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Preface

The field of nonlinear optics has developed rapidly since the invention of the
first laser exactly 50 years ago. Many interesting scientific discoveries and
technical applications have been made with nonlinear optical effects in all
kinds of nonlinear materials. There are already several excellent general text-
books covering various aspects of nonlinear optics, including Nonlinear Optics
by Robert W. Boyd, Nonlinear Optics by Yuen-Ron Shen, Quantum Elec-
tronics by Amnon Yariv, Nonlinear Fiber Optics by Govind P. Agrawal, etc.
These textbooks have provided solid foundations for readers to understand
various (secondand third-order) nonlinear optical processes in atomic gas and
solid media. The earlier monograph by the authors, Multi-wave Mixing Pro-
cesses, published last year, has presented experimental and theoretical studies
of several topics related to multi-wave mixing processes (MWM) previously
done in the authors’ group. The topics covered in that monograph include ul-
trafast polarization beats of four-wave mixing (FWM) processes; heterodyne
detections of FWM, six-wave mixing (SWM), and eight-wave mixing (EWM)
processes; Raman and Rayleigh enhanced polarization beats; coexistence and
interactions of MWM processes via electromagnetically induced transparency
(EIT). The monograph shows the effects of high-order correlation functions
of different noisy fields on the femto- and atto-second polarization beats, and
heterodyne/homodyne detections of ultrafast third-order polarization beats.
It has also shown the coexistence of FWM and SWM processes in several
multi-level EIT systems, as well as interactions between these two different
orders of nonlinearities.

This new monograph builds on and extends the previous works, and
presents additional and new works done in recent years in the authors’ group.
Many newly obtained results, extended detail calculations, and more dis-
cussions are provided, which can help readers to better understand these
interesting nonlinear optical phenomena. Other than showing more results
on controls and interactions between MWM processes in hot atomic media,
several novel types of spatial solitons in FWM signals are presented and dis-
cussed, which are new phenomena in multi-level atomic systems. Chapter 1
reviews some basic concepts to be used in later chapters, such as the nonlin-
ear susceptibility, coherence functions and doubledressing schemes. Chapter 2
extends the previous results on polarization beats to include both difference-
frequency femtosecond and sum-frequency attosecond beats in the multi-level
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media depending on the specially arranged relative time delays in the multi-
colored laser beams. Chapter 3 gives results on Raman, Raman-Rayleigh,
Rayleigh-Brillouin, and coexisting Raman-Rayleigh-Brillouin-enhanced po-
larization beats. Chapter 4 presents multi-dressing FWM processes in con-
fined and non-confined atomic systems with specially-designed spatial pat-
terns and phase-matching conditions for laser beams. Chapter 5 shows en-
hancement and suppression in FWM processes in multi-level atomic media,
generated FWM signals can be selectively enhanced and suppressed via an
EIT window. The evolution of dressed effects can be from pure enhancement
into pure suppression in degenerate-FWM processes. Chapter 6 demonstrates
the modification and control of MWM processes by manipulating the dark-
state or EIT windows with polarization states of laser beams via multiple
Zeeman sublevels. Chapter 7 shows spatial dispersion properties of the probe
and generated FWM beams which can lead to spatial shift and splitting of
these weak laser beams. Chapter 8 presents the observations of several novel
types of solitons, such as gap, dipole, and vortex solitons, for generated FWM
beams in different experimental parametric regions.

Authors believe that this monograph treats some special topics of coher-
ent controls of FWM and MWM and can be useful to researchers interested
in related nonlinear MWM processes. Several features presented here are
distinctly different and advantageous over previously reported works. For ex-
ample, authors have shown evolutions of enhancement and suppression of
FWM signals due to various dressing schemes by scanning the dressing field
detuning. Also theoretical calculations are in good agreement with experi-
mentally measured results in demonstrating enhancement and suppression
of MWM processes. Efficient spatial-temporal interference between FWM
and SWM signals generated in a four-level atomic system has been care-
fully investigated, which exhibits controllable interactions between two dif-
ferent (third- and fifth-) order nonlinear optical processes. Such controllable
high-order nonlinear optical processes can be used for designing new schemes
for all-optical communication and quantum information processing. Authors
also experimentally demonstrate that by arranging the strong pump and
coupling laser beams in specially-designed spatial configurations (to satisfy
phase-matching conditions for efficient FWM processes), generated FWM
signals can be spatially shifted and split easily by the cross-phase modu-
lation (XPM) in the Kerr nonlinear medium. Moreover, when the spatial
diffraction is balanced by XPM, spatial beam profiles of FWM signals can
become stable to form spatial optical solitons. For different input orientations
and experimental parameters (such as laser powers, frequency detunings, and
temperature), novel gap, vortex, and dipole solitons have been shown to exist
in the multi-level atomic systems in vapour cell. These studies have opened
the door for achieving rapid responding all-optical controlled spatial switch,
routing, and soliton communications.

This monograph serves as a reference book intended for scientists, re-
searchers, advanced undergraduate and graduate students in nonlinear op-
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We take this opportunity to thank many researchers and collaborators

who have worked on the research projects as described in this book.
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1 Introduction

The subjects of this book focus on mainly around two topics. The first topic
(Chapters 2 and 3) covers the ultrafast four-wave mixing (FWM) polarization
beats due to interactions between multi-colored laser beams and multi-level
media. Both difference-frequency femtosecond and sum-frequency attosec-
ond polarization beats can be observed in multi-level media depending on
the specially arranged relative time delays in multi-colored laser beams. The
polarization beat signal is shown to be particularly sensitive to the statisti-
cal properties of the Markovian stochastic light fields with arbitrary band-
width. Also, the Raman, Raman-Rayleigh, Rayleigh-Brillouin, coexisting
Raman-Rayleigh-Brillouin-enhanced polarization beats due to color-locking
noisy field correlations have been studied. Polarization beats between vari-
ous FWM processes are among the most important ways to study transient
properties of media. The second topic (Chapters 4 – 8) relates to the fre-
quency domain and spatial interplays of FWM processes induced by atomic
coherence in multi-level atomic systems. FWM processes with different kinds
of dual-dressed schemes in ultra-thin, micrometer and long atomic cells, se-
lectively enhanced and suppressed FWM signals via an electromagnetically
induced transparency (EIT) window are described, co-existing FWM and six-
wave mixing (SWM) processes, especially temporal and spatial interference
between them in multi-level EIT media are presented in Chapter 4. Further-
more, These effects of spatial displacements and splitting of the probe and
generated FWM beams, as well as the observations of gap soliton trains,
vortex solitons of FWM, stable multicomponent vector solitons consisting of
two perpendicular FWM dipole components induced by nonlinear cross-phase
modulation (XPM) in multi-level atomic media, are shown and investigated
in Chapters 5 – 8. Experimental results will be presented and compared with
the theoretical calculations throughout the book. Also, emphasis will be given
only to the works done by the authors’ groups in the past few years. Some
of the works presented in this book are built upon our previous book (Multi-
wave Mixing Processes published by High Education Press & Springer 2009),
where we have mainly discussed the co-existence and interactions between
efficient multi-wave mixing (MWM) processes enhanced by atomic coherence
in multilevel atomic systems. Before starting the main topics of this book,
some basic physical concepts and mathematical techniques, which are useful
and needed in the later chapters, will be briefly introduced and discussed in
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this chapter.

1.1 Nonlinear Susceptibility

For over a decade, one of useful nonlinear optical techniques is the so-called
“noisy” light spectroscopy. The ultrashort time resolution of material dynam-
ics has been accomplished by the interferometric probing of wave mixing with
broadband, nontransform-limited noisy light beams. The time resolution is
determined by the ultrafast correlation time of noisy light and not by its tem-
poral envelope, which is typically a few nanoseconds [1 – 6]. Such the noisy
light source is usually derived from a dye laser modified to permit oscilla-
tion over almost the entire bandwidth of the broadband source. The typical
bandwidth of the noisy light is about 100/cm, and has a correlation time
of 100 fs [7]. In fact, the multimode broadband light has an autocorrelation
time similar to the autocorrelation time of the transform-limited femtosec-
ond laser pulse of equivalent bandwidth, although the broadband light can,
in principle, be a continuous wave (cw).

In order to describe more precisely what we mean by optical nonlinearity,
let us consider how the dipole moment per unit volume, or polarization P , of
a material system depends on the strength E of the applied optical field. The
induced polarization depends nonlinearly on the electric field strength of the
applied field in a manner that can be described by the relation P = PL+PNL

[8, 9]. Here, PL = P (1) = ε0χ
(1) ·E and PNL = P (2)+P (3)+ · · · = ε0(χ(2) :

EE + χ(3)
... EEE + · · · ).

When we only consider the atomic system (which are isotropic and have
inversion symmetry), we can write the total polarization as P = ε0χE in
general, where the total effective optical susceptibility can be described by

a generalized expression of χ =
∞∑

j=0

χ(2j+1) |E|2j . The terms with even-order

powers in the applied field strength vanish [8]. The lowest order term χ(1)(j =
0) is independent of the field strength and is known as the linear susceptibility.
The next two terms in the summation, χ(3) and χ(5), are known as the third-
and fifth-order nonlinear optical susceptibilities, respectively.

FWM refers to nonlinear optical processes with four interacting electro-
magnetic waves (i.e., with three applied fields to generate the fourth field).
In the weak interaction limit, FWM is a pure third-order nonlinear optical
process and is governed by the third-order nonlinear susceptibility [8]. Let us
consider a special case of FWM processes. The third-order nonlinear polariza-
tion governing the process has, in general, three components with different
wave vectors k1, k2, and k′2. E1(ω1), E2(ω2), and E′2(ω2) denote the three
input laser fields. Here, ωi and ki are the frequency and propagation wave
vectors of the ith beam. We can choose to have a small angle θ between the
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input pump laser beams k2 and k′2. The probe laser beam (beam k1) prop-
agates along a direction that is almost opposite to that of the beam k2 (see
Fig. 1.1). The corresponding nonlinear atomic polarization P (3)(ω1) along
the i(i = x, y) direction, from first-order perturbation theory, is given by [10]

P
(3)
i (ω1) = ε0

∑
jkl

χ
(3)
ijklE1j(ω1)E′∗2k(ω2)E2l(ω2), (1.1)

Fig. 1.1. (a) Schematic diagram for the phase-conjugate FWM process. (b) Energy-
level diagram for FWM in a close-cycled three-level cascade system.

where the third-order susceptibility contains the microscopic information
about the atomic system. The susceptibility of the nonlinear tensor χ

(3)
ijkl(ωF ;

ω1,−ω2, ω2) is also related to polarization components of incident and gen-
erated fields. For an isotropic medium, as in the atomic vapor, only four
elements are not zero, and they are related to each other by χxxxx = χxxyy+
χyxxy+χyxyx. For the generated SWM signal ES (fields E2 and E3 propagate
along the direction of beam 2 and E′2 and E′3 propagate along beam 3), the
fifth-order nonlinear polarization P (5)(ω1) along the i(i = x, y) direction is
then given by

P
(5)
i (ω1) = ε0

∑
jklmn

χ
(5)
ijklmnE1j(ω1)E′∗2k(ω2)E2l(ω2)E′∗3m(ω3)E3n(ω3), (1.2)

where χ
(5)
ijklmn is the fifth-order nonlinear susceptibility. For an isotropic

medium, there are sixteen nonzero components and only fifteen of them are
independent because they are related to each other by

3χxxxxxx = χyyxxxx + χyxyxxx + χyxxyxx + χyxxxyx + χyxxxxy +
χxyyxxx + χxyxyxx + χxyxxyx + χxyxxxy + χxxyyxx +
χxxyyxx + χxxyxyx + χxxyxxy + χxxxyxy + χxxxxyy. (1.3)

1.2 Coherence Functions

Lasers are inherently noisy devices, in which both phase and amplitude of
the field can fluctuate. There are many different stochastic models to de-
scribe laser fields. However, since many models of fluctuating laser fields
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have identical second-order field correlations, differences among them will
become important only if observable effects depend on higher-order field cor-
relations. Noisy light can be used to probe atomic and molecular dynamics,
and it offers an unique alternative to the more conventional frequency-domain
spectroscopies and ultrashort time-domain spectroscopies [1, 11 – 14]. When
the laser field is sufficiently intense that multi-photon interactions occur, the
laser spectral bandwidth or spectral shape, obtained from the second-order
correlation function, is inadequate to characterize the field. Rather than using
higher-order correlation functions explicitly, three different Markovian fields
are considered: i.e., (a) the chaotic field, (b) the phase-diffusion field, and (c)
the Gaussian-amplitude field.

If laser sources have Lorentzian line shape, we have the second-order
coherence function 〈ui(t1)u∗i (t2)〉 = exp(−αi|t1 − t2|) (i.e., 〈|ui(t)|2〉 = 1
when t = t1 = t2). Here, αi = δωi/2, with δωi being the linewidth of the
laser with frequency ωi. On the other hand, if laser sources are assumed to
have Gaussian line shape, then we have

〈ui(t1)u∗i (t2)〉 = exp
{
−
[
αi(t1 − t2)/2

√
ln 2
]2}

.

In the following, we only consider the former case. In fact, the form of the
second-order coherence function shown above, which is determined by the
laser line shape, is the general feature of stochastic models [15].

In this section, three Markovian noise stochastic models, the chaotic
field model (CFM), the phase-diffusion model (PDM), and the Gaussian-
amplitude model (GAM) are considered at a high enough intensity level to
fully appreciate the subtle features of FWM spectroscopy [16, 17].

First, in CFM, we assume that the pump laser is a multimode thermal
source and u(t) = a(t)eiφ(t), where a(t) is the fluctuating modulus and φ(t) is
the fluctuating phase. In this case, u(t) has Gaussian statistics with its fourth-
order coherence function satisfying [18] 〈ui(t1)ui(t2)u∗i (t3)u

∗
i (t4)〉CFM =

〈ui(t1)u∗i (t3)〉〈ui(t2)u∗i (t4)〉+〈ui(t1)u∗i (t4)〉〈ui(t2)u∗i (t3)〉=exp[−αi(|t1−t3|+
|t2 − t4|)] + exp[−αi(|t1 − t4| + |t2 − t3|)]. In fact, all higher order coher-
ence functions can be expressed in terms of products of second-order co-
herence functions. Thus any given 2nth-order coherence function may be
decomposed into the sum of n! terms, each consisting of the product of n
second-order coherence functions. The general expression can be obtained as,

〈ui(t1) · · ·ui(tn)u∗i (tn+1) · · ·u∗i (t2n)〉CFM =
∑

π

〈ui(t1)u∗i (tp)〉〈ui(t2)u∗i (tq)〉

· · · 〈ui(tn)u∗i (tr)〉, where
∑

π

denotes a summation over the n! possible per-

mutations of (1, 2, . . ., n).
Second, in PDM the dimensionless statistical factor can be written as

u(t) = eiφ(t) (i.e., |u(t)| = 1) with φ̇(t) = ω(t), 〈ωi(t)ωi(t′)〉 = 2αiδ(t −
t′), 〈ωj(t)ωj(t′)〉 = 2αjδ(t − t′) and 〈ωi(t)ωj(t′)〉 = 0. The second-order co-
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herence function for a beam with Lorentzian line shape is given by [19]

〈u(t1)u∗(t2)〉 = 〈exp iΔφ〉

= exp
[
−
∫ t1−t2

0

(t1− t2− t)〈ω(t1)ω(t1− t)〉dt
]
= exp(−α|t1 − t2|).

Here, Δφ = φ(t1) − φ(t2) =
∫ t1

t2

ω(t)dt has Gaussian statistics, so that

〈exp iΔφ〉 = exp(−σ2
Δφ/2). By the classical relation of linear filtering, we

have

σ2
Δφ = L(t1 − t2) = 2

∫ t1−t2

0

(t1 − t2 − t)〈ω(t1)ω(t1 − t)〉dt.

Now, the fourth-order coherence function can be calculated, which can be
written as

〈ui(t1)ui(t2)u∗i (t3)u
∗
i (t4)〉PDM

= exp{−[L(t1 − t3) + L(t1 − t4) + L(t2 − t3) + L(t2 − t4)−
L(t1 − t2)− L(t3 − t4)]}

= exp[−αi(|t1 − t3|+ |t1 − t4|+ |t2 − t3|+ |t2 − t4|)]×
exp[αi(|t1 − t2|+ |t3 − t4|)]

=
〈ui(t1)u∗i (t3)〉〈ui(t2)u∗i (t4)〉〈ui(t1)u∗i (t4)〉〈ui(t2)u∗i (t3)〉

〈ui(t1)u∗i (t2)〉〈ui(t3)u∗i (t4)〉
.

Furthermore, we have the general expression for the second-order coher-
ence function as

〈ui(t1) · · ·ui(tn)u∗i (tn+1) · · ·u∗i (t2n)〉PDM

=

n∏
p=1

n∏
q=1

〈ui(tp)u∗i (tn+q)〉
n∏

p=1

n∏
q=p+1

〈ui(tp)u∗i (tq)〉〈ui(tn+p)u∗i (tn+q)〉
.

Finally, in GAM, one has u(t) = a(t), where a(t) is real and Gaussian, and
fluctuates about a mean value of zero. The fourth-order coherence function
of u(t) satisfies [20]

〈ui(t1)ui(t2)ui(t3)ui(t4)〉GAM

= 〈ui(t1)ui(t3)〉〈ui(t2)ui(t4)〉+ 〈ui(t1)ui(t4)〉〈ui(t2)ui(t3)〉+
〈ui(t1)ui(t2)〉〈ui(t3)ui(t4)〉

= 〈ui(t1)ui(t2)ui(t3)ui(t4)〉CFM + 〈ui(t1)ui(t2)〉〈ui(t3)ui(t4)〉
= exp[−αi(|t1 − t3|+ |t2 − t4|)] + exp[−αi(|t1 − t4|+ |t2 − t3|)] +
exp[−αi(|t1 − t2|+ |t3 − t4|)].
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In fact, according to the moment theorem for real Gaussian random vari-
ables, we have the general expression for the 2nth-order coherence function,
as

〈ui(t1) · · ·ui(tn)ui(tn+1) · · ·ui(t2n)〉GAM =
∑
P

2n∏
j �=k′

〈ui(t1)ui(tk)〉,

where
∑
P

indicates the summation over all possible distinct combinations of

the 2n variables in pairs.

1.3 Suppression and Enhancement of FWM Processes

In presence of a strong dressing field G2, the dressed states |+〉 and |−〉 can
be generated with the separation Δ± = 2|G2|, as shown in Fig. 1.2. When
scanning the frequency of the dressing field, we can obtain the EIT for the
probe field and a suppressed FWM signal [Fig. 1.2 (b)], or electromagnetically
induced absorption (EIA) for the probe field and an enhanced FWM [Fig.
1.2 (c)]. For the probe field propagating through the medium, we define the
baseline versus the dressing field detuning Δ2 to be at the probe field intensity
without the dressing field. Thus, this baseline is just the Doppler-broadened
absorption signal of the material. With G2 beam on, we can obtain one EIT
peak at Δ1 + Δ2 = 0, where the transmitted intensity is largest comparing
to the baseline. Since there is no energy level in the original position of
|1〉 and the probe field is no longer absorbed by the material, the degree
of transmission (or suppression of absorption) of the probe field is highest.
An EIA dip is obtained at Δ1 + Δ2 = |G2|2 /Δ1, where the transmitted
intensity is smallest compared to the baseline. The reason is that the dressed
state |+〉 or |−〉 is resonant with the probe field which is absorbed by the
material and the degree of transmission (or enhancement of absorption) of the

Fig. 1.2. (a) The diagram of the three-level ladder-type system with a dressing field
G2 (and detuning Δ2). The dressed-state pictures of the (b) suppression (EIT) and
(c) enhancement (EIA) of FWM Gf (or probe field Gp with detuning Δ1) for the
two-level system, respectively.
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probe field is lowest. Moreover, at Δ1 = 0, since the transparent degree (or
suppression of absorption) of the probe field G1 is largest, the EIT peak for
G2 is highest. While at certain detuning |Δ1|, the induced transparent degree
decreases and the EIT peak changes lower. When the detuning |Δ1| becomes
much larger, the degree of transparency decreases and the suppression of
absorption changes to an enhancement of absorption.

Then, the enhancement and suppression of FWM signals can be under-
stood as follows: The background versus the dressing field detuning Δ2 rep-
resents the signal intensity of the FWM without dressing field. The dips lower
than the background (or suppression peaks at Δ1 + Δ2 = 0) and the peaks
higher than the background (enhancement peaks at Δ1 + Δ2 = |G2|2 /Δ1)
represent that FWM signals are suppressed and enhanced, respectively.

Figure 1.3 presents suppressed and enhanced FWM signals and the corre-
sponding probe transmission signal versus the probe field detuining Δ1 and
versus the dressing field detuning Δ3. In this system, two pump fields E2 and
E′2 induce the EIT satisfying the two-photon resonant condition Δ1+Δ2 = 0
[see the general baseline in Fig. 1.3 (a) versus Δ1] and generate the FWM sig-
nal [see the general background in Fig. 1.3 (b) versus Δ1]. The dressing field
E3 induces each EIT peak versus Δ3 (satisfying the condition Δ1 +Δ3 = 0)
in Fig. 1.3 (a) and generates the enhancement and suppression of FWM sig-
nals versus Δ3 as shown in Fig. 1.3 (b). Moreover, Fig. 1.3 (c) shows the
normalized enhancement and suppression of FWM signals by dividing the
background (i.e., the signal intensity of the FWM without dressing field)
versu Δ3.

Fig. 1.3. (a) The probe transmission signal; (b) the enhancement and suppression
of the FWM signal versus the dressing field detuning Δ3 for the different value of
the probe field detuining Δ1; (c) the FWM signal normalized by the double-peak
FWM signal [dashed curve in (b)].

In Fig. 1.3 (a) one can see that the EIT peaks at large detuning Δ1

are higher than those near Δ1 = 0. This phenomenon can be explained as
follows: although E2 EIT window cannot be observed directly when scanning
the detuning Δ3, the E2 dressing at Δ1 = −Δ3 = −Δ2 ≈ 0 results in an
up-lift of the probe transmission baseline, and the suppression of the probe
transmission. At the large detuning of Δ1 [Fig. 2 (b)], the E2 field basically
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cannot affect the E3 EIT peaks. Moreover, at certain large detunings of Δ1,
the enhancement of absorption of probe beams will show up.

For the enhancement and suppression of FWM signals in Figs. 1.3 (b)
and (c), the curves show enhancement and suppression evolution behaviors
when increasing Δ1. Specifically, FWM signals change from all-enhanced to
half-suppressed and half-enhanced, then to all-suppressed around the reso-
nant point, and then to half-suppressed and half-enhanced, and finally to all-
enhanced. On the other hand, the suppression of FWM signals at the detun-
ings Δ1 corresponding to the FWM signal peaks is more obvious than those
suppression or enhancement at large Δ1 in Fig. 1.3 (b), while the normalized
all-enhancement of FWM signals at large Δ1 in Fig. 1.3 (c) is much larger
than the cases with half-suppression, half-enhancement and all-suppression
signals at small Δ1.

1.4 Double Dressing Schemes of Probe and Four-Wave
Mixing Fields

Recently, Investigations about dressed and doubly-dressed states in multi-
level atomic systems interacting with multiple electromagnetic fields have at-
tracted many interests [21 – 24]. The interaction of double-dark states (equiv-
alent to nested scheme of doubly-dressing) and splitting of dark states (equiv-
alent to the secondarily-dressed state) in four-level atomic systems were stud-
ied theoretically [25]. Then doubly-dressed states in cold atoms were experi-
mentally observed, in which the triple-photon absorption spectrum exhibits
a constructive interference between excitation paths of two closely-spaced,
doubly-dressed states [26]. Similar results were obtained in the inverted-Y
system [27] and double-Λ system [28].

Similar to the probe field, the generated FWM beam (between states |0〉
and |1〉) has the same doubly-dressing behavior. Figure 1.4 shows three kinds
of schemes in three four-level systems, respectively, i.e., the nested-cascade
scheme in the four-level ladder-type system [Fig. 1.4 (a)], parallel-cascade
scheme in the four-level V-type system [Fig. 1.4 (b)], and sequential-cascade
scheme in the four-level Y-type system [Fig. 1.4 (c)].

For the nested-cascade doubly-dressing scheme of the probe or FWM field,
the two dressing fields (with frequencies ω2 and ω3, and Rabi frequencies G2

and G3, respectively) connect three neighboring levels (|1〉, |2〉 and |3〉) and
the outer dressing field G3 is based on the inner dressing field G2, while this
inner field dresses the state of FWM processes. In the perturbation the chain

ρ10
G2−−→ ρ20

G3−−→ ρ30
G∗

3−−→ ρ20
G∗

2−−→ ρ10 [16], the two dressing fields G2 and G3

are intertwined tightly with each other which gives the strongest interaction.
In this case, only one term in the FWM expression

ρ
(3)
10 ∝ Ga{Γ10+iΔp+G2

2/[Γ20+i(Δp+Δ2)+G2
3/(Γ30+i(Δp+Δ2+Δ3))]}−1
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Fig. 1.4. Sketches of the (a) nested-cascade scheme in the four-level ladder-type sys-
tem; (b) parallel-cascade scheme in the four-level V-type system; and (c) sequential-
cascade scheme in the four-level Y-type system. Gf (Gp, G2 and G3) are the Rabi
frequencies of FWM (the probe and the coupling) fields, respectively.

is modified by the dressing fields and if the Rabi frequency of the inner
dressing field G2 is zero, the term for the outer dressing field disappears
also, where Ga = Gp for the doubly-dressed probe (DDP) field and Ga =
GpG1G

′∗
1 Γ

−1
00 (Γ10 + iΔp)−1 for the doubly-dressed FWM (DDFWM). Γij is

the transverse relaxation rate between |i〉 and |j〉, and Δp,Δ2, and Δ3 are the
frequency detunings of the probe and the coupling fields, respectively. On the
other hand, for parallel-cascade double dressing scheme, the dressing fields
G2 and G3 dress the two different states (|0〉 and |1〉, respectively) directly
and independently, as shown in Fig. 1.4 (b). In the perturbation the chain

ρ10
G2−−→ ρ20

G∗
2−−→ ρ10 and ρ10

G3−−→ ρ13
G∗

3−−→ ρ10, these two dressing processes
are separated and the corresponding terms of dressing fields are independent
in the expression of

ρ
(3)
10 ∝ Gb[Γ10+iΔp+G2

2/(Γ20+iΔp+iΔ2)]−1[Γ10+G2
3/(Γ13+iΔp− iΔ3)]−1,

where Gb = Gp for DDP field and Gb = GpG1G
′∗
1 Γ

−1
00 for DDFWM. Fi-

nally, for the sequential-cascade doubly-dressing scheme, the dressing fields
also dress the states directly and independently [both on level |1〉 as shown
in Fig. 1.4 (c)], however, two dressing processes are conjoined by the same

density-matrix element in the perturbation the chain ρ10
G2−−→ ρ20

G∗
2−−→ ρ10

G3−−→
ρ30

G∗
3−−→ ρ10, so only one term in FWM is modified by the dressing field in

the expression:

ρ
(3)
10 ∝ Gc[Γ10 + iΔp +G2

2/(Γ20 + iΔp + iΔ2) +G2
3/(Γ30 + iΔp + iΔ3)]−1,

where Gc = Gp for DDP field and Gc = GpG1G
′∗
1 Γ

−1
00 (Γ10 + iΔp)−1 for

DDFWM.
The interaction between two dressing fields in the nested-cascade scheme

is the strongest, and it is the weakest in the parallel-cascade scheme. The
sequential-cascade scheme is an intermediate case between the other two
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cases. Also, from the dressed-state picture, the dressing fields of the nested-
cascade scheme are intertwined tightly with each other. Only the inner dress-
ing field can create primary dressed states, and the outer dressing field can
only create secondary dressed states [29, 30]. While for the parallel-cascade
scheme, the dressing fields have a weaker interaction, and they can directly
create two independent dressed states [31, 32]. However, for the sequential-
cascade scheme the dressing field can also directly create dressed states but
they have a strong interaction to create primary and secondary dressed states
[30]. On the other hand, forms of the nested- and parallel-cascade DDFWM
expressions can be converted into forms of the sequential-cascade DDFWM
case under the conditions that the outer dressing field is weak or its detuning
is large for nested-cascade DDFWM and the two dressing fields are weak for
parallel-cascade DDFWM, respectively [30]. Investigations of those different
doubly-dressing schemes in multi-level atomic systems can help us to un-
derstand the underlying physical mechanisms and to effectively optimize the
generated multi-channel nonlinear optical signals. Controlling these processes
can have important applications in designing novel nonlinear optical devices
in multi-state systems.

1.5 Spatial Optical Modulation via Kerr Nonlinearities

The Kerr effect is a special kind of nonlinear optical phenomenon occurring
when intense light beams propagate in crystals, glasses, or gases. Its physical
origin is a third-order nonlinear polarization generated in the medium. For
self-Kerr nonlinearity, the intense light modifies its own propagation prop-
erties, while for the cross-Kerr nonlinearity the propagation properties of a
light beam are modified by the interaction with another overlapping beam in
a Kerr medium. Actually, the Kerr effect originates from an instantaneously
occurring third-order nonlinear response, which can be described as a modifi-
cation of the refractive index. The refractive index of many optical materials
depends on the intensity of the light beam due to special third-order nonlin-
ear responses, which can be written as n = n0 + n2I. Here, n2 is the Kerr
nonlinear index proportional to χ(3). If higher-order (such as fifth) nonlinear-
ity is considered, the nonlinear index n2 will be influenced by the intensity of
the light beam [33]. With weak cw diode lasers in three-level systems sharp
dispersion of n0 can be induced due to the EIT [34], which can slow down the
optical pulse propagation. Also, the third-order nonlinear optical Kerr coef-
ficient n2 of the three-level EIT system has been measured which is greatly
enhanced comparing to its two-level subsystem [35]. Since the Kerr nonlin-
ear dispersion in such EIT medium has been shown to have an opposite sign
(anomalous dispersion) from the linear dispersion (Fig. 1.5), and they change
dramatically near the EIT resonance, the cavity transmission linewidth with
such and EIT medium can be greatly modified due to the modified group
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index:
ng = (n0 + n2Ip) + ωP (∂n0/∂ωP + Ip∂n2/∂ωP ),

where Ip is the probe beam intensity, and ωP is the probe laser beam fre-
quency [36]. The linear and nonlinear dispersion terms (the derivatives) domi-
nate in ng. Since the two derivatives have opposite signs [8], ng can take either
positive or negative values, depending on the frequency detuning and probe
intensity.

Fig. 1.5. (a) Linear and (c) nonlinear refractive indices and their derivatives
(b) and (d), respectively, as a function of Δp. Adopted from Ref. [36].

Effects of self- and cross-Kerr nonlinearities also induce phenomena of
the self-phase-modulation (SPM) and cross-phase-modulation (XPM) [37]
which modulate spatial optical beams. Depending on the sign of the nonlin-
ear refractive index, such an intensity-dependent refractive index can pro-
duce either a converging or a diverging wave front to change the transverse
beam profile during beam propagation. With SPM a single beam modulates
itself during its propagation through medium. When two copropagating or
counterpropagating beams modulate each other via nonlinear interaction,
it is due to XPM. When n2 > 0, the converging wave front counteracts
against diffraction-induced spatial spreading, which can focus the optical
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beam to demonstrate the self-focused or the cross-focused beam when the
beam power exceeds a critical value. Similarly, when n2 < 0 the diverging
wave front increases the natural diverging, which gives the self-defocused
or cross-defocused beam. In 1990 Agrawal reported the phenomenon of in-
duced focusing occurring in the self-defocusing nonlinear media as a result
of XPM. When a weak optical beam copropagates with an intense pump
beam, the XPM-induced interaction between two beams can focus the weak
beam, even though the pump beam exhibits self-defocusing. [37] Also, the
electromagnetically-induced focusing (EIF) phenomenon was reported in the
three-level atomic system [38]. In the three-level EIT system the radial inten-
sity profile of the strong pump laser can generate a modified spatial refractive
index profile which is experienced by the weak probe laser as it tunes through
the transparency window near resonance. It leads to spatial focusing and de-
focusing of the probe beam [38].

Equations (1.4 – 1.6) are the Maxwell-Bloch equations under rotating-
wave and slowly-vary-envelope approximations, which give the mathematical
description of the SPM- and XPM-induced spatial interactions among the
probe and two FWM beams for the system as shown in Fig. 1.4.

∂Ep

∂z
+

∂Ep

c∂t
− i∂2Ep

2∂t2
− i∇2

⊥Ep

2kp

=
ikp

n0

[
n1 + nS1

2 |Ep|2 + 2nX1
2 |E′1|2 + 2nX2

2 |E′2|2
]
Ep +

η1E1(E′1)
∗EF1 + η2E2(E′2)

∗EF2, (1.4)

∂EF1

∂z
+

∂EF1

c∂t
− i∂2EF1

2∂t2
− i∇2

⊥EF1

2kF1

=
ikF1

n0

[
n1 + nS2

2 |EF1|2 + 2nX3
2 |E′1|2

]
EF1 +

η3E1(E′1)
∗Ep + η4E2(E′2)

∗EF2, (1.5)

∂EF2

∂z
+

∂EF2

c∂t
− i∂2EF2

2∂t2
− i∇2

⊥EF2

2kF2

=
ikF2

n0

[
n1 + nS3

2 |EF2|2 + 2nX4
2 |E′2|2

]
EF2 +

η5E1(E′1)
∗EF1 + η6E2(E′2)

∗Ep. (1.6)

Here, on the left side of these equations, the first terms describe the beam
propagation, the second terms give the dispersion ones, the third terms are
for the second-order dispersion, and the fourth terms describe the diffraction
of the beams diverging propagation. On the right hand, the first terms are the
linear response, the second terms are for the nonlinear self-Kerr effects, the
third terms [the third and fourth terms for Eq. (1.4)] describe nonlinear cross-
Kerr effects, the fourth and fifth terms [the fifth and sixth terms for Eq. (1.4)]
represent the phase-matched coherent FWM process. z is the longitudinal
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coordinate in the propagation direction and kp = kF1 = ω1n0/c. n0 and n1

are the linear refractive index at ω1 in vacuum and medium, respectively.
nS1

2 is the self-Kerr nonlinear coefficient of the field E3, n
S2
2 is the self-Kerr

nonlinear coefficient for the generated FWM field EF1, and nS3
2 is the self-

Kerr nonlinear coefficient for the generated FWM field EF2. nX1
2 is the cross-

Kerr nonlinear coefficient of the field E3 induced by the strong pump field
E′

1, n
X2
2 is the cross-Kerr nonlinear coefficient of the field E3 induced by the

strong pump field E′
2, n

X3
2 is the cross-Kerr nonlinear coefficient of the field

EF1 induced by the strong pump field E′
1, n

X4
2 is the cross-Kerr nonlinear

coefficient of the field EF2 induced by the strong pump field E′
2. In general

the Kerr nonlinear coefficients can be defined as n2 = Re χ(3)/(ε0cn0), where
the third-order nonlinear susceptibility is given by χ(3) = Dρ

(3)
10 with D =

Nμ2
pμ

2
i0/(�

3ε0GpG
2
i ). μp(μi0) is the dipole matrix element between the states

coupled by the probe beam Ep (between |i〉 and |0〉). ηi are the constants.
ρ
(3)
10 can be determined from the density-matrix equations for the multi-level
medium.

The strong pump beam distorts the phase profiles of the probe and FWM
beams through XPM, which induces spatial modifications of the probe and
FWM beams, including spatial displacement and splitting, and produces spa-
tial solitons. Thus, we can neglect the dispersion, linear term, and coherent
FWM processes in the equations, for the moment for simplicity. Actually,
these simplified differential equations are still difficult to solve analytically. By
assuming Gaussian profiles for input fields, we can use a numerical approach
(i.e., the split-step Fourier method [37]) to solve Eqs. (1.4 – 1.6). However,
the numerical solution of three-dimensional equations requires a considerable
computing resource with both x and y directions. For simplicity, we only
consider one dimension in the y-direction. For example, one can consider Eq.
(1.5) and obtain

∂EF1(z, y)
∂z

=
[

i
2kF1

∂

∂y2
+
ikF1

n0

(
nS2

2 |EF1|2 + 2nX3
2 |E′1|2

)]
EF1(z, y).

(1.7)
The solution of this equation is approximately EF1(z + h, y) ≈ Exp[ihD̂] ·
Exp[ihN̂ ]EF1(z, y) [37]. Here h is the step-length, D̂ = (2kF1)−1∂/∂y2 is the
diffraction functor and N̂ = kF1(nS2

2 |EF1|2+2nX3
2 |E′1|2)/n0 is the SPM and

XPM functor. Finally we can use the split-step Fourier method to obtain the
numerical solution. Furthermore, If we also neglect the diffraction term and
the small SPM contribution, Eqs. (1.4 – 1.6) can be readily solved to obtain
the XPM-induced phase shift φNL imposed on the probe and FWM beams
by the pump. In this case, Equation (1.7) reduces to

∂EF1(z, y)
∂z

=
(
i2kF1

n0
nX3

2 |E′1|2
)

EF1(z, y), (1.8)

which gives EF1(z, y) = EF1(0, y) exp(iφNL) with φNL(z, y) = 2kF1n
X3
2 ·

|E′1|2 z/n0. The additional transverse propagation wave-vector is dky = φ′NL
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[37]. Here, the strong field E′ has a Gaussian profile, like the solid line in
Fig. 1.6 (a). In this case, when nX3

2 > 0, φNL has a positive Gaussian profile
[see the thick solid line in Fig. 1.6 (a)] and dky is shown by the dash line
in Fig. 1.6 (a). The arrows in Fig. 1.6 (a) represent the direction of dky.
The direction of dky is always towards the beam center of the pump field,
and therefore, the weak Ep,F1,F2 fields [the thin solid lines in Fig. 1.6 (a)] are
shifted to the pump field center. When nX3

2 < 0, φNL has a negative Gaussian
profile [see the thick solid line in Fig. 1.6 (b)] and the direction of dky [the
dash line in Fig. 1.6 (b)] is outward from the beam center of the pump field,
thus Ep,F1,F2 is shifted away from the pump field [see Fig. 1.6 (b)].

Fig. 1.6. Instantaneous nonlinear phase shift induced by a Gaussian beam in a
(a) focusing and (b) defocusing nonlinear medium and the corresponding contribu-
tion to the one-dimensional component of the propagation vector.

Recently, spatial displacements of the probe and generated FWM beams
have been observed in a three-level V-type, and two-level atomic systems
near resonance [39]. The observed spatial shift curves as a function of fre-
quency detuning reflect the typical enhanced cross-Kerr nonlinear disper-
sion properties in the EIT system. This dispersion-like spatial deflection is
named as electromagnetically-induced spatial dispersion (EISD). The spatial
beam displacements can be controlled by the strong control laser beam and
the atomic density. Such EISD can be used as a single way to measure the
Kerr-nonlinear refractive indices for the multi-level atomic media. Also, it
can be used for controllable all-optical spatial switching and routing of op-
tical signals [40]. The spot shifts of the FWM and probe laser beams can
be used as the “on” and “off” states of the spatial all-optical switch. The
extinction ratio for the on/off state, as well as the beam shift distances and
directions, can be optimized by modulating frequency detunings, intensities,
and temperature of the medium. At the same time, beam shifts in oppo-
site directions have been realized simultaneously for different FWM beams,
which could be employed to construct switching/routing arrays. Then, spa-
tial shifts and splittings of FWM signal beams induced by additional dressing
laser beams were investigated which are caused by the enhanced cross-Kerr
nonlinearity due to atomic coherence in the atomic system. The spatial sep-
aration and number of the split FWM beam can both be controlled by the
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intensity of the dressing beam, and by the modified Kerr nonlinearity and
atomic density. Although the spatial beam shifting and splitting have been re-
ported in previous works [41], current atomic systems have some advantages:
(1) large beam shift and splitting can be achieved due to enhanced Kerr
nonlinearity induced by atomic coherence; (2) the “dispersion” curve for the
beam displacement has been measured for the probe beam and matched to
the calculated cross-Kerr nonlinear index; (3) displacements and splitting of
FWM signal beams are experimentally demonstrated, which have never been
done before; (4) specially-designed spatial beam configuration was used to
achieve the unique phase-matching conditions for FWM processes, and for
the beam shiftings and splittings at the same time; (5) current multi-level
systems have much better experimental controls with additional laser beams;
(6) such studies can have important applications in the spatial image storage,
spatial entanglement, and spatial quantum correlation of laser beams.

1.6 Formations and Dynamics of Novel Spatial Solitons

A spatial soliton can be formed when the diffraction of a laser beam is com-
pensated by self-focusing or cross-Kerr effects in a Kerr nonlinear medium
[42, 43]. In recent years, many new spatial soliton effects, such as discrete
solitons [44, 45], gap solitons [46], surface gap solitons [47, 48], and vortex
solitons [49], have been investigated (both theoretically and experimentally)
in waveguide arrays [48], fiber Bragg gratings [50], Bose-Einstein condensates
[51], and photorefractive crystals [44, 45]. In achieving such interesting spatial
effects, large refractive index modulations are needed by either fixed periodic
structures (such as waveguide arrays and fiber Bragg grating) or reconfig-
urable optical lattices by laser beams as in the photorefractive crystals [46].
Gap soliton exists in band gaps of the linear spectra in various structures,
and the forward- and backward-propagating waves both experience Bragg
scattering and form of the periodic structure, which are coupled nonlinearly
[42]. A vortex soliton appears as the self-trapping of a phase singularity and
from which a screw-type phase distribution is generated where the real and
imaginary parts of the field amplitude are zero. Spatially modulated vortex
solitons (azimuthons) have been theoretically considered in self-focusing non-
linear media [49]. Transverse energy flow occurs between the intensity peaks
(solitons) associated with the phase structure, which is a staircase-like non-
linear function described by the factor exp(imϕ), where ϕ is the azimuthal
coordinate and the integer number m is defined as the topological charge. If
a phase mask is used to introduce certain phase delay for half of the soliton
beam, the soliton can split into two parts with opposite (π) phases between
them, called dipole-mode vector soliton with a Hermite-Gaussian mode struc-
ture [52]. The dipole-mode vector soliton is a vector soliton originated from
trapping of a dipole-mode beam. In an optically-induced two-dimensional
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photonic lattice, dipole-mode solitons can be created with either opposite
phases or same phase between the two parts [53]. Vector solitons with one
nodeless fundamental component and another dipole-mode component can
couple to each other and be trapped jointly in the photonic lattices [52, 54]. A
radially symmetric vortex-mode soliton can decay into a radially asymmetric
dipole-mode soliton that has a nonzero angular momentum, which can survive
for a very long propagation distance [52]. Spatial multi-component soliton has
vectorial interaction, mutually self-trapping in a nonlinear medium, and their
total intensity profile exhibits multiple humps [55].

Spatial gap solitons, dipole mode spatial solitons, and modulated vortex
solitons of FWM in multi-level atomic systems are presented in Chapter 8
with details. For example, Section 8.3 shows the experimental observation
of vortex solitons of FWM in the multi-level atomic media created by in-
terference patterns with three or more superposition waves. The modulation
effect of vortex solitons is induced by the cross-Kerr nonlinear dispersion due
to atomic coherence in the multi-level atomic system. These FWM vortex
patterns are explained via the three-, four- and five-wave interference topolo-
gies. The complex amplitude vectors can be overlaid at the observation plane
and give rise to the total complex amplitude vector (CX , CY ) of interfering
planewaves [13, 14]. The local structures of optical vortices are given by the
polarization ellipse relation

[C2
X/(T 2

X + T 2
Y )] sin

2(β + α) + [C2
Y /(T 2

X + T 2
Y )] cos

2(β + α) = 1, (1.9)

where β = arctan(TX/TY ), and α is the ellipse orientation. The ellipse axes
TX , TY are related to the spatial configuration of laser beams (including the
incident beam directions, phase differences between beams, etc.) and their
intensities. Section 3.1 presents experimental results of generating gap soli-
ton trains in FWM signals. Such novel spatial FWM gap soliton trains are
induced in the periodically modulated self-defocusing atomic medium by the
cross-phase modulation, which can be reshaped under different experimen-
tal conditions, such as different atomic densities, nonlinear dispersions, and
dressing fields. Effects due to the frequency detuning and intensity depen-
dences of the refractive index are considered in addition to its one-dimensional
(axis ξ) periodic variation by using n(Δ, I, ξ) = n1(Δ)+n2(Δ)I+δn(ξ), where
I is the dressing field intensity. δn = n2 cos(2πξ/Λ) accounts for the periodic
index variation inside the grating. The grating period is given by Λ = λ/θ,
where θ is the angle between the two pump beams. Section 3.2 describes the
formation of a novel type of stable multicomponent vector solitons consisting
of two perpendicular FWM dipole components induced by XPM. The forma-
tion and steering of the steady dipole solitons and their dynamical (energy
transfer) effects have been analyzed. The dipole-mode solitons of two FWM
processes have horizontal and vertical orientations, respectively, which can
coexist in the same atomic system, and their characteristics can be compared
directly. In detail, we consider the incoherent superposition of two dipole
components, u2 and u3, as a generalization of a two-component dipole-model
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soliton {u1, V }. This two-component come from a three-component solution
{u1, u2, u3}. The transformation of the dipole components is V → {u2, u3},
where u2 = V cosα and u3 = V sinα (α is a transformation parameter).
Such a straightforward generalization is indeed possible for an N-component
system [55].

The gap, dipole and vortex solitons have all been observed before in pho-
torefractive crystals [56 – 61]. However, the works presented in Chapter 8 are
done in multi-level atomic systems, which have quite different nonlinear prop-
erties compared to the photorefractive systems used before to observe such
as gap, dipole and vortex solitons. As we have demonstrated, the multi-level
atomic systems have well-controlled linear, as well as nonlinear, absorption
and dispersion properties, which are essential in generating such interesting
spatial gap, vortex and multi-component dipole solitons in atomic meida.
Without the enhanced Kerr nonlinearities due to atomic choherence [23], it
will be hard to reach the needed index contrast for observing these novel
spatial soliton phenomena. With several well-controlled experimental param-
eters, one can drive the Kerr medium to different parameter regions to inves-
tigate richer spatial soliton phenomena (such as formation and dynamics),
better explore parametric spaces, and compare with theoretical predictions.
Observing such solitons and studying their dynamics in FWM is not a simple
extension of previous results, but a significant breakthrough to explore differ-
ent nonlinear regions and mechanism for forming such spatial dipole solitons
and their evolutions. In solid-state materials, tenable parametric spaces are
limited, so certain theoretically predicted phenomena are not reachable in
the experiments. However, in multi-level atomic systems, the tenable region
for parameters is broadened, which can be used to explore interesting phe-
nomena, such as transition from one type of spatial soliton to another and
energy transfer between different dipole modes. Also, previous spatial soli-
tons in solid materials were all done in the probe beam, not for FWM beams
as in the multi-level atomic media, where Kerr-nonlinear FWM processes are
greatly enhanced and become more efficient. The tenable parameters, such
as atomic density, coupling/pumping field intensities, and frequency detun-
ings can be easily and independently controlled experimentally, which are
important in reaching different regions of the system. Due to the nature of
induced atomic coherence in the system, the enhanced Kerr indices change
dramatically with experimental parameters and can reach high values. Com-
bining with the use of pulsed laser beams with high beam intensities, the
refractive index contrast Δn = n2I in the multi-level atomic system reaches
the high value, so those interesting novel solitons can be observed. Also,
since the high Kerr index is induced by the strong dressing/pumping laser
beams, it is the cross-Kerr nonlinearity that plays an essential role in con-
trolling these novel solitons, not the self-Kerr coefficients as in the cases for
photon-refractive materials. The basic behaviors and mechanics are different
between the multi-level atomic systems and photorefractive crystals in ob-
serving these novel solitons. Such controllable spatial dispersion properties
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and spatial solitons can find useful applications in designing new devices for
spatial all-optical switching and logic gate for optical communications and
all-optical signal processing.

References

[1] Morita N, Yajima T. Ultrahigh-time-resolution coherent transient spectros-
copy with incoherent light. Phys Rev A, 1984, 30: 2525 – 2536.

[2] Golub J E, Mossberg T W. Studies of picosecond collisional dephasing in
atomic sodium vapor using broad-bandwidth transient 4-wave-mixing. J Opt
Soc Am B, 1986, 3: 554 – 559.

[3] Ulness D J, Stimson M J, Kirkwood J C, et al. Time-resolved coherent Raman
spectroscopy controlled by spectrally tailored noisy light. J Raman Spectrosc
1997, 28: 917 – 925.

[4] Ulness D J, Albrecht A C. Four-wave mixing in a Bloch two-level system
with incoherent laser light having a Lorentzian spectral density: analytic
solution, a diagrammatic approach. Phys Rev A, 1996, 53: 1081 – 1095.

[5] DeMott D C, Ulness D J, Albrecht A C. Femtosecond temporal probes using
spectrally tailored noisy quasi-cw laser light. Phys Rev A, 1997, 55: 761 – 771.

[6] Kirkwood J C, Albrecht A C. Down-conversion of electronic frequencies and
their dephasing dynamics: Interferometric four-wave-mixing spectroscopy
with broadband light. Phys Rev A, 2000, 61: 033802.

[7] Kirkwood J C, Albrecht A C, Ulness D J, et al. Fifth-order nonlinear Raman
processes in molecular liquids using quasi-cw noisy light. II Experiment. J
Chem Phys, 1999, 111: 272 – 280.

[8] Boyd R W. Nonlinear optics. New York: Academic Press, 1992.

[9] Shen Y R. The principles of nonlinear optics. New York: Wiley, 1984.

[10] Zhu C J, Senin A A, Lu Z H, et al. Polarization of signal wave radiation gener-
ated by parametric four-wave mixing in rubidium vapor: Ultrafast (∼150-fs)
and nanosecond time scale excitation. Phys Rev A, 2005, 72: 023811.

[11] Ulness D J. On the role of classical field time correlations in noisy light
spectroscopy: color locking and a spectral filter analogy. J Phys Chem A,
2003, 107: 8111 – 8123.

[12] Kirkwood J C, Ulness D J, Albrecht A C. On the classification of the electric
field spectroscopies: application to Raman scattering. J Phys Chem A, 2000,
104: 4167 – 4173.

[13] Booth E C, Berger B G, Johnson Z C, et al. Analysis of Raman-enhanced
nondegenerate four-wave mixing with factorized time correlator diagrams. J
Opt Soc Am B, 2006, 23: 885 – 892.

[14] Ulness D J, Albrecht A C. Theory of time-resolved coherent Raman scat-
tering with spectrally tailored noisy light. J Raman Spectrosc, 1997, 28:
571 – 578.

[15] Georges A T. Resonance fluorescence in Markovian stochastic fields. Phys
Rev A 1980, 21: 1561 – 1572.

[16] Zhang Y P, Gan C L, Song J P, et al. Coherent laser control in attosecond
sum-frequency polarization beats using twin noisy driving fields. Phys Rev
A, 2005, 71: 023802.

[17] Zhang Y P, Araujo C B, Eyler E E. Higher-order correlation on polarization
beats in Markovian stochastic fields. Phys Rev A, 2001, 63: 043802.



References 19

[18] Fu P M, Jiang Q, Mi X, et al. Rayleigh-type nondegenerate four-wave mixing:
ultrafast measurement and field correlation. Phys Rev Lett, 2002, 88: 113902.

[19] Picinbono B, Boileau E. Higher-order coherence functions of optical fields
and phase fluctuations. J Opt Soc Am, 1968, 58: 784 – 786.

[20] Goodman J W. Statistical optics. New York: Wiley, 1985, Chap 2.

[21] Harris S E. Electromagnetically induced transparency. Phys Today, 1997, 50:
36 – 42.

[22] Gea-Banacloche J, Li Y, Jin S, et al. Electromagnetically induced trans-
parency in ladder-type inhomogeneously broadened media: Theory and ex-
periment. Phys Rev A,1995, 51: 576 – 584.

[23] Wu Y, Saldana J, Zhu Y F. Large enhancement of four-wave mixing by
suppression of photon absorption from electromagnetically induced trans-
parency. Phys Rev A, 2003, 67: 013811.

[24] Wilson E A, Manson N B, Wei C. Perturbing an electromagnetically induced
transparency in a Λ system using a low-frequency driving field. II. Four-level
system. Phys Rev A, 2005, 72: 063814.

[25] Lukin M D, Yelin S F, Fleischhauer M, et al. Quantum interference effects
induced by interacting dark resonances. Phys Rev A,1999, 60: 3225.

[26] Yan M, Rickey E G, Zhu Y F. Observation of doubly dressed states in cold
atoms. Phys Rev A, 2001, 64: 013412.

[27] Drampyan R, Pustelny S, Gawlik W. Electromagnetically induced trans-
parency versus nonlinear Faraday effect: Coherent control of light-beam po-
larization. Phys Rev A, 2009, 80: 033815; Joshi A and Xiao M Phase gate
with a four-level inverted-Y system. Phys Rev A, 2005, 72: 062319; Joshi A
and Xiao M Generalized dark-state polaritons for photon memory in multi-
level atomic media Phys Rev A, 2005, 71: 041801.

[28] Han Y, Liu Y, Zhang C, et al. Interacting dark states with enhanced non-
linearity in an ideal four-level tripod atomic system. Phys Rev A, 2008, 77:
023824; Rebic S, Vitali D, Ottaviani C, et al. Polarization phase gate with a
tripod atomic system. Phys Rev A, 2004, 70: 032317.

[29] Zhang Y P, Xiao M. Generalized dressed and doubly-dressed multiwave mix-
ing. Opt Exp, 2007, 15: 7182 – 7189.

[30] Nie Z Q, Zheng H B, Li P Z, et al. Interacting multiwave mixing in a five-level
atomic system. Phys Rev A, 2008, 77: 063829.

[31] Zhang Y P, Anderson B, Xiao M. Coexistence of four-wave, six-wave and
eight-wave mixing processes in multi-dressed atomic systems. J Phys B: At
Mol Opt Phys, 2008, 41: 045502 – 045513.

[32] Nie Z Q, Zhang Y P, Zhao Y, et al, Enhancing and suppressing four-
wavemixing in electromagnetically induced transparency window. J Raman
Spectrosc, 2010, 41: 409 – 419.

[33] Michinel H, Paz-Alonso M J, Perez-Garcia V M. Turning light into a liquid
via atomic coherence. Phys Rev Lett, 2006, 96: 023903.

[34] Xiao M, Li Y Q, Jin S, et al. Measurement of dispersive properties of electro-
magnetically induced transparency in rubidium atoms. Phys Rev Lett, 1995,
74: 666 – 669.

[35] Wang H, Goorskey D, Xiao M. Enhanced Kerr nonlinearity via atomic co-
herence in a three-level atomic system. Phys Rev Lett, 2001, 87: 073601.

[36] Wu H B, Xiao M, Cavity linewidth narrowing and broadening due to com-
peting linear and nonlinear dispersions. Opt Lett, 2007, 32: 3122 – 3124.

[37] Agrawal G P Induced focusing of optical beams in self-defocusing nonlinear
media. Phys Rev Lett, 1990, 64: 2487.



20 1 Introduction

[38] Moseley R R, Shepherd S, Fulton D J, et al. Spatial consequences of Elec-
tromagnetically Induced Transparency: observation of Electromagnetically
Induced Focusing. Phys Rev Lett, 1995, 74: 670 – 672.

[39] Zhang Y P, Nie Z Q, Zheng H B, et al. Electromagnetically-induced spatial
nonlinear dispersion in four-wave mixing. Phys Rev A, 2009, 80: 013835.

[40] Nie Z Q, Zheng H B, Zhang Y P, et al. Experimental demonstration of optical
switching and routing via four-wave mixing spatial shift. Opt Exp, 2010, 18:
899 – 902.

[41] Hickmann J M, Gomes A S L, Araujo C B. Observation of spatial cross-
phase modulation effects in a self-defocusing nonlinear medium. Phys Rev
Lett, 1992, 68: 3547 – 3550.

[42] Kivshar Y S, Agrawal G P. Optical solitons: from fibers to photonic crystals.
San Diego: Academic, 2003.

[43] Swartzlander A G, Law C T. Optical vortex solitons observed in Kerr non-
linear media. Phys Rev Lett, 1992, 69, 2503 – 2506.

[44] Chen Z G, Martin H, Eugenieva E D, et al. Formation of discrete solitons in
light-induced photonic lattices. Opt Express, 2005, 13: 1816 – 1819.

[45] Zhang P, Liu S, Zhao J, et al. Optically induced transition between discrete
and gap solitions in a nonconventionally biased photorefractive crystal. Opt
Let, 2008, 33: 878 – 880.

[46] Neshev D, Sukhorukov A A, Hanna B, et al. Controlled Generation and
Steering of Spatial Gap Solitions. Phys Rev Lett, 2004, 93: 083905.

[47] Kartashov Y V, Vysloukh V A, Torner L Surface Gap Solitons. Phys Rev
Lett, 2006, 96: 073901.

[48] Rosberg C R, Neshev D N, Krolikowski W, et al. Observation of Surface
Gap Solitons in Semi-Infinite Waveguide Arrays. Phys Rev Lett, 2006, 97,
083901.

[49] Desyatnikov A S, Sukhorukov A A, Kivshar Y S. Azimuthons: Spatially
Modulated Vortex Solitons. Phys Rev Lett, 2005, 95: 203904.

[50] Eggleton B J, Slusher R E, Sterke C M, et al. Grating Solitons. Phys Rev
Lett, 1996, 76: 1627 – 1630.

[51] Eiermann B, Anker Th, Albiez M, et al. Bright bose-einstein gap solitons of
atoms with repulsive interaction. Phys Rev Lett, 2004, 92: 230401.

[52] Krolikowski W, Ostrovskaya E A, Weilnau C, et al. Observation of Dipole-
Mode Vector Solitons. Phys Rev Lett, 2000, 85: 1424 – 1427.

[53] Yang J K, Makasyuk I, Bezryadina A, et al. Dipole solitons in optically
induced two-dimensional photonic lattices. Opt Lett, 2004, 29: 1662 – 1664.

[54] Chen Z G, Bezryadina A, Makasyuk I, et al. Observation of two-dimensional
lattice vector solitons. Opt Lett, 2004, 29: 1656 – 1658.

[55] Desyatnikov A S, Kivshar Y S, Motzek K, et al. Multicomponent dipole-
mode spatial solitons, Opt Let 2002, 27, 634 – 636.

[56] Anderson B P, Haljan P C, Regal C A, et al. Watching dark solitons decay
into vortex rings in a Bose-Einstein condensate. Phys Rev Lett, 2001, 86:
2926 – 2929.

[57] Williams J E, Holland M J. Preparing topological states of a Bose-Einstein
condensate. Nature, 1999, 401: 568 – 572.

[58] Matthews M R, Anderson B P, Haljan P C, et al. Vortices in a Bose-Einstein
Condensate. Phys Rev Lett, 1999, 83: 2498 – 2501.

[59] Gorbach A V, Skryabin D V, Harvey C N. Vortex solitons in an off-resonant
Raman medium. Phys Rev A, 2008, 77: 063810.



References 21

[60] Gorbach A V, Skryabin D V. Cascaded generation of multiply charged optical
vortices and spatiotemporal helical beams in a Raman medium. Phys Rev
Lett, 2007, 98: 243601.

[61] Tang L G, Lou C B, Wang X S, et al. Observation of dipole-like gap soli-
tons in self-defocusing waveguide lattices. Opt Lett, 2007, 32: 3011 – 3014;
Petrov D V, Torner L, Martorell J, et al. Observation of azimuthal modula-
tional instability and formation of patterns of optical solitons in a quadratic
nonlinear crystal. Opt Lett, 1998, 23: 1444 – 1446.



2 Ultrafast Polarization Beats of Four-Wave
Mixing Processes

Four-level difference-frequency polarization beat (FLPB) and attosecond sum-
frequency polarization beat (ASPB) with broadband noisy light are investi-
gated using chaotic field, phase-diffusion, and Gaussian-amplitude models.
The difference-frequency polarization beat signal is shown to be particularly
sensitive to statistical properties of Markovian stochastic light fields with
arbitrary bandwidth. Different stochastic models of laser fields only affect
fourth-order coherence functions. The constant background of beat signal
originates from the amplitude fluctuation of Markovian stochastic fields. The
Gaussian-amplitude field shows fluctuations larger than the chaotic field,
which again exhibits fluctuations much larger than those for the phase-
diffusion field with pure phase fluctuations caused by spontaneous emission.
It has been also found that asymmetric behaviors of polarization beat signals
due to the unbalanced dispersion effects between two arms of interferometer
and Doppler-width do not affect the overall accuracy in case using FLPB
to measure the energy-level difference between two states, which are dipolar
forbidden from the ground state. On the other hand, a Doppler-free precision
in the measurement of the energy-level sum can be achieved with an arbi-
trary bandwidth. The advantage of ASPB is that the ultrafast modulation
period 900 as can still be improved, because the energy-level interval between
ground state and excited state can be widely separated.

2.1 Four-level Polarization Beats with Broadband Noisy
Light

Statistical properties of the broadband noisy (nontransform limited) light
field are of particular importance for nonlinear optical processes since these
are often sensitive to higher-order correlations in the field. The effects of such
correlations have been studied in several nonlinear processes characterized by
either Markovian or non-Markovian fluctuations [1 – 5]. The Markovian field
is now described statistically in terms of marginal and conditional probabil-
ity densities [6, 7]. The atomic response to non-Markovian fields is much less
well understood [4]. This is primarily because the complete hierarchy of con-
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ditional probabilities must be known in order to describe a non-Markovian
process. Some non-Markovian processes can be made Markovian by extension
to higher dimensions.

The atomic response to Markovian stochastic optical fields is now largely
well understood [1 – 3, 5]. When the laser field is sufficiently intense that many
photon interactions occur, the laser spectral bandwidth or spectral shape,
obtained from the second-order correlation function, is inadequate to char-
acterize the field. Rather than using higher-order correlation functions ex-
plicitly, three different Markovian fields are considered: (a) the chaotic field,
(b) the phase-diffusion field, and (c) the Gaussian-amplitude field. The chaotic
field undergoes both amplitude and phase fluctuations and corresponds to a
multimode laser field with a large number of uncorrelated modes, or a single-
mode laser emitting light below threshold. Since a chaotic field does not pos-
sess any intensity stabilization mechanism, the field can take on any value in
a two-dimensional region of the complex plane centered about the origin. The
phase-diffusion field undergoes only phase fluctuations and corresponds to an
intensity-stabilized single-mode laser field. The phase of the laser field, how-
ever, has no natural stabilizing mechanism [5]. The Gaussian-amplitude field
undergoes only amplitude fluctuations. Although pure amplitude fluctuations
cannot be produced by a nonadiabatic process, we do consider the Gaussian-
amplitude field for two reasons. First, it allows us to isolate those effects due
solely to amplitude fluctuations; and second, it is an example of a field which
undergoes stronger amplitude (intensity) fluctuations than a chaotic field. By
comparing the results for the chaotic field and the Gaussian-amplitude field,
we can determine the effect of increasing amplitude fluctuations [6, 7].

The chaotic field, the Brownian-motion phase-diffusion field, and the
Gaussian-amplitude field are considered in parallel with a discussion on four-
level atom transitions. We develop a unified theory which involves fourth-
order coherence-function to study the influence of partial-coherence proper-
ties and unbalance dispersion effects of pump beams on polarization beats.
Polarization beats, which originate from the interference between the macro-
scopic polarizations, have attracted a lot of attention recently [8 – 16]. It is
closely related to quantum beat spectroscopy. DeBeer et al. performed the
first ultrafast modulation spectroscopy (UMS) experiment in sodium vapor
[17]. Fu et al. [18] then analyzed the UMS with phase-conjugate geometry
in a Doppler-broadened system by a second-order coherence-function theory.
They found that a Doppler-free precision in the measurement of the energy-
level splitting could be achieved.

In this section, we investigated the effects of Markovian field fluctuations
in four-level polarization beats. Based on three types of models described
above, we studied the influence of various quantities, such as light statistics,
laser linewidth, Doppler width, and unbalance dispersion. One of relevant
problems is the stationary four-wave mixing (FWM) with broadband noisy
light, which was proposed by Morita et al. [19], to achieve an ultrafast tempo-
ral resolution of relaxation processes. Since they assumed that laser linewidth
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is much longer than transverse relaxation rate, their theory cannot be used
to study the effect of the light bandwidth on the Bragg reflection signal.
Asaka et al. [20] considered the finite linewidth effect. However, the constant
background contribution has been ignored in their analysis. Our higher-order
correlation on polarization beats includes the finite light bandwidth effect,
constant background contribution, and controllable dispersion effects [21].
Different roles of the phase fluctuation and amplitude fluctuation have been
pointed out in the time domain. If the FLPB is employed for the energy-level
difference measurement, there are advantages that the energy-level difference
between two states which are dipolar forbidden from the ground state can
be widely separated and a Doppler-free precision in the measurement can be
achieved. the FLPB is closely related to the Doppler-free two-photon absorp-
tion spectroscopy with a resonant intermediate state and the sum-frequency
tri-level photon-echo when the pump beams are narrow band and broadband
linewidth, respectively [16]. However, it possesses the main advantages of
these techniques in the frequency domain and in the time domain.

2.1.1 Basic Theory

The FLPB is a polarization beat phenomenon originating from the interfer-
ence between two two-photon processes. Let us consider a four-level system
(Fig. 2.1) with a ground state |0〉, an intermediate state |1〉 and two excited

Fig. 2.1. Four-level configuration to be treated by FLPB.

states |2〉 and |3〉. States between |0〉 and |1〉 and between |1〉 and |2〉(|3〉)
are coupled by dipolar transition with resonant frequencies Ω1 and Ω2(Ω3),
respectively, while states between |2〉 and |3〉 and between |0〉 and |2〉(|3〉) are
dipolar forbidden. We consider in this four-level system a double-frequency
time-delay FWM experiment in which the beams 2 and 3 consist of two fre-
quency components ω2 and ω3, while beam 1 has frequency ω1 (Fig. 2.2). We
assume that ω1 ≈ Ω1 and ω2 ≈ Ω2(ω3 ≈ Ω3), therefore ω1 and ω2(ω3) will
drive the transitions from |0〉 to |1〉 and from |1〉 to |2〉(|3〉), respectively. In
this double-frequency time-delay FWM, the beam 1 with frequency ω1 and
the ω2(ω3) frequency component of the beam 2 induce coherence between
|0〉 and |2〉 (|3〉) by two-photon transition, the which is then probed by the
ω2(ω3) frequency component of the beam 3. These are two-photon FWM
with a resonant intermediate state and the frequency of the signal (beam 4)
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equals ω1.

Fig. 2.2. Schematic diagram of the geometry of FLPB.

The complex electric fields of the beam 2, Ep2(r, t), and the beam 3,
Ep3(r, t), can be written as

Ep2(r, t) = A2(r, t) exp(−iω2t) +A3(r, t) exp(−iω3t)
= ε2u2(t) exp[i(k2 · r − ω2t)] + ε3u3(t) exp[i(k3 · r − ω3t)], (2.1)

EP3(r, t) = A′2(r, t) exp(−iω2t) +A′3(r, t) exp(−iω3t)
= ε′2u2(t− τ) exp[i(k′2 · r − ω2t+ ω2τ)] +

ε′3u3(t− τ + δτ) exp[i(k′3 · r − ω3t+ ω3τ − ω3δτ)]. (2.2)

Here, εi, ki(ε′i, k
′
i) are the constant field amplitude and the wave vector of

ωi component in the beam 2 (beam 3), respectively. ui(t) is a dimensionless
statistical factor that contains phase and amplitude fluctuations. δτ denotes
the difference in the zero time delay (δτ > 0). We assume that the ω2(ω3)
component of Ep2(r, t) and Ep3(r, t) comes from a single laser source, and τ
is the time delay of the beam 3 with respect to the beam 2. On the other
hand, the beam 1 is assumed to be a quasimonochromatic light, the complex
electric fields of beam 1 can be written as

EP1(r, t) = A1(r, t) exp(−iω1t) = ε1u1(t) exp[i(k1 · r − ω1t)]. (2.3)

Here, u1(t) ≈ 1, ε1 and k1 are the field amplitude and the wave vector of the
field, respectively.

We employ perturbation theory to calculate the density matrix elements.
In the following perturbation chains:

(I) ρ
(0)
00

ω1−→ ρ
(1)
10

ω2−→ ρ
(2)
20

−ω2−−−→ ρ
(3)
10

(II) ρ
(0)
00

ω1−→ ρ
(1)
10

ω3−→ ρ
(2)
30

−ω3−−−→ ρ
(3)
10

(2.4)

Chains (I) and (II) (2.4) correspond to the processes with two-photon
transitions from |0〉 to |2〉 and from |0〉 to |3〉, respectively. We obtain the
third-order off-diagonal density matrix element ρ

(3)
10 which has wave vector

k2−k′2+k1 or k3−k′3+k1, ρ
(3) = ρ(I)+ρ(II). Here gR and ρ(II) corresponding
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to ρ
(3)
10 of the perturbation chains (I) and (II), respectively, are

ρ(I) = − iμ1μ
2
2

�3
exp(−iω1t)

∫ +∞

−∞
dvw(v)

∫ ∞

0

dt3
∫ ∞

0

dt2 ×∫ ∞

0

dt1H1(t1)H2(t2)H1(t3)×
A1(t− t1 − t2 − t3)A2(t− t2 − t3)[A′2(t− t3 − τ)]∗, (2.5)

ρ(II) = − iμ1μ
2
3

�3
exp(−iω1t)

∫ +∞

−∞
dvw(v)

∫ ∞

0

dt3
∫ ∞

0

dt2 ×∫ ∞

0

dt1H1(t1)H3(t2)H1(t3)×
A1(t− t1 − t2 − t3)A3(t− t2 − t3)[A′3(t− t3 − τ)]∗. (2.6)

Here, H1(t) = exp[−(Γ10 + iΔ1)t], H2(t) = exp[−(Γ20 + iΔ1 + iΔ2)t],
H3(t) = exp[−(Γ30 + iΔ1 + iΔ3)t];μ1 and μ2(μ3) are dipole moment ma-
trix elements between |0〉 and |1〉 and between |1〉 and |2〉(|3〉), respectively;
Δ1 = Ω1 − ω1,Δ2 = Ω2 − ω2,Δ3 = Ω3 − ω3; Γ10 and Γ20(Γ30) are transverse
relaxation rates of the coherence between states |0〉 and |1〉 and between |0〉
and |2〉(|3〉), respectively.

The nonlinear polarization P (3) responsible for the phase-conjugate FWM
signal is given by averaging over the velocity distribution function w(v), i.e.,

P (3) = Nμ1

∫ +∞

−∞
dvw(v)ρ(3)

10 (v).

Here, v is the atomic velocity, N is the density of atoms. For a Doppler-
broadened atomic system, we have

w(v) =
1√
πu

exp[−(v/u)2].

Thus the total polarization is P (3) = P (I) + P (II). Here P (I) and P (II) corre-
sponding to polarizations of the perturbation chains (I) and (II), respectively,
are

P (I) = S1(r) exp[−i(ω1t+ ω2τ)]
∫ +∞

−∞
dvw(v)

∫ ∞

0

dt3
∫ ∞

0

dt2 ×∫ ∞

0

dt1 exp[−iθI(v)] ×H1(t1)H2(t2)H1(t3)×
u1(t− t1 − t2 − t3)u2(t− t2 − t3)u∗2(t− t3 − τ), (2.7)
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P (II) = S2(r) exp[−i(ω1t+ ω3τ − ω3δτ )]
∫ +∞

−∞
dvw(v)

∫ ∞

0

dt3
∫ ∞

0

dt2 ×∫ ∞

0

dt1 exp[−iθII(v)] ×H1(t1)H3(t2)H1(t3)u1(t− t1 − t2 − t3)×
u3(t− t2 − t3)u∗3(t− t3 − τ + δτ). (2.8)

Here,

S1(r) = − iNμ2
1μ

2
2

�3
ε1ε2(ε′2)

∗ exp[i(k1 + k2 − k′2) · r],

S2(r) = − iNμ2
1μ

2
3

�3
ε1ε3(ε′3)

∗ exp[i(k1 + k3 − k′3) · r];
θI(v) = v · [k1(t1 + t2 + t3) + k2(t2 + t3)− k′2t3],
θII(v) = v · [k1(t1 + t2 + t3) + k3(t2 + t3)− k′3t3].

The FWM signal is proportional to average of the absolute square of
P (3) over the random variable of the stochastic process 〈|P (3)|2〉, which
involves fourth- and second-order coherence functions of ui(t) in phase–
conjugation geometry. While the FWM signal intensity in Debeer’s self-
diffraction geometry is related to the sixth-order coherence functions of inci-
dent fields. We first assume that the beam 2 (beam 3) is a multimode thermal
source. ui(t) has Gaussian statistics with its fourth-order coherence function
satisfying [6, 7]

〈ui(t1)ui(t2)u∗i (t3)u
∗
i (t4)〉

= 〈ui(t1)u∗i (t3)〉〈ui(t2)u∗i (t4)〉+ 〈ui(t1)u∗i (t4)〉〈ui(t2)u∗i (t3)〉. (2.9)

Furthermore, assuming that beam 2 (beam 3) has Lorentzian line shape,
then we have

〈ui(t1)u∗i (t2)〉 = exp(−αi|t1 − t2|) (2.10)

here αi =
1
2
δωi with δωi the linewidth of the laser with frequency ωi. The

form of the second-order coherence function, which is determined by the laser
line shape, as expressed in Eq. (2.10), is general feature of the three different
stochastic models [6, 7].

We first consider the case that the beams 2 and 3 are a narrow band so
that α2, α3 << Γ10,Γ20,Γ30 and Γ20|τ |,Γ30|τ | >> 1. Performing the tedious
integration, the beat signal intensity then becomes

I(τ, r) ∝ 〈|P (3)|2〉
= B1 + |η|2B2 + |B3|2 exp(−2α2|τ |) + |ηB4|2 exp(−2α3|τ − δτ |) +
exp(−α2|τ | − α3|τ − δτ |)×
{ηB∗3B4 exp[−iΔk · r − i(ω3 − ω2)τ + iω3δτ ]}+
exp(−α2|τ | − α3|τ − δτ |)×
{η∗B3B

∗
4 exp[iΔk · r + i(ω3 − ω2)τ − iω3δτ ]}. (2.11)



2.1 Four-level Polarization Beats with Broadband Noisy Light 29

where

Δk = (k2−k′2)− (k3−k′3),

B1 = B3

{
Γ10 + 2α2

Γ10[Γ20 − i(Δ1 +Δ2)]
− Γ2

10 +Δ2
1

2Γ10Γ20(Γ10 + Γ20 − iΔ2)

}
,

B2 = B4

{
Γ10 + 2α3

Γ10[Γ30 − i(Δ1 +Δ3)]
− Γ2

10 +Δ2
1

2Γ10Γ30(Γ10 + Γ30 − iΔ3)

}
,

B3 =
1

Γ20 + iΔ1 + iΔ2
,

B4 =
1

Γ30 + iΔ1 + iΔ3
,

η =
u2

3

u2
2

ε3(ε′3)
∗

ε2(ε′2)∗
.

Relation (2.10) consists of five terms. The first and third terms, which is
the auto-correlation intensity for two-photon transition from |0〉 to |2〉, are
dependent on the u2(t) fourth-order coherence function, while the second and
fourth terms, which is the auto-correlation intensity for two-photon transition
from |0〉 to |3〉, are dependent on the u3(t) fourth-coherence function. The first
and second terms originating from the amplitude fluctuation of the chaotic
field are independent of the relative time-delay between the beams 2 and 3.
The third and fourth terms indicate an exponential decay of the beat signal
as |τ | increases. The fifth term depending on u2(t) and u3(t) second-order
coherence functions, which is determined by the laser line shape, gives rise
to the modulation of the beat signal.

Equation (2.11) indicates that beat signal oscillates not only temporally
but also spatially with a period 2π/Δk along the direction Δk, which is
almost perpendicular to the propagation direction of the beat signal. Here
Δk ≈ 2π|λ2 − λ3|θ/λ3λ2, θ is the angle between the beam 2 and beam 3.
Physically, the polarization-beat model assumes that both the pump beams
are plane waves. Therefore two two-photon FWM signals, which propagate
along ks1 = k2−k′2+k1 and ks2 = k3−k3+k1, respectively, are plane waves
also. Since two two-photon FWM propagate along slightly different direction,
the interference between them leads to the spatial oscillation. Equation (2.11)
also indicates that beat signal modulates temporally with a frequency ω3−ω2

as τ is varied. In this case that ω2 and ω3 are tuned to the resonant frequencies
of the transitions from |1〉 to |2〉 and from |1〉 and |3〉, respectively, then
the modulation frequency equals Ω3 − Ω2. In other words, we can obtain
beating between the resonant frequencies of a four-level system. A Doppler-
free precision can be achieved in the measurement of Ω3 − Ω2.

We then consider the case that the beams 2 and 3 are broadband, i.e., α2,
α3 >> Γ10,Γ20,Γ30.

(i) τ > δτ , the beat signal rises to its maximum quickly and then decays
with time constant mainly determined by the transverse relaxation times of
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the system. Although the beat signal modulation is complicated in general,
at the tail of the signal (i.e., α2|τ | >> 1, α3|τ | >> 1) we have

I(τ, r) ∝ 〈|P (3)|2〉
= B5 + |η|2B6 + |B7|2 exp(−2Γ20|τ |) +
|ηB8|2 exp(−2Γ30|τ − δτ |) +B7B8 exp(−Γ20|τ | −
Γ30|τ − δτ |){η exp[−iΔk · r − i(Ω3 − Ω2)τ + iΩ3δτ ] +
η∗ exp[iΔk · r + i(Ω3 − Ω2)τ − iΩ3δτ ]}, (2.12)

where

B5 =
Γ2

10 +Δ2
1

2Γ10

{
2α2

2 + iα2Δ1 − iΓ20Δ2

α2Γ20(2α2 + iΔ1)[α2
2 + (Δ1 +Δ2)2]

− 1
α2 − i(Δ1 +Δ2)

×[
1

(2α2 − iΔ1)[α2 − i(Δ1 +Δ2)]
− Γ10 + Γ20 + iΔ2

Γ20[(Γ10 + iΔ2)2 − α2
2]

]}
,

B6 =
Γ2

10 +Δ2
1

2Γ10

{
2α2

3 + iα3Δ1

α3Γ30(2α3 + iΔ1)[α2
3 + (Δ1 +Δ3)2]

− 1
α3 − i(Δ1 +Δ3)

×[
1

(2α3 − iΔ1)[α3 − i(Δ1 +Δ3)]
− Γ10 + Γ30 + iΔ3

Γ30[(Γ10 + iΔ3)2 − α2
3]

]}
,

B7 =
2α2

α2
2 + (Δ1 +Δ2)2

, B8 =
2α3

α2
3 + (Δ1 +Δ3)2

.

Relation (2.12) also consists of five terms. The first and third terms for
two-photon transition from |0〉 to |2〉 are dependent on the u2(t) fourth-order
coherence function, while the second and fourth terms for two-photon tran-
sition from |0〉 to |3〉 are dependent on the u3(t) fourth-coherence function.
The third and fourth terms indicate an exponential decay of the beat signal
as |τ | increases. The fifth term depending on the u2(t) and u3(t) second-order
coherence functions, which is determined by the laser line shape, gives rise
to the modulation of the beat signal. Equation (2.12) indicates that the tem-
poral modulation frequency of the beat signal equals Ω3 − Ω2 when δτ = 0.
The overall accuracy of using FLPB with broadband lights to measure the
energy-level difference between two excited states is limited by the homoge-
neous linewidths [13].

(ii) 0 < τ < δτ, α2|τ | >> 1

I(τ, r) ∝ 〈|P (3)|2〉
= B5 + |η|2B6 + |B7|2 exp(−2Γ20|τ |) + |ηB9|2 exp(−2α3|τ − δτ |) +

B7 exp(−Γ20|τ | − α3|τ − δτ |){ηB9 exp[−iΔk · r − i(ω3 − ω2)τ +
iω3δτ − i(Δ1 +Δ2)τ ] + η∗B∗9 exp[iΔk · r + i(ω3 − ω2)τ −
iω3δτ + i(Δ1 +Δ2)τ ]}, (2.13)

where B9 =
1

α3 − i(Δ1 +Δ2)
.
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(iii) τ < 0

I(τ, r) ∝ 〈|P (3)|2〉
= B5 + |η|2B6 + |B10|2 exp(−2α2|τ |) + |ηB11|2 exp(−2α3|τ − δτ |) +
exp(−α2|τ | − α3|τ − δτ |){ηB10B

∗
11 exp[−iΔk · r − i(ω3 − ω2)τ +

iω3δτ ] + η∗B10B
∗
11 exp[iΔk · r + i(ω3 − ω2)τ − iω3δτ ]}, (2.14)

where B10 =
1

α2 + i(Δ1 +Δ2)
, B11 =

1
α3 + i(Δ1 +Δ3)

. For simplicity, here

we neglect the Doppler effect only in final expressions B1 to B11.
This equation is consistent with Eq. (2.11). Therefore, the requirement

for the existence of a τ -dependent beat signal for τ < 0 is that the phase-
correlated subpulses in the beams 2 and 3 are overlapped temporally. Since
the beams 2 and 3 are mutually coherent, the temporal behavior of the beat
signal should coincide with the case when the beams 2 and 3 are nearly
monochromatic [13, 18].

Fig. 2.3. The beat signal intensity versus relative time delay. The parameters
are Ω3 − Ω2 = 254 ps−1,Ω3 = 3317 ps−1,Δk = 0, η = 1, Bi = 0.6, Γ20 =
12.5 ps−1,Γ30 = 14.5 ps−1; while δτ = 0 fs for dotted line, δτ = 43 fs for dashed
line and δτ = 100 fs for solid line. Adopted from Ref. [22].

Figure 2.3 shows the interferograms of the beat signal intensity versus
relative time delay for three different values of the reduced offset imbalance
δτ, and the parameters are Ω3−Ω2 = 254 ps−1,Ω3 = 3317 ps−1,Δk = 0, η =
1, Bi = 0.6,Γ20 = 12.5 ps−1,Γ30 = 14.5 ps−1; while δτ = 0 fs for dotted line,
δτ = 43 fs for dashed line and δτ = 100 fs for solid line. It is noticed that
as δτ increases, the peak-to-background contrast ratio of the interferograms
diminishes, as anticipated. Interestingly, the phase of the fringe beating also
changes sensitively to produce a variety of interferograms including asymmet-
ric ones. δτ expresses the unbalance dispersion effects between the two arms.
A simple realistic example is an interferometer having an effective thickness
of quartz or glass that differs significantly (many mm to a few cm) between its
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two arms. Changing the thickness in one arm will control the degree of imbal-
ance in the dispersion effects [21]. Physically, δτ corresponds to the separation
of the peaks of the third and fourth terms of Eq. (2.11), i.e., the separation
between the ω2 only interferogram and the ω3 only interferogram. Further-
more the fluctuations in δτ require phase-dependent fluctuations (otherwise
δτ cannot change), which may be due to, for example, unbalance ampli-
tude (thermal) fluctuations in air or the optics between the two arms of the
Michelson interferometer.

2.1.2 FLPB in a Doppler-broadened System

The beat signal can be calculated from a different viewpoint. Under the
Doppler-broadened limit (i.e., k1u →∞), we have

∫ +∞

−∞
dvw(v) exp[−iθI(v)] ≈ 2

√
π

k1u
δ(t1 + t2 + t3 − ξ1t2), (2.15)

∫ +∞

−∞
dvw(v) exp[−iθII(v)] ≈ 2

√
π

k1u
δ(t1 + t2 + t3 − ξ2t2). (2.16)

Here, ξ1 = k2/k1, ξ2 = k3/k1. We assume ξ1 > 1, ξ2 > 1. When we substitute
Eqs. (2.15) and (2.16) into Eqs. (2.7) and (2.8) we obtain I(τ, r) ∝ 〈|P (3)|2〉 =
〈|P (I) + P (II)|2〉.

We first consider the case that the beams 2 and 3 are narrow band so
that α2, α3 << Γ20,Γ30 and Γ20|τ |,Γ30|τ | >> 1. Performing the tedious inte-
gration, the beat signal intensity is

I(τ, r) ∝ 〈|P (3)|2〉
∝ B5 + |η|2B6 + |B12|2 exp(−2α2|τ |) + |ηB13|2 exp(−2α3|τ − δτ |) +
exp(−α2|τ | − α3|τ − δτ |)×{ηB∗12B13 exp[−iΔk · r − i(ω3 − ω2)τ+
iω3δτ ] + η∗B12B

∗
13 exp[iΔk · r + i(ω3 − ω2)τ − iω3δτ ]}, (2.17)

where B12=
(ξ1 − 1)(Γ2

10 +Δ2
1)

2

(Γa
20 − Γ10)2 + (Δa

2)2
, B13=

(ξ2 − 1)(Γ2
10 +Δ2

1)
2

(Γa
30 − Γ10)2 + (Δa

3)2
; Γa

20 = Γ20 +

ξ1Γ10,Γa
30 = Γ30 + ξ2Γ10,Δa

2 = Δ2 + ξ1Δ1,Δa
3 = Δ3 + ξ2Δ1. This equation

is consistent with Eq. (2.11).
We now consider the case that beams 2 and 3 are broadband so that

α2, α3 >> Γ10,Γ20,Γ30.
(i) τ > δτ, α2|τ | >> 1, α3|τ | >> 1

I(τ, r) ∝ 〈|P (3)|2〉 = B14 + |η|2B15 + |B16|2 exp[−2(Γa
20 − Γ10)|τ |] +

|ηB17|2 exp[−2× (Γa
30 − Γ10)|τ − δτ |] +

B16B17 exp[−(Γa
20 − Γ10)|τ | − (Γa

30 − Γ10)|τ−
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δτ |]{η exp[−iΔk · r − i(Ω3 − Ω2)τ −
i(ξ2 − ξ1)Δ1τ + iξ2Δ1δτ ] + η∗ exp[iΔk · r +
i(Ω3 − Ω2)τ + i(ξ2 − ξ1)Δ1τ − iξ2Δ1δτ ]}, (2.18)

where

B14 =
(ξ1 − 1)[α2

2 + (Δa
2)2 − 2iα2Δa

2 ]
2(Γa

20 − Γ10)2[α2
2 + (Δa

2)2]
,

B15 =
(ξ2 − 1)[α2

3 + (Δa
3)

2 − 2iα3Δa
3 ]

2(Γa
30 − Γ10)2[α2

3 + (Δa
3)2]

,

B16 =
2(ξ1 − 1)α2τ

α2
2 + (Δa

2)2
,

B17 =
2(ξ2 − 1)α3(τ − δτ)

α2
3 + (Δa

3)2
.

Equation (2.18) indicates that the temporal modulation frequency of the
beat signal equals Ω3 −Ω2 when Δ1 = δτ = 0. The overall accuracy of using
FLPB with broadband lights to measure the energy-level difference between
two excited states is limited by the homogeneous linewidth. This equation is
analogous to Eq. (2.11).

(ii) τ < 0

I(τ, r) ∝ 〈|P (3)|2〉 = B14 + |η|2B15 + |B18|2 exp(−2α2|τ |) +
|ηB19|2 exp(−2α3|τ − δτ |) + exp(−α2|τ | −
α3|τ − δτ |){ηB∗18B19 exp[−iΔk · r − i(ω3 − ω2)τ + iω3δτ ] +
η∗B18B

∗
19 exp[iΔk · r + i(ω3 − ω2)τ − iω3δτ ]}, (2.19)

where

B18 =
ξ1 − 1

(α2 − iΔa
2)2

,

B19 =
ξ2 − 1

(α3 − iΔa
3)2

.

This equation is consistent with Eq. (2.10).
(iii) 0 < τ < δτ and α2|τ | >> 1

I(τ, r) ∝ 〈|P (3)|2〉 = B14 + |η|2B15 + |B16|2 exp[−2(Γa
20 − Γ10)|τ |] +

|ηB19|2 × exp(−2α3|τ − δτ |) +B16 exp[−2(Γa
20 − Γ10)|τ | −

α3|τ − δτ |]{ηB19 exp[−iΔk · r − i(ω3 − ω2)τ + iω3δτ −
i(Δ1 +Δ2)τ ] + η∗B∗19 exp[iΔk · r + i(ω3 − ω2)τ −
iω3δτ + i(Δ1 +Δ2)τ ]}. (2.20)

This equation is analogous to Eq. (2.12).
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2.1.3 Photon-echo

It is interesting to understand the underlying physics in FLPB with broad-
band nontransform limited quasi-cw (noisy) lights [19, 20]. Much attention
has been paid to the study of various ultrafast phenomena by using incoherent
light sources recently [21 – 24]. For the phase matching condition k2−k′2+k1

and k3− k′3+ k1 two sum-frequency trilevel echoes exist for the perturbation
the chains (I) and (II), respectively.

The chaotic field is a complex Gaussian stochastic process. Under the
Doppler-broadened limit (i.e., k1u →∞), If assuming that the beams 2 and
3 are broadband so that α2, α3 >> Γ20,Γ30, then we have

〈ui(t1)u∗i (t2)〉 = exp(−αi|t1 − t2|) ≈ 2
αi

δ(t1 − t2). (2.21)

When we substitute Eqs. (2.8) and (2.21) into Eq. (2.16), we obtain as
follows:

(i) τ > δτ ,

I(τ, r) ∝ 〈|P (3)|2〉 = A1 + |η|2A2 + |A3|2 exp[−2(Γa
20 − Γ10)|τ |] +

|ηA4|2 exp[−2× (Γa
30 − Γ10)|τ − δτ |] +A3A4 exp[−(Γa

20 − Γ10)|τ | −
(Γa

30 − Γ10)|τ − δτ |]{η exp[−iΔk · r − i(Ω3 − Ω2)τ −
i(ξ2 − ξ1)Δ1τ + iξ2Δ1δτ ] + η∗ exp[iΔk · r + i(Ω3 − Ω2)τ +

i(ξ2 − ξ1)Δ1τ − iξ2Δ1δτ ]}, (2.22)

where

A1 =
ξ1 − 1

4[α2(Γa
20 − Γ10)]2

A2 =
ξ2 − 1

4[α3(Γa
30 − Γ10)]2

A3 =
(ξ1 − 1)τ

α2
,

A4 =
(ξ2 − 1)(τ − δτ)

α3
.

This equation is consistent with Eq. (2.18).
(ii) 0 < τ < δτ

I(τ, r) ∝ 〈|P (3)|2〉 = A1 + |η|2A2 + |A3|2 exp[−2(Γa
20 − Γ10)|τ |].

