

j (z)ψi (z)u
∗
c(r)∇uv(r)dr

= Ωcell

SQW

∑
R

ei
[
(kx−qx )Rx+(ky−qy)Ry

]
ψ∗

j (Rz)ψi (Rz)

∫

cell
u∗
c(r)∇uv(r)dr

= Ωcell

SQW
NQWδkxqx δkyqy

pcv
�

1

az

∑
Rz

ψ∗
j (Rz)ψi (Rz)az

= Ωcell

SQW
NQWδkxqx δkyqy

pcv
�

1

az

∫

LQW

ψ∗
j (Rz)ψi (Rz)dz

= δkxqx δkyqy
pcv
�

∫

LQW

ψ∗
j (z)ψi (z)dz ≡ δkxqx δkyqy

pcv
�

〈ψ j (z)|ψi (z)〉 (4.65)

where az is the lattice constant in the z direction, NQW is the number of unit cells
contained in surface area SQW. δkxqx = 1 when kx = qx , it is zero otherwise.

The inter-band photoluminescence spectrum of the quantum well is thus

gQW(ω) =
∑

jqx qy ,ikx ky

π�
2e2

∣∣〈Ψ jqx qy (r)|es · ∇|Ψikx ky (r)
〉∣∣2 Γcv

[
f (E jqx qy ) − f (Eikx ky )

]

m2
0ε0c0nωΩ

[(
E jqx qy − Eikx ky − �ω

)2 + Γ 2
cv

]

= πe2Γcv|es · pcv|2
m2

0ε0c0nωΩ

∑
j i

∫ ∫ ∣∣〈ψ j (z)|ψi (z)〉
∣∣2 [ f (E jkx ky ) − f (Eikx ky )

]
[(
E jkx ky − Eikx ky − �ω

)2 + Γ 2
cv

] 2dkxdky
(2π)2/SQW
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= πe2Γcv|es · pcv|2
m2

0ε0c0nωLQW

∑
j i

∫ ∫ ∣∣〈ψ j (z)|ψi (z)〉
∣∣2 [ f (E jkx ky ) − f (Eikx ky )

]
[(
E jkx ky − Eikx ky − �ω

)2 + Γ 2
cv

] 2dkxdky
(2π)2

(4.66)

where
2dkxdky

(2π)2/SQW
= 2SQWdkxdky

(2π)2

is known as the sheet density of electron states in the xy plane, Ω = SQWLQW.

Quantum wire: We do a similar study about quantum wire

Ψik(r) = √
Ωcell ψik(r) uk(r), ψik(r) = 1√

LQWR
ψi (x, y) e

ikz (4.67)

〈
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(4.68)

Again focus on the inter-band transition,
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ψ∗
j (x, y)ψi (x, y)dxdy

= δkq
es · pcv

�

∫

SQWR

ψ∗
j (x, y)ψi (x, y)dxdy ≡ δkq
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�

〈ψ j (x, y)|ψi (x, y)〉
(4.69)

Ωcell = axayaz , and azNQWR = LQWR.
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gQWR(ω) =
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Quantum dot: The inter-band transition in the quantum dot is described by

Ψi (r) = √
Ωcell ψi (r) uk(r),

∫

ΩQD

|ψi (r)|2dr = 1 (4.71)
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gQD(ω) =
∑
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(4.73)

Here we include energy relaxation processes so that the δ function is replaced
numerically by (4.57).

To understand what we have just learned about the inter-band photoluminescence
spectrum as a function of the dimensionality of the sample, let us do a few illustrative
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Fig. 4.11 The relationship between the photoluminescence spectrum and the dimensionality of the
material. a A bulk material evolves into a one-dimensionally confined quantum well. b Quantum
well evolves into a two-dimensionally confined quantum wire. Lz = 20 nm

numerical calculations. Assume a GaAs-based bulk material, for which the electron
effectivemass and hole effectivemass arem∗

c = 0.067m0, andm∗
v = 0.45m0, respec-

tively, where m0 is the free electron mass. Figure 4.11a presents the evolution of the
photoluminescence spectrum when the z dimension of a bulk GaAs is reduced from
initially infinite (bulk, which is exactly the same as the one in Fig. 4.3) to Lz = 200,
50 and 20 nm, while in Fig. 4.11b the y dimension of the GaAs quantum well
(Lz = 20 nm, i.e., the last spectrum in Fig. 4.11a) is being reduced (Ly = 600, 60
and 25 nm).What we observe here is basically the evolution of the density of electron
states following the change of the dimensionality of the sample, see Fig. 4.10, plus
of course the occupation of electron states.

A very important result to be closely observed is that the photoluminescence spec-
trum of a three-dimensionally confined quantum dot consists of a series of individual
Lorentzian peaks, while the peaks the photoluminescence spectra of the quantum
wire, quantum well and bulk material are not Lorentzian, they are neither Gaussian.

4.3 Photoluminescence of QuantumWell

The potential profiles for conduction-band electrons and valence-band holes in a
GaAs/AlxGa1−xAs quantum well are shown schematically in Fig. 2.6 in Sect. 2.1.
The solutions of (4.35) depend jointly on the widths of the quantum well and barrier
as well as the barrier height. In practical material growth and device fabrication, the
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precise control of the quantum well and barrier widths and the barrier height is very
difficult that there are many un-controllable fluctuations in the epitaxial growth as
well as to maintain the epitaxial growth conditions for a very long time. In Sect. 3.5,
we used the transmission spectroscopy to assess the layer thicknesses and Al mole
fractions of four multiple GaAs/AlxGa1−xAs quantum well samples and observed
that the deviation of these parameters from their nominal values was quite large. Let
us study these quantum well samples using the photoluminescence spectroscopy.

Refer to the energy band diagram of the GaAs/AlxGa1−xAs quantum well in
Fig. 4.12, we apply a relatively high-energy excitation light beam to excite electrons
from the valence band to the conduction band of the AlxGa1−xAs barrier. Photoex-
citation also occurs in the GaAs quantum well. As briefly introduced in Sect. 3.5,
the GaAs quantum well is about 5 nm while the AlxGa1−xAs barrier is 60 nm. If
the excitation light beam distributes uniformly along the z axis, we expect a similar
excitation of electrons in the GaAs region. Since the thickness of the GaAs well
is less than one tenth of that of the AlxGa1−xAs barrier, the photoexcitation in the
AlxGa1−xAs barrier dominates which is displayed in Fig. 4.12.

The photogenerated electrons and holes will diffuse to the confined energy states
in the GaAs quantum well then radiatively recombine to emit photons, i.e., photolu-
minescence. The photon energy of the photoluminescence peak is EE1 − EH1, where
EE1 and EH1 denote the ground electron state in the conduction band and the ground
heavy hole state in the valence band in the GaAs quantum well. There is also the
ground light hole state EL1 which is below EH1 because of its smaller effective mass.

Interestingly enough, the research and technical development of the quantumwell
infrared photodetector (QWIP) device has also been accompanied by the demonstra-
tion of the basic quantummechanical processes such as the energy band structure of a
one-dimensional square wells (Kronig–Penney model) and the tunneling of an elec-
tron through an energy barrier, which are the key models to understand the modern
physics.

In order to measure the photoluminescence spectrum of the GaAs multiple quan-
tum wells, the QWIP sample is first to be cleaved. We have to be destructive this
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Fig. 4.13 a QWIP sample cleavage, b photoluminescence measurement setup, c one typical room-
temperature photoluminescence spectrum of a GaAs/AlxGa1−xAs QWIP. Inset shows the photolu-
minescence signal at about 680 nm originated from AlxGa1−xAs barriers

time in order to reach the quantum wells cladded in between the substrate and the
capping layer. An excitation laser beam is then focused to a light spot with a diameter
of ca 0.8 µm on the cleavage plane. Note that for a common QWIP sample, there
are 50 GaAs quantum wells (each ca 5 nm thick) sandwiched between AlxGa1−xAs
barriers (thickness 60 nm) so that the total thickness of the multiple quantum wells
is about 50 × 0.065 = 3.25 µm, which is much larger than the size of the laser spot,
see Fig. 4.13a, b. Figure 4.13c presents one typical photoluminescence spectrum
of a QWIP sample. The main split peak at 800 nm comes from the multiple GaAs
quantum wells, and the inset shows a very weak 680 nm peak originated from the
AlxGa1−xAs barriers. In addition, we also observe a shoulder on the long-wavelength
of the QW peak corresponding to the energy bandgap of GaAs (1.43 eV = 867 nm
at room temperature). The appearance of the GaAs bandgap emission is expected
since the whole QWIP structure is epitaxially grown on a GaAs substrate, and there
are many photon-scattering and carrier-diffusion processes that all contribute to the
GaAs substrate’s photoluminescence signal.

The splitting of the main peak of ca 20 meV between E1-L1 and E1-H1 in
Fig. 4.13, is due to the energy difference between the heavy-hole and light-hole
ground states in the valence band. Fitting the photoluminescence signals from GaAs
quantum wells and AlxGa1−xAs barriers will give us transition energies EE1 − EH1

and Eg(AlGaAs). We then obtain the Al mole fraction x and the GaAs quantum well
width. The results of 8 QWIP samples are listed in Table 4.1, in comparison with the
values of designs.We observe significant deviations which are up to 0.5 nm (note that
the lattice constant of GaAs at room temperature is about 0.56 nm [1], this deviation
of ca 0.5 nm is thus about one atomic layer) in LQW and 1–2% in Al mole fraction x .
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Table 4.1 Comparison between optically characterized structure parameters and their design val-
ues. The units of Eg and E11H are all eV

Sample Eg(AlGaAs) E11H Al mole fraction x Quantum well width LQW (nm)

Design Optical Design Optical

QWIP-1 1.817 1.533 0.310 0.315 5.0 4.7

QWIP-2 1.820 1.531 0.310 0.318 5.0 4.8

QWIP-3 1.827 1.532 0.300 0.323 5.0 4.5

QWIP-4 1.809 1.518 0.290 0.309 5.0 5.0

QWIP-5 1.810 1.535 0.300 0.310 5.0 4.5

QWIP-6 1.794 1.533 0.320 0.297 5.0 4.8

QWIP-7 1.828 1.542 0.300 0.324 5.0 4.5

QWIP-8 1.782 1.521 0.300 0.287 5.0 5.0

Fig. 4.14 Wavelengths of
the photoluminescence
peaks, photocurrent peaks,
and designed response peaks
of 8 QWIP
structures/devices

We may speculate that the peak wavelength from the photoluminescence
measurement differs from the photocurrent measurement result (to be studied in
Chap. 6) since the photocurrent is obtained when the device is biased. Figure 4.14
shows the peak wavelengths of design, photoluminescence, and photocurrent mea-
surements, indicating that the photoluminescence and photocurrent measurement
data agree with each other quite well (they differ however quite much from the
designs). We therefore conclude that photoluminescence measurement does provide
an effective and precise way to characterize the response wavelength of the QWIP
device before we actually process the device structure.

There are a few interesting questions that we may ask ourselves. Why the pho-
toluminescence at 680 nm from AlxGa1−xAs barriers is so weak in Fig. 4.13c? The
electron states in AlxGa1−xAs barriers are higher than E1 in the GaAs well region
so their occupation probability is small. This explains why the peak is weak. The
quantitative ratio between this peak and the GaAs photoluminescence peak depends
on how fast the electrons in AlxGa1−xAs barriers transfer to the GaAs region, the
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electrons photo-generated in the middle of an AlxGa1−xAs barrier needs more time
to diffuse to the adjacent GaAs well than the electrons photo-generated at the edge
of the AlxGa1−xAs barrier. We will study more about the carrier diffusion in the next
section.

Another issue about Fig. 4.13 is the sample cleavage. The only reason of this
operation is to increase the optical path of the excitation laser beam in the multiple
GaAs/AlxGa1−xAs quantumwell region in order to obtain a high photoluminescence
signal. In principle aswell as in reality, the non-invasivemeasurement setupofFig. 4.6
will do the job.

4.4 V-Grooved QuantumWire

In this section we study the photoluminescence spectrum of V-grooved quantum
wires to show how much information we can extract about the low-dimensional
structures in reality by photoluminescence spectral analysis.

The V-grooved GaAs/Al0.5Ga0.5As quantum wire is prepared by metal organic
chemical vapor deposition (MOCVD) method [4]. Refer to Fig. 4.15, V grooves
along the y axis (perpendicular to the plane of paper) are first formed on the
GaAs (grey) substrate, which are covered by a relatively thick Al0.5Ga0.5As layer.
A “thin GaAs layer” (grey) is then deposited followed by another relatively thick
Al0.5Ga0.5As cover layer. Majorities of the “thin GaAs layer” are expected to deposit
in the bottoms of the V-grooves to form the GaAs quantumwires (QWRs) marked by
red circles in Fig. 4.15. However, there are many fine low-dimensional structures in
addition to the intentionally deposited GaAs quantum wires, including the side-wall
quantum well layer (SQWL), the neck quantum well layer (NQWL), and the top
quantum well layer (TQWL). Last but not the least, during the second deposition of
the Al0.5Ga0.5As cover layer, Ga atoms do not distribute uniformly through the cover
layer, they tend to accumulate at the bottoms of the V-grooves that form the vertical
quantum well layers (VQWL) on top of the GaAs quantum wires.

The quantum wire structures are now basically two dimensional in the x and z
axes, and they are extended in the y direction (perpendicular to the plane of the page
of Fig. 4.15). How can we identify all these details? First of all, we can use the
microscopic photoluminescence (µ-PL) setup described in Sect. 4.1 to resolve the
geometric structures in the xy plane by the x-axis scan.

An extra feature called a confocal pinhole is added to the µ-PL setup now to
resolve the features along the z axis. By tuning properly the z position of the con-
focal pinhole we can constrain that only those photons originated from the confocal
plane in Fig. 4.15 of a limited thickness can reach the photodetector in the optical
spectrometer. With this confocal feature we are able to resolve spatial features along
the z axis. This is how we identify the photoluminescence signal of the VQWL from
the one of the GaAs quantum wire.

Figure 4.16 shows a series of confocal µ-PL spectra obtained from scanning
across a single GaAs quantum wire at a x scanning step of 0.1 µmwhen the pinhole
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Fig. 4.15 Schematic structures of V-grooved GaAs/Al0.5Ga0.5As quantum wires and confocal µ-
PL measurement setup. Features along the z axis are measured by moving the sample vertically.
By tuning properly the z position of the confocal pinhole we can constrain that only those photons
originated from the confocal plane (red lines) can reach the photodetector in the optical spectrometer,
while photons out of focus (blue dotted lines) will be blockaded

is positioned properly that the GaAs quantum wires are within the confocal plane.
The spectral features are clearly x dependent.

Let us take a close look at the µ-PL spectra at various spatial locations. We pick
up three µ-PL spectra, one at x = −1.0 µm, one at x = 0.0 and the third at x = 1.0
µm, which are presented in Fig. 4.17. The peak at 1.422 eV comes from the GaAs
substrate, supported by the shape of the peak compared with the peak in Fig. 4.3.
The peak at 2.066 eV comes from the optical transition from the conduction-band X
valley to the valence-bandΓ point in the Al0.5Ga0.5As cover layer [5]. Between these
two energies are various photoluminescence peaks from different low-dimensional
structures in the V-grooved quantum wire sample.

By matching the µ-PL scanning spectra of Fig. 4.16 with geometric structures in
Fig. 4.15, we identify all principal PL peaks: QWR = 1.743 eV, VQWL = 1.886 eV,
NQWL = 1.967 eV, SQWL = 1.939 eV, and TQWL = 1.865 eV.

Diffusion Length of Photoexcited Carrier

There are many other things that can be identified from the µ-PL spectrum. In
the room-temperature photoluminescence measurement, the incident radiation is
absorbed to generate photoexcited electrons and holes which will relax very quickly
to the local conduction- and valence bandedges (in the GaAs substrate and the thick
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Fig. 4.16. Note that the PL spectra at x = ±1.0 µm are scaled down by a factor of 0.5



4.4 V-Grooved Quantum Wire 141

Fig. 4.18 Schematics of the
diffusion length 	cD for
electrons Al0.5Ga0.5As
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Al0.5Ga0.5As cover layers), or the ground energy levels in various low-dimensional
structures. The conduction and the valence bandedges of the GaAs substrate are the
lowest across the whole sample so the photogenerated carriers in the GaAs substrate
stay in the GaAs substrate. The total areas of various low-dimensional structures
in the xz plane is much smaller than that of the two Al0.5Ga0.5As cover layers, see
Fig. 4.15. We can therefore conclude that the photoluminescence signals of various
low-dimensional structures originate predominantly from the electrons and holes dif-
fused from the neighboring Al0.5Ga0.5As region. Let us focus on the photogenerated
carriers in the two Al0.5Ga0.5As cover layers.

One part of these photogenerated electrons and holes will directly recombine
radiatively to emit the photons which is represented by the Al0.5Ga0.5As peak in
Fig. 4.17. One part will diffuse to the SQWL and VQWL region where the energy
levels are low, another part will diffuse to the GaAs QWR region where the energy
levels are the second lowest (remember that it is the GaAs substrate whose energy
levels are the lowest). Thediffusions of electrons andholes are normally characterized
by the so-called diffusion lengths denoted by 	cD for electrons and 	vD for holes, see
Fig. 4.18. Due to the diffusion to the second lowest energy levels in the GaAs QWR
region, electrons will be depleted in the part of the SQWL that is within 	cD to the
GaAs QWR region (similarly, holes will be depleted in the part of the SQWL within
	cD to the GaAs QWR region). Thus, there will be no photoluminescence signal from
parts of the SQWL regions that are depleted of electrons and/or holes.

Examine more carefully Fig. 4.16 we do find one spatial region approximately
between x = −1.2 to x = 1.5 µm void of the SQWL photoluminescence signal. We
therefore can estimate that the longest one of the two diffusion lengths 	cD and 	vD

is about

max(	cD, 	vD) = 1.2 + 1.5

2 sin α
= 1.8 µm

where α ≈ 45◦ is the angle between the x axis and the SQWL, see Fig. 4.18.

Potential Barrier Between VQWL and QWR

As we can observe in Fig. 4.15, there are a few fine structures around the V-grooved
QWR. One neighboring structure is the side quantum well layer (SQWL) which
is directly connected to the GaAs QWR region by carriers’ diffusions that we just
discussed. Another important neighboring structure is the vertical quantumwell layer
(VQWL). Because of the different mechanisms of the formations of the VQWL
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Fig. 4.19 a Transmission electron microscopic (TEM) image. b Schematics of the energy diagram
between VQWL and QWR. nVQWL and nQWR denote the numbers of carriers photoexcited in
VQWL and QWR, respectively

(during the deposition of the second Al0.5Ga0.5As cover layer) and the GaAs QWR
(thin GaAs film deposition), see Fig. 4.19a, a potential barrier Ev is expected to exist
between VQWL and QWR.

Look at the schematic energy diagram Fig. 4.19b under an optical excitation, and
assume that there are nVQWL and nQWR carriers photoexcited in VQWL and QWR
regions, respectively. The total number of carriers in the QWR region will be

NQWR = nQWR + nVQWL

1 + eEv/kBT
(4.74)

after including the thermal diffusion of nVQWL from VQWL to QWR over Ev . And
the number of carriers left behind becomes

NVQWL = nVQWL − nVQWL

1 + eEv/kBT
= nVQWL

1 + e−Ev/kBT
(4.75)

At low temperature, nonradiative recombination processes of the carriers are rel-
atively rare. Since the strength of the photoluminescence signal is proportional to
the number of carriers, the ratio between the optical powers SQWR and SVQWL of
photoluminescence signals from QWR and VQWL is

SQWR

SVQWL
= nQWR

nVQWL

(
1 + e−Ev/kBT

)+ e−Ev/kBT (4.76)

We perform low-temperature photoluminescence measurements on the QWR
structure by using the 515.5 nm excitation line from an argon-ion laser in a tem-
perature range from 5 K to 60 K. The photoluminescence spectra are shown in
Fig. 4.20. The excitation light spot on the sample has a diameter of ca 50 µm which
covers about 10 GaAs QWRs (so this is notµ-PL measurement). Compared with the
room-temperature (300 K) photoluminescence spectra shown in Fig. 4.16, all peaks
in Fig. 4.20 are blue-shifted by approximately 80 meV, which equals exactly to the
change of the GaAs bandgap when the temperature decreases from 300 K to 5 K.
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Fig. 4.20 Temperature
dependent
photoluminescence spectrum
of the V-grooved
GaAs/Al0.5Ga0.5As quantum
wire
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Moreover, we now observe double peaks in the side quantumwell layer (SQWL) and
the neck quantumwell layer (NQWL) due to the reduced nonradiative recombination
processes.

Back to (4.76) to focus on the low-temperature photoluminescence signals of
QWR and VQWL. At 5 K, thermal excitation is basically zero so that

SQWR

SVQWL
= nQWR

nVQWL
(4.77)

Numerical analysis of the 5-K spectrumshows that SQWR : SVQWL ≈ 1 : 15 so thatwe
know nQWR : nVQWL ≈ 1 : 15. Figure 4.20 shows that the optical power of the pho-
toluminescence from QWR increases following the increase of temperature. More
specifically, it increases by a factor of 45 when the temperature is increased from
5 K to 35 K. And this increase should be largely due to the thermal diffusion of
photoexcited carriers from VQWL to QWR. A direct reflection may show that this
is not very likely. If nVQWL = 15nQWR as concluded from the 5-K measurement, and
we let all nVQWL thermally diffuse to QWR, the photoluminescence strength from
the QWR will be nQWR + nVQWL = 16nQWR, indicating that the photoluminescence
strength from the QWR would only increase by a factor of 16, maximally, not as 45
shown experimentally.

The missing factor of ca 3 is due to the quantum confinement. The brief account
of the story is as follow. As discussed in Sect. 2.3, the radiative recombination is
described by (2.107) that an electron occupying a conduction-band state |k〉 transits
to an empty valence-band state |q〉. It is proportional to ∣∣〈k(r)|H ′|q(r)〉∣∣2. Here the
basic requirement for a nonzero radiative recombination probability is a significant
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spatial overlap between |k(r)〉 and |q(r)〉. In bulk material, both |k(r)〉 and |q(r)〉
are in the form of Bloch functions so are extended in space, meaning that the radiative
recombination probability of bulk material is commonly low, which is only percepti-
ble at low temperature (under which condition, the electron and the hole are spatially
combined by their Coulombic interaction; At high temperature, the Coulombic inter-
action between the electron and the hole is easily broken by thermal excitation). In
nanostructures the electron and the hole are forced to stay close to each other due
to the quantum confinement, resulting in room-temperature photoluminescence [6].
The quantum confinement of a quantum well is one-dimensional, while it is two
dimensional in a quantum wire. This is the principal rational behind the observed
high radiative recombination probability in the quantum wire.

