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   Foreword    

 In the years since its emergence as a widely recognized scientifi c discipline a 
 quarter-century or so ago, landscape ecology has become increasingly quantitative 
and analytically rigorous. Technological advances have made it possible to obtain empir-
ical information about landscape confi guration, movements of animals through a 
landscape, human land uses, landscape change, and a host of other interesting things 
about landscapes. Landscape ecology, like other sciences, has become data-driven. 

 Yet, landscapes are much more complex than the simple patch-matrix diagrams 
some of us have become fond of. Landscape structure, function, and dynamics interact 
in myriad ways over multiple scales. We do not have, nor will we ever have, data on 
everything that is important or interesting. Gaps in data, and uncertainties accompany-
ing the data we do have, pose particularly diffi cult problems when landscape ecology 
is applied to practical issues in urban planning, resource management, sustainable 
agriculture, fi re ecology, and the like. 

 Of course, people knew things about landscapes long before landscape ecology 
came into being, and even now not everything landscape ecologists know is embodied 
in digital bytes. These sources of knowledge – expert knowledge – can help to fi ll 
the data gaps and reduce the uncertainties. That is why the approaches developed in 
this book are so important. 

 But the phrase “expert knowledge” immediately conjures up a variety of possi-
bilities. Expert knowledge might be anything from “It’s true because I’m an expert 
and I say so” to highly formalized systems of knowledge elicitation or expert systems 
software. An “expert” might be someone who knows more about something than 
someone else who wants to know about it. Some have suggested that an expert is 
someone who knows more about a topic than the average person, but this does not 
mean much because most people know nothing about the topic, bringing down the 
average. By this defi nition, even a passing knowledge of, say, quantum physics or 
the epidemiology of AIDS might qualify one as an expert. This is why “experts” are 
usually defi ned by the regard with which they are held by their peers. But there is a 
sociological element at play here: people who know a lot about a topic but challenge 
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the conventional wisdom of a discipline may be called “iconoclasts” rather than 
“experts,” and the value of their knowledge is often correspondingly diminished. 

 In the legal arena, expert witnesses are highly qualifi ed people who are called 
upon to provide objective testimony about the state of knowledge related to an area 
of their expertise. Because of their expert status, their testimony may carry inordinate 
weight. But good lawyers know that it is not diffi cult to fi nd well-credentialed experts 
who present diametrically opposed views of the same issue. The open, questioning 
nature of scientifi c investigation virtually assures this. As an example, expert witnesses 
for the plaintiffs and the defendants often gave confl icting statements about the 
effects of the  Exxon Valdez  oil spill on marine ecosystems in Prince William Sound. 
The jury hearing the case was unable to evaluate the merits of the arguments pre-
sented by the “dueling scientists” and ended up ignoring the experts on both sides in 
making their decision. The scientifi c evidence was largely ignored. 

 The point of this is that the knowledge of experts is not necessarily pure and 
unbiased. It is a product of their experiences and their training – the “facts” are 
colored by one’s perceptions of the world from which they came. It is easy to see 
this if the individual is, say, a tribal elder or a long-time fi sherman with deep knowl-
edge gained from decades of experience and insights extending back for genera-
tions. Such knowledge can provide invaluable perspectives on landscape dynamics 
and history, but it is clearly infl uenced by the cultural context in which it was gained. 
We tend to think of scientifi c knowledge as somehow being less swayed by context, 
and perhaps it is. But science has its cultures, too, and scientists are susceptible to 
the judgments of their peers, which can infl uence how they interpret data as well as 
the kinds of data they collect. “Knowledge” always has cultural overtones. 

 All of this is to say that, although any discipline, perhaps especially landscape 
ecology, must draw knowledge from multiple sources, there is a real need to ensure 
that this knowledge is as accurate and reliable as possible. How we accomplish that 
is the focus of this book. It is much needed.  

John A. Wiens
 Chief Conservation Science Offi cer PRBO 

Conservation Science Petaluma, CA
 USA
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    1.1   Introduction 

 In an attempt to develop a forest succession model that simulates scenarios of future 
landscape patterns, researchers encounter many gaps in the published knowledge of 
forest succession trajectories. They resort to consulting local foresters and using 
their knowledge of forest succession to parameterize the model. In another situation, 
management of an elusive bird species requires estimates of the likelihood of its 
occurrence under specifi c sets of site conditions. Because the habitat characteristics 
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of this species are not well studied or have not been published, the investigators seek 
the advice of specialist wildlife biologists to learn where these birds could potentially 
occur. In yet another case, natural resource and conservation professionals turn to 
expert knowledge to help them conserve or manage wildlife habitats in high-risk 
environments, and researchers investigate the relative merits of that expert knowledge 
in comparison with empirical data, as well the uncertainty and variability in expert-
based predictions. 

 The scenarios described above are taken from our personal experience as landscape 
ecology researchers: forest succession (Perera), elusive birds (Drew), and wildlife 
habitat (Johnson). These situations undoubtedly appear familiar to most applied 
ecologists; in research and its application, such gaps and shortfalls are pervasive in 
the available data, information, and knowledge. Often, we must rely on expert 
knowledge to complement and supplement empirical data. But in so doing, we face 
a problem: the use of expert knowledge in ecological research and the application of 
that knowledge in practical situations are viewed with skepticism by many, since 
such knowledge is considered to be very different from, and even inferior to, tradi-
tional data gathered through rigorously designed sampling of ecosystem components 
(Drew and Perera  2011  ) . 

 Reliance on expert knowledge in research and natural resource management 
has been formally acknowledged for many decades (Burgman  2005  ) . Although its 
early uses in ecology were limited to using expert judgment to support decision-
making, as in the examples of an expert-systems approach to decision-making 
and the use of artifi cial intelligence systems (e.g., Coulson et al.  1987 ; Rykiel 
1989; Meyer and Booker  1991  ) , the frequency and diversity of uses of expert 
knowledge are both increasing (Drew and Perera  2011  ) . This growth is evident in 
the published literature: our brief search through the Web of Science database 
(  http://www.images.isiknowledge.com/WOK46/help/WOS/h_database.html    ) 
showed that the terms  expert knowledge ,  expert opinion , and  expert judgment  
appeared 220 times in the ecological literature before 2000, versus more than 400 
times since 2000. 

 In this chapter, we set the stage for the rest of this book by discussing some of 
the key issues involved in making better use of expert knowledge. These include 
clarifying the meaning of the word  expert , defi ning the sources of expertise, charac-
terizing the nature of expert knowledge, explaining its relevance, and describing 
some of the concerns that arise from using expert knowledge. 

    1.1.1   Who Do We Mean by Experts? 

 A wide variety of experts is mentioned in the literature with reference to using their 
knowledge in an array of professions, ranging from science to the arts and even 
sports (Ayyub  2001 ; Ericsson et al.  2006  ) . In our view, there are several key categories 
of experts that pertain to ecological applications: scientists, who conduct research 
and publish their knowledge formally; practitioners, who apply scientifi c knowledge 
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in management but typically do not conduct research and publish their 
knowledge formally; stakeholders, who have an interest in the outcome of applying 
ecological knowledge to inform conservation or resource extraction issues; and 
elders of local societies (aboriginal or other) who are rich sources of traditional 
knowledge. Of course, a given individual may belong to more than one of these 
categories, and no category is inherently more important than the others. 

 Our focus in this book is on experts who are practitioners (termed  expert practi-
tioners  hereafter). We have done so because the greatest wealth of untapped latent 
knowledge that waits to be utilized rests with expert practitioners, including such 
professionals as ecologists, biologists, foresters, and geologists, who are highly 
knowledgeable in their technical domains. This does not exclude nor does it diminish 
the value of expert knowledge contributed by scientists, whose knowledge is typically 
published in scientifi c media and is therefore not latent, nor do we intend to lessen 
the value of the expertise and insights provided by traditional or local ecological 
knowledge, which is increasingly recognized in the literature (e.g., Johannes  1989 ; 
Huntingdon  2000 ; Anadon et al.  2009  ) . As well, we acknowledge that stakeholders 
can provide expert knowledge on occasion while recognizing their inherent biases 
(e.g., O’Hagan et al.  2006  )  towards certain desired outcomes of resource manage-
ment decisions. 

 We encounter expert practitioners in all facets of landscape ecological applications. 
Beyond generalists, this group occasionally includes topic specialists (for example, 
an authority on the feeding habits of cougars), skilled individuals (for example, a 
naturalist capable of identifying animal signs and tracking cougars in the wild), and 
sage practitioners (for example, an extraordinarily experienced cougar biologist). 
These expert practitioners do not always formally record their knowledge as 
researchers do (which is typically via a peer-review process), and their expertise is 
more likely to be local in scope than global. 

 Consequently, it is diffi cult to recognize the existence of that expertise and gauge 
the quality of the knowledge by consulting only the scientifi c media. It is equally 
tricky to formulate an objective and a globally measurable defi nition of what constitutes 
an expert practitioner. Still, expert practitioners have one common trait: they are 
recognized and held in high regard by their peers (other practitioners in the same 
technical domain) as being skilled and knowledgeable (Chi  2006  ) . Although not all 
of those recognized by their peers may be true experts (Ericsson  2006  ) , we feel that 
all experts are recognized by their peers, and that peer-recognition is thus a reliable 
initial fi lter for identifying experts.  

    1.1.2   How Do Experts Gain Expertise? 

 Recently, a considerable body of scientifi c support has developed for the belief that 
individuals become experts through “deliberate practice,” a concept fi rst suggested 
by Ericsson et al.  (  1993  ) : after some level of formal education in a technical domain, 
individuals must engage in practice of their profession while actively attempting to 
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improve their knowledge and skills. This period of practice is typically no less than 
10,000 hours of intensively focused engagement with a subject (Ericsson  2006  ) , 
which amounts to around 10 years for most experts (Horn and Masunaga  2006  ) . 
We believe that the ideal expert practitioners in the context of this book are those 
who possess superior reasoning skills, have received a strong foundation of formal 
education, and (most importantly) have augmented that knowledge with years of 
deliberate practice. This combination of formal training, intelligence (the ability to 
reason and synthesize), and experience (a lengthy period of observation and prac-
tice) present numerous opportunities to encounter and solve professional problems, 
thereby gaining knowledge that may not exist in the published literature and recog-
nition as an expert by their peers. From a strict scientifi c perspective, critics may 
view this learning process as implicit, subjective, and nonrepeatable. The implica-
tions and limitations of this process of gaining expertise are recognized (e.g., Chi 
 2006  ) , and we expand on their consequences for an expert’s knowledge and its use 
later in this chapter as well as Chapter    2    .  

    1.1.3   What Is the Nature of Expert Knowledge? 

 Much of the knowledge amassed by experts remains informal, primarily because it 
is typically not documented and remains tacit until its expression is demanded in 
specifi c applications. Moreover, experts express and apply their knowledge in 
different forms (e.g., implicit, qualitative, equivocal) than what is typical for empirical 
science. As a result, expert knowledge may appear latent, fragmented, and nonunifi ed, 
and properties such as the variability, uncertainty, and even veracity of the knowledge 
remain unassessed (e.g., Ayyub  2001 ; Burgman et al.  2011  ) . By defi nition, expert 
knowledge is highly subjective and methods of its formulation are not explicit and 
repeatable unless someone makes an effort to rigorously elicit the knowledge. 
Although expert knowledge may include the processes of synthesis, testing, validation, 
and reformulation, these steps are not always explicit, unlike in the development of 
a body of scientifi c knowledge. This makes expert knowledge highly unattractive to 
scientists who have been trained to use the scientifi c method to obtain objective 
knowledge. We emphasize, however, that methods for eliciting and validating expert 
knowledge can be rigorous and consistent with the approaches used by scientists to 
collect and apply empirical data. 

 While others have categorized expertise, for example the Dreyfus scale (Dreyfus 
and Dreyfus  1986 ), we view degree of expertise as a continuum. Many dimensions 
can be used to quantify the degree of expertise, as illustrated in Fig.  1.1 . Ideal 
experts are those who have a global view, with broad spatiotemporal and cross-scale 
understanding; base their knowledge on observations, critical thought, and deliber-
ate practice; can understand complex systems and recognize detailed relationships; 
approach problem solving with parsimony; and acknowledge the variability and 
stochasticity in ecosystems and the resulting uncertainty of knowledge.   
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    1.1.4   Why Should We Care About Expert Knowledge? 

 The value of expert knowledge extends beyond traditional expert systems which 
focus mostly on an expert’s decision-making ability in specifi c and narrow instances, 
such as policy development, strategic planning, or tactical management (e.g., Rykiel 
 1989 ; Cleaves  1994 ; Burgman  2005 ; Aspinall  2010  ) . Given that expertise is not a 
single level, but rather a continuum, the utility of expert knowledge to landscape 
ecologists can differ according to an expert’s position within the spectrum. At lower 
levels of expertise, experts are informative in providing data on local observations 
and specifi c local conditions; for example, they can provide knowledge of exceptions 
and rarities and can fi ll gaps in more formal data sets. Such knowledge is more of 
empirical and local value. These experts just “know” from their observations, reading, 
discussions, and other means, and may offer their opinions or specifi c knowledge of 
ecological patterns and processes. At higher levels, experts can potentially inform 
researchers about ecological processes and patterns; for example, they can offer 
insights, syntheses, and hypotheses. We consider these experts to be “sages”; in addi-
tion to just “knowing,” they have thought deeply about an issue and have formulated 
their own syntheses based on synoptic knowledge. They may be able to bypass 
otherwise complex systems and provide parsimonious solutions that focus on the 
key aspects of a situation. Examples of the contributions of expert knowledge to 
landscape ecology research and application development range from judgments to 
decisions, and these expressions may be founded on different forms of expert 
knowledge (Table  1.1 ).  

 Landscape ecologists may fi nd useful roles for expert knowledge in all aspects of 
research and development: conceiving and clarifying research ideas; hypothesis 
development and testing; model development, parameterization, and validation; 
and subsequent knowledge transfer (Fig.  1.2 ).   

  Fig. 1.1    Expert knowledge can be positioned along a continuum of expertise that can be quantifi ed 
using multiple traits       
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    1.1.5   What Are the Concerns of Using Expert Knowledge? 

 Although expert knowledge is useful in most phases of landscape ecology research 
and development, users of that knowledge must be aware of the potential pitfalls. 
For example, given the many biases and complications involved in cognition, com-
munication, behavior, and other human traits associated with the acquisition and 
expression of expert knowledge, it is possible to misrepresent, misinterpret, and 
improperly apply expert knowledge (Burgman  2005  ) . 

 Credible and proper use of expert knowledge requires a rigorous scientifi c 
approach to selecting the experts; to eliciting, analyzing, and verifying their knowl-
edge; and to applying it appropriately. The long-term credibility and utility of expert 

  Fig. 1.2    Expert knowledge is useful at many levels in landscape ecology research and 
development       

   Table 1.1    Examples of the types of contributions experts have made to landscape 
ecology research and applications   
 Contribution  Example  Foundation 

 Judgment  A is more important than B  Opinion or synoptic 
knowledge  A will increase in time 

 Qualitative information  A is greater than B 
 A and B exist; C does not 

 Quantitative information  A = 10, B = 5, C = 0  Specifi c knowledge 

 Synthesis  A and B are linked with C  Synoptic knowledge 
 A = 2(B + C) 

 Decision  Increase B 
 Introduce C 
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knowledge depends on the rigor of the method, not merely on the acceptability of 
the results of applying the knowledge. The general principles and detailed methods 
for engaging experts and using their knowledge are evolving steadily (e.g., Cooke 
 1991 ; Meyer and Booker  1991 ; Ayyub  2001 ; O’Hagan et al.  2006  ) . Much of this 
work was pioneered in the social sciences, with relatively recent application and 
innovation in the natural and life sciences (e.g., Burgman  2005 ; Doswald et al.  2007  
Kuhnert et al.  2010  ) . We suggest, however, that most practitioners and researchers 
involved in landscape ecology have little training in the rigorous methods and 
approaches that must be used to engage experts and elicit their knowledge. Very few 
of us are exposed to the science of dealing with human subjects during our under-
graduate or postgraduate training. This lack of awareness not only compromises the 
principles of scientifi c rigor, but potentially has large implications for landscape 
ecological applications if knowledge is not elicited and used in a rigorous manner 
(Johnson and Gillingham  2004 ; Burgman et al.  2011  ) .   

    1.2   Road Map of the Book 

 Based on the abovementioned context, our goal in this book is to introduce land-
scape ecologists to the applicability, advantages, and pitfalls of expert knowledge. 
We have included methodological chapters that provide guidance in developing 
appropriate and defensible methods for the elicitation and use of expert knowledge. 
We have also included case studies that reveal additional methods and applications 
of this knowledge, as well as the costs, pitfalls, and benefi ts of applying expert 
knowledge to a wide range of problems and questions in landscape ecology. 
However, we do not intend for the text to serve as a comprehensive handbook of 
“best practices” for landscape ecologists on how to use expert knowledge. We antic-
ipate that such a how-to volume, similar to the work of Cooke  (  1991  ) , Meyer and 
Booker  (  1991  ) , Ericsson et al.  (  2006  ) , and O’Hagan et al.  (  2006  )  will be produced 
in time as the applications of expert knowledge in landscape ecology become more 
prevalent, as lessons are learned about its disadvantages, as elicitation and analytical 
methods are refi ned, and as further insights are gained into its applications. 

 The experts described in this book, and whose knowledge was elicited and used 
in ecological applications, ranged from expert practitioners to scientists. Here, we 
defi ne expert knowledge as “Acquaintance with facts; state of being aware or 
informed; intellectual perception of fact or truth; clear and certain understanding or 
awareness,” following the defi nition of  knowledge  provided by Oxford English 
Dictionary (2002, 5th edition). In doing so, we recognize its difference from  expert 
opinion , which is defi ned by the Oxford English Dictionary as “a view held about a 
particular subject or point; a judgment formed; a belief; a formal statement by a 
member of an advisory body, an expert, etc., of what he or she judges or advises on 
a matter” (2002, 5th edition). 

 In Chapter   2    , McBride and Burgman expand on the concept of experts and their 
knowledge. They especially focus on how that expertise is gained, limitations of 
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expert knowledge, and how others could rigorously elicit and use that knowledge in 
ecological applications; in so doing, they provide a conceptual foundation for 
knowledge elicitation. Subsequent chapters describe the application of expert 
knowledge to landscape ecology through case studies from Australia (Chaps.   3     and 
  12    ), Canada (Chaps.   4    ,   7    –  10    ), and the USA (Chaps.   5    ,   6    ,   11    , and   13    ). They consti-
tute a broad array of ecological contexts (Fig.  1.3 ), ranging from modeling of avian 
habitat (Chaps.   5     and   6    ), conservation of mammal habitat (Chaps.   7     and   8    ), forest 
succession modeling (Chaps.   9     and   10    ), and mapping of ecological features 
(Chaps.   11     and   12    ), to assessing risks in marine ecosystems (Chap.   13    ).  

 In Chapter   3    , Low-Choy et al. describe analytical software they have designed to 
elicit and assess expert knowledge to support its application within Bayesian mod-
els. Drew and Collazo (Chap.   5    ), Moody and Grand (Chap.   6    ), McNay (Chap.   7    ), 
and Williams et al. (Chap.   12    ) relied on Bayesian methodologies in their case stud-
ies of expert knowledge. Johnson et al. (Chap.   8    ) describe the application of meth-
ods to evaluate the uncertainty and the relative accuracy of knowledge. Drescher 
et al. (Chap.   4    ) detail the development of a customized software tool that facilitated 
the elicitation of expert knowledge by visually simplifying the otherwise intractably 
complex details of forest ecosystems. Drescher and Perera (Chap.   9    ) discuss the 
assessment and verifi cation of that expert knowledge. Doyon et al. (Chap.   10    ) pres-
ent a similar case of using expert knowledge as a source of supplementary informa-
tion for simulation models of forest succession. 

 Drew and Collazo (Chap.   5    ) provide an excellent example of using expert knowl-
edge to model the habitat of bird species, where formal scientifi c data did not exist. 
Moody and Grand (Chap.   6    ) report their use of expert knowledge of bird habitat 
associations to develop a decision-support tool for avian conservation plans. McNay 

  Fig. 1.3    Overview of the organization of this book       
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(Chap.   7    ) presents a case study of using expert knowledge to develop long- and 
short-term recovery objectives for woodland caribou. Johnson et al. (Chap.   8    ) 
provide a summary of the lessons they learned from case studies of mammal habitat 
modeling using expert knowledge, with particular emphasis on the potential pitfalls 
of using expert knowledge in ecological applications. Keane and Reeves (Chap.   11    ) 
and Williams et al. (Chap.   12    ) classify and map the ecological features of land-
scapes in applications that rely on interpretation by experts using aspatial logic and 
implicit models. Kappel et al. (Chap.   13    ) describe how expert knowledge can be 
used to assess vulnerability risk of marine ecosystems. Finally, Johnson et al. 
(Chap.   14    ) provide a summary and a synthesis of the knowledge and insights 
presented in this volume, as well as recommendations for the rigorous use of expert 
knowledge in landscape ecological applications.      
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    2.1   Introduction: Why Use Expert Knowledge? 

 Expert knowledge plays an integral role in applied ecology and conservation 
(Burgman  2005  ) . Environmental systems are characterized by complex dynamics, 
multiple drivers, and a paucity of data (Carpenter  2002  ) . Action is often required 
before uncertainties can be resolved. Where empirical data are scarce or unavailable, 
expert knowledge is often regarded as the best or only source of information 
(Sutherland  2006 ; Kuhnert et al.  2010  ) . Experts may be called upon to provide input 
for all stages of the modeling and management process, and specifi cally to inform 
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the defi nition and structuring of the problem (Cowling and Pressey  2003 ; Sutherland 
et al.  2008  ) , to inform the selection of data or variables, model structures, and 
assumptions about functional relationships between variables (Pearce et al.  2001 ; 
Czembor and Vesk  2009  ) , and to inform the analysis of data, estimation of param-
eters, interpretation of results, and the characterization of uncertainty (Alho and 
Kangas  1997 ; Martin et al.  2005  ) . 

 Expert judgment is susceptible to a range of cognitive and motivational biases, 
to an expert’s particular context, and to their personal beliefs and experiences 
(Shrader-Frechette  1996 ; Camerer and Johnson  1997 ; Slovic  1999 ; Ludwig et al. 
 2001 ; Campbell  2002  ) . Formal elicitation methods anticipate and account for the 
most serious and predictable frailties of expert opinions (Morgan and Henrion  1990 ; 
Cooke  1991  ) . These methods improve the quality of elicited knowledge by treating 
elicitation as formal data acquisition, using systematic, well-defi ned protocols that 
reduce the impact of extraneous factors on the results and that make assumptions 
and reasoning explicit (van Steen  1992 ; Burgman et al.  2011  ) . 

 Expert knowledge incorporates uncertainty derived from multiple sources. 
Uncertainty may arise from incertitude (sometimes termed “epistemic uncertainty”), 
natural variation (sometimes termed “aleatory uncertainty”), and linguistic uncertainty 
(Anderson and Hattis  1999 ; Regan et al.  2002  ) . Incertitude arises from incomplete 
knowledge and can be reduced by additional research and data collection. Natural 
variation results from inherent natural randomness, such as fl uctuations in rainfall 
and temperature. It can be better understood but not reduced by additional study 
or measurement improvements (Burgman  2005  ) . Linguistic uncertainty arises from 
imprecision in language, and results from ambiguous, vague, underspecifi ed, and 
context-dependent terms. This form of uncertainty can be reduced by resolving 
meanings and clarifying context, terms, and expressions (Regan et al.  2002  ) . For 
example, Whitfi eld et al.  (  2008  )  used expert judgment to quantify the fl ight initiation 
distance (FID) of breeding birds in response to an approaching human. Epistemic 
uncertainty arose in, for example, the average FID, as a result of the expert’s lack 
of knowledge, and could be reduced by additional study. Natural variation arose 
because different individual birds exhibit different FID responses, and the same 
individuals exhibit different responses in different circumstances. 

 Different types of uncertainty have different implications for decision-makers, 
and ideally, experts will be given the opportunity to address different sources of 
uncertainty separately (Ferson and Ginzburg  1996 ; Regan et al.  2002  ) . Incertitude 
may prompt further research, whereas natural variation may lead to the development 
of management strategies, such as a maximum approach distance in the FID example. 
However, in practice, clear distinctions between the different types of uncertainty 
do not always exist (Hofer  1996 ; O’Hagan  1998  ) . 

 In this chapter we explore the capacity of experts to contribute to better management 
and decision-making in environmental systems. We look at what expertise is and 
how it is acquired. We outline the process involved in the formal elicitation of 
expert knowledge, including the selection of appropriate experts, deciding the form 
of knowledge to elicit, and verifi cation of expert responses. Finally, we discuss more 
broadly the role for experts and expert knowledge when addressing questions in 
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landscape ecology, including examples of problems for which expert knowledge 
can usefully contribute, problems and pitfalls, and areas for possible improvement.  

    2.2   What Is Expert Knowledge? 

 “Expert knowledge” is what qualifi ed individuals know as a result of their technical 
practices, training, and experience (Booker and McNamara  2004  ) . It may include 
recalled facts or evidence, inferences made by the expert on the basis of “hard facts” 
in response to new or undocumented situations, and integration of disparate 
sources in conceptual models to address system-level issues (Kaplan  1992  ) . For a 
more detailed discussion of expert knowledge, see Perera et al. (Chap.   1    ). Experts 
are usually identifi ed on the basis of qualifi cations, training, experience, professional 
memberships, and peer recognition (Ayyub  2001  ) , although broader defi nitions of 
expertise may include untrained people who possess direct, practical experience 
(Burgman et al.  2011 ; see Table  2.1 ). For example, a typical expert in landscape 
ecology might be a practitioner who has formal training, years of deliberate 
practice, and whose ability to solve professional problems has led to their recognition 
as an “expert” by their peers.  

 Expert knowledge is a product of unique reasoning systems (Ericsson and 
Lehmann  1996 ; Fazey et al.  2005 ; Chi  2006  ) . Skilled experts have acquired 
extensive knowledge and experience that affects how they perceive systems and 
how they are able to organize and interpret information. The cognitive basis for 
expert performance is recognition: experts develop organizational structures that 
allow them to recognize a situation and effi ciently recall the most appropriate 
knowledge to solve a specifi c problem (Ericsson and Charness  1994  ) . As a result, 
experts are skilled in determining the most relevant information for a given context, 
structuring the problem defi nition, and fi nding an appropriate solution method 
(Chi  2006  ) . Their reasoning typically is characterized as being automatic, abstract, 
intuitive, tacit, and refl exive. An expert operating in their area of direct expertise is 
often able to perform tasks without being aware of exactly how or what they do 
(Kidd and Welbank  1984  ) . 

   Table 2.1    A profi ciency scale for expertise under a traditional approach to expertise (modifi ed 
from Collins and Evans  2007 ; see also R.R. Hoffman  1998  ) .   

 Type  Characteristics 

 Contributory expertise  Fully developed and internalized skills and knowledge, including 
an ability to contribute new knowledge or to teach. 

 Interactional expertise  Knowledge gained from learning the language of specialist 
groups, without necessarily obtaining practical competence. 

 Primary source knowledge  Knowledge gained from the primary literature, including basic 
technical competence. 

 Popular understanding  Knowledge from the media, with little detail and less complexity. 
 Specifi c instruction  Formulaic, rule-based knowledge, typically simple, context-

specifi c, and local. 
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 A domain (or substantive) expert is an individual familiar with the subject 
at hand and responsible for the analysis of the issue and providing judgments. 
The expert literature distinguishes between substantive expertise, which represents 
an expert’s domain knowledge, and normative expertise, the expert’s ability to accu-
rately and clearly communicate beliefs in a particular format, such as probabilities 
(Ferrell  1994 ; Stern and Fineberg  1996  ) . However, knowledge about a subject 
area does not translate into an ability to convey that knowledge. Similarly, experts 
are often required to convert incomplete knowledge into judgments for use in 
decision-making, or to extrapolate knowledge to new and unfamiliar circumstances. 
The degree to which they are able to extrapolate or adapt to new circumstances, 
referred to as “adaptive expertise” (Fazey et al.  2005  ) , varies depending on the 
individual and not necessarily according to their substantive knowledge or training. 
As with substantive expertise, normative and adaptive expertise must be acquired 
through training and experience (Murphy and Winkler  1984 ; Ferrell  1994 ; Wilson 
 1994 ; Fazey et al.  2005  ) . 

    2.2.1   Development of Expertise 

 Expert skill requires substantial domain knowledge and repeated experience with 
relevant tasks so that experts recognize the appropriate cues for future information 
demands (Ericsson and Kintsch  1995 ; Ericsson  2004  ) . The traditional theory of 
expertise (Chase and Simon  1973 ; Richman et al.  1995  )  assumes that experts are 
trained appropriately, and then slowly accumulate knowledge over long periods 
through experience, and that this leads to a gradual improvement in their ability to 
estimate parameter values and make predictions (Ericsson and Towne  2010  ) . 
However, experience and qualifi cations are often poor indicators of this kind of 
performance (Ericsson and Lehmann  1996 ; Camerer and Johnson  1997  ) . Experience 
and training contribute to expertise, but their value depends on the characteristics of 
the task environment in which they are obtained (Shanteau  1992  ) . 

 Where expertise is acquired in appropriate environments with adequate experience 
and feedback, it can be highly effective. In particular, when feedback quality is high 
(frequent, prompt, and diagnostic) and judgments are made in exacting environments 
(where mistakes are costly), expert knowledge is likely to be accurate. For example, 
chess players (Chase and Simon  1973  ) , weather forecasters (Murphy and Winkler 
 1984  ) , athletes (Ericsson et al.  2006  ) , and physicists in textbook problem solving 
(Larkin et al.  1980  )  all display highly skilled expertise, developed through experience 
over an extended period in conjunction with consistent and diagnostic feedback. 

 When feedback quality is low, or when mistakes are not costly to those making 
the estimates, inaccurate beliefs are easily acquired. In such environments, experts 
are likely to have diffi culty separating the infl uences of skill from those of chance 
and are likely to form superstitious beliefs (Kardes  2006  ) . Delayed feedback, 
for example, makes it diffi cult for physicians to learn about the accuracy of their 
diagnoses (Christensen-Szalanski and Bushyhead  1981  ) . 
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 Sutherland et al.  (  2004  )  give several instances in which the failure to evaluate the 
outcomes of management actions resulted in the persistence of misperceptions 
about their effectiveness and suitability. For example, winter fl ooding of grasslands 
was considered by many experts to be benefi cial for wading birds. However, an in-
depth study by Ausden et al.  (  2001  )  revealed that although fl ooding of previously 
unfl ooded grasslands improved conditions for bird foraging, it also killed the 
invertebrates upon which the birds fed. Incorrect beliefs were propagated because 
appropriate diagnostic feedback about the effectiveness of grassland fl ooding was 
initially absent. 

 Adaptive expertise may be inhibited by knowledge within a narrow domain. 
Greater expert knowledge and more structured, automated reasoning processes can 
lead to more entrenched thinking that may be diffi cult to alter when circumstances 
change. For example, Chi  (  2006  )  noted that experts may perform worse than 
novices when adapting to new situations. This is particularly likely to arise when 
experts become complacent or do not recognize when a task lies outside their direct 
area of expertise.  

    2.2.2   Limitations of Expertise 

 The way in which expertise is acquired means that expert skill is limited to the tasks 
and domains in which it was acquired. Where experts deal with a known situation 
for which they have had repeated performance feedback, they give more accurate, 
better-calibrated information than nonexperts (Shanteau  1992 ; Hogarth  2001  ) . 
Outside their specifi c sphere of expertise, experts fall back on the same reasoning 
processes as everyone else, and their judgments are subject to the same psychological 
and contextual frailties. The degree to which a person’s unique set of experiences 
and training are relevant to a particular context is often diffi cult to determine 
(Bransford et al.  2000  ) . 

 The seminal work by Tversky and Kahneman (Tversky and Kahneman  1974 ;  
Kahneman and Tversky  1982  ) , and others (e.g., Fischhoff et al.  1982 ; Dawes and 
Kagan  1988 ; Gilovich et al.  2002 ; Slovic et al.  2004  )  has shown that experts rely on 
“heuristics” (shortcuts). Experts who make appropriate use of these shortcuts can 
make powerful inferences with limited time and data (Gigerenzer  1999,   2008  ) . 
However, incorrect use of judgmental heuristics often leads to biases (Kahneman 
 1991 ; Shanteau and Stewart  1992 ; Wilson  1994  ) . 

 Cognitive biases result from limitations on human processing ability and occur 
because of a failure to adequately process, aggregate, or integrate relevant information 
(Wilson  1994  ) . For example, judgments from experts (and lay people) are undermined 
by overconfi dence, with experts specifying narrower bounds than is warranted based 
on their knowledge or experience (Fischhoff et al.  1982 ; Speirs-Bridge et al.  2010  ) . 
Overconfi dent experts fail to correctly process the full extent of uncertainty in their 
knowledge about a variable. For example, Baran  (  2000  ) , as discussed by Burgman 
 (  2005  ) , asked professional ecologists to estimate how many 0.1-ha quadrats would 
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be necessary to sample 95% of the plant species within a 40-ha Australian dry 
temperate sclerophyll forest landscape. Field ecologists routinely perform this type 
of estimation task, and the respondents were familiar with the methodology and 
habitat. However, Baran  (  2000  )  found that only 2 of the 28 experts specifi ed 90% 
credible bounds that included the true value. 

 Motivational biases arising from context, personal beliefs, and from what the 
expert stands to gain or lose personally from a decision may also color their judg-
ments (Kunda  1990 ; Garthwaite et al.  2005  ) . Motivational biases are “a conscious 
or subconscious adjustment in the subject’s responses motivated by his [sic] perceived 
system of personal rewards for various responses” (Spetzler and Stael Von Holstein 
 1975  ) . Other biases common among scientists include a tendency to treat model or 
experimental results as more reliable than they really are (Hora  1992  ) , predicting 
the future based on past events (”hindsight“ bias), overestimating their degree of 
control over an outcome, and underestimating the amount of variability in a system 
(Anderson  1998 ; Burgman  2000  ) . Formal elicitation processes are motivated by the 
need to make experts aware of these potential biases, and to mitigate their effects 
(Morgan and Henrion  1990 ; Hokstad et al.  1998 ; Arnott  2006  ) .   

    2.3   Gathering Expert Knowledge 

 Experts provide knowledge informally when they specify information “off the top 
of their heads”. Informal, subjective judgments are often incorporated into scientifi c 
decisions through the selection of which problem needs to be analyzed, how the 
problem is to be structured, what data sources to draw upon, how results are interpreted, 
and what actions are recommended. Formal procedures have been developed to 
counter the cognitive and motivational biases prevalent in informal expert judgments 
(Morgan and Henrion  1990 ; Hokstad et al.  1998  ) . They are employed with the aim 
of increasing the credibility, repeatability, and transparency of expert knowledge. 
Generally, they involve a protocol for elicitation; that is, a set of defi ned, repeatable 
steps that control the way in which information is elicited to reduce the effects of 
extraneous factors. 

 A successful elicitation is one that provides an accurate representation of an 
expert’s true beliefs (Garthwaite et al.  2005  ) . There is a particular emphasis on 
establishing a complete understanding of the reasoning and assumptions behind an 
expert’s judgments, and ensuring that experts make judgments on the basis of all 
relevant information. Questions are formulated to help experts draw on appropriate 
data and relevant background information (Spetzler and Stael Von Holstein  1975  ) . 
Feedback and verifi cation stages are included to ensure that experts give fully 
reasoned responses and that the responses are internally (for the expert) and externally 
(with existing knowledge) consistent (Keeney and von Winterfeldt  1991  ) . Although 
the specifi cs vary between protocols, there is general agreement on the key stages 
(Spetzler and Stael Von Holstein  1975 ; von Winterfeldt and Edwards  1986 ; Morgan 
and Henrion  1990 ; Cooke  1991 ; Keeney and von Winterfeldt  1991  ) :
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    1.    Preparation:

   Problem defi nition and development of questions.  • 
  Defi nition and selection of experts.     • 

    2.    Elicitation:

   Training of experts before conducting the actual elicitation.  • 
  The actual elicitation.     • 

    3.    Analysis:

   Verifi cation of responses.  • 
  Aggregation of expert responses.        • 

 Within this broad framework, there is scope for considerable variation at each of the 
stages. Key variables include the format for the elicitation, number of experts selected, 
kind and degree of interaction among the experts and between the elicitors and 
experts, format of the elicitation, and the way in which the elicited knowledge is com-
bined. Often, details depend on the preferences of the researcher and the characteris-
tics of the problem at hand. Key factors include the number and type of experts 
available, and the time and other resources available to the researcher (Kuhnert et al. 
 2010  ) . The development of a tailored elicitation protocol for the requirements of 
a particular problem is referred to as elicitation design (Low-Choy et al.  2009  ) . 

 Readers interested in eliciting expert knowledge must understand the distinct 
roles that are involved in a formal elicitation process (Rosqvist and Tuominen  2004 ; 
O’Hagan et al.  2006  ) :

    1.    The  client  is the decision-maker or body that will use the results of the elicitation.  
    2.     Substantive experts  have the relevant domain knowledge about the parameters that 

will be elicited; most of these experts contribute judgments, but ideally one or two 
should inform the initial structuring of the problem and design of the questions.  

    3.     Analytical experts  have relevant quantitative knowledge and are responsible for 
analyzing the expert responses.  

    4.    The  facilitator  manages the dialogue with or among the experts.     

 We refer to the individual who undertakes the elicitation as the researcher; there 
may be more than one. The researcher may also function as the analytical expert, 
facilitator, and even as the client. However, generally the steps in the elicitation are 
best performed by separate individuals with experience performing the necessary 
tasks (Hoffman and Kaplan  1999 ; Garthwaite et al.  2005 ; O’Hagan et al.  2006  ) . 

    2.3.1   Preparation 

 The preparation stage is where the researcher decides the structure of the elicitation. 
Key tasks include defi nition of the problem, development of questions, and selection 
of experts. Adequate preparation is a key part of successful elicitation, since it will 
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ensure a smoother process and maximize opportunities for identifying and countering 
possible biases. Experts respect and appreciate the effort a researcher has put 
into developing the elicitation documentation and the questions, and are generally 
inclined to reciprocate by devoting similar time and effort when making their judg-
ments (van der Gaag et al.  1999  ) . 

    2.3.1.1   Problem Defi nition and Question Development 

 The fi rst step is to determine the purpose of the elicitation and defi ne the objectives 
precisely. The elicitation designer must determine what information is required, 
the level of precision, and the appropriate selection of experts. For example, is the 
purpose to inform policy, support decision-making, determine research priorities, or 
characterize uncertainty about a particular model, analysis, or parameter? The 
researcher may need to work with decision-makers and stakeholders to develop 
goals if the objectives of the process are not already specifi ed. 

 The scientifi c literature should be reviewed to determine the extent of relevant 
scientifi c knowledge and to identify information gaps. It is usually helpful to 
provide experts with documentation outlining the relevant evidence that has been 
compiled into an appropriate, accessible form (Cooke and Goossens  2000  ) . Back-
ground materials usually provide information about the objectives of the elicitation, 
explain the motivations for the formal methodology, outline what the elicitation will 
involve, explain relevant statistical concepts, and document the questions (e.g., 
Hogarth  1987 ; Morgan and Henrion  1990 ; Rothlisberger et al.  2010  ) . Experts should 
have time to review the materials, raise any potential concerns, and volunteer 
relevant information prior to the elicitation proper. 

 Having identifi ed the requirements for the elicitation, the researcher then defi nes 
and structures the problem and identifi es the variables for which knowledge is to be 
elicited. Problem structuring refers to the process of breaking down the problem 
into a set of variables or relationships for which knowledge will be elicited. Planning, 
often in conjunction with substantive experts, aims to ensure that the structure is 
straightforward and intuitive for experts (Keeney and von Winterfeldt  1991  ) . The 
level of problem disaggregation is an important consideration. In general, researchers 
disaggregate complex questions into more manageable sub-problems, aiming to 
create knowledge environments that are more comfortable and familiar to experts. 
This strategy aims to create a set of variables that best allow experts to incorporate 
their knowledge, for example, about quantities that are observable or that the experts 
have experienced directly (Cooke and Goossens  2000  ) . The variables should be 
suffi ciently well defi ned that experts can answer questions without further specifi -
cation (Morgan and Henrion  1990  ) . 

 Habitat suitability indices are good example of disaggregation techniques in 
ecology. These indices provide a quantitative representation of the relative suitability 
of some part of a landscape for the survival and reproduction of a species (Reading 
et al.  1996 ; Cohen et al.  2004  ) . Rather than asking experts to estimate the suitability 
outright for every point in the landscape, elicitation of these indices instead requires 
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experts to nominate which variables are most important in determining suitable 
habitat for a species, and how measures of these variables should be combined into 
an overall measure of suitability. Thus, they represent a disaggregated model that 
links environmental data to the persistence of a species. 

 The draft protocol and background information should be carefully piloted 
(tested and revised before it is used to collect actual data) to ensure that the questions 
have been framed appropriately, to identify possible problems with biases or 
question phrasing, and to receive feedback about any potential ways to improve the 
quality of the process and of the knowledge that is being elicited. To some degree, 
all questions are biased, but careful development combined with testing and 
refi nement of the protocol by substantive experts can minimize adverse effects 
considerably (Payne  1951  ) . It should also be noted that experts used in testing the 
protocol should not be used to answer the questions; this is a formal technical 
requirement in Bayesian analysis.  

    2.3.1.2   Selection of Experts 

 The selection process involves identifi cation of the expertise that will be relevant to 
the elicitation process, and selection of the subset of experts who best fulfi ll the 
requirements for expertise within the existing time and resource constraints. In some 
cases, the selection of appropriate experts is straightforward, but in other cases, an 
appropriate expert group will need to be defi ned by the researcher according to 
the experts’ availability and the requirements of the elicitation. Experts should 
be selected using explicit criteria to ensure transparency, and to establish that the 
results represent the full range of views in the expert community. Common metrics 
for identifying experts include qualifi cations, employment, memberships in pro-
fessional bodies, publication records, years of experience, peer nomination, and 
perceived standing in the expert community (e.g., Chuenpagdee et al.  2003 ; Drescher 
et al.  2008 ; Whitfi eld et al.  2008 ; Czembor and Vesk  2009  ) . Additional consider-
ations include the availability and willingness of the experts to participate, and the 
possibility of confl icts of interest. 

 The appropriate number of experts depends on the scope of the problem, the 
available time and other resources, and the level of independence between experts. 
Experts often share beliefs because of shared information sources and training. In 
such cases, the marginal benefi ts of including more than about fi ve to eight experts 
decrease quickly (Winkler and Makridakis  1983 ; Clemen and Winkler  1985  ) . As a 
result, researchers are encouraged to include as diverse a range of experts as possible. 
The literature on expert elicitation strongly recommends the use of multiple experts 
to buffer against individual mistakes and biases, and to allow for assessments that 
are representative of the whole expert community (Hokstad et al.  1998 ; Clemen and 
Winkler  1999 ; Armstrong  2006  ) . Even in cases where one expert is considered 
substantially more knowledgeable than the others, a diversity of opinions from a 
group of “lesser” experts may outperform the opinion of a single “best” expert 
(Bates and Granger  1969 ; Dickinson  1973 ;  1975 ; Otway and von Winterfeldt  1992 ; 
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Clemen and Winkler  1999 ; Armstrong  2001 ; Fisher  2009  ) . The combined judgment 
also tends to be more reliable, since  a priori  identifi cation of a single best expert is 
not always straightforward. 

 In most ecological settings, the breadth of concerns means that no one individual 
will be expert for all aspects of the problem (e.g., Ludwig et al.  2001 ; Martin et al. 
 2005  ) . For example, in the elicitation described by Martin et al.  (  2005  ) , no single 
expert had the required expertise for all 20 bird species that were considered. Using 
multiple experts was an important strategy to obtain the required expert coverage. 
The use of larger expert groups may also be benefi cial if it will increase the accep-
tance or perceived validity of the elicitation outcomes. This is particularly true in 
contexts such as a public consultation process, in which the stakeholders may 
include many groups of individuals who are not traditionally considered to be 
experts, but who nonetheless possess expertise in certain relevant domains.   

    2.3.2   Elicitation 

    2.3.2.1   Expert Pretraining 

 Substantive experts may be unfamiliar with expressing their beliefs numerically or 
in the format required by the elicitation protocol. Pretraining provides participants 
with appropriate experience, and where relevant, improves their understanding of 
the concepts involved in the elicitation. Given suffi cient practice combined with 
adequate feedback, experts can substantially improve their performance, thereby 
becoming more reliable and accurate (Ferrell  1994 ; Renooij  2001  ) . Inclusion of 
pretraining may be particularly important where elicitations involve the assessment 
of complex, unintuitive statistical formats such as quantiles or the moments of a 
probability distribution (see Hogarth  1987 ; Morgan and Henrion  1990 ; Cooke and 
Goossens  2000 ; Renooij  2001  ) .  

    2.3.2.2   Elicitation 

 During this step, the experts respond to questions to assess the required variables, 
usually under the guidance of a facilitator. The expert performs four tasks during the 
elicitation (Meyer and Booker  1991  ) :

    1.    Understands the question.  
    2.    Searches for and recalls the relevant information.  
    3.    Makes judgments.  
    4.    Constructs and reports an answer.     

 Errors may enter the elicitation process at any of these stages. The process 
should, therefore, be viewed as one that helps an expert construct a set of carefully 
reasoned and considered judgments. 
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 Five steps can help to counteract the psychological biases associated with 
elicitation: motivating, structuring, conditioning (i.e., defi ning any conditions that 
affect the problem defi nition), encoding, and verifying (Spetzler and Stael Von 
Holstein  1975 ; von Winterfeldt and Edwards  1986 ; Morgan and Henrion  1990 ; 
Shephard and Kirkwood  1994  ) . We outline these steps in the remainder of this sec-
tion. They involve ensuring that the expert has a complete understanding of each 
variable for which knowledge will be elicited and of any assumptions or condi-
tioning factors, that they have had a chance to discuss and develop their reasoning 
and refl ect on the relevant evidence, and having responded, that they have a chance 
to review and verify their responses.  

    2.3.2.3   Motivating 

 The facilitator works to develop an initial rapport or understanding with the experts 
and to establish their approval of the objectives of the elicitation. Facilitators explain 
the context and reasons for the elicitation and how the results will be used, the moti-
vation for the experts’ involvement, and how the expert’s judgments will contribute 
(Walls and Quigley  2001  ) . An introduction to the psychology of human judgment 
and bias in the elicitation will help the expert to understand the need for the formal 
elicitation process. 

 Experts are often wary of giving estimates that are not based on direct evidence. 
It is usually important to stress that there is no single correct response and that the 
aim of the process is only to elicit an accurate representation of the expert’s true 
beliefs (Cooke  1991  ) . The facilitator also identifi es issues that may bias an expert’s 
assessments, such as personal beliefs or confl icts of interest.  

    2.3.2.4   Structuring 

 At this stage, the facilitator goes through the details of each of the independent 
variables for which knowledge is to be elicited, including the model structure and 
conditions that constrain the expert’s responses, and resolves any ambiguities. The 
aim is to ensure that each expert has a complete, unambiguous understanding of 
what information they are being asked to provide and what assumptions they are 
based on.  

    2.3.2.5   Conditioning 

 The facilitator and experts review the information and any assumptions on which 
the experts will base their assessments. The facilitator then questions the experts 
about their reasoning to ensure they have fully considered all possibilities, for 
example, by considering scenarios that may lead to unexpected outcomes.  
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    2.3.2.6   Encoding 

 At this stage, the expert is asked to state their beliefs for each variable, for example, 
as probabilities or relative weights. Different techniques can be employed to 
encode the expert’s beliefs, and we outline a number of the approaches commonly 
applied within landscape ecology in Sect.  3.2.8 . In-depth coverage of different 
encoding techniques can be found in Spetzler and Stael Von Holstein  (  1975  ) , von 
Winterfeldt and Edwards  (  1986  ) , Morgan and Henrion  (  1990  ) , Cooke  (  1991  ) , 
Renooij  (  2001  ) , Garthwaite et al.  (  2005  ) , and the references therein.  

    2.3.2.7   Verifying 

 Following the assessment, the facilitator reviews the responses for signs of bias 
(e.g., experts who gave consistently high or low probabilities), and confi rms that the 
responses are logical and consistent. Experts are asked to review their judgments, 
consider alternatives, and verify or change their judgments if they wish. Experts 
are rarely aware of the full implications of a set of judgments, and viewing their 
assessments in multiple formats (e.g., computer visualizations, statistical graphs, 
data tables) prompts a more rigorous reassessment of their beliefs. Experts should 
also be given an opportunity to review the outputs of any model or fi nal representa-
tion, such as a graphical representation of the probability distribution constructed 
from their responses, to ensure that this result represents a reasonable refl ection of 
their beliefs. The facilitator should actively question the expert, and should provide 
examples of their responses in multiple formats to prompt the expert to reconsider 
their statements in a new light.  

    2.3.2.8   Encoding Techniques 

 At the encoding stage, the expert is asked to state their knowledge using a particular 
response format. Experts can be asked to state their knowledge directly, for exam-
ple, using questions such as “What is the probability of the event?” or “What is the 
value of variable  x ?”. However, methods such as these do not help the expert to 
construct their beliefs. Experts are sensitive to the effects of the question framing 
and the response format in constructing their beliefs, and may benefi t from assis-
tance that reduces the cognitive strain in translating their beliefs into the required 
response format. Encoding techniques in the form of particular question formats 
have been developed to assist in estimating quantities and probability distributions 
that align with the expert’s beliefs. We discuss these techniques in the remainder of 
this section. 

 Different encoding approaches can be used, depending on the type of information 
being elicited (e.g., probabilities, means, probability distributions; see Table  2.2 ). 
A complete enumeration of the full set of approaches is beyond the scope of this 
chapter. Below, we outline a few techniques that have been applied in landscape 
ecology.  
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 Ranking methods can be used to elicit information indirectly. In the analytical 
hierarchy process (Saati  1980 ; Tavana et al.  1997  ) , the expert is presented with pairs 
of events or criteria and asked to rank the relative importance of each pair. Rankings 
use a scale ranging from 1, which represents equal importance, to 9, which repre-
sents a situation in which one alternative is “absolutely” more important. The ana-
lytical hierarchy process can also be adapted to elicit information about relative 
likelihoods. Weights or probabilities are then fi tted using matrix algebra. Experts 
fi nd this process easy and intuitive. However, it is best suited to small numbers of 
discrete events because the number of assessments becomes impractically large for 
large numbers of events. Assessed probabilities may be anchored by including 
events for which the “true” probability is known. 

 Verbal qualifi ers of uncertainty, which include words or phrases such as “highly 
likely” or “uncertain”, can be used to qualify a probability or a degree of confi dence, 
or to specify the incertitude associated with a concept. They are intuitive and are 
used as an alternative to numerical probabilities in eliciting information from experts 
(Wallsten et al.  1997  ) . People often prefer to express their uncertainty with verbal 
phrases rather than numbers, though as experts gain experience with numerical 
techniques, this preference often lessens (Spetzler and Stael Von Holstein  1975 ; 
Cooke  1991 ; Walls and Quigley  2001  ) . 

 Verbal qualifi ers have the potential to introduce substantial linguistic uncertainty. 
Phrases do not correspond to a single numerical value, and individuals interpret 
them differently depending on the context (Beyth-Marom  1982 ; Budescu and 
Wallsten  1985 ; Wallsten et al.  1986 ; Wallsten and Budescu  1995 ; Windschitl and 
Wells  1996  ) . For example, the phrase “very unlikely” may mean different things 
when referring to the possibility of a disease outbreak and the chance of rain tomor-
row. Variance in the interpretation of such phrases between individuals can span 
almost the entire probability scale. People are usually unaware of the extent of these 
differences (Brun and Teigen  1988  ) . Phrases such as “insignifi cant”, “negligible”, 
or “moderate” may also carry implied value judgments. 

 Probabilities are often diffi cult to elicit directly. Tools such as probability scales 
and probability wheels provide a straightforward visual representation for experts, 
though responses may be subject to scaling biases such as centering and spacing. 
Renooij  (  2001  )  recommended the use of such tools when experts are inexperienced 
with assessing probabilities. Presenting and eliciting information using natural 
frequencies (e.g., 13 out of 100), rather than percentages or probabilities (e.g., 13% 
or 0.13), can improve the accuracy of elicitation, particularly when experts are unfa-
miliar with probabilistic terms (Gigerenzer and Hoffrage  1995 ; Cosmides and 
Tooby  1996  ) . For example, rather than assessing the probability that Hawaiian birds 
will become extinct in the next 10 years, we can ask experts to predict the number 
of bird species that will become extinct out of the number of original bird species. 
Frequency formats are easier to understand and may be less susceptible to mistakes 
such as overconfi dence and base-rate neglect, in which an expert tends to ignore 
background frequencies when estimating probabilities (Tversky and Kahneman 
 1983 ; Tversky and Koehler  1994 ; Gigerenzer and Hoffrage  1995 ; Price  1998 ; 
Hertwig and Gigerenzer  1999  ) . However, they may be less useful when experts fi nd 
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it diffi cult to imagine occurrences of a very rare event (e.g., Slovic et al.  2000 ; van 
der Gaag et al.  2002  ) . 

 There are two main ways to elicit intervals: using a fi xed probability (a quantile) 
or using a fi xed value (Tallman et al.  1993  ) . In the fi xed-probability method, experts 
are asked to specify the value of a quantity within a specifi ed quantile. It is common 
to elicit the 5, 50, 80, and 95% quantiles and to elicit quartiles (25, 50, and 75%). In 
the fi xed-value method, the expert is asked to assign a probability that a quantity lies 
within a specifi c range of values, normally centered at the median. With both meth-
ods, experts typically display overconfi dence, generating too-narrow intervals or 
assigning too-high levels of confi dence. 

 O’Neill et al.  (  2008  )  were interested in estimating polar bear populations in the 
Arctic in the future. To elicit opinions about the relative changes in these popula-
tions, they asked experts to estimate the population in 2050 under current manage-
ment regimes (based on the change in sea-ice distribution, which was shown using 
maps), expressed as percentage of today’s population. The experts were asked to 
give their opinion and associated uncertainty using questions such as the following 
(adapted from O’Neill et al.  2008  ) :

    1.    Please estimate the lower confi dence bound for the total polar bear population 
in 2050.  

    2.    Please estimate the upper confi dence bound for the total polar bear population 
in 2050.  

    3.    Please give your best estimate for total polar bear population in 2050.     

 Speirs-Bridge et al.  (  2010  )  reduced the level of overconfi dence with a four-step 
question format. They recommended asking:

    1.    Realistically, what is the smallest the value could be?  
    2.    Realistically, what is the largest the value could be?  
    3.    What is your best guess for the true value?  
    4.    How confi dent are you that the interval from lowest to highest contains the true 

value?     

 The most comprehensive form of elicitation is to elicit full probability distributions 
for each quantity. Parametric methods for eliciting distributions involve fi tting expert 
assessments to a particular distribution or family of distributions (Garthwaite et al. 
 2005  ) . Non-parametric distributions are usually constructed from a series of points or 
intervals elicited using graphical and numerical techniques, such as those described 
above. Points or intervals are elicited because the ability of experts to specify param-
eters such as the sample variance is poor (Peterson and Beach  1967  ) . Eliciting four to 
fi ve (well chosen) points allows a curve to be fi tted that provides a reasonable approxi-
mation of the expert’s beliefs (e.g., O’Hagan  1998 ; O’Hagan et al.  2006  ) . 

 Methods have been developed for eliciting many of the commonly used 
parametric distributions, such as the normal and multivariate normal. We do not 
review these parametric methods here, but excellent overviews are given in, among 
others, Kadane et al.  (  1980  ) , Al-Awadhi and Garthwaite  (  1998  ) , Kadane and Wolfson 
 (  1998  ) , Garthwaite et al.  (  2005  ) , and O’Hagan et al.  (  2006  ) .   
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    2.3.3   Analysis 

    2.3.3.1   Verifi cation 

 Following the elicitation, the researcher should perform a second, more rigorous 
verifi cation process. In addition to checking for obvious errors or inconsistencies, 
the researcher compares the expert’s responses to those of others in the group and 
against available information to establish the external validity of the expert responses. 
External validation is important, but is often limited by a lack of appropriate alterna-
tive sources of information with which to corroborate expert responses. In compar-
ing an individual expert’s responses with those of the rest of the group, the researcher 
looks for biases, anomalies, or strongly discordant opinions, as well as for varying 
interpretations of the information. The researcher should follow up on any interest-
ing or problematic responses through further discussion with the expert. In some 
procedures, the verifi cation stage includes a step in which experts see and may even 
question the responses of other experts before making their fi nal judgment (Cooke 
 1991  ) . If any calculations are performed using the expert’s responses, the results 
should be provided for the expert to review and confi rm. The aim of this stage is to 
arrive at a fi nal set of judgments that the experts have approved. The responsibility 
rests with the researcher to ensure that the documented responses are consistent and 
that they faithfully refl ect each expert’s true beliefs.  

    2.3.3.2   Aggregation 

 Where judgments are elicited from two or more experts, it will usually be necessary 
to aggregate their opinions. Expert opinions often vary considerably and can often 
be contradictory or inconsistent. For example, it is not uncommon for experts to 
specify estimates that don’t overlap. 

 Deciding how to aggregate the responses depends on why the expert judgments 
differ. Differences may arise as a result of (1) differing levels of knowledge or 
expertise, (2) different interpretations or weights assigned to pieces of evidence, (3) 
different theoretical models, and (4) differences in personal values or motivational 
biases (Morgan and Henrion  1990  ) . In some cases, combining expert judgments 
may not be theoretically defensible or practical, or might lead to misrepresentations 
of the data (Keith  1996 ; Hora  2004 ; O’Hagan et al.  2006  ) . 

 In some cases, differences in responses may lead the analyst to revisit earlier 
stages of the elicitation, or to consult experts further to understand the source of 
their beliefs. For example, it is possible that some of the experts failed to use infor-
mation that others found to be infl uential, or weighed evidence differently. Alternatively, 
it may be clear from the responses that one of the experts misunderstood the question 
(or understood it differently). In these cases, it may be possible to ask the expert to 
revisit their response. 
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 If there are wide differences in opinion, especially relative to intraexpert variability 
(i.e., the epistemic uncertainty in an expert’s judgments), this is an important insight 
and should be communicated to decision-makers. Similarly, it may be important to 
know whether disagreements will have a signifi cant impact on a decision. If dif-
ferences of opinion persist and they could affect a decision, the analyst may elect to 
present a range of scenarios, each based on a different set of expert judgments (e.g., 
Crome et al.  1996  ) . 

 If aggregation is appropriate, judgments may be combined using either 
behavioral or mathematical approaches (Clemen and Winkler  1999  ) . Behavioral 
approaches involve interactions among experts, typically in a group setting, with 
opinions aggregated by the experts. Behavioral methods for resolving opinions may 
be structured, such as following a protocol for reaching agreement, or unstructured, 
by means of informal seeking of consensus (see Hogarth  1977 ; Crance  1987 ; Lock 
 1987 ; Burgman  2005 ; Macmillan and Marshall  2006  ) . 

 Mathematical approaches involve combining the expert opinions using rules and 
do not involve any interactions between experts. Mathematical aggregation can be 
accomplished with Bayesian methods or opinion pools. Bayesian methods treat the 
resolution of differences among experts as a Bayesian inference problem (Morris 
 1974,   1977  ) . A practical impediment is that the Bayesian approach requires the 
estimation of complex dependencies between experts (Jacobs  1995  ) . Instead, in 
practice, opinion pools (typically the average or median for the group) are com-
monly implemented (Clemen  1989 ; Genest and McConway  1990 ; Armstrong  2001  ) . 
Averaging is easy to implement, and more complicated methods may not provide 
better results (Clemen  1989  ) . Methods may also combine elements from both 
behavioral and mathematical approaches (Cooke  1991  ) . The theory and application 
of expert aggregation methods is reviewed in detail in Seaver  (  1978  ) , Genest and 
Zidek  (  1986  ) , and more recently by Clemen and Winkler  (  1999  ) .   

    2.3.4   Trade-offs Between Cost and Accuracy 

 The use of a full formal elicitation protocol is neither necessary nor desirable for 
every analysis or decision (Pate-Cornell  1996  ) . A tradeoff exists between time and 
precision, since methods that provide precise estimates by mitigating cognitive 
biases are also the most time-consuming. Interviews, for instance, are likely to result 
in better-quality responses than questionnaires, but make onerous time and resource 
demands. A full-scale elicitation process can involve dozens of people and last from 
1 to 2 years, with estimated costs ranging from $100,000 to in excess of $1 million 
(e.g., Moss and Schneider  2000 ; Slottje et al.  2008  ) . It is reasonable to assume that 
in many cases, decision analysts will not have access to, or wish to commit, this 
level of time and resources to elicitation. 

 Different formats and techniques will be appropriate, depending on the available 
time and resources and on the requirements of the problem. Particular considerations 
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will include the number and types of experts who are available, the precision 
required, and the time and resources available to conduct the elicitation (Kuhnert 
et al.  2010  ) . For example, Shephard and Kirkwood  (  1994  )  noted that the analyst 
must balance the desire for a probability distribution that more accurately represent 
the expert’s knowledge against the need to retain their interest and attention through-
out the elicitation process and to complete the elicitation effi ciently. This tradeoff 
can require compromises, leading the analyst to forgo opportunities to iterate the 
estimation–validation–discussion process, or to use simpler question formats. 

 Less-intensive elicitations should still be guided by the principles outlined above. 
Researchers should always construct questions carefully, for example, and provide 
experts with the opportunity to revise their responses. In some cases, an expert may 
be reluctant to make estimates if they feel it is not scientifi cally appropriate. Morgan 
and Henrion  (  1990  )  suggest that there is a big difference between taking a position 
on what the answer might be and identifying what range of values might be correct. 
Indeed, scientists frequently advance their research using this type of reasoning.   

    2.4   Expert Knowledge in Landscape Ecology 

 In the previous sections, we examined expertise and techniques for the formal elici-
tation of expert knowledge. A core theme has been that both expert characteristics 
and appropriate elicitation practices vary with the task setting and requirements. In 
this section, we use this framework to critically examine current practices for 
employing expert knowledge in ecology, and make recommendations for future use 
of this knowledge. 

 The use of expert knowledge in landscape ecology is widespread. It is used 
regularly in problem characterization, model conceptualization, parameterization, 
and processing of data (Burgman  2005  ) . Expert knowledge is frequently used as an 
alternative source of information when empirical data are not available (Burgman 
 2005 ; Sutherland  2006  ) . The recourse to expert knowledge is particularly common 
for decision-makers operating in new, changing, or understudied systems. It is also 
valuable as a tool to supplement empirical information when the empirical informa-
tion available is biased or incomplete, to corroborate model fi ndings, to synthesize 
existing knowledge, and to correctly extrapolate, interpret, and apply knowledge to 
new situations (Pellikka et al.  2005 ; Teck et al.  2010  ) . 

 Structured techniques and expert judgments have been used in scenario plan-
ning, species distribution modeling (Pearce et al.  2001 ; Johnson and Gillingham 
 2004  ) , forest planning (Crome et al.  1996 ; Alho and Kangas  1997 ; Kangas and 
Kangas  2004  ) , and the evaluation of conservation priorities (Sanderson et al.  2002 ; 
Marsh et al.  2007 ; Teck et al.  2010  ) . The increasing use of Bayesian techniques, 
which provide a framework for the explicit inclusion of expert knowledge through 
the creation of a “prior” distribution for the problem parameters and subsequent 
improvement of the distribution using empirical knowledge, has contributed to a 
wider awareness of structured elicitation protocols (Kuhnert et al.  2010  ) . 
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 Despite the advances in and the advantages of structured elicitation methods, 
informal expert knowledge is more commonly deployed. For example, distances 
between bird nests and human habitations and analyses of breeding success in 
relation to distance to human habitations have been used to designate buffer zones 
for some species (e.g., Helander and Stjernberg  2003 ; Helander et al.  2003  ) . It has 
become apparent that in many cases expert opinion had been used to recommend 
and designate buffer zones. Although such approaches are valid, this reliance on 
expert rather than empirical knowledge was rarely acknowledged explicitly (e.g., 
Grier et al.  1993 ; Currie and Elliott  1997  ) . The problem this creates for decision-
makers and subsequent researchers is that without knowing the sources of the knowl-
edge or how it was elicited, it becomes diffi cult to know how much to rely on the 
knowledge. In addition, it becomes diffi cult to update the knowledge, since the assump-
tions and reasoning on which the previous knowledge was based are unknown. 

 Formal applications of expert knowledge in ecology and conservation typically 
omit many of the principles for structured elicitation outlined in Sect.  3 . Only a handful 
of examples of elicitations have employed the principles of elicitation design (Low-
Choy et al.  2009  ) . Selection or development of an elicitation approach appears to 
have been primarily  ad hoc , and documentation of the methodology was usually 
incomplete or absent. Experts are rarely trained before the elicitation. It is rare that 
clear explanations of the elicitation process and goals, or opportunities to verify or 
evaluate the elicited knowledge are provided (Roloff and Kernohan  1999  ) .  

    2.5   Conclusions and Future Directions 

 Expert knowledge should be incorporated formally within a framework that is 
explicit and transparent, and both the experts and the researchers must be account-
able to those who will use the elicited knowledge. Formal methods help to make 
knowledge available that otherwise might not have been accessible. As a result of a 
structured elicitation process, experts consider more facets of the problem, are 
interrogated more fully about their beliefs, and have opportunities to correct ambi-
guities and errors of understanding (Burgman et al.  2011  ) . 

 The move in ecology toward more formal, structured processes for incorporating 
expert knowledge is promising (Martin et al.  2005 ; Low-Choy et al.  2009 ; Kuhnert 
et al.  2010 ; Burgman et al.  2011  ) . The development of elicitation procedures should 
be informed by the characteristics of the task at hand and of the environment in 
which the experts have acquired their knowledge. Lessons from the formal para-
digm include the importance of adequate preplanning and preparation (including 
pretesting of the protocol), of an opportunity to train experts, of appropriate tailoring 
of questions and elicitation formats to the expert’s knowledge and experience, and 
of including a verifi cation stage. 

 Table  2.3  summarizes what we view as the key decisions that characterize the 
development of an elicitation procedure. Design of an elicitation procedure may be 
viewed as a resource-allocation problem in which the analyst allocates limited 
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   Table 2.3    Eight key decisions in the design of a formal elicitation procedure   
 Decision  Characterization  Guidelines 

 1. The format for 
the elicitation 

 Setting in which the elicitation 
will take place. For example, 
via e-mail survey, phone 
interview, or in person. 

 Interviews are preferable unless the 
expense or number of experts makes 
it infeasible. In person, it is easier to 
correct any misunderstandings, 
maintain expert motivation, provide 
training and feedback, and incorpo-
rate interactions between experts and 
between the expert and the facilitator. 

 2. The information 
that will be 
elicited 

 Involves decisions about how 
many variables will be 
elicited, in what form, and 
under what conditioning 
assumptions. Usually 
determined as a part of 
structuring the problem 
description and the 
conceptual models for the 
decision or processes of 
interest. 