Photon-echo only exists for the perturbation the chain (I).
(iii) τ < 0

I(τ, r) ∝ 〈|P (3)|2〉 = A1 + |η|2A2. (2.23)
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In this case, photon-echo doesn’t exist for the perturbation chains (I) and
(II). The requirement for the existence of a τ -dependent beat signal for τ < 0
is that the phase-correlated subpulses in the beams 2 and 3 are overlapped
temporally. Since beams 2 and 3 are mutually coherent, the temporal behav-
ior of the beat signal should coincide with the case when the beams 2 and 3
are nearly monochromatic [13, 18]. Therefore, this case is analogous to Eq.
(2.10).

We have assumed that the laser sources are chaotic field in the above cal-
culation. A chaotic field, which is used to describe a multimode laser source,
is characterized by the fluctuation of both the amplitude and the phase of the
field. Another commonly used stochastic model is a phase-diffusion model,
which is used to describe an amplitude-stabilized laser source. This model
assumes that the amplitude of the laser field is a constant, while its phase
fluctuates as a random process.

We substitute Eqs. (2.21) and (2.23) into Eq. (2.16), we obtain as follows:
(i) τ > δτ

I(τ, r) ∝ 〈|P (3)|2〉 = |A3|2 exp[−2(Γa
20 − Γ10)|τ |] +

|ηA4|2 exp[−2(Γa
30 − Γ10)|τ − δτ |] +

A3A4 × exp[−(Γa
20 − Γ10)|τ | −

(Γa
30 − Γ10)|τ − δτ |]{η exp[−iΔk · r − i(Ω3 − Ω2)τ −

i(ξ2 − ξ1)Δ1τ + iξ2Δ1δτ ] + η∗ exp[iΔk · r +
i(Ω3 − Ω2)τ + i(ξ2 − ξ1)Δ1τ − iξ2Δ1δτ ]}. (2.24)

(ii) 0 < τ < δτ

I(τ, r) ∝ 〈|P (3)|2〉 = |A3|2 exp[−2(Γa
20 − Γ10)|τ |]. (2.25)

Photon-echo only exists for the perturbation the chain (I).
(iii) τ < 0

I(τ, r) ∝ 〈|P (3)|2〉 = 0. (2.26)

In this case, photon-echo doesn’t exist for the perturbation the chains (I) and
(II).

Relation (2.24) consists of three terms. The first term for two-photon
transition from |0〉 to |2〉 is dependent on the u2(t) fourth-order coherence
function, while the second term for two-photon transition from |0〉 to |3〉 is
dependent on the u3(t) fourth-order coherence functions. The first and second
terms indicate an exponential decay of the beat signal as |τ | increases. The
third term depending on the u2(t) and u3(t) second-order coherence functions,
which is determined by the laser line shape, gives rise to the modulation of the
beat signal. This case is consistent with results of the second-order coherence
function theory |〈P (3)〉|2 [10, 18]. The constant background contribution has
been ignored in their analysis. Therefore, the fourth-order coherence function
theory 〈|P (3)|2〉 of chaotic field is of vital importance in FLPB.
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The Gaussian-amplitude field has a constant phase but its real amplitude
undergoes Gaussian fluctuations. If the lasers have Lorentzian line shape, the
fourth-order coherence function is [6, 7]

〈ui(t1)ui(t2)ui(t3)ui(t4)〉 = 〈ui(t1)ui(t3)〉〈ui(t2)ui(t4)〉+
〈ui(t1)ui(t4)〉〈ui(t2)ui(t3)〉+
〈ui(t1)ui(t2)〉〈ui(t3)ui(t4)〉. (2.27)

When we substitute Eqs. (2.21) and (2.25) into Eq. (2.16) we obtain as
follows:

(i) τ > δτ

I(τ, r) ∝ 〈|P (3)|2〉 = A1 + |η|2A2 +A5 exp[−2(Γa
20 − Γ10)|τ |] +

|ηA6|2 exp[−2(Γa
30 − Γ10)× |τ − δτ |] +

A7 exp[−(Γa
20 − Γ10)|τ | − (Γa

30 − Γ10)|τ − δτ |]{η exp[−iΔk · r −
i(Ω3 − Ω2)τ − i(ξ2 − ξ1)Δ1τ + iξ2Δ1δτ ] +
η∗ exp[iΔk · r + i(Ω3 − Ω2)τ + i(ξ2 − ξ1)Δ1τ − iξ2Δ1δτ ]}, (2.28)

where

A5 =
4(ξ1 − 1)2τ2

α2
2

+
ξ1 − 1
(α2Δa

2)2
,

A6 =
4(ξ2 − 1)2(τ − δτ)2

α2
3

+
ξ2 − 1
(α3Δa

3)2
,

A7 =
(ξ1 − 1)(ξ2 − 1)

α2α3
τ(τ − δτ).

(ii) 0 < τ < δτ

I(τ, r) ∝ 〈|P (3)|2〉 = A1 + |η|2A2 +A5 exp[−2(Γa
20 − Γ10)|τ |]. (2.29)

Photon-echo only exists for the perturbation the chain (I).
(iii) τ < 0

I(τ, r) ∝ 〈|P (3)|2〉 = A1 + |η|2A2. (2.30)

In this case, photon-echo doesn’t exist for the perturbation chains (I) and
(II).

Relation (2.28) consists of five terms. The first and third terms for two-
photon transition from |0〉 to |2〉 are dependent on the u2(t) fourth-order co-
herence function, while the second and fourth terms for two-photon transition
from |0〉 to |3〉 are dependent on the u3(t) fourth-coherence function. The first
and second terms originating from the amplitude fluctuation of the Gaussian-
amplitude field are independent of the relative time-delay between the beams
2 and 3. The third and fourth terms indicate an exponential decay of the beat
signal as |τ | increases. The fifth term depending on the u2(t) and u3(t) second-
order coherence functions, which is determined by the laser line shape, gives
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rise to the modulation of the beat signal. Equation (2.26) also indicates that
beat signal oscillates not only temporally with a period 2π/|Ω3 − Ω2| = 25 fs
but also spatially with a period 2π/Δk = 0.28 mm along the direction Δk,
which is almost perpendicular to the propagation direction of the beat signal.
The three-dimensional interferogram of the beat signal intensity I(τ, r) versus
time delay τ and transverse distance r has the larger constant background
caused by the intensity fluctuation of the Gaussian-amplitude field in Fig. 2.4
(a), (b), and the parameters are Ω3−Ω2 = 254 ps−1,Δk = 22.22 mm−1, η =
1, ξi = 1.5,Δ1 = 0, Ai = 0.6,Γa

20 − Γ10 = 12.5 ps−1,Γa
30 − Γ10 = 14.5 ps−1;

while δτ = 0 fs for (a) and δτ = 43 fs for (b). At zero relative time delay
(τ = 0), the twin beams originating from the same source enjoy perfect over-
lap at the sample of their corresponding noise patterns in Fig. 2.4 (a). This
gives maximum interferometric contrast. As |τ | is increased, the interfero-
metric contrast diminishes on the time scale that reflects material memory,
usually much longer than the correlation time of the light [24]. The contrast
ratio is seen to diminish and the symmetry of the interferogram is destroyed
in Fig. 2.4 (b).

Fig. 2.4. A three-dimensional interferogram of the beat signal intensity I(τ, r)
versus time delay τ and transverse distance r for the Gaussian-amplitude field.
The parameters are Ω3 − Ω2 = 254 ps−1,Δk = 22.22 mm−1,Γa

20 − Γ10 =
12.5 ps−1,Γa

30 − Γ10 = 14.5 ps−1, η = 1, ξi = 1.5,Δ1 = 0, Ai = 0.6; while δτ = 0 fs
for (a) and δτ = 43 fs for (b). Adopted from Ref. [22].

It is important to note that these three types of fields can have the same
spectral density and thus the same second-order coherence function. The
fundamental differences in statistics of these fields are manifest only in the
higher-order coherence functions. The term “higher order” refers to all orders
larger than the second. In this section, different stochastic models of the laser
field only affect the fourth-order coherence function. Figure 2.5 presents the
beat signal intensity versus relative time delay. The three curves represent
the chaotic field (solid line), phase-diffusion field (dashed line), and Gaussian-
amplitude field (dotted line). The polarization beat signal is shown to be
particularly sensitive to the statistical properties of Markovian stochastic
light fields with arbitrary bandwidth. This is quite different from fourth-order
partial-coherence effects in the formation of integrated-intensity gratings with
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pulsed light sources [25]. Their results proved to be insensitive to the specific
radiation models. The constant background of the beat signal for a Gaussian-
amplitude field or a chaotic field is much larger than that of the signal for
a phase-diffusion field in Fig. 2.5. The physical explanation for this is that
the Gaussian-amplitude field undergoes stronger intensity fluctuations than
a chaotic field. On the other hand, the intensity (amplitude) fluctuations of
the Gaussian-amplitude field or the chaotic field are always much larger than
the pure phase fluctuations of the phase-diffusion field.

Fig. 2.5. The beat signal intensity versus relative time delay. The three curves rep-
resent the chaotic field (solid line), phase-diffusion field (dashed line), and Gaussian-
amplitude field (dotted line). The parameters are Ω3 − Ω2 = 254 ps−1,Δk =
0, η = 1, ξi = 1.5,Δ1 = 0, Ai = 0.6, δτ = 43 fs,Γa

20 − Γ10 = 2.5 ps−1 and
Γa

30 − Γ10 = 2.9 ps−1.

We discuss the difference between the FLPB and the UMS [17] with self-
diffraction geometry from a physical viewpoint. The frequency and wave vec-
tor of the DeBeer’s UMS signal are ωs1 = 2ω1 − ω1, ωs2 = 2ω2 − ω2 and
ks1 = 2k′1 − k1, ks2 = 2k′2 − k′2, respectively, which means that a pho-
ton is absorbed from each of two mutually correlated pump beams. On the
other hand, the frequency and wave vector of the FLPB signal are ωs1 =
ω2−ω2+ω1, ωs2 = ω3−ω3+ω1, and ks1 = k2−k′2+k′1, ks2 = k3−k′3+k1,
respectively, therefore photons are absorbed from and emitted to the mutu-
ally correlated beams 2 and 3, respectively. This difference between the FLPB
and DeBeer’s UMS has profound influence on the field-correlation effects. We
note that the role of two pump beams are interchangeable in the DeBeer’s
UMS, this interchangeable feature also makes the second-order coherence
function theory failure in the DeBeer’s UMS. In virtue of 〈u(t1)u(t2)〉 = 0,
the absolute square of the stochastic average of the polarization |〈P (3)〉|2
cannot be used to describe the temporal behavior of DeBeer’s UMS. Our
fourth-order theory 〈|P (3)|2〉 is of vital importance in DeBeer’s UMS.

The main purpose of above discussion is that we reveal an important fact
that the amplitude fluctuation plays a critical role in the temporal behavior
of FLPB signals. Furthermore, the different roles of the phase fluctuation
and amplitude fluctuation have been pointed out in the time domain. This
is quite different from the time delayed FWM with incoherent light in a two-
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level system [19]. For the latter case, the phase fluctuation of the light field is
crucial. Therefore, the FLPB is analogous to Raman-enhanced polarization
beats [24 – 30]. The amplitude fluctuation of the light field is also crucial
in the Raman-enhanced polarization beats. On the other hand, because of
〈ui(t)〉 = 0 and 〈u∗i (t)〉 = 0, the absolute square of the stochastic average of
the polarization |〈P (3)〉|2, which involves second-order coherence function of
ui(t), cannot be used to describe the temporal behavior of the FLPB [18].
The fourth-order theory 〈|P (3)|2〉 reduces to the second-order theory |〈P (3)〉|2
in the case that the laser pulse width is much longer than the laser coherence
time [25]. The second-order coherence function theory is valid when we are
only interested in the τ -dependent part of the beating signal. Therefore, the
fourth-order coherence function theory is of vital importance in FLPB. The
application of these results to the FLPB experiment yielded a better fit to
data than an expression involving only second-order coherence. We present
experimental results for the atomic response in four-level polarization beats
with phase-conjugation geometry using multimode laser fields. However, it
is more difficult to get a clear picture of physical origins of effects in each
type of fluctuating field in the experiment. We intend to rely on the cumulant
expansion formulation. According to this theory, the fourth order correlation
function generally reads as

〈ui(t) ui (t+ τ1)u∗i (t+ τ2)u∗i (t+ τ3)〉
= 〈ui(t)u∗i (t+ τ2)〉〈ui(t+ τ1)u∗i (t+ τ3)〉+
〈ui(t)u∗i (t+ τ3)〉〈ui(t+ τ1)u∗i (t+ τ2)〉+
f(τ1, τ2, τ3) . . . . . . (i = 2, 3), (2.31)

where f(τ1, τ2, τ3) vanishes when either τ1, τ2, or τ3 is larger than the correla-
tion time τc. For instance this description applies to both chaotic and phase
diffusion models. Departure of a specific process from gaussian statistics is
contained in f(τ1, τ2, τ3). This approach is well suited to problems which in-
volve intricate time integrations. Indeed one easily expresses the non-gaussian
contribution in powers of τc and it is straightforward to disclose possible sen-
sitivity to statistics.

2.1.4 Experiment and Result

We performed the FLPB in sodium vapor, where the ground state 3S1/2, the
intermediate state 3P1/2, and two excited states 5S1/2 and 4D3/2 formed a
four-level system. Three dye lasers (DL1, DL2, and DL3) pumped by the sec-
ond harmonic of a Quanta-Ray YAG laser, were used to generate frequencies
at ω1, ω2, and ω3. DL1 had linewidth 0.01 nm and pulse width 10 ns. DL2
and DL3 had linewidth 1 nm and pulse width 10 ns. DL1 was tuned to 589.6
nm, the wavelength of the 3S1/2 − 3P1/2 transition; DL2 was tuned to 615.4
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nm, the wavelength of the 3P1/2 − 5S1/2 transition; while DL3 was tuned to
568.2 nm, the wavelength of the 3P1/2 − 4D3/2 transition. A beam splitter
was used to combine the ω2 and ω3 components derived from DL2 and DL3,
respectively, for beams 2 and 3, which intersected in the oven containing
the Na vapor. The time delay τ between beams 2 and 3 could be varied.
Beam 1, which propagated along the direction opposite to that of beam 2,
was derived from DL1. All the incident beams were linearly polarized in the
same direction. The beat signal had the same polarization as the incident
beams, propagated along a direction almost opposite to that of beam 3. It
was detected by a photodiode.

We first performed a degenerate FWM experiment with beams 1, 2, and
3, consisting of the ω1 frequency component. From the degenerate FWM
spectrum we tuned ω1 to the resonant frequency Ω1. We then performed the
first nondegenerate FWM experiment with beams 2 and 3 consisting of only
ω2 frequency component. We measured the nondegenerate FWM spectrum,
by scanning ω2, which shows a resonant profile due to two-photon transition
(Fig. 2.6), and the solid curve is the

Fig. 2.6. Spectrum of FWM when beams 2 and 3 consist of only ω2 in which center
wavelength is 615.4 nm. The solid curve is the theoretical curve with α2 = 2.5 ps−1

and ω2 = 3 063 ps−1.

Theoretical curve given by the power spectral density

S1(ω) =

2α2

π
4α2

2 + (ω − ω2)2
,

with α2 = 2.5 ps−1 and ω2 = 3063 ps−1. From this spectrum ω2 was tuned
to the resonant frequency Ω2, whose center wavelength is 615.4 nm. Further-
more, the relation of the FWM signal intensity versus relative time delay
is showed in Fig. 2.7, the solid curve is the fourth-order theory curve given
by the Autocorrelation intensity I1 = B1 + |B3|2 exp(−2α2|τ |) of DL2 with
α2 = 2.5 ps−1 and Bi = 0.6, and the dashed curve is the second-order the-
ory curve. [10, 18]. We also performed the second two-photon nondegenerate
FWM experiment in which beams 2 and 3 consisted of only ω3 frequency
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Fig. 2.7. The FWM signal intensity versus relative time delay when beams 2 and 3
consist of only ω2. The square is experimental data; the solid curve is a fourth-order
theory curve with α2 = 2.5 ps−1 and Bi = 0.6; the dashed curve is a second-order
theory curve.

component. Figure 2.8 presents the spectrum of the FWM, and the solid
curve is the theoretical curve given by the power spectral density

S2(ω) =
2α3/π

4α2
3 + (ω − ω3)2

,

with α3 = 2.9 ps−1 and ω3 = 3317 ps−1. From the FWM spectrum we tune ω3

to the resonant frequency Ω3, whose center wavelength is 568.2 nm. Figure 2.9
denotes the relation of the signal intensity versus relative time delay, the solid
curve is the fourth-order theory curve given by the autocorrelation intensity
I2 = |η|2B2 + |ηB4|2 exp(−2α3|τ − δτ |) of DL3 with α3 = 2.9 ps−1, δτ =
43 fs, Bi = 0.6 and η = 1, and the dashed curve is the second-order theory
curve. [10,18] Note that the fourth-order theory yields a much better fit in the
wings of experimental data. After that, we performed the FLPB experiment

Fig. 2.8. Spectrum of FWM when beams 2 and 3 consist of only ω3 in which center
wavelength is 568.2 nm. The solid curve is the theoretical curve with α3 = 2.9 ps−1

and ω3 = 3317 ps−1.
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by measuring the beat signal intensity as a function of the relative time
delay when beams 2 and 3 consist of both frequencies ω2 and ω3. Figure 2.10
presents the result of the beat experiment in which τ is varied for a range
of 362 fs, the solid curve is the theoretical curve given by Eq. (2.10) with
α2 = 2.5 ps−1, α3 = 2.9 ps−1, ω3−ω2 = 2.54×1014s−1, ω3 = 3317 ps−1,Δk =
0, δτ = 43 fs, Bi = 0.6 and η = 1, and the beat signal intensity modulates
sinusoidally with period 24.74 fs. The modulation frequency can be obtained
more directly by making a Fourier transformation of FLPB data. Figure 2.11
presents the Fourier spectrum of experimental data in which τ is varied for
a range of 362 fs. Then we obtain the modulation frequency 2.54 × 1014s−1

corresponding to the beating between the resonant frequencies of transitions
from 3P1/2 to 5S1/2 and from 3P1/2 to 4D3/2

Fig. 2.9. FWM signal intensity versus relative time delay when beams 2 and 3
consist of only ω3. The square is experimental data; the solid curve is the fourth-
order theory curve with α3 = 2.9 ps−1, δτ = 43 fs, α3 = 2.9 ps−1, Bi = 0.6 and
η = 1; the dashed curve is the second-order theory curve.

Fig. 2.10. The beat signal intensity versus relative time delay. The square is an
experimental result; the solid curve is a theoretical curve given by Eq. (2.10) with
α2 = 2.5 ps−1, α3 = 2.9 ps−1, ω3 − ω2 = 2.54 × 1014s−1, ω3 = 3317 ps−1,Δk =
0, δτ = 43 fs, Bi = 0.6 and η = 1.
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Fig. 2.11. The Fourier spectrum of experimental data in which τ is varied for a
range of 362 fs.

The temporal behavior of FLPB signals is quite asymmetric with the
maximum of signals shifted from τ = 0. We attribute this asymmetry to
the difference in the zero time delay between beams 2 and 3 for the ω2 and
ω3 frequency components. To confirm this, we measured FWM signals when
beams 2 and 3 only consisted of only one frequency component. Figures 2.7
and 2.9 present the results when the frequencies of beams 2 and 3 are ω2

and ω3, respectively. The difference in the zero-time delay is obvious in these
figures. It is due to the large difference between wavelengths of DL2 and DL3
so that the dispersion of optical components becomes important. This can
be understood as follows. Consider the case that the optical paths between
2 and 3 are equal for ω2 component. Owing to the difference between the
zero time delays for the ω2 and ω3 frequency components, the optical paths
between beams 2 and 3 will be different by cδτ for the ω3 component.

As the result, there is an extra phase factor ω3δτ for the ω3 frequency
component. For an optical glass with refractive index n ≈ 1.5, the refractive
index at λ3 = 568.2 nm is larger than that at λ2 = 615.4 nm by approximately
0.0006. A 43 fs delay between ω2 and ω3 corresponds to the propagation of
beams in the glass (mainly the prism in the optical delay line) for a dis-
tance of about 2.5 cm. It is worth mentioning that asymmetric behaviors
of polarization beat signals due to unbalanced dispersion effects of optical
components between the two arms of an interferometer do not affect the
overall accuracy in case using FLPB to measure the energy-level difference.
By contrast, ultrashort pulses of equivalent bandwidth are not immune to
such dispersive effects (even when balanced) because the transform limited
light pulse is in fact temporally broadened (it is chirped) and this has drastic
effects on its time resolution (the auto-correlation). In this sense, the FLPB
with broadband noisy light has an advantage [21].
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2.2 Ultrafast Sum-frequency Polarization Beats in Twin
Markovian Stochastic Correlation

Research on the ultrafast phenomena is characterized by mixture of tech-
niques and instrumentation of varied nature. To our knowledge the shortest
pulses generated directly by a laser oscillator is shorter than 5.4 fs (Sub-two-
cycle pulses) [31, 32]. A laser-based sampling system, consisting of a few-
femtosecond visible light pulse and a synchronized sub-femtosecond soft X-
ray pulse, allows them to trace these dynamics directly in the time domain
with attosecond resolution [33, 34]. For over a decade, the ultra-short time
resolution of material dynamics has been accomplished by the interferometric
probing of wave mixing with broadband, non-transform limited noisy light
(one less direct method). The time resolution is determined by the ultrafast
correlation time of the noisy light and not by its temporal envelope, which is
typically a few nanoseconds [35 – 41]. Such a “noisy” light source is usually
derived from a dye laser modified to permit oscillation over almost the en-
tire bandwidth of the broadband source. The typical bandwidth of the noisy
light is about 100 cm−1, and has a correlation time of 100 fs (HWHM) [35].
In fact, the multimode broadband light has an autocorrelation time similar
to the autocorrelation time of a transform limited femtosecond laser pulse
of the equivalent bandwidth although the broadband light can, in principle,
be cw. Nevertheless, these two light sources are different in two fundamental
ways. First the broadband source, though pulsed, is effectively nearly con-
tinuous (or quasi-cw) as well as more energetic than the femtosecond source,
which is a true ultrashort pulse in time. A second fundamental distinction
between two kinds of sources concerns the concept of “cross-color” coher-
ence. While both sources may share identically broad spectra, the fields from
a noisy source possess random relative phases among the available colors.
There is no cross-color coherence; the field correlators are “color locked.”
A femtosecond pulse, whether chirped or truly transform limited, consists
of fields characterized by nonrandom relative phases among the colors. The
fundamental difference is that the transform limited femtosecond laser pulse
is phase coherent over its spectrum while broadband light is phase random
over its spectrum. Invariably the noisy light source is split into twin beams to
polarize the sample. Ultrafast time resolution is achieved as the time separa-
tion of twin noisy beams is interferometrically tuned on the femtosecond to
picosecond time scale. The polarization of the ensemble carries the imprint of
the noisy field which it retains for the coherence time of the polarized sample.
The stored polarization is probed by the delayed twin beam which recognizes
its own noise pattern imprinted in the material coherence with good inter-
ferometric contrast as long as the coherence can survive in the presence of
phase disrupting dynamics of the system [36].

We also have investigated the higher-order stochastic correlation effects
of Markovian field in femtosecond difference-frequency polarization beats
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(FDPB) [42 – 46]. In this section we shall systematically study ASPB in the
twin Markovian stochastic correlation. The difference between ASPB and
the first polarization beat experiment of Rothenberg and Grischkowsky [43]
is that in ASPB the signal is modulated not in real time but rather as a
function of the delay between two pump beams. ASPB is also related to the
coherent control that has been used to control the ionization rate of an atom
[47], the dissociation rate of a molecule [48], and the direction of the cur-
rent generated in a semiconductor [49]. One achieves control by varying the
relative phase of the two fields such that the induced transition amplitudes
interfere constructively or destructively. The common point of ASPB and co-
herent control is that both methods involve two fields to induce two-pathway
excitation. Physical processes are manipulated by variation of the phase of
fields. The difference between them is that the coherent control describes
a quantum interference between transition probability amplitudes, whereas
ASPB originates from the interference between macroscopic polarizations,
which is classic in nature.

In this section, we study ASPB theoreticallies in a Doppler-broadened
three-level atomic system. As we mentioned above, ASPB is based on the
interference between one-photon and two-photon processes simultaneously
induced by time-delayed correlated fluctuating twin fields. Inasmuch as the
one-photon degenerate FWM (DFWM) of ASPB is similar to the case of
FDPB [28], here we shall mainly concentrate on two-photon nondegenerate
FWM (NDFWM) in ASPB. In the case of broadband incident beams, unlike
the corresponding one-photon resonant DFWM, the dephasing and rephras-
ing processes in an inhomogeneously broadened system cause the maximum
of the two-photon resonant NDFWM signal to shift from zero time delay.
If we assume that the incident fields are weak and have finite bandwidths,
in the extremely Doppler-broadened limit an analytic closed form for the
second-order or fourth-order Markovian stochastic correlation of ASPB can
be obtained.

2.2.1 Basic Theory

ASPB is a polarization beat phenomenon [13, 14] originating from the in-
terference between two-pathway excitations simultaneously induced by time-
delayed correlated fluctuating twin fields, while the cascade three-level ASPB
comes from the sum-frequency polarization interference between one-photon
and two-photon processes in physics. Let us mainly consider a Doppler-
broadened ladder three-level atomic system [see Fig. 2.12 (a)] with a ground
state |0〉, an intermediate state |1〉 and an excited state |2〉. States between
|0〉 and |1〉 and between |1〉 and |2〉 are coupled by dipolar transition with
resonant frequencies Ω1 and Ω2, respectively, while states between |0〉 and
|2〉 are dipolar forbidden. We consider in this cascade three-level system a
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double-frequency time-delay FWM experiment in which beams 1 and 2 con-
sist of two frequency components ω1 and ω2, while a beam 3 has frequency
ω3 (see Fig. 2.13). We assume that ω1 ≈ Ω1(ω3 ≈ Ω1) and ω2 ≈ Ω2, therefore
ω1(ω3) and ω2 will drive the transitions from |0〉 to |1〉 and from |1〉 to |2〉, re-
spectively. There are two distinct processes involved in this double-frequency
time-delay FWM. First the ω1 frequency component of twin composite beams
1 and 2 induces population gratings of states |0〉 and |1〉, which are probed
by the beam 3 of frequency ω3. This is a one-photon resonant DFWM and
the signal (beam 4) has frequency ω3. Second, the beam 3 and ω2 frequency
component of the beam 1 induce a two-photon coherence between |0〉 and
|2〉, which is then probed by the ω2 frequency component of the beam 2.
This is a two-photon NDFWM with a resonant intermediate state and the
frequency of the signal equals ω3 again. Similarly, we also can consider the
sum-frequency polarization interference between two one-photon processes
in a V three-level Doppler-broadened atomic system [see Fig. 2.12(b)]. Com-
paring with the cascade three-level ASPB, two of them will share same four
density operator pathways of one-photon DFWM processes.

Fig. 2.12. Cascading three-level for (a) and V three-level for (b) configurations of
the sodium atom to be treated by ASPB.

Fig. 2.13. Schematic diagram of the phase-conjugation sum-frequency geometry of
ASPB.

Twin composite stochastic fields of the beam 1, Ep1, and the beam 2,
Ep2, can be written as

Ep1 = A1(r, t) exp(−iω1t) +A′2(r, t) exp(−iω2t)
= ε1u1(t) exp[i(k1 · r − ω1t)] +

ε′2u2(t− τ) exp[i(k′2 · r − ω2t+ ω2τ)], (2.32)
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EP2 = A′1(r, t) exp(−iω1t) +A2(r, t) exp(−iω2t)
= ε′1u1(t− τ) exp[i(k′1 · r − ω1t+ ω1τ)] +

ε2u2(t) exp[i(k2 · r − ω2t)]. (2.33)

Here, Ai(r, t) = εiui(t) exp[iki · r(t)], A′i(r, t) = ε′iui(t − τ) exp[ik′i · r(t) +
ωiτ ]; εi, ki(ε′i, k

′
i) are the constant field amplitude and the wave vector of the

ωi component in the beam 1 (beam 2), respectively. ui(t) is a dimensionless
statistical factor that contains phase and amplitude fluctuations. The ui(t) is
taken to be a complex ergodic stochastic function of t, which obey complex
circular Gaussian statistics in the chaotic field. τ is a variable relative time de-
lay between the prompt (unprime) and delayed (prime) fields. To accomplish
this the frequency component ω1 and ω2 lights are split and recombined to
provide two double-frequency pulses in such a way that the ω1 component is
delayed by τ in beam 2 and the ω2 component delayed by the same amount
in the beam 1 (Fig. 2.13). The time delay τ is introduced in both beams,
which is quite different with that of FDPB [44, 45].

On the other hand, the beam 3 is assumed to be a quasimonochromatic
light, the complex electric fields of beam 3 can be written as

EP3 = A3(r, t) exp(−iω3t) = ε3u3(t) exp[i(k3 · r − ω3t)]. (2.34)

Here, ω3, ε3, and k3 are the frequency, the field amplitude and the wave
vector of beam 3, respectively. Since ω1 and ω3 come from the same laser
source (i.e., ω1 = ω3), we have u3(t) ≈ 1 for the quasimonochromatic light.

We only retain the resonant dipole interaction term in the calculation of
the signal; this is known as the rotating wave approximation (RWA). Because
of the selectivity imposed by the RWA, each pulse interaction contributes in
a unique way to the phase matching direction of the nonlinear signal. We
shall employ perturbation theory to calculate the density matrix elements by
the following perturbation chains,

(I) ρ
(0)
00

A1−−→ ρ
(1)
10

(A′
1)

∗
−−−−→ ρ

(2)
00

A3−−→ ρ
(3)
10 , (2.35)

(II) ρ
(0)
00

(A′
1)

∗
−−−−→ (ρ(1)

10 )
∗ A1−−→ ρ

(2)
00

A3−−→ ρ
(3)
10 , (2.36)

(III) ρ
(0)
00

A1−−→ ρ
(1)
10

(A′
1)∗−−−−→ ρ

(2)
11

A3−−→ ρ
(3)
10 , (2.37)

(IV) ρ
(0)
00

(A′
1)

∗
−−−−→ (ρ(1)

10 )
∗ A1−−→ ρ

(2)
11

A3−−→ ρ
(3)
10 , (2.38)

(V) ρ
(0)
00

A3−−→ ρ
(1)
10

A′
2−−→ ρ

(2)
20

(A2)
∗

−−−−→ ρ
(3)
10 . (2.39)

One-photon and two-photon FWM signals are induced by ω1 and ω2 fre-
quency components of twin beams 1 and 2. Now, we consider the other pos-
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sible density operator pathways:

(VI) ρ
(0)
00

A3−−→ ρ
(1)
10

(A′
1)

∗
−−−−→ ρ

(2)
00

A1−−→ ρ
(3)
10 , (2.40)

(VII) ρ
(0)
00

(A′
1)

∗
−−−−→ (ρ(1)

10 )
∗ A3−−→ ρ

(2)
00

A1−−→ ρ
(3)
10 , (2.41)

(VIII) ρ
(0)
00

A3−−→ ρ
(1)
10

(A′
1)

∗
−−−−→ ρ

(2)
11

A1−−→ ρ
(3)
10 , (2.42)

(IX) ρ
(0)
00

(A′
1)∗−−−−→ (ρ(1)

10 )
∗ A3−−→ ρ

(2)
11

A1−−→ ρ
(3)
10 , (2.43)

where the population grating induced by beam 3 and ω1 frequency component
of beams 2 is responsible for the generation of the FWM signal. These gratings
have much smaller fringe spacings which equal approximately one half of the
wavelengths of the incident lights (Ep2λi/[2 sin(θ/2)]

θ≈180◦−−−−−→ λi/2). For a
Doppler-broadened system, the gratings will be washed out by the atomic
motion. Therefore, it is appropriate to neglect the FWM signal from these
density operator pathways. The stricter requirements on the phase matching
also make this process unimportant.

In this section, Chains (I)–(IV) correspond to the one-photon DFWM
processes of V or cascade three-level atomic system, while the Chain (V)
corresponds to the two-photon NDFWM process of cascade three-level atomic
system. We obtain the third-order off-diagonal density matrix element ρ

(3)
10

which has wave vector k1−k′1+k3 or k′2−k2+k3, ρ
(3) = ρ(I)+ρ(II)+ρ(III)+

ρ(IV) + ρ(V). Here ρ(I), ρ(II), ρ(III), ρ(IV) and ρ(V) corresponding to ρ
(3)
10 of the

perturbation the chain (I), (II), (III), (IV), and (V), respectively, are

ρ(I) =
(
iμ1

�

)3

exp(−iω3t)
∫ ∞

0

dt3
∫ ∞

0

dt2
∫ ∞

0

dt1 ×
H3(t3)H2(t2)H1(t1)A1(r, t− t1 − t2 − t3)×
[A′1(r, t− t2 − t3)]∗A3(r, t− t3), (2.44)

ρ(II) =
(
iμ1

�

)3

exp(−iω3t)
∫ ∞

0

dt3
∫ ∞

0

dt2
∫ ∞

0

dt1 ×
H3(t3)H2(t2)[H1(t1)]∗A1(r, t− t2 − t3)×
[A′1(r, t− t1 − t2 − t3)]∗A3(r, t− t3), (2.45)

ρ(III) =
(
iμ1

�

)3

exp(−iω3t)
∫ ∞

0

dt3
∫ ∞

0

dt2
∫ ∞

0

dt1 ×
H3(t3)H4(t2)H1(t1)A1(r, t− t1 − t2 − t3)×
[A′1(r, t− t2 − t3)]∗A3(r, t− t3), (2.46)
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ρ(IV) =
(
iμ1

�

)3

exp(−iω3t)
∫ ∞

0

dt3
∫ ∞

0

dt2
∫ ∞

0

dt1 ×
H3(t3)H4(t2)[H1(t1)]∗A1(r, t− t2 − t3)×
[A′1(r, t− t1 − t2 − t3)]∗A3(r, t− t3), (2.47)

ρ(V) =
(
iμ1

�

)(
iμ2

�

)2

exp(−iω3t)
∫ ∞

0

dt3
∫ ∞

0

dt2
∫ ∞

0

dt1 ×
H3(t3)H5(t2)H3(t1)A3(r, t− t1 − t2 − t3)×
A′2(r, t− t2 − t3)[A2(r, t− t3)]∗. (2.48)

Here, H1(t) = exp[−(Γ10 + iΔ1)t], H2(t) = exp(−Γ0t), H3(t) = exp[−(Γ10 +
iΔ3)t], H4(t) = exp(−Γ1t), H5(t) = exp[−(Γ20 + iΔ2 + iΔ3)t];μ1(μ2) is the
dipole-moment matrix element between |0〉 and |1〉(|1〉 and |2〉); Γ0(Γ1) is
the population relaxation rate of state |0〉(|1〉); Γ10(Γ20) is the transverse
relaxation rate of the transition from |0〉 to |1〉(|0〉 to |2〉), which contains
material dephasing dynamics; Δ1 = Ω1 − ω1,Δ2 = Ω2 − ω2,Δ3 = Ω1 − ω3.

The nonlinear polarization P (3) responsible for phase-conjugate FWM
signals is given by averaging over the velocity distribution function W (v).
Thus

P (3) = Nμ1

∫ ∞

−∞
dvw(v)ρ(3)

10 (v).

Here, v is the atomic velocity, N is the density of atoms. For a Doppler-

broadened atomic system, we have w(v) =
1√
πu

exp[−(v/u)2]. Here, u =√
2kBT/m with m the mass of an atom, kB is Boltzmann’s constant and T

the absolute temperature. In general, the total third-order polarization P (3)

is supposition of the DFWM and NDFWM polarizations P (3) = P (I)+P (II)+
P (III) + P (IV) + P (V), where

P (I) = S1(r) exp[−i(ω3t+ ω1τ )]
∫ +∞

−∞
dvw(v)

∫ ∞

0

dt3
∫ ∞

0

dt2
∫ ∞

0

dt1 ×
exp[−iθI(v)]H1(t1)×H2(t2)H3(t3)×
u1(t− t1 − t2 − t3)u∗1(t− t2 − t3 − τ), (2.49)

P (II) = S1(r) exp[−i(ω3t+ ω1τ )]
∫ +∞

−∞
dvw(v)

∫ ∞

0

dt3
∫ ∞

0

dt2
∫ ∞

0

dt1 ×
exp[−iθII(v)]H∗

1 (t1)×H2(t2)H3(t3)×
u1(t− t2 − t3)u∗1(t− t1 − t2 − t3 − τ), (2.50)

P (III) = S1(r) exp[−i(ω3t+ ω1τ )]
∫ +∞

−∞
dvw(v)

∫ ∞

0

dt3
∫ ∞

0

dt2
∫ ∞

0

dt1 ×
exp[−iθI(v)]H1(t1)×H4(t2)H3(t3)×
u1(t− t1 − t2 − t3)u∗1(t− t2 − t3 − τ), (2.51)
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P (IV) = S1(r) exp[−i(ω3t+ ω1τ)]
∫ +∞

−∞
dvw(v)

∫ ∞

0

dt3
∫ ∞

0

dt2
∫ ∞

0

dt1 ×
exp[−iθII(v)]H∗

1 (t1)×H4(t2)H3(t3)×
u1(t− t2 − t3)u∗1(t− t1 − t2 − t3 − τ), (2.52)

P (V) = S2(r) exp[−i(ω3t− ω2τ)]
∫ +∞

−∞
dvw(v)

∫ ∞

0

dt3
∫ ∞

0

dt2
∫ ∞

0

dt1 ×
exp[−iθIII(v)]H3(t1)×H5(t2)H3(t3)×
u2(t− t2 − t3 − τ)u∗2(t− t3). (2.53)

Here,

S1(r) = −i�N
(μ1

�

)4

ε1(ε′1)
∗ε3 exp[i(k1 − k′1 + k3) · r],

S2(r) = −i�N
(μ1

�

)2 (μ2

�

)2

ε′2(ε2)∗ε3 exp[i(k′2 − k2 + k3) · r];
θI(v) = v · [k1(t1 + t2 + t3)− k′1(t2 + t3) + k3t3],
θII(v) = v · [−k′1(t1 + t2 + t3) + k1(t2 + t3) + k3t3],
θIII(v) = v · [k3(t1 + t2 + t3) + k′2(t2 + t3)− k2t3].

In general, the ASPB (at the intensity level) can be viewed as built of the
sum of four contributions: (i) τ -independent part, (ii) the purely resonant,
(iii) the purely nonresonant, and (iv) the resonant-resonant, nonresonant-
nonresonant or resonant-nonresonant three types of cross-terms contribu-
tions. For the ultrashort femtosecond pulsed excitation with homodyne de-
tection, anharmonicity effects are cancelled (due to loss of phase information)
[36]. Furthermore, unlike heterodyned signals, all the cross terms that com-
plicate the homodyne (quadrature) signal are absent. One must introduce a
second (harmonic) Raman resonance to be able to discriminate between the
direct and cascaded events. In contrast, in the noisy light interferometric ex-
periment, multiple harmonic resonances produce new frequency components
and cross terms, yet one cannot distinguish between the direct and the cas-
caded events. In the absence of inhomogeneity, the presence of (diagonal)
anharmonicity allows these pathways to become distinct.

2.2.2 Second-order Stochastic Correlation of ASPB

For the macroscopic system where phase matching takes place this signal
must be drawn from the P (3) developed on one “atom” multiplied by the
(P (3))∗ that is developed on another “atom” which must be located elsewhere
in space (with summation over all such pairs) [35 – 41, 46]. For homodyne
detection the ASPB signal is proportional to the average of the absolute
square of P (3) over the random variable of the stochastic process 〈|P (3)|2〉,
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which involves fourth- and second-order coherence function of ui(t) in phase–
conjugation geometry. The UMS in self-diffraction geometry is related to the
sixth-order coherence function of the incident fields [8, 42].

In the case that we are only interested in the τ -dependent part of the
ASPB signal, the ASPB signal intensity can be well approximated by the ab-
solute square of the non-trivial stochastic average of the polarization |〈P (3)〉|2,
which involves second-order coherence function of ui(t) [44 – 46]. Using Eq.
(2.10) the stochastic average of the polarization then

〈P (3)〉 = 〈P (I)〉+ 〈P (II)〉+ 〈P (III)〉+ 〈P (IV)〉+ 〈P (V)〉, (2.54)

where

〈P (I)〉 = S1(r) exp[−i(ω3t+ ω1τ)]
∫ +∞

−∞
dvw(v)

∫ ∞

0

dt3 ×∫ ∞

0

dt2
∫ ∞

0

dt1 exp[−iθI(v)]×
H1(t1)H2(t2)H3(t3) exp(−α1|t1 − τ |), (2.55)

〈P (II)〉 = S1(r) exp[−i(ω3t+ ω1τ )]
∫ +∞

−∞
dvw(v)

∫ ∞

0

dt3 ×∫ ∞

0

dt2
∫ ∞

0

dt1 exp[−iθII(v)]×
H∗

1 (t1)H2(t2)H3(t3) exp(−α1|t1 + τ |), (2.56)

〈P (III)〉 = S1(r) exp[−i(ω3t+ ω1τ)]
∫ +∞

−∞
dvw(v)

∫ ∞

0

dt3 ×∫ ∞

0

dt2
∫ ∞

0

dt1 exp[−iθI(v)]×
H1(t1)H4(t2)H3(t3) exp(−α1|t1 − τ |), (2.57)

〈P (IV)〉 = S1(r) exp[−i(ω3t+ ω1τ)]
∫ +∞

−∞
dvw(v)

∫ ∞

0

dt3 ×∫ ∞

0

dt2
∫ ∞

0

dt1 exp[−iθII(v)]×
H∗

1 (t1)H4(t2)H3(t3) exp(−α1|t1 + τ |), (2.58)

〈P (V)〉 = S2(r) exp[−i(ω3t− ω2)τ ]
∫ +∞

−∞
dvw(v)

∫ ∞

0

dt3 ×∫ ∞

0

dt2
∫ ∞

0

dt1 exp[−iθIII(v)]×
H3(t1)H5(t2)H3(t3) exp(−α2|t2 + τ |). (2.59)

We discuss the ASPB in a Doppler-broadened system. After performing
the tedious integral in Eqs. (2.55) – (2.59) over t1, t2, and t3 we obtain for
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(i) τ > 0

〈P (3)〉 = S1(r) exp(−iω3t)
∫ +∞

−∞
dvw(v)

L1(v) + L2(v)
Γ10 − α1 + i(Δ1 + k1 · v) ×{

[2Γ10 + i(k1 − k′1) · v] exp(−α1|τ | − iω1τ)
Γ10 + α1 − i(Δ1 + k′1 · v)

−
2α1 exp[−Γ10|τ | − i(Ω1 + k1 · v)τ ]

Γ10 + α1 + i(Δ1 + k1 · v)
}
+ S2(r) exp(−iω3t)×∫ +∞

−∞
dvw(v)

L3(v) exp(−α2|τ |+ iω2τ)
Γ20 + α2 + i[Δ2 +Δ3 + (k′2 + k3) · v] . (2.60)

(ii) τ < 0

〈P (3)〉 = S1(r) exp(−iω3t)
∫ +∞

−∞
dvw(v)

L1(v) + L2(v)
Γ10 − α1 − i(Δ1 + k′1 · v)

×{
[2Γ10 + i(k1 − k′1) · v] exp(−α1|τ | − iω1τ)

Γ10 + α1 + i(Δ1 + k1 · v) −
2α1 exp[−Γ10|τ | − i(Ω1 + k′1 · v)τ ]

Γ10 + α1 − i(Δ1 + k′1 · v)
}
× {exp(−α2|τ |+ iω2τ)−

2α2 exp{−Γ20|τ |+ i[Ω2 +Δ3 + (k′2 + k3) · v]τ}
Γ20 + α2 + i[Δ2 +Δ3 + (k′2 + k3) · v]

}
. (2.61)

Here,

L1(v) =
1

[Γ0 + i(k1 − k′1) · v]{Γ10 + i[Δ3 + (k1 − k′1 + k3) · v]} , (2.62)

L2(v) =
1

[Γ1 + i(k1 − k′1) · v]{Γ10 + i[Δ3 + (k1 − k′1 + k3) · v]} , (2.63)

L3(v) =
1

[Γ10 + i(Δ3 + k3 · v)]{Γ10 + i[Δ3 + (k′2 − k2 + k3) · v]} . (2.64)

In general the temporal behavior of broadband two-photon NDFWM sig-
nals is complicated, which is asymmetric about τ = 0. However, the situation
becomes simpler when the laser linewidths are much narrower than the ho-
mogeneous linewidths of the transitions (i.e., α1 << Γ10 and α2 << Γ20). In
this homogeneous broadening dominant case, after tail approximation (i.e.,
Γ10|τ | >> 1 and Γ20|τ | >> 1) we have for both τ > 0 and τ < 0,

〈P (3)〉 = S1(r) exp(−iω3t){B1 exp(−α1|τ | − iω1τ) +
ηB2 exp[−α2|τ | − i(Δk · r − ω2τ)]}. (2.65)

Here, ratio of associated Rabi frequencies for NDFWM and DFWM processes

η =
μ2

2

μ2
1

[
ε′2(ε2)∗

ε1(ε′1)∗

]
; spatial modulation factor Δk = (k1 − k′1) − (k′2 − k2);
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The constants Bi mainly depend on the laser linewidths and relaxation rate
of the transition in this work. B1 and B2 are τ -independent factors which
equal:

B1 =
∫ +∞

−∞
dvw(v)

[2Γ10 + i(k1 − k′1) · v][L1(v) + L2(v)]
[Γ10 + i(Δ1 + k1 · v)][Γ10 − i(Δ1 + k′1 · v)]

, (2.66)

B2 =
∫ +∞

−∞
dvw(v)

L3(v)
Γ20 + i[Δ2 +Δ3 + (k′2 + k3) · v] . (2.67)

According to Eq. (2.66), we first consider the case that ω1(ω3) is tuned
to within the Doppler linewidth of the |0〉 − |1〉 transition, i.e., Δ1 � k1u. In
this case, only atoms with velocity (along the z axis) v ≈ Δ1/k1 are reso-
nant with beam 3. This group of atoms will interact further with the beam 1
and contribute to the two-photon NDFWM signal in Eq. (2.67). The condi-
tion for the two-photon transition is (ω1 + k1v) + (ω2 − k2v) = Ω1 +Ω2, i.e.,
Δ1+Δ2 = k1(1−ξ2)v; therefore, we have Δ1+Δ2 = (1−ξ2)Δ1. The NDFWM
spectrum is Doppler free because only atoms in a specific velocity group con-
tribute to NDFWM signals. As we discuss below (the second term of Eq.
(2.80)), in the extremely Doppler-broadened limit the Doppler-free linewidth
equals approximately 2(

√
2− 1)1/2

Γa
20. A similar situation in the two-photon

absorption with resonant intermediate state has been discussed by Bjorkholm
and Liao [50]. We then consider the off-resonant Doppler-broadened
NDFWM. In this case ω1 is tuned to the wing of the Doppler-broadened
line of the one-photon transition from |0〉 to |1〉 (i.e., Δ1 � k1u,Γ10). We
have

〈P (V )〉 ≈ − 1√
πΔ2

1

S2(r) exp[−α2|τ | − i(ω3t− ω2τ)]×∫ +∞

−∞
dx

exp(−x2)
Γ20 + i[Δ2 +Δ1 − k1u(1− ξ2)x]

.

Here x =
v

u
. So the NDFWM signal has resonance at Δ1 + Δ2 = 0. The

residual Doppler-broadened linewidth is approximately 2k1u(1 − ξ2). If the
Doppler effect is neglected, we have

B1 ≈ 2Γ10(Γ0 + Γ1)
(Γ10 + iΔ3)(Γ2

10 +Δ2
1)Γ0Γ1

,

B2 ≈ 1
(Γ10 + iΔ3)2[Γ20 + i(Δ2 +Δ3)]

.

According to Eq. (2.65), the τ -dependence of the ASPB (τ -independence
is absent in second-order stochastic correlation |〈P (3)〉|2) signal intensity is

I(τ, r) ∝ |〈P (3)〉|2 ∝ |B1|2 exp(−2α1|τ |) +
|ηB2|2 exp(−2α2|τ |) + exp[−(α1 + α2)|τ |]×
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{B∗1ηB2 exp[−i(Δk · r − (ω2 + ω1)τ)] +
B1η

∗B∗2 exp[i(Δk · r − (ω2 + ω1)τ)]}. (2.68)

In this equation, the ASPB signal depends only on the laser characteristics,
and exhibits a damping oscillation with frequency ω2 + ω1 and damping
rate α1 + α2 for both τ > 0 and τ < 0. The theoretical limit at which the
modulation frequency can be measured is determined by the laser linewidths
(i.e., π(α1 + α2)). For narrow-band laser sources the modulation frequency
can be measured with great accuracy. Therefore, the precision of using ASPB
to measure Ω2 + Ω1 is determined by how well ω3 and ω2 can be tuned to
Ω1 and Ω2, respectively. The beam 3 and the ω1 component of the twin
composite beams 1 and 2 originate from the same laser source (i.e., ω1 =
ω3). Similarly to the general saturated-absorption spectroscopy, one-photon
resonant DFWM can provide a Doppler-free spectrum with a peak located
at Δ1 = Δ3 = 0 [51]. When ω1 is set to the center of the Doppler profile, as
discussed in Section 2.2.2, ω2 can also be tuned to Ω2 with the Doppler-free
accuracy.

However, as the laser bandwidth is comparable with the homogeneous
linewidth of the transition in Eqs. (2.60) and (2.61), the one-photon resonant
term (The factor exp(−Γ10|τ |−iΩ1τ) reflects the free evolution of one-photon
resonance) and two photon resonant term (The factor exp(−Γ20|τ | + iΩ2τ)
reflects the free evolution of two-photon coherence resonance) become impor-
tant. When the laser sources are broadband so that α1 >> Γ10 and α2 >> Γ20

(inhomogeneous broadening dominant case), the ASPB beat signal rises to
its maximum quickly and then decays with time constant mainly determined
by the transverse relaxation times of the atomic system.

(i) τ < 0,α1|τ | >> 1 and α2|τ | >> 1

〈P (3)〉 = S1(r) exp(−iω3t){B3 exp(−Γ10|τ | − iΩ1τ) +
ηB4 exp[−Γ20|τ | − i(Δk · r − (Ω2 +Δ3)τ)]}. (2.69)

Here, B3 and B4 still are τ -independent factors which equal

B3 =
∫ +∞

−∞
dvw(v)

2α1[L1(v) + L2(v)] exp[i(k′1 · v)|τ |]
α2

1 + (Δ1 + k′1 · v)2
, (2.70)

B4 =
∫ +∞

−∞
dvw(v)

2α2L3(v) exp{−i[(k′2 + k3) · v]|τ |}
α2

2 + [Δ2 +Δ3 + (k′2 + k3) · v]2 . (2.71)

If the Doppler effect is neglected, we have

B3 ≈ 2α1(Γ0 + Γ1)
(Γ10 + iΔ3)(α2

1 +Δ2
1)Γ0Γ1

B4 ≈ 2α2

(Γ10 + iΔ3)2[α2
2 + (Δ2 +Δ3)2]

.
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According to Eq. (2.69), the ASPB signal intensity is

I(τ, r) ∝ |〈P (3)〉|2 ∝ |B3|2 exp(−2Γ10|τ |) + |ηB4|2 exp(−2Γ20|τ |) +
exp[−(Γ10 + Γ20)|τ |]{B∗3ηB4 × exp[−i(Δk · r − (Ω2 +Ω1 +
Δ3)τ)] +B3η

∗B∗4 exp[i(Δk · r − (Ω2 +Ω1 +Δ3)τ)]}. (2.72)

(ii) τ > 0 and α1|τ | >> 1

I(τ, r) ∝ |〈P (3)〉|2 ∝ |B5|2 exp(−2Γ10|τ |) + |ηB6|2 exp(−2α2|τ |) +
exp[−(Γ10 + α2)|τ |]{B∗5ηB6 × exp[−i(Δk · r − (ω2 +Ω1)τ)] +
B5η

∗B∗6 exp[i(Δk · r − (ω2 +Ω1)τ)]}. (2.73)

For simplicity, we neglect the Doppler effect in B5 and B6,

B5 = − 2α1(Γ0 + Γ1)
(α2

1 +Δ2
1)Γ0Γ1

,

B6 =
1

(Γ10 + iΔ3)[α2 + i(Δ2 +Δ3)]
.

According to Eqs. (2.72) or (2.73), the ASPB signal exhibits a damping
oscillation with frequency Ω2 +Ω1 or ω2 +Ω1 and a damping rate Γ10 +Γ20

or Γ10 + α2 when α2|τ | >> 1 or α1|τ | >> 1, respectively. If we tune the
frequency of the beam 3 to the center of the Doppler profile (i.e., Δ3 = 0),
then the modulation frequency of Eq. (2.71) will correspond directly to sum-
frequency beating between the resonant frequencies of the cascading three
level system. As the modulation frequency can be measured with an accu-
racy given by π (Γ10 + Γ20) approximately. For Eq. (2.72) the modulation
frequency ω2 +Ω1 can also be measured with great accuracy π(Γ10 +α2). In
this case, the precision of using the ASPB to measure Ω2+Ω1 is determined
by how well ω2 can be tuned to Ω2. the ASPB with broadband light is again
a Doppler-free spectroscopy. It needs to be mentioned that the crossed corre-
lation with a decay factor exp[−(Γ10+α2)|τ |] produced from twin composite
stochastic fields displays features on the time scale significantly shorter than
the autocorrelation with a decay factor exp(−2Γ10|τ |) produced from single
color stochastic fields in Eq. (2.72).

For the sake of analytical simplicity, the total polarization of beat signals
can be calculated from a different viewpoint. Under the Doppler-broadened
limit (i.e., k3u →∞), we have∫ +∞

−∞
dvw(v) exp[−iθI(v)] ≈ 2

√
π

k3u
δ(t3 − ξ1t1), (2.74)

∫ +∞

−∞
dvw(v) exp[−iθII(v)] ≈ 2

√
π

k3u
δ(t3 + ξ1t1), (2.75)

∫ +∞

−∞
dvw(v) exp[−iθIII(v)] ≈ 2

√
π

k3u
δ[t3 + t1 − (ξ2 − 1)t2]. (2.76)
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Here, we assume ξ2 > 1, ξ1 = k1/k3, ξ2 = k2/k3. When we substitute Eqs.
(2.53) and (2.74) – (2.76) into Eqs. (2.55) – (2.59), we obtain the stochastic
averaging of the total third-order polarization

〈P (3)〉 = 〈P (I) + P (III) + P (V)〉 = 2
√
π

k3u
S1(r) exp[−i(ω3t+ ω1τ)] ×∫ ∞

0

dt1

{(
1
Γ0

+
1
Γ1

)
× exp[−(Γa

10 + iΔa
1)t1 − α1|t1 − τ |]

}
+

2
√

π

k3u
S2(r) exp[−i(ω3t− ω2τ)]×

∫ ∞

0

dt3
∫ ∞

0

dt1 ×

exp
[
−Γ

a
20 + iΔa

2

ξ2 − 1
(t1 + t3)− α2

∣∣∣∣ t1 + t3
ξ2 − 1

+ τ

∣∣∣∣
]

. (2.77)

Here, Γa
10 = Γ10 + ξ1Γ10,Δa

1 = Δ1 + ξ1Δ3,Γa
20 = Γ20 + (ξ2 − 1)Γ10, and

Δa
2 = Δ2 + ξ2Δ3. It should be noted that because of the δ functions in Eq.

(2.75), we have P (II) = P (IV) = 0 since t1, t3 > 0. The integral in Eq. (2.77)
can be performed easily, from which we obtain the second-order stochastic
averaging of the polarization for an extremely Doppler-broadened system,
i.e.,

(i) τ > 0

〈P (3)〉 = 2
√
π

k3u
S1(r)

(
1
Γ0

+
1
Γ1

)
exp[−i(ω3t+ ω1τ)]×{

(Γa
10 + iΔa

1 + α1) exp(−α1|τ |)
(Γa

10 + iΔa
1)2 − α2

1

− 2α1 exp[−(Γa
10 + iΔa

1)|τ |]
}
+

2
√
π

k3u
S2(r) exp[−i(ω3t− ω2τ)]

(ξ2 − 1)2 exp(−α2|τ |)
(Γa

20 + iΔa
2 + α2)2

. (2.78)

(ii) τ < 0

〈P (3)〉 = 2
√
π

k3u
S1(r)

(
1
Γ0

+
1
Γ1

)
exp[−i(ω3t+ ω1τ)]

exp(−α1|τ |)
α1 + Γa

10 + iΔa
1

+

2
√
π

k3u
S2(r)× exp[−i(ω3t− ω2τ)]

{
(ξ2 − 1)2 exp(−α2|τ |)
[α2 − (Γa

20 + iΔa
2)]2

+

|τ |[α2
2 − (Γa

20 + iΔa
2)

2]− 2(Γa
20 + iΔa

2)
[α2

2 − (Γa
20 + iΔa

2)2]2
×

2α2(ξ2 − 1)2 exp[−(Γa
20 + iΔa

2)|τ |]
}

. (2.79)

Figure 2.14 presents spectra for one-photon DFWM (τ > 0). The graphs are
normalized within each set. The lineshape is sensitive to the Γa

10τ variation
for the twin field correlation. When twin field become almost uncorrelated
(larger Γa

10τ case), the weak damping oscillation in frequency space with a
modulation period 2π/τ is shown in Fig. 2.14.
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Fig. 2.14. Normalized one-photon DFWM signal intensity versus Δa
1/α1. α1/Γ

a
10 =

1,Γ0/Γ
a
10 = 10−4,Γ1/Γ

a
10 = 3.35× 10−4. Γa

10τ = 0 (dash-dotted curve), 1.5 (dotted
curve), 3 (dashed curve), 10 (solid curve).

When the broadband laser frequency is “off resonant” from atomic tran-
sition (some frequency within the bandwidth of the noisy light may still act),
the DFWM and NDFWM signal exhibit hybrid radiation-matter detuning
terahertz damping oscillation in Figs. 2.15 and 2.16, respectively. This is
similar to radiation difference oscillation or Rabi detuning oscillation. The
Rabi detuning oscillations and the radiation difference oscillation are exactly
synonymous. More specifically, these two parts of the first term in Eq. (2.78)
or two parts of the second term (40) interfere and give rise to a modulation of
the signal intensity versus Γa

10τ when τ > 0 for DFWM in Fig. 2.15, or Γa
20τ

when Γa
10τ for NDFWM in Fig. 2.16, respectively. The complicated modula-

tion frequency of radiation-matter detuning beats dramatically depends on
Δa

1 (Fig. 2.15) or Δ
a
2 (Fig. 2.16), respectively.

Fig. 2.15. Normalized one-photon DFWM signal intensity versus Γa
10τ with

Δa
1/α1 = 3 (dash-dotted curve), 7 (dotted curve), 10 (dashed curve), 20 (solid

curve). α1/Γ
a
10 = 1,Γ0/Γ

a
10 = 10−4 and Γ1/Γ

a
10 = 3.35 × 10−4. Adopted from Ref.

[31].
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Fig. 2.16. Normalized two-photon NDFWM signal intensity versus Γa
20τ with

α2/Γ
a
20 = 1,Δa

2/α2 = 2 (dash-dotted curve), 4 (dotted curve), 6 (dashed curve), 8
(solid curve). Adopted from Ref. [31].

We first consider the situation when laser linewidths are much narrower
than homogeneous linewidths of transitions (i.e., α1 << Γ10 and α2 << Γ20).
In homogeneous broadening dominant limit, after tail approximation (i.e.,
Γ10|τ | >> 1 and Γ20|τ | >> 1) we have for both τ > 0 and τ < 0,

〈P (3)〉 = 2
√
π

k3u
S1(r) exp(−iω3t)

{
exp (−α1|τ | − iω1τ)

Γa
10 + iΔa

1

(
1
Γ0

+
1
Γ1

)
+

η(ξ2 − 1)2 exp(−α2|τ | − iΔk · r + iω2τ)
(Γa

20 + iΔa
2)2

}
. (2.80)

Therefore, the second-order correlation ASPB signal intensity is

I(τ, r) ∝ |〈P (3)〉|2

∝ exp(−2α1|τ |)
(Γa

10)2 + (Δa
1)2

(
1
Γ0

+
1
Γ1

)2

+
(ξ2 − 1)4|η|2 exp(−2α2|τ |)

[(Γa
20)2 + (Δa

2)2]2
+

(ξ2 − 1)2 exp[−(α1 + α2)|τ |]{q exp[−i(Δk · r − (ω2 + ω1)τ)] +
q∗ exp[i(Δk · r − (ω2 + ω1)τ)]}, (2.81)

q =
(
1
Γ0

+
1
Γ1

)
η

(Γa
10 − iΔa

1)(Γa
20 + iΔa

2)2
. (2.82)

Therefore, the one-photon DFWM signal (the first term of Eq. (2.81)) has
resonance at Δa

1 = 0 with linewidth 2Γa
10, while the two-photon NDFWM

signal has resonance at Δa
2 = 0 with linewidth 2(

√
2 − 1)

1/2
Γa

20. The ASPB
with narrow band light is again a Doppler-free precision spectroscopy. This
result is consistent with Eq. (2.68). The second-order correlation ASPB signal
intensity also is modulated with the frequency ω2 + ω1 as τ is varied.

We now consider the temporal behavior of the second-order ASPB signal
intensity when laser beams are broadband so that α1 >> Γ10 and α2 >> Γ20.
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In this case, the ASPB signal rises to its maximum quickly and then decays
with time constant mainly determined by the transverse relaxation times of
the system. Although the ASPB signal modulation is complicated in general,
at the tail of the signal (i.e., α1|τ | >> 1 or α2|τ | >> 1) we have:

(i) τ < 0 and α2|τ | >> 1

I(τ, r) ∝ |〈P (3)〉|2 ∝ |B7|2 exp(−2α1|τ |) + |ηB8|2 exp(−2Γa
20|τ |) +

exp[−(α1 + Γa
20)|τ |]{B∗7ηB8 exp[−i(Δk · r − (Ω2 + ω1 + ξ2Δ3)τ)] +

B7η
∗B∗8 exp[i(Δk · r − (Ω2 + ω1 + ξ2Δ3)τ)]}. (2.83)

(ii) τ > 0 and α1|τ | >> 1

I(τ, r) ∝ |〈P (3)〉|2 ∝ |B9|2 exp(−2Γa
10|τ |) + |ηB10|2 exp(−2α2|τ |) +

exp[−(Γa
10 + α2)|τ |]{B∗9ηB10 exp[−i(Δk · r−(ω2+Ω1+ξ1Δ3)τ)]+

B9η
∗B∗10 exp[i(Δk · r − (ω2 +Ω1 + ξ1Δ3)τ)]}. (2.84)

Here,

B7 =
(
1
Γ0

+
1
Γ1

)
1

α1 + Γa
10 + iΔa

1

,

B8 = 2α2(ξ2 − 1)2
|τ |[α2

2 − (Γa
20 + iΔa

2)
2]− 2(Γa

20 + iΔa
2)

[α2
2 − (Γa

20 + iΔa
2)2]2

;

B9 =
(
1
Γ0

+
1
Γ1

)
2α1

α2
1 − (Γa

10 + iΔa
1)2

,

B10 =
(ξ2 − 1)2

(Γa
20 + iΔa

2 + α2)2
.

Relation (2.83) or (2.84) consists of three terms. In Eq. (2.83), the first
term with factor exp(−2α1|τ |) and second term with factor exp(−2Γa

20|τ |) are
one-photon nonresonance DFWM and two-photon resonance NDFWM auto-
correlation terms, respectively, while the third term is one-photon nonreso-
nance DFWM and two-photon resonance NDFWM cross-correlation terms;
In Eq. (2.84), the first term with factor exp(−2Γa

10|τ |) and second term with
factor exp(−2α2|τ |) are one-photon resonance DFWM and two-photon non-
resonance NDFWM auto-correlation terms, respectively, while the third term
is one-photon resonance DFWM and two-photon nonresonance NDFWM
cross-correlation term. Ulness et al. [38] directly observed the resonant–
nonresonant cross-term contribution to coherent Raman scattering of quasi-
continuous-wave noisy light in molecular liquids.

Equations (2.83) and (2.84) are basically consistent with Eqs. (2.72) and
(2.73) which all show resonant and nonresonant terms cross interference and
give rise to modulation frequencies Ω2 + ω1 and ω2 + Ω1, respectively. It
is interesting that the broadband τ < 0 result in Eqs. (2.72) and (2.73) is
different with that of the femtosecond difference-frequency polarization beats
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[44, 45]. In the FDPB, the requirement for the existence of a τ -dependent
beat signal for τ < 0 is that the phase-correlated subpulses in beams 1 and 2
are overlapped temporally. Since beams 1 and 2 are mutually coherent, the
temporal behavior of beat signals should coincide with the case when the
beams 1 and 2 are nearly monochromatic in the FDPB [28].

It is interesting to understand the underlying physics in the ASPB with
broadband nontransform limited quasi-cw (noisy) lights [19]. Much attention
has been paid to the study of various ultrafast phenomena by using incoherent
light sources recently [35 – 41]. The beams 1 and 2 have broadband linewidths
so the beams can be modeled as a sequence of short, phase-incoherent sub-
pulses of duration τc, where τc is the laser coherence time [19]. For the phase
matching condition k1−k′1+k3 the three-pulse stimulated photon-echo exists
for the perturbation chains (I) and (III). For the phase matching condition
k′2 − k2 + k3 the sum-frequency trilevel echo exists for the perturbation the
chain (V) [52]. The broadband limit (τc ≈ 0) corresponds to “white” noise,
noise characterized by a δ-function correlation time or it possesses a constant
spectrum. So the second-order correlation function can be approximated as
Eq. (2.21) by a δ function.

Under the Doppler-broadened limit (i.e., k3u→∞) and laser broadband
limit (i.e., αi → ∞) approximations, we substitute Eqs. (2.74), (2.76), and
(2.46) into Eqs. (2.55), (2.57), and (2.59) we obtain as follows,

〈P (I)〉 = 4
√
π

k3uα1
S1(r) exp[−i(ω3t+ ω1τ )]×∫ ∞

0

dt3
∫ ∞

0

dt2
∫ ∞

0

dt1δ(t3 − ξ1t1)δ(t1 − τ)×
exp[−(Γ10 + iΔ3)t3 − Γ0t2 − (Γ10 + iΔ1)t1], (2.85)

〈P (III)〉 = 4
√
π

k3uα1
S1(r) exp[−i(ω3t+ ω1τ )]×∫ ∞

0

dt3
∫ ∞

0

dt2
∫ ∞

0

dt1δ(t3 − ξ1t1)δ(t1 − τ)×
exp[−(Γ10 + iΔ3)t3 − Γ1t2 − (Γ10 + iΔ1)t1], (2.86)

〈P (V)〉 = 4
√

π

k3uα2
S2(r) exp[−i(ω3t− ω2)τ ]×∫ ∞

0

dt3
∫ ∞

0

dt2
∫ ∞

0

dt1δ[t3 + t1 − (ξ2 − 1)t2]δ(t2 + τ)×
exp[−(Γ10 + iΔ3)(t1 + t3)− (Γ20 + iΔ2 + iΔ3)t2]. (2.87)

Equation (2.87) can be explained as follows (see Eq. (2.48) also): The
optical polarization induced by A3 at time t − t1 − t2 − t3 exhibits damp-
ing oscillation in a time interval t1 with decay rate Γ10 and frequency Δ3 in
rotating frame. It then interacts with A′2 at time t − t2 − t3; as a result, a
two-photon coherence from |0〉 to |2〉 is induced. The two-photon coherence
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undergoes damping oscillation with decay rate Γ20 and frequency Δ2 + Δ3.
After time t2, beam 2 probes the two-photon coherence at time t − t3 and
induces a polarization that is responsible for NDFWM signals. We are in-
terested in NDFWM signals at time t, which is t3 after the application of
beam 2. Here again the polarization exhibits damping oscillation in the time
interval t3 with decay rate Γ10 and frequency Δ3. Now, as a result of the dis-
tribution of resonant frequencies in an inhomogeneously broadened system,
the dipoles induced by A3 at t−t1−t2−t3 will soon run out of phase with one
another. The dephased dipoles can be rephased after the application of beam
2, and the sum-frequency trilevel echo will appear [52]. From Eq. (2.87), the
sum-frequency trilevel echo occurs at time t when t3+t1 = (ξ2−1)t2. Because
t3 � 0, t1 � (ξ2 − 1)t2 is required. We consider the case that beams 1 and 2
have broadband linewidths so beams can be modeled as a sequence of short,
phase-incoherent subpulses of duration τc, where τc is the laser coherence
time. Although NDFWM signals can be generated by any pair of subpulses
in beams 1 and 2, only those pairs that are phase correlated give rise to the
τ -dependence of NDFWM signals. When the beam 1 is delayed with respect
to the beam 2 by Ep2, the time duration t2 between the phase-correlated
subpulses in beams 1 and 2 should be equal to−τ . The total third-order po-
larization is the accumulation of the polarization induced at different times.
Because the sum-frequency trilevel echo occurs only when t1 � (ξ2 − 1)t2, or
t1 � −(ξ2−1)τ in our case, the integration of t1 in Eq. (2.87) is restricted to a
region from 0 to−(ξ2−1)τ . The increase of the integration region of t1 with |τ |
leads to the initial increase of resonant NDFWM signals [see the second term
of Eq. (2.83)]. After that, the decay of the two-photon coherence becomes
dominant; as a result, the NDFWM signal decays with further increasing |τ |.
This process is different from that of the incoherent-light three-pulse stimu-
lated photon echo [28], for which the maximum of resonant DFWM signals
occurs at τ ≈ 0 [see the first term of Eq. (2.84)].

The ASPB signal intensity is:
(i) τ < 0 and α2 →∞

I(τ, r) ∝ |〈P (3)〉|2 ∝ |B7|2 exp(−2α1|τ |) + |ηB11|2 exp(−2Γa
20|τ |) +

exp[−(α1 + Γa
20)|τ |]{B∗7ηB11 exp[−i(Δk · r − (Ω2 + ω1 +

ξ2Δ3)τ)] +B7η
∗B∗11 exp[i(Δk · r − (Ω2 + ω1 + ξ2Δ3)τ)]}. (2.88)

(ii) τ > 0 and α1 →∞
I(τ, r) ∝ |〈P (3)〉|2 ∝ |B12|2 exp(−2Γa

10|τ |) + |ηB10|2 exp(−2α2|τ |) +
exp[−(Γa

10 + α2)|τ |]{B∗12ηB10 exp[−i(Δk · r−(ω2+Ω1+ξ1Δ3)τ)]+
B12η

∗B∗10 exp[i(Δk · r − (ω2 +Ω1 + ξ1Δ3)τ)]}. (2.89)

Here, B11 =
2(ξ2 − 1)|τ |

α2
, B12 =

(
1
Γ0

+
1
Γ1

)
2
α1
.

As we mentioned above, in the case of broadband incident beams, unlike
the corresponding one-photon resonant DFWM [the first term of Eq. (2.83)
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or (2.89)], the dephasing and rephrasing processes in an inhomogeneously
broadened system cause the maximum of two-photon resonant NDFWM [the
second term of Eq. (2.82) or (2.88)] signals to shift from zero time delay.

2.2.3 Fourth-order Stochastic Correlation of ASPB

For the macroscopic system where phase matching takes place this signal
must be drawn from the P (3) developed on one chromophore multiplied by
the(P (3))∗ that is developed on another chromophore which must be located
elsewhere in space (with summation over all such pairs) [35 – 41]. In general,
the signal is homodyne (quadrature) detected. This means that the signal at
the detector is derived from the squared modulus of the sum of all of the
fields that are generated from the huge number of polarized chromophores
in the interaction volume. The sum over chromophores leads to the phase-
matching condition at the signal level and its square modulus (the homodyne
detected signal) is fully dominated by the bichromophoric cross terms. Thus
the quadrature detected signal is effectively built from the products of all po-
larization fields derived from all pairs of chromophores. This bichromophoric
model is particularly important to the noisy light spectroscopies where the
stochastic averaging at the signal level must be carried out [35 – 41].

It is important to note that these three types of Markovian stochastic
fields can have the same spectral density and thus the same second-order
coherence function. The fundamental differences in the statistics of these
fields are manifest only in the higher-order coherence functions. The term
“higher order” refers to all orders larger than the second. In this section,
different stochastic models of the noisy laser field only affect the fourth-order
coherence function.

The ASPB signal is proportional to the average of the absolute square of
P (3) over the random variable of the stochastic process, so that the signal
intensity

I(τ, r) ∝ 〈|P (3)|2〉 = 〈P (3)(P (3))∗〉
= 〈(P (I) + P (II) + P (III) + P (IV) + P (V))
[(P (I))∗ + (P (II))∗ + (P (III))∗ + (P (IV))∗ + (P (V))∗]〉

contains 5 × 5 = 25 different terms in the fourth- and second-order coher-
ence function of ui(t) in phase conjugation geometry. While the ASPB signal
intensity in self-diffraction geometry is related to the sixth-order coherence
function of the incident fields [42]. We first assumed that the laser sources
are chaotic fields. A chaotic field, which is used to describe a multimode laser
source, is characterized by the fluctuation of both the amplitude and phase
of the field. The random functions ui(t) of the complex noisy fields are taken
to obey complex circular Gaussian statistics with its fourth-order coherence
function satisfying [6, 7] Eq. (2.9).
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All higher order coherence functions can be expressed in terms of prod-
ucts of second-order coherence functions. Thus any given 2n order coherence
function may be decomposed into the sum of n! terms, each consisting of the
products of n second-order coherence function.

For simplicity, we neglect the Doppler effect. We first consider the case
that the laser source is a narrow band so that α1, α2 << Γ10,Γ20 (homoge-
neous broadening dominant case). The composite noisy beam 1 (beam 2) is
treated as one whose spectrum is simply a sum of two Lorentzians. According
to Eq. (2.9) and tail approximation (i.e., Γ10|τ | >> 1 and Γ20|τ | >> 1), the
ASPB signal intensity in fourth-order stochastic correlation then becomes for
both τ > 0 and τ < 0,

I(τ, r) ∝ 〈|P (3)|2〉 ∝ B13 + |η|2B14 + |B15|2 exp(−2α1|τ |) +
|ηB16|2 exp(−2α2|τ |) + exp[−(α1 + α2)|τ |] +
{ηB17 exp[−i(Δk · r − (ω2 + ω1)τ)] +
η∗B∗17 exp[i(Δk · r − (ω2 + ω1)τ)]}. (2.90)

Here,

B13 =
Γ10 + Γ20

2Γ10(Γ2
10 −Δ2

3)2[(Δ2 +Δ3)2 − Γ2
20]

,

B15 =
Γ10(Γ0 + Γ1)

(Γ10 + iΔ3)(Γ2
10 −Δ2

1)Γ0Γ1
,

B16 =
1

(Γ10 + iΔ3)2[i(Δ2 +Δ3)− Γ20]
,

B17 =
Γ0 + Γ1

Γ0Γ1(Γ10 − iΔ3)(Δ2
3 − Γ2

10)(iΔ1 + Γ10)(iΔ2 + iΔ3 − Γ20)
,

B14 =
2α1Γ2

10

(Γ2
10 +Δ2

1)2(Γ2
0 − 4α2

1)(Γ2
1 − 4α2

1)

[
(Γ0 + Γ1)2 − 16α2

1

2α1(Γ2
10 +Δ2

3)
−

(2Γ0 + Γ1)(Γ2
1 − 4α2

1)
(Γ0 + Γ10)Γ10Γ0(Γ0 + Γ1)

− (Γ0 + 2Γ1)(Γ2
0 − 4α2

1)
(Γ1 + Γ10)Γ10Γ1(Γ0 + Γ1)

]
.

The constants Bi mainly depend on typical parameters: a short correlation
of the light, rapid dephasing rate, and a relatively long excited-state lifetime.

Relation (2.90) consists of five terms. The first and third terms are de-
pendent on the u1(t) fourth-order coherence function for the nonresonant
DFWM, while the second and fourth terms are dependent on the u2(t) fourth-
order coherence functions for the nonresonant NDFWM. The first and second
terms originating from the amplitude fluctuation of the chaotic field are inde-
pendent of the relative time-delay τ . The third and fourth terms indicate an
exponential decay of the ASPB signal as |τ | increases. The fifth term depend-
ing on the u1(t) or u2(t) second-order coherence functions gives nonresonant
DFWM and nonresonant NDFWM cross interference with a modulation fre-
quency ω2 + ω1 and a decaying rate α1 + α2.
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Equation (2.90) indicates that ASPB signal oscillates not only temporally
but also spatially with a period 2π/Δk along the direction Δk, which is
almost perpendicular to the propagation direction of beat signals, here Δk ≈
2π|λ1 − λ2|θ/λ2λ1, θ is the angle between beam 1 and beam 2. Physically, the
polarization-beat model assumes that both the pump beams are plane waves.
Therefore, DFWM and NDFWM, which propagate along ks1 = k1−k′1+k3

and ks2 = k′2 − k2 + k3, respectively, are plane waves also. Since DFWM
and NDFWM propagate along a slightly different direction, the interference
between them leads to the spatial oscillation, which should be detected by a
pinhole detector. Equation (2.90) also indicates that ASPB signal modulates
temporally with a frequency ω2 + ω1 as τ is varied. In this case that ω1

and ω2 are tuned to the resonant frequencies of the transitions from |0〉 to
|1〉 and from |1〉 and |2〉, respectively, then the modulation frequency equals
Ω2+Ω1. In the other words, we can obtain sum-frequency beating between the
resonant frequencies of a cascade three-level system. A Doppler-free precision
can be achieved in the measurement of Ω2 +Ω1 [13, 14].

We now consider the case that the laser sources are broadband so that
α1, α2 >> Γ10,Γ20 >> Γ0,Γ1. In inhomogeneous broadening case, the ASPB
signal rises to its maximum quickly and then decays with time constant
mainly determined by the transverse relaxation times of the atomic system.

(i) τ < 0, α1|τ | >> 1 and α2|τ | >> 1

I(τ, r) ∝ 〈|P (3)|2〉 ∝ B13 + |η|2B14 + |B18|2 exp(−2Γ10|τ |) +
|ηB19|2 exp(−2Γ20|τ |) + exp[−(Γ10 + Γ20)|τ |] ×
{ηB17 exp[−i(Δk · r − (Ω2 +Ω1 +Δ3)τ)] +
η∗B∗17 exp[i(Δk · r − (Ω2 +Ω1 +Δ3)τ)]}. (2.91)

(ii) τ > 0 and α1|τ | >> 1

I(τ, r) ∝ 〈|P (3)|2〉 ∝ B13 + |η|2B14 + |B18|2 exp(−2Γ10|τ |) +
|ηB16|2 exp(−2α2|τ |) + exp[−(Γ10 + α2)|τ |] ×
{ηB17 exp[−i(Δk · r − (ω2 +Ω1)τ)] +
η∗B∗17 exp[i(Δk · r − (ω2 +Ω1)τ)]}. (2.92)

Here,

B18 =
2α1(Γ0 + Γ1)

(Γ10 + iΔ3)(Γ10 + iΔ1)2Γ0Γ1
,

B19 =
2α2

(iΔ2
3 − Γ2

10)[α2
2 + (Δ2 +Δ3)2]

.

The crossed correlation with a decay factor exp[−(Γ10+α2)|τ |] produced
from twin composite stochastic fields display features on the time scale sig-
nificantly shorter than the autocorrelation with a decay factor exp(−2Γ10|τ |)
produced from single color stochastic fields in Eq. (2.92).
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The ASPB signal can be calculated in the extremely Doppler broadened
limit. We can obtain the stochastic averaging of the mod square of the total
third-order polarization

I(τ, r) ∝ 〈|P (3)|2〉 = 〈|P (I) + P (III) + P (V)|2〉. (2.93)

We first consider the case that the laser sources are narrow band so that
α1 << Γ10 and α2 << Γ20. In homogeneous broadening case, after tail ap-
proximation (i.e., Γ10|τ | >> 1 and Γ20|τ | >> 1) we have the for both τ > 0
and τ < 0.

PR1 = NαRI(τ, r) ∝ 〈|P (3)|2〉 ∝ |η|2B20 +B21 + |B22|2 exp(−2α1|τ |) +
|ηB23|2 × exp(−2α2|τ |) + exp[−(α1 + α2)|τ |] ×
{B∗22ηB23 exp[−i(Δk · r − (ω2 + ω1)τ)] +
B22η

∗B∗23 exp[i(Δk · r − (ω2 + ω1)τ)]}. (2.94)

Here,

B20 =
(ξ2 − 1)3

2

{
Γ10(ξ2 − 1) + [Γ10(ξ2

2 − 1) + Γ20](ξ2 − 2)
Γ10(Γa

20 − Γ10)4

}
,

B21 =
1

Γ0(Γ0 + 2α2)[(Γa
20)2 + (Δa

2)2]
,

B22 =
Γ0 + Γ1

Γ0Γ1(Γa
10 + iΔa

1)
,

B23 =
(ξ1 − 1)2

(iΔ2 + iΔ3ξ2 − Γa
20 + Γ10)2

.

This equation is consistent with Eq. (2.90).
We now consider the case that the laser sources are broadband so that

α1, α2 >> Γ10,Γ20. In inhomogeneous broadening case, the ASPB signal
rises to its maximum quickly and then decays with time constant mainly
determined by the transverse relaxation times of the system. Although the
ASPB signal modulation is complicated in general, at the tail of the signal
(i.e., α1|τ | >> 1 or α2|τ | >> 1) we have:

(i) τ < 0 and α2|τ | >> 1

I(τ, r) ∝ 〈|P (3)|2〉 ∝ B24 + |η|2B25 +B26 exp(−2α1|τ |) +
|η|2B25 exp(−2Γa

20|τ |) + exp[−(α1 + Γa
20)|τ |]×

{ηB27 exp[−i(Δk · r − (Ω2 + ω1 + ξ2Δ3)τ)] +
η∗B∗27 exp[i(Δk · r − (Ω2 + ω1 + ξ2Δ3)τ)]}. (2.95)

(ii) τ > 0 and α1|τ | >> 1

I(τ, r) ∝ 〈|P (3)|2〉 ∝ B24 + |η|2B25 +B26 exp(−2Γa
10|τ |) +

|η|2B25 exp(−2α2|τ |) + exp[−(Γa
10 + α2)|τ |]×

{ηB27 exp[−i(Δk · r − (ω2 +Ω1 + ξ1Δ3)τ)] +
η∗B∗27 exp[i(Δk · r − (ω2 +Ω1 + ξ1Δ3)τ)]}. (2.96)
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Here,

B24 =
9(ξ2 − 1)2

4α2
2Γ10Γa

20

,

B25 =
4(ξ2 − 1)4

[(Δ2 +Δ3)2 − α2
2]α

2
2

,

B26 =
(Γ0 + Γ1)2

Γ2
0Γ

2
1[(Δ

a
1)2 + α2

1]
,

B27 =
2|τ |α2(ξ2 − 1)[(Δa

2)
2 + α2

2](Γ0 + Γ1)
(α2 − iΔa

2)4Γ0Γ1(α1 − iΔa
1)

.

Relations (2.95) and (2.96) all consist of five terms. The first and third
terms are dependent on the u1(t) fourth-order coherence function for DFWM,
while the second and fourth terms are dependent on the u2(t) fourth-order
coherence functions for NDFWM. The first and second terms originating from
the amplitude fluctuation of the chaotic field are independent of the relative
time-delay τ . The third and fourth terms indicate an exponential decay of the
ASPB signal as |τ | increases. The fifth term depending on the u1(t) or u2(t)
second-order coherence functions gives rise to the sum-frequency modulation
of ASPB signals. Equation (2.95) shows nonresonant DFWM and resonant
NDFWM cross interference and gives rise to modulation frequencies Ω2+ω1,
while Eqation (2.96) shows resonant DFWM and nonresonant NDFWM cross
interference and gives rise to modulation frequencies ω2 + Ω1. In this case,
the precision of using ASPB to measure Ω2 + Ω1 is determined by how well
ω1 or ω2 can be tuned to Ω1 or Ω2, respectively. ASPB with broadband light
is again a Doppler-free precision spectroscopy.

The chaotic field fourth-order correlation ASPB signal can be calculated
under Doppler and broadband limit. The broadband limit (τc ≈ 0) cor-
responds to “white” noise, noise characterized by a δ-function correlation
time or, alternatively, it possesses a constant spectrum. Under the extremely
Doppler-broadened limit (i.e., k3u → ∞) and laser broadband limit (i.e.,
αi → ∞) approximations, we obtain the stochastic averaging of the mod
square of the total third-order polarization as follows:

(i) τ < 0 and α2 →∞
I(τ, r) ∝ 〈|P (3)|2〉 ∝ |B28|2 + |ηB29|2 +B26 exp(−2α1|τ |) +

|ηB30|2 exp(−2Γa
20|τ |) + exp[−(α1 + Γa

20)|τ |] ×

{B
1
2
26ηB30 exp[−i(Δk · r − (Ω2 + ω1 + ξ2Δ3)τ)] +

B
1
2
26η

∗B∗30 exp[i(Δk · r − (Ω2 + ω1 + ξ2Δ3)τ)]}. (2.97)

(ii) τ > 0 and α1 →∞
I(τ, r) ∝ 〈|P (3)|2〉 ∝ |B28|2 + |ηB29|2 + |B31|2 exp(−2Γa

10|τ |) +
|η|2B25 exp(−2α2|τ |) + exp[−(Γa

10 + α2)|τ |]×
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{B31ηB
1
2
25 exp[−i(Δk · r − (ω2 +Ω1 + ξ1Δ3)τ)] +

B31η
∗B

1
2
25 exp[i(Δk · r − (ω2 +Ω1 + ξ1Δ3)τ)]}. (2.98)

Here,

B28 =
Γ2

0 + 6Γ0Γ1 + Γ2
1

4Γ0Γ1(Γ0 + Γ1)Γa
10

,

B29 =
(ξ2 − 1)2

4Γa
20[(ξ2 − 1)Γ0 + Γ20]

,

B30 =
2|τ |
α2

(ξ2
2 + 1)1/2,

B31 =
(Γ0 + Γ1)2

Γ2
0Γ

2
1

.

The crossed correlation with a decay factor exp[−(α1 + Γa
20)|τ |] produced

from twin composite stochastic fields display features on the time scale sig-
nificantly shorter than the autocorrelation with a decay factor exp(−2Γa

20|τ |)
produced from single color stochastic fields in Eq. (2.97). By contrast, the
crossed correlation with a decay factor exp[−(Γa

10 + α2)|τ |] produced from
twin composite stochastic fields display features on the time scale signifi-
cantly shorter than the autocorrelation with a decay factor exp(−2Γa

10|τ |)
produced from single color stochastic fields in Eq. (2.98).

We have assumed that the laser sources are chaotic field in the above cal-
culation. A chaotic field, which is used to describe a multimode laser source,
is characterized by the fluctuation of both the amplitude and the phase of the
field. Another commonly used stochastic model is a phase-diffusion model,
which is used to describe an amplitude-stabilized laser source. This model
assumes that the amplitude of laser fields is a constant, while its phase fluc-
tuates as a random process caused by spontaneous emission. If the lasers have
Lorentzian line shape, the fourth-order coherence function are [6, 7].

〈ui(t1) ui (t2)u∗i (t3)u
∗
i (t4)〉

= exp[−αi(|t1 − t3|+ |t1 − t4|+ |t2 − t3|+ |t2 − t4|)]×
exp[αi(|t1 − t2|+ |t3 − t4|)]. (2.99)

The fourth-order correlation ASPB signal of a phase-diffusion model can
be calculated under Doppler (i.e., k3u → ∞) and broadband limit (i.e.,
αi → ∞). We can obtain the stochastic averaging of the mod square of the
total third-order polarization in the limit of pure inhomogeneous broadening
approximations, as follows:
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(i) τ < 0, α1 →∞ and α2 →∞
I(τ, r) ∝ 〈|P (3)|2〉 ∝ B26 exp(−2α1|τ |) + |ηB32|2 exp(−2Γa

20|τ |) +

exp[−(α1 + Γa
20)|τ |]

{
B

1
2
26ηB32 exp[−i(Δk · r −

(Ω2 + ω1 + ξ2Δ3)τ)] +B
1
2
26η

∗B∗32 exp[i(Δk · r −
(Ω2 + ω1 + ξ2Δ3)τ)]

}
. (2.100)

(ii) τ > 0, α1 →∞ and α2 →∞
I(τ, r) ∝ 〈|P (3)|2〉 ∝ B33 exp(−2Γa

10|τ |) + |η|2B25 exp(−2Γa
20|τ |) +

exp[−(Γa
10 + Γa

20)|τ |]
{

B
1
2
33ηB

1
2
25 exp[−i(Δk · r −

(Ω2 +Ω1(ξ2 + ξ1)Δ3)τ)] +B
1
2
33η

∗B
1
2
25 exp[i(Δk · r −

(Ω2 +Ω1 + (ξ2 + ξ1)Δ3)τ)]
}

. (2.101)

Here,

B32 =
2|τ |
α2

(ξ2 − 1),

B33 =
(Γ0 + Γ1)2

α2Γ2
0Γ

2
1

.

Relations (2.100) and (2.101) all consist of three terms. The first term
is dependent on the u1(t) fourth-order coherence function for DFWM, while
the second term is dependent on the u2(t) fourth-order coherence functions
for NDFWM. The first and second terms indicate an exponential decay of
beat signals as |τ | increases. The third term depending on the u1(t) and
u2(t) second-order coherence functions gives rise to the sum-frequency mod-
ulation of ASPB signals. This case is somehow similar to the results of the
second-order stochastic correlation of ASPB in Section 2.2.2, in which the τ -
independent part contribution has been ignored. Therefore, the fourth-order
stochastic correlation of chaotic fields is of vital importance in ASPB. Equa-
tion (2.100) shows a nonresonant DFWM and a resonant NDFWM cross
interference and gives a rise to modulation frequencies Ω2 + ω1, while Eq.
(2.101) shows a resonant DFWM and a resonant NDFWM cross interference
and gives rise to modulation frequencies Ω2 +Ω1.