Knowing nQWR : nVQWL, we can extract Ev by analyzing the 10-K, 15-K, 20-K
etc. photoluminescence spectra in Fig. 4.20. The numerical result is Ev = 3.5 meV.

When the temperature becomes higher than 35 K, nonradiative recombination
processes, mostly the electron-phonon interactions, start to catch up so that the
photoluminescence signals become weak.

Another important aspect that can be observed in Fig. 4.20 is that the photolu-
minescence signal of SQWL is very strong when the temperature is below 30 K.
This indicates that the carriers photoexcited in SQWL remain largely in SQWL.
Figure 4.21a shows the time-resolved photoluminescence spectra at different tem-
perature. In time-resolved photoluminescencemeasurement, a picosecond laser pulse
is led into the sample, and the photoluminescence signal of specific wavelength of
interest (such as the photoluminescence signal from SQWL) from the sample is
detected as a function of time, denoted as f (t). f (t) is commonly described by an
exponential decay

f (t) = f0 + fi e
−(t−t0)/β (4.78)

where β is the radiative lifetime of the carriers (see more in Sect. 7.2). The lifetimes
of carriers in SQWL and QWR are presented in Fig. 4.21b as functions of the tem-
perature. Below 10 K, the lifetimes are about 0.32 ns, typical for carriers in quantum
wires. By increasing the temperature, the lifetime of carriers in SQWL decreases
drastically. At about 60 K, the photoluminescence signal from SQWL disappears,
while at the same time, the lifetime of carriers in the QWR reaches its maximal value.
A most possible reason of the synchronization of the two phenomena is the transfer
of carriers from the SQWL to the QWR region.

There are different means to fabricate quantum wires. InAs nanowires can grow
directly, vertically, on n- or p-type Si(111) substrates, by molecular beam epitaxy
(MBE). One distinct character of such InAs nanowire is the axial alternation of zinc-
blend phase at the nanowire root to wurtzite phase at the middle then zinc-blend
phase again at the nanowire top. The embedded wurtzite phase at the middle behaves
as a type-II quantum well (quantum well for the conduction-band electron and quan-
tum barrier for the valence-band hole). Reference [7] reports using the conventional
photoluminescence to reveal such quantum structures in InAs nanowires.
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Fig. 4.21 a Time-resolved photoluminescence signal from side quantumwell layer (SQWL) at dif-
ferent temperatures. bRadiative recombination lifetimes of photoexcited carriers in SQWL (hollow
stars) and in QWR (solid stars) as functions of temperature

4.5 Quantum Dot

Quantum dot is basically a man-made super atom whose density of electron states is
composed of a series of discrete levels, see Fig. 4.10. There are many ways to fab-
ricate quantum dots depending on the applications. One method is called Stranski–
Krastanov. Refer to Fig. 4.22, the lattice structures of InAs and GaAs are both
zincblende but with different lattice constants. At room temperature, aInAs = 6.058
Å and aGaAs = 5.653 Å [1]. When one InAs monolayer is epitaxially deposited on a
GaAs substrate, the lattice of the InAs monolayer has to adjust itself to fit the GaAs
lattice, namely, the InAs monolayer has a lattice constant of GaAs on the plane per-
pendicular to the growth direction (the x direction in Fig. 4.22). In order to reduce the
strain thus induced, the y lattice is to be extended, see Fig. 4.22b. Further depositing
InAs will initiate the so-called quantum dot nucleation and growth, i.e., Fig. 4.22c,
in order to minimize the strain. The InAs quantum dot will eventually be fixed by
GaAs capping shown in Fig. 4.22d.

Since the Stranski–Krastanov growth of InAs quantum dots is based on the strain
due to lattice mismatch between the epitaxial material InAs and the substrate GaAs,
lattice defects exist in the as-grown InAs quantumdots. Oneway to reduce the density
of these lattice defects is the proton implantation [8, 9].

In order to assess the proton implantation, the surface of a sample of InAs quantum
dots onGaAs substrate is partitioned into a 8 × 8 cell array. Of these 64 cells, one cell
is un-implanted while the other 63 cells are proton implanted with the implantation
doses ranging up to 1014 cm−2. The whole sample is then treated by rapid thermal
annealing in high pure nitrogen ambient for 60 s at 700 ◦C. Photoluminescence
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Fig. 4.22 Principal steps of Stranski–Krastanov growth of an InAs quantumdot on aGaAs substrate

measurements are performed at room temperature under excitation of a 514.5 nm
line of an Ar+ laser, and the results are shown in Fig. 4.23. It is observed here that
the proton implantation greatly improves the photoluminescence signal of the InAs
quantum dots more than 80 times when the proton implantation dose reaches 1014

cm−2.
As shown by (4.73), the photoluminescence spectrum of a quantum dot is

composed by a series of Lorentzian peaks. At room-temperature (high-temperature
therefore fast nonradiative energy relaxations) and commonphotoluminescencemea-
surement setup (not very high optical excitation), only the low-energy levels of the
conduction band and valence band are occupied so that there is normally only one
or maximally two photoluminescence peaks. Figure 4.23 shows however two pho-
toluminescence peaks, which is more clearer when only one of photoluminescence
spectra in Fig. 4.23 is presented alone in Fig. 4.24a. Using two Lorentzain peaks
from (4.73) to fit all the spectra in Fig. 4.23,

pgroundΓ1(
ΔEground − �ω

)2 + Γ 2
1

+ pexcitedΓ2(
ΔEexcited − �ω

)2 + Γ 2
2

we obtain the amplitudes pground and pexcited, and the energy relaxations Γ1 and Γ2

of the two peaks. A typical fitted spectrum is shown in Fig. 4.24a. The low-energy
“ground” peak is associated with the radiative recombination of the ground-state
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Fig. 4.23 Improvement of
InAs quantum dot
photoluminescence by
proton implantation. Arrow
indicates the increase of the
proton implantation dose
from 0 to 1014 cm−2
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exciton, and the high-energy “excited” peak with the excited exciton. Their relax-
ation energies are 29 and 104 meV, respectively. The integrated photoluminescence
strengths

Pground =
∫

pgroundΓ1(
ΔEground − �ω

)2 + Γ 2
1

dE, Pexcited =
∫

pexcitedΓ2(
ΔEexcited − �ω

)2 + Γ 2
2

dE

vs proton implantation doss are presented in Fig. 4.24b.
The general physical trend reflected in Fig. 4.24 is clear that the proton implanta-

tion significantly improves the radiative recombination probability. As schematically
shown in Fig. 4.1, the photogenerated electrons and holes relax to the conduction
and valence bandedge states, they recombine to emit one photon, resulting in the
photoluminescence of photons whose energies are slightly larger than the energy
bandgap of the material. In reality, the energy bandgap is not totally void of any
electron states so that there are emitted photons whose energies are smaller than the
energy bandgap, e.g., see Fig. 4.5.

Figure 4.24 deserve more discussions. Figure 4.24a shows that Pground is narrower
than Pexcited, which is expected. While the peak optical power of Pground is higher
than that of Pexcited, the integrated optical powers of the two peaks are rather sim-
ilar. Figure 4.24b further demonstrates that the integrated optical power of Pexcited
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Fig. 4.24 a Photoluminescence spectrum (solid line) of InAs quantum dots with proton implanted
at 5.0 × 1013 cm−2 and rapid thermal annealing. Red dashed and blue dot-dashed lines are fitting
peaks. b Integrated PL powers of Pground (red solid stars) and Pexcited (blue hollow stars) vs proton
implantation dose

becomes higher than Pground. The principal factor is the density of states that if we
approximate the InAs quantum dot as hydrogen-like, the ground state is s-type, i.e.,
a single state, while the first excited states are px , py and pz , which are three-fold
degenerate. We therefore observe the persistent increase of Pexcited following the pro-
ton implantation dose, while Pground increases at low proton implantation dose then
displays a certain saturation in Fig. 4.24b.

Before we close this section, we like to correlate the photoluminescence with
the reflectance spectrum we have studied in the previous chapter by the light-matter
interaction theory presented inChap. 2. In Sect. 2.4wehave learned that the excitation
of an excited exciton state, i.e., the simultaneous appearance of the electron and
the hole, results in the formation of an electric dipole, an exciton contribution to
the polarization, thereafter the modified dielectric coefficient, see (2.148) which is
repeated below

ε(ω) = ε∞

(
1 +

∑
n

ωLTn

ωn − ω − iγn

)
(4.79)

By (4.73) we expect to observe a photoluminescence peak at �ω = E j − Ei (in
this case �ωn = E j − Ei in the above equation, see Sect. 2.4). By the above equation
we obtain a peak at in the dielectric constant ε(ωn), which should cause a reflection
peak (Chap. 3). This so-called exciton polariton effect has been confirmed experi-
mentally. For example, Fig. 4.25 shows a broad reflectance peak at the wavelength
of the photoluminescence peak from InAs quantum dots embedded in GaAs matrix
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Fig. 4.25 a Schematic geometry of the edge polished InAs quantumdot (QD)multiple-layer sample
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[10]. Notice here that an absorption layer was added on the top GaAs capping layer to
absorb the transmitted light so only reflected light was collected. Reflections from the
GaAs substrate were negligible since the GaAs substrate was rather thick (Chap. 3).

4.6 Multiphoton Excitation

Thus far, we have studied the optical properties of semiconductor materials and
devices under two principal assumptions. First, the materials and devices are always
at steady state, and second, the external probing light beams are weak so we use the
steady-state perturbation theory. Normal optical characterization setups and device
operations fulfill the criterions of these two assumptions, see Sect. 2.3. However,
ultra-fast and ultra-intense techniques have been being developed rapidly in the past
years due to both the nano-technical development and the newdemands.Onekeyword
is the femtosecond laser that can reach a peak optical power of up to 3 × 1010 W/cm2,
i.e., 30 GW/cm2.

Goeppert-Mayer predicted multiphoton excitation in 1931 [11], which was exper-
imentally confirmed in 1961 when Franken and his colleagues used the laser beam of
694 nm to generate a light beam of 347 nm [12]. In this section, let us study the mul-
tiphoton excitation by solving perturbatively the time-dependent Schrödinger equa-
tion. One application of the multiphoton excitation is the two-photon microscopy
which allows cellular imaging several hundred microns deep in various organs of
living animals [13].

When the amplitude of the electric field of the light beam becomes high, we
may expect that the A2 in (2.96) can induce optical transitions between two electron
states due to a one-step two-photon excitation. Here the keyword is the “one-step”,
namely, one electron transition from one electron state to another electron state
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by absorbing simultaneously two photons. For our nano-structure semiconductor
system, the energy modulation of the A2 term in the Schrödinger equation is

eA2

2m0
e2i(s·r−ωt) (4.80)

where s is the wave vector of the light. Recall that in Sect. 2.4 we mention that the
wavelength of a light beam in common photonics device is about 1 µm, and for a
quantum dot with a radius less than 10 nm, the electric field of the light beam can
be well approximated as uniform inside the quantum dot so that we obtained (2.148)
that describes the dielectric constant of an exciton in the quantum dot. Approximate
A as uniform inside the quantum dot, we can see that the optical transition due to
(4.80) is zero, i.e.,

〈ψi |A2|ψ j 〉 ≈ A2〈ψi |ψ j 〉 = 0

for i �= j due to the orthogonality of the electron wave functions.
Similarly, in a GaAs/Al0.3Ga0.7As based quantum well infrared photodetector

(QWIP), the amplitudes of the wave vectors are in the range of 1.03–3.10 × 106

m−1 for photons with energies �ω = 60–180 meV. Because of this long wavelength,
the spatial variation of A2 is very small in terms of the thin GaAs quantum wells
in the QWIP, the optical transition between electron ground state ψ1 confined in
the GaAs quantum well and continuum states ψi above the conduction bandedge of
Al0.3Ga0.7As can be approximated as

〈ψ1|A2|ψi 〉 ≈ A2〈ψ1|ψi 〉

which again is zero due to the orthogonality of the electron wave functions.
We thus focus on the Hamiltonian of (2.101). Define the total wave function of

the electron-photon system

Ψ (r, t) =
∑
	Nω

C	Nω
(t)ψ	(r)e−i E	t/�|Nω〉 (4.81)

where |Nω〉 describes the photon field, Nω is the number of photons and �ω is the
photon energy. ψ	(r) is the eigen function of the electron Hamiltonian H0:

H0(r)ψ	(r) = E	ψ	(r) (4.82)

without the photon field. By (2.93) and (2.101) we solve directly the non-perturbative
time-dependent Schrödinger equation

i�
∂Ψ (r, t)

∂t
= H(r, t)Ψ (r, t) (4.83)

and the equation for coefficient CmN ∗
ω
(t) is
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i�
dCmN ∗

ω
(t)

dt
= e

m0

√
�

2ε0n
2ωΩ

∑
	Nω

〈ψm(r)|es · p|ψ	(r)〉C	Nω
(t)

{√
Nω exp

[
i(Em − E	 − �ω)t

�

]
δN ∗

ω,Nω−1

+√Nω + 1 exp

[
i(Em − E	 + �ω)t

�

]
δN ∗

ω,Nω+1

}
(4.84)

In the above equation, 〈ψm(r)|es · p|ψ	(r)〉 describes the optical transition
between electron occupying state ψm(r) and ψ	(r). The term containing

√
Nω

describes the photon absorption and the term with
√
Nω + 1 describes the photon

emission. Note that there are also two δ functions separately attached to the absorp-
tion and emission terms. δN ∗

ω,Nω−1 means that the number of photons in the initial
electron-photon system (= ψ	e−i E	t/�|Nω〉), i.e., Nω, is reduced by 1 when the elec-
tron absorbs one photon then transits from state ψ	(r) to ψm(r). The number of the
photons in the final electron-photon system is N ∗

ω = Nω − 1. δN ∗
ω,Nω+1 means that

the number of photons in the initial electron-photon system is increased by 1 when
the electron emits one photon and transits from ψ	(r) to ψm(r). The probabilities of
other processes are all zero.

Because the peak power of the femtosecond laser can be very high under mul-
tiphoton excitation operation, Nω � 1 so that Nω ± 1 ≈ Nω and we drop off the
photon number from coefficient CmN ∗

ω
and CmNω

. By (2.85), we obtain the master
equation about the ultra-fast and ultra-intense process

i�
dCm(t)

dt
= e

m0ω

√
S

2ε0n
2c

∑
	

〈ψm |es · p|ψ	〉C	(t) exp

[
i(Em − E	)t

�

]
2 cos (ωt)

(4.85)
where S is the optical power of the excitation laser.

In order to discuss the multiphoton excitation, we need to describe the optical
field as a beam of multiple photons of different optical powers characterized by hs,
frequencies ωs and wave vectors s (we can drop off the summation to retrieve the
single photon situation) ∑

s

hse−iωs t

so that (4.85) becomes

i�
dCm(t)

dt
=
∑
s	

hs
m	C	(t) exp

[
i(Em − E	)t

�

]
2 cos (ωst) (4.86)

where

hs
m	 = e

m0ωs

√
Ss

2ε0n
2c

〈ψm |es · p|ψ	〉 (4.87)
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Let us first try to simplify the problem in order to obtain a good physical insight.
Assume that the electron initially occupies the ground electron state Ek , i.e.,Ck(0) =
1 and Cm(�=k)(0) = 0. And Em(�=k) > Ek . Express the steady-state solution of Cm(t)
(note that m �= k) in (4.86) up to the second order in the form of (it is easy to go
beyond the second order to study more-than-two-photon processes which is however
beyond the scope of the book)

Cm(t) = C (0)
m + C (1)

m (t) + C (2)
m (t) (4.88)

Note that C (0)
m ≡ Cm(0) = 0. When the excitation power is weak so that the ground

electron state is always almost occupied, i.e.,Ck(t) ≈ Ck(0) ≡ C (0)
k , the perturbation

theory says

i�
dC (1)

m (t)

dt
=
∑
s

hs
mkC

(0)
k exp

[
i(Em − Ek)t

�

]
2 cos (ωst) (4.89)

The solution of C (1)
m in the above equation “looks” very simple. A direct mathe-

matical integration over t results in

C (1)
m (t) =

∑
s

−hs
mkC

(0)
k

Em − Ek − �ωs
exp

[
i(Em − Ek − �ωs)t

�

]

+ −hs
mkC

(0)
k

Em − Ek + �ωs
exp

[
i(Em − Ek + �ωs)t

�

]
(4.90)

As assumed before, Em > Ek .
Let us consider a semiconductor quantum dot with Em > Ek = 100 meV so that

the resonant-response photon energy �ωs equals 100 meV, for which Em − Ek −
�ωs = 0 and Em − Ek + �ωs = 200 meV. Under this resonance condition, the oscil-
lation time period of the first exponential function (= �/(Em − Ek − �ωs) = �/0)
is infinite, while it is ca 3.3 fs (= �/(Em − Ek + �ωs)) for the second term of the
above equation. Since the physical measurement process runs always in a finite time
duration, and in almost all practical measurements including device operations, the
time duration is much longer than a few fs (note that the excitation can be short, as
in the case of a femtosecond laser pulse), the measurement result of the second term,
i.e., its time average, 〈

exp

[
i(Em − Ek + �ωs)t

�

]〉

t

is zero. This is of course physically correct that emitting a photon during an electron
transition from a low-energy state to a high-energy state is very unlikely.

The first term in (4.90) is about the photon absorption when the electron transits
from state Ek to Em . The time average of its exponential function becomes 1 at
resonance of Em − Ek − �ωs = 0. This however results in a zero denominator,which
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meansC (1)
m → ∞. This is not physical.We have done nothing wrongmathematically

except that we have missed a physical event accompanying the photon absorption
process, which is the photon emission when the electron transits from Em to Ek .
What happens in reality at resonance is that at resonance, Em − Ek − �ωs = 0 so
that (4.89) becomes

i�
dC (1)

m (t)

dt
=
∑
s

hsmkC
(0)
k (4.91)

in a very short time duration t ∈ (0, δ) after switching on the excitation light. (We
have neglected the unlikely photon emission process.) At t = δ,

C (1)
m (δ) = δ

i�

∑
s

hsmkC
(0)
k (4.92)

Since C (1)
m (δ) is no longer zero, there will be the probability that the electron, now

occupying Em , transits back to Ek . This is the physical event which we have missed
when we perform the direct mathematical integration that results in (4.90).

The proper treatment is the scattering theorywhich can be found inmany quantum
mechanical textbooks. It is beyond the scope of this book. However, a common
method to circumvent the issue is to introduce a relaxation energy between the high-
energy electron state and the low-energy state (between the two electron states the
electron transits under the photo-excitation).

Adding the relaxation Γmk of the excited state then integrating (4.89) from time
0 to t results in

C (1)
m (t) =

∑
s

hs
mkC

(0)
k

Em − Ek − �ωs + iΓmk

{
1 − exp

[
i(Em − Ek − �ωs + iΓmk)t

�

]}

(4.93)
The physical meaning of the above equation is how much the excited electron

state Em will be occupied at time t when the electron, originally occupying Ek has
been under photo-excitation from time 0 to time t .

Now the excited state Em is partially occupied, its occupying electron will further
transit to other available states. We change the subscript m in (4.93) to i , also the
photon field to hve−iωv t ,

C (1)
i (t) =

∑
v

hvikC
(0)
k

Ei − Ek − �ωv + iΓik

{
1 − exp

[
i(Ei − Ek − �ωv + iΓik)t

�

]}

(4.94)
then insert the above expression into (4.86) to obtain C (2)

m (t)
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i�
dC (2)

m (t)

dt
=
∑
si

hs
miC

(1)
i (t) exp

[
i(Em − Ei )t

�

]
2 cos (ωst)

=
∑
sv,i

hs
mih

v
ikC

(0)
k

Ei − Ek − �ωv + iΓik

{
1 − exp

[
i(Ei − Ek − �ωv + iΓik)t

�

]}

× exp

[
i(Em − Ei )t

�

]
2 cos (ωst)

(4.95)

The temporal integration of (4.95) is straightforward, while the final expression
ofC (2)

m (t) is a bit long so we skip it. Remember, however, that it is a two-step process
that the electron at Ek transits to Ei under photo-excitation hve−iωv t followed by a
transition from Ei to Em under hse−iωs t :

Ek
hve−iωv t−−−−−→ Ei

hse−iωs t−−−−−→ Em (4.96)

Letting t → ∞, it is easy to obtain the following steady-state perturbation
solutions

C (1)
m (∞) =

∑
s

hs
mkC

(0)
k

Em − Ek − �ωs + iΓmk
(4.97)

C (2)
m (∞) =

∑
sv,i

hs
mih

v
ikC

(0)
k

Ei − Ek − �ωv + iΓik

×
(

1

Em − Ei ± �ωs + iΓmi
− 1

Em − Ek − �ωv ± �ωs + iΓmk

)
(4.98)

The “±” sign in (4.98) is the result of the occupation of excited state, i.e.,C (1)
i (t) �= 0

by (4.94) and (4.97), so that there is a possibility of a photon emission when the
electron transits from a high-energy state to a low-energy state.

C (1)
m (∞) in (4.97) reaches its peak when Em − Ek = �ωs, which is known as

the one-photon excitation (also called one-photon absorption), see schematically in
Fig. 4.26a.

The most interesting result is (4.98). For a single beam excitation, v = s so that
it becomes

C (2)
m (∞) =

∑
s,i

hs
mih

s
ikC

(0)
k

Ei − Ek − �ωs + iΓik

×
(

1

Em − Ei ± �ωs + iΓmi
− 1

Em − Ek − �ωs ± �ωs + iΓmk

)
(4.99)
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Fig. 4.26 a One-photon
excitation between state Em
and Ek , b two-photon
excitation. The dashed arrow
shows the off-resonance
one-photon excitation

Ek

Em

Ei

(a) One-photon absorption

Em-Ek=

(b) Two-photon absorption

Em-Ek=2s

s

s

Without loss of generality, we focus on the energy diagram in Fig. 4.26b such that
Ei > Em > Ek in the sense that Ek is the ground state, Em is the first excited state,
and Ei is a higher-energy state. Consider a light beam with photons whose energies
�ωs < Em − Ek . Ei − Ek − �ωs will never be zero so we leave it as it is. There
are two terms in the parenthesis which may be resonant so that the above equation
reduces to

C (2)
m (∞) =

∑
s,i

hs
mih

s
ikC

(0)
k

Ei − Ek − �ωs + iΓik

×
(

1

Em − Ei + �ωs + iΓmi
− 1

Em − Ek − �ωs − �ωs + iΓmk

)
(4.100)

The first term in the parenthesis will be significant when Em + �ωs = Ei , which is
not the case for the moment since we have assumed just a second ago that �ω <

Em − Ek . We however have a chance that the second term becomes significant if
Em − Ek = 2�ωs. This is the well-known two-photon excitation (also called two-
photon absorption) predicted by Goeppert-Mayer [11]:

C∗(2)
m (∞) = −

∑
s,i

hs
mih

s
ikC

(0)
k(

Ei − Ek − �ωs + iΓik

)(
Em − Ek − 2�ωs + iΓmk

) (4.101)

which shows that the electron can transits from Ek to Em by absorbing two photons
whose energies are only one half of Em − Ek . As shown by (4.101), the two-photon
excitation (also known as the two-photon absorption) is accompanied by an off-
resonance one-photon excitation from Ek to Ei so that the total two-photon excitation
probability is very weak, which is to be compensated in experiment by a very high
excitation power Ss.