 Ideally, experts should be able to state 
their knowledge directly, in a format 
that is as close as possible to the 
conditions under which the knowl-
edge was acquired. This helps to 
remove any additional, unnecessary 
cognitive burdens. Research suggests 
that for complex problems, expert 
knowledge is best incorporated within 
a model or a broader conceptual 
framework (Armstrong  2001  ) . 

 3. The experts 
who will be 
involved 

 How the experts will be 
identifi ed and the number 
that will be included. 

 Multiple experts should be involved to 
provide corroboration and avoid 
simple errors. Diversity of experts 
may be more important than their 
number or years of experience 
because this helps to ensure that all 
aspects of the problem are consid-
ered, from multiple perspectives. 

 4. The level of 
pretraining 
to be provided 

 The number and type of 
practice questions that will 
be provided, and the level 
of feedback. Additional 
options include an introduc-
tion to cognitive and 
motivational biases, and to 
probability concepts if 
probabilities are to be 
elicited. 

 Practice accompanied by feedback on 
the expert’s performance has been 
shown to improve performance for 
questions that are suffi ciently similar 
to those used in the actual elicitation. 
This is particularly benefi cial where 
experts are inexperienced with the 
question format. There is no 
evidence yet that providing 
information about cognitive and 
motivational biases help experts to 
avoid reasoning fallacies. 

 5. How uncertainty 
will be elicited 

 How uncertainty is to be 
incorporated and propagated 
through the analysis. For 
example, elicitation of a 
complete probability 
distribution versus defi nition 
of the upper and lower 
bounds around an estimate. 

 The choice of method with which to 
elicit uncertainty will depend on the 
level of precision required, the time 
available for elicitation, and the 
expert’s knowledge. If uncertainty is 
not elicited, decision-makers will 
need to infer the precision of the 
responses. 

(continued)



312 What Is Expert Knowledge, How Is Such Knowledge Gathered¼

available resources to achieve the greatest expected gains in response quality. 
Elicitation procedures should be developed with a view to how each feature will 
contribute to the elicitation as a whole. Improvement of existing practices within 
landscape ecology will require a greater awareness of the tools available to improve 
elicitation quality, and an understanding of how to select and tailor these techniques 
to best suit the decision problem at hand.  

 Ecological systems are complex and non-linear, with processes that unfold over 
long timescales and large spatial scales. In making predictions about future dynam-
ics, experts are likely to be operating outside their direct area of expertise. Our 
guidelines (Table  2.3 ) suggest that expert knowledge may be most appropriately 
incorporated within a conceptual framework that avoids the need for experts to 
make predictions for complex, compound events. Use of multiple experts intro-
duces more knowledge about a system and its dynamics, thereby creating a more 
detailed and comprehensive picture of the problem, and if the knowledge is deployed 
appropriately, it may lead ultimately to better decisions. 

 The primary focus of the methods presented in this chapter is on eliciting numer-
ical information, which is a useful way of making tacit (implicit) knowledge more 

Table 2.3 (continued)

 Decision  Characterization  Guidelines 

 6. The question 
format 

 Whether qualitative or 
quantitative information will 
be elicited and in what 
format, for instance as 
probabilities, probability 
distributions, ranks, or 
categorical measures. 

 Knowledge is available to inform the 
selection of appropriate response 
formats (see O’Hagan et al.  2006  
and the references therein). Ranks 
and category formats are often 
preferred by experts over numerical 
responses, but are susceptible to 
linguistic uncertainty and confound-
ing of knowledge with value 
judgments. 

 7. The degree to 
which experts 
will verify 
their responses 

 Whether and how experts will 
verify their responses, for 
example, in conjunction 
with graphical feedback, 
analysis of the output, or 
assisted by responses and 
reasoning from other 
experts. 

 Some minimum level of verifi cation is 
important to catch errors and 
misunderstandings, particularly for 
less intensive protocols. Provision of 
feedback in multiple formats helps 
experts to check the coherence and 
accuracy of their responses more 
thoroughly. 

 8. How judgments 
from experts will 
be combined 

 Via mathematical or behavioral 
means, and the degree to 
which the experts will be 
given the opportunity to 
interact. 

 Empirical results suggest that math-
ematical methods outperform 
behavioral techniques. Use of 
measures such as the group average 
is a standard approach. Group 
discussions should be facilitated by a 
skilled facilitator, and may be most 
fruitful when combined with a fi nal 
mathematical step to summarize the 
data that results from the discussions 
(Clemen and Winkler  1999  ) . 
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transparent, explicit, and useful to the decision-maker. The translation of expert 
knowledge into numbers is often diffi cult and requires care, but it is worthwhile 
making the effort to rigorously obtain these numbers, as they have considerable 
benefi t for the decision-maker. In this chapter, we focus less on eliciting conceptual 
models or qualitative information, though many of the principles remain the same. 
The details of such elicitations are beyond the scope of the chapter, but they are 
nonetheless important in some contexts. For example, qualitative information may 
provide useful insight into the understanding of a system (e.g.,    McCoy et al.  1999 ), 
Yamada et al.  2003  ) . 

 Expert knowledge is a necessary component in the analysis of any complex deci-
sion problem (Keeney and von Winterfeldt  1991  ) . This knowledge represents a 
valuable resource for decision-makers, but as with any tool or resource, its value 
may be lessened by inappropriate or ill-informed application. Expert status alone is 
not enough to guarantee accurate responses, and traditional metrics of expertise 
such as the expert’s age, rank, or experience, do not necessarily predict an expert’s 
performance (Burgman et al.  2011  ) . Structured elicitation techniques can be used to 
increase the reliability of expert opinions and counter some of the limitations asso-
ciated with expert knowledge. 

 The use of formal practices within landscape ecology is increasing, but these 
uses would benefi t from a greater emphasis on structured design. Steps such as the 
use of multiple, diverse experts and the inclusion of pretesting, training, and vali-
dation stages will contribute signifi cantly to the elicitation of better-quality results. 
A move toward greater evaluation of both expert knowledge and the elicitation 
practices used to elicit that knowledge will improve the quality of knowledge 
available to inform future decisions, and improve expert and decision-maker 
accountability.      
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    3.1   Introduction 

 Expert elicitation is the process of determining what expert knowledge is relevant 
to support a quantitative analysis and then eliciting this information in a form that 
supports analysis or decision-making. The credibility of the overall analysis, there-
fore, relies on the credibility of the elicited knowledge. This, in turn, is determined 
by the rigor of the design and execution of the elicitation methodology, as well as by 
its clear communication to ensure transparency and repeatability. It is diffi cult to 
establish rigor when the elicitation methods are not documented, as often occurs in 
ecological research. In this chapter, we describe software that can be combined with 
a well-structured elicitation process to improve the rigor of expert elicitation and 
documentation of the results. 

 When eliciting knowledge, software to automate and manage the mundane com-
putational tasks is helpful, particularly if it provides immediate feedback to let 
experts review the accuracy of the results. At its most fundamental level, elicitation 
software can help experts estimate a single quantity in relatively concrete terms, 
such as the likelihood of species occurrence within a given environment. This is a 
ubiquitous elicitation need that informs decision-making, risk analysis, parameter-
ization of complex models, and design of data collection or other studies (Sect.   3.2    ). 
SHELF is an example of a general-purpose tool that can support this kind of elicita-
tion (Oakley and O’Hagan  2010  ) .  Elicitator  utilizes different statistical encoding 
algorithms that permit different types of expert knowledge to be captured. Moreover, 
software such as  Elicitator  helps experts to express and explore their knowledge by 
providing a platform for feedback and communication that is dynamic, graphical, 
and interactive (e.g., Kynn  2005 ; Denham and Mengersen  2007  ) . 

 Elicitation of a few fundamental quantities may be all that is required when the 
model is already fully specifi ed. In these cases, direct elicitation simply asks experts 
to estimate the values of the parameters, which become inputs to the existing model 
(e.g., Boyce et al.  2005  ) . At a more abstract level of elicitation, experts may be 
enlisted to help construct a biologically plausible model. Frameworks such as mul-
ticriteria decision analysis (e.g., Store and Kangas  2001  )  and Bayesian belief net-
works (e.g., Smith et al.  2007  )  employ a  deductive  approach, in which experts 
propose the model structure rather than learning it from the data. Alternatively, 
researchers can use an  inductive  approach to learn the model’s structure from experts 
by revealing patterns underlying the parameters that will be elicited at a more 
fundamental level (i.e., that will be quantifi ed). This is a form of  indirect  elicitation, 
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since parameters for the model are inferred from the knowledge elicited from the 
experts. Such an indirect approach is particularly constructive when the expert 
knowledge is undeveloped at a theoretical level, which is common at the outset of 
pioneering investigations (e.g., new species or regions). The  Elicitator  software 
implements a new indirect technique of scenario-based elicitation. It starts at a 
concrete level, by asking experts to describe the expected ecological responses in a 
number of well-chosen scenarios, and then, at a more abstract level, lets researchers 
infer how the input factors defi ning the scenarios affect the ecological response. In 
statistical terms, these inputs are called “covariates” because they vary simultane-
ously and may be “correlated” if they interact to affect each other’s values. 

 Bayesian statistical modeling provides a natural framework for incorporating 
expert knowledge, which can be treated as a “prior” that describes the initial state of 
knowledge, using a statistical distribution to refl ect the plausibility of each parameter 
value. Using Bayes’ Theorem, the prior is then updated with empirical data to provide a 
“posterior” that describes the  updated  state of knowledge on the plausible parameter 
values (Low-Choy et al.  2009b ; Chap.   12    ). In a regression-based habitat model, the 
posterior can be used to evaluate how likely it is, given the data observed, that a cova-
riate affects the response: “ How likely is it, based on the fi eld data, that each geology 
type increased, decreased, or had little effect on the probability that sites are occupied 
by a species ”? By contrast, classical  p -values focus on the likelihood of data under a 
null model where the response is  not  affected by the covariate: “ With what chance 
would we have observed this fi eld data, if geology had no effect on site occupancy ”? 

 Several elicitation methods have been devised to capture expert knowledge on 
species–environment relationships within a Bayesian statistical framework using 
logistic regression (Table  3.1 ), classifi cation trees (O’Leary et al.  2008  ) , or hierar-
chical models (Donald et al.  2011  ) . Subtle changes in the wording of the elicitation 
questions can target quite different expert knowledge, and the results can then be 
translated into statistical distributions using a variety of statistical encoding meth-
ods (Table 1 in Low-Choy et al.  2010  )  that must be tailored to the particular model 
(as summarized in Table  3.1  in the present chapter). This diversity in models that 
incorporate expert knowledge echoes a continuing debate over the most appropriate 
method for developing data-driven SDMs (e.g., Elith et al.  2006  ) .  Elicitator  cur-
rently supports indirect elicitation of parameters in Bayesian generalized linear 
models. In this chapter, we illustrate the use of  Elicitator  with a case study on the 
development of an SDM for brush-tailed rock-wallabies ( Petrogale penicillata ) in 
eastern Australia (Murray et al.  2009  ) .  

 This chapter is designed to complement existing publications that detail the 
statistical methodology and software underlying  Elicitator ’s indirect approach 
(Low-Choy et al.  2009a,   2010 ; James et al.  2010  ) . Here, we focus on the needs of 
landscape ecologists by examining the types of research that can benefi t from elici-
tation using  Elicitator , and compare several methods for eliciting expert knowledge 
and incorporating the results in a regression analysis for SDMs. To use  Elicitator  
effectively, it is also necessary to understand how the tool fi ts into the overall pro-
cess of designing scenarios and using the accompanying elicitation approach. We 
discuss the strengths and weaknesses of the software to help landscape ecologists 
assess its potential in their own studies.  
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    3.2   When to Use  Elicitator  

  Elicitator  can be used to support a wide range of research purposes that rely on 
modeling:

   Type 1 – Estimate all parameters required to defi ne an expert-informed  • explana-
tory model .  
  Type 2 – Develop a model (including specifi cation of all parameters) that will be • 
used as the basis for  prediction  based on expert judgments.  
  Type 3 – Quantify parameters that describe ecosystem processes or relationships • 
as  inputs to complex models , such as Bayesian networks and deterministic or 
simulation models.  
  Type 4 –  • Explicitly declare the current state of knowledge  to help design an empiri-
cal study to guide the formulation of research hypotheses, or to support a Bayesian 
regression analysis that combines expert knowledge with empirical data.  
  Type 5 – Support the elicitation of  • evaluation or prediction scenarios  for any 
type of model.    

    3.2.1   Formulating an Expert-Informed Explanatory Model 

 One way of thinking about using  Elicitator  is that it captures expert knowledge on 
the ecological responses (the response or  Y  variables) for different values of the 
covariates that defi ne each scenario (the explanatory or  X  variables). In landscape 
ecology,  Y  variables can include species presence or abundance, ecological impacts 
or conditions, and other ecological responses. When undertaking explanatory 
modeling, interest centers on how the ecological response ( Y ) depends on explana-
tory factors ( X ) such as topography, habitat, climate, pests, predators, and fi re. 

 A distinctive feature of  Elicitator  is that it captures both the expected value of the 
response  Y  and the range of values that are considered plausible by experts. The 
knowledge, therefore, represents an expert’s balanced estimate (best judgment) 
among plausible responses. This contrasts with predictive approaches (Table  3.1 ), 
in which the expert is presented with a hypothetical set of fi eld data and asked to use 
this information to predict the ecological response in a new scenario. A statistical 
distribution with at least two parameters is required to encode this rich information, 
comprising the expert’s best estimate of the ecological response as well as its vari-
ability, as depicted in the software’s elicitation window (Fig.  3.1 ).  

  Elicitator  records the encoded expert knowledge about the ecological response 
for various scenarios (i.e., the provisional set of expert data) in a relational database. 
To discern the expert’s conceptual model underlying all scenarios, this data can be 
fi t to a wide range of statistical models. Users can either implement the model built 
into  Elicitator  and assess “on the spot” its goodness-of-fi t to the expert’s beliefs, or 
can export the expert data so it can be analyzed in another program (e.g., Low-Choy 
et al.  2010  ) . Options include a wider range of regression models (e.g., nonlinear, 
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nonparametric, and mixed effects), classifi cation and regression trees, and Bayesian 
hierarchical models, including Bayesian networks. For simplicity,  Elicitator  currently 
uses a regression to fi t an expert model to expert knowledge elicited across several 
scenarios. This provides a straightforward way of relating the output  Y  to changes 
in one or more input parameters ( X ), using a “score” (e.g., of habitat suitability), and 
regression coeffi cients that weight the infl uence of each of the covariates in deter-
mining this score. 

  Fig. 3.1    The Elicitation window in the  Elicitator  software. Expert 1 from region Q was asked to 
estimate the probability of presence of the rock wallaby at site 24. Their estimates were encoded 
as a Beta (1.9, 4.6) distribution       
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 The fi rst version of  Elicitator  (James et al.  2010  )  fi ts a Beta distribution to the 
expert’s best estimate and plausible range of probabilities or proportions for each 
scenario, such as the number of sites occupied out of 100 with the same habitat. The 
elicited information is then related to the covariates defi ning each scenario using a 
Beta regression. The current version utilizes generalized linear models to accom-
modate elicited responses that comprise continuous or count data modeled by 
log-Normal, Gaussian, or Negative Binomial distributions. 

 We must emphasize that the aim of elicitation is not to replace the collection of 
empirical data with expert knowledge, which itself relies on fi eldwork. Instead, this 
form of elicitation aims to collate expert knowledge before data are available, to 
supplement small datasets, or to complement existing data by fi lling in gaps or pro-
viding additional information wherever current information is unreliable. Expert 
knowledge is sometimes the only timely source of information, particularly when it 
is necessary to support decision-making during emergency responses or strategic 
planning. Elicitation may form the fi rst step in a new line of investigation when it 
provides a rigorous approach to establish the current state of knowledge, and can 
provide an interim analysis to guide planning until suffi cient empirical data has 
been collated. Elicitation can be valuable in landscape ecology, where empirical 
data rarely provides a comprehensive view of the ecological response to covariates 
across a diverse region.  

    3.2.2   Developing Predictive Models 

 As described in Sect.   3.2.1    , expert knowledge obtained using  Elicitator  facilitates 
the development of  explanatory  models because it provides tools for revealing pat-
terns underlying an expert’s assessments of the expected ecological response across 
different scenarios. This information can also provide the basis for  prediction , to 
extrapolate the ecological response to scenarios that differ from those used in the 
elicitation. Using habitat models to map the spatial distribution of species provides 
a classic example of these dual purposes (Austin  2002  ) . In particular, it has been 
noted that good predictive performance in new situations, such as those that will be 
induced by climate change, requires emphasis on the ability of the model to ade-
quately explain the underlying ecological processes (Fitzpatrick and Hargrove 
 2009  ) . However, SDMs with high predictive performance but low explanatory 
power due to a tenuous link to ecological theory (such as random forests, neural 
networks and the model fi t using the Maxent algorithm) are currently favored over 
others (such as regression and trees) that have stronger link to ecological theory but 
lower predictive performance (e.g., Elith et al.  2006  ) . If extrapolation is the main 
purpose of the expert model, this places greater emphasis on careful choice of the 
scenarios used for elicitation (Sect.  3.3.2.2 ) as well as the need to assess the model’s 
predictive performance (Sect.  3.2.5 ).  
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    3.2.3   Developing Inputs for Other Models 

 Here, we consider situations in which expert knowledge informs only some of the 
model parameters, in contrast to Sects.  3.2.1  and  3.2.2 , in which expert knowledge is 
used to develop the entire model (whether explanatory or predictive). Models of 
complex systems, which are often developed using deterministic or simulation 
approaches, require specifi cation of the values for input parameters. For example, in 
conservation planning, the probability of site occupancy by an organism as a function 
of habitat factors has been elicited using  Elicitator , and used to predict the organism’s 
cost of traversing the landscape to inform a corridor analysis based on graph theory 
(Murray  2009  ) . Similarly, models for designing surveillance mechanisms to ensure 
early detection of exotic pests (e.g., Jarrad et al.  2011  )  can be based on expert esti-
mates of the likelihood that a pest will become established in a new environment. 

  Elicitator  can also assist in the construction of Bayesian networks from expert 
knowledge, particularly in complex sub-networks where several covariates (called 
“parent” nodes) affect an outcome (called a “child” node), as described in Johnson 
et al.  (  2010  ) . Using  Elicitator , the elicitation load can be reduced by asking experts 
to assess just a few scenarios rather than all scenarios, and can extrapolate the results 
for other scenarios.  Elicitator  utilizes Beta regression rather than linear regression, 
so it suits a wide range of probabilities, including those close to zero or one (i.e., 
below 0.10 or above 0.90). An added benefi t is that  Elicitator  not only captures the 
expert assessments but also quantifi es their variability and uncertainty, yielding a 
plausible range of probabilities for the child nodes under each combination of par-
ent nodes, which may also support uncertainty analysis (Donald et al.  2011  ) .  

    3.2.4   Explicit Declaration of the Current State of Knowledge 

 Expert knowledge is valuable because it is sometimes the only source of informa-
tion, for example, for identifying the habitats of rare and threatened native species 
or of invasive species. In these situations, knowledge typically starts with opportu-
nistic sampling that yields sparse empirical data that can help the observers to 
develop their knowledge. As information accumulates, hypotheses are refi ned, and 
data collection becomes better targeted and more effective, thereby supporting 
more quantitative analyses. In this learning cycle, the output from  Elicitator  can be 
used to take advantage of the Bayesian statistical modeling framework, thereby 
providing a natural bridge from expert to empirical knowledge. Within the Bayesian 
learning cycle, expert knowledge can be assigned the status of prior information by 
representing it in a statistical model called an “informative” prior, and can be 
subsequently overridden by stronger signals contained in the empirical data. This 
explicitly treats expert knowledge as a preliminary model that will be revised by 
empirical data. 
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 A sensitivity analysis can compare the inferences obtained by relying on expert 
knowledge with those obtained by ignoring prior information (Chap. 12). Within 
the Bayesian framework, this involves comparing a posterior formed with an infor-
mative prior (here, one based on expert knowledge) against a posterior formed with 
a reference prior that is chosen to be noninformative (McCarthy  2007  ) . By contrast, 
a validation approach would compare inferences based only on empirical data with 
those based solely on expert knowledge, and would ignore the cumulative and 
compensatory effects of using both sources of information. Alternatively, a non-
discriminatory approach may incorporate expert knowledge and empirical data 
interchangeably, but not distinguish between the two sources. This approach is 
common with Bayesian networks which frequently draw from multiple information 
sources (e.g., Donald et al.  2011  ) .  

    3.2.5   Elicitation of Evaluation and Prediction Scenarios 

 Scenarios elicited using  Elicitator  at a concrete level may be inherently interesting, 
but can also be used to infer the underlying expert conceptual model at an abstract 
level. This meets an emerging need to support the selection of scenarios for evaluating 
models developed using any methodology. Though it is common to evaluate predic-
tive models using a subset of the training data that was not used in model development 
or via cross-validation (e.g., Elith et al.  2006  ) , this does not assess the model’s ability 
to predict the response when covariate values in the prediction data differ substantially 
from those contained in the training data (Fitzpatrick and Hargrove  2009  ) . Integration 
of scenarios by  Elicitator  at an abstract level can provide predictions of site occu-
pancy, together with their precision, for a range of hypothetical scenarios. This sup-
ports decision-making for scenarios that may be far removed from the empirical data, 
yet within the reach of experts.  Elicitator  can support complex modeling by assessing 
scenarios in which a model may fail (e.g., Pike  2004  ) .   

    3.3   How  Elicitator  Supports Expert Elicitation 

 Substantial preparation is required before using  Elicitator  to capture expert knowledge 
because the software  supports  the use of a fully developed elicitation process; it does 
not provide this process. Elicitation can be broken down into six key stages (Low-
Choy et al.  2009b  ) : design, preparation, elicitation, encoding, validation, and output. 

    3.3.1   Design 

  Elicitator  can streamline the elicitation process and manage variability in responses 
(Low-Choy et al.  2009b  )  by fl exibly tailoring the process to each expert, automating 
complex calculations, and managing the collected data. Moreover, the software 



493  Elicitator : A User-Friendly, Interactive Tool to Support Scenario-Based¼

provides ongoing feedback to help experts interactively validate their numerical 
and graphical assessments, and frees the elicitor to focus on communication rather 
than calculation. This is important since our experience has shown the importance 
of constantly reiterating defi nitions and paraphrasing expert responses to confi rm 
their intended meaning and ensure consistency in the elicited data. 

  Elicitator  automates the encoding process, which speeds up the elicitation 
process, reduces the chance of arithmetic errors, and provides modelers with different 
computational choices. The software manages the database of elicited information 
to ensure accurate recording of expert assessments across multiple experts and 
scenarios. These effi ciencies features let elicitors undertake more elicitations, 
thereby reducing the risk arising from the consultation of too few experts or the 
exploration of too few scenarios. 

 Most of the effort of elicitation occurs  before  the expert and elicitor sit down 
together. This involves both design and preparation for elicitation. Another benefi t 
of utilizing software is that it helps to standardize the elicitation practice within a 
project or a fi eld of enquiry, and provides a benchmark elicitation practice that has 
ideally been developed and peer-reviewed by elicitation designers and practitioners. 
The design and specifi cation of the structured elicitation method that underlies 
 Elicitator  comprise six main components (Low-Choy et al.  2010  ) :

    1.     Purpose . Information obtained using  Elicitator  can be used to support scientifi c 
investigations or decision-making in the fi ve ways described in Sect.  3.2 .  

    2.     Goal . Experts are asked for information similar to what they would measure in 
the fi eld: the expected ecological response under a carefully selected range of 
scenarios.  

    3.     Statistical model  (Low-Choy et al.  2010  ) . At a concrete level, a statistical distri-
bution encapsulates the expert’s description of the plausible range of expected 
ecological responses (e.g., probabilities of presence or abundance) for each 
scenario. At an abstract level, this information is then collated across scenarios 
by means of regression analysis to infer the underlying conceptual model that 
experts are implicitly using to predict the relative impact of the covariates on the 
ecological response.  

    4.     Encoding  (Sect.  3.3.4 ). For each scenario, experts are asked to estimate the most 
likely ecological response (e.g., the number of occupied sites out of 100) together 
with percentiles (e.g., there is a 2.5% chance that this number lies above the 
97.5th percentile).  

    5.     Managing variability . To control variability, elicitors can avoid cognitive biases 
by preparation (training and conditioning) of the experts (Sects.  3.3.2.1 – 3.3.2.2 ) 
and facilitating four forms of feedback (see Sect.  3.3.5 ). They can also improve 
accuracy by piloting (pretesting) the elicitation, selecting appropriate experts, 
and defi ning appropriate scenarios (Sect.  3.3.2 ).  

    6.     Protocol . Steps 1 to 5 can be organized into an interview script to ensure that the 
process is transparent and repeatable. The script includes preliminary defi nitions 
and precise wording of the questions, which together are designed to elicit the 
desired response (e.g., the supplementary material in Murray et al.  2009  ) .      
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    3.3.2   Preparation 

 Preparation involves selection of the experts, determining their background and 
training, and planning the data management and project management strategies. 
After defi ning the kinds of experts that the project will require, they must be selected 
(Sect.  3.3.2.1 ), then invited and motivated to participate (e.g., the supplementary 
material in Murray et al.  2009  ) . Asking experts to methodically enumerate their 
sources of expertise helps them to recall all relevant information (thereby reducing 
accessibility bias, Kynn  2008  )  and helps elicitors to understand the basis (e.g., the 
research literature versus fi eld experience) for the expert knowledge. This also 
guides the selection of a representative sample of experts and schools of opinion, 
and subsequently guides the researcher in combining multiple expert assessments 
(Albert et al.  2010  ) . 

 Experts should be trained in any requirements specifi c to the current elicitation, 
such as by defi ning what is to be elicited and the types of information (e.g., proba-
bilities and uncertainties) that will be elicited. The subtleties of interpreting sum-
mary statistics (e.g., means, medians, modes, and probabilities) require specifi c 
numeracy skills. In particular, if probabilities are to be elicited, then experts must 
clearly understand what circumstances are to be included and excluded when assess-
ing those probabilities. Training may also involve conditioning (or alerting) experts 
to common misunderstandings that would affect their ability to quantify their uncer-
tainty or estimate probabilities. Training can also help experts avoid the use of heu-
ristics in an attempt to “shortcut” the process of thinking things through. Extensive 
practical advice on managing sources of elicitation bias is available (e.g., Appendix 
C in O’Hagan et al.  2006 ; Low-Choy and Wilson  2009  ) . 

  Elicitator  requires the modeler to undertake the initial data management by sup-
plying covariate values for each scenario that will be evaluated by the experts 
(Sect.  3.3.2.2 ). Where scenarios can be mapped to geographic sites, they must be 
identifi ed appropriately so that  Elicitator  output can be aligned with a GIS database 
(see the database window, “Elicitation Sites”, in Fig.  3.2a ). Then, experts can view 
the elicitation scenarios in the GIS, to provide better context for the list of covariate 
values. Due to the diffi culty of maintaining ongoing compatibility with GIS pack-
ages,  Elicitator  is “loosely coupled” to GIS software to provide a minimal level of 
communication that facilitates data transfer between these platforms (James et al. 
 2010  ) .  Elicitator ’s data may be imported or exported in a standard format (comma-
delimited text) that is utilized by most GIS packages.  

 Elicitation results can be organized into projects and phases of a project, with 
each phase potentially considering several scenarios that correspond to different 
sets of covariates. Several experts can be consulted during each phase. Using 
 Elicitator , researchers select the project, phase, and expert in the Project Properties 
dialog box at the beginning of each session (Fig.  3.2b ). Other settings defi ne the 
elicitation method to be used throughout the elicitation session. Parameters specifi c 
to a method include the data type for the information that will be elicited, the 
summary statistics to be calculated from this data, the statistical encoding of the 
distribution, and the encoding method (Fig.  3.2b ). 
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  Fig. 3.2    Screenshots from the  Elicitator  software. ( a ) The Elicitation Sites window contains the 
elicitation database, with one scenario per row, and the columns include the site identifi er, covari-
ates, and elicited information. ( b ) The user specifi es settings for the elicitation session in the 
Project Properties dialogue box. After the elicited data has been encoded for a suffi cient number of 
scenarios, users can ask  Elicitator  to fi t the expert model to the data they provided and permit 
feedback. ( c ) The Univariate Responses window provides ecological response curves as a function 
of each covariate. ( d ) The Diagnostics window provides standard regression diagnostics for the 
expert model               

    3.3.2.1   Selection of Experts 

 To use  Elicitator  and the associated elicitation method effectively, it is necessary to 
understand how to defi ne and select experts, a subject that has been thoroughly 
addressed elsewhere (e.g., O’Hagan et al.  2006 ; Chap.   2    ). Briefl y, the elicitor must 
fi rst defi ne the characteristics of a suitable expert. It is important to select experts 
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whose expertise is most relevant to the question at hand. It is useful to ensure a 
balance of specialists, as well as generalists and multidisciplinary investigators who 
may be able to translate broader knowledge to the context of interest (Keeney and 
von Winterfeldt  1991  ) . Other considerations include the ecological relevance (spe-
cies, ecosystems), and the cross-sectional (geographic and habitat) and longitudinal 
(daily, seasonal or climate cycles) extents of their knowledge. 

 Where multiple experts are available, the experts should ideally be chosen 
according to statistical design principles (i.e., to obtain a representative sample) 
rather than based on convenience (e.g., availability, proximity). Researchers should 
fi rst determine whether the sample must provide adequate representation of all 
experts, all schools of thought, identifi able subgroups such as sectors or stakehold-
ers (e.g., government, industry, academia, community), demographic groups (e.g., 
age, gender), geography (e.g., region), or other relevant characteristics. Where few 
experts exist, a census may be possible. Where there are too many experts to census, 
some form of probabilistic sampling (e.g., stratifi ed or cluster sampling) can be used 
to ensure representation as well as impartiality. Where resources constrain the num-
ber of experts that can be consulted, researchers should consider accounting for the 
most extreme views as well as intermediate ones. Cooke and Goosens  (  2008  )  pro-
vide useful advice on the criteria for selecting individual experts or establishing 
panels of experts who can work well together.  

    3.3.2.2   Selection of Scenarios 

  Elicitator  uses scenarios, each of which corresponds to a different set of covariate 
values, to focus expert knowledge on the ecological response they expect under 
those conditions. In the case study presented in Sect.  3.4 , the scenarios comprise 
habitat factors such as geology, slope, and vegetation that were thought to infl uence 
site occupancy by the brush-tailed rock wallaby, based on a previous investigation 
(Murray et al.  2008  ) . Guidance on covariate selection is available for regression 
(e.g., Austin  2002  )  and for Bayesian networks (e.g., Uusitalo  2007  ) . The expert 
model underlying  Elicitator  helps address the choice of covariates by explicitly 
assessing their impact on the response (relative to the other covariates considered). 
Elicitation scenarios should be selected carefully to ensure that they are  representa-
tive  of the types of scenarios and regions of interest, are suffi ciently comprehensive 
to capture the full range of ecological responses for particular scenarios and subre-
gions, and contain suffi cient information to separate expert knowledge (the signal) 
from elicitation errors (noise). 

 Scenarios can be hypothetical or can represent real sets of conditions or geo-
graphic locations (as described in Sect.  3.3.2.3 ). This is an important consideration 
in landscape ecology, where the range of covariate values can contain many gaps 
(impossible combinations of covariate values) or may otherwise be highly irregular. 
Whether the scenarios are real or hypothetical, the elicitor and experts should select 
scenarios that balance a representative set of scenarios with scenarios for which the 
expert has clear opinions. 
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  Elicitator  has no restriction on the number of scenarios for which knowledge 
can be elicited. Most approaches for selecting scenarios start by categorizing each 
covariate into categories of relevance to the response. A comprehensive approach 
would list scenarios formed from every combination of these categories (i.e., a full 
factorial design). As a rule of thumb, the number of scenarios should be at least 
twice the number of covariates to provide at least one degree of freedom to assess 
each “main effect” in the model. However, it is also important to limit the number 
of scenarios to avoid tiring the experts, which can lead to inaccuracies. In a previous 
case study, most experts were suffi ciently motivated and engaged with the process, 
so that they had no trouble concentrating for between 1.5 and 6 h to provide 30 elici-
tations (Murray et al.  2009  ) . Standard statistical approaches can be used to provide 
a more economical choice of scenarios (Baguley  2004  ) . For instance, Graeco-Latin 
square, incomplete block, or fractional factorial designs economize by sacrifi cing 
information on less important interactions between covariates (e.g., Vikneswaran 
 2005  ) . Power-based sample size analysis helps set the number of replicates for each 
scenario when there are few covariates (Sheppard  1999  ) . Bedrick et al.  (  1996  )  detail 
a method to choose scenarios when there is only time to undertake the same number 
of scenarios as there are covariates.  

    3.3.2.3   Mapping Scenarios to Geographic Sites 

 It can be useful to exploit the geographic context of scenarios, particularly when the 
experts are landscape ecologists (O’Leary et al.  2009  ) . Each scenario is defi ned by 
a set of covariates that can correspond to GIS layers. Hence, each scenario can be 
represented by one or more “real” sites with the desired GIS attributes. A simple 
method for selecting scenarios is to use a completely randomized sampling protocol 
for the region of interest. However, this is the least effi cient sampling algorithm for 
achieving full spatial representation. In a previous case study (Murray et al.  2009  ) , 
scenarios were chosen using a straightforward stratifi cation to ensure representation 
of the full range of geology, vegetation, and land cover within the study area. Using 
GIS, one elicitation site was selected randomly within each stratum to ensure that 
all realistic scenarios were accounted for. The group of scenarios was then checked 
to ensure adequate representation of fi ne-scale factors such as elevation, slope, and 
slope aspect. Experts could instead use the GIS to select sites for assessment 
(Denham and Mengersen  2007  )  before importing these scenarios into  Elicitator .   

    3.3.3   Elicitation 

 Using  Elicitator , assessment of each scenario focuses on the Elicitation window 
(Fig.  3.1 ), and begins by asking the expert to inspect the covariates (e.g., GIS habi-
tat attributes) for the scenario. The site’s identifying information and the elicited 
information (columns) for all scenarios (rows) are arranged in the Database window 
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(Fig.  3.2a ), and the covariates are detailed for a selected scenario at the bottom of 
the Elicitation window (Fig.  3.1 ). The site identifi er in the Database window 
 (column 1, Fig.  3.2a ) can be used to link sites to an accompanying GIS. 

 During elicitation, the expert can interactively modify graphs to specify the 
expected ecological outcome (e.g., the probability of presence) and the range of 
plausible values (i.e., the uncertainty in these probabilities) for a scenario with a 
specifi c set of covariate values (e.g., a habitat profi le). This is achieved by focusing 
on a few key summary statistics, as detailed in Sect.  3.3.4 .  Elicitator  records the 
theoretical limits, realistic limits (e.g., 95% and 50% credible intervals), and the 
best estimate (the mode) for the expected ecological outcome. To avoid common 
cognitive biases (Low-Choy et al.  2010  ) , we recommend that elicitors ask for these 
quantities in this order, from the “outside in”. Figure  3.1  exhibits three alternate 
methods of entering these assessments: numerically in text boxes (top), by moving 
the vertical lines in the boxplot (center), or by moving the probability density curve 
(bottom). Graphs are instantly updated to provide ongoing feedback on the encoded 
distribution. The expert’s uncertainty can also be captured (in the Estimated 
Accuracy text box, top right, Elicitation dialogue box; Fig.  3.1 ). 

 Initially, experts should “walk through” the elicitation process with the elicitor 
for enough example scenarios to learn the process and the underlying defi nitions of 
ecological context and probabilities (Cooke and Goosens  2008  ) . Eliciting opinions 
for “seed” scenarios lets researchers assess each expert’s accuracy against a gold 
standard if one exists, although this method of calibrating experts is more effective 
when made transparently (Kynn  2008  ) . To evaluate an expert’s consistency, it is 
helpful to repeat the elicitation of a scenario or to compare the results for similar 
scenarios. Another approach is to consider alternative “framings” for questions. For 
example, a series of questions about site occupancy could be supplemented by ques-
tions about site nonoccupancy for similar scenarios (Kynn  2008  ) . Throughout the 
elicitation conversation, the researcher can record the expert’s reasoning behind 
each assessment in the Comments text box of the Elicitation window. Asking an 
expert to justify their assessment encourages refl ection and questions, and thereby 
improves the quality of the results. This is crucial for very high or very low proba-
bilities (Kynn  2008  ) .  

    3.3.4   Statistical Encoding 

 Researchers must fi rst delineate the areas under consideration, perhaps based on 
administrative or topographic boundaries and based on environmental constraints 
(e.g., excluding bodies of water and human settlements). It will be necessary to 
work with the experts to create a shared defi nition of what a site represents (e.g., a 
permanent sampling plot versus an ecosystem such as a forest with distinct edges), 
and to ensure that experts share the same sense of temporal scale (e.g., a single year 
versus a 100-year successional process). It is also important to recognize precondi-
tions or subpopulations to reduce context dependence. Addressing these issues 
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helps  defi ne  the context, including the window and units in space and time, and the 
circumstances for including or excluding sites. It, therefore, reduces the biases that 
may occur through misunderstanding the baseline of probabilities (Low-Choy and 
Wilson  2009  ) . 

 When eliciting a probability, more accurate responses are obtained when questions 
are phrased in terms of whole numbers (e.g., the number of outcomes per 100 with 
a given result) rather than fractions (Kynn  2008  ) . More generally, elicitation ques-
tions should be phrased in a way that it makes it easy for the experts to conceptual-
ize what is required. For this reason,  Elicitator  focuses on “observable” quantities 
that could be obtained via fi eldwork (Low-Choy et al.  2010  ) . 

 When developing SDMs, the  scenario  that experts should keep in mind during 
elicitation comprises 100 sites (or some other fi xed amount) within the area that 
meet the scenario’s criteria. The problems of inaccurate representativeness and 
anchoring heuristics (Sect.  3.3.2 ) can be avoided (Low-Choy et al.  2010  )  by fi rst 
asking experts to specify the smallest and largest possible number of sites that would 
be occupied by an organism  in this scenario . Hence, they should be 100% sure that 
the true number lies within these theoretical limits. You can then ask them to supply 
more realistic bounds, so that there is a 95% (then a 50%) chance that the true num-
ber falls within these bounds. Experts can then provide their best estimate of the 
number of sites occupied for this  scenario . In the design step (Sect.  3.3.1 ) or the 
preparation step (Sect.  3.3.2 ), it is helpful to ensure that the experts understand 
the meaning and use of these statistics.  

    3.3.5   Validation (Feedback) 

 After elicitation, it is necessary to review the numbers provided by the expert (Low-
Choy et al.  2009a ; Kuhnert et al.  2010  ) . This is especially important the fi rst time an 
expert has attempted to address a topic either quantitatively or qualitatively. Four 
types of feedback include  recording, refl ecting, comparing , and  assessing the impli-
cations .  Recording  elicitations immediately provides evidence of precisely what the 
expert communicated. The ability to immediately review the recorded elicitation 
gives the expert an opportunity to  refl ect  on each scenario (i.e., to revisit the Elicitation 
window, via the Database window; Fig.  3.2a ) and confi rm or revise their original 
assessment.  Comparing  lets the expert examine several scenarios simultaneously 
(i.e., revisit the table of elicited information in the Database window; Fig.  3.2a ) to 
confi rm that the assessments are consistent. Model summaries and diagnostics 
(Fig.  3.2c, d ) help experts assess the  implications  of their scenario-by-scenario 
assessments, a crucial step for calibrating expert assessments (Kuhnert et al.  2010  ) . 

 To illustrate the  implications ,  Elicitator  provides standard regression  diagnostics  
(James et al.  2010  ) . Experts can decide whether the implications of their assessments 
are sensible by inspecting the fi tted univariate response curves (Fig.  3.2c ): When the 
elicited results for individual scenarios are combined, does the pattern of ecological 
response to each covariate still make sense? The diagnostics (Fig.  3.2d ) focus on the 
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residuals as a measure of the discrepancy between the elicited expert assessment for 
each scenario and the value predicted from the expert model constructed to fi t all 
scenarios. The plot of the residuals versus the fi tted values (top left of Fig.  3.2d ) may 
highlight outliers that fall beyond an expected “cloud” of residuals centered around 
the horizontal line through zero. For the quantile–quantile plot of the residuals (bot-
tom left of Fig.  3.2d ), deviations from a straight line through the origin with a unit 
slope (i.e.,  y  =  x ) may indicate diffi culties fi tting an expert model using this set of 
covariates, such as a missing covariate or scaling issues (overstating or understating 
estimated probabilities). Highly infl uential scenarios will be highlighted in the Cook’s 
residuals plot (bottom right of Fig.  3.2d ). Finally, the expert’s uncertainty is refl ected 
by the goodness-of-fi t, which is refl ected in the graph of the elicited best estimate 
against the fi tted value (top right of Fig.  3.2d ). The expert may revisit the elicitation 
for any scenario simply by selecting the corresponding point on any diagnostic plot.  

    3.3.6   Output (Documenting the Expert Model) 

 To ensure the repeatability of the elicitation process, it is imperative to document the 
interview script that was used to structure the process (O’Hagan et al.  2006  ) . Such 
documentation is rare (Low-Choy et al.  2009b  ) , so  Elicitator  supports the tedious 
documentation process in several ways. A database of all elicited quantities is main-
tained, allowing the elicitations to be revisited at any time. This includes revising the 
choice of covariates, reviewing the elicited quantities for each scenario, and recalcu-
lating the statistical distribution to capture the plausible range of expected responses 
for each scenario (Database window, Fig.  3.2a ). This database provides a useful 
record when the purpose is to elicit scenarios for validation (type 5 in Sect.  3.2 ). 

 The expert model parameters are provided in the form of standard statistical 
output from a regression, including the estimated mean and SD of the regression 
coeffi cients. This is suffi cient information for modelers to use for explanatory or 
predictive purposes (types 1 or 2 in Sect.  3.2 ), or as input to a more complex model 
(type 3 in Sect.  3.2 ). The expert model is also reported in the form of a prior to 
ensure that the elicited information can be readily included in a Bayesian statistical 
model, using the WinBUGS format (Spiegelhalter et al.  2003  ) . Current develop-
ments include provision of the R code (Ihaka and Gentleman  1996  )  to help fi t 
Bayesian regressions with noninformative and informative priors (as defi ned in 
Sect.  3.2.4 ) using a link to WinBUGs, to support incorporation of the current state 
of knowledge (type 4 in Sect.  3.2 ).   

    3.4   Case Study: An SDM for Brush-Tailed Rock-Wallabies 

 An SDM was required to support the conservation of a threatened species in eastern 
Australia, the brush-tailed rock wallaby. In a series of studies, expert knowledge 
was elicited to support four of the fi ve types of modeling practices described in 
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Sect.  3.2 . First, an expert-derived SDM captured the current state of knowledge on 
the link between the occurrence of this species and habitat features at a landscape 
scale (type 1, an explanatory model). When used as a prior in Bayesian regression, 
this helped to address gaps in the empirical data (Murray et al.  2008  )  and to link 
expert knowledge with empirical information (type 4, making the state of knowledge 
explicit). To enable mapping of suitable habitat and the potential species distribu-
tion (type 2, prediction), it was necessary to build a habitat model based entirely on 
landscape-scale predictors that had been mapped across the habitats of the species. 
In addition, since the spatial arrangement of suitable habitat is a key consideration 
for protecting wildlife corridors, posterior predictions of habitat suitability were 
used as inputs (type 3, inputs for more complex models) for a connectivity analysis 
(Murray  2009  ) . 

 This case study is unusual among other SDM approaches due to the substantial 
effort involved in the design and collection of both expert and empirical data. In 
Queensland, four experts were interviewed for 2 to 4 h each and fi eldwork assessed 
more than 200 sites. A comparable fi eldwork and elicitation effort was expended in 
an adjoining region in New South Wales, where fi ve experts were consulted, for a 
total of nine experts across both regions.  Elicitator  was installed on a portable 
computer used by the elicitor so that each expert could be interviewed in the envi-
ronment most convenient to them. 

 Knowledge was elicited from experts who had not been exposed to the recently 
collected data (Murray et al.  2008  )  to satisfy a technicality of Bayesian analysis, 
namely that the prior must be independent from the empirical data it will be com-
bined with. In addition to ensuring consistent defi nitions (e.g., of site occupancy), 
the expert and empirical datasets followed a consistent choice of covariates and 
study area. Expert knowledge was considered complementary to GIS data, with 
several differences (Murray et al.  2011  )  including the shorter time-span of the 
empirical presence–absence observations, the fact that experts extrapolate from 
local to broader scales whereas GIS layers combine remotely sensed measurements 
as well as expert interpretations, and the fact that experts “fi ll in the gaps” using 
various sources of information. 

    3.4.1   Developing an Understanding of Habitat Requirements 

 The aim of the regression analysis was to assess the impact of habitat factors on site 
occupancy by rock-wallabies. Table  3.2  summarizes the expert-based estimates 
(combined across experts), data-driven estimates, and combined expert- and data-
driven posteriors for these impacts in Queensland, as presented in Murray et al. 
 (  2009  ) . In the Bayesian paradigm, regression coeffi cients are “random” parameters 
that have a prior and a posterior distribution. The best estimate of a regression coef-
fi cient  a posteriori  (after accounting for the empirical and prior information) is its 
posterior mean, and a measure of plausibility is provided by the posterior standard 
deviation. These posterior means and SDs are shown in Table  3.2 .  
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   Table 3.2    Bayesian posterior mean and standard deviation for coeffi cients that refl ect the impact 
of habitat factors (data defi nitions and sources detailed in Murray et al.  2008  )  on the probability of 
site occupancy by rock wallabies (Murray et al.  2009  )    

 Increasing reliance on data (from left to right) → 
 Increasing reliance on expert opinion (from right to left) ← 

 Habitat 

 Expert model not 
informed by data 

 Bayesian posterior model estimated 
using empirical data, with different priors 

 Prior informed by information elicited 
from Queensland experts 1 to 4 

 Noninformative 
Priors 

 Mean  SD  Mean  SD  Mean  SD 

 Intercept (baseline 
scenario) 

 −1.089  0.958  −0.441  0.649  −1.620  1.305 

 Intrusive igneous rock  −1.416  0.684  −1.570  0.475  −1.682  0.733 
 Sedimentary/metamorphic 

rock 
 −0.508  0.529  −1.170  0.370  −1.596  0.564 

 Closed forest  −0.358  0.406  −0.369  0.390  −0.682  1.058 
 Cleared forest  −0.856  0.465  −0.960  0.373  −1.437  0.667 
 All vegetation 

removed 
 −1.229  0.537  −1.131  0.474  −0.548  1.021 

 Agricultural crop  −0.742  0.723  −0.777  0.727  −0.915  2.644 
 Elevation   0.001  0.003   0.000  0.001  NA  NA 
 Slope   0.023  0.018   0.049  0.016   0.104  0.039 

  Positive and negative values indicate an increase and decrease (respectively) in probability of site 
occupancy; values near zero indicate little or no impact on this probability. The table summarizes 
the progression of models built from purely expert opinion (left) to purely empirical data (right), 
with a model that bridges between the two types of data in the center. NA indicates the effect was 
not estimable from the data  

 In  Elicitator , the intercept represents the response (here, probability of site occu-
pancy) for baseline covariates (here, habitat), where all categorical variables are set 
to their baseline value. In  Elicitator , this baseline is determined by two rules. For 
each categorical variable, the baseline category has the smallest numeric code. For 
each continuous variable, the baseline category has a value of zero. These interpre-
tations of the baseline result directly from the implementation of the Beta regression 
underlying  Elicitator  (specifi cally, the use of treatment contrasts). 

 In landscape ecology, habitat factors are often coded so that increasing values 
correspond to increasingly suitable habitat. Then the regression coeffi cients can be 
interpreted so that increasingly larger and more positive values lead to increasingly 
more suitable habitat, and higher probability of site occupancy; and the underlying 
baselines correspond to the least suitable habitat. However, in the rock wallaby case 
study, habitat covariates had different effects in the two regions so that no single 
coding would intuitively link the sign of the regression coeffi cient and habitat suit-
ability. Here, codings used for categorical variables – geology, forest, and land 
cover – led to a  baseline habitat in Queensland that comprised optimal habitat cat-
egories of volcanic rock, open forest, and forested land cover . Thus, all other categories 
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decreased the probability of site occupancy in comparison to the baseline, as 
refl ected by their  negative  effects in Table  3.2 . However, for the two continuous 
variables (slope and elevation), the baseline value is zero. Thus, larger values of 
their regression coeffi cients  increase  the probability of site occupancy in compari-
son to the baseline, as refl ected by  positive  effects in Table  3.2 . 

 The choice of codings (and contrasts) does not infl uence the predicted univariate 
responses (Fig.  3.2c ), but greatly infl uence the interpretation of the regression coef-
fi cients reported in Table  3.2 . These nuances are avoided in applications (similar to 
Elith et al.  2006  )  where the emphasis is on reporting predictive performance (type 2 
in Sect.  3.2 ) rather than on the explanatory ability of the SDM. These nuances are 
also avoided during elicitation with  Elicitator , since the expert focuses on the pre-
dicted univariate response curves (Fig.  3.2c ) rather than the estimated effects. 
However, these nuances will be encountered if the elicitor wishes to understand the 
implications of the model discerned from the expert assessments (type 1 in Sect.  3.2 ) 
or use the expert assessments to inform a Bayesian regression (type 4 in Sect.  3.2 ), 
as in this case study. 

 This study followed a smaller study that elicited knowledge from just two experts, 
who were inconclusive about the effect of slope, with credible intervals that included 
a value of zero (Method A of Table 5 in O’Leary et al.  2009  ) . The change in the 
expert-informed models can be attributed to the different data collection methods 
for empirical and expert data. The elicitation tools used similar interfaces, although 
 Elicitator  (used by Murray et al.  2009  )  also included a boxplot, which was preferred 
by ecologists.  Elicitator  also targeted each expert’s best estimate (viewed statisti-
cally as a mode) of the number of sites occupied (out of 100) and the plausible range 
of values for this expectation (absolute then realistic 95% and 50% intervals). By 
contrast, the tool used by O’Leary et al. targeted the predicted ecological response 
(viewed statistically as a median) and prediction interval (quartiles).  

    3.4.2   Predicting (Mapping) Habitat 

 As shown in Fig.  3.3 , the potential species distribution is focused in ribbons (dark 
areas) within the granite belt in both the expert model (Fig.  3.3a ) and the posterior 
model that combines expert knowledge with empirical data (Fig.  3.3b ). However, 
the posterior model shows areas with a moderately high predicted probability of 
presence surrounding the narrower areas identifi ed by the experts. Discrete loca-
tions with high habitat values (i.e., high probabilities of presence) are clearly iden-
tifi able, with one or two large patches located to the far south, and more than four 
large patches located in the north. The posterior analysis (Fig.  3.3b ) softens the 
differentiation between the areas predicted to have low and high probability of 
occupancy deduced purely from expert knowledge (Fig.  3.3a ). The uncertainty in 
the posterior predictions is highest in the areas mapped as highly probable site 
occupancy (Fig.  3.3c ), which is a characteristic of logistic regression when pre-
dicted probabilities fall under 0.5.        



 Fig. 3.3    Map of the predicted spatial distribution of the brush-tailed rock wallaby (Murray et al. 
 2009  ) . Maps ( a ) and ( b ) illustrate the logarithm of the odds of presence (i.e., a habitat suitability 
score) with zero indicating a 50–50 chance of presence. The three maps correspond to the follow-
ing: ( a ) predicted presence based on the expert model fi t using  Elicitator  based solely on elicited 
information (prior predictions by the experts), ( b ) predicted presence from the posterior model that 
balances input from empirical and expert data (posterior predictions), and ( c ) the standard devia-
tion of (uncertainty in) the posterior predictions shown in map ( b )  
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Fig. 3.3 (continued)

 It is also possible to visually discern potential corridors, most of which comprise 
areas with moderately high habitat quality (mid-gray tones) that connect the high-
est-quality habitat patches. Graph theory has been used to delineate these corridors 
more precisely (Murray  2009  ) , based on an analysis in which the cost of traversing 
the landscape was expressed as a function of the predicted probability of occurrence 
using these habitat quality models.  

    3.4.3   Demonstrating the Benefi ts of Structured Elicitation 
Supported by  Elicitator  

 Experts found the  Elicitator  interface to be user-friendly; all nine experts became 
comfortable with the software and familiar with its use after the initial walkthrough. 
Comments made during the elicitation process indicated that the experts found the 
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tool helped them to “voice” their knowledge. They appreciated the fl exible graphical 
interface, and initially focused on the interactive boxplot as the most familiar 
display. The elicitor noted that all experts utilized a combination of the software’s 
features to provide the four types of instantaneous feedback, and used this feedback 
to enhance their accuracy and consistency (Sect.  3.3.5 ): they refl ected on their 
assessments, compared their assessments across scenarios, considered the implica-
tions for the inferred impact of habitat factors on rock wallaby presence, and com-
municated with the elicitor. 

 By supporting the statistical encoding of expert knowledge,  Elicitator  allowed 
different aspects of uncertainty about the rock wallaby’s habitat requirements to be 
easily captured:

    1.    For each scenario, experts were asked to consider 100 such sites, then specify the 
lower and upper bounds for the number of sites that would be occupied by at 
least one brush-tailed rock wallaby. This translated into a plausible range for the 
probability of site occupancy, which varied among experts and scenarios; Low-
Choy et al.  (  2010  )  provide examples in their Fig. 1. Experts tended to give a 
narrower range of likely probabilities of site occupancy for scenarios considered 
unattractive to rock-wallabies.  

    2.    Being able to assign different levels of confi dence across scenarios provided a 
useful way for experts to express their uncertainty.  

    3.    When information was combined across scenarios (using a Beta regression 
within  Elicitator ), the error bars in univariate response curves showed the strength 
of their convictions regarding the impacts of habitat factors on the probability of 
site occupancy.  

    4.    Combining expert knowledge as informative priors within a Bayesian regression 
with fi eld observations lowered the standard deviation, and therefore the uncer-
tainty (compared to the data-driven model with noninformative priors) of the 
estimated impact of each habitat factor.  

    5.    The software streamlined the collation of different sources of expert knowledge 
by managing the data obtained from the different experts (Fig.  3.2a ), at different 
phases of the elicitation process, for 21 different scenarios. The software could 
also be used in interview environments that were convenient to the expert, 
including remote locations.      

    3.4.4   Improving the Feasibility of Habitat Modeling 

 Field sampling over spatially extensive and often complex landscapes and at broad 
scales (i.e., landscape rather than site scales) can be costly in terms of time, money, 
and other necessary resources. It can signifi cantly affect budgets that might be better 
spent on management. In such cases, expert knowledge can provide an alternative. 
As illustrated in our case study, Bayesian analyses that supplement small datasets 
with expert-informed priors can lead to more balanced interim results, with accurate 
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estimation of regression coeffi cients (in the sense that the standard deviations are 
small). Out-of-sample predictive performance has been assessed by comparing 
models developed using the same set of predictors with fi eld data and experts 
sourced from two different regions (Murray et al.  2011  ) . 

 In this study, we have an intercept term (refl ecting the baseline scenario) and fi ve 
variables (Table  3.2 ): three categorical measures (land cover, remnant vegetation, 
and geology) that only have three categories, so they were each represented by two 
dummy variables, and two continuous measures (elevation and slope). Here, the 
number of fi eld sites was comparable to the number of unique combinations of the 
covariates (fi ve covariates simplifi ed to three levels) in a fully factorial design 
(3 5  = 243, versus more than 200 sites). Although some of these combinations did not 
occur in the study area, the inherent ecological variability in the occurrence of rock-
wallabies in each habitat scenario means that the fi eld data alone was not suffi -
ciently informative about some covariates (e.g., land cover). In some cases, expert 
knowledge changed conclusions on whether factors increased or decreased occupancy 
(e.g., sedimentary rock type). Threatened species such as the brush-tailed rock 
wallaby can benefi t from the approach described in this chapter by taking advantage 
of expert knowledge when empirical data is in limited supply or is only available at 
local scales rather than the landscape scale that is required for environmental and 
biodiversity management and planning.   

    3.5   Strengths and Weaknesses of Encoding via  Elicitator  

 Several aspects of how  Elicitator  encodes expert knowledge require further consid-
eration. We address each of these separately, noting their strengths and weaknesses 
in comparison to alternatives. 

 The interface of  Elicitator , inspired by Denham and Mengersen  (  2007  ) , provides 
feedback using graphical visualization techniques. As noted by those authors, many 
ecologists gain their expertise during fi eld trips to particular locations, and can easily 
recall their knowledge of these sites. Allowing experts to visualize scenarios that 
correspond to a particular location within GIS software provides contextual informa-
tion that improves their recall and therefore the accuracy of their predictions.  Elicitator  
is designed to operate in parallel with a GIS, rather than being embedded within a GIS 
(Denham and Mengersen  2007  ) . This loose coupling avoids the need to redundantly 
provide GIS functionality that is available elsewhere.  Elicitator  can, therefore, be 
used when scenarios do not correspond to mapped locations; for example, scenarios 
could correspond to patients, and the predicted changes in their health could be in 
response to various risk factors (covariates). Further development could provide more 
integrated GIS functionality, such as mapping elicited expert assessments. 

 With  Elicitator , experts can interact with the statistical graphs and record their 
assessments of the ecological response (here, the probability of presence) for each 
scenario.  Elicitator  provides three representations of the expert assessments: a 
boxplot, a probability density function, and text boxes. The graphs offer handles 
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that experts can use to intuitively reshape the statistical distribution by shifting the 
position of key summary statistics. Other software packages provide only one type 
of graph (e.g., Kynn  2005 ; Denham and Mengersen  2007 ; Oakley and O’Hagan 
 2010  ) . In our case study, we found that most ecologists preferred to use the boxplot 
for initial specifi cation of their assessments, but found the probability density function 
and text boxes useful for refi ning them, particularly as their statistical understand-
ing improved. The tool, therefore, accommodates different ways of thinking 
(numerical, graphical, or – after exporting the data for use in a GIS – geographical) 
that might be employed by a diverse group of experts. Other graphical tools could 
be developed to help address common logical fallacies and biases. 

 Unlike most other elicitation tools and approaches (e.g., see Chapter   2     of O’Hagan 
et al.  2006  ) ,  Elicitator  asks experts for their estimate of the  mode  of the ecological 
response – their  best  estimate or the value they consider most likely. It is more common 
to ask for the median estimate (e.g., Kynn  2005 ; Denham and Mengersen  2007  ) , 
where experts choose a value for which there is a 50% chance that the true value lies 
above or below this value.  Elicitator  captures quantiles to provide information on the 
expected range of values and requires experts to specify particular credible intervals. 

  Elicitator  is unusual among elicitation methods since it captures more than two 
summary statistics, which is the bare minimum required by a deterministic encoding 
approach (e.g., Bedrick et al.  1996 ; Chapter   2     of O’Hagan et al.  2006  ) . By “deter-
ministic,” we mean that the elicited quantities are related to the parameters by equa-
tions that do not incorporate a measure of uncertainty. The advantage of 
collecting additional information beyond the minimum is that the expert model can 
then account for and quantify the expert uncertainty. This additional information 
can help researchers to calibrate the opinions of multiple experts, which can contrib-
ute to comparing or combining their assessments (Albert et al.  2010  ) . It also reduces 
the pressure on experts to stipulate their assessments exactly. 

 The  Elicitator  prototype (v1.0) used in our case study implemented only one 
method of capturing expert knowledge about each site; it required experts to follow 
an “outside-in” approach by fi rst assessing the minimum and maximum values, and 
then quantifying the mode and two quantiles. The next release will include addi-
tional methods that permit encoding based on up to seven summary statistics. These 
methods are suffi ciently detailed to capture expert uncertainty yet rapid enough to 
permit elicitations of multiple scenarios within a single session 2–3 h long. In some 
cases, only a few fundamental quantities may need to be quantifi ed to quantify input 
parameters for a larger model (type 3 in Sect.  3.2 ). For these situations, the SHELF 
tool (Oakley and O’Hagan  2010  )  may also be appropriate, since it provides four 
encoding techniques and some graphical feedback: the P or Q methods are based on 
cumulative probabilities or quantiles (respectively), whereas  Elicitator  uses a hybrid 
PQ method, and the R and T methods are based on (respectively) roulette (elicitation 
of a histogram, a discretized version of the hybrid PQ method) and tertiles (i.e., 
dividing the distribution into equal thirds). Both packages implement statistical 
encoding via least-squares regression. 

 One major motivation for developing  Elicitator  was to streamline elicitation and 
therefore facilitate experimentation on various aspects of the elicitation procedure, 



653  Elicitator : A User-Friendly, Interactive Tool to Support Scenario-Based¼

on the encoding algorithms, and on expert characteristics. This functionality is yet 
to be fully developed. For instance, a reviewer suggested inclusion of a module that 
helps researchers develop and test the elicitation script. This could guide the 
researcher through the process of pilot testing of the questions on a small number of 
experts to assess their accuracy; this could be done by recording the script, linking 
it to some test questions or seed scenarios (Sect.  3.3.3 ), and supporting an analysis 
to assess consistency and bias.  

    3.6   Conclusions 

  Elicitator  contributes to a more robust, transparent, and repeatable elicitation of 
expert knowledge. This is an important contribution because, despite the large 
investment of resources in other elements of modeling, little effort is sometimes 
devoted to capturing expert knowledge. Presenting a less-intimidating statistical 
methodology for encoding expert knowledge makes it easier to incorporate expert 
knowledge in a structured way. 

 Nevertheless, considerable effort is required to utilize an elicitation tool effec-
tively; researchers must carefully design and test the script, select and train experts, 
conduct the elicitation, and review and validate the outputs before they can be used 
to support management decisions, and they must document the process and its 
results. Moreover, when knowledge is elicited from multiple experts, it is necessary 
to consider how to calibrate then combine the resulting information. An important 
issue that requires further exploration within the landscape ecology context is the 
complementary nature of expert knowledge and empirical data that has been 
measured at different scales. 

  Elicitator  is a work in progress, and researchers are extending the range of data 
types allowed for the ecological response and supporting the corresponding calcula-
tions, extending the range of feedback mechanisms, and improving error handling 
and integration across the software’s four components (statistical computation, 
relational database, GIS links, and interactive graphics). To learn more about the 
status of the software, please contact us (Elicitator@qut.edu.au). To our knowledge, 
no other tools support an indirect technique based on eliciting the expected ecologi-
cal response under a range of scenarios and are suitable for use in inferring an 
expert’s conceptual model.      
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    4.1   Introduction 

 Professionals add a wealth of experiential knowledge to the application of scientifi c 
data and the implementation of procedures in many fi elds of work. In the forestry 
sector, expert knowledge is used in developing strategic plans for forest management, 
including large-scale land-use planning to manage the timber supply (OMNR  2010  ) , 
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or for conservation planning (McNay et al.  2005,   2006  ) . Tactical applications of 
expert knowledge in forestry include landscape mapping (Walton and Meidinger 
 2006  )  and forest management operations (Willoughby and Thomson  2004 ; Bone 
et al.  2007  ) . Despite the common use of expert knowledge in forestry applications, 
this use is neither formal nor rigorous, and the knowledge is often implicit and 
latent, with unknown characteristics and reliability. 

 Predicting future forest composition is a common example of the use of expert 
knowledge in applications of forest management planning, and depends on experi-
ential knowledge of forest succession (e.g., Czembor and Vesk  2009  ) . Frequently, 
however, its use is neither rigorous nor explicit (Davis and Ruddle  2010  ) . Often, the 
rationale for the use of expert knowledge is not provided, and the extent of its use 
relative to other sources of information is unclear (e.g., Chap.   3    ). Furthermore, even 
if provided, the rationale rarely describes how experts were selected, how expert 
knowledge was elicited, or whether further analysis and evaluation of expert knowl-
edge occurred. Consequently, the reliability of expert knowledge of forest succes-
sion (EKFS) is unknown, and the reliability of applications of that knowledge 
becomes uncertain. Lack of formality in the elicitation of expert knowledge may 
lead to the use of inadequate and inconsistent methods and to diffi culties in subse-
quent assessment of results and subsequent comparisons among studies (Chap.   2    ). In 
addition, a lack of documentation often makes it impossible to repeat a study, which 
contravenes one of the fundamental principles of scientific research (i.e., repli-
cation) and increases uncertainty in the subsequent application of the knowledge 
that results from a study. Given the importance of EKFS in long-term planning of 
forest resources, it is imperative that its characteristics and levels of reliability be 
better known. Only then can we assess the likelihood of whether forest management 
plans will produce the desired forest states and whether the plans will be robust as a 
result of lowering the degree of uncertainty. 

 Most forest succession models (e.g., simulation models and decision-support 
systems) that are used in forest management are quantitative and require numerical 
input (Taylor et al.  2009  ) . Although such models often rely on expert knowledge as 
a primary input, it is not usually clear how this knowledge is elicited, formalized, 
and quantifi ed, and no evidence of thoroughness in following these steps or of 
repeatability is provided (e.g., Forbis et al.  2006 ; Hemstrom et al.  2007 ; Koniak and 
Noy-Meier  2009  ) . The process of knowledge elicitation – including the selection of 
experts, the elicitation situation, and the elicitation technique – determines the 
quality and reliability of the knowledge. Therefore, rigorous methods of elicitation 
are essential for successful use of expert knowledge. 

 Our specifi c goals in this chapter are threefold: First, we present a case study of 
the elicitation of EKFS. We demonstrate how expert knowledge was elicited, for-
malized, and quantifi ed, and how we captured ancillary information that may reveal 
additional aspects of the expert knowledge. Second, we describe the development 
and use of a software tool that facilitated the elicitation and formalization of EKFS. 
Specifi cally, we highlight how the elicitation process was supported by using the 
customized software tool and the advantages of such an approach for researchers 
and experts. Third, based on our experiences with the elicitation and use of EKFS, 
we describe general challenges for eliciting knowledge that we encountered and 
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how we overcame them (i.e., lessons learned). Ultimately, we suggest improvements 
to the practice of eliciting expert knowledge in the hope that our fi ndings will 
benefi t future studies of knowledge elicitation.  

    4.2   Case Study 

 To illustrate our approach for formalizing and characterizing expert knowledge, we 
present a case study of eliciting EKFS in the boreal forest of Ontario, Canada. This 
study was motivated by the need to bring more rigor to the extensive use of expert 
knowledge in Ontario’s planning process for forest landscape management. A suite 
of simulation models that aid in the design of future forest landscapes, such as 
Patchworks (Lockwood and Moore  1993  )  and BFOLDS (Perera et al.  2008  ) , rely on 
EKFS. Attempts have been made to document EKFS (e.g., Ride et al.  2004 ; 
Vasiliauskas et al.  2004  ) , but details of the methodology and of the characteristics 
(e.g., uncertainty, variability) of the expert knowledge remain ambiguous. In our 
project, we elicited expert knowledge to develop rules of forest succession that 
could then be used to parameterize the BFOLDS model for simulating forest land-
scape dynamics. We paid particular attention to developing an elicitation process 
that was both explicit and repeatable and to transparent methods of assessing 
characteristics of the knowledge. Drescher et al.  (  2006,   2008a,   b  ) ,    Drescher and 
Perera  (  2010a,   b  )  and Ouellette and Drescher  (  2010  )  provide details of this study. 
Here, we describe the three key phases of this exercise: selecting the experts, devel-
oping a software tool to facilitate the elicitation of their knowledge, and eliciting 
and formalizing the expert knowledge. Figure  4.1  illustrates the major steps and 
their sequence.  