The Gaussian-amplitude field has a constant phase but its real amplitude
undergoes Gaussian fluctuations. If the lasers have Lorentzian line shape, the
fourth-order coherence function is [6, 7]

〈ui(t1)ui(t2)ui(t3)ui(t4)〉
= 〈ui(t1)ui(t3)〉〈ui(t2)ui(t4)〉+ 〈ui(t1)ui(t4)〉〈ui(t2)ui(t3)〉+
〈ui(t1)ui(t2)〉〈ui(t3)ui(t4)〉. (2.102)
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The fourth-order correlation ASPB signal of Gaussian-amplitude model
can be calculated under Doppler (i.e., k3u → ∞) and broadband limit (i.e.,
αi → ∞). We can obtain the stochastic averaging of the mod square of the
total third-order polarization in the limit of pure inhomogeneous broadening,
as follows:

(i) τ < 0, α1 →∞ and α2 →∞

I(τ, r) ∝ 〈|P (3)|2〉 ∝ |B28|2 +
[ |η|2(ξ2 − 1)

α2
2(Γa

20)2
+ |ηB29|2

]
+

B33 exp(−2Γa
10|τ |) + |ηB32|2 exp(−2Γa

20|τ |) +

exp[−(Γa
10 + Γa

20)|τ |]{B
1
2
33ηB32 exp[−i(Δk · r −

(Ω2 +Ω1 + (ξ2 + ξ1)Δ3)τ)] +B
1
2
33η

∗B∗32 +
exp[i(Δk · r − (Ω2 +Ω1 + (ξ2 + ξ1)Δ3)τ)]}. (2.103)

(ii) τ > 0, α1 →∞ and α2 →∞

I(τ, r) ∝ 〈|P (3)|2〉 ∝
[
|B28|2 + ξ1 − 1

α2
1(Γa

10)2

]
+ |ηB29|2 +

B33 exp(−2Γa
10|τ |) + |ηB32|2 exp(−2Γa

20|τ |) +

exp[−(Γa
10 + Γa

20)|τ |]{B
1
2
33ηB32 exp[−i(Δk · r −

(Ω2 +Ω1 + (ξ2 + ξ1)Δ3)τ)] +B
1
2
33η

∗B∗32
exp[i(Δk · r − (Ω2 +Ω1 + (ξ2 + ξ1)Δ3)τ)]}. (2.104)

Relations (2.103) and (2.104) all consist of five terms. The first and third
terms are dependent on the u1(t) fourth-order coherence function for the
DFWM, while the second and fourth terms are dependent on the u2(t)
fourth-order coherence functions for NDFWM. The first and second terms
originating from the amplitude fluctuation of the Gaussian-amplitude field
are independent of the relative time-delay τ . The third and fourth terms indi-
cate an exponential decay of the ASPB signal as |τ | increases. The fifth term
depending on the u1(t) and u2(t) second-order coherence functions gives rise
to the sum-frequency modulation of ASPB signals. Equations (2.103) and
(2.104) all shows a one-photon resonant DFWM and a two-photon resonant
NDFWM cross interference with a modulation frequency Ω2+Ω1+(ξ2+ξ1)Δ3.
The overall accuracy of using the ASPB with broadband lights to measure
the sum-frequency of energy-levels Ω2 + Ω1 is limited by the homogeneous
linewidths π(Γa

10 + Γa
20) [13, 14].

Figure 2.17 indicates that homodyne detected ASPB signal oscillates not
only temporally with an ultrafast period 2π/|Ω2 +Ω1| = 900 as [Fig. 2.12 (a)]
but also spatially with a period Ω2+Ω12π/Δk = 0.124 mm along the direction
Δk, which is almost perpendicular to the propagation direction of ASPB
signals. The three-dimensional plot (time-spatial interferogram) of the ASPB
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signal intensity I(τ, r) versus time delay τ and transverse distance r has the
larger constant background caused by the intensity fluctuation of the chaotic
field. At zero relative time delay (τ = 0), the twin beams originating from the
same source enjoy perfect overlap at the sample of their corresponding noise
patterns. This gives maximum interferometric contrast. As |τ | is increased,
the interferometric contrast diminishes on the time scale that reflects material
no frictional memory, usually much longer than the correlation time of the
light [41]. The advantage of the ASPB is that the ultrafast modulation period
2π/|Ω2 +Ω1| = 900 as with a Doppler-free precision can still be improved,
because the energy-level interval between ground state |0〉 and excited state
|2〉 can be widely separated. The experiment of the ASPB is now underway
in our group.

Fig. 2.17. (a) A three dimensional plot (time-spatial interferogram) of the ASPB
signal intensity I(τ, r) versus time delay τ and transverse position r for the chaotic
field. The intensity (displayed on the vertical axis) has been normalized to unit. The
parameters are Ω2 + Ω1 = 6.978 fs−1,Δk = 50.84 mm−1, α1 = 0.136 fs−1, α2 =
0.19 fs−1,Γa

10 = 1.35×10−2 fs−1,Γa
20 = 1.45×10−2 fs−1,Γ0 = 1.35×10−3 fs−1,Γ1 =

1.45 × 10−3 fs−1, η = 1, ξi = 1.5,Δi = 0, Bi = 0.4. (b) A projection of the three-
dimensional interferogram of the ASPB.

Figure 2.18 presents the ASPB signal intensity versus relative time delay.
The three curves represent the chaotic field (dashed line), phase-diffusion field
(dotted line), and Gaussian-amplitude field (solid line). The sum-frequency
polarization beat signal is shown to be particularly sensitive to the statistical
properties of Markovian stochastic light fields with arbitrary bandwidth. This
is quite different from fourth-order partial-coherence effects in the formation
of integrated-intensity gratings with pulsed light sources [25]. Their results
proved to be insensitive to specific radiation models. The τ -independent con-
tribution of ASPB signals for a Gaussian-amplitude field or a chaotic field
is much larger than that of signals for a phase-diffusion field in Fig. 2.18.
The physical explanation for this is that the Gaussian-amplitude field under-
goes stronger intensity fluctuations than a chaotic field. On the other hand,
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the intensity (amplitude) fluctuations of the Gaussian-amplitude field or the
chaotic field are always much larger than the pure phase fluctuations of the
phase-diffusion field. In Fig. 2.18, the field correlation has weakly influenced
on ASPB signals when the laser has a narrow bandwidth. In contrast, the sen-
sitivities of the ASPB signal intensity to three Markovian stochastic models
increase as time delay is increased when the laser has broadband linewidth.

Fig. 2.18. The ASPB signal intensity versus relative time delay. The three curves
represent the chaotic field (dashed line), phase-diffusion field (dotted line), and
Gaussian-amplitude field (solid line). The parameters are taken as Ω2 + Ω1 =
6.978 fs−1, r = 0, η = 1, ξi = 1.5,Δi = 0, Bi = 0.4,Γa

10 = 1.35 × 10−2 fs−1,Γa
20 =

1.45× 10−2 fs−1,Γ0 = 1.35× 10−3 fs−1,Γ1 = 1.45× 10−3 fs−1, while α1 = 2.715×
10−5 fs−1, α2 = 3.793 × 10−5 fs−1 for (a) and α1 = 0.2715 fs−1, α2 = 0.3793 fs−1

for (b).

The main purpose of the above discussion is that we reveal an impor-
tant fact that the amplitude fluctuation plays a critical role in the temporal
behavior of ASPB signals. Furthermore, the different roles of the phase fluc-
tuation and amplitude fluctuation have been pointed out in the time domain.
This is quite different from the time delayed FWM with incoherent light in
a two-level system [19]. For the latter case, the phase fluctuation of the light
field is crucial. But the ASPB is analogous to Raman enhanced polarization
beats [26, 46]. The amplitude fluctuation of the light field is also crucial in the
Raman enhanced polarization beats. On the other hand, due to 〈ui(t)〉 = 0
and 〈u∗i (t)〉 = 0, the absolute square of the stochastic average of the po-
larization |〈P (3)〉|2, which involves second-order coherence function of ui(t),
cannot be used to describe the temporal behavior of the ASPB [45]. The
second-order coherence function theory is valid when we are only interested
in the τ -dependent part of the attosecond sum-frequency beating signal. In
this point, it is somehow similar to the four-order stochastic correlation of
the phase-diffusion model. Inasmuch as the one-photon DFWM of the ASPB
is similar to the case of the FDPB [28], here we shall mainly concentrate
on the two-photon NDFWM in the ASPB. In the case of broadband incident
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beams, unlike the corresponding one-photon resonant DFWM, the dephasing
and rephrasing processes in an inhomogeneously broadened system cause the
maximum of two-photon resonant NDFWM signals to shift from zero time
delay. Figure 2.19 denotes the comparisons of two-photon NDFWM autocor-
relation signal intensities for three Markovian stochastic models and second-
order correlation approximation treatments. The maximum of the two-photon
resonant NDFWM autocorrelation signal occurs at τ = −1/Γa

20 = −2.63 fs
in the extremely Doppler-broadened limit, which is quite different with that
of FDPB [45]. The application of higher-order stochastic correlation results
to the FDPB experiment yielded a better fit to data than an expression
involving only second-order coherence [12, 22]. Therefore, the fourth-order
coherence function theory is of vital importance in ASPB.

Fig. 2.19. Two-photon resonant NDFWM auto-correlation signal versus relative
time delay when beams 1 and 2 consist of only ω2 frequency component. The
four curves represent the fourth-order correlation for chaotic field (dashed line),
phase-diffusion field (dotted line), Gaussian-amplitude field (solid line), and the
second-order auto-correlation curve (dashed dot line), respectively. The parameters
are taken as, Γa

20 = 0.38 fs−1,Γ1 = 1.45× 10−3 fs−1, ξi = 1.5,Δi = 0, Bi = 0.4 and
η = 1.

Next, we discuss the difference between ASPB and sum-frequency UMS
[42] with self-diffraction geometry from a physical viewpoint. The frequencies
and wave vectors of sum-frequency UMS signals are ωs1 = 2ω1 − ω1, ωs2 =
2ω2−ω2 and ks1 = 2k1−k′1, ks2 = 2k′2−k2, respectively, which means that
a photon is absorbed from each of two mutually correlated fluctuating pump
beams. On the other hand, the frequencies and wave vectors of ASPB signals
are ωs1 = ω1 − ω1 + ω3, ωs2 = ω2 − ω2 + ω3 and ks1 = k1 − k′1 + k3, ks2 =
k′2 − k2 + k3, respectively. Therefore photons are absorbed from and emit-
ted to the mutually correlated fluctuating twin beams 1 and 2, respectively.
This difference between the ASPB and UMS has profound influence on field-
correlation effects. We note that the role of beams 1 and 2 is interchangeable
in the UMS, this interchangeable feature also makes the second-order co-
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herence function theory failure in the UMS. Due to 〈u(t1)u(t2)〉 = 0, the
absolute square of the stochastic average of the polarization |〈P (3)〉|2 can-
not be used to describe the temporal behavior of the sum-frequency UMS
[44]. Our fourth-order correlation treatment also is of vital importance in the
sum-frequency UMS.

It turns out that for every conventional high-resolution nonlinear spec-
troscopy — purely frequency domain or purely time domain — one can design
its complete time-frequency interferometric spectroscopic counterpart [39].
The stochastic correlation spectroscopy of broad-band quasi-cw (nontrans-
form limited) noisy light can be considered as one that is intermediate in na-
ture between steady state spectroscopy and the pure time resolved techniques
[35 – 41]. For the frequency-domain techniques (such as saturated-absorption
spectroscopy and two-photon absorption spectroscopy), the spectral resolu-
tion is determined by the laser linewidth. Therefore, narrow-band cw laser
sources are usually required. A common feature of these time-domain tech-
niques is that the temporal resolution is determined by laser’s pulse width.
More specifically, excitation laser’s pulses must have a spectral width larger
than energy-level splittings so energy sublevels can be excited simultane-
ously. The disadvantage of this quantum beat technique is that it will be in-
efficient and, therefore, impractical to excite two transitions simultaneously
with an extremely broadband light when the sum Ω2 + Ω1 of energy-level
resonant frequencies is large. However, the ASPB can overcome this diffi-
culty because we can excite the two transitions separately with two lasers
that have bandwidths much narrower than the energy-level splitting. The
phase coherent control of light beams in the ASPB is subtle. We consider
the case that twin fields have narrow bandwidths. If time delay τ between
twin noisy fields, which come from a single source, is shorter than coher-
ence time τc of the laser (i.e., αi|τ | << 1), the relative phase between twin
fields will be well defined. The interference between one-photon nonresonant
DFWM and two-photon nonresonant NDFWM causes the ASPB signal in-
tensity to modulate with frequency ω2 + ω1 as is τ varied. In contrast, the
relative phase between twin fields will fluctuate randomly if αi|τ | >> 1. In
this case, the temporal and spatial modulation of the ASPB signal inten-
sity disappears. Now we consider the case that twin beams have broadband
linewidths. As mentioned above, a broadband laser can be modeled as a se-
quence of short, phase-incoherent subpulses of duration τc . Consider the
DFWM or NDFWM from the ω1 or ω2 frequency component of twin beams
1 and 2, respectively. The DFWM or NDFWM, which is related to the three-
pulse simulated photon-echo or the sum-frequency trilevel echo, respectively,
originates from the interaction of atoms with phase-correlated subpulses in
twin beams 1 and 2, which are separated by |τ |. The homodyne detected
ASPB interestingly shows the cross interference of resonant and nonresonant
terms in broadband linewidths. Moreover, the broadband multimode light are
tailored in a controllable fashion by dispersion [21]. The dispersion effects of
polarization beats can also be exactly balanced between the two arms [46].
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By contrast, ultrashort pulses of equivalent bandwidth are not immune to
such dispersive effects (even when balanced) because the transform limited
ultrashort pulse is in fact temporally broadened (it is chirped) and this has
drastic effects on its time resolution (the auto-correlation). In this sense, the
ASPB with twin Markovian stochastic fields has an advantage.

The one-photon Doppler-free DFWM or NDFWM occurs when two over-
lapping counterpropagating beams are both resonant with the same velocity
atom group [28]. If the beam 3 and ω1 component of the beam 1 (Figs. 2.12
and 2.13) have the same laser source frequency, they will only satisfy the
condition of simultaneously being resonant with the gas when they are both
resonant with the zero-velocity group (except crossover resonance case). Only
those atoms whose velocities are centered on k1 · v ≈ 0 are effective in gen-
erating a conjugate signal. Therefore, as in the case of saturated absorption
spectroscopy [53], we have a one-photon Doppler-free DFWM spectrum with
a peak located at Δ1 = 0 [51]. We then fix the frequency of the beam 3
and perform one-photon NDFWM experiment with beams 1 and 2 consist-
ing of the ω2 frequency component [28]. Since only atoms whose velocities are
k1 ·v ≈ 0 interact with the beam 3, the condition that beams 1 and 2 interact
with the same group of atoms is Δ2 = 0. Here again, one-photon NDFWM
signals are Doppler free because only atoms in a specific velocity group con-
tribute to NDFWM signals. The one-photon Doppler free NDFWM spectrum
is somehow similar to the following case (the general saturated absorption),
but they are different. If there is just a tiny frequency offset between the
pump and probe, then they will satisfy the condition of simultaneous reso-
nance when they are resonant with a nonzero particular velocity group whose
first-order Doppler shift is half the tiny offset in frequencies. That is to say,
a moving atom can only be in resonance with both lasers if its resonance fre-
quency is halfway between the two lasers, because then there is a velocity at
which the Doppler shifts compensate the difference in the frequency between
the lasers [53].

Finally, the Doppler-free absorption of two photons can be illustrated
as follows. If the atom has a velocity component in the direction of the
laser beams, the resonance condition changes to (Ef − Ei)/� = ω1 + ω2 −
v · (k1 + k2) [54]. If both waves are of the same frequency ω and counter-
propagating, the wave vectors are opposite to each other. This implies that
the velocity-dependent term in the resonance condition vanishes. All atoms
with (Ef − Ei)/� = 2ω are in resonance. These more restrictive condition
results in the line narrowing, and the fact that all atoms can be excited
at the same frequency, gives the enhancement in the cross section over the
Doppler-broadened single-beam case. If the laser is detuned from resonance
by |Δ| = (Ef − Ei)/�− 2ω then the zero-velocity group is out of resonance
with any combination of photons from two lasers. If Δ > 0, the zaxis di-
rection laser is on resonance with an atom having v = −c|Δ|/2ω and −z
axis direction laser is on resonance with an atom having v = c|Δ|/2ω. By
contrast, if Δ < 0, the z axis direction laser is on resonance with an atom
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having v = c|Δ|/2ω and −z axis direction laser is on resonance with an atom
having v = −c|Δ|/2ω. Thus, when the laser is detuned from the resonance
frequency only two particular velocity groups are in resonance, whereas when
the laser is on the exact resonance frequency, all the velocity groups are on
resonance for absorbing one photon from pump and one from the probe. The
lineshape of the same frequency two-photon absorption is the sum of the
broad Doppler-broadened background (I2

1 + I2
2 )δωi/δωD. (here, δωD Doppler

broadening, Ii laser intensity) from two-photon absorption in each of beams
and the sharp Doppler-free line (I1 + I2)2N . If the two lasers have the same
intensity, the integral of Doppler-free signals should be at least twice that of
the Doppler-broadened one. Since the enhancement of Doppler-free signals
increases proportionally to the uncollimated helium beam Doppler width, the
observed enhancement of the Doppler-free signal over the Doppler-broadened
one was a few hundred to one [55]. As we mentioned in Section 2.2.2, one-
photon resonant DFWM can provide a Doppler-free spectrum with peak lo-
cated at Δ1 = 0. When ω1 is set to the center of the Doppler profile, then only
atoms whose velocities are k1 · v ≈ 0 interact with the beam 3. This group
of atoms will interact with the beam 1 of frequency ω2 and contribute to
different frequency two-photon NDFWM signals. Since only atoms in a spe-
cific velocity group contribute the signal, the different frequency two-photon
NDFWM spectrum is also Doppler-free. Combining the capability of the high
accuracy in measuring the ASPB modulation frequency, a Doppler-free pre-
cision can be achieved in the measurement of Ω2+Ω1. Figure 2.20 shows the
Fourier spectrum of the data in which τ is varied for a range of 300 fs. We can
obtain the modulation frequency Ω2+Ω1 = 6.97833×1015s−1 corresponding
to the sum of resonant frequencies of transitions from 3S1/2 to 3P3/2 and
from 3P3/2 to 5D3/2,5/2 [Fig. 2.12 (a)].

Fig. 2.20. The Fourier spectrum of ASPB given by Eq. (2.93) with α1 = 2.715×
10−5 fs−1, α2 = 3.793 × 10−5 fs−1, ω2 + ω1 = 6.9783 fs−1, r = 0, Bi = 0.4, |τ | �
150 fs, and η = 1.

In conclusion, we have adopted chaotic, phase-diffusion, and Gaussian-
amplitude field models to study the FLPB with broadband noisy light. The
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polarization beat signal is shown to be particularly sensitive to the field statis-
tics. Different stochastic models of laser fields only affect the fourth-order
coherence functions. The constant background of the beat signal originates
from the amplitude fluctuation of Markovian stochastic fields. The Gaussian-
amplitude field shows fluctuations larger than the chaotic field, which again
exhibits fluctuations much larger than for the phase-diffusion field with pure
phase fluctuations caused by spontaneous emission. We have considered the
cases that pump beams have either narrow band or broadband linewidth
and found that for both cases a Doppler-free precision in the measurement
of the energy-level difference between two states, which are dipolar forbid-
den from the ground state can be achieved. On the other hand, the new
phenomenon of phase-conjugation sum-frequency attosecond beats by twin
composite stochastic fields has been documented, and its origins explained.
As a Doppler-free attosecond ultrafast modulation process, in principle, it
can be extended to any sum-frequency of energy-levels.
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3 Raman, Rayleigh and Brillouin-enhanced
FWM Polarization Beats

Based on color-locking noisy field correlation, the Raman, Raman and Raylei-
gh, Rayleigh and Brillouin, coexisting Raman, Rayleigh and Brillouin-enhan-
ced polarization beats have been investigated. Roles of amplitude fluctu-
ations and phase fluctuations have been pointed out in attosecond sum-
frequency polarization beats (ASPB). The different roles of amplitude fluc-
tuations and phase fluctuations have been pointed out in both time- and
frequency-domains. The Raman, Rayleigh and Brillouin-enhanced four-wave
mixing processes strongly compete with each other in the ASPB. The het-
erodyne detected signal of ASPB potentially offers rich dynamic information
about the homogeneous broadening material phase of the third-order nonlin-
ear susceptibility.

3.1 Attosecond Sum-frequency Raman-enhanced
Polarization Beats Using Twin Phase-sensitive
Color Locking Noisy Lights

Raman-enhanced polarization beats (REPB) are one interesting way to study
the stochastic properties of light [1 – 10]. Previous extensive noisy light based
coherent Raman scattering (CRS) often called coherent anti-Stokes Raman
scattering or coherent Stokes Raman scattering (CSRS) yield both Raman
frequencies via radiation difference oscillations [4] and dephasing times in the
interferometric time domains. Unlike in the REPB, in those spectroscopies the
presence of one monochromatic beam is essential [5 – 8]. Markovian stochas-
tic processes are ubiquitous in all branches of science. Unlike non-Markovian
fluctuations, which arise from atom’s memory of its past, the atomic re-
sponse to Markovian stochastic optical fields is now largely well understood
[11 – 14]. When the laser field is sufficiently intense that many photon inter-
actions occur, the laser spectral bandwidth or spectral shape, obtained from
the second-order correlation function, is inadequate to characterize the field.
Rather than using higher-order correlation functions explicitly, the chaotic
field, the phase-diffusion field, and the Gaussian-amplitude field, are consid-
ered.
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The characteristics of the interferogram of the REPB are a result of two
main components: material response (resonant term) and light response (non-
resonant term) along with the interplay between two responses. We have de-
veloped a unified theory which involves sixth- and fourth-order coherence-
functions, and obtained an analytic closed form for attosecond polariza-
tion beats [15 – 19]. The difference-frequency homodyne detected polariza-
tion beats in femtosecond scale have known well [20 – 22]. In general, po-
larization beats may or may not contain resonances. Nonresonant terms are
always present. Interference between resonant and nonresonant polarizations
is present. Cross terms between them appear when homodyne detected. Beat
signals can appear at all orders of the incident field [but only at odd orders
for achiral isotropic media (gases, liquid, amorphous solids)]. At even order,
the polarization (signals) field must oscillate at a new frequency not present
in the incident field. At odd order, the polarization field may contain fre-
quency components of the incident field but usually produces a new color.
Cross-section is quadratic in concentration for homodyne detection; linear
for heterodyne detection. Unlike heterodyned signals, homodyne (quadra-
ture) detection signals contain all possible cross terms between polarizations.
Phase-matching must be implemented through experimental design of the
REPB.

Polarization beat is closely related to quantum beats, Raman quantum
beats [9], or CRS. CRS is a powerful tool for studying the vibrational or
rotational mode of a molecule. Specifically, in the Raman-enhanced non-
degenerate four-wave mixing (RENFWM) the Raman vibration is excited
by the simultaneous presence of two incident beams whose frequency dif-
ference equals the Raman excitation frequency, and the RENFWM signal
is the result of this resonant excitation. In contrast, Rayleigh-type nonde-
generate FWM (NDFWM) is a nonresonant process with no energy transfer
between lights and medium when the frequency difference between two inci-
dent beams equals zero. Rayleigh-type NFWM appears as a special case of
the RENFWM with zero frequency resonance, the difference between them
is essential. The resonant structure in the Rayleigh-type NFWM spectrum
is the result of induced moving grating. The lineshape of the Rayleigh-type
NFWM is always symmetric [23]. In contrast, the RENFWM spectrum is
generally normal asymmetric due to the interference between the resonant
signal and the nonresonant background [24].

This section addresses the role of noise in incident fields on the nature of
wave-mixing signals in time- and frequency-domains. This important topic
has been already treated extensively in the literature, including the intro-
duction of a new diagrammatic technique (called factorized time correlator
diagrams) [1 – 8]. They have treated the higher order noise correlators when
circular Gaussian statistics apply. There should be two classes of such two
component beams. In one class components are derived from separate lasers,
and their mixed (cross) correlators should vanish. In the second case, two
components are derived from a single laser source whose spectral output is
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doubly peaked. This can be created from a single dye laser in which two differ-
ent dyes in solution together are amplified [5 – 8]. This section deals only with
the first class. That is to say, we are considering only the class of two-color
beams in which each color is derived from a separate broadband laser source.
The doubled peaked beams 1 and 2 [Fig. 3.1 (a)] are paired and correlated,
but each of the peaks is uncorrelated. Beam3, having one of peaks (from a
same broadband laser source)found in twin beams 1 and 2 is dependent and
correlated to twin beams 1 and 2. In any case, the literature has already ex-
plored both theoretically and experimentally the use of such multicolor noisy
light in FWM. Interestingly, that work only treats the second class of mul-
ticolored beams (a single laser source for the multipeaked “tailored” light)
in difference-frequency self-diffraction geometry [5 – 8]. Also that work did
not treat the REPB with sum- and difference-frequency phase-conjugation
geometry using three types of noisy models. Furthermore its beam 3 was not
noisy (it was “monochromatic”).

Fig. 3.1. (a) Phase-conjugation geometry of the attosecond REPB; (b) Level con-
figuration of PR1; (c) Double-sided Feynman diagrams representing the Liouville
pathways for P1 and P2, respectively.

3.1.1 Basic Theory of Attosecond Sum-frequency REPB

REPB is a third-order nonlinear polarization beat phenomenon. The polariza-
tion beat is based on the interference at the detector between FWM signals,
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which originate from macroscopic polarizations excited simultaneously in the
homogeneous [9, 10] or inhomogeneous [15] broadening sample. It critically
requires that all the polarizations have the same frequency. The basic geome-
try is shown in Fig. 3.1(a). Twin beams 1 and 2 consist of two central circular
frequency components ω1 and ω3, a small angle exists between them. Beam
3 with central circular frequency ω3 is almost propagating along the opposite
direction of beam 1. In an optical Kerr medium (no thermal grating effects),
the nonlinear interaction of beams 1 and 2 with the medium gives rise to
two molecular-reorientational gratings, i.e., ω1 and ω3 will induce their own
nonresonant static gratings G1 and G2, respectively. Two FWM signals are
the results of the diffraction of beam 3 by G1 and G2, respectively. Now,
if |ω1 − ω3| is near the Raman resonant frequency ΩR [Fig. 3.1 (b)], a large
angle resonant moving grating formed by the interference of beams 2 and
3, will excite the Raman-active vibrational mode of the medium and en-
hance the FWM signal of G1 (i.e., RENFWM). Finally, polarization beats
originate from the interference between macroscopic polarizations from the
RENFWM process and the ω3 degenerate FWM (DFWM) process. The beat
signal (beam 4) is along the opposite direction of beam 2 approximately.

In a typical experiment, the ω1 and ω3 two-color light sources enter a
dispersion-compensated Michelson interferometer to generate identical twin
composite beams. Twin composite stochastic fields of beam 1, Ep1(r, t), and
beam 2, Ep2(r, t) for homodyne detection scheme of the attosecond sum-
frequency REPB, can be written as

Ep1 = E1(r, t) + E′2(r, t) = A1(r, t) exp(−iω1t) +A′2(r, t) exp(−iω3t)
= ε1u1(t) exp[i(k1 · r − ω1t)] +

ε′2u3(t− τ) exp[i(k′2 · r − ω3t+ ω3τ)], (3.1)

Ep2 = E′1(r, t) + E2(r, t) = A′1(r, t) exp(−iω1t) +A2(r, t) exp(−iω3t)
= ε′1u1(t− τ) exp[i(k′1 · r − ω1t+ ω1τ)] +

ε2u3(t) exp[i(k2 · r − ω3t)]. (3.2)

Here, εi, ki(ε′i, k
′
i) are the constant field amplitude and the wave vector of

the ωi component in beam 1 (beam 2), respectively. ui(t) is a dimensionless
statistical factor that contains phase and amplitude fluctuations. The ui(t) is
taken to be a complex ergodic stochastic function of t, which obey complex
circular Gaussian statistics in the chaotic field. τ is a variable relative time
delay between the prompt (unprime) and delayed (prime) fields. To accom-
plish this the frequency component ω1 and ω3 lights are split and recombined
to provide two double-frequency pulses in such a way that the ω1 component
is delayed by τ in beam 2 and the ω3 component delayed by the same amount
in the beam 1 [Fig. 3.1 (a)]. The time delay τ is introduced in both composite
beams, which is quite different with that of difference-frequency REPB. On
the other hand, the complex electric fields of beam 3 can be written as

E3(r, t) = A3(r, t) exp(−iω3t) = ε3u3(t) exp[i(k3 · r − ω3t)]. (3.3)
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Here, ω3, ε3, and k3 are the frequency, the field amplitude and the wave
vector of the field, respectively.

In general different colors of twin composite noisy light beams correlate
at different delay times because they have been delayed in the dispersed
beam relative to the undispersed beam except balanced. This is analogous to
the stretching of short pulses by transmission through a dispersive medium
(chirp). In fact, identical physical processes are responsible for chirp in co-
herent short pulses and the correlation functions of broadband fields. Con-
sidering the situation in which the double frequencies noisy field derived
from separate lasers with a finite bandwidth is split into twin replicas; then
ω1 or ω3 frequency component of one twin composite beam is transmitted
through a dispersive medium so that it is no longer identical to that of the
other twin composite beam. Two autocorrelation processes corresponding
to RENFWM process and ω3 DFWM process, respectively, are differently
stretched in τ because each color component between twin composite beams
1 and 2 is maximally correlated at different delay times, whereas all color
components in beam 1 or 2 are maximally correlated at the same delay time.
The phases of chirped correlation functions exhibit a time dependence that is
similar to time-dependent phases of chirped coherent short pulses. Unchirped
(transform-limited) correlation functions and short pulses have phases that
are independent of time. An important practical distinction between short
pulses and noisy-light correlation functions is that the chirping of correlation
functions in the double-frequency noisy-light interferometry can occur only
after the double-frequency noisy field is split into beams 1 and 2, and then
only if there is a difference between the dispersion in the paths traveled by
ω1 or ω3 frequency component of beams 1 and 2, but a short pulse is chirped
as it propagates through any dispersive medium between the source and the
sample. That is to say, ultrashort pulses of equivalent bandwidth are not im-
mune to such dispersive effects (even when balanced) because the transform
limited light pulse is in fact temporally broadened (it is chirped) and this has
drastic effects on its time resolution (the auto-correlation). In this sense, the
sum-frequency REPB with double-frequency noisy light has an advantage.

The order parameters Q1 and Q2 of two nonresonant static gratings in-
duced by beams 1 and 2 satisfy the following equations:

dQ1

dt
+ γQ1 = χγE1(r, t)[E′1(r, t)]∗, (3.4)

dQ2

dt
+ γQ2 = χγE′2(r, t)[E2(r, t)]∗. (3.5)

Here γ and χ are the relaxation rate and the nonlinear susceptibility of two
static gratings, respectively. The optical Kerr effect for the liquid CS2 has
at least two components, i.e., a relatively long “Debye” component and a
shorter “interaction-induced” component.

We consider a large angle resonant moving grating formed by the inter-
ference of beams 2 and 3, and the order parameter QR1 satisfies the following
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equation:
dQR1

dt
+ (γR − iΔ)QR1 =

iαR

4�
[A′1(r, t)]∗A3(r, t). (3.6)

Here, Δ = |ω1 − ω3| − ΩR is the frequency detuning; ΩR and γR are the
resonant frequency and the relaxation rate of the Raman mode, respectively.
αR is a parameter denoting the strength of the Raman interaction.

The induced three third-order nonlinear polarizations which are respon-
sible for FWM signals are

P1 = Q1(r, t)E3(r, t)
= χγε1(ε′1)

∗ε3 exp{i[(k1 − k′1 + k3) · r − ω3t− ω1τ ]} ×∫ ∞

0

u1(t− t′)u∗1(t− t′ − τ)u3(t) exp(−γt′)dt′, (3.7)

P2 = Q2(r, t)E3(r, t)
= χγε′2(ε2)∗ε3 exp{i[(k′2 − k2 + k3) · r − ω3t+ ω3τ ]} ×∫ ∞

0

u∗3(t− t′)u3(t− t′ − τ)u3(t) exp(−γt′)dt′, (3.8)

PR1 =
1
2
NαRQR1(r, t)E1(r, t) exp[i(ω1 − ω3)t− iω1τ ]

= iχRγRε1(ε′1)
∗ε3 × exp{i[(k1 − k′1 + k3) · r − ω3t− ω1τ ]} ×∫ ∞

0

u1(t)u∗1(t− t′ − τ)u3(t− t′) exp[−(γR − iΔ)t′]dt′, (3.9)

with χR = Nα2
R/8�γR and N the density of molecules. The third-order

nonlinear polarizations P1, PR1 (with Lorentzian lineshape for the Raman
mode) and P2 have the same frequency ω3, P1 + PR1, and P2 correspond
to RENFWM process and ω3 DFWM process, which have the wave vectors
k1 − k′1 + k3 and k′2 − k2 + k3, respectively [Fig. 3.1 (c)]. Physically, REN-
FWM is similar to the corresponding CSRS. Unlike CSRS no coherence spike
appears at τ = 0 [Fig. 3.2 (a)]. As the laser linewidth α1/γR increases, the
maximum is more close to τ = 0, and the τ -independent nonresonant back-
ground is increased. Moreover, the RENFWM [〈PR1P

∗
R1〉 (interference from

purely Raman-resonant signals); 〈P1P
∗
R1〉 and 〈P ∗1 PR1〉 (interference between

the Raman-resonant signal and the nonresonant background)] of REPB ex-
hibits hybrid radiation-matter detuning terahertz damping oscillation with a
frequency close to Δ, which originate from sin(Δτ) and cos(Δτ) factors for
τ < 0 [Fig. 3.2 (b)]. The maximum of the temporal profile for the RENFWM
is shifted to τ = 0 as the frequency detuning Δ/γR increases.

Specifically, according to P1 and PR1 [Fig. 3.1(b)], there exists integra-
tion effect in the establishment of order parameters Q1 and QR1. How-
ever, as mentioned in [23], whether the gratings are washed out due to the
phase fluctuation of the interference patterns [i.e.,A1(t− t′)[A′1(t− t′)]∗ and
[A′1(t− t′)]∗A3(t− t′) in Eqs. (3.7) and (3.9)] depends on the ratio between
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Fig. 3.2. Normalized RENFWM signal intensity versus time delay γRτ for χ/χR =
0.05, γ/γR = 4, and α3/γR = 0.1. Δ/γR = 0, α1/γR = 0.5 (dash-dotted curve), 2
(dotted curve), 5 (dashed curve), 20 (solid curve) for (a); while α1/γR = 2,Δ/γR =
1 (dash-dotted curve), 3 (dotted curve), 15 (dashed curve), 30 (solid curve) for (b).
Adopted from Ref. [19].

a α1(α3) and γ(γR). The problem is complicated further by the fact that the
effect of field correlation on the order parameters Q1 and QR1 are different.
In particular, as we increase the time delay, the phase fluctuation of the in-
terference pattern between A1(t− t′) and A′1(t− t′) components of beams 1
and 2, respectively, affect the establishment of Q1 directly. In contrast, since
QR1 is induced by A′1(t − t′) and A3(t − t′) components of beams 2 and 3,
respectively, the integration effect will not lead directly to the τ dependence
of QR1. The field-correlation effect here is due to the coincidence of intensity
spikes between QR1 and beam 1 instead. The RENFWM is also influenced
by the interference between signals originating from Q1 and QR1. The degree
of the interference is reflected in the parameter ξ(τ) = Ires.(Δ = 0)/Inonres.,
which is defined as the ratio between the intensity of the resonant signal at
Δ = 0 and the nonresonant background.

The resonant signal and the nonresonant background of the RENFWM
originate from the order parameters QR1 and Q1, respectively. According to
Eqs. (3.7) and (3.9), integration effects are involved in the establishment of
order parameters of the gratings. We first consider the case when γ, γR >>
α1, α3. In this case, the material gratings have very short relaxation times;
therefore, they can respond to the phase fluctuations of the fields almost im-
mediately. More specifically, A1(t− t′)[A′1(t− t′)]∗ and [A′1(t− t′)]∗A3(t− t′)
in Eqs. (3.7) and (3.9) are slowly varying functions in comparison with
exp(−γt′) and exp(−γRt′) which have a peak at t′ = 0, and therefore can
be approximated as and A1(t)[A′1(t)]∗ and [A′1(t)]∗A3(t), respectively. We

have P1 and PR1 proportional to χγA1(t)[A′1(t)]
∗A3(t)

∫ ∞

0

exp(−γt′)dt′ and

χRγRA1(t)[A′1(t)]
∗A3(t)

∫ ∞

0

exp[−(γR − iΔ)t′]dt′. The above equations in-
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dicate that the RENFWM spectrum is independent of τ and the relaxation
rate γ plays uncritical role here. Although the phases of P1 and PR1 fluctu-
ate randomly, the relative phase between them is fixed; therefore, we have
ξ(τ) ≈ (χR/χ)2 due to the interference between P1 and PR1. Moreover, due to
the interference between the resonant signal and the nonresonant background,
the RENFWM spectrum with narrow-band driving fields is asymmetric and
the peak does not correspond to the exact Raman resonance.

Next, considering the broadband case (i.e.,γ, γR << α1, α3), the effect
of integration is to wash out the gratings. At zero time delay no washout
takes place in the establishment of Q1 because the phase factor φ1 of A1(t−
t′)[A′1(t − t′)]∗ is stationary. On the other hand, the phase factor φR1 of
[A′1(t− t′)]∗A3(t− t′) is a random variable which fluctuates with a character-
istic time scale (α1+α3)−1. Because of the integration effect, the fast random
fluctuation of φR1 leads to the reduction of the amplitude of QR1. Therefore,
the RENFWM spectrum is dominated by a large nonresonant background
when τ = 0, and ξ(0) ≈ χ2

RγR/χ2(α1 + α3), which is independent of γ. The
RENFWM spectrum in the limit of αi |τ | << 1 is quite different. Similar to
QR1, Q1 is now induced by mutually incoherent fields. If α1 ≈ α3 replaced
by α, then the influences of the integration effect on Q1 and QR1 are equal.
Furthermore, the relative phase between P1 and PR1 is a stochastic variable.
Since there is no interference between them, we have ξ(τ →∞) ≈ χ2

RγR/χ2γ
instead of ξ(τ) ≈ (χR/χ)2. The interesting thing is that, when γR/γ ≈ 1,
we have ξ(τ → ∞) ≈ (χR/χ)2 for the broadband case, which is the same
as that for the narrow-band case. In general, comparing to the narrow-band
case (γ, γR >> α1, α3) the RENFWM spectrum exhibits a larger nonreso-
nant background. Besides, the linewidth (full width at half maximum) of the
Raman resonant signal increases from 2γR to 2(α1 + α3). We then increase
τ that beams 1 and 2 become uncorrelated. In this case, the randomiza-
tion of φ1 washes out the ω1 molecular-reorientational grating. In contrast,
Raman-active mode is nearly independent of τ because the τ -dependent part
is much smaller than the τ -independent part when beams 1 and 2 have broad-
band linewidths. The implication of this is that the ratio between the Raman
resonant signal and the nonresonant background increases as τ increased.
Since γ, γR << α1, α3 the nonresonant background is suppressed drastically
and the RENFWM spectrum depends on the ratio between the relaxation
rates γR and γ. However, the relative phase between P1 and PR1 is now a
stochastic variable. Due to the randomization of the relative phase between
the Raman resonant term and the nonresonant background the interference
between them disappears almost completely. As a result, the RENFWM spec-
trum exhibits a symmetric line shape (Fig. 3.3). As γR/γ is increased further
so that γR/γ > 1, the ratio between the resonant and the nonresonant signal
can even be enhanced in the comparison with the narrow band case. So there
is the exact advantage of using the REPB with twin color-locking noisy lights
to measure the resonant frequency of the Raman active mode.
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3.1.2 Homodyne Detection of Sum-frequency REPB

We have the total third-order polarization P (3) = P1 + P2 + PR1. For the
macroscopic system where phase matching takes place this signal must be
drawn from the P (3) developed on one chromophore multiplied by the (P (3))∗

that is developed on another chromophore, which must be located elsewhere
in space (with summation over all such pairs) [1 – 8]. The bichromophoric
model is particularly important to the noisy light spectroscopies where the
stochastic averaging at the signal level must be carried out [1 – 8]. The sum-
frequency REPB signal is proportional to the average of the absolute square
of P (3) over the random variable of the stochastic process, so that the signal

I (Δ, τ )∝〈∣∣P (3)
∣∣2〉 = 〈P (3)(P (3))∗〉 = 〈(P1+P2+PR1)[(P1)∗+(P2)∗+(PR1)∗]〉

contains 3 × 3 = 9 different terms in the sixth-, fourth- and second-order
coherence function of ui(t) in phase conjugation geometry. In general, the
REPB of the homodyne detection (at the intensity level) can be viewed
as built of the sum of three contributions: (i) τ -independent or dependent
nonresonant auto-correlation terms of ω3 molecular-reorientational grating,
which include u3(t) sixth-order Markovian stochastic correlation functions;
(ii) τ -independent or dependent auto-correlation terms (i.e., RENFWM) of
ω1 nonresonant molecular-reorientational grating and ω3 − ω1 ≈ ΩR Ra-
man resonant vibrational mode, which include u1(t) fourth-order and u3(t)
second-order Markovian stochastic correlation functions; (iii) τ -dependent
cross-correlation terms between RENFWM and ω3 DFWM processes, which
include u3(t) fourth-order and u1(t) second-order Markovian stochastic cor-
relation functions. Different Markovian stochastic models of the laser field
only affect the sixth- or fourth-, not second-order correlation functions.

We first assumed that laser sources are chaotic fields. A chaotic field,
which is used to describe a multimode laser source, is characterized by the
fluctuation of both the amplitude and the phase of fields. The random func-
tion ui(t) of complex noisy fields is taken to obey complex Gaussian statistics
with its sixth- and fourth-order coherence function satisfying [11, 12]

〈ui(t1)ui(t2)ui(t3)u∗i (t4)u
∗
i (t5)u

∗
i (t6)〉

= 〈ui(t1)u∗i (t4)〉〈ui(t2)ui(t3)u∗i (t5)u
∗
i (t6)〉+

〈ui(t1)u∗i (t5)〉 × 〈ui(t2)ui(t3)u∗i (t4)u
∗
i (t6)〉+

〈ui(t1)u∗i (t6)〉 × 〈ui(t2)ui(t3)u∗i (t4)u
∗
i (t5)〉, (i = 1, 2, 3) (3.10)

〈ui(t1)ui(t2)u∗i (t3)u
∗
i (t4)〉

= 〈ui(t1)u∗i (t3)〉〈ui(t2)u∗i (t4)〉+ 〈ui(t1)u∗i (t4)〉〈ui(t2)u∗i (t3)〉. (3.11)
All higher order coherence functions can be expressed in terms of products of
second-order coherence functions. Thus any given 2n order coherence function
may be decomposed into the sum of n! terms, each consisting of the products
of n second-order coherence function.
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Furthermore assuming that laser sources have Lorentzian line shape, then
we have

〈ui (t1)u∗i (t2)〉 = exp (−αi |t1 − t2|) . (3.12)

Here, αi =
1
2
δωi, δωi is the linewidth of the laser with frequency ωi.

The composite noisy beam 1 (beam 2) is treated as one whose spectrum
is simply a sum of two Lorentzians. The high-order decay cross-correlation
terms are reasonably neglected in our treatment. After performing the tedious
integration we obtain for:

(i) τ > 0

I(Δ, τ) ∝ B1 +
[
χ2 +

χ2
Rγ2

Rγ′R
(γR + α1)(γ′2R +Δ2)

+
2χχRγRΔ
γ′2R +Δ2

]
exp(−2α1 |τ |) +

η2χ2(4γ2 + 5γα3 + 2α2
3)

(γ + α3)(γ + 2α3)
× exp(−2α3 |τ |) + 2ηχ

γ + 2α3
×{[

2χ(γ + α3) +
γχRγRΔ

(2α3 − γ′R)2 +Δ2
− γχRγRΔ

γ′2R +Δ2

]
×

cos[Δk · r − (ω1 + ω3)τ ] +
[
γχRγRγ′R
γ′2R +Δ2

− γχRγR(2α3 − γ′R)
(2α3 − γ′R)2 +Δ2

]
×

sin[Δk · r − (ω1 + ω3)τ ]

}
exp[−(α1 + α3) |τ |]. (3.13)

(ii) τ < 0

I(Δ, τ) ∝ B1 +
{

χ2 +
χ2

Rγ2
R(2α1 − γ′R)

(α1 − γR)[(2α1 − γ′R)2 +Δ2]
−

2χχRγRΔ
(γ′R − 2α1)2 +Δ2

}
exp(−2α1 |τ |) + η2χ2(4γ − 3α3)

γ − α3
×

exp(−2α3 |τ |) + 6η2χ2γ2α2
3

(γ2 − α2
3)(γ2 − 4α2

3)
exp(−2γ |τ |) + χ2

Rγ2
R ×{

γ′R − 2γR

(γ′R − 2γR)
2 +Δ2

(
1

α1 − γR
+

η2
2

α3 − γR

)
+

γ′R
γ′2R +Δ2

(
1

α1 + γR
+

η2
2

α3 + γR

)
−

2(1 + η2
2)[γ

2
R +Δ2 − (α1 + α3)2]

(γ′2R +Δ2)[(γ′R − 2γR)2 +Δ2]

}
exp(−2γR |τ |) +

4η
{[

χ2 − χχRγRΔ
(2α1 − γ′R)2 +Δ2

]
cos[Δk · r − (ω1 + ω3)τ ]−
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χχRγR(2α1 − γ′R)
(2α1 − γ′R)2 +Δ2

sin[Δk · r − (ω1 + ω3)τ ]
}
×

exp[−(α1 + α3) |τ |]. (3.14)

Here, η1 = ε2/ε′1, η2 = ε′2/ε1, η = ε′2ε2/ε′1ε1; Δk = (k1 − k′1) − (k′2 − k2);
γ′R = α1 + α3 + γR; and

B1 = χ2γ

[
1

γ + 2α1
+

η2(2γ + α3)
(α3 + γ)(2α3 + γ)

]
+

χ2
RγRγ′R

γ′2R +Δ2
−

2χRχγRγΔ
(γ′R + γ + 2α1)(γ′R + γ) + 2α1γ

′
R +Δ2

(γ + 2α1)(γ′2R +Δ2)[(γ′R + γ)2 +Δ2]
.

The sum-frequency REPB is generally different for τ > 0 and τ < 0.
However, as |τ | → ∞, Eq. (3.13) is identical to Eq. (3.14). Physically, when
|τ | → ∞, beams 1 and 2 are mutually incoherent. Therefore whether τ is pos-
itive or negative does not affect the sum-frequency REPB. Different Marko-
vian stochastic models of laser fields only affect the sixth- or fourth-, not
second-order correlation functions. The interferometric contrast ratio of inter-
ferogram mainly determined the cross-correlation between RENFWM and ω3

DFWM processes is equally sensitive to the amplitude and phase fluctuations
of chaotic fields. The constant term χ2

RγRγ′R/(γ′2R+Δ
2) in relations (3.13) and

(3.14), which is independent of the relative time-delay between twin beams 1
and 2, originates from the phase fluctuation of chaotic fields, while the purely
decay terms including these factors exp(−2α1 |τ |), exp(−2α3 |τ |), exp(−2γ |τ |)
and exp(−2γR |τ |) in relations (3.13) and (3.14) come from amplitude fluctu-
ation of chaotic fields. Physically, the chaotic field has the property of photon
bunching, which can affect any multiphoton process when the higher-order
correlation function of the field plays an important role.

Equations (3.13) and (3.14) generally indicate not only the characteristic
of twin laser fields, but also a molecule vibrational property. Specifically,
the temporal behaviors of the sum-frequency REPB intensities mainly reflect
the characteristics of twin composite laser fields for τ > 0, and molecule
vibrational property for τ < 0. The sum-frequency REPB signal versus τ
typically shows the attosecond scale modulation with a sum-frequency ω3+ω1

and a damping rate α1+α3. If we employ sum-frequency REPB in attosecond
scale to measure the modulation frequency ωd = ω3 + ω1, the accuracy can
be improved by measuring as many cycles of the attosecond modulation as
possible. Since the amplitude of the attosecond modulation decays with a
time constant (α1 + α3)−1 as |τ | increases, the maximum domain of time
delay |τ | should equal approximately 2(α1+α3)−1. We obtain the theoretical
limit of the uncertainty of the modulation frequency measurement Δωd which
is Δωd ≈ π(α1 + α3), i.e., in the modulation frequency measurement the
theoretical limit of the accuracy is related to the decay time constant of the
beat signal modulation amplitude.

Equations (3.13) and (3.14) indicate that beat signal oscillates not only
temporally but also spatially with a period 2π/Δk along the direction Δk,
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which is almost perpendicular to the propagation direction of the beat sig-
nal. Here Δk ≈ 2π |λ1 − λ3| θ/ λ3λ1, θ is the angle between beam 1 and beam
2. Physically, the polarization-beat model assumes that the twin composite
beams are plane waves. Therefore, RENFWM and ω3 DFWM signals, which
propagate along k1−k′1+k3 and k′2−k2+k3, respectively, are plane waves
also. Since FWM signals propagate along the slightly different direction, the
interference between them leads to the spatial oscillation. To observe the spa-
tial modulation of the beat signal the dimension of the detector should be
smaller than 0.6 mm, which should be detected by the pinhole detector. The
finite thickness of the sample has a catastrophic effect on the correlation of
counter-propagating color-locked noisy fields. Although transverse modula-
tion of attosecond REPB signals is considered, the effect of signal integration
in the longitudinal direction is reasonably neglected here.

It is interesting to understand the underlying physics in the REPB with
incoherent lights. Much attention has been paid to the study of various ul-
trafast phenomena by using incoherent light sources recently [25 – 27]. The
REPB with incoherent lights is related to the three-pulse Raman echoes. It
is different from the conventional true Raman echo, which is a seventh order
process or the Raman pseudo-echo which is a fifth order process [27]. For the
sake of analytical simplicity, the second-order correlation of broadband noisy
light can be treated as δ-functions in time. Then we have

exp(−αi |t1 − t2|) ≈ 2
αi

δ (t1 − t2) , i = 1, 2, 3. (3.15)

When we substitute Eqs. (3.10) – (3.12) and (3.15) into I(Δ, τ)∝〈∣∣P (3)
∣∣2〉,

we obtain, for:
(i) τ > 0

I(Δ, τ) ∝ B2 +
[
χ2 +

χ2
Rγ2

R

α3(α1 + γR)
− 2χχRγRΔ

γ′2R +Δ2

]
exp(−2α1 |τ |) +

η2χ2(γ3 + 2α3
3 + 5γ2α3 + 5α2

3γ)
α3(γ + α3)(γ + 2α3)

× exp(−2α3 |τ |) +
2ηχ

γ + 2α3

{[
2χ(γ + α3) +

γχRγRΔ
(2α3 − γ′R)2 +Δ2

− γχRγRΔ
γ′2R +Δ2

]
×

cos[Δk · r − (ω1 + ω3)τ ] +
[
γχRγRγ′R
γ′2R +Δ2

− γχRγR(2α3 − γ′R)
(2α3 − γ′R)2 +Δ2

]
×

sin[Δk · r − (ω1 + ω3)τ ]} exp[−(α1 + α3) |τ |]. (3.16)

(ii) τ < 0

I(Δ, τ) ∝ B2 +
{

χ2 − χ2
Rγ2

R

α3(α1 − γR)
− 2χχRγRΔ
(γ′R − 2α1)2 +Δ2

}
exp(−2α1 |τ |) +

η2χ2[3α3(α3−γ)− γ2]
α3(α3−γ)

exp(−2α3 |τ |)+ 2η2χ2γ2

α2
3 − γ2

exp(−2γ |τ |)+
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2χ2
Rγ2

Rα1

α3(α2
1 − γ2

R)
exp(−2γR |τ |) + 4η

{[
χ2 − χχRγRΔ

(α1 − α3)2 +Δ2

]
×

cos[Δk · r − (ω1 + ω3)τ ]− χχRγR(α1 − α3)
(α1 − α3)2 +Δ2

×

sin[Δk · r − (ω1 + ω3)τ ]

}
exp[−(α1 + α3) |τ |]. (3.17)

Here, B2 = χ2γ2

[
1

2α1γ
+

η2(3γ + α3)
2α3γ(α3 + γ)

]
+

χ2
RγR

α1
− 4χγχRγRΔ

α1[(γ′R + γ)2 +Δ2]
.

Equations (3.16) and (3.17) are analogous to Eqs. (3.13) and (3.14), re-
spectively. The three-order polarizations [see Eqs. (3.7) – (3.9)], which in-
volves the integration of t′ from 0 to ∞, are the accumulation of the polar-
ization induced at a different time. In broadband linewidth and γ � γR case,
the modulation frequency of the femtosecond difference-frequency REPB cor-
responds to Raman resonant frequency ΩR directly, and the symmetric line-
shape [24] of the RENFWM is also good for tuning ω3−ω1 to ΩR. Specifically,
the relative phase between P1 and PR1 is now a stochastic variable. Due to
the randomization of the relative phase between the Raman resonant term
from PR1 and the nonresonant background from P1 the interference between
them disappears almost completely. As a result, The RENFWM spectrum
exhibits a symmetric line shape (Fig. 3.3).

Fig. 3.3. Normalized RENFWM signal intensity versus Δ/γR for χ/χR =
0.5, α3/γR = 0.1, α1/γR = 2, and γRτ = 10, γ/γR = 0.001 (solid curve), 1 (dashed
curve), 4 (dotted curve), 100 (dash-dotted curve).

We have assumed that the laser sources are chaotic field in the above cal-
culation. A chaotic field, which is used to describe a multimode laser source,
is characterized by the fluctuation of both the amplitude and the phase of the
field. Another commonly used stochastic model is a phase-diffusion model,
which is used to describe an amplitude-stabilized laser source. This model
assumes that the amplitude of the laser field is a constant, while its phase
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fluctuates as a random process. If the lasers have Lorentzian line shape, the
sixth-and fourth-order coherence function is [15, 16]

〈ui(t1)ui(t2)ui(t3)u∗i (t4)u
∗
i (t5)u

∗
i (t6)〉

= exp[−αi(|t1 − t4|+ |t1 − t5|+ |t1 − t6|+ |t2 − t4|+ |t2 − t5|+
|t2 − t6|+ |t3 − t4|+ |t3 − t5|+ |t3 − t6|)] exp[αi(|t1 − t2|+
|t1 − t3|+ |t2 − t3|+ |t4 − t5|+ |t4 − t6|+ |t5 − t6|)], (3.18)

〈ui(t1)ui(t2)u∗i (t3)u
∗
i (t4)〉

= exp[−αi(|t1 − t3|+ |t1 − t4|+ |t2 − t3|+ |t2 − t4|)]×
exp[αi(|t1 − t2|+ |t3 − t4|)]. (3.19)

After substituting Eqs. (3.12), (3.18), and (3.19) into I(Δ, τ) ∝ 〈∣∣P (3)
∣∣2〉,

we obtain as follows:
(i) τ > 0

I(Δ, τ) ∝ B3 +
4χRχγRα1Δ− 2χRχγRΔ(γ + 2α1)

(γ + 2α1)(γ′2R +Δ2)
+
2ηχγχRγRα3

γ′2R +Δ2
×{[

χ(γ′2R +Δ2)
γχRγRα3

− Δ
γα3

+

[
γ′R
γα3

−

(γ′R − iΔ)(2α3 − γ′R + iΔ)(γ′R + γ − iΔ)
[(2α3 − γ′R)2 +Δ2][(γ′R + γ)2 +Δ2]

−

(γ′R + iΔ)(2α3 − γ′R − iΔ)(γ′R + γ + iΔ)
[(2α3 − γ′R)2 +Δ2][(γ′R + γ)2 +Δ2]

]
×

sin[Δk · r − (ω1 + ω3)τ ]

}
exp

[− (α1 + α3) |τ |
]
. (3.20)

(ii) τ < 0

I(Δ, τ) ∝ B3 + 2iα1χγχRγR ×{
(2α1 − γ′R − iΔ)(γ′R + iΔ)(γ′R + γ + iΔ)

[(2α1 − γ′R)2 +Δ2](γ′2R +Δ2)[(γ′R + γ)2 +Δ2]
−

(2α1 − γ′R + iΔ)(γ′R − iΔ)(γ′R + γ − iΔ)
[(2α1 − γ′R)2 +Δ2](γ′2R +Δ2)[(γ′R + γ)2 +Δ2]

+

2iΔ
γ(2α1 + γ)[(2α1 − γ′R)2 +Δ2]

}
+

{[
2χ2η −

4ηχχRγRα3Δ
(2α3 + γ)[(α1 − 3α3 − γR − γ)2 +Δ2]

]
×
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cos[Δk · r − (ω1 + ω3)τ ] − 2ηχγχRγR(2α1 − γ′R)
(2α3 + γ)[(2α1 − γ′R)2 +Δ2]

×

sin[Δk · r − (ω1 + ω3)τ ]

}
exp[−(α1 + α3) |τ |]. (3.21)

After that, based on phase-diffusion model, we consider the three-pulse
Raman echo when the laser sources have a broadband linewidth. Substituting
Eqs. (3.12), (3.15), (3.18) and (3.19) into I(Δ, τ) ∝ 〈∣∣P (3)

∣∣2〉, we obtain for:
(i) τ > 0

I(Δ, τ) ∝ B4 +
2ηχγχRγRα3

γ′2R +Δ2

{[
χ(γ′2R +Δ2)
γχRγRα3

− Δ
γα3

+

i(γ′R − iΔ)(2α3 − γ′R + iΔ)
[(2α3 − γ′R)2 +Δ2][(γ′R + γ)2 +Δ2]

×

(γ′R + γ − iΔ)− i(γ′R + iΔ)(2α3 − γ′R − iΔ)(γ′R + γ + iΔ)
[(2α3 − γ′R)2 +Δ2][(γ′R + γ)2 +Δ2]

]
×

cos[Δk · r − (ω1 + ω3)τ ] +

[
γ′R
γα3

−

(γ′R − iΔ)(2α3 − γ′R + iΔ)(γ′R + γ − iΔ)
[(2α3 − γ′R)2 +Δ2][(γ′R + γ)2 +Δ2]

−

(γ′R + iΔ)(2α3 − γ′R − iΔ)(γ′R + γ + iΔ)
[(2α3 − γ′R)2 +Δ2][(γ′R + γ)2 +Δ2]

]
×

sin[Δk · r − (ω1 + ω3)τ ]} exp[−(α1 + α3) |τ |]. (3.22)

(ii) τ < 0

I(Δ, τ) ∝ B4 +

{[
2χ2η − 4ηχχRγRα3Δ

(2α3 + γ)[(α1 − 3α3 − γR − γ)2 +Δ2]

]
×

cos[Δk · r − (ω1 + ω3)τ ] − 2ηχγχRγR(2α1 − γ′R)
(2α3 + γ)[(2α1 − γ′R)2 +Δ2]

×

sin[Δk · r − (ω1 + ω3)τ ]

}
exp[−(α1 + α3) |τ |]. (3.23)

Here,

B3 = χ2γ

(
1

γ + 2α1
+

η2

2α3 + γ

)
+

χ2
RγRγ′R

γ′2R +Δ2
,

B4 =
χ2γ2(1 + η2)

2α3γ
+

χ2
RγR

α1
− 4χRχγγRΔ

α1[(γ′R + γ)2 +Δ2]
.
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The high-order decay cross-correlation terms are reasonably neglected in our
above treatment. Equations (3.22) and (3.23) are analogous to Eqs. (3.20) and
(3.21), respectively. Equations (3.20) and (3.22) indicate that when τ > 0,
the temporal behavior of the beat signal intensity reflects mainly the char-
acteristic of the lasers. When τ < 0, Eqs. (3.21) and (3.23) are mainly de-
termined by a molecule vibrational property. Equations (3.20) – (3.23) are
remarkably different from the result based on a chaotic model. Equations
(3.20) – (3.23) are short of the purely auto-correlation decay terms including
these factors exp(−2α1 |τ |), exp(−2α3 |τ |), exp(−2γ |τ |), and exp(−2γR |τ |),
which are shown to be particularly insensitive to phase fluctuations of Marko-
vian stochastic light fields. The drastic difference of the results also exists
in the higher-order correlation on difference-frequency REPB when three
Markovian stochastic models are employed.

Fig. 3.4. Phase angle θA versus frequency detuning Δ/γR. The three curves repre-
sent χ/χR = 0.3(solid curve),χ/χR = 0.6 (dashed curve), and χ/χR = 0.9 (dotted
curve).

The Raman-enhanced nonlinear polarization and the corresponding sus-
ceptibility have the relation PA = P1 + PR1 = S(r)χA. Based on the cross-
correlation terms of the Raman REPB, we can obtain the expression of the
Raman-enhanced susceptibility χA for τ < 0 different from that for τ > 0
because of the interplay between the material and the light responses. We de-
compose the nonlinear susceptibilities χA into a real and an imaginary part,
i.e., χA = χ′A+iχ′′A. On the other hand, χA can be expressed as |χA| exp iθA =
|χA| cos θA + i|χA| sin θA with θA given by θA(Δ2) = tan−1(χ′′A/χ′A). The
phase dispersions θA are greatly modified by the color-locked noisy field
with both linewidth αi and time delay τ for τ < 0, but only with αi for
τ > 0. Figure 3.4 shows the phase dispersion of Raman-enhanced FWM in-
cluding the influence of the color-locked noisy field for τ > 0. In Fig. 3.4
the phase angle θA shows the absorption-like shape. When χ/χR increase, it
becomes more symmetrical at Δ = 0 and the value decreases more drasti-
cally. In the cw limit (αi = 0), χA for τ < 0 and τ > 0 become same, i.e.,
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χA = χ − χRγR/(Δ2 + iγR). χ′A(Δ) is neither an odd nor an even function
due to χ term, and χ′′A(Δ) is an even function. So θA shows the asymmetric
absorption-like line shape.

A direct comparison between a solid curve and a dashed curve in Fig. 3.5
indicates a drastic difference between them. In the case of α1, α3 << γ, γR,
the phase-diffusion model predicts a damping oscillation of attosecond sum-
frequency REPB signals around a constant value. We can understand this
phenomenon as follows. The interference pattern of the ω1(ω3) component
of twin composite beams 1 and 2 will be in constant motion with a char-
acteristic time constant α−1

1 (α−1
3 ) when |τ | is much longer than the laser

coherence time τc. In the case of α1, α3 << γ, γR, the relaxation time of the
molecular-reorientational grating is so short that the induced gratings G1
and G2 always follow the interference pattern, and therefore the beat signal
will never decay. On the other hand, the relative phase between G1 and G2
fluctuates randomly, which makes spatial interference between them impos-
sible. In this case, the beat signal intensity is simply the summation of the
signal intensity originating from G1 and G2. In contrast, the fringes of G1
and G2 are stable when |τ | < τc. The constructive or destructive interference
between G1 and G2 enhances or reduces the beat signal and gives rise to
the oscillation of the beat signal intensity as τ varies. We note that the main
difference between the phase-diffusion model and the chaotic model is that
amplitude fluctuation exists in the latter case. When |τ | < τc, the coincidence
of intensity spikes of two composite beams gives an additional enhancement
of beat signals for the chaotic model [24].

Fig. 3.5. The attosecond sum-frequency REPB signal intensity versus relative time
delay. The three curves represent the chaotic field (dashed line), phase-diffusion
field (solid line), and Gaussian-amplitude field (dotted line). The parameters are
ω1 = 3.237 fs−1, ω3 = 3.358 fs−1, r = 0, η1 = η2 = 1,Δ = 0, χ/χR = 0.5, γR =
5 × 10−5 fs−1, γ = 2 × 10−4 fs−1,Δk = 10.58 mm−1, α1 = 0.278 fs−1, and α3 =
0.299 fs−1.

The Gaussian-amplitude field has a constant phase but its real amplitude
undergoes Gaussian fluctuations. If the lasers have Lorentzian line shape, the



98 3 Raman, Rayleigh and Brillouin-enhanced FWM Polarization Beats

sixth- and fourth-order coherence function is [11, 12]

〈ui(t1)ui(t2)ui(t3)ui(t4)ui(t5)ui(t6)〉
= 〈ui(t1)ui(t4)〉〈ui(t2)ui(t3)ui(t5)ui(t6)〉+
〈ui(t1)ui(t5)〉〈ui(t2)ui(t3)ui(t4)ui(t6)〉+
〈ui(t1)ui(t6)〉〈ui(t2)ui(t3)ui(t4)ui(t5)〉+
〈ui(t1)ui(t2)〉〈ui(t3)ui(t4)ui(t5)ui(t6)〉+
〈ui(t1)ui(t3)〉 × 〈ui(t2)ui(t4)ui(t5)ui(t6)〉, (3.24)

〈ui(t1)ui(t2)ui(t3)ui(t4)〉
= 〈ui(t1)ui(t3)〉〈ui(t2)ui(t4)〉+ 〈ui(t1)ui(t4)〉 ×
〈ui(t2)ui(t3)〉+ 〈ui(t1)ui(t2)〉〈ui(t3)ui(t4)〉. (3.25)

Based on the Gaussian-amplitude field, the high-order decay cross-correlation
terms have been reasonably neglected. After substituting Eqs. (3.12), (3.24),
and (3.25) into I(Δ, τ) ∝ 〈∣∣P (3)

∣∣2〉, we obtain as follows:
(i) τ > 0

I(Δ, τ) ∝ B5 − 2[χ2 +
χ2

Rγ2
Rγ′R

(γR + α1)(γ′2R +Δ2)
− 2χχRγRΔ

γ′2R +Δ2
] exp(−2α1 |τ |) +

η2χ2(11γ2 + 14γα3 + 4α2
3)

(γ + α3)(γ + 2α3)
exp(−2α3 |τ |) + 2ηχ

γ + 2α3
×{[

χ(3γ + 2α3) +
γχRγRΔ

(2α3 − γ′R)2 +Δ2
+

χRγRΔ(2α3 − γ)
γ′2R +Δ2

]
×

cos[Δk · r − (ω1 + ω3)τ ] +

[
χRγRγ′R(γ − 2α3)

γ′2R +Δ2
−

γχRγR(2α3 − γ′R)
(2α3 − γ′R)2 +Δ2

]
× sin[Δk · r − (ω1 + ω3)τ ]

}
×

exp[−(α1 + α3) |τ |]. (3.26)

(ii) τ < 0

I(Δ,τ)∝B5+2

{
χ2+

χ2
Rγ2

R(2α1−γ′R)
(α1−γR)[(2α1−γ′R)2+Δ2]

+
2χχRγRΔ

(γ′R−2α1)2+Δ2

}
×

exp(−2α1 |τ |) + 10η2χ2 exp(−2α3 |τ |) + 12η2χ2γ2α2
3

(γ2 − α2
3)(γ2 − 4α2

3)
×

exp(−2γ |τ |) + 2χ2
Rγ2

R

{
γ′R − 2γR

[(γ′R − 2γR)2 +Δ2](α1 − γR)
+

γ′R
(γ′2R +Δ2)(α1 + γR)

− 2[γ2
R +Δ2 − (α1 + α3)2]

(γ′2R +Δ2)[(γ′R − 2γR)2 +Δ2]

}
×
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exp(−2γR |τ |) + 4η

{[
3χ2 − 2χχRγRΔ

(2α1 − γ′R)2 +Δ2

]
×

cos[Δk · r − (ω1 + ω3)τ ]− χχRγR(2α1 − γ′R)
(2α1 − γ′R)2 +Δ2

×

sin[Δk · r − (ω1 + ω3)τ ]

}
exp[−(α1 + α3) |τ |] +

4ηχχRγRα3

(2α3 + γ)(2α3 − γ)
×
{[

Δ(2α3 + γ)
(γ′R − γ − 2γR)2 +Δ2

−

Δ(2α3 − γ)
(γ′R − 2γR)2 +Δ2

+
Δ(2α3 − γ)

(γ′R + γ)2 +Δ2
− Δ(2α3 + γ)

γ′2R +Δ2

]
×

cos[Δk · r − (ω1 + ω3)τ − iΔτ ] +

[
(γ′R − γ − 2γR)(2α3 + γ)
(γ′R − γ − 2γR)2 +Δ2

−

(γ′R − 2γR)(2α3 − γ)
(γ′R − 2γR)2 +Δ2

− (γ′R + γ)(2α3 − γ)
(γ′R + γ)2 +Δ2

+
γ′R(2α3 + γ)

γ′2R +Δ2

]
×

sin[Δk · r − (ω1 + ω3)τ − iΔτ ]

}
exp[−(γ + γR) |τ |]. (3.27)

Here,

B5 = χ2γ

[
1

γ + 2α1
+

η2(3γ + α3)
(α3 + γ)(2α3 + γ)

]
+

χ2
RγRγ′R

γ′2R +Δ2
−

2χRχγRγΔ
(γ′R + γ + 2α1)(γ′R + γ) + 2α1γ

′
R +Δ2

(γ + 2α1)(γ′2R +Δ2)[(γ′R + γ)2 +Δ2]
.

Equations (3.26) and (3.27) generally indicate not only the characteristic of
twin laser fields, but also a molecule vibrational property. Specifically, the
temporal behaviors of the sum-frequency REPB intensities mainly reflect
the characteristics of twin composite laser fields for τ > 0, and material
vibrational property for τ < 0. Based on the Gaussian-amplitude field, the
resonant cross-correlation between the Raman-active vibrational mode and
the molecular-reorientational grating (i.e., a factor exp[−(γ + γR) |τ |]) are
shown in Eq. (3.27) for τ < 0. The τ independent constant background of the
Gaussian-amplitude field is slightly larger than that of the chaotic field (i.e.,
B5 > B1), which originates from the amplitude fluctuation of the Markovian
stochastic field.

After that, based on Gaussian-amplitude field, we consider the three-pulse
Raman echo when laser sources have a broadband linewidth (noisy light).
Substituting Eqs. (3.12), (3.15), (3.24), and (3.25) into I(Δ, τ) ∝ 〈∣∣P (3)

∣∣2〉,
we obtain as follows:
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(i) τ > 0

I(Δ, τ) ∝ B6 + 2

{
χ2 − χ2

Rγ2
R

(γR + α1)α3
− 2χχRγRΔ

γ′2R +Δ2

}
exp(−2α1 |τ |) +

{
η2χ2(γ3 + 5γ2α3 + 5γα2

3 + 2α3
3)

α3(γ + α3)(γ + 2α3)
+

η2χ2

[
2γ + 2α3

γ + 2α3
+

γ2

α3(γ + α3)

]}
exp(−2α3 |τ |) +

2ηχ

γ + 2α3

{[
χ(3γ + 2α3) +

γχRγRΔ
(2α3 − γ′R)2 +Δ2

−

χRγγRΔ(5α3 + 2γ)
α3(γ′2R +Δ2)

]
cos[Δk · r − (ω1 + ω3)τ ] +

[
χRγγRγ′R(2γ + 5α3)

α3γ′2R +Δ2
− γχRγR(2α3 − γ′R)
(2α3 − γ′R)2 +Δ2

]
×

sin[Δk · r − (ω1 + ω3)τ ]

}
exp[−(α1 + α3) |τ |]. (3.28)

(ii) τ < 0

I(Δ, τ) ∝ B6 + 2

{
χ2 − χ2

Rγ2
R

(α1 − γR)α3
− 2χχRγRΔ
(γ′R − 2α1)2 +Δ2

}
×

exp(−2α1 |τ |) + η2χ2(10γα3 + 10α2
3 − 2γ2)

α3(α3 − γ)
×

exp(−2α3 |τ |) + 4η2χ2γ2

α2
3 − γ2

exp(−2γ |τ |) + 4χ2
Rγ2

Rα1

α3(α2
1 − γ2

R)
×

exp(−2γR |τ |) + 4η

{[
χ2 − χχRγRΔ

(2α1 − γ′R)2 +Δ2

]
×

cos[Δk · r − (ω1 + ω3)τ ] − χχRγR(2α1 − γ′R)
(2α1 − γ′R)2 +Δ2

×

sin[Δk · r − (ω1 + ω3)τ ]

}
exp[−(α1 + α3) |τ |]. (3.29)

Here,

B6 = χ2γ2

[
1

2α1γ
+

η2(3γ + α3)
2α3γ(2α3 + γ)

+
η2

α3(α3 + γ)

]
+

χ2
RγR

α1
− 4χRγχγRΔ

α1[(γ′R + γ)2 +Δ2]
.



3.1 Attosecond Sum-frequency Raman-enhanced Polarization Beats Using Twin

Phase-sensitive Color Locking Noisy Lights 101

Equations (3.28) and (3.29) are analogous to Eqs. (3.26) and (3.27), respec-
tively.

The attosecond sum-frequency REPB indicates that beat signal oscillates
not only temporally but also spatially along the direction Δk, which is al-
most perpendicular to the propagation direction of the beat signal. Three
normalized three-dimensional interferograms of the signal intensity I(τ,Δ)
versus time delay τ and frequency detuning Δ, I(τ, r) versus time delay τ and
transverse position r, and I(Δ, r) versus frequency detuning Δ and transverse
position r, respectively, have a smaller constant background caused by the
intensity fluctuation of the narrowband (0.01 nm) chaotic field in Fig. 3.6. At
zero relative time delay (τ = 0), twin beams originating from the same source
enjoy perfect overlap at the sample of their corresponding noise patterns in
Figs. 3.6(a) and (b).

Fig. 3.6. Three normalized three-dimensional interferograms of the signal intensity
I(τ,Δ) versus time delay τ and frequency detuning Δ, I(τ, r) versus time delay τ
and transverse position r and I(Δ, r) versus frequency detuning Δ and transverse
position r, respectively. The parameters are ω1 = 3.237 fs−1, ω3 = 3.358 fs−1, α1 =
2.78 × 10−5 fs−1, α3 = 2.99 × 10−5 fs−1, χ/χR = 0.5, γR = 5 × 10−5 fs−1, γ =
2 × 10−4 fs−1, η1 = η2 = 1,Δk = 10.58 mm−1; while r = 0 for (a), Δ = 0 for (b),
and τ = 0 for (c).

This gives maximum interferometric contrast. As |τ | is increased, the
interferometric contrast diminishes on the time scale that reflects material
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memory, usually much longer than the correlation time of the noisy light. The
pure auto-correlation decay terms of the Raman-active vibrational mode, the
molecular-reorientational grating, and laser fields for the attosecond sum-
frequency REPB originated from the amplitude fluctuation of Markovian
stochastic fields.

It is important to note that these three types of Markovian stochastic
fields can have the same spectral density and thus the same second-order co-
herence function. The fundamental differences in the statistics of these fields
are manifest only in higher-order coherence functions [21, 22]. The term
“higher order” refers to all orders larger than the second. In this section,
different stochastic models of laser fields only affect the sixth- and fourth-
order coherence functions in frequency- and time-domains. At a fixed large
time delay (i.e., τ = 500 fs), Fig. 3.7 give RENFWM spectrums for three
Markovian stochastic fields using laser linewidths 0.01 nm and 0.1 nm, re-
spectively. Comparing to the narrowband case [Fig. 3.7 (a)], Fig. 3.7 (b) shows
a much larger nonresonant Δ-independent background. On the other hand,
Fig. 3.5 presents the attosecond sum-frequency REPB versus relative time
delay with fixed frequency detuning (i.e., Δ = 0). Due to the interference of
cos[Δk ·r− (ω1+ω3)τ ] and sin[Δk ·r− (ω1+ω3)τ ] factors of Eqs. 3.13, 3.14,
3.16, 3.17 (for chaotic field), Eqs. 3.20 – 3.23 (for phase-diffusion field), and
Eqs. 3.26 – 3.29 (for Gaussian-amplitude field), the temporal behavior of the
attosecond sum-frequency REPB is asymmetric with the maximum of the
beat signal shifted from τ = 0 (Fig. 3.5). Whereas in the limit of Δ → ∞,
the term with sin[Δk · r − (ω1 + ω3)τ ] factor will disappear, then the beat
signal exhibits a symmetric behavior. The peak-to-background contrast ra-
tio of the chaotic field is larger than that of the Gaussian-amplitude field
or the phase-diffusion field in Figs. 3.5 and 3.28. Furthermore, the contrast
ratio of the phase-diffusion field is slightly larger than that of the Gaussian-
amplitude field. The physical explanation for this is that the signal contrast

Fig. 3.7. RENFWM spectrum with fixed time delay. The three curves represent
the chaotic field (dashed line), phase-diffusion field (solid line), and Gaussian-
amplitude field (dotted line). The parameters are χ/χR = 0.5, γR = γ =
5× 10−5 fs−1, τ = 500 fs; while α1 = 2.78 × 10−5 fs−1, γ′R = 1.077 × 10−4 fs−1 for
(a), and α1 = 2.78× 10−4 fs−1, γ′R = 6.27 × 10−4 fs−1 for (b).
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ratio is equally sensitive to the amplitude and phase fluctuations of Marko-
vian stochastic fields. The polarization beat signal is shown to be particularly
sensitive to statistical properties of Markovian stochastic light fields with ar-
bitrary bandwidth. The Δ- or τ -independent constant background of the beat
signal for Gaussian-amplitude field or chaotic field is much larger than that
of the signal for a phase-diffusion field in Figs. 3.5 and 3.7. The physical
explanation for this is that the Gaussian-amplitude field undergoes stronger
intensity fluctuations than a chaotic field. On the other hand, the intensity
(amplitude) fluctuations of Gaussian-amplitude fields or chaotic fields are
always much larger than the pure phase fluctuations of phase-diffusion fields.

Next, we discuss the chromophore P (3) difference between the sum-freque-
ncy REPB with a phase-conjugation geometry and the sum-frequency ul-
trafast modulation spectroscopy (UMS) [15] with a self-diffraction geometry
from a physical viewpoint. The frequencies and wave vectors of sum-frequency
UMS signals are ωs1 = 2ω1 − ω1, ωs2 = 2ω2 − ω2 and ks1 = 2k1 − k′1, ks2 =
2k′2 − k2, respectively, which means that a photon is absorbed from each of
the two mutually correlated fluctuating pump beams. On the other hand,
the frequencies and wave vectors of the sum-frequency REPB signal are
ωs1 = ω1−ω1+ω3, ωs2 = ω3−ω3+ω3 and ks1 = k1−k′1+k3, ks2 = k′2−k2+k3,
respectively [Fig. 3.1(c)], therefore photons are absorbed from and emitted
to the mutually correlated fluctuating twin beams 1 and 2, respectively. This
difference between the REPB and the UMS has profound influence on field-
correlation effects. We note that the role of beams 1 and 2 are interchangeable
in the UMS, this interchangeable feature also makes the second-order coher-
ence function theory failure in the UMS. Due to 〈u(t1)u(t2)〉 = 0, the absolute
square of the stochastic average of the polarization |〈P (3)〉|2 cannot be used to
describe the temporal behavior of the sum-frequency UMS [20]. Our higher-
order correlation (intensity correlation) treatment also is of vital importance
in the sum-frequency UMS. Moreover, because of 〈ui(t)〉 = 0 and 〈u∗i (t)〉 = 0,
the absolute square of the stochastic average of the polarization |〈P (3)〉|2,
which involves second-order coherence function of ui(t), cannot be used to
describe the temporal behavior of the attosecond sum-frequency REPB. The
sixth-order correlation theory 〈∣∣P (3)

∣∣2〉 reduces to the second-order correla-
tion theory |〈P (3)〉|2 in the case that the laser pulse width is much longer than
the laser coherence time. The second-order coherence function theory is valid
when we are only interested in the τ -dependent part of beating signals [20].
Therefore, the sixth-order coherence function theory is of vital importance
in the sum-frequency REPB. The application of higher-order results to the
difference-frequency REPB experiment yielded a better fit to data than an
expression involving only second-order coherence. Apparently, the nature of
Markovian fields has a more drastic effect on the outcome of the experiment
than the underlying molecular nonlinearity. Since real laser fields are un-
likely to behave like the pure three field classes, a complicated superposition
of various types of responses is to be expected. In a Kerr medium carbon
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disulfide with the 655.7 cm−1 vibrational mode, the sum-frequency REPB
experiment is now underway in our group (The key question is the design of
a dispersion-compensated Michelson interferometer delay line in attosecond
scale).

3.1.3 Heterodyne Detection of Difference-frequency REPB

Since optical fields oscillate too quickly for direct detection, they must be
measured “in quadrature”-as photons. There are two ways to achieve quadra-
ture. One is homodyne detection in which the new polarizations is measured
at its quadrature, (P1 +PR1)[(P1)∗+(PR1)∗]. These signals must be propor-
tional to

∣∣χ(3)
∣∣2. Thus, Ihom odyne ∝

∣∣χ(3)
∣∣2 and all phase information in χ(3)

is lost. The second way to achieve quadrature is to introduce another polar-
ization, P ′2, (called a reference signal) designed in frequency and wave vector
to conjugate (go into quadrature) in its complex representation with the new
polarization of interest. Thus, in the heterodyne case, the signal photons are
derived from (P1 + P ′2 + PR1)[(P1)∗ + (P ′2)∗ + (PR1)∗] or Iheterodyne ∝ χ(3)

(the signal is linear rather than quadratic). In heterodyne detected (3 + 1)
wave mixing, phase information is retained and one can take a full measure
of the complex susceptibility, including its phase. The phase of the complex
induced polarization, P ′(3), determines how its energy will partition between
Class I (the absorbed or emitted active spectroscopy) and Class II (the pas-
sive spectroscopy with a new launched field) spectroscopies [3].

We demonstrated a phase-sensitive method for studying the RENFWM.
The reference signal is another FWM signal, which propagates along the same
optical path as the RENFWM signal. This method is used for studying the
phase dispersion of the third-order susceptibility χ(3) and for the optical het-
erodyne detection of the RENFWM signal. Based on three types of models
described above, subtle Markovian field correlation effects will be investigated
in the heterodyne detection of the femtosecond difference-frequency REPB.
Compare with the above homodyne detection scheme of the attosecond sum-
frequency REPB, the composite twin beams 1 and 2 for the heterodyne de-
tection scheme of the femtosecond difference-frequency REPB also originate
from the same color locking noisy lights. The complex electric fields of beam
1, E′p1, and beam 2, E′p2, instead of Ep1 and Ep2, respectively, can be written
as:

E′p1 = E1(r, t) + F2(r, t) = A1(r, t) exp(−iω1t) +B2(r, t) exp(−iω2t)
= ε1u1(t) exp[i(k1 · r − ω1t)] + ε2u2(t) exp[i(k2 · r − ω2t)], (3.30)

E′P2 = E′1(r, t) + F ′2(r, t) = A′1(r, t) exp(−iω1t) +B′2(r, t) exp(−iω2t)
= ε′1u1(t− τ) exp[i(k′1 · r − ω1t+ ω1τ)] + ε′2u2(t− τ)×
exp[i(k′2 · r − ω2t+ ω2τ)]. (3.31)
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Compared with beam 1 (E′p1) case, the frequency components ω1 and ω2

of beam 2 (E′p2) are relatively delayed by an interferometric time τ in the
heterodyne detection. Specifically, there is a ω2 = ω3 in the above homodyne
detection scheme of the attosecond sum-frequency REPB.

The order parameter Q′2 of nonresonant static grating induced by ω2

frequency components of beams 1 and 2 satisfy the following equation

dQ′2
dt

+ γQ′2 = χγF2(r, t)[F ′2(r, t)]∗. (3.32)

The induced third-order nonlinear polarization P ′2 of ω2 component which
is responsible for the FWM signal is

P ′2 = Q′2(r, t)E3(r, t)
= χγε2(ε′2)

∗ε3 exp{i[(k2 − k′2 + k3) · r − ω3t− ω2τ ]} ×∫ ∞

0

u2(t− t′)u∗2(t− t′ − τ)u3(t) exp(−γt′)dt′. (3.33)

Polarization beat is based on the interference at the detector between FWM
signals, which originate from the macroscopic polarizations excited simulta-
neously in the sample. It prefers that all the polarizations have the same
frequency. The frequencies of u1(t), P ′2, and PR1 are ω3, while PR2 and PR3

have frequencies ω1 − ω2 + ω3 and ω2 − ω1 + ω3, respectively. Furthermore,
due to the phase mismatching, FWM signals from PR2 and PR3 are usually
much smaller than that from P1, P

′
2, and PR1. So we have the total third-

order polarization P ′(3) = P1 + P ′2 + PR1. The third-order nonlinear polar-
izations P1+PR1 and P ′2 correspond to RENFWM process and ω2 NDFWM
process which have wave vectors k1 − k′1 + k3 and k2 − k′2 + k3, respec-
tively. Difference-frequency REPB signals are proportional to the average of
the absolute square of P

′(3) over the random variable of the stochastic pro-
cess, so that the signal intensity I(Δ, τ) ∝ |P ′(3)(P

′(3))∗〉 = 〈(P1 + P ′2 +
P3)[(P1)∗+(P ′2)∗+(PR1)∗]〉 contains 3× 3 = 9 different terms in the fourth-
and second-order coherence function of u1(t) in phase-conjugation geometry,
where 〈P1P

∗
1 〉, 〈P ′2P ′∗2 〉, 〈P ′R1P

′∗
R1〉, 〈P1P

′∗
R1〉, and 〈P ∗1 PR1〉 are include the u1(t)

or u2(t) fourth-order coherence functions; while 〈P1P
∗
2 〉, 〈P ∗1 P ′2〉, 〈P ′2P ∗R1〉,

and 〈P ′∗2 PR1〉 are include the ui(t) second-order coherence functions. In gen-
eral, the REPB of heterodyne detection (at the intensity level) can be viewed
as built of the sum of three contributions

I(Δ, τ) ∝ IP ′
2
+ IP1,PR1 + IP ′

2,P1,PR1 ,

where IP ′
2
= 〈P ′2P ′∗2 〉, IP1,PR1 = 〈P1P

∗
1 〉 + 〈PR1P

∗
R1〉 + 〈P1P

∗
R1〉 + 〈P ∗1 PR1〉,

and IP ′
2,P1,PR1 = 〈P1P

′∗
2 〉 + 〈P ∗1 P ′2〉 + 〈P ′2P ∗R1〉 + 〈P ′∗2 PR1〉: (i) the nonreso-

nant auto-correlation term IP ′
2
of ω2 molecular-reorientational grating, which

include u2(t) fourth-order and u3(t) second-order Markovian stochastic corre-
lation functions; (ii) the autocorrelation term IP1,PR1 (i.e., RENFWM) of ω1
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nonresonant molecular-reorientational grating and ω3−ω1 ≈ ωR Raman res-
onant vibrational mode, which include u1(t) fourth-order and u3(t) second-
order Markovian stochastic correlation functions; (iii) the cross-correlation
term IP ′

2,P1,PR1 between IP ′
2
and IP1,PR1 , which include u1(t), u2(t) and u3(t)

second-order Markovian stochastic correlation functions.
Based on the chaotic field, we first have difference-frequency REPB signals

in heterodyne detection, for:
(i) τ > 0

I(Δ, τ) ∝ IP ′
2
+

χ2γ

γ + 2α1
+

χ2
RγRγ′R

γ′2R +Δ2
−

2χγχRγRΔ(Δ2 + 2γα1 + γ2 + 4γ′Rα1 + 2γ′Rγ + γ′2R )
(γ + 2α1)(γ′2R +Δ2)[(γ′R + γ)2 +Δ2]

+[
χ2 +

χ2
Rγ2

Rγ′R − 2χχRγRΔ(γR + α1)
(γR + α1)(γ′2R +Δ2)

]
exp(−2α1 |τ |) +

2
∣∣∣χ(3)

∣∣∣χη exp[−(α1 + α2) |τ |]×
cos[−Δk · r + (ω1 − ω2)τ − θR]. (3.34)

(ii) τ < 0

I(Δ, τ)

∝ IP ′
2
+

χ2γ

γ + 2α1
+

χ2
RγRγ′R

γ′2R +Δ2
−

2χγχRγRΔ(Δ2 + 2γα1 + γ2 + 4γ′Rα1 + 2γ′Rγ + γ′2R )
(γ + 2α1)(γ′2R +Δ2)[(γ′R + γ)2 +Δ2]

+[
χ2 +

χ2
Rγ2

Rγ′R − 2χχRγRΔ(γR + α1)
(γR + α1)(γ′2R +Δ2)

]
exp(−2α1 |τ |) +

4χRα1

{
χγ′R ×

2γRΔcos(Δ |τ |) + [(α1 + α3)2 − γ2
R +Δ2] sin(Δ |τ |)

(γ′2R +Δ2)[(α1 + α3 − γR)2 +Δ2]
+

χRγ2
RΔ

[
[γ2

R − α2
1 +Δ2 − 2(γR + α1)α3 − 3α2

3] sin(Δ |τ |)
(γ′2R +Δ2)[(γR − α1 + α3)2 +Δ2][(γR − α1 − α3)2 +Δ2]

−

[γ′2R + (γR − α1 + α3)(γR − α1 − α3) + γ′RΔ] cos(Δ |τ |)
(γ′2R +Δ2)[(γR − α1 + α3)2 +Δ2][(γR − α1 − α3)2 +Δ2]

]}
×

exp(−γ′R |τ |) +A sin[−Δk · r + (ω1 − ω2)τ +Δ |τ |] +
2
∣∣∣χ(3)

∣∣∣χη exp[−(α1 + α2) |τ |]× cos[−Δk · r + (ω1 − ω2)τ − θR]. (3.35)

Here,

A = exp [−(α2 + α3 + γR) |τ |] 2χRχγηγR[α2
1 − (α3 + γR)2 −Δ2]

4Δ2(α3 + γR)2 + [α2
1 − (α3 + γR)2 +Δ2]2

,
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IP ′
2
= (χγη)2

[
1

γ(γ + 2α2)
+
exp(−2α2 |τ |)

γ2

]

for the chaotic field. The third-order susceptibility for the RENFWM consists
of a Raman-resonant term and a nonresonant term that originates from the
ω1 molecular-reorientational grating, i.e.,

χ(3) = χ− χRγR

Δ+ iγ′R
.

We express χ(3) as |χ(3)| exp(iθR), with θR given by

θR = tan−1

[
χRγRγ′R

χ(γ′2R +Δ2 − χRΔγ′R)

]
.

We decompose the nonlinear susceptibility χ(3) into a real and an imaginary
part, i.e.,

χ(3) = χ′ + iχ′′,

with χ′ = χ− χRγRΔ
Δ2 + γ′2R

, χ′′ = χR − γ′RγR

Δ2 + γ′2R
.

Equations (3.34) and (3.35) indicate that the difference-frequency REPB
signal of heterodyne detection is modulated with a frequency ω1 − ω2 as
τ is varied. The phase of the signal oscillation depends on the phase θR

of the nonlinear susceptibility. Two-color difference-frequency REPB signals
can also be employed for optical heterodyne detection to yield the real and
the imaginary parts of the nonlinear susceptibility. We assume that IP ′

2
>>

IP1,PR1 at intensity level (ηχ >> |χ(3)| at field level), so the reference signal
that originates from the ω2 frequency component of twin beams 1 and 2 is
much larger than the RENFWM signal that originates from the ω1 frequency
component of twin beams 1 and 2. In this case we first have, from Eq (3.34),

I(τ > 0) ∝ IP ′
2
+2
∣∣∣χ(3)

∣∣∣χη exp[−(α1+α2) |τ |] cos[−Δk ·r+(ω1−ω2)τ−θR].