A new type of quantum dots has been vastly studied and exploited for biomedical
applications in the past ten years. They are the so-called colloidal quantum dots, see
Fig. 1.1 in the introduction of Chap. 1. These colloidal quantum dots are solution-
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Table 4.2 Structure and optical properties of three core-multishell CdSe-CdS/Cd0.5Zn0.5S/ZnS
quantum dots

QD556 QD600 QD622

CdSe core diameter [nm] 3.6 4.5 5.4

CdS shell [monolayer] 1 2 3

Cd0.5Zn0.5S shell [monolayer] 1 1 1

ZnS shell [monolayer] 1 1 1

Photoluminescence peak wavelength [nm] 556 600 622

FWHM [nm/eV] 32/121 29/104 24/77
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Fig. 4.27 Schematic material structure of core-multishell CdSe-CdS/Cd0.5Zn0.5S/ZnS quantum
dots and one-photon (one-photon excitation) and two-photon (two-photon excitation) induced pho-
toluminescence spectra excited by laser beams of wavelengths 400 and 800nm, respectively
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based, both during their chemical synthesis and applications, while the Stranski–
Krastanov-grown InAs quantum dots in Fig. 4.22 are solid-state based (embedded
in a solid-state matrix). Chemical synthesis is by now a common standard method to
fabricate II-VI-based colloidal quantum dots, and the core/shell II-VI quantum dots
obtained are generally rather robust. Table 4.2 lists the details about three types of
core/multishell CdSe-based colloidal quantum dots, which are denoted as QD556,
QD600 and QD622, respectively.

Photoluminescence spectroscopic measurements on these colloidal quantum dots
are performed using a fluorescence spectrometer at excitation wavelength 400 nm
(one-photon excitation), and two-photon-induced (two-photon excitation) fluores-
cence experiments are performed using a femtosecond laser with a pulse width of
130 fs, peak wavelength of 800 nm, FWHM of 7 nm, and average optical power
output of about 630 mW at 800 nm at a pulse frequency of 76 MHz. The one-photon
and two-photon induced photoluminescence spectra of the quantum dots in aqueous
solutions are presented in Fig. 4.27. By removing a base level count of about 125,
the two-photon induced photoluminescence spectra are strikingly identical to the
one-photon spectra, both the shapes including the FWHMs and the relative photon
counts.

We will return to the multiphoton excitation in Chap. 6 when we excite the pho-
tocurrent of a quantum well infrared photodetector (QWIP) device by a free electron
laser (FEL) light source.
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Chapter 5
Modulation Spectroscopy

Abstract Optical spectroscopy is studied when a periodic external perturbation,
such as an electromagnetic field, temperature, and static pressure or uniaxial stress,
is applied to the semiconductor during the process of experimental measurement.
The modulation spectroscopy, i.e., the change of the optical spectrum produced by
the external perturbation, rather than the absolute spectrum itself, reveals many fine
structures in the electronic energy diagram of the semiconductor.

In Chap. 3Reflection and Transmission and Chap. 4 Photoluminescence, we have
learned that the optical spectrum of a material is closely related with the dielectric
coefficient ε of the material, which in its turn is determined by various microscopic
optical processes in thematerial. All these are expressed by (2.148) which is repeated
below

ε(ω) = ε∞

(
+

∑
�

ωLT�

ω� − ω − iγ�

)
(5.1)

where �ω� is the energy difference between two electron states that one electron
transits from one state to the other, andωLT� represents the optical transition strength.
More specifically, for the optical transitions between conduction-band electron state
Eck and valence-band hole state Evk, the above expression can be written as

ε(ω)

ε∞
= 1 +

∫
�ωLTk

Eck − Evk − �ω − iΓk

2dk
(2π)3

(5.2)

where �γk, the relaxation energy, is now denoted as Γk.
Consider the conduction- and valence-band minima at the Γ symmetry point in

the k space

Eck = Eg + �
2k2

2m∗
c

, Evk = −�
2k2

2m∗
h

for which

Eck − Evk = Eg + �
2k2

2m∗
c

+ �
2k2

2m∗
c

≡ Eg + �
2k2

2m∗
r

≡ E (5.3)
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where m∗
r is the reduced effective mass. Here we put the potential energy of the

valence bandedge to be zero so that the potential energy of the conduction bandedge
is Eg the energy bandgap. Replace k with E using the above energy dispersion
relationship in (5.2),

ε(ω)

ε∞
= 1 +

∫
�ωLTE

E − �ω − iΓE

1

4π2

(
2m∗

r

�2

)3/2 √
E − Eg θ(E − Eg) dE

→
√

�ω − Eg θ(�ω − Eg) (5.4)

This is the dielectric coefficient for a bulk material discussed in Sect. 4.1.We also see
in the above expression the three-dimensional density of associated electron states
already expressed by (4.19) in Sect. 4.1.

In many electronics and photonics applications, the amplitudes of wave vector
k of electrons involved in common semiconductor device functions are quite small,
i.e., close to the conduction- and valence-band minima, the Γ points in (5.4), so that
the dependence of ωLTk on k is very weak (see Sect. 2.1). ε(ω) in (5.4) as well as the
optical spectrum, e.g., the photoluminescence in Fig. 4.3, reflect largely the density
of electron states close to the Γ points, i.e., they are all proportional to

√
�ω − Eg.

Such an optical spectrum is very smooth as a function of the energy band structure
of the three-dimensional semiconductor, especially at room or higher temperature.
However, for low-dimensional structures, the densities of electron states change
much drastically as functions of the electron energy, see Fig. 4.10. The measurement
or detection of a smooth function is more difficult than a strongly varying function.
This is one of the many reasons low-dimensional structures have been extensively
studied and developed for electronics and photonics applications.

Back to the three-dimensional bulk material, we notice that the differentiations
of the dielectric coefficient, the density of electron states, as well as the photolu-
minescence spectrum with respect to the photon energy �ω, or with respect to Eg

are
d
√

�ω − Eg

d(�ω)
,
d
√

�ω − Eg

dEg
∝ 1√

�ω − Eg
(5.5)

i.e., they all divergewhen�ω = Eg. This starts the so-calledmodulation spectroscopy
with a much increased resolution of the spectral line otherwise hidden in the original
smooth optical spectrum.

By (5.5), there are twoways to differentiate the optical spectrum, either wemodify
the photon energy �ω, we can also modify Eg. The modification of the photon
energy �ω is simple. We measure an optical spectrum then differentiate the optical
spectrum, such as Fig. 4.3 in order to see more clearly the change at Eg. The second
way is more fruitful that we add an extra electromagnetic field, or a strain field, or
a temperature change on the semiconductor material of interest to modify Eg (we
modify simultaneously also the effective mass of electrons involved in the optical
transitions etc.). The differentiation of the optical spectra obtained before and after
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the modulation will unravel much rich information about electron states and optical
transitions among these electron states at the microscopic level.

There is one critical aspect concerning modifying the energy band structure of a
semiconductor material. The lattice crystal in a perfect bulk material is periodic in
space. Such a periodicity is preserved when the material is uniformly heated (here
the lattice constant is changed from one value to the other, while the lattice structure
remains unchanged). The symmetry of the lattice will be broken down when an
electromagnetic field is used to modify the energy band structure since the potential
energy induced by the electromagnetic field is in the form of an electric dipole which
is not periodic in space. Applying a mechanical strain field may modify the lattice
structure differently depending on the spatial configuration of the strain field. We
need to keep this in our minds when we study modification spectroscopies in the
following sections.

5.1 Third-Derivative Modulation Spectroscopy

There are two main electric-field-based modulation spectroscopies, one is electro-
modulation (electroreflectance) and the other is photo-modulation. Both utilize an
electric field. In the electroreflectance an external electric field is applied, while it
is the electric field of the modulating electromagnetic field in the photo-modulation
spectroscopy. Theoretical analyses of the two modulation spectroscopies are exactly
the same, while practically the advantage of optical-spectrum-based material char-
acterization, i.e., the photo-modulation spectroscopy in the present context, is its
noninvasiveness, as we have learned before, while electrodes need to be mounted for
electroreflectance measurement.

We repeat the Schrödinger equation of electrons in an intrinsic bulk material

[
−�

2∇2

2m0
+ V (r)

]
Ψ�k(r) = E�kΨ�k(r) (5.6)

where V (r) is the periodic lattice potential energy, � is the energy band index, E�k

is the energy band dispersion relationship, Ψ�k(r) = eik·ru�k(r)/
√
N is its corre-

sponding eigen wave function. For the intrinsic material, the valence-band states are
totally occupied while the conduction-band states are empty.

The imaginary part of the dielectric coefficient of the intrinsic material due to an
external probing electric field

E ei(s·r−ωt) + c.c. (5.7)

is given by (2.125) in the form of

ε′′(ω) = 1

ω2

∫
|es · pcvk|2 δ(Eck − Evk − �ω) dk (5.8)
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apart from physical constants, when electrons transit from occupied valence-band
states Ψvk(r) to empty conduction-band states Ψck(r). es is the unit vector of the
electric field of (5.7). And for the intrinsic material, we let the relaxation energy goes
to zero so that the Lorentzian function in (2.125) becomes a delta function in the
above equation to simplify mathematical expressions.

Equation (5.8) gives us the optical spectrum of a semiconductor material as a
function of the photon energy �ω of the probing electric field of (5.7). (We can
obtain ε′(ω) from ε′′(ω), right?)

Now we add a modulating electric field E0z0 along the z axis, where z0 is the
unit vector of the z axis (alternatively we may define the direction of the modulating
electric field as the z direction). Equation (5.6) becomes

[
−�

2∇2

2m0
+ V (r) − eE0z

]
Φ�νkxy (r) = η�νkxyΦ�νkxy (r) (5.9)

where � is the energy band index, kxy is the wave vector in the plane perpendicular
to the modulating electric field E0z0, ν is the new quantum index in the z axis. Since
the modulating electric field applies along the z axis, the periodicity in the xy plane
is preserved, and kxy in (5.9) is still a good quantum index in the xy plane. Thus, the
eigen function Φ�νkxy (r) of the above equation can be expressed as

Φ�νkxy (r) =
∑
kz

C�ν(k)Ψ�k(r) (5.10)

where k = (kxy, kz). Here we have neglected the optical transition between different
energy bands that may be caused by E0z0. In other words, we assume that E0z0 is
very weak and −eE0z in (5.9) is only a perturbation (the value of z is limited in
practice such as in nanostructures).

Note that the eigen solution of (5.6) is Ψ�k(r) = eik·ru�k(r)/
√
N , i.e., the Bloch

theorem in Chap. 2. Insert (5.10) into (5.9) results in secular equations for Cνn(k)[
E�k − η�νkxy − ieE0

∂

∂kz

]
C�ν(k) = 0 (5.11)

having a general solution in the form of

C�ν(k) = 1√
Nz

exp

[
i

eE0

∫ kz

0

(
η�νkxy − E�kxy ,k ′

z

)
dk ′

z

]
(5.12)

In (5.11), we replace z by its quantum mechanical counterpart i∂/∂kz . As before, Nz

is the number of unit cells in the z direction.
The eigen value η�νkxy of (5.9) can be expressed as

η�νkxy = 2πνeE0

Kz
+ Ẽ�kxy (5.13)
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where Kz is the period of the k space in the kz direction, i.e.,

C�ν,k+Kz z0 = C�νk

so that

Ẽ�kxy = 1

Kz

∫ Kz

0
E�kxykz dkz (5.14)

(The periodicity of the energy dispersion relationship and the wave function in
the k space are obvious because of the periodic lattice structure in the r space.)

Knowing the wave functions and their eigen values a lengthy mathematical anal-
ysis leads to the expression of the imaginary part of the dielectric coefficient under
modulation field E0z0

ε′′(ω, E0z0) = 1

ω2

∫ {∫
−∞

(
es · pcv,k+s z0

)(
es · p∗

cv,k−s z0

)
× exp

[
i

eE0

∫ s

−s

(
Ec,k+vz0 − Ev,k+vz0 − �ω

)
dv

]
ds

}
dk (5.15)

where s and v are wave numbers in the kz direction.
Under normal device function conditions, the amplitude of k is small so that we

can neglect high orders in kz in the following Taylor expansion

E�,k+kz z0 = E�k + kz
∂E�k

∂kz
+ k2z

2!
∂2E�k

∂k2z
+ · · · (5.16)

and

∫ s

−s

(
Ec,k+vz0 − Ev,k+vz0 − �ω

)
dv = 2s

(
Eck − Evk − �ω

)
+ s3

3

∂2
(
Eck − Evk

)
∂k2z

(5.17)
Here we have used the condition of ∇kE�k = 0 due to the periodicity in the real
space, i.e., (2.9).

For spherical and parabolic conduction and valence bands,

Eck = Ec + �
2k2

2m∗
c

, Evk = Ev − �
2k2

2m∗
v

(5.18)

so that we have
∂2

(
Eck − Evk

)
∂k2z

= �
2

m∗
e

+ �
2

m∗
h

= �
2

m∗
r

(5.19)

m∗
r in the above expression is the well-known reduced effective mass we encountered

before, e.g., in (2.129). The exponential term in (5.15) becomes now
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exp

[
i

eE0
2s

(
Eck − Evk − �ω

)
+ i�2s3

3eE0m
∗
r

]

≈ exp

[
i

eE0
2s

(
Eck − Evk − �ω

)]
+ i�2s3

3eE0m
∗
r
exp

[
i

eE0
2s

(
Eck − Evk − �ω

)]
(5.20)

Apart from physical constants, it is easy to see that the second term in the above
expression is equivalent to

∂3

∂ω3

{
exp

[
i

eE0
2s

(
Eck − Evk − �ω

)]}
(5.21)

When pcv is weakly dependent on k, which we have assumed before since the
amplitude of k involved in the optical transitions of our interest is small, and let

B =
∫ (

es · pcvk
)(

es · p∗
cvk

){∫ ∞

−∞
exp

[
2is

eE0

(
Eck − Evk − �ω

)]
ds

}
dk

(5.22)
Equation (5.15) now becomes

ε′′(ω, E z0) = 1

ω2

(
B + ∂3B

∂ω3

)
(5.23)

Since mathematically

∫ ∞

−∞
exp

[
2is

eE0

(
Eck − Evk − �ω

)]
ds = eE0δ

(
Eck − Evk − �ω

)
(5.24)

B in (5.22) is actually ω2ε′′(ω) and we therefore obtain

ε′′(ω, E0z0) = ε′′(ω) + eE0
1

ω2

∂3
[
ω2ε′′(ω)

]
∂ω3

(5.25)

by (5.8). The above expression shows that the effect of the photo-modulation on the
dielectric coefficient is mathematically the third-order differentiation of the original
dielectric coefficient [1, 2].

Figure 5.1 shows the real (ε′, left column) and imaginary (ε′′, right column) parts
of the dielectric coefficient of Ge as well as their derivatives [3]. Figure 5.1a is
the dielectric coefficient obtained from high-resolution ellipsometry measurements
and the Kramers–Kronig relationship (recall Sect. 3.4 that we use the Kramers–
Kronig relationship to calculate the phase factor from directly measured ampli-
tude of the reflection coefficient and thereafter the dielectric coefficient, both its
real and imaginary parts). (b)–(d) are the first-order, the second-order, and the
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Fig. 5.1 Dielectric
coefficient ε = ε′ + iε′′ of
Ge [3]. Left column: real part
ε′, right column: imaginary
part ε′′. a are obtained from
high-resolution ellipsometry
measurements and the
Kramers–Kronig
relationship, b–d are the
first-, second-, and
third-order derivatives of ε′
and ε′′. e Experimental
electroreflectance spectra.
(Reprinted with permission
from D. E. Aspnes, Phys.
Rev. Lett. vol. 28,
pp. 168–171, 1972.
Copyright 1972 by the
American Physical Society)

(a)

(b)

(c)

(d)

(e)

third-order derivatives, and (e) are the experimental electroreflectance spectra. It is
easy to appreciate the agreement between (d) and (e), thereafter directly verify (5.25).
Here we see the challenges in resolving fine structures in both ε′ and ε′′ in Fig. 5.1a,
while the peaks and valleys in Fig. 5.1e are unambiguously clear.

5.2 Photoreflectance Spectroscopy

By Chaps. 2 and 3 we have learned the relationship between the dielectric coeffi-
cient ε = ε′ + iε′′ and the reflectance or transmittance. The macroscopic quantity
related to microscopic electron transitions is the imaginary part ε′′ of the dielectric
coefficient, i.e., (5.8), also (2.125), which is repeated below
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ε′′(ω) =
∑
qk

π�
2e2

m2
0ω

2Ω
|〈Ψq |es · ∇|Ψk〉|2 Γqk

(Eq − Ek ± �ω)2 + Γ 2
qk

[
f (Eq) − f (Ek)

]
(5.26)

It is observed in Chap. 3 that the direct way to determine ε′′ is the transmission
measurement. However, the reflectance spectrum at normal incidence is the most
practical measurement setup, which depends on both the real and imaginary parts of
the dielectric coefficient. By (3.10),

R = (n − 1)2 + κ2

(n + 1)2 + κ2
(5.27)

where ε′ = n2 − κ2 and ε′′ = 2nκ , i.e., (2.77). For this, we need to know not only
ε′′ but also ε′, the two of them are correlated by the Kramers–Kronig relationship,
see Sect. 3.4.

For photo-modulated reflectance (photoreflectance)measurement, themodulation
of ε′′ is studied in the previous section. The modulation of ε′′ can be transferred to
ε′ through the differential Kramers–Kronig relationship

Δε′(ω) = 2

π
P
∫ ∞

0

ω′Δε′′(ω′)
ω′2 − ω2

dω′ (5.28)

which is easily derived from the Kramers–Kronig relationship of (3.28) in Sect. 3.4
by writing ε′′ + Δε′′ under the integral. We thus know both Δε′(ω) and Δε′′(ω)

by which we in principle are able to obtain the mathematical description about the
photoreflectance spectrum via (5.27) by differentiating the reflectance with respect
to ε′ and ε′′

ΔR

R
= β ′Δε′ + β ′′Δε′′ (5.29)

where

β ′ = ∂ ln R

∂ε′ , β ′′ = ∂ ln R

∂ε′′

are Seraphin coefficients [4]. Note that in (5.29) the reflectance modification is
expressed as a function of ε′ and ε′′, while modulation of (5.5) is expressed as a
function of the photon energy.

It is easy to realize that β ′, β ′′, ε′, and ε′′ are very complicated functions of
microscopic electron transitions. One way is to treat them as material parameters of
the semiconductor, which however do not give us direct insights about microscopic
electron transitions.

The following empirical expression

ΔR

R
=

∑
�

Re

[
f� eiφ�

(E� ± �ω + i�γ�)m�

]
(5.30)
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Fig. 5.2 Conduction band
(CB) profiles (solid black
lines) of two GaAs quantum
wells grown on AlxGa1−xAs
substrates. a GaAs quantum
well width LQW = 3.5 nm,
b LQW = 1.7 nm.
Short-thick lines in the GaAs
quantum well region mark
the ground state energy
levels in their respective
wells, and red-dashed lines
are the amplitudes of the
ground-state envelope wave
functions

(a)

(b)

is commonly accepted and used to describe the photoreflectance spectrum. Here
�ω, f�, φ�, E� and �γ� are the photon energy, effective oscillator strength, effective
oscillator phase, electron transition energy, and broadening factor, respectively.m� is
an empirical parameter describing the character of the electron transition. For inter-
band transitions of extended states, m� = 3, while for quantum confined states such
as in a narrow quantum well, m� = 1.

Reader may see the general rational of this empirical expression by comparing it
with (5.26).

In the following we study the photoreflectance spectra of three GaAs/AlGaAs
well/barrier based samples.

Figure 5.2 shows the conduction bandedge of a GaAs quantum well grown on an
Al0.27Ga0.73As substrate. We start from the Schrödinger equation, (4.35) in Sect. 4.2.
For the one-dimensionally confined electron states in the GaAs quantum well, (4.35)
becomes [−�

2

2m∗
d2

dz2
+ V (z)

]
ψi (z) = Eiψi (z) (5.31)

Here we only discuss electrons in the conduction band so the band index is neglected.
In the above equation, i is the quantum number along the z direction. V (z) is the
z-dependent conduction bandedge of the quantum well. Refer to Fig. 2.6, for AlAs
and GaAs, the energy bandgaps at Γ symmetry points and VBOs are [5],

EgΓ ,AlAs = 3.099 − 0.885 × 10−3T 2

530 + T
, VBOAlAs = −1.33

EgΓ ,GaAs = 1.519 − 0.5405 × 10−3T 2

204 + T
, VBOGaAs = −0.80 (5.32)

in the unit of eV. Here T is the temperature (unit = K). For AlxGa1−xAs ternary
alloy,
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EgΓ ,AlxGa1−xAs = xEgΓ ,AlAs + (1 − x)EgΓ ,GaAs

VBOAlxGa1−xAs = xVBOAlAs + (1 − x)VBOGaAs (5.33)

fromwhichwe can construct V (z) in the AlxGa1−xAs substrate and theGaAs surface
well which are numerically presented as solid black lines in Fig. 5.2.

One end of the GaAs quantum well, z = 0 in Fig. 5.2, is in contact with the
AlxGa1−xAs substrate while the other end, z = LQW, is exposed to air (these quan-
tum wells are also termed as surface wells). Here LQW is the GaAs quantum well
thickness. Not to make things too complicated (surface relaxations and oxidation
etc.), we assume that the GaAs quantum well is abruptly ended at z = LQW. At the
semiconductor interface, an electron needs a certain amount energy in order to move
from the conduction bandedge to the vacuum. This energy is known as the electron
affinity denoted as EA. For GaAs, the commonly accepted value of EA is 4.07 eV.
For AlAs, it is 3.50 eV.

With all these data, we obtain V (z) [eV] for our GaAs quantum well depicted in
Fig. 5.2

V (z) =
⎧⎨
⎩
0.202 z < 0
0.0 0 ≤ z < LQW

4.07 z ≥ LQW

(5.34)

at room temperature (T = 300 K). And for an eigen value Ei for (5.31), the corre-
sponding envelope wave function

ψi (z) =
⎧⎨
⎩

A1ek1z z < 0
A2eik2z + B2e−ik2z 0 ≤ z < LQW

A3e−k3z z ≥ LQW

(5.35)

and its first-order derivative are continuous across the sample. Here

�
2k21
2m∗ = 0.202 − Ei ,

�
2k22
2m∗ = Ei ,

�
2k23
2m∗ = 4.07 − Ei (5.36)

In Fig. 5.2, the short-thick horizontal linesmark the energy positions of the ground
states Ei in the quantum wells, and red-dashed lines are amplitudes of the ground-
state envelope wave functions. Theoretical estimation shows that the ground state
will be aligned to the conduction bandedge of the Al0.27Ga0.73As substrate when
LQW is reduced to 1.7 nm, see Fig. 5.2b.