    4.2.1   Selecting the Experts 

 A key step in the use of expert knowledge is selecting appropriate experts. For this 
study, our intent was to elicit judgments from experts with experience in developing 
and using their knowledge of forest succession obtained from across the diverse 
geography of boreal Ontario. First, we contacted an array of forest management 
professionals in Ontario to identify those who are considered by their peers to be 
experts in forest succession based on their extensive local or regional experience. 
This was a form of  sampling by   referral  (Welch  1975  ) , in which initial contacts led 
to subsequent referrals to prospective experts. The resulting list of prospective 
experts consisted of individuals from a variety of educational, professional, and 
geographical backgrounds. 

 From this list, we identifi ed  primary  experts (i.e., individuals who are leaders in 
their fi eld and are well-respected). We believe that these primary experts, in addition 
to possessing expert knowledge, are well-connected and positioned to encourage 
other potential experts to participate.  Secondary  experts were individuals who may 
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  Fig. 4.1    Flowchart of the process used to elicit expert knowledge of forest succession (EKFS) 
with assistance from a software tool and from workshops that brought researchers together with 
primary and secondary experts       

not be leaders in their fi eld and may not be as well-connected as primary experts, 
but who nonetheless regularly use their knowledge of forest succession in their 
day-to-day work. 

 Our initial contact with the primary experts occurred during the planning stages 
of the study so we could ensure that any primary experts who agreed to participate 
were also actively engaged in the design phase of the study and in the construction 
of the software tool that would be used to support the knowledge elicitation process. 
Unfortunately, despite the efforts of the primary experts to recruit secondary experts, 
expert participation was limited because of time and resource constraints on the part 
of both the participants and the researchers. This resulted in a smaller pool of experts 
and a lower diversity of backgrounds than we expected. The nine experts (two 
primary and seven secondary) who ultimately participated in our study included 
foresters, ecologists, and planning analysts. Their degree of expertise is indicated by 
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their years of experience in using their knowledge of forest succession in government or 
private management applications (Table  4.1 ). Their collective years of experience 
exceeded 170 years.   

    4.2.2   Developing a Software Tool to Facilitate 
the Elicitation of Knowledge 

 To elicit EKFS, we preferred an approach that allowed experts to express their 
knowledge in a quantitative and standardized manner. We also wanted to offer experts 
the opportunity to self-assess their knowledge in terms of its consistency with forest 
dynamics and to report their own levels of uncertainty about that knowledge, as sug-
gested by Cleaves  (  1994  ) . A secondary goal was to provide a simple and convenient 
way to store and manage the expert knowledge so as to facilitate subsequent applica-
tions, analyses, and transfer of the knowledge. For this purpose, we developed a 
customized software tool, the “Succession Pathway Tool” (SPT) that enabled experts 
to interactively express their knowledge and visually explore the resulting succes-
sion pathways. Details about the tool are provided by Ouellette and Drescher  (  2010  ) . 
Throughout our development of the tool, primary experts were involved to ensure 
that the resulting product met their needs. For example, they provided input about the 
information that had to be entered into the tool and the information that was offered 
by the tool, as well as its structural logic and display options. 

 Forest succession is a process that is diffi cult to comprehend and to express 
unequivocally. For example, though individual processes such as seed dispersal, 
germination, and establishment occur over short periods, the entire process of for-
est succession occurs over long periods, often at time intervals that exceed the 
human lifespan, and is infl uenced by a multitude of environmental factors. 
Consequently, forest succession is a complex process that varies both spatially 
and temporally and that arguably can best be expressed in stochastic terms. 

   Table 4.1    Characteristics of the experts who participated in our study to elicit 
expert knowledge of forest succession   
 Background and training  Professional experience (years) 

 Forestry  29 
 Ecology and biology  27 
 Forestry and ecology  25 
 Forestry  22 
 Biology  20 
 Forestry  19 
 Forestry  13 
 Forestry  10 
 Forestry  6 
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SPT was designed to simplify this view of forest succession by collapsing it into 
two hierarchical levels and three stochastic aspects. SPT allowed experts to com-
partmentalize their knowledge at two hierarchical levels (1) a lower level that 
described the interactions between a few individual forest types in detail and 
(2) a higher level that provided a general overview of the interactions among all 
forest types simultaneously. Although the lower level allowed experts to express 
their detailed knowledge of forest succession pathways, the higher level enabled 
them to explore long-term interactions among all forest types in the form of 
networks. We asked the experts to express their knowledge of three stochastic 
aspects of forest succession: the probability of forest succession, as well as its 
direction and timing. In other words, the tool was designed to help experts express 
their knowledge parsimoniously, without overwhelming them with complex and 
stochastic networks of interactions that would be diffi cult to understand. SPT also 
offered them a means to assess whether the expressed knowledge was logically 
consistent with their mental models and led to long-term dynamics that conformed 
with their experience. 

 The experts used a graphical user interface (GUI; Fig.  4.2 ) instead of complex 
tabular data matrices to enter their knowledge of forest succession at two levels: a 
detailed forest succession pathway and a broad forest succession network. The use 
of a GUI and the ability to switch between low and high levels of detail for the forest 
succession knowledge simplifi ed the expression and exchange of expert knowledge. 
The GUI also minimized the level of computing and modeling knowledge required 
for individuals to participate in our study.  

 SPT also let the experts enter ancillary information that characterized their own 
knowledge. Our aim was to gather information related to each expert’s level of 
confi dence about their knowledge of forest succession and their perception of the 
level of complexity of forest succession. Both characteristics contribute to uncer-
tainty (Chap.   2    ). Confi dence is mainly determined by the amount of evidence 
supporting an expert’s knowledge, and relates to “epistemic” uncertainty. Epistemic 
uncertainty is determined by the amount of available information about a system, 
and can be reduced by increasing the number of observations (e.g., Hora  1996  ) . 
Complexity mainly refers to variability in forest succession that goes beyond the 
stochastic forest succession processes that can be quantifi ed by SPT. This is a 
stochastic component that relates to “aleatory” uncertainty, which is the degree of 
uncertainty inherent to a system that cannot be reduced by obtaining more observa-
tions (e.g., Hora  1996  ) . 

 SPT prompts experts to enter their self-assessed levels of confi dence in their 
knowledge and to defi ne the complexity at the level of individual forest succession 
pathways. Here, experts are free to classify their relative confi dence and complexity 
as low, medium, or high. The ancillary information about uncertainty is linked to the 
elicited EKFS. SPT stores both types of information together so that they can easily 
be retrieved for further analysis. For example, patterns in the levels of confi dence or 
complexity can be investigated and their relationships to other knowledge attributes 
can be assessed.  
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  Fig. 4.2    Illustration of the general user interface of the Succession Pathway Tool (SPT): The 
general forest succession network level shows connections among all forest types ( top ). At the 
detailed successional pathway level, the display shows the temporal course and probability of suc-
cession between individual forest types ( bottom )       
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    4.2.3   Eliciting and Formalizing Expert Knowledge 

 When an expert’s knowledge is complex and extensive, it is common to use face-
to-face workshops as the principal communication mode for the elicitation of 
knowledge (Meyer and Booker  1991  ) . The direct interaction between experts and 
researchers during workshops facilitates clear communication of concepts and 
terminology, provides an environment free of distractions from the expert’s daily 
routine, and allows effi cient exchange of a large volume of information (Meyer 
and Booker  1991  ) . Moreover, the interaction allows researchers to pursue discov-
eries that might be missed through more automated approaches. 

 We originally planned a series of one-day workshops with the goal of maxi-
mizing participation from experts with a range of professional backgrounds and 
from a range of locations. A series of such small workshops would have let us tailor 
each workshop to the preferences of the individual experts (e.g., time commit-
ments, topics of interest). We grouped the experts based on Ontario’s administra-
tive regions (i.e., northwest and northeast), because foresters in the two regions 
classify forest types and forest succession pathways differently. Due to logistical 
constraints, we were only able to hold one workshop in each region, timed to accom-
modate the experts’ schedules. The regional split led to slightly different elicitation 
approaches and modifi cations to our subsequent analyses. 

 Each workshop had the following general structure:

    1.    We provided an overview to introduce the experts to the study’s background, the 
workshop timelines and goals, and the anticipated applications of the workshop 
results. (This full disclosure of the study background and purposes was impor-
tant to build trust among the researchers and experts.)  

    2.    We explained the research questions and defi ned the terms and concepts that are 
used in mental models of forest succession. This allowed the research team and 
participating experts to reach a common understanding of the processes, to com-
municate effectively about those processes, and to use the same measures or 
units when addressing their knowledge of forest succession.  

    3.    We introduced the knowledge elicitation tool (SPT) and demonstrated its functions 
for entering, reviewing, and editing an expert’s knowledge of forest succession.  

    4.    We elicited the knowledge using SPT, augmented by discussions among the 
experts and with researchers.     

 To ensure that the elicitation proceeded as expected, a facilitator (one of the 
primary experts) guided the process, with input from the researchers upon request. 
This approach guaranteed that the expert group followed the planned elicitation 
steps and stayed focused on the workshop goals. It also helped to prevent the most 
dominant or vocal members of the group from overly infl uencing the expression of 
other experts. The experts discussed their knowledge in a group, then subsequently 
entered their knowledge individually and anonymously using SPT (Fig.  4.3 ). 
Nevertheless, some experts felt uncomfortable expressing their individual knowl-
edge and preferred a group-consensus approach. Although seeking group consensus 



774 Eliciting Expert Knowledge of Forest Succession…

is a legitimate approach for expressing expert knowledge, it does not allow an 
assessment of individual knowledge characteristics, which was our original intent. 
However, we modifi ed the elicitation approach to accommodate the preferences of 
these experts and focused on the characteristics of the expert group’s knowledge. 
Further details of the workshop proceedings and time frame were documented by 
Drescher et al.  (  2006,   2008a  ) .  

 Our chosen elicitation situation, and specifi cally the format of the meeting in 
which expert knowledge was elicited (Meyer and Booker  1991  ) , had elements of a 
focus group in which all participants freely discussed each topic, and also included 
aspects of a “Delphi” process, in which participants were also allowed to provide 
anonymous responses. The elicitation technique we chose to prompt experts to 
reveal their knowledge was a mixture of structured interviews and knowledge 
modeling (Meyer and Booker  1991  ) . This combination of elements was chosen to 
facilitate information exchange and critical refl ection and to counteract any biasing 
processes such as “groupthink” (Janis  1972  ) . 

 Effective communication is crucial to the success of eliciting expert knowledge. 
Primary experts were involved in the study design and execution as early as possible, 
thereby making them partners in our study. We mainly communicated formally with 
secondary experts through e-mail updates. However, the familiarity between the 
primary and secondary experts provided another communication channel that 
enabled more personal exchanges that strengthened everyone’s motivation. Other 
important contributions of the primary experts were the selection of workshop 
participants, providing advice on how to refi ne SPT, and designing the workshops, 
which they reviewed by participating in a trial workshop before we began the actual 
data collection. Furthermore, the primary experts functioned as workshop facilitators. 
As they were intimately familiar with the study’s goals and methods and understood 
the language and thinking patterns of both the researchers and the experts, the 
primary experts acted as translators between the other experts and the researchers. 
Though most interactions with secondary experts occurred via the primary experts, 
researchers occasionally communicated directly with the secondary experts.   

  Fig. 4.3    Experts used SPT to enter, visualize, and explore their EKFS, which was then integrated 
into a database for use in further research and application of the knowledge       

Software tool
(SPT)

Experts enter EKFS
and its characteristics

Experts use SPT to visualize
and modify EKFS as desired

Formalized EKFS with
known characteristics
for use in research
and application

EKFS combined to form
an integrated database
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    4.3   Benefi ts of Using the Software Tool in Elicitation 

 Using a software tool to elicit expert knowledge has many advantages (Chap.   3    ). 
Our experience with the use of the tool was positive: it did not require much time or 
resources to develop and test, and it did not impede the elicitation process or deter 
experts from expressing their knowledge. 

    4.3.1   Support for the Elicitation Process 

 Given the complexity of forest succession, individual experts may perceive its details, 
organize their observations, and derive mental models of forest succession differently. 
Using SPT, which presented a platform with a common  succession language  (i.e., a 
set of unambiguous defi nitions, concepts, and terms), minimized any variability in the 
mental models introduced by ambiguity in terminology or in the scale of the succes-
sion process. Furthermore, SPT assisted experts in extending their knowledge beyond 
qualitative and deterministic perceptions of succession toward more quantitative and 
stochastic statements. Thus, SPT guided the experts to be more precise in their expres-
sions and to consider the full range of possible successional pathways, including rare 
ones. In the fi eld of knowledge elicitation, SPT appears to be nearly unique. To our 
knowledge, only one similar tool exists: Elicitator (James et al.  2010 ; Chap.   3    ). 
However, Elicitator is more complex in its application of Bayesian statistics for updat-
ing insights from empirical data using expert knowledge. 

 Our design of SPT was aimed at capturing a rich, multifaceted dataset that could 
be analyzed from many perspectives. In addition to capturing expert knowledge, SPT 
helped us to collect important ancillary information  about  expert knowledge, such as 
its uncertainty. Using SPT, the experts self-assessed their uncertainty in two dimen-
sions: (1)  confi dence,  which relates to the strength of the evidence supporting a belief 
and (2)  complexity , which relates to the perceived stochasticity of the system about 
which a belief is expressed. This information was used to generate “meta-knowl-
edge” (i.e., knowledge about the knowledge of the experts). The effi cient design of 
this tool not only increased the effectiveness of the elicitation process, but also pro-
vided a rich dataset that could be applied to answer a variety of questions, such as 
potential sources of uncertainty about the expert knowledge.  

    4.3.2   Benefi ts to Experts 

 SPT helped the experts simplify the complex process of forest succession, especially 
when addressed at larger spatial and temporal scales, by allowing them to articulate 
their knowledge of succession in smaller, better-defi ned steps, and subsequently 
helping them to assemble that knowledge into a coherent whole. Because SPT 
required the experts to formulate their knowledge quantitatively – and thus move it 
from approximate to exact – and as individual statements, SPT helped them to articulate 
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their knowledge unequivocally. As well, SPT’s visualization functions helped 
experts who lacked modeling experience to examine and express their knowledge 
of forest succession in a model-compatible format. In addition, by prompting experts 
to self-assess the characteristics of their knowledge, SPT increased their awareness 
of meta-traits of their knowledge, such as variability, confi dence, and uncertainty. 

 Because experts entered their knowledge within an organized framework, the 
tool also helped them to identify gaps in their knowledge. The visualization aspect 
of SPT helped experts to discover emergent properties of their knowledge (Neilsen 
and Dane-Nielsen  2010  ) , such as the effects of interactions among their individual 
beliefs and the emergence of broad succession networks that they designed using 
SPT. Experts could also iteratively revise their statements to obtain outcomes that 
better refl ected their mental models. This helped to increase confi dence in their 
knowledge and assured consistency in their statements, as well as in the subsequent 
application of that knowledge in their respective professions. SPT also ensured 
long-term storage of the expert knowledge, which is becoming a stated goal in 
knowledge-based organizations that face the loss of expertise and erosion of profes-
sional knowledge as expert employees retire or move to other jobs (Kozlowski and 
Salas  2009  ) . Documenting expert knowledge in SPT ensures that it will remain 
available for future use, including data sharing and further analyses.  

    4.3.3   Benefi ts to Researchers 

 The visual expression of succession by SPT simplifi ed communication between 
experts and researchers and allowed us to gather the experts’ knowledge at various 
hierarchical levels, from individual succession pathways to larger succession net-
works. The increased consistency of the expert knowledge gained by using SPT is 
tremendously benefi cial for both future research and application of the knowledge. 
SPT ensured that the expert knowledge was captured in a quantitative and explicitly 
stochastic framework and stored in an electronic database. The standardized data-
base format ensured that the knowledge will remain available for future use, without 
a need to repeatedly gain access to the experts. The database format enables further 
statistical analyses and characterization of the data, thereby expanding its potential 
applications. The capture and storage of the expert knowledge in an electronic for-
mat also make it readily accessible for updates and additions.   

    4.4   Lessons Learned from Interacting 
with Experts to Elicit Knowledge 

 Our interaction with the experts was not without challenges. Although we did not 
encounter problems with their use of the software tool, we did have some problems 
interacting with the experts. These challenges were highly circumstantial (i.e., they 
depended on the local culture and on individual personalities), and are not directly 
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relevant to other situations. Instead of describing the specifi cs of these problems, we 
offer some generalized lessons learned from our experiences that may be of value to 
other researchers. Ecologists who are not formally trained to interact with people as 
research subjects may need to acquire new skills to interact with experts – to iden-
tify, communicate with, engage, and build trust, and fi nally to elicit knowledge. Our 
experience suggests that for maximum effectiveness, researchers should partner 
with social scientists who are familiar with the relevant elicitation approaches. 

    4.4.1   Motivating Experts to Participate 

 Professionals who possess the level of expertise required for a specifi c study are 
rare. For various reasons, those who are willing to participate in the elicitation of 
expert knowledge are even rarer. However, researchers can motivate experts to share 
their knowledge in several ways (e.g., King et al.  2002  ) :

   Articulating the signifi cance of each expert’s contribution to the advancement of • 
science and the benefi ts for future applications in their fi eld of expertise.  
  Engaging experts in all phases of the study, from the initial design to fi nal appli-• 
cation of the knowledge.  
  Encouraging experts to collaborate  • after  the knowledge elicitation process, such 
as by providing an opportunity to coauthor publications and gain fi rst access to 
any tools and applications developed from the process.  
  Enlisting primary experts to persuade and recruit other professionals who can • 
contribute their knowledge.  
  Accounting for local knowledge priorities and the needs of experts in the elici-• 
tation process.    

 These strategies not only help to initially motivate experts to share their experi-
ences, but also minimize the attrition rate (i.e., the loss of experts before fi nalization 
of the study). In this study, only 2 of the 11 experts initially selected withdrew 
from the study.  

    4.4.2   Communicating with Experts 

 Effective dialogue with experts is crucial to the success of knowledge elicitation, 
but it requires concerted effort by researchers to select appropriate language, modes 
of discussion, timing, and topics. We found the following factors to be important in 
this context:

   Reach a common understanding of the terminology, concepts, and goals of the • 
study to avoid ambiguities and misunderstanding of the scope, scale, and resolution 
of the knowledge exchange.  
  Use multiple means to communicate directly with experts as well as indirectly • 
through primary experts to help translate and reinforce messages.  
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  Use a customized software tool that provides an effective visual platform that • 
helps the experts to illustrate, enunciate, and clarify their ideas, and thereby facil-
itates the communication process.  
  Maintain continuous communication with the experts, from fi rst contact through • 
publication of the study results, to build their trust and ensure that you receive 
critical feedback.     

    4.4.3   Eliciting Knowledge Adaptively 

 Many approaches are available to elicit knowledge. The choice of the most appro-
priate method depends on the specifi c circumstances of the study. In most instances, 
a combination of approaches is more effective than a single approach (Meyer and 
Booker  1991  ) , and we followed that advice. Selecting the exact combination of 
approaches may be a challenge, but this can be minimized by being adaptable (i.e., 
being willing to change the elicitation approaches, timing, and scope of the knowl-
edge elicitation based on feedback from the experts). Pilot testing of the elicitation 
process with selected experts helps to confi rm the effi cacy of specifi c techniques, 
language, and terminology, and allows researchers to refi ne their approach before 
beginning to gather the actual knowledge. Pilot tests also provide an opportunity 
for the primary experts to become more familiar with the tools, such as the SPT 
software used in the present study.  

    4.4.4   Minimizing Biases 

 Using a small and interconnected pool of experts may introduce sampling biases, 
and innovative statistical techniques may be necessary to minimize their effect on 
the knowledge that is elicited (Heckathorn  1997  ) . Other biases associated with 
experts are behavioral (Meyer and Booker  1991  )  and are induced by social pressures 
such as groupthink (Janis  1972  ) , or cognitive (Meyer and Booker  1991  )  and occur 
due to errors in perceiving, processing, and storing information. A key aspect of the 
knowledge elicitation process is to detect such biases and minimize their effects 
though appropriate countermeasures, such as those outlined in Table  4.2 .    

    4.5   Conclusions 

 This chapter describes a case study of eliciting expert knowledge about forest suc-
cession with the aid of a software tool, and using the results to create a body of 
knowledge that could then be characterized, analyzed, and compared among experts 
(Fig.  4.4 ). Drescher and Perera (Chap.   9    ) provide more details of this process. 
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We found that the software tool, SPT, helped the experts to visualize and address the 
process of boreal forest succession not just as isolated steps, but as complete networks, 
and to explore their own knowledge in stochastic terms. Thus, we were able to elicit 
what was previously fragmented and  ad hoc  knowledge of boreal forest succession 
that resided with individual experts and integrate this knowledge into a cohesive 

  Fig. 4.4    Overview of the functions and characteristics of SPT and its role in the broader 
knowledge integration process. The process for eliciting expert knowledge is explained in this 
chapter, and the subsequent knowledge integration and analysis steps are presented by Drescher 
and Perera (Chap.   9    )       
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database. This database has properties similar to a typical empirical dataset used in 
ecological experimentation because it is quantitative, and was produced using 
explicit and repeatable data collection methods.  

 We learned the importance of ancillary data that can lead to the generation of 
valuable meta-knowledge (i.e., knowledge about the knowledge). Although EKFS is 
being used in many forest management applications, it is mostly applied in a frag-
mented manner, with much detail but no view to the higher level interactions among 
successional processes. Expert knowledge is not typically viewed at synoptic levels, 
where the details would coalesce and be integrated into succession networks that 
reveal the stochasticity of outcomes and geographic variability. SPT enabled such 
integration of detailed and local expert knowledge into a generalized knowledge 
base with broader applicability. Finally, we found that the defi nition and selection of 
appropriate experts was crucial to the success of the elicitation process and to the 
characteristics of the body of expert knowledge assembled through this process.      
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    5.1   Introduction 

 In this chapter, we share lessons learned during the elicitation and application of 
expert knowledge in the form of a belief network model for the habitat of a water-
bird, the King Rail ( Rallus elegans ). A belief network is a statistical framework 
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used to graphically represent and evaluate hypothesized cause and effect relation-
ships among variables. Our model was a pilot project to explore the value of such a 
model as a tool to help the US Fish and Wildlife Service (USFWS) conserve species 
that lack suffi cient empirical data to guide management decisions. Many factors 
limit the availability of empirical data that can support landscape-scale conservation 
planning. Globally, most species simply have not yet been subject to empirical study 
(Wilson  2000  ) . Even for well-studied species, data are often restricted to specifi c 
geographic extents, to particular seasons, or to specifi c segments of a species’ life 
history. The USFWS mandates that the agency’s conservation actions (1) be coordi-
nated across regional landscapes, (2) be founded on the best available science (with 
testable assumptions), and (3) support adaptive management through monitoring 
and assessment of action outcomes. Given limits on the available data, the concept 
of “best available science” in the context of conservation planning generally includes 
a mix of empirical data and expert knowledge (Sullivan et al.  2006  ) . 

 The King Rail served as the focus of our pilot study because it presented data 
challenges common to many nongame species. Our study area was the USFWS 
Eastern North Carolina and Southeastern Virginia Ecoregion (hereafter, “the ecore-
gion”). Within the ecoregion, the King Rail (1) had never been studied locally (local 
systems were ecologically distinct from those regions that had been studied), (2) 
had only recently been prioritized (so local biologists and managers had not previously 
paid close attention to the population), and (3) is secretive (so the bird is diffi cult to 
detect even if it is present). In the Southeast Coastal Plain, the ecoregion offers a 
large amount of the fresh and brackish water emergent marsh habitat preferred by 
the King Rail (USGS Southeast Gap Analysis Program [GAP],   http://www.basic.
ncsu.edu/segap/index.html    ). However, GAP models only identify  potential  habitat, 
and provide no indication of the quality or occupancy of that habitat. Given that the 
ecoregion may be a critical management unit for achieving national and regional 
population objectives (Cooper  2008  ) , the USFWS desired a model with fi ner spatial 
resolution of the distribution and abundance of breeding King Rail within the poten-
tial habitats. Ideally, the model would estimate the number of King Rail currently 
supported by the ecoregion and indicate where management of existing conserva-
tion lands or acquisition of new conservation lands would protect the greatest 
numbers of this waterbird. Expert-based modeling provided a means to address 
these questions despite the presence of signifi cant empirical data gaps for the 
study species.  

    5.2   Case Study Approach 

    5.2.1   Belief Network Models of Habitat Occupancy 

 Expert-based belief network models that support conservation efforts are con-
structed through elicitation of the assumptions and logic of experts regarding how 
an ecological system is structured and how it will respond to management actions 
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(Marcot et al.  2006 ; Kuhnert and Hayes  2009  ) . The belief network (also referred to 
as an “infl uence diagram” or “causal diagram”) represents the hypothesized cause 
and effect relationships elicited from experts. Relationships between variables and 
their expected effects are defi ned using conditional-probability tables, which can be 
populated using available data, expert knowledge, or a combination of the two. In 
an expert-based  Bayesian  belief network, the initial expert model is updated through 
the addition of new data, which incrementally decrease the weight given to the 
expert knowledge and increase the weight given to the empirical data as monitoring 
or research continues. Uncertainty is explicitly incorporated, displayed, and propa-
gated throughout the network. 

 We elected to use belief network models for the same reasons they have been 
promoted to the conservation community (McCann et al.  2006 ; Nyberg et al. 
 2006 ; Uusitalo  2007 ; Howes et al.  2010 ; Chap.   7    ): they distill complex systems 
into easily visualized and communicated diagrams, accommodate data from a 
diversity of sources, provide opportunities for fi lling data gaps using professional 
judgment, provide quantitative output in the form of probabilities of various out-
comes, and easily integrate new monitoring data to support adaptive manage-
ment. Primary constraints include challenges associated with rigorously eliciting 
probabilities, the common necessity of representing data in discrete formats (i.e., 
as categorical rather than continuous variables), and the acyclical nature of the 
model structure (e.g., the inability to incorporate feedback loops, but see Bashari 
et al.  2009  ) . Kuhnert and Hayes  (  2009  )  provide an introduction to some of the 
potential pitfalls, which relate to data scaling (e.g., from local to landscape 
scales), discretization (i.e., categorizing data that would be better represented by 
continuous variables), the network structure (e.g., defi ning the cause and effect 
relationships among variables), and the complexity of the models. An additional 
challenge is how to elicit probability estimates that accurately and precisely 
refl ect the experts’ knowledge (Renooij  2001 ; Chap.   3    ). Most people, even those 
with science training, provide poor estimates of probability values (O’Hagan 
et al.  2006  ) . 

 Our research objective was to predict the probability of occupancy of a given site 
by a breeding population of King Rails within areas modeled as potential habitat by 
the Southeast GAP models (Drew et al.  2006  ) . In occupancy modeling, repeated 
presence–absence data or encounter histories allow the calculation of a detection 
probability. Occupancy estimates can then be adjusted for differences in detection 
probabilities, allowing for more accurate inferences about species–habitat associations. 
Occupancy estimation and similar techniques (MacKenzie et al.  2006  )  grew out of 
population surveys in which observers noted that species are not always detected 
even when they were present (Royle and Nichols  2003  ) . We considered processes 
infl uencing occupancy at two spatial scales: marsh patches within the ecoregion, 
and sites within the marsh patches. We then conducted fi eld surveys and compared 
the fi eld-derived occupancy estimates, calculated using the program PRESENCE 
(version 3.1,   http://www.mbr-pwrc.usgs.gov/software/presence.html    ), to the pre-
dictions of an expert-based belief network model.  
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    5.2.2   Expert Selection and Elicitation Procedures 

 No published studies or data existed to defi ne the ecology of King Rails in the ecore-
gion. Incidental observations provided the sole source of knowledge and hypotheses 
concerning the waterbird’s response to various landscape and microhabitat variables 
locally. The four participating experts were USFWS biologists serving at local National 
Wildlife Refuges (Table  5.1 ). These experts offered strong, local knowledge of marsh 
habitats in the refuges where they work, but not necessarily regional knowledge 
(e.g., marshes in neighboring public or private land). Although none had previously 
researched or monitored secretive marsh bird populations, all had observed the King 
Rail and all were aware of the bird’s basic ecology through research literature from 
other regions and through professional meetings. We elicited information using two 
techniques (defi ned below): discussion interviews and image-based interviews. For 
both elicitation techniques, experts were interviewed privately at their offi ce or an 
alternate site of their choice.  

    5.2.2.1   Discussion Interviews 

 Discussion interviews followed a semistructured approach, presented in two parts 
over a period of approximately 3 h. The interviews followed a script to ensure that 
each expert received the same introductory material (e.g., orientation to the objec-
tives and terminology) and the same wording for each question and task. Part One 
sought to characterize the domain of the expert’s experience (Table  5.1 ), and Part 
Two captured their knowledge of King Rail ecology. Within the boundaries of this 
structured design, the conversation was free to evolve around an expert’s requests 
for clarifi cation of terminology and the modeling process, discussion of the pro-
posed variables of interest, and justifi cations of hypotheses. 

 Our questions in Part One addressed the spatial and temporal extent and resolu-
tion of an expert’s relevant work experience, the contribution of different resources 
(e.g., observations, literature and colleagues) to the elicited knowledge, the expert’s 
familiarity with interpreting digital orthophotos (both printed and shown on a laptop 
computer), the expert’s self-confi dence in their local knowledge of the King Rail, 
and the expert’s overall belief that the King Rail responded to certain landscape 
features. This provided information to evaluate or weight an expert’s knowledge 
and also allowed time to orient the expert to the interview method and vocabulary. 

 In Part Two, experts fi rst identifi ed landscape and microhabitat variables of 
potential importance and then directly quantifi ed the relationships between occu-
pancy of a site and each variable. If an expert failed to independently identify any 
variables mentioned in the literature or by another expert, we asked them to con-
sider these variables too. If later experts identifi ed variables not elicited from an 
earlier expert, the earlier experts were contacted by phone or e-mail and given the 
opportunity to comment on the additional variable. Experts provided probability 
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estimates of response rates for call-back surveys in hypothetical landscapes. 
Call-back surveys play recorded bird songs to prompt responses from local birds 
(Conway  2009  ) . By imagining ten sites for a given landscape scenario (e.g., a marsh 
patch size of 20 acres), experts stated the number of sites where they would expect 
to detect at least one King Rail during a call-back survey. In answering, we instructed 
the experts to assume that these hypothetical surveys were conducted at the peak of 
the breeding season, under ideal sampling conditions, and in otherwise suitable 
habitat to maximize the probability of occupancy. For each variable (e.g., patch 
size) experts also identifi ed, if relevant, the value beyond which detection would 
drop to zero or reach a minimum threshold and the value or range of values that 
would offer the maximum number of detections. Finally, to facilitate our com-
parison of the responses, we asked the experts to identify what they considered to 
be the highest possible proportion of the population detected relative to the propor-
tion actually present under ideal conditions at their refuge. 

 In all steps, the experts explained the reasoning behind their hypotheses. After 
full discussion of all variables, experts identifi ed the top fi ve and then the top two 
variables that they expected to most strongly infl uence King Rail occupancy 
throughout their refuge. Audio recordings of the interviews let us review this infor-
mation during model construction.  

    5.2.2.2   Image-Based Interviews 

 The image-based interviews required experts to assign an occupancy probability 
class [low (1–33%), moderate (34–66%), or high (67–100%)] to preselected 
potential habitat sites visualized using an aerial image (digital orthophoto 
quarter quadrangle, DOQQ; 1998 imagery obtained from US Geological Survey: 
  http://eros.usgs.gov/#/Home    ). The selected sites represented a random stratifi ed 
sample, with two strata representing landscape variables that were highly ranked 
by the experts during the discussion interviews (distance to open water and marsh 
patch size), and a third that they considered to be potentially important but about 
which they were highly uncertain (dominant land cover, the dominant land cover 
class within 1 km surrounding a potential habitat site). Some sites were also 
randomly set in nonmarsh habitats to ensure that experts correctly distinguished 
marsh from nonmarsh habitat in the DOQQ images. The images were provided 
in paper format, but were also available on a laptop computer to allow the experts 
to zoom in or out around features of interest. Experts classifi ed sites for three 
landscapes: their own refuge, an unfamiliar refuge with similar habitats, and an 
unfamiliar refuge with dissimilar habitats. For each landscape, they viewed and 
classifi ed a total of 100 sites (in sets of ten) to reduce visual confusion among the 
sites. Experts were asked to verbally describe the habitat traits they were consid-
ering as they classifi ed each site. These comments were captured in our notes and 
using an audio recorder.   
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    5.2.3   Model Construction 

 We used version 4.1.6 of the Netica software (  http://www.norsys.com/    ) to construct 
the model, and followed guidelines for the development of belief networks for eco-
logical and conservation applications (Marcot et al.  2006  ) . We fi rst generated an 
infl uence diagram to describe the system structure (i.e., the relationships between 
causes and effects), then defi ned the categorical state of each model node (Kuhnert 
and Hayes  2009  ) , and fi nally defi ned probabilistic relationships among the variables. 
The model structure and the underlying conditional probability tables drew upon 
experts’ combined knowledge synthesized from their personal observations, review 
of the literature from other regions, and interaction with colleagues involved in 
marsh bird management and research. 

 Construction of the infl uence diagram and conditional probability tables required 
us to reconcile the predictions of different experts. We compared each expert’s stated 
maximum detection probability because experts could disagree on an absolute scale 
while still agreeing on a relative scale up to that maximum probability; the range of 
landscape values represented within an expert’s refuge so that we could distinguish 
between responses based on local experience versus informed conjecture; and the 
expert’s relative experience (e.g., years at their refuge, time spent in marshes during 
the breeding season, and number of King Rail sightings). Where we could not 
reasonably explain differences among the experts, we conducted follow-up conver-
sations or allowed evidence from the literature to guide our development of the belief 
network. Through such follow-up discussions, we learned that differences among 
experts’ rankings of marsh patch size as an informative variable refl ected the 
presence (high rank) or absence (low rank) of a strong patch-size gradient in the 
landscapes of their experience. For example, we confi rmed that given the strong 
gradient in patch size across the regional landscape, all experts agreed that marsh 
patch size was a potentially informative predictor variable for King Rail habitat 
occupancy. When this phase of the analysis was complete, experts reviewed and 
accepted the model as a reasonable representation of their hypotheses before we 
applied it to the ecoregional landscape. As model output, we reported the probability 
of occupancy both as an expected value (the statistical expectation with a standard 
deviation) and as the probability of a site ranking low, moderate, or high for occupancy.  

    5.2.4   Validating and Updating the Expert Model with Field Data 

 In 2008 and 2009, we surveyed 89 marsh sites using the National Marsh Bird 
Survey Protocol (Conway  2009  ) . The sites represented a stratifi ed random sample, 
with the strata selected to represent the belief network variables that contributed 
most to variability in the model predictions (patch size, distance to open water, and 
dominant land cover). After estimating the probability of occupancy using the 
PRESENCE software, we validated the model by comparing the occupancy pre-
dicted by the belief network with the detection-adjusted occupancy estimates. 
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We used the test-with-cases function in Netica, which evaluates how well the belief 
network’s predictions match the observed data. We also assessed whether the 
predictions of the expert-based belief network model consistently over- or under-
estimated the detection-adjusted occupancy estimates. 

 After comparing the expert-based belief network model against the detection-
adjusted occupancy estimates calculated from empirical data, we tested the belief 
network model’s ability to learn (i.e., be refi ned) based on subsequent monitoring 
data. A primary justifi cation for using these models in conservation and resource 
management settings is that they can be updated through the incorporation of fi eld 
monitoring data, thereby gradually offering more accurate and precise predictions 
(Marcot et al.  2006 ; Uusitalo  2007 ; Howes et al.  2010  ) . We entered one-third of the 
fi eld data, randomly drawn from the full dataset, as observed case studies to enable 
the belief network to “learn.” During the learning process, the prior model elicited 
from the experts is updated based on the data (likelihood) to produce the Bayesian 
posterior probabilities. We compared the abilities of the expert-only (prior) versus 
the expert + data (posterior) models to accurately predict the remaining two-thirds 
of the observed data. We repeated this process 100 times to compare the distributions 
of the accuracy statistics for the two models.  

    5.2.5   Experts and Their Knowledge 

    5.2.5.1   Expert Participation and Feedback 

 Our experts were “experienced wildlife professionals” rather than species specialists 
and, in general, all experts were initially nervous regarding how their limited knowl-
edge would be applied. Some had experienced the misuse or misrepresentation of 
expert information. Though we did not directly evaluate their discomfort or con-
cerns, several observations emerged based on the level of effort required to reassure 
and encourage experts at different stages of the process. 

 All experts asserted that their knowledge was suitable only for formulating 
hypotheses but not as a direct substitute for empirical data (Bunnell  1989  ) . Although 
they were confi dent of their personal observations, they were often uncertain how 
typical or atypical their observations might be in the context of the full study region 
or even their own refuge. Also, they feared that their hypotheses could be misrepre-
sented as observation and result in the development of regulations and management 
guidelines without further testing. Their discomfort was greatest for quantitative 
tasks; they were most comfortable identifying potentially important habitat variables, 
less comfortable ranking these variables, and least comfortable providing probability 
values. This increasing degree of discomfort likely refl ects their degree of exposure 
to these types of information. Although each had detected the King Rail in their 
respective refuges, most of their knowledge of the bird came from the published 
literature, professional meetings, and interactions with colleagues. They also drew 
from experience with more common, taxonomically related species. These resources 
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provided support for their hypotheses about associated environmental variables, but 
would not have provided support for the most quantitative hypotheses. 

 The experts expressed greater discomfort when providing information at landscape 
scales than at microhabitat scales. This is unsurprising because when experts observe 
species in the fi eld they have immediate access to microhabitat data (e.g., vegetation 
species and height, water depth), but would need to plot these observations on a map 
to draw associations with landscape characteristics. Also unsurprising was the 
increased level of discomfort when, during the image-based interviews, we asked 
experts to classify sites in unfamiliar landscapes. In familiar landscapes, they drew 
heavily on their knowledge of local microhabitat characteristics to assign proba-
bility classes. In unfamiliar landscapes, they could not draw upon such fi ne-scale 
site-level knowledge and were forced to consider landscape features and infer 
microhabitat conditions.  

    5.2.5.2   Variance Among Experts 

 Individuals’ habitat hypotheses differed in multiple aspects, including variable identi-
fi cation, ranking, and probability estimates. Although the variance in responses con-
tributed to the overall uncertainty, it also revealed information about the bird’s ecology 
(Murray et al.  2009 ; Aspinall  2010  ) . We observed two interesting trends. 

 First, experts tended to identify and rank highest those variables that best 
described the variability in the landscapes that they manage. Drawing experience 
from unique spatial and temporal domains, their responses differed accordingly. For 
example, experts with experience in fringing coastal marshes with strong salinity 
gradients ranked the potential infl uence of salinity above that of patch size or dis-
tance to open water, whereas those with experience in fresh-oligohaline marshes of 
highly variable size hypothesized a stronger role for patch size and distance to open 
water (Fig.  5.1a ).  

 Second, we found that some differences among experts could be attributed to 
differences in their baseline expectations: the probability of detecting a King Rail in 
ideal habitat under ideal conditions using the National Secretive Marshbird Survey 
Protocol. If their responses were standardized as a function of their personal base-
line (i.e., maximum probability) prior to comparison, we obtained a very different 
perspective on the extent of expert (dis)agreement (Fig.  5.1b ).  

    5.2.5.3   Variance Between the Two Elicitation Methods 

 The two elicitation methods led to different results and had different strengths and 
weaknesses from the perspectives of both the elicitator and the expert. The color 
infrared DOQQ imagery provided the most current aerial image data for the full 
extent of our project area at the time of the interviews. These images were captured 
in the spring of 1998, 8 years prior to our interviews. Given the signifi cant and rapid 
landscape changes that have occurred in our study region, this led to immediate 
confusion. We had not anticipated the question of whether experts should answer 
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according to the information they perceived in the imagery, what they believed the 
habitat to be like at present, or what they remembered the habitat to be like when 
they had observed King Rail (their observations ranged from the 1970s through 
2006). We directed the experts to answer based on the visual cues provided by the 

  Fig. 5.1    An illustrative example of the differences observed among experts’ predictions, showing 
responses elicited from three experts ( lines ) and the standard deviation ( gray region ). The degree of 
uncertainty depended on the question posed. ( a ) When we asked the experts to estimate the probabil-
ity associated with a specifi c distance value, disagreement was greatest at short distances. ( b ) Using 
a relative scale (based on the proportion of each expert’s maximum value) changed the nature of the 
disagreement among the experts. The experts agreed more strongly that shorter distances were best, 
but disagreed about how greater distances would reduce the probability of occupancy       
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imagery (the 1998 information) to ensure temporal consistency among the experts, 
but it is possible that their responses were biased by knowledge of the subsequent or 
current status of the landscape. Interviews centered on the imagery did have the 
desired effect of forcing the experts to consider landscape-scale variables such as 
marsh patch size, marsh–open water interspersion, and proximity to forest, agricul-
ture, and urban areas. If an expert was familiar with a site, they always referenced 
known microhabitat conditions or management histories fi rst and ignored land-
scape-scale variables until we directly prompted them. Although eliciting the 
probability scores for sites using the DOQQ imagery provided a method with strong 
repeatability for a single expert and provided standardization across experts, this 
method generated a shorter list of variables and briefer discussions. 

 Information gathered during the discussion interview was more informative for 
constructing the draft belief network models than the information gathered from the 
image-based interviews. The issue of temporal mismatches between an expert’s 
experience, the imagery, and the model application was just one of several chal-
lenges with the image-based results. As noted by others who have used map data in 
elicitation (Yamada et al.  2003 ; Murray et al.  2009  ) , experts varied in their expertise 
in interpreting landscape features from aerial imagery, and were cued by different 
features that they used as their primary basis for interpreting a landscape’s value. For 
example, one expert primarily focused on the proximity to and density of shrub 
cover, whereas another focused on features that indicated the presence of an invasive 
marsh plant. In this manner, their responses evidenced a bias similar to “anchoring,” 
which involves reaching a judgment based on prior conceptions (Kahneman et al. 
 1982  ) . Typically, this anchor was a variable that they identifi ed as a potential factor 
at the fi rst site they classifi ed. Also, similar to the results of Yamada et al.  (  2003  ) , we 
found that experts made variable use of the information provided; some chose to 
simply classify points on the map that we had printed (ignoring the digital version 
provided on a laptop computer), whereas others wanted to zoom in on each point in 
the image to obtain clues to the microhabitat features. Finally, we found that their 
attention and interest faltered sooner during the image-based interviews, such that 
the quality of the elicited information may have declined as time passed. As they 
tired, they began to classify sites more rapidly and verbally considered fewer poten-
tial variables than they had considered for sites early in the interview process.  

    5.2.5.4   Poor Relationship Between Expert Knowledge 
and Landscape-Scale Information 

 The value of expert information elicited for spatially explicit species-habitat modeling 
is debated, particularly in terms of the value of empirical data (Chap.   8    ; Chap.   11    ; 
Burgman et al.  2011  ) . However, most discussions have focused on individual and 
group biases or the fallacies common in probabilistic thinking (e.g., Kahneman et al. 
 1982 ; Renooij  2001 ; Kynn  2008 ; Low-Choy et al.  2009  ) . Fewer authors have explored 
the potential sources of expert uncertainty and error that may be unique to landscape 
ecological applications (Elith et al.  2002 ; Yamada et al.  2003 ; Murray et al.  2009  ) . 
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We found no published guidance on best practices to match expert knowledge elicited 
in discussions with map or image data, yet we recognized that many choices made in 
the processing of such spatial data within a geographic information system (hereafter, 
“GIS data”) would affect the outcome of applying elicited judgments to the landscape. 
Three particular problems stand out: (1) eliciting expert knowledge prior to gathering 
available GIS data, (2) processing GIS data without a formal review of the ecological 
implications of the methodological choices, and (3) failing to account for GIS data 
inaccuracies when assessing the value of expert knowledge. 

 If the characteristics of the GIS data (e.g., resolution and range of values) are 
unknown at the time of the elicitation, serious problems may be encountered later in 
the project. The most common of these would be discovering a scale mismatch 
between the elicited knowledge and the GIS data. In our case, experts indicated that 
the King Rail was strongly associated with marsh–open water edges. However, this 
perceived correlation follows from observations that link the King Rail to fi ne-scale 
features (1–10 m in scale) such as ditches, muskrat runs, and small ponds, which are 
typically not visible in remotely sensed or interpolated spatial data. Only by knowing 
the proposed habitat modeling scale (e.g., the 30-m resolution of land cover data) 
could we explore the relevance of this correlation to our project objectives. In fact, 
after collecting fi eld data, we documented a signifi cant negative relationship between 
King Rail occupancy of a site and the marsh–open water edges depicted in the GIS 
data. Thus, at some sites where the expert-based models performed poorly, we 
found that the errors may have refl ected a mismatch in spatial scale between the 
experts’ observations and the GIS data, rather than simply expert error. 

 Careful consideration of the available GIS data clarifi ed the relationships between 
the experts’ knowledge and the many closely related landscape metrics that might 
be used to represent that knowledge spatially. For example, our experts required 
direct assistance to communicate their personal defi nition of “lots of edge” in terms 
of the landscape metrics available to spatially quantify “edge” within a GIS. We 
used cartoon illustrations of common metrics (e.g., interspersion, edge density, and 
distance to edge) to clarify how different metrics represented a given landscape to 
ensure we selected the metric that best matched the expert’s meaning. 

 Despite taking great care to elicit accurate expert knowledge, we found that this 
information was easily distorted through GIS processing decisions. For example, 
our experts indicated that marsh patch size was a critical variable. To identify 
patches and calculate their area, we had to select a suitable land cover classifi cation 
system and then choose a neighborhood rule to aggregate raster cells (pixels) into 
distinct patches. Although our land cover data defi ned six marsh habitat classes 
within our study region, the experts argued that some distinctions were not ecologi-
cally meaningful because they were based on geographic rather than ecological 
boundaries (e.g., Mid-Atlantic salt marsh was equivalent to Southeast Coastal Plain 
salt marsh and these classes could be merged). Had we analyzed the landscape using 
the original data rather than grouping closely related types of marsh, very few marsh 
patches would have appeared large enough to support the King Rail. Similarly, 
given that movement of this bird is not restricted to the four cardinal compass direc-
tions, we elected to use an eight-neighbor rule (versus a four-neighbor rule, with 
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one neighbor per cardinal direction) when calculating patch size. This meant that 
two raster cells would be aggregated into a patch if they were directly adjacent, 
including diagonal alignment, with the patches touching only at their corners. 
A four-neighbor rule would have counted two diagonal cells as distinct patches. Our 
decision further increased the amount of marsh identifi ed as belonging to a large 
patch without any change in the number of cells mapped as marsh. 

 In some cases, experts are correct and their knowledge has been well modeled, 
but the GIS data are inaccurate. Inaccurate data are likely if the spatial datasets used 
to spatially project the expert-based model predictions are very old (e.g., land cover 
maps in rapidly developing regions) or if interpolated surfaces are based on few 
points (e.g., the case for many soil maps). When we reviewed the areas of our map 
where predictive performance was low, we often found that the GIS data were erro-
neous. A large region of our study area had been incorrectly mapped as salt marsh 
(with a very low probability of occupancy by the King Rail), when in fact it was 
found to be oligohaline marsh (with a very high probability of occupancy). Model 
prediction errors in this region at least partially refl ected problems with the GIS data 
rather than expert error or model error. It is unclear whether past studies comparing 
expert-based model predictions to fi eld data made an effort to fi rst assess and exclude 
inaccuracies of the spatial data layers prior to attributing errors to the expert 
knowledge.   

    5.2.6   Expert-Based Versus Data-Based Model Performance 

 Predictions from the expert-only belief network model differed signifi cantly from 
those of the detection-adjusted occupancy estimates primarily due to two factors 
(Fig.  5.2a ; mean difference in a paired  t -test = −0.11,  P  < 0.001). First, the experts 
hypothesized a strong positive association between occupancy and marsh–open 
water edges, when in fact the relationship between the mapped edge and the detec-
tion-adjusted occupancy was negative. Second, experts exhibited two biases in their 
elicited probability estimates. The fi rst bias was one of conservatism; experts 
resisted assigning any variable a probability value of 0 or 1. That is, they were 
uncomfortable saying that a King Rail would never or would always be present 
under certain conditions. This refl ected their uncertainty regarding the strength of 
their knowledge of this species. The second bias was one of detection; experts pro-
vided predictions of occupancy based on their recollected presence or absence 
observations. Yet naïve estimates of occupancy (unadjusted for detection) typically 
underestimate the true occupancy (MacKenzie et al.  2002  ) . By failing to account for 
the probability of detection, experts systematically underestimated occupancy in all 
conditional probability tables.  

 Fortunately, the performance of the expert-based model markedly improved 
through the addition of even a small amount of data for Bayesian updating 
(Fig.  5.2b ). Initially, we planned to update the model with the fi rst-year data so we 
could then compare the expert-only versus expert + data models’ predictions of the 
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second-year observations. However, we encountered a serious, yet possibly 
common, problem with this plan: our fi rst fi eld season was one of the driest years 
on record, whereas the second season was one of the wettest. Our expert elicita-
tions had focused on average or best conditions, not extreme conditions. Updating 
an average-based model with data collected under one set of extreme conditions 
and then testing under the opposing set of extreme conditions seemed an unreason-
able measure of success. Thus, we chose the randomized approach described in 
Sect.  5.2.4 . However, this situation highlights concerns regarding how best to 
assess expert models. Even when validation data have been collected from the 
same study region as the region covered by the modeling exercise, it is not always 
clear whether they were collected under similar conditions (e.g., El Niño versus La 
Niña cycles; before or after the impacts of invasive exotic species). When develop-
ing and testing spatial models, it is equally important to refl ect on the temporal 
dimensions of the expert knowledge and the associated validation data. Differences 
between the two might point to valuable information rather than simple inaccura-
cies or biases in the expert knowledge.  

  Fig. 5.2    ( a ) Comparison of the predictions made by the expert-based belief network model in 
Netica with predictions by the data-based model in PRESENCE. Predictions based on expert 
knowledge were lower than those based on the empirical data. Experts never assigned a probability 
of 0 or 1 to any level of any variable. In the two seasons of fi eld data, however, the King Rail were 
consistently detected in certain kinds of habitat (and not detected in others), so the PRESENCE 
occupancy data included the full range of predicted values from 0 to 1. ( b ) Although the original 
expert-based belief network model initially showed high error rates (a mean value near 50% error 
in the contingency table), the addition of even a small amount of fi eld data greatly reduced the error 
(to a mean of around 25%). The original, expert-only model is the Bayesian prior probability of 
occupancy; the updated expert + data model is the posterior probability of occupancy       
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    5.2.7   Application of Expert Knowledge Within 
Belief Network Models 

    5.2.7.1   Expert Knowledge Can Be Used to Formulate Hypotheses 

 Our experts were hesitant to identify variables and provide probability estimates in 
the absence of a structured, empirical study of King Rail breeding ecology and habi-
tat associations. We found it helpful to emphasize the role of the belief network as a 
means to formulate, structure, and visually communicate assumptions and hypotheses. 
In our case, we could motivate experts by reminding them that USFWS conserva-
tion practices support the use of models to depict hypotheses to be tested through 
adaptive management. We also reassured experts that their uncertainty would be 
directly incorporated into the model and reported along with the model’s predic-
tions. In this manner, their elicited knowledge and “best professional judgment” were 
less likely to be misrepresented as “empirically observed and experimentally tested 
fact.” Furthermore, their knowledge would serve as the foundation of an adaptive 
management and monitoring program, rather than functioning as a fi nal product that 
would constrain all future decisions. 

 As a second aid to eliciting the expert knowledge, we structured the belief network 
model around two distinct ecological processes: habitat access and habitat selec-
tion. After fi rst eliciting variables that infl uence the probability that a King Rail will 
encounter a given marsh patch, we asked what factors would infl uence its decision 
to remain in the patch and establish a breeding territory. We elicited their responses 
regarding site selection in three categories: the probability of fi nding a suitable nesting 
habitat and of fi nding a suitable forage habitat, and the probability of avoiding 
anthropogenic disturbance. Interestingly, although the experts initially struggled to 
name the landscape attributes that would infl uence the King Rail’s habitat occupancy 
patterns, they quickly suggested patch characteristics that might inhibit access, most 
of which were landscape attributes (e.g., too distant from water and a too small or 
too isolated marsh).  

    5.2.7.2   Belief Networks Can Guide Adaptive Monitoring and Management 

 Belief network models can guide experimental design in support of adaptive moni-
toring. In adaptive monitoring programs, the sampling design evolves iteratively 
over time as new information emerges and as the research questions change 
(Lindenmayer and Likens  2009  ) . In an adaptive management setting, multiple vari-
ables can potentially infl uence population dynamics or species–habitat associations. 
Resources allocated to monitoring are often inadequate to permit sampling across 
all levels of all variables every year. Adaptive monitoring can allocate the available 
resources most effi ciently to support learning by the model and subsequent adaptive 
management. Belief network software includes tools to analyze model sensitivity to 
initial assumptions and uncertainty (Marcot et al.  2006  ) , and this information 
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facilitates designing a monitoring strategy that will maximize opportunities to refi ne 
the model and the hypotheses upon which it is based. 

 For a belief network model to be most useful in an adaptive management  and 
monitoring  setting, the empirical research methods and measurement units should 
be clearly defi ned throughout the elicitation process and should directly match those 
that will be used in the monitoring program. Different methods of empirical data 
collection have very different sampling effi ciencies and detection probabilities. If 
experts offer information based on different empirical methods, then differences in 
opinion could be due to methodological differences rather than due to true disagreement 
about habitat value. When we asked experts about the probability of detecting the 
King Rail, we clarifi ed that their response should assume that the detection method 
would be the National Marsh Bird Survey Protocol. By also using this empirical 
method in our validation surveys, we obtained a more direct understanding of errors 
within the model.    

    5.3   Recommendations for Good Practice 
and Further Research 

 Although several past projects required us to use expert knowledge to supplement 
or interpret available empirical data, this study was our fi rst to elicit quantitative 
estimates of probability values from experts as the sole source of information to 
construct a belief network. The USFWS envisioned and requested a modeling 
approach that, although initiated with expert knowledge, could guide management 
decisions and monitoring efforts and gradually move them toward data-based deci-
sions. We therefore spent signifi cant time evaluating potential sources of uncer-
tainty and error, some of which have been highlighted in this chapter. A fuller 
discussion of these sources will appear in the fi nal project report to USFWS, which 
is expected to be produced by the end of 2011. Based on our elicitation experiences, 
we offer some recommendations to landscape ecologists who will develop or 
critique expert-based models. 

    5.3.1   Consider the Source of the Experts’ Knowledge 
of Landscape Ecology 

 Though all of our experts were local biologists, their experience was gained in dif-
ferent refuges, each with unique landscape and microhabitat features. Not surpris-
ingly, individual experience defi ned the temporal and spatial domain of their 
expertise and bounded their responses. We observed that if, for example, a refuge 
offered no interior marsh habitat, the local expert discounted the importance of edge 
versus interior habitat. Prior consideration of the landscapes where the experts 
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gained their expertise will improve the elicitation process (e.g., identify regions of 
overconfi dence) and assist with weighting of the experts’ responses (if applicable). 
By reviewing the domains of expertise, it would also be possible to evaluate whether 
the experts’ combined knowledge provides a full representation of the variability 
present in the landscape. Knowing the extent of their knowledge might also provide 
a means to determine the optimal number of experts. Although sociology provides 
insights into optimal sample sizes based on group dynamics (e.g., 3–8 experts; 
Clemen and Winkler  1985  ) , landscape ecological applications must also ensure that 
the experts fully represent the degree of variability present within the study area. 

 Recommendations:

   Review the landscape characteristics of each expert’s domain before and after • 
elicitation.  
  Defi ne both the spatial and the temporal characteristics of an expert’s knowledge • 
and use this to distinguish responses based on direct experience from those based 
on plausible extrapolation.  
  Do not combine expert estimates or resolve differences without fi rst verifying • 
whether these differences refl ect differences in their domain of expertise.     

    5.3.2   Consider an Expert’s Knowledge of Landscape Ecology 

 Most fi eld biologists, wildlife ecologists, and other potential experts are not land-
scape ecologists. The local-scale experience and perspectives of these experts more 
closely resembles the species view from the ground (e.g., fi ne-scale variations in 
local microhabitat) than the view provided by a satellite (e.g., for a broad-scale 
regional landscape). It is therefore important to consider how well land cover 
classifi cations and metrics refl ect an expert’s experience of their landscape. Although 
an expert has the opportunity to directly observe and then recall local habitat features, 
most landscape metrics require calculations using mapping software, a process that 
is removed both spatially and temporally from the fi eld observations. Furthermore, 
the experts have been trained to be attentive to microhabitat differences because, 
typically, these are the habitat characteristics that they have traditionally manipulated 
to manage wildlife populations. 

 Recommendations:

   Prior to eliciting the key variables and their associated probabilities, assess the • 
expert’s knowledge of landscape ecological patterns and processes. Provide 
orientation to help them understand key concepts and terms, and supplement this 
discussion with visual illustrations or examples.  
  If you are using GIS data as a tool for the experts to view sites, ensure that the • 
experts are appropriately oriented to the software and offered spatial information 
at a standardized scale (i.e., grain size and spatial extent). Also determine the 
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reliability of the GIS data, as errors in model outputs could be errors in the GIS 
data rather than in expert knowledge.  
  Elicit the fi eld methods and measurement units that underlie an expert’s knowl-• 
edge (e.g., different research methods and the difference between occupancy and 
detection) to ascertain whether and how these factors inform models of land-
scape patterns and processes.  
  Consider the time frame of an expert’s knowledge acquisition and whether this • 
period captures the full range of temporal variability (e.g., 50-year fl ood events, 
El Niño and La Niña cycles) relevant to the period over which the model will be 
applied or tested.  
  Distinguish between quantitative uncertainty (e.g., how much) and qualitative • 
uncertainty (e.g., more or less).  
  GIS processing decisions should be informed by the expert’s knowledge of eco-• 
logical processes and species behavior, otherwise the spatial data layers will not 
accurately represent the elicited information.  
  Elicitation is fatiguing, especially when it involves repetitive tasks, new termi-• 
nology, or unfamiliar technology. Allow ample time for mental and physical 
breaks to ensure consistent levels of expert attention throughout the elicitation 
process.     

    5.3.3   Develop Better Elicitation Tools 

 A primary lesson from this modeling experience is that extra effort applied to 
design and test a rigorous elicitation is time and money well spent. Obtaining a 
precise and accurate summary of an expert’s knowledge requires the same thought-
ful attention to detail as the design of any other empirical study. Indeed, for soci-
ologists and others who work with human subjects, eliciting knowledge is empirical 
research. Formal elicitation methods (e.g., the Elicitator software; James et al. 
 2009  )  and associated statistical analysis can help researchers manage potential 
bias, quantify and track uncertainty, explore sources of confl icting knowledge, and 
support complex decisions in the face of competing interests and risks (O’Hagan 
et al.  2006  ) . However, the application of these elicitation methods within a spatially 
explicit context remains an area of ongoing development (Chap.   3    ; DBL Interactive, 
  http://www.decisionbasedlearning.org/    ). Currently, however, the elicitation of 
landscape ecological knowledge remains hampered by the inability to interactively 
display an expert’s elicited knowledge within a GIS. Such visualization support 
would facilitate the identifi cation of potential scale mismatches, characterization of 
an expert’s domains of experience, and assessment of GIS data accuracy, among 
other benefi ts. These improvements would greatly facilitate project planning and 
implementation.   
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    5.4   Conclusions 

 Controversy still surrounds the use of expert-based models to support natural 
resource management and conservation decisions because such models often lack 
rigor, and poor methods can easily lead to biased results (e.g., Chap.   8     and Chap.   11    ). 
In our models, expert knowledge did exhibit some biases and errors (e.g., underes-
timating true occupancy), and it is critical to point out that the original expert-only 
(prior probability) belief network model offered little predictive value. However, the 
expert-only belief network model guided the development of the fi eld sampling 
design by targeting limited monitoring resources toward the greatest sources of 
model uncertainty. The predictive performance (percent accuracy) of the resulting 
(posterior) belief network improved greatly through the process of Bayesian updat-
ing through the addition of even a relatively small sample of monitoring data. 
However, we fi rst had to address the effects of GIS data errors and differences in 
climate or other monitoring conditions prior to validating or updating the models. 
We concluded that expert-based models can support the USFWS vision for adaptive 
monitoring and management that is promoted in their Strategic Habitat Conservation 
Plan, so long as the models are implemented with an effective monitoring and data 
management program.      
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    6.1   Introduction 

 Bird abundance in the United States has been declining for more than half a century, 
likely as a result of habitat changes (Valiela and Martinetto  2007 ;    North American 
Bird Conservation, U.S. Committee  2009  ) . In the Southeastern United States, 
habitat and management changes including deforestation, reforestation, urban 
growth, and fi re suppression have reduced the availability of high-quality habitats 
and have increased habitat fragmentation (Wear  2002 ; Griffi th et al.  2003 ; Van Lear 
et al.  2005  ) . Short-term projections suggest that urbanization will continue to reduce 
forest areas and increase their fragmentation (Wear et al.  2004  ) . In the long term, 
climate change will alter precipitation and temperature patterns, and rising sea lev-
els will reduce coastal habitat (IPCC  2007  ) . It is therefore important to conserve 
what is currently available (species, habitats, and ecosystems) and plan for future 
conservation. To effectively protect or increase bird populations in this context, con-
servation must maintain or increase habitat quality and quantity. However, given 
limited resources, it is important to focus efforts where they have the greatest benefi t 
rather than where land is economically unimportant (Pressey et al.  1996  ) . 
Furthermore, complex systems with multiple species and habitats may require 
trade-offs among confl icting conservation objectives. 

 The Southeastern United States has high conservation importance because of the 
region’s habitat and species diversity, ecological processes, and evolutionary potential; 
however, it also warrants strong concern because of historical habitat loss, future 
threats, and inadequate protection (Olson and Dinerstein  1998  ) . Based on data from 
USGS  (  2010  ) , we estimate that only 12% of Southern Coastal Plain ecoregion is 
under permanent protection. Conservation planning for this large and varied ecore-
gion is complicated by variable data availability across regions, habitats, and species. 
Therefore, to support conservation planning, experts may be the best source of 
information (Low-Choy et al.  2009  ) . 

 In conservation planning, experts are often used to evaluate potential threats 
(Coppolillo et al.  2004 ; Teck et al.  2010 ; Chap.   12    ), select high-priority areas (Noss 
et al.  2002 ; Cipollini et al.  2005 ; MacNally et al.  2008  ) , defi ne initial values for 
Bayesian modeling (Low-Choy et al.  2009 ; Kuhnert et al.  2010 ; Chap.   5    ), and pro-
pose conservation targets (Hess and King  2002 ; Didier et al.  2009 ; Amici et al. 
 2010  ) . Experts can provide critical insights when there are multiple confl icting 
objectives, when empirical data about species and habitats is lacking, threats are 
uncertain, and it is necessary to focus on a few key species. This is common when 
developing large-scale, long-term plans. However, when expert knowledge sup-
ports conservation decisions, little information may be provided or recorded about 
the experts or how their knowledge was collected and used (Kuhnert et al.  2010 ; 
Chap.   8    ). 

 To support avian conservation in the Southeastern United States by ensuring 
adequate current and future habitat, we elicited expert knowledge of species–habitat 
associations, habitat management needs, and threats. This chapter highlights one 
aspect of our project: the use of expert knowledge to defi ne a suite of focal species 
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for species–habitat modeling that would subsequently support the development of a 
decision-support tool. These species represent the present and future habitat needs 
of other species that cannot be modeled given time and resource constraints. The 
fi nal tool will be a series of spatially explicit landscape models based on the habitat 
needs of focal species that indicate where to focus conservation efforts.  

    6.2   Case Study Context 

 The elicitation exercises reported here formed the foundation for a much broader 
study that had three major objectives: to assess the current ability of habitats to 
sustain avian populations; to model future conditions based on projected urban 
growth, conservation programs, and climate change and predict the response of 
avian populations; and to enhance coordination among stakeholders during all plan-
ning stages. Stakeholders provide access to information that may be unavailable 
elsewhere, and help us to address the concerns of those who will enact conservation 
actions, thereby leading to better outcomes (Pressey and Bottrill  2009  ) . 

 The project covered the South Atlantic Migratory Bird Initiative (SAMBI) area 
(Fig.  6.1 ; Watson and Malloy  2006  ) . The area extends from the Atlantic Coast in the 
east to the boundary between the Coastal Plain and the western Piedmont. 
Historically, this area was dominated by fi re-maintained longleaf pine ( Pinus palus-
tris ) savanna (Outcalt and Sheffi eld  1996  ) , but only 2% of this habitat remains after 
conversion to agriculture, pine plantations, and urban areas (Van Lear et al.  2005  ) . 
Frequent fi res created high biodiversity (Van Lear et al.  2005  ) , including a high 
proportion (40%) of endemic plant species (Walker  1998  )  and 30 threatened or 
endangered vertebrates (Van Lear et al.  2005  ) . Other important habitats include 
 bottomland hardwood forest dominated by fl ood-tolerant species such as cypress 
( Taxodium distichum ) and tupelo ( Nyssa aquatica ; Hodges  1997  ) . Unique non- 
alluvial forested wetlands include rainfall-driven pocosins, Carolina bays, and pitcher 
plant ( Sarracenia  spp.) bogs (Richardson  2003  ) . SAMBI’s coastal area has extensive 
barrier islands and highly productive estuarine wetlands (Dame et al.  2000  ) .   

    6.3   Focal Species Approach 

 When ecosystem management targets focal species, the goal is to protect many 
other species (Margules and Pressey  2000  ) . In contrast to conservation based on 
ecosystems or ecosystem functions, focal species indicate the quantity and arrange-
ment of conservation areas and allow planning at a fi ner scale (Roberge and 
Angelstam  2004  ) . Among focal species, sub-categories include indicator, keystone, 
fl agship, umbrella, and landscape species (Caro and O’Doherty  1999  ) . Indicator 
species refl ect ecosystem health or biodiversity (Landres et al.  1988  ) . We did 
not explicitly select biodiversity indicators because the low spatial resolution of 
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remote-sensing data leads to the apparent co-occurrence of many species (Favreau 
et al.  2006  ) . In comparison, keystone species are more infl uential than their abun-
dance suggests (Power et al.  1996  ) ; in the SAMBI area, they include gopher tor-
toises ( Gopherus polyphemus ), which excavate burrows used by many other species 
(Guyer and Bailey  1993  ) . Flagship species are species that attract public support 
and may promote conservation of associated species, even though this may not be 
an explicit conservation goal in fl agship species management (Simberloff  1998  ) . 
Umbrella species require large habitat patches, so their conservation explicitly pro-
tects many other species in those large areas (Noss  1990  ) . Landscape species resem-
ble umbrella species in requiring large areas, but also require a specifi c habitat 
composition (Sanderson et al.  2002  ) . Because the SAMBI area has so many differ-
ent conservation goals (e.g., restoring rare species, increasing populations of hunted 

  Fig. 6.1    The study region in the Southeastern United States included coastal plain regions of 
Virginia, North Carolina, South Carolina, Georgia, and Florida       
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species, preserving common species), we did not want to restrict experts to any one 
type of focal species. Using multiple focal species reduces the risk of missing 
endemic or range-restricted species when planning reserves (Lambeck  1997 ; Hess 
and King  2002  )  and explicitly includes species with substantial public interest or 
conservation resources. 