If we adjust the time delay τ and r such that −Δk · r + (ω1 − ω2)τ = 2nπ,
then

I(τ > 0) ∝ IP ′
2
/χ+ 2η exp[−(α1 + α2) |τ |]χ′.

However, if −Δk · r + (ω1 − ω2)τ = (2n− 1/2)π, we have

I(τ > 0) ∝ IP ′
2
/χ+ 2η exp[−(α1 + α2) |τ |]χ′′.

Secondly, we have from Eq (3.35),

I(τ < 0) ∝ IP ′
2
+A sin[−Δk · r + (ω1 − ω2)τ +Δ |τ |] +

2
∣∣∣χ(3)

∣∣∣χη exp[−(α1 + α2) |τ |] cos[−Δk · r + (ω1 − ω2)τ − θR].
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If we adjust the time delay τ and r (if Δ|τ | ≈ 0) such that −Δk · r + (ω1 −
ω2) = 2nπ, then I(τ < 0) ∝ Ip2/χ + 2η exp[−(α1 + α2)|τ |]χ′. However, if
−Δk · r + (ω1 − ω2)τ = (2n − 1/2)π, we have I(τ < 0) ∝ IP ′

2
/χ + A/χ +

2η exp[−(α1+α2) |τ |]χ′′. In summary, by changing the time delay τ between
twin beams 1 and 2 (If r = 0) we can obtain the real [the dashed line of Fig.
3.8 (a)] and imaginary [the dashed line of Fig. 3.8 (b)] parts of χ(3).

Based on the phase-diffusion field, we then have difference-frequency
REPB signals in heterodyne detection, for:

(i) τ > 0

I(Δ, τ) ∝ IP ′
2
+

χ2γ

γ + 2α1
+

χRγR(γ′RχR − 2Δχ)
γ′2R +Δ2

+

4χχRγRΔα1

(γ + 2α1)[(γ′R + γ)2 +Δ2]
+{

2α1χ
2

2α1 + γ
− 4χχRγRΔα1

(2α1 + γ)[(γ′R + γ)2 +Δ2]

}
×

exp[−(2α1 + γ) |τ |] + 2
∣∣∣χ(3)

∣∣∣χη exp[−(α1 + α2) |τ |]×
cos[−Δk · r + (ω1 − ω2)τ − θR]. (3.36)

(ii) τ < 0

I(Δ, τ)

∝ IP ′
2
+

χ2γ

γ + 2α1
+

χ2
RγRγ′R

γ′2R +Δ2
+

4χχRγRΔα1

(γ + 2α1)[(2α1 − γ′R)2 +Δ2][(γ′R + γ)2 +Δ2]
×

1
(γ′2R +Δ2)

[5γ′4R + 8γ3
Rγ − 2γ′Rγ(γ2 − 4Δ2) + 4α2

1(2γ
′
R + γ)2 +Δ4 −

10γ′2RΔ
2 − 2α1(4γ′3R − γ3 − 2γΔ2 + 6γγ2

R) + 2γ′2R (γ
2 − 2Δ2)] +{

2α1χ
2

2α1 + γ
− 4χχRγRΔα1

(2α1 + γ)[(2α1 − γ′R)2 +Δ2]

}
×

exp[−(2α1 + γ) |τ |] + 4χχRγRα1

[
γ′R(2α1 + γ′R + γm) sin(Δ |τ |)

(γ′2R +Δ2)[(2α1 + γ′R + γm)2 +Δ2]
+

Δ(2α1 + 2γ′R + γm) cos(Δ |τ |)
(γ′2R +Δ2)[(2α1 + γ′R + γm)2 +Δ2]

]
exp(−γ′R |τ |) +

A sin[−Δk · r + (ω1 − ω2)τ +Δ |τ |] +
2
∣∣∣χ(3)

∣∣∣χη exp[−(α1 + α2) |τ |] cos[−Δk · r + (ω1 − ω2)τ − θR]. (3.37)

Here,

IP ′
2
= (χγη)2

{
1

γ(γ + 2α2)
− 2α2

2

γ2(4α2
2 − γ2)

exp(−2γ |τ |)+
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6α2
2 − α2γ

γ2(4α2
2 − γ2)

exp[−(2α2 + γ) |τ |]
}

for the phase-diffusion field. The high-order decay terms are reasonably ne-
glected in τ < 0 case. If IP ′

2
>> IP1,PR1 , we have

I(τ > 0) ∝ IP ′
2
+2

∣∣∣χ(3)
∣∣∣χη exp[−(α1+α2) |τ |] cos[−Δk ·r+(ω1−ω2)τ −θR]

from Eq. (3.36), and

I(τ < 0) ∝ IP ′
2
+A sin[−Δk · r + (ω1 − ω2)τ +Δ |τ |] +

2
∣∣∣χ(3)

∣∣∣χη exp[−(α1 + α2) |τ |] cos[−Δk · r + (ω1 − ω2)τ − θR]

from Eq. (3.37), respectively. Except the reference signal IP ′
2
, the heterodyne

detection signal is the same as that of the heterodyne detected chaotic field
case. By changing the time delay τ between twin beams 1 and 2 (If r = 0) we
can obtain the real [the solid line of Fig. 3.8 (a)] and imaginary [the solid line
of Fig. 3.7 (b)] parts of χ(3) for the phase-diffusion field. Due to the absence
of the amplitude fluctuation, the solid curves of Fig. 3.7 have the smallest
Δ-independent constant background.

Fig. 3.8. The heterodyne detection spectra of the difference-frequency REPB
with (a) −Δk · r + (ω1 − ω2)τ = 0 and (b) −Δk · r + (ω1 − ω2)τ = −π/2.
Theoretical curves represent the chaotic field (dashed line), phase-diffusion
field (solid line), and Gaussian-amplitude field (dotted line) with parameters
γ′R = 1.077 × 10−4 fs−1, α1 = 2.78 × 10−5 fs−1, α2 = 2.75 × 10−5 fs−1, χ/χR =
0.5,Δ,Δk = 1.449 mm−1, r = 0, ω1 − ω2 = 0.0166 fs−1, and η = 3.

Based on the real Gaussian field, we finally have difference-frequency REPB
signals in heterodyne detection as follows:

(i) τ > 0

I(Δ, τ) ∝ IP ′
2
+

χ2γ

γ + 2α1
+

χ2
RγRγ′R

γ′2R +Δ2
−

2χγχRγRΔ(Δ2 + 2γα1 + γ2 + 4γ′Rα1 + 2γ′Rγ + γ′2R )
(γ + 2α1)(γ′2R +Δ2)[(γ′R + γ)2 +Δ2]

+
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χ2 +

2χ2
Rγ2

Rγ′R − 2χχRγRΔ(γR + α1)
(γR + α1)(γ′2R +Δ2)

− 2χχRγRΔ
(γ′R − 2α1)2 +Δ2

]
×

exp(−2α1 |τ |) +
{

χ2γ

2α1 + γ
+

4χχRγRΔα1

(2α1 + γ)[(2α1 − γ′R)2 +Δ2]

}
×

exp[−(2α1 + γ) |τ |] + 2
∣∣∣χ(3)

∣∣∣χη exp[−(α1 + α2) |τ |]×
cos[−Δk · r + (ω1 − ω2)τ − θR]. (3.38)

(ii) τ < 0

I(Δ, τ) ∝ I
P ′
2

+
χ2γ

γ + 2α1
+

χ2
RγRγ′

R

γ′2
R

+ Δ2
−

2χγχRγRΔ(Δ2 + 2γα1 + γ2 + 4γ′
Rα1 + 2γ′

Rγ + γ′2
R )

(γ + 2α1)(γ′2
R

+ Δ2)[(γ′
R

+ γ)2 + Δ2]
+

(
χ
2 +

χ2
Rγ2

Rγ′
R − 4χχRγRΔ(γR + α1)

(γR + α1)(γ′2
R

+ Δ2)
+

2χ2
Rγ2

R(2α1 − γ′
R)

(α1 − γR)[(2α1 + γ′
R

)2 + Δ2]

)
exp(−2α1 |τ|) +

(α1 + α3 − γR)(γ′2
R + Δ2) + γ′

R[(α1 + α3 − γR)2 + Δ2] − 2[Δ2 + γ2
R − (α1 + α3)2](α1 + γR)

(α1 + γR)(γ′2
R

+ Δ2)[(α1 + α3 − γR)2 + Δ2]
×

exp(−2γR |τ|) − 2α1χ
2
Rγ

2
R

(
exp[−(γR − iΔ) |τ|]

[α2
1−(α3+γR−iΔ)2](α1+α3−γR−iΔ)

+

exp[−(γR + iΔ) |τ|]
[α2

1 − (α3 + γR + iΔ)2](α1 + α3 − γR + iΔ)

)
+

A sin[−Δk · r + (ω1 − ω2)τ + Δ |τ|] + 2
˛̨̨
˛χ(3)

˛̨̨
˛ χη ×

exp[−(α1 + α2) |τ|] cos[−Δk · r + (ω1 − ω2)τ − θR]. (3.39)

Here, IP ′
2
= (χγη)2

{
1

γ(γ + 2α2)
+
exp(−2α2 |τ |)

γ2
+
exp[−(2α2 + γ) |τ |]

γ(γ + 2α2)

}
for

the real Gaussian field. The high-order decay terms are reasonably neglected
in τ < 0 case. If the reference signal is much larger than the RENFWM signal
(i.e., IP ′

2
>> IP1,PR1), except u1(t) the heterodyne detection signal is also the

same as that of the heterodyne detected chaotic field case. By changing the
time delay τ between twin beams 1 and 2 (If r = 0) we can obtain the real
[the dotted line of Fig. 3.8 (a)] and imaginary [the dotted line of Fig. 3.8 (b)]
parts of χ(3) for the Gaussian-amplitude field. Due to the larger amplitude
fluctuation, the dotted curves of Fig. 3.8 have the largest Δ-independent
constant background.

Based on three stochastic models, the subtle Markovian field correlation
effects have been investigated in the homodyne detected attosecond sum-
frequency REPB and the heterodyne detected of femtosecond difference-
frequency REPB. Different roles of the amplitude fluctuations and the phase
fluctuations can be understood in time- and frequency-domains. The physical
explanation for this is that the Gaussian-amplitude field undergoes stronger
intensity fluctuations than a chaotic field. On the other hand, the intensity
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(amplitude) fluctuations of the Gaussian-amplitude field or the chaotic field
are always much larger than the pure phase fluctuations of the phase-diffusion
field.

Based on the polarization interference between nonresonant FWM and
Raman resonant FWM processes, we can employ the femtosecond difference-
frequency REPB to obtain the real and the imaginary parts of the Raman
resonance (Fig. 3.8). In the heterodyne detection of femtosecond difference-
frequency REPB, we purposely introduce the nonresonant FWM signal by
adding another component of noisy light with the frequency ω2 to twin com-
posite beams 1 and 2. The relative phase between the reference signal and
RENFWM signal is determined by time delay τ between twin composite
beams 1 and 2. Compared with the optical heterodyne detection Raman-
induced Kerr effect method, because the polarizations of incident beams can
be adjusted independently REPB is more convenient for studying various
components of the fourth-rank tensor of third-order susceptibility. The REPB
has also been employed for studying the phase dispersion of χ(3). Although
this method is similar to the method of Ma et al., [9] we show that for Raman
resonance one can obtain the phase dispersion of χ(3) by simply measuring
the phase change of the FWM signal modulation as ω3 is varied (Fig. 3.8).
Generally speaking, this method can be applied to study the phase dispersion
of χ(3) in the attosecond sum-frequency REPB.

In conclusion, the homodyne detected attosecond sum-frequency REPB
and the heterodyne detected femtosecond difference-frequency REPB are in-
vestigated using chaotic field, phase-diffusion, and Gaussian-amplitude mod-
els with color locking noisy light. The REPB is shown to be particularly
sensitive to statistical properties of Markovian stochastic light fields in both
time- and frequency-domains. The interferometric contrast ratio is equally
sensitive to the amplitude and phase fluctuations of Markovian stochastic
fields. The constant background of beat signals originates from the am-
plitude fluctuation. The Gaussian-amplitude field shows fluctuations larger
than the chaotic field, which again exhibits fluctuations much larger than
for the phase-diffusion field with pure phase fluctuations caused by sponta-
neous emission. It is found that the sum-frequency beat signal oscillates not
only temporally with a period of 953 as but also spatially with a period of
0.6 mm. When the beating frequency between ω3 and ω is off resonant from
the Raman mode, the RENFWM signal exhibits terahertz damping oscil-
lation as the time delay increases. The REPB in the heterodyne detection
scheme has also been employed to obtain the real and imaginary parts of the
Raman resonance.
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3.2 Competition Between Raman and Rayleigh-enhanced
Four-Wave Mixings in Attosecond Polarization Beats

Phase locking ultrashort-pulse nonlinear optical spectroscopy has proved to
be a valuable technique for investigating the dynamics of a wealth of mecha-
nisms in condensed matters. Four-wave mixing (FWM) is a third-order non-
linear optical process [28]. Using a femtosecond time-resolved FWM, valuable
information on the dephasing dynamics in semiconductors and molecular ma-
terials has been obtained. The time resolution of this method is limited by
the pulse width. However, the ultrafast dephasing phenomena can also be
studied by the time-delayed FWM with incoherent light [25]. This technique
is intrinsically related to the optical coherent transient spectroscopy with an
advantage that the time resolution is determined by the correlation time τc

of the color locking noisy light source. Since the relaxation time is deduced
from the FWM spectrum, the measurement is not limited by the laser pulse
width [25].

Laser-induced gratings have received considerable attention because of
their potential applications in spectroscopy and phase conjugation. When
two pump beams with the same frequency interfere in liquids, the optical
Kerr effect [29] results in the generation of a molecular-reorientation grat-
ing. Moreover, if the absorption coefficient of a sample at the pump beam
frequency is not zero, the molecular-reorientation grating is usually accompa-
nied by an undesired thermal grating [30]. In this case, FWM signals can be
the Bragg reflection of the probe beam by the molecular-reorientation grating
and the thermal grating induced by two pump beams [31].

In Raman-enhanced FWM [32], the Raman vibration is excited by the si-
multaneous presence of two incident beams whose frequency difference equals
the Raman excitation frequency, and the Raman-enhanced FWM signal is the
result of this resonant excitation. In contrast, Rayleigh-enhanced FWM [32]
is a non-resonant process with no energy transfer between the lights and the
medium when the frequency difference between two incident beams equals
zero. The resonant structure in Rayleigh-enhanced FWM spectrum is the
result of induced moving grating. The Raman or Rayleigh-enhanced FWM
may be superior to all other CRS techniques [32, 33]. They possess features
of non-resonant background suppression, excellent spatial signal resolution,
free choice of interaction volume and simple optical alignment. Moreover,
phase matching can be achieved for a very wide frequency range from many
hundreds to thousands of cm−1.

In this section, based on the field-correlation of color-locking twin noisy
lights, the Raman and Rayleigh-enhanced FWM, and the homodyne, hetero-
dyne detection of pure Raman, pure Rayleigh, and coexistence of Raman and
Rayleigh ASPB have been investigated, respectively. Raman and Rayleigh-
enhanced FWM compete with each other in the coexistence of Raman and
Rayleigh ASPB. An analytic closed form of results is obtained. Characteris-
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tics of the interferogram of the Raman and Rayleigh-enhanced ASPB are a
result of two main components: the material response and the light response
along with the interplay between the two responses.

The section is organized as follows. Section 3.2.1 presents the basic theory
of field-correlation effects on the Raman and Rayleigh-enhanced FWM. We
give the three schemes of the pure Raman ASPB, the pure Rayleigh ASPB,
and the coexisting Raman and Rayleigh ASPB. Section 3.2.2 presents the
Rayleigh and Raman-enhanced FWM in three Markovian stochastic models.
In addition, a time-delayed method to suppress the background is mentioned
in a Kerr medium and an absorbing medium. Section 3.2.3 gives the Raman
and Rayleigh-enhanced nonlinear susceptibility with cw laser beams. In Sec-
tions 3.2.4 and 3.2.5 the homodyne and heterodyne detection of three types
of the ASPB are shown. Section 3.2.6 gives discussion and conclusion.

3.2.1 Basic Theory

The Raman and Rayleigh ASPB are the third-order nonlinear polarization
beat phenomenon. It requires that all the polarizations have the same fre-
quency.

The basic geometry is shown in Fig. 3.9. Twin beams 1 and 2 consist of
two frequency components ω1 and ω2, a small angle exists between them.
Beam 3 with frequency ω3 is almost propagating along the opposite direction
of beam 1. Twin composite stochastic fields of beam 1, Ep1(r, t), and beam
2, Ep2(r, t) for homodyne detection scheme, can be written as

Ep1 = E1(r, t) + E′2(r, t) = A1(r, t) exp(−iω1t) +A′2(r, t) exp[−iω2(t− τ)]
= ε1u1(t) exp[i(k1 · r − ω1t)] + ε′2u2(t− τ) exp[i(k′2 · r − ω2t+ ω2τ)],

Ep2 = E′1(r, t) + E2(r, t) = A′1(r, t) exp[−iω1(t− τ)] +A2(r, t) exp(−iω2t)
= ε′1u1(t− τ) exp[i(k′1 · r − ω1t+ ω1τ)] +

ε2u2(t) exp[i(k2 · r − ω2t)]. (3.40)

Here, εi, ki(ε′i, k
′
i) are the constant field amplitude and the wave vector of the

ωi component in beams 1 and 2, respectively. ui(t) is a dimensionless statisti-
cal factor that contains phase and amplitude fluctuations. It is taken to be a
complex ergodic stochastic function of t, which obey complex circular Gaus-
sian statistics in a chaotic field. τ is a variable relative time delay between
the prompt (unprime) and delayed (prime) fields. To accomplish this the fre-
quency component ω1 and ω2 lights are split and recombined to provide two
double-frequency pulses in such a way that the ω1 component is delayed by
τ in beam 2 and the ω2 component delayed by the same amount in the beam
1 (Fig. 3.9). The time delay τ is introduced in both composite beams, which
is quite different with that of femtosecond difference-frequency polarization
beats [17]. On the other hand, the complex electric fields of the beam 3 can be
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written as E3(r, t) = A3(r, t) exp(−iω3t) = ε3u3(t) exp[i(k3 · r − ω3t)]. Here,
ω3, ε3, and k3 are the frequency, the field amplitude and the wave vector of
the field, respectively.

Fig. 3.9. Phase-conjugation geometry of the ASPB.

In an absorbing medium, the nonlinear interaction of beams 1 and 2 with
the medium gives rise to the molecular-reorientation gratings and the ther-
mal gratings, i.e., ω1,2 will induce their own non-resonant static molecular-
reorientation gratings GM1,2 and the rmal gratings GT1,2. FWM signals are
results of the diffraction of the beam 3 by these four gratings, respectively.
The order parameters QM1, QT1, QM2, and QT2 of four non-resonant static
gratings satisfy the following equations [29, 30]:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
dQM1/dt+ γMQM1 = χMγME1(r, t)[E′1(r, t)]∗,
dQT1/dt+ γT QT1 = χT γT E1(r, t)[E′1(r, t)]∗,
dQM2/dt+ γMQM2 = χMγME′2(r, t)[E2(r, t)]∗,
dQT2/dt+ γT QT2 = χT γT E′2(r, t)[E2(r, t)]∗.

(3.41)

Here γM,T and χM,T are the relaxation rate and the nonlinear susceptibility
of the molecular-reorientation grating and thermal grating, respectively.

Now if the frequency difference Δ1 = ω3−ω1 is much smaller than Δ′1 =
ω3 − ω2 (i.e., Δ1 << Δ′1 and Δ1 ≈ 0) and the frequency detuning Δ2 =
Δ′1 − ΩR is near zero, the coexisting Raman and Rayleigh modes of the
medium enhance FWM signals. Here ΩR is the Raman resonant frequency.
Specifically, on one hand, two resonant moving gratings, GRM and GRT with
large angle formed by the interference between the ω1 frequency component
of the beam 2 and the ω3 frequency component of the beam 3, will excite
the Rayleigh mode of the medium and enhance FWM signals corresponding
to GM1 and GT1 (i.e., Rayleigh-enhanced FWM). On the other hand, one
large resonant moving grating, GR formed by the interference between the
ω2 frequency component of the beam 2 and the ω3 frequency component of
the beam 3, will excite the Raman mode of the medium and enhance FWM
signals corresponding to GM2 and GT2 (i.e., Raman-enhanced FWM). The
order parameters QR, QRT , and QRM satisfy the following equations:⎧⎪⎨

⎪⎩
dQR/dt+ (γR − iΔ2)QR = χRγR[E2(r, t)]∗E3(r, t),
dQRM/dt+ γMQRM = χMγM [E′1(r, t)]∗E3(r, t),
dQRT /dt+ γT QRT = χT γT [E′1(r, t)]∗E3(r, t).

(3.42)

Based on Eqs. (3.41) and (3.42) shown above, the induced seven third-
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order nonlinear polarizations which are responsible for FWM signals are

PM1 = QM1(r, t)E3(r, t) = χMγMS1(r)ε1(ε′1)
∗ε3 ×∫ ∞

0

u1(t− t′)u∗1(t− t′ − τ)u3(t) exp(−γM t′)dt′, (3.43)

PT1 = QT1(r, t)E3(r, t) = χT γT S1(r)ε1(ε′1)
∗ε3 ×∫ ∞

0

u1(t− t′)u∗1(t− t′ − τ)u3(t) exp(−γT t′)dt′, (3.44)

PM2 = QM2(r, t)E3(r, t) = χMγMS2(r)(ε2)∗ε′2ε3 ×∫ ∞

0

u∗2(t− t′)u2(t− t′ − τ)u3(t) exp(−γM t′)dt′, (3.45)

PT2 = QT2(r, t)E3(r, t) = χT γT S2(r)(ε2)∗ε′2ε3 ×∫ ∞

0

u∗2(t− t′)u2(t− t′ − τ)u3(t) exp(−γT t′)dt′, (3.46)

PR = QR(r, t)E′2(r, t) = iχRγRS2(r)(ε2)∗ε3ε
′
2 ×∫ ∞

0

u∗2(t− t′)u3(t− t′)u2(t− τ) exp[−(γR − iΔ2)t′]dt′, (3.47)

PRM = QM1(r, t)E1(r, t) = χMγMS1(r)(ε′1)
∗ε3ε1 ×∫ ∞

0

u∗1(t− t′ − τ)u3(t− t′)u1(t) exp[−(γM − iΔ1)t′]dt′, (3.48)

PRT = QT1(r, t)E1(r, t) = χT γT S1(r)(ε′1)
∗ε3ε1 ×∫ ∞

0

u∗1(t− t′ − τ)u3(t− t′)u1(t) exp[−(γT − iΔ1)t′]dt′. (3.49)

Here, S1(r) = exp{i[(k1−k′1+k3) · r−ω3t−ω1τ ]} and S2(r) = exp{i[(k′2−
k2 + k3) · r − ω3t + ω2τ ]}. Therefore, polarization PA = PM2 + PT2 + PR

corresponding to the Raman-enhanced FWM process with phase-matching
condition k′2 − k2 + k3 and PB = PM1 + PT1 + PRM + PRT corresponding
to the Rayleigh-enhanced FWM process with phase-matching condition k1−
k′1 + k3. Both FWM signals have the same frequency, i.e., ω3. As a result,
ASPB originates from the interference between macroscopic polarizations
from Rayleigh-enhanced FWM and Raman-enhanced FWM signals. The beat
signal (beam 4) is along the opposite direction of the beam 2 approximately
[9].

Furthermore, if the ω1, ω2, and ω3 frequency components of the beams
only satisfy the excitation condition of Rayleigh mode where Δ1 << Δ′1 and
Δ1 ≈ 0, the Raman-enhanced FWM polarization PA converts into the FWM
polarization PC = PM2 + PT2 and we have the pure Rayleigh ASPB based
on the interference at the detector between FWM signals resulted from PB

and PC . Similarly, we can have the pure Raman ASPB resulted from PA and
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PD = PM1 +PT1 if only the excitation condition of Raman mode is satisfied
and the Rayleigh-enhanced FWM polarization PB converts into the FWM
polarization PD.

To be brief, with the geometry shown in Fig. 3.9, under the excitation
condition of Raman mode the beams k2 and k′2 generate Raman-enhanced
FWM (PA); under the excitation condition of Rayleigh mode the beams k1

and k′1 generate Rayleigh-enhanced FWM (PB). When only one condition
is satisfied, we obtain pure Raman ASPB (PA + PD = PM2 + PT2 + PR +
PM1+PT1) or Rayleigh ASPB (PB +PC = PM1+PT1+PRM +PRT +PM2+
PT2). However, when both the excitation conditions are fulfilled, Raman and
Rayleigh-enhanced FWM interact with each other to generate the coexisting
Raman and Rayleigh ASPB (PA + PB = PM2 + PT2 + PR + PM1 + PT1 +
PRM + PRT ).

3.2.2 Stochastic Correlation Effects of Rayleigh and Raman-
enhanced FWM

We have the total third-order polarization PA(PB) for the Raman-
(Rayleigh-) enhanced FWM. For the macroscopic system where phase match-
ing takes place the signal must be drawn from the PA(PB) developed on one
“atom” multiplied by the P ∗A (P ∗B) that is developed on another “atom” which
must be located elsewhere in space (with summation over all such pairs). For
homodyne detection the Raman (Rayleigh-) enhanced FWM signal is pro-
portional to the average of the absolute square of PA(PB) over the random
variable of the stochastic process. We can have

〈|PA|2〉 = 〈PM2P
∗
M2〉+ 〈PM2P

∗
T2〉+ 〈PM2P

∗
R〉+ 〈PT2P

∗
M2〉+ 〈PT2P

∗
T2〉+

〈PT2P
∗
R〉+ 〈PRP ∗M2〉+ 〈PRP ∗T2〉+ 〈PRP ∗R〉,

〈|PB |2〉 = 〈PM1P
∗
M1〉+ 〈PM1P

∗
T1〉+ 〈PM1P

∗
RM 〉+ 〈PM1P

∗
RT 〉+

〈PT1P
∗
M1〉+ 〈PT1P

∗
T1〉+ 〈PT1P

∗
RM 〉+ 〈PT1P

∗
RT 〉+

〈PRMP ∗M1〉+ 〈PRMP ∗T1〉+ 〈PRMP ∗RM 〉+ 〈PRMP ∗RT 〉+
〈PRT P ∗M1〉+ 〈PRT P ∗T1〉+ 〈PRT P ∗RM 〉+ 〈PRT P ∗RT 〉.

They involves fourth- and second-order coherence functions of ui(t). For ex-
ample, one term of 〈|PA|2〉 is
〈PRP ∗M2〉 = iχRγRχMγM (ε2)∗ε3ε

′
2S2(r)ε2(ε′2)

∗(ε3)∗S∗2(r)×∫ ∞

0

dt′
∫ ∞

0

ds′〈u2(t− τ)u2(t− s′)u∗2(t− t′)u∗2(t− s′ − τ)〉
〈u3(t− t′)u∗3(t)〉 × exp[−(γR − iΔ2)t′ − γMs′].

The fourth- and second-order coherence functions of ui(t) included in this
equation are 〈u2(t− τ)u2(t− s′)u∗2(t− t′)u∗2(t− s′− τ)〉 and 〈u3(t− t′)u∗3(t)〉,
respectively.
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In an optical Kerr medium there is no thermal effect, we assume χT = 0.
The optical Kerr effect for the liquid CS2, for example, has at least two com-
ponents, i.e., a relatively long “Debye” component and a shorter “interaction-
induced” component. Here for simplicity, we only consider the field correla-
tion effects in a medium which has single relaxation rate γM .

We first consider Raman-enhanced FWM. After performing the tedious
integration, in the case of broadband linewidth (γM , γR << α2, α3), we can
obtain as follows:

τ > 0
IA(Δ2, τ) ∝ 〈PAP ∗A〉 = L1(n1)χ2

M + L2χ
2
R − 2L3χMχR. (3.50)

τ < 0

IA(Δ2, τ) ∝ L1(n1)χ2
M + L2χ

2
R − 2

{
L3 −

4α1γR[2α3Δ2 cosΔ2τ + (α2
1 − α2

3 +Δ2
2) sinΔ2τ ] exp(α1 + α3)τ

α4
1 − 2α2

1(α
2
3 −Δ2

2) + (α2
3 +Δ2

2)2

}
×

χMχR. (3.51)

Here, L1(n1) = γM [1 + n1 exp(−2α1|τ |)]/2α1 + exp(−2α1|τ |), L2 = γR(α1 +
α3)/[(α1 + α3)2 +Δ2

2], and L3 = 2γRΔ2 exp(−2α1|τ |)/[(α1 − α3)2 +Δ2
2]. n1

in the function L1(n1) equals 0,−1, 2 for the CFM, PDM and GAM, respec-
tively. The terms L1(n)χ2

M and L2χ
2
R in Eqs. (3.50) and (3.51) are the au-

tocorrelation terms of the non-resonant background and the resonant signal,
respectively. Other terms with the factor χMχR are cross-correlation terms
between them. Obviously, the above two equations show that the Raman-
enhanced FWM spectrum is asymmetrical about τ = 0. Since the autocor-
relation terms are the same for τ > 0 and τ < 0, the temporal asymmetry
is induced by cross-correlation terms. Moreover, when Δ2 
= 0, I(Δ2, τ) for
τ < 0 exhibits hybrid-radiation-matter-detuning damping oscillations with a
frequency close to Δ2 that originate from cosΔ2τ and sinΔ2τ factors of inter-
ference term for τ < 0 [see Eq. 3.51 and the dashed curve in Fig. 3.10 (a)]. On
the other hand, we define a parameter R = I(Δ2 →∞)/[I(Δ2 = 0)−I(Δ2 →
∞)] as the ratio between the non-resonant background and the resonant sig-
nal. When τ = 0 and α2 = α3 we obtain R = χ2

M (γM + 2α2)/χ2
RγR >> 1 in

the limit of broadband linewidth. Thus the resonant signal at τ = 0 is ob-
scured by the huge non-resonant background [the solid curve in Fig. 3.10 (a)].
However, when α2 |τ | >> 1, the resonant signal and the non-resonant back-
ground become comparable, and we haveR = χ2

MγM/χ2
RγR, which equals 1 if

χR = χM , γR = γM , as shown by the dashed and dotted curve in Fig. 3.10(a).
Therefore, the huge non-resonant background can be effectively suppressed
with large time delay.

Next,we consider the Raman-enhanced FWM with narrow-band linewidth
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(γM , γR >> α2, α3). We have

IA(Δ2) ≈ n2

(
χ2

M + χ2
R

γ2
R

γ2
R +Δ2

2

− 2χMχR
γRΔ2

γ2
R +Δ2

2

)
. (3.52)

Here, n2 equals 2, 1, 3 for the CFM, PDM, and GAM, respectively. We can see
that autocorrelation terms are even functions while the cross-correlation term
is odd function. Therefore, the spectral asymmetry of Raman-enhanced FWM
results from interference between the resonant signal and the non-resonant
background (Fig. 3.10). Moreover, the interference term has contribution to
neither the resonant signal nor non-resonant background. The ratio between
the resonant signal and the non-resonant background is almost independent
of the delay time τ and we have R = (χM/χR)2 = 1 if χM = χR, as shown
in Fig. 3.10 (b).

Fig. 3.10. The Raman-enhanced FWM spectra of the GAM versus Δ2/γM for
χM/χR = 1, α3/α1 = 1, α1τ = 0 (solid curve), −1 (dashed curve), −10 (dotted
curve), (a) γM/α1 = 0.1, γR/α1 = 0.1, (b) γM/α1 = 5, γR/α1 = 5. Adopted from
Ref. [20].

In general, the Raman-enhanced FWM of Kerr medium exhibits spec-
tral and temporal asymmetry and hybrid-radiation-matter-detuning damp-
ing oscillations with a frequency close to Δ2 that originate from cosΔ2τ and
sinΔ2τ factors for τ < 0 due to the interference between the non-resonant
background of the molecular-reorientation grating and the resonant signal of
the Raman-active mode. In addition, on one hand, in the case of narrow-
band linewidth the ratio between the resonant signal and the non-resonant
background is almost independent of the delay time τ . On the other hand,
the huge non-resonant background can be effectively suppressed with large
time delay.

The Rayleigh-enhanced FWM expressions and spectra versus Δ1/γM have
been studied under narrowband and broadband line width condition before
[32]. In contrast to the Raman-enhanced FWM, since the interference term
between the molecular-reorientation grating and the Rayleigh moving grating



3.2 Competition Between Raman and Rayleigh-enhanced Four-Wave Mixings in

Attosecond Polarization Beats 119

is even function of Δ1, the spectra of the Rayleigh-enhanced FWM are sym-
metrical about Δ1 = 0 (Fig. 3.11). In addition, Rayleigh moving grating does
not have the exclusive relaxation rate but Debye relaxation rate γM instead,
which is different from Raman moving grating. On the other hand, in the case
of the narrowband linewidth, though the Rayleigh-enhanced FWM signal in-
tensity of GAM is the largest while that of PDM is the smallest and that of
CFM is moderate, the spectra of the three models are different drastically
[Fig. 3.11 (a)]. On the other hand, under broadband line width condition,
when τ = 0 the spectra of the three models have the same point that the
non-resonant background is so larger than the resonant signal that the con-
tribution from molecular-reorientation grating dominates the FWM spectra
and obscure the valuable information of the spectra, the difference value of
the signals intensity at Δ1 = 0 among the three models get smaller than
those of Fig. 3.11 (a), as shown in Fig. 3.11 (b). However, when α1τ >> 1 the
resonant signal, and the non-resonant background become comparable, and

Fig. 3.11. The Rayleigh-enhanced FWM spectra in a Kerr medium with a single
relaxation rate of molecular-reorientation grating for α3/α1 = 1, (a) γM/α1 =
100, τ = 0; (b) γM/α1 = 0.1, τ = 0; (c) γM/α1 = 0.1, α1τ = −0.3Δ. The three
curves represent the CFM (solid curve), PDM (dashed curve) and GAM (dotted
curve), respectively.
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the PDM and GAM results are the same as that of the CFM, as shown in Fig.
3.11 (c). Therefore, the differences among CFM, PDM, and GAM are drastic
with narrowband linewidth, while get similar with broadband linewidth. Also,
in this case the huge non-resonant background can be effectively suppressed
with large time delay.

Typically, we assume, in absorbing medium the relaxation time of a ther-
mal grating is on the order of a microsecond, while the relaxation time of the
molecular-reorientation grating is a few hundreds femtosecond, the reduction
factor is about 10−6. Therefore, the difference in the temporal behavior of the
Raman and Rayleigh-enhanced FWM for γM >> α1, α3 and γT << α1, u1(t)
can be employed for the suppression of non-resonant thermal background in
an absorbing medium.

We have discussed the Raman-enhanced FWM spectra at fixed time delay
in the Kerr medium, now we turn our attention to the dependence of the
Raman-enhanced signal intensity on the time delay when the frequencies of
the incident beams are fixed. Figure 3.12 shows the temporal behavior of
the Raman-enhanced FWM signal intensity for GAM. Here no coherence
spike appears at τ = 0 and the signal intensity decay with different rate
for τ > 0 and τ < 0. As the laser linewidth α2 increases, the maximum is
closer to τ = 0, and the τ -independent background increases, as shown in
Fig.3.12 (a). Moreover, there only exist the hybrid-radiation-matter-detuning
damping oscillations for τ < 0 and the maximum of the profile is shifted to
τ = 0 as Δ2 increases, as shown in Fig. 3.12 (b). In fact, when τ < 0, the
Raman mode and beam 1 are mutually correlated and the Raman-enhanced
FWM signal intensity depends on the coherence time of the pump beams and
the relaxation time of the Raman mode, while when τ > 0 it only depends on

Fig. 3.12. The Raman-enhanced FWM signal intensity of the GAM versus I(τ, r) in
an absorbing medium for (a) χM/χR = 0.05, γM/γR = 4, χT /χR = 0.05, γT /γR =
1 × 10−6, α3/γR = 0.1,Δ2 = 0, α2/γR = 0.5 (solid curve), α2/γR = 2 (dashed
curve), α2/γR = 5 (dotted curve), α2/γR = 10 (dot-dashed curve); (b) χM/χR =
0.05, γM/γR = 4, χT /χR = 0.05, γT /γR = 1 × 10−6, α3/γR = 0.1, α2/γR =
0.5,Δ2/γR = 1 (solid curve), Δ2/γR = 3 (dashed curve), Δ2/γR = 5 (dotted
curve), Δ2/γR = 10 (dot-dashed curve).
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the laser coherence time. The temporal asymmetry and the hybrid-radiation-
matter-detuning damping oscillation are induced by such mutual correlation.
As the pump laser linewidth increases, the mutual correlation gets weak and
the τ -independent background increases.

For simplicity, in the limit of γR, γM >> α1, α3 >> γT we have

IA(Δ2, τ) ∝ [1 + n3 exp(−2α2|τ |)]
(

χ2
M − 2γRΔ2

γ2
R +Δ2

2

χMχR +
γ2

R

γ2
R +Δ2

2

χ2
R

)
+

γT χ2
T

2α2
+ exp(−2α2|τ |)

(
2χMχT − 2γRΔ2

γ2
R +Δ2

2

χT χR + χ2
T

)
. (3.53)

Here, n3 equals 1, 0, 2 for CFM, PDM, and GAM, respectively. Suppose that
the thermal grating is much efficient than the molecular-reorientation grating
so that χ2

T >> χ2
M , χ2

R, then we have IA(Δ2) ∝ χ2
T at zero time delay. Hence,

the Raman-enhanced FWM spectrum is dominated by the non-resonant ther-
mal background, as shown in Fig. 3.13 (a). On the other hand, under the
condition (χT /χM )2(γT /2α1) << 1, the thermal background can be elimi-
nated completely when the relative time delay is much longer than the laser
coherence time. In this limit, the theoretical Raman-enhanced FWM spectra
show the normal asymmetry due to the interference between the Raman-
resonant term and the non-resonant background originating solely from the
molecular-reorientation grating, as shown in Fig. 3.13 (b). Furthermore, from
Eq. (3.53) we can see that the time-delayed method to suppress the thermal
background is useful for all the three Markovian stochastic models. However,
if (χT /χM )2(γT /2α1) ≈ 1, the residue contribution from the thermal grat-
ing due to the second term cannot be neglected even when |τ | → ∞. Our
numerical results are given in Fig. 3.13 (c).

Physically, the establishment of QM2(r, t) and QT2(r, t) are dependent
on the delay time τ directly while that of QR(r, t) is almost independent of
delay time τ . Moreover, we define the coherent time of the pump beams as
Tc, the decay time of the thermal grating as Tt, and the relaxation time of
the molecular-reorientation grating as TM . For most liquids Tt is of the order
of microseconds, while TM is only a few picoseconds. We choose the laser
linewidth such that TM < Tc << Tt. When τ >> Tc, the interference patterns
of the pump beams fluctuate with a characteristic time scale (α2 + α3)−1.
Thus the thermal grating is washed out due to integration effect on the phase
fluctuation, while the molecular-reorientation grating with short relaxation
time can respond to the phase fluctuation of the fields almost immediately.
Therefore, thermal gratings can be effectively suppressed with large τ , while
the Bragg-reflection signal from the molecular-reorientation grating can still
be observed. It should be noted that if the pump beams are derived from a
pulse laser with a pulse width Tp << Tt,the condition for the suppression of
thermal gratings should be replaced by Tp >> Tc. That is to say, because of
the finite interaction time between the laser and the material, the role of the
relaxation time should be replaced by the laser pulse width.
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Fig. 3.13. The Raman-enhanced FWM spectra of the GAM versus Δ2/γM in
an absorbing medium for (a) α3/α1 = 1, γT /α1 = 1 × 10−5, γM/α1 = γR/α1 =
10, α1τ = 0, χM/χR = 1, χT /χR = 0 (solid curve), χT /χR = 1.5 (dashed curve),
χT /χR = 5 (dotted curve), χT /χR = 50 (dot-dashed curve); (b) α3/α1 =
1, γT /α1 = 1 × 10−5, γM/α1 = γR/α1 = 10, χM/χR = 1, χT /χR = 50, α1τ = 0
(solid curve), α1τ = 3.3 (dashed curve), α1τ = 4 (dotted curve), α1τ = 5
(dot-dashed curve), χT /χR = 0, α1τ = 5 (dot-dot-dashed curve); (c) α3/α1 =
1, γT /α1 = 1 × 10−5, γM/α1 = γR/α1 = 10, χM/χR = 1, χT /χR = 500, α1τ = 0
(solid curve), α1τ = 5.5 (dashed curve), α1τ = 7 (dotted curve), α1τ = 10 (dot-
dashed curve), χT /χR = 0 and α1τ = 10 (dot-dot-dashed curve).

Then we consider the difference among the three Markovian stochastic
models. Form Eq. (3.53), we can see that in the limit of γR, γM >> α1,
α3 >> γT APD is short of the amplitude decay factor exp(−2α2τ) while
the amplitude decay factor of GAM is two times of that of CFM. Thus the
signal intensity of GAM is largest of all and that of PDM is smallest [see
Fig. 3.14(a)]. However, on one hand, if the thermal grating is much efficient
than the molecular-reorientation grating, the same large thermal background
obscures the different amplitude decay of the three models [see Fig. 3.14 (b)].
On the other hand, the difference of the three models can also be eliminated
by the time delay method, as shown in Fig. 3.14(c) and Fig. 3.15.

For Rayleigh-enhanced FWM, the thermal effect of an absorbing medium
can be suppressed by a time-delayed method. Physically, the resonant signal
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Fig. 3.14. The Raman-enhanced FWM spectra versus Δ2/γR in an absorbing
medium for (a) γM/α1 = 10, γR/α1 = 10, γT /α1 = 1× 10−5, α3/α1 = 1, χM/χR =
1, χT /χR = 5, τ = 0, (b) γM/α1 = 10, γR/α1 = 10, γT /α1 = 1 × 10−5, α3/α1 =
1, χM/χR = 1, χT /χR = 50, τ = 0, (c) γM/α1 = 10, γR/α1 = 10, γT /α1 =
1× 10−5, α3/α1 = 1, χM/χR = 1, χT /χR = 5, γRτ = 2. The three curves represent
the CFM (solid curve), PDM (dashed curve) and GAM (dotted curve), respectively.

originate from the order parameters both QRM(r, t) and QRT (r, t), while
the non-resonant background come from both QM1(r, t) and QT1(r, t). The
establishment of order parameters of the gratings involves integration ef-
fects. On the other hand, the fact that the effects of field correlation on the
order parameters QRM (r, t)(QRT (r, t)) and QM1(r, t)(QT1(r, t)) are differ-
ent. QRM (r, t)(QRT (r, t)) is induced by beams 2 and 3, the phase factor of
[E′1(r, t)]∗E3(r, t) is a random variable. Due to the integration effect, the fast
random fluctuation of phase leads to the reduction of the amplitude which is
almost independent of delay time τ . In contrast, since QM1(r, t)(QT1(r, t))
is induced by beams 1 and 2, the incident laser fields is coherent when τ = 0
while incoherent when αiτ >> 1, the establishment of gratings is depen-
dent on the delay time τ directly. In particular, we consider the condition
γM >> α1,3 >> γT . On one hand the incident fields have broadband line
width compared to thermal grating when α1,3 >> γT . The effect of integra-
tion is to wash out the thermal grating with large time delay while no washout
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Fig. 3.15. The Raman-enhanced FWM spectra versus τγR for χM/χR =
0.05, γM/γR = 1, χT /χR = 0.1, γT /γR = 0.000001, α3/γR = 0.1, α1/γR =
0.4,Δ2/γR = 13. The three curves represent the chaotic field (solid curve), phase-
diffusion field (dashed curve), Gaussian-amplitude field (dotted curve).

takes place when τ = 0. On the other hand the fields have narrowband line
width compared to molecular-reorientation grating when γM >> α1,3. In this
case the material gratings have very short relaxation times and respond to
the phase fluctuation of the fields almost immediately. Therefore, although
the phase of PM1 and PRM fluctuate randomly, the relative phase between
them is fixed. The ratio between the non-resonant background induced by
molecular-reorientation grating and the resonant signal is almost indepen-
dent of τ .

3.2.3 The Raman and Rayleigh-enhanced Nonlinear Susceptibility
in cw Limit

For simplicity, with cw laser beams we can assume that ui(t) = 1 in Eqs.
(3.43) – (3.44). Under such condition the Raman-enhanced nonlinear polar-
ization

PA = PM2 + PT2 + PR = S2(r)
(

χM + χT − χRγR

Δ2 + iγR

)
(3.54)

can be obtained. Therefore, the third-order susceptibility for Raman-enhanc-
ed FWM consists of a Raman-resonant term and a non-resonant background
that originates from the molecular-reorientation grating and the thermal grat-
ing. i.e.,

χA = χM + χT − χRγR

Δ2 + iγR
. (3.55)

We decompose the nonlinear susceptibility χA into a real and an imagi-
nary part, i.e., χA = χ′A+iχ

′′
A, with χ′A = χM+χT −χRγRΔ2/(Δ2

2+γ2
R) and
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χ′′A = χRγ2
R/(Δ2

2+γ2
R). The real and imaginary parts are odd and even func-

tions, respectively. We express χA as |χA| exp iθA = |χA| cos θA+i|χA| sin θA,
with θA given by θA(Δ2) = tan−1(χ′′A/χ′A). We can see in Fig. 3.16 (a) the
phase angle θA becomes more asymmetrical about Δ2 = 0 and the value
changes more drastically when χM/χR and χT /χR decrease.

Similarly, we can obtain the Rayleigh-enhanced nonlinear polarization
with cw laser beams, i.e.,

PB = PM1 + PT1 + PRM + PRT

= S1(r)
(

χM + χT +
χMγM

γM − iΔ1
+

χT γT

γT − iΔ1

)
. (3.56)

Therefore, the third-order susceptibility for the Rayleigh-enhanced FWM
consists of a Rayleigh-resonant term and a non-resonant background that
originates from the molecular-reorientation grating and the thermal grating,
i.e.,

χB = χM + χT +
χMγM

γM − iΔ1
+

χT γT

γT − iΔ1
. (3.57)

We decompose the nonlinear susceptibility χB into a real and an imaginary
part, i.e., χB = χ′B + iχ′′B, with χ′B = χM + χT + γ2

MχM/(γ2
M + Δ2

1) +
γ2

T χT /(γ2
T + Δ2

1) and χ′′B = χMγMΔ1/(γ2
M + Δ2

1) + χT γTΔ1/(γ2
T + Δ2

1).
In contrast of Raman-enhanced nonlinear susceptibility χA, the real and
imaginary parts are even and odd functions, respectively. We express χB

as |χB| exp iθB = |χB | cos θB + i|χB| sin θB, with θB given by θB(Δ1) =
tan−1(χ′′B/χ′B). From Fig. 3.16(b) we can see that θB(Δ1) is an odd function
and the value changes more drastically when χT /χM decreases.

Fig. 3.16. (a) The phase angle θA versus frequency detuning Δ2/γR for
χM/χR = χT /χR = 1 (solid curve), χM/χR = χT /χR = 0.5 (dashed curve),
χM/χR = χT /χR = 0.3(dotted curve); (b) Phase angle θB versus frequency
detuning Δ1/γM for γT /γM = 1 × 10−6χT /χM = 1 (solid curve), χT /χM = 0.5
(dashed curve), χT /χM = 0.3 (dotted curve).

Figure 3.17 shows the phase dispersion of the Raman and Rayleigh-
enhanced FWM including the influence of the color-locked noisy field for
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Fig. 3.17. (a) The phase angle θA versus frequency detuning Δ2/γR for α2/γR =
1, α2/γR = 0.5, α2/γR = 0. The three curves represent α2/γR = 0 (solid curve),
α2/γR = 0.5 (dashed curve), and α2/γR = 1 (dotted curve); (b) the phase angle θB

versus frequency detuning Δ1/γM for γT /γM = 1 × 10−6
, α1/γM = 1, α1/γM =

0.5, α1/γM = 0. The three curves represent α1/γM = 0 (solid curve), α1/γM = 0.5
(dashed curve), and α1/γM = 1 (dotted curve).

τ > 0. In Fig. 3.17(a), the phase angle θA shows the absorption-like shape.
On the other hand, in Fig. 3.17(b), we can see the phase angle θB shows
the dispersion-like shape. In the cw limit (αi = 0), χA(χB) for τ < 0 and
τ > 0 become same, i.e., χA = χM + χT − χRγR/(Δ2 + iγR) and χB =
χM + χT + χMγM/(γM − iΔ1) + χT γT /(γT − iΔ1). χ′A(Δ2) is neither an
odd nor an even function, and χ′′A(Δ2) is an even function. So θA shows the
asymmetric absorption-like line shape. θB(Δ1) is an odd function (dispersion-
like shape) for even function χ′B(Δ1) and odd function χ′′B(Δ1). Comparison
with the broadband (αi/γM >> 1, αi/γT >> 1), the dispersion and absorp-
tion under narrowband condition are independent on the linewidth αi and
time delay τ , which correspond to the nonmodified nonlinear dispersion and
absorption of the material. In Fig. 3.17, θA and θB decrease and the line shape
becomes broad versus increasing linewidth, which shows the influence of the
field-correlation of the color-locked noisy light. Thus, by virtue of the ultra-
fast modulation processes within the femtosecond regime, one can optimize
the nonlinear susceptibilities and obtain the efficient nonlinear optical sig-
nals, which have potential applications in achieving better nonlinear optical
materials and opt-electronic devices.

3.2.4 Homodyne Detection of ASPB

For the macroscopic system where phase matching takes place this signal
must be drawn from the total third-order polarization P (3) developed on
one chromophore multiplied by the (P (3))∗ that is developed on another
chromophore which must be located elsewhere in space (with summation over
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all such pairs). The bichromophoric model is particularly important to the
noisy light spectroscopies where the stochastic averaging at the signal level
must be carried out. The ASPB signal is proportional to the average of the
absolute square of P (3) over the random variable of the stochastic process, so
that the signal I(Δi, τ) ∝ 〈|P (3)|2〉 = 〈P (3)(P (3))∗〉 contains different terms in
the fourth- and second-order coherence function of ui(t) in phase conjugation
geometry. In general, the ASPB of homodyne detection (at the intensity level)
can be viewed as built of the sum of three contributions: (i) the τ -independent
or dependent auto-correlation terms of ω1 component, which include u1(t)
fourth-order and u3(t) two-order Markovian stochastic correlation functions;
(ii) the τ -independent or dependent auto-correlation terms of ω2 component,
which include u2(t) fourth-order and u3(t) two-order Markovian stochastic
correlation functions; (iii) the τ -dependent cross-correlation terms between
ω1 and ω2 components, which include u1(t), u2(t) and u3(t) second-order
Markovian stochastic correlation functions. Different Markovian stochastic
models of the laser field only affect the fourth-, not second-order correlation
functions

For the Raman ASPB, we have the total third-order polarization P (3) =
PA + PD = (PM2 + PT2 + PR) + (PM1 + PT1). Therefore, the homodyne-
detection signal I(Δ2, τ) contains 5×5 = 25 different terms which include the
non-resonant terms of the ω1 molecular-reorientation and thermal gratings,
terms of the ω2 molecular-reorientation and thermal gratings and Raman
resonant mode, and the cross-correlation terms between FWM and Raman-
enhanced FWM.

The composite noisy beam 1 (beam 2) is treated as one whose spectrum
is simply a sum of two Lorentzians. The high-order decay cross-correlation
terms are reasonably neglected in our treatment. After performing the te-
dious integration from Eqs. (3.43)–(3.47), in the limit γM , γR >> α1, α2,
α3 >> γT we obtain

IASPB(Δ2, τ) ∝ η2 exp(−2iΔk · r) {[1 + n4 exp(−2α2|τ |)]L5 + L6}+{
[1 + n4 exp(−2α1|τ |)]×χ2

M + L7

}
+

ηL8 {exp[iΔk · r − i(ω1 + ω2)|τ |]χ∗A+
exp[−iΔk · r + i(ω1 + ω2)|τ |]χA} . (3.58)

Here,

L5 = χ2
M − 2γRΔ2χMχR/(γ2

R +Δ2
2) + γ2

Rχ2
R/(γ2

R +Δ2
2),

L6 = exp(−2α2|τ |)[2χMχT − 2γRΔ2χT χR/(γ2
R +Δ2

2) + χ2
T ],

L7 = exp(−2α1|τ |)(2χMχT + χ2
T ),

L8 = (χM + χT ) exp[−(α1 + α2)|τ |],
χA = χM + χT − χRγR/(Δ2 + iγR),
η = ε′2(ε2)∗/ε1(ε′1)

∗,
Δk = (k1 − k′1)− (k′2 − k2),
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and n4 equals 1, 0, 2 for the CFM, PDM, and GAM, respectively.
First for CFM, the Raman ASPB versus τ shows the attosecond scale

modulation with a sum frequency ω1 + ω2 and damping rates α1 and α2

[see Fig. 3.18]. The constant term γ2
Rχ2

R/(γ2
R + Δ2

2) in Eq. 3.58, which is
independent of the relative time-delay between twin beams 1 and 2, origi-
nates from the phase fluctuation of the chaotic fields, while the purely decay
terms including these factors exp(−2α1|τ |), exp(−2α2|τ |) come from ampli-
tude fluctuation of the chaotic fields.

Fig. 3.18. The Raman ASPB signal intensity versus γRτ for χM/χR = 0.2, γM/γR

= 1, χT /χR = 1, γT /γR = 1 × 10−6, α2/γR = 0.05, α1/γR = α3/γR = 0.1,Δ2 =
0, r = 0, ω1/α2 = 11.99, ω2/α2 = 12.75 and η = 1. The three curves represent
the chaotic field (solid curve), Gaussian-amplitude field (dashed curve), and phase-
diffusion field (dotted curve).

Secondary for PDM the temporal behavior of the beat signal only re-
flects the characteristic of the lasers. The result is remarkably different from
that based on a chaotic model. It is short of the purely auto-correlation de-
cay terms including these factors exp(−2α1|τ |) and exp(−2α2|τ |), which are
shown to be particularly insensitive to the phase fluctuation of the Markovian
stochastic light fields. The drastic difference of the results also exists in the
higher-order correlation on Rayleigh ASPB when three Markovian stochastic
models are employed [32].

Third for GAM, contrast to CFM and PDM, the decay term includes
the factors 2 exp(−2α1|τ |) and 2 exp(−2α2|τ |). The τ -dependent term of
Gaussian-amplitude field is larger than that of the chaotic field and the
phase-diffusion field (Fig. 3.18), which originates from the amplitude fluc-
tuation of the Markovian stochastic field. The physical explanation for this is
that the Gaussian-amplitude field undergoes stronger intensity fluctuations
than a chaotic field. On the other hand, the intensity (amplitude) fluctua-
tions of the Gaussian-amplitude field or the chaotic field are always much
larger than the pure phase fluctuations of the phase-diffusion field.

For the Rayleigh ASPB, we have the total third-order polarization P (3) =
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PB+PC = (PM1+PRM+PT1+PRT )+(PM2+PT2). Therefore, the homodyne-
detection signal I(Δ1, τ) contains 6×6 = 36 different terms which include the
non-resonant terms of the ω2 molecular-reorientation and thermal gratings,
terms of the ω1 molecular-reorientation and thermal gratings and Rayleigh
resonant mode, and the cross-correlation terms between FWM and Rayleigh-
enhanced FWM.

After performing the tedious integration of Eqs. (3.43 – 3.46, 3.48, 3.49),
in the limit γM , γR >> α1, α2, α3 >> γT , we can obtain

IASPB(Δ1, τ) ∝ {[1 + n4 exp(−2α1|τ |)]L9 + L10}+
η2 exp(−2iΔk · r){[1 + n4 exp(−2α2|τ |)]χ2

M+L11

}
+

ηL8 {exp[iΔk · r − i(ω1 + ω2)|τ |]χB+
exp[−iΔk · r + i(ω1 + ω2)|τ |]χ∗B} . (3.59)

Here, L9 = [1 + 3γ2
M/(γ2

M + Δ2
1)]χ

2
M , L10 = exp(−2α1|τ |){[1 + γ2

M/(γ2
M +

Δ2
1)]2χMχT +χ2

T }, L11 = exp(−2α2|τ |)(2χMχT +χ2
T ), and χB = χM +χT +

χMγM/(γM − iΔ1).
Similarly with the Raman ASPB, first for the CFM, under such condi-

tion the Rayleigh ASPB shows the attosecond scale modulation with a sum
frequency ω1+ω2 and damping rates α1 and α2 [see Fig. 3.19]. On the other
hand, since Rayleigh-enhance FWM exhibits spectral symmetry, which is
different from the Raman-enhance FWM, Eq. (3.59) also shows symmetry
about Δ1.

Fig. 3.19. The Rayleigh ASPB signal intensity versus γMτ for χM/χT =
1, γT /γM = 1 × 10−6, α1/γM = α2/γM = α3/γM = 0.1,Δ1 = 0, r = 0, ω1/α1 =
12.08, ω2/α1 = 11.99 and η = 1. The three curves represent the chaotic field (solid
curve), Gaussian-amplitude field (dashed curve), and phase-diffusion field (dotted
curve).

Similarly, secondary for the PDM, equation (3.59) of the PDM is insensi-
tive to the intensity fluctuation (amplitude fluctuation) and is short of decay
terms exp(−2α1|τ |) and exp(−2α2|τ |), which is remarkably different from
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the result based on a chaotic model. It indicates that the τ -independent term
3γ2

M/(γ2
M +Δ2

1) comes from the phase fluctuation.
Third for GAM due to the amplitude fluctuation of the Markovian stocha-

stic field, Rayleigh ASPB of the GAM has the τ -dependent factors
2 exp(−2α1|τ |) and 2 exp(−2α2|τ |) which is larger than that of the CFM
and PDM.

We find that as the Rayleigh-mode detuning Δ1 = 0, the temporal behav-
ior of the Rayleigh ASPB is symmetric with the maximum of the beat signal
at τ = 0 (Fig. 3.19), while as the Raman-mode detuning Δ2 = 0, that of the
Raman ASPB is asymmetric with the maximum of the beat signal shifted
from τ = 0 (Fig. 3.18). In fact it is induced by phase shift of Raman phase-
angle θA and Rayleigh phase-angle θB, respectively. When Δ1 = Δ2 = 0, we
have θA 
= 0 and θB = 0, as shown in Fig. 3.16.

For the coexisting of the Raman and Rayleigh ASPB, we have the total
third-order polarization P (3) = PA +PB = PM2 +PT2 +PR +PM1 +PRM +
PT1 + PRT . Therefore, the homodyne-detection signal I(Δ1, τ) ∝ 〈(PA +
PB)(P ∗A + P ∗B)〉 contains 7 × 7 = 49 different terms which include the terms
of the ω2 molecular-reorientation and thermal gratings and Raman resonant
mode, the terms of the ω1 molecular-reorientation and thermal gratings and
Rayleigh resonant mode, and the cross-correlation terms between Raman-
enhanced and Rayleigh-enhanced FWM

By virtue of the result of the integration in pure Raman and pure Rayleigh
ASPB shown above, in the limit γM , γR >> α1, α2, α3 >> γT we obtain

IASPB(Δ1,Δ2, τ) ∝ η2 exp(−2iΔk · r) {[1 + n4 exp(−2α2|τ |)]L5 + L6}+
{[1 + n4 exp(−2α1|τ |)]× L9 +L10}+
η exp[−(α1 + α2)|τ |] {exp[iΔk · r− i(ω1+ω2)|τ |]χ∗AχB+
exp[−iΔk · r + i(ω1 + ω2)|τ |]χAχ∗B} . (3.60)

First for the CFM, we can see that Raman and Rayleigh-enhanced FWM
auto-correlation terms coexist and they interfere with each other and generate
the ASPB. The auto-correlation terms decay with a time constant α−1

1 and
α−1

2 while the cross-correlation term is modulated with a sum frequency
ω1 + ω2 and a damping rate α1 + α2. The interferometric contrast ratio of
interferogram mainly determined the cross-correlation between Raman and
Rayleigh-enhanced FWM processes is equally sensitive to the amplitude and
phase fluctuations of the chaotic fields. Physically, the chaotic field has the
property of photon bunching, which can affect any multi-photon process when
the higher-order correlation function of the field plays an important role.

Secondary for PDM, in the case of γM >> α1, α2, α3 >> γT of PDM,
both the Raman and Rayleigh-enhanced FWM auto-correlation terms in Eq.
(3.60) are short of the purely decay factors exp(−2α1|τ |) and exp(−2α2|τ |).
The phase-diffusion model predicts the ASPB signal has a damping oscilla-
tion of the attosecond sum-frequency around a constant value (Fig. 3.20).
We can understand this phenomenon as follows. The interference pattern of
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the ω1(ω2) component of the twin composite beams 1 and 2 will be in con-
stant motion with a characteristic time constant α−1

1 (α−1
2 ) when |τ | is much

longer than the laser coherence time τc. On the other hand, the relaxation
time of the molecular-reorientation grating is so short that the induced grat-
ings GM1(GT1, GRM , GRT ) andGM2(GT2, GR) always follow the interference
pattern, and therefore the beat signal will never decay. Furthermore, the rel-
ative phase between GM1(GT1, GRM , GRT ) and GM2(GT2, GR) fluctuates
randomly, which makes spatial interference between them impossible. In this
case the beat signal intensity is simply the summation of the signal intensity
originating from GM1(GT1, GRM , GRT ) and GM2(GT2, GR). In contrast, the
fringes ofGM1(GT1, GRM , GRT ) andGM2(GT2, GR) are stable when |τ | < τc.
The constructive or destructive interference between GM1(GT1, GRM , GRT )
and GM2(GT2, GR) enhances or reduces the beat signal and gives rise to the
oscillation of the beat signal intensity as τ varies. We note that the main
difference between the phase-diffusion model and the chaotic model is that
amplitude fluctuation exists in the latter case. When |τ | < τc, the coinci-
dence of the intensity spikes of the two composite beams gives an additional
enhancement of the beat signal for the chaotic model (see Fig. 3.20).

Fig. 3.20. The coexisting of Raman and Rayleigh ASPB signal intensity versus α1τ
for χM/χR = 10, γM/α1 = γR/α1 = 10, χT /χR = 1, γT /α1 = 1 × 10−5, α2/α1 =
α3/α1 = 1,Δ1 = Δ2 = 0, r = 0, ω1/α1 = 12.08 and ω2/α1 = 12.75, η = 0.3.The
three curves represent the chaotic field (solid curve), Gaussian-amplitude field (dot-
ted curve), and phase-diffusion field (dot-dashed curve).

Third for GAM, apparently, the τ -dependent term 2 exp(−2α1|τ |) and
2 exp(−2α2|τ |) of Gaussian-amplitude field is larger than that of the chaotic
field and the phase-diffusion field and the signal intensity of τ = 0 for GAM
is largest of three models (Fig. 3.20). However, Eq. (3.60) shows that the τ -
independent terms of three models are the same and do not include the factor
χT . On the other hand, though the polarization beat signal is shown to be
particularly sensitive to the statistical properties of Markovian stochastic
light fields with arbitrary bandwidth, different Markovian stochastic models
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of the laser field only affect the fourth-, not second-order correlation func-
tions. The cross-correlation terms between Raman and Rayleigh-enhanced
polarization of three models are the same. Therefore, Fig. 3.20 shows that
ASPB signal intensities in CFM, PDM and GAM versus τ oscillate with the
same frequency ω1 + ω2 and have the same background.

Next, we discuss the chromophore P (3) difference between the ASPB with
a phase-conjugation geometry and the sum-frequency UMS [25] with a self-
diffraction geometry from a physical viewpoint. The frequencies and wave
vectors of the sum-frequency UMS signal are ωA = 2ω2 − ω2, ωB = 2ω1 −
ω1 and kA = 2k2 − k′2, kB = 2k′1 − k1, respectively, which means that
a photon is absorbed from each of the two mutually correlated fluctuating
pump beams. On the other hand, the frequencies and wave vectors of the
ASPB signal are ωA = ω2 − ω2 + ω3, ωB = ω1 − ω1 + ω3 and kA = k1 −
k′1 + k3, kB = k′2 − k2 + k3, respectively (Fig. 3.9), therefore photons are
absorbed from and emitted to the mutually correlated fluctuating twin beams
1 and 2, respectively. This difference between the ASPB and the UMS has
profound influence on the field-correlation effects. We note that the role of
beams 1 and 2 are interchangeable in the UMS, this interchangeable feature
also makes the second-order coherence function theory failure in the UMS.
Due to 〈u(t1)u(t2)〉 = 0, the absolute square of the stochastic average of the
polarization |〈P (3)〉|2 cannot be used to describe the temporal behavior of the
sum-frequency UMS [25]. Our higher-order correlation (intensity correlation)
treatment also is of vital importance in the sum-frequency UMS. Moreover,
because of 〈ui(t)〉 = 0 and 〈u∗i (t)〉 = 0, the absolute square of the stochastic
average of the polarization |〈P (3)〉|2, which involves second-order coherence
function of ui(t), cannot be used to describe the temporal behavior of the
ASPB. The sixth-order correlation theory 〈|P (3)|2〉 reduces to the second-
order correlation theory |〈P (3)〉|2 in the case that the laser pulse width is much
longer than the laser coherence time. The second-order coherence function
theory is valid when we are only interested in the τ -dependent part of the
beating signal [14]. Therefore, the fourth-order coherence function theory is
of vital importance in ASPB. The application of higher-order results to the
difference-frequency polarization beat experiment yielded a better fit to the
data than an expression involving only second-order coherence [9]. Apparently
the nature of the Markovian field has a more drastic effect on the outcome of
the experiment than the underlying molecular nonlinearity. Since real laser
fields are unlikely to behave like the pure three field classes, a complicated
superposition of various types of responses is to be expected.

3.2.5 Heterodyne Detection of ASPB

Since optical fields oscillate too quickly for direct detection and they must
be measured “in quadrature”-as photons. One common measurement tech-
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niques, such as FWM measured at its quadrature IA = PAP ∗A or IB = PBP ∗B,
yield only absolute values of the nonlinear susceptibility |χA|2 or |χB|2. Thus,
all phase information in the nonlinear susceptibility is lost. The second way to
achieve quadrature is the phase-sensitive method used for optical heterodyne
detection. We introduce another reference FWM signal designed in frequency
and wave vector (see Fig. 3.9) to conjugate (go into quadrature) in its com-
plex representation with the new polarization of interest. Both the measured
signal and the reference signal have the same frequency, thus, they interfere
directly at the detector and generate ASPB by changing the relative time
delay τ between the measured beam and the reference beam. In other words
the total signal is modulated by the time delay. In the heterodyne case that
the reference signal is larger than the measured signal, the phase informa-
tion is retained and one can take a full measure of the complex susceptibility
through adjusting the time delay τ . The phase of the complex induced polar-
ization determines how its energy will partition between Class I (the absorbed
or emitted active spectroscopy) and Class II (the passive spectroscopy with
a new launched field) spectroscopy.

For the Raman-enhanced FWM signal with polarization PA, we introduce
the reference FWM signal with polarization PD. Thus the Raman ASPB sig-
nal is proportional to the average of the absolute square of PA + PD over
the random variable of the stochastic process, so that the signal intensity
I (Δ2, τ) ∝ 〈|PA + PD|2〉 = 〈(PA + PD)(P ∗A + P ∗D)〉 = 〈PAP ∗A〉 + 〈PDP ∗D〉 +
〈PAP ∗D〉 + 〈PDP ∗A〉 contains 5 × 5 = 25 different terms in the fourth- and
second-order coherence function of ui(t) in phase conjugation geometry. In
general, the Raman ASPB (at the intensity level) can be viewed as built of
the sum of three contributions: (i) the τ -independent or dependent auto-
correlation terms IA (Δ2, τ ) = 〈PAP ∗A〉 (i.e., Raman-enhanced FWM) of ω2

nonresonant molecular-reorientation and thermal gratings, and Δ2 Raman
resonant mode, which include the u2(t) fourth-order and the u3(t) second-
order Markovian stochastic correlation functions; (ii) the τ -independent or
dependent nonresonant auto-correlation terms ID (τ) = 〈PDP ∗D〉 of ω1

molecular-reorientation and thermal gratings, which include u1(t) fourth-
order and u3(t) second-order Markovian stochastic correlation functions; (iii)
the τ -dependent cross-correlation terms IA,D (Δ2, τ ) = 〈PAP ∗D〉+〈PDP ∗A〉 be-
tween Raman-enhanced FWM and NDFWM processes, which include u1(t),
u2(t) and u3(t) second-order Markovian stochastic correlation functions. Dif-
ferent Markovian stochastic models of the laser field only affect the fourth-,
not second-order correlation functions. Therefore, the cross-correlation terms
are the same for three Markovian stochastic models. Furthermore, by virtue
of the cross-correlation term IA,D (Δ2, τ) we can obtain the third-order sus-
ceptibilities for the Raman-enhanced FWM χA = χM + χT − χRγR/[Δ2 +
i(α2 + α3 + γR)] and for the reference NDFWM χD = χM + χT theoreti-
cally. The real and imaginary parts of χA are odd and even functions, i.e.,
χ′A = χM +χT −χRγRΔ2/[Δ2

2+(α2+α3+ γR)2] and χ′′A = χRγR(α2+α3+
γR)/[Δ2

2 + (α2 + α3 + γR)2], respectively.
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In heterodyne detection, we assume ID (τ) >> IA (Δ2, τ ) that at intensity
level, in other words, we let η << 1, thus we have I ∝ ID (τ) + IA,D (Δ2, τ ).
For simply, in the limit of γR, γM >> α1, α2, α3 >> γT and based on the
chaotic, the phase-diffusion and the real Gaussian fields, we have the Raman
ASPB signals, respectively,

γR, γM >> α1, α2, α3 >> γT ,

IASPB(Δ2, τ) ∝
{
[1 + n4 exp(−2α1|τ |)]χ2

M + L7

}
+

ηL8 {exp[iΔk · r − i(ω1 + ω2)|τ |]χ∗A +
exp[−iΔk · r + i(ω1 + ω2)|τ |]χA} . (3.61)

We express χA as |χA| exp(iθA) = |χA| cos θA+i |χA| sin θA, with θA (see Fig.
3.16). Therefore, we have

IASPB(Δ2, τ) ∝ ID (τ) + 2L8η|χA| cos[−Δk · r + (ω1 + ω2)|τ |+ θA]. (3.62)

Equation (3.62) indicates that the reference FWM signal ID (τ) and the
factor 2L8η are independent of Δ2, while the heterodyne signal is modulated
with a sum-frequency ω1 + ω2 as τ is varied, in addition, the phase of the
oscillation depends on the phase θA of the measured third-order susceptibility
χA. If we adjust the time delay τ such that −Δk · r + (ω1 + ω2)|τ | = 2nπ,
then

IASPB(Δ2, τ) ∝ ID (τ) + 2L8η|χA| cos θA ∝ ID (τ) + 2L4ηχ′A. (3.63)

However, if −Δk · r + (ω1 + ω2)|τ | = (2n− 1/2)π, we have

IASPB(Δ2, τ) ∝ ID (τ) + 2L8η|χA| sin θA ∝ ID (τ) + 2L4ηχ′′A. (3.64)

In other words, by changing the time delay τ between beams 1 and 2 we can
obtain the real and the imaginary parts of the Raman-enhanced susceptibility
χA.

The heterodyne detection spectra versus Δ2/γR of the Raman ASPB is
shown in Fig.3.21. We can see that the spectra have the profile of the real
and imaginary parts of the Raman resonance with comparable backgrounds.
On the other hand, the spectra of the CFM, PDM, and GAM are the same
as those of cw beam, as shown in Fig.3.21. However, the background of the
three Markovian models is smaller than that of the cw beam due to the phase
fluctuation.

For the Rayleigh-enhanced FWM signal with polarization PB, we intro-
duce the reference FWM signal with polarization PC . Thus the Rayleigh
ASPB signal is proportional to the average of the absolute square of PB+PCv,
so that the signal intensity I (Δ1, τ) ∝ 〈|PB + PC |2〉 = 〈(PB+PC)(P ∗B+P ∗C)〉
contains 6× 6 = 36 different terms where IB (Δ1, τ ) = 〈PBP ∗B〉 and IC (τ) =
〈PCP ∗C〉 include the u1(t) and the u2(t) fourh-order Markovian stochastic
correlation functions, respectively, while IB,C (Δ1, τ) = 〈PBP ∗C〉 + 〈PBP ∗C〉
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Fig. 3.21. The heterodyne detection spectra versus Δ2/γR of the Raman ASPB
with (a) τ = (−2π + Δk · r)/(ω1 + ω2) for the real part of χA, while with
(b) τ = (−2π + π/2 + Δk · r)/(ω1 + ω2) for the imaginary part of χA. The other
parameters are for χM/χR = 0.1, γM/α1 = γR/α1 = 10, χT /χR = 0.1, γT /α1 =
1× 10−5, α2/α1 = α3/α1 = 1, η = 0.1. Theoretical curves are shown in CFM (solid
curve), PDM (dotted curve), GAM (dashed curve), and the model with cw laser
beams (dot-dashed curve).

include ui(t) second-order Markovian stochastic correlation functions. We
know that different Markovian stochastic models of the laser field only af-
fect the fourth-, not second-order correlation functions. Therefore, the cross-
correlation terms IB,C (Δ1, τ) are the same for three Markovian stochastic
models, from which we can obtain the third-order susceptibilities for the
Rayleigh-enhanced FWM χB = χM +χT +χMγM/[(α1 +α3 + γM )− iΔ1] +
χT γT /[(α1 + α3 + γT )− iΔ1] and for the reference NDFWM χC = χM + χT

theoretically. The real and imaginary parts of χB are even and odd functions,
i.e., χ′B = χM +χT +γM (α1+α3+γM )χM/[(α1+α3+γM )2+Δ2

1]+γT (α1+
α3 + γT )χT /[(α1 +α3 + γT )2 +Δ2

1] and χ′′B = χMγMΔ1/[(α1 +α3 + γM )2 +
Δ2

1] + χT γTΔ1/[(α1 + α3 + γT )2 +Δ2
1], respectively.

In heterodyne detection, we assume IC (τ) >> IB (Δ1, τ) at intensity
level, in other words, we let η >> 1, thus we have I(Δ1, τ) ∝ IC(τ) +
IB,C(Δ1, τ). Under the condition of γM >> α1, α2, α3 >> γT we have the
Rayleigh ASPB signals for the three Markovian models, respectively, i.e.,

IASPB(Δ1, τ) ∝ η2 exp(−2iΔk · r){[1 + n4 exp(−2α2|τ |)]χ2
M +L11}+

ηL8 {exp[iΔk · r − i(ω1 + ω2)|τ |]χB + exp[−iΔk · r+
i(ω1 + ω2)|τ |]χ∗B} . (3.65)

We express χB as |χB| exp(iθB) = |χB| cos θB +i |χB| sin θB, with θB (see
Fig. 3.18). From Eqs. (3.65) we have

IASPB(Δ1, τ) ∝ IC(τ) + 2L8η|χB | cos[Δk · r − (ω1 + ω2)|τ | + θB]. (3.66)

Equation (3.66) indicates that the reference FWM signal IC(τ) and the
factor 2L8η are independent of Δ1. The heterodyne signal is modulated with
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a sum-frequency ω1+ω2 as τ is varied, in addition, the phase of the oscillation
depends on the phase θB of the measured third-order susceptibility χB. If we
adjust the time delay τ such that Δk · r − (ω1 + ω2)|τ | = 2nπ, then

IASPB(Δ1, τ) ∝ IC(τ) + 2L8η|χB| cos θB ∝ IC + 2L4ηχ′B. (3.67)

However, if Δk · r − (ω1 + ω2)|τ | = (2n− 1/2)π, we have

IASPB(Δ1, τ) ∝ IC(τ) + 2L8η|χB | sin θB ∝ IC(τ) + 2L4ηχ′′B. (3.68)

In other words, by changing the time delay τ between beams 1 and 2
we can obtain the real and the imaginary parts of the Rayleigh-enhanced
susceptibility χB.

Figure 3.22 shows the heterodyne detection spectra versus Δ1/γM of the
Rayleigh ASPB. We can see that the spectra have the profile of the real and
imaginary parts of the Rayleigh resonance with comparable backgrounds. It
is clear that the curves represent the even function for the real part and the
odd function for the imaginary part of χB, which is just opposite to those
of the Raman-enhanced susceptibility χA (see Fig. 3.21). On the other hand,
similarly, for heterodyne signal of Rayleigh ASPB the spectra of cw beams
are the same as those of CFM, PDM and GAM. However, the spectra of
cw beams have the largest background while the spectra of PDM have the
smallest background due to the absence of the amplitude fluctuation.

Fig. 3.22. The heterodyne detection spectra versus Δ1/γM of the Rayleigh ASPB
with (a) τ = (−2π+Δk · r)/(ω1 + ω2) for the real part of χB , while with (b) τ =
(−2π+π/2+Δk ·r)/(ω1+ω2) for the imaginary part of χB. The other parameters
are for χM/χT = 1, γM/α1 = 10, γT /α1 = 1 × 10−5, α2/α1 = α3/α1 = 1, η = 10.
Theoretical curves are shown in CFM (solid curve), PDM (dotted curve), GAM
(dashed curve) and the model with cw laser beams (dot-dashed curve).

The Raman and Rayleigh-enhanced FWM can coexist in the same experi-
ment system. In fact, they can be considered as the reference signal mutually.
Thus, the coexisting of Raman and Rayleigh ASPB signal is proportional to
the average of the absolute square of PA + PB , so that the signal inten-
sity I (Δ1,Δ2, τ) ∝ 〈|PA + PB|2〉 contains 7 × 7 = 49 different terms where
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IA,B (Δ1,Δ2, τ ) = 〈PAP ∗B〉 + 〈PAP ∗B〉 include ui(t) second-order Markovian
stochastic correlation functions. The cross-correlation terms are the same for
three Markovian stochastic models but more complex than that of the pure
Rayleigh and Raman ASPB. It consists of the third-order susceptibilities for
the Rayleigh and Raman-enhanced FWM, i.e., χA and χB.

In heterodyne detection, we assume IC (τ) >> IB (Δ1, τ) at intensity
level, in other words, we let η >> 1, thus we have I(Δ1, τ) ∝ IC(τ) +
IB,C(Δ1, τ). Under the condition of γM >> α1, α2, α3 >> γT we have the
Rayleigh ASPB signals for the three Markovian models, respectively, i.e.

Under the condition of γR, γM >> α1, α2, α3 >> γT and η >> 1 we have
the coexisting Raman and Rayleigh ASPB signals for the three Markovian
models, respectively, i.e.,

IASPB(Δ1,Δ2, τ) ∝ η2 exp(−2iΔk · r) {[1 + n4 exp(−2α2|τ |)]L5 + L6}+
η exp[−(α1 + α2)|τ |] × {exp[iΔk · r − i(ω1 + ω2)|τ |]×
χ∗AχB + exp[−iΔk · r + i(ω1 + ω2)|τ |]χAχ∗B} . (3.69)

Therefore, from Eq. (3.69) we have

I(Δ1,Δ2, τ) ∝ IA(Δ2, τ) + 2η exp[−(α1 + α2)|τ |]|χA||χB | ×
cos[Δk · r − (ω1 + ω2)|τ | − θA + θB]. (3.70)

Here, IA (Δ2, τ ) = η2 exp(−2iΔk · r) {[1 + n4 exp(−2α2|τ |)]L5 + L6}.
Equation (3.70) indicates that the reference Raman-enhanced FWM signal
IA(Δ2, τ), the factor 2η exp[−(α1 + α2)|τ |]|χA| and θA are independent of
Δ1. If we adjust the time delay τ such that Δk · r− (ω1 +ω2)|τ | − θA = 2nπ
[Fig. 3.23 (a, c)], then

I(Δ1,Δ2, τ) ∝ IA(Δ2, τ) + 2η exp[−(α1 + α2)|τ |]|χA||χB| cos θB

= IA(Δ2, τ) + 2η exp[−(α1 + α2)|τ |]|χA|χ′B. (3.71)

However, if Δk · r− (ω1 +ω2)|τ | − θA = (2n− 1/2)π [see Fig. 3.23 (b,d)], we
have

I(Δ1,Δ2, τ) ∝ IA(Δ2, τ) + 2η exp[−(α1 + α2)|τ |]|χA||χB| sin θB

= IA(Δ2, τ) + 2η exp[−(α1 + α2)|τ |]|χA|χ′′B. (3.72)

In other words, by changing the time delay τ between beams 1 and 2 we
can obtain the real and the imaginary parts of the Rayleigh-enhanced sus-
ceptibility χB . Figure 3.23 (a, b) show the heterodyne detection spectra
versus Δ1/γM of the coexisting Raman and Rayleigh ASPB with large η.
They are the same as Fig. 3.22 and only the reference backgrounds are dif-
ferent. Therefore, the spectra show the profile of the real and imaginary
parts of the Rayleigh-enhanced susceptibility. Similarly, under the condition
of γR, γM >> α1, α2, α3 >> γT and η << 1 we have the coexisting Raman
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Fig. 3.23. The heterodyne detection spectra versus Δ1/γM of the coexisting ASPB
for χM/χR = 0.1, γM/α1 = γR/α1 = 10, χT /χR = 0.1, γT /α1 = 1× 10−5, α2/α1 =
α3/α1 = 1, (a) η = 10,Δ2/γR = 10, τ = (2nπ + Δk · r)/(ω1 + ω2) for the real
part of χB, (b) η = 10,Δ2/γR = 10, τ = (2nπ + π/2 + Δk · r)/(ω1 + ω2) for the
imaginary part of χB, (c) η = 0.1,Δ1/γR = 1, τ = (2nπ + Δk · r)/(ω1 + ω2) for
the real part of χA, (d) η = 0.1,Δ1/γR = 1, τ = (2nπ +Δk · r)/(ω1 + ω2) for the
imaginary part ofχA. Here n = −10 000.

and Rayleigh ASPB signals for the three Markovian models, respectively, i.e.,

I(Δ1,Δ2, τ) ∝ {[1 + n4 exp(−2α1|τ |)]L9 + L10}+ η exp[−(α1 + α2)|τ |] ×
{exp[iΔk · r − i(ω1 + ω2)|τ |]χ∗AχB+
exp[−iΔk · r + i(ω1 + ω2)|τ |]χAχ∗B} . (3.73)

From Eq. (3.73), we have

I(Δ1,Δ2, τ) ∝ IB(Δ1, τ) + 2η exp[−(α1 + α2)|τ |]|χB ||χA| ×
cos[Δk · r − (ω1 + ω2)|τ | − θA + θB]. (3.74)

Here, IB (Δ1, τ ) = [1 + n4 exp(−2α1|τ |)]L9 + L10. The reference Rayleigh-
enhanced FWM signal IB(Δ1, τ), the factor 2η exp[−(α1 + α2)|τ |]|χB | and
θB are independent of Δ2. If we adjust the time delay τ such that Δk · r −
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(ω1 + ω2)|τ |+ θB = 2nπ [see Fig. 3.23(c) and Fig. 3.24(a) – (c)], then

I(Δ1,Δ2, τ) ∝ IB(Δ1, τ) + 2η exp[−(α1 + α2)|τ |]|χB ||χA| cos θA

= IB(Δ1, τ) + 2η exp[−(α1 + α2)|τ |]|χB |χ′A. (3.75)

However, if Δk · r − (ω1 + ω2)|τ | + θB = (2n + 1/2)π [see Fig. 3.23 (d) and
Fig. 3.24 (d) – (f)], we have

I(Δ1,Δ2, τ) ∝ IB(Δ1, τ) + 2η exp[−(α1 + α2)|τ |]|χB ||χA| sin θA

= IB(Δ1, τ) + 2η exp[−(α1 + α2)|τ |]|χB |χ′′A. (3.76)

In other words, by changing the time delay τ between beams 1 and 2 we can
obtain the real and the imaginary parts of the Raman-enhanced susceptibility
χA. Figure 3.23 (c), (d) shows the heterodyne detection spectra versus Δ2/γR

of the coexisting Raman and Rayleigh ASPB with small η. They are the
same as Fig. 3.21 and only the reference backgrounds are different. Therefore,
the spectra show the profile of the real and imaginary parts of the Raman-
enhanced susceptibility. In addition, Fig. 3.24 shows the spectra versus Δ1/γR

and Δ2/γR. The spectra mainly show the profile of Rayleigh-enhanced FWM
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Fig. 3.24. The heterodyne detection spectra versus Δ1/γR and Δ2/γR of the
coexisting ASPB for η = 0.1, χM/χR = 0.1, γM/α1 = γR/α1 = 10, χT /χR =
0.1, γT /α1 = 1× 10−5, α2/α1 = α3/α1 = 1 with τ = (2nπ−Δk · r− θB)/(ω1 +ω2)
and (2nπ+π/2−Δk ·r−θB)/(ω1+ω2) for τ > 0 for the real and imaginary part of
χA. Theoretical curves represent the (a) and (d) CFM, (b) and (e) PDM, (c) and
(f) GAM. Here n = −10 000. Adopted from Ref. [20].

signal versus Δ1/γR. As Δ1/γR = −5 and τ satisfies the condition of Δk ·
r − (ω1 + ω2)|τ | + θB = 2nπ, the spectra versus Δ2/γR show the real part
of the Raman-enhanced susceptibility, while as Δ1/γR = −5 and τ satisfies
the condition of Δk · r − (ω1 + ω2)|τ | + θB = 2nπ+ π/2, the spectra versus
Δ2/γR show the imaginary part of the Raman-enhanced susceptibility.

3.2.6 Discussion and Conclusion

Based on three stochastic models, the subtle Markovian, field-correlation
effects have been investigated in Raman and Rayleigh-enhanced FWM, ho-
modyne and heterodyne-detected ASPB. All of these can be understood in
the time and frequency domains.

The ASPB with double-frequency color-locking noisy light has an advan-
tage [21]. Based on three stochastic models, the subtle Markovian field corre-
lation effects have been investigated in the homodyne or heterodyne detected
ASPB. The physical explanation for this is that the Gaussian-amplitude field
undergoes stronger intensity fluctuations than a chaotic field. On the other
hand, the intensity (amplitude) fluctuations of the Gaussian-amplitude field
or the chaotic field are always much larger than the pure phase fluctuations
of the phase-diffusion field. In fact, the difference of the spectra of the three
Markovian stochastic models of the laser field can be controlled. Specifically:
(i) at zero delay time it shows the drastic difference for three Markovian
stochastic fields, while the PDM and GAM results are the same as those of
the CFM in the limit of |τ | → ∞. It means that the fluctuation of both the
amplitude and the phase of the field have no effect in the limit of |τ | → ∞.
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(ii) Under narrowband linewidth (αi << γM , γT ), the difference value of the
signal intensity at Δ1,2 = 0 among the three models is dramatic. However, it
becomes smaller under broadband linewidth (αi >> γM , γT ). That is to say,
stochastic correlation effects are sensitive to narrowband linewidth. (iii) As
χT is small, the difference of the spectra of the three models is drastically,
while the non-resonant thermal background is much larger than the reso-
nant signal that the contribution from thermal grating dominates the FWM
spectra and obscure the difference of the spectra of the three models.

Both Raman and Rayleigh-enhanced FWM are proposed for studying
ultrafast processes. In contrast to the conventional time-domain technique,
they are frequency-domain techniques, the time resolution is independent of
the incident laser pulse width. Therefore, the Raman and Rayleigh-enhanced
FWM can be employed for the measurement of ultrafast longitudinal relax-
ation time in the frequency-domain [6]. Based on the field-correlation effects,
this technique can be applied even to an absorbing medium if a time-delayed
method. There are two mechanisms involved. First, the nonlinear interaction
of beams 1 and 2 with the same frequencies gives rise to the static gratings
(molecular-reorientation and thermal gratings). The FWM signal is the result
of the diffraction of beam 3 by the grating. Second, beams 2 and 3 with differ-
ent frequencies build up the moving gratings (Raman and Rayleigh modes).
If the grating lifetime is larger than the time it needs to move over one spatial
period, then destructive interference occurs during engraving and erases the
grating.

Physically, for the coexisting Rayleigh and Raman-enhanced FWM pro-
cesses, the resonant signals originate from the order parameters QRM,RT,R

(r, t) while the non-resonant background come from both QM1,2(r, t) and
QT1,2(r, t). The establishment of order parameters of the gratings involves
integration effects. In the broadband case (i.e., α1,2,3 >> γT , γM , γR), the
effect of integration is to wash out the gratings. At zero time delay no
washout takes place in the establishment of QM1,2(r, t) and QT1,2(r, t) be-
cause the phase factor φ1,2 of A1,2(t− t′)[A1,2(t− t′ − τ)]∗ is stationary. On
the other hand, the phase factors φ3a of A3(t − t′)[A1(t − t′ − τ)]∗ and φ3b

of A3(t− t′)[A2(t− t′)]∗ are random variable which fluctuate with character-
istic time scales (α1 + α3)−1 and (α2 + α3)−1, respectively. Because of the
integration effect, the fast random fluctuation of φ3a,b leads to the reduc-
tion of the amplitude of QRM,RT,R(r, t). Therefore, the coexisting Rayleigh
and Raman-enhanced FWM spectra are dominated by a large non-resonant
background when τ = 0. However, the coexisting Rayleigh and Raman-
enhanced FWM spectra are quite different in the limit of α|τ | >> 1. Similar
to QRM,RT,R(r, t), QM1,2(r, t) and QT1,2(r, t) is now induced by mutually
incoherent fields. If α1,2 = α3, then the influences of the integration effect
on them are equal [see Fig. 3.10(b)]. Thus, the non-resonant backgrounds
are suppressed effectively. We now consider the case when γT , γM , γR >>
α1,2,3. In this case, the gratings have quite short relaxation times, therefore,
they can respond to the phase fluctuations of the fields almost immediately.
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More specifically, A1,2(t − t′)[A1,2(t − t′ − τ)]∗, A3(t − t′)[A1(t − t′ − τ)]∗

and A3(t − t′)[A2(t − t′)]∗ are slowly varying functions in comparison with
exp(−γM,T,Rt′) which have a peak at t′ = 0, and therefore can be approxi-
mated as A1,2(t)[A1,2(t)]∗, A3(t)[A1(t)]∗ and A3(t)[A2(t)]∗, respectively. We

have PM1,2(r, t)∝χMγMA1,2(t)[A1,2(t)]∗A3(t)
∫ ∞

0

exp(−γM t′)dt′, PT1,2(r, t)

∝ χT γT A1,2(t)[A1,2(t)]∗A3(t)
∫ ∞

0

exp(−γT t′)dt′, PRM,RT (r, t) ∝ χM,T γM,T

A1(t)[A1(t)]∗A3(t)
∫ ∞

0

exp[−(γM,T − iΔ1)t′]dt′ and PR(r, t) ∝ χRγRA2(t)

[A2(t)]∗A3(t)
∫ ∞

0

exp[−(γR − iΔ2)t′]dt′. The above equation indicates that

the Rayleigh and Raman-enhanced FWM spectra are independent of τ .
The Raman-enhanced FWM the Raman vibration is excited by the si-

multaneous presence of two incident beams whose frequency difference equals
the Raman excitation frequency and the Raman-enhanced FWM signal is the
result of this resonant excitation. In contrast, the Rayleigh-enhanced FWM
process is a nonresonant process and a frequency-domain nonlinear laser spec-
troscopy with high frequency resolution determined by the laser linewidth.
Moreover, the Rayleigh-enhanced FWM is a non-resonant process with no
energy transfer between the lights and the medium when the frequency dif-
ference between two incident beams equals zero. The resonant structure in
the Rayleigh-enhanced FWM spectrum is the result of induced moving grat-
ing. This difference is also reflected in their line shapes. Specifically, unlike
the Raman-enhanced FWM spectrum, which is asymmetric due to the in-
terference between the resonant signal and the nonresonant background, the
lineshape of the Rayleigh-enhanced FWM is always symmetric.