Figure 5.3 shows the photoreflectance spectra of four GaAs quantum wells at
room temperature. Four quantum wells of LQW = 1.5, 2.5, 3.5 and 4.5 nm show
quite similar spectral peaks. First of all, there is a third-order-derivative peak at 1.75
eV, independent of LQW. Since the energy of this peak agrees with the energy of the
optical transition between conduction- and valence bandedges of the Al0.27Ga0.73As
substrate, and it is in the form of a third order derivative for a bulk material that we
studied in the previous section, the peak at 1.75 eV is unambiguously identified to
be originated from the Al0.27Ga0.73As substrate.
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Fig. 5.3 Room-temperature
photoreflectance spectra of
four GaAs surface wells.
Vertical arrows mark the
optical transitions between
conduction-band and
valence-band states confined
in the GaAs surface wells.
Signals at about 1.75 eV
comes from Al0.27Ga0.73As
substrates

There is one peak below the bandedge transition of the Al0.27Ga0.73As substrate
marked by vertical arrows in the energy range of 1.5–1.7 eV, its peak energy increases
when we reduce the well width, similar to the energy level in Fig. 5.2. However, the
peak shape certainly bears no resemblance to the third-order derivative form. We
know that the corresponding energy levels are confined in the GaAs quantum well.
The question therefore is: can (5.30) describe the photoreflectance spectrum of the
one-dimensional quantum confinement?

Let us take a close look at the optical transitions between conduction- and valence-
band states confined in the GaAs quantum well in the range of 1.5–1.7 eV. The
black solid lines in both Fig. 5.4a, b are the same spectrum of LQW = 2.5 nm from
Fig. 5.3. When we assume a one-transition process, the numerically fitted spectrum
using (5.30) is shown as the red dashed line in Fig. 5.4a, and the three harmonic-
oscillator parameters are �ω1 = 1.563 eV, �γ1 = 31 meV, f1 = 0.07. Assume that
the photoreflectance peak involves two transitions, the fitting spectrum agrees much
better with the experimental data, and the harmonic-oscillator parameters are: (1.554
eV, 30 meV, 0.06) and (1.643 eV, 58 meV, 0.06), see Fig. 5.4b. A close theoretical
calculation shows that the low-energy transition (1.554 eV) corresponds to the tran-
sition between the conduction-band ground state (E1) and the valence-band heavy
hole ground state (H1), and the high-energy (1.643 eV) is between the conduction-
band ground state and the valence-band light hole ground state (L1), see the energy
diagram in Fig. 4.12, and the photoluminescence spectral features of Fig. 4.13.

The transitions between confined states in a quantumwell, including the quantum
well at the surface in Fig. 5.4, are intuitively easy to understand. Quantum con-
finement at a surface barrier is however also possible due to the wave functions’
boundary conditions. Reader is encouraged to do theoretical study and numerical
analysis by following the discussion of the GaAs quantum well. In the following we
introduce the photoreflectance spectra of four different Al0.24Ga0.76As barriers grown
on semi-insulating (001)-oriented GaAs substrates, with different barrier thickness
Lbarrier = 10, 15, 25, and 35 nm, see Fig. 5.5a. We use the 632.8-nm line of a He-Ne



170 5 Modulation Spectroscopy

(a) (b)

Fig. 5.4 Photoreflectance spectrum (black solid lines) of a GaAs quantumwell (well width LQW =
2.5 nm) grown on the Al0.27Ga0.73As substrate and its numerical fitting spectra (red-dashed lines).
a One transition fitting, b two-transition fitting

(a)

(b)

Fig. 5.5 a Al0.24Ga0.76As surface barrier on GaAs substrate and photoreflectance measurement.
CB = conduction band, and VB = valence band. b Photoreflectance spectra (black solid lines) of
four Al0.24Ga0.76As barriers. The parts of the spectra marked by vertical and horizontal dashed
lines are magnified for better visualization. Red dashed lines are numerical fitting spectra
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Fig. 5.6 Room-temperature
photoreflectance spectrum of
a multiple GaAs/AlGaAs
well/barrier structure

laser as the photo-modulating light with a chopping frequency at 300 Hz. The prob-
ing beam from a tungsten-halogen lamp impinges on the sample with a light spot size
of about 3 mm in diameter. And the photoreflectance spectra of the four barriers are
shown in Fig. 5.5b. It is clearly observed here that there are quantum confinements
in the surface barrier.

Figure 5.6 presents a room-temperature photoreflectance spectrum of a GaAs/
AlGaAs multiple quantum well structure grown on a GaAs substrate. The peak at
1.42 eV is originated from the GaAs substrate. The oscillations just above the GaAs
bandgap are most probably the so-called Franz–Keldysh oscillations (FKO) that the
wave functions of the GaAs bandedge states, in both the conduction band and the
valence band, penetrate into theAl0.24Ga0.76As barrier regions induced by the electric
field of the modulating light. Peaks marked by a, b, c and d are related to the optical
inter-band transitions in the multiple quantum wells.

The application of photoreflectance spectroscopy has been largely restricted
to short-wavelength infrared spectral region, e.g., it is ca ∈ (1.4, 1.9) eV, i.e.,
∈ (700, 900) nm in Figs. 5.6 and 5.5. (The conversion between photon energy �ω

in eV and wavelength λ in μm is λ = 1.2398/�ω.) The spectral region was pushed
to long wave infrared in 2006 about 9 μm [6], and very-long wave infrared of up to
20 μm in 2009 [7]. Figure 5.7a show a photoreflectance spectrum of arsenic-doped
Hg0.77Cd0.23Te at 77 K in a spectral range from 2 to 22 μm. By directly compar-
ing with the photoluminescence spectrum in Fig. 5.7b, it is seen clearly that the
photoreflectance spectrum is much information richer than the photoluminescence
spectrum. Moreover, the spectral resolution is of critically importance for resolving
narrow photoreflectance features, see Fig. 5.7c [8].



172 5 Modulation Spectroscopy

(a) (b) (c)

Fig. 5.7 a Reflectance R and reflectance modulation ΔR spectra recorded simultaneously for
arsenic-doped Hg0.77Cd0.23Te at 77 K, resulting in the photoreflectance PR=ΔR/R. b The PR
spectrum (same in a but now in a linear energy [eV] scale) and photoluminescence spectrum.
Vertical arrows two resolvable weak photoluminescence features. c Photoreflectance spectra of the
Hg0.77Cd0.23Te at 95 K of different spectral resolutions

5.3 Thermo-Modulation Spectroscopy

Thermo-modulation spectrum is obtained when we add an oscillating thermal field,
induced normally by an oscillating electric bias or a periodically chopped laser beam
at a certain frequency, to the sample. In such an operation, the periodicity of the
crystal lattice is not modified so that the dielectric coefficient of the sample is still
expressed by (5.4). However, an increased temperature normally results in a volume
expansion, i.e., a larger lattice constant, which in its turn, means weaker interac-
tions among atoms in the lattice, thereafter a reduced energy bandgap in general,
see Sect. 2.1. Moreover, we mentioned before that the electron-phonon interaction
is the major energy relaxation process that largely determines the relaxation energy.
The first consequence of increasing the sample temperature is the increased occupa-
tion probabilities of electron, photon and phonon states of high energies. Secondly,
phonons are bosons so that the number of phonons per one phonon state is not lim-
ited, resulting in a higher density of phonons. All these point to a larger relaxation
energy at a higher material temperature.

In general, thermo-modulation signal is therefore

dε(ω, Eg, Γ )

dT
= ∂ε(ω, Eg, Γ )

∂Eg

dEg

dT
+ ∂ε(ω, Eg, Γ )

∂Γ

dΓ

dT
(5.37)

where for common zincblende semiconductors [9]

dEg

dT
≈ −4.5 × 10−4 eV/K,

dΓ

dT
≈ 1.5 × 10−4 eV/K (5.38)
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Consider the dielectric coefficient in (5.4) which is repeated below

ε(ω)

ε∞
= 1 +

∫
�ωLT

E − �ω − iΓ

1

4π2

(
2m∗

r

�2

)3/2 √
E − Eg θ(E − Eg) dE (5.39)

Neglect physical constants,

ε(ω, Eg, Γ ) ∝
∫

1

E − �ω − iΓ
N a
3 (E − Eg)dE (5.40)

where N a
3 (E − Eg) is the density of associated electron states in the three-dimensional

bulk material, see (4.19). Write ε(ω, Eg, Γ ) = ε′(ω, Eg, Γ ) + ε′′(ω, Eg, Γ ),

ε′(ω, Eg, Γ ) ∝
∫

E − �ω

(E − �ω)2 + Γ 2
N a
3 (E − Eg)dE

ε′′(ω, Eg, Γ ) ∝
∫

Γ

(E − �ω)2 + Γ 2
N a
3 (E − Eg)dE (5.41)

Look closely at

A = E − �ω

(E − �ω)2 + Γ 2
, B = Γ

(E − �ω)2 + Γ 2
(5.42)

A is significant when �ω �= E , while B is significant when �ω = E . Moreover, Γ is
normally quite small so that we may neglect Γ in the denominator in the expression
of ε′(ω, Eg, Γ ) and (E − �ω) in the denominator in ε′′(ω, Eg, Γ ) so that

ε′(ω, Eg, Γ ) ∝
∫

N a
3 (E − Eg)

E − �ω
dE, ε′′(ω, Eg, Γ ) ∝ N a

3 (�ω − Eg)

Γ
(5.43)

fromwhichwe see that ε′ is proportional to N a
3 (E)/(E − Eg)while ε′′ is proportional

to N a
3 . In other words, ε

′ is largely determined by Eg, while ε′′ is a function of both
Eg and Γ .

Figure 5.8 shows schematically one spatial-gradient-based thermo-modulation
spectroscopy. Here, the temperature of the sample is not changing in time, while one
end of the sample is heated by a heating resistor, and the other end is fixed on a
heat sink, by which a thermal gradient is formed across the sample. By moving the
movable mirror to sweep the excitation laser spot along the thermal gradient, i.e.,
optical path 1 and 2, we measure the thermo-modulation spectrum. The principle
advantage of such a spatial-gradient-based thermo-modulation spectroscopy is that
the thermal modulation is formed in space so that the heat capacity of the sample
does not play a role here (how fast to heat the sample up and how fast to cool down
the sample), and the sweeping of the excitation laser spot across the sample can be
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Fig. 5.8 Schematics of a spatial-gradient-based thermo-modulation spectroscopy setup

largely sample-independent. Normally the sweeping frequency of the excitation laser
spot is about 100 Hz. In Fig. 5.8, the monochromatic excitation light beam incidents
to the movable mirror then reaches and sweeps across the sample, and the difference
between the beams from different spatial locations on the sample, e.g., beam 1 and
2 in Fig. 5.8, gives us the thermo-modulation spectroscopic spectrum.

Figure 5.9 presents the spatial-gradient-based thermo-modulation spectroscopic
spectra of a semi-insulating (100) GaAs bulkmaterial without andwith a temperature
gradient. Figure 5.9a shows that when the photon energy becomes larger than Eg,
the energy bandgap of GaAs, the reflectance suddenly reduces to the switch on of
the inter-band absorption. Applying a spatial temperature gradient, more information
becomes revealed in Fig. 5.9b where transitions of Eg, Eg + Δso (optical transitions
between the valence bandedge and spin-split-off band and the conduction bandedge
at Γ point), E1 and E1 + Δ1 (high-energy bands at [111] directions) are clearly
displayed. Detailed energy band structure of the GaAs bulk material is presented in
Fig. 5.9c.

Figure 5.10 compares thermo-modulation reflectance spectra of a bulk
Hg0.8Cd0.2Tematerial and an epitaxial Hg0.77Cd0.23Te film (thickness 0.5mm) grown
on a 〈111〉 CdZnTe substrate by liquid phase epitaxy method. We see the shifts of E1

and E1 + Δ1 due to the difference in the mole fraction x of Cd in the two materials.
Most profoundly we also see the much decreased amplitude of ΔR/R at E1 + Δ1 in
the epitaxial film. The most possible reason is the strain between the epitaxial layer
and the substrate (see next section).
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(a)

(b)

(c)

Fig. 5.9 Thermo-modulation reflectance spectra of a semi-insulating (100) GaAs bulk material
without (a) and with (b) a temperature gradient. c Energy band structure of the GaAs bulk material

Fig. 5.10 Thermo-
modulation reflectance
spectrum of a bulk
Hg0.8Cd0.2Te material (solid
black line) and an epitaxial
Hg0.77Cd0.23Te epitaxial
film (dashed red line)

5.4 Piezoreflectance Spectroscopy

Piezoreflectance (PzR) spectroscopy is anothermodulation technique. It is performed
by attaching the sample to a piezoelectricmaterial. By applying an oscillating electric
bias on the piezoelectric material a strain field is generated in the sample, which will
induce modifications in the energy band structure of the sample, resulting in the
piezo-modulation spectroscopy.

Let us study the piezo-modulation spectroscopy from the fundamental solid-state
physics. Consider a unit cell located at (x, y, z). Under an external mechanical force
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defined by a three-dimensional Cauchy stress tensor [σi j ], i, j = x, y, z, the unit cell
is displaced to (x + u, y + v, z + w). The three-dimensional strains are

εxx = ∂u

∂x
, εyy = ∂v

∂y
, εzz = ∂w

∂z
(5.44)

Note that we use the conventional notations ε for the strain in this section, which is
to be distinguished from the dielectric coefficient ε. And the shear strains are

εyz = 1

2

(
∂v

∂z
+ ∂w

∂y

)
, εxz = 1

2

(
∂w

∂x
+ ∂u

∂z

)
, εxy = 1

2

(
∂u

∂y
+ ∂v

∂x

)
(5.45)

Stress [σi j ] and strain [εi j ] are related by a fourth-order covariant tensor

σi j =
∑
k�

λi jk�εk� (5.46)

Pure mathematically there are 81 elements in [λi jk�], also known as elastic coeffi-
cients. However, due to the symmetry of the stress and strain, there are only 21 inde-
pendent elastic coefficients. Furthermore, for zincblende semiconductors, the number
of independent elastic coefficient is further reduced to only 3. They are λxxxx = C11,
λxxyy = C12, and λxyxy = C44. For wurtzite lattice, there are 5 independent coeffi-
cients: λxxxx = C11, λzzzz = C33, λxxyy = C12, λxxzz = C13, and λxzxz = C44.

Consider a zincblende semiconductor with a lattice constant of a. Assume that
the numbers of unit cells along the x , y, and z direction be N so that the spatial
extensions in the three directions are all Na, and the total volume is (Na)3. Under
an external force, the spatial extensions in the x , y, and z directions are modified by
δx , δy , and δz , respectively. The displacements and strains are

u = x

Na
δx , v = y

Na
δy, w = z

Na
δz

εxx = ∂u

∂x
= δx

Na
, εyy = δy

Na
, εzz = δz

Na
(5.47)

And the Cauchy stress tensor

σxx = C11εxx + C12εyy + C12εzz
σyy = C12εxx + C11εyy + C12εzz
σzz = C12εxx + C12εyy + C11εzz
σyz = C44εyz
σzx = C44εzx
σxy = C44εxy (5.48)

Other components of ε and σ are zero.
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The stress will induce modifications in the energy band structure of the semicon-
ductor. The conduction band is normally approximated by a single band, and the
modification due to an external mechanical force is linear. The valence band is rather
complicated and is described by three bands, light-hole, heavy-hole, and spin-split-
off band, as well as interactions among them. For many semiconductor materials that
are commonly used for photonics, the energy bandgaps are around 1 eV so that we
need to include the interactions between the conduction band and the valence band.
The most commonly applied theoretical model to describe all these bands and their
interactions is the so-called eight-band k · p theory. In this model, we choose eight
basis functions

S ↑, X ↑,Y ↑, Z ↑, S ↓, X ↓,Y ↓, Z ↓ (5.49)

where S is the s-type orbital, X , Y and Z are p-type, ↑ and ↓ denote spin up and
down. The k · p Hamiltonian is [10]

H0 + Hso + D(ε) + H1(kε) + H2(kε) (5.50)

whereH0 are eigenvalues of the eight basis functions, Hso is the spin-orbit interaction,
D is the lattice-deformation potential energy (i.e., lattice deformation due to an
external mechanical force), H1 and H2 are first- and second-order k · p interactions.
The mathematical expressions of these Hamiltonians are:

H0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Eg 0 0 0 0 0 0 0

0 −Δso
3 0 0 0 0 0 0

0 0 −Δso
3 0 0 0 0 0

0 0 0 −Δso
3 0 0 0 0

0 0 0 0 Eg 0 0 0

0 0 0 0 0 −Δso
3 0 0

0 0 0 0 0 0 −Δso
3 0

0 0 0 0 0 0 0 −Δso
3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.51)

Hso = Δso

3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0 0 0
0 0 −i 0 0 0 0 1
0 i 0 0 0 0 0 −i
0 0 0 0 0 −1 i 0
0 0 0 0 0 0 0 0
0 0 0 −1 0 0 i 0
0 0 0 −i 0 −i 0 0
0 1 i 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(5.52)



178 5 Modulation Spectroscopy

D(ε) =

⎡
⎢⎢⎣
ac(εxx + εyy + εzz) 0 0 0

0 D3(ε) 0 0
0 0 ac(εxx + εyy + εzz) 0
0 0 0 D3(ε)

⎤
⎥⎥⎦ (5.53)

D3(ε) =
⎡
⎣ lεεxx + mε(εyy + εzz) nεεxy nεεxz

nεεyx lεεyy + mε(εxx + εzz) nεεyz
nεεzx nεεzy lεεzz + mε(εyy + εxx )

⎤
⎦

(5.54)

H1(kε) =
[
H4(kε) 0

0 H4(kε)

]

H4(kε) =

⎡
⎢⎢⎣

0 i pkxε i pkyε i pkzε
−i pkxε 0 0 0
−i pkyε 0 0 0
−i pkzε 0 0 0

⎤
⎥⎥⎦ (5.55)

H2(kε) =

⎡
⎢⎢⎢⎢⎣

�
2

2m∗ (k2xε + k2yε + k2zε) 0 0 0

0 S(kε) 0 0

0 0 �
2

2m∗ (k2xε + k2yε + k2zε) 0

0 0 0 S(kε)

⎤
⎥⎥⎥⎥⎦ (5.56)

S(kε) =
⎡
⎣ Lk2xε + M(k2yε + k2zε) Nkxεkyε Nkxεkzε

Nkyεkxε Lk2yε + M(k2zε + k2xε) Nkyεkzε
Nkzεkxε Nkzεkyε Lk2zε + M(k2xε + k2yε)

⎤
⎦

(5.57)
In the above expressions, Eg is the energy bandgap of strain-free material. Δso is

the spin-orbit interaction energy, and

(S|px |X) = (S|py|Y ) = (S|pz|Z) = i(m0/�)pcv

where pcv is the optical matrix element between the conduction band and the valence
band that appear many times in the previous chapters. Moreover, under an exter-
nal mechanical force, the lattice is deformed from strain-free lattice position r to
deformed lattice position rε, i.e.,

rε = (1 + ε)r

And the corresponding lattice wave vector is similarly modified

kε = (1 − ε)k
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Fig. 5.11 Lattice structure
and strain in an InAs
epitaxial layer grown on
GaAs substrate

In the piezo-modulation spectroscopy, what we do is to modify the deformation
potential energy D, which is described by three coefficients a, b, and d given by �ε,
mε, and nε as below [11]

a = �ε + 2mε

3
, b = �ε − mε

3
, d = nε√

3
(5.58)

All these parameters can be found in literature, see e.g., [5].
Consider an InAs epitaxial layer grown on a GaAs substrate, schematically shown

in Fig. 5.11. At room temperature, the lattice constant of the GaAs is as = 5.65 Å.
It is ae = 5.65 Å for InAs. Here we added subscript “s” for substrate and “e” for
epitaxial. The stress tensor is minimal when the lattice constants, ax , ay and az along
the x , y, and z direction, of the InAs epitaxial layer are

ax = ay = as, az =
(
1 + εzz

)
as (5.59)

Under such a situation, the stress in the InAs epitaxial layer is

εxx = εyy = ae − as
as

, εzz = −2C12

C11
εxx (5.60)

Other components of the stress tensor are zero. In the above equations, C12 and C11

are elastic coefficients of the InAs material.
It is thus observed that in two-dimensionally extended (in the xy plane) epitaxial

layers such as an InxGa1−xAs quantumwell grown on a GaAs substrate, the epitaxial
layer is biaxially stressed in the xy plane and uniaxially stressed along the sample
growth direction (z direction). One effect is the modification in the energy bandgap,
and the second effect is the reduction in the degeneracy of the heavy-hole and light-
hole bands in the valence band at the Γ symmetry point in the k space. Let “HH”
denote heavy hole, “LH” as light hole, and “so” as spin-orbit split band, we construct
a new set of basis functions for the valence band from the original basis functions of
(5.49)
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|HH1〉 ⇒
∣∣∣∣32 ,+3

2

〉
= 1√

2
|(X + iY ) ↑〉

|HH2〉 ⇒
∣∣∣∣32 ,−3

2

〉
= 1√

2
| (X − iY ) ↓〉

|LH1〉 ⇒
∣∣∣∣32 ,+1

2

〉
= 1√

6
| (X + iY ) ↓〉 −

√
2

3
|Z ↑〉

|LH2〉 ⇒
∣∣∣∣32 ,−1

2

〉
= −1√

6
| (X − iY ) ↑〉 −

√
2

3
|Z ↓〉

|so1〉 ⇒
∣∣∣∣12 ,+1

2

〉
= 1√

3
|(X + iY ) ↓〉 + 1√

3
|Z ↑〉

|so2〉 ⇒
∣∣∣∣12 ,−1

2

〉
= −1√

3
|(X − iY ) ↑〉 + 1√

3
|Z ↓〉 (5.61)

where the digits in the above new basis functions are the angular momentum J and
its z component Jz , i.e., |J, Jz〉.