 Using focal species to guide conservation efforts has been criticized. Andelman 
and Fagan  (  2000  )  showed that selecting focal species using a range of criteria did 
not improve protection of the greatest number of species at a minimum number of 
sites than randomly chosen species. The effectiveness of focal species also varies 
with the taxa that are selected (Roberge and Angelstam  2004  ) . For instance, basing 
conservation areas on birds did not protect butterfl ies (Fleishman et al.  2001  ) , nor 
did protecting large mammals protect smaller mammals (Caro  2001  ) . However, 
focal species can be effective in more limited situations; for example, protecting 
focal butterfl ies protected other butterfl ies and protecting focal birds protected other 
birds (Fleishman et al.  2001  ) . Since our objective was to use avian focal species to 
represent other birds, rather than overall biodiversity, the focal species approach 
was appropriate for our purposes. 

 Although focal species are commonly used for conservation planning, selecting 
them based on expert knowledge is less common.    For the Bolivian Andes and the 
Republic of the Congo, Coppolillo et al.  (  2004  )  selected landscape species for 
conservation planning. They selected 4–6 large vertebrate species at each site to 
represent the habitat requirements, threat sensitivity, and ecological function of 
other species, and their importance to humans. At both locations, experts identifi ed 
potential focal species, scored each species using the above-mentioned criteria, and 
selected the fi nal suite of focal species. These experts were fi eld biologists, manag-
ers, and people who knew the species or area; they scored species using (in order) 
published and unpublished literature and their own knowledge. Although Coppolillo 
et al.  (  2004  )  used experts to select these species, they reported insuffi cient detail to 
guide other researchers interested in using experts to support conservation efforts. 
For example, they did not discuss the extent to which the experts resorted to non-
literature information sources nor did they detail how they elicited information from 
the experts.  

    6.4   Elicitation of Focal Species 

 For our purposes, we wanted a species suite that would represent all habitat types 
defi ned by the SAMBI Plan (Watson and Malloy  2006  ) , including species with large 
area requirements and species requiring management. Our initial list of potential 
focal species comprised 65 key species identifi ed in the SAMBI Plan. We subse-
quently used the two processes described in Sect.  6.4.1  to develop lists based on 
expert knowledge using two selection methods. Finally, we validated the two subsets 
of the overall list against the original list of 65 species. 
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    6.4.1   Two Approaches 

 To select focal species, we used Lambeck’s  (  1997  )  selection process and a method 
rooted in structured decision making (SDM). The former method has been used to 
select focal species (e.g., Roberge and Angelstam  2004  ) ; the latter was a modifi ca-
tion of Gregory and Keeney’s  (  2002  )  decision-making process. We designed our 
elicitation process to work with the SDM method but added the Lambeck method 
because it refi nes the species selection by focusing on landscape design and 
management rather than expert elicitation. 

 Lambeck  (  1997  )  modifi ed the umbrella species concept by systematically select-
ing species based on their threat category, with an emphasis on protecting the most 
sensitive species (Roberge and Angelstam  2004  ) . For example, connectivity should 
support species with restricted dispersal ability, and patch size should sustain spe-
cies with large area requirements. This method used empirical data from published 
literature and fi eld research rather than expert opinion. Rather than eliciting quanti-
tative data from experts during the Lambeck analysis, we modifi ed the method to 
accept qualitative expert data. We believed this would help experts reach a consen-
sus more quickly and maximize participation by experts who lacked confi dence in 
their ability to provide precise data. 

 Gregory and Keeney  (  2002  )  have broad experience in decision analysis and have 
used their SDM methods to defi ne and solve resource management issues. SDM, 
unlike the Lambeck method, helps stakeholders to make decisions, and we modifi ed 
the process to use expert opinion. SDM comprises a fi ve-step procedure for solving 
problems: state the problem, establish objectives that can be evaluated, design alter-
native solutions, evaluate each alternative’s consequences, and assess trade-offs 
before reaching a decision. Although SDM can help individuals to reach a decision, 
it is especially useful for groups. 

 In our modifi ed SDM process, we used habitat characteristics as objectives and 
potential focal species as alternatives based on their association with each habitat 
characteristic. Experts prepared an alternatives table that rated each species 
according to the strength of its linkage with each characteristic. As experts char-
acterized habitat needs, similarities emerged among species. High similarity 
between the habitat requirements of two species justifi ed removal of the species 
of lower conservation or management concern from the species list. The species 
list was reduced using criteria that will be used to manage the conservation sys-
tem (Wiens et al.  2008  ) ; in the SAMBI project, this will be through habitat acqui-
sition (coarse scale) and enhancement (medium scale), so we emphasized 
similarities among coarse- and medium-scale habitat characteristics. The level of 
spatial detail is an important aspect of the present exercise, since habitat planning 
and management will be based on remote-sensing data (satellite photos used to 
provide land-use and vegetation type data) stored in the geographical information 
system software that will be used in a subsequent stage of this project to develop 
landscape models.  
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    6.4.2   Expert Selection 

 The Atlantic Coast Joint Venture, a partnership of governmental and non-governmental 
organizations that strives to provide healthy ecosystems to support healthy avian 
populations across jurisdictions, organized the SAMBI project. Working through 
the Joint Venture gave us access to many experts. We limited participation to experts 
associated with SAMBI but did not limit their number. We wanted the largest group 
possible because no individual understands all potential focal species (Teck et al. 
 2010  ) , and broad participation reduces the bias caused by extreme views (Low-
Choy et al.  2009 ; Chap.   2    ). We invited all SAMBI members, including biologists 
and managers, from the Joint Venture team. Of 278 invitees, 53 attended elicitation 
meetings. During follow-up surveys, we again invited all SAMBI members; of those 
who attended the elicitation meetings, 16 participated in a conference call and 15 
completed at least part of the survey. 

 Experts included representatives from state and federal government agencies in 
Virginia, North Carolina, South Carolina, Georgia, and Florida; non-governmental 
organizations included The Nature Conservancy, Ducks Unlimited, Audubon Society 
state chapters, the Tall Timbers Research Station, the North Carolina Museum of 
Natural Sciences, the University of Florida, and the University of Georgia. 

 Our initial list included 65 potential focal species identifi ed in the SAMBI 
Conservation Plan (Watson and Malloy  2006  ) . We wanted experts to consider 
the species associated with particular habitat characteristics (Table  6.1 ). Large 
scale species–habitat associations were found in the literature (Hamel  1992  ) , 
but medium-scale details of habitat preferences were diffi cult to determine. We 
felt that experts who study or work with a species would know this information, 
even if they did not publish it. Our preliminary work with the experts suggested 
that certain habitat characteristics extended across habitats and could be consid-
ered apart from the larger habitat types. For instance, bare ground is found in 
both grasslands and wetlands, and closed canopies are found in both deciduous 
and mixed forests. We presented the species list alphabetically to avoid biasing 
expert responses.   

    6.4.3   Focal Species Identifi cation Meetings 

 From August to November 2008 we held 2-day meetings in each state. The fi rst day 
introduced the SDM process and summarized the project; during the afternoon, we 
began species selection. During the selection process, we divided experts into four 
groups based on their stated area of knowledge or comfort: waterfowl (e.g., ducks, 
geese, and swans), land birds, waterbirds (e.g., herons, rails, gulls, and terns), and 
shorebirds (e.g., sandpipers and plovers). We generally had more waterfowl experts 
than other types, but we also had several land bird experts. We usually combined 



116 A.T. Moody and J.B. Grand

shorebird and waterbird experts because so few were present. At the Georgia meeting, 
only one individual had shorebird and waterbird expertise, but North Carolina and 
Florida had numerous experts in this category. 

 On the second day, we reviewed the previous day’s work and discussed land-
scape design issues. To encourage discussion, we started with simple examples. For 
example, we picked a bird with well-known, well-defi ned habitat preferences and 

   Table 6.1    Characteristics of    the habitats used to inform the selection of focal species and to defi ne 
key functional characteristics   
 Habitat class  Characteristics  Comments 

 Hydrological  coastal  Use areas adjacent to coast, 
not necessarily marine habitat 

 Water type 
 Water depth 
 Salinity 
 Presence of submerged 

aquatic vegetation 
 Aquatic macroinvertebrates 
 Turbidity 
 Flooding  Includes both seasonal and tidal fl ooding 
 High-energy shore 
 Low-energy shore 

 Disturbance  Any 
 High fi re frequency  Every 3–5 years 
 Growing season fi res 

 Vegetation  Canopy cover 
 Mid-story 
 Understory 
 Low basal area  Basal area <50 ft 2  acre −1  
 Old or mature trees  Individual trees, required for nesting 

or foraging 
 Mature forest 
 Bare ground 

 Other  Patch size 
 Social aggregation  Individuals or pairs associate 

with others with or without overlap 
 Large forest patch  Requires a large patch 

of contiguous forest 
 Elevation 
 Urban avoidance 
 Edges  Between habitat types or between 

land and water 
 Large home range 
 Invasive species 
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asked experts to review that example. We knew some experts personally and could 
direct questions to an appropriate expert. Facilitators answered questions and clarifi ed 
characteristics during meetings to reduce bias due to imprecise language (Kuhnert 
et al.  2010  ) . To elicit information, we asked experts to identify important habitat 
characteristics for the SAMBI priority species (Watson and Malloy  2006  ) . At the 
fi rst meeting, we did not initially present the species–habitat association tables 
because creating an alternatives table without preconceptions is a key step in the 
SDM process (Gregory and Keeney  2002  ) . However, this made the process unwork-
ably slow because experts wanted to assign the species to habitats rather than to 
habitat characteristics, so we subsequently presented our prepared tables and were 
much more successful at focusing experts on the process. For subsequent meetings, 
we started with matrices of potential focal species and habitat characteristics. We 
asked each expert to identify and score the habitat characteristics required for each 
potential focal species in their group (Table  6.2 ). Their scoring choices ranged from 
1 (benefi cial or preferred) to 5 (detrimental or avoided). Experts could also report 
insuffi cient information or that the relationship was neutral by not scoring the spe-
cies. We also let experts answer in more detail, for example, to describe a relation-
ship where the species preferred a moderate level of a habitat characteristic but 
avoided either extreme. For each species, we also asked the experts to note whether 
the species were umbrella, fl agship, biodiversity indicator, keystone, and habitat or 
dietary specialist or generalist. We did not provide access to published data (e.g., 
fi eld guides, species accounts and Internet searches), so they answered based on 
their own knowledge or experience.  

 Experts were comfortable with the scoring system except when we did not clar-
ify the direction of the scoring. For example, the “depth of water” characteristic was 
confusing because we did not specify whether this meant shallow or deep water. 
When opinions differed about species preferences for deep versus shallow water, 
the results were ambiguous. When experts revealed this problem, we asked them to 
add a brief description after their score to indicate how they interpreted the scale so 
we understood their intent when we compiled our data. Subsequently, we provided 
defi nitions so that all experts used the same scoring criteria. 

 During our elicitation meetings, experts were given equal weight and group 
members worked to achieve consensus. Because we held meetings in each state, 
experts tended to know each other. This made it possible that professional rela-
tionships infl uenced their answers (Gregory and Keeney  2002  ) , such as when 
someone deferred to a superior in their organization, so the answers may have 
been biased towards the opinions of the most senior experts. We did not address 
this source of bias because we assumed that the most senior experts had the most 
experience and knowledge and that this therefore provided an acceptable, if 
unmeasured, weighting. 

 After experts completed the exercise, we compiled their answers and presented 
them to the whole group the next day. We did not prevent them from commenting 
on the results from other groups. During this stage of the process, we did not need 
a high level of individual participation because the smaller groups had already 
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reached a consensus before sharing their results with the full group. A few experts 
sometimes monopolized the discussion, which may have introduced bias (Kuhnert 
et al.  2010  ) . When this happened, we asked the original group to confi rm whether 
their results should be modifi ed. When group members had different opinions, we 
recorded all answers rather than forcing an artifi cial consensus. 

 The initial set of meetings provided a framework for selecting potential focal 
species and modeling the habitat confi guration. For both selection methods 
(Lambeck and SDM), we used the same data tables, but we used different processes 
to create the focal species lists (Fig.  6.2 ). For each species and each corresponding 
habitat characteristic, we created an overall score by combining the scores from all 
states. We used the majority score unless there was a disagreement (a characteristic 
was said to be both avoided and preferred by a species), in which case we kept 
the range of scores.   

  Fig. 6.2    The process we used to create the list of focal species based on an elicitation of expert 
knowledge using two selection methods       
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    6.4.4   Analysis of the Elicited Data Using the Lambeck Method 

 We used Lambeck’s  (  1997  )  process to create a list of the potential focal species 
(Fig.  6.3a ). To begin the Lambeck process, we reduced the length of the expert-
elicited list by excluding species that had secure populations, abundant game species, 
and species identifi ed as being of moderate concern (thus, low priority) in the 
SAMBI Plan. If there was any uncertainty, we retained a species. In the next step, 
we subdivided the remaining species based on differences in pattern and process; 
that is, we distinguished species that required habitat reconstruction from those that 
could live in existing habitat with appropriate management. Reconstruction-limited 
species required changes to the landscape pattern, such as creating additional habi-
tat patches, improving connectivity between patches, or creating larger habitat 
patches (Lambeck  1997  ) . Management-limited species are sensitive to the rate or 
intensity of landscape processes, such as fi re frequency or grazing intensity 
(Lambeck  1997  ) . We did not make these categories mutually exclusive because 
some species may currently lack adequate habitat and their habitat may require 
management once it has been established.  

 Among the reconstruction-limited species, we defi ned three subcategories based 
on the expert scores: area-limited species required a large patch size, and resource-
limited species had preferred or required habitat characteristics that could not be 
detected by remote sensing. For example, several duck species rely on submerged 
aquatic vegetation and other species require dead standing trees for nesting, but cur-
rently these habitat characteristics cannot be mapped using remote sensing. The 
third subdivision was dispersal-limited species. However, experts concurred that 
this was not a limiting factor for the priority species in the SAMBI area. 

 We defi ned management-limited species as any species that scored “benefi cial” 
or “preferred” for any of the disturbance categories, as well as any species that 
required human-based management, including several duck species that relied on 
managed wetlands for their winter habitat. 

 In the fi nal step, Lambeck  (  1997  )  suggests that for each habitat, one should 
select the  most  limited species for each pattern and process and design the land-
scape based on the needs of those species. For example, the species with the largest 
area requirement would defi ne the minimum patch size, the species with the short-
est dispersal distance would defi ne the maximum distance between patches, and 
the species most sensitive to disturbance would defi ne the management protocol. 
We chose not to take this step because we wanted to retain the largest possible list 
for the experts to evaluate.  

    6.4.5   Analysis of the Elicited Data Using the SDM Method 

 To select the focal species using SDM, we used fi ve habitat characteristics scored 
by the experts that could be estimated from landscape-level data: proximity to coast, 
water type, water depth, forest type, and canopy (Table  6.2 ; Fig.  6.3b ). For example, 
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  Fig. 6.3    We used two different processes to select focal species using the results of our elicitation 
of expert opinion. ( a ) A process based on that of Lambeck  (  1997  ) . ( b ) A process based on SDM. 
Species common names are those designated in American Ornithologists’ Union  (  1998  )          
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some species prefer coastal areas, some avoid coastal areas, and some have no 
preference. Among those that preferred coastal areas, we further subdivided species 
according to their preferred habitat types such as intertidal beach, coastal marshes, 
and shallow areas. We subdivided birds that avoided coastal areas but which still 
required open water or wetland habitats, into birds that preferred shallow water and 
those that had no preference regarding water depth. Birds exhibiting no preference 
in their use of coastal and non-coastal areas were subdivided into those that used 
riparian areas, avoided riparian areas, used emergent marshes, or preferred shallow 
water. Forest-associated species were divided by the type of forest they preferred 
and then into those that preferred closed and open canopy. Finally, some birds 
preferred open habitats. 

 After grouping birds based on these associations, we selected one species as the 
representative focal species. We generally picked species with the most complete 
habitat associations. For example, we selected the American Oystercatcher as a 
focal species associated with shallow water along beaches. Species with similar 
requirements included the Piping Plover, the Red Knot, the Whimbrel, the Least 
Tern, and the Black Skimmer.  

    6.4.6   Results: A List of Focal Species to Support Conservation 
Planning in the SAMBI Region 

 The focal species selected using the SDM and Lambeck methods included 35 of 
the initial 65 species, with 11 species common to both lists (Fig.  6.3 ). The SDM 
method selected ten species that were not chosen using the Lambeck method, and 
the Lambeck method selected 14 species that were not chosen using SDM. 

 To create a list of species that would be validated (see Sect.  6.4.7 ) and used to 
develop the decision-support tool, we used species common to both lists, all selected 
land birds that appeared in both lists, and waterbirds, waterfowl, and shorebirds that 
appeared in the SDM list. We excluded the Lambeck list from the latter group 
because the experts agreed that waterfowl, waterbird, and shorebird habitat tended 
to overlap at the level of the data we used, and the SDM method let us assess where 
habitat overlaps were likely to occur; it was therefore a better list for our purposes. 
We retained all land birds because we had no reason to prefer either selection 
method.  

    6.4.7   Validation Through Online Surveys 

 To validate the list of focal species described in Sect.  6.4.6 , we created a follow-
up survey using online survey software. We began our online surveys by informing 
the experts that our list required revision, and engaging the experts in this way let 
them criticize more freely. The online survey included supporting documentation 
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and was introduced to respondents during a conference call. We asked the experts to 
review and rank the selected focal species and to add or remove species as neces-
sary. We provided criteria for evaluating whether a species was a suitable focal 
species. The focal species could meet more than one of the following criteria: 
representative of other species, well-known biology, easily sampled or observed, 
sensitive to disturbance, umbrella species, fl agship species, habitat specialist, dietary 
specialist, or keystone species (Caro and O’Doherty  1999  ) . Our questionnaire 
listed species associated with each habitat type in the SAMBI Plan (Watson and 
Malloy  2006  ) , with focal species highlighted, although we did not state the selection 
method used to select them. The participants scored the suitability of each species 
as a focal species using ranks ranging from 1 (very poorly) to 5 (very well); they 
could also respond that they had insuffi cient personal knowledge to rank the species. 

 The scoring process let us create a “focal species value” and a measure of uncer-
tainty that we used to assign species weights in the landscape model (Table  6.3 ). 
The mean score provided a measure of the relative value of each focal species and 
the variation in scores provided us with a measure of uncertainty. For example, if all 
participants assigned a score of 4 to a species, we were confi dent that the species 
was a good focal species. In contrast, we had less confi dence if participants assigned 
an equal number of 3s, 4s, and 5s. For example, experts differed in their opinions of 
the Black-Throated Green Warbler as a focal species for alluvial forested wetlands: 
4 of 12 experts thought it was a good or very good focal species. In contrast, 12 of 
13 experts scored the Prothonotary Warbler, which was not included in our focal 
species list, as a good or very good focal species; the other expert declared insuffi -
cient personal knowledge. We did not remove any species from the focal species list 
based on the online validation, but we did add 11 species (Table  6.2 ) to our land-
scape model based on the expert scores.    

    6.5   Discussion 

 Neither selection method produced a list that we considered entirely suitable for 
conservation planning. Each method selected at least one species per habitat 
included in the SAMBI Plan, but the online validation survey included several spe-
cies that were not included by either method and several that were not suitable focal 
species. For example, experts gave Bachman’s Sparrow, the Cerulean Warbler, the 
Redhead, the Canvasback, and the Sandhill Crane an average focal species value 
less than 2 (poor). However, the Redhead and the Canvasback were added to the 
initial focal species list because they were resource-limited species according to 
Lambeck’s  (  1997  )  defi nition. When re-evaluating the species, experts may have 
reduced the value of these species because we did not indicate that resource limita-
tion was a criterion. Species values may also have decreased if they were uncom-
mon in the study region, such as the Cerulean Warbler (Hamel  2000  )  and the 
Sandhill Crane (Tacha et al.  1992  ) , or if they only overwintered in the region, such 
as the Redhead (Woodin and Michot  2002  )  and the Canvasback (Mowbray  2002  ) . 
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Bachman’s Sparrow had a low value in only one habitat (early successional and 
shrub-scrub) of the three in which it occurs; it had a high value in the other two 
habitats [longleaf pine–slash pine ( Pinus elliotti ) fl atwoods and mature open pine].  

 In our list of potential focal species, we only used species in the SAMBI plan 
(Watson and Malloy  2006  )  that were associated with particular habitats, although 
experts could add species during the meetings. This gave us 65 species, out of a total 
of 172 species rated as being of highest, high, and moderate concern (see Table 1 in 
Watson and Malloy  2006  ) . It was important that the habitats of our focal species 
represent the full suite of habitats used by all species identifi ed in the SAMBI Plan, 
and we believe we accomplished this because the focal species we chose cover all 
habitats in the SAMBI Plan. 

 There may be concerns about the repeatability of our selection process because 
we asked experts to score bird–habitat associations without referring to published 
materials. We made this choice rather than using references to complete the tables 
ourselves because elicitation of knowledge not found in the published literature was 
a key goal of the process (Pierce et al.  2005 ; Pressey and Bottrill  2009  ) . A different 
set of experts may provide different knowledge, thereby limiting the repeatability of 
the results. However, using a large group of experts and limiting answers to a discrete 
qualitative scale improved the reliability of the process. Using a simple scoring 
process likely also improved the ability to reach consensus. For example, asking 
experts to quantify canopy heterogeneity would produce a wide array of values, but 
similar focal species would be selected as long as there was general agreement on the 
direction and strength of the relationship between habitat quality and factors such as 
canopy heterogeneity. Insisting on consensus can eliminate potentially important 
differences of opinion among experts, but it was appropriate for our project. Grouping 
the experts (e.g., land versus water birds) probably increased the repeatability of our 
results by eliminating outlier answers that would arise when experts speculated about 
species–habitat combinations they were not truly familiar with. 

 Although neither the Lambeck method (Lambeck  1997  )  nor the SDM method 
was ideal for selecting a suite of focal species, combining expert opinion with these 
processes had benefi ts for selecting focal species. Both methods provided an initial 
list of species we could subsequently ask the experts to validate. Many expert 
knowledge studies have not included detailed information about their process (e.g., 
Coppolillo et al.  2004  ) . We hope that our experience will help others who are 
considering a focal species approach based on expert elicitation. To improve such a 
process, we suggest the following. 

    6.5.1   Quantitative Versus Qualitative Data 

 Qualitative data is easier to explain to experts and does not require extensive ana-
lytical knowledge (Low-Choy et al.  2009 ; Chap.   2    ). Requesting qualitative rather 
than quantitative data probably increased our response rate because more experts 
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would have felt suffi ciently confi dent to participate, and this also decreased the time 
it took us to collect and review the data. Eliciting quantitative data would have pro-
vided more detailed data, but our project did not require such detailed information. 
However, care should be taken to ensure that questions are well defi ned. Pre-
validation of the survey in a practice session with qualifi ed people who will not be 
part of the fi nal expert group is recommended.  

    6.5.2   Visualizing the Data 

 Flow diagrams (Lambeck  1997  )  and infl uence diagrams (McCann et al.  2006  )  are 
commonly used to visualize data. However, it would have been diffi cult and time-
consuming to identify focal species by developing such tools during the meetings. 
Asking experts to complete tables of species–habitat associations provided infor-
mation about a large number of species (65) and habitats in a short period of time 
(2 days). Without this approach, gathering the expert data would have taken much 
longer. We do not believe that infl uence diagrams would have been useful, since 
they are typically used to characterize beliefs based on the relationships among 
system states and objectives, and we lacked suffi cient information to characterize 
all those relationships. By focusing experts on entering data in tables, we reduced 
variability and increased consensus. Although we wanted consensus answers, that 
may not be appropriate for projects with different goals. 

 Although we could have used infl uence diagrams or fl owcharts developed prior 
to the meetings, we wanted the experts to guide the process rather than reacting to 
tools that we presented. Using unfamiliar visualization tools would have required 
the experts to understand our process for diagramming the important relationships.  

    6.5.3   Online Surveys 

 When time or money is limited, online surveys can rapidly and inexpensively collect 
data from experts. However, if reaching a consensus among experts is an objective, 
as it was for us, this would be diffi cult to accomplish using an online survey. The 
individual, anonymous nature of online surveys facilitates gathering of independent 
ideas and avoids “groupthink,” which results from inappropriate group cohesion 
(Janis  1972  ) , but eliminates the dialogue required to seek consensus. Online surveys 
facilitate quantifying values and related uncertainty even with qualitative scoring 
systems, but require relatively large numbers of participants. 

 We found the online survey program SurveyMonkey economical, easy to use and 
suffi ciently fl exible to structure our questions effectively, but it seemed designed for 
simpler surveys and smaller groups of respondents. If online surveys will be used to 
gather data from experts, their design should be modifi ed so they will be more suitable 
for this type of research.  
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    6.5.4   Implementing the Results 

 Using experts in our planning process fi lled data gaps in the published literature, 
ensured that we had appropriately defi ned the problems and objectives (e.g., popu-
lation goals versus specifi c management actions), and will increase user confi dence 
in our fi nal products (Cowling and Pressey  2003 ; Younge and Fowkes  2003  ) . The 
list of focal species that we developed will be used to prioritize areas for bird 
conservation in the SAMBI area. However, the Southeastern United States is home 
to many other at-risk species, including amphibians, reptiles, and mammals (Van 
Lear et al.  2005  ) , that were not included in our planning process. The selection 
process described in this chapter can be extended to include these species, and 
expert opinion may be even more valuable because so little published information 
is available about some of these species.       
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    7.1   Introduction 

 Ungulates are a valuable natural resource due to their contribution to biodiversity 
(Ray  2005  )  and to their value as game animals for aboriginal peoples, guide out-
fi tters, and hunters. For the past decade in British Columbia (BC), forest practices 
have been regulated to conserve the wildlife range that provides for the overwin-
ter survival of ungulates. For the purposes of the regulations (  http://www.env.gov.
bc.ca/wld/frpa/uwr/    ), ungulates include moose ( Alces alces ), mule (or black-
tailed) deer ( Odocoileus hemionus ), white-tailed deer ( Odocoileus virginiana ), 
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elk ( Cervus elaphus ), caribou ( Rangifer tarandus ), Stone sheep ( Ovis dalli sto-
nei ), Dall sheep ( Ovis dalli dalli ), bighorn sheep ( Ovis canadensis ), and mountain 
goats ( Oreamnos americanus ). Wildlife range has also been regulated in BC to 
conserve areas used during other seasons by wildlife  species considered by the 
BC government to be at risk of local extinction. 

 Woodland caribou ( Rangifer tarandus caribou ; hereafter, “caribou”) throughout 
Canada have undergone a history of range reduction (de Vos and Peterson  1951 ; 
Spalding  2000 ; Thomas and Gray  2002  ) , and populations in many herds are cur-
rently in decline (Rettie and Messier  1998 ; Schaefer et al.  1999 ; McLoughlin et al. 
 2003 ; Wittmer et al.  2005  ) . The BC government considers caribou to be at risk 
(  http://www.env.gov.bc.ca/atrisk/    ), therefore the BC conservation measures apply 
to caribou winter ranges as well as to their other seasonal ranges. Caribou have 
dynamic range requirements due to their broad distribution (the species is poten-
tially found in as much as 30 million ha in BC alone), and wildlife managers lack 
the tools and specifi c understanding of how to manage for that set of dynamic 
requirements, let alone how to manage landscapes to assist the recovery of declin-
ing populations. Common responses to such uncertainty have included deferral of 
decisions, implementation of long-term research programs, development of strate-
gic plans, and participation in a variety of management debates (Thomas  1985  ) . 
These responses essentially delay or preclude effective management actions by 
consuming an enormous amount of time and resources. 

 In 2004, to eliminate this ineffi cient use of resources and to provide the informa-
tion required to implement effective conservation regulations, the BC government 
produced legally binding, expert-based management guidelines for the amount, 
distribution, and attributes of the range required by each ungulate species in the 
province, including caribou. Managers were instructed to implement the interim 
guidelines until areas could be legally designated as Ungulate Winter Ranges 
(UWRs) or Wildlife Habitat Areas and until specifi c management actions for these 
designated areas could be provided. In 2005, the BC government also brought 
together a science team to provide expert technical advice specifi cally on how to 
promote the recovery of caribou in the southern portion of their range. Although 
such expert opinion may at times lack complete empirical scientifi c support, the 
implementation of guidelines based on expert advice may be justifi ed because the 
potential consequence of inaction can be local extinction of a species (Hebblewhite 
et al.  2010  ) . Hebblewhite et al.  (  2010  )  suggested that taking some action, even if it 
is based only on interim study results (e.g., expert-based information), could benefi t 
the species and possibly lead to effective management. 

 In north-central BC, managers have used scenario modeling (Daum  2001  ) , 
expert-based information, management simulations, and empirical testing to provide 
insights into the probability that woodland caribou, mountain goats, and mule deer 
will occupy a given range. This probabilistic approach was used to inform strategic 
decisions about recovery planning for woodland caribou and the formal operational 
identifi cation of UWRs for all three species, and to provide a transparent framework 
for adaptation of current management regimes and tools for monitoring the effec-
tiveness of the new management regimes. Using woodland caribou in north-central 
BC as a case study, my objectives in this chapter were to demonstrate the use of 
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expert-based information at strategic and operational levels of management, and to 
reveal why the expert-based approach can help to resolve complex and important 
ecological problems.  

    7.2   Ecological and Management Context 

 My case study focused on threatened caribou herds that range over 3.7 million ha in 
north-central BC, and specifi cally the Chase (~550 animals), Wolverine (~375 
animals), Takla (~125 animals), and Scott (~50 animals) herds (Giguère and McNay 
 2007 ; Wilson et al.  2004 ; Wildlife Infometrics, Inc., Mackenzie, BC, unpubl. data). 
Caribou in the area generally use lodgepole pine ( Pinus contorta ) forests at mid- to 
low-elevations (700–1,300 m asl) during the fall and early winter, and use alpine 
and subalpine areas (>1,300 m asl) during the late winter, spring, and summer (Terry 
and Wood  1999 ; Wood and Terry  1999 ; Johnson  2000 ; Poole et al.  2000  ) . Except 
during the spring, their diet consists primarily of terrestrial forage lichens ( Cladina 
mitis ,  Cladina rangiferina ,  Cladina arbuscula  ssp.  beringiana ,  Cladonia uncialis , 
and  Cladonia ecmocyna ), with an increased use of arboreal forage lichens ( Bryoria  
spp.) during the late winter (Johnson et al.  2000  ) . Because the early-winter range is 
located on relatively fl at terrain at low elevations, it is at risk of signifi cant anthro-
pogenic disturbance; for example, extensive industrial development began in the 
study area after construction of the W.A.C. Bennett hydroelectric dam in 1961. 
Caribou also experience predation risk throughout their range, and predation is the 
most proximate factor in the general decline of caribou in BC (Seip  1992 ; Wittmer 
et al.  2005 ; Bergerud  2007  ) . Landscape change as a result of anthropogenic distur-
bance is considered to be the ultimate cause of the decline in caribou populations 
through the resulting alteration of the relationships between predators and their prey 
(Golder Associates  2010  ) . 

 The tendency for caribou to frequent high-elevation range, dispersed to create a 
low population density, is a common tactic for avoiding predators (Bergerud et al. 
 1984 , 1992; Bergerud  1992  ) , which in the study area are mostly wolves ( Canis 
lupus ). Aboriginal people have reported seasonal use of the area by wolves, but also 
described an increase in wolf abundance and a more persistent presence following 
the fi rst appearance of moose in the early 1920s (McKay  1997  ) . Other predators of 
caribou in this area include grizzly bear ( Ursus arctos horribilis ), black bear ( Ursus 
americanus ), and wolverine ( Gulo gulo ). The BC government considers the impact 
on caribou populations caused by hunting to be minor. 

 Although the Committee on the Status of Endangered Wildlife in Canada 
considered the herds in this case study to be at risk of a population decline 
(COSEWIC  2002  ) , the BC Government did not consider the herds to be a priority 
for recovery planning. Strategic objectives to conserve caribou range were described 
in local land use plans (BCMSR  1999,   2000  ) , but there was no legal authority 
provided to implement any management consistent with the strategic objectives. In 
2003, an  ad hoc  caribou Recovery Implementation Group (RIG) initiated a “grass 
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roots” agenda to provide the BC government with the information required to 
develop a recovery plan for caribou in the area (McNay et al.  2008a  ) . Specifi c infor-
mation about the RIG’s function, including its meeting agendas and minutes, is 
available at the Recovery Initiatives Web site (  http://www.centralbccaribou.ca    ).  

    7.3   Gathering and Formalizing Information 

 The RIG members chose a modeling approach to make spatially explicit predictions 
about the quality of seasonal ranges for caribou, using existing environmental con-
ditions as well as those that would presumably occur under a variety of hypothetical 
simulated landscape disturbance scenarios. The scenarios were based on the distur-
bances expected to be caused by land management or by natural, unmanaged distur-
bances such as wildfi re (McNay et al.  2006  ) . The intent was to compare the results 
of the disturbance scenarios as a way to inform RIG members about the potential 
utility of alternative management regimes. However, no model of caribou seasonal 
ranges existed at that time, and although information was available from previous 
research, RIG members recognized the limitations of the information and the lengthy 
and costly research process that would be required to address those limitations. As an 
alternative to inaction while awaiting this research, the RIG members chose to 
develop an interim model and address its data limitations by eliciting information 
from knowledgeable professionals (hereafter, “experts”). 

    7.3.1   Identifying Experts and Eliciting Their Knowledge 

 The RIG hosted professionally facilitated, 1- to 2-day workshops approximately 
every 2 months from January 2000 to January 2003 to gather and formalize infor-
mation about caribou and their range requirements. Professional facilitation was 
deemed necessary by the RIG to effectively elicit information from the experts and 
to move the discussion as effi ciently as possible through the initial steps of develop-
ing a model. Experts in relevant domains (e.g., ecosystem mapping, population 
dynamics, lichen ecology, climate, and land management) were chosen by RIG 
members based on their reputation and their ability to support the model develop-
ment process. Some experts had primary roles in research projects that had been 
conducted on caribou herds in the study area or in adjacent areas. Other experts, 
although knowledgeable about their domains, knew relatively little about caribou or 
caribou habitat. 

 Once selected, experts became members of the RIG and attended each work-
shop, except when there was a need for unique or specifi c information that was not 
central to developing the model (e.g., provincial timber-supply modeling). 
Workshops were usually attended by 10–15 members, including 1 facilitator, 3 
modelers, and 6–11 domain specialists or experts. There was no specifi c intent to 
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balance specifi c affi liations or types of professional endeavor (e.g., academia versus 
government or consultants), but groups with a vested interest (i.e., government and 
industry) tended to have the strongest representation. 

 The elicitation of information followed a series of steps that began with the 
defi nition of seasonal range types. Within each seasonal range, the group then iden-
tifi ed the most important life requisites that should be represented by the model and 
the ecological or biophysical factors (e.g., environmental conditions) most likely to 
be functionally related to these life requisites. The relationships among the life 
requisites were then depicted as “infl uence diagrams”. The modeling team distin-
guished between environmental conditions that would or would not be changed by 
management in order to address the eventual need for simulating landscape distur-
bance. The conditions that would be changed were then termed “management 
levers.” The elicited information was summarized and reviewed as each meeting 
progressed. When a difference in opinion arose among the experts, it was resolved 
by discussion leading to a consensus, guided by the facilitator; all fi nal results were 
recorded in the meeting minutes for review by workshop participants subsequent to 
the meeting. 

 The resulting infl uence diagrams were then represented as Bayesian belief 
networks (BBNs; Cain  2001 ; Chap.   5    ), which were developed by a three-person 
modeling team and prepared for presentation to the RIG members at the next work-
shop. This approach was chosen to maximize the effi ciency of the consultation time 
with experts during the RIG meetings. BBNs can be used to derive and visualize 
predicted responses (i.e., model outputs) based on information on the infl uence of 
environmental conditions (i.e., the model inputs). The nodes of BBNs are linked by 
conditional probability tables. Marcot et al.  (  2006  )  provided a detailed description 
of the use of BBNs in ecology. The specifi c probabilistic nature of each of the iden-
tifi ed ecological relationships was elicited from the experts as another step in the 
model development process. Although it was possible for RIG members to misrep-
resent probabilistic relationships, and for the modeling team to misrepresent expert 
knowledge (Kuhnert and Hayes  2009  ) , these potential errors were usually avoided 
by following specifi c guiding principles. These principles were developed by Bruce 
Marcot, and eventually become the basis for a journal paper (Marcot et al.  2006  ) . 
Errors that were identifi ed by the modeling team were corrected through subsequent 
consultation with the experts.  

    7.3.2   Ecological Relationships 

 McNay et al.  (  2002,   2006,   2008a  )  summarize the specifi c ecological relationships 
and associated conditional probabilities that resulted from this process. The BBNs 
covered the following seasonal-range combinations: high-elevation winter, pine-
lichen winter, calving and summer, post-rut, and migration. Each range prediction 
was modifi ed by accounting for a BBN based on predation risk. BBN outputs were 
expressed as the expected probability of occupancy of a site by caribou, which was 
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subsequently classed for convenience into three states: low (0.00–0.33), moderate 
(0.34–0.66), or high (0.67–1.00). The modeling team felt that this summary would 
be easy for experts to understand and use to judge the fi t of the model results to their 
expectations. The modeling team used equidistant division points among the classes 
because the experts were unable to provide a better alternative. Maps of the classifi ed 
ranges were used by the modeling team to demonstrate the BBN results to the RIG 
members. Although it was possible to derive a measure of uncertainty in the model 
output, model developers did not provide this information, mostly due to perceived 
time constraints and real funding constraints.  

    7.3.3   Ecological Stressors 

 The RIG facilitator elicited information from experts and other RIG members 
regarding the stressors expected to alter environmental conditions and thereby 
change the probability of range use by caribou. Although the stressors were generally 
well documented in the scientifi c literature, their perceived importance and degree 
of interaction varied because their relative strength is still being debated. The work 
on stressors therefore tended to be a confi rmation among the experts about their 
relative ranking of the known stressors as applied to the conditions of the study area. 
The debate and conclusions that resulted from this discussion were largely based on 
the published literature, but set within the context of the personal observations of 
the experts. 

 The RIG experts believed that where timber harvesting occurred, the resulting 
early-seral forests would support abundant moose interspersed through the adjacent 
older forest (Franzmann and Schwartz  1998  )  and, in turn, abundant wolves (Messier 
et al.  2004  ) . Compounding the predation risk from increased wolf numbers was the 
development of roads associated with timber harvesting operations, which provide 
wolves with easier travel and potentially increase hunting effi ciency (James and 
Stuart-Smith  2000  ) . The experts assumed that caribou populations would generally 
experience greater mortality in areas where moose are interspersed throughout their 
range (Wittmer et al.  2005  ) ; this source of greater mortality therefore became a 
stressor, which was assessed using a BBN for predation risk. 

 A second stressor was the hydroelectric development in the area. Subsequent 
fl ooding of the Finlay, Peace, and Parsnip Rivers created BC’s largest body of fresh-
water, which experts considered a barrier to caribou migration. This barrier has likely 
contributed to reductions of caribou populations, particularly for the Scott herd. The 
barrier effect of the reservoir was included as a variable in the migration BBN. 

 Timber harvesting and similar disturbances were considered to be a third group 
of stressors through their ecological effect on natural succession of vegetation 
communities, and hence on the abundance of terrestrial forage lichens. Forage 
lichens tend to dominate the understory of pine forests during distinct (but not all) 
stages of natural vegetation succession (Coxson and Marsh  2001  ) . Winter ranges 
were therefore considered to require regular natural (i.e., wildfi re) or managed 
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(e.g., timber harvesting) disturbance to sustain the lichen supply; consequently, 
these disturbances had varying effects on the BBN results for the pine-lichen 
winter range.  

    7.3.4   Management Scenarios 

 Seasonal ranges for caribou were predicted and evaluated using fi ve land-management 
scenarios defi ned by the RIG members:

    1.    The  potential range  was estimated by setting all input nodes to their most favorable 
condition for caribou.  

    2.    The  current range  was estimated by setting the input nodes to use the existing 
environmental conditions.  

    3.    The  managed range  was estimated based on forest management, such as timber 
harvesting and road construction, conducted under rules specifi cally intended to 
conserve caribou range.  

    4.    The  natural unmanaged range without elevated predation  was estimated based 
on assumed natural patterns of wildfi re without accounting for the moose–wolf 
predator–prey system.  

    5.    The  natural unmanaged range with elevated predation  was estimated based on 
the same natural disturbance patterns as in scenario 4, but accounting for the 
moose–wolf predator–prey system.     

 The rules for conservation of caribou range were adopted from the local land-use 
plans (BCMSR  1999,   2000  ) , which stated that 50% of the potential pine-lichen 
winter range should be in a condition usable by caribou at all times. The natural 
disturbance scenarios were based on historical patch sizes and return intervals for 
wildfi re within the study area (Delong  2002  ) . All scenarios were simulated over 
290 years in 10-year time steps using the Spatially Explicit Landscape Event 
Simulator (Fall and Fall  2001  ) , and the natural disturbance scenarios were repeated 
with random start positions to generate a range of results over those conditions. 
These scenarios are described in more detail by Fall  (  2003  ) .  

    7.3.5   Validation and Verifi cation of the Results 

 The modeling team considered  validation  to be an assessment of the model’s imple-
mentation and  verifi cation  to be an assessment of its accuracy. Validation assess-
ments conducted by the modeling team included reviewing the mapped output for 
obvious errors (e.g., missing data, apparent background noise, unnatural boundaries 
between range classifi cations) and manually inspecting data and relationship 
calculations to confi rm that the model inputs at specifi c, random locations led 
correctly to the specifi c output. 
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 Preliminary verifi cation of the model’s performance was limited to a simple 
visual inspection of the mapped seasonal range predictions by the RIG caribou 
experts to verify that classifi ed seasonal range results met with their expectations or 
knowledge of how caribou used their range. Peer reviewers were solicited to review 
the BBN structures and the associated conditional probability tables. The RIG 
members considered this limited verifi cation to be suffi cient for use in strategic 
planning (i.e., development of management actions to promote caribou recovery). 
In contrast, a more formal verifi cation of the model’s results was conducted before 
the results were used in operational planning (i.e., UWR identifi cation). The origi-
nal mapped results were fi rst smoothed to facilitate their application to the landbase. 
An aerial reconnaissance was then conducted to verify the spatial locations of the 
predicted range. Relocations of radio-collared caribou were also used to help assess 
model validity using either a statistical test of range selection (Chesson  1983  )  or a 
simple measure of inclusion (the proportion of animals that used the range). The 
selection test was based on an analysis of winter (1 January to 30 April) relocations 
with the hypothesis that caribou would choose to use modeled ranges in direct 
proportion to their availability (i.e., selection was equivocal). Alternatively, we 
assumed that caribou selected the modeled range if they used the modeled range 
more than expected, and that caribou did not select the modeled range if use was 
less than expected. To assess correspondence to the hypothesis, the modeling team 
also used a confusion matrix (Provost and Kohavi  1998  )  of the selection observa-
tions to calculate standard performance criteria for the model. The proportion of 
inclusion was a simple and less formal measure of the relative proportion of reloca-
tions that could be enclosed by the modeled range while attempting to minimize the 
total amount of range predicted by the model.  

    7.3.6   Interpretation and Use of the Expert-Based Information 

 Following the workshops that were used for model building, the RIG hosted a sec-
ond series of ten professionally facilitated workshops between December 2003 and 
February 2007. The purpose of these workshops was to develop a set of manage-
ment actions intended to promote the recovery of caribou populations using the 
expert-based modeling results. At this stage, new members were added to the RIG 
who had a vested interest in how land management might unfold in the future (e.g., 
First Nations, recreational snowmobilers, guide-outfi tters – “stakeholders” Chap.   1    ). 
As was the case for selecting the experts, the new members were chosen based on 
their reputation for being knowledgeable professionals and their perceived ability to 
support the planning process. The workshops proceeded using the following series 
of steps:

    1.    Confi rm stakeholder dedication to the process and defi ne the extent of the area in 
which recovery would be promoted.  

    2.    Review the available knowledge for each herd, including the modeled range 
predictions.  
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    3.    Determine the general goals to set boundaries on the scope of the recovery 
planning.  

    4.    Confi rm the stressors identifi ed by the previous series of workshops and identify 
potential mitigation measures.  

    5.    Compose a set of specifi c management actions to promote recovery of the 
caribou populations.  

    6.    Establish a basis to review the socioeconomic impacts of the anticipated 
management direction.     

 Each workshop was conducted following a standard protocol, which began with 
a meeting announcement and request for attendance. Agendas were then developed 
and fi nal meeting arrangements were established based on the responses of the 
members. The RIG attempted to have all members attend, and this was usually 
achieved. Maps were used to help RIG members interpret the spatial results of the 
expert-based seasonal range models. Further, without specifi c information on 
seasonal range carrying capacity, the modeling team created a habitat index so RIG 
members could conveniently and consistently compare quantitative model results 
among seasonal ranges. The index, which was calculated by multiplying the amount 
of seasonal range by a seasonal range value weight (SRVW), effectively standard-
ized original model results for each seasonal range based on a constant, hypothetical 
density of caribou that might be expected under conditions of sustainability (McNay 
et al.  2008a  ) . The SRVW was calculated as:  

   = - + + - +2 3SRVW 0.53 0.04RV 0.79RT 0.35RT 0.04RT   ,

where RT is the range type (i.e., pine-lichen winter, post-rut, high-elevation winter, 
or calving and summer) and RV is the range value (i.e., high, medium, or low) pre-
dicted by the BBN. Minutes were recorded by an RIG secretary and salient points 
(e.g., decision points and action items) were recorded by the facilitator. Minutes 
were prepared and sent to RIG members for review.   

    7.4   Results of the Expert-Based Modeling 

 Clear differences were revealed in the results for each herd area by applying the 
expert-based BBNs for the seasonal ranges. For example, whereas the potential for 
calving and summer range exceeded the potential for any other range in all areas, 
the potential for pine-lichen winter range was generally the lowest, though not in all 
herd areas (Fig.  7.1 ). Furthermore, the potential effect of predation risk varied across 
seasonal ranges and areas (Table  7.1 ), and the different scenarios also produced 
results that varied over the forecasted conditions for the simulation period (Fig.  7.2 ). 
In general, the results for seasonal ranges, herd areas, and management scenarios 
successfully provided the RIG members with opportunities to compare the existing 
availability of caribou range to the caribou range that would result from a variety of 
hypothetical forecasted future conditions.     
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  Fig. 7.1    The relative amount of seasonal range (i.e., the habitat index; see Sect.  7.3.6  for a descrip-
tion) modeled for conditions in four caribou herd areas (Chase, Scott, Takla, and Wolverine herds) 
of north-central British Columbia (from McNay et al.  2008a  ) . Predictions were made for hypo-
thetical simulated landscape scenarios representing the potential best conditions for caribou, cur-
rent environmental conditions, and two natural disturbance scenarios (with and without accounting 
for elevated predation based on the abundance of moose as primary prey for wolves). A hypothetical 
management scenario was modeled but is not presented here because that scenario was dynamic 
through time and could not be characterized using a static estimate. The actual habitat index is 
placed above histograms whenever they exceed the limits of the Y-axis       

    7.5   Validation and Verifi cation of the Modeled Results 

 The RIG arranged for an aerial reconnaissance that intersected 54 of 74 available 
patches of pine-lichen winter range in the Chase and Wolverine herd areas (Fig.  7.3 ). 
Terrestrial lichens were not abundant in nine of the 54 patches. In eight other cases 
along the fl ight line, false negatives were observed (i.e., there was abundant terres-
trial lichen even though the BBN did not predict its occurrence). Winter relocations 
of 40 and 33 radio-collared caribou in the Wolverine herd area ( n  = 3,239) and Chase 
herd area ( n  = 5,207), respectively, were collected and used in the selection tests for 
the pine-lichen winter range. Selection or avoidance of range was stronger in the 
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Chase area than in the Wolverine area, although the rate was acceptably high (>70%) 
in both cases (Table  7.2 ). Overall accuracy was  ³ 75% in both areas (Table  7.3 ), but 
the prediction error in the Wolverine area was marginal (i.e., a false negative rate of 
nearly 30%).    

 In comparison with the relatively successful tests of pine-lichen winter range, the 
test of caribou selection for high-elevation winter range revealed a poor and incon-
sistent fi t of the relocation data to the original modeled range. Reconnaissance sur-
veys of the high-elevation winter range suggested that arboreal forage was not being 
predicted properly (Rankin and McNay  2007  ) . This led to a more detailed study of 
the abundance of arboreal forage lichen in subalpine habitats within the study area, 
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  Fig. 7.2    The relative amount of seasonal range (i.e., the habitat index; see Sect.  7.3.6  for details) 
modeled to represent hypothetical simulated environmental conditions [a conservation scenario 
( solid lines ) and a natural disturbance scenario ( vertical bars )] in four caribou herd areas (Chase, 
Scott, Takla, Wolverine) of north-central British Columbia (from McNay et al.  2008a  ) . See the text 
for a description of the modeling and landscape scenarios       
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a variety of updates to the BBN for the high-elevation winter range, and a reapplica-
tion of the model; the revised model included 63% of the observed winter relocations 
of caribou at higher elevations (McNay et al.  2009  ) . Expert and peer review of the 
modeling and maps resulted in detailed documentation of the model (McNay et al. 

   Table 7.2    Observed caribou habitat selection for the modeled pine-lichen winter range estimated 
from relocations of radio-collared caribou in the Wolverine and Chase caribou herd areas of north-
central British Columbia   

 Caribou herd area 
and modeled probability 
of range occupancy 

 Observed selection a  

 Avoided  Preferred 

 Total 
selected 
(avoided + preferred)  Equivocal 

 Total 
sample 

 Wolverine  Low  25   7  32   8  40 
 High and 

medium 
  7  18  25  15  40 

 Total  32  25  57  23  80 
 Chase  Low  27   4  31   2  33 

 High and 
medium 

  4  22  26   7  33 

 Total  31  26  57   9  66 

   a Estimates of selection were calculated for individual caribou based on the methods described by 
Chesson  (  1983  )   

  Fig. 7.3    Management units [ungulate winter ranges, terrestrial lichen habitat, and preferred pine-
lichen winter range (PLWR)] for caribou in the Scott, Wolverine, and Chase herds of north-central 
British Columbia and the fl ight line depicting an aerial reconnaissance of the management units 
conducted in late 2003 (from McNay and Sulyma  2003  )        
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   Table 7.3    Key performance criteria summarized from a confusion matrix containing information 
about the observed selection for modeled pine-lichen winter range by radio-collared caribou in the 
Wolverine and Chase caribou herd areas of north-central BC   

 Performance criteria a  

 Caribou herd area 

 Wolverine  Chase 

 Selection rate (%)  71  86 
 Recall rate (%)  72  85 
 Accuracy (%)  75  86 
 Precision (%)  72  85 
 False-positive error rate (%)  22  13 
 False-negative error rate (%)  28  15 

   a  Criteria defi nitions: 
 Selection rate = [(actual preferred observations + actual avoided observations)/total 
observations] × 100% 
 Recall rate = (number of predicted preferred choices that were actually observed as preferred/total 
actual preferences) × 100% 
 Accuracy = [(number of predicted avoided choices that were actually observed as avoided + num-
ber of predicted preferred choices that were actually observed as preferred)/total 
selections] × 100% 
 Precision = (number of predicted preferred choices that were actually observed as preferred/total 
predicted preferences) × 100% 
 False-positive error rate = (number of predicted preferred choices that were actually observed as 
avoided/total actual avoided) × 100% 
 False-negative error rate = (number of predicted avoided choices that were actually observed as 
preferred/total actual preferred) × 100%  

 2002  ) , a user manual for application of the model (Doucette et al.  2004  ) , a published 
summary of the expert-based approach to modeling (McNay et al.  2006  ) , and a 
series of herd-specifi c seasonal range maps that were used by the BC government 
and other managers to implement management actions that focused on promoting 
recovery of the caribou (McNay et al.  2008a  ) .  

    7.6   Practical Applications 

    7.6.1   Recovery Planning 

 The use of BBNs allowed a systematic and transparent use of expert-based informa-
tion to support planning of management actions that would promote the recovery of 
caribou herds in the study area. The transparency of the method and its reliance on 
multiple experts helped to establish agreement about this complex problem among 
land managers and other RIG members, and encouraged a collective approach to the 
identifi cation of specifi c management priorities. For example, one important agree-
ment among RIG members fundamental to the recovery plan was the primary 
assumption that the distribution of moose (and therefore of wolves) in the plan area 
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had likely expanded due to historical processes that encouraged natural colonization 
of parts of the area by moose, but that a further increase in moose numbers resulted 
from an abundance of moose forage following recent forest harvesting. Based on 
this agreed-upon assumption, management actions to promote recovery of the caribou 
populations were therefore given the following specifi c priorities:

    1.    Restore critical range by reducing the extent and value of the range for moose, 
but not below the level that would be likely to occur normally as a result of natural 
disturbance regimes.  

    2.    Implement priority 1 and provide interim controls or limits on the abundance of 
the wolves’ primary prey (e.g., implement an aggressive hunting season to control 
moose populations).  

    3.    Implement priority 1 and provide interim controls or limits on the abundance of 
wolves.     

 If range restoration was ultimately found to be unsuccessful within a herd area, 
and ongoing management of other proximal factors (i.e., moose and wolves) were 
required to maintain a herd, then the caribou herd was considered to be not self-
sustainable and recovery of caribou to self-sustaining levels would not be ecologi-
cally feasible (McNay et al.  2008a  ) . 

 Another complex ecological problem considered by the RIG experts focused on 
the fact that moose were an important, albeit recent, resource in the area. The change 
in moose abundance meant that even natural, unmanaged conditions are unlikely to 
support caribou today as well as they did historically. This is because as moose 
populations increase (hence, as more wolves enter the study area), the incidental 
predation on caribou would increase. This logic was supported by the BBN results 
(Fig.  7.1 ), so the RIG experts decided that it would not be effi cient or perhaps even 
feasible to artifi cially create range conditions for caribou that would equate to 
historical conditions. Therefore, the population levels to which caribou herds may 
recover would likely be lower than historical levels. Similarly, the irreparable barrier 
to migration created for the Scott herd by the reservoir meant that high-elevation 
range was permanently separated from low-elevation range in that herd’s area; 
therefore, RIG experts assumed that this barrier would limit the likelihood and 
feasibility of recovery by the Scott herd. 

 Consistent application of the expert-based BBNs across the herd areas revealed 
two results that otherwise might have been considered counterintuitive (Table  7.1 ): 
a general lack of potential for low-elevation range in the Takla herd’s area and a 
high risk of predation in low-elevation range in the Scott herd’s area, even under 
natural disturbance conditions. The RIG members therefore de-emphasized restora-
tion of caribou range in these areas. In contrast, the BBN results indicated that the 
best recovery opportunities existed for caribou in the Chase and Wolverine herd 
areas (Fig.  7.1 ). Without considering metrics other than the seasonal range habitat 
index (i.e., other metrics might include patch size and connectivity), the conserva-
tion policy that was modeled for these areas appeared able to provide for a sustainable 
supply of caribou range consistent with the conditions expected under an assumed 
natural disturbance regime (Fig.  7.2 ). That said, the pine-lichen winter range and 
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post-rut range were likely to decrease from their current levels and undergo some 
decline over the next 2–3 decades. If this occurs, the caribou populations will 
decline as well, but RIG experts were uncertain whether the decline could be miti-
gated by the caribou by increasing their use of high-elevation range. Another uncer-
tainty that became obvious to the RIG experts pertained to the feasibility of 
implementing the recommended policy given the pending outbreak of mountain 
pine beetle ( Dendroctonus ponderosae ). This expected episodic rather than chronic 
forest disturbance had no apparent precedent in BC’s natural systems, and it was 
unclear whether forest licensees could manage their forests in the manner intended 
by the caribou conservation policy in the context of the insect outbreak. Since the 
original study was conducted, the episodic nature of mountain pine beetle distur-
bance has killed most of the overstory tree layer in many of the UWRs.  

    7.6.2   Designations of Ungulate Winter Range 

 The fi rst submission to the BC government for conservation of UWR was made by 
the RIG for pine-lichen winter range in 2005 using the expert-based BBN results. 
The submission was preceded by a collaborative workshop to develop management 
actions for the UWR (which totaled 360,029 ha). Because workshop participants 
were mostly RIG members, the participants were familiar with the background to 
the submission and the meeting progressed with little preamble. A subsequent 
submission to the BC government for conservation of UWR is still being prepared 
for high-elevation winter range totaling 877,087 ha. This second submission was 
developed under contract rather than during a collaborative workshop. The difference 
in approach was largely due to the BC government’s perception that the contract 
would be more effi cient. Although it is too early to say for sure, it seems as though 
the anticipated effi ciency may not be realized because the consultation phase of the 
process has yet to begin.   

    7.7   Discussion 

 In general, planning for the recovery of endangered wildlife is a diffi cult problem 
with no easy solutions, particularly where the availability and future supply of natural 
resources are fundamental to the species as well as to the economic or recreational 
development undertaken by licensed stakeholders, aboriginal peoples, and the gen-
eral public. Competing demands on natural resources may mean that insuffi cient 
management options exist to allow for full implementation of desirable actions to 
promote recovery of animal populations. Also, incomplete understanding of key 
ecological relationships may add to management uncertainty and to the perceived 
risk of failure. However, in the example described in this chapter, several intended 
mechanisms and a variety of unintended coincidental activities led to almost universal 
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acceptance of using expert-based modeling as the foundation for planning and 
implementing management actions to promote the recovery of local caribou herds. 

 Expert-based information was depicted using infl uence diagrams and later quan-
tifi ed using BBNs through a series of workshops that were inclusive rather than 
exclusive of participants. In competitive social or economic settings, exclusion is 
common, but the “grass-roots” nature of the RIG initiative led to a more inclusive 
team environment. Professional facilitation insured that debate among experts was 
welcome and expected, but that consensus was eventually achieved. The graphical 
nature of the infl uence diagrams assisted this process by allowing the participants, 
regardless of their education or experience, to grasp at least the conceptual nature of 
the ecological relationships. The inclusiveness led to a sense of shared ownership of 
the results by stakeholders and scientists alike. Ownership was important because 
all stakeholders could claim pride in the product while also being in a position to 
defend its implementation. Open discussion and peer review enabled consensus on 
the fi nal form of the BBNs for the seasonal ranges and acceptance of the mapped 
results. The systematic approach provided by regular workshops and formal modeling, 
combined with the transparent use of the expert information by using the infl uence 
diagrams, instilled confi dence in and understanding of a complex ecosystem, leading 
to a more rational and focused discussion than what might otherwise have occurred. 
The BBN approach to depicting expert information provided the ability to discuss 
and model a comprehensive description (i.e., not limited by incomplete empirical 
data) of how caribou relate to their environment and of how stressors may affect 
their populations and their use of seasonal ranges. Although we recognized that the 
results could likely be sensitive to the inherent properties of the BBN (Kuhnert and 
Hayes  2009  ) , the modeling team did not have time to fully evaluate the potential 
implications. Rather, the RIG members relied on recommended BBN construction 
standards (Marcot et al.  2006  ) . Nonetheless, this combination of a formal approach 
with transparency led to acceptance of the expert knowledge and subsequently 
allowed workshop participants to identify, discuss, and make decisions about the 
potential implications of certain management actions (or lack thereof). 

 There are many alternative approaches to the implementation of management 
actions for conservation of seasonal range for ungulates. For example, government 
biologists could have simply taken the results from recent studies, determined a 
habitat-use model that best fi t the observed relocation data (e.g., resource-selection 
functions; Johnson et al.  2006  ) , and used those results to designate conservation 
areas (e.g., UWRs and Wildlife Habitat Areas). Such an inductive modeling approach 
may provide more precise identifi cation of seasonal ranges, but the accuracy is 
restricted to the environmental conditions under which the animal relocations were 
observed. Such models are not particularly well suited for scenario planning in 
which the environmental conditions change, because the interactions among the 
descriptor variables in the model are not robust across all environmental conditions. 
Also, in the specialized case of declining populations, it’s unlikely that inductive 
model results are a desirable representation of habitat-use patterns; moreover, the 
resulting algorithms rarely offer transparency about the actual causal ecological 
relationships, making it diffi cult for some stakeholders to understand (and therefore 
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accept) the model. Lastly, the application described by the inductive model excludes 
other resource-use interests and is therefore unlikely to address the multiple-use 
objectives of a broader government agenda. For all these reasons, expert judgment 
and deductive or abductive thinking may be more suited to addressing complex 
environmental problems (Douglas  2006 ; Martin  2007  ) . 

 Although the use of expert-based information may be expedient and well suited 
to resolving complex problems, mistakes can be made (e.g., the high-elevation winter 
range model was initially inadequate). Protocols for the use of expert-based infor-
mation should therefore include a dedication to testing (validating and verifying) the 
models prior to use, at least at operational management levels (e.g., Chap.   5     and 
Chap.   14    ). Future applications of the expert-based approach used in north-central 
BC would benefi t from a prior understanding of the potential infl uence of the inher-
ent structure of the BBNs and by making measures of uncertainty more explicit in 
the information provided to decision-makers. Although it is sometimes impossible 
to envision future catastrophic changes, the RIG process would have benefi ted from 
a more serious consideration of the potential effects of the mountain pine beetle 
outbreak (McNay et al.  2008b  ) .      
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    8.1   Introduction 

 The spatial and temporal relationships between organisms and their environments 
are fundamental to both theoretical and applied ecology. The heterogeneous distri-
bution of organisms in space and time will infl uence most ecological relationships, 
including predation, competition, and resource use, and, ultimately, population 
dynamics and evolution (Turchin  1996  ) . Recognizing that the science and practice 
of ecology involves a consideration of spatial processes, much recent research has 
focused on formally representing and quantifying the spatial and temporal relation-
ships between organisms and their environments (Morales et al.  2010  ) . One promi-
nent area of investigation for landscape ecologists has been the development of 
statistical models and associated analyses that empirically represent those relation-
ships (Elith and Leathwick  2009  ) . This set of methods has become known as “spe-
cies distribution models” (SDMs). Guisan and Thuiller  (  2005  )  defi ne SDMs as “… 
empirical models relating fi eld observations to environmental predictor variables, 
based on statistically or theoretically derived response surfaces.” 

 The fi rst development and application of SDMs can be traced back to the con-
ceptually and mathematically simpler habitat suitability index (HSI; U.S. Fish and 
Wildlife Service  1981  ) . From the late 1970s through the early 1990s, HSI models, 
often developed using expert knowledge or opinion, were the most common tech-
nique for describing wildlife–habitat relationships, including the expected responses 
to anthropogenic factors and the implications for species distributions. Beginning in 
the mid-1990s, spatial databases of species occurrence began to become more com-
mon. In combination with the mainstream application of geographical information 
system (GIS) data and associated software, and the increase in the accessibility of 
multivariable statistical methods, SDMs rapidly evolved in complexity, utility, and 
application and have been increasingly used by researchers (Fig.  8.1 ). Currently, 
practitioners can choose among a wide variety of techniques to understand and 
map the distribution of a species (   Guisan and Zimmermann  2000 ; Johnson and 
Gillingham  2005 ; Johnson et al.  2006 ; Franklin  2010  ) . Where empirical data are 
lacking or diffi cult to collect in a timely or cost-effective way, expert knowledge or 
previously published studies can be used to quantify species–environment 
relationships.  

 Consistent with the rapid growth in the application of SDMs to problems in 
applied and theoretical ecology has been a growing body of studies that investigated 
the methodological elements of the approach. Such work has focused on uncertainty 
and sensitivity analyses of model inputs and predictions and on the strengths and 
weaknesses of competing modeling frameworks (Karl et al.  2000 ; Burgman et al. 
 2001 ; Brotons et al.  2004 ; Gu and Swihart  2004 ; Johnson and Gillingham  2004, 
  2005  ) . Although expert-based SDMs have been widely applied across taxonomic 
groups, are technically simple, and are suffi ciently intuitive for use by management 
and conservation agencies, the practice and methods for developing and evaluating 
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  Fig. 8.1    Cumulative citations of peer-reviewed papers focused on the application or development 
of species distribution models. Cited papers were identifi ed in the Web of Science database (  http://
www.isiknowledge.com    ) using the search terms “species,” “distribution,” “model,” and “GIS,” and 
likely only represent a portion of the total number of papers on this topic       

these models have received considerable criticism (Bender et al.  1996 ; Roloff and 
Kernohan  1999 ; Burgman et al.  2001 ; Johnson and Gillingham  2004  ) . Of particular 
relevance to this book, others have compared the predictive performance of 
expert-based versus empirical SDMs (Cowling et al.  2003 ; Pullinger and Johnson 
 2010  ) , assessed the effi cacy of combining both expert and empirical knowledge 
systems in a single modeling framework (Pearce et al.  2001 ; Mouton et al.  2009 ; 
Chap.   5    ), and evaluated methods for eliciting and presenting expert knowledge 
(Al-Awadhi and Garthwaite  2006 ; Czembor and Vesk  2009 ; Murray et al.  2009 ; 
O’Leary et al.  2009  ) . Despite the large number of published applications of SDMs 
and the growing number of studies designed to evaluate and contrast methods and 
approaches for collecting and applying distribution data, the best practices remain 
uncertain. 

 In this chapter, we draw on our experience with SDMs to provide further 
guidance on developing and evaluating defensible and transparent SDMs based on 
both expert knowledge and empirical data. Drawing on the insights gained from 
three projects, we illustrate appropriate methods and pitfalls and contrast the 
strengths and weaknesses of the two data sources. We conclude with recommenda-
tions on how best to apply expert knowledge to maximize a study’s rigor and ensure 
scientifi cally credible results that support reliable management and conservation 
practices. In the context of this chapter, we equate “rigor” with study methods that 
are systematic and repeatable and scientifi cally defensible, which means that the 
results will be logical and capable of being validated using empirical data.  
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    8.2   An Overview of SDMs 

 The products of SDMs are mathematical coeffi cients that relate the known occurrence 
of the study species to ecological attractants such as a nutritional resource or some 
other habitat component. These models can also quantify the responses of organisms 
to some factor or object that results in their avoidance of some place in an ecological 
space. Examples include predators, habitats modifi ed by human activities or natural 
disturbance, and anthropogenic features of the landscape (Johnson et al.  2005  ) . 
When these coeffi cients are applied to GIS data, the spatial and temporal distribution 
of an organism can be visualized and extrapolated to new areas or future environ-
mental conditions (Elith and Leathwick  2009  ) . When presented as maps, the output 
is suffi ciently fl exible to permit its application to a wide range of management and 
conservation questions specifi c to landscape ecology. Such models have been devel-
oped for many species, ranging from rare lichens to extinct reptiles (Raxworthy 
et al.  2003 ; Radies et al.  2009  ) . 