In this section, we employ the ASPB to obtain the real and the imagi-
nary parts of the competition Raman and Rayleigh resonance (see Fig. 3.23)
based on the polarization interference between coexistence of the Raman and
Rayleigh-enhanced FWM processes. Specifically, since Raman and Rayleigh-
enhanced FWM signals propagate along the same optical path, in the het-
erodyne detection of ASPB, we purposely introduce them as the reference
signals of each other. Our method is based on polarization interference be-
tween two competition Raman and Rayleigh-enhanced FWM processes. The
detuning Δ1 and Δ2 control the intensity and phase angle of the Rayleigh and
Raman-enhanced susceptibilities χB and χA, respectively. We need scanning
one detuning to show the phase dispersion of χB or χA with proper time
delay, while the other one only to change the reference background. If Δ1

or Δ2 change large enough, the value of θB or θA will equal zero and the
coexisting Raman and Rayleigh ASPB will convert into the pure Raman or
Rayleigh ASPB.

One possible experimental candidate for the proposed system is the sam-
ple of benzene in which oxazine dye is dissolved. The strong vibration mode of
benzene is at ΩR = 992 cm−1. The Raman mode can be activated in benzene.
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In addition, the static molecular-reorientation grating and the corresponding
Rayleigh mode also exist in such material. On the other hand, the oxazine dye
introduces the static thermal grating and the corresponding Rayleigh mode.
Therefore, we can study the competition of Raman and Rayleigh-enhanced
FWM and ASPB mediated by thermal effects.

Such an experiment can be done by using three nanosecond dye lasers
(color-locking) or femtosecond ultrashort lasers (phase-locking) D1, D2, and
D3. D1 and D2 are used to generate frequencies at ω1 and ω2, respectively.
A beam splitter is used to combine the ω1 and ω2 components for the pump
beams. Beam 1 and beam 2 intersected in the sample with a small angle
between them. The relative time delay between beams 1 and 2 can be varied
by an optical delay line controlled by a stepping motor. Beam 3, used as the
probe beam and originating from D3 with frequency ω3, propagating along
the direction opposite that of beam 1.

More specifically, (i) for the coexisting Raman and Rayleigh ASPB, D1,
D2, and D3 have the wavelengths λ1 = 561 nm, λ2 = 532 nm and λ3 =
561 nm, respectively. Thus, the Raman mode is activated by the interaction
of beam 3 and ω2 component of beam 2. As a result, Raman-enhanced FWM
is generated. On the other hand, the Rayleigh-enhanced FWM is generated
due to the interaction of beam 3 and ω1 component of beam 2. Both ω1 and
ω2 frequencies can be varied. (ii) For the Raman ASPB, D1, D2, and D3
have the wavelength λ1 = 565 nm, λ2 = 532 nm and λ3 = 561 nm, respec-
tively. Thus only the Raman mode is activated by the interaction of beam 3
and ω2 component of beam 2. As a result, Raman-enhanced FWM is gener-
ated accompanying NFWM resulting from diffraction by the static molecular-
reorientation and thermal gratings due to the interaction of beam 3 and ω1

component of beam 2. The ω2 frequency can be varied. (iii) For the Rayleigh
ASPB, D1, D2, and D3 have the wavelength λ1 = 561 nm, λ2 = 565 nm and
λ3 = 561 nm, respectively. Thus only the Rayleigh-enhanced FWM is gen-
erated due to the interaction of the beam 3 and ω1 component of the beam
2, while NFWM due to the interaction of the beam 3 and ω2 component of
the beam 2 is generated used as reference signal. The ω1 frequency can be
varied.

In addition, there exist two types of polarization configurations: (i) Beam
1 was polarized along the x direction and beams 2 and 3 were polarized
along the y direction. The FWM signal, which was polarized along the x
direction, propagated along a direction almost opposite that of beam 2 (see
Fig. 3.9). In such case no thermal grating is generated because the two pump
beams 1 and 2 are perpendicular to each other. (ii) Beams 1, 2, and 3 were
polarized along the x direction. The FWM signal was polarized along the
x direction. Here, both thermal grating and molecular-reorientation grating
are induced. The non-resonant background can be suppressed dramatically by
increasing the relative time-delay (successfully controlling field correlation).
There still exists the residual non-resonant background due to the molecular-
reorientation grating. In this work [case (ii)], we consider the influence of the
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thermal grating to the coexisting Raman and Rayleigh-enhanced FWM and
the time-delayed method to suppress the thermal non-resonant background.

In summary, based on color-locking noisy field correlation, the subtle
Markovian field correlation effects in three stochastic models have been inves-
tigated in studying the Raman and Rayleigh-enhanced FWM. One interesting
feature in field-correlation effects is that Rayleigh-enhanced FWM exhibits
spectral symmetry, while Raman-enhanced FWM exhibits spectral asymme-
try due to the interference between the resonant mode and the non-resonant
background. We also note that Raman-enhanced FWM exhibits temporal
asymmetry with hybrid radiation-matter detuning terahertz damping oscil-
lation. In addition, a time-delayed method to suppress the background is
mentioned in a Kerr medium and an absorbing medium. On the other hand,
based on the three stochastic models, homodyne (quadratic) and heterodyne
(linear) detection of the Raman ASPB, the Rayleigh ASPB and the coexisting
Raman and Rayleigh ASPB have also been investigated, respectively.

3.3 Coexisting Brillouin, Rayleigh and Raman-enhanced
Four-Wave Mixings

When the frequency difference between two incident beams equals the acous-
tic photon resonance in the thicker sample, coherent Raman methods are
applied to Brillouin spectroscopy to obtain Brillouin-enhanced FWM. The
Raman, Rayleigh and Brillouin-enhanced FWMs are superior to all other
CRS techniques. They possess the features of non-resonant background sup-
pression, excellent spatial signal resolution, free choice of interaction volume
and simple optical alignment [23].

Polarization beat between two excitation pathways is related to recent
studies on the quantum interference. The pure Raman, pure Rayleigh, or
the coexisting Raman and Rayleigh ASPB is the interesting way to study
the stochastic properties of light [5]. Based on the field-correlation of color-
locking twin noisy lights, homodyne and heterodyne detections of these ASPB
have also been exhibited to study the characteristics of the dispersion and
absorption of the resonant Raman and Rayleigh-enhanced FWM [18].

The disadvantage of noisy light with color-locking is that neither fre-
quency nor time features can be directly probed without some data analysis.
When the laser field is sufficiently intense, the laser spectral bandwidth or
spectral shape obtained from the second-order correlation function is then in-
adequate to characterize the field. Rather than using higher-order correlation
functions explicitly, three different models for Markovian fields are considered
[11].

Based on the field-correlation of color-locking twin noisy lights, the co-
existing Raman, Rayleigh and Brillouin-enhanced FWMs are considered in
this section and they will compete with each other. We also obtain the phase
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dispersion of the coexisting Raman, Rayleigh and Brillouin-enhanced third-
order susceptibility. The phase angles of the third-order susceptibilities have
been studied using the phase-sensitive detection. The heterodyne detected
signal of ASPB potentially offers rich dynamic information about the homo-
geneous broadening material phase of the third-order nonlinear susceptibility.

3.3.1 Basic Theory

We first pay attention to the pure Rayleigh-enhanced FWM. The basic ge-
ometry is shown in Fig. 3.9. The beams 1 and 2 only have the frequency
component ω1, a small angle exists between them. Beam 3 with frequency ω3

is almost propagating along the opposite direction of the beam 1. Here we
define the frequency difference Δ1 = ω3−ω1, if the condition satisfy Δ1 ≈ 0,
the frequency components of the beams are fitted to the Rayleigh mode. The
beam composite stochastic fields of the beam 1 and 2, E1(r, t) and E′1(r, t)
for homodyne detection scheme and the complex electric fields of the beam
3 can be written as

E1(r, t) = A1(r, t) exp(−iω1t) = ε1u1(t) exp[i(k1 · r − ω1t)], (3.77a)

E′1(r, t) = A′1(r, t) exp[−iω1(t− τ)]
= ε′1u1(t− τ) exp[i(k′1 · r − ω1t+ ω1τ)], (3.77b)

E3(r, t) = A3(r, t) exp(−iω3t) = ε3u3(t) exp[i(k3 · r − ω3t)]. (3.77c)

Here, εi, ki(ε′i, k
′
i) are the constant field amplitude and the wave vector of

the ωi component in beams 1, 2, and 3. ui(t) is a dimensionless statistical
factor that contains phase and amplitude fluctuations. It is taken to be a
complex ergodic stochastic function of t, which obey complex circular Gaus-
sian statistics in chaotic field. τ is a variable relative time delay between
the prompt (unprime) and delayed (prime) fields. In an absorbing medium,
the nonlinear interaction of beams 1 and 2 with the medium can enhance
the molecular-reorientation gratings and the thermal gratings, i.e., ω1 will
induce their own non-resonant static molecular-reorientation gratings GM1

and thermal gratings GT1. FWM signals are the results of the diffraction of
the beam 3 by these two gratings, respectively. Two non-resonant moving
gratings, GRM and GRT with large angle formed by the interference between
the ω1 frequency component of the beam 2 and the ω3 frequency component
of the beam 3 excite the Rayleigh mode of the medium, will diffract the ω1

frequency component of the beam 1 to obtain the Rayleigh third-order polar-
izations PRM and PRT . Such polarizations enhance the FWM signals induced
by GM1 and GT1. The order parameters QM1, QT1 of two non-resonant static
gratings and QRM , QRT of the Rayleigh non-resonant moving gratings satisfy
the following equations [23]:

dQM1/dt+ γMQM1 = χMγME1(r, t)[E′1(r, t)]∗, (3.78a)
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dQT1/dt+ γT QT1 = χT γT E1(r, t)[E′1(r, t)]∗, (3.78b)

dQRM/dt+ γMQRM = χMγM [E′1(r, t)]∗E3(r, t), (3.79a)

dQRT /dt+ γT QRT = χT γT [E′1(r, t)]∗E3(r, t). (3.79b)

Here γM,T and χM,T are the relaxation rate and the nonlinear susceptibility
of the molecular-reorientation grating and thermal grating, respectively. The
induced third-order nonlinear polarizations which are responsible for the pure
Rayleigh-enhanced FWM signals are

PM1 = QM1(r, t)E3(r, t) = χMγMS1(r)ε1(ε′1)
∗ε3 ×∫ ∞

0

u1(t− t′)u∗1(t− t′ − τ)u3(t) exp(−γM t′)dt′, (3.80)

PT1 = QT1(r, t)E3(r, t) = χT γT S1(r)ε1(ε′1)
∗ε3 ×∫ ∞

0

u1(t− t′)u∗1(t− t′ − τ)u3(t) exp(−γT t′)dt′, (3.81)

PRM = QM1(r, t)E1(r, t) = χMγMS1(r)(ε′1)
∗ε3ε1 ×∫ ∞

0

u∗1(t− t′ − τ)u3(t− t′)u1(t) exp[−(γM − iΔ1)t′]dt′, (3.82)

PRT = QT1(r, t)E1(r, t) = χT γT S1(r)(ε′1)
∗ε3ε1 ×∫ ∞

0

u∗1(t− t′ − τ)u3(t− t′)u1(t) exp[−(γT − iΔ1)t′]dt′. (3.83)

Here S1(r) = exp{i[(k1 − k′1 + k3) · r − ω3t − ω1τ ]}. So the polarization of
Rayleigh-enhanced FWM process is PA1 = PM1 + PRM + PT1 + PRT with
phase matching condition kS1 = k1 − k′1 + k3.

We consider the Rayleigh and Brillouin-enhanced FWM. In the Rayleigh
mode, when Δ1 tunes towards the acoustic phonon resonance, the reso-
nant moving grating GBr can be formed by the interference between the
ω1 frequency component of beam 2 and the ω3 frequency component of
beam 3. Since the moving speed just matches the sound-wave velocity, this
resonant moving grating GBr excites the Brillouin mode of the medium
and diffracts the ω1 frequency component of beam 1 to obtain the Bril-
louin third-order polarization PBr. Such polarization enhances the FWM
signals corresponding to GRM , GRT , GM1 and GT1. The order parameter
QBr(r, t) = QBr exp[−i(k′1 − k3) · r], which reflects the diversification of
medium density, satisfy the following equations [34 – 37]:

d2QBr/dt2 + γBrdQBr/dt+ ν2
BrQBr = χb[E′2(r, t)]∗E3(r, t). (3.84a)

Based on Eqs. (3.80) – (3.83) shown above, we can obtain

PBr =
∫ ∞

0

χbγ
2
Br

ν2
Br −Δ2

1 − iΔ1γBr
ε1ε

∗
2ε3S1(r)u∗1(t− τ)u3(t)u1(t)dt. (3.84b)
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Here, νBr and γBr are the Brillouin frequency and linewidth, respectively,
and χb is a constant. So the polarization of Rayleigh and Brillouin-enhanced
FWM processes is PA2 = PA1 +PBr = PM1 +PRM +PT1 +PRT +PBr with
phase matching condition kS1 = k1 − k′1 + k3.

Fig. 3.25. The phase-conjugation geometries of the coexisting Raman, Rayleigh,
and Brillouin ASPB. E1 (E

′
1) and E′2 (E2) are the fields with frequency ω1 and ω2

in beam 1 (beam 2), respectively. E3 with frequency ω3 is the field in beam 3. The
enhanced FWM signals or the generated ASPB signals in beam 4 propagate almost
along the opposite direction of beam 2.

In Fig. 3.25, if beams 1 and 2 have the frequency component ω2 which
can induce another two non-resonant static molecular-reorientation gratings
GM2 and thermal gratings GT2. FWM signals are the results of the diffrac-
tion of beam 3 by such two gratings. On the other hand, if the frequency
detuning Δ2 = Δ′1 − ΩR(Δ′1 = ω3 − ω2) is near zero, here ΩR is the Ra-
man resonant frequency, the ω2 frequency component of beam 2 and the ω3

frequency component of beam 3 excite the Raman mode of the medium to
create the Raman resonant grating GR. It diffracts the ω2 frequency com-
ponent of beam 1 to obtain the Raman third-order polarization PR. Such
polarization enhances FWM signals corresponding to GM2 and GT2. The or-
der parameters QM2, QT2 of two non-resonant static gratings and QR of the
Raman resonant moving grating satisfies the following equations [31]:

dQM2/dt+ γMQM2 = χMγME′2(r, t)[E2(r, t)]∗, (3.85a)

dQT2/dt+ γT QT2 = χT γT E′2(r, t)[E2(r, t)]∗, (3.85b)

dQR/dt+ (γR − iΔ2)QR = χRγR[E2(r, t)]∗E3(r, t). (3.85c)

Here the beam stochastic fields of beam 1 and 2 can be expressed as: Ep1 =
E′2(r, t) = A′2(r, t) exp[−iω2(t − τ)] = ε′2u2(t − τ) exp[i(k′2 · r − ω2t + ω2τ)],
Ep2 = E2(r, t) = A2(r, t) exp(−iω2t) = ε2u2(t) exp[i(k2 · r − ω2t)].

The induced third-order nonlinear polarizations which are responsible for
the pure Raman-enhanced FWM signals are

PM2 = QM2(r, t)E3(r, t) = χMγMS2(r)(ε2)∗ε′2ε3 ×∫ ∞

0

u∗2(t− t′)u2(t− t′ − τ)u3(t) exp(−γM t′)dt′, (3.86)

PT2 = QT2(r, t)E3(r, t) = χT γT S2(r)(ε2)∗ε′2ε3 ×∫ ∞

0

u∗2(t− t′)u2(t− t′ − τ)u3(t) exp(−γT t′)dt′, (3.87)
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PR = QR(r, t)E′2(r, t) = iχRγRS2(r)(ε2)∗ε3ε
′
2 ×∫ ∞

0

u∗2(t− t′)u3(t− t′)u2(t− τ) exp[−(γR − iΔ2)t′]dt′. (3.88)

Here, S2(r) = exp{i[(k′2 − k2 + k3) · r − ω3t + ω2τ ]}, and the polarization
of Raman-enhanced FWM process is PB = PM2 + PT2 + PR with phase
matching condition kS2 = k′2 − k2 + k3.

Here we focus on the coexisting Raman, Rayleigh and Brillouin-enhanced
FWM. Now the beams 1 and 2 both consist of the frequency components
ω1 and ω2, if the two conditions are satisfied simultaneously: the frequency
difference Δ1 = ω3 − ω1 is much smaller than Δ′1 = ω3 − ω2 (i.e., Δ1 <<
Δ′1 and Δ1 ≈ 0) and the frequency detuning Δ2 = Δ′1 − ΩR is near zero,
the coexisting Raman, Rayleigh and Brillouin modes of medium enhance
FWM signals. Therefore, polarization PB = PM2 + PT2 + PR corresponds
to the Raman-enhanced FWM process with phase-matching condition kS2

and PA2 = PM1 + PT1 + PRM + PRT + PBr corresponds to the Rayleigh
and Brillouin-enhanced FWM process with phase-matching condition kS1.
Both FWM signals have the same frequency, i.e., ω3. As a result, the FWM
signals originate from the interference between the macroscopic polarizations
from the Raman-enhanced FWM, the Rayleigh and Brillouin-enhanced FWM
signals. The FWM signal (beam 4) is along the opposite direction of beam 2
approximately.

To some extent, the Raman and Brillouin-enhanced FWMs are both the
resonant process with energy transfer between the lights and the medium.
While because the frequency difference (which is tuned towards the acoustic
phonon resonance) between two incident beams of the Brillouin-enhanced
FWM is so small that the Rayleigh-enhanced FWM which possesses the zero
frequency difference and the Brillouin-enhanced FWM always coexist during
the experiment. Hence, we investigate the Rayleigh and Brillouin-enhanced
FWM as a whole.

3.3.2 Homodyne Detection of ASPB

For the Rayleigh-enhanced FWM signal, we obtain the total third-order po-
larization P (3) = PA1+PC = (PM1+PRM+PT1+PRT )+(PM2+PT2), where
the reference polarization PC = PM2 + PT2 with a frequency ω1 (which only
excite the nonresonant reference signals and do not satisfy the Raman reso-
nant excitation condition) have the phase matching condition kS2 = k′2−k2+
k3. So the homodyne-detection ASPB signal I(Δ1, τ) = 〈|PA1 + PC |2〉 con-
tains 6×6 = 36 different terms. For Rayleigh and Brillouin-enhanced FWMs,
there exists one more polarization — the Brillouin polarization. Here we sup-
pose that the Rayleigh and Brillouin polarizations have the same phase angle
and they have no interaction between them, so we have the total third-order
polarization P (3) = PA2+PC = (PM1+PRM+PT1+PRT+PBr)+(PM2+PT2).
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Therefore, the homodyne-detection beat signal I (Δ1, τ) ∝ 〈|PA2 + PC |2〉
contains 7 × 7 = 49 different terms which include the nonresonant terms of
the ω2 and ω1 molecular-reorientation and thermal gratings and the Rayleigh
and Brillouin resonant mode as the autocorrelation terms, and the cross-
correlation terms between FWM and Rayleigh and Brillouin-enhanced FWM.
Here,

〈|PA2|2〉
= 〈PM1P

∗
M1〉+ 〈PM1P

∗
T1〉+ 〈PM1P

∗
RM 〉+ 〈PM1P

∗
RT 〉+ 〈PM1P

∗
Br〉+

〈PT1P
∗
M1〉+ 〈PT1P

∗
T1〉+ 〈PT1P

∗
RM 〉+ 〈PT1P

∗
RT 〉+ 〈PT1P

∗
Br〉+

〈PRMP ∗M1〉+ 〈PRMP ∗T1〉+ 〈PRMP ∗RM 〉+ 〈PRMP ∗RT 〉+ 〈PRMP ∗Br〉+
〈PRT P ∗M1〉+ 〈PRT P ∗T1〉+ 〈PRT P ∗RM 〉+ 〈PRT P ∗RT 〉+ 〈PRT P ∗Br〉+
〈PBrP

∗
M1〉+ 〈PBrP

∗
T1〉+ 〈PBrP

∗
RM 〉+ 〈PBrP

∗
RT 〉+ 〈PBrP

∗
Br〉. (3.89)

They involves fourth- and second-order coherence functions of ui(t). For ex-
ample, the first term of 〈|PA2|2〉 is

〈PRMP ∗M1〉
= iχ2

Mγ2
M (ε1)∗ε3ε

′
1S1(r)ε1(ε′1)

∗(ε3)∗S∗1(r)×∫ ∞

0

dt′
∫ ∞

0

ds′〈u1(t− τ)u1(t− s′)u∗1(t− t′)u∗1(t− s′ − τ)〉
〈u3(t− t′)u∗3(t)〉 × exp[−(γM − iΔ1)t′ − γMs′]. (3.90)

The fourth- and second-order coherence functions of ui(t) included in this
equation are 〈u1(t− τ)u1(t− s′)u∗1(t− t′)u∗1(t− s′− τ)〉 and 〈u3(t− t′)u∗3(t)〉,
respectively.

If the laser sources have Lorentzian line shape, we have the second-order
coherence function 〈ui(t1)u∗i (t2)〉 = exp(−αi|t1−t2|) (i.e., 〈|ui(t)|2〉 = 1 when
t = t1 = t2). Here αi = δωi/2, δωi is the line width of the laser with frequency
ωi. On the other hand, if assuming that the laser sources have Gaussian line
shape, then we have 〈ui(t1)u∗i (t2)〉 = exp{−[αi(t1 − t2)/2

√
ln 2]2}. Here, we

only consider the former. In fact, the form of the second-order coherence
function shown above, which is determined by the laser line shape, is general
feature of the stochastic models [11].

Here we also give the other two terms:

〈|PC |2〉 = 〈PM2P
∗
M2〉+ 〈PM2P

∗
T2〉+ 〈PT2P

∗
M2〉+ 〈PT2P

∗
T2〉, (3.91)

〈PA2P
∗
C〉+ 〈P ∗A2PC〉

= 〈PM1P
∗
M2〉+ 〈PT1P

∗
M2〉+ 〈PRMP ∗M2〉+ 〈PRT P ∗M2〉+

〈PBrP
∗
M2〉+ 〈PM1P

∗
T2〉+ 〈PT1P

∗
T2〉+ 〈PRMP ∗T2〉+
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∗
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∗
M1〉+ 〈PT2P

∗
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〈PM2P
∗
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∗
RT 〉+ 〈PM2P

∗
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∗
M1〉+

〈PT2P
∗
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∗
RM 〉+ 〈PT2P

∗
RT 〉+ 〈PT2P

∗
Br〉. (3.92)
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The atomic response to Markovian stochastic optical fields is well understood
[11]. There are three different Markovian fields: (a) the chaotic field, (b)
the phase-diffusion field, and (c) the Gaussian-amplitude field. The chaotic
field undergoes both amplitude and phase fluctuations and corresponds to a
multimode laser field with a large number of uncorrelated modes, or a single-
mode laser emitting light below threshold. Since a chaotic field does not
possess any intensity stabilization mechanism, the field can take on any value
in a two-dimensional region of the complex plane centered about the origin
[11]. For the purpose of further investigations of the field-correlation, the
three different Markovian noise stochastic models are considered: the chaotic
field model (CFM), the phase-diffusion field model (PDM), the Gaussian-
amplitude field model (GAM). In this case, u1(t) has Gaussian statistics
with its fourth-order coherence function satisfying

〈ui(t1)ui(t2)u∗i (t3)u
∗
i (t4)〉CFM

= exp[−αi(|t1 − t3|+ |t2 − t4|)] + exp[−αi(|t1 − t4|+ |t2 − t3|)].

The phase-diffusion field undergoes only phase fluctuations and corresponds
to an intensity-stabilized single-mode laser field. The phase of the laser field,
however, has no natural stabilizing mechanism. The fourth-order coherence
function can be written as

〈ui(t1)ui(t2)u∗i (t3)u
∗
i (t4)〉PDM

= exp[−αi(|t1 − t3|+ |t1 − t4|+ |t2 − t3|+ |t2 − t4|)]
exp[αi(|t1 − t2|+ |t3 − t4|)]

=
〈ui(t1)u∗i (t3)〉〈ui(t2)u∗i (t4)〉〈ui(t1)u∗i (t4)〉〈ui(t2)u∗i (t3)〉

〈ui(t1)u∗i (t2)〉〈ui(t3)u∗i (t4)〉
. (3.93)

The Gaussian-amplitude field undergoes only amplitude fluctuations. There is
no such obvious natural source for a real Gaussian field. However, one can gen-
erate it through intentionally modulating the cw laser with the acousto-optic
modulator. We do consider the Gaussian-amplitude field for two reasons.
First, it allows us to isolate those effects due solely to amplitude fluctuations
and second, it is an example of a field that undergoes stronger amplitude (in-
tensity) fluctuations than a chaotic field. The fourth-order coherence function
of u(t) satisfies

〈ui(t1)ui(t2)ui(t3)ui(t4)〉GAM

= 〈ui(t1)ui(t2)ui(t3)ui(t4)〉CFM + 〈ui(t1)ui(t2)〉〈ui(t3)ui(t4)〉
= exp[−αi(|t1 − t3|+ |t2 − t4|)] + exp[−αi(|t1 − t4|+ |t2 − t3|)] +
exp[−αi(|t1 − t2|+ |t3 − t4|)]. (3.94)

By comparing the results for the chaotic and the Gaussian-amplitude fields
we can determine the effect of increasing amplitude fluctuations [11].
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From Fig. 3.26, we give the simulation of Rayleigh and Brillouin ASPBs
intensity I(Δ1, τ) = 〈|PA1 + PC |2〉, the three stochastic models have the
similar oscillation curve, the GAM field has the highest background, and the
PDM field has the lowest background.

Fig. 3.26. The Rayleigh and Brillouin ASPB signal versus γMτ for χM/χT =
10, γT /γM = 2 × 10−6,Δ1 = 0, r = 0, ω1/γM = 12.7450, ω2/γM =
12.0781, α1/γM = α2/γM = α3/γM = 1, γBr/γM = 0.05, νBr/γM = 0.33, χb/χT =
3.33 and η = 1. Three curves are shown in CFM (solid curve), GAM (dotted curve),
and PDM (dashed curve).

For the coexisting of Raman, Rayleigh, and Brillouin ASPBs, we have
the total third-order polarization P (3) = PB + PA2 = (PM2 + PT2 + PR) +
(PM1 +PRM +PT1+PRT +PBr). Therefore, the homodyne-detection signal
I(Δ1, τ) ∝ 〈(PB +PA2)(P ∗B +P ∗A2)〉 contains 8×8 = 64 different terms which
include the Rayleigh and Brillouin resonant mode as autocorrelation terms
and the cross-correlation terms between Raman, Rayleigh, and Brillouin-
enhanced FWMs. Here 〈|PA2|2〉 maintains the same as the Rayleigh and
Brillouin mode. The other two terms are

〈|PB |2〉 (3.95)
= 〈PM2P

∗
M2〉+ 〈PM2P

∗
T2〉+ 〈PM2P

∗
R〉+ 〈PT2P

∗
M2〉+ 〈PT2P

∗
T2〉+

〈PT2P
∗
R〉+ 〈PRP ∗M2〉+ 〈PRP ∗T2〉+ 〈PRP ∗R〉, (3.96)

〈PA2P
∗
B〉+ 〈P ∗A2PB〉

= 〈PM1P
∗
M2〉+ 〈PT1P

∗
M2〉+ 〈PRMP ∗M2〉+ 〈PRT P ∗M2〉+ 〈PBrP

∗
M2〉+

〈PM1P
∗
T2〉+ 〈PT1P

∗
T2〉+ 〈PRMP ∗T2〉+ 〈PRT P ∗T2〉+ 〈PBrP

∗
T2〉+

〈PM1P
∗
R〉+ 〈PT1P

∗
R〉+ 〈PRMP ∗R〉+ 〈PRT P ∗R〉+ 〈PBrP

∗
R〉+

〈PM2P
∗
M1〉+ 〈PT2P

∗
M1〉+ 〈PM2P

∗
RM 〉+ 〈PM2P

∗
RT 〉+ 〈PM2P

∗
Br〉+

〈PT2P
∗
M1〉+ 〈PT2P

∗
T1〉+ 〈PT2P

∗
RM 〉+ 〈PT2P

∗
RT 〉+ 〈PT2P

∗
Br〉+

〈PRP ∗M1〉+ 〈PRP ∗T1〉+ 〈PRP ∗RM 〉+ 〈PRP ∗RT 〉+ 〈PRP ∗Br〉. (3.97)

The coexisting Raman and Rayleigh-enhanced FWM has been considered in
the previous work [18]. Though the polarization beat signal is shown to be
particularly sensitive to the statistical properties of the Markovian stochastic
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light fields with arbitrary bandwidth, different Markovian stochastic models
of the laser field only influence the fourth-, not second-order correlation func-
tions. That means only the auto-correlation terms will be effected by three
different Markovian stochastic models and the cross-correlation terms have
nothing to do with three stochastic models. Here the cross-correlation terms
between Raman, Rayleigh and Brillouin-enhanced polarization of three mod-
els are the same. Therefore, Fig. 3.27 shows that ASPB signal intensities in
CFM, PDM, and GAM versus τ . Signals have the same oscillation charac-
teristics that they oscillate with the same frequency ω1+ω2, which is similar
to that of coexisting Raman and Rayleigh ASPBs [20].

Fig. 3.27. Raman, Rayleigh, and Brillouin ASPB signals versus γRτ with the same
parameters as in Fig 3.26.

3.3.3 Heterodyne Detection of ASPB

Now we try to do some discussions on the heterodyne detection of ASPB,
to obtain information on the third-order susceptibility. We take the Rayleigh
and Brillouin ASPB for example: the intensity of beat signal consist of three
parts: the auto-correlation term |PA2|2 of the Rayleigh and Brillouin ASPB,
the auto-correlation ter, |PC |2 of the beam ω2, and the cross-correlation term
〈PA2P

∗
C〉+ 〈P ∗A2PC〉. The susceptibility of the Rayleigh and Brillouin ASPB

is contained in two parts, i.e., |PA2|2 and 〈PA2P
∗
C〉 + 〈P ∗A2PC〉. The third-

order susceptibility χA2 in |PA2|2 appears in the form of the |χA2|2 without
phase characteristics. Only in 〈PA2P

∗
C〉 + 〈P ∗A2PC〉 term there exists phase

characteristics of χA2 of the Rayleigh and Brillouin resonant modes. We can
scan the frequency difference Δ1, but both |PA2|2 and 〈PA2P

∗
C〉 + 〈P ∗A2PC〉

have our scanning parameter. To avoid the Δ1 influence on |PA2|2, we can
make the field E1 intensity much weaker, and PA2 will be too weak to be
considered. In this case, we can obtain the phase dispersion information in
the cross-correlation term 〈PA2P

∗
C〉+ 〈P ∗A2PC〉.

Rayleigh and Brillouin ASPB signals are proportional to the average of
the absolute square of PA2 + PC , so that the signal intensity I (Δ1, τ ) ∝



3.3 Coexisting Brillouin, Rayleigh and Raman-enhanced Four-Wave Mixings 153

〈|PA2 + PC |2〉 = 〈(PA2+PC)(P ∗A2+P ∗C)〉 contains 7×7 = 49 different terms.
IA2 (Δ1, τ ) = 〈PA2P

∗
A2〉 and IC (τ) = 〈PCP ∗C〉 include the u1(t) and the u2(t)

fourth-order Markovian stochastic correlation functions, respectively, while
IA2,C (Δ1, τ) = 〈PA2P

∗
C〉 + 〈P ∗A2PC〉 include ui(t) second-order Markovian

stochastic correlation functions. In order to get the information about the
Rayleigh and Brillouin susceptibility, we need to detect the Rayleigh and
Brillouin ASPB signal intensity.

We know that different Markovian stochastic models of the laser field only
affect the fourth, not second-order correlation functions. Therefore, the cross-
correlation terms IA2,C (Δ1, τ ) are the same for three Markovian stochas-
tic models. We can obtain the third-order susceptibilities for Rayleigh and
Brillouin-enhanced FWM,

χA2 = χM + χT + χMγM/[(α1 + α3 + γM )− iΔ1] +
χT γT /[(α1 + α3 + γT )− iΔ1] +
χbγ

2
Br/(ν

2
Br −Δ2

1 − iΔ1γBr). (3.98)

The real and imaginary parts of χA2 are even and odd functions, respectively,
i.e.,

χ′A2 = χM + χT + γM (α1 + α3 + γM )χM/[(α1 + α3 + γM )2 +Δ2
1] +

γT (α1 + α3 + γT )χT /[(α1 + α3 + γT )2 +Δ2
1] +

χbγ
2
Br(ν

2
Br −Δ2

1)/[(ν
2
Br −Δ2

1)
2 + (Δ1γBr)2]

and

χ′′A2 = χMγMΔ1/[(α1 + α3 + γM )2 +Δ2
1] +

χT γTΔ1/[(α1 + α3 + γT )2 +Δ2
1] +

χbγ
3
BrΔ1/[(ν2

Br −Δ2
1)

2 + (Δ1γBr)2].

In heterodyne detection, assuming IC(τ) >> IA2(Δ1, τ) at intensity level,
we obtain I(Δ1, τ) ∝ IC(τ) + IA2,C(Δ1, τ). Under the condition of γM >>
α1, α2, α3 >> γT we have Rayleigh and Brillouin ASPB signals for three
Markovian models, respectively, i.e.,

χA2 = χM + χT + χMγM/[(α1 + α3 + γM )− iΔ1] +
χT γT /[(α1 + α3 + γT )− iΔ1] +
χbγ

2
Br/(ν

2
Br −Δ2

1 − iΔ1γBr). (3.99)

We express χA2 as |χA2| exp(iθA2) = |χA2| cos θA2 + i |χA2| sin θA2. From Eq.
(3.98) we have

χA2 = χM + χT + χMγM/[(α1 + α3 + γM )− iΔ1] +
χT γT /[(α1 + α3 + γT )− iΔ1]. (3.100)



154 3 Raman, Rayleigh and Brillouin-enhanced FWM Polarization Beats

Here, L1 = (χM+χT ) exp[−(α1+α2)|τ |], L2 = [1+3γ2
M/(γ2

M+Δ2
1)]χ

2
M , L3 =

exp(−2α1|τ |){[1+γ2
M/(γ2

M+Δ2
1)]2χMχT+χ2

T }, L4 = exp(−2α2|τ |)(2χMχT+
χ2

T ), η = ε′2(ε2)∗/ε1(ε′1)∗, spatial modulation frequency Δk = (k1 − k′1) −
(k′2 − k2), and na equals 1, 0, 2 for the CFM, PDM, and GAM, respectively.

Equation (3.99) indicates that the reference FWM signal IC(τ) and the
factor u1(t) are independent of Δ1. The heterodyne signal is modulated with
a sum-frequency ω1+ω2 as τ is varied, in addition, the phase of the oscillation
depends on the phase θA2 of the measured third-order susceptibility χA2. If
adjusting the time delay τ to satisfy the condition Δk ·r−(ω1+ω2)|τ | = 2nπ,
we obtain the real part of χA2,

IASPB(Δ1, τ) ∝ IC(τ) + 2L1η|χA2| cos θA2 ∝ IC + 2L1ηχ′A2. (3.101)

On the other hand, if Δk · r − (ω1 + ω2)|τ | = (2n − 1/2)π, we have the
imaginary part of χA2,

IASPB(Δ1, τ) ∝ IC(τ) + 2L1η|χA2| sin θA2 ∝ IC(τ) + 2L1ηχ′′A2. (3.102)

Raman, Rayleigh, and Brillouin ASPB signals are proportional to the aver-
age of the absolute square of PB + PA2, the signal intensity I (Δ1,Δ2, τ ) ∝
〈|PB + PA2|2〉 contains 8× 8 = 64 different terms where IA2,B (Δ1,Δ2, τ ) =
〈PA2P

∗
B〉 + 〈P ∗A2PB〉 include ui(t) second-order Markovian stochastic corre-

lation functions. The cross-correlation terms are the same for three Marko-
vian stochastic models but more complex than that of pure Rayleigh and
Raman ASPBs. In heterodyne detection, we can control the laser field in-
tensity to either make IB (Δ2, τ) >> IA2 (Δ1, τ) (i.e. η >> 1) to obtain
I ∝ IB (Δ2, τ) + IA2,B (Δ1,Δ2, τ ) for studying the phase dispersion of the
Rayleigh and Brillouin-enhanced third-order susceptibility χA2 (see Fig. 3.28)
or make IB (Δ2, τ ) << IA2 (Δ1, τ ) (η << 1) to obtain I ∝ IA2 (Δ1, τ ) +
IA2,B (Δ1,Δ2, τ) for studying the phase dispersion of the Raman-enhanced
third-order susceptibility χB (see Fig. 3.29).

Under the condition of γR, γM >> α1, α2, α3 >> γT and η >> 1 we
have the coexisting Raman, Rayleigh, and Brillouin ASPB signals for three
Markovian models, respectively, i.e.,

IASPB(Δ1,Δ2, τ) ∝ η2 exp(−2iΔk · r) {[1 + na exp(−2α2|τ |)]L5 + L6}+
η exp[−(α1 + α2)|τ |] ×
{exp[iΔk · r − i(ω1 + ω2)|τ |]χ∗BχA2 +
exp[−iΔk · r + i(ω1 + ω2)|τ |]χBχ∗A2} . (3.103)

Here,

L5 = χ2
M − 2γRΔ2χMχR/(γ2

R +Δ2
2) + γ2

Rχ2
R/(γ2

R +Δ2
2),

L6 = exp(−2α2|τ |)[2χMχT − 2γRΔ2χT χR/(γ2
R +Δ2

2) + χ2
T ],

L7 = exp(−2α1|τ |)(2χMχT + χ2
T ),



3.3 Coexisting Brillouin, Rayleigh and Raman-enhanced Four-Wave Mixings 155

Fig. 3.28. The heterodyne detection spectra versus Δ1/γM of the coexisting Ra-
man, Rayleigh and Brillouin ASPB with (a) τ = (2π + Δk · r)/(ω1 + ω2) for the
real part of χA2, while with (b) τ = (2π + π/2 + Δk · r)/(ω1 + ω2) for the imag-
inary part of χA2 when τ > 0; (c) τ = (−2π + Δk · r)/(ω1 + ω2) for the real
part of χA2, while with (d) τ = (−2π+ π/2 +Δk · r)/(ω1 + ω2) for the imaginary
part of χA2 when τ < 0. The other parameters are for χM/χT = 1000, γT /γM =
1, α1/γM = α2/γM = α3/γM = 1, ω1/γM = 127450, ω2/γM = 120781, γBr/γM =
0.1, νBr/γM = 0.5, χb/χT = 10, η = 10. Theoretical curves are shown in CFM
(dashed curve), PDM (dotted curve), GAM (dot-dashed curve) and the model
with cw laser beams (dot-dot-dashed curve). Adopted from Ref. [21].

and the third-order Raman-enahnced susceptibility

χB = χM + χT − χRγR/(Δ2 + iγR).

Therefore, from Eq. (3.102) we have

I(Δ1,Δ2, τ) ∝ IB(Δ2, τ) + 2η exp[−(α1 + α2)|τ |]|χB ||χA2| ×
cos[Δk · r − (ω1 + ω2)|τ | − θB + θA2]. (3.104)

Here, IB (Δ2, τ) = η2 exp(−2iΔk · r) {[1 + na exp(−2α2|τ |)]L5 + L6}, the
factor 2η exp[−(α1 + α2)|τ |]|χB | and θB are independent of Δ1. If we adjust
the time delay τ such that Δk · r − (ω1 + ω2)|τ | − θB = 2nπ [Fig. 3.28 (a),
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Fig. 3.29. The heterodyne detection spectra versus Δ2/γR of coexisting Raman,
Rayleigh, and Brillouin ASPBs for (a) the real part of χB, while with (b) the
imaginary part of χB when τ > 0. (c) The real part of χB , while with (d) the
imaginary part of χB when τ < 0. Other parameters are for χM/χT = 1, γT /γM =
1 × 10−6, γBr/γM = 0.05, νBr/γM = 0.33, χb/χT = 3.33, η = 0.1. Theoretical
curves are shown in CFM (dashed curve), PDM (dotted curve), GAM (dot-dashed
curve), and the model with cw laser beams (dot-dot-dashed curve).

(c)], then

I(Δ1,Δ2, τ) ∝ IB(Δ2, τ) + 2η exp[−(α1 + α2)|τ |]|χB ||χA2| cos θA2

= IB(Δ2, τ) + 2η exp[−(α1 + α2)|τ |]|χB |χ′A2. (3.105)

However, if Δk · r− (ω1 + ω2)|τ | − θB = (2n− 1/2)π [Fig. 3.28 (b) and (d)],
we have

I(Δ1,Δ2, τ) ∝ IB(Δ2, τ) + 2η exp[−(α1 + α2)|τ |]|χB ||χA2| sin θA2

= IB(Δ2, τ) + 2η exp[−(α1 + α2)|τ |]|χB |χ′′A2. (3.106)

In other words, by changing the time delay τ between beams 1 and 2 we can
obtain the real and the imaginary parts of Rayleigh and Brillouin-enhanced
susceptibilities. Figure 3.28 (a) – (d) shows the heterodyne detection spectra
versus Δ1/γM of the coexisting Raman, Rayleigh and Brillouin ASPB with
large η. Therefore, the spectra show the characteristics of the dispersion and
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absorption of the resonant Rayleigh and Brillouin-enhanced susceptibility.
From Fig 3.28 (a, c), two Brillouin resonance humps stand on the both sides
of Rayleigh resonance hump. By choosing proper parameters, two Brillouin
resonance humps have been enhanced and the Rayleigh resonance hump be-
comes weaker, now the apex of the Rayleigh resonance hump is just below
that of the Brillouin mode.

Similarly, under the condition of γR, γM >> α1, α2, α3 >> γT and η << 1
we have the coexisting Raman, Rayleigh and Brillouin ASPB signals for three
Markovian models,respectively, i.e.,

I(Δ1,Δ2, τ) ∝ {[1 + na exp(−2α1|τ |)]L2 + L3}+
η exp[−(α1 + α2)|τ |]×
{exp[iΔk · r − i(ω1 + ω2)|τ |]χ∗BχA2 +
exp[−iΔk · r + i(ω1 + ω2)|τ |]χBχ∗A2}. (3.107)

From Eq. (3.106) we have

I(Δ1,Δ2, τ) ∝ IA2(Δ1, τ) + 2η exp[−(α1 + α2)|τ |]|χB ||χA2| ×
cos[Δk · r − (ω1 + ω2)|τ | − θB + θA2]. (3.108)

Here, IA2 (Δ1, τ ) = [1 + na exp(−2α1|τ |)]L2 + L3, the factor 2η exp[−(α1 +
α2)|τ |]|χA2| and θA2 are independent of Δ2. If we adjust the time delay τ
such that Δk · r − (ω1 + ω2)|τ |+ θA2 = 2nπ [Fig. 3.28 (a, c)], then

I(Δ1,Δ2, τ) ∝ IA2(Δ1, τ) + 2η exp[−(α1 + α2)|τ |]|χA2||χB| cos θB

= IA2(Δ1, τ) + 2η exp[−(α1 + α2)|τ |]|χA2|χ′B. (3.109)

However, if Δk · r − (ω1 + ω2)|τ | + θA2 = (2n + 1/2)π [Fig. 3.29 (b, d)], we
have

I(Δ1,Δ2, τ) ∝ IA2(Δ1, τ) + 2η exp[−(α1 + α2)|τ |]|χA2||χB | sin θB

= IA2(Δ1, τ) + 2η exp[−(α1 + α2)|τ |]|χA2|χ′′B. (3.110)

Similarly, by changing the time delay τ between beams 1 and 2 we can obtain
real and imaginary parts of the Raman-enhanced susceptibility χB. Figure
3.29 (a – d) shows the characteristics of the dispersion and absorption of the
resonant Raman-enhanced FWM.

In Figs. 3.28 and 3.29, we can see that three CFM, PDM, GAM models
have the same profiles, which is similar as the model with cw laser beam. On
the other hand, in the coexisting Raman, Rayleigh and Brillouin ASPB, both
the Raman-enhanced susceptibility and Rayleigh and Brillouin-enhanced sus-
ceptibility still hold their inherent characteristics in the heterodyne-detected
ASPB, showing the similar curves as that in the pure Raman mode and the
Rayleigh and Brillouin mode.

In the above discussion, we individually obtain the real and imaginary
parts of the Rayleigh and Brillouin susceptibility (see Fig. 3.28) and the Ra-
man susceptibility (Fig. 3.29) . In fact, the conditions for the excited Raman,
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Rayleigh and Brillouin-enhanced FWM can be simultaneously satisfied in
one experiment system and the Raman, Rayleigh, and Brillouin-enhanced
FWMs are mixed and interfere with each other. Each of them can be consid-
ered as the reference signal of each other. Next we will consider the spectra
versus Δ1/γR and Δ2/γR. Figure 3.30 gives the three-dimensional diagram of
the coexisting Raman susceptibility, Rayleigh and Brillouin susceptibilities in
ASPB. We can see two resonance humps of the Rayleigh and Brillouin ASPB
versus Δ1/γR. As τ satisfies the condition of Δk·r−(ω1+ω2)|τ |+θA2 = 2nπ,
the spectra versus Δ2/γR shows the real part of the Raman-enhanced suscep-
tibility [Fig. 3.30 (a)], however, when Δk ·r− (ω1+ω2)|τ |+θA2 = 2nπ+π/2,
the spectra versus Δ2/γR show the imaginary part of the Raman-enhanced
susceptibility [Fig. 3.30 (b)].

Fig. 3.30. The heterodyne detection spectra versus Δ1/γR and Δ2/γR of coex-
isting ASPBs for η = 0.1, χM/χR = 0.1, γR/γM = 1, χT /χR = 0.1, γT /γM =
1×10−6, α1/γM = α2/γM = α3/γM = 1, γBr/γM = 0.05, νBr/γM = 0.3, χb/χT = 3
with (a) τ = (2nπ − Δk · r − θB)/(ω1 + ω2) for the real part and (b) τ =
(2nπ + π/2 − Δk · r − θB)/(ω1 + ω2) for the imaginary part of χB , respectively.
Adopted from Ref. [21].

On the other hand, as is known we can not directly obtain the pure
Brillouin-enhanced FWM, but with the proper value of time delay τ in beat
signal intensity, we could get it if removing the Rayleigh-enhanced FWM sig-
nal intensity from the coexisting Brillouin- and Rayleigh-enhanced ASPBs.
i.e., with 〈|PA2 + PC |2〉 − 〈|PA1 + PC |2〉, we can get the information of the
Brillouin-enhanced susceptibility χBr. It means by changing the time de-
lay τ between beams 1 and 2, we can obtain real and imaginary parts of
the Brillouin-enhanced susceptibility χBr. Figure 3.31 shows the profile of
the real and imaginary parts of χBr. The CFM, PDM, GAM are the same as
that in cw limit, but only their backgrounds are different. On the other hand,
the Brillouin-mode susceptibility has the similar absorption-like shape and
dispersion-like shape as the Rayleigh-mode susceptibility, whose real part of
the susceptibility is an even function and the imaginary part is an odd func-
tion. In Fig. 3.31 (a, c), the dispersion-like shape of Brillouin-mode suscepti-
bility has two resonant peaks which are near the zero point. And in Rayleigh
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Fig. 3.31. The heterodyne detection spectra versus Δ1/γM of the Brillouin-
enhanced ASPB with (a) τ = (2π + Δk · r)/(ω1 + ω2) for the real part of χBr,
while with (b) τ = (2π + π/2 + Δk · r)/(ω1 + ω2) for the imaginary part of χBr

when τ > 0; (c) τ = (−2π + Δk · r)/(ω1 + ω2) for the real part of χBr, while
with (d) τ = (−2π + π/2 + Δk · r)/(ω1 + ω2) for the imaginary part of χBr

when τ < 0. Other parameters are for χM/χT = 1000, γT /γM = 5, α1/γM =
α2/γM = α3/γM = 1, ω1/γM = 127450, ω2/γM = 120781, γBr/γM = 10, νBr/γM =
2, χBr/χT = 0.1, η = 10. Theoretical curves are shown in CFM (solid curve), PDM
(dashed curve), GAM (dot curve) and the model with cw laser beams (dot-dashed
curve).

and Brillouin-mode susceptibilities, the two Brillouin resonant peaks are in
the bound of Rayleigh resonant peaks, The separation of these two Brillouin
resonance peaks can be controlled by the parameters νBr and γBr, respec-
tively.

Figures 3.32 (a) and 3.33 (a) show the real and imaginary part of sus-
ceptibilities of the Raman mode in the pure Raman ASPB, while Figs. 3.34
(a) and 3.35 (a) show those of the susceptibility of Rayleigh mode in the
pure Rayleigh ASPB. We can see the dispersion-like profile for the real part
and the absorption-like profile for the imaginary part of these modes. For
the coexisting Raman and Rayleigh [Figs. 3.32 (b) – 3.35 (b)] ASPB and the
coexisting Raman, Rayleigh, and Brillouin ASPBs [see Figs. 3.32 (c) – 3.35
(c)], different τ can give each curve with different backgrounds. No matter
how τ changes, the curves have the similar profile as the curve of cw laser
beams.
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Fig. 3.32. The heterodyne detection spectra versus Δ2/γR of (a) the pure Raman
ASPB, (b) the coexisting Raman and Rayleigh ASPBs and (c) the coexisting Ra-
man, Rayleigh and Brillouin ASPB with τ = (±2π + Δk · r)/(ω1 + ω2) for the
real part of χB. The parameters are χM/χT = 1, γT /γM = 1 × 10−6, α1/γM =
α2/γM = α3/γM = 1, ω1/γM = 127 450, ω2/γM = 119 924, η = 0.1, γBr/γM =
0.05, νBr/γM = 0.3, χb/χT = 3, χR/χT = 5. Theoretical curves are shown in the
model when τ > 0 (solid curve), τ < 0 (dashed curve) and the model with cw laser
beams (dotted curve).

Let us turn to the coexisting Rayleigh and Brillouin susceptibility. In the
coexisting Raman, Rayleigh, and Brillouin-enhanced ASPBs, the curves of
the real part of susceptibility [see Fig. 3.34 (c)] are still even function-like,
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Fig. 3.33. The heterodyne detection spectra versus Δ2/γR of (a) the pure Raman
ASPB (b) the coexisting Raman and Rayleigh ASPB and (c) the coexisting of
Raman, Rayleigh, and Brillouin ASPBs with τ = (±2π+π/2+Δk ·r)/(ω1+ω2) for
the imaginary part of χB. The parameters are the same as in Fig. 3.32. Theoretical
curves are shown in the model when τ > 0 (solid curve), τ < 0 (dashed curve) and
the model with cw laser beams (dotted curve).

Fig. 3.34. The heterodyne detection spectra with τ = (±2π + Δk · r)/(ω1 + ω2)
versus Δ1/γM of (a) the pure Rayleigh ASPB (b) coexisting Raman and Rayleigh
ASPBs for the real part of χA1 and (c) the coexisting Raman, Rayleigh and Brillouin
ASPB for the real part of χA2. The parameters are χM/χT = 1, γT /γM = 1 ×
10−6, α1/γM = α2/γM = α3/γM = 1, γBr/γM = 0.05, νBr/γM = 0.3, χb/χT =
3, χR/χT = 5, ω1/γM = 127 450, ω2/γM = 119 924, η = 10. Theoretical curves are
shown in the model when τ > 0 (solid curve), τ < 0 (dashed curve) and the model
with cw laser beams (dotted curve).
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but there are two more Brillouin resonance humps on the both sides of the
lower Rayleigh resonance hump [Fig. 3.34 (a), (b)]. The separation of the two
Brillouin resonance humps can be controlled by the value of νBr and γBr. As
increasing νBr and γBr, the distance between two Brillouin resonance humps
increases. For imaginary part of susceptibility [see Fig. 3.35(c)], there are
peak and valley near zero, which reflects the characteristics of the Brillouin-
enhanced FWM, the curves are still odd function-like, similar as the pure
Raman, and the coexisting Raman and Rayleigh case [see Fig. 3.35 (a, b)].

Fig. 3.35. The heterodyne detection spectra with τ = (±2π+ π/2+Δk · r)/(ω1 +
ω2) versus Δ1/γM of (a) the pure Rayleigh ASPB (b) the coexisting Raman and
Rayleigh ASPB for the real part of χA1 and (c) coexisting Raman, Rayleigh, and
Brillouin ASPBs for the real part of χA2. The parameters are the same as in Fig.
3.34. Theoretical curves are shown in the model when τ > 0 (solid curve), τ < 0
(dashed curve) and the model with cw laser beams (dotted curve).

3.3.4 Phase Angle

We first consider the phase angle of Raman susceptibility χB [19]. Under
cw laser condition for simplicity, we decompose the nonlinear susceptibil-
ity χB into a real and imaginary part, i.e., χB = χ′B + iχ′′B, with χ′B =
χM + χT − χRγRΔ2/(Δ2

2 + γ2
R) and χ′′B = χRγ2

R/(Δ2
2 + γ2

R).χ
′
B(Δ2) is nei-
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ther an odd nor an even function due to the terms χM and χT .χ′′B(Δ2)
is an even function. We can obtain phase angle θB with |χB| exp iθB =
|χB| cos θB + i|χB| sin θB and θB(Δ2) = tan−1(χ′′B/χ′B). From the formula
above, as decreasing χM + χT , χ′B = χM + χT − χRγRΔ2/(Δ2

2 + γ2
R) can

get close to χ′B = −χRγRΔ2/(Δ2
2 + γ2

R), which is an odd function. While as
increasing χM +χT , θB turn to an even function, and we have χ′B = χM +χT

which is independent of Δ2, shown in Fig. 3.36 (a). In Fig. 3.36 (a), we
can see that the phase angle θB becomes more symmetrical with Δ2 = 0
when χM/α1 and χT /α1 increase. Similarly, the phase angle θB in coexist-
ing Raman, Rayleigh, and Brillouin ASPBs in Fig. 3.36 (b) shows the similar
characteristics as that in Fig. 3.36 (a). On the other hand, the laser linewidth
also affects the phase angle versus Δ2. As increasing the laser linewidth, the
value of the phase angle decreases but the symmetry of phase angle has little
influence, as shown in Fig. 3.36 (c, d). In fact, comparing with the broadband
(αi/γM >> 1, αi/γT >> 1), the dispersion and absorption under narrowband
limit are independent of the linewidth αi and time delay τ , which correspond
to the non-modified nonlinear dispersion and absorption of the material.

Fig. 3.36. The phase angle θB in the pure Raman enhanced FWM versus Δ2/γR

for (a) χM/χR = χT /χR = 0.2 (solid curve), 0.3 (dashed curve), and 0.5 (dotted
curve), and for (c) α1/γM = α2/γM = α3/γM = 0.3 (solid curve), 0.6 (dashed
curve), and 0.9 (dotted curve). θB in coexisting Raman, Rayleigh, and Brillouin-
enhanced FWMs versus Δ2/γR for (b) χM/χR = χT /χR = 0.3 (solid curve), 0.6
(dashed curve), and 0.9 (dotted curve), and for (d) α1/γM = α2/γM = α3/γM = 0.9
(solid curve), 1.2 (dashed curve), and 2 (dotted curve).
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Then we focus on the phase angle θA1(Δ1) of Rayleigh susceptibility χA1

i.e., χA1 = |χA1| exp iθA1 = χ′A1+iχ
′′
A1, with χ′A1 = χM +χT +γ2

MχM/(γ2
M+

Δ2
1) + γ2

T χT /(γ2
T +Δ2

1), χ′′A1 = χMγMΔ1/(γ2
M +Δ2

1) + χT γTΔ1/(γ2
T +Δ2

1),
and θA1(Δ1) = tan−1(χ′′A1/χ′A1). From the expressions we can see that the
real part of Rayleigh susceptibility is an even function and the imaginary
part is an odd function, so the phase angle is an odd function. When we in-
crease χT /χM , the value of θA1(Δ1) versus Δ1 in the pure Rayleigh ASPB is
reduced [see Fig. 3.37 (a)]. Similarly, for the phase angle θA2(Δ1) of Rayleigh
and Brillouin susceptibility χA2 = χ′A2 + iχ′′A2 = |χA2| exp iθA2, we also ob-
tain the even function χ′A2 = χM + χT + γ2

MχM/(γ2
M +Δ2

1) + γ2
T χT /(γ2

T +
Δ2

1) + χbγ
2
Br(ν

2
Br − Δ2

1)/[(ν2
Br − Δ2

1)2 + (Δ1γBr)2] and the odd function
χ′′A2 = χMγMΔ1/(γ2

M +Δ2
1)+χT γTΔ1/(γ2

T +Δ
2
1)+χbγ

3
BrΔ1/[(ν2

Br−Δ2
1)

2+
(Δ1γBr)2]. We can find two sharp peaks near Δ1 = 0 induced by the Bril-
louin resonance for θA2(Δ1) in the Rayleigh and Brillouin ASPB [Fig. 3.37
(b)] and in the Raman, Rayleigh and Brillouin ASPB [Fig. 3.37 (c)]. The
distance between two sharp peaks is proportional to the value of νBr and
γBr of Brillouin mode. On the other hand, when we reduce α1 and α3, the
value of the phase angle θA1, θA2 increase [see Fig. 3.37 (d–f)], which shows
the influence of the field-correlation of the color-locked noisy light. Thus, by
virtue of the ultrafast modulation processes within the attosecond regime,
one can optimize the nonlinear susceptibilities and obtain the efficient non-
linear optical signals, which have potential applications in achieving better
nonlinear optical materials and opt-electronic devices.

3.3.5 Discussion and Conclusion

Based on three stochastic models, the subtle Markovian field-correlation ef-
fects have been investigated in Raman, Rayleigh, and Brillouin-enhanced
FWMs, homodyne and heterodyne-detected ASPB. All of these can be under-
stood for time and frequency domains. Raman or Brillouin-enhanced FWMs
are both the resonant third-order nonlinear processes. The Raman grating
and Brillouin grating are created by the ω2 frequency component of beam
2 and the ω3 frequency component of beam 3 in Fig. 3.31. Specifically, the
Raman vibration mode is excited by the simultaneous presence of two inci-
dent beams whose frequency difference equals the Raman resonant excitation
frequency. In the Brillouin-enhanced FWM, the Brillouin mode is excited by
the simultaneous presence of two incident beams whose frequency difference
equals the phonon resonant frequency. In contrast, the Rayleigh-enhanced
FWM is a non-resonant process which is excited when frequency difference
between two incident beams equals zero, and there is no energy transfer be-
tween the lights and the medium.

Here we employ the ASPB to obtain real and imaginary parts of sus-
ceptibilities based on the polarization interference among coexisting Raman,
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Fig. 3.37. The phase angle θA1 in the pure Rayleigh-enhanced FWM versus Δ1/γM

for (a) χT /χM = 0.1 (solid curve), 0.5 (dashed curve), and 1 (dotted curve), and for
(d) α1/γM = α3/γM = 0.1 (solid curve), 0.5 (dashed curve), and 1 (dotted curve);
the phase angle θA2 in coexisting Rayleigh and Brillouin-enhanced FWMs versus
Δ1/γM for (b) χT /χM = 0.1 (solid curve), 0.5 (dashed curve), and 1 (dotted curve)
and for (e) α1/γM = α3/γM = 0.1 (solid curve), 0.5 (dashed curve), and 1 (dotted
curve); the phase angle θA2 in coexisting Raman, Rayleigh, and Brillouin-enhanced
FWMs versus Δ1/γM for (c) χM/χR = 0.05 (solid curve), 0.1 (dashed curve), and
0.3 (dotted curve), and for (f) α1/γM = α2/γM = α3/γM = 0.1 (solid curve), 0.5
(dashed curve), and 1 (dotted curve).

Rayleigh and Brillouin-enhanced FWM processes by the detuning Δ1 and Δ2.
Similarly, we can obtain the phase angle of χA1, χA2, and χB , respectively. If
Δ1 or Δ2 is large enough, the value of θA2 or θB will equal zero, respectively,
and coexisting Raman, Rayleigh, and Brillouin ASPBs will convert into the
pure Raman or Rayleigh and Brillouin ASPB.

The experiment can be done by using three nanosecond dye lasers (color-
locking) or femtosecond ultrashort lasers (phase-locking) D1, D2, and D3.
The carbon disulfide (CS2) with ΩR = 655.7 cm−1 vibrational mode was
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contained in a sample cell with thickness 10 mm. The laser had linewidth
0.01 nm and pulse width 5ns. Here the Brillouin frequency is 0.3 cm−1. The
thickness of the sample in this experiment is thicker than the sample of the
pre-experiment of the Raman and Rayleigh. D1 and D2 are used to generate
frequencies at ω1 and ω2, respectively. A beam splitter is used to combine
ω1 and ω2 components for the pump beams. Beam 1 and beam 2 intersected
in the sample with a small angle between them. The relative time delay
between beams 1 and 2 can be varied by an optical delay line controlled by
a stepping motor. Beam 3, used as the probe beam and originating from D3
with frequency ω3, propagating along the direction opposite that of beam 1.

More specifically, (i) for the coexisting Rayleigh and Brillouin ASPB, D1,
D2, and D3 have the wavelengths λ1 = 561 nm, λ2 = 565 nm and λ3 =
561 nm, respectively. Thus only Rayleigh and Brillouin-enhanced FWMs are
generated due to the interaction of beam 3 and ω1 component of beam 2,
while FWM due to the interaction of beam 3 and ω2 component of beam 2 is
generated used as a reference signal. The ω1 frequency can be varied. (ii) For
the coexisting of Raman, Rayleigh, and Brillouin ASPBs, D1, D2, and D3
have the wavelength λ1 = 561 nm, λ2 = 532 nm and λ3 = 561 nm, respec-
tively. Thus, the Raman-enhanced mode (Raman resonant moving grating
GR) is excited by the interaction of beam 3 and ω2 component of beam 2.
On the other hand, the Rayleigh and Brillouin-enhanced mode (two Rayleigh
non-resonant moving gratings GRM and GRT , and Brillouin resonant moving
gratingGBR) is generated due to the interaction of beam 3 and ω1 component
of beam 2. As a result, Raman, Rayleigh, and Brillouin-enhanced FWMs are
generated by the diffractions of the ω2 component, and ω1 component of beam
1 by Raman grating GR, and the Rayleigh and Brillouin gratings GRM , GRT

and GBR, respectively.
In summary, based on three stochastic models, coexisting Raman,

Rayleigh, and Brillouin-enhanced ASPBs is detected by homodyne and het-
erodyne methods, respectively. The subtle Markovian field correlation effects
in three stochastic models have been investigated.The heterodyne detected
signal of ASPB potentially offers rich dynamic information about the homo-
geneous broadening material phase of the third-order nonlinear susceptibility.
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4 Multi-Dressing Four-Wave Mixing Processes
in Confined and Non-confined Atomic
System

Other than generating various four-wave mixing (FWM) processes, multi-
level atomic system can also be used to generate co-existing FWM and six-
wave mixing (SWM) processes with specially-designed spatial patterns and
phase-watching conditions for laser beams. Making use of electro magneti-
cally induced transparency (EIT) windows, and induced atomic coherence,
the FWM and SWM signals can be made to be very efficient and pass through
the dense atomic medium. When the relative phase between different multi-
wave mixing processes is tuned, frequency, spatial, and temporal interferences
can occur between two different wave-mixing processes. In such cases, FWM
and SWM signals are modulated with the phase difference. In this chapter,
using phase-control between FWM and SWM channels in a four-level atomic
system, we describe temporal and spatial interference between these two high-
order nonlinear optical processes. Efficient and co-existing FWM and SWM
signals are produced in the same EIT window via atomic coherence. On the
other hand, we present the interplay between FWM, SWM, and eight-wave
mixing (EWM) resulting from atomic coherence in multi-level atomic sys-
tems. FWM with three kinds of dual-dressed schemes (nested, sequential,
and parallel schemes), SWM with the quadruply nested dressed, and EWM
with the parallel combination of two nested dressed schemes coexisting syn-
chronously in a multi-dressed EIT system were well described. At last, we also
investigated the coexisting FWM, SWM and EWM in ultra-thin, micrometer
and long cells. Investigations of these multi-dressing schemes and interactions
are very useful to understand and control the generated high-order nonlinear
optical signals.

4.1 Temporal and Spatial Interference Between Four-
Wave Mixing and Six-Wave Mixing Channels

For more than two decades, the interaction of coherent light with matter, and
the “control” of matter using light, has been a prominent scientific theme.
When two transition paths exist between an initial state and a final state,
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the total transition probability can be either enhanced or suppressed, de-
pending on the relative phase between two transition amplitudes [1 – 6]. Such
the quantum coherent control technique has been used to control the transi-
tion probability in atoms [1], photo-electron angular distribution [6], phase-
controlled current in semiconductors [2], and various chemical reactions [4,
7, 8]. Recently, destructive interference due to two intrinsic four-wave mix-
ing (FWM) processes was used to understand the bi-photon generation in a
two-level atomic system [9].

Here, we experimentally demonstrate a new type of phase-controlled,
spatial-temporal coherent interference between two different high-order non-
linear wave-mixing [i.e., FWM and six-wave mixing (SWM)] processes in a
four-level, inverted-Y system in rubidium atoms. By making use of atomic
coherence induced by laser fields among different energy levels, SWM signals
can be greatly enhanced and even made to be in the same order of magnitude
as co-existing FWM signals [10, 11]. With a specially-designed spatial config-
uration for laser beams for phase matching and an appropriate optical delay
introduced in one of the pump laser beams, we can have a controllable phase
difference between dominant FWM and SWM processes. When this relative
phase is varied, temporal, as well as spatial, interference can be observed. One
of the interesting features is that the interference in the time domain is in
the femtosecond time scale, corresponding to the optical transition frequency
excited by the delayed pump laser beam. Understanding the mechanism for
efficient generations of high-order nonlinear optical processes and interplays
between them, especially with the ability to control these processes with a
controllable phase difference, can have broad impacts in many fields of science
including coherent control for chemical reactions [4, 7, 8], stable 2D-soliton
generation for optical communications [12], high-precision spectroscopy [13],
nonlinear spectroscopy, and quantum information processing [9, 14 – 16]

Let us consider a four-level inverted Y-type atomic system as shown in
Fig. 4.1(b). The four relevant energy levels are 5S1/2, F = 2(|0〉), 5S1/2, F =
3(|3〉), 5P3/2(|1〉), and 5D5/2(|2〉) in 85Rb. In the three-level ladder-type sub-
system (|0〉−|1〉−|2〉), as shown in Fig. 4.1 (a), if a strong coupling beam E2

(frequency ω2, k2, and Rabi frequencyG2) couples to the upper transition and
a weak probe beam E1 (frequency k1, and Rabi frequency G1) interacts with
the lower transition, and they propagate in the opposite direction through the
atomic medium, an electromagnetically induced transparency (EIT) window
will be created for the probe field due to two-photon, Doppler-free configu-
ration in the Doppler-broadened medium [17]. When another coupling laser
beam E′2 (frequency ω2, k

′
2, and G′2) is also applied to the upper transition

[Fig. 4.1 (a)], a FWM signal will be generated with frequency ω1 in the cre-
ated EIT window of the ladder subsystem. Such a FWM (EF ) process can be
described by using a perturbative the chain: ρ

(0)
00

ω1−−→ ρ
(1)
10

ω2−−→ ρ
(2)
20

−ω2−−−→ ρ
(3)
10

[10]. If we align coupling and probe laser beams in a spatial pattern, as
shown in Fig. 4.1 (c), the generated FWM signal (ω3 EF ) will have a small
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angle θ from k1, satisfying the phase-matching condition kF = k1+ k2−k′2.
The FWM efficiency depends on the intensities of all the laser beams in-
volved. Next, let us turn our attention to Fig. 4.1 (b), where coupling beam
E′2 is blocked and two pump beams E3(ω3, k3, and G3) and E′3(ω3, k

′
3, and

G′3) are applied on transition |3〉–|1〉. The laser beams are carefully aligned
in the square-box pattern [10], as shown in Fig. 4.1 (c). In this case, the
FWM channel in the ladder subsystem is turned off (without E′2), and the
FWM process in the ∧-type subsystem (|0〉 − |1〉 − |3〉) is not efficient (not
observable in the experiment) since no EIT window exists for this configura-
tion (probe and pump beams counter-propagate) [17]. From phase-matching
condition (kS = k1 + k3 − k′3 + k2 − k2), efficient SWM signals can be
generated via either ρ

(0)
00

ω1−−→ ρ
(1)
10

ω2−−→ ρ
(2)
20

−ω2−−−→ ρ
(3)
10

−ω3−−−→ ρ
(4)
30

ω3−−→ ρ
(5)
10

or ρ
(0)
00

ω1−−→ ρ
(1)
10

−ω3−−−→ ρ
(2)
30

ω3−−→ ρ
(3)
10

ω2−−→ ρ
(4)
20

−ω2−−−→ ρ
(5)
10 , which are both in

the direction of θ angle from k1 [denoted as kS and ES with frequency ω1

in Figs. 4.1 (b) and (c)], and these SWM signals also fall into the same
EIT window as the FWM signal in the ladder subsystem. In the gener-
ated FWM and SWM signal beams, the coherence lengths are given by
lF = 2c/[n(ω2/ω1) |ω2 − ω1| θ2] and lS = 2c/[n(ω3/ω1) |ω3 − ω1| θ2], respec-
tively, with n being the refractive index at the frequency ω1. In the exper-
iment, θ is very small (0.30) so that lF and lS are much larger than the
interaction length L, so the phase-mismatch effect can be neglected.

Fig. 4.1. Atomic levels and laser beam arrangements for generating co-existing
FWM (a) and SWM (b) processes in the same EIT window. The dash-dotted lines
are the generated FWM (EF ) and SWM (ES) signals. (c) Spatial beam (square-box)
geometry used in the experiment, τ is a time delay through a precision translation
stage for beam E′2. The probe beam E1 propagates in the opposite direction from
the coupling and pump beams with small angles.

Now, we add the coupling beam E′2 back into the upper transition, but
keep its power to be adjustable. When the power of E′2 is same as the power
of E2, the FWM process in the ladder subsystem is very efficient, and it
dominates over the SWM processes, so only this FWM signal can be observed.
Typically, the lower-order nonlinear optical processes always overpower the
higher-order ones (normally by several orders of magnitude [18]), which is
the reason why co-existing FWM and SWM processes were not well studied
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in the atomic systems previously. However, in the current case as the power
of E′2 decreases, the FWM signal reduces rapidly and the relative strengths
of the SWM signal increases, until the SWM signal dominates when E′2 is
reduced to zero. By carefully adjusting the power of E′2 relative toE2, the
SWM signals are made to be in the same strength as the FWM signal, as
shown in Fig .4.2 (a), and both fall in the same EIT window [Fig. 4.2 (b)].
Since G′2 << G2 when SWM signals get to be the same order as the FWM,
the SWM processes with E′2 replacing E2 in Fig. 4.1 (b) can be negligible.
Notice that E′2 only involves in the FWM process, so it can be used to tune
not only the relative strength of the FWM and SWM processes, but also
the relative phase between these two nonlinear wave-mixing processes, since
E′2 is split from the E2 laser beam and delayed with a precision (nanometer
resolution) computer-controlled translation stage.

Fig. 4.2. Measured EIT-assisted FWM [solid line of (a)] and SWM [dashed line
of (a)] signal intensities, and the corresponding probe beam transmission (b) for
selected atomic density (0.2 × 1012 cm−3) versus probe detuning Δ1. The experi-
mental parameters are G1 = 2π× 15 MHz, G2 = 2π× 60 MHz, G′2 = 2π× 19 MHz,
G3 = G′3 = 2π× 87 MHz, Δ3 = 0, and Δ2 = 170 MHz. Adopted from Ref. [16].

The experiment was done with 85Rb atoms in an atomic vapor cell of 5 cm
long, which is wrapped in μ-metal for magnetic shielding and heated to 60◦C.
The probe beam E1 is from an extended-cavity diode laser (ECDL) at 780.23
nm. The coupling beams E2 and E′2 are split from another ECDL at 775.98
nm. The beam E′2 is delayed by an amount τ using a computer-controlled
stage. The pump beams E3 and E′3 are split from a cw Ti: Sapphire laser at
780.24 nm. The CCD and an avalanche photodiode (APD) are set at an angle
θ from the probe beam (with a beam splitter) to measure the dominant FWM
and SWM signals. The transmitted probe beam is simultaneously monitored
by a silicon photodiode. The powers and frequency detunings of the coupling
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beams E2(E′2) are 40 mW (4 mW) and 170 MHz, and those of the pump
beams E3(= E′3) are 67 mW and 0 MHz, respectively. Since the angles be-
tween the laser beams in the square-box pattern are very small (0.3◦) the
optical alignments of the laser beams are quite tedious and challenging

Under the current conditions of G3, G
′
3 > G2 >> G′2, G1, and neglecting

other multi-wave mixing processes either very weak or propagating in other
directions, the total detected intensity at angleθ is given by the co-existing
FWM (EF ) and SWM (ES) signal as

I(τ, r) ∝ |χ(3)|2 + |ηχ(5)|2 + 2η|χ(3)||χ(5)| cos(ϕ3 − ϕ5 + ϕ), (4.1)

where η = ε2ε3ε
′
3/ε′2, χ(3) = −iμ2

1μ
2
2N/

{
ε0�

3d1d2

[
d1 + (G3 + G′3)2/d3

]}
=∣∣χ(3)

∣∣ exp(iϕ3),ΩR, χ(5) = 2iμ2
1μ

2
2μ

2
3N/(ε0�

5d3
1d2d3) =

∣∣χ(5)
∣∣ exp(iϕ5), d1 =

Γ10 + iΔ1, d3 = Γ30 + i(Δ1 −Δ3) with Δi = Ωi − ωi, ϕ = Δk · r − ω2τ and
Δk = kF −kS = (k2−k′2)− (k3−k′3). μ1, μ2 and μ3 are the dipole moments
of the transitions |0〉−|1〉, |1〉−|2〉 and |3〉−|1〉, respectively, and ε2, ε

′
2, ε3, ε

′
3

are the respective amplitudes of the fields.
From Eq. (4.1), it is clear that the total signal has not been only spatial

interference with a period of 2π/Δk, but also an ultrafast time oscillation
with a period of 2π/ω2, which form a spatial–temporal interferogram. With
a plane-wave approximation and the square-box configuration for the laser
beams with small angles [Fig. 4.1(c)], the spatial interference occurs in the
plane perpendicular to the propagation direction.

Figure 4.3 depicts a typical three-dimensional interferogram pattern [Fig.
4.3 (a)] and their projections on time [Fig. 4.3 (c)] and space [Fig. 4.3 (d)]
planes. Figure 4.3 (b) presents a theoretical simulation for the total intensity
with appropriate parameters. The temporal oscillation period is 2π/ω2 =
2.588 fs, which corresponds to the 5P3/2 to 5D5/2 transition frequency of
Ω2 = 2.427 fs−1 in 85Rb. Such measurement of atomic transition frequency
in optical wavelength range is Doppler free and can be used as a tool for
precision frequency measurement. If this technique is used on a transition
with the larger energy difference, sub-femtosecond time resolution can be
achieved by scanning translation stage in nanometer precision. The spatial
interference is determined by the value of Δk ≈ 2π |λ2 − λ3| θ/λ2λ3. In our
experimental situation, we have 2π/Δk = 3.3 mm along the direction of Δk,
which gives a little more than one interference fringe, as shown in Fig. 4.3
(d). When the phase delay is varied on E′2 beam, the spatial interference
pattern can be changed from destructive to constructive at the center of the
beam profile (r = 0) [19]. The solid curves in Fig. 4.3 (c) and Fig. 4.3 (d) are
theoretical calculations from the full density-matrix equations, which fit well
with the experimentally measured results.

To see how well the transition frequency Ω2 can be determined from
such time interference fringe, we need to consider two cases. When the laser
linewidths are much narrower than the homogeneous linewidths of the tran-
sitions, the phase fluctuations of the laser fields will limit the range of the
time delay, which puts an upper bound on the accuracy of the modulation
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Fig. 4.3. (a) A three-dimensional spatial-temporal interferogram of the FWM and
SWM signal intensity I(τ, r) versus time-delay τ and transverse position r. (b)
The theoretically simulated result from Eq. (6.1). (c) Cross section of the spatial-
temporal interferogram on time plane (r = 0) (square points are experimental data,
and the solid curve is the theoretically simulated result). (d) Measured (square
points) and calculated (solid curve) cross section of the spatial-temporal interfero-
gram on a space plane (τ = 0), respectively. The signal intensity is normalized to
1. The parameters are Ω2 = 2.427 fs−1, Δk = 1. 9 mm−1, and η = 1.5.

frequency measurement. In such case, the accuracy of measuring modulation
frequency is determined by the laser linewidths. This measurement depends
on how well ω2 can be tuned to the transition frequency Ω2, and is Doppler-
free, which can be useful in optical spectroscopy and precision measurements.
In the other case, when the laser bandwidths are larger than the atomic de-
cay rates, the modulation frequency corresponds directly to the resonant fre-
quency Ω2. The accuracy in the modulation frequency measurement will then
be determined by the homogeneous linewidths of the atomic transitions, even
in the Doppler-broadened atomic medium, which is applicable to transitions
between metastable states.

Figure 4.4 (a) shows the temporal interference with a much longer time
delay in beam E′2, which makes the spatial-temporal interferogram to be
dominated by the temporal component. By fitting the interference fringe [Fig.
4.4 (b)], the period is determined to be 2.588 fs. Using Fourier transformation
of the interferogram data (with a time delay change of 50 ps), as shown in
Fig. 4.4 (c), the modulation frequency is determined to be 2.427 ±0.004 fs−1,
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which corresponds to the resonant frequency of the transition from 5P3/2 to
5D5/2 in 85Rb. Of course, what we present here is simply a proof of principle
demonstration with laser linewidths of about 1 MHz and such measurement
technique can surely be further improved.

Fig. 4.4. The spatial-temporal interferogram (a) versus τ and r, Ω2 = 2.427 fs−1,
Δk = 1. 9 mm−1, and η = 1.5. The theoretically simulated results from Eq. (4.1)
are plotted in (b) (solid line) together with the measured data (dots). (c) Fourier
spectrum of the beat signal.

A few points are worth mentioning here. First, our experimental results
indicate that we cannot only enhance SWM to be in the same order of in-
tensity as the co-existing FWM signal, but also manipulate their spatial and
temporal behaviors by controlling the phase delay in one of the laser beams.
Such spatial-temporal interferogram between FWM and SWM signals was
generated with three independent laser sources. Second, by adjusting the
power of the E′2 beam, the relative strengths of the FWM and SWM signals
can be easily adjusted. In the case of making ES << EF (letting E′2 → E2

in power), Eq. (4.1) can serve as a heterodyne detection method to deter-
mine the ratio of high-order nonlinear susceptibilities (χ(5)/χ(3)). Since χ(3)

can be easily measured [20], the χ(5) coefficient in such an atomic medium
can then be determined. Third, the technique used here can be easily trans-
ferred to solid materials, on which EIT and FWM processes can be easily
obtained. Fourth, with controlled FWM and SWM processes and enhanced
efficiency via atomic coherence, and the opened EIT window, three-photon
entanglement or correlated triplet photons [14] can be generated for testing
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fundamental quantum mechanics and quantum information processing [14,
15].

Efficient FWM and SWM processes have been shown to co-exist in the
four-level inverted-Y atomic system. By adjusting the intensity and time
delay of one of the coupling beams (E′2), the relative strength and spatial-
temporal interferences between the FWM and SWM channels can be con-
trolled. The generated spatial-temporal interferogram in femtosecond time
scale can be used to determine the optical transition frequency with a Doppl
er-free precision. Such manipulations of high-order nonlinear optical processes
and their interplays in multi-level atomic systems can have potential applica-
tions in coherence quantum control, nonlinear optical spectroscopy, precision
measurements, and quantum information processing.

4.2 Intermixing Between Four-Wave Mixing and
Six-Wave Mixing in a Four-level Atomic System

Multiwave mixing due to atomic coherence and polarization beat (PB) in
multi-level atomic systems has attracted a lot of attention recently [20 – 25].
PB originates from the interference between the macroscopic polarizations
that are excited simultaneously in the medium [23 – 25]. An important ap-
plication of electromagnetically induced transparency (EIT) [20, 21] is its
ability to enhance the efficiencies of nonlinear optical processes. Two of
the interesting nonlinear optical processes are FWM and six-wave mixing
(SWM), which normally have high efficiencies in closely-cycled four-level sys-
tems such as double-Λ system [26 – 28]. Recently, SWM processes were ob-
served in closed four-level atomic systems [27]. Such high-order SWM process
is often obscured by sequential or parallel cascade third-order FWM processes
that compete with the direct process and give similar time domain behavior,
though they probe different overtone vibration dynamics [29]. Garrett et al.
also explored the two-photon plus three-photon resonant FWM and SWM
involving stimulated hyper Raman generation as opposed to pause cognate
generation [30].

Although triple resonance spectroscopy has been reported previously by
fluorescence detection [31], the current method is a coherence phenomenon,
where atomic coherence is induced among different energy levels. Due to the
parametric nature of this process, the signal is coherent radiation. Compar-
ing with the earlier FWM [24, 25] or SWM work [27], our system has some
substantial advantages as following: (i) the coherent interplay between the
SWM and FWM processes through the EIT windows has been considered
(EIT window-opened or enhanced nonlinear optical processes, which are oth-
erwise closed); (ii) the evolution pathways of the dressed FWM have also
been identified and studied [32]; (iii) quantum interference (QI) between two
FWM channels, or between one FWM and one SWM channels leads to sub-
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stantial suppression and enhancement of the dressed FWM signals; (iv) PB
of coexisting FWM and SWM results in the acquirement of the fifth-order
nonlinear response.

4.2.1 Interplay Between FWM and SWM

In order to understand such interplay between FWM and SWM in a folded
four-level system, we present both the steady state analysis without time
delay and the non-steady state analysis with time delay.

We consider a folded four-level system (Fig. 4.5), in which states be-
tween |0〉 and |1〉, |1〉 and |2〉, and |2〉 and |3〉 are dipole allowed transitions
with resonant frequencies Ω1,Ω2 and Ω3 and dipole moments μ1, μ2 and μ3,
respectively. As shown in Fig. 4.5 (d), beam 2 includes three color-locked
fields, E2(ω2, k2, and Rabi frequency G2), E3(ω3, k3, and Rabi frequency
G3), and E′3 (ω3, k

′
3, and Rabi frequency G′3), and beam 3 has one locked

field, E′2(ω2, k
′
2, and Rabi frequency G′2). A small angle exists between these

two beams. Beam 1 is a monochromatic field E1(ω1, k1, and Rabi frequency
G1) which propagates along the opposite direction of beam 2. Assuming near
resonance so that E1 drives the transition from |0〉 to |1〉 while E2 drives the
transition from |1〉 to |2〉 simultaneously, which induce atomic coherence be-
tween |0〉 and |2〉 through two-photon excitation [30]. This established atomic
coherence is probed by E′2 in beam 3 and, as a result, a FWM signal of fre-
quency ω1 (beam 4) is generated almost opposite to the direction of beam
3, i.e., ρ

(0)
00

ω1−−→ ρ
(1)
10

ω2−−→ ρ
(2)
20

−ω2−−−→ ρ
(3)
10 (I). Next, we apply two coupling

laser fields with same frequency ω3(≈ Ω3), both of which propagate along
beam 2, to drive the transition |2〉 to |3〉. The strong coupling fields E3 and
E′3 create dressed atomic states |+〉 and |−〉 from the level |2〉 [Fig. 4.5 (c)],
which are the coherent superpositions of the states |2〉 and |3〉. Physically,
in the dressed-state picture, suppression and enhancement of the dressed
FWM signals are due to destructive and constructive interference between
the two FWM channels: ρ

(0)
00

ω1−−→ ρ
(1)
10

ω2−−→ ρ
(2)
+0

−ω2−−−→ ρ
(3)
10 (FWM+) and

ρ
(0)
00

ω1−−→ ρ
(1)
10

ω2−−→ ρ
(2)
−0

−ω2−−−→ ρ
(3)
10 (FWM−), respectively. On the other hand,

in the bare-state picture, the simultaneous interactions of atoms with E1 of
beam 1, as well as E2 and E′3 of beam 2, can induce atomic coherence between
|0〉 and |3〉 through resonant two-photon or resonant three-photon transition
[30] under particular conditions [Fig. 4.5 (b)]. This induced atomic coherence
is then probed by E3 of beam 2 and E′2 of beam 3 and, as a result, a SWM
signal of frequency ω1 (beam 4) is generated almost opposite to the direction
of beam 3, i.e., ρ

(0)
00

ω1−−→ ρ
(1)
10

ω2−−→ ρ
(2)
20

−ω3−−−→ ρ
(3)
30

ω3−−→ ρ
(4)
20

−ω2−−−→ ρ
(5)
10 (II) [Fig.

4.5 (e)]. The phase evolution is illustrated by the Feynman diagram shown in
Fig. 4.5 (e). Such Feynman diagram provides a convenient approach to keep
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track of possible quantum mechanical path to a given order of electric field
in a perturbative expansion of the optical Bloch equations. QI and PB lead
to interplay between these SWM and FWM processes. The specific evolution
pathways of the dressed FWM can be controlled by the coupling field.

Fig. 4.5. Ladder diagrams representing the dressed FWM evolution pathways, and
the interplay between SWM and FWM via atomic coherence: (a) the dressed FWM,
(b) FWM+SWM, (c) FWM++FWM−, (d) Phase-conjugation geometry, (e) SWM
double-sided Feynman diagram. The solid and dashed vertical arrows represent ket-
side interactions. The dash-dotted arrows are the emitted FWM or SWM signal.
The primed vectors are with time delay τ .

The Rabi frequencies are defined as Gi = εiμi/�, G′i = ε′iμi/�, α =
G1G2(G′2)

∗ and β = G1G2(G′3)
∗G3(G′2)

∗(G3 ≈ G′3 ≈ G); while the noisy
fields are Ei = εiui(t)eiki·r−iωit and E′i = ε′iui(t − τ)ei(k

′
i·r−ωit+ωiτ)(τ is a

time delay). εi, ki(ε′i, k
′
i) are the constant field amplitude and the wave vec-

tor. ui(t)(u1 ≈ 1) is a dimensionless statistical factor that contains phase
and amplitude fluctuations (i.e., ui(t) = εi(t) exp[iθi(t)], here εi(t) con-
tains pure amplitude fluctuation, while ΩRθi(t) contains pure phase fluc-
tuation). The ui(t) is taken to be a complex ergodic stochastic function
of t, which obeys complex circular Gaussian statistics in the chaotic field.
Γ10,Γ20 and Γ30 are the transverse relaxation rates between states |0〉 and
|1〉, |0〉 and |2〉, |0〉 and |3〉, respectively. The detuning factors are defined as
Δ1 = Ω1−ω1,Δ2 = Ω2−ω2,Δ3 = Ω3−ω3,Δa = Δ1+Δ2,Δb = Δa−Δ3, d1 =
Γ10+iΔ1, d2 = Γ20+iΔa, d3 = Γ30+iΔb. The FWM and SWM phase match-
ing conditions are kf = k1 + k2 − k′2 and ks = k1 + k2 − k′3 + k3 − k′2,
respectively.

The nonlinear polarization responsible for the dressed FWM signal is
proportional to the off-diagonal density matrix element ρ′10. We will assume,
as usual, that G1, G2, and G′2 are weak, whereas the coupling field G can
be of arbitrary magnitude. Thus ρ′10 needs to be calculated to the order
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G1G2G
′
2, but to all orders in G. Without the coupling field G, by virtue of

the Liouville pathway (I), we obtain ρ
(3)
10 = −iαeikf ·r/(d2

1d2), here ρ
(3)
10 is the

density-matrix element of the pure FWM. In the presence of the coupling
field G, the two-photon atomic coherence ρ

(2)
20 can be obtained by solving the

coupling equations:⎧⎪⎪⎨
⎪⎪⎩

∂ρ
(2)
20

∂t
= −d2ρ

(2)
20 + iG2eik2·rρ(1)

10 + iG3eik3·rρ30,

∂ρ30

∂t
= −d3ρ30 + i(G′3)

∗e−ik3·rρ(2)
20 .

(4.2)

In the steady-state case ∂ρ
(2)
20 /∂t = ∂ρ30/∂t = 0 and zero time delay

τ = 0, we can obtain ρ
(2)
20 = iG2e

ik2·rd3ρ
(1)
10 /[d2d3 + |G|2] from Eq. (4.2).

We can also get ρ
(1)
10 = iG1eik1·r/d1 and ρ

(3)
10 = i(G′2)∗e−ik′

2·rρ(2)
20 /d1 via

the FWM the chain (I). Thus, the dressed FWM density-matrix element is

ρ′10 =
−iαd3eikf ·r

d2
1(d2d3 +G2)

. Note that ρ′10 is not a purely third-order nonlinearity

(ρ(3)
10 ), instead it denotes the dressed FWM, including fifth-order nonlinear

responses.
Under assumption ζ >> 1(ζ = G2/ψ, ψ = Γ20Γ30,Γ′ = Γ20 + Γ30), the

dressed FWM intensity becomes sum of two separate FWMs |ρ′10|2 ≈
∣∣∣ρ(3)

+

∣∣∣2+∣∣ρ(3)
∣∣2, here ρ

(3)
+ =

−iαeikf ·r

d2
1[i(Δ1 +Δ2+) + Γ′]

, ρ(3) =
−iαeikf ·r

d2
1[i(Δ1 +Δ2−) + Γ′]

,Δ2±

= Δ2 ±ΔAT /2 = Δ2 ± [G(G2 + 2Γ30Γ′)1/2 − Γ2
30]

1/2 and ΔAT is the three-
photon resonant Autler-Townes (AT) splitting. In the limit of G >> Γ20 &
Γ30,ΔAT ≈ 2G and the linewidths of these two separate FWMs are approx-
imately to be Γ′. When the coupling field becomes large enough (G → ∞),
two FWM peaks will diminish and disappear completely ρ

(3)
+ ≈ ρ(3) ≈ 0.