By using the above basis functions to formulate its Hamiltonian, the deformation
potential D3(ε) in (5.54) of the eight-band k · p theory becomes now

|3/2, 3/2〉 |3/2, 1/2〉 |1/2, 1/2〉

D3(ε) =
⎛
⎝−δEH + δES 0 0

0 −δEH − δES −√
2δES

0 −√
2δES −δEH − Δso

⎞
⎠ (5.62)

where δEH and δES are energy shifts due to the biaxial stress in the xy plane and
uniaxial stress along the z direction, respectively, and by (5.53) and (5.54) [12]

δEH = −2a

(
1 − C12

C11

)
εxx , δES = −b

(
1 + 2C12

C11

)
εxx (5.63)

fromwhichwe obtain the energy shifts of the light-hole, heavy-hole, and conduction-
band electron state

ΔELH = Ev + δEH − 2Δso + 3δES

12
+ 1

2

√
Δ2

so + ΔsoδES + 9

4
δE2

S

ΔEHH = Ev + δEH + Δso

3
− δES

2

ΔEe = Ec + ΔES + Δso

3
− δEH (5.64)

Ec and Ev are conduction- and valence bandedges respectively, as before. Here the
change of the basis functions from (5.49) to (5.61) is to obtain explicit relationships
between the strain field and the energy shift.

Figure 5.12a shows a piezoreflectance spectrum of a GaAs single quantum
well embedded between two Al0.29Ga0.71As barriers, inset shows the fine spectral
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(a) (b)

Fig. 5.12 aRoom-temperature piezoreflectance of a GaAs single quantumwell embedded between
Al0.29Ga0.71As barriers. b Schematic energy diagram and optical transitions

structures. The sample is grown on a semi-insulating GaAs substrate consisting of
a 50-nm GaAs buffer layer, a 50-nm Al0.29Ga0.71As barrier, a 25-nm GaAs single
quantum well, and finally a 40-nm Al0.29Ga0.71As cap layer. Here we observe not
only inter-band transitions from the valence-band light hole and heavy hole state to
the conduction-band electron state with Δn = 0, i.e., E1L1, E1H1 and E2H2, we
also see the weak E1H3 transition (Δn �= 0), see Fig. 5.12b, where n is the quantum
number of the confined state along the z direction.

We have studied the inter-band photoluminescence spectrum of the quantum well
in Sect. 4.2. Refer to (4.66), the optical transition between an electron state ψ j (z)
with a quantum number j in the conduction band and a hole state ψi (z) with a
quantum number i in the valence band is proportional to

∣∣〈ψ j (z)|ψi (z)〉
∣∣. Δn in the

above paragraph refers to | j − i |. For simplicity let us assume that the potential of
the energy barrier surrounding the quantum well is infinitely high so that the wave
functions of the electron states are totally confined within the quantum well. In this
case, we study the following equation for the conduction-band electron

[−�
2

2m∗
d2

dz2
+ V (z)

]
ψ j (z) = E jψ j (z) (5.65)

with a potential energy

V (z) =
⎧⎨
⎩

∞ z < 0
0 0 ≤ z < LQW

∞ z ≥ LQW

(5.66)

where LQW is the quantum well width. And the solutions are
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E j = j2�2π

2m∗L2
QW

ψ j (z) =
√

2

LQW
sin

(
jπ z

LQW

)
(5.67)

Similarly, the envelope wave function for the valence band state with a quantum
number i is

ψi (z) =
√

2

LQW
sin

(
iπ z

LQW

)
(5.68)

Note that the envelope wave functions in the above two equations are only defined
for z ∈ (0, LQW). Outside the quantum well, the envelope functions are zero.

The optical transition is easily calculated

〈ψ j (z)|ψi (z)〉 = 2

LQW

∫ LQW

0
sin

(
jπ z

LQW

)
sin

(
iπ z

LQW

)
dz (5.69)

which is nonzero (= 1) only when j = i , i.e., Δn = | j − i | = 0. This is known to
be a quantum selection rule about optical inter-band transitions in a quantum well.
This is mostly reflected in Fig. 5.12.

However, there is also the weak E1H3 transition (Δn �= 0) in Fig. 5.12. Below are
a few major reasons to understand the weak 13H transition. First of all, the envelope
wave functions in (5.67) and (5.68) are obtained under the assumption of (5.66)
which are less accurate for high-energy states because the envelope wave functions
of high-energy states will penetrate more into energy barrier regions. Second, the
valence band is more complicated to be modelled properly by a similar equation
as (5.65) which is the major foundation of the eight-band k · p theory. Moreover, the
strain applied during the piezoreflectance measurement can modify the interaction
between the conduction band and the valence band.
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Chapter 6
Photocurrent Spectroscopy

Abstract Applying an external electric bias on a semiconductor can produce an
electric current. Impinging a light on a semiconductor already having an external
electric bias can generate an extra electric current called photocurrent whose ampli-
tude depends on the optical power and the wavelength of the light. In this chapter
we study the photocurrent spectra of quantum well infrared photodetector and solar
cells using quantum dots. We also study the photocurrent induced by multiphoton
excitation.

In Chap. 4 we have studied the photoluminescence spectrumwhere we sent a probing
light beam of relatively high-energy photons to the sample then collected photons
of different energies emitted from the sample. The microscopic mechanism of the
photoluminescence of an intrinsic semiconductor is that one electron, initially occu-
pying one valence-band state, absorbs one incident photon (with an energy �ω′ larger
than the energy bandgap Eg of the semiconductor) to transit to one electron state in
the empty conduction band, leaving a hole in the valence band; The electron in
the conduction band and the hole in the valence band relax to the conduction and
valence bandedges, respectively; The electron in the conduction bandedge transits
to the empty state (hole) in the valence bandedge by emitting one photon with an
energy �ω = Eg (Fig. 4.1).

The valence bandof an intrinsic semiconductor in darkness is completely occupied
and the conduction band completely empty, implying that the intrinsic semiconduc-
tor is not conductive, see Chap. 2. When we apply an external electric bias across
this intrinsic semiconductor in darkness, we do not expect any significant electric
current. Nowwe impinge a light of �ω′ (> Eg) on the semiconductor, electrons in the
conduction band and holes in the valence band are generated after absorbing photons
of energy �ω′. The electrons will be driven towards the positive electrode and the
holes towards the negative electrode of the external electric bias during the same time
they relax and recombine. When the electric bias is high enough so that electrons
and holes can reach electrodes before they recombine to emit photons, an electric
current forms. This electric current is called a photocurrent. And the photocurrent
spectrum is the relation between the photocurrent and the wavelength of the incident
light beam that generates the photocurrent.
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Fig. 6.1 Spectral power
density of electromagnetic
radiation emitted by a black
body in thermal equilibrium
at temperature T

6.1 Basics of Quantum Well Infrared Photodetector

As mentioned before, the infrared spectrum is usually divided into three regions: the
short- (wavelength ca 0.8–2.5 µm, also known as near infrared region), the middle-
(2.5–25 µm) and the far-infrared (25–1000 µm) regions. The importance of the
infrared spectrum is reflected by Planck’s law for the spectral power density of elec-
tromagnetic radiation emitted by a black body in thermal equilibrium at temperature
T

w(ω, T ) = 2�ω3

πc3
1

e�ω/kBT − 1
(6.1)

which is plotted in Fig. 6.1.
An infrared photodetector absorbs infrared radiations in the infrared range then

outputs an electric signal, commonly an electric current under an external electric
bias. (Under zero bias, an electric current output of the photodetector is not possible,
a voltage builds up instead, which is known as the photovoltaic voltage.) When the
density of incident photons is high enough, the output electric signal is directly a
photocurrent.When the photon density is too low, the electric signal is to be amplified,
and the eventual output is normally quantified in terms of a photon count.

For a very long time, II–VI ternary HgyCd1−yTe-on-Cd1−xZnxTe-based narrow-
bandgap bulk semiconductors, see Sect. 4.1, have been dominating in the field of
infrared photodetections simply because of their narrow energy bandgaps which
match with the energies of photons in the three infrared regions. Following the
development of the nanotechnology, we nowhave also semiconductor nanostructures
with all possible energy band structures. In 1993 Levine reported the development
of GaAs/AlxGa1−xAs-based quantum well infrared photodetector (QWIP) [1].

Figure 6.2a is a schematics of the common QWIP material structure. By alter-
natively growing GaAs and Al0.30Ga0.70 layers, GaAs quantum wells sandwiched
between thick Al0.30Ga0.70As barriers are formed with discrete energy states in both
the conduction band and the valence band. Thick barriers are normally used for
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(a) (b)

(c)

Fig. 6.2 a Schematic material structure of the QWIP. b Schematic electron transfer in an operating
QWIP, and c QWIP device operation structure

QWIP applications so that discrete energy states confined in different GaAs quan-
tum wells are not coupled with each other. By tuning the barrier height, i.e., x the
mole fraction of Al in AlxGa1−xAs barriers, and/or the width of the GaAs quantum
well can we adjust the energy positions of the discrete energy states confined in the
GaAs quantum well.

In Fig. 6.2a, with Al0.30Ga0.70As potential barriers of thickness 60 nm, there
is only one discrete energy state in the conduction band of the 5-nm wide GaAs
quantum well, with an energy distance of ca 125 meV to the conduction bandedge of
the Al0.30Ga0.70As barrier. When the discrete energy state is occupied by electrons
(note that this energy state is discrete only in the z direction), the electrons can
absorb photons then transit to high-energy levels which extend to Al0.30Ga0.70As
barrier regions, known as the quasi-continuum states, when the photon energies
are larger than 125 meV (corresponding to an optical wavelength of 8 µm, i.e., a
middle-infrared light). Here we see that the optical transition occurs between two
states in the same conduction band, it is thus called optical intra-band transition.
Because the high-energy levels in Al0.30Ga0.70As barrier regions are quite extended
and the Al0.30Ga0.70As barrier regions are commonly doped, an external electric
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field will induce the photo-excited electrons to form the photocurrent, see Fig. 6.2b.
Figure 6.2c shows the device structure of a common multiple quantum well infrared
photodetector. As to be studied shortly (Sect. 6.1), the electron cannot absorb a
photon propagating along the z direction to transit between two energy sublevels in
a quantum well structure grown along the same z direction (the so-called quantum
selection rule), there is an optical grating to diffract the incident light coming from
the substrate side of the QWIP device.

Normally we wish to have only one state confined in the GaAs quantum well
region so that the QWIP responses efficiently to only one photon energy (in the
above example, the response wavelength is 8 µm). We may modify the Al mole
fraction x in the in AlxGa1−xAs barriers, and/or the width of the GaAs quantum
well to adjust the energy position of the discrete energy state confined in the GaAs
quantum well in order to obtain different response wavelengths. Assume perfect
interfaces between the GaAs quantum well and its surrounding AlxGa1−xAs barriers
so that we may approximate the potential energy profile of the GaAs quantum well
as square. There is a simple but elegant formula about the number of confined energy
states in such a square quantum well. The number n of energy states confined in the
square quantum well (i.e., energies of those states that are below the barrier height
V0) is given by [2]

n = 1 + Int

⎛
⎝

√
2m∗m0V0L

2
QW

π2
�
2

⎞
⎠ = 1 + Int

(
0.163

√
m∗L2

QWV0

)
(6.2)

where mathematical operation Int(A) results in an integer whose magnitude is the
largest that does not exceed the magnitude of A. m∗ is the electron effective mass.
On the right side of the second equals sign, the effective mass is in terms of m0

(m∗ = 0.067 for electrons in GaAs), LQW is the quantum well width in units of
Å, and the unit of V0 is eV. The above equation shows that there is minimally one
confined state in a square well. For quantum well based infrared photodetector, we
wish to have only one confined state in the GaAs quantum well so what we need to

do is to adjust LQW and/or V0 properly so that 0.163
√
m∗L2

QWV0 is less than one.

Multiple quantum wells are commonly grown so that the photons that are not
absorbed by the electrons in the first quantumwell have more chances to be absorbed
in the second and the third quantum wells. Technically, however, only a limited
number GaAs quantum wells can be grown epitaxially with fairly well controlled
uniformity (for one-color response) of the quantum well structures (the widths of
GaAs wells and AlxGa1−xAs barriers as well as x in AlxGa1−xAs).

Figure 6.2b shows the ideal photocurrent formation in aQWIP device. In addition,
there are a few more electric current components that exist even when the QWIP is
in darkness, which are then denoted as dark currents. They are thermionic emission,
thermally assisted tunneling, and direct tunneling. Refer to Fig. 6.3a, the thermionic
emission is that at finite temperature, electrons can transit from low-energy states to
high-energy states by absorbing thermal energies (i.e., phonons), while tunneling is
totally quantum mechanical. There can be first a thermal excitation then a tunneling,
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(a) (b)

Fig. 6.3 aDark current components: thermionic emission and tunneling. bExtra transition paths of
electrons from the GaAs quantum well to extended quasi-continuum states in AlxGa1−xAs barriers
when the GaAs quantum well is a bit thick so that there are multiple confined states in the GaAs
quantum well

commonly known as thermal-assisted tunneling. Thermionic emission is temperature
dependent which can be suppressed by lowering the device temperature, and the
quantummechanical tunneling can be suppressed by increasing the barrier thickness.

Knowing the dark currents, we realize the other reason for having only one con-
fined state in the quantum well. Refer to Fig. 6.3b, the combination of the optical
absorption, the thermal excitation, from the ground state to the excited state, and the
tunneling from the excited state to extended quasi-continuum states in AlxGa1−xAs
barriers may contribute significantly to the total electric current, making the analysis
of the photocurrent more complicated.

One important aspect about the QWIP device structure is that the GaAs quantum
wells are not doped, while the AlxGa1−xAs barriers are n-type doped. Electrons from
the n-doped AlxGa1−xAs barriers migrate to the confined energy states in the GaAs
quantum wells, ready to be photoexcited. The electric field induced by the external
bias applies largely across the AlxGa1−xAs barriers due to the fact that there are very
few mobile electrons (thus high resistivity and high electric field) in AlxGa1−xAs
barrier regions.

The QWIP is much advantageous in many ways as compared with HgCdTe/
CdZnTe-based infrared photodetector. Most noticeably is the uniformity in the xy
plane (see discussions in Sect. 4.1) and excellence in the III–V epitaxial techniques,
which are extremely important for large-scale focal plane array (FPA) structure [3, 4].
There are already commercialized 512 × 512, 640 × 480, 640 × 512, even 1024 ×
1024GaAs/AlxGa1−xAs-basedQWIPFPA thermal imaging cameras.Disadvantages
of the QWIP are also obvious. Most prominent is the result of the quantum selection
rule about the optical intra-band transitions, i.e., the necessary optical grating. The
next issue is the relatively low density of the two-dimensional electron states in the
quantum well structure as compared with ones in three-dimensional bulk material,
see Fig. 4.10, resulting in a low concentration of the carriers that are ready to interact
with the incident photons.Wealreadymentiononeway to overcome the last issue, i.e.,
multiple quantumwells, which is however limited by the epitaxial growth technique.
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Another way is to lower the device operation temperature. This is why QWIP-based
thermal imaging camera comes with a built-in cooler.

Anyway, GaAs/AlxGa1−xAs-based thermal imaging device has been steadily
improved in parallel with the development of epitaxial techniques such as molecular
beam epitaxy (MBE) and metal organic chemical vapor deposition (MOCVD). It
is emerging as a complimentary partner to the traditional HgCdTe/CdZnTe-based
infrared photodetector in middle- and far-infrared optical ranges [5].

The QWIP device is designed to absorb incident photons then output an electric
current. The photocurrent is thus the most fundamental parameter to characterize the
QWIP device. Figure 4.14 already includes the peak wavelength of the photocurrent,
which is obtained under the operation of the QWIP device with an external bias. We
now study carefully the absorption and photocurrent in the next section.

6.2 Photon Absorption and Photocurrent

Wefocus on ann-typeQWIP structure shown inFig. 6.4. ThemultipleGaAs quantum
wells are designed in such a way that there is only one confined (ground) state in the
GaAs quantum well region and the next excited states are correlated with continuum
states in the conduction bands of the AlxGa1−xAs barriers. GaAs quantum wells are
non-intentionally doped while AlxGa1−xAs barriers are n-type doped. The electrons
from the n-type dopants in the AlxGa1−xAs barriers migrate to the confined states
in GaAs quantum wells, resulting in a high resistivity in AlxGa1−xAs barriers so
that the external bias applies largely in the AlxGa1−xAs barrier regions. Upon the
incidence of photons, the electrons occupying the ground state in the GaAs quantum
well transit to continuum states above the AlxGa1−xAs conduction bandedge which
will be driven by the external bias to form the photocurrent.

We start from the Schrödinger equation (4.33), in Sect. 4.2. For the one-
dimensionally confined electron states in the quantum well, (4.33) becomes

[−�
2

2m∗
d2

dz2
+ V (z)

]
ψi (z) = Eiψi (z) (6.3)

Fig. 6.4 Electron states,
optical transition and
transports in an n-type
GaAs/AlxGa1−xAs QWIP
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Here we only discuss electrons in the conduction band so the conduction band index
is neglected. In the above equation, i is the quantum number along the z direction,
and the envelope function is normalized in the quantum well (width LQW)

∫
LQW

|ψi (z)|2dz = 1 (6.4)

As discussed before, the final electron state must be an continuum stateψkz above
the conduction bandedge of the AlxGa1−xAs barriers in order to form the photocur-
rent. Consider the electron transport in the AlxGa1−xAs region. Refer to Fig. 6.4,
the boundary conditions for the final state is: it comes as a plane wave eikz z from the
left side of the GaAs quantum well, which will be reflected back to the AlxGa1−xAs
barrier due to the GaAs quantum well in the form of re−ikz z so that the final electron
state is

ψkz (z) = eikz z + re−ikz z (6.5)

The electron will reach the right side of the GaAs quantum well in the form of

ψkz (z) = teikz z (6.6)

which is the transmittedwave. To simplifymathematical operationswe have assumed
here a very small external bias so the corresponding electric field is neglected in (6.3).

By (4.63), the total wave functions of the initial and the final electron states are

Ψikx ky =
√

Ωcell

SQW
ψi (z) e

i(kx x+ky y)u(r)

Ψk =
√

Ωcell

SQW
ψkz (z) e

i(kx x+ky y)u(r) (6.7)

where u(r) is the periodic Bloch function of the conduction band, and SQW is the
surface area of the QWIP device in the xy plane. ψi (z) and ψkz (z) are normalized
along the z axis. Here we utilize directly the vertical transition requirement in the k
space about the optical excitation and radiative recombination, i.e., thewave numbers
kx and ky in the xy plane of the initial and final electron states must be the same.

Similar to the derivations of (4.64), we obtain the matrix element of the optical
transition from the initial to the final electron states

〈
Ψk |es · ∇| Ψikx ky

〉 = Ωcell

SQW
es ·

∫
Ω

ψ∗
kz (z)ψi (z)u

∗(r)∇u(r)dr

− i(exkx + eyky)Ωcell

SQW

∫
Ω

ψ∗
kz (z)ψi (z)u

∗(r)u(r)dr

+ezΩcell

SQW

∫
Ω

ψ∗
kz (z)

∂ψi (z)

∂z
u∗(r)u(r)dr (6.8)
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where es = (ex , ey, ez) is the direction of the electric field of the incident light beam.
The second term on the right side of the equals sign in the above equation is zero
because of the wave function’s orthogonality. Note that different from (4.64), here
the initial and final electron states contain the same periodic Bloch function of the
conduction band. The first and the third terms can be further evaluated by replacing
r of the slow-varying envelope functions as the sum of lattice position R of the unit
cell and r ′ within the unit cell (we did so before). Eventually, the first term is zero
since it contains the spatial integration of the product of u and ∇u (the parities of u
and ∇u are opposite so that the spatial integration is zero). The third term contains

∫
cell

u∗(r)u(r)dr

which is 1 (normalization of the Bloch function). Finally,

〈
Ψk |es · ∇| Ψikx ky

〉 = ez

∫
ψ∗

kz (z)
∂ψi (z)

∂z
dz ≡ ez Wkzi (6.9)

which is known as the optical intra-band transition. InChap. 4we study the inter-band
photoluminescence of a quantum well, where the optical transition occurs between
a valence-band hole state and a conduction-band electron state.

As shown in Figs. 6.2 and 6.4, the electrons in a QWIP are confined along the z
direction initially in the quantum well. Both the QWIP, and therefore the electrons
are extended in the xy plane. By Sect. 2.3 we know that the electric field of a light
beam is perpendicular to the propagation direction of the light beam. If the light
beam comes into the device along the z direction, the electric field of the light beam
has no component along the z direction, i.e., ez = 0. The transition matrix element
of (6.9) is thus zero. This is the so-called quantum selection rule mentioned in the
previous section.

Therefore, n-type QWIP needs an optical coupling component such as a diffrac-
tion grating we studied in Sect. 1.2 to generate a significantly nonzero ez component
thereafter an optical response, see Fig. 6.2c. This is why the incident lights to the
quantum wells in Figs. 6.2b and 6.4 are all schematically tilted. This quantum selec-
tion rule however does not apply to the inter-band photoluminescence shown in
Fig. 4.12. Figure 6.5 shows the responsivity (the ratio between the photocurrent and
the optical power of the incident radiation) enhanced significantly by the metal patch
structure on a single-quantum-well infrared photodetector [5].

Refer to Fig. 6.4, let us assume that the potential energy of the conduction band-
edge of the AlxGa1−xAs barriers is zero, and the energy distance of the confined
state to the AlxGa1−xAs conduction bandedge is Ei . Since the electron occupying
Ei is largely confined within the GaAs quantum well for which the electron effec-
tive mass is m∗

1 = 0.067m0, i.e., the electron effective mass in GaAs. The effective
mass of the electron in the continuum states above the AlxGa1−xAs conduction
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Fig. 6.5 Responsivity is
enhanced significantly by the
metal patch structure on the
single-quantum-well infrared
photodetector (207-nm thick
GaAs quantum well
embedded between
Al0.15Ga0.85As barriers).
Metal patches are extended
along the y axis and the light
incidents along the z axis

bandedge assumes the effective mass of the AlxGa1−xAs conduction-band m∗
2 (its

value depends on the Al mole fraction). The energies of the initial and final electron
states are therefore

Eikx ky = �
2(k2x + k2y)

2m∗
1

− Ei , Ek = �
2k2

2m∗
2

(6.10)

With a nonzero ez , inserting (6.9) into (2.123) in Chap. 2 will result in the absorp-
tion coefficient

α(ω) =
∑

k,ikx ky

e2�2
∣∣〈Ψk(r)|es · ∇|Ψikx ky (r)

〉∣∣2 Γ
[
f (Eikx ky ) − f (Ek)

]

2m2
0cεωΩ

[(
Ek − Eikx ky − �ω

)2 + Γ 2
]

= eze2�2Γ

2m2
0cεωΩ

∑
kz i

∫ ∫ |Wkzi |2
[
f (Eikx ky ) − f (Ek)

]

(
Ek − Eikx ky − �ω

)2 + Γ 2

2dkxdky
(2π)2/SQW

= eze2�2Γ SQW
2m2

0cεωΩ

∑
kz i

∫ ∫ |Wkzi |2
[
f (Eikx ky ) − f (Ek)

]

(
Ek − Eikx ky − �ω

)2 + Γ 2

2dkxdky
(2π)2

(6.11)

Note that (2.123) represents in general the optical gain, i.e., one electron transits
from an occupied high-energy state to an empty low-energy state to emit a photon,
while the above equation represents the photon absorption, with an opposite sign
with respect to the optical gain, meaning that one electron transits from an occupied
low-energy state Eikx ky to an empty high-energy state Ek by absorbing one photon.