    8.2.1   Models Dependent on Empirical Data 

 SDMs can be formulated using a large variety of statistical modeling frameworks; 
however, all of the empirical approaches have two fundamental data requirements: 
species distribution data and data on environmental variables that are correlated 
with species occurrence (Boyce  2010  ) . Modes of collection of distribution data 
include GPS collars, ground- or aircraft-based surveys of direct or indirect signs of 
presence, natural history databases, and georeferenced specimens from museum 
collections. These point locations are then related to environmental variables that 
are hypothesized to infl uence the observed variation in the organism’s distribution 
(Bio et al.  2002 ; Raxworthy et al.  2003 ; Newbold et al.  2009 ; Radies et al.  2009 ; 
Hebblewhite and Haydon  2010  ) . A statistical technique or model is then chosen to 
quantify the correlation between the two datasets. Depending on the sampling 
protocol and the research question, models can range from simple descriptions of 
the average niche space of the organism (Rose and Burton  2009  )  to more complex 
procedures based on maximum-likelihood estimation (Chetkiewicz and Boyce  2009  ) .  

    8.2.2   Models Dependent on Expert Knowledge 

 When empirical data are absent, species–environment relationships can be derived 
from expert knowledge or through an analysis of published habitat relationships. 
HSIs are a good example of how expert knowledge has been applied to questions of 
species distribution when empirical data were unavailable. Using this technique, 
a number of experts who understand the ecology of the focal species are asked to 
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provide a quantitative score representing the importance of each attribute of the 
environment for the organism’s persistence, reproduction, productivity, or simple 
occupancy of a patch of habitat. Similarly, scores can be calculated from published 
values. Scores typically range from 0 to 1, with larger scores representing more 
favorable habitat conditions. When combined additively or geometrically, the scores 
provide a relative weighting for the combination of habitat attributes within each 
patch or GIS polygon found throughout the study area. Although this is an intuitive 
approach with hundreds of applications to a wide range of species, the methods for 
eliciting or deriving those scores have often been  ad hoc  and nonrepeatable. 
Furthermore, the fi nal index was often not validated, or validation occurred some 
time after the collection of empirical data (Brooks  1997 ; Roloff and Kernohan  1999 ; 
Mitchell et al.  2002 ; Bowman and Robitaille  2005 ; but see Tirpak et al.  2009  ) . 

 Numerous methods are available for eliciting the expert knowledge necessary to 
construct HSIs. These range from structured written surveys and semi-structured 
interviews to Delphi approaches, in which a combination of individual and group-
based instruments are used to obtain each expert’s perspective and develop a 
dialogue that might lead to a modifi ed understanding of species–habitat relation-
ships (MacMillan and Marshall  2006 ; Grech and Marsh  2008 ; Hurley et al.  2009  ) . 
Development of effective elicitation methods is an active area of research, with the 
objective of testing techniques that allow experts to explore and accurately docu-
ment their knowledge (Chap.   3    ). Ultimately, research teams should strive to increase 
the rigor of their study design and implementation, since this would provide a con-
trolled and repeatable set of methods for collecting, analyzing, and presenting expert 
knowledge (Sutherland  2006  ) .  

    8.2.3   Expert Knowledge and Multi-criteria Evaluation 

 Multi-criteria evaluation is a broad set of approaches for ensuring that expert-based 
SDMs conform to the principles of scientifi c rigor. These approaches are concerned 
with the standardization and combination of several values or criteria that can be 
recorded using different measures or at different scales, but that in combination 
infl uence a decision. Multi-criteria evaluation formalizes and structures the implicit 
decision-making process used by experts so that evaluation of the criteria is consistent 
across experts and is made explicit (Gal et al.  1999  ) . 

 One form of multi-criteria evaluation that we have explored is the analytical 
hierarchy process (AHP). Using this method, researchers identify experts and ask 
them to consider and rank a set of hypothesized categorical criteria or variables that 
explain some process or pattern. In the context of SDMs, experts would be asked to 
relate the set of variables to the habitat or to the expected presence or absence of an 
organism in a particular place. Before ranking begins, the participants are asked to 
draw on their knowledge of the process being studied and, if necessary, amend the 
set of proposed variables. After fi nalizing the set of variables, each expert provides 
a pairwise ranking of each combination of explanatory variables. An ordinal scale 
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(i.e., the number of each variable in the sequence) is used to assess the strength of 
one variable relative to the other variable in each paired comparison. Weights are 
generated from those scores and applied to GIS data to create a measure of the value 
of habitat or likely occurrence of a species throughout a study area. In this approach, 
a measure of precision can be associated with the average or median score for each 
variable across the experts. 

 Although the AHP can improve the rigor of the elicitation process, it is diffi cult 
to validate the predictions from the fi nal model without an independent dataset. 
Essentially, one must attempt to determine whether the expert knowledge adequately 
describes the observed patterns or processes. In such situations, one approach for 
exploring the reliability of the fi nal expert-based SDM is through uncertainty and 
sensitivity analysis. Uncertainty analysis differs from error assessment or model 
validation. Whereas the two latter approaches relate model predictions to observed 
data (i.e., the “truth”), uncertainty analysis explores the precision or range of predic-
tions produced by the SDM. Sensitivity analysis allows the modeler to identify the 
parameters or inputs that are most infl uential in reducing the precision of model 
predictions. Thus, uncertainty analysis can better represent the precision of our pre-
dictions, whereas sensitivity analysis suggests areas of improvement for data inputs 
or the model’s structure (Crosetto and Tarantola  2001  ) . 

 In this chapter, we present three case studies that illustrate both poor practices 
and rigorous methods for developing expert-based SDMs. The fi rst case study 
explores a series of HSIs from British Columbia, Canada, and reveals the pitfalls 
of poor study design and implementation. We discuss how uncertainty and sensi-
tivity analyses can assist with an evaluation of the utility of model predictions and 
the diagnosis of fl awed methods. Next, we present two studies from British 
Columbia that apply the AHP: fi rst, to better understand the locations where colli-
sions between moose ( Alces alces ) and motor vehicles occur and the factors that 
resulted in these collisions, and second, to predict the location of corridors used by 
migrating woodland caribou ( Rangifer tarandus caribou ). Sets of parallel empiri-
cal data let us compare the performance of expert-based and empirical SDMs. 
Based on these case studies, we discuss the strengths and weaknesses of the AHP, 
and compare the advantages and drawbacks of using expert-based or empirical 
data to construct SDMs.   

    8.3   Expert Knowledge and SDMs: A Plea for Rigor 

 Across much of British Columbia, SDMs are used to guide industrial development 
that accounts for ecological values (Chap.   7    ). The location and maintenance of habi-
tats for regionally important or protected species is an important consideration dur-
ing the exploration for and extraction of oil and gas reserves, the harvesting of forest 
products, and the development of mineral resources. In an effort to address the habi-
tat needs of wildlife, the provincial government has developed a two-pronged inven-
tory approach that maps vegetation communities and rates those communities in 
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terms of their habitat potential for select wildlife species (RIC  1999  ) . The vegetation 
mapping is based on existing ecosystem and topographical data, in combination with 
fi eld investigations and the interpretation of large-scale aerial photos or other 
remotely sensed land cover data. Rating the habitat value for those polygons is a 
complex process. Given a lack of empirical data for the majority of wildlife species, 
the provincial environmental agency has developed a standardized wildlife habitat 
ranking system based mostly on existing information and, when knowledge of a 
species is insuffi cient, contributions from experts. 

 For each regionally important species, seasonal habitat attributes are identifi ed 
through a review of existing studies, available data, and expert knowledge or opinion. 
At this point in the process, a species “account” is generated to document the ecology 
and habitat requirements of the focal species. Following the production of the species 
account, rating tables are generated that give each habitat attribute a score that expresses 
its suitability based on the criteria in the account. Scores are combined to provide an 
overall rating for a GIS polygon. The habitat rating is meant to represent the potential 
of part of an ecosystem to support a particular species during a specifi ed season and for 
a specifi ed activity (e.g., reproduction) compared to the best habitat for this purpose in 
the province (RIC  1999  ) . In British Columbia, this process is known as “Wildlife 
Habitat Ratings,” but the logic and approach is similar to the HSI approach. 

 Much effort was expended by the provincial government to develop a computer-
ized template for generating the rating tables. Presented as a spreadsheet, the tables 
let biologists and land managers easily review the scores for each habitat attribute 
and determine the overall infl uence of each attribute on the overall rating for a polygon. 
Unfortunately, the process for generating the ratings is not nearly as well developed 
or transparent. As demonstrated below, there is no repeatable method for eliciting 
expert knowledge or analyzing existing information. The practitioner therefore has 
no way of evaluating the fi nal SDMs or the degree of uncertainty in their predictions. 

 In northern British Columbia, exploitation of signifi cant deposits of natural gas 
has resulted in rapid modifi cation of landscapes. Activities associated with seismic 
exploration and the extraction and transport of gas can potentially displace sensitive 
wildlife species and reduce or adversely modify their habitats (Sorensen et al.  2008  ) . 
That broader zone of industrial activity encompasses a collection of parks and spe-
cial management zones known as the Muskwa-Kechika Management Area 
(MKMA). At 6.4 million ha, the MKMA is one of the largest intact parcels of 
wilderness south of the 60th parallel. Although this area is subject to greater levels 
of conservation planning and protection, there is considerable interest in the rich gas 
deposits found within and adjacent to the MKMA. 

 Generation of species accounts and rating tables for 1.2 million ha of the MKMA 
was performed using three sources of information. A small team of non-local biolo-
gists reviewed the existing information, which was largely composed of peer-
reviewed published studies, and developed species accounts to defi ne the basic 
life-history strategies and ecology of ten regionally important species. Preliminary 
rating tables were generated from this analysis of the existing information. The 
team of analysts then used the data collected at 116 fi eld plots and during a 1-day 
workshop with local experts to refi ne the rating tables (EBA Engineering  2002a  ) . 
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 Despite the apparent thoroughness of the rating tables and the fi nal predictive 
maps, the process for populating the ratings tables cannot be considered rigorous 
(EBA Engineering  2002a,   b  ) . First, there was no systematic method for developing 
the ratings. The species accounts were based on the available literature, but there 
was no process for translating the knowledge or data within that literature into quan-
titative scores. Likewise, there was no method for summarizing the information 
elicited during the expert workshop or the fi eld data, and no method for applying 
that information to calculation of the ratings. This lack of consistent methods pre-
vented a systematic review of the approach and ultimately meant that the habitat 
ratings were accepted based on the best judgment of the authors of the report. 
Neither industry, government, and conservation groups, nor concerned citizens 
could investigate the inherent precision of any of the values in the rating tables or, 
more fundamentally, their origin. 

 One could also criticize the intensity of the sampling applied during the knowl-
edge and data collection. Given the size of the study area, the range of ecosystems 
it contains, and the number of target species, it is diffi cult to accept that 116 fi eld 
plots could document the ecology of ten species as diverse as the mountain goat 
( Oreamnos americanus ), American marten ( Martes americana ), and bay-breasted 
warbler ( Dendroica castanea ). Such efforts might provide highly specifi c data that 
resolve a few uncertainties, but are unlikely to be generally applicable to the range 
of attributes captured in the rating tables for thousands of ecosystem associations. 
Similarly, the 1-day workshop designed to consult experts was unstructured and 
lacked any of the attributes of a rigorous method. No defi nition of “expert” and no 
qualifi cations for participation were defi ned before selecting the experts. Discussion 
of the habitat requirements of each focal species was limited to approximately 
40 min, and was insuffi cient in depth, length, and structure to allow for an adequate 
evaluation of the ratings for each habitat attribute used to construct the rating tables 
(EBA Engineering  2002a  ) . Based on the agenda and transcriptions of the conversations 
during the workshop, it is impossible to link the expert knowledge to the fi nal ratings. 
The failure to adopt a systematic method of data collection and analysis is disturb-
ing from scientifi c and public-policy perspectives: the MKMA has signifi cant 
wilderness value, the proposed resource development is known to negatively affect 
wildlife (Sorensen et al.  2008  ) , and considerable fi nancial resources were required 
to complete the project. 

 The method used to develop the habitat ratings for the MKMA appears to have 
been based on a subjective interpretation of the existing information as well as on 
informal expert knowledge and/or opinion. Despite the best intentions of the authors 
and supporting agencies, and considerable innovation shown in some aspects of the 
work, this is likely to be a worst-case example in terms of the methods used for the 
elicitation and analysis of expert knowledge. Fortunately, this is not an inherent 
characterization of all such studies. Existing data and structured elicitation of expert 
knowledge can have much utility in landscape ecology (Clevenger et al.  2002 ; Chap.   5     
and Chap.   6    ). Furthermore, when researchers develop and implement appropriate 
methods, these information sources can meet the test of rigor as applied to empirical 
work. In the absence of a thoughtful study design, however, one can question the 
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validity and usefulness of fi ndings based solely or primarily on expert knowledge. 
This data source can be biased so that it under- or overrepresents certain geographic 
areas or time periods, and many elicitation methods allow a single dominant person-
ality to infl uence the knowledge provided by other study participants during group 
discussions (MacDougall and Baum  1997  ) . Thus, it is important to correctly iden-
tify experts with a suffi cient breadth or depth of experience to address the research 
question, to use methods that effectively capture their knowledge, and to identify the 
uncertainty inherent in the elicitation process and in the resulting data obtained 
from the experts (Czembor and Vesk  2009 ; Chap.   2    ). 

 As is the case with the elicitation of expert knowledge, there are limitations and 
risks when collecting and using existing secondary information. Defi nitions and key 
terminology must be understood to confi rm whether the data are directly compara-
ble between studies. The precision and accuracy of the reported data and, ultimately, 
the conclusions that are based on it, will vary across studies. Probably of greatest 
concern for the development of SDMs is the geographic and temporal scope of 
inference in published research. Wildlife populations of the same species vary both 
spatially and temporally in their ecology; thus, the results of even the most rigorous 
scientifi c study may not apply to a different geographic population or time period. 

 Recognizing the potential conservation implications of incorrect habitat ratings 
and the impacts of the resulting resource development activities, we used uncer-
tainty and sensitivity analyses to explore the range of plausible predictions from the 
rating tables developed for the MKMA (Johnson and Gillingham  2004  ) . We assumed 
that as uncertainty in the predictions from the models increased, the specifi city of 
the predictions for regulating the timing or location of development activities would 
decrease. Uncertainty and sensitivity analyses are often conducted using approaches 
such as Monte Carlo simulations. For this method, many predicted scores are gener-
ated via repeated sampling from a range of plausible parameter values defi ned by 
some distributional parameters (e.g., the mean and standard deviation). The distri-
bution of the predicted scores then provides insights into the most infl uential 
variables and the uncertainty inherent in the predictions. The rating tables for the 
MKMA included only point estimates. Poor study design prevented the authors who 
created the tables from reporting a variance for their estimates of species responses. 
As such, we were forced to assume a range of values for each parameter and to test 
a number of possible distributions for those values. 

 Following our uncertainty and sensitivity analyses, we found that the mean 
ratings generated through our simulation diverged considerably from the reported 
ratings (Johnson and Gillingham  2004  ) . When uncertainty was introduced, reported 
ratings that were near 1 (i.e., excellent habitat) or 0 (i.e., unsuitable habitat) were 
consistently biased towards values in the middle of the range. We also discovered 
that the sensitivity of habitat ratings to the model parameters varied across the study 
area. When applied to spatial data in the form of a species distribution map, we 
demonstrated that the inherent uncertainty could result in predictions for a patch of 
habitat that varied by up to two levels within a six-level rating system. This suggests, 
for example, that a polygon rated as valuable habitat could actually be marginal 
habitat, potentially leading to lost opportunities for oil and gas development 
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(Fig.  8.2 ). More distressing from a conservation perspective, after considering the 
assumed uncertainty in the interpretation of the existing literature and expert opinion, 
areas ranked as good to excellent habitat could be incorrectly rated as being of 
suffi ciently low quality to allow resource development, leading to serious negative 
implications for a species of conservation concern.  

 This case study illustrates the complexity of and diffi culties in attempting to 
combine multiple sources of information when developing SDMs. Uncertainty and 
sensitivity analyses can reveal fl aws in model development or uncertainty in expert 
opinion, but such approaches are not a substitute for proper ab initio study design. 
As a starting point, we recommend methods that force the expert or analyst to 
explicitly document the thought process used to score various habitat variables. The 
AHP is one such approach, but other, more sophisticated, methods are available 
(Chap.   3    ). The application of existing secondary information could involve similar 
structured processes, where experts are asked to use the existing literature directly 
to inform their estimates.  

    8.4   Expert Knowledge and Empirical Data: Systematic 
Methods and a Comparison 

 Although there have been great advancements in methods for collecting ecological 
data (Hebblewhite and Haydon  2010  )  there are still situations where an SDM is 
required, but suitable distribution data are not immediately available. Thus, a series 

  Fig. 8.2    Results of the spatial uncertainty analysis for expert-based ratings of woodland caribou 
habitat for one pre-tenure planning area for oil and gas exploration in the Muskwa-Kechika 
Management Area of northeastern British Columbia, Canada.  Left : results without accounting for 
uncertainty.  Right : magnitude of the change in the ratings when uncertainty was accounted for       
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of methodological and philosophical questions must be confronted before the SDM 
can be developed. Expert-based models may be less expensive and less time-
consuming, but may suffer from inadequate validation (Doswald et al.  2007 ; Grech 
and Marsh  2008  ) . Alternatively, there may be logistical constraints on collecting 
empirical data for species that occur at low densities or that are very diffi cult to 
capture or monitor. Expert-based and empirical data also differ in their capacity to 
guide population-level inferences. Expert knowledge may capture the behavior and 
habitat affi nities of a species over a long time period for a relatively undefi ned area, 
whereas empirical data typically represents a much shorter period, but the spatial 
representation is explicit. Finally, as a product of their training and professional 
belief systems, researchers from the natural sciences may have a philosophical bias 
toward empirical data. Some see expert knowledge as useful for developing hypoth-
eses or implementing complex management or conservation plans, but not as a 
source of repeatable quantitative data for testing hypotheses or parameterizing 
models (Hiddink et al.  2007  ) . Bayesian methods have shown some promise for 
integrating expert knowledge with empirical data (Kuhnert et al.  2010 ; Chap.   5    ). 
However, time constraints and limited budgets, especially in the case of conservation, 
often prevent parallel data collection efforts. 

 Consistent with the efforts of others (Pearce et al.  2001 ; Bowman and Robitaille 
 2005  ) , we developed two studies to better understand the relative merits and limita-
tions of expert knowledge. First, we worked with wildlife managers and park 
wardens in southeastern British Columbia to understand the factors that infl uenced 
the likelihood of moose colliding with motor vehicles. We focused our efforts on the 
portion of the Trans-Canada Highway that traversed Mount Revelstoke and Glacier 
national parks. This was an excellent study location because we could engage a 
group of professionals who were legally mandated to monitor human and animal 
safety in the parks. In addition, the national parks maintain a relatively complete 
and accurate record of the location and timing of wildlife–vehicle collisions as well 
as the species involved. 

 As our second case study, we developed an SDM for woodland caribou found 
in central British Columbia. Here, we wanted to evaluate the effi cacy of least-
cost-path models to predict the location of corridors that sustain the movement of 
caribou (Pullinger and Johnson  2010  ) . Least-cost-path models are a common 
tool for designing or identifying movement corridors that maintain or increase 
landscape connectivity for wide-ranging mammals (Chetkiewicz and Boyce 
 2009  ) . The paths are constructed using a number of GIS algorithms that identify 
the lowest-cost routes for a species according to a landscape’s permeability (i.e., 
openness to travel by the animal), which may be related to physical boundaries, 
topography or the distribution of predators and food. Landscape permeability is 
often the inverse of a species distribution map that is generated using empirical or 
expert-based data (Chetkiewicz and Boyce  2009  ) . Woodland caribou travel long 
distances annually, and are a species of conservation concern. As such, the species 
is an excellent model for testing the accuracy of least-cost paths, and there are 
many professionals with considerable knowledge of the distribution and habitat 
requirements of caribou. 
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    8.4.1   Developing SDMs Based on Expert Knowledge 
and Empirical Data 

 For both case studies, we developed and compared the predictive accuracy of paired 
empirical and expert-based SDMs. For the empirical models, we used resource 
selection functions to contrast the recorded locations of moose–vehicle collisions 
and large-scale movements of caribou with randomly selected locations (Hurley 
et al.  2007,   2009 ; Pullinger and Johnson  2010  ) . For each modeling exercise, we 
tested a set of explanatory variables that we hypothesized could explain the distribu-
tion of monitored caribou and the location of moose collisions. 

 The fi rst step in developing the expert-based models was to defi ne and then iden-
tify experts who were willing to participate in our studies. For the study of moose–
vehicle collisions, we defi ned an expert as an individual with career-based knowledge 
(i.e.,  expert practitioners ; Chap.   1    ) of moose movements, habitat requirements, or 
the factors leading to moose–vehicle collisions. We used published literature and our 
knowledge of this issue to identify a core group of experts. Later, we called on that 
initial group to nominate additional experts for participation in the study (i.e., the 
snowball technique; Lewis-Beck et al.  2004  ) . We hypothesized that local knowledge 
of a study area would increase an expert’s understanding of the factors that infl uence 
moose–vehicle collisions, thus we divided the experts into local and non-local 
groups. In generating the list of experts for the study of least-cost paths for the cari-
bou, we invited biologists or managers who had published a research report or paper 
on the ecology of northern woodland caribou or, through their professional duties, 
had spent >5 years contributing to the development of management guidelines for 
woodland caribou. 

 We used the AHP to formally elicit the knowledge of these experts relative to the 
factors that we believed would infl uence the location of moose–vehicle collisions 
and the distribution of caribou moving between their seasonal ranges. For both studies, 
we contacted the experts and briefed them on the objectives of the research. We then 
asked them to review the set of explanatory variables and complete a structured 
survey that resulted in a pairwise weighting for each combination of variables. The 
surveys were completed independently by each participant.  

    8.4.2   Comparing the Effectiveness of the SDMs 

 The majority of the experts accepted our invitation to participate in the two studies. 
For the moose–vehicle collision research, all fi ve local and all fi ve non-local experts 
participated. For the study evaluating the least-cost-path models, ten experts were 
invited, but six participated. We found that the experts were much better at predicting 
moose–vehicle collisions than they were at predicting the habitats used by caribou 
during large-scale movements (Hurley et al.  2009 ; Pullinger and Johnson  2010  ) . 
Non-local experts were slightly more effective at predicting moose–vehicle collisions 
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when they considered factors related to driving conditions, whereas local experts had 
slightly higher predictive scores when they considered the habitat conditions for 
moose (Hurley et al.  2009  ) . The majority of the empirical models only slightly out-
performed the expert models; there was little evidence to suggest that either source 
of data was superior (Table  8.1 ). However, the empirical SDM was much more effec-
tive at predicting the locations used by caribou for their large-scale movements. 
Using a set of independent validation data, we found no signifi cant relationship 
between the observed locations of caribou movements and areas that experts had 
predicted caribou would use as corridors (Pullinger and Johnson  2010  ) .  

 We were not surprised to fi nd that the expert-based models performed inconsis-
tently across projects. Where researchers have conducted similar paired studies, there 
was often confl icting evidence, with some support for and some refutation of the 
utility of expert-based models. Across a range of species, Yang et al.  (  2006  ) , Rubin 
et al.  (  2009  ) , and Ready et al.  (  2010  )  found that expert models performed well in 
both an absolute sense and relative to empirical models. In contrast, Pearce et al. 
 (  2001  )  and Mouton et al.  (  2009  )  found little improvement in the predictions of mod-
els that included expert knowledge. We noted similar results when predicting the 
distribution of woodland caribou during the winter (Johnson and Gillingham  2005  ) .  

    8.4.3   Effective SDMs: Expert or Empirical Data? 

 Various factors may explain the difference in performance between the expert-
based models that we tested. The number of experts was larger for the project on 
moose–vehicle collisions, and comprised a total of 185 years of experience. In 
comparison, the six experts who described the caribou movement routes had only 
70 years of cumulative experience. Others have noted differences in the predictive 
capacity of local versus non-local experts. Doswald et al.  (  2007  )  found that depend-

   Table 8.1    Predictive ability of expert-based and empirical species distribution models relating 
moose–vehicle collisions to driving and habitat conditions (Hurley et al.  2007,   2009  )    
 Data type  Expert type  Model scenario  Area under curve 

 Expert  Local experts  Habitat – GIS data  0.829 
 Expert  Local experts  Driving conditions  0.767 
 Expert  Non-local experts  Habitat – GIS data  0.804 
 Expert  Non-local experts  Driving conditions  0.790 
 Empirical  NA  Habitat – GIS data  0.960 
 Empirical  NA  Habitat – fi eld data  0.702 
 Empirical  NA  Driving conditions  0.630 
 Empirical  NA  Highway design  0.462 

  The predictive ability was measured using the area under the curve for the receiver operating char-
acteristic (ROC). This statistic ranges from 0 to 1 and measures the ability of the predictive model 
to discriminate between locations where vehicle collisions were recorded and were not; a score 
>0.7 suggests a useful predictive model.  NA  not applicable  



166 C.J. Johnson et al.

ing on the study area, local experts were marginally better than authorities with a 
broader level of knowledge at predicting the distribution of lynx ( Lynx lynx ). 
Although we noted some differences in the predictive performance of the moose–
vehicle collision models across expert groups, the differences were not striking. 
Given the regional variation in habitat and topographic conditions for individual 
caribou herds, we suspected that some knowledge of the study area was essential. 
Thus, we engaged only local experts for that project. The most parsimonious expla-
nation for the variation in performance of experts across the two studies is likely 
that some ecological relationships are easier to address with expert knowledge. 
The socioeconomic effects of the moose–vehicle collisions, the long-term manage-
ment emphasis, and perhaps the contribution of non-expert knowledge, such as the 
personal and non-professional observations of collision locations, may have led to 
better-informed experts. 

 Our results and those published by others do not provide compelling evidence 
to suggest that empirical models are superior to expert-based models for all 
research questions or applications. There are many good examples of each model 
type that fi t species distribution data well or poorly. Thus, validation or sensitivity 
and uncertainty analysis are an important component of any SDM project. As a 
starting point, however, a transparent and repeatable method is essential when 
using expert knowledge. As we have demonstrated and others have noted, past 
efforts at applying expert knowledge to questions of conservation and manage-
ment were burdened by unstructured approaches and a lack of rigor (Sutherland 
 2006  ) . This is not to say that the AHP or any other method is beyond reproach. 
For a relatively small number of criteria, the AHP is quick and cost-effective to 
administer and the resulting weights are easy to implement as species distribution 
maps. Scores can be presented with a measure of central tendency and variance, 
and can be stratifi ed between expert groups (e.g., local versus non-local). In most 
cases, this method is much more rapid than projects based on empirical species 
distribution data. There are a number of important considerations, however, when 
developing expert-based weights; most importantly, the weights must refl ect the 
relative importance and scale of each criterion with respect to the other criteria 
under consideration (Edwards and Barron  1994  ) . In addition, the choice and range 
of criteria can strongly infl uence the resulting weights and the fi nal model 
predictions.   

    8.5   Experts and SDMs: Guidance for Best Practices 

 We have fi t SDMs to a large number of datasets, using multiple methods for a range 
of species (e.g., Johnson et al.  2004,   2005 ; Hurley et al.  2007 ; Radies et al.  2009  ) . 
In particular, we have taken considerable interest in exploring the methodological 
differences among and the advantages and drawbacks of individual techniques 
(Johnson and Gillingham  2005,   2008 ; Hurley et al.  2009 ; Pullinger and Johnson 
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 2010  ) . Although the ideal outcome from this work would be a general and broadly 
applicable recommendation of one technique, we found none that was optimal for 
all situations. Our conclusion is confi rmed by the growing body of work that has 
demonstrated variable results depending on the context and choice of model (Elith 
and Graham  2009  ) . There are numerous data sources, sampling strategies, and sta-
tistical techniques available to researchers. Each combination of data and technique 
may or may not result in a useful and defensible model. Where the criterion is the 
prediction of an organism’s distribution or habitat, our work suggests that there is 
no inherent advantage to choosing models based on empirical data. Clearly, expert 
knowledge can result in effective SDMs. Furthermore, expert-based projects have a 
number of indirect secondary benefi ts, including engagement of a diverse set of 
experts, knowledge generation, and overall “buy in” from participants tasked with 
the job of applying results and recommendations (Chap.   6    ). 

 Based on our work, we can provide some general guidance for improving the 
practices used to elicit information from experts, thereby leading to more defensible 
SDMs. As a starting point, project teams should develop a set of methods and a 
study design that adhere to the principles of rigor: the elicitation and analysis should 
be well-documented, transparent, and repeatable, and each question used to elicit 
responses should be pre-tested (validated) to ensure that its meaning is unequivocal 
(Chap.   2    ). Experts are human subjects and deserve the same level of methodologi-
cal insight as other plant and animal species. A very simple point that is often 
neglected is the precise defi nition of the nature of expertise. The inference from 
expert-based studies is often criticized as weak because there is no appreciation of 
the knowledge and, ultimately, of the implicit data held by the participants. 
Knowledge can be confused with opinion, further weakening the strength of fi ndings 
from such studies. 

 Methods become more transparent and the study becomes more defensible if the 
researchers develop a rigorous defi nition of expertise and adopt a systematic method 
for identifying study participants. Experts should be selected to participate according 
to a set of criteria, provided those criteria do not reduce the diversity of the knowl-
edge base and thereby bias the results. As we demonstrated, experts may nominate 
other experts. The latter non-random “snowball” approach can confi rm the defi nition 
of expert and potentially avoid researcher bias during the selection process, but is 
not without criticism (Lewis-Beck et al.  2004  ) . 

 After identifying experts and obtaining their participation, the research team 
must choose a method for eliciting and documenting their knowledge. We presented 
the AHP as one method that is applicable to a wide range of research questions and 
applications (Doswald et al.  2007  ) . Others in this book have presented different, but 
equally rigorous approaches that have been applied to the development of SDMs 
(Chap.   5     and Chap.   7    ). Of primary importance is that the method be systematic and 
transparent. This includes a clear and unbiased process for quantifying the weights 
or coeffi cients for the various habitat attributes defi ned by the study participants. 
Our largest criticism of the SDMs developed for the MKMA was the failure to adopt 
a systematic method for populating the rating tables. Such  ad hoc  or subjective 
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approaches do not permit outside review of the process or fi nal results; the ability to 
permit such scrutiny is a hallmark of good science. 

 There is much opportunity and need for secondary investigations of  expert-based 
data. We explored differences in knowledge reported by geographically distinct 
expert groups, but other sources of variance can be considered, such as the num-
ber of years of formal education or professional experience. Although such inves-
tigations have considerable benefi ts, a measure of inter- and intra-group variance 
is only possible if the research team employs confi dential individual-based elici-
tation methods. Focus groups or Delphi approaches will likely smooth out or 
completely eliminate variation in the responses of experts; however, these differ-
ences of opinion often reveal fruitful areas for future research (e.g., to identify the 
factors that led to the differences of opinion). On the other hand, methods designed 
to seek consensus may assist with the implementation of expert knowledge for 
management or conservation because the dialogue process can help participants 
to clarify their reasoning and better understand the perspective of other practitio-
ners (Chap.   6    ). An estimate of variance, however, is normally a requirement when 
reporting any measure of central tendency, such as the mean response. This sim-
ple summary statistic will reveal the degree of confi dence we can place on the 
expert knowledge and can potentially reveal areas of improvement in the elicita-
tion process. 

 The assessment of model performance is the fi nal step in developing an SDM, 
especially where the goal is prediction rather than an explanation of a process. The 
methods for such approaches are extensive and have been reported elsewhere, but 
they all require empirical data (Fielding and Bell  1997 ; Allouche et al.  2006  ) . We 
were fortunate to have such data when fi tting the SDMs described in this chapter. 
Where data are lacking, an independent set of expert knowledge may provide some 
evidence that the elicited information is not idiosyncratic or that predictions gener-
alize to other study areas (Chap.   13    ). Formal uncertainty and sensitivity analyses can 
provide approximate confi dence intervals for model predictions and can reveal 
problematic model parameters. 

 As with any scientifi c endeavor, the choice and development of methods should 
be dictated by the research question or the application of the results, although it will 
also depend on the technical aptitudes of the modelers and of the practitioners who 
must apply the results. Where time and fi nancial resources are not limiting and the 
research team has strong quantitative skills, empirical data and associated methods 
may be appropriate. Alternatively, where time and resources are limited and the 
research team has some experience working with human subjects, an approach 
based on expert knowledge may be preferred. However, as we have demonstrated in 
this chapter, and as others have noted, the need to use expert knowledge is not a 
reason to abandon basic scientifi c principles (Sutherland  2006  ) . Elicitation and data 
extraction must be systematic, transparent, and repeatable, and must produce results 
that can be validated. Analysts must strive for rigor, as we would for any scientifi c 
process. Anything less reduces the certainty and reliability of the fi ndings, creating 
the potential for incorrect inferences and damaging or ineffi cient management or 
conservation decisions.      
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    9.1   Introduction 

 Landscape-scale forest succession models are often used to simulate forest dynamics, 
and the results of these simulations are used to forecast future forest states. Such 
forecasts are frequently the basis for strategic decisions about forest management 
policy and planning. However, large gaps in empirical data stemming from insuf-
fi cient sampling of the landscapes or poorly understood processes often make it 
diffi cult to design and apply the models (Kangas and Leskinen  2005  ) . In conse-
quence, expert knowledge is often used to supplement empirical data during the 
design and application of the models (e.g., Forbis et al.  2006  ) , though its use remains 
mostly implicit or inadequately explained by researchers. 
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 Expert knowledge, like other sources of information, carries a level of uncertainty 
(e.g., O’Hagan et al.  2006 ; Chap.   2    ). Approaches are available to achieve optimal 
forest management decisions despite uncertainty (e.g., Kangas and Kangas  2004  ) , 
but these approaches require an understanding of the origin, degree, and extent of 
the uncertainty. However, in the majority of applications of forest landscape models, 
no attempts were made to quantify the accuracy and uncertainty of the expert knowl-
edge or to describe its other characteristics, such as variability. 

 Expert knowledge can be a valuable source of information for many applications, 
including landscape-level forest succession models (Kangas and Leskinen  2005  ) . 
However, if the uncertainty in expert knowledge is not acknowledged and its charac-
teristics are not assessed, then biases and overconfi dence are likely (Kahneman et al. 
 1982  ) . The full range of possible forest landscape forecasts may not be considered, 
and the reliability of management decisions based on the model’s forecasts will be 
largely unknown. Moreover, not only are the forecasts and decisions made under 
such circumstances uncertain, but also their level of uncertainty is unknown. Since 
well-characterized uncertainties are a prerequisite for optimal decision-making under 
uncertainty (Morgan and Henrion  1990  ) , this lack of knowledge will make it diffi cult 
to achieve optimal decisions. Given the widespread use of expert knowledge in for-
est landscape models and its importance for generating forecasts and supporting 
management decisions (Kangas and Leskinen  2005  ) , a rigorous evaluation of expert 
knowledge must precede applications (Davies and Ruddle  2010  )  to ensure that the 
knowledge is used prudently and effi ciently (Mackinson  2001  ) . 

 We pursue two goals in this chapter. First, we explore the characteristics of expert 
knowledge by investigating its degree of uncertainty, analyzing the possible sources 
of variation in uncertainty, and assessing its veracity by comparing it with empirical 
data. Second, we integrate expert knowledge with empirical data and develop a 
comprehensive body of knowledge of forest succession. We pursue these goals 
using a case study from the boreal forest of Ontario (Canada).  

    9.2   Case Study 

 In boreal Ontario, expert knowledge of forest succession is applied in forest dynamics 
simulations to support the development of forest management policies and plans. 
We evaluated the expert knowledge of forest succession in the forest landscape 
simulation model BFOLDS that is used to develop context for forest management 
planning (Perera et al.  2008  ) . Since extensive details of this study can be found in 
Drescher et al.  (  2006,   2008a,   b  ) , Drescher and Perera  (  2010a,   b  ) , and Drescher et al. 
(Chap.   4    ), here we provide only an overview of the methods. 

 We explored expert knowledge holistically, beyond the simple probability 
estimates provided by experts (e.g., O’Hagan et al.  2006  ) , by investigating the charac-
teristics of their knowledge and analyzing the integrated knowledge space generated 
in combination with empirical data. Central to our approach is the expression of 
expert knowledge and empirical data in equivalent forms (i.e., on an “equal footing”; 
Failing et al.  2007  ) , thereby permitting a direct comparison and a meaningful 
evaluation. The key steps we followed are described in Fig.  9.1 .  



1759 Exploring Expert Knowledge of Forest Succession…

 Forest management in boreal Ontario requires that knowledge of forests and 
forest succession be expressed as forest types and forest-type transitions. Transitions 
among forest types as a result of aging, canopy gaps, and regeneration (i.e.,  natural 
succession ) and regeneration that occurs after stand-replacing wildfi res (i.e.,  post-
fi re succession ) are quantitatively expressed as  succession rules , which indicate 
the proportions of forest stands that are transitioning among the forest types. 
These rules are used to parameterize state-and-transition models such as BFOLDS 
(Perera et al.  2008  ) . 

    9.2.1   Assessment of Uncertainty 

 Knowledge uncertainty may stem from various sources, including insuffi cient 
knowledge about a process, inaccurate measurements, and the stochastic nature of the 
systems being managed (Kangas and Kangas  2004  ) , each of which leads to different 
types of uncertainty. Here, we focused on uncertainty at the level of individual 
experts ( individual  uncertainty) and at the level of groups of experts ( collective  
uncertainty). Individual uncertainty has two dimensions:  Epistemic  uncertainty is 
caused by a lack of knowledge about a process, and  aleatory  uncertainty arises from 
the inherent stochasticity and unpredictability of a process (Haenni  2009 ; Chap.   2    ). 
We addressed epistemic uncertainty through its antonym,  knowledge confi dence , 
which we defined as the degree of trust experts have in their own knowledge. 
We addressed aleatory uncertainty through  knowledge complexity , which we defi ned 
as unexplained variation in successional processes caused by stochastic factors. 

Collect empirical
data

Elicit expert
knowledge

Knowledge
sources

Knowledge
evaluation

Test
hypothesis

Explore knowledge
space

Integrate knowledge
sources

Formulate hypothesis
based on expert knowledge

Quantify knowledge
uncertainty

Evaluate knowledge
uncertainty

Knowledge
integration

  Fig. 9.1    The steps used to evaluate and test expert knowledge and integrate it with empirical 
observations       
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We chose a single dimension for collective uncertainty, namely the  among-expert 
variability.  This variability is based on the number of experts who disagreed about 
a given succession rule, and is similar to the concept of “source confl ict” (after Smithson 
 1999  ) , which occurs when equally credible sources contradict one another. 

 We derived two more components of knowledge uncertainty: individual knowl-
edge uncertainty (a linear combination of individual knowledge confi dence and 
individual knowledge complexity), and composite knowledge uncertainty (a linear 
combination of individual knowledge uncertainty and among-expert variability). 
We enlisted experts (see Chap.   4    , for methods of expert recruitment and expert 
characteristics) who resided in two administrative regions of boreal Ontario: the 
Northeast and Northwest regions. In Northeast Region, the experts opted for a group 
consensus approach rather than an individual knowledge-elicitation approach (see 
Chap.   4    , for further discussion of the difference). For this region, knowledge confi -
dence and complexity were group-based, so we could not derive the among-expert 
variation and composite uncertainty. 

 To elicit expert knowledge, we asked the experts to generate succession rules 
(ca. 40 natural succession rules, ca. 40 postfi re establishment rules) for various forest 
types under a variety of environmental conditions. First, experts reviewed examples 
of existing succession rules. Second, prompted by these examples, they predicted 
appropriate transitions between forest types and estimated the proportions of forests 
that transitioned to a different type. For each of these rules, the experts self-assessed 
their level of confi dence in their knowledge and the complexity of the knowledge 
using three ranks (low, medium, and high). To investigate variation in the degree of 
uncertainty, we grouped knowledge confi dence, complexity, and among-expert 
variability by succession process (i.e., postfi re establishment versus natural suc-
cession) and examined the distributions for each group. We also examined the 
potential sources of uncertainty by investigating the associations between the uncertainty 
characteristics (knowledge confi dence, complexity, and among-expert variability) 
and the forest characteristics and environmental conditions using Theil’s  U  coeffi -
cient (Theil  1972  ) . Theil’s  U  is a measure of the nominal degree of association 
between two parameters, and ranges from 0 to 1, where 0 indicates independence 
and 1 indicates a perfect monotonic relationship. The forest characteristics we used 
in this comparison were the species composition and dominant leaf type (broadleaved, 
mixed, or coniferous), and the environmental conditions were moisture regime (dry, 
mesic, wet, or saturated) and nutrient regime (poor, mesotrophic, rich, or organic).  

    9.2.2   Distribution of Uncertainty and Association 
with Explanatory Factors 

 The patterns of association differed between transition types and between regions. 
In the Northwest Region (Fig.  9.2 ), the among-expert variability for postfi re estab-
lishment rules was signifi cantly associated with forest type and leaf type, but not 
with environmental conditions (Table  9.1 ). Among-expert variability was high for 
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mixed forests, low for broadleaved forests, and very low for coniferous forests. 
For the natural succession rules, confi dence, complexity, and among-expert 
variability were not signifi cantly associated with forest characteristics or environ-
mental conditions.   

 In the Northeast Region of Ontario, expert knowledge confi dence for postfi re 
establishment and natural succession was associated with forest type, but not with 
leaf type or environmental conditions (Fig.  9.3 ; Table  9.1 ). Confi dence was lower 
for forests with mixed composition than for forests dominated by a single species. 
Knowledge confi dence for postfi re establishment was not signifi cantly associated 
with forest characteristics or environmental conditions. However, knowledge 
complexity for natural succession was signifi cantly associated with all forest 
characteristics and environmental conditions. Overall, knowledge complexity was 
considered to be lower for forests dominated by a single species and for coniferous 
forests, but was higher for mixed species and broadleaved forests. Knowledge complex-
ity of natural succession was also lower under more extreme environmental condi-
tions (e.g., oligotrophic) than under more moderate conditions (e.g., mesotrophic).  

 The overall distributions of confi dence and complexity levels were similar in 
both regions: successional processes were mainly associated with medium confi dence, 
though with a slight tendency toward higher confi dence in the Northeast Region 
(for natural succession,   c   2  = 10.522, df = 2,  p  = 0.005; for postfi re establishment, 
  c   2  = 14.676, df = 2,  p  = 0.001). At the same time, successional processes were mainly 
associated with medium complexity, though with a slight tendency toward lower 
complexity in the Northeast Region (for natural succession,   c   2  = 6.164, df = 2, 

  Fig. 9.2    Distribution of the components of expert knowledge uncertainty for postfi re establish-
ment and natural succession in the Northwest Region of Ontario: ( a ) individual knowledge confi -
dence, ( b ) individual knowledge complexity, ( c ) individual uncertainty, ( d ) collective (among-expert) 
uncertainty, and ( e ) composite (individual plus collective) uncertainty       
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 p  = 0.046; for postfi re establishment,   c   2  = 1.421, df = 2,  p  = 0.491). However, the dis-
tribution of uncertainty differed strongly between regions (for natural succession, 
  c   2  = 16.039, df = 2,  p  < 0.001; for postfi re establishment,   c   2  = 10.522, df = 2,  p  = 0.005). 
In the Northwest Region, individual uncertainty was high. In contrast, group uncer-
tainty in the Northeast Region was bimodal, with a clear split between low and high 
levels of uncertainty. The reasons for this difference are not immediately evident. 
However, according to the experts, the two regions differ in their broad-scale spatial 
complexity. Although experts in the Northwest Region differentiate among dozens 
of ecologically different forest zones, those in the Northeast Region differentiate 
between just two zones. Of course, broad-scale complexity of forests is different 
from stand-scale complexity, which is the scale for which we elicited expert knowl-
edge. However, the reported differences in broad-scale complexity between regions 
might nevertheless indicate general differences in the perception of expert knowl-
edge at a variety of scales. 

 Among-expert variability differed between the two succession processes: it was 
mainly very low for postfi re establishment and high for natural succession. This 
led to differences in composite uncertainty, which were medium to high for postfi re 
establishment but high for natural succession (  c   2  = 9.060, df = 2,  p  = 0.011). The 
combination of high individual uncertainty with low collective uncertainty for 
postfi re establishment might stem from experts using a common but less reliable 
information source. In other words, individual experts might be less certain about 
their knowledge, but because they share the same knowledge source, they may all 
agree and appear more certain as a group. 

 A recurring pattern was the association between the components of uncertainty 
and forest characteristics. We hypothesize that this association might be the result 
of differences among forest types, since mixed forest types typically contain a larger 
number of species than coniferous and broadleaved forests. Therefore, mixed 
forests may have more diversity of possible succession trajectories than other forests. 
This may lead to lower confi dence, higher complexity, and higher among-expert 
variability, which may increase uncertainty. 

 Signifi cant associations of components of uncertainty with environmental conditions 
were less frequent. However, the level of knowledge complexity was associated 

  Fig. 9.3    Distribution of the components of expert knowledge uncertainty for postfi re establishment 
and natural succession in the Northeast Region of Ontario: ( a ) group knowledge confi dence, ( b ) group 
knowledge complexity, and ( c ) group uncertainty       
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with nutrient and moisture regimes, and was lowest for extremes in environmental 
conditions (e.g., wet, organic). We hypothesize that experts perceive successional 
dynamics under extreme environmental conditions as less diverse, resulting in lower 
levels of uncertainty. The stronger association of components of uncertainty with 
forest characteristics than with environmental characteristics may be due to perception 
bias by experts. We hypothesize that forest characteristics are easier to observe than 
environmental conditions and may therefore subconsciously lead to an overemphasis 
of their effects. 

 Our characterization of the expert knowledge space extends beyond  what  experts 
know to include  how well  they think they know it and  why  their knowledge may 
vary among experts. These fi ndings can be used as the basis for general hypotheses 
about expert knowledge and to permit predictions about knowledge that has not yet 
been elicited. We hypothesize that uncertainty will be higher under conditions that 
lead to a greater diversity of successional trajectories, for example, when forests are 
species-rich or when environmental control over successional trajectories is weak.  

    9.2.3   Expert Knowledge as Hypotheses and Their Comparison 
with Empirical Data 

 We inspected the accuracy of expert knowledge of forest succession by comparing 
it with empirical observations; that is, we treated the elicited expert knowledge as 
hypotheses and tested them against empirical data. For such a test, both expert 
knowledge and empirical data must be expressed in an equivalent format, and 
the most appropriate format depends on the ecological unit of interest. Forest suc-
cession at the landscape level encompasses numerous interacting forest types and 
many successional trajectories that may be nonlinear and stochastic rather than linear 
and deterministic. Focusing on forest succession only as a bilateral process involving 
two forest types captures neither the complexity of this network of interactions nor 
the indirect successional effects when more than two forest types are sequentially 
connected. Capturing forest succession only at the lower level of individual forest 
types would therefore not adequately represent forest succession knowledge at the 
landscape level, which comprises all forest types and their interactions. Instead, it makes 
sense to express forest succession at a higher level, as a probabilistic network in which 
the successional transitions among all forest types are considered simultaneously. 

 Such a  forest succession network  represents succession at the entire landscape 
level. Because such a network is modular – consisting of simple building blocks of 
individual forest types and their bilateral interactions – it can be easily constructed 
from the existing, lower-level expert knowledge and empirical observations. Forest 
succession networks are ideally suited to integrate individual pieces of knowledge 
into a coherent whole and to represent it at the higher landscape level. Therefore, we 
chose forest succession networks as the format in which to express expert knowledge 
of succession as quantitative hypotheses. 
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 We used concepts from graph theory (Harary  1969  )  to structurally describe and 
compare forest succession networks. The basic idea is to depict networks as graphs, 
consisting of  nodes  and  edges  that represent forest types and succession pathways, 
respectively. Because succession is directional, the edges between nodes have a 
direction, and because succession occurs with a certain probability, edges have 
weights, which represent the probability of succession. 

 An analysis of the degree distribution, which represents the number of edges 
entering and leaving each node, can be used to describe the network’s structure. The 
number of edges entering a node is called its  in-degree , and the number of edges 
leaving a node is called its  out-degree . The sum of in- and out-degrees is the  total 
degree , and indicates the overall level of connectedness of a forest type within the 
network. We compared expert depictions of forest succession networks with empirical 
descriptions of these networks by comparing their degree values (the in-, out-, and 
total degrees and their corresponding means and standard deviations). A positive 
difference (empirical minus expert) indicates a lower degree value for the expert 
network, whereas a negative difference indicates a higher degree value for the 
expert network. 

 The expert knowledge hypotheses were tested against empirical observations of 
forest succession based on data from forest inventory plots and forest inventory 
maps. Both the plots and the maps provided stand-scale information about the 
canopy composition and age. Using information about stand location and the year 
of observation, we identifi ed repeated observations of individual stands and arranged 
them into several thousand time-series of canopy composition, stratifi ed by forest 
zone. Based on these time series, we estimated the empirical probabilities of natural 
succession among forest types and connected them into forest succession networks 
using the same format that we used for expert knowledge. We tested expert knowledge 
hypotheses for seven forest zones. For each of these zones, we compared a zone-
specifi c forest succession network based on expert knowledge with a zone-specifi c 
forest succession network based on the empirical observations.  

    9.2.4   Similarity of Expert Knowledge of Forest Succession 
and Empirical Data 

 Our analysis of the degree distribution produced many detailed results, so we have 
focused our discussion here on the results for a single representative forest zone 
surrounding Lake Nipigon, which is north of Lake Superior. For results from the 
remaining six forest zones, see Drescher et al.  (  2008a  )  and Drescher and Perera 
 (  2010b  ) . The graphs of the expert and empirical forest succession networks (Fig.  9.4 ) 
appear visually similar: successional transitions in both networks move mainly from 
broadleaved forest types to mixed and coniferous forest types, with some succes-
sional pathways that occur exclusively among coniferous forest types.  
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 However, our degree analysis indicated that the expert network was relatively 
simple, with low in-degrees (mean = 1.4) that showed only moderate variation (SD = 1.5) 
among forest types (Table  9.2 ). The out-degrees were also generally low (mean in- and 
out-degrees are always identical) and were similar among forest types (SD = 0.7). 
As was the case for the in-degrees, the total degrees showed moderate variation. 
They were generally low for broadleaved forest types, high for mixed forest types, 
and variable for coniferous forest types. The empirical network, on the other hand, 
was more complex (Table  9.2 ): the in- and out-degrees were higher than for the 
expert network (mean = 2.6), the in-degrees varied strongly among forest types 
(SD = 2.8), the out-degrees showed moderate variation among forest types (SD = 1.1), 
and the total degrees varied strongly among forest types (SD = 3.4) and were generally 
high for mixed forest types and either high or low for broadleaved and coniferous 
forest types.  

 The results of the degree analysis can be used to compare the two networks 
(Table  9.3 ). For most forest types, the degree differences between the expert and 
empirical networks indicated that the forest types in the expert network were less 
strongly connected than those in the empirical network. In-degree differences 
occasionally indicated higher connectedness for forest types in the expert networks, 
but out-degree differences did so only once. Degree differences were mostly positive 
for broadleaved and mixed forest types, suggesting lower connectedness for these 
forest types in the expert network. For coniferous forest types, degree differences 
often indicated higher connectedness in the expert network. Overall, the expert network 
was more uniform than the empirical network, as indicated by lower variation in all 
of the degree values.   

  Fig. 9.4    Forest succession networks for the forests surrounding Lake Nipigon, Ontario, based on 
expert knowledge and empirical observations of forest succession.  Dots  indicate forest types, 
 arrows  indicate the direction of succession, and  broken circles  indicate self-replacement (i.e., no 
change in stand type). Forest types (broadleaved, BRD1–BRD3; mixed, MIX1 and MIX2; conifer-
ous, CON1–CON5) were arranged based on their relative conifer content and shade-tolerance and 
their arrangement is only for illustrative purposes       
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    9.2.5   Testing of Expert Knowledge of Forest Succession 
with Empirical Data 

 We tested the expert knowledge hypotheses by quantifying the level of similarity 
between the expert and empirical forest succession networks. We also wanted to 
investigate whether discrepancies between the two networks were mainly attributable 
to differences in their general structure or to differences in specifi c succession prob-
abilities. Therefore, to test the similarity in the network structures and in the exact 
succession probabilities, we expressed the networks in binary form (i.e., with all 
edge weights set to one) and in probabilistic form (with each edge weight set to its 
exact probability), respectively. Using the empirical network as the reference point, 
the signifi cance of the similarity between the two networks indicates the degree of 
support for or contradiction of the expert hypothesis. 

 We calculated the similarity between the expert and empirical networks using 
Pearson’s product-moment correlation for networks ( r ). We tested the signifi cance 
of this similarity by comparing it to a reference distribution of similarities between 
randomly created networks and the empirical networks using a Monte Carlo 
approach with 10,000 repetitions. The results suggested limited similarity between 
the expert and empirical forest succession networks, though the level of similarity 
depended on the network type: In binary form, the expert and empirical forest suc-
cession networks were not signifi cantly similar ( r  = 0.10;  p  ≥ 0.05), but in probabilis-
tic form, the two networks had low but signifi cant similarity ( r  = 0.23;  p   <  0.05). This 
indicates that the expert and empirical networks differed in their general structure, 
and this difference was tempered by expression of forest succession in specifi c 
probabilities. 

 The main differences between the expert knowledge and empirical data were that 
(1) the empirical data showed that broadleaved and mixed forest types were linked 
to a larger number of other forest types than was suggested by expert knowledge, 
indicating a larger potential for variation in successional direction. (2) The empiri-
cal data indicated that forest types varied strongly in their centrality within the net-
work, meaning that some forest types were much more important parts of 
successional pathways than other forest types. Expert knowledge, however, sug-
gested low variation in the centrality of the forest types, meaning that most forest 
types had similar successional importance. (3) The empirical data suggested the 
presence of many successional pathways that occurred with low probability, whereas 
expert knowledge only indicated pathways with a similarly high probability. 

 Our empirical results did not strongly support the expert hypotheses. However, 
rather than discarding these hypotheses entirely, specifi c components of the hypoth-
eses that were supported by the empirical data, such as particular successional transi-
tions or groups of transitions, could be preserved whereas the components that 
received little or no support could be replaced by predictions based on empirical data. 
The resulting mosaic of expert knowledge and empirical data could then be tested 
using newly collected empirical data to support or refute the resulting predictions and 
lead researchers toward the best possible description of forest succession. 
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 We can also interpret our results as indicating more general patterns of deviation 
between expert knowledge and empirical results. The empirical data indicated 
considerable diversity in forest succession at various levels, as evidenced by the 
large number of possible successional pathways, large variation in importance for 
landscape-level succession among forest types, and identifi cation of many infrequent 
successional pathways. This diversity implies large variety in forest successional 
dynamics and limited predictability of future landscape forest states. Expert knowledge, 
on the other hand, points toward less diversity in forest succession, leading to lower 
diversity and higher predictability of future landscape forest states. 

 Though we did not explicitly investigate the reasons for the differences between 
expert knowledge and the empirical data, we suggest the following possible causes: 
Individual practical experience, which forms the backbone of expert knowledge, is 
limited by the spatial and temporal scales of each expert’s personal observations 
(Fazey et al.  2006  ) . Though experts may know a great deal about forest succession, 
their knowledge of the full range of successional transitions might be limited. Our 
empirical data, however, were collected over spatial and temporal scales that surpass 
the levels of personal experience. The empirical data might therefore capture a 
larger range of successional transitions, and this may explain the larger diversity of 
successional pathways found in the empirical data than in the expert knowledge. If 
this is true, then the reliable use of expert knowledge would depend on careful 
matching of the temporal and spatial scales of the expert knowledge with the scales 
of the application of this knowledge. 

 Another explanation may be that experts misjudged the frequency of certain succes-
sional transitions. Developing expertise involves continuous gathering of new experience 
and self-refl ection about that experience (Fazey et al.  2006  ) . This process, however, 
can be hindered by judgmental biases – what Sterman  (  1994  )  referred to as “anchoring.” 
Given the dominance of some forest types and their successional transitions, experts 
may have inadvertently overemphasized these types and transitions and ignored 
infrequent ones. This may explain the difference in low-frequency successional 
transitions between the expert knowledge and empirical data. 

 Other approaches could be used to compare expert knowledge and empirical 
observations, with different levels of mathematical sophistication and consideration 
of different kinds of information (e.g., Kangas and Kangas  2004 ; Diaz-Balteiro and 
Romero  2008  ) . For example, instead of rejecting components of expert knowledge 
that were not supported by empirical data, a Bayesian perspective could be adopted. 
Following this view, a hypothesis would not be falsifi ed but instead, its degree of 
belief would be adapted and updated based on the empirical data (Chap.   5    ). 
Alternatively, information from both sources could be combined based on evidence 
theory (Kangas and Kangas  2004  ) . This differs from Bayesian probability theory in 
that evidence theory does not consider the degree of support as a classical probability 
(e.g., probabilities of mutually exclusive events do not need to add up to 1.0). 
Nevertheless, based on belief and plausibility, evidence theory can defi ne the proba-
bilities of events. Either of these approaches differs from the mosaic of expert 
knowledge and empirical data that we suggested in this study, since the  mosaic  
makes it possible to identify the components that stem from expert knowledge and 
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those that stem from empirical data. In the  update  approaches based on Bayesian or 
evidence theory, expert knowledge and empirical data are combined, thereby losing 
the distinction between the two sources.   

    9.3   Conclusions 

 This assessment of expert knowledge uncertainty and accuracy provided useful 
insights:

    1.    Uncertainty is lower when abiotic control of successional dynamics is strong, 
such as under extreme environmental conditions.  

    2.    Uncertainty is higher when the range of possible successional pathways increases, 
as in the case of mixed forest types.  

    3.    Experts may have a simpler view of forest succession than what is empirically 
observed.  

    4.    Experts may overlook rare events in forest succession.  
    5.    In some aspects of forest succession, expert knowledge was similar to empirical 

data (e.g., succession of coniferous forest types), and in others, empirical data 
contradicted expert predictions (e.g., succession of broadleaved and mixed forest 
types).     

 The integration of expert knowledge with empirical data helped to quantify the 
patterns of forest succession and develop hypotheses at two hierarchical levels (low, 
at the level of forest types; high, at the forest landscape level), and under a range of 
soil nutrient and moisture regimes. Disagreements between expert knowledge and 
the empirical data point toward knowledge gaps and areas of limited knowledge 
certainty that can be points of departure for future research on forest succession. 
Because the body of knowledge investigated in this case study is now explicitly 
known, including its uncertainties, more judicious application of this knowledge is 
possible in forest landscape models, and this will lead to better-defi ned levels of 
confi dence in forecasts of future forest landscapes. 

 Finally, we recommend that the method of integrating knowledge sources be 
quantitative, rigorous, and fl exible enough to accommodate information that may 
differ in spatial or temporal scale, level of detail, and type of expression. Such an 
integrated body of knowledge, with known veracity, uncertainties, and gaps, will 
improve the reliability of applications, which otherwise rely on expert knowledge as 
ad hoc supplements or complements to a purely empirical body of information.      
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    10.1   Introduction 

 Sustainable forest management (SFM) recognizes that the spatial and temporal 
patterns generated at different scales by natural landscape and stand dynamics 
processes should serve as a guide for managing the forest within its range of natural 
variability (Landres et al.  1999 ; Gauthier et al.  2008  ) . Landscape simulation 
modeling is a powerful tool that can help encompass such complexity and support 
SFM planning (Messier et al.  2003  ) . Forecasting the complex behaviors of a forested 
landscape involving patterns and processes that interact at multiple temporal and 
spatial scales poses signifi cant challenges (Gunderson and Holling  2002  ) . Empirical 
evidence for the functioning of key elements, such as succession and disturbance 
regimes, is crucial for model parameterization (Mladenoff  2004  ) . However, reliable 
empirical data about the forest vegetation dynamics that arise in response to forest 
management and other disturbances may be scarce, particularly in remote areas 
where harvesting activity has been historically limited. 

 Expert knowledge-based (EKB) modeling is receiving more attention as a 
companion approach to empirical modeling, and attempts are now being made to 
formalize the process of eliciting and including expert knowledge during the 
development of decision-support systems (Johnson and Gillingham  2005 ; Murray 
et al.  2009 ; Chap.   3    ; and Chap.   4    ). Forestry experts with local knowledge collec-
tively have considerable knowledge about forest succession and disturbance. Such 
collective knowledge can contribute greatly to our understanding of the vegeta-
tion transitions within a landscape that are so critical for informed SFM planning 
(Drescher et al.  2008  ) . 

 Eliciting scientifi cally precise information from the collective knowledge of a 
group of experts remains a signifi cant challenge. However, rigorous expression of 
latent knowledge that can be incorporated into an expert model can be achieved 
using a structured information-mining procedure. By examining convergent and 
divergent expert opinions about specifi c forest dynamics questions, researchers can 
obtain insights into uncertainties, knowledge gaps, and where complexity lies 
(Drescher et al.  2008  ) . Comparisons between EKB models and other knowledge 
sources can offer a more comprehensive examination of the potential bias underlying 
each technique, and can reveal uncertainty and knowledge ambiguity that will suggest 
logical avenues for additional research and monitoring to support SFM planning. 
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Recognizing knowledge ambiguity is particularly important in natural resource 
planning because it lets planners assess the degree of uncertainty in the outcomes of 
various management options (Drescher and Perera  2010a  ) . 

 In this chapter, we compare and contrast postdisturbance (fi re and clearcut 
harvesting) vegetation transition probabilities (including the regeneration delay) 
based on knowledge derived from local experts in central Labrador with analogous 
information derived from a process-based landscape-dynamics model (LANDIS-II) 
that has been parameterized for the same area by scientists with expertise in boreal 
forests outside of Labrador. Expert self-assessment of their degree of uncertainty, 
combined with our analysis of similarities and differences among expert opinions 
and the relative agreement between the EKB model and LANDIS-II, can reveal the 
magnitude of the knowledge ambiguity.  

    10.2   Methods 

    10.2.1   Study Area 

 The study area is a 1.9 million ha forest management district (District 19a) in 
south-central Labrador (52°18 ¢ –54°0 ¢  N, 62°05 ¢ –59°11 ¢  W; Fig.  10.1 ) located at the 
transition between the closed-canopy boreal forest and the open-canopy taiga 
(Bajzak  1973 ; Bajzak and Roberts  1984  ) . The central valley in District 19a contains 
the majority of Labrador’s boreal forests, which are dominated by black spruce 
( Picea mariana ) and balsam fi r ( Abies balsamea ) (Foster  1984 ; Forsyth et al.  2003  ) . 
Spruce–fi r stands are embedded within a diverse mosaic of open sphagnum forest, 
lichen woodlands, mixed hardwoods ( Betula  spp.,  Populus  spp.), black spruce bogs 
(with  Larix laricina ), lakes, and open wetlands. The topography is characterized by 
a moderate relief underlain by the bedrock geology of the Grenville formation, 
which is covered by glacial moraines and drumlins that support mostly podzols and 
gleysols (Batterson and Liverman  1995 ; Roberts et al.  2006  ) . The climate is primarily 
continental, though it is moderated by the presence of Lake Melville, with long 
harsh winters, heavy snow accumulation, and annual precipitation ranging between 
900 and 1,100 mm (Roberts et al.  2006  ) . Fire is the dominant natural disturbance 
(Foster  1983  )  in Labrador.  

 The forestry potential of the region is impeded by slow growth of the forest 
(mean increment <1.0 m 3 /ha/year), a long regeneration delay (sometimes lasting 
many decades), and conversion of productive forest into nonproductive forest after 
disturbance (Mallik  2003 ; Simon and Schwab  2005a,   b  ) . Some empirical studies 
have examined the response to different disturbances – for wildfi re, Foster  (  1985  ) , 
Foster and King  (  1986  ) , and Simon and Schwab  (  2005a,   b  ) ; for clearcutting, Simon 
and Schwab  (  2005a  )  and Elson et al.  (  2007  ) . However, no studies have examined 
the mid- and long-term dynamics following disturbances (Roberts et al.  2006  ) . 



192 F. Doyon et al.

Although commercial harvesting has been limited in the district, a new forest management 
plan designed to stimulate economic growth and balance cultural and ecological 
values was recently approved (Forsyth et al.  2003  ) . As clearcutting has been the 
only silvicultural system used in Labrador up to now, and will be according to 
the FM plan, expert knowledge was limited to this treatment.  

    10.2.2   Analytical Approach 

 We conducted two parallel analytical procedures for building succession models: 
the fi rst (the EKB model) was based on expert knowledge, and the second used 
LANDIS-II, a well-established process-based succession model. Both approaches 
let us compare the predictions for postdisturbance succession, including transition 
probabilities, regeneration delays, and conversion of productive forest into nonpro-
ductive forest, and let us assess the uncertainty and level of agreement or disagree-
ment among the experts and between the experts and LANDIS-II (Fig.  10.2 ).   

  Fig. 10.1    The location of Forest Management District 19a in Central Labrador (Canada) straddles 
a major ecotone between closed-canopy boreal forest and open-canopy taiga systems       
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    10.2.3   Estimating Vegetation Transition Probabilities 
Using Expert Opinion 

    10.2.3.1   Forest Units 

 The forest units were based on the Newfoundland and Labrador Department of 
Forestry stand-level inventory, in which forest units are defi ned by the combination 
of ecological region, site quality class, and forest type. Two broad ecological regions 
were defi ned (the High Boreal ecozone and the Low and Mid-Subarctic ecozone; 
Wiken  1986  ) , each of which covered about half of District 19a. Of the two, the 
High Boreal ecozone is warmer and more productive. At fi ner (i.e., stand) spatial 
scales, forest productivity was classifi ed into three site quality levels (good, medium, 
and poor). The forest types were pure balsam fi r (Bf), balsam fi r–black spruce 
(BfBs, with balsam fi r dominant), black spruce–balsam fi r (BsBf, with black spruce 
dominant), pure black spruce (Bs), softwood-dominated mixedwood (SwHw), 
hardwood-dominated mixedwood (HwSw), and pure hardwood (Hw). We restricted 
our modeling exercise to the 16 most prominent forest units (ten in the High Boreal 
ecozone and six in the Subarctic ecozone), which covered 95.4% of the forested 
landscape. In Labrador, a nonregenerated state can persist for decades after disturbance 

  Fig. 10.2    Flowchart illustrating the process underlying the parallel development of vegetation 
transition matrices based on expert opinion ( left ) and the LANDIS-II model ( right )       
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(Simon and Schwab  2005a  ) . To allow the experts to express such dynamics in the 
District 19a landscape, we added a nonproductive forest (NF) type as a possible 
vegetation state.  

    10.2.3.2   Postdisturbance Transition Probabilities 

 Experts assessed two different postfi re situations: one in which the fi re occurred 
during a sexually immature (nonseed-producing) stage and one during a sexually 
mature (seed-producing) stage. Only stand-replacing disturbances were considered. 
We assumed that harvesting occurred only when a stand was mature and capable of 
producing seed. Postharvest replanting is almost absent in Labrador, so we assumed 
in the model that no planting occurred. Vegetation transitions were defi ned for each 
selected forest unit after the two fi re disturbance situations and after clearcutting by 
assigning a probability that each unit would develop into a given postdisturbance 
forest type (16 forest units × 3 disturbance types = 48 transitions). The experts 
(described in Sect.  10.2.3.4 ) identifi ed two different transitions (potential postdis-
turbance forest types) for each disturbed forest unit. We provided no formal details 
of the disturbance size or shape, or of the residual forests surrounding the disturbed 
forest units; experts therefore had to assume that each unit had average conditions 
for the District 19a landscape.  