There exists QI between FWM+ and FWM− channels which leads to the
suppression and enhancement of the dressed FWM signal

Under condition ζ << 1, ρ′10 becomes sum of FWM and SWM

ρ′10 ≈ ρ
(3)
10 + ρ

(5)
10 =

−iαeikf ·r

d2
1d2

(
1− G2

d2d3

)
. (4.3)

The dressed FWM process converts to a coherent superposition of sig-
nals from FWM and SWM in the weak coupling field limit. The first term
in the above equation corresponds to the two-photon resonant FWM (third-
order response, linewidth 2Γ20) described by the perturbation the chain (I),
while the second term corresponds to a three-photon resonant SWM (fifth-
order response, linewidth 2Γ30) described by the perturbation the chain (II).
The indistinguishable FWM and SWM processes lead to QI between them.

The interference signal of FWM and SWM is
∣∣∣ρ(3)

10 + ρ
(5)
10

∣∣∣2 ∝ 1 − 2G2(ψ −
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ΔaΔb)/(Γ′20Γ
′
30)(Γ

′
20 = Δ2

a + Γ2
20,Γ

′
30 = Δ2

b + Γ2
30,Γ

′′
30 = Δ2

3 + Γ2
30). At

exact two-photon resonance (i.e., Δa = 0), the signal intensity becomes
1 − 2G2ψ/(Γ2

20Γ′′30), which shows the absorption-like effect, related to the
imaginary part of the dressed FWM (Fig. 4.6). Due to the multiple reso-
nance and the reduced linear absorption by double EIT (standard |0〉 ω1−−→
|1〉 ω2−−→ |2〉 ladder-type EIT and |1〉 ω2−−→ |2〉 −ω3−−−→ |3〉Λ-type EIT with condi-

tion Δ1 = −Δ2 = −Δ3), the generation of the SWM signal is quite efficient.
Such reduced linear absorption can open the nonlinear window, which is gen-
erally closed due to strong absorption [32]. It can be proven easily that the
ratio between the SWM and FWM signal intensities at resonance is approx-
imately IS/IF ≈ ζ2 (Fig. 4.6, right inset). When the coupling field is weak
enough (ζ ≈ 0), ρ′10 completely evolves into ρ

(3)
10 (i.e., ρ′10 ≈ ρ

(3)
10 ). On the

other hand, we can also obtain the atomic coherence ρ
(5)
10 with three-photon

resonance via SWM Liouville pathway (II) ρ
(5)
10 = iβeiks·r/(d2

1d
2
2d3). At the

value ζ ≈ 1.6 (Δ1 = Δ2 = Δ3 = 0), we have ρ′10 ≈ ρ
(5)
10 .

Fig. 4.6. The dressed FWM signal intensity evolution (normalized by no coupling
field case) at exact two-photon resonance with parameters Δa = 0, Γ20 = Γ30 for
G/Γ20 = 0 (solid curve, FWM), 0.6 (dashed curve, FWM+SWM ), 1.6 (dotted
curve, SWM ) and 3 (dotted-dashed curve, FWM++FWM− ). The suppression
depth versus ζ (left insert plot shows the specific evolution pathways: two FWM
and SWM turning points, and two FWM+SWM and FWM++FWM− interference
regions). The right inset shows a comparison of FWM and SWM of the dashed
curve.

Next, we discuss competition between FWM and SWM in the dressed
FWM spectrum. The dressed FWM evolution pathways can be controlled
by the coupling field: FWM++FWM−(ζ >> 1) ↔ SWM (ζ ≈ 1.6) ↔
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FWM+SWM (ζ << 1) ↔ FWM (ζ ≈ 0). When state |2〉 is coupled to
state |3〉 by the coupling field, QI between two dressed FWM channels via
the common state, or FWM and SWM channels, leads to suppression and
enhancement of the dressed FWM signal. The physical origin of this beat
is an interference between indistinguishable quantum-mechanical pathways,
and such QI can lead to the cancellation of spontaneous emission [22, 33].
Specifically, the |+〉 and |−〉 dressed states are very close (small than the
linewidth) and can be excited simultaneously. The spontaneous emission from
the pair of dressed states (|+〉 and |−〉) to lower state (|1〉) can be reduced
or even cancelled under certain condition. The dressed FWM signal inten-
sity is suppressed when the frequency of the coupling field is scanned across
the resonance (Fig. 4.6). There exists the maximum suppression at double
EIT condition Δ1 = −Δ2 = −Δ3. We can easily obtain the suppressed
depth of the dip and linewidth in the spectrum as D = 1 − (ζ + 1)−2 and
w = 2Γ30(1 + ζ), respectively, which in the limit of ζ << 1 become D = 0
and w = 2Γ30. Since Γ20 can be obtained directly from the FWM spectrum
of IF , both G and Γ30 can be deduced through D and w. In the limit of
G >> Γ20 & Γ30, G can also be obtained by the AT splitting 2G. So the
transition dipole moment between two highly-excited states can finally be
obtained via G = ε3μ3/�. Recently, the power-dependent AT splitting of
lines in the upper-level fluorescence excitation spectrum has been used as
a spectroscopic tool for the measurement of transition dipole moments [31].
Compared to their method, our technique has the following advantages: (i)
Due to the drive-back prime beams (including two-color −ω2 and −ω3), our
signal is a well directed and strong coherent light beam; (ii) the coupling field
in our scheme can be below saturation, so that transitions with small dipole
moments can be studied; (iii) our method can measure the transition dipole
moment between |2〉 and |3〉, which has such long radiative lifetime that a
direct detection of the fluorescence is difficult.

Now, we consider the competition of the dispersion and absorption con-
tributions to the dressed signal intensity (The suppression and enhancement
mainly originate from the absorption and dispersion of the dressed FWM,
respectively). The intensity of light is proportional to |χ′|2 (the nonlinear
response of noise-free dressed FWM: Re χ′ = (ΔbG

2 −ΔaΓ′30)/A, Im χ′ =
−(Γ20Γ′30+Γ30|G|2)/A, R = Re χ′/Im χ′, here A = Γ′20Γ

′
30+2(ψ−ΔaΔb)G2+

G4). We discuss R under ζ << 1 condition (Re χ′ ≈ Re χF + Re χS ≈
Re χF and Im χ′ ≈ Im χF + Im χS ≈ Im χF ): (i) In the limit of Δa = 0,
the simplified ratio is R ≈ Δ3G

2/(Γ20Γ′′30) << 1, which means that the con-
tributions of the real parts of FWM and SWM are negligible, most of the
signal intensity comes from the contribution of the imaginary part of FWM
[the dotted curve of Fig. 4.7 (a)]; (ii) Under Δa >> Γ20, the ratio becomes
R ≈ Δa/Γ20 >> 1. It means that contributions of the imaginary parts of
FWM and SWM are neglectable. The signal intensity mostly comes from the
contribution of the real part of FWM [the solid curve of Fig. 4.7 (a)].

The suppression and enhancement of the dressed FWM mainly originate



182
4 Multi-Dressing Four-Wave Mixing Processes in Confined and Non-confined

Atomic System

from the absorption and dispersion of FWM, respectively. When we increase
the coupling fieldG, the contribution of SWM then becomes dominant (Re χS

and Im χS present same order of contribution) [Fig. 4.7 (b)]. Figure 4.7 (a)
shows dramatic suppression from Im χF , while Fig. 4.7 (b) shows dramatic
enhancement from Re χS . Therefore, there exists a strong competition be-
tween FWM and SWM in the dressed FWM spectrum. Multidimensional
solitons and light condensates have been predicted in a double-Λ EIT system
with competitive and giant χF and χS of opposite signs [12].

Fig. 4.7. The competition between absorption and dispersion of FWM and SWM
(normalized by no coupling field case) with parameters Γ20 = Γ30 for Δa/Γ20 = 0
(dotted curve), −1.5 (dashed curve), −6 (solid curve). (a) G/Γ20 = 0.6 and (b) 3
for FWM+SWM and FWM++FWM− interference regions, respectively. The insert
plots show a comparison of (Re χ′)2 = Re and (Imχ′)2 = Im. The dotted Re curve
and solid Im curve have been scaled by a factor 10 and 100, respectively.

We now discuss the controllable intra- or inter-atomic polarization in-
terference (PI). In a Doppler broadened system, the induced polarization is
sensitive to the atomic velocity, and interference exists between nonlinear po-
larizations of atoms with different velocity motions. This interference can have
a strong impact on the FWM or SWM spectra. To investigate it, instead of
calculating 〈∣∣P (n)

∣∣2〉 with inter-atomic PI and correlation, we can sum up the

signal intensity of each atom motion, i.e., Nμ1

∫ +∞

−∞
dνw(ν)〈∣∣ρ(n)

10 (v)
∣∣2〉 with-

out inter-atomic PI and correlation. The role of induced PI can be clarified by
studying the real and imaginary parts of ρ

(n)
10 (v). The imaginary part Im ρ

(n)
10

shows a dispersion lineshape, which leads to
∫ +∞

−∞
dνw(ν) Im ρ

(n)
10 = 0,

therefore only the real part Re ρ
(n)
10 contributes to the FWM and SWM sig-

nals. Since Re ρ
(n)
10 changes sign on the wings of both the v < 0 and v > 0

sides, destructive PI occurs between atoms, thereby suppressing the total



4.3 Coexistence of Four-Wave, Six-Wave and Eight-Wave Mixing Processes in

Multi-dressed Atomic Systems 183

polarization of the dressed FWM. The degree of destructive interference de-
pends on k2/k1. Specifically, the destructive interference between polariza-
tions of atoms with different velocities causes broadening of the dressed FWM
linewidth. The coupling field G3 can control the degree of destructive inter-
ference, thus reducing the linewidth. Furthermore, PB originates from the
interference between the macroscopic polarizations simultaneously excited in
at least two distinct resonances [22 – 25]. In contrast, the induced PI originates
from the interference between polarizations induced in the same transition
with a Doppler-shift frequency, also can be controlled by the coupling field
(Fig. 4.6).

4.2.2 Discussion

Higher-order time-resolved nonlinear optical processes can often be obscured
by sequential or parallel cascade lower order processes that compete with the
direct event and give similar time domain behaviors [29]. Unlike the direct
fifth-order case, cascade third-order processes must simultaneously satisfy
two related phase-matching conditions. There exist sequential cascade FWM
processes in our folded four-level system [28], which can obscure the direct
SWM process, i.e., (a) ρ

(0)
00

ω1−−→ ρ
(1)
10

ω2−−→ ρ
(2)
20

−ω3−−−→ ρ
(3)
30

−ωm−−−→ ρ
(0)
00 (km =

k1 + k2 − k′3 and ωm = ω1 + ω2 − ω3), and (b) ρ
(0)
00

ωm−−→ ρ
(1)
30

ω3−−→ ρ
(2)
20

−ω2−−−→
ρ
(3)
10

−ωsc−−−→ ρ
(0)
00 (ksc = km + k3 − k′2 and ωsc = ωm + ω3 − ω2 = ω1). The

direct three-photon SWM signal with frequency ω1 will be emitted along the
direction k1 + k2 − k′3 + k3 − k′2, while two sequential cascade FWM signals
propagate along the directions of km and ksc, respectively. Due to the weak
population of state |3〉 and the optical pumping of the strong coupling field
G3, the direct fifth-order process shows the much stronger behavior than the
cascade third-order processes in our folded four-state system. In principle,
there also exist other possible SWM pathways: ρ

(0)
00

ω1−−→ ρ
(1)
10

ω2−−→ ρ
(2)
20

−ω2−−−→
ρ
(3)
10

ω2−−→ ρ
(4)
20

−ω2−−−→ ρ
(5)
10 and ρ

(0)
00

ω1−−→ ρ
(1)
10

−ω1−−−→ ρ
(2)
00

ω1−−→ ρ
(3)
10

−ω1−−−→ ρ
(4)
00

ω1−−→
ρ
(5)
10 . However, these SWM processes have much smaller contributions and
will not be discussed here.

4.3 Coexistence of Four-Wave, Six-Wave and Eight-Wave
Mixing Processes in Multi-dressed Atomic Systems

Highly efficient multi-wave mixing processes with coherently prepared states
have been the subjects of intensive research activities in the past few decades.
Efficient four-wave mixing (FWM) [26, 34 – 36], six-wave mixing (SWM) [27,
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37], and eight-wave mixing (EWM) [27] have been individually studied in
multi-level atomic systems. By choosing appropriate atomic level schemes
and driving fields, one can generate controllable nonlinearities with very in-
teresting applications in designing novel nonlinear optical devices. This moti-
vates the studies of enhanced higher-order nonlinear wave-mixing processes.
Since higher-order nonlinear optical processes are usually much smaller in
amplitude than lower-order ones [18], the interplay between nonlinear opti-
cal processes of different orders, if exists, is usually very difficult to observe
experimentally. However, co-existing higher-order processes can become com-
parable or even greater in amplitude than the lower-order wave-mixing pro-
cesses by means of atomic coherence and multi-photon interference [37]. As
already proposed in the literature, the co-existing third- and fifth-order non-
linearities have important applications in 2D soliton formation and liquid-like
surface tension [12, 38], so the co-existing third-, fifth-, and seventh-order
nonlinearities will have applications in similar physical situations, or at least
be important to such applications.

A phenomenon that has attracted much attention in recent years is elec-
tromagnetically induced transparency (EIT) [17, 21]. The existence of a dark
state is the basis of EIT which reduces linear absorption and enhances FWM
processes [26, 34, 35] via atomic coherence in multi-level atomic systems.
Dark resonances arise from the quantum superposition states that are de-
coupled from coherent and dissipative interactions. Lukin et al. [17] studied
interaction of dark resonances and predicted the splitting of dark states by
changing the strength of the dressing laser beam in a four-level atomic sys-
tem. Later the doubly-dressed states were observed in cold atoms, and the
triple-peak absorption spectrum exhibits a constructive interference between
the excitation paths of the two closely spaced, doubly dressed states [39].
In this study, we present two kinds of doubly-dressing schemes, in which
constructive interference occurs between two FWM excitation paths of the
doubly-dressed states in an open five-level system. The high-order multi-
photon interference and light-induced atomic coherence are very important
in nonlinear wave-mixing processes and might be used to open and optimize
multi-channel nonlinear optical processes in multi-level atomic systems that
are otherwise prohibited by the strong absorption [37]. As a simple example,
in the conventional EIT-based FWM, a strong coupling laser beam induces
transparency for the generated FWM signal [26, 34, 35]. By contrast, in the
doubly-dressed FWM and singly-dressed SWM the dressing fields do not di-
rectly create an EIT window at the frequency ω1 of the FWM and SWM
signals.

Several features in this work are distinctly different and advantageous over
the previously reported multi-wave mixing processes [26, 27, 34 – 37]. First,
there exist co-existing FWM, SWM and EWM processes in an open five-level
system, which is good for studying the interplay between nonlinear optical
processes of different orders. In most of the previously studied multi-level
atomic systems, especially the close-cycled ones [26, 27, 34, 35], the FWM,



4.3 Coexistence of Four-Wave, Six-Wave and Eight-Wave Mixing Processes in

Multi-dressed Atomic Systems 185

SWM, and EWM processes cannot coexist, and different order nonlineari-
ties can only be observed individually under different laser configurations,
which is fundamentally different from the current study. Second, two kinds
of doubly-dressing schemes (parallel and nested types) are considered to gen-
erate co-existing FWM, SWM, and EWM signals. The coherent interactions
of doubly-dressed states created by two dressing fields have been studied in
detail, which can result in dramatic enhancements of multi-wave mixing sig-
nals. Moreover, such coherent interactions between two dressing processes in
nested type are much stronger than that in parallel type. Thus, by virtue of
controlling the singly- or doubly-dressed multi-wave mixing signal, one can
obtain the nonlinear susceptibilities of desired order, which can be very im-
portant for certain applications. Third, large third-, fifth-and seventh-order
nonlinear responses can be obtained by controlling the coherent phases of the
polarization beats between these FWM, SWM, and EWM signals. Investiga-
tions of such intermixing and interplay between different types of nonlinear
wave-mixing processes will help us to understand and optimize the generated
high-order multi-channel nonlinear optical signals.

4.3.1 Parallel and Nested Dressing Schemes

With the basic system [see Fig. 4.8 (a)] of three energy levels (|0〉, |1〉, and
|2〉) and three laser fields (ε2, ε

′
2, and ε1), a FWM signal at frequency ω1

will be generated [37]. By adding another energy level (either |3〉 or |4〉) and
another laser field (ε3 or ε′3 for level |3〉, or ε4 or ε′4 for level |4〉), the original
energy level (|1〉 or |2〉) will be dressed to produce two dressed states. Such
four-level system with a dressing field will modify the original FWM process
(called singly-dressed FWM with notation ρ

(3)
FiSj) and generate SWM signals

(ρ(5)
Si ). If two energy levels (|3〉 and |4〉) are both added with two additional

fields, the original FWM system is said to be doubly dressed (denoted as
ρ
(3)
Fij), which can generate not only SWM signals (ρ(5)

Si ), but also EWM (ρ(7)
Ei ).

One can consider such system first as a four-level system (|0〉, |1〉, |2〉 and |3〉)
which generates SWM, and then by adding another level (|4〉) and a field ε4,
this four-level atomic system is (singly) dressed again to give a singly-dressed
SWM signal (ρ(5)

Sij), which will have contributions from EWM under certain

conditions. Note that ρ
(3)
Fij and ρ

(5)
Sij are not purely third-order and fifth-order

nonlinearities, instead they are the doubly-dressed FWM and singly-dressed
SWM, respectively, including higher-order nonlinear responses. The main
purpose of using such doubly-dressed schemes is to generate efficient EWM
and, at the same time, to allow us to control the relative strengths of various
wave-mixing processes. So the high-order nonlinear optical processes can be
enhanced, manipulated, and studied in detail.

For a five-level atomic system as shown in Fig. 4.8 (a), states |i − 1〉 to
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Fig. 4.8. (a) The energy-level diagram for co-existing FWM, SWM, and EWM in an
open five-level system. (b) Phase-conjugate schematic diagram of phase-matched
multi-wave mixing. (c1) Five-level atomic system with blocking fields ε′3 and ε′4,
doubly-dressed FWM (parallel type) (c2) and singly-dressed SWM (c3, c4) in the
dressed-state picture. (d1) and (d2) Two five-level atomic systems for EWM. (e1)
Five-level at omic system with blocking fields ε′2 and ε′3, doubly-dressed FWM
(nested type) (e2) and singly-dressed SWM (e3) in the dressed-state picture. (f1)
Five-level atomic system with blocking fields ε′2 and ε′4, singly-dressed SWM (f2)
in the dressed-state picture. The |+〉 and |−〉 correspond to the primarily-dressed
states, the |++〉 and |+−〉 are the secondarily-dressed states around the primarily-
dressed state |+〉.

|i〉(i = 1, 2, 3, 4) are coupled by laser fields εi and ε′i(ωi, ki(k′i) with Rabi
frequency Gi(G′i)). The Rabi frequencies are defined as Gi = εiμij/� and
G′i = ε′iμij/�, respectively, where μij is the transition dipole moment between
level i and level j. Fields εi and ε′i with the same frequency and different time
delays (ε′i is delayed by time τ) propagate along beams 2 and 3 with a small
angle [Fig. 4.8 (b)], while a weak probe field ε1 (beam 1) propagates along
the opposite direction of beam 2. There exist three cases of blocking fields,
i.e., blocking ε′3 and ε′4 [Fig. 4.8 (c1)], blocking ε′2 and ε′3 [Fig. 4.8 (e1)],
or blocking ε′2 and ε′4 [Fig. 4.8 (f1)] as given in Table 4.1. Table 4.1 gives
all possible phase-matched Liouville pathways for coexisting FWM, SWM,
and EWM processes under certain conditions. Specifically, we consider two
types of doubly-dressed FWM schemes involved in this system, as shown in
Fig. 4.8 (c2, e2), we refer to them as parallel and nested dressing schemes, re-
spectively. The FWM process will be dressed by either two synchronous fields
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Table 4.1 Phase-matching conditions and the perturbation chains of co-existing
EWM, dressed SWM and doubly dressed FWM.

Blocked
beams

Doubly dressed
FWM Fij

Dressed SWM Sij EWM E1

k′3, k
′
4 kF1 = k1+k2−

k′2(F11, F12)
k

(1)
S1 = k1 + k2 − k′2 +

k3 − k3(S11, S12)
k

(1)
E1,2 = k1 + k2 − k′2 +

k3−k3+k4−k4(E1, E2)

k
(1)
S2,3 = k1+k2−k′2+

k4 − k4(S21, S32)

k′2, k
′
3 kF2 = k1+k4−

k′4(F21, F22)
k

(2)
S2,3 = k1+k2−k2+

k4 − k′4(S21, S32)

k
(2)
E1,2 = k1 + k2 − k2 +

k3−k3+k4−k′4(E1, E2)

k′2, k
′
4 None k

(2)
S1 = k1 + k2 − k2 +

k3 − k′3(S11, S12)
k

(3)
E1,2 = k1 + k2 − k2 +

k3−k′3+k4−k4(E1, E2)

FWM Fi,SWM Si and F1 : ρ
(0)
00

ω1−−→ ρ
(1)
10

ω2−−→ ρ
(2)
20

−ω2−−−→ ρ
(3)
10

EWM Ei chains F2 : ρ
(0)
00

ω1−−→ ρ
(1)
10

ω4−−→ ρ
(2)
40

−ω4−−−→ ρ
(3)
10

S1 : ρ
(0)
00

ω1−−→ ρ
(1)
10

ω2−−→ ρ
(2)
20

−ω3−−−→ ρ
(3)
30

ω3−−→
ρ
(4)
20

−ω2−−−→ ρ
(5)
10

S2 : ρ
(0)
00

ω1−−→ ρ
(1)
10

ω2−−→ ρ
(2)
20

−ω2−−−→ ρ
(3)
10

ω4−−→
ρ
(4)
40

−ω4−−−→ ρ
(5)
10

S3 : ρ
(0)
00

ω1−−→ ρ
(1)
10

ω4−−→ ρ
(2)
40

−ω4−−−→ ρ
(3)
10

ω2−−→
ρ
(4)
20

−ω2−−−→ ρ
(5)
10

E1 : ρ
(0)
00

ω1−−→ ρ
(1)
10

ω2−−→ ρ
(2)
20

−ω3−−−→ ρ
(3)
30

ω3−−→
ρ
(4)
20

−ω2−−−→ ρ
(5)
10

ω4−−→ ρ
(6)
40

−ω4−−−→ ρ
(7)
10

E2 : ρ
(0)
00

ω1−−→ ρ
(1)
10

ω4−−→ ρ
(2)
40

−ω4−−−→ ρ
(3)
10

ω2−−→
ρ
(4)
20

−ω3−−−→ ρ
(5)
30

ω3−−→ ρ
(6)
20

−ω2−−−→ ρ
(7)
10

Doubly dressed FWM F11 : ρ
(0)
00

ω1−−→ ρ
(1)
10

ω2−−→ ρ
(2)
(G3±)0

−ω2−−−→ ρ
(3)
(G4±)0

Fij , Dressed SWM Sij F12 : ρ
(0)
00

ω1−−→ ρ
(1)

(G4±)0

ω2−−→ ρ
(2)

(G3±)0

−ω2−−−→ ρ
(3)
10

chains F21 : ρ
(0)
00

ω1−−→ ρ
(1)
(G3±G2±)0

ω4−−→ ρ
(2)
40

−ω4−−−→ ρ
(3)
10

F22 : ρ
(0)
00

ω1−−→ ρ
(1)
10

ω4−−→ ρ
(2)
40

−ω4−−−→ ρ
(3)

(G3±G2±)0

S11 : ρ
(0)
00

ω1−−→ ρ
(1)
10

ω2−−→ ρ
(2)
20

−ω3−−−→ ρ
(3)
30

ω3−−→
ρ
(4)
20

−ω2−−−→ ρ
(5)
(G4±)0

S12 : ρ
(0)
00

ω1−−→ ρ
(1)

(G4±)0

ω2−−→ ρ
(2)
20

−ω3−−−→ ρ
(3)
30

−ω3−−−→
ρ
(4)
20

−ω2−−−→ ρ
(5)
10

S21 : ρ
(0)
00

ω1−−→ ρ
(1)
10

ω2−−→ ρ
(2)

(G3±)0

−ω2−−−→ ρ
(3)
10

ω4−−→
ρ
(4)
40

−ω4−−−→ ρ
(5)
10

S32 : ρ
(0)
00

ω1−−→ ρ
(1)
10

ω4−−→ ρ
(2)
40

−ω4−−−→ ρ
(3)
10

ω2−−→
ρ
(4)

(G3±)0

−ω2−−−→ ρ
(5)
10
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[parallel type as shown in Fig. 4.8 (c2)] or two in-series fields [nested type as
shown in Fig. 4.8 (e2)]. There exist coherent interactions of doubly dressed
states created by two dressing fields. Moreover, both dressing schemes lead to
multiple quantum superposition states that interact coherently, and can be
used to mitigate decoherence effects [37, 39, 40]. Furthermore, such coherent
interactions of doubly-dressed processes result in dramatic enhancements of
multi-wave mixing signals.

The nonlinear polarizations, responsible for multi-wave mixing signals, are
proportional to the off-diagonal density matrix elements ρ

(n)
10 . We will assume,

as usual, that G1 is weak, whereas the laser fields G2, G
′
2, G3, G

′
3, G4, and G′4

can be of arbitrary magnitudes. Thus, ρ
(n)
10 needs to be calculated to the

lowest-order in G1, but to all orders in other fields under various conditions.
When fields ε′3 and ε′4 are blocked, the simultaneous interactions of atoms

with fields ε1 and ε2 will induce a substantial atomic coherence between |0〉
and |2〉 through resonant two-photon transition. This coherently prepared
two-photon coherence is then probed by field ε′2 and, as a result, a FWM
(ρ(3)

F1) signal of frequency ω1 in beams 4 is generated almost opposite to the
direction of beams 3, satisfying phase-matching condition kF1 = k1+k2−k′2.
When two strong dressing fields ε3 and ε4 are used to drive the transitions
|2〉 to |3〉 and |1〉 to |4〉, respectively, as shown in Fig. 4.8 (c1), there coexist
two doubly-dressed FWM [ρ(3)

F11 of the chain F11 and ρ
(3)
F12 of the chain F12

depicted in Fig. 4.8 (c2)], as well as four singly-dressed SWM [ρ(5)
S11of S11 and

ρ
(5)
S12 of S12 depicted in Fig. 4.8 (c3); ρ

(5)
S21 of S21 and ρ

(5)
S32 of S32 depicted

in Fig. 4.8 (c4)], and two EWM [ρ(7)
E1of E1 and ρ

(7)
E2 of E2 depicted in Fig.

4.8 (d1 – d2)] processes, satisfying the phase-matching directions for kF1, k
(1)
S1

and k
(1)
S2,3, k

(1)
E1,2 respectively. Fij, Sij, and Ei represent doubly-dressed FWM,

singly-dressed SWM, and EWM processes, respectively, as given in Table 4.1
Moreover, we have k(1) = kF1 = k

(1)
S1 = k

(1)
S2,3 = k

(1)
E1,2 in this interaction case

(Table 4.1).
Specifically, the FWM process F1 is generated by interactions of three

fields ε1, ε2, and ε′2, which is parallelly dressed by ε3 and ε4 [Fig. 4.8 (c2)].
The SWM process S1 is generated by interactions with one photon each from
ε1, ε2, ε

′
2, and two photons from the same field ε3, which is dressed by ε4

[Fig. 4.8 (c3)]. The SWM processes S2 and S3 are generated by interactions
with one photon each from ε1, ε2, ε

′
2, and two photons from the same field

ε4, which is dressed by ε3 [Fig. 4.8 (c4)]. Similarly, EWM processes E1 and
E2 can also exist at the same time with one photon each from ε1, ε2, ε′2, two
photons from the same field ε3, and two photons from the same field ε4, as
shown in Fig. 4.8 (d1) – (d2).

To better understand such phenomenon of interplay between coexisting
EWM, dressed SWM and doubly-dressed FWM (parallel type) processes, we
use the perturbation the chain expressions involving ρ

(3)
F1, ρ

(5)
S1 , ρ

(5)
S2 (ρ

(5)
S3 ) and

ρ
(7)
E1 (ρ

(7)
E2) nonlinear wave-mixing processes for this case of blocking fields ε′3
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and ε′4. Although, such perturbative approach makes significant approxima-
tions it shows a simple picture of the leading contributions from the compli-
cated nonlinear optical processes. The simple FWM (ρ(3)

F1) via Liouville path-
way F1 gives ρ

(3)
F1 = −Ga/d2

1d2, where Ga = iG1G2(G′2)∗ exp(ik(1) · r), d1 =
Γ10 + iΔ1 and d2 = Γ20 + iΔa

2 with Δi = Ωi − ωi, Δa
2 = Δ1 + Δ2. Γij is

the decoherence rate between two relevant states. Similarly, we can easily
obtain three SWM processes, ρ

(5)
S1 = Ga |G3|2 /(d2

1d
2
2d3) via the chain S1 and

ρ
(5)
S2 = ρ

(5)
S3 = Ga |G4|2 /(d3

1d2d4) via the chains S2 and S3, as well as EWM
ρ
(7)
E1 = ρ

(7)
E2 = −Ga |G3|2 |G4|2/(d3

1d
2
2d3d4) via the chains E1 and E2, where

d3 = Γ30 + iΔa
3 and d4 = Γ40 + iΔa

4 with Δ
a
3 = Δa

2 −Δ3,Δa
4 = Δ1 +Δ4.

Two separate sub-processes for the dressing fields ε3 and ε4, “ρ
(2)
20

−ω3−−−→
ρ
(3)
30

ω3−−→ ρ
(4)
20 ” and “ρ(5)

10
ω4−−→ ρ

(6)
40

−ω4−−−→ ρ
(7)
10 ”, are parallelly existing in the

EWM the Chain E1. Such the mechanism can be called the parallel-dressing
interaction. It means that the fields ε3 and ε4 dress the states |2〉 and |1〉
[Fig 4.8 (c2)], and affect the atomic coherences ρ

(2)
20 between |0〉 and |2〉,

and ρ
(5)
10 between |0〉 and |1〉, respectively. So we have ρ

(2)
(G3±)0 and ρ

(3)
(G4±)0

in the doubly-dressed FWM the Chain F11 (Table 4.1). Specifically, in this
interaction, due to parallel-dressing fields ε3 and ε4, the FWM (F1) process
will be dressed synchronously by both fields and a perturbative approach
for such parallel-type, doubly-dressed interaction can be described by the
following coupled equations:⎧⎪⎪⎨

⎪⎪⎩
∂ρ20

∂t
= −d2ρ20 + iG2ρ10 exp(ik2 · r) + iG3ρ30 exp(ik3 · r)

∂ρ30

∂t
= −d3ρ30 + iG∗3ρ20 exp(−ik3 · r),

(4.4)

⎧⎪⎪⎨
⎪⎪⎩

∂ρ10

∂t
= −d1ρ10 + iG′∗2 ρ20 exp(−ik′2 · r) + iG∗4ρ40 exp(−ik4 · r)

∂ρ40

∂t
= −d4ρ40 + iG4ρ10 exp(ik4 · r).

(4.5)

Equations (4.4) and (4.5) correspond to G3 and G4 dressing equations,
respectively. The energy levels |1〉 and |2〉 of the chain F1 are created as two
parallel groups of dressed states |+〉 and |−〉, as shown in Fig. 4.8 (c2). In the
steady state, Eqs. (4.4) and (4.5) can be solved together with the perturbation
the chains F1 and E1 to give the strength of the parallel-dressing FWM of
the chain F11,

ρ
(3)
F11 =

−Ga

d1(d1 + |G4|2/d4)(d2 + |G3|2/d3)
(4.6)

In a special limit of |G4|2 << Γ10Γ40 and |G3|2 << Γ20Γ30, ρ
(3)
F11 can be
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expanded to the lowest order to give

ρ
(3)
F11 ≈

−Ga

d2
1d2

+
Ga |G3|2
d2
1d

2
2d3

+
Ga|G4|2
d3
1d2d4

+
−Ga |G3|2 |G4|2

d3
1d

2
2d3d4

= ρ
(3)
F1 + ρ

(5)
S1 + ρ

(5)
S2 + ρ

(7)
E1

= ρ
(3)
F1S1 + ρ

(5)
S21 = ρ

(3)
F1S2 + ρ

(5)
S11, (4.7)

where ρ
(3)
F1S1 = −Ga(1−|G3|2 /d3d2)/(d2

1d2) = ρ
(3)
F1+ρ

(5)
S1 , ρ

(5)
S21 = Ga|G4|2(1−

|G3|2 /d2d3)/(d3
1d2d4) = ρ

(5)
S2 + ρ

(7)
E1, ρ

(3)
F1S2 = −Ga(1 − |G4|2 /d1d4)/(d2

1d2) =
ρ
(3)
F1 + ρ

(5)
S2 and ρ

(5)
S11 = Ga|G3|2(1− |G4|2 /d1d4)/(d2

1d
2
2d3) = ρ

(5)
S1 + ρ

(7)
E1. Note

again that ρ
(3)
Fij , ρ

(5)
Sij are not pure third- and fifth-order nonlinear responses.

These symbols are used here denote the dressed FWM and SWM, respec-
tively. Expansions of Eq. (4.7) indicate that the doubly-dressed FWM process
converts to a coherent superposition of signals from FWM (F1), SWM (S1),
SWM (S2), and EWM (E1) (ρ

(3)
F1 + ρ

(5)
S1 + ρ

(5)
S2 + ρ

(7)
E1), or dressed FWM and

dressed SWM (ρ(3)
F1S1+ρ

(5)
S21) or (ρ

(3)
F1S2+ρ

(5)
S11) in this weak dressing field limit.

That is to say, ρ(3)
F11 includes third-, fifth- and seventh-order nonlinear optical

responses. Hence, the dressed SWM response of ρ
(5)
S11(ρ

(5)
S21) can be obtained

by homodyne beat detection with the dressed FWM signal ρ
(3)
F1S2 (ρ

(3)
F1S1) as

the strong local oscillator [25]. Similarly, we can get doubly-dressed FWM of
the chain F12, ρ

(3)
F12 ≈ ρ

(3)
F1 + ρ

(5)
S1 + ρ

(5)
S3 + ρ

(7)
E2 = ρ

(3)
F1S1 + ρ

(5)
S32 = ρ

(3)
F1S3 + ρ

(5)
S12

in Table 4.1.
When the fields ε′2 and ε′3 are blocked [as shown in Fig. 4.8 (e1)], there

coexist two doubly-dressed FWM [ρ(3)
F21 of the chain F21 and ρ

(3)
F22 of the

chain F22 depicted in Fig. 4.8 (e2)], two singly-dressed SWM [ρ′(5)S21 of S21

and ρ
′(5)
S32 of S32 depicted in Fig. 4.8 (e3)] and two EWM [ρ′(7)E1 of E1 and ρ

′(7)
E2

of E2 depicted in Fig. 4.8 (d1 – d2)] processes, satisfying the phase-matching
conditions kF2, k

(2)
S2,3 and k

(2)
E1,2 (additionally, k(2) = kF2 = k

(2)
S2,3 = k

(2)
E1,2).

More specifically, the FWM process F2 is generated by interactions of three
fields ε1, ε4 and ε′4, which is sequentially dressed by ε2 and ε3 [Fig. 4.8 (e2)].
The SWM processes S2 and S3 are generated by interactions with one photon
each from ε1, ε4, ε

′
4, and two photons from the same field ε2, which is dressed

by ε3 [Fig. 4.8 (e3)]. Similarly, EWM processes E1 and E2 can also exist at
the same time with one photon each from ε1, ε4, ε′4, two photons from the
same field ε2, and two photons from the same field ε3, as shown in Fig. 4.8
(d1 – d2).

The sub-chain “ρ(1)
10

ω2−−→ ρ
(2)
20

−ω3−−−→ ρ
(3)
30

ω3−−→ ρ
(4)
20

−ω2−−−→ ρ
(5)
10 ” of the

EWM the chain E1 shows that the dressing process of the field ε3, “ρ
(2)
20

−ω3−−−→ ρ
(3)
30

ω3−−→ ρ
(4)
20 ”, is nested in the dressing process of the field ε2. More-

over, the dressing field ε3 is based on the dressing field ε2. If ε2 = 0, the
dressing effect of field ε3 will disappear in expression ρ

(3)
F21. This doubly-
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dressed mechanism is called the nested-dressing interaction. Both of fields ε2

and ε3 dress the same state |1〉 [Fig. 4.8 (e2)], and affect the atomic coherence
ρ
(1)
10 between |0〉 and |1〉. So we have ρ

(1)
(G3±G2±)0 in the doubly-dressed FWM

the chain F21 (Table 4.1).
In this case, the coherently prepared two-photon coherence between |0〉

and |4〉 created by fields ε1 and ε4 is probed by field ε′4 and, as a consequence,
a FWM (ρ(3)

F2) signal is generated. Such an FWM process will be dressed by
two fields ε2 and ε3 in sequence, a perturbative approach for such the doubly-
dressed interaction, which is termed as nested dressing interaction, can be
described by Eq. (4.4) and the following equation:

∂ρ10/∂t = −d1ρ10 + iG∗2ρ20 exp(−ik2 · r) + iG1. (4.8)

The FWM (F2 process given in Table 4.1) is doubly dressed by fields G2

and G3. When one of dressing fields is tuned close to one of the primarily-
dressed states |+〉 (or |−〉), the energy levels at level |1〉 of the chain F2

are created as the secondarily-dressed states | + +〉 and | + −〉 around the
primarily-dressed state |+〉 [Fig. 4.8 (e2)] [39]. Coupling Eqs. (4.4) and (4.8)
can be solved together with the perturbation chain F2 and E1 to give the
doubly-dressed FWM of the chain F21,

ρ
(3)
F21 =

−Gb

d1d4

[
d1 +

|G2|2
(d2 + |G3|2/d3)

] , (4.9)

with Gb = iG1(G′4)∗G4 exp(ik(2) · r). Consequently, under the conditions
|G2|2 << Γ10Γ20 and |G3|2 << Γ20Γ30, we can expand ρ

(3)
F21 (to the lowest

orders) into

ρ
(3)
F21 ≈

−Gb

d2
1d4

+
Gb |G2|2
d3
1d2d4

+
−Gb |G2|2 |G3|2

d3
1d

2
2d3d4

= ρ
(3)
F2 + ρ

′(5)
S2 + ρ

′(7)
E1

= ρ
(3)
F2S2 + ρ

′(7)
E1 = ρ

(3)
F2 + ρ

′(5)
S21, (4.10)

where ρ
(3)
F2 = −Gb/(d2

1d4), ρ
′(5)
S2 = ρ

′(5)
S3 = Gb |G2|2 /(d3

1d2d4), ρ
′(7)
E1 = ρ

′(7)
E2

= −Gb |G2|2 |G3|2/(d3
1d

2
2d3d4), ρ

(3)
F2S2 = −Gb(1−|G2|2 /d1d2)/(d2

1d4) = ρ
(3)
F2+

ρ
′(5)
S2 , and ρ

′(5)
S21 = Gb|G2|2(1− |G3|2 /d2d3)/(d3

1d2d4) = ρ′(5)S2 + ρ
′(7)
E1 . It should

be pointed out that the nested-dressing FWM process converts to a coher-
ent superposition of signals from FWM (F2), SWM (S2), and EWM (E1)
(ρ(3)

F2+ρ
′(5)
S2 +ρ

′(7)
E1 ), or dressed FWM and EWM (ρ(3)

F2S2+ρ
′(7)
E1 ), or FWM and

dressed SWM (ρ(3)
F2 + ρ

′(5)
S21) in the weak dressing field limit. Here, the prime

indicates that such multi-wave mixing process is with the different phase-
matched condition. Correspondingly, we can get doubly-dressed FWM of the
Chain F22, ρ

(3)
F22 ≈ ρ

(3)
F2 + ρ′(5)S3 + ρ

′(7)
E2 = ρ

(3)
F2S3 + ρ

′(7)
E2 = ρ

(3)
F2 + ρ

′(5)
S32 in Table

4.1. Note that ρ
(3)
F21 and ρ

(3)
F22 are not purely third-order nonlinearities, in-

stead it denotes the doubly-dressed FWM, including fifth- and seventh-order
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nonlinear optical responses. Thus, the EWM response of ρ
′(7)
E1 (ρ′(7)E2 ) can be

obtained by homodyne beat detection with the dressed FWM signal ρ
(3)
F2S2

(ρ(3)
F2S3) as the strong local oscillator [25]. Note again that ρ

′(5)
S21 and ρ

′(5)
S32 are

not pure fifth-order nonlinear responses, and they are used to denote the
dressed SWM processes, including seventh-order nonlinear optical response.
Except parallel and nested interaction types of doubly dressing FWM mech-
anisms, the sequential dressing interaction scheme will be considered in our
future work.

From Eqs. (4.6) and (4.9), we easily realize that there exist the dramatic
difference between parallel-dressing and nested-dressing interactions. The co-
herent interaction between two dressing processes in nested type is much
stronger than that in parallel type. On the other hand, the three-photon
FWM and seven-photon EWM have the same sign, which is opposite with
that of the five-photon SWM. In weak dressing field limit, Eqs. (4.7) and
(4.10) clearly show the destructive interferences among these multi-photon
processes.

When the fields ε′2 and ε′4 are blocked [as shown in Fig. 4.8 (f1)], there
coexist two singly-dressed SWM [ρ′(5)S11of S11 and ρ

′(5)
S12 of S12 depicted in Fig.

4.8 (f2)] and two EWM [ρ′′(7)E1 of E1 and ρ
′′(7)
E2 of E2 depicted in Fig. 4.8 (d1 –

d2)] processes, satisfying the phase-matching directions k
(2)
S1 and k

(3)
E1,2(k

(3) =

k
(2)
S1 = k

(3)
E1,2). Here, the prime and double prime also indicate that such multi-

wave mixing processes are with different phase-matched directions. The SWM
process S1 (see Table 4.1) is generated by interactions with one photon each
from ε1, ε3, ε′3, and two photons from the same field ΩRε2, which is dressed
by field ε4 [Fig. 4.8 (f2)]. Similarly, EWM processes E1 and E2 can also exist
at the same time with one photon each from ε1, ε3, ε′3, two photons from the
same field ε2, and two photons from the same field ε4, as shown in Figs. 4.8
(d1) – (d2).

The sub-process for the dressing field ε4, “ρ
(5)
10

ω4−−→ ρ
(6)
40

−ω4−−−→ ρ
(7)
10 ”, is

existing in the EWM the chain E1. It means that the field ε4 dress the state
|1〉 [Fig. 4.8 (c3)], and affect the atomic coherences ρ

(5)
10 between |0〉 and |1〉.

So we have ρ
(5)
(G4±)0 in the dressed SWM the chain S11 (Table 4.1).

The high-order atomic coherence plays a significant role for the enhance-
ment of multi-wave mixing processes. In coherent SWM processes, the si-
multaneous interactions of atoms with fields ε1, ε2 and ε′3 generate atomic
coherence between |0〉 and |3〉 through resonant three-photon interaction.
Such coherently prepared three-photon coherence with wave vector k03 =
k1+k2−k′3 is then probed by fields ε3 and ε2 and, as a result, a SWM process
ρ
′(5)
S1 = Gc |G2|2 /(d2

1d
2
2d3) is generated with Gc = iG1(G′3)

∗G3 exp(ik(3) · r).
Such SWM process is then perturbed by field ε4. A perturbative approach
for such interaction can be described by the following coupled equations:
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∂ρ10

∂t
= −d1ρ10 + iG∗2ρ20 exp(−ik2 · r) + iG∗4ρ40 exp(−ik4 · r)

∂ρ40

∂t
= −d4ρ40 + iG4ρ10 exp(ik4 · r).

(4.11)

We can get ρ
(5)
10 = iG∗2ρ

(4)
20 /(d1 + |G4|2/d4) from the coupling Eq. (4.11)

of the Chain E1 for ε4 interaction terms. ρ
(1)
10 = iG1 exp(ik1 · r)/d1, ρ

(2)
20 =

iG2 exp(ik2 · r)ρ(1)
10 /d2, ρ

(3)
30 = i(G′3)

∗ exp(−ik′3 · r)ρ(2)
20 /d3, and ρ

(4)
20 = iG3 exp

(ik3 · r)ρ(3)
30 /d2 are also obtained from the chain S1. Thus, we can get

ρ
′(5)
S11 = ρ

(5)
10 =

Gc|G2|2
d1d2

2d3(d1 + |G4|2/d4)
. (4.12)

Assuming |G4|2 << Γ10Γ40, then through power expansion, we obtain

ρ
′(5)
S11 =

Gc|G2|2
d2
1d

2
2d3

(
1− |G4|2

d1d4

)
. (4.13)

The dressed SWM process approximately converts to a coherent superpo-
sition of signals from SWM (ρ′(5)S1 ) and EWM (|G4|2 term). Note again that
ρ
′(5)
S11 include both fifth- and seventh-order nonlinear optical responses.
This open five-level atomic system with co-existing FWM, SWM and

EWM is consist of four conventional EIT subsystems, i.e., |0〉 → |1〉 → |2〉
(ladder-type) with two counter-propagation beams ε2 (or ε′2) and ε1, |0〉 →
|1〉 → |4〉 (ladder-type) with two counter-propagation beams ε4 (or ε′4) and
ε1, |1〉 → |2〉 → |3〉 (Λ-type) with two co-propagation beams ε2 (or ε′2) and ε3

(or ε′3), and |2〉 → |1〉 → |4〉 (V-type) with two co-propagation beams ε2 (or
ε′2) and ε4 (or ε′4). More explicitly, the two ladder-type EIT, one Λ-type EIT
and one V-type EIT configurations all satisfy the two-photon Doppler-free
condition in the Fig. 4.8 (b) [17].

4.3.2 Interplay Among Coexisting FWM, SWM and EWM
Processes

One possible experimental candidate for the proposed system is 87Rb atoms
with states |0〉 = |5S1/2〉, |1〉 = |5P3/2〉, |2〉 = |5D3/2〉, |3〉 = |5P1/2〉 and |4〉 =
|5D5/2〉 [Fig. 4.8 (a)]. The respective transitions are |0〉 → |1〉 at 780.2 nm
(γ10 ≈ 5.89 MHz, where γij is term due to spontaneous emission (longitudinal
relaxation rate) between states |i〉 and |j〉), |1〉 → |2〉 at 776.2 nm (γ21 ≈
0.77 MHz), |2〉 → |3〉 at 762.1 nm (γ23 ≈ 0.98 MHz), |0〉 → |3〉 at 795.0
nm (γ30 ≈ 5.40 MHz) and |1〉 → |4〉 at 776.0 nm (γ41 ≈ 0.79 MHz). The
transverse relaxation rate Γij between states |i〉 and |j〉 can be obtained
by Γij = (Γi + Γj)/2 (Γ0 = 0, Γ1 = γ10, Γ2 = γ21 + γ23, Γ3 = γ30 and
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Γ4 = γ41). i.e., Γ10 = γ10/2 = 2.94 MHz, Γ20 = (γ21 + γ23)/2 = 0.88 MHz,
Γ30 = γ30/2 = 2.70 MHz and Γ40 = γ41/2 = 0.40 MHz. Thus, Γ10/Γ20 ≈ 3.3,
Γ30/Γ20 ≈ 3.0, Γ40/Γ20 ≈ 0.5, Γ30/Γ10 ≈ 0.9, and Γ40/Γ10 ≈ 0.1.

We consider the interaction of the dual dressings and the interplay among
coexisting FWM, SWM, and EWM processes. First, we consider the doubly-
dressed FWM (parallel-dressing interaction) spectra versus Δ1/Γ20 for the
case with blocking fields ε′3 and ε′4 [Fig. 4.8 (c1, c2)]. In this type of doubly-
dressed FWM, a dressing field G4 creates dressed atomic states |+〉 and |−〉
from the unperturbed state |1〉 [the Autler-Townes (AT) splitting ΔG4 ≈
2{G4[G2

4 + 2Γ40(Γ10 + Γ40)]1/2 − Γ2
40}1/2 mainly results from G4, i.e., outer

peak pair of Fig. 4.9 (a) and inner peak pair of Fig. 4.9 (b)]. When the
dressing field G3 is tuned close to the unperturbed state |2〉, the AT splitting
created by field G3 can be approximated to be ΔG3 ≈ 2{G3[G2

3+2Γ30(Γ20+
Γ30)]1/2 −Γ2

30}1/2 [i.e., inner peak pair of Fig. 4.9 (a) and outer peak pair of
Fig. 4.9 (b)]. More specifically, Fig. 4.9 (a) presents the dependence of the
doubly-dressed FWM (parallel-dressing interaction) signal intensity at exact
resonance Δ2 = Δ3 = Δ4 = 0, and the separation ΔG3 between the two inner
peaks increases versus increase of G3 (G4 > G3). For further identifying this
parallel dressing interaction, we change the laser detunings to different values
[Fig. 4.9 (b) for G3 > G4]. Compared with the solid curve of Fig. 4.9 (b),
the dashed and dotted curves of Fig. 4.9 (b) present left shift of inner peak
pair and right shift of outer peak pair due to the two-photon Δ1 +Δ4 factor
of G4 dressing term and three-photon Δ1 + Δ2 − Δ3 factor of G3 dressing
term in Eq. (4.6), respectively. Two AT shift processes due to the G3 and
G4 dressings are independent, so the interaction between them is weak at
the larger Δ3 and Δ4 values. When Δ3 and Δ4 are close to zero, two AT
shift processes depend each other and start to interact with each other [Fig.
4.9 (c – f)]. On the other hand, when the doubly-dressed FWM (parallel-
dressing interaction) signal intensity versus both Δ3 and Δ4 is normalized
by no dressing field (G3 = G4 = 0) case (i.e., ρ

(3)
F11/ρ

(3)
F1), the controllable

enhancement and suppression of the doubly-dressed FWM can be obtained
by adjusting laser frequencies and two dressing field intensities [Fig. 4.9 (c)
with both weak enhancements, (d) with one weak enhancement and one weak
suppression, (e) with one weak suppression and one strong suppression, (f)
with both strong enhancements]. Notice that Fig. 4.9 (c) presents anomalous
and normal dispersion-like effects along Δ3 and Δ4, which are determined
by the factors d3 and d4 of G3 and G4 in the Eq. (4.6), respectively. Due
to the induced resonances of two-photon Δ1 + Δ2 + ΔG3/2 = 0 [Fig. 4.10
(a)] and one-photon Δ1+ΔG4/2 = 0 [Fig. 4.10 (b)], Fig. 4.9(f) shows strong
enhancements of FWM versus Δ3 and Δ4.

Next, we consider the doubly-dressed FWM (nested-dressing interaction)
spectra versus Δ1/Γ20 for blocking fields ε′2 and ε′3 [Fig. 4.8 (e1, e2)]. There
exists strong coherent interaction between inner G2 and outer G3 dressing
processes. When G2 = 0 or Δ2 = ∞, ρ

(3)
F21 (or ρ

(3)
F22) becomes purely third-
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Fig. 4.9. (a) Doubly-dressed FWM (parallel type) signal intensities versus Δ1/Γ20

(Γ10/Γ20 = 3.3,Γ30/Γ20 = 3,Γ40/Γ20 = 0.5,Δ2 = Δ3 = Δ4 = 0, G4/Γ20 = 10) for
G3/Γ20 = 0 (solid curve), 1.2 (dashed curve), and 3 (dotted curve); (b) [G3/Γ20 =
15, G4/Γ20 = 5,Δ2 = 0,Δ3/Γ20 = 0 and Δ4/Γ20 = 0 (solid curve), 0 and 5 (dashed
curve), 2 and 0 (dotted curve)]. Doubly-dressed FWM signal intensity (normalized

by the case with G3 = G4 = 0, i.e., IF = ρ
(3)
F11/ρ

(3)
F1) versus Δ3/Γ20 and Δ4/Γ20

at (c) G3/Γ20 = G4/Γ20 = 0.7, Δ1/Γ20 = −4,Δ2 = 0; (d) G3/Γ20 = G4/Γ20 =
0.5,Δ1 = 0,Δ2/Γ20 = 2; (e), G4/Γ20 = 0.8,Δ1 = Δ2 = 0; (f) G3/Γ20 = G4/Γ20 =
5,Δ1/Γ30 = −4, Δ2 = 0. Adopted from Ref. [36].

order nonlinearities. The primarily dressing field G2 [G2 > G3 (where G3

is the secondarily dressing field)] creates dressed atomic states |+〉 and |−〉
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Fig. 4.10. Energy-level diagrams for induced enhancements of (a) two-photon res-
onant Δ1 + Δ2 + ΔG3/2 = 0 FWM, (b) one-photon resonant Δ1 + ΔG4/2 = 0
FWM, (c) two-photon resonant |0〉 → |G2+〉 → |4〉 FWM, and (d) three-photon
resonant |0〉 → |−〉 → |2〉 → |3〉 SWM, respectively.

from the unperturbed states |1〉 and |2〉 [solid curve in Fig. 4.11 (a)]. When
the secondarily dressing field G3 is tuned close to one of the primarily-
dressed states |+〉 (or |−〉), basically the dressing field only couples the
dressed state |+〉 (or |−〉) to the state |3〉 and leaves the other dressed
state |−〉 (or |+〉) unperturbed [39]. Thus, when Δ3 ≈ ΔG2/2, there ex-
ist the secondarily-dressed states | − +〉 and | + −〉 around the primarily-
dressed state |−〉 [dashed curve in Fig. 4.11 (a)]; when Δ3 ≈ −ΔG2/2 the
secondarily-dressed states | + +〉 and | − −〉 (around the primarily-dressed
state |+〉) can be generated (dotted curve in [Fig. 4.11 (a)]. Here, the sepa-
ration between the two outer peaks [solid curve in Fig. 4.11 (a)] created by
G2 is given by ΔG2 ≈ 2{G2[G2

2 + 2Γ20(Γ10 + Γ20)]1/2 − Γ2
20}1/2), while the

change of the AT splitting between two inner peaks weakly depends on field
G2. More importantly, three FWM Liouville pathways for Δ3 ≈ −ΔG2/2
(ρ(0)

00
ω1−−→ ρ

(1)
(++)0

ω2−−→ ρ
(2)
20

−ω2−−−→ ρ
(3)
(++)0, ρ

(0)
00

ω1−−→ ρ
(1)
(+−)0

ω2−−→ ρ
(2)
20

−ω2−−−→ ρ
(3)
(+−)0,

and ρ
(0)
00

ω1−−→ ρ
(1)
−0

ω2−−→ ρ
(2)
20

−ω2−−−→ ρ
(3)
−0) interfere constructively (coherent in-

teraction), leading to an enhanced FWM signal. Due to the decoherence of
the Raman coherence ρ30, the doubly-dressed four-level system also exhibits
a constructive interference [39]. By contrast, the doubly-dressed system with
a metastable excited state shows sharp dark resonance due to destructive
interference between the secondarily-dressed states [17].

In Fig. 4.11 (b, c) the FWM (nested-dressing interaction) signal intensity
with no dressing field (G2 = G3 = 0) is normalized to 1 (i.e., ρ

(3)
F21/ρ

(3)
F2).

There are two groups (channels) of suppression and enhancement curves due
to the primarily-dressed states |G3±〉 created by G3 (G3 > G2). Based on
the same secondarily-dressed state |G2+〉 created by G2, the two-photon
{|0〉 → |G2+〉 → |4〉 [Fig. 4.10 (c)]} resonant FWM signals (corresponding
to each group of curves) are enhanced [Fig. 4.11 (c)]. Specifically, at exact
resonance Δ1 = 0 we see that the FWM signal intensity is suppressed when
the frequency of the dressing field G2 is scanned across Δ2 = ±ΔG3/2 [Fig.
4.11 (b)]. If G2 increases, FWM signal has been strongly suppressed through
two channels created by G3 [Fig. 4.11 (b)]. On the other hand, the presence
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Fig. 4.11. (a) The doubly-dressed FWM (nested type) signal intensity versus
Δ1/Γ10 (Γ20/Γ10 = 0.3,Γ30/Γ10 = 0.9,Γ40/Γ10 = 0.1, G2/Γ10 = 15, G3/Γ10 =
1.5,Δ2 = Δ4 = 0) for Δ3/Γ10 = 10000 (solid curve), 14.5 (dashed curve),
and –14.5 (dotted curve), respectively. (b) Doubly-dressed FWM signal inten-

sity (normalized by the signal with G3 = G4 = 0 case, i.e., ρ
(3)
F21/ρ

(3)
F2) versus

Δ2/Γ10 (Δ1 = Δ2 = Δ4 = 0, G3/Γ10 = 5) for G2/Γ10 = 0.2 (solid curve),
0.5 (dashed curve), 1 (dotted curve), 2 (dash-dotted curve), respectively; (c) at
G2/Γ10 = 0.5, G3/Γ10 = 10,Δ3/Γ10 = −10,Δ4 = 0, for Δ1/Γ10 = 0 (solid curve),
-0.5 (dashed curve), -2 (dotted curve), -6 (dash-dotted curve), respectively.

of the weak dressing field G2 can either suppress or enhance the FWM signal
when Δ1 
= 0 [Fig. 4.11 (c)]. Due to Δ3 < 0, the amplitudes of enhancement
and suppression of FWM’s right channel for the dressed state |G3−〉 are
obviously larger than that of FWM’s left channel for the dressed state |G3+〉
[Fig. 4.11(c)]. Furthermore, the strongly enhanced dual-FWM channels can
be opened simultaneously by the two strong dressing fields, which provide
the energy for such large enhancement.

Finally, we investigate the dressed SWM spectrum versus Δ4/Γ30. Fig-
ure. 4.12 presents the enhancement of the dressed SWM signal intensity at
different probe detunings. The SWM signal intensity with no dressing field



198
4 Multi-Dressing Four-Wave Mixing Processes in Confined and Non-confined

Atomic System

is normalized to 1 (i.e., ρ
′(5)
S11/ρ

′(5)
S1 ). When G4/Γ30 = 50 the SWM signal is

strongly enhanced by a factor of 700 in the presence of the dressing field
when Δ1/Γ30 = 50 (the dotted curve in Fig. 4.12), which mainly results
from the three-photon {|0〉 → |−〉 → |2〉 → |3〉 [Fig. 4.10 (d)]} resonance. In
other words, such huge enhancement of the signal is due to induced resonance
by the strong coupling field. In general, the constructive and destructive in-
terferences between the |+〉 and |−〉 SWM channels (Table 4.1) result in the
enhancement and suppression of SWM signal, respectively. However, such en-
hancement mainly originates from the dispersion of SWM and EWM signals
and their interference under the weak dressing field limit [21].

Fig. 4.12. The dressed SWM signal intensity (normalized by no dressing field case)
versus Δ4/Γ10(Γ20/Γ10 = 0.3, Γ30/Γ10 = 0.9, Γ40/Γ10 = 0.1, Δ2 = Δ3 = 0,
G4/Γ10 = 50) for Δ1/Γ10 = 20 (solid curve), Δ1/Γ10 = 30 (dashed curve),
Δ1/Γ10 = 50 (dotted curve), Δ1/Γ10 = 70 (dash-dotted curve), Δ1/Γ10 = 100
(dash-dot-dotted curve), respectively.

4.4 Controlled Multi-Wave Mixing via Interacting Dark
States in a Five-level System

Recently a great deal of attention has been paid to observe and understand
the phenomenon of EIT and related effects in multi-level atomic systems
[41] interacting with two or more electromagnetic fields. Investigations about
interactions of doubly dressed states and corresponding effects on atomic
systems have also attracted many researchers. The doubly dressed states
were obtained in the inverted Y system [42] and double-Λ system [43]. In this
work, we go further to theoretically study, in a five-level system with three
possible dressing fields, three types of dual-dressing (nested and sequential)
schemes and precisely predicted the splitting of dark states resulting in five
absorption peaks.

On the other hand, highly efficient multi-wave mixing (MWM) processes
with coherently prepared states have also been intensively studied in the
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past few decades [44, 45]. Enhanced four-wave mixing (FWM) and efficient
six-wave mixing (SWM) processes have been experimentally demonstrated
in optically dressed systems [44, 45]. Moreover, eight-wave mixing (EWM)
in a folded five-level atomic system has been observed recently [27]. In pre-
viously studied close-cycled (ladder-type, N-type, double-Λ-type and folded)
systems, FWM, SWM, and EWM processes cannot coexist in a given config-
uration and different order nonlinearities can only be observed individually.
In our recent studies, the third-order and fifth-order nonlinear processes co-
exist in an open (such as V-type, Y-type and inverted Y-type) atomic system
were demonstrated, in which the coexisting SWM signal can become compa-
rable or even greater than the companion FWM by manipulating the atomic
coherence [16, 37]. After that, three kinds of doubly dressed FWM processes
(in nested, parallel and sequential dressing schemes) were investigated [46].
Here, we present controlled MWM (FWM, SWM, and EWM) via interacting
dark states in a five-level system [Fig. 4.13 (a)]. Specifically, there exists the
intermixture among three dressing schemes (nested, parallel, and sequential
dressing schemes) in FWM, the quadruple nested scheme in SWM, and the
parallel combination of two nested schemes in EWM.

Several features of this work are distinctly different and gain an advan-
tage over the previously reported MWM processes [46]. Firstly, multi-dressed
FWM, SWM, and EWM processes coexist and compete in a five-level system
because FWM is suppressed while SWM and EWM are enhanced by con-
trolling the offsets of fields. Secondly, various multi-dressed types in FWM,
SWM, EWM, and EIT are viewed as the combination of three basic dual-
dressing types (nested, parallel and sequential dressing schemes) which is also
separately investigated for better explanation of multi-dressing. Thirdly, we
obtain triple Aulter-Townes (AT) splitting in the spectra of FWM signal,
quadruple AT splitting in SWM signal, and two triply splitting in EIT. The
spectra of AT splitting, suppression and enhancement of FWM and EWM
signals are the superposition of two groups of the different AT splitting peaks.
The interaction of multi-dressed states created by three dressing fields has
been studied, which can result in the dramatic enhancement of MWM sig-
nals. Thus, by virtue of controlling the multi-dressed MWM signal, we can
obtain the nonlinear susceptibility of the desired order.

4.4.1 Basic Theory

With the basic system [in Fig. 4.13 (a)] of three energy levels (|0〉− |1〉− |2〉)
and three laser fields (the pumping beams E2 (with frequency ω2, wave vector
k2, and Rabi frequency G2), E′2(ω2, k

′
2, G

′
2) and the probe beam E1(ω1, k1,

G1)), a FWM signal at frequency ω1 will be generated and propagates in
the kf = k1 +k2−k′2 direction depending on the phase-matching condition.
By adding another energy level (|4〉) and another laser field E4(ω4, k4, G4),
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system |4〉 − |0〉 − |1〉 − |2〉 is formed [37] and a small-angle grating in the
atomic medium is established. E4 interacts with the FWM process in the
ladder system and generate SWM signals propagating along with the ks(=
k1 + k2 − k′2 + k4 − k4) direction owing to the phase-matching condition.
When the pumping beams E3(ω3, k3, G3) is turned on, this five-level system
also can generate EWM signal, which propagate in the same direction due
to the phase-matching condition ke = k1 + k2 − k′2 + k3 − k3 + k4 − k4.
Simultaneously, there exists another SWM signal which satisfies the phase-
matching condition ks1 = k1 + k2 − k′2 + k3 − k3. However, only SWM
ks(= k1 + k2 − k′2 + k4 − k4) is discussed in the paper.

According to the description above, the Hamiltonian of this system can
be written as

Hint = − �[Δ1|1〉〈1|+ (Δ1 +Δ2)|2〉〈2|+ (Δ1 −Δ3)|3〉〈3|+Δ4|4〉〈4|]−
�(G1|1〉〈0|+G4|4〉〈0|+ (G2 +G′2)|2〉〈1|+G3|3〉〈1|+H.c.).

Then the density-matrix equations which determine the evolution of the
whole system can be obtained. As to a five-level system, there are 15 inde-
pendent density-matrix equations without considering that ρ00 + ρ11 + ρ22+
ρ33 + ρ44 = 1. However, if we consider the probe field being weak enough,
the number of the required equations will be reduced because some weak
terms will be omitted in further derivation. Moreover, the perturbation the
chain method, a suitable method for our special case and can remove density-
matrixes which contribute little to MWM generation, is employed to calculate
density-matrix related to MWM process. Finally only six equations can be
useful for derivation is as follows:

ρ
(r)
10 = −d10ρ

(r)
10 −iG4eik4·rρ

(r)
14 +i(G

′
2)
∗e−ik′

2·rρ
(r)
20 +iG3eik3·rρ

(r)
30 +iG1eik1·rρ

(r)
00 ,

(4.14a)
ρ
(r)
20 = −d20ρ

(r)
20 − iG1eik1·rρ

(r)
21 − iG4eik4·rρ

(r)
24 + iG2eik2·rρ

(r)
10 , (4.14b)

ρ
(r)
30 = −d30ρ

(r)
30 − iG1eik1·rρ

(r)
31 − iG4eik4·rρ

(r)
34 + iG∗3e

−ik3·rρ
(r)
10 , (4.14c)

ρ
(r)
14 = −d14ρ

(r)
14 + iG∗2e

−ik′
2·rρ

(r)
24 + iG3eik3·rρ

(r)
34 − iG∗4e

−ik4·rρ
(r)
10 , (4.14d)

ρ
(r)
24 = −d24ρ

(r)
24 + iG2eik2·rρ

(r)
14 − iG∗4e

−ik4·rρ
(r)
20 , (4.14e)

ρ
(r)
34 = −d34ρ

(r)
34 + iG∗3e

−ik3·rρ
(r)
14 − iG∗4e

−ik4·rρ
(r)
30 , (4.14f)

where d10 = Γ10+iΔ1, d20 = Γ20+i(Δ1+Δ2), d30 = Γ30+i(Δ1−Δ3), d14 =
Γ14−i(Δ1−Δ4), d24 = Γ24−i(Δ1+Δ2−Δ4) and d34 = Γ34−i(Δ1−Δ3−Δ4)
with the frequency detuning Δi = Ωi − ωi. Γij is the transverse relaxation
rate between states |i〉 and |j〉. Ωi is the atomic resonance frequency. The
Rabi frequencies are defined as Gi = εiμij/�, where μijare the transition
dipole moments between level |i〉 and level |j〉. Next we will apply modified
density-matrix equations via perturbation chains to analyze the coexisting
multi-dressed FWM, SWM, and EWM, respectively.
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To better understand the interplay among coexisting FWM, SWM, and
EWM processes, we use the perturbation the chain method to derive expres-
sions of high-order density-matrix elements standing for FWM, SWM, and
EWM processes. Although such approach makes significant approximations,
it shows a simple but clear picture of which give leading contributions in
the complicated nonlinear optical processes. Moreover, we approach the final
complicated expressions by inserting the dressing field step by step. So the
expression of the pure FWM without any dressing field of a ladder sub-system
contained in the system we showed above are given clear derivation process
using perturbation the chain method in the following.

Considering a sub-system consisting of states |0〉 , |1〉 , |2〉 and three laser
beams E1, E2, and E′2, there are a simple FWM (ρF1) expressed as the FWM
perturbation the chain (F1) ρ

(0)
00

ω1−−→ ρ
(1)
10

ω2−−→ ρ
(2)
20

−ω2−−−→ ρ
(3)
10 . Density-matrix

elements in the chain denote the initial, intermediary and final states of the
transition process of generating FWM. According to the physics of the per-
turbation the chain, as to certain element denoting a state, only the higher-
order element in the chain can contribute to it, the other weak term can
be neglected then. Consequently, simplified density matrix equations about
ρ
(1)
10 , ρ

(2)
20 , and ρ

(3)
10 are

ρ
(1)
10 = iG1eik1·r/d10, (4.15a)

ρ
(2)
20 = iG2eik2·rρ

(1)
10 /d20, (4.15b)

ρ
(3)
10 = iG′∗2 e

−ik′
2·rρ

(2)
20 /d10. (4.15c)

Substitute Eq. (4.15a) into Eq. (4.15b), and then the result substitute to
Eq. (4.15c), we get

ρF1 = ρ
(3)
10 = −iGAeikf ·r/d2

10d20. (4.16)

where GA = G1G2G
′∗
2 . Let us talk about the case that an additional strong

dressing field E3 (connecting transition |1〉 and |3〉) are added in system
|0〉 − |1〉 − |2〉. E3 dresses level |1〉 and created two new states |G3+〉 and
|G3−〉, and then the dressed FWM is denoted as the dressed perturbation
the chain: (F2) ρ

(0)
00

ω1−−→ ρ
(1)
10

ω2−−→ ρ
(2)
20

−ω2−−−→ ρ
(3)
G3±0, where the sub-script “1”

of element ρ
(3)
10 is replaced by “G3±”. In the following we will see that the

dressed state is actual the interference between the polarizations ρ
(3)
10 and ρ

(5)
10

which is generated by E3 combining with FWM (F1). This lead us expanding
ρ
(3)
G3±0 as sub-chain ρ

(3)
10

−ω3−−−→ ρ
(4)
30

ω3−−→ ρ
(5)
10 and then the dressed FWM the

chain transform into the SWM the chain (S1) ρ
(0)
00

ω1−−→ ρ
(1)
10

ω2−−→ ρ
(2)
20

−ω2−−−→
ρ
(3)
10

−ω3−−−→ ρ
(4)
30

ω3−−→ ρ
(5)
10 which stand for the one which interfere with FWM

(F1) and finally cause dressing states |G3±〉. In the weak field approximation,
terms containing weak field G1 are all neglect in density matrix equation,
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while terms containing strong field G3 are saved. We do this also is guided by
sub-chain ρ

(3)
10

−ω3−−−→ ρ
(4)
30

ω3−−→ ρ
(5)
10 , then the coupling equations are as follows

ρ̇
(3)
10 = −d10ρ

(3)
10 +iG

∗
2e

ik′
2·rρ

(2)
20 +ie

ik3·rG3ρ30, ρ̇30 = −d30ρ30+iG∗3e
−ik3·rρ

(3)
10 .

Solve the above equations, we get

ρ
(3)
G3±0 =

iG′∗2 e
ik′

2·r

d10 + |G3|2 /d30

ρ
(2)
20 . (4.17)

Combining Eqs. (4.15a) and (4.15b) with Eq. (4.17), the dressed FWM is
finally obtained as

ρ′F1 = ρ
(3)
10 =

−iGAeikf ·r

d10d20

1
d10 + |G3|2 /d30

. (4.18)

We can see the factor d10 in ρ′F1 is modified by the G3 dressing term
in this singly dressed FWM [45]. More interesting, under the weak field
limit (|G3|2 << Γ10Γ30), Eq. (4.18) can be expanded to be ρ′F1 = ρF1 +
iGA|G3|2eiks·r/(d2

10d20d30) = ρF1 + ρS1, here ρS1 is the SWM expression
which can be deduced via the chain S1. This means that the density-matrix
element of the singly dressed FWM can be considered as a coherent super-
position of one pure FWM (ρF1) process and one pure SWM (ρS1) process
under the weak field limit. The enhancement and suppression of the FWM
process consequently can be viewed as resulting from the constructive and
destructive interference between these two processes, respectively. In addi-
tion, such the coherent superposition can be investigated the autoionization
state of atoms by optics heterodyne between FWM and SWM. However,
when the dressing field E3 is strong enough, Eq. (4.17) cannot be series
expanded. Here we believe the dressing field splits the level |1〉, and the en-
hancement and suppression of FWM process result from the constructive and
destructive interferences between two dressed paths (|0〉 → |G3+〉 → |1〉 and
|0〉 → |G3−〉 → |1〉), respectively.

Next let us discuss the dual-dressed scheme. It generally has three different
types, namely the nested, sequential and parallel dressed schemes. Detailed
analyses are as follows.

Here, besides the dressing field E3, another strong field E4 is turned on
too, then a dual-dressed FWM is generating in this five-level system. The
dressing fields E3 and E4 dress the levels |0〉 and |1〉, respectively. So they
can act on two different transition processes, namely two different matrix
density elements in perturbation the chain. For example, dual-dressed FWM
expressed by (F3) ρ

(0)
00

ω1−−→ ρ
(1)
1G4±

ω2−−→ ρ
(2)
20

−ω2−−−→ ρ
(3)
G3±0. Taking two sub-

chains of dressing fields (D1) ρ
(1)
10

−ω4−−−→ ρ
(2)
14

ω4−−→ ρ
(3)
10 and (D2) ρ

(5)
10

−ω3−−−→
ρ
(6)
30

ω3−−→ ρ
(7)
10 to displace two matrix density elements ρ

(1)
1G4± and ρ

(3)
G3±0, the

EWM perturbation the chain (E1) ρ
(0)
00

ω1−−→ ρ
(1)
10

−ω4−−−→ ρ
(2)
14

ω4−−→ ρ
(3)
10

ω2−−→
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ρ
(4)
20

−ω2−−−→ ρ
(5)
10

−ω3−−−→ ρ
(6)
30

ω3−−→ ρ
(7)
10 is obtained. This doubly dressing scheme is

called as a parallel dressing scheme for the two dressing field are influence this
process parallelly. According to the chain D1, we solve the coupling equations

ρ̇
(1)
10 = −d10ρ

(1)
10 − iG4eik4·rρ14 + iG1eik1·rρ

(0)
00 ,

ρ̇14 = −d14ρ14 − iG∗4e
−ik4·rρ

(1)
10

and obtain

ρ
(1)
1G4± =

iG1eik1·r

d10 + |G4|2 /d14

ρ
(0)
00 . (4.19)

According to the chain D2, we solve coupling equations

ρ̇
(3)
10 = −d10ρ

(3)
10 + iG∗2e

−ik′
2·rρ

(2)
20 + iG3eik3·rρ30,

ρ̇30 = −d30ρ30 + iG∗3e
−ik3·rρ

(3)
10 ,

and obtain

ρ
(3)
G3±0 =

iG′∗2 e−ik′
2·r

d10 + |G3|2 /d30

ρ
(2)
20 . (4.20)

From the chain (F3) and combining Eqs. (4.15b), (4.17) and (4.18), we
can obtain

ρ′′F1 = ρ
(3)
10 =

−iGAeikf ·r

d20

1
d10 + |G4|2 /d14

1
d10 + |G3|2 /d30

. (4.21)

where d10 in two terms are modified parallelly. Under the weak limit (|G4|2
<< Γ10Γ14), Equation (4.21) can be expanded as ρ′F1 + GA|G4|2/[d10d14d20

(d10+ |G3|2 /d30)] = ρ′F1+ρ′S . This means that the density-matrix element of
the dual-dressed FWM can be considered as a coherent superposition of one
single dressed FWM process and single dressed SWM process under the weak
field limit. We can see that the dual-dressed FWM is actual the interference
between the polarizations ρ′F1 and ρ′S . In addition, under the weak field limit
(|G3|2 << Γ10Γ30 and |G4|2 << Γ10Γ14), the parallel dual-dressed FWM
(DDFWM) can be considered as a coherent superposition of signals from one
FWM, two SWM and one EWM processes [46] according to its expression
expansion.

In this part, we will talk about the dressing mechanism contained five-
dressing fields based on the three basic dual-dressing types. We focus on
investigating the two portions of the expression: one is the two dressing term
which is a simply nested dressing scheme, the other contain three dressing
fields of which the outer dressing terms of the nested dressing scheme is a
sequential dressing scheme.

At first, let us consider the nested dressing scheme, which the dressing
fields E3 and E4 perform their dressing effect in another manner denoted
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as sub-chain (D3) ρ
(3)
10

−ω3−−−→ ρ30
ω4−−→ ρ34

−ω4−−−→ ρ30
ω3−−→ ρ

(3)
10 , in which the

sub-chain “ρ30
ω4−−→ ρ34

−ω4−−−→ ρ30” induced by dressing field E4 is nested

into the sub-chains “ρ(3)
10

−ω3−−−→ ρ30” and “ρ30
ω3−−→ ρ

(3)
10 ” induced by dress-

ing field E3. That is why it is called as the nested-dressing scheme [37,
46] and ρ

(3)
10 in the chain (F1) can be modified as ρ

(3)
G3±G4±. Similarly, from

the chain D3, we choose the following equations as the coupling equations:
ρ̇
(3)
10 = −d10ρ

(3)
10 +iG

∗
2e
−ik′

2·rρ
(r)
20 +iG3eik3·rρ30, ρ̇30 = −d30ρ30−iG4eik4·rρ34+

iG∗3e
−ik3·rρ

(3)
10 , ρ̇34 = −d34ρ34 + iG∗4e

−ik4·rρ30. Solving above equations, we
get

ρ
(3)
G3±G4± =

iG′∗2 e−ik′
2·r

d10 +
|G3|2

d30 + |G4|2 /d34

ρ
(2)
20 . (4.22)

So, the single-photon term d10 is modified by G3 which is called the inner
dressing field) and then d30 is modified by the outer G4 which is called the
outer dressing field). From the expression we can see that G4 term depend
on G3 term, they interact tightly.

Next we investigate the three dressing fields term. Here we assume E2

is also strong enough to be a dressing field. It can dress the same level |1〉
and act on element ρ

(2)
14 together with E3, which is denoted as ρ

(2)
(G2G3±)4. It

expand as the sub-chain (D4) ρ
(2)
14

ω2−−→ ρ24
−ω2−−−→ ρ14

−ω3−−−→ ρ34
ω3−−→ ρ

(2)
14 which

is the adhesion of two sub-chains of the dressing fields ρ
(2)
14

ω2−−→ ρ24
−ω2−−−→

ρ14 and ρ14
−ω3−−−→ ρ34

ω3−−→ ρ
(2)
14 . Here, the subscript “1” of “ρ(2)

14 ” is re-
placed by G2G3±. By virtue of the sub-chain D4, we take coupling equa-
tions: ρ̇

(2)
14 = −d14ρ

(2)
14 + iG∗2e−ik′

2·rρ24 + iG3eik3·rρ34 − iG∗4eik4·rρ
(1)
10 , ρ̇

(r)
24 =

−d24ρ24 + iG2eik2·rρ
(2)
14 , ρ̇34 = −d34ρ34 + iG∗3eik3·rρ

(2)
14 .

Under the dipole moment approximation, we have

ρ
(2)
(G2G3±)4 =

−iG∗4eik4·r

d14 + |G2|2 /d24 + |G3|2 /d34

ρ
(1)
10 . (4.23)

Here, term d14 is modified by G2 and G3 terms sequentially. From the ex-
pression we can see that these two dressing terms can interact, but not firm
as the nested scheme.

Here, we have known that the interaction between two dressing fields of
the nested dressing scheme is strongest while the parallel dressing scheme is
weakest and the sequential dressing scheme intermediate between them [36].

Based on the discussion above, let us talk about the five-dressing scheme
in FWM process which can be viewed as the multiplication of two dress-
ing term and three dressing term. When the dressing fields E2, E3 and E4

are all turned on and strong enough, they dress the FWM process simulta-
neously and the created multi-dark states are interacting with each other.
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Actually, it is denoted as the five-dressing FWM the chain (F4) ρ
(0)
00

ω1−−→
ρ
(1)
A

ω2−−→ ρ
(2)
20

−ω2−−−→ ρ
(3)
G3±G4±, where ρ

(1)
A represents the dressed sub-chain

(D5) ρ
(1)
10

−ω4−−−→ ρ(G2G3±)4
ω4−−→ ρ

(1)
10 . In D5, the sub-chain D4 (represented by

ρ(G2G3±)4) shows the sequential scheme, and then it is nested between sub-

chains “ρ(1)
10

−ω4−−−→ ρ14” and “ρ14
ω4−−→ ρ

(1)
10 ”. In addition, ρ

(1)
A and ρ

(3)
G3±G4±

lie parallelly in the chain F4. We have kwon the expressions of ρ
(3)
G3±G4± and

ρ(G2G3±)4, according to the sub-chain D5, we can obtain

ρ
(1)
A =

iG1eik1·r

d10 +
|G4|2

d14 + |G2|2 /d24 + |G3|2 /d34

ρ
(0)
00 . (4.24)

So the “ω1” single-photon term d10 is modified directly by G4 term, while
G2 and G3 terms synchronously modify the “ω1 + ω4” two-photon term d14.
The outer dressing terms of the nested dressing scheme in Eq. (4.24) is a
sequential combination of G2 and G3 dressing term. Three dressing fields
E2, E3, and E4 in this combining form can induce second or triple AT splitting
in spectra numerical simulation.

The density matrix elements for the five-dressing FWM, based on the
discussion above, can be written as

ρ′′′F1 = ρ
(3)
10 =

−iGAeikf ·r

d20

1

d10 +
|G3|2

d30 + |G4|2 /d43

×

1

d10 +
|G4|2

d41 + |G2|2 /d42 + |G3|2 /d43

. (4.25)

Apparently, nested, parallel and sequential dressing schemes coexist in
this five-dressing FWM process. Since the spectra of parallel dressing scheme
can be considered as a superposition of two groups of the different peaks, we
separately investigate the two dressing terms: ρA1 = 1/[d10 + |G3|2/(d30 +
|G4|2 /d43)] (two dressing fields term) and ρA2 = 1/[d10 + |G4|2/(d41 +
|G2|2 /d42 + |G3|2 /d43)] ( three dressing fields term). After then, ρ′′′F1, which
is proportional to the multiplication of ρA1 and ρA2 terms, is investigated.
More interesting, in the weak fields limit (|G3|2 << Γ14Γ34, |G4|2 << Γ10Γ14

and |G2|2 << Γ14Γ24), ρ′′′F1 can be expanded as

ρ
(3)
10 = −iGA

(
1− |G4|2

d10d14
+
|G2|2 |G4|2
d10d2

14d24
+
|G3|2 |G4|2
d10d2

14d34

)
ρA2/(d10d20).

(4.26)
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We can see that the density matrix element representing the five-dressing
FWM is the summation of one FWM (first term), one SWM (second term)
and two EWM (third and fourth terms). Hence, under the weak-dressing
field condition, the polarization state of generating five-dressing FWM can be
viewed as the coherent superposition state of these states generating FWM,
SWM and EWM. The relative FWM signal intensity is given by IF ∝ |ρ′′′F1|2

There also exists four-dressing SWM in the five-level system, as shown in
Fig. 4.13 (a). when E3 is blocked, by means of the SWM perturbation the
chain (S) ρ

(0)
00

ω1−−→ ρ
(1)
10

−ω4−−−→ ρ
(2)
14

ω4−−→ ρ
(3)
10

ω2−−→ ρ
(4)
20

−ω2−−−→ ρ
(5)
10 , we can obtain

the expression of pure SWM without any dressing field:

ρS = ρ
(5)
10 = iGBeiks·r/d3

10d20d14, (4.27)

where GB = GAG4G
∗
4. When the strong dressing fields E2, E3, and E4 dress

the levels |1〉 and |0〉, they affect the atomic coherence ρ
(3)
10 in the form of sub-

chain (D6) ρ
(3)
10

−ω3−−−→ ρ30
ω4−−→ ρ34

ω3−−→ ρG2±4
−ω3−−−→ ρ34

−ω4−−−→ ρ30
ω3−−→ ρ

(3)
10 . In

D6, ρG2±4 induced by the dressing field E2 is nested in ρ34
ω3−−→ ρG2±4

−ω3−−−→
ρ34 induced by the dressing field E3, which are then nested into “ρ30

ω4−−→ ρ34”

and “ρ34
−ω4−−−→ ρ30”, and all are finally nested into “ρ(3)

10
−ω3−−−→ ρ30” and

“ρ30
ω3−−→ ρ

(3)
10 ”. Thus we can obtain

ρ′′S = ρ
(5)
10 =

iGBeikS·r

d2
10d20d14

1

d10 +
|G3|2

d30 +
|G4|2

d34 +
|G3|2

d14 + |G2|2 /d24

. (4.28)

Here, term d10 which represents ω1 single-photon process is dressed directly
by the inner dressing field E3 which involves in a two-photon term d30,
and then it is modified by the first outer dressing field E4 which shows
that two dressing fields entangle with each other in such a nested scheme.
Again, the second outer dressing field E3 affects the |G4|2 term, and fi-
nally |G3|2 term is modified by the third outer dressing field E2. Hence,
the chain D6 and the expression ρ′′S show that four-dressing fields are entan-
gled with each other in such a quadruple nested scheme. The inner dressing
field E3 controls the SWM signal directly, while three outer dressing fields
E4, E3 and E2 affect the SWM signal indirectly. In the weak dressing fields
limit (|G3|2 << Γ10Γ30), ρ′′S can be expanded to ρ′′S = ρ

′(5)
10 + ρ

(7)
10 , where

ρ
′(5)
10 = ieiks·rGB/(d2

10d20d14B1), ρ
(7)
10 = −ieike·rGB |G3|2 /(d4

10d20d14B1) and
B1 = d30+|G4|2 /{d34+[|G3|2 /(d14+|G2|2 /d24)]}. Under the weak field con-
dition, the four-dressing SWM can be considered as a coherent superposition
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of the signals from one SWM process and one triple nested EWM process, in
other words, the four-dressing SWM is actual the interference between the
polarizations ρ

′(5)
10 and ρ

(7)
10 . The relative SWM signal intensity is given by

IS ∝ |ρ′′S |2.

Fig. 4.13. (a) The energy-level diagram of a five-level system for EWM. (b) phase-
conjugation geometry.

Therefore, the four-dressing SWM is a quadruply nested dressing scheme
which can induce quadruple AT splitting. To clearly analyze the spectra of
the four-dressing SWM, we plot the figures by adding dressing field into pure
SWM expression step by step.

The four-dressing EWM process coexists with multi-dressed FWM and
SWM processes in the five-level system. When all five laser beams are turned
on simultaneously, as shown in Fig. 4.13 (b), the EWM signal generating,
which is denoted as the EWM perturbation the chain E1, and the pure EWM
expression is

ρE1 = ρ
(7)
10 = −iGCeike·r/d4

10d20d30d14. (4.29)

where GC = GBG3G
∗
3. With strong dressing fields E4, E2, and E3, ρ

(1)
10 and

ρ
(3)
10 in the chain E1 can be modified as ρ

(1)
G2±G4± and ρ

(3)
G3±G4±, respectively,

where ρ
(1)
G2±G4± can be extended into the sub-chain of the nested scheme

(D7) ρ
(1)
10

ω2−−→ ρ20
ω4−−→ ρ24

−ω4−−−→ ρ20
−ω2−−−→ ρ

(1)
10 . As a result, the four-dressing

EWM the chain can be written as (E2) ρ
(0)
00

ω1−−→ ρ
(1)
G2±G4±

−ω4−−−→ ρ
(2)
14

ω4−−→
ρ
(3)
G3±G4±

ω2−−→ ρ
(4)
20

−ω2−−−→ ρ
(5)
10

−ω3−−−→ ρ
(6)
30

ω3−−→ ρ
(7)
10 . According to the sub-chains

D3, D7, and E2, we can easily obtain the four-dressing EWM expression

ρ′E1 = ρ
(7)
10 =

−i exp(ike · r)GC

d10d20d30d41

1

d10 +
|G2|2

d20 + |G4|2 /d24

×

1

d10 +
|G3|2

d30 + |G4|2 /d34

. (4.30)

Two multiplying terms of Eq. (4.30) both contain nested dressing schemes
(E2 and E4, E3, and E4). It means, the dressing effect occurs in two different
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transitions process and therefore they are independent with each other and to
each dressing part, there are a nested dressing terms: inner dressing field G2

orG3 act on the state of EWM transitions while outer dressing filedG4, act on
the states of their transition, respectively. In all, the understanding of these
two basic dual-dressing scheme will enable us easily analyze this complicated
expression. The relative EWM signal intensity is given by IE ∝ |ρE3|2.

The EIT displayed in the probe field absorption spectrum is a single-
photon transition process which is dressed by the fields G2, E3, and E4.
Under the weak probe field approximation, the density matrix for probe filed
absorption ρ10 is

ρ10 =
iG1

d10 +
|G2|2

d20 + |G4|2/d24
+

|G3|2
d30 + |G4|2/d34

. (4.31)

Equation (4.31) gives the four-dressing EIT case, which shows the se-
quential combination of two nested schemes (E2 and E4, E3, and E4). Two
sequentially dressing field act on the state |1〉 together and then they are both
but respectively dressed by field G4. Three dressing fields (E2, E3, and E4)
can induce two triple EIT splitting. By changing the offsets and intensities
of the dressing fields, we can obtain the different multi-EIT spectra.

When five laser beams are turned on, the five-dressing FWM, four-dressing
SWM, four-dressing EWM, and four-dressing EIT as discussed above can ex-
ist simultaneously in the five-level system. Such FWM, SWM, and EWM
signal beams are in the same direction for the reason of equivalent phase-
matching conditions (kf , ks, and ke). By controlling the offsets and intensi-
ties of dressing fields, the coexisting MWMs fall into different EIT windows
which can be clearly separated and distinguished.

4.4.2 Numerical Results

Coexisting FWM and SWM processes have been observed in the Cd(S, Se)
semiconductor doped glasses [23]. The advantages of solids include high den-
sity of atoms, compactness, and absence of atomic diffusion, except rela-
tively broad optical linewidths and fast decoherence rate. However, there is
a narrow linewidth in an atomic vapor. In addition, FWM and SWM pro-
cesses can coexist in the inverted-Y atomic sub-system [|0〉 = |5S1/2〉(F =
2), |1〉 = |5P3/2〉, |2〉 = |5D3/2〉, |3〉 = |5S1/2〉, as shown in Fig. 4.13 (a)],
there exists a ladder-type EIT window with a linewidth of 50 MHz in trans-
mission Doppler broadening profile (about 500 MHz) [37]. In this paper, we
add an additional beam E4 (connecting transition |4〉 = |5P1/2〉 (F = 3)
to |0〉 = |5S1/2〉) into such inverted-Y system, as shown in Fig. 4.13 (a),
where the transverse relaxation rate Γij between states |i〉 and |j〉 is given
by Γij = (Γi + Γj)/2(Γ0 = γ30 = 0.1 MHz, Γ1 = γ10 + γ13 = 5.9 MHz,
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Γ2 = γ21 + γ24 = 1.77 MHz, Γ3 = γ30 = 0.1 MHz and Γ4 = γ40 + γ43 = 5.4
MHz�where γij describes decay rates of coherences between |i〉 and |j〉. In
Fig. 4.13 (b), nonlinear susceptibility χ(3) for FWM signal, χ(5) for SWM
signal and χ(7) for EWM signal in this five-level system interact with up to
five laser fields, and we assume that the intensity of probe field G1 is small
while G2, G′2, G3, and G4 can be arbitrary magnitudes.