As mentioned before, the quantum well structure is designed in such a way that
there is only one confined state so we drop off the summation over i in the above
equation. For the wave number kz in the continuum AlxGa1−xAs conduction band,
its density of electron states is dkz/(2π/Lz) so that
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α(ω) = eze2�2Γ

2m2
0cεω

∫ |Wkzi |2
[
f (Eikx ky ) − f (Ek)

]

(
Ek − Eikx ky − �ω

)2 + Γ 2

2dk
(2π)3

(6.12)

Note Ω = SQWLz . The above expression represents the optical absorption for one
GaAs quantum well surrounded by two AlxGa1−xAs barriers. One way to increase
the optical absorption of the QWIP device is to increase the number of quantum
wells, NQW, so that

α(ω) = NQW
eze2�2Γ

2m2
0cεω

∫ |Wkzi |2
[
f (Eikx ky ) − f (Ek)

]

(
Ek − Eikx ky − �ω

)2 + Γ 2

2dk
(2π)3

(6.13)

This is what we depict in Fig. 6.2 that NQW = 50. In principle we may increase NQW

as much as we want, while in practice the growth of multiple identical quantumwells
is not trivial.

Figure 6.6a shows the theoretical optical absorption spectrum of one GaAs/
AlxGa1−xAs QWIP as a function of Γ (0.1, 1.0, 1.6, and 6.0 meV). Equation (6.13)
represents the total probability that electrons initially occupying Ei will transit to the
continuum states above the AlxGa1−xAs conduction bandedge by absorbing incident
photons. It also represents the number of electrons that occupy the initially empty
AlxGa1−xAs conduction band after absorbing photons, i.e., the photogenerated elec-
trons, or simply photocarriers. The photocarriers will form the photocurrent when
an external bias is applied, see Fig. 6.2b, c. Equation (6.13) therefore directly rep-
resents the photocurrent of the QWIP device. This can be observed by comparing

(a) (b)

Fig. 6.6 a Theoretical absorption spectrum of a GaAs/AlxGa1−xAs QWIP as a function of relax-
ation energy Γ = 0.1, 1.0, 1.6, and 6.0 meV. b Photocurrent spectrum of the GaAs/AlxGa1−xAs
QWIP device after γ irradiation of different doses (0, 1, 6, and 16 Mrad)
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the theoretical absorption spectrum of Fig. 6.6a with the experimental photocurrent
spectrum shown in Fig. 6.6b.

Figure 6.6a shows that the QWIP responses to a light beam with a wavelength
below 8 µm. 8 µm is therefore denoted as the response wavelength λ0 of the QWIP,
which corresponds to the energy between Ei confined in the GaAs quantum well
and the conduction bandedges of the AlxGa1−xAs barriers. It is a bit longer than
the real response wavelength shown in Fig. 6.6b. There are two major reasons. The
real GaAs quantum well width and the Al mole fraction are all a bit smaller than
their designed values, see Table 3.1. Both of them decrease the energy separation
between Ei and the conduction bandedges of the AlxGa1−xAs barriers, resulting in a
longer λ0. And the approximation of square quantum wells also introduces errors in
theoretical predictions that in practice, there are also inter-diffusions of atoms across
the interfaces between the barrier and the well.

Figure 6.6b presents also the photocurrent spectra of the QWIP device after γ irra-
diation. One important application field of infrared photodetection is air-born and
space-born remote sensing for weather forecasts and environmental surveillance. γ
irradiation is strong in space so it may induce negative effects on the device perfor-
mance. The dose of the γ irradiation is measured in terms of Mrad. The photocurrent
spectra of different γ irradiation dose presented in Fig. 6.6b are measured when
the QWIP is at 80 K and biased by an external negative bias of 5 V. γ irradiation
blue-shifts the response wavelength from 8.28, 8.0 to 7.8 µm.

A major effect of the γ irradiation is the increase of defects in the crystal lattices
which reduces the lifetime of the photo-generated carriers, which is reversely pro-
portional to the relaxation energy Γ of these photo-generated carriers. Theoretical
absorption spectra ofΓ = 0.1, 1.0, 1.6 and 6.0meV are presented in Fig. 6.6a, which
agree qualitatively with the experimental observation.

Before we close this section, let us take a look at our pre-assumption that we
mostly focus on electron states with small amplitudes of wave vectors from a new
perspective other than the cases that only electron states of small energies, thus small
amplitudes of wave vectors, are occupied. Take a single GaAs QW embedded in
AlxGa1−xAs. The potential energy is written as

V (z) =
⎧⎨
⎩
0 for z < 0
−Δ for 0 ≤ z < LQW

0 for z ≥ LQW

(6.14)

when we set the conduction bandedge of the AlGaAs barrier as zero. Due to the
finite barrier height, the wave function of the confined state penetrates into the barrier
region. As a first-order approximation, let us neglect the wave function penetration
in the barrier and approximate the ground confined state as

ψ1(z) =

⎧⎪⎪⎨
⎪⎪⎩

0 for z < 0√
2

LQW
sin

(
π z
LQW

)
for 0 ≤ z < LQW

0 for z ≥ LQW

(6.15)
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Fig. 6.7 Electrons at
high-energy states are not
optically coupled with the
ground-state electron (red
line in the inset)

This is a very good numerical approximation to the real case, which can be easily
observed by comparing with the numerical solution when the finite barrier height is
used, see the red line in the inset in Fig. 6.7.

By using the boundary conditions of (6.5) and (6.6) to calculate the wave function
of the extended state ψE (z), it is easy to obtain the optical transition matrix element
between ψ1(z) and ψE (z), i.e.,

∣∣∣∣
∫

ψ∗
1 (z)

dψE (z)

dz
dz

∣∣∣∣
2

as a function of E , where E > 0 is the kinetic energy of the electron in the extended
state above the conduction bandedge of the AlGaAs barrier. The numerical result is
presented in Fig. 6.7. It is observed here that the optical transition matrix decreases
very quickly with E . The reason is numerical and very simple. The kinetic energy of
state E in the quantum well region is E plus the barrier height (0.26 eV in Fig. 6.7),
so is very high, resulting in a fast oscillation, while ψ1 is a smooth function. The
overlap between a fast oscillating function and a smooth function is small so that
the electrons at high-energy states do not optically coupled with the ground-state
electron. The implication of this result is that the approximation of the high-energy
states in the conduction band of AlGaAs by a single effective mass of the electron
at the conduction bandedge is of course very rough but still good enough for our
studies.

6.3 Photocurrent of Solar Cell Using Quantum Dot

Common solar cell is based on the photovoltaic effect, and semiconductor p-n junc-
tion based solar cell is the most popular structure, which is schematically shown in
Fig. 6.8. At equilibrium, free electrons provided by donors in the n region and free
holes provided by acceptors in the p region will recombine with each other at the
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Fig. 6.8 a Energy band structure of a p-n junction at equilibrium in darkness. b Short circuit of a
p-n junction under illumination. Isc denotes the short-circuit current

Table 6.1 Basic GaAs p-n solar cell structure parameters

Layers Doping (cm−3) Thickness (nm)

p GaAs 2 × 1017 500

i GaAs Undoped 140

n− GaAs 2 × 1016 1860

n+ GaAs 2 × 1018 500

junction interface, resulting in a depletion region, where donor ions and acceptor
ions form the built-in electric field. Fermi level E f is flat everywhere and there is no
net electric current and the voltage output is zero. Under light illumination, excess
electrons and holes are generated after absorbing photons. In the depletion region,
the excess photogenerated electrons and holes will be driven by the built-in field to
drift into opposite regions. In the short-circuit case when the Fermi level is still flat
across the structure, the photocurrent output reaches the maximal value Isc.

Let us study a common GaAs p-n junction solar cell whose depletion region is
embeddedwith InAs quantum dots, denoted as sampleA, as well as a referenceGaAs
solar cell without embedding any nanostructures, sample B [6]. Table 6.1 lists the
basic GaAs p-n solar cell structure parameters. There is also a top 100 nm p-doped
Al0.85Ga0.15As window layer and a back n-doped Al0.2Ga0.8As surface field layer to
prevent minority carriers from diffusing into the surfaces.

We approximate each quantum dot layer by an effective InAs quantum well layer
with a thickness of 2.3 ML (0.7 nm, i.e., InAs quantum dot growth condition) along
the sample growth direction (the z direction), while the density of electron and hole
states in such a quantum well is approached by a single δ function to account for
the discrete nature of the three-dimensional confined states. Energy band structures
of the two solar cells at equilibrium are presented in Fig. 6.9 which are calculated
theoretically.
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(a)

(b)

Fig. 6.9 One-dimensional energy band structures of the two p-n GaAs solar cells. a Sample A:
5 layers of InAs quantum dots separated by 20 nm thick GaAs layers embedded in the depletion
region; b Sample B: reference solar cell

(a) (b)

Fig. 6.10 aAs-measured photocurrent spectra at 300K under a xenon lamp. b Photocurrent spectra
normalized with respect to the Si photodiode

As-measured photocurrent spectra shown in Fig. 6.10a are measured by a Keith-
ley multimeter under a xenon lamp with a monochromator, where a Si photodiode is
used as the reference. We have learned the importance of the reference measurement
already in Sect. 1.5. While the as-measured photocurrent spectra are composed of
many fine structures, the normalized ones are pristine. Here two main spectral differ-
ences are observed between the two samples. The first one is the sub-GaAs-bandgap
photocurrent (λ > 900 nm), and the second is the photocurrent enhancement in sam-
ple A above the GaAs bandgap (λ < 900 nm).

The sub-GaAs-bandgap photocurrent (λ > 900 nm) is easily understood that it
is due to the photon absorption of the embedded InAs quantum dots. The most
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Fig. 6.11 Wave functions of
conduction-band (CB)
electron and valence-band
(VB) hole with a transition
energy �ω = 1.593 eV
(above the GaAs energy
bandgap). Also presented are
the schematic CB and VB of
GaAs embedded with InAs
quantum dots modeled as
one-dimensional quantum
wells

interesting thing about Fig. 6.10b is the enhancement of the photocurrent in the
above-GaAs-bandgap wavelength range of λ < 900 nm in quantum-dot-embedded
sample A. The most possible mechanics of the photocurrent enhancement above
the GaAs energy bandgap in sample A is the increased photon absorption due to
quantum-dot induced reflections of the wave functions of an incident conduction-
band electron from one side of the depletion region and an incident valence-band
hole from the other side.

Refer to Fig. 6.11, for simplicity, wemodel the quantum-dot potential variations in
the conduction and valence bands as one-dimensional quantum wells. The incident
conduction-band electron, with an energy above the GaAs conduction bandedge,
comes to the quantum-dot layers in a plane wave form

eik1z

it is partially reflected
r1e

−ik1z

and partially transmitted
t1e

ik1z

Similarly the wave function components for the valence-band hole are

e−ik2z , r2e
ik2z , t2e

−ik2z

Note that there are other transmission cases such as both the conduction-band electron
and the valence-band hole incident to the quantum-dot regions from the same side
but they do not contribute to the photocurrent.

We first study sample B. There are no reflections without quantum dots so that

r1 = r2 = 0 , t1 = t2 = 1.0
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The amplitudes of the two wave functions in sample B are shown as red dotted lines
in Fig. 6.11. And the optical interband transition matrix element between these two
wave functions is proportional to

Wsample B = 〈eik1z|e−ik2z〉 =
∫

e−i(k1+k2)z dz (6.16)

The wave functions are modified when quantum dots are embedded. As shown
in Fig. 6.11, the conduction-band electron transmits relatively well due to the small
electron effective mass so that it can be well approximated as a perfect transmission
and its wave function on the right side of the structure is

eik1z

The much heavier valence-band hole is greatly affected. For the wave function pre-
sented in Fig. 6.11, we can neglect the transmitted valence-band hole so that its wave
function on the right side of the structure becomes

e−ik2z + eik2z

The optical transition matrix element of sample A becomes now

Wsample A = 〈eik1z|e−ik2z + eik2z〉 = Wsample B +
∫

e−i(k1−k2)zdz (6.17)

Wsample B oscillates while the second term in Wsample A can be very large when
k1 = k2. The condition of k1 = k2 can easily be fulfilled which explains the pho-
tocurrent enhancement of sample A over the whole optical range above the GaAs
energy bandgap. Note that the Wsample A enhancement in the above analysis is
very large as compared with experimental data due to the approximation of the
three-dimensionally confined quantum-dot potentials by one-dimensionally confined
quantum-well potentials, leading to a strongly exaggerated wave function reflection.

As briefly mentioned in the introduction of Chap. 1, colloidal quantum dots are
very bright under optical excitation. This implies that (1) excitons in these quantum
dots are easy to be photogenerated, (2) the easily photogenerated electrons and holes
readily relax to their respective bandedge states, (3) then radiatively recombine to emit
photons, see Fig. 4.1. A novel idea is to extract the electron and hole photogenerated
in the quantum dot to an external electric circuit before they recombine, forming
a photocurrent. When the solar light is used to photogenerate the exciton in the
quantum dot, we have a so-called quantum dot sensitized solar cell [7], which is
schematically represented in Fig. 6.12.

Aswill be shown in Fig. 7.1, the conduction bandedge ofCdSe is lower than that of
CdS,while the valence bandedge of CdSe is higher than that of CdS. So for a quantum
dot consisted of a CdSe core and a CdS shell, the photogenerated electron and hole
will all be confined in CdSe core region. In other words, CdSe is a quantum well for



6.3 Photocurrent of Solar Cell Using Quantum Dot 201

Fig. 6.12 Schematics of
quantum dot sensitized solar
cell. FTO = fluorine-doped
tin oxide film

Fig. 6.13 Incident photon to
current efficiency (IPCE)
spectra of CdSe core-CdS
shell (black line) and CdS
core-CdSe shell (red line)
structured QD sensitized
solar cells

both the conduction-band electron and valence-band hole, while CdS is the energy
barrier, forming so-called type-I heterostructure. When we apply CdSe-CdS core-
shell quantum dots for photoluminescence purpose, the core-shell structure is perfect
since both the photogenerated electron and hole are all confined in the CdSe core,
resulting in an efficient radiative recombination. However, for solar cell applications,
we want to extract photoexcited electron and hole for electric current, thus a CdS
core-CdSe shell reversed type-I quantum dots will work better, since this reversed
structure will facilitate the injection of photoexcited electrons from the quantum dot
to the TiO2 substrate, resulting in significantly improved electron injection efficiency.
Figure 6.13 shows that the energy conversion efficiency of reversed type-I quantum
dot sensitized solar cell is better than the common type-I structure. Here the energy
conversion efficiency is presented in terms of incident photon to current efficiency
(IPCE).
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6.4 Multiphoton Induced Photocurrent

Recall the multiphoton-induced (multiphoton excitation) photoluminescence spectra
in Sect. 4.6 where under the photo-excitation of an optical field

∑
s

hse−iωs t

the steady-state occupation Cm(t) of electron state m up to the second order is in the
form of

Cm(∞) = C (0)
m + C (1)

m (∞) + C (2)
m (∞) (6.18)

where the electron occupies initially an electron state Ek with an occupation proba-
bility C (0)

k ,

C (0)
m = 0

C (1)
m (∞) =

∑
s

hs
mkC

(0)
k

Em − Ek − �ωs + iΓmk

C (2)
m (∞) = −

∑
s,i

hs
mih

s
ikC

(0)
k(

Ei − Ek − �ωs + iΓik

)(
Em − Ek − 2�ωs + iΓmk

) (6.19)

i.e., (4.97) and (4.101).
Since the transition probabilities are proportional to the square of Cm ,

∣∣C (1)
m (∞)

∣∣2 ∝ ∣∣hs
∣∣2 ∝ S ,

∣∣C∗(2)
m (∞)

∣∣2 ∝ ∣∣hs
∣∣4 ∝ S2 (6.20)

where S is the optical power of the excitation light, see (4.87) which links S and hs. In
other words, under weak excitation, perturbation theory predicts that the one-photon
excitation will result in a linear relationship between the photocarrier density and
excitation power, and the photocarrier density due to the two-photon excitation is
proportional to the square of the excitation power.

Let us see the experimental results of the multi-photon generated photocurrent.
The QWIP photo-pixel to be tested has a surface area of D = 50 × 50µm2. It has an
optical coupling surface of 45◦, see Fig. 6.14, so that the electric field of the incident
electromagnetic field has a non-zero z-component. And the detailed structure of
the QWIP is presented in Fig. 6.2a. This QWIP responses to infrared radiations
in the range of 6–9 µm at 80 K. And the energy difference between the confined
state in GaAs to the conduction bandedge of the AlxGa1−xAs barriers is 155 meV
(corresponding to 8.0 µm response wavelength).

We use a free electron laser (FEL) light source that contains a train of macro
pulse at a frequency of 3 Hz as the excitation light beam. Each macro pulse contains
104 micro pulses with a time duration of 4 ps. A series resistor of RL = 100 KΩ is
connected to the QWIP pixel, and a driving bias of Vex applies. Voltage at QWIP is
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Fig. 6.14 Test structure of
the QWIP device

Fig. 6.15 The relationship
of the photovoltage Vac and
the FEL excitation power.
T = 80 K

measured and recorded. We first measure Vdc and therefore R0 of QWIP in darkness.
When Vex = 6.0 V, Vdc = 5.81 V, Vex = 3.1 V, Vdc = 3.02 V. We then introduce the
3-Hz FEL macro pulse train to measure the bias on QWIP. The difference of it from
Vdc is the photovoltage Vac, which is shown in Fig. 6.15 as a function of the FEL
power when the FEL wavelength is 8.0 µm.

Let RFEL be the resistance of the QWIP under the illumination of the FEL, R0 is
the resistance of the QWIP in darkness, it is easy to see that

RFEL = w

Deμn

(
nph + n0

) , R0 = w

Deμnn0
(6.21)

where w = 2.79 µm is the thickness of the multiple quantum wells (50 periods of
alternating GaAs layers, each ca 5 nm, and AlxGa1−xAs layers, each ca 50 nm).
D = 50 × 50 µm2 is the area of the optical pixel (mentioned before). n0 is the
density of carriers above the conduction bandedge of AlxGa1−xAs barriers, while
nph is the density of photocarriers excited by the FEL light beam. μn is the carrier
mobility, and e is the charge unit. We obtain directly the photocarrier density
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(a) (b) (c)

Fig. 6.16 The relationship between photocarrier density and FEL excitation power at 80 K. The
wavelengths of the FEL excitation laser sources are 8.0, 11.9, and 13.2µm, respectively. Solid lines
are fitted curves Sα , where S is the FEL excitation power

nph = wVexVac

Deμn RLVdc

(
Vdc − Vac

) (6.22)

For n-type Al0.3Ga0.7As, μn is normally expressed as

μn = μ0

[
1 +

(
μ0Fz

vs

)2
]−1/2

(6.23)

where μ0 is the carrier mobility at low field, ca 2000 cm2/V s, vs is the saturation
velocity, ca 0.1 ∼ 5 × 106 cm/s, Fz is the electric field in the AlxGa1−xAs barriers
due to the external bias.

Take vs = 5 × 106 cm/s, Fig. 6.16 presents the photocarrier density obtained
from (6.22) and Fig. 6.15. It is shown clearly that the relationship between the
photocarrier density and the FEL excitation power is not linear. Using a relationship

nph ∝ Sα (6.24)

to fit the data of Fig. 6.16, we obtain α = 1.64 for the 8.0 µm photons, α = 5.01 for
the 11.0 µm photons, and α = 4.5 for the 13.2 µm photons.

It can be observed in light of relationship of (6.20) and the QWIP response wave-
length of 8 µm that there are clear differences between the one-photon (α = 1.64 at
photon wavelength 8.0 µm) and the multiphoton (α = 5.01 at 11.9 and 4.5 at 13.2
µm) excitation processes. But the experimental data of multiphoton excitations do
not agree with the two-photon excitation relationship in (6.20). One major difficulty
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is that the FEL excitation is composed of a train of macro pulse at a frequency of 3 Hz
as the excitation light beam while each macro pulse contains 104 micro pulses with
a time duration of 4 ps, so that the time-dependent solution of (4.85) is necessary.
We will study the time-resolved photoluminescence in Sect. 7.2.
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Chapter 7
Optical Properties of Fluorescent
Colloidal Quantum Dots

Abstract In the last chapter of the book we introduce the latest applications and
developments of semiconductor spectroscopy in the field of bio-nano-photonics
where semiconductor colloidal quantum dots are researched and developed as
biomarkers using standard absorbance, fluorescence, time-resolved fluorescence
(in ns time domain), fluorescence blinking (ms time domain) spectra, as well as
bioimaging.

A tremendous amount of research and technical development in nanotechnology
has been invested and published in the biological, medical and environmental fields.
This chapter focuses on briefly introducing fluorescent colloidal quantumdots (QDs).
Some of them are listed in Table 7.1.

For bioimaging applications, semiconductor colloidal quantum dot (QD) is com-
monly protected by a shell or multiple shells so that the electron and hole states
confined in the QD core are not affected by the external environments. There are also
biological reasons for the shells such as protecting heavy semi-metal atoms contained
in the QD core from leaking. CdS and ZnS are commonly used as shell materials
for CdSe-based QDs, as the energy bandgap of bulk CdSe is smaller than those of
CdS and ZnS. CdSe-CdS/ZnS heterostructure is further known to be type-I, meaning
that CdSe is the quantum well material while CdS/ZnS the quantum barrier for both
electrons in the conduction band and holes in the valence band. CdSe therefore is
principally used as theQD corematerial while CdS/ZnS the shell material. Figure 7.1
shows a schematic drawing of a core-shell CdSe-CdS QD and its energy band struc-
ture. Because of the small QD size, the quantum confinement induces energy state
discreteness, i.e., the discrete energy states Ec0, Ec1 . . . in the conduction band and
Ev0, Ev1 . . . in the valence band. The transition energy between ground levels Ec0

and Ev0 is thus a function of the QD size.
Many of these semiconductor QDs (CdS, CdSe, ZnSe, ZnO) are prepared by sol-

gel method at 250–300 ◦C, thus denoted as colloidal [1, 2]. Here, metallic oxide is
selected as the source metal due to its low toxicity. Moreover, 1-Octadecene (ODE)
is selected as the non-coordinating solvent because of its relatively lowmelting point
(below 20 ◦C), relatively high boiling point (about 320 ◦C), low cost, low toxicity,
low reactivity to precursors, and excellent solvation power for many compounds at
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Table 7.1 Representative fluorescent quantum dots

Materials (core/shell) Emission wavelength
(nm)

FWHM (nm) Quantum efficiency
(%)

ZnSe/ZnS 400–440 <20 Up to 90

InP/ZnS 470–800 50–70 >50

CdS/ZnS 440–470 <25 >80

CdSe/ZnS 520–650 <30 60–90

PbS 800–2000

Fig. 7.1 Schematic diagram
of a core-shell CdSe-CdS
QD with surface ligand
(either ODA or 3MPA) and
its energy band structure

elevated temperatures. As-grown core-shell CdSe-CdS QDs are commonly coated
with surface ligands octadecylamine (ODA, linear chemical formulaCH3(CH2)17NH2)
thus are dissolved in chloroform or toluene. To make them dispersible in water, the
surface ligands are exchanged to, for example, 3-mercaptopropionic acids (3MPA,
HSCH2CH2COOH), see Fig. 7.1.