    10.2.3.3   Regeneration Delay 

 The postdisturbance regeneration delay and conversion of productive forest into 
nonproductive forest, which are believed to be important phenomena in this region 
(Bajzak  1973 ; Bajzak and Roberts  1984 ; Simon and Schwab  2005a  ) , were also 
estimated by the experts. Regeneration delay was defi ned as the time following a 
disturbance that was required before the stand had suffi cient regeneration to develop 
into a future merchantable stand. Experts were instructed to defi ne the regeneration 
delay associated with a vegetation transition in 5-year classes. A regeneration delay 
of 60 years or more was defi ned as effectively “permanent” in terms of future SFM 
planning purposes, and was then considered to represent a conversion from productive 
forest into nonproductive forest (the NF type).  

    10.2.3.4   Workshop Procedures 

 Making expert knowledge explicit requires the use of an elicitation method that can 
help experts communicate their tacit knowledge in explicit terms (Ford and Sterman 
 1998  ) . For this exercise, we used simultaneous interviews of several experts to elicit 
their knowledge of the forest vegetation dynamics of the study area during a 2-day 
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workshop (similar to Drescher et al.  2006  ) . The experts who we invited to the workshop 
were defi ned as individuals with a minimum of 10 years of local expertise in 
forestry or natural resource management. Seven experts participated, all of whom 
had a college degree in natural resources or in environmental education; they 
represented a combined total of 121 years of forest-related experience. Two-thirds 
of this experience was acquired in Labrador, primarily as part of their professional 
work and secondarily through other outdoor activities. On average, the experts spent 
34.5 days in the field each year. All were familiar with the concept of forest 
succession and with the processes underlying forest dynamics, as well as with the 
autecology of Labrador’s forest species. One aboriginal expert, in addition to 
contributing traditional Innu knowledge, also had conventional Western training. 
We used cross-validation of peer-recognized expertise among the individuals to 
ensure that we had successfully selected true experts. 

 The workshop was organized in three phases. In Phase I, the experts reviewed the 
workshop procedures, the defi nitions of terms, and local scientifi c studies on forest 
ecology and dynamics. In Phase II, they assigned vegetation transition probabilities 
to the different vegetation types in response to disturbance, as outlined by a work-
book provided by the workshop coordinator (Doyon). In Phase III, the experts 
described their expertise in forestry, forest ecology, and succession via a question-
naire that determined the kinds of activities they had engaged in (professional, 
educational, academic, or nonprofessional) and the number of years of experience 
in each area.  

    10.2.3.5   Self-Assessment of Uncertainty 

 Uncertainty about an expert’s opinion of any given transition probability arises from 
two components: the expert’s degree of confi dence in their knowledge and the 
perceived uncertainty (variability) in the system (Drescher et al.  2008  ) . Confi dence 
refl ects the expert’s knowledge, experience, and background, specifi cally with 
respect to the succession transition being assessed. System variability refl ects the 
natural stochasticity of conditions that infl uence the processes involved in any 
given transition. Experts had to jointly evaluate these two components to “qualify” 
the level (low = 1, moderate = 2, and high = 3) of uncertainty in their opinion. This 
self-assessment was accomplished for all postdisturbance vegetation transitions, 
and included the step in which they estimated the regeneration delay.  

    10.2.3.6   The EKB Succession Model 

 Vegetation transition probabilities were calculated by averaging the estimates provided 
by all of the experts. Probabilities were then assembled into a vegetation transition 
matrix organized by disturbance type versus forest type, and further stratifi ed by 
ecological region and site quality.   
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    10.2.4   Deriving Vegetation Transition Probabilities 
from LANDIS-II 

    10.2.4.1   Overview and Parameterization 

 LANDIS-II is a process-based, spatially dynamic model of forest succession and 
disturbance in which the landscape is represented as a grid of interacting cells 
(Scheller et al.  2007 ;   http://www.landis-ii.org    ). Cells have homogeneous light 
environments and are aggregated into “land types” with similar environmental 
conditions. In this study, the land types were defi ned based on the same ecological 
regions and forest site quality classes that we used to stratify forest units within the 
EKB succession model. Forest composition at the cell level was represented as 
age cohorts of individual tree species that interact via a suite of vital attributes 
(i.e., shade tolerance, fi re tolerance, seed dispersal, ability to sprout vegetatively, 
and longevity) to produce nondeterministic successional pathways that are sensitive 
to disturbance type and severity. 

 We applied version 2 of the Biomass Succession extension (Scheller and 
Mladenoff  2004  ) , which calculates competition among cohorts and their respective 
aboveground dynamics. We modifi ed this extension to explicitly simulate the light 
environment that would affect species establishment and to better capture the 
light gradient from open- to closed-canopy forests in central Labrador. Tree species 
cohorts become established on new sites in the model based on a spatially explicit 
algorithm for seed dispersal (Ward et al.  2005  )  and based on establishment proba-
bilities specifi c to each land type. The latter probabilities were estimated based on 
two soil properties (texture and available nitrogen) and two climate parameters 
(temperature and precipitation). Initial conditions were defi ned by assigning 
inventory sample plots to cells stratifi ed by forest type, age class, and site quality 
class using a combination of classifi ed satellite imagery, stand inventory data, and 
records of disturbance history. Tree species biomass information was translated 
into the standard fuel types (Forestry Canada Fire Danger Group  1992  )  used by ver-
sion 1.0 of the Dynamic Fire extension to estimate fi re spread rates, burn patterns, 
and resulting tree cohort mortality (Sturtevant et al.  2009  ) . Timber harvesting was 
simulated using version 1.0 of the Harvest extension (Gustafson et al.  2000  ) . We 
assumed that young (10-year-old) cohorts of balsam fi r survived the clearcutting 
disturbance as advance regeneration. Each process was simulated using a 10-year 
time step and a 1-ha cell size.  

    10.2.4.2   Converting LANDIS-II Output into Vegetation Transition Matrices 

 Three 250-year simulations were run with LANDIS-II and the outputs were sum-
marized by decade. Species cohort information from the simulations was converted 
into forest types and 20-year age classes using the rules for defi ning stand types in 
the Temporary Sample Plot Program (Newfoundland Forest  1995  ) , but with biomass 
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substituted for basal area. Sites with total biomass values (ignoring shrubs) that 
were less than the stocking threshold of 39.34 Mg/ha (i.e., the minimum value 
recorded within the District 19a stand inventory) were assigned to the NF type. 
We used the time since the last disturbance to assign the stand age class, and for 
each disturbance type, we recorded the forest types before the disturbance and for 
each decade of a 60-year period following the disturbance. Postfi re observations 
were restricted to those cells that experienced a stand-replacing fi re, which would 
result in a biomass less than the minimum stocking threshold. We applied a 
threshold age of 30 years for all forest types to distinguish fi re disturbances that 
occurred within seed-producing (>30 years) versus nonseed producing (<30 years) 
situations. Postdisturbance transition probabilities 60 years after the disturbance 
were used for comparison with the transition matrix produced by the expert panel. 
The postdisturbance regeneration delay was estimated by recording the time after 
disturbance required for at least 75% of the cells to switch from an NF type to a 
given forest type based on the minimum stocking threshold. Cells that were still 
classifi ed as NF after 60 years were considered to indicate a conversion from 
productive forest into nonproductive forest.   

    10.2.5   Data Analysis 

 We quantifi ed the extent of the agreement both among the experts and between 
the EKB and LANDIS-II models using Pearson’s correlation coeffi cient of the 
probability value for all pairwise transitions between forest types before and 
after disturbance. Correlations were computed for all transitions together, then by 
ecological region, by site quality class, by disturbance type, and by forest types 
before disturbance. Nonsignifi cant correlations were considered to represent 
disagreement between the sources of knowledge. An expert involved in many (more 
than half) nonsignifi cant correlations was considered an outlier of the group, and 
was excluded for the comparison analysis between the EKB and LANDIS-II. 

 We used the transition probabilities obtained from averaging of the estimates 
provided by all of the experts to compute a Shannon–Weaver diversity index 
(Shannon  1948  )  for each postdisturbance transition ( n  = 48):

    
=

= -å
8

1

Diversity log( )i i
i

p p    (10.1)  

where  p  
i
  is the averaged probability among all experts of transiting to forest type  i  

after a disturbance for a specifi c transition. 
 This measure of concentration of information is used to express the relative 

agreement among experts for a given transition; low diversity would indicate 
that experts have chosen to assign similar probabilities to the same forest types, 
showing a common understanding of the forest dynamics for a particular succes-
sional transition, whereas a high diversity would indicate disagreement among the 
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experts. Uncertainty perceived by the experts within the transitions was summarized 
by averaging the rank order of their individual uncertainty assessments (low 
uncertainty = 1, moderate = 2, high = 3). We used ANOVA (PASW v.18.0.0; SPSS 
Inc.  2009  )  to assess the effects of the ecological region, individual expert, site 
quality class, disturbance type, forest type before transition, and forest type after 
transition on uncertainty and on the probability of having an expert assigning a 
regeneration delay to a given transition. We evaluated mean differences using the 
post hoc least-signifi cant-difference test where signifi cant differences were indicated 
by the ANOVA.   

    10.3   Results 

    10.3.1   Postdisturbance Transitions 

    10.3.1.1   Expert-Based Transition Probabilities 

 Postdisturbance transition probabilities estimated by the experts varied considerably 
both by disturbance type and site quality, but varied less by ecological region 
(Table  10.1 ). The assigned transition probabilities suggested that clearcutting 
favored a transition to stands with a higher balsam fi r content, whereas fi re in mature 
stands favored black spruce. The experts agreed that postdisturbance succession on 
sites with good quality tended toward increased balsam fi r, whereas postdisturbance 
succession on poor sites favored black spruce, irrespective of the ecological region. 
The EKB succession model clearly identifi ed more conversion of productive forest 
into the NF forest type on poor-quality sites and after fi res in immature stands. 
Indeed, in the Subarctic ecological region, the experts expected some conversion to 
a nonforested state for two-thirds of the 18 transitions.   

    10.3.1.2   Variability and Uncertainty in Expert Opinion 

 The diversity index of transition paths did not differ between ecological regions 
( P  = 0.582), among site classes ( P  = 0.196), or among forest types before disturbance 
( P  = 0.309), but did differ signifi cantly among disturbance types ( P  = 0.006). The 
diversity in transitions given by the experts was greater after clearcutting and fi re 
in immature stands than after fi res in mature stands (Fig.  10.3  and Table  10.1 ), 
suggesting a better agreement among the experts for succession after fi res in mature 
stands. Variability in opinion among experts was lower for transitions on medium-
quality sites than on sites with good quality and on poor sites and for those involving 
forest types before disturbance dominated by black spruce (data not shown).  

 We found that expert opinions were signifi cantly ( P  < 0.05) correlated, with 
Pearson’s  r  ranging from 0.17 to 0.70 and a mean of 0.47 (Table  10.2 ). Although 
the average correlation coeffi cient among the experts was higher for the Subarctic 
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ecological region than for the Boreal region, the range of coeffi cients was also wider 
and included fi ve nonsignifi cant correlations. Expert G was least experienced and 
was also rated as least knowledgeable by the other experts. This may explain why 
Expert G’s answers were consistently different from the others, to the extent that 
removing Expert G increased the overall average correlation from 0.47 to 0.58. We 
therefore considered Expert G to be an outlier, and removed his assessments from 
the database for all subsequent analyses. It is possible, however, that this may have 
eliminated a perspective that was important to the understanding of this system.  

 The uncertainty perceived by the experts differed signifi cantly among the partici-
pants ( F 5,566 = 5.35,  P  < 0.001), with some experts signifi cantly less certain than 
others. Uncertainty was signifi cantly lower ( F 2,566 = 7.10,  P  < 0.001) for sites with 
good quality than for those with medium or poor quality (Table  10.1  and Fig.  10.4 ). 
Experts had signifi cantly less confi dence (perceived more inherent variability) when 
they were assigning transition probabilities to disturbed SwHw stands or when a 
stand transitioned to mixedwood forest types ( F 7,566 = 7.07,  P  = 0.045). Surprisingly, 
uncertainty was not correlated with the Shannon–Weaver diversity index of transi-
tion paths (Pearson’s  r  = 0.19,  P  = 0.19).   

    10.3.1.3   Comparison Between the Experts and LANDIS-II 

 Postdisturbance vegetation transitions derived from expert opinion and LANDIS-II 
were signifi cantly ( P  < 0.001) correlated, but the Pearson’s  r  was low (0.33; 
Table  10.2 ). Agreement between the two transition matrices was higher for the 
Subarctic ecological region than the Boreal region, for poor-quality sites, and for 

  Fig. 10.3    Shannon–Weaver diversity index for transitions after three types of disturbance based 
on expert opinion ( EKB ) and the  LANDIS-II  model for Labrador’s District 19a. Values (mean ± SD) 
labeled with  different letters  differ signifi cantly ( P  < 0.05).  CC  clearcutting,  Fi  stand-replacing fi re 
in a sexually immature stand,  Fm  stand-replacing fi re in a sexually mature stand       
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succession after a fi re (Table  10.2 ). The successional states produced by the experts 
and by LANDIS-II following clearcutting were not signifi cantly correlated ( P  = 0.69). 

 Despite quantitative differences between the transition outcomes, we observed 
many qualitative similarities (Table  10.2 ). Both the experts and LANDIS-II indi-
cated higher postdisturbance forest type diversity following clearcutting and fi re in 
immature stands, and this diversity increased from poor-quality sites to sites with 
good quality (Table  10.1 ). The probability of postdisturbance transitions to the Bs 
forest type increased on poor sites in both the expert opinions and LANDIS-II. 
However, LANDIS-II indicated a much higher likelihood of the Bs forest type following 
clearcutting than was predicted by the experts, but the experts predicted a higher 
likelihood of the Bs forest type after fi res. This difference resulted mainly from (1) 
lower transition probabilities to mixed forest types after clearcutting in LANDIS-II, 
(2) the absence of any Bf forest types after a fi re in LANDIS-II, and (3) a much 
higher importance (frequency and probability) of conversion of productive forest 
into nonproductive forest after fi res within LANDIS-II. The latter is probably the 
most important difference between the two methods. In LANDIS-II, 60 years after 
disturbance, all of the 48 transitions had some probability of conversion into NF, 
whereas the experts predicted this for only 40% of the transitions. Moreover, the 
average probability of transitioning into the NF type was much higher in LANDIS-II 
(43%) than was predicted by the experts (7%) (Table  10.1 ). This may explain why 
diversity in succession pathways was much higher and more variable among the 
transitions in LANDIS-II than in the EKB succession model (Fig.  10.3 ).   

    10.3.2   Regeneration Delay 

 Experts assigned a regeneration delay to 55% of the transitions. The probability was 
signifi cantly ( P  < 0.001) higher for poorer site classes (Fig.  10.5 ) and signifi cantly 
higher ( P  = 0.005) after a fi re (in both immature and mature stands) than after a 
clearcut (Fig.  10.6 ). In addition, the higher the proportion of black spruce after 
the disturbance, the higher the likelihood of having an expert assign a regeneration 
delay to that transition ( P  < 0.001).   

  Fig. 10.4    Effect of site 
quality class on the 
uncertainty score associated 
with transitions among forest 
types after disturbance 
proposed by the experts for 
Labrador’s District 19a. 
Values (mean ± SD) labeled 
with  different letters  differ 
signifi cantly ( P  < 0.05)       
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    10.3.2.1   Variability Among Experts 

 The likelihood of assigning a regeneration delay to a transition after disturbance 
differed signifi cantly among the experts ( P  < 0.001). Most of the experts assigned a 
regeneration delay in about 50% of the transitions, but one expert almost always 
assigned a regeneration delay to the postdisturbance succession. However, where 
experts agreed that a regeneration delay would occur after disturbance, the estimated 
duration did not differ signifi cantly (an average of 16 years).  

    10.3.2.2   Comparison Between Experts and LANDIS-II 

 LANDIS-II predicted a regeneration delay for 96% of the postdisturbance transi-
tions. If we consider only the transitions for which experts assigned a transition 
probability, the regeneration delay after the disturbance was 26 years shorter than 
that predicted by LANDIS-II. Hence, there was poor agreement between LANDIS-II 

  Fig. 10.5    Effect of site 
quality class on the likelihood 
(between 0 and 1) that 
experts would associate a 
regeneration delay with the 
transition probability after a 
disturbance in Labrador’s 
District 19a. Values 
(mean ± SD) labeled with 
 different letters  differ 
signifi cantly ( P  < 0.05)       

  Fig. 10.6    Effect of 
disturbance type on the 
likelihood (between 0 and 1) 
that experts predicted a 
regeneration delay when 
assigning succession 
transition probabilities by 
disturbance type in 
Labrador’s District 19a. 
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and the experts on the regeneration delay; the overall correlation was signifi cant 
but low ( r  = 0.24,  P  = 0.002). Nonetheless we observed similar qualitative trends 
from both methods: the regeneration delay was predicted to be frequent and of longer 
duration on poorer sites and after fi res (Fig.  10.7 ).     

    10.4   Discussion 

    10.4.1   Insights from the Expert Workshop 

 In general, expert knowledge was strongly convergent; that is, the experts generally 
agreed about the postdisturbance transitions. Their level of agreement was only 
moderate for the postdisturbance regeneration delay. Informal discussions by the 
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experts after the workshop suggested that such agreement was not the result of 
groupthink, which can lead to “bandwagon” reasoning, as they were often referring 
to different examples they had experienced during their career. It was also apparent 
during the workshop that experts paid strong attention to the consistency of their 
own mental models by looking back at their previous answers while answering the 
workshop questionnaire; they often asked to change an answer after they had had 
time to think about subsequent questions. 

 In general, group opinion on succession was more variable for the mixed forest 
types (BfBs, BsBf, and SwHw) than for the Bs forest type. Experts recognized 
that variability in the successional response increased with increasing diversity of 
the forest cover. Such variability translated into both a higher diversity of expert 
opinion and greater expert uncertainty for the transitions involving mixed forest 
types. Agreement among experts varied depending on ecological factors and the 
diversity of the forest community. Drescher et al.  (  2008  )  found that succession of 
monospecifi c stands under relatively extreme environmental conditions (dry sands 
and wet bogs) was more predictable than succession of mixed stands on sites with a 
good site quality. We observed similar results within the resource-limited landscape 
of central Labrador, where more species can become established on richer and 
warmer sites, leading to more variability in the successional response. 

 Although the diversity of expert opinion on postdisturbance succession was 
higher for richer sites, we were surprised that the expert uncertainty was lowest for 
sites with good site quality. We suspect that this inversion was due to the important 
roles that the regeneration delay and the conversion from productive forest into 
nonproductive forest play on poor sites and the variability of these phenomena 
perceived by the experts. Such insights demonstrate the importance of identifying 
whether the variation among the experts arises from perceived variability in the 
system’s response to disturbance or from a lack of expert knowledge or experience 
with specifi c ecological patterns, as Drescher et al.  (  2008  )  pointed out. 

 Agreement was also lower after clearcutting and fi re in immature stands than 
after fi re in mature stands. Commercial harvesting in this district has been limited to 
a few thousand hectares thus far. Experts therefore had little experience with succes-
sion after clearcutting, but considerable experience with catastrophic wildfi res in 
mature stands. Moreover, harvesting has mostly occurred at the most productive 
sites, which are closest to Goose Bay and Happy Valley. Since better site quality is 
expected to lead to more variability in the successional response, this disturbance 
history may have introduced additional uncertainty in the EKB model. 

 Distinguishing between postfi re succession in mature seed-producing stands and 
that in immature nonseed producing stands proved to be important for the experts. 
First, the transition probabilities for conversion into the NF type and the regeneration 
delay differed somewhat between the two types of fi re. Perhaps more importantly, 
agreement among experts was lowest and uncertainty was highest for fi res in immature 
stands. The conversion process from productive forest into nonproductive forest 
occurs over long time scales that likely fall outside the experience of the experts. 
Nonetheless, the experts recognized that such conversions occur, perhaps frequently, 
and that they have important implications for forest sustainability.  
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    10.4.2   Similarities and Differences Between Expert 
Opinion and LANDIS-II 

 We found more agreement among the experts than between the mean expert response 
and the predictions of LANDIS-II. Quantitative disagreements between the two 
models were attributed primarily to the length of time required for forest regeneration, 
resulting in greater conversion of productive forest into nonproductive forest, a 
higher probability of assigning a regeneration delay to a transition, and a longer 
average regeneration delay period in LANDIS-II. The longer regeneration delay in 
LANDIS-II can be partly explained by the model’s more conservative defi nition of 
a “regenerated stand,” which uses a minimum biomass threshold that we suspect 
would require more time to reach than the experts’ mental picture of a regeneration 
state suffi cient to produce a future merchantable stand. Including a clarifi cation of 
fuzzy terms such as “regenerated stand” or “stand-replacing disturbance” in Phase I 
of the knowledge elicitation procedure would probably have helped to narrow the 
semantic differences, leading to less ambiguous thresholds in the EKB model used 
for comparison with the LANDIS-II model. A higher probability of regeneration 
delay might also have resulted from differences in the scale of the assessment; the 
LANDIS-II results were based on 1-ha cells, whereas the experts were generally 
thinking in terms of forest stands (tens of hectares). Such discrepancies highlight 
the diffi culty of adequately comparing models that have been developed under 
frameworks that use different scales and concept defi nitions. Nonetheless, the fact 
that the qualitative trends in the regeneration delay were consistent between the EKB 
model and LANDIS-II (i.e., longer after a fi re than after a harvest; more prevalent 
delays at sites with lower quality) suggests that these trends are both robust and 
important to forest dynamics in Labrador. 

 Both LANDIS-II and the experts predicted higher proportions of the balsam fi r 
and hardwood species as components of the landscape after clearcutting, leading to 
higher forest type diversity after this disturbance type (Table  10.1  and Fig.  10.7 ). 
Similarly, both methods predicted that postdisturbance tree species diversity should 
increase from poor to good sites. Such a convergence of results gives us confi dence 
in the general trends represented by these relationships. Nonetheless, there were key 
differences in the response to different disturbances that will have consequences for 
the future composition of District 19a’s landscape. The experts anticipated that a 
relatively high proportion of clearcut sites would contain some balsam fi r component, 
whereas LANDIS-II predicted that the majority of these sites would be dominated 
by black spruce (Table  10.1 ). Central Labrador is located at the northern range limit 
for balsam fi r, which explains its low probability of establishment within LANDIS-II 
(Sturtevant et al.  2007  ) . Although local experience suggested the range limits 
for balsam fi r in LANDIS-II may have been too conservative, sites dominated by 
balsam fi r nonetheless produced the highest disagreement among the experts 
(Tables  10.1  and  10.2 ). The experts also predicted a much higher frequency of mixed 
stand conditions than LANDIS-II predicted. Part of this discrepancy may be a con-
sequence of differing resolution (i.e., small adjacent cells with different vegetation types 
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within LANDIS-II may be aggregated into larger “mixed” stands by the experts). 
However, it may also be explained by the current dominance of black spruce in the 
landscape, and the explicit simulation of regeneration limited by seed sources within 
the LANDIS-II software. Such spatial interactions tend to reinforce the inertia of 
the current landscape composition within the process-based model, whereas experts, 
by excluding any spatial context for their transition probabilities, may have missed 
an important process (i.e., seed source limitation) that would affect the likelihood 
of transition to a mixed forest condition.   

    10.5   Conclusions 

 This study is among the fi rst to formally compare EKB and process-based ecological 
succession models. Moreover, it is the fi rst time that an EKB model was developed 
to address regeneration delays and the conversion of productive forest into non-
productive forest during forest succession. Comparing models has proven to be an 
important heuristic process in science to develop a broadly accepted body of 
knowledge that can support decision-making (Robertson et al.  2003 ; Drescher and 
Perera  2010b  ) . In this case study, understanding the convergences and divergences 
between the two methods helped to identify the limitations, uncertainties, and needed 
improvements in both models, as well as the gaps in our knowledge of Labrador’s 
forest dynamics. 

 The knowledge ambiguity we identifi ed concerning the relative importance of 
balsam fi r after clearcutting, of the conversion of productive forest into nonpro-
ductive forest, of the effects of spatial heterogeneity in seed sources on future forest 
composition, and of the regeneration delay after disturbance all have important 
consequences for our ability to sustainably manage these forests. Indeed, we believe 
the choice of which transition matrix (expert-based or LANDIS-II) to use in devel-
oping SFM strategies would lead to very different sustainable timber yields and 
would have important impacts on all the other decisions that follow, as was observed 
by Drescher and Perera  (  2010a  ) . This is particularly true if one considers that most 
of the coming changes that will result from application of the SFM plan to District 
19a will lead to increased use of clearcutting; important knowledge ambiguities 
have not yet been resolved about the succession that will occur after this disturbance. 
Part of the stakeholder debate over the SFM plan stems from the unknown impact 
of clearcutting on both timber and nontimber values (Berninger et al.  2009  ) . Because 
of the importance of the differences of opinion and the high uncertainties expressed 
by the experts on these processes, Newfoundland and Labrador should prioritize 
acquiring scientifi c knowledge on the conversion to the NF type, on regeneration 
delays, and on succession after clearcutting. 

 Expert modeling provides a complementary approach that can support data-
driven development of scientifi c models. It offers an opportunity to quickly identify, 
during a fi rst step, the critical elements of uncertainty that must subsequently be 
scrutinized by empirical research and other modeling approaches. In this study, we 
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demonstrated that our comparison of the two models provided new insights that 
could not be achieved by either knowledge source alone. EKB models are often 
easier and less costly to develop than empirically validated models; with a surpris-
ingly limited amount of resources and effort, we were able to derive the critical 
inputs necessary to drive a complete succession model using only expert knowl-
edge, and the results showed strong consistency among the experts. The value of the 
insights we gained amply justifi ed the investment in conducting parallel EKB 
modeling. We believe that there are many other situations in natural resource 
planning that could benefi t from this approach. However, given the limited number 
of studies of such a combined approach, it appears that such benefi ts have not yet 
been fully recognized. 

 Developing an EKB model also brings indirect benefi ts. Involving stakeholders 
and planners in the process of developing a model enhances the likelihood of its use, 
since experts who participated in the model development are often involved in its 
subsequent use (Gustafson et al.  2006  ) , and increases the likelihood that the model 
will be used properly, based on an improved understanding of its scope and limitations 
(as pointed out by Drescher and Perera  2010a  ) . This approach also helps to structure 
and formalize the exchange of knowledge among participants. Hence, after such 
collective heuristic exercises, the experts can better express their mental models of 
the processes involved and better understand the mental models of other experts. 
Such a shared understanding facilitates further development of forest management 
planning. Finally, EKB models encourage formal retention of the expertise of all 
participants in a way that makes this knowledge easier to transfer to younger workers 
with less experience. In remote areas such as Labrador, where there is often a rapid 
turnover of personnel and where retaining expertise is a real challenge, this collection 
and sharing of knowledge becomes an important asset.      

   References 

   Bajzak D (1973) Biophysical land classifi cation of the Lake Melville area, Labrador. Environment 
Canada, Canadian Forest Service, St. John’s, Information Report No. NX-88  

    Bajzak D, Roberts BA (1984) Mapping land types for forest evaluation in Lake Melville area, 
Labrador, Canada. Paper presented at the Joint Meeting of IUFRO Working Parties No. 1.02-06 
and No. 1.02-10 on Qualitative and Quantitative Assessment of Forest Sites with Special 
Reference to Soil, 10–15 September 1984, Birmensdorf, Switzerland. IUFRO, Vienna  

   Batterson M, Liverman D (1995) Landscapes of Newfoundland and Labrador. Department of 
Natural Resources, Government of Newfoundland and Labrador, St. John’s, Geological Survey 
Report 95–3  

    Berninger K, Kneeshaw D, Messier C (2009) The role of cultural models in local perceptions of 
SFM—differences and similarities of interest groups from three boreal regions. J Environ 
Manage 90:740–751  

    Drescher M, Perera AH (2010a) Comparing two sets of forest cover change knowledge used in 
forest landscape management planning. J Environ Plan Manage 53(5):591–613  

    Drescher M, Perera AH (2010b) A network approach for evaluating and communicating forest 
change models. J Appl Ecol 47(1):57–66  



20910 Assessing Knowledge Ambiguity in the Creation of a Model…

   Drescher M, Perera AH, Buse LJ et al (2006) Identifying uncertainty in practitioner knowledge of 
boreal forest succession in Ontario through a workshop approach. Ontario Ministry of Natural 
Resources, Ontario Forest Research Institute, Sault Ste Marie, Forest Research Report 165  

    Drescher M, Perera AH, Buse LJ et al (2008) Uncertainty in expert knowledge of forest succession: 
A case study from boreal Ontario. For Chron 84:194–209  

    Elson LT, Simon NPP, Kneeshaw D (2007) Regeneration differences between fi re and clearcut 
logging in southeastern Labrador: a multiple spatial scale analysis. Can J For Res 37:472–480  

    Ford DN, Sterman JD (1998) Expert knowledge elicitation to improve formal and mental models. 
Syst Dynam Rev 14(4):309–340  

    Forestry Canada Fire Danger Group (1992) Development and structure of the Canadian Forest Fire 
Behavior Prediction System. Information Report ST-X-3. Forestry Canada, Science and 
Sustainable Development Directorate, Ottawa  

    Forsyth J, Innes L, Deering K, Moores L (2003) Forest Ecosystem Strategy Plan for Forest 
Management District 19 Labrador/Nitassinan. Innu Nation and Newfoundland and Labrador 
Department of Forest Resources and Agrifoods, Northwest River  

    Foster DR (1983) The history and pattern of fi re in the boreal forest of southeastern Labrador. Can 
J Bot 61:2459–2471  

    Foster DR (1984) Phytosociological description of the forest vegetation of southeastern Labrador. 
Can J Bot 62:899–906  

    Foster DR (1985) Vegetation development following fi re in  Picea mariana  (black spruce)– Pleurozium  
forests of southeastern Labrador, Canada. J Ecol 73:517–534  

    Foster DR, King GA (1986) Vegetation pattern and diversity in S.E. Labrador, Canada.  Betula 
papyrifera  (birch) forest development in relation to fi re history and physiography. J Ecol 
74:465–483  

    Gauthier S, Vaillancourt MA, Leduc A et al (2008) Aménagement écosystémique en foret boréale. 
Presse de l’Université du Québec, Québec  

    Gunderson LH, Holling C (2002) Panarchy: understanding transformations in human and natural 
systems. Island Press, Washington  

    Gustafson EJ, Shifl ey SR, Mladenoff DJ et al (2000) Spatial simulation of forest succession and 
timber harvesting using LANDIS. Can J For Res 30:32–43  

    Gustafson EJ, Sturtevant BR, Fall A (2006) A collaborative, iterative approach to transfer modeling 
technology to land managers. In: Perera AH, Buse LJ, Crow TR (eds) Forest landscape 
ecology: Transferring knowledge to practice. Springer Science & Business Media, New York, 
pp 123–134  

    Johnson CJ, Gillingham MP (2005) An evaluation of mapped species distribution models used for 
conservation planning. Environ Conserv 32(2):117–128  

    Landres PB, Morgan P, Swanson FJ (1999) Overview of the use of natural variability concepts in 
managing ecological systems. Ecol Appl 9:1179–1188  

    Mallik AU (2003) Conifer regeneration problems in boreal and temperate forests with ericaceous 
understory: role of disturbance, seedbed limitation, and keystone species change. Crit Rev 
Plant Sci 22:341–366  

    Messier C, Fortin M-J, Smiegelow F et al (2003) Modelling tools to assess the sustainability of forest 
management scenarios. In: Burton PJ, Messier C, Smith DW, Adamoviicz WL (eds) Towards 
sustainable management of the boreal forest. NRC Research Press, Ottawa, pp 531–580  

    Mladenoff DJ (2004) LANDIS and forest landscape models. Ecol Modell 180(1):7–19  
    Murray JV, Goldizen AW, O’Leary RA et al (2009) How useful is expert opinion for predicting the 

distribution of a species within and beyond the region of expertise? A case study using brush-
tailed rock-wallabies  Petrogale penicillata . J Appl Ecol 46(4):842–851  

   Newfoundland Forest Service (1995) Temporary sample plot program. Newfoundland Forest 
Service, St. John’s, Draft 28 February 2002  

    Roberts BA, Simon NPP, Derring KW (2006) The forests and woodlands of Labrador, Canada: 
ecology, distribution and future management. Ecol Res 21:868–880  

    Robertson MP, Peter CI, Villet MH, Ripley BS (2003) Comparing models for predicting species’ 
potential distributions: a case study using correlative and mechanistic predictive modelling 
techniques. Ecol Modell 164(2–3):153–167  



210 F. Doyon et al.

    Scheller RM, Domingo JB, Sturtevant BR et al (2007) Design, development, and application of 
LANDIS-II, a spatial landscape simulation model with fl exible temporal and spatial resolution. 
Ecol Modell 201:409–419  

    Scheller RM, Mladenoff DJ (2004) A forest growth and biomass module for a landscape simulation 
model, LANDIS: Design, validation, and application. Ecol Modell 180:211–229  

    Shannon CE (1948) A mathematical theory of communications. Bell Syst Tech J 27:379–423  
    Simon NPP, Schwab FE (2005a) The response of conifer and broadleaved trees and shrubs 

to wildfi re and clearcut logging in the boreal forests of central Labrador. Northern J Appl 
For 22:35–41  

    Simon NPP, Schwab FE (2005b) Plant community structure following wildfi re in the subarctic 
forests of Labrador. Northern J Appl For 22:229–235  

   SPSS Inc (2009) PASW Statistics 18, Version 18.0.0 for Windows. SPSS, Chicago  
   Sturtevant BR, Fall A, Kneeshaw DD et al (2007) A toolkit modeling approach for sustainable 

forest management planning: achieving balance between science and local needs. Ecol Soc 
12:7. Available from:   http://www.ecologyandsociety.org/vol12/iss2/art7/ES-2007-2102.pdf     
(accessed February 2011)  

    Sturtevant BR, Scheller RM, Miranda BR et al (2009) Simulating dynamic and mixed-severity fi re 
regimes: A process-based fi re extension for LANDIS-II. Ecol Modell 220:3380–3393  

    Ward BC, Mladenoff DJ, Scheller RM (2005) Simulating landscape-level effects of constraints to 
public forest regeneration harvests due to adjacent residential development in northern 
Wisconsin. For Sci 51:616–632  

   Wiken EB (1986) Ecological Land Classifi cation Series, No. 19, Lands Directorate, Environment 
Canada, Hull      



211A.H. Perera et al. (eds.), Expert Knowledge and Its Application in Landscape Ecology, 
DOI 10.1007/978-1-4614-1034-8_11, © Springer Science+Business Media, LLC 2012

    11.1   Introduction 

 Fuel maps are becoming an essential tool in fi re management because they describe, 
in a spatial context, the one factor that fi re managers can control over many scales – 
surface and canopy fuel characteristics. Coarse-resolution fuel maps are useful in 
global, national, and regional fi re danger assessments because they help fi re managers 
effectively plan, allocate, and mobilize suppression resources (Burgan et al.  1998  ) . 
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Regional fuel maps are useful as inputs for simulating carbon dynamics, smoke 
scenarios, and biogeochemical cycles, as well as for describing fi re hazards to sup-
port prioritization of fi refi ghting resources (Leenhouts  1998 ; Lenihan et al.  1998  ) . 
Intermediate- and fi ne-resolution digital fuel maps are important for rating ecosys-
tem health, targeting and evaluating tactical fuel treatments, computing fi re hazard 
and risk (the potential damage and likelihood of that damage, respectively), and 
aiding in environmental assessments and fi re danger forecasting programs (Pala 
et al.  1990 ; Hawkes et al.  1995 ; Gonzalez et al.  2007  ) . However, landscape-level 
fuel maps have seen the most use in fi re management because they provide the 
critical inputs for the spatially explicit fi re behavior and growth models used to 
simulate fi res so that they can be more effectively managed and fought (Keane et al. 
 1998,   2006  ) . 

 Expert knowledge has been involved in the development of most fuel maps 
currently used in fire management (Keane et al.  2001  ) . Experts in wildfire 
suppression, fuel management, fi re modeling, and prescribed burning have provided 
the background information needed to create, refi ne, and validate the primary fuel 
maps required by fi re behavior and growth models. This heavy reliance on expert 
knowledge is a result of many factors, including the high spatial and temporal vari-
ability of fuels, diversity of fuel beds, subjective nature of the fuel classifi cations, 
and lack of comprehensive fuel data across forests and rangelands. In this chapter, 
we summarize past, present, and potential future use of expert knowledge in the 
mapping of fuels to support fi re management, primarily for the USA, but also including 
knowledge from other countries. We present a detailed example of how expert 
knowledge was used in the national landscape fi re and resource management plan-
ning tools (LANDFIRE) mapping project, which created a set of national fuel maps. 
We also discuss the challenges involved in mapping fuel, review mapping approaches 
that have integrated expert knowledge in their design, and describe technologies 
and protocols needed to facilitate the development of accurate digital fuel maps. 

    11.1.1   Fuel Mapping Background 

 Wildland fuels comprise all the organic matter available to permit fi re ignition and 
sustain combustion (Albini  1976 ; Sandberg et al.  2001  ) . Specifi cally, fuel compo-
nents are the live and dead surface and canopy biomass that foster the spread of 
wildland fi re. Surface fuel is often divided into duff and litter, downed and dead 
woody biomass in a range of diameter classes, and live and dead standing vegetation 
(Fosberg  1970 ; DeBano et al.  1998  ) . Canopy fuel is aerial biomass (typically >2 m 
above ground), primarily composed of branches and foliage and also included 
arboreal mosses, lichens, dead ladder fuels, and other hanging dead material such as 
needles and dead branches (Reinhardt et al.  2006  ) . The amount (mass or volume) of 
biomass per unit area is often referred to as the “fuel load.” Most fuels in fi re-prone 
ecosystems accumulate in the absence of fi re. Surface fuels usually increase until 
the decomposition rate equals the deposition rate, and canopy fuels tend to increase 
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as shade-tolerant tree species become established in the understory and over-
story (Keane et al.  2002  ) . 

 Wildland fuels can be mapped using many approaches (Keane et al.  2001 ; Arroyo 
et al.  2008  ) . Most efforts have mapped important fuel characteristics such as the fuel 
model (an abstract classifi cation of fuel used as an input to fi re behavior models), 
fuel bed depth, and canopy bulk density as a function of vegetation type (Agee et al. 
 1985 ; Menakis et al.  2000  ) , ecosystem (Grupe  1998  ) , and topography (Rollins and 
Yool  2002  )  to create spatial layers in a geographical information system (GIS). 
Some researchers have qualitatively or quantitatively related fuel information to 
various forms of remote-sensing data at multiple scales, including digital photo-
graphs (Oswald et al.  1999  ) , LANDSAT images (Wilson et al.  1994  ) , ASTER 
images (Falkowski et al.  2005  ) , AVIRIS images (Roberts et al.  1998  ) , AVHRR 
images (McKinley et al.  1985 ; Burgan et al.  1998  ) , microwave-radar images (Arroyo 
et al.  2008  ) , and LIDAR data (Mutlu et al.  2008  ) . Others have mapped fuels using 
complex statistical modeling techniques coupled with comprehensive fi eld data 
(Rollins et al.  2004  )  and knowledge-based systems (Goulstone et al.  1994 ; de 
Vasconcelos et al.  1998  ) . Most efforts have combined two or more of these 
approaches into an integrated analysis, with the goal of developing more accurate 
and consistent fuel maps. One resource that has been used as the foundation for 
most of these mapping efforts was expert knowledge. 

 For many ecological reasons, it is diffi cult to map wildland fuels (Keane et al. 
 2001  ) . The most notable factor that confounds mapping is the high temporal and 
spatial variability of fuel components (Brown and See  1981 ; Keane  2008  ) . The 
components, fuel loads, and properties of the fuels are also highly diverse and vary 
across multiple scales; a fuel bed, for example, can consist of many fuel compo-
nents, including litter, duff, logs, and coniferous cones, and the properties of each 
component, such as its heat content, moisture content, and size, can be highly variable 
even within a single type of fuel. The variability of fuel loads within a stand, for 
example, can be as high as the variability across a landscape, and this variability can 
be different for each fuel component and property (Brown and Bevins  1986  ) . A single 
wind storm or wet snow can rapidly increase woody fuel load at the surface and 
change the entire structure of the fuel bed (Keane  2008  ) . 

 There are also many methodological and technological factors that complicate 
fuel mapping. First, much of the remotely sensed data used in fuel mapping is 
derived using technologies that cannot detect surface fuels because the ground is 
often obscured by the forest canopy (Lachowski et al.  1995  ) . Even if the canopy 
were removed, it is doubtful that today’s coarse-resolution imagery could distin-
guish subtle differences in the characteristics of all fuel components. High fuel 
diversity and variability also preclude an accurate standardized measurement and 
mapping protocol; it is diffi cult to sample fi ne fuels (e.g., duff, litter, and fi ne woody 
material) and large fuels (e.g., logs) at the same scale, degree of rigor, and accuracy 
(Sikkink and Keane  2008  ) . Fuel components can vary across different scales (e.g., 
logs vary over a larger area than fi ne fuels), and few of these scales match the 
resolution of the remote-sensing data, the sampling methods, or the available GIS 
data layers. Moreover, many fuel parameters required by current fi re behavior models 
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lack standardized measurement techniques. For example, some fi re behavior 
models use fuel model classifi cations that were subjectively created to represent 
expected fi re behavior (Anderson  1982  ) .  

    11.1.2   Fuel Classifi cations 

 Because of the abovementioned factors, fi re management has turned to the use of 
fuel classifi cations to simplify the collection of input data for fi re modeling applica-
tions. Most fi re models use fuel classifi cations to simplify the inputs for fuel char-
acteristics, but the diversity of these inputs makes accurate, comprehensive, and 
consistent fuel classifi cation diffi cult (Sandberg et al.  2001 ; Riccardi et al.  2007 ; 
Lutes et al.  2009  ) . Some fuel classifi cations are designed to include subjective com-
ponents and categories that are based on the objective of a given mapping project. 
For example, fi re behavior prediction requires mapping of the fuel loads of downed 
and dead fi ne woody materials stratifi ed into the size classes that are required by the 
fi re behavior model (Burgan and Rothermel  1984  ) . 

 Fuel classifi cations can be divided into those that were developed to simulate the 
effects of fi re and those that were developed to predict fi re behavior. The former fuel 
classifi cations summarize actual fuel characteristics (most often fuel load) for 
diverse fuel components based on vegetation type, biophysical setting, or fuel bed 
characteristics. Few of these classifi cations were developed to support unique iden-
tifi cation of the classes in the fi eld; most rely on the expertise of the fuel sampler 
and their ability to match the observed fuel bed conditions to the classifi cation cat-
egories. The exception is the fuel loading model (FLM) classifi cation (Lutes et al. 
 2009  ) , which contains a comprehensive fi eld key (Sikkink et al.  2009  ) . 

 In contrast, fuel classifi cations designed to predict fi re behavior have categories 
referred to as fi re behavior fuel models (FBFMs), which are a set of summarized 
fuel characteristics (e.g., fuel load, ratios of surface area to volume, mineral content, 
heat content) for each fuel component that is required by the fi re behavior model 
(Burgan and Rothermel  1984  ) . The most commonly used FBFM classifi cations are 
the 13 models of Anderson  (  1982  )  and the 40+ models of Scott and Burgan  (  2005  ) , 
all of which are used as inputs to the Rothermel  (  1972  )  fi re-spread model that is 
implemented in the BEHAVE and FARSITE fi re prediction systems, and the 26 fi re 
danger models of Deeming et al.  (  1977  )  that are used in the US National Fire Danger 
Rating System. FBFMs are not a quantitative description of fuel characteristics, but 
rather a set of fuel inputs designed to compute an “expected” fi re behavior; this is 
because the inherent complexity of the mechanistic fi re behavior models of 
Rothermel  (  1972  )  and Albini  (  1976  )  makes it diffi cult to realistically predict fi re 
behavior from the actual fuel load (Burgan  1987  ) . As a result, a complicated proce-
dure must be followed to develop FBFMs in which fuel loads and other characteris-
tics are adjusted to match fi re characteristics that have been observed in the fi eld 
(Burgan  1987  ) . 
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 Therefore, without prior knowledge of fi re behavior in local fuel types, it is 
nearly impossible to accurately and consistently use and interpret most FBFM clas-
sifi cations (Hardwick et al.  1998  ) , and the identifi cation of fuel models in the fi eld 
is highly subjective because it is based on an individual’s perception of fi re behavior 
rather than on actual measurements of fuel loads. Because classifi cations based on 
fi re behavior and fi re effects form the backbone of most fi re management analyses, 
and because these classifi cations are inherently subjective and diffi cult to use, most 
fuel mapping must rely on expert knowledge and experience during all phases of the 
mapping process.   

    11.2   The Use of Expert Knowledge in Fuel Mapping 

    11.2.1   Who Are the Experts? 

 The best experts to use when creating wildland fuel maps are people who are actu-
ally involved in the management of wildland fi re (Table  11.1 ). Local and regional 
fi re behavior analysts who have extensive experience in predicting fi re behavior and 
effects for both wildfi res and prescribed fi res are probably the most desirable experts 
because they can provide integrated knowledge of the infl uence of topography, veg-
etation, disturbance, and climate on fuel bed characteristics and the consequences 
for fi re behavior (Keane et al.  2000  ) . Fuel specialists and fi re management person-
nel are also important because they have extensive knowledge of how to implement 
a fuel model within a fi re model and understand the temporal and spatial scales of 
various fuel characteristics. Any expert who assists in mapping fuels must under-
stand both the conditions and properties of wildland fuels and the expected fi re 
behaviors if these fuel complexes are burned. Experts can be selected from diverse 
pools; Keane et al.  (  1998  )  used fi re managers and wildfi re suppression specialists; 
Nadeau and Englefi eld  (  2006  )  used fi re scientists; and Reeves et al.  (  2009  )  used 
scientists, managers, and any other fi re resource professionals who were available.  

 Since the quality of the fuel maps used to predict fi re behavior is nearly impos-
sible to assess because of the subjective nature of the FBFM (Keane et al.  2001  ) , it 
is essential that those who use the fuel maps approve of their utility. The complexity, 
resolution, and detail involved in the mapping procedures, such as whether the latest 
statistical techniques and state-of-the-art images are used, are less important than 
producing a map that fi re managers trust enough to use. As a result, experts in GIS, 
digital mapping, analysis of satellite images, fi re ecology, and spatial statistical 
analysis play a lesser role than fi re managers in providing expert knowledge. 
Complex and novel mapping techniques may yield fuel map layers that fi re manag-
ers may never use, whereas fuel maps developed from simplistic qualitative tech-
niques may be easier for fi re managers to understand and employ. This means that 
fuel mapping, especially for fi re behavior prediction, should incorporate knowledge 
from fi re management experts during map development to increase the likelihood 
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that the resulting maps will be used. This is a somewhat subjective and self-affi rming 
process, but one that is necessary until advances in fi re behavior prediction use fuel 
inputs that can be readily measured, validated, and verifi ed, while also being understood 
and accepted by fi re managers.  

    11.2.2   How Is Expert Knowledge Used? 

 There are four general ways that expert knowledge can be integrated into the fuel 
mapping process. First, expert knowledge can be used in the fi eld to estimate or 
measure the fuels to provide information that will be used for ground-truthing or as 
a reference in the mapping process (i.e., for  reference ). FBFMs, for example, must 

   Table 11.1    A summary of the potential experts whose knowledge can be used to more effectively 
map wildland fuels   
 Title  Main job  Potential knowledge  Potential mapping tasks 

 Fire behavior 
analyst 

 Predicting fi re 
behavior 

 FBFM sampling; fi re 
behavior simulation, 
collecting fuel 
information as inputs 

 FBFM assignment and 
calibration; map 
validation and 
verifi cation 

 Fuel specialist  Sampling, 
estimating, 
and treating 
wildland fuels 

 FBFM identifi cation; fuel 
sampling; defi ning the 
biophysical context 
for fuels; prediction 
of fi re effects 

 Collection of reference 
fi eld data, estimation 
and verifi cation 
of fuel loads 

 Fire manager  Managing fi re in 
specifi c areas 
using fuel 
treatments, 
prescribed 
burning, and 
controlled 
wildfi res 

 Local knowledge of 
wildland fuel 
characteristics; 
prediction of fi re 
behavior and effects 

 Calibration, validation, 
and verifi cation 
of local area 
references 

 Fire suppression 
specialist 

 Suppression 
of fi res 

 FBFM identifi cation 
and use; prediction 
of fi re behavior 

 FBFM calibration; 
map validation 

 Fire scientist  Conducting fi re 
and fuel 
research 

 Depends on the 
scientist and their 
fi eld of study 

 Fuel collection, sampling, 
and identifi cation; 
map validation 
and calibration 

 Fire prevention 
specialist 

 Fire danger 
warnings, public 
information, 
preventing 
unwanted 
ignitions 

 General fuel 
information 

 Map validation and 
verifi cation 

  These titles vary among countries and government agencies, and many of these experts have mul-
tiple titles and perform multiple duties.  FBFM  fi re behavior fuel model  
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be estimated at a plot level by experts who have been trained to predict fi re behavior 
when assessing fuel (Burgan and Rothermel  1984  ) . Hornby  (  1935  )  used a team of 
experts who traversed the landscapes of the western United States to evaluate fi re 
behavior characteristics from fuel and vegetation attributes, and who used these 
attributes to delineate differences in fi re spread and intensity. Experts in visually 
assessing fuel loads could choose the most appropriate fuel characteristics classifi -
cation system (FCCS) category that best describes a sample area (Riccardi et al. 
 2007  ) . Keane et al.  (  1998  )  trained fi eld crews to properly use Anderson’s  (  1982  )  
US National Forest Fire Laboratory fuel models in sample plots. These experts can 
also build local keys for identifying appropriate fuel models in the fi eld to help 
other crews to consistently collect useful fuel data. Agee et al.  (  1985  ) , for example, 
used local fi re and fuel experts to construct and refi ne FBFM fuel keys for use in 
the fi eld. 

 Second, fuel information can be assigned to the categories or values of other 
GIS layers, such as vegetation or topography, using expert knowledge to create the 
fuel maps (i.e., for  calibration ). In this approach, experts assign fuel characteris-
tics, such as an FBFM, FLM, or FCCS category, to each combination of mapped 
categories across selected data layers (Keane et al.  1998  ) . Vegetation maps are 
most often used in fuel mapping projects (Menakis et al.  2000  ) , and experts have 
assigned fuel classifi cation categories to combinations of potential vegetation (i.e., 
biophysical setting), cover type, and structural stage (Keane et al.  1998,   2000 ; 
Schmidt et al.  2002 ; Reeves et al.  2009  ) . In Canada, Hawkes et al.  (  1995  )  used 
experts to assign fuel types based on tree height, canopy closure, crown type, and 
cover type, and Nadeau and Englefi eld  (  2006  )  integrated the opinions of forest fi re 
scientists using a fuzzy-logic engine to combine spatial data layers of land cover, 
biomass, and leaf area to create a map of Canadian Forest Fire Danger Rating 
System fuel types for Alberta. Keane et al.  (  2000  )  used experts to select the most 
appropriate FBFM for the combination of categories across three vegetation maps 
in New Mexico. 

 A third approach is to review fuel maps to refi ne mapping methods and update 
the input databases using expert knowledge (i.e., for  validation ). Reeves et al.  (  2009  )  
asked fi re management experts to evaluate portions of the preliminary LANDFIRE 
fuel maps to refi ne the mapping protocols so that they accounted for local condi-
tions. This approach is commonly referred to as the “sniff test,” because fuel and fi re 
experts use their local knowledge to determine whether things “make sense”; that is, 
based on their experience, they critique the value and reliability of the fuel map with 
respect to their management objectives, and suggest ways to improve map quality 
(Keane et al.  2006  ) . Keane et al.  (  2000  )  conducted workshops on the Gila National 
Forest in which fi re managers refi ned the mapping of surface fi re behavior model 
assignments to vegetation map categories based on their knowledge of the fuels in 
the mapped areas. 

 Last, fi re and fuel experts can be used to create the spatial reference or ground-
truthing information needed to assess the accuracy and precision of fuel maps (i.e., 
for  verifi cation ). Local fuel experts can delineate important fuel types on maps that 
can then be used as a ground-truthing reference for the development and evaluation 



218  R.E. Keane and M. Reeves

of the spatial fuel information. Previous fuel maps or mapping efforts developed 
based on expert experience can also be used as a validation tool, as can vegetation 
and stand maps that can be correlated with fuel properties.  

    11.2.3   How Is Knowledge Obtained from the Experts? 

 Perhaps the most common vehicle for obtaining expert knowledge is a workshop in 
which experts participate in a focused meeting to build the background knowledge 
that will be used for developing the fuel maps. These workshops can be attended in 
person, by telephone, or using videoconferencing technology. Extensive prepara-
tion is critical so that the experts can effi ciently and effectively summarize their 
knowledge while staying focused on the specifi c mapping objective. For example, 
Keane et al.  (  1998  )  prepared detailed worksheets for combinations of vegetation 
classifi cation categories in the Selway-Bitterroot Wilderness area so that fuel spe-
cialists could more easily assign a surface fi re behavior model (Anderson  1982  )  to 
each vegetation category for their area. To improve workshop effi ciency, it is some-
times benefi cial to provide default knowledge or a “straw man” for workshop par-
ticipants to critique and improve. For example, Keane et al.  (  2000  )  assigned fuel 
models to New Mexico vegetation types and then asked fi re managers to review and 
update these assignments. 

 The workshop participants should agree beforehand on the process and parame-
ters that will be used for the fuel model assignments and map development, and they 
should attempt to reach consensus on the assignments to create more consistent 
maps. For example, some fuel specialists may select a fuel model based on severe 
drought conditions at the height of a wildfi re season, but that may be inappropriate 
if the fuel map will be used to predict the spread of prescribed fi res during less dan-
gerous portions of the fi re season. Therefore, it is important that the group work 
together, based on a clear understanding of the map’s objectives, to permit calibra-
tion and increase consistency. 

 Other means of obtaining expert knowledge include surveys and interviews. 
Though these avenues can be easier to implement, they are less desirable because 
they fail to provide a process by which the experts can calibrate their expertise rela-
tive to the mapping objective and the knowledge of others. In contrast, Hirsch et al. 
 (  2004  )  interviewed 141 fi re managers to obtain their knowledge about fi reline effi -
ciency and initial attack productivity, because the context for this information was 
the same for each expert and the goal was to create statistical distributions that 
described this body of information. Although many researchers believe that the 
interview process should be relaxed and confi dential, Keane et al.  (  1998  )  found that 
a more active dialog that included challenges to statements and assignments was 
needed to ensure that the information was consistent across respondents. Sometimes 
experts have little knowledge of a specifi c fuel characteristic, but have considerable 
experience in assessing fi re behavior when fuel with this characteristic is burned. In 
these cases, surveys and workshops can let researchers infer information about the 
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fuel from the expert’s assessment of the fi re behavior characteristics in that fuel. For 
example, experts can be shown photos of vegetation types with known fuel loads 
and asked to estimate potential fl ame lengths; if fuel loads are unknown, fi re behav-
ior models can be used to work backward to approximate the fuel loads needed to 
achieve the estimated fl ame lengths (Reeves et al.  2009  ) . The expert knowledge col-
lected from workshops, interviews, and surveys can be synthesized using many 
types of technology. For example, Nadeau and Englefi eld  (  2006  )  used fuzzy logic to 
summarize the opinions of fi re scientists, whereas others have stored expert assign-
ments and estimates in databases (Keane et al.  1998 ; Reeves et al.  2009  ) .   

    11.3   The LANDFIRE Fuel Mapping Effort 

 The LANDFIRE project mapped wildland fuels, vegetation, and fi re regime charac-
teristics across the USA to support multiagency, multiscale fi re management (Rollins 
 2009 ; Rollins and Frame  2006  ) . This project was unique because of its national 
scope and its creation of an integrated suite of spatial data at 30-m spatial resolution, 
with complete coverage of all lands within the lower 48 states in the USA, compris-
ing 64 mapping zones. The LANDFIRE fuel maps were created to support the use 
of critical fi re behavior models such as FARSITE (Finney  1998  )  and FLAMMAP 
(Finney  2006  ) . LANDFIRE was the fi rst project of its kind to offer high-resolution, 
wall-to-wall wildland fuel spatial data for the USA (eight fuel data layers were 
mapped by LANDFIRE). 

    11.3.1   Surface Fuel Mapping 

 Two LANDFIRE surface fi re behavior fuel model layers [FBFM13 for the 13 fuel 
models of Anderson  (  1982  )  and FBFM40 for the 40 fuel models of Scott and Burgan 
 (  2005  ) ] and the two surface fuel load classifi cations [FCCSM for the FCCS models 
of Riccardi et al.  (  2007  )  and FLM of Lutes et al.  (  2009  ) ] were used in this project. 
They were mapped by linking unique combinations of categories from several veg-
etation classifi cations that described the existing vegetation, plant height, canopy 
cover, and biophysical setting (Reeves et al.  2009  )  to the categories in the two FBFM 
classifi cations (Keane et al.  2001  )  and to the categories in the two fuel loading clas-
sifi cations (FCCSM, FLM; Fig.  11.1 ). Assignments for the FBFMs assumed envi-
ronmental conditions that typify the fi re weather that is normally encountered during 
the peak of the burning season for each geographic region being evaluated.  

 Very few agencies have suffi cient georeferenced fi eld data on fuels to permit fuel 
mapping, so plot-level data were mostly unavailable to facilitate the assignment of 
surface FBFMs, FCCSMs, or FLM to the LANDFIRE vegetation data products for 
all regions (Caratti  2006  ) . Therefore, all fuel mapping rules (assignments) were 
accomplished using a qualitative approach based on the experience and knowledge 
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  Fig. 11.1    A fl owchart showing the procedures used to map surface and canopy fuel characteristics 
in the LANDFIRE national mapping project. The dark gray boxes indicate when expert knowledge 
was used to create, validate, and refi ne fuel maps.  BPS  biophysical setting,  CC  canopy cover (%), 
 CBD  canopy bulk density (kg m −3 );  CBH  canopy base height (m),  CH  canopy height (m),  EVC  
existing vegetation cover (%),  EVH  existing vegetation height (m),  EVT  existing vegetation type, 
 FBFM  fi re behavior fuel model,  FCCS  surface fi re characteristics classifi cation system,  FLM  fuel 
loading model,  LFRDB  LANDFIRE Reference DataBase       
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of the fi re and fuel experts. These experts were usually fi re behavior specialists who 
understood the fi re behavior typically associated with the area being evaluated, but 
included other people associated with fi re management (see Table  11.1 ), because 
many regions had no local fi re behavior experts. In a series of integrated workshops, 
the fi re experts evaluated each unique combination of vegetation classifi cations and 
predicted the fi re behavior based on their experience. When experts were not avail-
able for a given LANDFIRE mapping zone, assignments from an adjacent mapping 
zone were used. 

 Initial review maps were created for each of the 64 LANDFIRE mapping 
zones once all unique combinations of the vegetation layers had been assigned 
surface fuel models. Each review map was then evaluated by a separate group of 
local fi re and fuel specialists to detect areas where the surface FBFMs were obvi-
ously mischaracterized. During this intensive review period, approximately 5–20 
local specialists updated, refi ned, and improved the review maps, and all dis-
agreements between participants were resolved through majority vote when con-
sensus could not be reached. When few experts were available for a mapping 
zone, experts from adjacent mapping zones were used. If obvious errors were 
detected, only the rule sets used to compare the surface FBFMs to the vegetation 
components were revised instead of subjectively updating individual pixels in 
the surface FBFM map.  

    11.3.2   Canopy Fuel Mapping 

 Four canopy map layers were created to describe canopy fuels – canopy bulk den-
sity (CBD, kg m −3 ), canopy base height (CBH, m), canopy cover (CC, %), and can-
opy height (CH, m) – using regression-tree statistical modeling, in which 
fi eld-referenced estimates were related to satellite imagery, biophysical gradients, 
stand structure, and vegetation composition data. The regression-tree models were 
formulated using the algorithm as implemented in the Cubist software (Rulequest 
Research, St. Ives, Australia). Canopy cover and height (CC, CH) were mapped 
using the methods of Zhu et al.  (  2006  ) , and the CBH and CBD layers were mapped 
using the methods of Keane et al.  (  2006  ) . The CBH and CBD canopy characteristics 
were estimated for each fi eld plot using the FuelCalc software, which uses the algo-
rithms of Reinhardt et al.  (  2006  ) . Regression-tree models for CBH and CBD were 
developed using the spatially explicit predictor variables available in the LANDFIRE 
system (Keane et al.  2006  ) , such as satellite refl ectance, biophysical gradients, and 
vegetation structure and composition data (Reeves et al.  2009  ) . Each regression tree 
was then applied across each mapping zone to produce preliminary maps of CBH 
and CBD. A gamma log-link generalized linear model (McCullagh and Nelder 
 1983  )  was then used to refi ne the CBD map by ensuring that the CBD predictions 
made sense in relation to CC (e.g., to eliminate high CBD values in areas of low CC; 
Reeves et al.  2009  ) . 
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 The resultant CBD, CH, CBH, and CC maps were evaluated by local experts in 
a series of workshops to eliminate illogical combinations. These experts determined 
thresholds for acceptable canopy fuel behavior stratifi ed by other LANDFIRE mapping 
categories. This critical expert analysis ultimately improved the effi cacy and accu-
racy of the canopy fuel maps. For example, during the interlayer rectifi cation, 
experts assigned a CBH of 10 m and a CBD of 0.01 kg m −3  to deciduous stands to 
ensure that crown fi res would not be simulated in this forest type. 

 A tenfold cross-validation procedure was used to assess the accuracy of the 
CBD and CBH regression-tree models by comparing plot-level estimates with 
mapped predictions at the same locations. No accuracy assessment was performed 
for the surface FBFMs because there were few independent datasets available and 
because different evaluators tend to estimate surface FBFMs differently, though 
consistent estimates between observers can sometimes be achieved (Burgan and 
Rothermel  1984  ) . Despite this lack of an accuracy assessment for surface fuels, 
the abovementioned qualitative evaluation was performed during rule set develop-
ment, expert review, and the annual postfi re-season reviews (Fig.  11.1 ). Annual 
postfi re-season reviews offered users of the LANDFIRE fuel data products a 
chance to discuss any issues with the data. Most of the maps derived from expert 
knowledge had low accuracies (<50%) and contained inconsistencies. Future 
improvements to this process must therefore include georeferenced fi eld data to 
guide, evaluate, and eventually replace expert opinions. One advantage of using 
expert assignments of fuel attributes to the LANDFIRE vegetation map categories 
is that the successional models developed for LANDFIRE contain development 
pathways that can eventually be used to update the fuel maps for changes in the 
vegetation.   

    11.4   The Future of Expert Knowledge in Fuel Mapping 

 Expert knowledge has been indispensable in building contemporary fuel maps, 
and without this input, it is doubtful that today’s fuel maps would be useful to fi re 
managers. However, the goal of any mapping effort should be to minimize sub-
jective bias by replacing qualitative expert knowledge with empirically driven, 
quantitative, and objective approaches. Although input from experts will con-
tinue to play an important role in the development of fuel maps, tomorrow’s fuel 
layers should be designed so that the methods are repeatable, quantitative, and 
unbiased, and the maps are constructed using a combination of detailed georef-
erenced fi eld data, high-resolution remote-sensing data, complex ecosystem sim-
ulations, novel GIS techniques, knowledge-based systems, and advanced 
statistical analyses (Keane et al.  2001  ) . The fi rst step is to develop new fi re 
behavior prediction models that use inputs that can be easily defi ned, measured, 
and summarized in the fi eld. Then, new surface fuel and canopy fuel sampling 
methods must be developed and adopted by land management agencies to allow 
the development of extensive, standardized, spatially explicit databases of fuel 
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conditions that can be used for map development, testing, and validation (Krasnow 
et al.  2009 ; Lutes et al.  2009  ) . 

 A variety of remote-sensing technologies, such as LIDAR (Koetz et al.  2008  ) , 
radar (Bergen and Dobson  1999  ) , digital photography (Bailey and Mickler  2007  ) , 
hyperspectral imagery (Jia et al.  2006  ) , high-resolution images (Lasaponara and 
Lanorte  2007  ) , and a melding of various images (Keramitsoglou et al.  2008 ; Koetz 
et al.  2008  ) , will vastly improve fuel mapping compared with current methods 
that rely heavily on the use of LANDSAT images. Ecosystem simulation models 
can be used in combination with climate, soil, and topographic information to 
spatially describe the biophysical environment and thereby improve fuel mapping 
(Rollins et al.  2004  ) . Progressive GIS techniques can be used to integrate spatial 
data layers in such a way as to predict the most appropriate fuel model (Hawkes 
et al.  1995 ; Chuvieco and Salas  1996  ) . In addition, new statistical analysis tech-
niques, such as regression trees, gradient nearest-neighbor analysis, fuzzy logic, 
and hierarchical modeling, are needed to integrate the biophysical controls on fuel 
properties within fuel maps (Ohmann  1996 ; Ohmann and Spies  1998 ; Nadeau and 
Englefi eld  2006  ) . 

 In the meantime, innovative analytical techniques must integrate expert knowl-
edge into a repeatable, quantitative map-building process, based on the best expert-
systems technologies (Goulstone et al.  1994 ; de Vasconcelos et al.  1998  ) . For 
example, CBH can be indirectly estimated by mathematically solving an empirical 
equation for the CBH required to allow a fi re to transition from a surface fi re into a 
crown fi re assuming various fi re behavior parameters (Reeves et al.  2009  ) . The 
expert contribution to this technique involves panels of local fi re behavior predic-
tion experts who collectively determine the conditions under which a stand will 
likely transition from a surface fi re into a crown fi re. This approach combines 
empirical modeling with expert knowledge and will consistently estimate crown fi re 
activity if the assumed environmental conditions are realized. 

 Fuel classifi cations such as those discussed in this chapter could also be improved 
so that the resulting fuel maps provide higher quality inputs for fi re behavior and fi re 
effects models. The fi rst step in this process would be to build fi re behavior models 
that are more sensitive to realistic (i.e., fi eld-based) estimates of fuel inputs (Arroyo 
et al.  2008  ) . For example, most fi re behavior models are implemented in only one 
dimension (point models), but wildland fi re behavior occurs across three dimen-
sions (3D). Thus, 3D fi re behavior and fi re effects models must be built to account 
for fi re processes that are infl uenced by the vertical, longitudinal, and horizontal 
distributions of fuels. For example, radiation and convection are important heat-
transfer processes that must be simulated in 3D to fully describe complex fi re behav-
iors in complex fuels (Linn  1997  ) . Once the necessary 3D models are developed, 
they will require innovative fuel classifi cations that not only describe fuel properties 
such as fuel load across components, but also describe how these properties are 
distributed both spatially (Reich et al.  2004  )  and temporally (Keane  2008  ) . Future 
fuel classifi cations should be based on extensive (regional to continental) and com-
prehensive (all fuel components) fi eld data (McKenzie et al.  2007  ) , and they should 
be designed to emphasize differences in fuel bed properties, not only the vegetation 
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type, structure, and topographic setting (Lutes et al.  2009  ) . Last, there should be 
considerable expert knowledge built into these classifi cations to ensure that they 
will be useful to the fi re managers who will use them. 