We have simply discussed multi-dressing schemes and the interaction of
dressing fields in the coexisting multi-dressed MWM by their calculated ex-
pressions. In this section, we will investigate the normalized MWM spectra
based on the above analytic expressions.

For simplicity, Fig. 4.14 presents the suppression of the SWM signal inten-
sity. In Fig. 4.14, the parallel-cascade ρ′′F1 DDFWM signal intensity without
dressing field (G3 = G4 = 0) is normalized to 1. Hence, the solid curve above
or below “1” means enhancement or suppression of the DDFWM signal in-
tensity, respectively. Though the suppression of the DDFWM signal intensity
is collectively induced by two coupling fields, the effect of field G3 is inde-
pendent of that of field G4. On the exact resonance condition, the splitting
of level is induced by the strong coupling field G3, which results in the off-
resonance of FWM. Furthermore, the DDFWM signal intensity is reduced
within the whole range of Δ4 (with a shifted constant background). When
satisfying resonance (Δ4 = 0), signal intensity is suppressed again by the
coupling field G4. We can apprehend this further in Fig. 4.14.

Fig. 4.14. |ρ′′F1|2 (solid) and |Im (ρ′′F1)|2(dash), |Im (ρS1)|2 (dot) versus Δ4/Γ10

when Δ1/Γ10 = Δ2/Γ10 = Δ3/Γ10 = 0, G3/Γ10 = 0.5, G4/Γ10 = 0.5. The FWM
signal intensity with no coupling field is normalized to 1.

Then the spectra of five-dressing FWM (|ρ′′′F1|2) are investigated by plot-
ting and analyzing its two portions (|ρA1|2 and |ρA2|2), respectively. The
characteristics of spectra of the AT splitting, suppression and enhancement
of the FWM signal are generally equivalent to the superposition of the two
portions. This method is just a proof of concept theory, and will help us well
understand the effects of each dressing terms and their interactions.



210
4 Multi-Dressing Four-Wave Mixing Processes in Confined and Non-confined

Atomic System

At first, let us consider the spectrum of |ρA2|2 versus Δ1, as Fig. 4.15 (a –
d) shows, in which primary, secondary and triple AT splitting corresponding
to the dressed states in Fig. 4.15 (e1 – e3) are presented, respectively. We
approach the final spectrum by adding the dressing fields one by one. The
first step, as Fig. 4.15 (a) shows, the inner dressing field E4 dressed and
splits single-photon resonant peak of the pure FWM into two peaks located
at Δ1 = ±ΔG4/2 ≈ ±G4 = ±100 MHz, where ΔG4 is the separation between
two AT splitting peaks. It is the primary AT splitting corresponding to,
in the dressed-states picture, primary dressed states |G4±〉 [Fig. 4.15 (e1)]
generated by E4 dressing the ground level |0〉, which corresponds to the left
and right peaks in Fig. 4.15 (a), respectively. The second step, by setting
a proper offset, the outer dressing field E2 can exactly hit on one of the
primary dressed state, for example Δ2 = 100 MHz, and create the secondary
dressed states |G4 + ±〉 [Fig. 4.15 (e2)]. Reflecting on the spectra, the left
peak in Fig. 4.15 (a) splits into two peaks, and then three peaks locate at
Δ1 = −ΔG4/2∓ΔG2/2 = −140 MHz and −60 MHz, and Δ1 = ΔG4/2 = 100
MHz (whereΔG2is the separation induced by E2) will appear in Fig. 4.15 (b).
It is the so-called secondary splitting. The third step, the other outer dressing
field E3 is tuned close to Δ3 = −140 MHz and then the triply dressed states
|G4 + +±〉 are generated around the secondarily dressed states |G4 + +〉
[Fig. 4.15 (e3)]. And in the spectra, the left peak of the secondary peaks
will be split into two peaks, as Fig. 4.15 (c) shows. Finally, four peaks which
illustrate the triple dressing effect appears in Fig. 4.15 (c), which is located
at Δ1 = −ΔG4/2 − ΔG2/2 ∓ ΔG3/2 = −160 MHz and −120 MHz, Δ1 =
−ΔG4/2 + ΔG2/2 = −60 MHz and Δ1 = ΔG4/2 = 100 MHz, respectively.

Fig. 4.15. |ρA2|2 in |ρ′′′F1|2 spectra versus Δ1 for G4 = 100 MHz and Δ4 = 0 MHz,
when (a) G2 = G3 = 0 MHz, (b) G2 = 40 MHz, Δ2 = 100 MHz, G3 = 0 MHz,
(c) G2 = 40 MHz, Δ2 = 100 MHz, G3 = 20 MHz and Δ3 = −140 MHz, (d) G3 =
40 MHz, Δ3 = −100 MHz, G2 = 20 MHz, Δ2 = 140 MHz. The maximum of the
intensity is normalized to be 1. (e1 – e3) the dressed-state pictures.

Similarly, the dressed state |G4−〉 can also be secondary dressed by outer
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dressing field E3 (by setting Δ3 ≈ −100 MHz) and the secondary dressed
states |G4 − ±〉 is created. Furthermore, the other outer dressing field E2

(Δ2 = 140 MHz) creates the triple AT splitting, as shown in Fig. 4.15 (d).
The triple AT splitting spectra in Fig. 4.15 (c) and Fig. 4.15 (d) are identical,
which prove that the outer dressing fields E2 and E3 are interchangeable
for the reason of their equivalent status in expression. Three dressing term
(|ρA2|2) can obtain the secondary or triple AT splitting by changing the
offsets of the dressing fields (E2 and E3) and the results show that the AT
splitting of sequential dressing scheme is similar to one of the nested dressing
scheme.

On the other hand, the spectra of expression |ρA2|2 in |ρ′′′F1|2 can also
present two secondary-dressed AT splitting. As Fig. 4.16 (a) shows, two peaks
induced by the inner dressing field E4 corresponding to |G4±〉 splits are split
again by two outer dressing fields E2 and E3 (Δ2 = Δ3 = G4 = 50 MHz) into
two pairs secondary dressed AT splitting peaks [secondary splits |G4+±〉 and
|G4 − ±〉 as is shown in Fig. 4.16 (d)]. In addition, Fig. 4.16( b) shows two
peaks induced by |ρA1|2 in |ρ′′′F1|2.

So, we can see that the five-dressing FWM (|ρ′′′F1|2) spectra [Fig. 4.16 (c)]
is the superposition of the spectra of Fig. 4.16 (a) and Fig. 4.16 (b). |ρ′′′F1|2
is proportional to the multiplication of |ρA1|2 and |ρA2|2, and so its spectra
of AT splitting caused by five dressing field is the superposition of these two
portions (|ρA1|2 and |ρA2|2).

Fig. 4.16. The five-dressing FWM signal intensity versus Δ1 (a) for |ρA2|2 in |ρ′′′F1|2,
(b) |ρA1|2 in |ρ′′′F1|2, (c) for Five-dressing FWM with G2 = G3 = 20 MHz, G4 = 50
MHz, Δ2 = Δ3 = 50 MHz, Δ4 = 0. (d) the dressed-state pictures.

Next let us investigate the spectra of the suppression and enhancement of
the five-dressing FWM signal. Firstly |ρA2|2 intensity versus Δ4 is discussed.
Here, the dressed FWM signal intensity is normalized by rating pure FWM
which is no dressing fields. The intensity above or below “1” means enhance-
ment or suppression of the FWM signal, respectively. We employ the same
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method as above to clear understand the detailed process of the five-dressing
FWM. Firstly, the inner dressing field E4 drives the transition from |4〉 to |0〉
and creates the dressed states |G4±〉, which leads to single-photon transition
|0〉 → |1〉 off-resonance [Fig. 4.17 (b1)]. So, at exact single-photon resonance
Δ1 = 0, the FWM signal intensity is greatly suppressed when scanning the
dressing field E4 across the resonance (Δ4 = 0), as Fig. 4.17 (a1) shows,
one suppressed dip at the line center. Secondly, the outer dressing field E2 is
added and under the condition of Δ1+Δ2−Δ4 = 0, the single suppressed dip
is split into two small suppressed dips, i.e., G2 = 50 MHz, as Fig. 4.17 (a2)
shows. Further calculation give that it has ΔG2 ≈ 2G2, under the condition
of G2 >> Γ10. It means that the outer dressing field E2 dresses the state
|4〉 to create two new state |G2±〉 [Fig. 4.17 (b2)], then the inner dressing
field E4 suppresses the resonant FWM signal directly from |G2±〉. Thirdly,
when the other outer dressing field E3 is tuned close to Δ3 = Δ1 −ΔG2/2,
e.g., Δ3 = −50 MHz, the left suppressed dip splits into two suppressed dips
[Fig. 4.17 (a3)] due to the secondary dressed state |G2 + ±〉 created by G3.
Therefore, a plot reflected the outer dressing fields E2 and E3 comprehen-
sive dressing effect are given in Fig. 4.17 (b3). However, it is not the unique
manner. Figure 4.17 (a4) shows another: two outer dressing fields E2 and
E3 (Δ2 = Δ3 = 0 MHz) separate synchronously the suppressed dip in Fig.
4.17 (a1) into two suppressed dips at Δ4 = Δ1±ΔG2,G3/2 = ±70 MHz. Un-
der the condition of

√
G2

2 +G2
3 >> Γ10, it has ΔG2,G3 ≈ 2

√
G2

2 +G2
3, where

Fig. 4.17. |ρA2|2 spectra versus Δ4 for Δ1 = 0, G4 = 5 MHz, (a1) G2=G3= 0;
(a2) G2 = 50 MHz, Δ2 = 0, G3 = 0; (a3) G2 = 50 MHz, Δ2 = 0,Δ3 = 50 MHz and
G3 = 50 MHz, (a4) Δ2 = Δ3 = 0, G2 = G3 = 50 MHz. (b1 – b4) the corresponding
dressed-state pictures.
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ΔG2,G3 is the separation between the dressed states |G2G3±〉 induced by two
dressing fields together [Fig. 4.17 (b4)]. Hence, the inner dressing field (E4)
suppresses FWM directly, while the outer dressing fields (E2 and E3) affect
on the dressed states and influence FWM indirectly.

Next, let us discuss |ρA2|2 versus Δ2 with G3 = 0. Here the FWM signal
intensity is also normalized for observing its suppression and enhancement.
As Fig. 4.18 (a) shows, a suppressed dip of which the height increases as G2

increasing appears. In fact, it induced by the outer dressing field E2 which can
largely weaken the suppression effect of the inner dressing field E4 on FWM
signal, as is shown in Fig. 4.18 (b). Furthermore, we plot |ρA2|2 versus Δ2 and
Δ3 in Fig. 4.18 (c) and the results show that suppression of the sequential
dressing scheme is like the one of parallel dressing scheme [36]. Specially, two
independent suppressed peaks exist at Δ2 = Δ3 = 0, which means that these

Fig. 4.18. |ρA2|2 spectra (a) versus Δ2 for Δ4 = 0 and (b) versus Δ4 for Δ2 = 0
with G2 = 2 MHz (solid curve), G2 = 8 MHz (dashed curve), G3 = 0, G4 = 0.5
MHz, and Δ1 = Δ3 = 0; (c) |ρA2|2 spectrum versus Δ2 and Δ3 for Δ1 = Δ4 = 0,
G2 = G3 = 2 MHz, and G4 = 0.5 MHz. The signal intensity with no dressing fields
is normalized to be 1. Adopted from Ref. [41].
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two outer dressing fields (E2 and E3) are indeed interchangeable.
Next we investigate the spectra of the suppression and enhancement of the

five-dressing FWM signal (|ρ′′′F1|2) based on the analysis about |ρA2|2 (e.g.,
Fig. 4.17). Figure. 4.19 shows the spectra of the suppression and enhancement
of the five-dressing FWM signal (|ρ′′′F1|2) versus Δ4 and Δ3. Under the reso-
nance condition (Δ1 = 0), three dressing fields only can suppress the FWM
signal in Fig. 4.19 (a). Figures 4.20 (a), (b) is the cross sections of Fig. 4.19
(a) versus Δ4 and Δ3, respectively. For Fig. 4.20 (a), when the outer dressing
field is off-resonance (Δ3 = 200 MHz), one small enhanced suppression dip
at Δ4 = 200 MHz via the “ω3+ω4” two-photon resonance [see the inset plot
in Fig. 4.20 (a)] and two big suppressed dips induced by the dressing fields
E4 and E2 of the nested scheme in |ρA2|2 appears simultaneously. Specially,
when Δ3 = 50 MHz, Fig. 4.20 (b) shows three suppressed dips which are
caused by the same inducement as in Fig. 4.16 (b3). Finally, when Δ3 = 0,
|ρA1|2 in |ρ′′′F1|2 dominates in the FWM signal and the outer dressing field E4

in |ρA1|2 creates a suppressed peak at Δ4 = 0 [Fig. 4.20 (c)]. Figure 4.20 (d)
shows the five-dressing FWM spectra versus Δ3. Two suppressed dips are in-
duced by the dressing fields E3 and E4 in terms of nested scheme [see the left
insert plot of Figure 4.20 (d)] in which shows the |ρA1|2 in |ρ′′′F1|2 as Δ4 = 0.
When Δ4 = 200 MHz, the dressing field E3 creates one suppressed dip near
Δ3 = 0 and the dressing field E4 creates a small enhanced suppression dip
via the “ω3 + ω4” two-photon resonance at Δ3 = 200 MHz [the right inset
plot in Fig. 4.20 (d)].

Fig. 4.19. The five-dressing FWM signal intensity versus the dressing field detun-
ings Δ4 and Δ3 for (a) Δ1 = Δ2 = 0, G2 = 50 MHz and G3 = G4 = 10 MHz, (b)
Δ1 = 2 MHz, Δ2 = 0, G2 = 100 MHz, and G3 = G4 = 20 MHz. The FWM signal
intensity with no dressing fields is normalized to be 1.

Under the off-resonant condition (Δ1 
= 0), three dressing fields can either
suppress or enhance the FWM, as is shown in Fig. 4.19 (b). The enhancement
effect is specially dramatic in the area of Δ4 < 0 and Δ3 < 0 because three
dressing fields can reinforce their suppression and enhancement effect each
other with the proper offsets.

Previous works [36] certify that the AT splitting of sequential dressing
scheme is like the nested dressing scheme, while suppression and enhancement
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Fig. 4.20. The five-dressing FWM signal intensity versus Δ4 for (a) Δ3 = 200
MHz. The inserted plot: the corresponding dressed-state picture; (b) Δ3 = 50
MHz; (c) Δ3 = 0. (d) The five-dressing FWM signal intensity versus Δ3 for
Δ4 = 0, the right insert plot Δ4 = 200 MHz.The left insert plot is the corre-
sponding dressed-state picture. The FWM signal intensity with no dressing fields
is normalized to be 1. The other parameters are Δ1 = Δ2 = 0, G2 = 50 MHz,
G3 = G4 = 10 MHz.

spectra of the sequential dressing scheme is like the one of parallel dressing
scheme.

Therefore, in the AT splitting spectra of five-dressing FWM, three dress-
ing fields (E2, E3 and E4) entangle tightly with each other. It generally is
equivalent to the superposition of the two portions (|ρA1|2 and |ρA2|2). For
the suppression and enhancement in the nested dressing scheme, the inner
dressing field suppresses FWM directly, while the outer dressing fields create
the dressed states to influence FWM indirectly. Moreover, the suppression
and enhancement spectra of the sequential dressing scheme are like the one
of parallel dressing scheme.

The spectra of the quadruple nested dressed SWM signal are investigated
in this section. Also, we plot the spectra of the AT splitting by adding dressing
field into pure SWM expression one by one. At this stage this method is just
a proof of concept theory.

Figure 4.21 presents the SWM signal intensity versus Δ1 and the dressed-
states picture for quadruple dressing. Firstly, as Fig. 4.21 (b) shows, the in-
ner dressing field E3 splits the energy level |1〉 into two primarily dressed
states |G3±〉 corresponding to two peaks from left to right in Fig. 4.21 (a1).
Then, the outer dressing field E4 (when Δ4 = 200 MHz,) splits state |G3−〉
level into secondarily-dressed levels |G3 − ±〉 corresponding to two right
peaks from left to right in Fig. 4.21 (a2). After that, the outer dressing
fields E3 splits secondary dressing state |G3 − +〉 into triple dressed levels
|G3−+±〉 corresponding to the second and the third peaks from left to right in
Fig. 4.21 (a3). At last, as the outer dressing field E2 is tuning close to one
of the triply dressed state |G3 −+−〉 (Δ2 = −90 MHz), it dress to generate
the separated quadruple dressed states |G3−+−±〉 correspond to the third
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and fourth peaks in Fig. 4.21 (a4). Hence, the quadruple AT splitting spectra
of the SWM signal is obtained, where three dressing fields (E2, E3, and E4)
interact tightly.

Next, we investigate the normalized SWM spectra versus the dressing
field’s offset Δ4. Under the resonant condition Δ1 = Δ3 = 0, as Fig. 4.21
(c1) shows, a suppressed peak created by E4 appears at the line center.
The outer dressing field E3, however, splits such suppressed peak into a
pair of suppressed peaks, as is shown in Fig. 4.21 (c2). Under the condition
G3 >> Γ30,Γ43, we can obtain ΔG3 = 2G3 = 100 MHz, where ΔG3 is the
separation induced by E3. Finally, as is shown in Fig. 4.21 (c3), when the
outer dressing field E2 is tuned close to Δ2 = ΔG3/2, the right suppressed
peak generated by E3 split again into two new small suppressed peaks.

Fig. 4.21. The four-dressing SWM signal intensity versus Δ1 for (a1) G3 = 120
MHz, G4 = 0, Δ3 = 60 MHz. (a2) G4 = 100 MHz, Δ4 = 20 MHz, we assume
G3 = 0 under the outer dressing field E4. (a3) G3 = 120 MHz, G2 = 0, (a4) G2 = 30
MHz, Δ2 = −90 MHz. (b) The dressed states picture. The four-dressing SWM
signal intensity versus the outer dressing field detuning Δ4 for (c1) G3 = G4 = 50
MHz, Δ1 = Δ3 = 0, we assume G3 = 0 below the outer dressing field E4. (c2)
G3 = G4 = 50 MHz, Δ1 = Δ3 = 0, G2 = 0, (c3) G2 = 10 MHz, Δ2 = 50 MHz. The
SWM signal intensity with no dressing fields is normalized to be 1.

In this section, we focus on the spectra of AT splitting, suppression, and
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enhancement of the four-dressing EWM signal.
To clearly understand the AT splitting spectra of the EWM signal, we

consider the spectra of two dressing terms separately, as the method applied
in analyzing FWM spectra. Figure 4.22 (a), (b) shows the spectra of the
second and third multiplying terms of Eq. (4.30), respectively. Figure 4.22
(c) which is the superposition of the two portions (E2, E4 nested dressing
term and E3 and E4 nested dressing term) show the spectra of AT splitting
of the EWM signal. So, as to the spectra of the parallel dressing scheme, it
can be viewed as the superposition of the two portions.

Fig. 4.22. The four-dressing EWM signal intensity versus Δ1 for (a) the spectra of
the second multiplying term of Eq. (4.30), (b) the spectra of the third multiplying
term of Eq. (4.30), (c) Four-dressing EWM signal spectra. When G2 = 60 MHz,
G3 = 100 MHz, G4 = 30 MHz, Δ2 = Δ3 = 0, Δ4 = 60 MHz.

In addition, Fig. 4.23 (a) shows the symmetrical full-suppression spectrum
of the resonant (Δ1 = 0) EWM versus Δ2 and Δ3. Two suppressed dips
in the Δ2 side are induced by the inner dressing field E2 and the outer
dressing field E4, while dips in the Δ3 side are induced by the inner dressing
field E3 and the outer dressing field E4. Under the off-resonant condition
(Δ1 
= 0), any dressing fields can either suppress or enhance the EWM signal
intensity. More interesting, when the dressing fields are strong enough and
|Δ1| >> 0, a significant full-enhancement with an amplitude of about 100
can be obtained, as is shown in Fig. 4.23 (b). The reason is that the parallel
combination nested dressing scheme multiply the enhanced effect. Further
calculation based on the dressed-state theory gives the resonant enhanced
peaks location which is at Δ2 = −Δ1 + ΔG2/2 + Δ4 ±ΔG4/2 ≈ ±50 MHz
and Δ3 = Δ1 − ΔG3/2 − Δ4 ± ΔG4/2 ≈ ±50 MHz, respectively. It means
that these dressing fields can enhance the EWM signal constructively with
proper offsets. Therefore, whether the AT splitting, or the suppression and
enhancement of the EWM signal are generally equivalent to the superposition
of the two portions (E2, E4 nested dressing term and E3 and E4 nested
dressing term). Moreover, as to the nest dressed structure, the inner dressing
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fields (E2 and E3) suppress the EWM signal, while the outer dressing field
(E4) affects the EWM signal indirectly.

Fig. 4.23. The four-dressing EMW suppression and enhancement (a) G2 = G3 = 2
MHz, G4 = 20 MHz, Δ1 = Δ4 = 0. (b) G2 = G3 = 20 MHz, G4 = 40 MHz,
Δ1 = 15 MHz. The EWM signal intensity with no dressing fields is normalized to
be 1.

The four-dressing EIT windows induced by interacting dark states are
used to transmit the coexisting FWM, SWM, and EWM signals. It is valu-
able to examine the coherence term ρ10 [Eq. (4.31)] in terms of its real and
imaginary parts as a function of Δ1 because the imaginary (real) part of ρ10

versus Δ1 represents the probe absorption (dispersion) spectrum.
Also, we plot the spectra of EIT by adding dressing fields one by one.

Firstly, Fig. 4.24 (a1) shows the spectra of the primary EIT splitting, which
is induced by the dressing field E2. Secondly, Fig. 4.24 (a2) presents the
spectra of the secondary EIT splitting, which is induced by the dressing field
E3. Thirdly, Figs. 4.24 (a3) and 4.24 (a4) show the spectra of two triple EIT
splitting, the former is induced by dressing field E4 under E2, and the latter
is induced by dressing field E4 under E3. When all the dressing fields are
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acted, we can obtain the probe absorption spectra as shown in Fig. 4.24 (a5)
and corresponding dressed states picture is shown in Fig. 4.24 (b). Figure
4.24 (a5) shows two triple EIT splitting and totally gives four EIT windows.

As to the dispersion curve, as Fig. 4.24 (c1) – (c5) shows, the spectra of
EIT dispersion [Re (ρ10)] with the same parameters in Fig. 4.24 (a1) – (a5).
Figure 4.24 (c1) shows the typical EIT dispersion curve in the |0〉 − |1〉 − |2〉
subsystem and Fig. 4.24 (c2) represents the EIT dispersion in the four-level
system with the inverted-Y configuration [42]. It displays a secondary EIT
splitting. Figure 4.24 (c3) and 24 (c4), which show the dispersion spectra of
triple EIT splitting, the most prominent change appears due to three EIT
conditions. We can see that the absorption spectrum exhibits four absorptive
peaks in Fig. 4.24 (a3) and (a4), while the corresponding dispersion profile
exhibits three steep pure slopes, which should be useful for supporting slow
light pulses with different frequencies. Figure 4.24 (c5) presents the dispersion
spectra of two triple EIT splitting and exhibits four steep pure slopes.

Next, we discuss the EIT absorption and dispersion curves by changing
the offsets of dressing fields. Firstly, as is shown in Fig. 4.25(a), as setting
Δ4 = 150 MHz; the secondarily dressed absorptive peak [the right peak
in Fig. 4.24 (a2)] is separated into two triple dressed peaks [the third and
the forth peaks in Fig. 4.25 (a) from left to right] by one dressing field E4,
while the other dressing field E4 [under G3 in Eq. (4.30)] induces the three-
photons absorption peak appearing at Δ1 = Δ3 + Δ4 = 250 MHz [Fig.
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Fig. 4.24. Im(ρ10) as a function of Δ1 (a1) G2 = 100 MHz and Δ2 = 0 MHz,
when G3 = 0 MHz, G4 = 0 MHz, (a2) G3 = 50 MHz, Δ3 = 100 MHz, when
G4 = 0; (a3) G4 = 30 MHz (G4 under G2) and Δ4 = 50 MHz, when the other
G4 = 0; (a4) G4 = 30 MHz (G4 under G3), Δ4 = 50 MHz, when G4 = 0 under G2;
(a5) G4 = 30 MHz, Δ4 = 0 MHz. (b) the dressed-state picture for EIT system.
Re (ρ10) as a function of Δ1 show in (c1)-(c5) with all other conditions same as in
Figs. 4.17(a1)-(a5), respectively.

4.24 (a)]. Secondary, when Δ4 = ΔG2/2 = −100 MHz, the left absorp-
tive peak in Fig. 4.25(a) is separated into two peaks in Fig. 4.25 (b), while
the dressing field E4 [under G3 in Eq. (4.30)] generate a very small three-
photon absorption peak at Δ1 = Δ3 + Δ4 = 0 [Fig. 4.25 (b)]. Finally, as
Fig. 4.25 (c) shows, when Δ4 = −200 MHz, the left absorption peak in

Fig. 4.25. Im(ρ10) as a function of the probe frequency detuning (a) Δ4 = 150
MHz, (b) Δ4 = −100 MHz, and (c) Δ4 = −200 MHz, Other parameters are
G2 = 100 MHz, G3 = 50 MHz, G4 = 50 MHz, Δ2 = 0 and Δ3 = 100 MHz. The
dashed lines are dispersion profiles.
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Fig. 4.25 (a) splits into two peaks by the dressing field E4 [under G3 in Eq.
(4.30)], and the three-photons absorption peak is generated by the dressing
field E4 [under G2 in Eq. (4.30)] at Δ1 = −Δ2+Δ4 = −200 MHz. The dashed
curves in Fig. 4.25 also show the quadruple dressed dispersion corresponding
to the solid absorption. So, the different multi-EIT phenomenon is obtained
by changing the offsets of the dressing fields and moreover, the locations can
be controled as well as shape/height of EIT profile of Im (ρ10) and Re (ρ10)
in other ways in this four-dressing EIT system.

4.4.3 Discussion

We investigate the multi-dressed FWM, SWM, and EWM in the paper, which
can coexist in different EIT windows. In the five-level system we investi-
gated, when the five laser beams (E1, E

′
2, E2, E3and E4) are on, there exist

three different EIT windows, i.e., |0〉 → |1〉 → |2〉 (ladder-type) with two
counter-propagation beams E2 (and E′2) and E1, |0〉 → |1〉 → |3〉 (Λ-type)
with two counter propagation beams E3 and E1, and |0〉 → |1〉 → |4〉 (V-
type) with two counter propagation beams E4 and E1. Moreover, there also
exists one multi-dressed FWM (kf = k1 + k2 − k′2), two multi-dressed SWM
(ks = k1 + k2 − k′2 + k4 − k4 and ks1 = k1 + k2 − k′2 + k3 − k3) and one
multi-dressed EWM (ke = k1 +k2− k′2 +k3− k3 +k4− k4) in the five-level
system. They are in the same direction determined by the phase-matching
conditions, as shown in Fig. 4.22 (b), which enable us to investigate the coex-
isting, intermixing and temporal and spatial interference between FWM and
SWM, or even to EWM. We accomplish this by controlling the offsets and
intensities of dressing fields for the aim of MWM coexisting in different EIT
windows, which could be individually controlled and the generated MWM
signals can be clearly separated and distinguished or pulled together (by fre-
quency offsets) to observe interferences and competitions between them. The
relative strengths of the FWM, SWM, and EWM can be adjusted freely by
controlling the intensities of the dressed fields (via dressed states). Therefore,
the SWM or EWM signal can be enhanced to the same order as the FWM
signal [16, 37]. To investigate the efficient energy transfer between FWM
(k′f = k1 + k2 − k′2) and SWM (k′s = k1 + k2 − k′2 + k3 − k′3), or EWM
(k′e = k1+k2−k′2+k3−k′3+k4−k′4), we can set the different spatial beam
geometry, and then the MWM signal propagate different directions due to
the phase-matching condition [47].

4.5 Polarization Interference of Multi-Wave Mixing in a
Confined Five-level System

High-resolution spectroscopy of atoms confined in an ultra-thin cell is promis-
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ing for investigation of the complex spectra of atoms and molecules [48]. Con-
siderable attention is given to the utilization of miniaturized atomic cells in
practical metrological standards. An anisotropy, which refers to atoms flying
parallel to the windows interact with light during a much longer time than
those flying perpendicular to the windows, is responsible for the observation
of sub-Doppler features in the spectrum [49]. Recently, the long-range dipole
attraction between atomic systems and metallic or dielectric bodies has be-
come a subject of renewed interest because of its fundamental importance
in the field of cavity Quantum Electrodynamics (QED) [50]. Nanometer cell
has been used to observe the enhancement of the coherent transient atomic
response due to Dicke-narrowing features, and to study long-range atom-wall
interaction, which is dominated by the universal van der Waals (vdW) at-
traction between a fluctuating atom dipole and its image. This attractive
potential, whose strength grows with the atomic excitation, induces a spec-
tral red-shift [51].

Recently, electromagnetically induced transparency (EIT) has led dark
resonances in free space [21, 52], micrometric cell [53], and even in ultra-
thin cell [54]. The interaction between double-dark states and splitting of
a dark state (the secondarily dressed states) was studied theoretically [42],
subsequently, the triple-peak absorption spectrum was observed in the four-
level atomic system [39]. After that, three kinds of doubly dressed four-wave
mixing (DDFWM) (in nested-, parallel-, and sequential-cascade schemes)
were reported in a five-level atomic system [55]. Comparing with previous
works, we represented the DDFWM in the five-level confined atomic system
in this section [Fig. 4.26 (b)], which exists the competition between Dicke-
narrowing and polarization interference [56] in micrometer cell.

In previously studied close-cycled (ladder-, N-, double-Λ, and folded-type)
systems, the four-wave mixing (FWM), six-wave mixing (SWM), and eight-
wave mixing (EWM) processes cannot coexist in a given configuration, and
different order nonlinearities can only be observed individually [26 – 28, 34].
In our recent studies, we demonstrated that the third-order and fifth-order
nonlinear processes can coexist in the open (such as V-, Y- and inverted
Y-type) atomic systems [37], and the coexisting FWM, SWM, and EWM
processes were studied theoretically under certain conditions in the five-level
atomic system [36, 46, 55]. The FWM, SWM, and EWM processes have been
proven to be able to coexist in the five-level confined atomic system in this
section.

The purpose of this section is to theoretically analyze the main spec-
troscopic feature of MWM in ultra-thin, micrometer and long cells, with an
emphasis on line shape, intensity, AT splitting, suppression and enhancement
of the MWM signal. We also demonstrated that several features are differ-
ent and also have the advantage of the previously reported MWM processes
mentioned in this section. First, DDFWM, singly dressed SWM (DSWM),
and EWM are coexisting in the five-level confined atomic system, which is a
good system for studying the interplay between nonlinear optical processes
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at different orders. Second, the degree of destructive interference can be mod-
ified by the wave vector, dressing field and cell length. Third, there exists the
destructive interference in ultra-thin, micrometer and long cells. The oscil-
lation behavior of MWM signal intensities and linewidths results from the
destructive interference in thin cell. With a larger destructive interference,
the MWM signal shows the narrow spectra and weak intensity in thin cell. On
the other hand, the intensity and linewidth of the MWM signal are increas-
ing as decreasing of the destructive interference in long cell. Fourth, we study
the interaction between two dressing fields in nested-cascade DDFWM. The
inner dressing field cannot only suppress the destructive polarization interfer-
ence but also induce resonance enhancement, and decrease the contribution
of “thin cell terms”. On the other hand, the outer dressing field enhances
destructive interference, resulted in FWM signal intensity decreases. Specif-
ically, when inner dressing field is a strong field, the FWM signal intensity
can be hugely enhanced in Doppler broadened system due to the polarization
interference.

The MWM processes in multi-level confined atomic systems can help us
to understand the underlying cavity Quantum Electrodynamics (QED) and
to effectively optimize the generated multi-channel nonlinear optical signals.
Moreover, the MWM narrow spectra in thin cell can be used for high precision
measurements and metrological standards.

4.5.1 Basic Theory

In the basic system [see Fig 4.26 (b)] of three energy levels (|0〉, |1〉 and |2〉)
and three laser fields (E2 or E′2 and E1), a FWM signal at frequency ω1 will
be generated. Adding another energy level (either |3〉 or |4〉) and another
laser field (E3 for level |3〉 and E4 for level |4〉), the original energy level (|1〉
or |0〉) will be dressed to produce two dressed states. Such four-level system
with a dressing field will modify the original FWM process (call singly dressed
FWM) and generate SWM signals. If two energy level |3〉 and |4〉) are both
added in two additional fields, then the original FWM system is called to
be doubly dressed, which generate not only SWM signal, but also EWM.
One can consider such system first as four-level system (|0〉, |1〉, |2〉, and |3〉)
which generates SWM, and then by adding another level (|4〉), this four-level
atomic system is dressed again to give a singly dressed SWM signal, which
will have contributions for EWM under certain conditions.

In a five-level atomic system as shown in Fig. 4.26 (b), states |i − 1〉
to |i〉(i = 1, 2, 3, 4) are coupled by laser fields Ei and E′i[ωi, ki(k′i) with a
Rabi frequency Gi(G′i)]. The Rabi frequencies are defined as Gi = Eiμij/�

and G′i = E′iμij/� respectively, where μij is the transition dipole moment
between level i and level j. Fields Ei and E′i with the same frequency and
different time delays (E′i is delayed by time τ) propagate along beams 2 and



224
4 Multi-Dressing Four-Wave Mixing Processes in Confined and Non-confined

Atomic System

Fig. 4.26. (a) phase-conjugation geometry. (b) Energy-level diagram of five-level
confined atomic system. (c1) Energy-level diagram for nested-cascade DDFWM and
(c2 – c4) the dressed-state pictures. (d1) Energy-level diagram for dressed DSWM
and (d2) Dressed-state picture.

3 with a small angle [Fig. 4.26 (a)], while a weak probe field Ep (beam 1)
propagates along the opposite direction of the beam 2.

The nonlinear polarizations, which are responsible for multi-wave mixing
signals, are proportional to the off-diagonal density matrix elements ρ

(n)
10 .

We still assume that G1 is weak, whereas the laser fields G2, G
′
2, G3, and

G4 become arbitrary magnitudes. Thus, ρ
(n)
10 needs to be calculated to the

lowest-order in G1, but to all orders in other fields under various conditions.
Let us consider a five-level confined atomic system with five laser beams as

shown in Fig. 4.26 (b). Three energy levels (|0〉−|1〉−|2〉) constitute a ladder
type system when the pump beams E3 and E4 are blocked. Simultaneously
the probe beam (E1), together with one of the pump beams (E2 or E′2) is
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shown as an electromagnetically induced transparency (EIT) window, since
the probe beam E1 and the pump beamE2 are in the two-photon Doppler-free
(first order) configuration (counter-propagating) [17]. When both beams E2

and E′2 are tuned on, an efficient FWM process can be generated to produce
a conjugate signal at frequency ω1. The generated FWM signal propagates
in the kf = k1 + k2 − k′2 direction due to the phase-matching condition, via
the perturbation the chain (F1) (ρ(0)

00
ω1−−→ ρ

(1)
10

ω2−−→ ρ
(2)
20

−ω2−−−→ ρ
(3)
10 ).

When E4(ω4, k4, G4) andE3(ω3, k3, G3) are tuned on, the pumping beams
E3 will link the transition |3〉 to |0〉, and another pumping beams E4 will
link the transition |3〉 to |4〉 [Fig. 4.26 (b1)] via a segment (sub-chain) of the
EWM perturbation chain (E1) ρ

(0)
00

ω1−−→ ρ
(1)
10

ω2−−→ ρ
(2)
20

−ω3−−−→ ρ
(3)
23

ω4−−→ ρ
(4)
24

−ω4−−−→
ρ
(5)
23

ω3−−→ ρ
(6)
20

−ω2−−−→ ρ
(7)
10 . In detail, the sub-chain (DF1) ρ

(3)
23

ω4−−→ ρ
(4)
24

−ω4−−−→ ρ
(5)
23

(related to the dressing field E4) is nested between the sub-chains “ρ
(2)
20

−ω3−−−→
ρ
(3)
23 ” and “ρ(5)

23
ω3−−→ ρ

(6)
20 ” due to the dressing field E3. By virtue of the

perturbation chain, we can modify the FWM chain to give the DDFWM
chain (F2) ρ

(0)
00

ω1−−→ ρ
(1)
10

ω2−−→ ρ
(2)
2(G4±G3±)

−ω2−−−→ ρ
(3)
10 . Here the subscript “0” of

ρ
(2)
20 in FWM the chain is replaced by “G4 ± G3±” in DDFWM the chain,
which indicates that the two dressing fields dress the level |0〉 and influence
the identical coherence between states |0〉 and |2〉.

Firstly, ρ
(1)
10 can be expressed as (here we only consider the connected

matrix elements in the chain (F2) and neglect other matrix elements):

L{ρ(1)
10 } =

iG1

s(s+ Λ10)
, (4.32)

where L is the Laplace transform operator defined by L{f(t)}=
∫ ∞

0

f(t)e−stdt,

Doppler shifted detuning is defined as Λ10 = Γ10 + i(Δ1 − k1v).
Secondly, from the sub-chain DF1, using Laplace transformation, we ob-

tain the coupling equations,

(s+ Λ20)L{ρ(2)
2(G4±G3±)} = iG2L{ρ(1)

10 } − iG3L{ρ23}, (4.33a)

(s+ Λ23)L{ρ23} = −iG∗3L{ρ(2)
2(G4±G3±)} − iG∗4L{ρ24}, (4.33b)

(s+ Λ24)L{ρ24} = −iG4L{ρ23}, (4.33c)

where Λ20 = Γ20 + i[Δ1 +Δ2 − k1(1 − ξ2)v],Λ23 = Γ23 + i[Δ1 +Δ2 −Δ3 −
k1(1−ξ2−ξ3)v],Λ24 = Γ24+i[Δ1+Δ2−Δ3+Δ4−k1(1−ξ2−ξ3−ξ4)v], ξ2 =
k2/k1, ξ3 = k3/k1, ξ4 = k4/k1.
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Then we have,

L{ρ(2)
20 }=L{ρ(2)

2(G4±G3±)}=
iG2

(S + Λ20)+
G3G

∗
3

(S+Λ23)+G∗4G4/(S+Λ24)

L{ρ(1)
10 }.

(4.34a)
Thirdly, using the same method, we can also obtain ρ

(3)
10

L{ρ(3)
10 } = iG′2L{ρ(2)

20 }/(S + Λ10). (4.34b)

Finally, using Eqs. (4.32), (4.33a) and (4.33b), we obtain:

L{ρ(3)
10 } =

−iGA exp(ikf · r)[(S + Λ23)(S + Λ24) +G2
4]

S(S+Λ10)2{(S+Λ20)[(S+Λ23)(S+Λ24) +G2
4] +G2

3(S+Λ24)} ,

(4.35)
where GA = G1G2(G′2)

∗.
Since the item “Λ20” representing the “ω1+ω2” two-photon process of ρ

(3)
10

is modified directly by the term |G3|2, then such modified result is affected
by the term |G4|2, Equation (4.35) shows that the two dressing fields are
entangled with each other for such nested-cascade scheme. The inner dressing
field E3 controls FWM directly, while the outer dressing field E4 affects FWM
indirectly [46].

In a weak-field limit |G3|2 << Γ20Γ23 and |G4|2 << Γ23Γ24, L{ρ(3)
10 } can

be expanded to the lowest order, which gives

L{ρ(3)
10 } = −iGA/A1 + iGB/A2 − iGC/A3

= L{ρ(3)
10 }+ L{ρ(5)

10 }+ L{ρ(7)
10 }. (4.36)

where A1 = S(S+Λ10)2(S+Λ20), A2 = A1(S+Λ20)(S+Λ23), A3 = A2(S+
Λ23)(S + Λ24), GB = GA|G3|2 and GC = GB |G4|2.

This expansion shows that the doubly-dressed FWM process can be con-
verted into a coherent superposition from FWM, SWM and EWM. Where
L{ρ(3)

10 } = −iGA/A1, L{ρ(5)
10 } = iGB/A2 and L{ρ(7)

10 } = −iGc/A3. These ex-
pressions represent processes for FWM, SWM and EWM respectively.

After the normalization of Eq. (4.35), we have

L{ρ(3)
10 } =

i[(S + Λ23)(S + Λ24) +G2
4]

S(S+Λ10)2{(S+Λ20)[(S+Λ23)(S+Λ24) +G2
4] +G2

3(S+Λ24)} .

(4.37)
The inverse-Laplace transformed solution of Eq. (4.37) can be expressed

as

ρ
(3)
10 (t) = A+

4∑
i=1

Di |v| /λi +
4∑

i=1

Di exp(−λit), (4.38)

where Di and λj are two tedious expressions, and

A =
i(Λ23Λ24 +G2

4)
Λ2

10[Λ20(Λ23Λ24 +G2
4) +G2

3Λ24]
. (4.39)
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Take the atomic thermal motion into account, which is assumed to obey
the Maxwell distributionW (v)=(u

√
π)−1 exp(−v2/u2), where u=

√
2KT/m

and m is the mass of an atom, K is Boltzmann’s constant, and T the absolute
temperature. Then the nonlinear polarization in Eq. (4.38) is given by

P (z) = Nμ10

∫ L

0

dz
∫ ∞

−∞
exp[−(v/u)2[Θ(v)ρ(3+)

10 +Θ(−v)ρ(3−)
10 ]dv, (4.40)

where L is the cell length, Θ(v) and Θ(−v) are Heaviside functions, N is the
density of atoms in the vapor, ρ

(3+)
10 and ρ

(3−)
10 are density matrix elements

for v > 0 and v < 0, respectively. As usual in ultra-thin cell, initial conditions
for the system differ for arriving (v < 0) and departing (v > 0) atoms. One
has indeed ρ00(L) = 1, ρij(L) = 0 for v < 0; and ρ00(0) = 1, ρij(0) = 0(i, j =
0, 1, 2, 3, 4) for v > 0 [51]. Atoms, after inelastic collisions with the walls, lose
their optical excitation and all memory about the previous state. Then it
is justified to assume that atoms get de-excited at a collision with the wall,
and are in the ground states at the instant that they leave the wall after a
collision. Thus, we use t = z/v for v > 0 and t = (z−L)/v for v < 0, equation
(4.40) change the integrate orders of v and z, one gets

P (z) = Nμ10

∫ ∞

−∞
exp[−(v/u)2]BF (v)dv, (4.41)

where BF (v) = AL+Di |v| /λi +Di |v| exp(Lλi/ |v|)/λi. We assume

SF1 =
∫ ∞

−∞
exp[−(v/u)2]ALdv,

SF2 =
∫ ∞

−∞
exp[−(v/u)2](Di |v| /λi)dv,

SF3 =
∫ ∞

−∞
exp[−(v/u)2](Di |v| exp(Lλi/ |v|)/λi)dv,

SF = SF1 + SF2 + SF3.

When cell length is short enough, the first term (“Doppler broadened
terms”) of BF (v) provides the usual steady-state Doppler broadened spectra
expected in a confined cell. It can be seen that the second term of BF (v)
originates from the buildup of the atomic response to excitation fields. It
illustrates that the integration of all possible interactions inside the medium,
while the third term of BF (v) reflects the finiteness of the interaction time
L/v, which is limited by the cell length. Both latter terms in BF (v) are
defined as the thin cell terms, When L is long enough, the SF2 and SF3 can
be neglected (i.e., S ≈ SF1). Only the polarization interference needs to be
considered in this case.
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The FWM signal intensity is given by

I ∝ |S|2 =
∣∣∣∣
∫ +∞

−∞
exp[−(v/u)2]BF (v)dν

∣∣∣∣
2

.

From above equation, we can see that there exists polarization interference,
the destructive or constructive interference can cause significant modifica-
tion of line shape and intensity of FWM signal. To investigate it, instead
of 〈|SF |2〉, we can sum up the signal intensity of each atom motion, i.e.,∫ +∞

−∞
dν exp[−(v/u)2]〈|BF (v)|2〉 without inter-atomic polarization interfer-

ence.
When L is long enough, we will get the nonlinear polarization

P ∝
∫ ∞

−∞
dvW (v)FF (v),

where FF (v) =
i(Λ23Λ24 +G2

4)
Λ2

10[Λ20(Λ23Λ24 +G2
4) +G2

3Λ24]
.

Specifically, we can see that the expression FF (v) is equal to Eq. (4.39)
in the confined cell, this means that the “Doppler broadened term” A in thin
cell is expected to be the same as the long cell term FF (v). So when L is
long enough, FWM signal spectra in the long cell equals to the case of the
Doppler broadened cases in free space.

For the homogeneous broadened cases, we will get the following equation
[46]

ρ
(3)
10 =

−iGA exp(ikf · r)
d2
10

(
d20 +

|G3|2
d23 + |G4|2/d24

) , (4.42)

where d10 = Γ10 + iΔ1, d20 = Γ20 + i(Δ1 + Δ2), d13 = Γ13 + i(Δ1 − Δ3),
d23 = Γ23 + i(Δ1 +Δ2 −Δ3), d24 = Γ24 + i(Δ1 +Δ2 −Δ3 +Δ4).

We have deduced the DDFWM expression in ultra-thin and long cells. As
the cell length is increasing, the contribution of the Doppler broadened terms
in BF (v) increases, and the effect of the thin cell terms in BF (v) decreases.
Since the cell length is long enough, the thin cell terms in BF (v) can be
neglected, and only the Doppler-broadened terms in BF (v) are considered.

Next, let us consider coexisting DSWM and EWM in five-level confined
atomic system.

When the field E′3 and E′4 are tuned on, there coexist the singly dressed
SWM and EWM processes, satisfying the phase-matching directions ks =
k1+k2−k′2+k3−k3 and ke = k1+k2−k′2+k3−k3+k4−k4, respectively.

The SWM process is generated by interaction with one photon each from
E1, E2, E′2 and two photons from E3, which is dressed by field E4 [Fig.
4.26 (c1)]. Similarly, EWM process can also exist at the same time with one
photon each from E1, E2, E′2, two photons from the same field E3 and two
photons from the same field E4 as shown in Fig. 4.26 (b).
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The sub-process for the dressing field E4 (DS1), “ρ
(1)
30

−ω4−−−→ ρ
(2)
40

ω4−−→ ρ
(3)
30 ”

exists in the EWM the chain (E2) ρ
(0)
00

ω3−−→ ρ
(1)
30

−ω4−−−→ ρ
(2)
40

ω4−−→ ρ
(3)
30

−ω3−−−→
ρ
(4)
00

ω1−−→ ρ
(5)
10

ω2−−→ ρ
(6)
20

−ω2−−−→ ρ
(7)
10 . It means that the field E4 dresses the state

|3〉 and affects the atomic coherences ρ
(1)
30 between |0〉 and |3〉. So we have

ρ
(1)
G4±0 in the dressed SWM the chain (S1) ρ

(0)
00

ω3−−→ ρ
(1)
G4±0

−ω3−−−→ ρ
(2)
00

ω1−−→
ρ
(3)
10

ω2−−→ ρ
(4)
20

−ω2−−−→ ρ
(5)
10 .

The high-order atomic coherence plays a significant role in the enhance-
ment of multi-wave mixing processes. From the sub-chain DS1, we can have
coupling equations (S + Λ30)L{ρ(1)

G4±0} = iG3L{ρ(0)
00 } + iG4L{ρ40}, (S +

Λ40)L{ρ40} = iG∗4L{ρ(1)
G4±0}, where Λ30 = Γ30 + i[Δ3 − k1ξ3v],Λ40 = Γ40 +

i[Δ3 −Δ4 − k1(ξ3 + ξ4)v]. We can obtain

L{ρ(1)
30 } = iG3

Λ40

S(Λ30Λ40 + |G4|2)
from the coupling equation for E4 interaction terms. L{ρ(2)

00 } = iG3L{ρ(1)
30 }/

(S+Γ00), L{ρ(3)
10 } = iG1ρ

(2)
00 /(S+Λ10), L{ρ(4)

20 } = iG2L{ρ(3)
10 }/(S+Λ20), and

L{ρ(5)
10 } = iG′∗2 L{ρ(4)

20 }/(S +Λ10) are also obtained from the chain S1. Thus,
we have

L{ρ(5)
10 } =

iGB exp[ikSr](S + Λ40)
S(S + Γ00)(S + Λ10)2(S + Λ20)[(S + Λ30)(S + Λ40) + |G4|2] .

Assuming |G4|2 << Γ30Γ40, then through power expansion, we obtain

L{ρ(5)
10 } =

iGB exp[i(k1 + k2 − k′2)r]
S(S+Γ00)(S+Λ10)2(S+Λ20)(S+Λ30)

[
1− |G4|2

(S+Λ30)(S+Λ40)

]
=

L{ρ(5)
s } + L{ρ(7)

e }. The dressed SWM process approximately converts to a
coherent superposition from SWM L{ρ(5)

s } and EWM L{ρ(7)
e }. Illuminate

that L{ρ(5)
s } include both fifth- and seventh-order nonlinear optical responses.

Finally, similar to DDFWM, we can get the nonlinear polarization:

P = Nμ10

∫ ∞

−∞
W (v)BS(v)dv,

where
BS(v) = ASL+Di |v| /λi +Di |v| exp(Lλi/ |v|)/λi,

AS =
iΛ40

Γ00Λ2
10Λ20(Λ30Λ40) + |G4|2) .

The SWM signal intensity is given by I ∝ |SS |2 = |SS1 + SS2|2, where
SS1 =

∫ ∞

−∞
exp[−(v/u)2]ASLdv, SS2 =

∫ ∞

−∞
exp[−(v/u)2](Di |v| /λi +

Di |v| exp(Lλi/ |v|)dv.
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Similarly, when L is long enough, we can obtain the SWM signal intensity

I ∝
∫ ∞

−∞
exp[−(v/u)2]FSdv, where FS(v) = AS and I ∝ |ρ(5)

10 |2 for the

homogeneous broadened cases, where ρ
(5)
10 =

−iGBd40

Γ00d2
10d20(d30d40) + |G4|2 , and

d30 = Γ30 + iΔ3, d40 = Γ40 + i(Δ3 −Δ4).
When all five laser beams are all tuned on simultaneously, the EWM signal

will be generated ke = k1 + k2 − k′2 + k3 − k3 + k4 − k4, via the EWM per-
turbation the chain ρ

(0)
00

ω1−−→ ρ
(1)
10

ω2−−→ ρ
(2)
20

−ω2−−−→ ρ
(3)
10

−ω3−−−→ ρ
(4)
13

ω4−−→ ρ
(5)
14

−ω4−−−→
ρ
(6)
13

ω3−−→ ρ
(7)
10 . We can obtain the seventh-order nonlinear processes in the ho-

mogeneous broadened cases and micrometer cell, ρ
(7)
E2 = −iGC/d3

10d20d
2
13d14,

BE(v) = AL+
7∑

i=1

Di |v| /λi+
7∑

i=1

DiF (L)/λi+
4∑

i=1

DiLF (L)/λi+CF (L)L2/

(2|v|2Λ10), respectively, where Λ13 = Γ13 + i[Δ1 − Δ3 − k1(1 − ξ3)v], d13 =
Γ13 + i(Δ1 − Δ3),Λ14 = Γ14 + i[Δ1 − Δ3 + Δ4 − k1(1 − ξ3 − ξ4)v] and
d14 = Γ14 + i(Δ1 −Δ3 +Δ4).

On the other hand, when cell length L is long enough, time-domain cor-
respondence of EWM is given by

PT =
1√
πu

S(r)e−iω1t

∫ +∞

−∞
dve−(v/u)2 ×∫ ∞

0

t7

∫ ∞

0

t6

∫ ∞

0

t5

∫ ∞

0

t4

∫ ∞

0

t3

∫ ∞

0

t2

∫ ∞

0

t1 ×

e−Λ10(t1+t3+t7)e−Λ20t2e−Λ13(t4+t6)e−Λ14t5

=
1√
πu

S(r)e−iω1t

∫ +∞

−∞
dve−(v/u)2 ×∫ ∞

0

t7

∫ ∞

0

t6

∫ ∞

0

t5

∫ ∞

0

t4

∫ ∞

0

t3

∫ ∞

0

t2

∫ ∞

0

t1e−d10(t1+t3+t7) ×

e−d20t2e−d13(t4+t6)e−d14t5 ×
eik1v[(t1+t3+t7)+(1−ξ2)t2+(1−ξ3)(t4+t6)+(1−ξ3−ξ4)t5].

We assume

L = exp{ik1v[(t1+t3+t7)+(1−ξ2)t2+(1−ξ3)(t4+t6)+(1−ξ3−ξ4)t5]}. (4.43)

Since L involves integration over the velocity distribution function, it
reflects the degree of coherence between polarizations of atoms which have
different velocities. When L = 1, there is no the destructive interference, a
Doppler-free EWM spectrum can be obtained. By contrast, L << 1, there
exists the destructive interference, so, EWM spectra are broadened.

This five-level atomic system with co-existing FWM, SWM and EWM
consists of four conventional EIT subsystems, i.e. |0〉− |1〉− |2〉 (ladder-type)
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with two counter-propagation beamsE2 (or E′2) andE1, |0〉−|1〉−|3〉 (Λ-type)
with two propagation beams E3 (or E′3) and E1, and |0〉 − |1〉 − |4〉 (V-type)
with two propagation beams E4 (or E′4) and E1. More explicitly, the ladder-
type and Λ-type EIT configurations all satisfy the two-photon Doppler-free
condition in Fig 4.26 (b). We have investigated the coexisting FWM, SWM
and EWM in the five-level system. With the phase-conjugation geometry
shown in Fig. 4.26 (a) for pump and probe laser beams, the coexisting FWM
(kf), SWM (ks) and EWM (ke) beams have not only the same frequency
(ω1) but also propagate in the same direction (kf ||ks||ke).

As we know, the real part B′S(v) shows a dispersive line shape, which

leads to
∫ ∞

−∞
dv exp−(v/u)2B′S(v) = 0 [56], therefore, only the imaginary part

of MWM contributes to the signal. So, we only investigate the imaginary part
of MWM. There exists the destructive polarization interference in ultra-thin
cell, which can modify the intensities and linewidths (with Dicke narrowing
features) via the multi-photon terms of MWM.

(i) When G4 = 0, the imaginary part BS(v) of SWM can be expressed by
Euler transformation (the real part does not contribute to the signal):

ASL+B[1− cos(2πL/λ)] + C[1− cos(2ξ3πL/λ)], (4.44)

where B and C are coefficients of single-photon and two-photon terms re-
spectively. When L = λ/2, the SWM signal results from the “thin cell term”
(including single-photon and two-photon terms), and the Doppler broadened
terms can be neglected. While L = λ, “thin-cell terms” are non-zero due to
the two-photon term (contrary to the probe absorption in two-level system
[51]), which contributes to the SWM signal with the “Doppler broadened
terms”. We demonstrate that there exists the polarization interference in
thin cell, which also have a strong impact on the line shape and intensity of
SWM signal. With a larger destructive interference, the SWM signal shows
narrow spectra (on the contrary the case of long cell).

(ii) For EWM signal, the imaginary part of BE(v) can be written as by
Euler transformation:

AL+B[1−cos(2πn)]+C[1−cos(2k1(1−ξ3)nπ)]+D[1−cos(2k1(1−ξ3−ξ4)πn)],
(4.45)

where n = L/λ. Single-photon, two-photon and three-photon terms are all
defined as “thin cell terms”. Compared with Eq. (4.44), Eq. (4.45) adds a
three-photon term, which leads to the periodic behaviors of EWM signal
intensity and the line shape is changed drastically. When L = 1.5λ, the
EWM signal intensity shows a maximal value and it is minimum as L = 3λ.
Similarly, the linewidth of EWM spectrum has also been modified.

(iii) So, high-order nonlinear process adds more multi-photon terms, which
could change the oscillation behavior of MWM signal intensity and line shape,
and leads to the shift of the maximum value of MWM signal intensity.
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4.5.2 MWM in Long Cells

We have discussed coexisting FWM, SWM and EWM in ultra-thin, microme-
ter, and long vapor cells, and the interaction of dressing fields in the five-level
atomic system. In this section, we investigate that the wave vector (laser fre-
quency and direction) [56, 57] and dressing field can control the degree of
polarization interference in long cell, which can significantly modify the in-
tensity and linewidth of MWM signal.

The polarization interference (destructive or constructive) is the key is-
sue for the line shape and intensity of SWM signal. And the polarization
interference can be controlled by the wave vector. In Fig. 4.27 (a), linewidths
of SWM signal become much broader when ξ3 >0. Correspondingly, the
SWM signal intensity also decreases drastically due to increasing of the de-
structive interference [56, 57]. To investigate polarization interference how to

affect SWM signal spectrum, instead of
∣∣∣∣
∫ ∞

−∞
dve−(v/u)2FS(v)

∣∣∣∣
2

, we sum up

SWM signal intensities of individual atoms (i.e.,
∫ ∞

−∞
dve−(v/u)2 |FS(v)|2). It

has found that in Fig. 4.27 (a) that the linewidth of SWM signal is narrow
and basically independent of the value ξ3 when polarization interference is
neglected. Figures 4.27 (b) and 4.27 (c) present the real part F ′S(v) (dashed
curves), imaginary part F ′′S (v) (solid curves), and absolute value |FS(v)| (dot-
ted curves) of FS(v) for ξ3 = 0.2 and ξ3 = 0.6, respectively. Obviously, the

real part shows a dispersive line shape, with
∫ ∞

−∞
dve−(v/u)2F ′S(v) = 0. So,

only the imaginary parts F ′′S (v) contribute to the SWM signal. Since F ′′S (v)
changes the sign on wings of both v < 0 and v > 0 sides, the destructive inter-
ference occurs between atoms, thereby suppressing the total polarization P .
So, the increase and decrease of destructive interferences lead to the increase
and decrease of linewidths of SWM spectra, respectively (on the contrary the
SWM signal intensity).

Similarly, Fig. 4.28 (a), (b) presents the EWM signal intensity versus Δ4.
The EWM signal shows a narrow spectra due to no polarization interference
as shown in Fig. 4.28 (a). In addition, from Eq. (4.43), the condition for
L = 1 is (t1 + t3 + t7) + (1− ξ2)t2 + (1− ξ3)(t4 + t6) + (1− ξ3 − ξ4)t5 = 0.

Since all values of ti (i = 1 to 7) are positive, the above equation can
be satisfied only if 1 − ξ3 > 0. For example, when ξ3 = 0.8, there is no
the destructive interference [the inset plot in Fig. 4.28 (b)], the EWM signal
shows a narrow spectrum [Fig. 4.28 (b)]. On the other hand, when ξ3 = 1.2,
the EWM signal spectrum is broadened as shown in Fig. 4.28 (a).

Next, we consider how the weak dressing field affects the line shape of
SWM signal spectrum. When the dressing field is very weak, a narrow dip
of SWM signal appears first at the centre of the profile due to reduction
of destructive interference, as shown by dotted curve in Fig. 4.29. The line
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Fig. 4.27. (a) SWM spectra for Δ1/Γ20 = 0. Γ10/k1u = Γ20/k1u = Γ30/k1u =
0.02, ξ2=1, and value of ξ3=0 (solid curve), 0.2 (dashed curve) and 0.6 (dot-
ted curve). The corresponding SWM signal intensity ρ10I , relative to the one for
Δ3/Γ30 = 0, I0 = 1, I0.2 = 7.6 × 10−2, I0.4 = 2.4 × 10−2. (b) The real part F ′S(v)
(dashed curves), the imaginary part F ′′S (v) (solid curves), and the absolute value
|FS(v)| (dotted curves) for (b) ξ3 = 0.2, and (c) ξ3 = 0.6(m = 2).

shape of the spectrum then converts to a single line of homogeneous linewidth
with the completely suppressed broad background when G3/Γ30 = 0.2 (solid
curve). If we further increase the dressing field intensity, the SWM signal
spectra will exhibit a Dopller-free AT splitting, which will be discussed in
the next section.

The dressing field can control the degree of the destructive interference.
As G4/Γ40 increases, the linewidth of SWM becomes narrower, and exhibits
Doppler-free AT splitting due to reduction of the destructive interference. The
distance between two splitting peaks can be approximated as ΔG4 ≈ 2G4

under the condition of |G4|2 >> Γ30Γ40. However, the linewidth of SWM
spectra is much larger than the homogeneous linewidth without the dressing
field [solid curve in Fig. 4.30 (a)].

Figure 4.30 (b) presents the DDFWM spectrum versus Δ2. The inner
dressing field E3 in DDFWM first suppresses the destructive interference,
and then creates dressed states |G3+〉 and |G3−〉 from the state |0〉 [dotted
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Fig. 4.28. The EWM signal intensity versus Δ4/Γ14 for (a) ξ3 =1.2, (b) ξ3 =0.8.
The insert plot: (a) ξ3 =1.2, (b) ξ3 =0.8, Real part F ′E(v) (solid curves), imagi-
nary part F ′′E(v) (dashed curves), and absolute value|FE(v)| (dotted curves). Other
parameters are Δ1/k1u =10 and Δ3/k1u = 10,Δ2/k1u = 0,Γ10/k1u = Γ20/k1u =
Γ13/k1u = Γ14/k1u = 0.02, ξ2 = 1, ξ4 = 1.2.

Fig. 4.29. The SWM signal intensity spectra for G4/Γ40 = 0 (dot-dashed curve),
G4/Γ40 = 0.05 (dashed curve), G4/Γ40 = 0.15 (dotted curve), G4/Γ40 = 0.2 (solid
curve). When Δ1 = Δ2 = Δ3 = Δ4 = 0 and Γ10/k1u = Γ20/k1u = Γ30/k1u =
Γ40/k1u = 0.02, ξ3 = 0.2, ξ4 = 0.8.

curve in Fig. 4.30 (b)] (the separation between two peaks located at Δ2 =
±ΔG3/2 ≈ ±G3, here ΔG3 is the separation induced by the dressing field E3).
When the outer dressing field E4 dresses the primarily dressed state |G4+〉
(Δ4 = −G3) and creates the secondarily dressed states |G3+〉|G4±〉 [Fig. 4.26
(c2)], three peaks will locate at Δ2 = −ΔG3/2 ∓ΔG4/2 and Δ2 = ΔG3/2,
respectively.

(1) We next investigate the polarization interference, which affects in-
tensity and line shape the SWM signal. The SWM signal intensity with no
dressing field is normalized to be “1” and the intensity above or below “1”
baseline means enhancement or suppression of the SWM signal. At the ex-
act resonance (Δ3 = 0), it is found that the SWM signal intensity is sup-
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Fig. 4.30. (a) The SWM signal intensity versus Δ3/Γ30 for G4/Γ40 = 0 (solid
curve), G4/Γ40 = 1 (dashed curve), G4/Γ40 = 5 (dotted curve) and G4/Γ40=10
(dot-dashed curve). when ξ3 = 0.2, ξ4 = 0.8, and Γ10/k1u = Γ20/k1u = Γ30/k1u =
Γ40/k1u = 0.02. (b) The DDFWM signal intensity versus Δ2/Γ20 for G3/Γ23 = 1
(dotted curve), G3/Γ23 = 5 (dashed curve), G3/Γ23 = 10 (solid curve), when
G3/Γ23 = 25, Δ4/Γ24 = G3/Γ23, Δ1/Γ10 = Δ2/Γ20 = Δ3/Γ23 = 0 and ξ2 =
0.8, ξ3 = 1.2, ξ4 = 1.2. Other parameters are Γ10/k1u = Γ20/k1u = Γ23/k1u =
Γ24/k1u = Γ30/k1u = Γ40/k1u = 0.02.

pressed when the frequency of the dressing field is scanned across the reso-
nance (Δ4 = 0) in the homogeneously broadened cases, as shown by the solid
curve in Fig. 4.31 (a). From the dressed model viewpoint [Fig. 4.26 (d2)], the
suppression of SWM signal is due to the splitting induced by the dressing
field, leading to offset of the single-photon (|0〉 to |3〉 resonance. When the
polarization interference is considered, Fig. 4.31 (b) shows the sharp contrast
with that of the homogeneously broadened cases. To study the anomalous
behavior, we neglect the polarization interference [dashed curve in Fig. 4.31
(a)], which are consistent with those of the homogeneously broadened cases,
proving that the anomalous behavior is due to the polarization interference.
This can be understood that the dressing field can suppress the polarization
of atoms with v = 0 [the inset plot in Fig. 4.31 (b)], leading to a reduction
of the degree of the destructive interference. As a result, the SWM signal
intensity is enhanced.

Similarly, Fig. 4.32 (a) presents the FWM signal intensity in the homo-
geneously broadened cases, here the FWM signal intensity with no dressing
fields (G3 = G4 = 0) is normalized to “1”. At the exact resonance (Δ2 = 0),
the solid curve in Fig. 4.31 (a) shows that there is suppressed dip at the line
center of the profile. Under the suppression condition Δ1+Δ2−Δ3+Δ4 = 0,
such suppressed dip is separated into two small suppressed dips by the outer
dressing field E4. As G4 is increased, this dip becomes shallow and then splits
into two dips. Under the condition G4 >> Γ23, we have ΔG4 ≈ 2G4. This
means that the outer dressing field E4 dresses the state |3〉 to create the sec-
ondary dressed states |G4±〉 [Fig. 4.26 (c3)], then the inner dressing field E3

suppresses the resonant FWM signal directly from |G4±〉, and induces two
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Fig. 4.31. The SWM signal intensity versus Δ4/Γ40 for (a) the homogeneously
broadened cases (solid curve) (G4/Γ40 is given near the curves) and when polar-
ization interference is neglected (dashed curves), when G4/Γ40=0.5 (solid curve),
G4/Γ40=1 (dotted curve), G4/Γ40=2 (dashed curve), G4/Γ40= 4 (dot-dashed
curve), and Δ3=0. (b) Doppler broaden cases in long cell. The inset plot show
F ′S(v) for G4/Γ40=0 (solid curve), G4/Γ40=0.5(dashed curve), G4/Γ40 =1 (dotted
curve) when Δ3=0. The SWM signal intensity with no dressing field is normalized
to be 1. Other parameters are Δ1 = Δ2=0, ξ3 = 0.2, ξ2 = 1, ξ4 = 0.8 and
Γ10/k1u = Γ20/k1u = Γ30/k1u = Γ40/k1u =0.02.

suppressed dips [Fig. 4.32 (a)]. For the Doppler broadened cases, the inner
dressing field E3 suppresses the polarization interference, and enhances the
FWM signal intensity [the solid curve in Fig. 4.32 (b)], on the other hand,
the outer dressing field E4 increases the destructive interference [the inset
plot in Fig. 4.32 (b)], and results in decreasing of the FWM signal intensity
[Fig. 4.32 (b)].

(2) Let us consider the Δ4 dependence of the SWM spectra for strong
dressing fields and large offset. In this case, the SWM signal is enhanced
in the homogeneously broadened cases [the solid curves in Fig. 4.33 (a)],
which is mainly due to the single-photon (|0〉 → |G4+〉) resonance [Fig 4.26
(d2)]. In general, the constructive and destructive interferences between the
|0〉 → |G4+〉 and |0〉 → |G4−〉 SWM channels result in the enhancement
of SWM signal. However, such enhancement mainly originates from the dis-
persion of dressed SWM in the weak dressing field limit [17]. The resonant
condition is given by Δ4/Γ40 = [(G4/Γ40)2 − (Δ3/Γ40)2]/(Δ3/Γ40). Figure
4.33 (b) presents the result in Doppler broadened cases in long cell, and
the solid curve in Fig. 4.33 (a) shows the corresponding results when the
polarization interference is neglected. We can see that the polarization inter-
ference significantly increases the resonant enhancement, so the SWM signal
is hugely enhanced, comparing Fig. 4.33 (a) and Fig. 4.33 (b). The significant
enhancement of SWM signal in the former is due to the fact that the strong
dressing field can not only induce resonance enhancement but also suppress
the destructive polarization interference.

Figure 4.34 (a) presents the DDFWM signal intensity versus Δ3 for the
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Fig. 4.32. The DDFWM signal intensity versus Δ3 (a) the homogeneously broad-
ened cases for G4/Γ24 = 0 (solid curve), G4/Γ24 = 1 (dashed curve) and
G4/Γ24 = 5 (dotted curve). (b) the Doppler broadened cases in long cell
for G4/Γ24 = 0 (thin solid curve), G4/Γ24 = 0.5 (dashed curve), G4/Γ24=1
(dot-dashed curve), G4/Γ24 = 2.5 (dotted curve), G4/Γ24 = 5 (solid curve).
When G3/Γ23 = 0.5, Δ1 = Δ2 = Δ4 = 0. The insert plot presents F ′F (v)
for G4/Γ24 = 0 (solid curve), G4/Γ24 = 0.5 (dashed curve), G4/Γ24 = 1
(dotted curve) when G3/Γ23 = 1, Δ3 = Δ4 = 0. Other parameters are
Γ10/k1u = Γ20/k1u = Γ23/k1u = Γ24/k1u = 0.02, ξ2 = 0.8, ξ3 = 1.2, ξ4 = 1.2. The
FWM signal intensity with no dressing fields is normalized to be 1.

Fig. 4.33. The DSWM signal intensity versus Δ4/Γ40 for (a) homogeneous broad-
ened cases (solid curve), and when the polarization interference is neglected
(dashed curve). (b) the Doppler broadened cases in long cell. When G4/Γ40 = 50,
ξ3 = 0.2, ξ4 = 1.2 and Γ10/k1u = Γ30/k1u = Γ40/k1u = 0.02, Δ1/Γ10 = 0 and the
values of Δ3/Γ30 are shown above the peaks. The SWM signal intensity with no
dressing field is normalized to be 1.

homogeneously broadened cases. As G4 is quite large, the outer dressing field
E4 dresses the level |3〉 and creates the primarily dressed states |G4±〉 [Fig.
4.26 (c3)]. The inner dressing field E3, driving the transitions from |G4±〉
to the ground level |0〉, creates the secondarily states |G3〉|G4±〉 from the
level |0〉 [Fig. 4.26 (c4)] to cause the two-photon (|G4+〉 → |1〉 → |2〉) reso-
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nant, which can cause resonant excitations corresponding to the two enhanced
peaks [Fig. 4.33 (a)] if ω1 +ω2 −ω3 +ω4 ≈ Ω1 +Ω2− (Ω3 −ΔG3/2)+ (Ω4±
ΔG4/2) (i.e. Δ3 ≈ Δ1 + Δ2 − ΔG3/2 + Δ4 ± ΔG4/2. Specially, when the
polarization interference is considered, we find that the most profound effect
of polarization interference significantly increases the resonant enhancement.
For example, when Δ3/Γ30 = −70, the FWM signal is enhanced by a factor
of 180000 in the Doppler-broadened system [Fig. 4.34 (b)], instead of 350 in
the homogeneously broadened cases.

Fig. 4.34. The DDFWM signal intensity versus detuning Δ3 for (a) the Doppler
broadened cases in long cell when ξ2 = 0.8 (solid curve) and ξ2 = 1.2 (dashed
curve). (b) the homogeneous broadened cases. When G3/Γ23 = 50, G4/Γ24 = 100,
Δ1/Γ10 = Δ3/Γ23 = Δ4/Γ24 = 0, and Γ10/k1u = Γ20/k1u = Γ23/k1u = Γ24/k1u =
0.02, ξ3 = 1.2, ξ4 = 1.2. The values of Δ2/Γ20 are shown above the peaks. Here,
the FWM signal intensity with no dressing fields is normalized to be 1.

We have discussed the narrow spectra, AT splitting, suppression and en-
hancement of MWM in long cell. The MWM signal intensities change drasti-
cally due to the polarization interference. And the dressing field can suppress
the degree of destructive interference, and result in the enhancement of the
MWM signal intensities. In the next Section, we will investigate the degree
of polarization interference can be controlled by the cell length. And MWM
spectra are modified by the destructive interference in ultra-thin and microm-
eter cells.

4.5.3 MWM in Ultra-thin and Micrometer Cells

The SWM signal intensity spectra versus n(L/λ) is shown in Fig. 4.35 (a).
First, we can see that SWM signal intensity varies with λ period, the value
of |SS |2 equals approximately to the value of |SS2|2 when cell length L is
short (i.e., L � 20λ, corresponding to ultra-thin cell), correspondingly, the
“Doppler-broadened term” of BS(v) can be neglected. When the cell length
is increasing, we can see that the oscillation behavior gradually disappears
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(corresponding to micrometer cell), and the SWM signal intensity is increas-
ing. When the cell length is long enough, the thin cell terms can be absolutely
neglected, |SS |2 can be approximated to |SS1|2 [the inset plot in Fig. 4.35
(a)].

Fig. 4.35. (a) The SWM signal intensity spectra versus n(L/λ), |SS |2 (dashed
curve), |SS1|2 (dotted curve), |SS2|2 (solid curve), when polarization interference
is neglected (dot-dashed). (b), (c) The imaginary and the real parts when the
“Doppler broadened term” is neglected, respectively. L/λ = 0.5 (solid curves),
L/λ = 1 (dashed curves), L/λ = 1.5 (dotted curves). Other parameters are
Δ1/Γ10 = Δ2/Γ20 = Δ3/Γ30 = 0, Γ10/k1u = Γ20/k1u = Γ30/k1u = 0.02, ξ3 = 0.6,
G4/Γ43 = 0.

To investigate the oscillation behavior of the SWM signal intensity, we can
calculate the imaginary part B′′S(v), real part B′S(v) of BS(v), respectively.
From Fig. 4.35 (a), since the contribution of “Doppler-broadened term” could
be neglected, compared to “thin-cell term”, only the latter one is considered
in ultra-thin cell. Figure 4.35 (b, c) present the imaginary part B′′S(v) and
real part B′S(v) of BS(v), respectively. The real part B′S(v) shows a dis-

persive line shape, which leads to
∫ ∞

−∞
dvW (v)B′S(v) = 0; therefore, only
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the imaginary part B′′S(v) contributes to the SWM signal. In Fig. 4.35 (b),
we can see that there exists the destructive interference in ultra-thin cell.
When L = λ/2, destructive interference is minimum, so the SWM signal
intensity shows a maximum value, with periodic revivals at (2n + 1)λ/2.
When L = λ, destructive interference is maximum, so the SWM signal in-
tensity is minimum. If the polarization interference is neglected (instead of∫ ∞

−∞
dv exp−(v/u)2 |BS(v)|2), the oscillation behavior of SWM signal inten-

sity vanishes [dot-dashed curve in Fig. 4.35 (a)]. So the oscillation behavior
of SWM signal intensity results from the destructive interference.

From Eq. (4.44), the Dicke-narrowing features are determined by both
the single-photon and two-photon terms. The single-photon term contributes
mainly to the SWM signal intensity, which shows oscillation behavior with
a λ period [Fig. 4.35 (a)]. Specifically, when L = λ, both two-photon and
“Doppler broadened term” contribute to the SWM signal.

Similarly, we can obtain the oscillation behavior of the EWM signal inten-
sity (Fig. 4.36). From Eq. (4.45), the single-photon, two-photon, and three-
photon terms are all defined as “thin cell terms”, which influence the oscilla-
tion behavior in common. When L = 1.5λ, the EWM signal intensity shows
a maximum value, with periodic revivals at (6n + 3)λ/2. While for L = 3λ,
it becomes minimum in ultra-thin cell, as shown in Fig. 4.36. When the cell
length L is increasing, the “Doppler-broadened terms” in Eq. (4.45) cannot
be neglected. The EWM signal intensity is determined by both the “Doppler
broadened terms” and “thin cell terms”. And when the cell length is long
enough, the EWM signal intensity is determined absolutely by the “Doppler
broadened term”, as shown in the inserted plot of Fig. 4.36.

Fig. 4.36. The EWM signal intensity versus L/λ, when Δ4/Γ14 = 0. Other pa-
rameters are Δ1/k1u =10 and Δ3/k1u = 10,Δ2/k1u = 0,Γ10/k1u = Γ20/k1u =
Γ13/k1u = Γ14/k1u = 0.02, ξ2 = 1, ξ4 = 1.2.

We have analyzed the linewidth of the MWM signal spectra in long cell,
which are changed due to the destructive interference. In this section, let
us compare the line shape of the MWM signal spectra dependence on cell
length in ultra-thin and micrometer cells. From Fig. 4.37, we can see that the



4.5 Polarization Interference of Multi-Wave Mixing in a Confined Five-level

System 241

minimum values of SWM spectra linewidth are acquired at the cell length
L/λ = 1 and 2. While for L/λ = 0.5 and 1.5, the linewidth is broadened. In
ultra-thin cell, destructive interference is minimum when L/λ = 0.5 [Fig. 4.35
(c)], the SWM signal linewidth is maximum. But the destructive interference
is maximum for L/λ = 1, so the SWM signal linewidth is minimum. The
destructive interference is decreasing at L/λ = 1.5 while the linewidth is
increasing.

Fig. 4.37. The SWM spectra for L/λ = 0.5, 1, 1.5, 2, 10, 100, 1000 from 0 to 14,
respectively. Other parameters are Δ1/Γ10 = 0,Γ10/k1u = Γ20/k1u = Γ30/k1u =
0.02, ξ3 = 0.6.

When L/λ > 20, corresponding to micrometer cell, the destructive inter-
ference becomes bigger as the cell length is increasing. So, the linewidth of the
SWM signal as the cell length is keeping increasing. When L is long enough,
the “thin cell terms” can be neglected, only “Doppler- broadened term” is
considered, so the SWM spectrum is broadened hugely due to the destruc-
tive interference, i.e., L/λ = 1000 (Fig. 4.37). So, with a larger destructive
interference, the SWM signal shows a narrow spectrum, on the contrary the
case of long cell.

Similarly, Fig. 4.38 presents the line shape of the EWM signal intensity in
ultra-thin, micrometer and long cells. When the cell length L is long enough,
only the Doppler-broadened terms in expression BE(v) are considered, so,
the linewidth of EWM spectra is broadened due to the destructive inter-
ference in long cell [Figs 4.38 (a) and (b)]. And when L/λ = 10 and 100,
EWM signal spectra show Lorentzian line shape, as shown in Figs. 4.38 (c)
and (d), respectively. When L/λ = 1, corresponding to the ultra-thin cell,
the linewidth of EWM spectra is narrow due to Dicke-narrowing features
[Fig. 4.38 (e)].

In addition, Figure 4.39 presents the intensity and line shape of the SWM
signal in ultra-thin and micrometer cells. As discussed in the previous section,
the degree of destructive interference can be controlled by applying a weak
dressing field. From Fig. 4.39 (a), when G3/Γ30 = 0.2, the SWM signal inten-
sity |SS |2 is approximated to |SS1|2 in ultra-thin cell; the “thin cell terms”
can be neglected. More specifically, when the dressing field is increasing, the
linewidth of the SWM spectra becomes narrower [Fig. 4.39 (b)], and then
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Fig. 4.38. The EWM signal intensity versus Δ4/Γ14 for (a) the Doppler broadened
cases in long cell, (b) L/λ = 1000, (c) L/λ = 100, (d) L/λ = 100, (e) L/λ = 10,
(f) L/λ = 1, when ξ3 = 1.2, Δ1/k1u = 10 and Δ3/k1u = 10, Δ2/k1u = 0,
Γ10/k1u = Γ20/k1u = Γ13/k1u = Γ14/k1u = 0.02, ξ2 = 1, ξ4 = 1.2.

converts to a single line of homogeneous linewidth in micrometer cell when
G3/Γ30 = 0.2 [the solid curve in Fig. 4.39 (b)]. So, the weak dressing field
cannot only control the degree of destructive interference in long cell, but
also that in micrometer cell. On the other hand, when L/λ = 0.5, the weak
dressing field cannot change the linewidth of the SWM signal spectra [the
inserted plot in Fig. 4.32 (b)] without the destructive interference [Fig. 4.32
(c)].

Next, we investigate the AT splitting of the DSWM signal in ultra-thin
and micrometer cells. Due to the polarization interference discussed in pre-
vious section, the linewidth of the SWM signal spectrum is much larger than
that of the homogeneously broadened cases [solid curve in Fig. 4.40 (a)].
The dressing field can control the degree of destructive interference, so, the
linewidth first becomes narrower, and then exhibits Doppler-free AT split-
ting as the dressing field intensity increases,. And when L/λ =0.5, the SWM
spectrum shows Doppler-free AT splitting due to no destructive interference
[Fig. 4.40 (b)]. The dressing field can suppress the destructive interference
in micrometer cell, and the SWM signal show a Doppler-free AT splitting
spectra.

We next investigate suppression and enhancement of the SWM signal in-
tensity in ultra-thin and micrometer cells. At the exact resonance (Δ3 = 0), it
is found that the SWM signal intensity is suppressed [Fig. 4.41 (f)] when the
frequency of the dressing field is scanned across the resonance (Δ4 = 0) in the
homogeneously broadened cases in previous section. When L/λ = 0.5, Fig.
4.41 (e) show the suppressed line shape due to no polarization interference,
which is similar to that of the homogeneously broadened cases. On the other
hand, we have discussed that the SWM signal intensity is enhanced hugely
due to the polarization interference in long cell, and when the cell length is in-
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Fig. 4.39. (a) The SWM signal intensity versus n(L/λ) for |SS|2 (dashed curve),
|SS1|2 (dotted curve), |SS2|2 (solid curve), when G4/Γ40 = 0.1. (b) the SWM
signal intensity spectra versus Δ3 for L/λ = 100, when G4/Γ40 = 0 (dot-dashed
curve), G4/Γ40 = 0.05 (dashed curve), G4/Γ40 = 0.15 (dotted curve), G4/Γ40 = 0.2
(solid curve). The insert plot shows SWM spectra versus Δ3 for L/λ = 0.5, when
G4/Γ40 = 0 (solid curve) and G4/Γ40 =0.1 (dotted curve) in ultra-thin cell. (c)
The real part F ′S(v) (dashed curves), the imaginary part F ′′S (v) (solid curves),
and the absolute value |FS(v)| (dotted curves) in ultra-thin cell, when L/λ = 0.5.
Other parameters are Δ1/Γ10 = Δ2/Γ20 = Δ3/Γ30 = Δ4/Γ40 = 0 and Γ10/k1u =
Γ20/k1u = Γ30/k1u = Γ40/k1u = 0.02, ξ3 = 0.2, ξ4 = 0.8.

creasing, the contribution of the thin cell terms in expression BS(v) becomes
weaker, so, the SWM signal intensity is enhanced due to the destructive inter-
ference in long cell. So, Figure 4.41 (d) – (b) shows the SWM signal intensity
changed from suppression, to semi-suppression and semi-enhancement, and
to enhancement, as the cell length keeps increasing.

Similarly, when there is no outer dressing field E4, the FWM spectra show
an enhanced peak due to the polarization interference in long cell, and a sup-
pressed dip in ultra-thin cell. When the outer dressing field E4 is considered,
such enhanced peak or suppressed dip can be separated into two enhanced
peaks [Fig. 4.42 (a)] or two suppressed dips [Fig. 4.42 (d)], respectively. When
the cell length is increasing, the FWM spectra changes from suppression, to
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Fig. 4.40. The SWM signal intensity versus Δ3/Γ30 for the dressing field G4/Γ40 =
0 (solid curve), G4/Γ40 = 1 (dashed curve), G4/Γ40 = 5 (dotted curve) and
G4/Γ40 = 10 (dot- dashed curve). (a) L/λ = 100, (b) L/λ = 1. Other param-
eters are ξ3 = 0.2, ξ4 = 0.8, and Γ10/k1u = Γ20/k1u = Γ30/k1u = Γ40/k1u = 0.02.

half-suppression and half-enhancement, and to enhancement.
We discuss the controllable polarization interference in the five-level con-

fined atomic system, the induced polarization is sensitive to the atomic ve-
locity, and interference exists between nonlinear polarizations of atoms with
different velocity motions. This interference can have strong impact on the
FWM or SWM and EWM spectra. We can sum up the signal intensity of
each atom motion [12]. For the former case, there exists polarization interfer-
ence of atoms with different velocities, while the polarization interference is
neglected for the latter case. It is found in Fig. 4.43 that the SWM spectrum
is superposition between the case of cold atom sample and the polarization
interference neglected in long cell. This indicates that the linewidth of the
SWM spectra are due to the polarization interference. We consider interfer-
ence between the kinds of different velocities in thin cell. The dotted and
dot-dashed curves in Fig. 4.43 show that interference between two different
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Fig. 4.41. The SWM signal intensity versus Δ4/Γ40 for G4/Γ40 = 0.5 (solid curve),
G4/Γ40 = 1 (dotted curve), G4/Γ40 = 2 (dashed curve), G4/Γ40 = 4 (dot-dashed
curve). (a) L/λ = 1000, (b) L/λ = 100, (c) L/λ=10, (d) L/λ = 1.5, (e) L/λ = 0.5,
(f) homogeneous broadened cases. Other parameters are Δ1 = Δ2 = Δ3=0, ξ3 =
0.2, ξ4 = 0.8, Γ10/k1u = Γ20/k1u = Γ30/k1u = Γ40/k1u = 0.02. The SWM signal
intensity with no dressing field is normalized to be 1.

Fig. 4.42. The DDFWM signal intensity versus Δ3/Γ23 for (a) long cell, (b)
L/λ = 100, (c) L/λ = 50, (d) L/λ = 0.5, (e) homogeneous broadened cases,
when G3/Γ23 = 0.5, G4/Γ24 = 5, Δ1/Γ10 = Δ2/Γ20 = Δ3/Γ23 = Δ4/Γ24=0 and
Γ10/k1u = Γ20/k1u = Γ23/k1u = Γ24/k1u = 0.02, ξ2 = 0.8, ξ3 = 1.2, ξ4 = 1.2. The
FWM signal intensity with no dressing fields is normalized to be 1.

velocities is tiny. Specially, when L/λ = 1, the linewidth of MWM spectrum
is narrower due to the enhancement of the coherent transient atomic response
[25] than the homogeneous linewidth, as shown by the dashed curve in Fig.
43, this narrow spectral can be used for high precision measurements and
metrological standards.
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Fig. 4.43. The SWM spectra for Δ3/Γ30, L/λ=1 (dashed curve), cold atom sample
and the polarization interference is neglected in long cell (solid curves), polariza-
tion interference is neglected in ultra-thin cell (dotted curve), and polarization
interference is neglected between two kinds of different velocity in thin ultra-cell.
Other parameters are Δ1/Γ10 = Δ2/Γ20 = Δ3/Γ30 = 0, Γ10/k1u = Γ20/k1u =
Γ30/k1u= 0.02, ξ3 = 0.6, G4/Γ43 = 0.

4.5.4 Discussion

We have investigated the coexisting FWM, SWM, and EWM in the ultra-
thin, micrometer and long cell. Finally, let us compare the line shape of
the SWM spectra in several kinds of cases (the homogeneously broadened
cases, ultra-thin cell, micrometer cell, long cell and when the polarization
interference is neglected in long cell). We can see in Fig. 4.44, that the min-
imum values of linewidth of the SWM spectrum is achieved at the point of
cell length L/λ = 1 (short dashed curve), and the following case is the ho-
mogeneously broadened cases and the neglected polarization interference in
long cell (solid curve), and then cell length L = 0.5λ (dashed curve). When
L = 100λ, the SWM spectra shows Lorentzian line shape (dotted curve).
When L is long enough, the SWM spectrum changes Gaussian line shape
(dot-dashed curve). In ultra-thin cell, comparing with the “thin cell terms”,
the “Doppler-broadened term” is neglected. The linewidth of SWM signal
spectra decreases as the destructive interference increasing. When the cell
length is increasing, the contribution of the thin cell terms in BS(v) becomes
weaker, and the linewidth of the SWM signal spectra is monotonously in-
creasing. Specifically, when the cell length is long enough, the linewidth of
the SWM signal spectra is broadened due to the destructive interference in
long cell. In addition, when BS(v) = 1, the linewidth of SWM spectrum is
narrower than the homogeneous linewidth, as shown by the dashed curve in
Fig. 4.44, such narrow spectrum can be used for high precision measurements
and metrological standards.
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Fig. 4.44. The SWM spectra for Δ3/Γ30, long cell (dot-dashed curve), L/λ = 100
(dotted curve), L/λ = 0.5 (dashed curve), homogeneous broadened cases (solid
curve), L/λ = 1 (short dashed curve), when polarization interference is neglected,
the thin solid curves is superposition with the solid curve.

In conclusion, we presented two types of doubly-dressing schemes (i.e.,
parallel and nested configurations) which can generate co-existing FWM,
SWM, and EWM processes in an open five-level system. QI between two
FWM, or one FWM and one SWM channels, leads to signal suppression
and enhancement. We obtain triple AT splitting in the spectra of FWM sig-
nal, quadruple AT splitting in the SWM signal, and two triply splitting in
EIT. The spectra of AT splitting, suppression and enhancement of FWM
and EWM signals are the superposition of two groups of the different AT
splitting peaks. By controlling intensities and frequency offsets of laser fields,
these higher-order nonlinear wave-mixing processes can be enhanced and sup-
pressed to obtain desired magnitude of nonlinearities. We also investigate
coexisting MWM processes in ultra-thin, micrometer and long cells. The de-
gree of destructive interference can be controlled by the wave vector, dressing
field and cell length. Understanding the higher-order multi-channel nonlinear
optical processes can help in optimizing these higher-order nonlinear opti-
cal processes, which have potential applications in achieving better nonlinear
optical materials and opt-electronic devices.
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5 Enhancement and Suppression in Four-Wave
Mixing Processes

Interplays between four-wavemixing (FWM) processes in multi-dressed multi-
level atomic systems are quite interesting. The generated FWM signal can
be selectively enhanced and suppressed via an EIT window. The evolution
of dressed effects can be from pure enhancement into pure suppression in
the degenerate-FWM processes. On the other hand, since the atomic tran-
sitions are very sensitive to the polarization states of the pump and probe
beams in multi-Zeeman sub-level atomic systems, the enhancement and sup-
pression of FWM signals are also dependent on the polarization states of the
laser beams on real atomic systems (with Zeeman sub-levels). The FWM pro-
cesses in a multi-Zeeman level atomic system can be enhanced and suppressed
by changing the polarization of the pump and probe beams. Different polar-
ization states of the pump and probe beams will act on different transition
pathways among the multi-Zeeman levels with different transition strengths,
which affect the FWM efficiencies. Understanding the efficiencies of nonlinear
wave-mixing processes via laser intensities, frequency detunings, and polar-
ization states in multi-level atomic systems can be very useful in controlling
them for various applications, such as coherent quantum control, nonlinear
optical spectroscopy, precision measurements, and quantum information pro-
cessing.