7.1 Absorbance and Fluorescence

The size of the colloidal QD is commonly controlled by the reaction time, which is
demonstrated by a series of absorbance and fluorescence spectra in Fig. 7.2 of CdSe
reaction solutions sampled at different reaction times. The basic setups of absorbance
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Fig. 7.2 Absorption and
fluorescence spectra of a
series of CdSe reaction
solution samples collected at
different reaction times. Inset
shows the basic setup of
absorbance (=difference
between excitation and
transmission spectra) and
fluorescence measurements
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and fluorescence measurements are shown in the inset where the absorbance is
obtained as the difference between the excitation and transmission spectra while
the fluorescence is measured normally at the perpendicular direction of the excita-
tion. Here the correlation between the size of CdSe QDs in the reaction solution and
the growth time is clearly reflected in the wavelengths of the absorbance and fluo-
rescence peaks that the short growth time means a small QD size (a large quantum
confinement and thus a short wavelength).

Interestingly, the word “photoluminescence” is used in previous chapters describ-
ing the photon emission fromamatter after the absorption of photons. “Fluorescence”
means basically the same thing. Photoluminescence is commonly used in semicon-
ductor physics, while fluorescence is in biophysics and chemistry. In this chapter
we adopt the word fluorescence as it is mostly used in the research and technical
development of colloidal QDs.

Figure 7.3 shows the absorbance and fluorescence spectra of ODA-coated QDs of
single component CdSe (average diameters ca 2.6 and 3.4 nm, respectively), core-
shell CdSe-CdS QDs (average diameters of CdSe/CdS-1 and CdSe/CdS-2 are 4.4
nm and 5.7 nm, respectively) [2].

Things can be different depending on the QD applications. For most bioimaging
applications, the electron in the conduction band and the hole in the valence band are
to be confined in the QD core for best fluorescence. For solar energy applications,
however, either the electron or the hole is to be extracted from the QD to the external
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Fig. 7.3 Absorption and
fluorescence spectra of a
CdSe and b CdSe-CdS
core-shell QDs in toluene.
Two QDs are presented in
each QD type: solid lines
represent CdSe-1 (a) and
CdSe-CdS-1 (b), dash lines
represent CdSe-2 (a) and
CdSe-CdS-2 (b)
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Fig. 7.4 Normalized
absorbance (with respect to
the first absorption peak) and
fluorescence spectra of CdS
and CdS-CdSe core-shell
QDs in toluene normalized.
A noticeable difference in
wavelengths of the first
absorption peak and the
fluorescence peak is
observed, known to be the
Stokes shift
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electric circuit as soon as it is photogenerated before it recombineswith its counterpart
(Sect. 6.3). For this, CdS is used as the QD core while CdSe as the QD shell. The
absorbance and fluorescence spectra of these CdS-CdSe core-shell QDs in toluene
are shown in Fig. 7.4. Here the diameter of the CdS core is about 4.0 nm, and 6.8
nm for whole CdS-CdSe QDs.

A noticeable difference inwavelengths of the first absorption peak and the fluores-
cence peak is always observed, known to be the Stokes shift, in Figs. 7.2 and 7.3,most
clearly in Fig. 7.4 when comparing the absorbance spectrum normalized with respect
to the first absorption peak with the normalized fluorescence. The understanding of
the Stokes shift is not complete yet, see, e.g., [3].

In Figs. 7.2 and 7.3, as well as Fig. 7.4, the full width at half maximum (FWHM)
of the fluorescence peaks of these QDs is all about 25 nm, it is a bit smaller for
CdS QDs in Fig. 7.4. In aqueous solution the value of the FWHM is usually much
larger. Such a broad peak is commonly attributed to the distribution of QD sizes
in the QD solution. Referring to the schematic QD structure in Fig. 7.1, when Ec0
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and Ev0 denote the ground-state energies measured from the conduction-band and
valence-band edges, E = Eg + Ec0 + Ev0 is the ground-state transition energy of
the QD, where Eg is the energy bandgap of the QD core material. For an infinite
potential QD with a radius of r , k2 = 2m∗Ec0/�

2, kr = π so that

r2 = π2
�
2

2m∗Ec0
, 2rδr = π2

�
2

2m∗
δEc0

E2
c0

(7.1)

where m∗ is the electron effective mass, δEc0 is the variation in Ec0 induced by
δr . Since Ev0 depends weakly on the QD radius because of the large hole effective
mass (about 0.5m0 for commonly used semiconductors, wherem0 is the electron rest
mass), δE ≈ δEc0 so that [4]

δr

r
= δEc0

2Ec0
= δEc0

2(E − Eg − Ev0)
≈ δE

2(E − Eg)
(7.2)

Consider CdSe-based QDs emitting at 600 nm, Eg = 1.74 eV (Fig. 7.1) and E =
1.24/0.6 = 2.07 eV (600 nm). For δE = 86 meV (25 nm),

δr

r
≈ δE

2(E − Eg)
= 0.086

2(2.067 − 1.74)
= 0.086

2 × 0.32667
= 0.13 (7.3)

This agrees well with high-resolution transmission electron microscopy (HRTEM)
imagings of QDs, e.g., see Fig. 7.5a–c where the statistic distribution of the QD
diameters is presented in Fig. 7.5d. Thus, the statistic distribution of the QD size can
be one reason for the finite FWHM of the QDs in solution. However, there may be
other reasons.

As mentioned before, the absorbance and fluorescence spectra thus far presented
are measured on many QDs in solution, i.e., a group of QDs which are well dispersed
in solvent at microscopic level. At microscopic level, they may be totally dispersed
as single QDs in solvent. However, they may also form clusters through various
chemical interactions via their surface ligands.

One good way to measure the fluorescence spectra from single QDs is to deposit
QDs on a microscope slide then study their optical properties using a fluorescence
microscope. The sample preparation is schematically shown in Fig. 7.6a–c: First,
use a capillary pipette to place a small drop of QD solution on the center of a
microscope slide, carefully place a clean coverslip over the drop, seal the coverslip
with nail polish. Allow the nail polish to dry before microscopy study.We first use an
AxioObserver.D1microscope (Carl Zeiss) equippedwith amercury lamp (HBO100,
Carl Zeiss), a filter set (Exciter: FF02-435/40-25, Dichroic: FF510-Di02-25 × 36,
Emitter: FF01-500/LP-25, Semrock), an EMCCD camera (Andor), and a 100 × 1.4
NA oil immersion objective (Carl Zeiss) to observe and record a time series of QD
fluorescence images. Figure 7.6d displays one typical image frame of two single
CdSe-ZnS QDs with an emission peak wavelength at 655 nm (the exposure time for
each frame is 20 ms and the readout time of the CCD is 30 ms).
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(a)
(c)

(d)

(b)

Fig. 7.5 High-resolution transmission electron microscopy (HRTEM) micrographs of one batch
of ODA-coated CdSe-CdS QDs at resolution of a 20 nm, b 10 nm and c 5 nm where the atomic
structure of a single CdSe-CdS QD is clearly depicted. d Statistic distribution of the QD diameters

(a)

(b)

(c)

(d)

Fig. 7.6 aUse a capillary pipette to place a small drop of QD solution on the center of a microscope
slide; bCarefully place a clean coverslip over the drop; c Seal with nail polish; Allow the nail polish
to dry before microscopic study. d One representative frame of two single CdSe-ZnS QDs with an
emission peak wavelength 655 nm
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As mentioned before, the size of the QDs is about 7 nm in diameter, while the
light spot in Fig. 7.6d is about 1.0 µm, which is no less than the wave nature of the
light (recall that the emission peak wavelength of the CdSe-ZnS QDs is 655 nm).
It is therefore not possible to assess whether the light source is a single QD or a
group of QDs by only looking at one single image frame. However, it is empirically
known that the fluorescence of a single QD irregularly switches between bright and
dark under continuous irradiation at millisecond to second time domain depending
on the QD materials (including surface ligands) and structures. This phenomenon
is normally known as fluorescence blinking or intermittency (we will discuss it in
Sect. 7.3).

Using this blinking effect, we can measure the fluorescence spectrum of single
QDs. Let us now study water-soluble (3MPA-coated) CdSe-CdS/Cd0.5Zn0.5S/ZnS
core-multishell QDs that have a fluorescence peak at 596 nmat room temperature.We
first deposit QD solutions of various QD concentrations on microscope slides to find
the right sample displaying QD blinkings using the AxioObserver.D1 microscope.
Here the microscope uses a bandpass filter to obtain an excitation beam centered at
435 nm with a bandwidth 40 nm and a reflector bandpass filter that records all light
with wavelengths above 500 nm.We then take the sample to a structured illumination
microscope (Zeiss Elyra PS)with a 63 × 1.4NAoil immersion objective (Carl Zeiss),
excite the sample using a 488 nm excitation laser, and record over a bandwidth of
562–637 nm (to cover theQDfluorescence peak) with a spectral resolution of 2.9 nm.
More specifically, the microscope takes one image of a single QD in a wavelength
window of 562–564.9 nm, takes another image in 564.9–577.8 nm and so on. We
then calculate the brightness of the QD image per each wavelength window, which
becomes the fluorescence spectrum of the single QD.

Figure 7.7a shows one image of quite diluted QDs (the QD concentration in
solution is only 10 pM) so that the optical spectra of single QDs are obtained, while
Fig. 7.7b shows the image of highly concentrated QDs.

The fluorescence spectra of 15 randomly chosen single QDs from the diluted
sample (a) are presented in Fig. 7.7c as black solid lines, together with the optical
spectrum of the QD ensemble from sample (b), indicating that the optical spectra of
single QDs and the QD ensemble are very similar. Moreover, we further examine
the spectral diffusion of the microscope by measuring the spectrum of the excitation
laser light reflected from themicroscope slide. (Two fundamental factors are involved
here. The first is that the excitation laser wavelengthwas stated to be 488 nm,which is
always to be understood to be the wavelength of a spectral peak with a finite FWHM,
which is denoted as FWHMlaser. The second is that the spectral resolution of an
optical instrument is finite so that the measured FWHM, denoted as FWHMmeasure

is larger than FWHMlaser. The difference between the two FWHMs is the major
cause of the spectral diffusion.) The FWHM of the reflected spectral peak was less
than 5 nm shown in Fig. 7.7d, far narrower than the QD fluorescence peak. It is
therefore safe to conclude that, in addition to the distributed QD size factor discussed
before, the large FWHM, ca 33 nm in Fig. 7.7c, see also Table 7.1, of the single QD
fluorescence peak can be intrinsic. This is principally due to the large ratio between
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(a) (c)

(d)
(b)

Fig. 7.7 a One image frame showing the spatial locations of single QDs in the diluted sample.
b One image frame of the highly concentrated QDs. c Fluorescence spectra of single QDs (black
lines) and the compact QD ensemble (red line). d Optical spectrum of the reflected excitation laser
of 488 nm

the number of surface atoms to that of volume atoms and the abrupt change from
large semiconductor atoms (Cd, Zn, Se, S etc.) to small organic ligand atoms (mostly
H, C, O) in colloidal nano-size systems.

7.2 Time-Resolved Fluorescence

Photoluminescence or fluorescence spectroscopy is a steady-state technique that
detects the photon emission from a sample under a continuous-wave laser excitation.
We now introduce the time-resolved fluorescence spectroscopy that is used to study
the dynamics of the QD fluorescence. Refer to Fig. 7.8a–d, the QD is initially in
its ground state that all energy states in the valence band are occupied (we do not
consider magnetic properties so that each energy state can be maximally occupied
by two electrons, one spin up and the other spin down) while the conduction band
is totally empty. In the electron picture (a–d), the photoexcitation of the QD occurs
such that an electron originally occupying a valence-band state absorbs a photon to
transit to an initially empty conduction-band state, leaving the valence-band state
empty (i.e., a hole). The electron will relax to the ground state Ec0 in the conduction
band, while the hole will relax to the ground level Ev0 in the valence band. The
electron at Ec0 transits to the empty Ev0 (i.e., the hole at the valence-band ground
state) to emit a photon (QD fluorescence), for which the conduction band states are
all empty and the valence band states are occupied.

One critical factor in a QD is the quantum confinement for both the electron and
hole. In this case, the electron in a conduction-band state and the hole in a valence-
band state interact with each other via Coulombic interaction to form an electron-hole
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E0 (vacuum) En E1 E0

(a) (b) (c) (d)

(a’) (b’) (c’) (d’)

Fig. 7.8 a A QD at its ground state. b One electron in a valence-band state absorbs an excitation
photon then transits to a conduction-band state. c Both the electron in the conduction band and
the hole in the valence band relax to their respective ground states. d Radiative recombination of
the electron and hole to emit a photon, i.e., fluorescence. a’–d’ are the same as a–d but in the
electron-hole picture with modified electron states and hole states

pair, i.e., the exciton. Note a few concepts here. The electron and the hole in the QD
are always interactingwith each other via Coulombic interactionwhich is very strong
in the QD because of the small size of the QD (commonly less than 10 nm). Before
photo-excitation, the QD is at its ground state, also known as vacuum state that the
valence-band states in the QD are completely filled and the conduction-band states
are completely empty (no electron-hole pair, i.e., no exciton, thus “vacuum”). The
ground exciton is formed between an electron occupying Ec0 and a hole occupying
Ev0. Thus, the photoexcitation, energy relaxation and radiative recombination of the
electron and hole in the QD is more precisely described in the electron-hole picture
shown in Fig. 7.8a’–d’. Here we have denoted the electron states by E ′

c0 and E ′
c1, and

the hole states by E ′
v0 and E ′

v1 after including the Coulombic interaction between the
electron and hole.
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Fig. 7.9 Photoexcitation
from QD ground (vacuum)
state E0 to an excited exciton
state En , energy relaxation
from En to exciton ground
state E1 at a rate of 1/τ , and
radiative recombination from
E1 to E0 at a rate of 1/β

Theoretically the description of the energy states of the electron-hole pair is the
Hamiltonian of (2.126) that we have studied in Sect. 2.4 which is repeated below

[
−�

2∇2
e

2m∗
e

− �
2∇2

h
2m∗

h
− e2

4πε∞|re − rh | + Ve(re) + Vh(rh)

]
ψn(re, rh) = Enψn(re, rh)

(7.4)
where subscript “e” denotes the electron and “h” denotes the hole, Ve(re) and Vh(rh)
are quantumconfinement potential energies for the electron and the hole, respectively.
ψn(re, rh) is the envelope function of the exciton composed of electron re and hole
rh . In the exciton picture, the initial vacuum state of the QD is denoted by E0; An
incident photon generates an exciton at excited state En , which will relax to the
ground exciton state E1 then radiatively recombine to emit a photon thereafter return
to vacuum state E0. The transition processes in the exciton picture are summarized
in Fig. 7.9 with transition rates indicated.

The time-resolved fluorescence spectrum is to study the energy relaxation time τ

and radiative recombination lifetime β. Refer to Fig. 7.10, a picosecond laser pulse
is led into a QD ensemble, and the QD fluorescence is detected as a function of time
t , denoted as F(t), i.e., the aforementioned time-resolved fluorescence spectrum.
The temporal resolution can be obtained by many techniques. One of them is the
time-to-amplitude-converter (TAC), which is briefly introduced in Fig. 7.10.

In order to quantitatively correlate the principal decay processes to the time-
resolved fluorescence spectrum, we study the transition rates of the energy relaxation
and radiative recombination of an exciton in the QD by the following principal decay
processes:

1. Three principal exciton states: excited exciton state ψn (energy En), with its
occupation nn; ground exciton state ψ1 (E1) with occupation n1; vacuum state
ψ0 (E0) with occupation n0.

2. Optical excitation to generate an exciton from vacuum to ψn .
3. ψn-exciton relaxes at a rate 1/τ to ψ1 nonradiatively.
4. Ground-state exciton transits radiatively to ψ0 at a rate 1/β.

Following the time-resolved fluorescence experimental procedure, the QD is ini-
tially at its vacuum state. One pulsed excitation excites the QD at t = 0 so that
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Fig. 7.10 A train of
picosecond (or femtosecond)
laser pulses (at a period of T ,
where 1/T is the frequency
of the pulse train) is led into
a QD ensemble, and the QD
fluorescence is detected as a
function of time t by
time-to-amplitude-converter
(TAC) channels (there are
other techniques to obtain
temporal resolutions). When
one photon count in one TAC
channel reaches Nmax, the
measurement is then stopped.
Each measurement setup has
a certain number of TAC
channels whose integration
times δ can be varied
depending on the decay time.
Nmax is in principle to be set
as large as possible for the
best signal-to-noise ratio
while a large Nmax means a
long measurement time (to
be considered such as the
stabilities of the excitation
laser as well as the
fluorescence including
photobleaching)

nn = 1 and n1 = n0 = 0. The decay processes, schematically shown in Fig. 7.9, are
described mathematically by the following rate equations:

dnn
dt

= −nn(1 − n1)

τ
dn1
dt

= nn(1 − n1)

τ
− n1(1 − n0)

β
dn0
dt

= n1(1 − n0)

β
(7.5)

The key factor here is the Pauli exclusion principle (fermion anticommutation rela-
tions of the electron creation and annihilation operators) that the occupation of one
exciton state reduces the efficiencies of transitions to this exciton state since each
exciton state can be occupied by only one exciton. As a consequence, the transi-
tion efficiency of an exciton from an initial exciton state to a final exciton state is
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(a) (b) (c)

Fig. 7.11 a Temporal developments of nn , n1, (1 − n0). b 1/n1 and 1/(1 − n0). c Theoretical
time-resolved fluorescence spectrum f (t) (left vertical axis) and 1/

√
f (t) (right vertical axis).

τ = 10.0 ns, β = 5.0 ns, δ = 0.1 ns

determined by both the occupation of the initial state and the un-occupation of the
final state, see (2.116).

We perform a numerical simulation of (7.5) using τ = 10.0 ns and β = 5.0 ns.
Temporal developments of nn , n1, n0, and the theoretical time-resolved fluorescence
spectrum

f (t)|t=�δ =
∫ �δ

(�−1)δ

n1(1 − n0)

β
dt (7.6)

are presented in Fig. 7.11. Here we try to mimic the measurement procedure that δ is
the integration time of the TAC channels. We observe two distinct decay characters
in f (t), a rather fast decay directly after the optical excitation (time region I) and a
slow decay when t is long (time region II).

In time region I, see Fig. 7.11a and c, i.e., a very short time directly after the
optical excitation, ca t ∈ (5, 22) ns, both n1 and n0 are very small compared with
nn . f1(t) is well characterized by a single decay term

f1(t) ∝ e−t/τ ′
(7.7)

Subscript “1” in f1(t) indicates the time-resolved fluorescence spectrum of short t .
And τ ′ depends on both τ and β.

For t > 100 ns, i.e., time region II, see Fig. 7.11b and c, nn is negligibly small
so (7.5) reduce to
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dn1
dt

= −n1(1 − n0)

β
,

dn0
dt

= n1(1 − n0)

β
(7.8)

Let 1 − n0 = n′
0. Since n1 = n′

0 (i.e., n0 + n1 = 1 for negligibly small nn), the solu-
tion of the above equations is

1

n1
= 1

n′
0

= t + a

β
(7.9)

where a is a constant. The above solution is confirmed by the numerical results of
1/n1 and 1/(1 − n0) presented in Fig. 7.11b. The long-time fluorescence decay in
time region II is thus

f2(t)|t=�δ =
∫ �δ

(�−1)δ

n1(1 − n0)

β
dt ≈ βδ

(t + a)2

∣∣∣∣
t=�δ

(7.10)

since the variations of n1 and (1 − n0) in t is very small in the time duration ∈(
(� − 1)δ, �δ

)
. Equivalently,

1/
√

f2(t) = t + a√
βδ

(7.11)

In other words, 1/
√

f2(t) is linear in t . This is confirmed numerically in Fig. 7.11c by
the linear relationship between 1/

√
f (t) and t in time region II presented using the

right vertical axis with a slope of 1/
√

βδ, where δ is the integration time (determined
by the measurement setup) and 1/β is the radiative recombination rate of the exciton
ground state.

Let us analyze the experimental data of the time-resolvedfluorescence spectrumof
water-soluble CdSe-CdS/Cd0.5Zn0.5S/ZnS core-multishell QDs (fluorescence peak
at 596 nm at room temperature measured by using a time-correlated single-photon
countingmachine (FluoroMax-3, Horiba JobinYvon). A spectral line centered at 495
nm with a 2 nm bandpass from a pulsed light-emitting diode (peak wavelength 495
nm and 30 nmFWHM) is led to the cuvette containing theQD aqueous solution in the
form of a train of pulses (pulse duration is ca 1.4 ns) at 1 MHz. The detector is set at
596 nm (QD fluorescence peak wavelength) with a bandpass of 2 nm. There are 2048
TACchannelswith a variable integration time δ. A typical time-resolved fluorescence
spectrum versus TAC channel index � of the QDs is shown in Fig. 7.12a, where
Nmax = 104 and δ = 0.1148971 ns. The relationship of F(t) − t after converting
TAC channel index � to decay time t (= �δ) is presented in Fig. 7.12a’. Here we can
easily identify time region I where F(t) decays by a single exponential model.

For further spectral analysis, we normalize F(�)

fn(�) = F(�)

Nmax
(7.12)
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Fig. 7.12 a Time-resolved
fluorescence spectrum F(�)

versus TAC channel index �;
a’ F(t) − t where t = �δ is
the decay time. b/b’, c/c’,
d/d’

√
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fn(�) of various Nmax and δ are presented in Fig. 7.12b/b’–d/d’. The dashed
horizontal line in Fig. 7.12b shows that the noise levels before and long after the
excitation pulse are aligned, ensuring that the QD fluorescence is excited by a single
excitation pulse.

In order to efficiently utilize the TAC channels, we modify δ and the results are
presented in Fig. 7.12b–d. δ in Fig. 7.12b is too long, while it is too short in (d).
Measurement setup parameters of Fig. 7.12c/c’ are the most proper that unravel time
region II that is closely correlated to the exciton radiative recombination process, β
in (7.11).
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To verify (7.10), (7.11), we tune the detection wavelength of the time-resolved
fluorescence measurement setup to scan QD fluorescence peak with a bandpass of
only 1 nmwhich ismuch smaller than the FWHMof theQDs. The as-measured time-
resolved fluorescence spectra F(�) at various detection wavelengths are presented
in Fig. 7.13a. Here δ = 0.4950604 ns.