 We also believe that fuel experts, fi re behavior analysts, and fi re managers may 
need to rethink their paradigms for fuel description to allow for the development of 
higher quality fuel maps in the future. Fuel classifi cations, though popular, effi cient, 
and easy to use, may be inappropriate in the future because fuel properties are not 
correlated across fuel components, their properties vary across different scales, and 
the classifi cation categories are limited, restrictive, and subjective. Fuel components 
may need to be mapped independently at the most appropriate scale for a given 
management task to ensure accurate fi re behavior prediction. For example, a digital 
map of coarse woody fuels could be created at a 30-m pixel resolution, whereas a 
fi ne-fuel map might require a pixel resolution of 1–5 m. Fuel component defi nitions 
should also be investigated to develop more fl exible and comprehensive methods for 
describing the fuels and providing model inputs. For example, the size class distri-
butions for coarse woody debris could be quantifi ed for a fuel bed so that the fuel 
load can be computed for woody fuels of any size instead of using the four restric-
tive size classes that are currently used. Designing woody fuel size classes based on 
the drying time (Fosberg  1970  )  is probably inappropriate for accurately estimating 
fuel loadings and carbon pools. Tomorrow’s fuel experts must be willing to modify 
their view of fuel complexes to permit the development of innovative wildland fuel 
maps. And, for these experts to modify their approach, researchers must present 
them with a new approach that they can understand, trust, and learn how to apply in 
their daily work.  

    11.5   Summary 

 Expert knowledge is an indispensable tool in the development of wildland fuel 
maps, and most mapping efforts have extensively used information gained from 
experts to support many phases of the fuel mapping process. However, the high vari-
ability of fuels, coupled with the subjective nature of expert knowledge, will require 
a stronger reliance on empirical data and statistical analysis to generate effective 
fuel maps in the future. Although expert knowledge will continue to play a critical 
complementary and supplementary role in future fuel mapping efforts, fuel map-
ping must incorporate a less-subjective means of map development. This will be 
diffi cult because it will require a complete overhaul of how fi re managers think 
about fuel and the development of new fi re behavior models and leads to the design 
of new fuel classifi cations and new fuel sampling protocols. For this change in 
thought to be possible, researchers must fi nd ways to understand the real-world 
challenges faced by fi re managers so that it is possible to communicate the advances 
in fi re science in a way fi re managers can understand and accept. Only in this way 
will the new science be adopted and incorporated into future fi re management.      
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    12.1   Introduction 

 Conservation planning and management programs typically assume relatively 
homogeneous ecological landscapes. Such “ecoregions” serve multiple purposes: 
they support assessments of competing environmental values, reveal priorities for 
allocating scarce resources, and guide effective on-ground actions such as the acqui-
sition of a protected area and habitat restoration. Ecoregions have evolved from a 
history of organism–environment interactions, and are delineated at the scale or 
level of detail required to support planning. Depending on the delineation method, 
scale, or purpose, they have been described as provinces, zones, systems, land units, 
classes, facets, domains, subregions, and ecological, biological, biogeographical, or 
environmental regions. In each case, they are essential to the development of con-
servation strategies and are embedded in government policies at multiple scales. 

 For simplicity, we have chosen “ecoregion” to imply a relatively homogeneous 
landscape planning unit defi ned based on ecological principles that will guide the 
design of conservation practices to produce specifi c outcomes. To guide conserva-
tion policy, a hierarchy of these units must provide a context for biological patterns 
that may be poorly understood (Leathwick et al.  2011  ) , including future biodiversity 
compositions arising from dynamic ecological processes and drivers of environ-
mental change (Beier and Brost  2010  ) . 

 Researchers generally use a spatially nested or hierarchical structure for ecore-
gions, with sizes depending on the study’s purpose and boundaries based on distinct 
landscape components (Hardman-Mountford et al.  2008  ) . At higher hierarchical 
levels, ecoregions resemble and broadly correspond to climatic and landform sys-
tems; at lower levels, they defi ne increasingly homogeneous climatic, physiographic, 
and biotic characteristics (Bailey  2004  ) . Though some boundaries are clearly defi ned 
by sharp gradients such as geological changes (e.g., mountains) that are refl ected in 
structural changes in the vegetation, other boundaries are arbitrary divisions along 
gradually changing environmental and biotic gradients. In these latter situations, 
boundary locations are imprecise and experts choose a position appropriate for the 
study goals (McMahon et al.  2001  ) . 

 Because ecoregion boundaries are often fuzzy, and because the degree of hetero-
geneity varies, different jurisdictions have adopted different methods of combining 
data and expert knowledge (McMahon et al.  2004  ) . To be implemented in policies 
and plans, ecoregions must be widely accepted by land managers from various 
backgrounds. Therefore, ecoregions are commonly derived fi rst using data-driven 
methodologies and second using expert judgments (Loveland and Merchant  2004  ) . 
The data-driven ecoregions are reviewed by experts and practitioners to ensure 
boundaries are realistic and useful. For example, experts may adjust how they have 
weighted particular aspects to build a mental model of the landscape that better 
refl ects their perceptions (Hargrove and Hoffman  2004  ) . Agencies that have invested 
signifi cant time and resources in developing a regionalization won’t readily switch 
systems, so as new datasets, models, and classifi cation methods are developed, new 
ways to combine them with existing systems become necessary. 
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 In this chapter, we present a case study on validating and refi ning subregion 
 boundaries in Australia’s Southeast Queensland ecoregion. Specifi cally, we discuss 
how best to create subregions that match subjective expert assessments while integrat-
ing relevant empirical data. To do so, we discuss appropriate statistical methods and 
the respective roles of expert knowledge and empirical data. Based on this discussion, 
we demonstrate the use of Bayesian mixture models and their interpretation, thereby 
providing a rigorous and repeatable way to create or revise ecoregions that integrate 
expert knowledge with empirical data. We conclude by identifying the strengths and 
weaknesses of the approach, challenges to its implementation, and recommendations 
for better capturing expert knowledge generated by existing management processes.  

    12.2   Case Study 

 Australia’s terrestrial ecoregions (“bioregions”) provide a guiding framework for 
biodiversity conservation strategies (Thackway and Cresswell  1995 ; Environment 
Australia  2000  ) . They provide crucial inputs for several planning mechanisms, 
including selection of representative conservation areas (Natural Resource 
Management Ministerial Council  2004  ) , assessment of landscape health (Morgan 
 2000 ), and State of the Environment reporting (Cork et al.  2006  ) . These assessments 
allow quantitative reporting and monitoring of trends, and therefore infl uence future 
planning for sustainable development. 

 Our case study focuses on developing a subregional characterization of the 
Southeast Queensland ecoregion (Fig.  12.1 ). This region is recognized for its high 
biodiversity, which includes many unique endemic species, many near their north-
ern or southern distribution limits. It contains 151 regional ecosystems including 
numerous signifi cant wetlands (Sattler and Creighton  2002  ) .  

 The Southeast Queensland ecoregion was fi rst delineated by Stanton and Morgan 
 (  1977  ) , who described it as a place of great physical and biological diversity, char-
acterized by a subtropical climate. Landforms and vegetation, distinguished by air-
photo interpretation, were the main attributes used to delineate ecoregions at this 
time, but were supplemented by published information. The ecoregion extends as 
far north as Curtis Island, near the 900-mm rainfall isohyet, and is bounded by the 
watershed of the ranges that form part of the Queensland state border with New 
South Wales to the south (Fig.  12.1 ). 

 The rapid assessment by Stanton and Morgan  (  1977  )  (see their Appendix A) 
proposed arbitrary contour lines to differentiate lowland and highland landforms 
and landscapes, but could not defi ne Southeast Queensland’s complex subregions. 
Young and Dillewaard  (  1999  )  subsequently delineated ten subregions from the 13 
“environmental provinces” proposed by Young and Cotterell  (  1993  )  (Fig.  12.1 ). 
These subregions were principally defi ned based on expert knowledge guided by 
maps of environmental zones following the approach of Morgan and Terrey  (  1990  ) , 
who emphasized structural geology (major geological formations) and local 
 climates. Where suitable land system maps (Christian and Stewart  1968  )  existed, 
they also informed the delineation of subregion boundaries.  
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    12.3   Methodology for Developing Subregions 

 We chose Austin’s  (  2002  )  framework for statistical analysis in ecology to guide our 
subregion development. Austin’s ecology–statistics–data (ESD) framework is an 
approach explicitly grounded in ecological theory, with statistical methods and data 
chosen based on that theory. By using an explicit multivariate normal mixture model 
(MNMM; Fraley and Raftery  2006 ; Frühwirth-Schnatter  2006  ) , we provide a foun-
dation for statistical and therefore ecological inference. Here, we describe the ESD 

  Fig. 12.1    Location of the ten subregions of the Southeast Queensland ecoregion. Subregions: 1, 
Scenic Rim; 2, Moreton Basin; 3, Southeast Hills and Ranges; 4, Southern Coastal Lowlands; 5, 
Brisbane–Barambah Volcanics; 6, South Burnett; 7, Gympie Block; 8, Burnett-Curtis Coastal 
Lowlands; 9, Great Sandy; 10, Burnett-Curtis Hills and Ranges. Data sources: ecoregions – 
Queensland Herbarium BIOPROV v4.2 2001; coastline and state borders – Geoscience Australia 
GEODATA Coast 100K 2004       
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framework’s three components for ecoregion delineation: the underlying (ecological) 
conceptual model; the choice and scale of attributes (in the data) used to develop the 
ecoregions; and the quantitative (statistical) method that accepts these attributes as 
inputs and provides ecoregion boundaries and descriptions as outputs. 

    12.3.1   The Underlying Ecoregion Conceptual Model 

 Any set of hypothetical ecoregions is based on attributes that capture environmen-
tal, topographic, bioclimatic, or biodiversity themes. Selection of attributes depends 
on the conceptual ecological model (the framework) chosen. We therefore start by 
discussing how these attributes relate to a conceptual ecological model (the “E” in 
ESD). Such models start with the main drivers of biophysical patterns then match 
them to attributes that can be adequately measured. For ecoregions, these are the 
ecological and geomorphological processes that drive the formation and distribu-
tion of biota and whose degree of homogeneity characterizes each ecoregion at a 
given scale. 

 Terrestrial ecoregions are defi ned by factors that determine variability at land-
scape to regional scales, primarily topography, annual bioclimatic indices (tempera-
ture, rainfall), and geology. In contrast, subregions are defi ned by factors that 
determine variability at local to landscape scales, primarily fi ne-scale topography, 
seasonal variation in bioclimatic indices (temperature, rainfall extremes), and soil 
characteristics that infl uence resource availability to plants. These ecosystems form 
readily identifi able land or habitat types that capture the mosaic of variation associ-
ated with soil sequences and disturbance regimes. 

 These principles are well-understood and embedded within both environmental 
science and regulations, such as when regional ecosystems are defi ned within an 
ecoregion-based planning framework (Sattler and Williams  1999  ) . The greatest cer-
tainty in ecoregion boundary delineation occurs at either end of a spectrum that 
recognizes the fi ne-scale diversity among regional ecosystems, as in the example of 
the Queensland vegetation types (Neldner et al.  2005  ) , or that recognizes broad-scale 
differences, as in Australia’s ecoregions (Thackway and Cresswell  1995  ) . Our 
Southeast Queensland study focuses on an intermediate scale, with high uncertainty 
in boundary delineation. Subregion defi nition, therefore, lets us test a model-based 
approach that can incorporate information from both experts and empirical sources.  

    12.3.2   Information (Attributes) 

 We used two information sources in this case study: expert delineations of ten 
 subregions in the interim biogeographic regionalization for Australia (Environment 
Australia  2000  )  and geographical information system (GIS) spatial layers for envi-
ronmental attributes (Rochester et al.  2004  ) . 



234  K.J. Williams et al.

    12.3.2.1   Expert-Delineated Boundaries 

 All of Queensland’s ecoregions and subregions were defi ned subjectively using expert 
knowledge supported by maps of the geology, soils, and land systems and by 
LANDSAT images (Sattler and Williams  1999 ; Environment Australia  2000  ) . The 
resulting boundaries quantify the experts’ beliefs and initial assessments of relatively 
homogeneous and spatially contiguous environmental groupings. Typically, boundar-
ies were attached to mapped topographical features (e.g., ridgelines, waterways), 
boundaries from fi ner-scale vegetation or soil mapping, or administrative borders 
(e.g., between states). Anchoring expert boundaries to identifi able attributes facili-
tated spatial alignment with the GIS layers in the preceding data-driven component. 

 Queensland’s ecoregions and subregions are formally reviewed by expert panels 
who successively refi ne the boundaries used to guide environmental policies and 
legislation (i.e., the  Vegetation Management Act 1999 ; the  Integrated Planning Act 
1997 ). Experts have experience in vegetation mapping, soil science, or conservation 
planning in the ecoregion under review. Key information is provided (including 
recent publications), particularly in relation to locations where there is ecological 
evidence for boundary shifts. Maps, including GIS visualizations, facilitate explora-
tion, discussion, and defi nition of boundaries. Consensus is achieved through facili-
tated discussions, and both conclusions and the underlying rationale are recorded. 
Revision opportunities arise at intervals determined by the availability of new 
 information or by unresolved issues. 

 Although the resulting ecoregions are sound, and major changes are not desired, 
minor changes are made through regional ecosystem reviews (Neldner et al.  2005  ) . 
However, there is less consensus on subregion boundaries because the higher levels 
of environmental variation have confounded expert interpretation. Thus, formal 
integration of expert knowledge with empirical data to refi ne subregion boundaries 
would be desirable (e.g., Accad et al.  2005  ) . 

 We used the expert-delineated Southeast Queensland subregion boundaries, 
derived following a process similar to that described above, to infer the mean values 
and ranges for each subregion’s key environmental factors (see Sect.  12.3.2.2 ). 
Though the uncertainty in boundary positions was not explicitly captured by the 
expert panels, it should be possible to elicit this information. Our model compares 
this expert classifi cation with one based on relatively independent environmental 
factors using proxies (empirical data) drawn from available GIS layers (Rochester 
et al.  2004  ) .  

    12.3.2.2   GIS Data 

 We inferred ecological hypotheses from the bioregional framework descriptions of 
Stanton and Morgan  (  1977  ) , Sattler and Williams  (  1999  ) , and Thackway and Cresswell 
 (  1995  )  corresponding to expert-defi ned subregion boundaries and their associated 
geological, landform, annual rainfall, and elevation descriptions by Young and 
Dillewaard  (  1999  )  to guide our selection of GIS data (Table  12.1 ). In this study, we 
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   Table 12.1    Relationships between the GIS datasets and the ecological hypotheses tied to the 
proxies for environmental factors (geology, landform, elevation, rainfall, and vegetation) that were 
used by experts to describe the ten subregions of the Southeast Queensland ecoregion. Proxy envi-
ronmental factors were interpreted from Table  12.1  in Young and Dillewaard  (  1999  )    

 Ecological hypothesis  Environmental proxy  GIS dataset 

 Rock attributes infl uence soil 
formation processes, thereby 
affecting the soil conditions, 
nutrients, and water 
availability that affect plant 
growth, resulting in 
characteristic vegetation 
types 

 Geology (surface lithology) was 
grouped into 12 provinces 
that represent the variation 
from basic to acid igneous 
rocks, fi ne- to coarse-grained 
sediments, sedimentary 
sources and ages, the degree 
of consolidation, metamor-
phosis, and development of 
duricrusts 

 Clay content in the 
A horizon (Clay) soil 
water-holding 
capacity of the A and 
B horizons (Moisture) 

 Landform type, topographic 
position, and landform 
heterogeneity interact with 
geology and climate to 
generate localized variations 
in soil formation, thereby 
infl uencing the development 
of characteristic vegetation 
types 

 Landforms were grouped into 
seven types that characterize 
the topographic variation 
associated with mountain 
ranges, plateaus, narrow to 
broad valleys, rolling hills, 
coastal plains, and sand 
dunes 

 Compound topographic 
index (CTI) 

 Annual rainfall is an important 
determinant of plant 
productivity and biomass. 
When balanced against 
evaporation, it represents 
water availability, which may 
be seasonally limiting, 
thereby infl uencing the 
vegetation types that can be 
supported by an area 

 Annual rainfall was defi ned in 
50-mm increments up to 
900 mm and then in 100-mm 
increments, representing 
moisture limitations during 
the dry season that infl uence 
vegetation type 

 Annual rainfall (Rain) 
total rainfall during 
the warmest quarter 
(Wettest) 

 Elevation is topographically 
correlated with climatic 
factors such as temperature 
and rainfall. Higher 
elevations experience 
different weather conditions 
than lower elevations due to 
topographic funneling of 
wind, greater exposure, and 
adiabatic cooling of air, 
leading to increased 
precipitation. Lower 
elevations are generally 
found in coastal regions, 
where air temperatures are 
moderated by proximity to 
the ocean 

 Mean elevation was defi ned in 
25-m increments up to 50 m, 
50-m increments to 300 m, 
and then in 100-m incre-
ments to refl ect the steep 
gradient from coastal 
lowlands to inland 
mountains 

 Mean annual temperature 
(Heat) mean 
minimum temperature 
during the coolest 
month (Coldest) mean 
maximum tempera-
ture during the 
warmest month 
(Hottest) 
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defi ned each 1,250-m pixel in the GIS data layer as a single site, and used the envi-
ronmental characteristics of that site in our subsequent analysis of the empirical data. 
Four groups of environmental variables were selected from Rochester et al.’s  (  2004  )  
data: for geology, the clay content and water-holding capacity of the soils, which 
represent the texture and depth of surfi cial deposits; for landforms, a topographic wet-
ness index derived from a digital elevation model; for rainfall, the annual total and 
total during the warmest quarter; and for elevation, mean annual temperature and the 
mean maximum and minimum temperatures during the warmest and coolest month, 
respectively. Although these factors are relatively independent proxies for subregional 
ecological patterns, they are interrelated through the physical processes of climate–
soil–landscape systems. We selected them because they are more directly correlated 
with the resources and conditions that infl uence vegetation patterns than indirect fac-
tors such as altitude and geology. To estimate the degree of interdependence among 
these variables, we calculated pairwise correlations among them.    

    12.3.3   Quantitative (Statistical) Model 

 Bayesian statistics provides an intuitive framework for examining the spectrum of 
results from an expert-dominated to a data-dominated analysis, but requires the 
defi nition of an explicit and quantitative model (Low-Choy et al.  2009  ) . To achieve 
this, it helps to view ecoregion classifi cation methods as model-based or model-
free. The model-based approaches provide a well-specifi ed statistical model whose 
components can be directly interpreted using the conceptual ecological model (i.e., 
strongly linking the “S” and “E” of ESD). Since the model is Bayesian and statisti-
cal it uses the data (i.e., the “D” in ESD) to update initial estimates of parameters 
that defi ne the model. In some ecological applications, such as mapping natural 
hazards or rainfall-runoff, classifi cation could also be achieved via a deterministic 
model (Goswami et al.  2007  ) , which relies entirely on the ecological conceptual 
model. Although data may be used to evaluate the predictive performance of such 
deterministic ecoregions, data are not used to update parameter estimates. 

 Model-free approaches range from expert specifi cation of ecoregion boundaries 
to the use of data-mining algorithms to group similar sites; a spectrum documented 
by Loveland and Merchant  (  2004  )  for mapping American ecoregions. In contrast 
to model-based approaches, model-free approaches utilize an algorithm that 
focuses on accurate prediction of boundaries rather than on providing a single 
explanatory model to describe ecoregions (e.g., Hargrove and Hoffman  2004 ; 
Snelder et al.  2010  ) . 

    12.3.3.1   Bayesian Multivariate Normal Mixture Model 

 Here, we consider MNMMs, a model-based approach that has been used to detect 
multispecies assemblages (Georgescu et al.  2009  ) . Model-based approaches have 
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the advantage of being able to support all stages of clustering, description, and site 
allocation common to ecoregion defi nition. The Bayesian framework provides a 
clear link between statistical and ecological inference in combining expert and 
empirical data and addresses uncertainty in model parameters. Indeed, many clus-
tering algorithms represent particular MNMM forms (Cucala et al.  2009  ) . Fitting 
MNMMs within the Bayesian framework naturally allows us to consider a spectrum 
of models with more or less emphasis on expert knowledge compared to empirical 
data. This framework is characterized by a learning cycle that starts with a prior 
distribution for model parameters, and then incorporates the empirical data to gen-
erate a  posterior  (updated) distribution. This updating is achieved via an MNMM 
likelihood function that describes the likelihood of the observed data under each 
parameterization of the model. 

 The  prior  in a Bayesian statistical model represents the experts’ prior assessment 
of the most plausible classifi cation. For example, a weakly informative  prior  stipu-
lates that subregions have a mean and variance similar to that of the overall study 
area; that is, subregions do not exist and the ecoregion is homogeneous at the mod-
el’s scale. A strongly informative  prior  encodes expert-delineated boundaries, as 
detailed in case study B by Low-Choy et al.  (  2009  ) ; this implies that subregions 
exist, and that the ecoregion is highly heterogeneous at the model’s scale. The 
Southeast Queensland expert-specifi ed subregions tend to follow boundaries defi ned 
by different combinations of topography, climate, and structural geology that were 
modifi ed to obtain contiguous areas. This refl ects the expert’s tacit assessment of 
trade-offs among key drivers for a given set of boundaries (Table  12.1 ) and high-
lights the potential, through elicitation or modeling, to reveal the underlying concep-
tual model. Advances in computers and statistical algorithms have made it feasible 
to defi ne regions using Bayesian MNMMs, the method chosen for our case study.  

    12.3.3.2   Model Specifi cation and Implementation 

 Within each ecoregion, a multivariate normal density function is used to describe 
the joint statistical distribution of all attributes (occurring across sites within the 
ecoregion), defi ned in terms of two sets of parameters:

    1.    A mean value for each attribute in the ecoregion.  
    2.    A covariance matrix describing how each pair of attributes is related within the 

ecoregion. 

 The MNMM is formed as a mixture of these multivariate normal distributions, 
where each site has a probability of being allocated to each ecoregion (defi ned by its 
multivariate distribution). The core modeling “trick” underlying mixture models 
creates a third set of parameters to capture this allocation:  

    3.    Indicator variables that stipulate which ecoregion each site is allocated to. 

 The probability of allocating each site to an ecoregion is simply calculated as a 
weighted average of the (multivariate normal) likelihood of the site’s attribute  values 
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across an ecoregion. These weights provide the fourth set of parameters for the 
MNMM.  

    4.    The overall probability that an arbitrary pixel is allocated to a specifi c ecoregion, 
which therefore refl ects the size of the ecoregion.     

 Hence, all three phases of ecoregion defi nition (clustering, description, and site 
allocation) are embraced within the same model: the site allocations determine how 
training sites are clustered together as well as predicting allocation of new sites, 
while the other three sets of parameters (means, covariance matrices, and size, rep-
resented by the number of sites) provide the ecological description of the ecore-
gions. Accad et al.  (  2005  )  and Low-Choy et al.  (  2009  )  provide more details of model 
development, including a mathematical specifi cation. 

 The Southeast Queensland ecoregion expert panel identifi ed subregion boundar-
ies (Young and Dillewaard  1999  )  that effectively allocate each site to a subregion. 
From these allocations, each subregion’s mean, variance, and size can be imputed 
(Accad et al.  2005  ) . This combined information defi nes an expert-informed  prior . 
We express this information as a hierarchical  prior  (multivariate normal–inverse 
Wishart), as described by Frühwirth-Schnatter  (  2006  ) . 

 We compare three  prior  models with these subregional means and variances:

   Model A. The  prior  is set to the overall ecoregion values of the empirical data.  
  Model B. The  prior  is imputed from the expert boundaries, but given a moderate 

degree of belief, equivalent to fi ve times more than that of the empirical data.  
  Model C. The  prior  is defi ned as in B, but with a high weight for expert knowledge, 

effectively ten times more than the weight applied in Model B, and 50 times 
more than the weight assigned to the empirical data.    

 The  posterior  distribution provides a range of plausible models, which are differ-
ent mixtures of multivariate normal distributions that fi t well to the measured attri-
butes. For each plausible mixture model, each site may be allocated to the most 
likely subregion. This provides a  posterior  predictive distribution of all plausible 
groupings of sites. The  posterior  distribution of these allocations shows how many 
sites are “stable” (i.e., consistently allocated to the same subregion). 

 Site allocations are an important parameter in the  posterior  MNMM distribu-
tion. For mapping, each site is allocated to the ecoregion with the highest  posterior  
probability. Point estimates of other  posterior  parameters are used to interpret the 
ecoregions. These are the sizes of each ecoregion, and the means and covariances 
of the environmental attributes within each ecoregion. The Bayesian implementa-
tion of the MNMM also provides  posterior  measures of uncertainty for all of these 
parameters. Predictive uncertainty is given in terms of the alternative allocations 
for sites that are not completely stable in their allocation to one ecoregion. Then 
95% credible intervals for ecoregion size and attribute means and covariances con-
tain the parameter with a 95% chance (a more intuitive interpretation but the logical 
reverse of confi dence intervals). This rich information on uncertainty differs from 
classical inference for MNMMs (e.g., Fraley and Raftery  2006  )  and data-mining 
algorithms (Hastie et al.  2008  ) , in which bootstrapping (or another resampling 
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method) is required to provide a specifi c measure of uncertainty that refl ects  random 
permutations of the input data. 

 We fi t an MNMM to the empirical data with hierarchical  priors  informed by the 
expert-defi ned boundaries using a Markov-chain Monte Carlo (MCMC) algorithm, 
as described by Frühwirth-Schnatter  (  2006  ) . The assumption that data can be 
 adequately modeled can be assessed via  posterior predictive checks  (Gelman et al. 
 2004  ) . This procedure checks whether the data fall within the range of many simula-
tions from the model. It uses the plausible parameter values generated from the 
 posterior  distribution, and is a by-product of the MCMC computations. Then, attri-
butes of hypothetical sites are generated for each plausible parameter value. These 
hypothetical sites can be compared to the actual sites to reveal whether the actual 
data fall within the bounds of the model predictions. We performed these computa-
tions using the R software (Ihaka and Gentleman  1996  ) .    

    12.4   Case Study Results 

 The expert-delineated subregions (Fig.  12.1 ) were based on fi ve biophysical themes, 
but two or three of the themes dominated the choice of boundaries – the geological 
province and the landform-altitude zones, which varied in importance across the 
subregions. Models B and C used these delineations as the basis for the  prior , effec-
tively “anchoring” the analysis of the GIS data, whereas Model A was purely data-
driven. Model B was intermediate between the data-driven Model A and the 
expert-driven Model C. 

    12.4.1   Interpretation of the Mixture Models for Model A 

 The essential ideas underlying an MNMM are accessible to anyone who under-
stands normal distributions. To make these concepts concrete, we have illustrated 
the results from fi tting a data-driven Bayesian MNMM (Model A, Sect. 12.3.3.2), 
using a weakly informative  prior , for the ten subregions in the Southeast Queensland 
ecoregion (Fig.  12.2 ). Though still data-driven, this form of MNMM is model-based 
and also integrates uncertainty (from grouping to description to prediction) and pro-
vides richer information than clustering alone.  

 In each subregion, each attribute follows a normal distribution described by its 
mean and variance (Fig.  12.2 ). To facilitate comparisons, each attribute has been 
standardized by subtracting its ecoregional mean (equivalent to zero on the  y -axis) 
and dividing the result by its ecoregional standard deviation; so that the horizontal 
black lines through the center of the box-plots then represent the average relative 
contribution of each attribute. Values on the  y -axis indicate the number of standard 
deviations away from the ecoregional average. Thus, attributes that are predomi-
nately positive or negative respectively fall above or below this overall average. 
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  Fig. 12.2    Results from fi tting a data-driven Bayesian MNMM (Model A) for ten subregions 
(numbered to match Fig.  12.1 ); ( a ) subregions 1–5, ( b ) subregions 6–10. Boxplots ( top row ) sum-
marize the normal distribution fi t to each attribute within each subregion. All attributes have been 
standardized so that the  y -axis refl ects the number of standard deviations from the ecoregion’s 
mean.  Black line , mean; box, middle 50% of the distribution; whiskers enclose values between the 
2.5th and 97.5th quantile of the modeled distribution based on the mean  posterior  estimate of the 
parameters for the mean, variance and correlations. Image plots ( bottom row ) show the correlations 
among variables within a subregion:  green , highly positive;  white , negligible;  red , highly negative. 
Closely related variables (either negatively or positively correlated for the ecoregion) are located 
close to each other. Environmental variables: Clay (A horizon clay content, %); Coldest (mean 
minimum temperature during the coolest month, °C); CTI (compound topographic index, dimen-
sionless); Heat (mean annual temperature, °C); Hottest (mean maximum temperature during the 
warmest month, °C); Moisture (soil water-holding capacity, mm); Rain (annual rainfall, mm); 
Wettest (total rainfall during the warmest quarter, mm). For subregion descriptions, see Fig.  12.1  
caption             
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The box and whiskers enclose 50 and 95%, respectively, of the modeled (standard-
ized) values for each attribute. Hence, the size of the box is proportional to the vari-
ance. For example, annual rainfall in the Brisbane–Barambah Volcanics (subregion 
5), which closely corresponds with the expert’s delineation, shows little variance (a 
small box and small whiskers) and an average that is one standard deviation ( y -axis) 
below the ecoregion’s average; this means that annual rainfall is consistent and 
lower than average. In contrast, soil moisture and clay content are close to the ecore-
gion’s average, but vary widely (more than three standard deviations above and 
below the ecoregion’s average). 

 The relationships among attributes are refl ected by the correlation matrix 
(Fig.  12.2 , image plots below the box-plots). In the matrix, each cell represents the 
Pearson’s correlation coeffi cient for each pair of attributes, when all attributes are 
considered simultaneously. For example, soil moisture and clay content in subre-
gion 5 are highly positively correlated, since this area is dominated by heavy clay. 
In contrast, the hottest temperature is moderately to highly positively correlated 
with annual temperature, but highly negatively correlated with annual rainfall. 

 This example illustrates the normal and multivariate aspects of the model. We 
used  posterior predictive checks  to test the assumption of multivariate normality, 
and found no major discrepancies between the actual sites and the hypothetical sites 
in the  posterior  model (Low-Choy et al., unpublished data). The “mixture” aspect 
arises because we also modeled the probability that each site belongs to each subre-
gion. This gives a measure of the “size” (number of sites) of each subregion. The 
subregion with the greatest proportion of sites either wholly or partially allocated 
was the Gympie Block (subregion 7), which comprised nearly 20% of the ecoregion 
(top, Fig.  12.3a ), followed by the Burnett-Curtis Hills and Ranges (subregion 10), 
which comprised nearly 15% of the ecoregion. Most of the remaining subregions 
accounted for between 5 and 10% of the ecoregion.  

 Some sites were stable, and were consistently allocated to the same subregion 
(bottom, Fig.  12.3a ). In the Burnett-Curtis Coastal Lowlands (subregion 8) and sub-
region 10, more than 90% of the sites were always allocated to the respective subre-
gion, whereas in the South Burnett (subregion 6), only 60% of sites were stably 
allocated to that subregion. In subregion 8, the approximately 10% portion of unsta-
ble sites (Fig.  12.3b ) were allocated to the Southeast Hills and Ranges (subregion 3) 
and subregion 6, whereas nearly all unstable sites in subregion 10 were allocated to 
subregion 7. For the larger number (40%) of unstable sites in subregion 6, the sec-
ond choice for allocation was spread among several options: most often the Scenic 
Rim (subregion 1), followed by subregions 2, 4, or 8, then 3, 5, or 9.  

    12.4.2   Comparison with Models B and C 

 Figure  12.4  shows that some expert-delineated subregions were not clearly defi ned 
by the data-driven analysis in Model A. For example, subregions 3, 6, 5, 7, and 1, 
in that order, are reduced in size, displaced, or fragmented compared with their 
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  Fig. 12.3    Subregion size and stability for data-driven Model A. ( a )  Top : proportion of sites allo-
cated ( y -axis,  dots ) to each subregion ( x -axis). Error bars ending in arrows show the 95% credible 
intervals for these proportions, refl ecting the model’s degree of uncertainty. ( a )  Bottom : stability of 
site allocation based on the proportion of sites ( y -axis) that were consistently (across all  posterior  
simulations) allocated to one subregion ( x -axis). The width of each bar refl ects the relative size of 
each subregion (i.e., refl ects the position of the dots in the  top-left graph ). ( b ) instability plot for 
each subregion showing how often unstable sites are reallocated to another subregion as the second 
choice (shown by the colored bars), calculated over all  posterior  simulations. This is calculated as 
100 minus the stability in the graph ( a ) Bottom. For subregion descriptions, see Fig.  12.1  caption       
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  Fig. 12.4    Maps showing predicted allocation of sites ranging from data-driven Model A given no 
prior boundaries ( left ), to expert-driven Model C with high weight on expert boundaries ( right ), 
and the intermediate Model B with some weight on expert boundaries ( middle ). For subregion 
descriptions, see Fig.  12.1  caption       

 delineation in Fig.  12.1 . Some subregions were robust and did not vary greatly 
between Model A (data-dominated) and Model C (expert-dominated); these include 
subregion 10 in the north and the Great Sandy (subregion 9) in the mid-east. Though 
Model C closely resembled the expert-delineated subregions (Fig.  12.1 ), it showed 
segmentation among some subregions (e.g., subregions 1, 2, 7, and 10), which sug-
gests that some environmental attributes may not have been explicitly accounted for 
in the expert delineations. Alternatively, additional subregions could be delineated 
in the western part of the Moreton Basin (subregion 2) and the northern part of sub-
region 1, or the western and southern margins of the ecoregion boundary could be 
refi ned. The intermediate Model (B) illustrates a gradual evolution from the data-
driven to expert-driven delineations, such as the increasing dissolution of subregion 
7 and its redistribution to the south and west with decreasing emphasis on the expert 
knowledge.  

 The results from the data-driven model (Model A; Fig.  12.2 ) reveal the pivotal 
role of soil moisture (water content at fi eld capacity) in defi ning subregions. The 
standardized value of soil moisture was consistently low in the data-dominated 
model of subregions 2, 7, and 10; higher than average in subregions 1, 8, and 9; 
and average or slightly above average for the other subregions (Model A; Fig.  12.2 ). 
These differences are consistent with location-based variation in soil types. Heavier 
clays and deeper weathered soils are predominant in some subregions and shallow 
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or sandy soils in others. Soil moisture varied widely in subregions 1 and 5, but 
hardly at all in subregions 2, 7, 8, and 10. Overall, each subregion was defi ned by 
relative extremes in different attributes. For instance, low rainfall – both annually 
and during the warmest quarter – and high temperatures during the hottest month 
characterized subregion 5. In contrast, subregion 1 had the lowest temperatures – 
both during the hottest month and annually – and a higher clay content and soil 
moisture potential, with greater variability in all these attributes. Subregions 7 and 
10 had similar profi les (both means and correlations), except for coldest tempera-
tures, which were higher in subregion 10 (Fig.  12.2 ). In addition, sites allocated to 
these subregions were either stable or changed to the other subregion in this pair; 
that is, two-thirds of unstable sites in subregion 7 changed to 10 and nearly all 
unstable sites in subregion 10 changed to 7 (Fig.  12.3b ). This indicates potential 
for combining these two subregions (not considered here), which share similar 
longitude and are geographical neighbors in the north of the ecoregion (Fig.  12.4 , 
Model A). Even for models with higher expert contribution (Fig.  12.4 , B and C), 
this relationship between subregions 7 and 10 is maintained, albeit in a different 
form: both subregions have neighboring outliers scattered in the inland mid- to far 
south of the ecoregion. Similar interpretations with varying levels of emphasis can 
be made for other subregions by comparing and contrasting the results in Figs.  12.2  
and  12.3 . 

 Interestingly, three subregions (3, 4, and 9) were closely related (Model A, 
Fig.  12.3b ) in terms of unstable sites being allocated with high probability to one or 
the other two. These do not share many similar attributes, the only common points 
are higher than average coldest temperatures and soil characteristics that are neither 
highly variable (as in subregions 1 and 5) nor highly consistent (as in subregions 2, 
7, 8, and 10). Geographically, these regions are located closest to one another in the 
expert-dominated Model C (Fig.  12.4 ). To a lesser extent, three subregions (1, 2, 
and 6) were related by sharing unstable sites (Model A, Fig.  12.3b ). These subre-
gions are located in the south and west of the ecoregion. 

 The  posterior  uncertainty in all means and variances (80 attribute–subregion 
pairs) and the correlations was investigated (Low-Choy et al., unpublished data). 
All subregional parameters (means, variances, and correlations) were fairly stable 
because their  posterior  standard deviations were quite narrow. This information on 
uncertainty (a useful feature of the Bayesian MNMM) provided confi dence that the 
model was relatively robust and useful for ecoregion defi nition.   

    12.5   Discussion 

    12.5.1   Value of Expert Knowledge in Ecoregion Studies 

 McMahon et al.  (  2004  )  recognized the complementary value of expert- and data-
driven approaches to ecoregion delineation and recommended collaborative explo-
ration of these methods by researchers with quantitative and qualitative expertise. 
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Mackey et al.  (  2008  ) , in their review of ecoregion approaches, noted the confl ict 
between qualitative versus quantitative approaches to biogeographic regionaliza-
tions. They recommended an approach that formalized the conceptual framework 
and objectives of the study. Loveland and Merchant  (  2004  )  also recognized the 
confl uence of expert- and data-driven approaches in ecoregional mapping and the 
need for expertise in combining these approaches. Hargrove and Hoffman  (  2004  )  
suggested that existing maps, with their implied weights, could become direct inputs 
for a fully quantitative model, but that increasingly fi ne ecoregion subdivisions 
quickly surpassed the ability of experts to resolve. However, the ability of Bayesian 
statistical approaches to reconcile the differences between data- and expert-driven 
approaches by formalizing the role of expert (subjective) information has not been 
noted in previous ecoregion studies. Our applications (Rochester et al.  2004 ; Accad 
et al.  2005 ; Low-Choy et al.  2009  )  are the fi rst trials of this novel approach. 

 Although expert contributions have been acknowledged in classical statistical 
analyses which are purely data-driven, an explicit record of the current state of 
knowledge is generally not required prior to the analysis. Data-mining techniques 
are also susceptible to  post hoc  manipulation to fi t  a priori  assumptions (Hastie 
et al.  2008  ) . Although both empirical and expert data are accommodated by 
increasingly popular conditional probability network models (also known as 
Bayesian Belief Networks), the two information sources are treated as though 
interchangeable. This contrasts with the explicit directionality afforded by the 
Bayesian paradigm, in which expert knowledge forms the basis for a learning 
cycle that uses empirical evidence to update the  prior  results (Low-Choy et al. 
 2009 ; Kuhnert et al.  2010  ) . This is made possible by the Bayesian broad defi nition 
of probability, which embraces uncertainty in expert knowledge as well as in the 
empirical data. 

 Our investigations worked with existing expert knowledge, which was expressed 
as existing delineations of subregional boundaries. Since these boundaries were 
derived through a well-established environmental management process, they dis-
tilled the experts’ “best” judgment at the time. The indirect approach to expert 
elicitation of site allocation, rather than using means and covariance matrices of 
attributes within ecoregions, also contributes to the accuracy of the expert’s assess-
ments. This provides benefi ts similar to indirect elicitation of expert knowledge in 
a regression context (Chap.   3    ). By asking experts about observable quantities (here, 
boundaries) we avoid several potential sources of inaccuracy (Kynn  2008 ; Chap.   3    ). 
Scales are easily misjudged (Kuhnert et al.  2010  )  and this kind of misjudgment 
could occur here if experts were asked to estimate means and variances instead. 
Nevertheless, further work could explore effective ways of determining whether 
eliciting some of these parameters may help reveal the experts’ reasoning behind 
the boundaries. Site allocations refl ect qualitative expert knowledge about boundar-
ies, and correspond to parameters within the MNMM, so that inaccuracies in trans-
lation do not arise (Kuhnert et al.  2010  ) . A sensitivity analysis (Accad et al.  2005  )  
allows us to adjust the level of belief in the experts’ boundary delineations 
(Fig.  12.4 ), which is another important component of accuracy assessment (Low-
Choy et al.  2009 ; Kuhnert et al.  2010  ) .  
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    12.5.2   Bayesian Ecoregion Analysis 

 Thackway and Cresswell  (  1995  )  identifi ed a number of assumptions and limitations 
of the Australian ecoregions that remain unresolved (Environment Australia  2000  ) . 
For example, an analysis of environmental variability and heterogeneity within- and 
between-ecoregions was desired to validate the choice of boundaries defi ning con-
tiguous areas and their implications for conservation planning. However, the diver-
sity in the way jurisdictions derived boundaries prevented comparison. Rigorous 
testing of boundaries and heterogeneity assessment using regional and continental 
datasets and analytical tools was therefore recommended. For these reasons, 
Australian ecoregions continue to be termed “interim.” These concerns can now be 
addressed using Bayesian MNMMs and GIS data. 

 Bayesian MNMMs can address both boundary-specifi c questions (e.g., Accad 
et al.  2005  ) , such as whether a boundary is at the correct position, and broader ques-
tions about how to balance boundaries across a larger area (e.g., the present case 
study). A particular concern involves minimizing the revision of boundaries unless 
strong evidence indicates the need for change. Our intermediate model (B) illus-
trates how the boundaries move or dissolve as the model becomes increasingly data-
dominated (like model A) or expert-dominated (like model C). For instance, as 
expert infl uence increased from models A to B to C, the Burnett-Curtis Hills and 
Ranges (subregion 10) in the north was increasingly allocated to islands of sites 
occurring within those mapped to two southern subregions – Scenic Rim (1) and 
parts of the Moreton Basin (2). The MNMMs revealed that annual and coldest tem-
peratures underlie the similarity, and that the hottest temperatures underlie the dis-
crimination among these subregions (particularly 2 and 10) in their attribute means 
and correlation structure (Fig.  12.2 ). 

 We also noted that several subregions – South Burnett (6), Gympie Block (7), 
and Burnett-Curtis Coastal Lowlands (8) – were not well defi ned by the data-driven 
analysis (Model A). This suggests two things. First, these subregions are prime 
candidates for additional expert panel consultations to refi ne the underlying drivers, 
attribute selection, and boundaries. Second, our use of GIS data as proxies could be 
refi ned to better accord with the expert-delineated boundaries. These proxies were 
inferred from the underlying ecological rationales, which were not documented sys-
tematically, rather than from descriptions imputed from the boundaries (Young and 
Dillewaard  1999  ) . These descriptions assisted the choice of attributes used in the 
Bayesian models (Table  12.1 ) and may have given greater emphasis to some facets 
of the environment than the experts had intended. Interestingly, the Bayesian uncer-
tainty assessment revealed that in the data-dominated analysis subregion 7 was sta-
bly defi ned (Fig.  12.3a ) and shared no sites with its closest geographic neighbor, 
subregion 8 (Fig.  12.3b ), whereas subregion 6 was the least consistently defi ned 
subregion, sharing sites with seven other subregions. More closely aligning the 
choice of GIS data with the expert-delineation framework might increase the stabil-
ity of site allocation to subregions.  
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    12.5.3   The Bayesian Ecoregion Analysis Identifi es 
Boundary Uncertainty 

 The Bayesian approach identifi es the plausible range of ecoregion clusters based on 
available data. Alternatively, a data-driven (classical MNMM or data mining) clas-
sifi cation supplemented by bootstrapping would choose the ecoregions that maxi-
mizes the likelihood of the observed data. This latter approach provides less 
information on uncertainty of parameters defi ning the explanatory model, and can 
suffer from numerical and interpretative problems if competing models lead to simi-
larly low likelihood values. However, Bayesian inference requires a deeper under-
standing of the model through more explicit or formal defi nition of its conceptual 
underpinnings and purpose, as required by the ESD framework in ecology (Austin 
 2002  ) , and more intensive computation. An important step in utilizing MCMC anal-
ysis, as in this study, is to assess whether simulations have indeed converged on the 
desired  posterior  distribution (Low-Choy et al.  2009  ) . 

 In this context, utilizing expert-delineated boundaries in a  prior  model allows the 
use of holistic expert knowledge rather than burdening experts with the diffi cult task 
of expressing their qualitative knowledge in terms of explicit quantitative ecological 
propositions and proxy GIS attributes or with the need to specify variable weights 
and transformations. The MNMM framework also provides a basis for integrating 
new types of information such as “fuzzy” boundaries, thereby placing varying 
degrees of emphasis on boundaries with different levels of expert certainty. 

 The use of a model that accommodates both description and delineation of ecore-
gions provides a basis for focusing further dialogue with experts on specifi c factors 
(e.g., temperature) as well as holistic issues (e.g., similarity between two subre-
gions). Our case study provided robust model-based support for the usual informal 
and internal estimates provided by experts and showed how to modify data-driven 
ecoregion delineations based on expert input. The continuum of models also revealed 
the likely path of reasoning followed by experts as they increasingly modify their 
decisions to account for empirical data.  

    12.5.4   Future Directions 

 Bayesian MNMMs have been promoted for use in ecoregion delineations in soft-
ware such as Autoclass (Cheeseman and Stutz  1996  ) , in which a data-driven 
approach was implemented using strictly noninformative  priors , which can lead to 
computational problems (Frühwirth-Schnatter  2006  ) . More recently, Bayesian 
MNMMs with weakly informative or expert-informed  priors  have been imple-
mented (Rochester et al.  2004  )  using approaches such as that of Bensmail et al. 
 (  1997  ) . The same method was used to integrate expert knowledge with GIS data 
(using different attributes) for subregional delineation of Southeast Queensland 
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(Rochester et al.  2004  )  and terrestrial ecoregions in northern Queensland (Accad 
et al.  2005  ) . Here, we implemented an improved formulation of the Bayesian 
MNMM using a hierarchical rather than independent  prior  formulation, leading to 
better numerical stability (Frühwirth-Schnatter  2006  ) . Moreover, to strengthen the 
explanatory role of the subregions under the ESD framework, attributes were cho-
sen to encompass more direct measures, such as soil moisture and clay content, 
rather than indirect measures, such as elevation and classes of structural geology. 

 Since the introduction of expert-informed Bayesian MNMMs (Rochester et al. 
 2004  ) , several technological changes have occurred. These include improved 
capabilities of GIS and statistical software and of computer hardware, and a better 
understanding of the properties of Bayesian MNMMs (Frühwirth-Schnatter  2006  ) . 
This has considerably simplifi ed model implementation. Current research on mix-
ture models, especially for large datasets, aims to provide model-based solutions 
to the complex and highly computation-intensive issues of covariate selection, 
choosing the number of regions, and allowing non-normal distributions within 
regions. 

 It is of ecological interest to reveal the expert’s conceptual model underlying 
their proposed ecoregion boundaries. As discussed in Sect.  12.5.3 , a sensitivity 
analysis from this modeling exercise provides some indication of how experts sup-
plement incomplete information provided by GIS attributes. Instead of comparing 
two end-points that contrast expert- and data-driven regionalizations, the sensitivity 
analysis highlighted the “evolutionary path” that boundaries follow, as more or less 
emphasis is placed on expert knowledge. This is highly informative, since this path 
is just one of many possible paths. These ideas could be further developed and 
tested to reveal the attributes and weights underlying the experts’ choice of bound-
aries. This would require additional elicitation from experts, for example, using 
indirect methods tailored to classifi cation via mixture models, similar to an approach 
recently developed for regression (Chap.   3    ).   

    12.6   Conclusions 

 Given the necessary use of both expert knowledge and empirical data to defi ne 
ecoregion boundaries for use in conservation planning and management, and the 
controversy that accompanies the development of such boundaries, Bayesian 
approaches can facilitate efforts to achieve consensus. Existing ecoregion delinea-
tions can be modifi ed or validated using Bayesian methods, permitting continuous 
improvement of the delineations in response to new data or changed objectives (e.g., 
to achieve ecological resilience under a variable climate). 

 Our case study demonstrated a Bayesian framework that leverages all available 
information (both empirical data and expert knowledge) to delineate ecoregions. We 
showed the potential of combining expert knowledge within an empirical analysis, 
with examples of how the derivation can be weighted toward expert knowledge, 
empirical data, or a combination of the two. Ecoregions with intermediate weights 



24912 Using Bayesian Mixture Models That Combine Expert Knowledge…

can provide useful insights into how this trade-off evolves. Our results justify seeking 
ways to combine expert knowledge with empirical data. For example, uncertainty 
such as diversity of opinions could be defi ned more explicitly during environmental 
management discussions. Bayesian MNMMs can be used to highlight boundary 
uncertainty and provide support for the robustness and acceptability of existing 
ecoregion delineations. 

 This approach provides an effi cient mechanism for incorporating all information 
sources and addressing the inherent limitations of each. Environmental GIS layers, 
which are constructed from many smaller datasets, generally suffer from varying 
levels of consistency in quality and resolution. Experts typically have most confi -
dence in their knowledge of particular areas, yet are often asked to extrapolate that 
knowledge to similar areas. The fi nal analysis should refl ect a balance in which 
empirical data or expert knowledge dominates when appropriate, while identifying 
knowledge gaps where neither source is superior so that stronger evidence can be 
sought, and increasing confi dence where the two sources concur. 

 Bayesian MNMMs provide ecologically meaningful insights about subregions, 
including their heterogeneity (variances), key ecological drivers and their interac-
tions (means, covariances), and the location and stability of boundaries (site alloca-
tion). The computational elegance of a single model that encompasses all the 
necessary steps of ecoregion delineation, from classifi cation to ecoregion descrip-
tion and boundary delineation, is superior to existing model-free approaches. The 
rich information on uncertainty, both in parameter estimation and in prediction of 
site allocation, provides an integrated and intuitive basis for evaluating a set of 
ecoregions based on current information and for targeting future collection of both 
expert and empirical data that has not previously been possible.      
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    13.1   Introduction 

 More than 38% of the world’s population lives within 100 km of the coast, and the 
coastal zone is becoming more heavily populated each year (Small and Cohen 
 2004  ) . More and more human activities depend upon and compete for coastal and 
marine ecosystem goods and services. This intensifi cation of use is necessitating a 
shift toward more comprehensive and integrated approaches to management – a 
shift that is already underway via approaches such as ecosystem-based management 
and ocean zoning (Day  2002 ; McLeod et al.  2005 ; Crowder et al.  2006 ; Douvere 
et al.  2007 ; Douvere  2008 ; Offi ce of the President  2010  ) . Given the diversity of 
human uses and natural resources that converge in coastal waters, understanding the 
potential independent and cumulative impacts of those uses and associated stressors 
on marine ecosystems can be very challenging. Little empirical data is available to 
weigh the relative vulnerability of the range of ecosystem types to the full set of 
human stressors (Halpern et al.  2007  ) . Nevertheless, decision-makers require scien-
tifi c input to support the setting of priorities, spatial planning, and zoning of the 
marine environment that they are increasingly being called to undertake (Leslie and 
McLeod  2007 ; Ehler and Douvere  2009  ) . 

 For example, the Commonwealth of Massachusetts (USA) passed the 
Massachusetts Oceans Act in 2008, which required the Executive Offi ce of Energy 
and Environmental Affairs (EOEEA) to draft and implement a comprehensive 
ocean management plan for most of the Massachusetts state waters (0.3–3 nauti-
cal miles from shore), the fi rst plan of its kind in the USA. The plan must address 
ocean uses and development that are incompatible with each other or with sustain-
able use of natural resources and must address the overall balance among use, 
protection, and development. Among other directives, the Act requires that 
EOEEA’s plan “value biodiversity and ecosystem health” and “identify and  protect 
special, sensitive, or unique estuarine and marine life and habitats.” Accordingly, 
the plan identifi es special, sensitive, and unique marine resources, establishes 
marine resource management areas and management measures for those areas 
that both protect their resources and allow for appropriate ocean uses within des-
ignated areas. 

 To inform this effort, we collaborated with the Massachusetts Ocean Partnership 
to conduct a survey of regional (New England) experts in each of 15 marine ecosys-
tem types to gauge the relative vulnerability of each ecosystem to each of 58 current 
and emerging anthropogenic stressors. The resulting matrix of vulnerability scores 
is one of several tools being used by EOEEA to identify vulnerable ecosystem types 
and the risks from particular human activities that occur in or have been proposed 
for Massachusetts’ coastal waters. The vulnerability assessment helped to identify 
special, sensitive, and unique marine resources and to inform an analysis of compat-
ibility between traditional and emerging ocean uses and these resources, which is 
critical to the development and implementation of the plan. In a separate effort, we 
also used the scores in combination with spatial information on the distribution of 
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marine ecosystems and the distribution and intensity of human activities to map 
cumulative impacts in the marine environment (unpublished data; the approach was 
similar to that of Halpern et al.  2008b ,  2009 ). These maps are also being used to 
support the Massachusetts ocean management planning process. 

 Expert knowledge was critical to assess ecosystem vulnerability to human stres-
sors within the short timeframe of the Massachusetts planning process (12 months 
for plan development, 6 months for review of the draft plan). Managers were faced 
with making decisions about where to allow certain human uses and how to protect 
vulnerable ecosystems within multiuse areas. They needed a way to rank overall 
vulnerability and to understand the vulnerability of specifi c ecosystem types to par-
ticular stressors, yet they did not have in-house expertise about many of the stressors 
and ecosystems, a robust method for quantifying vulnerability, or the time and 
resources necessary to empirically evaluate the entire set of stressor–ecosystem 
combinations. With 15 different ecosystem types, ranging from tidal fl ats to deep-
water soft sediment habitats, and 58 different human uses and associated stressors, 
there were 870 stressor–ecosystem combinations. Most of these combinations have 
not been investigated scientifi cally, so empirical data with which to quantify the 
relative vulnerability of the ecosystems to different stressors were inadequate or 
nonexistent. Furthermore, we felt it was preferable to seek the advice of regional 
experts in each of these ecosystem types rather than relying solely on a review of the 
scientifi c literature, which was less likely to provide comprehensive information 
specifi c to the region. 

 We had previously conducted a similar survey in cooperation with experts in the 
California Current region (from the border between Canada and the United States 
south to Baja California Sur, Mexico). For that study, we used techniques from 
decision theory, described in Sect.  13.2 , to create a mathematical model that repre-
sented how experts judge the relative vulnerability of marine ecosystems to differ-
ent stressors (Neslo et al.  2008 ; Teck et al.  2010  ) . In Massachusetts, we replicated 
this process to address two primary objectives. Our fi rst objective was to see 
whether the mathematical model developed from the California Current expert 
knowledge elicitation process could be generalized to other experts in other regions 
by comparing the Massachusetts model results with those from the California 
Current analysis. Our hypothesis was that experts from both regions would base 
their judgments on the same vulnerability criteria in the same way, and that model 
results should therefore be similar for both regions. If our analysis supported the 
hypothesis, it would potentially be unnecessary to develop a new model for each 
new region or application, thereby increasing the fl exibility of the expert knowl-
edge elicitation framework that we developed and the ease with which it can be 
deployed to collect expert knowledge in new regions and for novel human stres-
sors. Our second objective was to use the knowledge gathered from the New 
England experts to provide a robust and comparable assessment of ecosystem vul-
nerability across a broad suite of human stressors and marine ecosystem types, 
thereby providing a more scientifi c basis for ocean management in Massachusetts 
and the broader New England region. 
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    13.1.1   Vulnerability Assessment 

 There is a long history of assessing threats to species and the environment and 
prioritizing actions to mitigate them (e.g., Mace and Lande  1991 ; Master  1991 ; 
Bryant et al.  1998 ; Roberts  2002 ; Burke et al.  2002 ; Wilson et al.  2005 ; Vié et al. 
 2009  ) . However, many of these efforts have focused on single species, habitats, or 
stressors. They have seldom examined threats at the ecosystem scale, nor have they 
integrated multiple stressors or multiple ecosystem types, although exceptions 
include the community-level methods reviewed in Nicholson et al.  (  2009  )  and the 
integrated ecosystem assessments of Wickham  (  1999  ) , Noss et al.  (  2002  ) , and Tran 
et al.  (  2002  ) . Though some studies have attempted to compare and rank the sever-
ity of a suite of stressors (e.g., Wilcove et al.  1998 ; Kappel  2005  ) , it is diffi cult to 
compare the impacts of very different stressors (e.g., biomass harvest versus sea 
surface temperature rise), especially at the ecosystem level. In addition, setting of 
conservation priorities has often relied on expert judgments collected “behind 
closed doors” (e.g., Noss et al.  2002  ) , leading to public perception of the process 
as a “black box” (Regan et al.  2004 ; Beazley et al.  2010  ) . In addition to the grow-
ing need for transparency in the current politicized decision environment, it is also 
necessary to ensure that the elicitation is performed in a way that meets scientifi c 
standards for rigor. If the elicitation of expert knowledge is not transparent and 
clearly documented, the results are unlikely to be repeatable (Tversky and 
Kahneman  1982 ; Plous  1993 ; Keith  1998 ; Burgman  2001 ; Rush and Roy  2001 ; 
Regan et al.  2004 ; Aspinall  2010  ) .  

    13.1.2   Expert Knowledge Elicitation Framework 

 Given increasing resource constraints and more frequent human use confl icts in 
many coastal zones around the world, there is a growing need for a way to compare 
the effects of multiple stressors across ecosystems using the same measurement 
scale. To address this need, we developed a fl exible way to elicit expert assess-
ments of ecosystem vulnerability to human stressors that accounts for ecological 
context, acknowledging that the same activity may have different effects in differ-
ent ecosystems (Halpern et al.  2007 ; Neslo et al.  2008 ; Teck et al.  2010  ) . This 
structured survey tool provides for transparency and repeatability. Furthermore, 
the quantitative approach collects expert knowledge as independent samples rather 
than a group consensus, thereby preserving information on the level of disagree-
ment (i.e., uncertainty) among experts and reducing the bias that can arise in efforts 
to develop consensus opinions as a result of dominant personalities and idiosyn-
cratic group dynamics (Chap.   8    ). The main output of the survey is a matrix of vul-
nerability scores across all ecosystems and human stressors. Scores can be used to 
rank stressors or ecosystems, and the rankings can then guide management deci-
sions and setting of priorities. 
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 We used the elicitation framework to develop a matrix of vulnerability scores for 
New England marine and coastal ecosystems (or habitats), such as beaches and 
dunes, seagrass beds, rocky reefs, and pelagic waters. We asked experts with experi-
ence studying each ecosystem to assess its vulnerability to a list of different stres-
sors associated with human activities. We defi ned a stressor as anything that can 
perturb an ecosystem beyond its natural limits of variation. For example, rising sea 
surface temperature is a stressor associated with anthropogenic climate change, and 
the destructive demersal fi shing that occurs at or just above the ocean fl oor perturbs 
marine ecosystems by damaging or destroying seafl oor habitat, removing biomass 
of target species, and catching nontarget species as bycatch. Whether a stressor 
affects a particular ecosystem depends on that ecosystem’s  vulnerability . 
Vulnerability is dictated by  exposure , which represents the chance that an ecosys-
tem will encounter a given stressor; by  sensitivity , which represents the degree to 
which the ecosystem will be affected by the stressor; and by  resilience , which rep-
resents the ability of the affected ecosystem components to recover from distur-
bance caused by the stressor (Millennium Ecosystem Assessment  2005  ) . 

 To capture these different aspects of vulnerability, we used fi ve vulnerability 
criteria, each anchored to specifi c units of measurement: spatial scale (km 2 ) for a 
single occurrence of the stressor, frequency (days per year) that the stressor occurs 
at a given location, trophic impact (from a single species up to the entire commu-
nity), percent change in biomass of the affected ecosystem component (%), and 
recovery time (years) required for the ecosystem to return to natural conditions 
(Table  13.1 ). The fi rst two criteria assess the degree of exposure to a given stressor. 
The trophic impact and percent change in biomass parameters address which com-
ponents of the ecosystem are sensitive to a given activity or stressor and how sensi-
tive they are. The fi nal criterion, recovery time, measures an aspect of ecosystem 
resilience by asking how long it would take for the system to recover following the 
disturbance. Each expert considers their ecosystem of expertise and scores the fi ve 
criteria for each stressor. The results are combined (as described in Sect.  13.2 ) into 
a single vulnerability score after transformation to account for the different ranges 
of values (i.e., to make the parameter values more directly comparable).  

 Structuring the collection of expert knowledge along these fi ve axes aids experts 
in formalizing their knowledge of ecosystem vulnerability (Regan et al.  2004  ) . It 
improves transparency and repeatability by requiring all experts to make decisions 
based on the same set of criteria and the same scales. This quantifi cation of expert 
opinion within a standardized framework makes it possible to compare estimates of 
vulnerability across different stressors and different ecosystem types. A separate 
task in the survey allowed us to quantify the  weight  (importance) that a given pool 
of experts gives to each of the fi ve criteria, so we were not limited to equal weight-
ing when we summed the criteria into a single vulnerability score. For example, 
experts may feel that the trophic impact is more important than a stressor’s fre-
quency of occurrence when assessing vulnerability. Techniques from the fi eld of 
decision theory let us determine the relative weight of each criterion (its impor-
tance) in the expert judgments of vulnerability and let us test how these weights 
varied among experts. 



258  C.V. Kappel et al.

   Ta
bl

e 
13

.1
  

  D
es

cr
ip

tio
n 

of
 th

e 
fi v

e 
vu

ln
er

ab
ili

ty
 c

ri
te

ri
a 

us
ed

 to
 a

ss
es

s 
ec

os
ys

te
m

 v
ul

ne
ra

bi
lit

y 
to

 e
ac

h 
st

re
ss

or
 a

nd
 th

e 
va

lu
es

 p
ro

vi
de

d 
to

 s
ur

ve
y 

re
sp

on
de

nt
s 

as
 c

ho
ic

es
 w

he
n 

sc
or

in
g 

ea
ch

 c
ri

te
ri

on
 in

 th
e 

se
co

nd
 s

ec
tio

n 
of

 th
e 

su
rv

ey
   

 Sp
at

ia
l s

ca
le

 
 Fr

eq
ue

nc
y 

 T
ro

ph
ic

 im
pa

ct
 

 Pe
rc

en
ta

ge
 c

ha
ng

e 
in

 b
io

m
as

s 
 R

ec
ov

er
y 

tim
e 

 T
he

 s
pa

tia
l s

ca
le

 (
km

 2  )
 a

t w
hi

ch
 

a 
si

ng
le

 in
st

an
ce

 o
f 

an
 

ac
tiv

ity
 o

r 
st

re
ss

or
 im

pa
ct

s 
th

e 
ec

os
ys

te
m

, b
ot

h 
di

re
ct

ly
 

an
d 

in
di

re
ct

ly
 

 T
he

 m
ea

n 
an

nu
al

 fr
eq

ue
nc

y 
(d

ay
s 

pe
r 

ye
ar

) 
of

 th
e 

st
re

ss
or

 a
t a

 p
ar

tic
ul

ar
 

lo
ca

tio
n 

w
ith

in
 a

 g
iv

en
 

re
gi

on
 

 T
he

 p
ri

m
ar

y 
ex

te
nt

 o
f 

m
ar

in
e 

lif
e 

af
fe

ct
ed

 b
y 

a 
st

re
ss

or
 w

ith
in

 a
 g

iv
en

 
ec

os
ys

te
m

 a
nd

 r
eg

io
n 

(i
.e

., 
si

ng
le

 o
r 

m
ul

tip
le

 
sp

ec
ie

s,
 s

in
gl

e 
or

 
m

ul
tip

le
 tr

op
hi

c 
le

ve
ls

, 
or

 th
e 

en
tir

e 
ec

os
ys

te
m

) 

 T
he

 d
eg

re
e 

to
 w

hi
ch

 th
e 

sp
ec

ie
s,

 tr
op

hi
c 

le
ve

l o
r 

le
ve

ls
, o

r 
en

tir
e 

ec
os

ys
-

te
m

’s
 “

na
tu

ra
l”

 s
ta

te
 is

 
af

fe
ct

ed
 b

y 
th

e 
st

re
ss

or
 

 T
he

 m
ea

n 
tim

e 
(i

n 
ye

ar
s)

 
re

qu
ir

ed
 f

or
 th

e 
af

fe
ct

ed
 

sp
ec

ie
s,

 tr
op

hi
c 

le
ve

l o
r 

le
ve

ls
, o

r 
en

tir
e 

ec
os

ys
te

m
 

to
 r

et
ur

n 
to

 it
s 

fo
rm

er
, 

“n
at

ur
al

” 
st

at
e 

fo
llo

w
in

g 
di

st
ur

ba
nc

e 
by

 a
 p

ar
tic

ul
ar

 
st

re
ss

or
 

 0 
 0 

 0 
 0%

 
 0 

 <
1 

km
 2   

 O
nc

e 
ev

er
y 

10
0 

ye
ar

s 
 1 

(1
 o

r 
m

or
e 

sp
ec

ie
s)

 
 1–

10
%

 
 <

6 
m

on
th

s 
 1–

10
 k

m
 2   

 O
nc

e 
ev

er
y 

50
 y

ea
rs

 
 2 

(1
 tr

op
hi

c 
le

ve
l)

 
 11

–2
0%

 
 6 

m
on

th
s 

to
 1

 y
ea

r 
 10

–1
00

 k
m

 2   
 O

nc
e 

ev
er

y 
20

 y
ea

rs
 

 3 
(>

1 
tr

op
hi

c 
le

ve
l)

 
 21

–3
0%

 
 1–

5 
ye

ar
s 

 10
0–

1,
00

0 
km

 2   
 O

nc
e 

ev
er

y 
10

 y
ea

rs
 

 4 
(e

nt
ir

e 
co

m
m

un
ity

) 
 31

–4
0%

 
 6–

10
 y

ea
rs

 
 1,

00
0–

10
,0

00
 k

m
 2   

 O
nc

e 
ev

er
y 

5 
ye

ar
s 

 D
on

’t
 k

no
w

 
 41

–5
0%

 
 11

–2
5 

ye
ar

s 
 >

10
,0

00
 k

m
 2   

 O
nc

e 
ev

er
y 

2 
ye

ar
s 

 51
–6

0%
 

 26
–5

0 
ye

ar
s 

 D
on

’t
 k

no
w

 
 1–

7 
da

ys
 p

er
 y

ea
r 

 61
–7

0%
 

 51
–7

5 
ye

ar
s 

 7–
14

 d
ay

s 
pe

r 
ye

ar
 

 71
–8

0%
 

 76
–1

00
 y

ea
rs

 
 15

–3
1 

da
ys

 p
er

 y
ea

r 
 81

–9
0%

 
 >

10
0 

ye
ar

s 
 31

–9
0 

da
ys

 p
er

 y
ea

r 
 91

–1
00

%
 

 D
on

’t
 k

no
w

 
 91

–1
80

 d
ay

s 
pe

r 
ye

ar
 

 D
on

’t
 k

no
w

 
 18

1–
36

4 
da

ys
 p

er
 y

ea
r 

 36
5 

da
ys

 p
er

 y
ea

r 
   

 D
on

’t
 k

no
w

 
   

   
   

  V
al

ue
s 

fo
r 

vu
ln

er
ab

ili
ty

 s
ce

na
ri

os
 in

 th
e 

fi r
st

 s
ec

tio
n 

of
 th

e 
su

rv
ey

 w
er

e 
ch

os
en

 to
 s

pa
n 

th
es

e 
sa

m
e 

ra
ng

es
. V

al
ue

s 
fo

r 
th

es
e 

fi v
e 

cr
ite

ri
a 

ar
e 

w
ei

gh
te

d 
an

d 
co

m
-

bi
ne

d 
(a

s 
de

sc
ri

be
d 

in
 S

ec
t. 