We normalize F(�) to obtain fn(�) by (7.12), which are presented in Fig. 7.13b
showing a strong detection-wavelength dependence of the fluorescence decay, espe-
cially at the long decay time, which is much better visualized in 1/

√
fn(�) in

Fig. 7.12c. More profoundly, the profile of the long-time 1/
√

fn(�) versus the detec-
tion wavelength is identical to the fluorescence spectrum of the QDs shown as the
inset in Fig. 7.13a, i.e., (7.15). Applying (7.10), (7.11) to fit the time-resolved fluo-
rescence spectra of Fig. 7.13 results in the data presented in Fig. 7.14 together with
the QD fluorescence spectrum.

We have discussed many times the width of a Lorentzian peak. In Sect. 2.4 we
know that this width is mainly due to the simultaneous transition of the electron from
the excited state back to the ground state when the electron is being photo-excited
from the ground state to the excited state, see (2.138), (2.139).By the scattering theory
and the generalized Fermi’s golden rule, the temporal development T̂ of exciton state
ψ1 is described by

〈ψ1|T̂ (t)|ψ1〉 ≈ e−wt/2 (7.13)

where 1/w = β is the decay time of ψ1, which is given as

w(�ω) = 2π

�

∣∣〈ψ0|H ′|ψ1〉
∣∣2 Γ

Γ 2 + (E1 − E0 − �ω)2
(7.14)

E1 and E0 are energies of ψ1 and ψ0, respectively. �ω is the photon energy. H ′ is the
light-matter interaction between ψ1 and ψ0, see (2.107). Γ is the relaxation energy.
In other words,

1

β(�ω)
∝ 1

Γ 2 + (E1 − E0 − �ω)2
� β(�ω) ∝ Γ 2 + (E1 − E0 − �ω)2

(7.15)
which is confirmed exactly by the β curve in Fig. 7.14. Meanwhile, by Chap. 2
we know that the fluorescence spectrum is proportional to w(�ω). Therefore, the
fluorescence lifetime spectrum in Fig. 7.14 is well described by the microscopic
exciton transition model of Fig. 7.9.

The physics of the energy relaxation and its lifetime τ are much more involved. It
involves not only multiple energy-relaxation processes but also the radiative recom-
bination process (i.e., β), which is beyond the scope of the book. Reader may refer
to [3] for a brief introduction.
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Fig. 7.13 a As-measured
time-resolved fluorescence
spectra F(�) of QDs
measured at different
detection wavelengths
∈ (568, 631) nm covering
the fluorescence peak while
the detection bandpass was
fixed to be 1 nm. Inset shows
the fluorescence spectrum of
the QD solution.
b Normalized fn(�).
c 1/

√
fn(�). δ = 0.4950604

ns
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Fig. 7.14 Radiative
recombination lifetime
spectrum versus detection
wavelength ∈ (568, 631) nm.
Blue dashed line (right
vertical axis) shows the
fluorescence spectrum of the
QD solution

7.3 Fluorescence Blinking

We briefly mentioned the fluorescence blinking in Sect. 7.1 that QDs irregularly
switch between bright and dark under continuous irradiation. Fluorescence blinking
is not a specific property for QDs; it is also observed in fluorescence proteins [5],
and single organic molecules [6]. Nonblinking or blinking-suppressed QDs have
been reported by coating the QDs with thick shells [7, 8], or by forming gradient
compositions [9]. It is strongly believed that the fluorescence blinking is related to
the surface states of the QD.

A typical time series of one ODA-coated CdSe-(CdS)2/(ZnS)1.5 QD fluorescence
is presented in Fig. 7.15a, where a threshold level between the on and off states can
be easily identified, see the occurrence profile (the number of times that the QD emits
a certain number of photons per frame) of Fig. 7.15c, from which we calculate the
on and off time durations, i.e., how long the QD stay at one state before switching to
the other state. Here the notation about the QD means that the QD core is CdSe and
there are two shell layers, one is composed of twomonolayers of CdS and the other is
1.5 monolayer of ZnS. In a close picture Fig. 7.15b of the time series (a), we see the
first on-state time duration ∈ (1, 27) frames, i.e., on1 = 27 frames, followed by the
first off-state off1 = 1 ∈ (28, 28) frames, on2 = 12 ∈ (29, 40) frames, off2 = 13 ∈
(41, 53) frames, . . .. We count the number of on-states which have a time duration
of 1 frame, 2 frames, etc. resulting in the diagram about the numbers of on/off events
shown in Fig. 7.15d. Here we observe that within 50 000 frames there are totally 73
times the QD stays at the on state for only 1 frame before it switches to the off state,
there are 34 times that the QD stays at the on state for 2 frames, and so on. Dividing
these numbers by the total number of switches between on- and off-states in thewhole
fluorescence trajectory gives us the so-called on/off probability density distributions
shown in Fig. 7.15e. A larger probability density means that the QD dwells more
frequently at this state. Denoting Poff and Pon as the off and on probability density
distributions, respectively, Fig. 7.15e shows clearly an almost linear relationship
between log [Poff(t)] and log (t) (see the dashed straight line), while the relationship
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Fig. 7.15 a One fluorescence time series of a single ODA-coated CdSe-(CdS)2/(ZnS)1.5 QD con-
sisting of 50,000 frames. b A close picture of the first 100 frames showing on (grey regions) and
off states of different time durations. c The occurrence profile that displays the on and off states. d
Numbers of on/off events, e on/off probability density distributions. Dashed straight line is added
only as a reference

between log [Pon(t)] and log (t) is more complicated. The almost linear relationships
are generally known to be the power law.

The theoretical understanding of the QD blinking is still diverse and limited.
Many qualitativemodels have been proposed, but themajor difficulty is that there has
not been a good numerical match between theoretical simulations and experimental
data. A quantum mechanical surface-state associated blinking model was published
recently that quantitatively bridging the model and experiments [10]. As mentioned
before, the surfaces of the as-grownQDs are commonly coated with ODAmolecules,
which are termed as surface ligands. The as-grownQDs can bewell dissolved in chlo-
roform or toluene. For biological applications, ODA surface ligands are exchanged
to, for example, 3MPA molecules. A careful quantum chemistry calculation shows
that the highest occupied molecular orbital (HOMO) and lowest-unoccupied molec-
ular orbital (LUMO) of Zn6S6-ODA/3MPA are closely aligned with the ground hole
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state Ev0 in the valence and the ground electron state Ec0 in the conduction band
in the QD CdSe core, see Fig. 7.16a. (Note that the valence band of an intrinsic
semiconductor is the highest occupied band, while the conduction band is the lowest
unoccupied band, at low temperature.) This close alignment provides means for the
photogenerated electron and/or hole in the QD core to tunnel to the surface LUMO
and/or HOMO state.

The quantum mechanical surface-state associated blinking model adds the tun-
neling between the QD core and surface states to the fluorescence model of Fig. 7.9,
resulting in Fig. 7.16b. To simplify narrations, we focus only on the photogenerated
electron. HOMO and LUMO are formed when ODA or 3MPA attaches perfectly to
the ZnS surface atoms. Imperfections occur so surface electron states are introduced,
e.g., electronic traps at the QD surface [11], they replace LUMO states. LUMO states
and surface electron trap states on the QD surface are modeled to distribute randomly
in a 2D square grid. The photogenerated electron, after tunneling from the QD core
to one LUMO state, randomly walks on the 2D grid until it reaches a nearby LUMO
state where it can tunnel back into the QD core. The random walk is parameterized
by the necessary migration distance Δ, see Fig. 7.16b. The rate equations of (7.5)
are subsequently revised accordingly

dnn
dt

= n0(1 − nn)

α
− nn(1 − n0)

β
− nn(1 − ns)

τ ′
dns
dt

= nn(1 − ns)

τ ′ − ns(1 − n∗
s )

η
. . .

dn∗
s

dt
= ns(1 − n∗

s )

η
− n∗

s (1 − n0)

τ ′
dn0
dt

= −n0(1 − nn)

α
+ nn(1 − n0)

β
+ n∗

s (1 − n0)

τ ′ (7.16)

where 1/η is the walking rate between two neighboring surface states �ωs and �ω∗
s .

Numerical simulations based on the rate equations of (7.16) with input parameters
from quantum mechanical calculations quantitatively agree with experimental data
[10], showing that the QD exciton is first generated by an excitation photon; It radia-
tively recombines to give QD’s fluorescence response, i.e., the on-state, which dis-
plays the upwards-bended on-state probability density distribution profile (red stars
in Fig. 7.15e); The electron and/or the hole of the photoexcited exciton in the QD
core, after tunneling to the QD surface, randomlywalks through the two-dimensional
network of the QD surface states, resulting in the off-state probability density dis-
tribution profile of the inverse power law (black squares in Fig. 7.15e). The model
explains many experimental data mentioned at the beginning of the section. Surface
modifications modify the QD surface-state network, in turn modifying the on/off
probability density distribution profiles. A thicker QD shell will reduce the transport
probabilities of the photogenerated electron/hole to the surface state, thus reducing
the off-state probability. Lattice strain and stress in gradient composited QDs are
low, implying lower transport probabilities of the photogenerated electron/hole to
the surface state, leading to the reduced QD blinking.
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7.4 Fluorescence Spectrum Unravels QD-Ion Interaction

Let us study the interaction between QDs and ions in the QD solution using var-
ious fluorescence characterization methods discussed in this chapter. We focus on
water-soluble 3-MPA coated CdSe-(CdS)2/(ZnS)1.5 core-multishell QDs having a
fluorescence peak at 607 nm at room temperature, consisting of a CdSe core, a CdS
shell of 2 monolayers, and another shell of 1.5 monolayer ZnS. These QDs are
dispersed to a 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) buffer
solution containing 50 mM HEPES and 23 mM NaOH with a pH value of 7.2 at the
QD concentration of 37 nM.

As schematically shown in Fig. 7.3, 3MPA surface ligand has a linear chemical
formula HSCH2CH2COOH. The left end of it is attached to the surface atom Cd of
the QD. Figure 7.17a shows the geometry of a model Zn6S6-3MPA obtained from
density functional theory (DFT) calculation [12]. In water, the carboxylic group
(-COOH) of the 3MPA molecule is expected to be acid dissociated. In other words,
the outmost proton marked by an arrow in Fig. 7.17a will dissociate so that the acid
dissociated (also known as deprotonated) QD-3MPA become negatively charged in
water. This is experimentally confirmed that QD-3MPA dispersed in water migrates
towards the anode in an electrophoresis experiment [13]. The negatively charged
QD-3MPA is expected to be able to bind with a positive ion. Among many ions
of biological relevance, Ca2+ is unique that it has an ion chelator, ethylene glycol
tetraacetic acid (EGTA), see its molecular structure in Fig. 7.17c, which is able to
capture one free Ca2+ ion in a one-to-one relationship. Thus, Ca2+–EGTA interaction
provides an excellent tool to study the interaction between QDs and ions that we can
add free Ca2+ ions to the QD solution then extract them away in a controllable way.

Figure 7.18 shows the fluorescence spectra of (1) 3MPA coated QDs in HEPES
solution, (2) after injection of 2mMCa2+ ions, and (3) after further injection of 5mM
EGTA. Clearly, interactions between QDs and Ca2+ ions diminish the fluorescence
of the QDs, which is recovered after EGTA is added to capture Ca2+ ions from QDs.

Time-resolved fluorescence spectra of QDs with various Ca2+ concentrations
(0.1µM, 1.0 µM, 100 µM, 1 mM, 2 mM Ca2+) are shown in Fig. 7.19a. EGTA
(5 mM) recovers the time-resolved fluorescence spectrum (though not totally).

Finallywe take a look at theCa2+ effects onQDs’ blinking properties by analyzing
the fluorescence trajectories of many single QDs in the three different QD solutions.
The average on-off probability density distributions of single-QD fluorescences (22
single QDs in HEPES, 38 in HEPES+2 mMCa2+, and 27 in HEPES+2 mMCa2++5
mMEGTA, respectively) are presented in Fig. 7.20. It is shown here that after adding
2 mMCa2+, the on-state probability of the single-QD fluorescence is decreased, and
the off-state probability is increased. After adding EGTA to chelate Ca2+ ions from
QDs, the on-off probability densities recover.

All these results are well understood by the microscopic picture of the acid-
dissociated QD binding one Ca2+ ion to its surface, see Fig. 7.17b. The appearance
of an ion at the QD surface modifies the QD fluorescence properties through mod-
ifying the spatial distributions of the electron and the hole photoexcited in the QD
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Fig. 7.17 a Theoretical
molecular structure of a
model QD-3MPA from
density functional theory.
The arrow indicated proton
is expected to be acid
dissociated when QD-3MPA
is dispersed in water. b A
QD with multiple partially
deprotonated 3MPA surface
ligands interacting with one
Ca2+ ion. c Molecular
structure of EGTA that is
capable of capturing Ca2+
ion in a one-to-one
relationship

Fig. 7.18 Fluorescence
spectra of (1) 3MPA coated
QDs in HEPES solution, (2)
after injection of 2 mM Ca2+
ions, and (3) after further
injection of 5 mM EGTA
(black dashed line)
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Fig. 7.20 Averaged on-off
probability densities of
single QD fluorescence in
three different QD solutions

core by the Coulomb potential of the ion. Figure 7.21 shows the wave functions of
the conduction-band ground state ψc0(r) and the hole at valence-band ground state
ψv0(r) when a Ca2+ ion is present at the QD surface [12]. The electron is attracted
to the Ca2+ ion while the hole is pushed away, resulting in a reduced wave func-
tion overlapping between the electron and the hole. Since the radiative recombination
probability between the electron occupying conduction-band ground stateψc0(r) and
the hole at valence-band ground state ψv0(r) is given by (7.14), the reduced wave
function overlapping between the electron and the hole implies directly a reduced
fluorescence strength, as confirmed in Fig. 7.18.
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Using the exciton transition model of Fig. 7.9, we convert the time-resolved fluo-
rescence spectra in Fig. 7.19a to 1/

√
fn(t) versus t which are presented in Fig. 7.19b.

It is shown here that the slope in time region II is decreased due to interactions
with Ca2+. By (7.11), the decreased slope (∝ 1/

√
β) indicates a longer radiative

recombination lifetime β of the exciton ground state, which agrees with the reduced
|〈ψ0|H ′|ψ1〉

∣∣ due to the increased spatial separation between the electron and the
hole, resulting in a reduced radiative recombination probability of the exciton, thus
a reduced fluorescence strength, and thereafter an increased β.

Time region I in Fig. 7.19a shows that the lifetime τ of the non-radiative energy
relaxation from excited exciton state to the ground exciton state is decreased due to
Ca2+-QD interactions. The most possible physical understanding about this is that
due to the displacements of the photoexcited electron and hole towards QD surface
(the electron is attracted to the surface Ca2+ ion while the hole is pushed towards
the opposite surface region), both the electron and hole have closer interactions with
surface states. This increases the numbers of energy relaxation channels, i.e., the
number of Vi terms in (7.14), resulting in a shorter energy relaxation time τ .

This QD-surface-related energy relaxation channel model is supported by the
blinking data. Figure 7.20b shows a reduced on-state probability due to Ca2+ as
compared with the situation of pure QDs in HEPES in Fig. 7.20b. The on-state
probability is recovered when EGTA is added to chelate Ca2+ in the QD solution.
By the surface-state associated blinking model briefly introduced in Sect. 7.3, the
introduction ofCa2+ at theQD surface attracts the photogenerated electron and repels
the hole, facilitating the transport of the electron and the hole between exciton states
in the QD core and surface states.
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7.5 Quantum Dot Bioimaging

Highly fluorescent semiconductor QDs have already been introduced successfully
in many fluorescence-based optical imaging applications in biomedical sciences.
Polymer-coated QDs are water soluble, noncytotoxic and innocuous to normal cell
physiology. To achieve targeting abilities, polymer-coatedQDs are conjugated to bio-
affinity ligands such as monoclonal antibodies, peptides, or oligonucleotides using
several approaches including passive adsorption, multivalent chelation, or covalent-
bond formation. In this last section of the book we briefly describe one example of
QD’s biomedical application.

High cholesterol, high blood sugar, blood pressure fluctuations, folic acid reduc-
tion and high homocysteine are all closely related to arteriosclerosis development.
Early diagnosis of arteriosclerosis is therefore essential in preventing cardiovascular
and cerebrovascular diseases. Vascular cell adhesion molecule 1 (VCAM1) protein
expression is known to be the major performance in inflamed cells of early arte-
riosclerosis. VCAM1 binding peptide, see Fig. 7.22a, can target bind with VCAM1
molecule [14]. We bind fluorescent QD with VCAM1 binding peptide by forming
stable amide bonds between COO− on QD surface and NH+

2 on VCAM1 binding
peptide, denoted as VQDs, so that we can visualize VCAM1 molecule expression
since we can “see” QDs, while VCAM1 molecule is not directly visible. This is
known as target bioimaging. The basic protocol is to incubate VQDs with cells for
a certain time then wash the cells. If the cells have VCAM1 expression on their
surfaces, VQDs will target bind there and fluoresce in a fluorescence microscope.

Refer to Fig. 7.22, a more advanced application is to use QD as a target drug
delivery that is loaded with both the targeting (VCAM1 binding peptide) and the
drug molecules (e.g., protoporphyrin IX) for target drug delivery (aiming at VCAM1
molecule on inflamed cell surface) at molecular level [15]. Here we describe one
photodynamic therapy (PDT) application. Photodynamic therapy is widely applied
for treating tumors that tumor-localizing photosensitizers are first administrated by
either intravenous injection or external application; Photosensitizers are then target-
activated by irradiation of a specific wavelength. Protoporphyrin IX (PpIX) is a
common photosensitizer, see Fig. 7.22b.

In the following case study, we use human umbilical vein endothelia cells
(HUVECs) which express typical endothelial phenotypes; VCAM-1 expression in
HUVEC cells can be induced by tumor necrosis factor α (TNFα) treatment; Control
HUVECs (no TNFα treatment) and TNFα-treated HUVECs are thus chosen here to
demonstrate the target drug delivery. The general experimental protocol is to con-
jugate 3MPA-QD (Fig. 7.22c) first with VCAM1 binding peptide then with PpIX,
forming the PVQs, see Fig. 7.22d. Deposit PVQs to TNFα-treated HUVECs, i.e.,
Fig. 7.22e.
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(a) Vascular cell adhesion molecule 1 (VCAM1) binding peptide

(c) 3MPA-QD

(b) Protoporphyrin IX (PpIX)

QD

: NH2
+

: COO-

(d) PVQ

VCAM-1 binding peptide

PpIX

(e) Target-binding between VCAM1 molecule and PVQ

Cell

VCAM1 molecule

Fig. 7.22 Schematics of molecular structures of a vascular cell adhesion molecule 1 (VCAM1)
binding peptide, b protoporphyrin IX (PpIX), c 3MPA-QD, d conjugate of PpIX-VCAM1 binding
peptide-QD (PVQ), and e target-binding between VCAM1 molecule and PVQ
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Figure 7.23a, b show the fluorescent images of control and TNFα treated HUVEC
cells after 24h incubation with PVQs. The images are excited by 405-nm laser
and acquired by a microscopic objective 40× in lambda mode, meaning that the
microscope takes a series of images of different wavelength channels, similar to the
operation of the three RGB channels in common camera, though more spectrally
resolved. More specifically, the two images of Fig. 7.23a, b are of 1024 × 1024
pixels at a spatial resolution of 0.208 × 0.208 µm2. The spectral range covers from
414 to 691 nmwith a spectral resolution of 8.9 nm such that each image of Fig. 7.23a,
b is composed of 32 sub-images acquired at wavelength 414, 423, . . . 691 nm. In
other words, the microscope measures one fluorescence spectrum per one spatial
pixel in optical range ∈ (414, 691) nm at a spectral resolution of 8.9 nm. We can
summarize the spectra of pixels enclosed in a special region of interest (ROI) in order
to spatially obtain the fluorescence spectrum of a certain object confined in this ROI.
For example, Fig. 7.23c show three fluorescence spectra of three ROIs. The spectrum
of ROI1 includes both the yellow QDs emitting at 587 nm and the blue signals are
auto-fluorescence from live cells, which dominates in ROI2. To make sure that the
587-nm peak does originate from QDs, we can zoom in to ROI3, where the 587-nm
peak becomes predominant, while the blue-green signals are still there (so we see a
sub-region in ROI3 which is green since blue plus yellow appears green).

We observe a fewQD signals in Fig. 7.23a which is not surprising since there is no
way to make sure that all cells not TNFα treated are totally healthy. Figure 7.23a, b
thus show that TNFα treatment induces VCAM1 expression which is target imaged
by PVQs.

To assess photodynamic therapeutic effects of PVQs, HUVEC cells of no-TNFα-
and NTFα-treatments were irradiated by a 630-nm LED for 3 min at an optical
power of 28.6 mW/cm2. After further incubation for 2h or 6h, the cells were stained
with Annexin V-FITC and propidium iodide (PI) for 10 min at room temperature in
darkness. Annexin V-FITC is known to bind to cell membranes at early apoptosis,
while PI stains nuclei at later apoptosis or death cells. The results are presented in
Fig. 7.23d–g. Here the numbers of cells studied in each groups are denoted in (d),
which are large enough to obtain statistical significance. Three phenomena are clearly
observed: (1) Both (d) and (f) show that the percentages of PI and Annexin V-FITC
positive cells are significant in TNFα treated HUVECs 6h after PDT irradiation
(though 2h is not long enough for apoptosis expression). (2) Furthermore, though
Annexin signal strengths in PI/Annexin positive cells in TNFα-treated HUVECs are
ca 75, they also reach ca 50 in not-TNFα-treated HUVECs, see (e) and (g). The
latter is largely due to the non-specific cellular phototoxicity effect, i.e., live cells
can become damaged by irradiation. (3) The PDT effect is significant 6h after PDT
irradiation.

In a brief summary, Fig. 7.23 show clearly the target PDT effect of PVQs in TNFα

treated HUVECs 6h after PDT irradiation.
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Fig. 7.23 a, b Fluorescence images of PVQs in not-TNFα-treated and TNFα-treated HUVECs.
The images are excited by 405-nm laser and acquired by objective 40× in lambda mode. The
image colors are true colors that the blue-green signals are auto-fluorescence from live cells while
the yellow are QDs emitting at 587 nm. c Fluorescence spectra of three regions of interest (ROI)
marked in inset. d, f Percentages of propidium iodide (PI) and Annexin positive cells in different
cell groups. The numbers in the columns in d denote the numbers of cells studied in each cell
groups. e, g: PI/Annexin signal strengths in PI/Annexin positive cells. d–g show clearly the target
PDT effect of PVQs in TNFα treated HUVECs 6h after PDT irradiation
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