 13
.2

 ) 
to

 c
al

cu
la

te
 a

 s
in

gl
e 

vu
ln

er
ab

ili
ty

 s
co

re
 f

or
 e

ac
h 

co
m

bi
na

tio
n 

of
 s

tr
es

so
r 

an
d 

ec
os

ys
te

m
  



25913 Eliciting Expert Knowledge of Ecosystem Vulnerability…

 Using these techniques, we tested the generalizability of our model of ecosystem 
vulnerability by comparing the similarity in model weights from two different 
regions: New England and the California Current. We also report the expert-assessed 
marine ecosystem vulnerability across the full suite of human stressors and marine 
ecosystems in the New England region and discuss how these results can inform 
ocean management in Massachusetts and beyond.   

    13.2   Methods 

    13.2.1   Experts 

 Experts were defi ned as academic, government agency, nongovernmental organi-
zation (NGO), or private sector scientists and managers with expertise in the ecol-
ogy, conservation, or management of the ecosystems of interest and experience 
with some or all of the 58 human stressors. All experts had at least 2 years of 
experience working in these ecosystems within the waters of New England. Many 
experts were identifi ed through Google Scholar searches using the ecosystem 
types in combination with different human stressors. Authors of published, peer-
reviewed papers that addressed one or more stressors within relevant marine eco-
systems and who had signifi cant experience in the region (e.g., working at a New 
England institution, publishing multiple relevant papers, participating in major 
research projects in the area) based on their curriculum vitae or Web sites were 
considered potential experts. Others were identifi ed through our contacts in the 
Massachusetts EOEEA and Massachusetts Ocean Partnership, especially for gov-
ernment experts, and we supplemented our pool of experts using snowball sam-
pling, in which the experts we selected identifi ed other potential experts (Goodman 
 1961 ; Meyer  2001  ) .  

    13.2.2   Survey Instrument and Data Collection 

 The list of 15 ecosystems was derived based on input from the Massachusetts 
Offi ce of Coastal Zone Management and EOEEA (Table  13.2 ). The 58 current and 
emerging human stressors were identifi ed based on our previous work (Teck et al. 
 2010  ) , and refi ned based on input from the Massachusetts Ocean Partnership, 
Offi ce of Coastal Zone Management, and EOEEA. The fi ve vulnerability criteria 
were developed previously in a workshop at the National Center for Ecological 
Analysis and Synthesis that brought together conservation scientists and ecologists 
(Halpern et al.  2007  ) .  

 The Massachusetts marine ecosystem vulnerability survey was based on and 
refi ned from previous instruments that have been deployed globally (Halpern et al.  2007  ) , 
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in the Northwest Hawaiian Islands (Selkoe et al.  2009  ) , and in the California 
Current region (Neslo et al.  2008 ; Teck et al.  2010  ) . A preliminary draft of the 
survey instrument was tested and revised based on input from a sample group of 
seven experts, none of whom participated in the fi nal survey. Potential experts were 
then contacted and invited to participate. Those who agreed received surveys, and 
were reminded up to three times until their surveys were returned or they were 
classifi ed as a nonrespondent. Expert knowledge was collected through a spread-
sheet-based survey instrument with pull-down menus and accompanying docu-
mentation (including a video tutorial), which were distributed via the Web and 
returned anonymously. Respondents fi lled out one survey for each ecosystem in 
which they had expertise. 

 The survey was divided into two sections. The fi rst section focused on deriving 
the vulnerability weights needed for model formulation. These results also addressed 
our fi rst objective, of determining how these weights would differ from those in the 

   Table 13.2    Coastal and marine ecosystem types of New England, with brief descriptions   

    Ecosystem  Description 

 Intertidal  Beach  Sandy shoreline habitat within the tidal zone 
 Barrier beach  Sandy intertidal habitat parallel to and separated from 

shore by a body of water 
 Rocky intertidal  Rocky shoreline habitat within the tidal zone 
 Salt marsh  Vegetated marine or estuarine habitat within the tidal 

zone 
 Tidal fl at  Unvegetated sand or mud habitat within the tidal zone 

 Subtidal 
coastal 

 Eelgrass  Near-shore subtidal habitat dominated by  Zostera 
marina  

 Algal zone  Near-shore subtidal habitat <10 m deep dominated by 
algal cover 

 Near-shore soft 
bottom 

 Near-shore subtidal habitat 10–60 m deep with silt, 
mud, or sand substrate 

 Near-shore hard 
bottom 

 Near-shore subtidal habitat 10–60 m deep with cobble, 
boulder, or bedrock substrate 

 Offshore  Hard bottom shelf  Subtidal habitat 60–200 m deep with cobble, boulder, 
or bedrock substrate 

 Soft bottom shelf  Subtidal habitat 60–200 m deep with silt, mud, or sand 
substrate 

 Hard bottom bathyal  Subtidal habitat >200 m deep with cobble, boulder, or 
bedrock substrate 

 Soft bottom bathyal  Subtidal habitat >200 m deep with silt, mud, or sand 
substrate 

 Shallow pelagic  Water column above 200 m in all areas >30 m deep a  
 Deep pelagic  Water column below 200 m in all areas >200 m deep 

  These represent the categories of ecosystem for which we identifi ed the experts who would be 
consulted in our study 
  a  Pelagic habitat in waters <30 m deep was considered as part of the benthic habitat, i.e., fully 
coupled  
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California Current study. This section of the survey was added to the survey instrument 
and deployed during a second round of sampling and so was fi lled out by a subset 
of all survey respondents. For this section, experts had a discrete-choice task, in 
which they were asked to rank a set of 30 fi ctitious human stressor scenarios to 
determine which one represented the greatest vulnerability for a hypothetical eco-
system based on given values for the vulnerability criteria, as well as the second-, 
third-, fourth-, and fi fth-highest vulnerabilities. Respondents were asked to evaluate 
either a set of coastal scenarios or a set of offshore scenarios, depending on their 
area of expertise. We analyzed the results for the coastal and offshore groups sepa-
rately to assess whether there was a division in perspectives within the expert pool. 

 The set of 30 human stressor scenarios we created comprised different combina-
tions of values for the fi ve vulnerability criteria. These scenarios were designed to 
sample the full range of possible combinations of criteria values (see Table  13.1  for 
the ranges of values for each criterion). We emphasized to respondents that the sce-
narios were hypothetical, as the intent of this section of the survey was to elicit the 
perceived importance of each criterion for determining vulnerability. For example, 
we asked experts to compare two scenarios: one in which a stressor is known to 
occur at a spatial scale of 10 km 2  with a frequency of once per year, with impacts on 
the entire community (trophic level = 4) that included a 25% biomass change and a 
recovery time of 1 year, and another in which the spatial scale was 1 km 2  and the 
frequency was 365 days/year, with impacts on only a single species (trophic 
level = 1), a 80% decline in biomass, and a 6-month recovery time. We asked experts 
to choose the fi ve “worst” stressor scenarios for the hypothetical ecosystem and 
rank them from 1 to 5 in decreasing order of ecosystem vulnerability. We then used 
this information to determine the relative weights that experts implicitly place on 
the fi ve criteria. For example, if trophic impact was most important to experts in 
making their rankings, then scenarios with high values for trophic impact ought to 
appear more often in their top-ranked scenarios than those with low values for this 
criterion. In Sect.  13.2.3 , we describe in detail the mathematical technique used to 
derive the vulnerability criteria weights. 

 The second section of the survey was treated separately and addressed our sec-
ond objective, namely to gather quantitative estimates of vulnerability for every 
combination of ecosystem and stressor. However, because experts could only be 
expected to comment in detail on ecosystems for which they had knowledge, each 
survey addressed only a single ecosystem type; experts could fi ll out more than one 
survey if they believed they had suffi cient expertise in more than one ecosystem 
type. We later combined the results for each ecosystem to allow comparisons among 
ecosystem types. For each of the 58 human stressors, the experts estimated a value 
for each of the fi ve vulnerability criteria from a pull-down menu of ranges (see 
Table  13.1 ) or stated that they did not know what the value should be. These values 
were averaged across the surveys received for each ecosystem (e.g., all beach sur-
veys were combined to obtain vulnerability criteria values for beach habitat for each 
stressor). In the next section, we explain how these average criteria values were 
combined into a single score.  
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    13.2.3   Multicriteria Decision Model 

 We treated vulnerability as the weighted sum of the fi ve vulnerability criteria:

    

5

1

Vulnerability ,k ijk
k

W S
=

= å    (13.1)  

where  S  
 ijk 

  is the value of criterion  k  for stressor  i  in ecosystem  j  (e.g., the trophic 
impact of commercial shipping in shallow pelagic waters), and  W  

 k 
  is the weight 

assigned to criterion  k , such that    
5

1

1k
k

W
=

=å   . Because we expected vulnerability to 

be monotonic with respect to all fi ve criteria (i.e., vulnerability of the ecosystem 
should increase with increasing values of each criterion), we chose an additive lin-
ear model with positive weights on the criteria as the simplest and most easily inter-
preted model form. Although using a multiplicative function or another formula to 
combine the criteria is possible and may be conceptually justifi able in some situa-
tions, we lacked suffi cient empirical information about the interactions among the 
criteria to justify such a formulation. In addition, relative rankings will often be 
fairly insensitive to the exact formulation of the function. Furthermore, a multiplica-
tive model tends to produce a skewed distribution of values that is hard to interpret. 
Using a simple multiple linear regression let us compute scores for new scenarios 
that were not included in the fi rst section of the survey by simply supplying values 
for the fi ve criteria, multiplying them by the model weights, and summing them. We 
assumed that the weight values were consistent across all stressors and ecosystems, 
which let us use a single model for all ecosystem–stressor combinations and let us 
compare them directly. 

 We used a multicriteria decision model (MCDM), which is a type of random-
utility model (Keeney and Raiffa  1993  ) , to derive the model weights. The statistical 
joint distribution of the model weights (i.e., their means and variances) represents 
the preferences of a population of experts, in this case their relative preferences for 
(or perceived importance of) the fi ve different vulnerability criteria, in judging an 
ecosystem’s vulnerability to a particular stressor. We then calculated 95% confi -
dence intervals for the weights to represent the level of disagreement among the 
experts. MCDMs have been used in a wide range of fi elds to represent expert judg-
ments of perceived risk or vulnerability (Kraan and Bedford  2005 ; Kurowicka and 
Cooke  2006 ; Neslo et al.  2008 ; Cooke  2009 ; Kurowicka et al.  2010  ) , including a 
limited but growing use in ecology (e.g., Tran et al.  2002  ) . Teck et al.  (  2010  )  provide 
more details on our use of MCDM in this context. 

 Rather than asking the experts to directly evaluate the criterion weights, we 
instead inferred values of these weights from their relative importance in the expert 
rankings of the hypothetical scenarios in the fi rst section of the survey (the discrete-
choice task). This inference was based on probabilistic inversion, a mathematical 
technique analogous to the maximum-likelihood approach that determines the joint 
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distribution of the weights that best reproduces the observed distribution of ranks 
assigned by the experts (Cooke and Goossens  2004  ) . For example, if 20% of the 
experts ranked scenario 15 fi rst and 45% ranked scenario 30 second, the algorithm 
searches for a distribution of weights that realizes these probabilities. We assumed 
that experts use the information provided in the hypothetical scenarios consistently 
and that other types of information not provided in the scenario were not important 
to their ranking decisions. These assumptions are both testable by examining incon-
sistencies in the scenario rankings (e.g., when a scenario with high values for all fi ve 
criteria is ranked below a scenario with lower values). 

 Prior to all analyses, we transformed spatial scale and frequency values with 
 different units of measurement to produce a similar range of values for all the vulner-
ability criteria. To do so, we used the following transformations: scale = ln[scale × 100] 
and frequency = ln[frequency × 360]. This was necessary to prevent certain criteria 
from unduly biasing the results simply because they had larger ranges of values. 
Models were fi t using the top two scenarios ranked by the experts. For each hypo-
thetical set of vulnerability criteria values, we calculated the percentage of experts 
who ranked that scenario fi rst or second, and used probabilistic inversion to derive 
the set of model weights that most closely reproduced the observed percentages. 

 Note that the weights calculated using probabilistic inversion are specifi c to the 
exact transformations that were used and to the actual ranges of the data. If these 
weights are used to calculate vulnerability scores from new sets of criteria values 
(e.g., those elicited from a new group of experts or for a new set of stressors), the 
same transformations must be applied.  

    13.2.4   Analyses 

 Once we had determined weights for each of the criteria, we multiplied them by the 
average values for each criterion, derived by averaging the survey responses in the 
second section across the population of surveys for each ecosystem type, and 
summed across the fi ve criteria as shown in (13.1). This let us produce a vulnerabil-
ity score for each ecosystem–stressor combination and a matrix of scores for all 
possible combinations. From this matrix, we calculated average scores for each 
stressor (across all ecosystems) and for each ecosystem (across all stressors), thereby 
allowing us to compare and prioritize stressors and ecosystems and to identify 
important knowledge gaps. 

 We used  G -tests (a maximum-likelihood method analogous to a chi-square test) to 
test for potential bias in gender or affi liation between respondent and nonrespondent 
pools. Within the respondent pool, we averaged vulnerability across all criteria and all 
stressors to test for differences among responses associated with gender (using the 
 t -test), affi liation (using ANOVA for the groups academic, federal, state, NGO, or 
private sector), and years of experience (by means of least-squares linear regression).  
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    13.2.5   Comparison of the Massachusetts and California 
Current Models 

 By comparing model weights from the Massachusetts pool of experts with those 
from the California Current experts, we sought to assess whether our model of eco-
system vulnerability was robust with respect to the pool of experts; that is, we tested 
whether it could be generalized to other regions with other expert pools. We inter-
preted a good correspondence between the model weights from these two pools of 
experts as evidence that the experts had a shared conception of ecosystem vulnera-
bility and of the relative importance of the fi ve vulnerability criteria. Finding similar 
weights across disparate expert groups would suggest that the model can be used in 
other regions and applied to other stressors.   

    13.3   Results 

    13.3.1   Survey Response Rate 

 We invited 332 potential experts to participate in the survey. We removed 21 who 
self-identifi ed as nonexperts, and 112 potential experts did not respond. Of the 
remaining 199 potential experts, 57 agreed to participate, yielding a participation rate 
of 28.6%. Some experts fi lled out surveys for more than one ecosystem, resulting in 
a total of 87 completed surveys for the ecosystem vulnerability section of the survey. 
One survey was discarded because the expert did not specify an ecosystem type and 
only provided information on a single stressor. One survey for the algal zone habitat 
was identifi ed as an outlier based on extremely high criteria values (more than four 
standard deviations from the mean for that ecosystem) and was removed from subse-
quent analyses. We believe that this individual may have misunderstood the scoring 
task. As no expert evaluated the hard bottom bathyal habitat, we eliminated this eco-
system from further analyses. Though our target was three to fi ve survey responses 
per ecosystems type, in some cases, we received fewer than three responses. We 
included results for these ecosystems for comparison’s sake, but caution the reader 
that our confi dence in these results is lower than for better-sampled ecosystems. 

 As the ranking section of our survey was added during a second round of sam-
pling, only a subset of experts completed this portion of the survey: we received 35 
rankings (26 from coastal habitat experts and 9 from offshore habitat experts).  

    13.3.2   Demographics of the Survey Respondents 

 We received completed surveys from 37 men and 20 women. Respondents had an 
average age of 47.1 ± 1.6 years (mean ± standard error henceforth), with an average 
of 18.9 ± 1.4 years of experience working in the region and an average of 19.1 ± 1.6 years 
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of experience in their ecosystem of expertise. Most respondents (65%) were PhD-level 
scientists, but 25% had a Master’s degree and 10% had a B.S. or other degrees. The 
majority of respondents were employed by academic institutions (35%) or by gov-
ernment agencies (33% federal, 23% state). The remainder of respondents came 
from NGOs (7%) and private fi rms (2%). The distribution of regional expertise was 
balanced: 63% of respondents indicated that their answers applied to the entire New 
England region, versus 21% who said their answers applied to the Acadian biogeo-
graphic province north of Cape Cod, and 16% who said their answers applied to the 
Virginian province, south of the Cape.  

    13.3.3   Potential Survey Bias 

 Log-likelihood-ratio  G -tests with Yates’ correction applied (Table  13.3 ) showed a 
signifi cant difference in the composition of the respondent ( n  = 58) and nonrespon-
dent ( n  = 199) pools with respect to affi liation ( G  = 12.4, df = 4,  p  = 0.014), but not 
with respect to gender ( G  = 1.97, df = 1,  p  = 0.161). Affi liation was signifi cant 
because the respondent pool was biased toward state agency participants and the 
nonrespondent pool was slightly biased toward academic scientists. However, we 
found no signifi cant difference among the average criteria scores of respondents 
from different types of organization (ANOVA,  F  

4,52
  = 1.31,  p  = 0.280). We also found 

no effect of gender ( t -test,  t  = −1.35,  p  = 0.184) or years of experience (least-squares 
linear regression,  R  2  = 0.001,  p  = 0.796) on the average scores.   

    13.3.4   Model Results 

 We used the 35 responses to the fi rst section of the survey (26 coastal, 9 offshore) 
to fi t a linear MCDM composed of the weighted sums of the fi ve vulnerability 
criteria. Only 7 of the 30 scenarios could be ranked fi rst, over other scenarios, 
without violating the assumptions of a monotonic, linear model. These are the only 
scenarios that were not  dominated  by another scenario in the list (i.e., one with 

   Table 13.3    Compositions of the respondent and nonrespondent pools (only confi rmed experts) in 
terms of their institutional affi liation and gender   

 Affi liation  Gender    

 Category  Academic 
 State 
agency 

 Federal 
agency  NGO  Private  Male  Female  Total 

 Respondents  20  13  19  4  1  39  18  57 
 Nonrespondents  69  8  51  13  1  106  36  142 
 Total  89  21  70  17  2  145  54  199 

  There was signifi cant bias in the respondent pool based on affi liation but not gender ( G -test; see 
Sect.  13.3  for details)  
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equal or higher values across all fi ve vulnerability criteria). The remaining 23 
scenarios were dominated and therefore could have produced inconsistent rank-
ings if the experts ranked them fi rst. We discarded 13 responses from experts who 
chose such inconsistent rankings. This left 16 consistent fi rst rankings for coastal 
experts and 6 for offshore experts. 

 Coastal and offshore experts ranked the scenarios similarly. Both sets of experts 
relied most heavily on the trophic-level impact and the biomass change of the 
affected ecosystem component or components in making their ranking decisions 
(weights of 0.466 ± 0.074 and 0.345 ± 0.059, respectively, for coastal experts and 
0.542 ± 0.103 and 0.283 ± 0.077, respectively, for offshore experts). The emphasis 
on these two criteria was similar to that observed with the California Current experts 
(Table  13.4 ). Trophic impact was negatively correlated with frequency and recovery 
time; the frequency and recovery time were slightly positively correlated with spa-
tial scale and percent change in biomass, respectively.   

    13.3.5   Comparison of the Massachusetts and California 
Current Models 

 Given the large number of dominated scenarios in the survey design, we interpreted 
the number of consistent ranks (16/26 for coastal and 6/9 for offshore) as evidence 
that the preferences of the New England experts were broadly, but not wholly, con-
sistent with a linear monotonic model of vulnerability based on our fi ve criteria. 
Vulnerability was perceived by the experts to increase with an increasing number of 
species and trophic levels affected, with the magnitude of the biomass change in 
these species or trophic levels, and with the length of time required for recovery, as 
well as with the spatial extent and the frequency of stressor events. Inconsistent rank-
ings suggest that the experts used other information (e.g., scenario names) beyond 
the fi ve vulnerability criteria to make their ranking decisions or that there was some 
degree of misunderstanding of the task. The New England results support the gener-
alizability of the model developed in the California Current project. In both settings, 
experts placed a combined weight of 81–89% on the trophic impact and the percent 
change in biomass when determining ecosystem vulnerability (Table  13.4 ).  

    13.3.6   Ecosystem Vulnerability 

 Experts judged the coastal subtidal and offshore benthic habitats, and specifi cally 
the hard bottom shelf, near-shore soft bottom, soft bottom shelf, algal zone, near-
shore hard bottom, and tidal fl at habitats to be most vulnerable to human impacts in 
this region (Table  13.5 ). Most intertidal and pelagic habitats received lower vulner-
ability scores. These results should be treated with caution, however, as the overall 
and individual sample sizes were quite small. Of particular concern is the fact that 
one of the most vulnerable habitats (the algal zone) and one of the least vulnerable 
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(soft bottom bathyal) had overall sample sizes of two or fewer experts, average 
score sample sizes below two, and missing vulnerability scores for many stressors 
(i.e., experts selected “don’t know” for the criteria under these stressors). The top 
stressors included climate change impacts from rising ocean temperatures and ocean 
acidifi cation, invasive species, increased ultraviolet radiation exposure, and ocean 
pollution from ships, ports, and spills.    

    13.4   Discussion 

    13.4.1   Model Results 

 As in the California Current project, the New England experts placed the most 
emphasis on the combination of trophic impacts and the percent change in biomass 
of the affected ecosystem components in their ranking of ecosystem vulnerability. 
However, the New England experts placed slightly greater emphasis on trophic 
impacts over percent change, whereas the California Current experts emphasized 
percent change in biomass in their rankings. As on the west coast (data not shown), 
the results for the two separate groups of experts (coastal and offshore) were quite 
similar. By weighting the trophic impact and percent change in biomass heavily, the 
experts were focusing primarily on the  sensitivity  of an ecosystem to particular 
stressors when determining its vulnerability. These results suggest that the model is 
generalizable both across regions and across groups of experts within a region. 

 The perceptions of ecosystem vulnerability by the New England experts, like 
those in the California Current project, were broadly consistent with a monotonic 
model of vulnerability based on spatial scale, frequency, trophic impact, percent 
change in biomass, and recovery time (Neslo et al.  2008  ) . Given the large number 
of dominated scenarios in the survey design, inconsistent rankings are not unex-
pected. However, the fairly high number of inconsistent rankings suggests that other 
criteria or interactions among the criteria may also be important, that respondents 
did not understand the discrete-choice task, or that respondents were misidentifi ed 
as experts. We cannot distinguish among these possibilities based on the data avail-
able to us, though our prevalidation of the survey instrument gives us confi dence in 
the clarity of our instructions and its effectiveness as an elicitation tool. Sorting out 
the source of inconsistent rankings could be the subject of future investigations. 

 Prior investigations of this model, with greater sample sizes, have allowed for 
out-of-sample model validation (i.e., using a subset of the overall sample to develop 
the model and the remainder of the sample to validate the model) and have shown 
strong internal model validity (Neslo et al.  2008 ; Teck et al.  2010  ) . Combined with 
the present results, these results suggest that our approach can provide a reliable 
model of expert perceptions of ecosystem vulnerability (within the global context of 
expert knowledge), and that the model can be used in a variety of settings, across a 
wide array of marine ecosystem types.  
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    13.4.2   Data Requirements for Determining Marine 
Ecosystem Vulnerability 

 The approach described in this chapter fi lls a critical need for objective and quan-
titative ways to compare the relative vulnerability of a diversity of ecosystem types 
to a broad suite of human stressors. The resulting data fi ll many important data 
gaps for understudied ecosystems and stressors. The survey also served to identify 
particularly important data gaps and uncertainties for the region that even expert 
knowledge is hard-pressed to fi ll. For example, despite our efforts, few experts 
fi lled out surveys for several ecosystem types (only two for the algal zone, one for 
the soft bottom bathyal zone, and three for the deep pelagic zone), which leads to 
relatively high uncertainty about the average scores for these ecosystems. These 
and other ecosystems are also plagued by gaps for individual stressors, for which 
all experts answered “don’t know.” Even ecosystems with reasonable sample sizes 
(e.g., near-shore soft bottom and soft bottom shelf) sometimes had large numbers 
of understudied stressors for which no experts were able to score our vulnerability 
criteria (“nd” values in Table  13.4 ). The small sample sizes may have resulted from 
a dearth of experts working on individual human stressors or ecosystems in this 
region, reluctance on the part of such experts to participate, or a combination of 
these factors. 

 The New England project identifi ed an extremely large candidate pool relative 
to other expert-based studies, which typically have sample sizes on the order of 
fi ve to nine (Meyer  2001 ; see Table 14.1, Chap.   14    ), though sample sizes for expert 
panels in ecological assessments may be similar in magnitude to the size that we 
used (Noble  2004  ) . Small sample sizes result primarily from the need to divide the 
expert pool among so many different ecosystem types. Knowledge gaps high-
lighted by this work may benefi t from targeted funding to increase the understand-
ing of the impact of certain stressors in certain marine environments. Small sample 
sizes may limit the willingness of decision-makers to use expert knowledge; tar-
geted fi lling of the knowledge gap may increase the credibility, applicability, and 
utility of these results.  

    13.4.3   Application to Management Decisions in Massachusetts 

 The results of this survey have contributed to the development of the Massachusetts 
Ocean Management Plan by providing key information on ecosystem vulnerability 
and potential incompatibilities between particular ecosystems and human uses of 
the ocean. The Ocean Management Plan divides the planning region into three 
different types of management areas: prohibited, renewable energy, and multiuse areas. 
The majority of the planning area is designated as multiuse. Management of multiuse 
areas is determined by the vulnerability of the specifi c marine resources identifi ed 
as being important within those areas. Compatibility analysis was a critical step 
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in developing management measures for the multiuse areas, and the vulnerability 
scores matrix presented in this chapter was one of a small number of tools that man-
agers had at their disposal to complete that analysis. In particular, this ecosystem-
level analysis provided important information about the vulnerability of eelgrass, 
hard or complex seafl oor, and intertidal fl at habitats, all of which were identifi ed as 
special, sensitive, and unique marine resources that required special protection. 

 The vulnerability scores were also an integral part of the development of cumu-
lative-impact maps for the region, which show the spatial distribution and intensity 
of cumulative impacts based on both the distribution and intensity of activities and 
on the relative vulnerability of the underlying ecosystems to those uses. These maps 
and their input data layers will serve as important tools for management decisions 
as EOEEA moves forward with implementation and revision of the Ocean 
Management Plan. The Massachusetts Ocean Partnership is actively working with 
state managers on further ways to apply the survey results and cumulative impact 
maps. Potential uses of these tools that we are exploring with the state include pro-
viding guidance when evaluating permit and siting decisions, informing tradeoff 
analyses, and identifying future research needs.  

    13.4.4   Benefi ts of Using an Expert Knowledge Approach 

 Using expert knowledge to inform the ocean management planning process had 
other ancillary benefi ts. Seeking expert knowledge helped to broaden and strengthen 
the network of experts who the Massachusetts Ocean Partnership and the State can 
call upon for input into the process (N. Napoli, Massachusetts Ocean Partnership, 
personal communication). This study also increased the participation and  engagement 
of regional scientists in the management planning process and increased knowledge 
within the research community of the work being done by the Massachusetts Ocean 
Partnership. Similar objectives of coordinating and eventually adopting conserva-
tion recommendations by expert participants are reported by Moody and Grand 
(Chap.   6    ).  

    13.4.5   Challenges of Using Expert Knowledge 

 There are some challenges associated with using expert knowledge in ocean man-
agement and planning, as we have done in this study. In practice, it may not always 
be feasible to conduct such a survey, as obtaining suffi cient numbers of experts 
requires signifi cant effort. Even with a relatively large respondent pool, the fi nal 
sample sizes for each ecosystem–stressor combination will generally be small given 
the large number of ecosystem types into which the expert pool is split. The survey 
instrument itself is time-consuming and labor-intensive to complete, generally 
requiring from 45 min to 1 h, and identifying, communicating with, and cajoling 
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appropriate experts to fi ll out the survey took several months. We found that some 
scientists, as trained empiricists, were reluctant to provide quantitative values in the 
form of “expert opinion,” especially around topics they perceived to have high 
uncertainty or to be associated with controversy. Finally, with a limited pool of 
experts in the relevant fi elds, one soon runs into survey fatigue (i.e., experts become 
unwilling to repeatedly respond to survey requests), so repeat deployments of this 
or similar surveys become increasingly diffi cult. However, given the robustness of 
the model we developed and its validation across disparate groups of experts, it can 
be used in novel settings and to address emerging stressors without having to rede-
ploy the ranking portion of the survey. Ecosystem vulnerability to new and emerg-
ing human stressors could be evaluated with a smaller group of experts and a shorter 
survey instrument (restricted to the new stressors and relevant ecosystems), so future 
elicitation of expert knowledge to improve our understanding of marine ecosystem 
vulnerability in this region could be signifi cantly streamlined. Finally, given that the 
experts appeared to agree on the importance of trophic impact and the percent 
change in biomass as the driving factors that underlie ecosystem vulnerability, 
future elicitation of expert knowledge could potentially be made more effi cient by 
focusing on these two vulnerability criteria.   

    13.5   Conclusions 

 Robust methods for comparing multiple ecosystem types and their vulnerabilities to 
a broad suite of human stressors are sorely needed in order to meet the requirements 
of ecosystem-based management and other forms of comprehensive ocean manage-
ment (Leslie and McLeod  2007 ; Halpern et al.  2008a ; Ehler and Douvere  2009  ) . We 
demonstrated the utility and broad applicability of a structured framework for elicit-
ing expert knowledge about the vulnerability of marine ecosystems to human stres-
sors. The framework is ecologically grounded, fl exible, transparent, and easily 
updated to accommodate emerging stressors. In addition, we provided clear and 
consistent instructions to all respondents, which have been archived for future use; 
this means that future research can follow the same approach and produce results 
that will be directly comparable to the results presented in this chapter. The frame-
work is objective-neutral, meaning that it does not have the end goal of informing a 
particular kind of management action, such as the design of marine protected areas. 
Instead, the results of this survey approach can be used to inform a variety of con-
servation and management prioritization and planning exercises. Our results were 
applied in the development of the Massachusetts Ocean Management Plan, where 
they helped inform the assessment of compatibility between ocean uses and the 
protection of vulnerable marine resources. These results also contributed to the 
development of spatial maps of the cumulative impact of human uses of the waters 
off Massachusetts. The Massachusetts Ocean Partnership is actively working with 
state managers to use the results further in plan implementation and revision. 

 As the coastal zone becomes increasingly crowded, comprehensive spatial 
 planning is emerging as a necessary management tool to sustain important marine 
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ecosystem services, reduce confl icts, and protect vulnerable ecosystems (Douvere 
 2008 ; Ehler and Douvere  2009  ) . Unfortunately, few tools exist to easily and robustly 
assess the impacts of the myriad human uses that compete for space in these waters. 
Even worse, only fragmentary data exist to help us understand the relative threat to 
marine ecosystems from the cumulative impacts of these various activities. 
Approaches that can aggregate the collective knowledge of the experts who know 
these ecosystems best will be necessary in order to move forward with spatial plan-
ning in the face of such pervasive and severe data gaps. In this chapter, we describe 
one framework for doing so – one that we believe is fl exible enough to be applied in 
a variety of settings and easily transferred to new situations. Future work might 
expand on this approach to evaluating anthropogenic stressors by assessing man-
agement criteria such as the feasibility of addressing a particular stressor, the 
enforceability of any resulting guidelines, and the enforcement costs of manage-
ment measures. Finally, marine spatial planning may benefi t from expanding our 
defi nition of “expert.” Our survey can and should be tailored to elicit information 
from other ecological knowledge holders like fishermen (Murray et al.  2006 ; 
St Martin et al.  2007 ; Johannes et al.  2008  ) .      
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    14.1   Introduction 

 There are many pressing questions and challenges in landscape ecology that have 
important consequences for sustainable resource management and the conservation 
of biodiversity. Given the spatial and temporal scopes and the resulting complexity of 
these issues, many landscape ecologists struggle to provide evidence-based  solutions. 
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This is especially apparent when we rely exclusively on the traditional approaches 
and data employed in the natural sciences to understand broad-scale phenomena that 
have interacting ecological and human elements. By exploring alternative ways to 
address the limitations of conventional observational and experimental methods, the 
authors of this book have used expert knowledge to complement poor data or replace 
missing empirical data, to cope with complexity that confounded the design and 
conduct of empirical studies, and to solve problems that required the coupling of 
knowledge generation with management or conservation decision making. The inno-
vative and diverse array of methods illustrated in this book transcend our work in 
landscape ecology, providing tools and promoting insights that will be relevant within 
many other subdisciplines of applied ecology (Kuhnert et al.  2010 ; Orsi et al.  2011  ) . 
Furthermore, the perspectives and breadth of studies these authors have presented 
support the growing consensus that the application of expert knowledge is no longer 
the domain of a few maverick ecologists working at the margins of methodological 
inquiry. The number of expert-based studies has more than doubled in the past 10 
years, and expert knowledge is serving as a credible foundation for many of the most 
pressing and complex debates in applied ecology (e.g., O’Neill et al.  2008  ) . 

 For many, their fi rst foray into the collection and application of expert knowledge 
is a response to the challenge of having little or no empirical data to guide manage-
ment and conservation decisions (e.g., Drew and Collazo, Chap.   5    ; Doyon et al., 
Chap.   10    ; Keane and Reeves, Chap.   11    ). When investigating a new research area or 
developing a decision-support tool, we direct our initial efforts towards identifying 
the relevant body of theory and collecting or incorporating empirical data. Often, 
however, we encounter data gaps that would limit the precision, accuracy, or appli-
cability of the study or product, and we struggle with funding or time constraints 
that prevent the collection of empirical data to support our efforts. While wrestling 
with such challenges, we recognize that the professional experience and knowledge 
of our colleagues could potentially address many of the gaps in the theoretical or 
empirical knowledge. It is at these crossroads that we make the decision to either 
formally incorporate expert knowledge in our efforts or to initiate an empirical 
research program. If we decide on the former approach, a departure from the meth-
ods of spatial data collection and analyses that are familiar to landscape ecologists, 
the research becomes a study focused on the human subject – an area in which most 
scientists lack experience, and which lies outside our comfort zone. The case studies 
and discussions in this book will better prepare landscape ecologists to consider 
whether and how to incorporate expert knowledge in our research, and will better 
equip us to practice rigorous methods when eliciting this knowledge. 

 By presenting a diversity of projects, both theoretical and practical, this book offers 
insights that will allow ecologists to anticipate the potential applicability, advantages, 
and pitfalls of expert knowledge. All of the lead authors are landscape ecologists who 
have found themselves dependent on expert knowledge to supplement, complement, 
or even replace empirical data (Table  14.1 ). They have shared their experiences, both 
successes and failures, wrestling with how to elicit expert knowledge in a manner that 
meets scientifi c standards of transparency and repeatability. In this chapter, we will 
synthesize some of the common themes that have emerged from their experiences and 
highlight opportunities for further research and development (Table  14.2 ).    
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    14.2   What We Learned 

    14.2.1   Broad Application and Acceptance of Expert Knowledge 

 Expert knowledge can no longer be considered a fringe or secondary information 
resource. Although there is a long track record for the application of expert knowl-
edge in natural resource management, we are now observing a greater level of 
respect for this approach because of the increasing degree of rigor (Sutherland 
 2006  ) . The broader acceptance and resulting scrutiny provided by the scientifi c 
community is as encouraging as the growth in application of expert knowledge. 
Elicitation and expert knowledge are now valid areas of investigation for research-
ers in the natural sciences. Recent studies, for example, have considered the exis-
tence of bias and uncertainty in knowledge (Johnson and Gillingham  2004 ; Czembor 
and Vesk  2009  ) , the ability to generalize knowledge to different landscapes or time 
periods (Doswald et al.  2007 ; Murray et al.  2009  ) , the merits and drawbacks of 
expert knowledge relative to empirical data (Johnson and Gillingham  2005 ; Pullinger 
and Johnson  2010  ) , and effective practices for eliciting knowledge (Kuhnert et al. 
 2010  ) . Also, such studies are being published in the most highly respected ecologi-
cal journals (e.g., Low-Choy et al.  2009 ; Murray et al.  2009 ; Aspinall  2010  ) . These 
are exciting and worthwhile investigations with broad application to pressing issues 
in landscape ecology, such as conserving threatened species and understanding the 
effects of climate change (O’Neill et al.  2008 ; Wilson et al.  2011  ) . 

 The case studies presented in this book provide insights and guidance on the 
application of expert knowledge to specifi c policy and management challenges. 
Drawn from communities of landscape ecologists in Australia, Canada, and the 
United States, the authors have illustrated the application of expert knowledge 
across such diverse fi elds as wildlife management (Drew and Collazo, Chap.   5    ; 
McNay, Chap.   7    ; Johnson et al., Chap.   8    ), conservation biology (Moody and Grand, 
Chap.   6    ), risk and vulnerability assessment (Kappel et al., Chap.   13    ), land use plan-
ning (Williams et al., Chap.   12    ), forest landscape succession and modeling (Drescher 
and Perera, Chap.   9    ; Doyon et al., Chap.   10    ), and fi re ecology (Keane and Reeves, 
Chap.   11    ). In addition, these chapters provide the reader with an overview of a wide 
range of elicitation methods (Table  14.1 ). Other authors focused less on the specifi c 
uses of expert knowledge, and instead report on the development of more effective 
methods to elicit and understand the uncertainty inherent in expert knowledge 
(Low-Choy et al., Chap.   3    ; Drescher et al., Chap.   4    ). 

 Chapter authors have used expert knowledge to address gaps in the available 
empirical data, characterize the full state of knowledge of a given system, and expe-
dite the delivery of a decision-support tool or of management guidance where the 
collection of empirical data would be impractical (e.g., for future states or events, 
for very large and variable landscapes, when rapid decisions are necessary). For 
example, McNay (Chap.   7    ) used expert knowledge to parameterize a predictive 
model of seasonal habitat use by woodland caribou. Although he had access to a 
considerable amount of empirical data, the key drivers of seasonal distribution and 
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future habitat were complex and interrelated in ways that were not fully understood. 
In this situation, expert knowledge appeared to be the best basis for forming hypoth-
eses and for integrating and parameterizing the available knowledge to produce 
predictive models. In comparison, Drew and Collazo (Chap.   5    ) had no empirical 
data to describe the distribution of the King Rail. They relied exclusively on experts 
to develop a set of complex and interacting hypotheses to describe the habitat rela-
tionships of this bird species and to guide the collection of empirical data. 

 In several chapters, expert knowledge was used to prioritize conservation or land 
use objectives, particularly when managers believed that inaction while awaiting 
better empirical data was not an option. Moody and Grand (Chap.   6    ) worked with 
experts to identify focal bird species that would be representative of broader faunal 
associations and used these species to guide regional conservation efforts in rapidly 
changing landscapes. Kappel et al. (Chap.   13    ) worked with a large number of experts 
to identify marine ecosystems vulnerable to key drivers of change. However, some 
chapter authors, including (Keane and Reeves, Chap.   11    ), expressed concern over 
the exclusive reliance on expert knowledge as a substitute for empirical methods, 
especially when rigorous methods were not applied during the elicitation process.  

    14.2.2   Investigating Expert Knowledge and Developing 
Rigorous Methods 

 An overarching theme that characterized all of the chapters was the recognition that 
elicitation should promote and support transparent and repeatable methods and pro-
vide for an assessment of uncertainty and bias in results. Although experts have 
long contributed their knowledge to support modeling and planning projects, past 
applications to the natural sciences had limited utility or acceptance because of non-
repeatable and poorly developed methods (Sutherland  2006  ) . Too often, elicitation 
simply involved an open invitation to discuss a particular subject with little to no 
development of the approach, documentation of the participants or the elicitation 
process, or use of rigorous methods (Johnson and Gillingham  2004  ) . Poor research 
design often results in knowledge that has little internal consistency or external 
validity, and this has harmed the credibility of experts as information resources and 
active participants in science-based decision making. 

 Working properly with experts is not necessarily a simple or inexpensive process 
from either a time or a fi nancial perspective. Drescher et al. (Chap.   4    ) allocated 12 
months to prepare for the elicitation and Kappel et al.  ( Chap.   13    ) invited 199 experts 
to participate in a survey of the effects of 58 human stressors on 15 marine ecosys-
tems. Many activities occur during the design and implementation of expert-based 
studies. Common recommendations suggest allocating enough time to refi ne the 
research questions, identify and characterize the experts, draft the elicitation ques-
tions, test and revise (i.e., pilot) the elicitation process and materials before collect-
ing data, develop a strategy to motivate and maintain participation through what is 
often a long and demanding process, and assess the uncertainty and perhaps even 
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the validity of the elicited knowledge (Low-Choy et al.  2009 ; Knol et al.  2010  ) . The 
increased emphasis on design and planning refl ects a growing understanding and 
appreciation of expert bias, the chance of miscommunication, a variety of types of 
error, and participant burnout. By delving into the elicitation literature and collabo-
rating with colleagues in the social sciences, landscape ecologists are discovering 
that many of these potential problems can be anticipated and mitigated through 
proper study design. 

 Careful attention to detail is required to develop effective and acceptable 
approaches for elicitation and for reporting the results. As is the case with the col-
lection of empirical data, researchers and practitioners must develop methods that 
meet a high standard of scientifi c rigor. Chapter authors demonstrated a range of 
techniques that can be used to elicit and formally document expert knowledge. 
Some used computer-based methods to record the expert’s knowledge (Low-Choy 
et al., Chap.   3    ; Drescher et al., Chap.   4    ), whereas others used more generic survey 
tools that included questionnaires (Doyon et al., Chap.   10    ; Moody and Grand, Chap. 
  6    ) or focus groups (McNay, Chap.   7    ; Table 1). Low-Choy et al. (Chap.   3    ) described 
innovative elicitation software that allowed the experts to relate their knowledge to 
a specifi c landscape and continually evaluate the consistency and logical validity of 
their responses. This work, in particular, highlighted the recent methodological 
advances that have increased the rigor of eliciting expert knowledge. 

 The literature provides some guidance on best practices, potential biases, and the 
general steps used for elicitation (Kadane and Wolfson  1998 ; Low-Choy et al.  2009 ; 
Knol et al.  2010 ; Kuhnert et al.  2010  ) . Although these past works are a useful start-
ing point, the studies in this book highlight the apparent need for an elicitation 
process and a method of analysis that meets the specifi c objectives of a project. Not 
by design, but by chance, we fi nd that a diversity of methods were adopted in the 
studies described in this book. This variation is likely representative of the range of 
approaches available and the creativity being exercised by researchers and practitio-
ners who are working with experts and applying their knowledge to answering dif-
fi cult questions and solving diffi cult problems in landscape ecology. We believe 
strongly that the elicitation method should be crafted to meet study objectives; how-
ever, the existence of such a large number of approaches suggests the need for fur-
ther research to improve our understanding of these methods and provide stricter 
guidance on the best elements to use in a given elicitation process. 

 Although the chapters in this book differ in the problem being studied, the 
geography of the study area, and the elicitation process (Table  14.1 ), there is none-
theless a set of consistent steps for developing a transparent and repeatable method 
for collecting and applying the expert knowledge. We present those steps in a 
generic framework (Fig.  14.1 ) that can serve as a starting point for inexperienced 
landscape ecologists who are interested in planning projects focused on expert 
knowledge or that include an element of expert knowledge. McBride and Burgman 
(Chap.   2    ) and the references therein expand on those steps with more detailed 
guidance.  

 Previous researchers have sometimes overlooked the need to clearly defi ne the 
characteristics of an “expert” (e.g., Petit et al.  2003 ; Van der Lee et al.  2006  ) , so 
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most chapter authors were careful to develop and document a clear defi nition of the 
“expert” and the domain expertise required to meet the project objectives. However, 
these defi nitions varied among studies; we found defi nitions based on the number of 
years of experience in a particular discipline or professional duty or study area, and 
defi nitions based on an index of expertise, such as the number of publications on a 
relevant subject. Other researchers have used even less direct measures of expertise, 
including membership in expert panels or committees (O’Neill et al.  2008  ) . 

 Once defi ned, the experts must be sought out and invited to participate in the 
study. Authors in this book often used informal peer-nomination processes, such as 
recognition by colleagues or professional acquaintances. More formal approaches 
included chain referral (“snowball”) sampling, in which the initial group of experts 
identifi ed by the research team nominated additional participants (Chap.   8    ). One 
group of authors (Kappel et al., Chap.   13    ) used computer  databases such as Google 

  Fig. 14.1    A generic framework for study design and the elicitation of expert knowledge. The  grey 
arrow  represents linked processes for certain measurement techniques, the  dotted arrow  represents 
a process not appropriate for all study designs, and the  dashed arrows  represent feedback mecha-
nisms that should be used in the presence of excessive uncertainty or weak validation       
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Scholar to search for individuals who met their predefi ned defi nition. Such tools 
might be especially useful when a large pool of experts is required across a number 
of domains of knowledge. 

 Chapter authors reported a wide range of techniques for collecting, analyzing, 
and in some cases evaluating the reliability and uncertainty of expert knowledge. 
We found approaches with a relatively long track record in the elicitation litera-
ture, such as the analytical hierarchy process (Chap.   8    ), as well as project-specifi c 
computer-based applications (Chap.   4    ). Some approaches for collecting knowl-
edge were more generic and were potentially less sensitive to the biases and sources 
of imprecision inherent to expert knowledge. These methods included the use of 
facilitated focus groups and structured questionnaires (Table  14.1 ). Low-Choy 
et al. (Chap.   3    ) discussed the application of an innovative software tool,  Elicitator , 
for collecting and analyzing expert knowledge. This tool allowed the experts to 
explore their assumptions and the logical consistency of the knowledge they pro-
vided when describing the distribution and habitat requirements of plants or 
animals. The techniques for knowledge collection and analysis were sometimes 
coupled, as in Chap.   3    , but were sometimes discrete. For example, the analytical 
hierarchy process and  Elicitator  integrated the processes by which expert knowl-
edge was collected and analyzed. Alternatively, the Bayesian belief networks 
developed by McNay (Chap.   7    ) and by Drew and Collazo (Chap.   5    ) were devel-
oped using very different methods for eliciting prior probabilities from their 
respective expert participants. 

 Throughout the elicitation process, the research team should continuously verify 
the logic and consistency of the method, the elicitation scores, and the preliminary 
results. This can be accomplished through in-progress questionnaires or diagnostic 
tools that elicit process-related feedback from the experts and other project partici-
pants (e.g., research assistants, facilitators). The fi nal step in the elicitation process 
is an assessment of the validity and uncertainty of the elicited expert knowledge. 
Uncertainty has a number of specifi c dimensions, as discussed by McBride and 
Burgman (Chap.   2    ), but generally represents the degree of variation in the answers 
elicited from a pool of experts as well as the resulting range in predictions or guid-
ance provided by expert-based models or decision-support tools. Although there are 
some useful applications of consensus-based approaches for elicitation and decision 
making in landscape ecology, these approaches do not identify inter-expert vari-
ance, and there is growing agreement that this uncertainty should be documented 
rather than suppressed (Aspinall  2010  ) . Validation is a comparison of the expert’s 
individual or aggregate responses to some measure of truth where a measure of 
predictive accuracy is warranted. Verifi cation and uncertainty are elements inherent 
to all expert-based processes and indeed to all empirical studies; however, valida-
tion is not always required or feasible (Fig.  14.1 ). 

 A major advance highlighted in this book was the improved degree of effort to 
identify, quantify, and account for the uncertainty inherent to elicited knowledge 
(e.g., Chap.   6    ; Chap.   8    ; Chap.   9    ). Several chapter authors noted the important dis-
tinction between aleatory uncertainty (i.e., uncertainty inherent in the nature of the 
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system being studied) and epistemic uncertainty (i.e., uncertainty inherent in expert 
knowledge of the system). Recognizing this difference and its signifi cance allowed 
them to develop methods to reduce epistemic uncertainty, primarily by paying 
much closer attention to the unique experience and judgments of individual experts 
(Chap.   9    ). A number of case studies also attempted to provide some means to for-
mally evaluate the reliability of expert input both during and after the elicitation 
process (Chap.   5    ; Chap.   9    ; Chap.   10    ). Providing timely feedback to experts can 
allow them to correct their own responses (Murray et al.  2009  ) . Techniques and 
tools are also available to improve the internal consistency between an expert’s 
knowledge of system components and their expectations of the overall system 
behavior (Chap.   3    ). 

 Empirical data, where available, were used to validate the accuracy of expert 
knowledge; McNay (Chap.   7    ), Johnson et al. (Chap.   8    ), and Drescher and Perera 
(Chap.   9    ) made such comparisons. These authors assumed that the empirical data 
were obtained for situations similar to those on which the experts based their 
knowledge and that they were also precise and unbiased. In other chapters, cross-
validation with empirical data was either unnecessary or impossible. For example, 
Drew and Collazo (Chap.   5    ) used expert knowledge to generate hypotheses about 
bird distributions and to design a population monitoring strategy. The data col-
lected through annual monitoring were subsequently used to update and refi ne the 
model rather than to validate the model. Williams et al. (Chap.   12    ) and Kappel 
et al., (Chap.   13    ) used experts to address questions that focused on integrated socio-
economic and ecological relationships and that considered many criteria, some of 
which were qualitative. There is no set of empirical observations that can serve to 
assess such complex or future processes, but model plausibility and internal consis-
tency can nonetheless be verifi ed using independent reviewers and other expert 
groups. Also, monitoring and active adaptive management experiments can both 
provide validation for expert-based decisions or predictions, but only once those 
data are collected. 

 The general steps for study design (Fig.  14.1 ) provide a robust starting frame-
work, but more importantly, suggest that the elicitation and use of expert knowledge 
requires the same level of forethought and methodological rigor as empirically 
based studies. Indeed, many of the chapter authors implicitly or explicitly advocate 
for the development of better practices that can be used when eliciting and applying 
expert knowledge. Johnson et al. (Chap.   8    ) make such a plea when they report the 
results of a study that failed to adhere to any of the steps described in Fig.  14.1 . To 
support such an approach, Low-Choy et al. (Chap.   3    ) provide a method and tool 
whose structure explicitly supports the use of good practices and that guards against 
many of the biases encountered during elicitation. 

 Beyond developing a defensible process for elicitation and meeting the direct 
objectives for using expert knowledge, a number of chapters highlighted methods 
designed to collect and analyze metadata that described the expert participants 
(Chap.   5    ; Chap.   8    ; Chap.   13    ). These ancillary data about the experts facilitated 
subsequent assessment of the elicited knowledge. Capturing the professional 
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identity of the individuals allows modelers to explore the range and variability of 
the group’s collective experience (Doswald et al.  2007  ) . The research team can 
use these metadata to explore the reasons for outlier opinions, propose alternative 
hypotheses based on different groupings of each expert’s unique perspectives or 
domains of experience, and assess the representativeness of the collected knowl-
edge relative to the application setting.  

    14.2.3   Used Wisely, Experts Offer Valuable Contributions 

 Expert knowledge has often been thought of as temporary or substitute data for situ-
ations or questions in which empirical data are lacking. Although this is a valid and 
important use of expert knowledge, there are some applications in which expert 
knowledge may be more useful than empirical data. For example, experts offer many 
advantages for the modeling of complex systems, hypothesis generation, and 
reaching consensus decisions for management and conservation actions (see Fig. 1.1 
in Chap.   1    ). In particular, the use of experts from a range of domains can reveal key 
aspects of a situation that were not known to the researchers. Landscape ecology 
addresses questions that pertain to broad spatial and temporal domains with many 
interacting cross-scale processes and elements. Such complex relationships can be 
diffi cult to quantify and understand using empirical data collected using traditional 
experimental design (Hargrove and Pickering  1992  ) . If elicited carefully, expert 
knowledge can offer a broader geographic and temporal perspective than the typical 
1- to 2-year studies that form the backbone of most empirical ecological and envi-
ronmental data. Furthermore, experts can debate issues of environmental variability 
and data representativeness and can formulate hypotheses that conform to their 
broader combined experience so as to direct future investigations. However, as sev-
eral chapter authors reiterate, the choice of experts for enlightening any of these 
processes is critical and should not be left to chance or opportunity. 

 Although we have emphasized the advantages of eliciting and using expert 
knowledge for applications in landscape ecology, expert knowledge is not without 
error, bias, and inaccuracy. Furthermore, expert knowledge is not a solution for all 
problems or an answer to all questions when empirical data are lacking: if there are 
no experts, there is no expert knowledge. Such was the fi nding of Kappel et al. 
(Chap.   13    ), who had too few experts to document the vulnerability of some marine 
ecosystems. Drew and Collazo (Chap.   5    ) also highlighted instances where the lim-
ited number of experts drawn from a narrowly defi ned domain (federal wildlife 
refuges) was not always suffi ciently informative of the landscapes or species to be 
modeled. Where  knowledge  is lacking, experts might begin to contribute their  opin-
ions . The difference between expert knowledge and expert opinion (see Chap.   1    ) is 
not always obvious; even the authors within this book intermixed these terms, and 
experts themselves are not always aware of the limits of their knowledge until they 
are asked to quantify their degree of certainty. When elicitation focuses on a partici-
pant’s domain of expertise, such that they reference events or processes that have 
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occurred within their direct personal experience, then knowledge can be documented. 
However, when participants must extrapolate beyond their domain of expertise, 
either in time, space, or subject, their knowledge (by defi nition) incorporates more 
characteristics of conjecture, hypothesis, and opinion. This is not to say that expert 
opinion is of no value. Where direct knowledge is lacking, experts may still provide 
an educated and useful opinion on a particular question. However, landscape ecolo-
gists should carefully distinguish between knowledge and opinion in their analyses. 
This distinction is especially important because uncertainty will likely be much 
higher when based on opinion rather than knowledge. As an example, opinion may 
be ineffective for parameterizing quantitative models in which precision and accu-
racy are important to direct conservation activities (Chap.   8    ), but may be useful for 
developing hypotheses about ecological relationships (Chap.   5    ) or in risk analyses 
for future or unobserved events (Chap.   13    ).   

    14.3   Our Recommendations for Landscape Ecologists 

 Methods to collect and apply expert knowledge to questions and problems in land-
scape ecology are rapidly evolving. The contributions in this book demonstrate that 
the elicitation and use of knowledge of ecological systems and processes has moved 
from an  ad hoc  practice to a formalized and rigorous set of defensible methods. As 
with any scientifi c endeavor, however, there is room for refi nement, improvement, 
and innovation (Table  14.2 ). Furthermore, the authors represented here constitute 
only a small portion of the researchers who are directly applying expert knowledge 
within the fi eld of landscape ecology. We strongly suspect that many landscape 
ecologists remain unaware of the importance of rigor in the design of an elicitation 
study and of the basic elements of the process that are identifi ed in Fig.  14.1 . Also, 
although expert knowledge continues to play an important and growing role in the 
application of landscape ecological principles, its value remains ambiguous and its 
use remains contentious among the broader community of ecologists. To improve 
this situation, we have provided some guidance for best practices and have sug-
gested areas of further research that will be necessary to improve the science of 
elicitation and the practice of application when developing studies or projects 
 premised on expert knowledge (Table  14.2 ). 

    14.3.1   Become Informed: Review the Literature Prior 
to Eliciting Knowledge 

 Several authors in this book identifi ed gaps in their own training, which left them 
unprepared for the complexity of designing, facilitating, and interpreting results 
from expert elicitations. Most people trained in the natural or life sciences have very 
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little exposure to the assumptions that underlie research on human subjects and in 
the methods used to collect and apply expert knowledge. There is a wealth of exist-
ing literature, however, that provides well-founded guidance on defensible best 
practices for eliciting and using expert knowledge. Some of this work has focused 
on ecological applications (e.g., Low-Choy et al.  2009 ; Kuhnert et al.  2010  ) , but 
other types of practitioners and academic disciplines have a longer history of using 
expert knowledge well. Thus, we urge the uninformed reader to explore the litera-
ture on statistics, health sciences, business, policy sciences, and psychology (Kadane 
and Wolfson  1998 ; Aspinall  2010 ; Knol et al.  2010  ) . Many of the authors in this 
book have benefi ted from working directly with colleagues in the social sciences 
who might not have fully grasped the subject of their studies, but who understood 
very well the general process for effective elicitation. Just as we might seek out help 
from a colleague with advanced training in statistics, we must be open to the oppor-
tunities that experts in elicitation can provide, even if these experts are found in 
fi elds of study with few links to ecology. This message was delivered by McBride 
and Burgman (Chap.   2    ) and others (Table  14.2 ), who argued that improving the 
application of expert knowledge within landscape ecology will require greater 
awareness of the tools that are available, as well as the skills to select and tailor 
these tools to meet the needs of a given project. 

 For those wishing to learn more, the chapters and citations in this book identify 
many useful resources. Though this book is not a how-to manual for eliciting expert 
knowledge, each chapter offers valuable recommendations for motivating expert 
participants, improving communication, minimizing bias (Chap.   3    ; Chap.   4    ), docu-
menting uncertainty (Chap.   6    ; Chap.   8    ; Chap.   9    ), and evaluating the accuracy of 
expert knowledge (Chap.   7    ; Chap.   8    ; Chap.   9    ). We have the following recommenda-
tions to improve the level of awareness and the capacity for self-learning by ecolo-
gists who are interested in applying expert knowledge to questions and problems in 
landscape ecology:

   Publication of special issues in journals of applied ecology to highlight and pro-• 
mote the effective and proper use of expert knowledge.  
  Formal recognition of points of contact for both practitioners who have used • 
expert knowledge and persons with expertise in eliciting expert knowledge. This 
“community of practice” would serve as a forum for discussing and guiding 
methods and for mentoring ecologists who are interested in applying expert 
knowledge.  
  Development of a textbook or best practices manual that focuses on the most • 
current methods for effectively working with ecological experts and eliciting 
expert knowledge. This text would consider all elements of gathering and using 
expert knowledge and would focus on the methodological hurdles or problem 
areas most likely to confront applied ecologists (Fig.  14.1 ). We suspect, however, 
that such a discipline-focused text is premature. We recognize that over the past 
10 years ecologists have made signifi cant progress in appreciating the complex-
ity of expert-based studies, and applying better methods of elicitation. Also, 
there is a substantial literature from other disciplines that can direct ecologists in 
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the development and proper application of methods, and indeed, in understanding 
the nature of expert knowledge (Cooke  1991 ; Meyer and Booker  1991 ; O’Hagan 
et al.  2006 ; Collins and Evans  2007  ) . However, considering the unique chal-
lenges faced by landscape ecologists, principally the interacting effects of spatial 
and temporal scale as well as process heterogeneity, we recommend the further 
refi nement and testing of new and innovative methods (e.g., Chap.   3    ) and addi-
tional case studies and applications. Such work would allow a better understand-
ing of the sources of bias and uncertainty inherent to landscape ecology and 
provide for a stronger foundation for a discipline-specifi c text. The increasing 
rate of publications in this area suggests that the science of expert knowledge, as 
applied to landscape ecology, may mature to a suffi cient level to support such a 
text over the next 3–5 years.     

    14.3.2   Expand the Available Toolsets to Support Rigorous 
Elicitation of Knowledge 

 Authors in this book have demonstrated considerable innovation in developing 
methods that are effective for eliciting expert knowledge. Some notable advances of 
particular relevance to applications in landscape ecology include the improved inte-
gration of statistical analysis and GIS data within the elicitation process (e.g.,  Chap.   3    ). 
Such spatially explicit approaches will be more intuitive to landscape ecologists, 
making the knowledge reporting less abstract (Chap.   6    ). Despite these advances, 
however, all authors in this book concur that refi nement and development of elicita-
tion methods is a key area in need of further research (Table  14.2 ). 

 We noted considerable variation in the number of experts employed across the 
studies in this book and in previous research (e.g., Seoane et al.  2005  = 1; Chap.   13     
= 58), and with the exception of certain knowledge areas in which no experts were 
identifi ed, there was little justifi cation of sample size. The social science literature 
provides some guidance on the best number of experts for an elicitation, but this 
advice is based on observations of group dynamics and biases (Aspinall  2010  ) . In 
ecology, it seems likely that heterogeneity in the environments or ecological pro-
cesses for which experts are knowledgeable, as well as variation in knowledge 
among expert participants, will affect recommendations for the minimum number 
of participants needed to meet the requirements for statistical rigor (Chap.   5    ). Also, 
the number of experts involved in a project is likely to require trade-offs among the 
breadth of the knowledge domain, the availability or number of experts working in 
that domain, and the effort and expense necessary to identify and recruit experts and 
to elicit their knowledge. Regardless of the practical limitations that confound the 
issue of sample size, some guidance is needed on when the use of too few experts 
threatens the validity of a study’s conclusions. 

 Authors in this book were nearly unanimous in reporting the need to accurately 
identify and characterize expertise as well as the need for methods that better record 
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and incorporate uncertainty during the elicitation process (Table  14.2 ). Clearly, 
 useful expert knowledge is premised on identifying the correct pool of experts and 
differences in suitability among experts within that pool, but this step is often over-
looked or is based on  ad hoc  criteria. Furthermore, there is less guidance on how to 
identify good experts  a priori  relative to the assessment and weighting of expert 
knowledge that occurs during and after elicitation. More research on understanding 
the implications of incorrect parameterization of the expert defi nition and of involving 
too few experts is clearly warranted. We have the following recommendations for 
further study:

   Development and testing of elicitation tools that allow experts to document their • 
knowledge using an easy to understand, transparent, and repeatable process. 
These tools should accommodate all contexts of expert knowledge (Table  14.1 , 
Chap.   1    ), including problem synthesis, hypothesis building, and model parame-
terization. Such tools should have inherent mechanisms that guard against bias 
and inconsistent logic or that allow experts to test for and correct such problems 
(e.g., Chap.   3    ).  
  Development of tools or elicitation strategies that better match the spatial and • 
temporal experience and knowledge of an expert to the proposed questions. For 
many problems in landscape ecology, we are seeking knowledge that informs our 
understanding of large-scale processes across landscapes or regions, whereas the 
experts may be more familiar with patch-level phenomena. Currently, we have a 
limited understanding of the implications of such scale mismatches or how to 
scale-up expert knowledge.  
  Studies to understand the implications of the defi nition of an expert, the linkages • 
between this defi nition and the problem being studied, the number of experts 
involved in a study, and the uncertainty in expert knowledge. A broader defi ni-
tion of the expert might result in a larger sample of experts, but would then result 
in a greater breadth of uncertainty in the expert knowledge. The implications of 
such decisions for the effi ciency and reliability of the elicited knowledge should 
be investigated.     

    14.3.3   Continue to Critically Evaluate and Test Expert 
Knowledge 

 Ideally, every expert-based project should incorporate a critical analysis of the elici-
tation methods, the information elicited, and the reliability of the resulting decision-
support products. Expert knowledge can be cross-validated against other expert 
sources (Chap.   13    ) or empirical data (Chap.   7    ; Chap.   8    ). However, there is no formal 
guidance for practitioners or researchers as to when validation of expert knowledge 
is necessary and, when it is necessary, how best to proceed with the validation. We 
suspect that the methods and rules for validation will prove to be project-specifi c, 
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but some perspective on the scope of the available methods is necessary to help 
researchers understand this problem and choose an appropriate solution. Although 
validation may not be necessary or even possible in all cases, evaluation and verifi -
cation of the elicitation process should be a structured component of all projects that 
depend on expert knowledge. Further research and debate is required to defi ne the 
necessity and expected outcomes of validation. 

 Understanding the variation in expert knowledge and the possible biases that 
underlie this variation appears to be an area of increasing interest in the ecological 
literature (Doswald et al.  2007 ; Hurley et al.  2009 ; Chap.   13    ). The collection and 
analysis of detailed quantitative information from individual experts represents a 
large advance over approaches that capture only aggregate components of knowl-
edge (e.g., consensus results). There are likely strong links between the selection of 
experts and the resulting uncertainty in knowledge. Thus, by characterizing indi-
vidual experts and maintaining the ability to distinguish their personal responses 
within the pool of elicited information, we can better understand the sources of 
uncertainty (Chap.   8    ; Chap.   11    ). There remains, however, much room for innovation 
and further refi nement of methods to evaluate the knowledge gathered through elici-
tation. Uncertainty is not an unknown concept to the practitioners and researchers 
who will apply expert knowledge. Indeed, uncertainty was well categorized (e.g. 
Chap.   2    ) or was at least recognized within many of the chapters. Despite the recog-
nition of uncertainty as a pivotal concept in evaluating and applying expert knowl-
edge, approaches for documenting uncertainty remain largely  ad hoc . The authors 
represented in this book were nearly unanimous in reporting that the science of 
eliciting and using expert knowledge would be improved if the elicitation methods 
directly categorized, measured, and incorporated the uncertainty inherent in the 
knowledge (Table  14.2 ). Achieving this goal would require consistent and standard-
ized measures of uncertainty in knowledge and a better understanding of the sources 
of this uncertainty, especially in the context of expert selection, and would require 
guidance on how best to manage and accommodate uncertainty. Specifi c recom-
mendations include:

   Establish guidelines to characterize the reliability of expert knowledge. • 
Recognizing that there are a broad range of applications and associated require-
ments for the precision and accuracy of knowledge as well as levels of involve-
ment by experts, such guidelines would support the judicious application of 
expert knowledge to a given problem or question. An assessment system that 
positions the elicited information along a spectrum ranging from opinion to 
knowledge would be particularly valuable.  
  Develop better methods and a consistent measurement scale for quantifying the • 
degree of uncertainty in knowledge both among experts and within an  individual’s 
elicited responses. In theory, this measurement scale would partition  uncertainty 
into the three main types: aleatory (due to the system’s inherent complexity), 
epistemic (due to limitations of the expert’s knowledge), and  linguistic (due to 
the inherently subjective nature of the words an expert uses to describe their 
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knowledge). Such divisions would also improve the elicitation process. In addi-
tion, the quantifi cation of uncertainty would allow researchers to weight the 
individual responses to account for their relevance in the context of a specifi c 
application or question.    

 Finally, through the diversity of the projects, the rigor of the different methods, 
and the insights of the authors, this book illustrates the exciting and valuable prog-
ress that is currently being made in the application of expert knowledge to answer-
ing the questions and solving the problems faced by landscape ecologists. Although 
there remains much room for innovation and improvement, the potential value of 
expert knowledge that is collected using a rigorous study design is high. This 
value is likely to be increasingly evident both in the short term, as a stop-gap mea-
sure when there is insuffi cient data and formal knowledge to support management 
decisions, and in the long term, as a way to complement and supplement empirical 
data and formal knowledge. This compilation of learning and experience suggests 
that there are few bounds to the effective and reliable application of expert knowl-
edge. Where experts are available and a proper method is employed, neither the 
expert’s discipline, the geography of the study area, nor the subject of study should 
prevent advancement of our understanding or the development of solutions to the 
complex problems faced by landscape ecologists. For these reasons, we are confi -
dent that applications of expert knowledge in landscape ecology will continue to 
expand and that the science of eliciting and using expert knowledge will continue 
to improve.       
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