5.1 Interplay Among Multi-dressed Four-Wave Mixing

Processes

Under the electromagnetically induced transparency (EIT) condition [1, 2],
not only the third-order nonlinear susceptibilities can be resonantly enhanced,
but the generated FWM signals can also be allowed to transmit through the
resonant atomic medium with little absorption. Enhanced FWM processes
due to atomic coherence have been experimentally demonstrated in several
multi-level atomic systems [3 – 5]. Interesting effects, such as entangled images
in the probe and signal beams in the FWM process [6], phase-controlled light
switching at low light level [7], quantum destructive interference in inelastic
two-wave mixing [8], and generation of correlated photon pairs [9, 10], have
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been experimentally investigated in various coherently-prepared multi-level
atomic systems.

Recently, destructive and constructive interferences in a two-level atomic
system [9] and competition via atomic coherence in a four-level atomic system
[11] with two co-existing FWM processes were studied. In the presence of
additional coupling laser fields, more multi-FWM processes are generated,
which can be selectively suppressed or enhanced via quantum interference.
Also, the Autler-Townes (AT) splitting in triple resonance spectroscopy was
reported previously by fluorescence detection [12, 13]. Due to the parametric
nature of the FWM process, the generated signal is a coherent radiation.

In this section, experiment of the interplays between different FWM pro-
cesses in the multi-dressed two-level and V-type three-level atomic systems
will be described, as shown in Fig. 5.1 (a), (b). Interesting results, such as
mutual suppressing of the two FWM signals, AT splitting of the FWM sig-
nal, as well as “inner-dressed” FWM and “outer-dressed” FWM processes,
are experimentally investigated. Moreover, a simple method to determine the
effective dipole moments of the transitions is shown.

Fig. 5.1. Relevant energy-level schemes in Na atom. (a) “Inner-dressing” case; (b)
“Outer-dressing” case; (c) and (d) are the FWM processes in the dressed-state
picture.

The two relevant experimental systems are shown in Fig. 5.1 (a), (b).
and the pulse laser beams are aligned spatially as shown in Fig. 5.2. Three
laser beams come from the same near-transform-limited dye laser (10 Hz
rate, 5 ns pulse-width and 0.04 cm−1 linewidth) with the same frequency
detuning Δ1. Three energy levels from Na atoms (in heat pipe oven) are in-
volved in the experimental schemes. In Fig. 5.1 (a), energy levels |0〉 (3S1/2)
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and |1〉 (3P1/2) form the two-level atomic system. Coupling laser beams k1

and k′1 (connecting the transition between |0〉 to |1〉) propagate in the op-
posite direction of the weak probe field k3 (also connecting the transition
beween |0〉 to |1〉), as shown in Fig. 5.2. The frequency components k1 and
k′1(ω1) in beam 1 and beam 2 induce a population grating between states
|0〉 to |1〉, which is probed by beam 3 with the same frequency ω1. This is
an degenerated-FWM (DFWM) process [Fig. 5.1 (a)] satisfying the phase-
matching condition of ks1 = k3 + k1 − k′1. The signal is detected by a pho-
tomultiplier tube (PMT) and a fast gated integrator (gate width of 50 ns).
Next, we apply two additional coupling fields k2 and k′2 (one each added onto
beam 1 and beam 2, respectively, as shown in Fig. 5.2) with the same fre-
quency detuning Δ2, which are from another similar dye laser with frequency
set at ω1 to dress the energy levels |0〉 and |1〉. We define such energy-level
dressing as “inner-dressing”. In the presence of the k2 and k′2 frequency com-
ponents, other three FWM signals are generated with same frequency to have
ks2 = k3+k2−k′2, ks2 = k3+k2−k′2, and ks4 = k3+k1−k′2. Therefore, the
total signal has contributions from four FWM processes when the five light
beams are all turned on, but ks1 and ks2 are the dominant ones as shown in
the inset of Fig. 5.2 (detected by CCD). When the coupling field frequencies
of k2 and k′2 are tuned to the |0〉 − |2〉 transition (at ω2), which only dress
the energy level |0〉 for the probe transition of |0〉− |1〉 (and therefore named
“outer-dressing”), it forms a V-type three-level system [Fig. 5.1 (b)]. When
k1, k

′
1, k2, k

′
2 and k3 are all turned on simultaneously, a non-DFWM (ND-

FWM) process k′s2 = k3 + k2 − k′2 is generated together with the DFWM
ks1. These generated FWM signals have the same frequency ωs(= ω1) and
propagate in the same direction.

Fig. 5.2. Experimental setup. Inset : measured relative strengths of various FWM
signals in the two energy-level systems.

The propagation equation of FWM signals in the oven with Doppler effect
is

I = IF − IA

= CN2
F μ2

∫ v=+∞

v=−∞
(e−(v/u)2 |ρ(3)(v)|2/u

√
π)dv − I0(1− e−αL)
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= CN2
F μ2

∫ v=+∞

v=−∞
{e−(v/u)2(|ρ(3)(v)|2 −KIm[F (v)])/u

√
π}dv, (5.1)

where IF is the total intensity of generated FWM signals; ρ(3) is the density-
matrix element of the total FWM signal including pure-FWM ρ

(3)
10 and multi-

dressed FWM signals; IA is the absorption of the FWM signals in the medium.
α is the absorption coefficient;K = I0Lk1/CNF �ε0 and F = �ε0χ/Nαμ2

1. NF

is the effective atom number and C is a constant; μ is the dipole moment. v
is the velocity of the atom due to Doppler effect and u is the most probable
velocity. In the presence of IA, the theory can well explain the interaction
and propagation behaviors of FWM signals.

In the experiment, the coupling fields k1 and k′1 (diameter 0.8 mm and
power 3 μW) and the probe field k3 (diameter 0.8 mm and power 5 μW) are
scanned from 589.3 nm to 589.9 nm (|0〉 to |1〉 transition) to generate the
DFWM signal ks1. The coupling fields k2 and k′2 (diameter 1.1 mm and power
90 μW) are tuned to the line center (589.0 nm) of the |0〉 to |2〉 transition,
which generate the NDFWM signal k′s2 at frequency ω1 by using one photon
each from fields k3, k2 and k′2. There exist interplay and mutual suppressing
between these two FWM signals (ks1 and k′s2) when five light beams are all
on. As can be seen from Fig. 5.3 (a), in the presence of the stronger coupling
field k2 or k′2, the DFWM signal ks1 (using one photon each from fields k3, k1

and k′1) is suppressed dramatically [the pentacle and pentagon points in Fig.
5.3 (a)]. Figure 5.3 (b) shows the single-dressing effect of the NDFWM signal
k′s2 by field k1 or k′1, which is too weak (with Rabi frequencies G1 = G′1 =
0.33 cm−1) to affect the NDFWM signal k′s2 [the triangle and hexagon points
in Fig. 5.3 (b)]. When five laser beams are all on, the individual DFWM signal

Fig. 5.3. (a) Pure-FWM signal ks1 and singly-dressed ks1 with G2 = G′2 =
1.80 cm−1; (b) Pure-FWM signal ks2 and singly-dressed ks2 with G1 = G′1 =
0.33 cm−1; (c) Pure-FWM signals ks1, ks2 and the mutual-dressed signals when all
five light beams are on. The scattered points are the experimental results and the
solid lines are theoretical results. Adopted from Ref. [13].
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ks1 [the top curve in Fig. 5.3(c)] and the NDFWM signal [the middle curve in
Fig. 5.3(c)] are both significantly suppressed [the lower curve in Fig. 5.3(c)].

One way to explain these effects is by using the dressed-state picture.
Both of these mutual dressing processes exist at the same time in the ex-
periment and the two generated FWM signals co-propagate in the same
direction, so the total detected FWM signal is proportional to the mod
square of ρ(3), where ρ(3) = ρ

(3)
s1 + ρ

(3)
s2 . The dressed FWM signals can

be written as ρ
(3)
s1 = −iαd2eikf ·r/d2

l (Γ00d2 + |G2 + G′2|2) and similar re-
sult for ρ

(3)
s2 , where Gi = −μiEi/� (i = 1, 2, 3) is the Rabi frequency;

Γ10,Γ20, and Γ00 are the transverse relaxation rates of the respective en-
ergy levels; Δi (i = 1, 2) is the frequency detuning; α = 2G3G

′
1G1, d1 =

iΔ1 + Γ10

√
1 + (4|G1|2 + 2|G3|2) /Γ2

10, and d2 = iΔ2 + Γ20

√
1 + 4|G2|2/Γ2

20

(power broadening is considered). Detail calculations of ρ(3)
s1 and ρ

(3)
s2 indicate

that several interesting physical processes exist in this composite system to
show the interplay between these two FWM processes. When the two gener-
ated FWM signals overlap in frequency, constructive or destructive interfer-
ence can result due to the sign change either in ρ

(3)
s1 or ρ

(3)
s2 under certain fre-

quency detuning conditions. However, in the current system the competition
between the two coexisting FWM channels is dominated by the contributions
from the mutual dressing effect, which can be an order of magnitude lager
than the interference effect. After calculating ρ(3) under our experimental
conditions and substituting it into Eq. (5.1), excellent agreements are ob-
tained between the theoretical calculations and the experimental data [Fig.
5.3 (c)].

By inserting a tunable attenuation-plate in the path of the coupling beam
k′2, we measured the intensities of the generated DFWM signal in ks1 under
different powers of the dress field k′2(k2 blocked), as shown in Fig. 5.4 (a). It
is clear that the DFWM (ks1) intensity is further suppressed as the power
of the dress field (k′2) increases [Fig. 5.4 (a)]. At high dress field (k

′
2) power,

the DFWM signal ks1 splits within the EIT window with Δ2 = 1.44 cm−1,
which is the AT splitting of about 0.9 cm−1, as shown in Fig. 5.4 (b) (circle
points). The FWM signal intensity is suppressed when the frequency of the
coupling field is scanned across the resonance [see the solid lines in Fig.
5.3 (a), (b)]. Moreover, at the larger power of field k2 or k′2(Δ2 
= 0), the AT
splitting of the DFWM (ks1) signal that can be used for measuring the dipole
moment12 is observed during scanning the detuning Δ1 [the solid line of
Fig. 5.4 (b)].

Next, let us consider the correlation between the atomic coherence and
the conversion efficiency of the NDFWM process k′s2 with both k1 and k′1
blocked. Figure 5.4 (c) shows the NDFWM signal k′s2 versus the power of the
coupling field k′2. As one can see that the perturbation chains of the NDFWM
signal k′s2(ρ

(0)
00

−ω2−−−→ ρ
(1)
02

ω1−−→ ρ
(2)
12

ω2−−→ ρ
(3)
10 and ρ

(0)
00

ω1−−→ ρ
(1)
10

−ω2−−−→ ρ
(2)
12

ω2−−→
ρ
(3)
10 ) correlate to the two-photon atomic coherence. As one can see in Fig.
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Fig. 5.4. (a) The power dependence of the singly-dressed (k′2) DFWM (ks1) signal
intensity with Δ2 = 1.44 cm−1�(b) AT-splitting of the DFWM (ks1) signal intensity
with EIT. I(τ,Δ) with G′2 = 1.89 cm−1Δ2 = 1.44 cm−1; (c) Relation between the
calculated atomic coherence (solid curve) and the measured conversion efficiency
of the NDFWM signal (data points) under the power change of field k′2 with Δ2 =
1.44 cm−1.

5.4 (c), there exists a maximum for the calculated atomic coherence (solid
curve), which corresponds well to the maximum of the conversion efficiency
for the NDFWM signal (dot points). Such comparison indicates that the
atomic coherences play a significant role in the enhancements of the FWM
processes.

Now, we concentrate on the relation between the “inner-dressing” and
“outer-dressing” cases for the DFWM signal ks1. First, the dress fields k2

and k′2 (90 μW) are tuned to |0〉− |1〉 transition (“inner-dressing” case). The
singly-dressed (k′2) DFWM ks1 is obtained (the data points in Fig. 5.5 (a),
with k2 blocked). Then, the dress fields k2 and k′2 are tuned to |0〉 − |2〉
transition (“outer-dressing” case) with the same experimental conditions and
the experiment is repeated [the data points in Fig. 5.5 (b)]. We find that
the suppression in the “inner-dressing” case is smaller than in the “outer-
dressing” case.

We can analyze this in the dressed-state picture. The perturbed DFWM
process can be described by ρ

(0)
00

ω1−−→ ρ
(1)
10

−ω1−−−→ ρ
(2)
00

ω1−−→ ρ
(3)
1± (i.e., the ground

level |0〉 is split into |+〉 and |−〉). The energy-level splitting of the “inner-
dressing” case is smaller than the “outer-dressing” case [see Figs. 5.1 (c)
and 5.1 (d)]. From Eq. (5.1), the suppression or enhancement of the DFWM
signal is induced by the factor |G′2|2 in the denominator. In the experimental
system, only the effective dipole moment μ can affect the magnitude of the
Rabi frequency, which causes the difference in dressing strength. There are
twelve degenerate transitions with different Clebseh-Gordan coefficients in
|0〉 − |1〉 due to Zeeman levels and eighteen in |0〉 − |2〉. Since we cannot
distinguish then in our experiment, we can only determine the effective (or
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Fig. 5.5. (a) and (b) Comparisons of the “inner-dressed” and the “outer-dressed”
DFWM signals (ks1) at 589.6 nm (|0〉 − |1〉 transition). The curves are fits to the
experimental data; (c) and (d) Comparisons of the “inner-dressed” and the “outer-
dressed” DFWM signals (ks1) at 589.0 nm (|0〉 − |2〉 transition). The points are
the experimental data and the solid lines are the theoretical results. (a) and (d)
G′2 = 1.27 cm−1 with Δ2 = 1.44 cm−1; (b) and (c) G′2 = 1.80 cm−1.

macroscopic) dipole moments for these transitions.
In order to verify this idea, the coupling fields k1, k

′
1 and the probe field

k3 (for generating the DFWM signal ks1) are tuned from |0〉− |1〉 to |0〉− |2〉
transition. So, the roles of the “inner-dressing” and “outer-dressing” are ex-
changed. We repeated the experiment and obtained the results as shown in
Fig. 5.5 (c), (d). In this case, the suppression effect for the “inner-dressing”
case should be larger than for the “outer-dressing” case. Comparing the re-
sults in Fig. 5.5 (c), (d), the observations agree well with the theoretical
prediction.

In order to obtain agreements with the experimental spectra in Figs.
5.5 (c) and 5.5 (d), the Rabi frequency of the dress field (G′2) is adjusted un-
til the peak-to-peak value matches the experimental data. From such fitting
to the experimental data, the relative μ values can be determined experimen-
tally from the fitted Rabi frequencies. From the above experiment, the dipole
moments are determined to be: μ20 = 2.99(24)×10−29C ·m (for the |0〉− |2〉
transition) and μ10 = 2.11(24) × 10−29C · m (for the |0〉 − |1〉 transition),
which agree well with their real values [14]. Such, this method can be used
to measure the unknown effective dipole moments of atoms and molecules.
Compared to the method used in Ref. [12], the FWM process is a coherence
phenomenon, and the generated signal is a coherent radiation and therefore
can be detected easily. More importantly, under the same experimental condi-
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tions in different energy level systems, the dressing effects strongly depend on
the dipole moments of the transitions, which provides an easy and qualitative
way to determine the effective dipole moments of different transitions.

5.2 Observation of Enhancement and Suppression of

Four-Wave Mixing Processes

In this section, the experimental studies of enhancement and suppression be-
tween two FWM processes in a multi-dressed ladder-type three-level atomic
system are described, as shown in Fig. 5.6 (a). The experimental data clearly
show the evolutions of the enhancement and suppression, from pure enhance-
ment to partial enhancement/suppression, and then to pure suppression at
resonance, which are in good agreement with theoretically calculated results.
There also exist interesting interplays between these two FWM processes due
to induced atomic coherence in this system. In addition, the power depen-
dences of enhancement and suppression are experimentally studied.

Fig. 5.6. (a) The diagram of relevant Na energy levels. (b) and (c) The dressed-
state pictures of the suppression and enhancement of FWM E1 for the two-level
system, respectively. (d) The dressed-state picture of the suppression of FWM Ef2

for the ladder system.

The experiment is carried out involving three energy levels [Fig. 5.6 (a)].
The pulse laser beams are aligned spatially, as shown in Fig. 5.7. For the tran-
sition between |0〉(3S1/2) to |1〉(3P1/2), the coupling laser beam E1(ω1, k1,
and G1) together with E′(ω1, k

′
1, G

′
1) having a small angle (0.3

◦) propagates
in the opposite direction of the weak probe field E3(ω1, k3, G3). These three
laser beams are with the same frequency detuning Δ1 = ω10−ω1, where ω10
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is the transition frequency between |0〉 and |1〉. The frequency components of
E1 and E′1(ω1) in beam 1 and beam 2 induce a population grating between
states |0〉 to |1〉, which is probed by beam 3 (E3) with the same frequency
ω1. This interaction generates a degenerate-FWM (DFWM) signal Ef1 [Fig.
5.6 (a)] satisfying the phase-matching condition of kf1 = k3+k1−k′1. Then,
two additional coupling fields E2(ω2, k2, G2) and E′2(ω2, k

′, G′2) are applied
as scanning fields connecting the transition between |1〉 and a third level |2〉
(4D3/2,5/2) with the same frequency detuning Δ2(= ω21−ω2). The laser field
E2 is added onto beam 1 and E′2 propagates in another plane (xz) perpen-
dicular to the yz plane with a small angle from E1, as shown in the inset
of Fig. 5.7. E2 and E′2 are from another similar dye laser with its frequency
set at ω2 to dress the energy level |1〉 [Fig. 5.6 (b)]. The interaction between
E2, E

′
2, and E3 generates a non-DFWM (NDFWM) signal Ef2 satisfying

kf2 = k3 + k2 − k′ (for the subsystem |0〉 → |1〉 → |2〉).

Fig. 5.7. The scheme of the experiment. Inset gives the spatial alignments of the
incident beams.

If when E1, E
′
1, E2, E

′
2, and E3 are all turned on simultaneously, the

DFWM process Ef1 and NDFWM process Ef2 are generated simultaneously
and there exist interplays between these two FWM signals [13, 15]. In addi-
tion, both of these two generated FWM signals are in the same EIT window
formed by the ladder system (|0〉 → |1〉 → |2〉) in the two-photon Doppler-free
configuration [2, 5]. These generated FWM signals have the same frequency
ωf (= ω1) and propagate in two directions (i.e., strictly counter-propagating
E′1 and approximately counter-propagating E′2, respectively) detected by a
photomultiplier tube and a fast gated integrator (gate width of 200 ns), re-
spectively.

In order to better understand the experimental results, we calculate the
two interacting FWM processes. First, we consider the DFWM process Ef1

dressed (or perturbed) by the coupling laser beams E2, E
′
2 [Fig. 5.6 (c)]. There

are two transition paths for generating FWM, which are described by the
dressed perturbation chains [15 – 22]:

ρ
(0)
00

(E1)
∗

−−−→ ρ
(1)
±0

(E′
1)

∗
−−−→ ρ

(2)
00

E3−−→ ρ
(3)
±0, (5.2)
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ρ
(0)
00

(E′
1)

∗
−−−→ (ρ(1)

±0)
∗ E1−−→ ρ

(2)
00

E3−−→ ρ
(3)
±0, (5.3)

ρ
(0)
00

E1−−→ ρ
(1)
±0

(E′
1)

∗
−−−→ ρ

(2)
±±

E3−−→ ρ
(3)
±0, (5.4)

ρ
(0)
00

(E′
1)

∗
−−−→ (ρ(1)

±0)
∗ E1−−→ ρ

(2)
±±

E3−−→ ρ
(3)
±0. (5.5)

The solved expressions of the corresponding FWM processes are: ρ
(3)
a =

−GA/(Γ00C
2
1 ), ρ

(3)
a = −GA/(Γ00C

2
1 ), ρ

(3)
b = −GA/(Γ00C1C

∗
1 ), ρ

(3)
c = −GA/

(C2
1C2), and ρ

(3)
d = −GA/(C1C

∗
1C2), where GA = G∗1G1G3, C1 = d1 +

A1, C2 = Γ11 + A2 + A∗2, A1 = |G2|2/d2, A2 = |G2|2 /(iΔ2 + Γ21)d1 =
iΔ1 + Γ10, d2 = i(Δ2 + Δ1) + Γ20. Gi = −μiEi/�(i = 1, 2, 3) is the Rabi
frequency; Γ10,Γ20 and Γ00 are the transverse relaxation rates. The total
contribution is from the sum of the four chains:

ρ
(3)
DFWM = ρ(3)

a + ρ
(3)
b + ρ(3)

c + ρ
(3)
d . (5.6)

Similarly, for the ladder-type three-level system [Fig. 5.6 (d)], the dressed

perturbation chain is: (e) ρ00
E3−−→ ρ±0

E2−−→ ρ20
(E′

2)
∗

−−−→ ρ±0. The third-order
nonlinear process of the NDFWM Ef2 can be described by

ρ
(3)
NDFWM = −G∗2G2G3/[d2(d1 +B3)2], (5.7)

where B3 = |G1|2/Γ11. From Eqs. (5.6) and (5.7), one can see that the two
FWM processes are closely connected by dressed effects. By adjusting the
frequency detuning Δ1 and scanning the dressed field detuning Δ2, many
interesting phenomena can be obtained.

We first set Δ1 at one point and scan Δ2. Evolution from suppression
to enhancement is observed as shown in Fig. 5.8. The probe field is changed
from high to low frequency side. As frequency detuning goes from Δ1 < 0
to zero, the DFWM signal Ef1 is enhanced gradually to the maximum value
[right side of Fig. 5.8 (a)], which is an enhanced process. Then, it undergoes
a partial enhancement/suppression [Fig. 5.8 (b)], until the FWM signal is
purely suppressed at the resonant point [Fig. 5.9 (b) and the upper curves of
Fig. 5.9 (a)]. When Δ1 changes to be positive, it shows a symmetric process
[i.e., a partial suppression/enhancement in Fig. 5.8 (c), and a pure enhanced
process in the left side of Fig. 5.8 (a)]. In fact, we observed the evolution
figures of theoretical plots of suppression and enhancement showing in inset
of Fig. 5.8 (a), (d), (e). The probe field is changed from high frequency to low
frequency. As detuning parameter Δ1 < 0 trends to zero, DFWM signal is
enhanced gradually to the maximum [inset of Fig. 5.8 (a)] and then experience
a half enhancement and half suppression, until purely suppressed at resonant
point [Fig. 5.8 (d)]. Then we have the detuning parameter Δ1 > 0 which is a
symmetric process to above [Fig. 5.8 (e)].

One can explain these observed effects by using the dressed-state picture.
Let us first consider the case of large G2 (e.g., 15.7 GHz). The dressing field
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Fig. 5.8. The evolution of the dressed effects for different Δ1 values: (a) Δ1 =
−101 GHz (squares), −84.3 GHz (circles), −67 GHz (triangles), 71.3 GHz (reverse
triangles), 88.6 GHz (pentagons), 105 GHz (hexagons) from right to left. Inset:
theoretical plots corresponding to the experimental parameters. (b) Δ1 = −30.3
GHz (squares), −21.6 GHz (triangles) and −13 GHz (circles) with (d) theoretical
plots. (c) Δ1 = 29.3 GHz (squares), 38 GHz (triangles) and 42.2 GHz (circles) with
(e) theoretical plots.

couples the transition |2〉 to |1〉 and creates the dressed states |G2±〉 [Fig.
5.5 (c)]. Therefore, the DFWM signal Ef1 for a large one-photon detuning is
extremely small when G2 = 0, the strong dressing field can cause resonant
excitation for one of the dressed states if the condition ω1+ω2 = ω10+(ω21±
ΔG2) (i.e., Δ1 +Δ2 ±ΔG2 = 0) is satisfied [16], where ΔG2 is the splitting
level relative to the original position of the state |1〉 by the dressing field E2

or E′2, so that Δ2 = (G2
2 − Δ2

1)/Δ1. For example, the DFWM signal Ef1

is strongly enhanced in the presence of dressing field when Δ1 = −67 GHz
[Fig. 5.8 (a)], which is mainly due to the one-photon (|0〉 → |G2+〉) resonance.
Thus, initially, Δ1 for Ef1 is very large, so the dressed effect only gives the
enhancement. As Δ1 goes towards zero, the suppression effect gets into play
gradually due to the dressed states |G2±〉 [Fig. 5.5 (b)]. In this case, when
the frequency changes from high to low values it results in a suppression
for the DFWM signal first and then an enhancement. From the data, we
can deduce the condition for the suppressed-dip to be ω1 + ω2 = ω10 + ω21,
(i.e. Δ1 + Δ2 = 0). At the Δ1 = 0 point (resonant case), only suppression
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effect exists [Fig. 5.5 (b)]. For the Δ1 > 0 part, it has a symmetric evolution
between the enhancement and suppression effects, as shown in Fig. 5.8 (c).

Next, an appropriate Δ1 value is chosen at the position of either enhanced
or suppressed DFWM process Ef1 (i.e., the peak or dip in Fig. 5.8). The
dressing field E2 is applied to create the dressed state |G2±〉. First, we set E1,3

at a large detuning (Δ1 = −55.8 GHz), which leads to the one-photon (|0〉 →
|G2+〉) resonance [Fig. 5.6 (c)] resulting in an enhanced DFWM Ef1 signal.
Under this condition, we measure the power dependence of the enhanced
DFWM process by scanning Δ2 [Fig. 5.9 (a)]. The enhancement effect gets
bigger and bigger as the dressing field power increases, until it saturates
at certain point, as shown in the inset of Fig. 5.9 (a). Figure 5.9 (b) shows
that there is a suppressed dip at the line center, which indicates that at
exact one-photon resonance (Δ1 = 0), the DFWM signal intensity is greatly
suppressed when scanning the dressing field E2 across its resonance (Δ2 = 0).
As expected, the DFWM signal intensity decreases gradually as the coupling
intensity increases due to the dressed effect [the inset plot in Fig. 5.9 (b)],
which is well described by the theoretical curve (solid line).

Fig. 5.9. (a) Measured enhanced DFWM signal spectra for different coupling field
(E2) intensities, 17.4 μW (squares), 34.2 μW (circles) and 64.3 μW (triangles). In-
set: the experimental data and theoretical curve of the power dependence of the
enhanced FWM signal, Ep1Δ1 = −55.8 GHz. (b) Measured suppressed DFWM sig-
nal spectra for different coupling field (E2) intensities, 81.8 μW (squares), 72.7 μW
(circles) and 54.6 μW (triangles). Inset: the experimental data and theoretical curve
of the power dependence of the suppressed FWM signal, Ep1Δ1 = 0 GHz.

Finally, we concentrate on the interactions between these two FWM pro-
cesses. Figure 5.10 (a) shows mutual suppression, where the upper curves are
the DFWM signal Ef1, while the lower curves are the NDFWM signal Ef2.
Figure 5.10 (b1) depicts the relevant DFWM signal Ef1 and Fig. 5.10 (b2)
plots the NDFWM signal Ef2. As shown in Fig. 5.10 (a), different suppressed
FWM signals can be seen by blocking different laser beams. The square points



5.2 Observation of Enhancement and Suppression of Four-Wave Mixing

Processes 265

Fig. 5.10. Mutual suppression between the DFWM signal Ef1 and the NDFWM
signal Ef2. (a) Upper curves: pure-DFWM signal (squares), singly-dressed DFWM
signal (triangles), doubly-dressed DFWM (circles). Lower curves: pure-NDFWM
signal (squares), singly-dressed NDFWM signal (triangles), and doubly-dressed ND-
FWM signal (circles), Δ1 = 0 GHz. (b) Interplays between (b1) DFWM (Ef1) and
(b2) NDFWM (Ef2) processes. The conditions are the same as in (a), Δ1 = −45.5
GHz. Adopted from Ref. [15].

are pure DFWM signal case. When the additional laser beam E2 or E′2 is
turned on, suppressed DFWM signals are obtained (triangle points in up-
per curves). Using the same procedure, we obtain the suppressed NDFWM
signals (triangle points in lower curves) comparing to the pure NDFWM
signal [square points in lower group]. When all five laser beams are turned
on, the two FWM processes couple to each other with mutual suppressions,
as shown by the circle points both in upper and lower groups of curves in
Fig. 5.10 (a). Then, we set Δ1 at a point with enhanced DFWM and ob-
tain a group of curves showing interplays between these two FWM processes,
where the DFWM signal Ef1 is enhanced while the NDFWM signal Ef2 is
suppressed by scanning Δ2. Similarly, comparing to the pure DFWM signal
Ef1 [square points in Fig. 5.10 (b1)], the dressed DFWM signal Ef1 is en-
hanced by blocking different laser beams [triangle points and circle points in
Fig. 5.10 (b1)]. Other than the DFWM process, the NDFWM process [square
points in Fig. 5.10 (b2)] is suppressed by the coupling fields E1, E

′
1 [triangle

points and circle points in Fig. 5.10 (b2)]. One can explain these observed
phenomena by using dressed-state picture [see Figs. 5.6 (c) and 5.5 (d)]. For
DFWM signal Ef1, the one-photon (|0〉 → |G2+〉) resonant condition is sat-
isfied in enhancing Ef1 in Fig. 5.6 (c). At the same time, for the NDFWM
signal Ef2 in Fig. 5.6 (d), the state |1〉 is dressed by the coupling fields E1

and E′1, and separated into the dressed states |G1±〉, which always suppress
Ep1 due to destructive interference.
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5.3 Controlling Enhancement and Suppression of

Four-Wave Mixing via Polarized Light

Polarizations of the involved laser beams can play important roles in electro-
magnetically induced transparency (EIT) [23] and four-wave mixing (FWM)
processes [24, 25] when multi-Zeeman energy levels are involved in the atomic
systems [26, 27]. Several previous experimental and theoretical studies have
shown that EIT and FWM processes can be effectively controlled by selecting
different transitions among Zeeman sublevels via the polarization states of
the laser beams [23, 25, 26]. Also, additional dressing laser beams can modify
FWM efficiencies in multi-level atomic systems. In our previous experiments,
we have shown the enhancement and suppression of FWM by controlling the
dressing laser beams in the multi-level atomic systems [15].

In this section, we describe an experimental demonstration that the de-
generate FWM (DFWM) caused by two strong pumping beams and a weak
probe beam in a two-level Zeeman-degenerate atomic system can be modified
by the polarization states of the two pumping beams, and by an additional
dressing beam interacting with an adjacent atomic transition, as shown in
Fig. 5.11 (a). The DFWM process is enhanced or suppressed due to the com-
bined polarization and dressing effects. The polarizations of the pumping
beams select the transitions among different Zeeman levels, which usually
have different transition strengths [25], and the dressing beam determines the
effective frequency detunings of the probe beam from the multi-Zeeman lev-
els. The experimental observations clearly show the evolution of the DFWM
enhancement and suppression versus pump field polarizations.

5.3.1 Theoretical Model and Analysis

Three energy levels are shown in Fig. 5.11 (a). The pulse laser beams are spa-
tially aligned as shown in Fig. 5.11 (b). The pumping laser beams E1(ω1, k1,
and Rabi frequency Gg,M ) and E′1(ω1, k

′
1, G

′
g,M ) (having a small angle of

0.3◦) are tuned to the transition |0〉(3S1/2) to |1〉(3P3/2), and E1 propagates
in the opposite direction of the weak probe field E3(ω1, k3, Gg,M ), where
M denotes the magnetic quantum number of the lower state in transition.
This interaction generates a DFWM signal Ef [Fig. 5.11 (a)] satisfying the
phase-matching condition [11]: kf = k3 + k1 − k′1.

Then, an additional dressing field E2(ω2, k2, Gd,M ) is applied to the tran-
sition between |1〉 and the third level |2〉(4D3/2,5/2) with a frequency detuning
Δ2(= ω21−ω2). E2 is from another similar dye laser. Two quarter-wave plates
(QWP) are used for changing the polarizations of the pumping fields k1, k

′
1.

The generated DFWM signal is split into two equal components by a 50%
beam splitter before detection, one is detected directly (denoted as IT ) and
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Fig. 5.11. (a) Zeeman structure of the three-level ladder-type atomic system in
the experiment and various transition pathways in it. Solid line: dressing field
Gd; Short-dashed lines: when the pumping fields are linearly-polarized, Gg, G′g ,
long-dashed lines: when the pumping fields are circularly- polarized; dotted line:
the probe field Gp. (b) The schematic diagram of the experiment. (c) and (d)
Schematic diagrams for suppression and enhancement of the DFWM in the dressed-
state picture.

the other is further decomposed into P and S polarized components by a
polarized beam splitter (PBS), which are denoted as IP and IS , respectively.

Figure 5.11(c) depicts the dressed-state picture with split 3P3/2 Zeeman
sublevels, which corresponds to the DFWM suppression case when fields
k3, k1, k

′
1 are on resonance with transition |0〉 → |1〉. Figure 5.11 (d) shows

the enhancement case when these fields are tuned to near the dressed energy
level. For most cases in this work, only one QWP is used to modify the
polarization state of k1, so it can be decomposed into linearly- and circularly-
polarized components while all other fields are kept as linearly polarized [Fig.
5.11 (a)]. In fact, we assume P polarization direction as the quantization
axis and the component perpendicular to it (S polarization) is decomposed
into balanced left- and right-circularly-polarized parts, while the component
parallel to it (P polarization) keeps linearly polarized. Then the generated
FWM signals will also contain linearly and circularly polarized components
denoted as IL and IC , and they associate the detected intensities in the
P and S polarizations with the equations, namely the detected intensities
of IP , IS and total intensity IT in the real experiment can be written as:
IP = IL cos2 α + IC/2, IS = IL sin2 α + IC/2 and IT = IS + IP = IL + IC ,
where α is the angle between the P-polarization and the direction of the
linearly-polarized signal. The transition pathways in the FWM generation
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can be described as following [3]:

(5.8)

(5.9)

We take the transition passage |0−1/2〉
G0

g−−→ |1−1/2〉
(G′−

g )
∗

−−−−−→ |01/2〉
G0

p−−→

|11/2〉
(G+

f )
∗

−−−−→ |0−1/2〉 for an example to explain the transition process. The
first step, is that a ground state particle |0−1/2〉 absorbs a coupling photonG0

g

and transits to the dressed state |1−1/2〉, expressed as |0−1/2〉
G0

g−−→ |1−1/2〉. In
the second step, the particle emits a coupling photon (G′−g )

∗ and transits to

the dressed state |01/2〉, expressed as |1−1/2〉
(G−

g )
∗

−−−−→ |01/2〉 in the transition
passage. Thirdly, the particle absorbs a probe photon G0

p and transits to the

dressed state |11/2〉, expressed as |01/2〉
G0

p−−→ |11/2〉 in the transition passage.
The fourth step is, the particle stimulated transits back to state |0−1/2〉 and
emits a pumping photon (G+

f )
∗, expressed as |11/2〉

(G+
f )

∗

−−−−→ |0−1/2〉.
Since the CG coefficients may be different for different transitions between

Zeeman sublevels, the Rabi frequencies are different even with the same laser
field [25]. For example, considering CG coefficients values [28, 29], we can ob-
tain |G±g,±3/2|2/|G±g,±1/2|2 = 3, which indicates that the circularly-polarized
DFWM signal is mainly dressed by G0

d,±3/2, not by G0
d,±1/2. And also from
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CG coefficients, we can obtain that |G0
d,±3/2|2 = 9|G0

d,±1/2|2, which indicates
that the dressing effects in the circularly-polarized subsystems are far greater
than in the linearly-polarized subsystems.

Based on the discussion above, we can get the expressions for IL and
IC . As Fig. 5.11 (a) shows, there are two linearly polarized subsystems

(|0M 〉
G0

g,M ,(G0
g,M)

∗
,G0

p,M−−−−−−−−−−−−−→ |1M 〉 (M = ±1/2)) which can generate linearly
polarized DFWM, and is dressed by the linearly-polarized dressing transi-
tion with |G0

d,±1/2|2. By simply substituting the corresponding dressing terms
into Eq. (5.11) of Ref. [21], we can obtain an expression of density-matrix
element which induces the FWM signal of linearly polarized component.
To simplify the expression, the symmetry of CG coefficients is considered,
namely |G0

p(g,d)M
| = |G0

p(g,d)−M
| and |G+

p(c,d)M
| = |G−p(c,d)−M

|. Moreover,
if G0±

p(c,d)M
>> Γ0(1,2),0(1,2), we can have the conditions of Γ0(1,2),0(1,2) ≈

Γ0M (1M ,2M ),0M (1M ,2M ). Consequently, the simplified expression is given by:
ρ
(3)
L = −2i ∣∣G0

gM

∣∣2 G0
pM (A1+2A2)[1/(A7+A3)2+1/(Δ2

1+Γ
2
10+ |GdM |4 /A4+

2A5 |GdM |2 /A6)], where A1 = 1/Γ00 + 1/Γ11, A2 = Γ21|GdM |2/(Δ2
2 + Γ2

21),
A3 = |GdM |2 /[i(Δ1 + Δ2) + Γ21], A4 = (Δ1 + Δ2)2 + Γ2

21, A5 = −Δ1Δ2 −
Δ2

1 + Γ10Γ20, A6 = (Δ1 +Δ2)2 + Γ2
20, and A7 = iΔ1 + Γ10.

On the other hand, the circularly-polarized subsystems are more compli-

cated [21,25]. In addition, besides being dressed by
∣∣∣G0

d,±1/2

∣∣∣2, they are also
dressed by

∣∣∣G0
d,±3/2

∣∣∣2. Also, by inserting the dressing terms into Eq. (5.13)
of Ref. [21] and under the same simplified conditions, we can obtain the ex-
pression of the density-matrix element which induces the FWM signal of the
circularly-polarized component as

ρ
(3)
C = −2B1/[Γ00(A7 +B2)2]−∑

M=±1/2

2B3/[Γ00(A7 +
∣∣G0

dM

∣∣2 /A8)(A7 + |G0
dM+1

|2/A8)],

where A8=i(Δ1+Δ2)+Γ20, B1=iG0
p−1/2

G+
g−1/2

(G0
g−1/2

)∗, B2= |G0
d−1/2

|2/A8,
and B3 = iG0

pM
(G0

gM
)∗G+

gM
. Therefore, the intensities of the FWM in the P

and S polarization directions are: IL ∝ |ρ(3)
L |2 and IC ∝ |ρ(3)

C |2, respectively.

5.3.2 Experimental Results

The suppression and enhancement of DFWM processes happen as the probe
field is set at different frequency detuning conditions. In Fig. 5.11 (a), the
pumping fields E1 and E′1 (with diameter of 0.8 mm and power of 3 μW) and
the probe field E3 (with a diameter of 0.8 mm and power of 5 μW) are tuned
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to the line center (589.0 nm) of the lower |0〉 to |1〉 transition, which generate
the DFWM signal Ef at frequency ω1 by using one photon each from fields
E1, E

′
1 and E3. When Δ1 = 0 [Fig. 5.11 (c)], the DFWM signal is suppressed

by the dressing field. For clearly understanding the influences of the incident
beams to suppression and enhancement of FWM processes, we investigate
the signals in P and S polarizations separately while the total intensity is the
sum of intensities of these two polarizations components, as shown in Fig.
5.12 (a1) – (a3), (b1) – (b3). The background represents the signal strength of
the pure DFWM with no dressing field while the dips represent that the signal
was suppressed at different polarizations of the pumping beam. The dressing
field E2 (with a diameter of 1.1 mm and power of 100 μW) scans from 568.5
nm to 569.1 nm (a crossing the upper |1〉 to |2〉 transition) to dress the DFWM
process. When Δ1 gets large enough [as in Fig. 5.11 (d)], the DFWM signal is
enhanced by the dressing field, as shown in Fig. 5.13 (a1) – (a3), (d1) – (d3).
When Δ1 is set at a proper position which is not too far from the resonant
position, both suppression (dips lower than background) and enhancement
(peaks higher than background) can occur at the same time, as shown in
Fig. 5.13 (a1) – (a3). The linewidths of the measured suppressed dips and
enhanced peaks of FWM spectra are about 20 GHz.

Let us first consider the experimental results of the DFWM suppression.
Figure 5.12 (a1) – (a3) presents the DFWM spectra (with scanned dressing
field Δ2) from θ = 0 to θ = 90◦ per 5◦, which is the polarization angle of the
pumping field E1 The dips below the background represent the suppressed
DFWM by the dressing field. Figure 5.12 (b1) – (b3) present the θ-dependence
curves of the background, the minimum of the suppressed dips, and depth
of the suppressed dips (background minus minimum) in Fig. 5.12 (a1) – (a3),
respectively. The dressing effect is clearly revealed by Fig. 5.12 (b3) which
shows that the suppression depths in P and S polarizations are both as-
cending as the QWP is rotated from 0 to 45◦. This can be explained by
changing the DFWM subsystems from linearly-polarized ones to circularly-
polarized ones, and then calculating the intensities IP , IS and IT . In fact,
as Fig. 5.12 (a1) – (a3) shows, DFWM signals are mainly generated in the
linearly-polarized subsystems which are dressed by G0

d,±1/2 when k1 is lin-
early polarized (θ = 0). As QWP is rotated, the linearly-polarized transi-
tions gradually transform into circularly-polarized ones which then involve
the dressing transitions G0

d,±3/2 partly instead of G0
d,±1/2. Consequently, the

dressing effect gets larger and the suppression dips become deeper as QWP is
rotated form 0 to 45◦. Furthermore, the suppression condition (Δ1+Δ2 = 0)
for DFWM in all the subsystems is uniform because it contains no term relat-
ing to the Zeeman structure, which results in the similar dependence curves
for S and P polarizations, as well as the total intensity, as shown in Fig. 5.12
(a1) – (a3).

Figure 5.12 (b1) presents the polarization dependence of the background
as well as the pure DFWM. The shapes of the curves for the P & S polar-
izations and the total intensity basically follow the well-expected classical



5.3 Controlling Enhancement and Suppression of Four-Wave Mixing via

Polarized Light 271

polarization spectroscopy [17, 18]. Figure 5.12 (b2) shows the polarization
dependence of the dressed DFWM signal peak values, which include the pure
DFWM and the suppression dips.

Fig. 5.12. The polarization dependence of the suppressed DFWM signals. (a1)–
(a3) variations of IT , IP and IS (by scanning Δ2) versus rotation angle θ (0◦–90◦

per 5◦), respectively. (b1)–(b3) Dependence curves of the background, minimums
of the dips, and suppression depths for IT (squares), IP (circles) and IS (triangles)
and, respectively. The solid curves in (b1)–(b3) are the corresponding theory results.
Δ1 = 0. Adopted from Ref. [28].

For DFWM enhancement when k3, k1, k
′
1 are far detuned [Fig. 5.11 (d)],

as shown in Figs. 5.13 and 5.14, the polarization dependence of the enhanced
peak heights (maximum minus background) for the S polarization is different
[Fig. 5.13 (b3) triangle points]: it descends as QWP is rotated from 0 to 45◦.
Comparing expressions of IL and IC above, we can see that at far detuning
condition for k3, k1, k

′
1, the polarization variation of k1 enlarges α. It means

that S polarized components projecting from linearly polarized FWM are in-
creasing while P polarization components are decreasing gradually as rotating
QWP. Consequently, the dressing efficiency of the S polarization is relatively
reduced as compared with the condition when k1 is linearly polarized. On
the other side, the P polarization component is relatively enhanced.

As discussed above, the dressing field Rabi frequencies for different Zee-
man sublevels may be different (e.g., |G0

d,±3/2|2 = 9|G0
d,±1/2|2), which will

induce different splitting distances for different sublevels. The exact expres-

sion of the split sublevel positions are δM = (Δ2 ±
√
Δ2

2 + 4 |GdM |2)/2.
The enhanced peaks appear when the splitting sublevels are on resonance
with the generating fields Gg, G

′
g and the probe field Gp. This then sat-

isfies the enhancement condition Δ1 + δM = 0 [16]. Combining it with

δM = (Δ2 ±
√
Δ2

2 + 4 |GdM |2)/2, we can obtain the positions of the en-
hanced peaks in the plotted figure: OM = (Δ2

1 − |G0
d,M |2)/Δ1. There should

be two distinct enhanced peaks O±3/2 and O±1/2, which are covered in the
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Fig. 5.13. The polarization dependence of the DFWM enhancement versus θ. (a1) –
(a3) and (b1) – (b3) DFWM enhancement with conditions parallel to Fig. 5.12 ex-
cept at Δ1 = −67 GHz. (c) IP with scanning Δ2 for θ = 0 (squares), 45◦ (circles)
and 90◦ (triangles), when Δ1 = 67 GHz.

Fig. 5.14. The polarization dependence of the DFWM enhancement versus θ. (a1) –
(a3) and (b1) – (b3) are for IT , IP and IS polarization dependences, respectively,
when both polarizations of the k1 and k′1 beams are rotated simultaneously, with
Δ1 = −67 GHz.

wide power-broadened profile. However, when k1 is linearly (θ = 0) and
circularly (θ = 45◦) polarized, the enhanced peaks are primarily created
by M = ±1/2 and M = ±3/2 which are at O±1/2 and O±3/2, respec-
tively, as shown in Fig. 5.13 (c). By using OM expression and the CG coef-
ficients, we can calculate the shift distance between the enhanced peaks as
Δ = O3/2−O1/2 = (|G0

d,3/2|2−|G0
d,1/2|2)/Δ1 ≈ 8.8 GHz. The measured shift
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distance between the enhanced peaks in Fig. 5.13 (c) is about 7.5 GHz.
When two QWPs are used to change the polarizations of the k1 and k′1

beams simultaneously, as shown in Fig. 5.14 (a1 – a3) and Fig. 5.14 (b1 – b3).
The variation period is reduced to half of the case with changing k1 only.
Also, the enhancement peak gets close to 0 at about θ = 22.5◦.

Finally, the frequency detuning of k3, k1, k
′
1 is set at an intermediate

position (about 30 GHz, smaller than the value in the enhancement case), half
enhancement and half suppression appear when the frequency of the dressing
field is scanned [11], which is also modified by the polarization variation of
k1, as shown in Fig. 5.15. The variation rules also follow the ones discussed
above: the background obeys traditional laws [17, 18], the dependences of
the suppression and enhancement curves on the polarization are similar to
the results in suppression (Fig. 5.12) and enhancement (Figs. 5.13 and 5.14)
parts, respectively.

Fig. 5.15. Polarization dependence of DFWM versus the rotation angle θ. (a1) –
(a3) Half enhancement and half suppression with the condition parallel to Fig. 5.12
(a1 – a3) except Δ1 = −30 GHz. (b1) and (b2) dependences of the minimum and
maximum of each part on θ, (b3) depths of the suppressed dips and (b4) heights
of the enhanced peak for IT (squares), IP (circles) and IS (triangles), respectively.
(c) IP as scanning Δ2 for 0

◦ (squares), 45◦ (circles) and 90◦ (triangles).

5.4 Enhancing and Suppressing Four-Wave Mixing in

Electroma-Genetically Induce Transparency Window

The electromagnetically induce transparency (EIT) [1, 23] can reduce linear
absorption of a probe beam with strong “coupling beams” resonant with



274 5 Enhancement and Suppression in Four-Wave Mixing Processes

the up-level transition. The generated four-wave-mixing (FWM) and six-
wave-mixing in four-level atomic system can coexist in two ladder-type EIT
windows. [22] Recently, the competition between two coexisting FWMs via
atomic coherence is studied, and the FWM can be selectively suppressed.
[11] On the other hand, when EIT and FWM processes are modulated by the
different polarization of the strong coupling fields, it has been demonstrated
that selective transitions among polarization dark states of degenerate Zee-
man sublevels can be obtain.

In this section, we show the enhancement and suppression of the FWM
signal are demonstrated in EIT window for different probe beam detuning
and polarizations in the Y-type 85Rb atomic system. The generated FWM
signal can be selectively enhanced and suppressed via an EIT window.

The laser beams are aligned spatially as shown in Fig. 5.16 (a). A weak
probe beam E1(ω1, k1 and frequency detuning Δ1) is modulated by a quarter
wave plate (QWP) and propagates through the atomic medium, and two
pump beams E2(ω2, k2 and Δ2) and E′2(ω2, k

′
2 and Δ2) propagate in the

opposite direction with small angle (0.3◦) between them to generate one
FWM signal beam EF with phase matching condition kF = k1+k2−k′2. At
the same time, the strong dressing laser beam E3(ω3, k3 and Δ3) propagates
in the same direction as beam E2 to influence on this FWM signal. Here we
define detuning Δi = ωi −Ωi. For a simple four-level Y-type atomic system,
as shown in Fig. Fig. 5.16 (b), E2 and E′2 drive the upper transition |1〉 to
|2〉 and E3 drives the transition |1〉 to |3〉. The laser E1 probes the lower
transition |0〉 to |1〉.

In a 85Rb vapor cell, the energy levels 5S1/2(F = 3), 5P3/2(F = 3), 5D3/2

and 5D5/2(F = 2, 3, 4) form such Y-type system. The four laser beams are
aligned spatially as in Fig. 5.16 (a). The probe laser beam E1 with wavelength
of 12821 cm−1 is from an external cavity diode laser (ECDL) of Co. Toptica
Photonics AG, connecting transition 5S1/2 − 5P3/2. It has a power of 3 mW
(corresponding to Rabi frequency G1 = 0.0025 cm−1). The other laser beams
E2, E

′
2 (wavelength of 12887 cm

−1, connecting transition 5P3/2 − 5D5/2) are
from the second ECDL split with equal power of 16 mW corresponding to
G2 = G′2 = 0.0075 cm−1 and E3 (wavelength of 12884 cm−1, connecting
transition 5P3/2 − 5D3/2) are from the third ECDL with power of 108 mW
corresponding to G3 = 0.0509 cm−1. The generated FWM signal IP in the
direction kF emerging from the “P” polarization direction and the trans-
mitted probe beam are detected by an avalanche photodiode detector and
a photodiode, respectively. In Fig. 5.17 (a), the up-curve is the probe trans-
mission with EIT windows [12] and the down-curve is the measured FWM
signal. The up-curve gives four apparent spectra lines. From the left to right,
there are four absorption dips corresponding to hyperfine-level transitions
from 87Rb |5S1/2, F = 2〉 to |5P3/2, F

′ = 1, 2, 3〉, 87Rb |5S1/2, F = 3〉 to
|5P3/2, F = 2, 3, 4〉,85Rb |5S1/2, F = 2〉 to |5P3/2, F

′ = 1, 2, 3〉, and from
87Rb |5S1/2, F = 1〉 to |5P3/2, F

′ = 0, 1, 2〉, respectively. In the down-curve
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Fig. 5.16. (a) The schematic diagram of the experiment. D denotes the photodiode,
APD denotes the avalanche diode detector and PBS denotes the polarized beam
splitter. Inset: the spatial alignment of the laser beams. (b1) Relevant 85Rb energy
levels and (b2) the corresponding Zeeman sublevels with various transition path-
ways. Solid line: dressing field E3; Linearly (dot lines, q = 0), left (dash-dot lines,
q = −1) and right (dash lines, q = +1) circularly polarized probe fields; Long-dash
lines: the pump fields E2 and E′2.

of Fig. 5.17(a), there are two peaks on the absorption dips in the up-curve.
The right one of the two peaks is EIT window created by the pump fields E2

and E′2 in system |0〉 − |1〉 − |2〉, which satisfies the condition Δ1 + Δ2 = 0
and corresponds to double-peak FWM signal. While the left one is created
by the dressing field E3 in system |0〉 − |1〉 − |3〉 and satisfies condition
Δ1 + Δ3 = 0. Also, each peak of the pure FWM signal corresponding to
the right |0〉−|1〉−|2〉 EIT window is split into two peaks due to the dressing
effect of E2 and E′2.

With the dressing field E3, the suppression peak satisfies the condition
Δ1 +Δ3 = 0 and the enhancement condition is Δ1 +Δ3 ±G3 = 0 [15, 16].
Figures 5.17 (b1) – (b3) present evolution of the FWM signal intensity versus
the probe field detuning Δ1 for different Δ3 values. In Figs. 5.17 (b1) – (b3),
the up-curve is the probe transmission with two ladder-type EIT windows,
and the down-curve is the measured FWM signal. With E3 dressing, the

perturbation chain is ρ
(0)
00

G1−−→ ρ
(1)
G3±0

G2−−→ ρ
(2)
20

(G′
2)∗−−−−→ ρ

(3)
G3±0 [11, 22] and

the modified third-order nonlinear susceptibility is ρ
(3)
10 = g/d2[d1 +G2

3/d3]2,
where d1 = iΔ1 + Γ10, d2 = i(Δ1 + Δ2) + Γ20, d3 = i(Δ1 + Δ3) + Γ30, g =
−iG1G2G

′∗
2. In Fig. 5.17 (b1), the left |0〉− |1〉− |2〉 (satisfying Δ1+Δ2 = 0)
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Fig. 5.17. (a) The probe beam transmission with two EIT windows versus the
probe detuning Δ1 and the corresponding measured FWM signals. (b1) – (b3) Mea-
sured double-peak FWM signal and the corresponding EIT window induced by the
dressing field E3 versus Δ1 for Δ2 = 0, Δ3 = −0.0027 cm−1 (b1), Δ3 = 0 (b2),
Δ3 = 0.0023 cm−1 (b3). (c) The enhanced and suppressed FWM signal (down
curves) and the corresponding EIT windows (up curves) versus Δ3 for different Δ1

increasing from Δ1 = −0.002 cm−1 to 0.002 cm−1 with the step of 0.0004 cm−1.
The dash curve is the double-peak FWM signal versus Δ1. The insert is a zoom
onto curve 4.

EIT window created by the pump fields E2 and E′2 corresponds to the double-
peak FWM signal and the right one is |0〉− |1〉− |3〉 (satisfying Δ1+Δ3 = 0)
EIT window created by the dressing field E3. This right EIT window moves
to left when the dressing field detuning Δ3 gets larger. In Fig. 5.17 (b2,
b3), we can see that when two EIT windows get close and overlap, due
to satisfying the enhancement or suppression condition, the right peak of
FWM is suppressed and separated into two-peaks while the left FWM peak
is enhanced, then the left peak of FWM is suppressed and separated into
two-peaks while the right FWM peak is enhanced.

In Fig. 5.17 (c) we experimentally study the enhancement and suppression
of FWM spectra versus the dressing field detuning Δ3 for different probe
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detuning Δ1. The up-curves in Fig. 5.17 (c) are the probe transmission versus
Δ3. The down-curves are the enhancement and suppression of FWM signals.
The constant background (two sides of down-curves) represents the signal
intensity of the FWM without dressing field, the dips lower than background
(we call them as suppression peaks, e.g., the curves 2–6) and the peaks higher
than background (enhancement peaks, e.g., the peaks of curves 1 and 7)
represent the FWM signal is suppressed and enhanced, respectively. The
dashed curve in Fig. 5.17 (c) is the profile of the double-peak FWM signal
versus Δ1.

Specifically, we can see that all the curves in Fig. 5.17 (c) almost show
axial symmetric evolution behavior by Δ1 = 0. Specifically, in the Δ1 < 0
region, with Δ1 increasing, the FWM signals change from all-enhanced to
half-suppressed and half-enhanced, and finally all-suppressed around reso-
nant point. By contrast, in the Δ1 > 0 region, the FWM signals change
oppositely. Moreover, we find that the FWM signals show left enhancement
and right suppression shapes in half-suppression and half-enhancement re-
gion (from Δ1 = −0.00067 cm−1 to −0.0017 cm−1), but left suppression and
right enhancement in Δ1 > 0 region.

There exist typical structure of two enhancement and two suppression
peaks in the FWM spectra versus Δ3 [e.g., curves 2 and 6 in Fig. 5.17 (c)]
which are resulted from the modification of the double-peak FWM signal.
Moreover, the dressing field E3 and the pump field E2 interact with each
other strongly in all-enhancement [19] and all-suppression region, and create
triple-peaks of the enhancement (curves 1 and 7) and suppression (curves
3 – 5) spectra. In the insert of Fig. 5.17 (c), two left suppression peaks might
be induced by the sequential-cascade double dressing effect [20] of E3 and

E2 described by the perturbation chain ρ
(0)
00

G1−−→ ρ
(1)
(G2±G3±)0

G2−−→ ρ
(2)
20

(G′
2)∗−−−−→

ρ
(3)
G3±0 and the modified third-order nonlinear susceptibility. By solving the
following coupled equations: ∂ρ10/∂t = −d1ρ10+iG∗2ρ20+iG∗3ρ30, ∂ρ20/∂t =
−d2ρ20 + iG2ρ10, and ∂ρ30/∂t = −d3ρ30 + iG3ρ10 with weak probe field, we
can finally obtain ρ

(3)
10 = g/[d2(d1 + |G2|2 /d2 + |G3|2 /d3)(d1 + |G3|2 /d3)].

Similarly, we can consider the probe transmission versus Δ3. The height
of up-curve represents the transparent degree of probe field E1 in Fig. 5.17
(c). When the pump field E2 is blocked, the pure E3 EIT (|0〉−|1〉−|3〉) peak
is higher at Δ1 = 0 than that at large detuning |Δ1|. However, with E2 on,
since the E2 field destroys the E3 EIT condition when Δ1 = −Δ3 = −Δ2 ≈ 0,
we can see the E3 EIT peak is strongly suppressed at Δ1 = 0 in Fig. 5.17
(c).

We have shown the enhancement and suppression of the FWM signal in
EIT window for different probe beam detuning above. Next we will consider
the influence of different probe laser polarization configurations on the en-
hancement and suppression of the FWM spectra. We use one QWP with a
rotation angle θ to change E1 polarization state to decompose it into linearly-
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or circularly-polarized components. Thus the Zeeman sublevels in Fig. 5.16
(b2) need be considered in the FWM process. Figure 5.18 (a), (b) arranges
the FWM spectra when scanning the dressing field from θ = 0◦ ∼ 90◦ with
the variation step of 5◦ when Δ1 = 0.000 723 cm−1 and Δ1 = 0.002 3 cm−1,
respectively. The background represents the signal intensity of the FWM with
no dressing field while the dips and the peaks represent that the signal was
suppressed or enhanced, respectively.

Fig. 5.18. The polarization dependence of (a) the suppression (with Δ1 =
0.00072 cm−1) and (b) the enhancement (with Δ1 = 0.002 3 cm−1) of FWM signal
IP (by scanning Δ3) versus rotation angle θ (increases from 0◦ to 90◦ with the
variation step of 5◦) at Δ2 = 0. Variation of the (c, d) background (square), (c)
minimums of the suppression peaks (circle) and suppression depths (triangle), (d)
maximums of the peaks (circle) and enhanced height (triangle) of the dependence
curves. The solid curves in (c) are the corresponding theory results. (e) Normalized
IP versus Δ3 for θ = 0◦ (square), 45◦ (circle), and 90◦ (triangle).

Square points in Fig. 5.18 (c) show the variation of the FWM with no
dressing fields [background in Fig. 5.18 (a)] which accord with the classical
polarization spectroscopy (sinusoidal law). [17, 18] Triangle points gives the
dependence of the max depth of suppression peaks versus θ, which denotes
that the dressing strength is increasing as changing E1 from linearly to cir-
cularly polarized state. It is because the polarization variation transforms
the energy distribution among various transition paths, for example, linearly
polarized transitions to circular ones. Since different FWM transition paths
are dressed by different transition dressing fields, the total dressing strength
is generally different [Fig. 5.16 (b2)]. The FWM transition paths and their
expressions for linearly and circularly polarized sub-systems in Fig. 5.16 (b2)
can be written as

ρ
(0)
0M0M

Gq

1M+q−−−−−→ ρ
(1)
1M+q0M

G2M+q−−−−−→ ρ
(2)
2M+q0M

(G′
2M+q

)∗
−−−−−−→ ρ

(3)
1M+q0M

,
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ρq
1M+q0M

=
∑

M=−3,−2...3

gM+q/d2M+q(d1M+q +G2
3M+q

/d3M+q)
2,

where gM+q = −iG2M+qG
∗
2M+q

Gq
1M+q

, d1M+q = iΔ1 + Γ1M+q0M , d2M+q =
i(Δ1 +Δ2) + Γ2M+q0M , d3M+q = i(Δ1 +Δ3) + Γ3M+q0M , and q = 0,±1. The
theoretical curves are fit well with the experimentally measured results [Fig.
5.18 (c)].

Triangle points in Fig. 5.18 (d) give the dependence of the max height
of enhancement peaks versus θ, which denotes that the dressing strength is
decreasing as change E1 from linearly to circularly polarized state. We can
see that the variation is fairly stable as rotating QWP compared with Fig.
5.18 (c). It discloses that the far detuning condition homogenizes the differ-
ence of the transition strengths induced by the CG coefficients [28]. Square
points show the variation of the FWM with no dressing fields [background
in Fig. 5.18 (b)] which accord with the traditional polarization rules [17, 18].
Moreover, the enhancement peaks are shifting as rotating QWP. The shift
distance δΔ between the enhancement peaks is about 5 MHz, as shown in
Fig 5.18 (e). It is because that the enhancement conditions are different for
different Zeeman sublevels (Δ1 +Δ3 ±G3,M = 0).

When the frequencies of the probe field set at a proper position (Δ1 =
0.001 81 cm−1) which is not too far from the resonant position, both sup-
pression and enhancement appear simultaneously, as shown in Fig. 5.19 (a).
The polarization rules for suppression [Fig. 5.19 (b)] and enhancement Fig.
5.19 (c) are both similar to the above results when they appear singly (Fig.
5.18). Also, the positions of the enhanced peaks are shifting with rotating

Fig. 5.19. (a) The polarization dependence of the FWM signal IP (by scanning
Δ3) versus rotation angle θ ( increases from 0◦ to 90◦ with the variation step
of 5◦). (b) and (c) Variation of the background (square), (b) minimums of the
suppression peaks (circle) and suppressed depth (triangle), (c) maximums of the
peaks (circle) and enhanced height (triangle) of the dependence curves. (d) IP

versus Δ3 for θ = 0◦ (square), 45◦ (circle), and 90◦ (triangle). The other parameters
are Δ1 = 0.0018 cm−1,Δ2 = 0. Adopted from Ref. [29].
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QWP, as shown in Fig. 5.19 (d). More importantly, we find that in Fig.
5.19 (a) the enhanced triple-peaks transform into two enhancement and two
suppression peaks as θ changes from 0◦ to 45◦. It results from the frequency
shift δΔ [Fig. 5.19 (d)] due to the different polarization states (i.e., the en-
hancement condition Δ1 +Δ3 ± (G3 + δΔ) = 0).
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6 Multi-Wave Mixing Processes in Multi-level
Atomic System

Since real atomic systems have multiple Zeeman sublevels, one can use po-
larization states of the coupled laser beams to modulate the strength of the
multi-wave mixing processes. By manipulating the dark-state or electromag-
netically induced transparency (EIT) windows with the polarization states of
the laser beams, the multi-wave mixing (MWM) processes can be modified
and controlled. Such studies of controllable intermixing between different-
order nonlinear optical processes with phase or polarization states of the
laver beams can be very important in high-precision measurements, cohere-
nt quantum control, and quantum information processing. In the following,
some examples of phase or polarization controlled multi-wave mixing pro-
cesses in multi-level atomic systems will be described. The degenerate Zeeman
sublevels and their dressed-state effects are responsible for these observed
phenomena. The relative intensities and polarization characteristics of four-
wave mixing (FWM) signals in different laser polarization configurations and
different level systems are experimentally investigated and compared. Also
the results are theoretically explained by different transition path combina-
tions. In the dressed-FWM processes, the dependence of dressing effect on
the incident field’s polarization is shown. The FWM signal generated by a
linearly-polarized pumping field is suppressed more by the dressing field than
the one generated by a circularly-polarized pumping field. However, an oppo-
site effect was observed when the probe field’s polarization is changed. The
multi-dressing mechanisms are used to explain these effects. In addition, the
interference and polarization dependence of the coexisting FWM signals in
the same atomic system are discussed. Polarizable dark states are used to
describe the multi-level dressed states. The dually-dressed EIT and multi-
dressed FWM and SWM processes with Zeeman sublevels are also presented
theoretically. Such studies of intermixing between different order nonlinear
optical processes with controllable phase delay can have important applica-
tions in high-precision measurements, coherence quantum control, and quan-
tum information processing.
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6.1 Modulating Multi-Wave Mixing Processes via
Polarizable Dark States

The generated MWM signals in multi-level systems can transmit through
resonant atomic medium with little absorption under the EIT conditions [1,
2]. Enhanced MWM processes due to laser-induced atomic coherence have
been experimentally demonstrated in several multi-level atomic systems [3 –
5]. Interesting effects, such as quantum destructive interference in inelastic
two-wave mixing [6], phase-controlled light switching at the low light level
[7], entangled images in the probe and signal beams in the FWM process [8],
and generation of correlated photon pairs [9, 10], have been experimentally
studied in various coherently-prepared multi-level atomic systems. When a
strong light field interacts with an atomic transition, the light-atom system
can be considered as coupled harmonic oscillators with split normal modes,
called dressed states. When more than one light field interacts with the same
or connected atomic transitions, multi-dressed states can be formed [11].
Recently, interplay among multi-dressed FWM processes [12], competition
via atomic coherence in a four-level atomic system with two co-existing FWM
processes [13] and destructive/constructive interferences in a two-level atomic
system [9] were studied. In recent years, many schemes have been developed
to enhance higher-order nonlinear wave-mixing processes. More importantly,
with induced atomic coherence and interference, the higher-order processes
can become comparable or even greater in amplitude than the lower order
wave-mixing processes [14].

In this section, combined theoretical and experimental studies on the
polarization dependence of MWM processes and EIT profile are presented,
using rubidium atoms as the nonlinear medium. The results obtained for
the intensities of the MWM signals as a function of the polarization of the
incident laser beams are shown. The relations between the high-order (e.g.,
third- and fifth-order) nonlinear susceptibilities and the polarizations of the
incident beams are shown. To explain the observed EIT profiles and different
rules for MWM signal peaks with different incident beam polarizations, the
degenerate Zeeman sublevels and their dressed effects are taken into account.
The changes in the spectrum of the MWM processes can be attributed to
the modulation in the probe field variation. Theoretically, calculation that
takes into account all the 16 relevant Zeeman sublevels in the reversed-Y
(RY) system and in good agreements with experimentally measured data is
also presented.

The relevant experimental energy-level diagram is shown in Fig. 6.1. Four
energy levels from the 87Rb atoms are involved in the experimental schemes
used in this work. The laser beams are spatially aligned as shown in Fig. 6.2.
In Fig. 6.1, energy levels E |0〉 (5S1/2, F = 2), |1〉 (5P3/2, F ′ = 2), |2〉 (5D3/2,
F ′′ = 1) and |3〉 (5S1/2, F = 1) form the RY-type four-level atomic system.
Strong coupling laser beam E2 (ω2, k2, and Rabi frequency G2) together with
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E′2 (ω2, k′2, and Rabi frequency G′2) with small angle (0.5◦) and the same
frequency detuning Δ2 (= ω21−ω2), connecting the transition between |1〉 to
|2〉, propagate in the opposite direction of the weak probe beam E1 (ω1, k1,
and Rabi frequency G1), which has the frequency detuning Δ1 (= ω10 − ω1)
and connects the transition between |0〉 to |1〉, as shown in the inset of Fig.
6.2. Two additional coupling beams E3 (ω3, k3, and Rabi frequency G3) and
E3 (ω3, k′3, and Rabi frequency G′3), with the same frequency detuning Δ3

(= ω13 − ω3) connecting the transition between |3〉 to |1〉, also propagate
in the opposite direction of the weak probe beam E1 (Fig. 6.2) with small
angles. When all five laser beams (E1, E2, E′2, E3, and E′3) are turned on
simultaneously, only one ladder-type EIT subsystem will form due to the
two-photon Doppler-free configuration [1] and an EIT window opens, whose
position in the frequency domain depends on the frequency detuning of the
ω2 laser beams. Meanwhile, there will be co-existing MWM processes that
generate signal beams at frequency ωM (ωM = ω1) in such a multi-level
system. First, without the coupling beams E3 and E′3, one pure FWM EF

process will be generated in the ladder system (|0〉 − |1〉 − |2〉) satisfying
the phase-matching condition of kF = k1 + k2 − k′2. The signal emerging
from the “P” polarization direction is detected by an avalanche photodiode
detector (APD). Second, when all beams (except with E′2 blocked) are turned
on, the strong coupling beam E2 will dress the energy level |1〉 to create
the dressed states |+〉 and |−〉. In such a case, there exist a dressed FWM
process k′F = k1 + k3 − k′3 and a coexisting SWM process, in which two
photons from E2 and one photon each from E1, E3, and E′3 participate
in the SWM process to generate ES with the phase-matching condition of
kS = k1 + k2 − k2 + k3 − k′3.

Fig. 6.1. The energy level diagram of relevant 87Rb energy levels.

Although only four energy levels are explicitly shown in Fig. 6.1, there are
Zeeman sublevels for each of these energy levels. There are multiple quan-
tum paths for each step of the nonlinear optical processes. The probability
amplitudes for these paths depend on the Clebsch-Gordan coefficients, which
are intimately related to the polarizations of the input laser beams. There-
fore, one can easily manipulate the contributions of the interference terms to
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Fig. 6.2. The schematic diagram of the experiment. D denotes the photodiode and
APD denotes the avalanche diode detector; PBS denotes the polarized beam splitter
and WP denotes the wave plate. Inset: the spatial alignment of the laser beams.

MWM signals by controlling the polarizations of the input laser beams.
To quantitatively investigate the polarization dependence of MWM sig-

nals, a theoretical model is developed to treat the polarization-dependent
nonlinear processes. The observed MWM signal intensities in the experiments
are proportional to the square of the polarizations induced in Rb vapor at
frequency ωM . First, for the FWM signal EF (by blocking laser beams E3

and E′3), the nonlinear atomic polarization P (3)(ω1) along the i(i = x, y)
direction, from first-order perturbation theory, is given by [15]

P
(3)
i (ω1) = ε0

∑
jkl

χ
(3)
ijklE1j(ω1)E∗2k(ω2)E2l(ω2), (6.1)

where the third-order susceptibility contains the microscopic information
about the atomic system. The susceptibility of the nonlinear tensor χ

(3)
ijkl(ωF ;

ω1,−ω2, ω2) is also related to the polarization components of the incident
and generated fields. For an isotropic medium, as in the rubidium vapor,
only four elements are not zero, and they are related to each other by
χxxxx = χxxyy +χyxxy +χyxyx. According to the experimental arrangement,
it is assumed that the coupling beams E2, E′2, E3, and E′3 have fixed polari-
zation along the y-axis (S polarization), while the probe beam E1 can have
polarization in any direction in the XY plane. In this case, the polarization
of the generated FWM signal beam EF will have two components, i.e., P and
S polarizations,

P (3)
x (ω1) = ε0χx|E2|2|E1|,

P (3)
y (ω1) = ε0χy|E2|2|E1|, (6.2)

where χx and χy are the effective susceptibilities. If there is a half-wave plate
placed on the path of the probe beam E1, then

χ(3)
x = χxyyx cos 2θ,

χ(3)
y = χyyyy sin 2θ. (6.3)
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For a quarter-wave plate in the probe beam,

χ(3)
x = χxxxx

√
sin4 φ+ cos4 φ,

χ(3)
y = χyxxy

√
2 |sinφ cosφ|2. (6.4)

Here θ and φ are the rotated angles of the half-wave plate and quarter-wave
plate, respectively, relative to the X-axis.

Similarly, for the generated SWM signal ES (when blocking the coupling
laser beam E′2), the fifth-order nonlinear polarization P (5)(ω1) along the i(i =
x, y) direction is then given by

P
(5)
i (ω1) = ε0

∑
jklmn

χ
(5)
ijklmnE1j(ω1)E∗2k(ω2)E2l(ω2)E∗3m(ω3)E3n(ω3), (6.5)

where χ
(5)
ijklmn is the fifth-order nonlinear susceptibility. For an isotropic

medium, as in the Rb vapor, there are sixteen nonzero components and only
fifteen of them are independent because they are related to each other by

χxxxxxx = χyyxxxx + χyxyxxx + χyxxyxx + χyxxxyx + χyxxxxy +
χxyyxxx + χxyxyxx + χxyxxyx + χxyxxxy + χxxyyxx +
χxxyyxx + χxxyxyx + χxxyxxy + χxxxyxy + χxxxxyy. (6.6)

Under the same condition as mentioned above for the FWM case, the
generated SWM polarization will have two components, parallel and perpen-
dicular to the beam’s polarization,

P (5)
x (ω1) = ε0χx|E2|2|E3|2|E1|,

P (5)
y (ω1) = ε0χy|E2|2|E3|2|E1|. (6.7)

According to the experimental arrangement, it is assumed that the probe
field can have linear polarization in any direction in the XY plane deter-
mined by the wave-plate, while the other coupling fields have fixed polari-
zation along the same Y-axis (S polarization). In this case, the polarization
of the generated SWM signal beam will have two components, i.e., parallel
and perpendicular to the coupling beams’ polarization. For a half-wave plate
placed in front of the probe beam, the polarizations of the SWM signal beam
become

χx = χxyyyyx cos 2θ,
χy = χyyyyyy sin 2θ. (6.8)

In addition, for a quarter-wave plate, these fifth-order nonlinear suscep-
tibility components are

χx = χxyyyyx

√
sin4 φ+ cos4 φ,

χy = χyyyyyy

√
2 |sinφ cosφ|2. (6.9)
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In the experimental (Fig. 6.2), a half-wave plate is used to horizontally
polarize the probe beam (P polarization). Then the beam passes through a
half-wave plate (or a quarter-wave plate) that is rotated by an angle θ (or φ)
before going into the 87Rb atomic vapor cell. By blocking different incident
beams, the probe beam and the generated FWM signal (or SWM signal) [13]
both pass through a polarized beam splitter (PBS) before being detected.
The detector D receives the P polarization component of the transmitted
probe beam, E1(ω1), whereas the APD receives the horizontally polarized
component of the generated MWM signal EM (ωM ).

The experiment is done with hot 87Rb atoms by three external cavity
diode lasers (ECDL) and linewidths of less than or equal to 1 MHz. Each
output power is as follow: 0.7 mW of probe field E1; 65 mW of coupling
beams E2, E′2, and 15 mW of coupling laser beams E3, E′3. The cell whose
length is 5 cm is heated up to 60◦C and the density is 2.5× 1011 cm−3.

Figure 6.3 shows the EIT spectra (lower curves) and the SWM spectra
(upper curves) of the 87Rb atoms, by blocking laser beam E′2, for probe field
with different polarizations rotated by a half-wave plate. The coupling beams
are linearly polarized in the S polarizations direction and the probe beam is
linearly polarized in the P polarization direction initially (defined as θ = 0◦).

As shown in Fig. 6.3, various polarized configurations of the coupling and
probe beams, by rotating the half-wave plate, result in the quite different
spectra. The absorption curve of the probe beam changes from EIT to a
dispersion-like curve, and then back to EIT again while the polarization of the
input probe beam changes one period. Meanwhile, the rules of the two SWM
signal peaks change quite differently. These observed experimental results
reveal that the degenerate Zeeman sublevels [16, 17] and the dressed-state
effects play crucial roles in the EIT and SWM spectra.

Fig. 6.3. The polarization dependence of the transmitted probe and SWM signal
beams versus the rotating angle of the half-wave plate. (a1 – a6) EIT (lower curves)
and SWM (upper curves) spectra versus the rotating angle. The experimental pa-
rameters are G1 = 2π×5 MHz, G2 = G′2 = 2π×80 MHz, G3 = G′3 = 2π×35 MHz,
and Δ2 = Δ3 = 0. Adopted from Ref. [17].

To understand the above experimental results, the theoretical calculation
of the probe absorption spectrum considers all the 16 relevant Zeeman sub-
levels [18] in the RY system. The calculations are limited to the cases that
the coupling fields are linearly polarized, and the magnetic field is absent.
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Three examples of the excitations of the coupling and the probe beams are
illustrated in Fig. 6.4. Figure 6.4 (a) shows the case with the probe beam
polarization to be orthogonal to the coupling beams and Fig. 6.4 (c) corre-
sponds to the case with parallel polarization. Figure 6.4 (b) gives the results
with probe input polarization in between those two cases. For simplicity, the
cascade three-level system is considered (by blocking coupling fields E3 and
E′3), which forms an EIT configuration. For the case as given in Fig. 6.4
(a), the density-matrix ρ considering all the Zeeman levels is solved with the
following equations:

ρ̇ = (1/i�)[Hatom +Hcoupling +Hprobe, ρ] + {dρ/dt}, (6.10)

Hatom = �ω10

10∑
i=6

|i〉〈i|+�ω21

13∑
i=11

|i〉〈i|, (6.11)

Hcoupling = − exp[iωct][(�Ωc1/2)(|7〉〈11|+ |9〉〈13|) +
(�Ωc2/2)|8〉〈12|] + c.c., (6.12)

Hprobe = − exp[iωpt][(�Ωp1/2)(|1〉〈7|+ |5〉〈9|) +
(�Ωp2/2)(|2〉〈8|+ |4〉〈8|) +
(�Ωp3/2)(|3〉〈9|+ |3〉〈7|+
(�Ωp4/2)(|2〉〈6|+ |4〉〈10|)] + c.c., (6.13)

{dρ/dt} = −Γ1

13∑
i=11

ρii|i〉〈i| − Γ2

10∑
i=6

ρii|i〉〈i|+

10∑
i=1

⎛
⎝ 13∑

j=11

Γjiρjj

⎞
⎠|i〉〈i|+ 5∑

i=1

⎛
⎝ 10∑

j=6

Γjiρjj

⎞
⎠|i〉〈i| −

1
2

⎡
⎣Γ1

13∑
i=11

10∑
j=1

ρij |i〉〈j|+ Γ2

10∑
i=6

5∑
j=1

ρij |i〉〈j|+ c.c.

⎤
⎦−

⎡
⎣Γ′ 13∑

i=11

10∑
j=6

ρij |i〉〈j|+ Γ′′
10∑

i=6

5∑
j=1

ρij |i〉〈j|+

Γ′′′
13∑

i=11

5∑
j=1

ρij |i〉〈j|+ c.c.

⎤
⎦ , (6.14)

where ω10 is the F = 2 → F ′ = 2 transition frequency and ω21 is the
F ′ = 2 → F ′′ = 1 transition frequency. ωc is the frequency of the coupling
field, and ωp is frequency of the probe laser. ΩN is the Rabi frequency for the
transition indicated by its subscripts. The expression of {dρ/dt} describes all
the relaxation processes in the system. Γ1 and Γ2 are the spontaneous decay
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rates of the 5D3/2, F ′′ = 1 and 5P3/2, F ′ = 2 excited states, respectively.
Γji is the spontaneous emission rate from an excited state |j〉 to a ground
state |i〉. Γ′, Γ′′ and Γ′′′ are the decoherence rates for the relaxation processes
other than the spontaneous decay. To obtain linear susceptibility, the density-
matrix Eq. (6.11) under the steady-state condition need to be solved. Under
the weak probe field approximation [1], the expressions of the first-order
matrix elements can be easily calculated.

For the right-hand-circularly (RHC) polarized sub-ladder systems:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ+
1,7 =

iΩ+
p1

iΔp1 + Γ1,7 +
|Ωc1|2

i(Δp1 +Δc1) + Γ11,1

ρ
(0)
1,7,

ρ+
2,8 =

iΩ+
p2

iΔp2 + Γ2,8 +
|Ωc2|2

i(Δp2 +Δc2) + Γ12,2

ρ
(0)
2,8,

ρ+
3,9 =

iΩ+
p3

iΔp3 + Γ3,9 +
|Ωc1|2

i(Δp3 +Δc1) + Γ13,3

ρ
(0)
3,9,

ρ+
4,10 =

iΩ+
p4

iΔp4 + Γ4,10
ρ
(0)
4,10.

(6.15)

For the left-hand-circularly (LHC) polarized sub-ladder systems:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ−2,6 =
iΩ−p4

iΔp4 + Γ2,6
ρ
(0)
2,6,

ρ−3,7 =
iΩ−p3

iΔp3 + Γ3,7 +
|Ωc1|2

i(Δp3 +Δc1) + Γ11,3

ρ
(0)
3,7,

ρ−4,8 =
iΩ−p2

iΔp2 + Γ4,8 +
|Ωc2|2

i(Δp2 +Δc2) + Γ12,4

ρ
(0)
4,8,

ρ−5,9 =
iΩ−p1

iΔp1 + Γ5,9 +
|Ωc1|2

i(Δp1 +Δc1) + Γ13,5

ρ
(0)
5,9,

(6.16)

where frequency detuning parameters Δij are the differences between the
laser frequency and the corresponding atomic transition frequency. For the
level configuration shown in Fig. 6.4 (c), the probe Hamiltonian is changed
to

Hprobe = − exp[iωpt][(�Ω′p1/2)(|1〉〈6|+ |5〉〈10|) +
(�Ω′p2/2)(|2〉〈7|+ |4〉〈9|) + c.c., (6.17)
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Fig. 6.4. The excitations of the coupling and probe fields among the Zeeman levels
in the RY system. (a), (b), and (c) correspond to the case with a half-wave plate
in the probe beam; (d) (e), and (f) correspond to a quarter-wave plate.

and the remaining calculations are similar. The expressions of the matrix
elements for the linearly polarized sub-ladder systems can be obtained as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ0
1,6 =

iΩ′p1

iΔ′p1 + Γ1,6
ρ
(0)
1,6,

ρ0
5,10 =

iΩ′p1

iΔ′p1 + Γ5,10
ρ
(0)
5,10,

ρ0
2,7 =

iΩ′p2

iΔ′p2 + Γ2,7 +
|Ωc1|2

i(Δ′p2 +Δc1) + Γ11,2

ρ
(0)
2,7,

ρ0
4,9 =

iΩ′p2

iΔ′p2 + Γ4,9 +
|Ωc1|2

i(Δ′p2 +Δc1) + Γ13,4

ρ
(0)
4,9.

(6.18)

The case in Fig. 6.4 (b) is an integration of the results from Fig. 6.4 (a,
c). All the theoretical results of the different polarization configurations are
obtained in the same way.
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When all the Zeeman sublevels in the RY system are taken into account,
the unexpected profiles of the EIT spectra and different changing rules of the
two SWM signal peaks can then be easily explained. For instance, initially,
the polarizations of the probe beam and coupling beams are perpendicular
[Fig. 6.4 (a)]. There exist three RHC and three LHC EIT subsystems with
one RHC and one LHC probe transitions without the interference of the cou-
pling fields. The observed transmission spectrum is the combination of the
Lorentzian absorption profile and the EIT profile for the probe beam. Howe-
ver, in the Fig. 6.4 (a), the intensity of the Lorentzian absorption profile is
much smaller than that of the EIT profile, which is the result of different
dipole momentums between the Zeeman sublevels [19]. In the case of Fig.
6.4 (b), as the half-wave plate rotating, there are two linearly polarized EIT
subsystems with the RHC and LHC EIT subsystems decreasing. Also, there
are two additional linear probe transitions. The intensity of the Lorentzian
absorption profile is comparable to that of the EIT subspectrums. Therefore,
a narrower Lorentzian shape peak can be seen clearly on top of the broader
EIT profile as shown in Fig. 6.3 (a3). Due to the detuning of the coupling
field, the curve appears to be dispersion-like. When all the laser beams have
the same polarization [Fig. 6.4 (c)], there are only two linearly-polarized EIT
subsystems and two linear probe transitions. Because of the different dipole
momentums among different Zeeman sublevels, the Lorentzian absorption
profile is much larger than that of the EIT profile, so the probe transmis-
sion has an absorption-type shape with subnatural linewidth [20]. This effect
doesn’t present in Fig. 6.3 due to our current experimental configuration, i.e.,
the signal is detected only in the P polarization.

In addition, if the coupling fields E3 and E′3 are open, there are doubly-
dressed effects for the EIT curve. The analytical solutions will be changed as
following.

For the RHC-polarized sub-RY systems:

ρ+
1,7 =

iΩ+
p1

iΔp1 + Γ1,7 +
|Ωc1|2

i(Δp1 +Δc1) + Γ11,1
+

|Ωd1|2
i(Δp1 −Δd1) + Γ14,1

ρ
(0)
1,7,

(6.19)

ρ+
2,8 =

iΩ+
p2

iΔp2 + Γ2,8 +
|Ωc2|2

i(Δp2 +Δc2) + Γ12,2
+

|Ωd2|2
i(Δp2 −Δd2) + Γ15,2

ρ
(0)
2,8,

(6.20)

ρ+
3,9 =

iΩ+
p3

iΔp3 + Γ3,9 +
|Ωc1|2

i(Δp3 +Δc1) + Γ13,3
+

|Ωd1|2
i(Δp3 −Δd1) + Γ16,3

ρ
(0)
3,9.

(6.21)
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For the LHC-polarized sub-RY systems:

ρ−3,7 =
iΩ−p3

iΔp3 + Γ3,7 +
|Ωc1|2

i(Δp3 +Δc1) + Γ11,3
+

|Ωd1|2
i(Δp3 −Δd1) + Γ14,3

ρ
(0)
3,7,

(6.22)

ρ−4,8 =
iΩ−p2

iΔp2 + Γ4,8 +
|Ωc2|2

i(Δp2 +Δc2) + Γ12,4
+

|Ωd2|2
i(Δp2 −Δd2) + Γ15,4

ρ
(0)
4,8,

(6.23)

ρ−5,9 =
iΩ−p1

iΔp1 + Γ5,9 +
|Ωc1|2

i(Δp1 +Δc1) + Γ13,5
+

|Ωd1|2
i(Δp1 −Δd1) + Γ16,5

ρ
(0)
5,9.

(6.24)

For the linearly-polarized sub-RY systems:

ρ0
2,7 =

iΩ′p2

iΔ′p2 + Γ2,7 +
|Ωc1|2

i(Δ′p2 +Δc1) + Γ11,2
+

|Ωd1|2
i(Δ′p2 −Δd1) + Γ14,2

ρ
(0)
2,7,

(6.25)

ρ0
4,9 =

iΩ′p2

iΔ′p2 + Γ4,9 +
|Ωc1|2

i(Δ′p2 +Δc1) + Γ13,4
+

|Ωd1|2
i(Δ′p2 −Δd1) + Γ16,4

ρ
(0)
4,9.

(6.26)

These expressions indicate that the additional coupling fields will modu-
late the EIT profiles. Different frequency detuning configurations of the three
stronger coupling fields will affect the EIT spectral shape. By controlling the
frequency detuning of the coupling fields, either EIT or electromagnetic in-
duced absorption (EIA) spectrum will appear.

In order to quantitatively compare with the observed changes of the SWM
signal peaks as probe polarization changes, the calculation of the area of the
spectrum under the peak [see Fig. 6.5 (b1)] and the height of each peak
[see Fig. 6.5 (b2)] is chosen. As a comparison, the area curve of the EIT
[Fig. 6.5 (a1)] and the absorption height of each peak are also presented.
From Figs. 6.5, the changes of the SWM spectrum, as well as for the EIT
peaks, are well described by the function cos2 2θ, as calculated above. It is
interesting to see the polarization dependence of the SWM emission signal
following the polarization of the probe field. The theoretical curves (the solid
lines) are in good agreement with the experimental data. The different change
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Fig. 6.5. (a) Measured (dots) and calculated (solid curves) areas and heights of
the two transmitted EIT peaks. (b) Measured (dots) and calculated (solid curves)
areas and heights of the SWM signal peaks.

rules of the two SWM signal peaks can be attributed to the modulation of the
modified EIT spectral profile. The dotted lines of Fig. 6.5 (a2, a3) represent
the absorption peak heights of the probe field at different polarization states.
The dotted lines of Fig. 6.6 (a1, a2) depict the EIT depths which show dif-
ferent coupling processes of the total EIT effect via the different polarization
dark states. As we can be seen from the figures, the rule of change in the pos-
itive part of the EIT dispersion-like curve [Fig 6.6 (a1)] is dominated by the
polarization property. However, in the negative part [Fig. 6.6 (a2)], it gradu-
ally changes from EIT to absorption in a half period. After the absorption is
larger than the EIT dip, the increase of absorption is faster than the polar-
ized attenuation, and then the roles of them are switched. Figure 6.5 (b2, b3)
illustrate the measured dependence of the relative SWM signal intensity on
the rotation angle θ (half-wave plate) when the diode laser (probe) is tuned
to the 5S1/2, F = 2→ 5P3/2, F ′ = 2 one-photon transition. Besides its direct
dependence on the polarization of the probe beam, the SWM signal spectrum
is also modulated by the EIT effect since it transmits through the medium
in the EIT window. Figures 6.6 (b1) and 6.9 (b2) show the corresponding
differences of the experiment data and theoretically calculated curves, which
represent different coupling paths of the total SWM processes via different
polarization configurations. The left peak is always in the positive part of
the dispersion-like EIT curve which gets dramatically modulated effect due
to EIT. This means that the fifth-order susceptibility χ

(5)
ijklmn must be taken

into account due to dressed effect, which affects the evolution of the peak to-
gether with the polarization dependence of cos2 2θ. The right peak is in the
negative region of the dispersion-like EIT shape, where it is dominated by the
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polarization property due to the increase in absorption. It can be concluded
that the evolution of the SWM spectrum is modulated by the modified EIT
spectrum.

Fig. 6.6. (a) Peak depths for the two EIT transmission peaks. (b) Differences be-
tween the theoretical results and experimental data.

Next, the experimentally measured and theoretically calculated probe
transmission and FWM spectra are presented by rotating the quarter-wave
plate (in front of the input probe beam) whose period is 180◦ as can be seen
in Fig. 6.7. Here, the MWM process is the FWM by blocking laser beams
E3 and E′3 while other beams are turned on. The theoretical results can be
obtained from the same procedure as above by eliminating the absent items,
that is, LHC subsystems in the RY system. The EIT spectrum also shows the
same profile, including the dispersion-like curve. However, the positive peak
changes from a single peak into two peaks. Although the way of polarization
with a quarter-wave plate is different from with a half-wave plate, its rules
of evolution can be explained by the same method as for the half-wave plate.
Schemes (d), (e), and (f) in Fig. 6.4 show the ways of coupling in different
polarization configurations. Differ from using a half-wave plate whose period
is 90◦, the right-hand elliptically polarized beam is present during 0◦ ∼ 45◦

and 45◦ ∼ 90◦ [Fig. 6.4 (e)], and a pure RHC-polarized beam at 45◦ [Fig.
6.4 (f)]. However, within 0◦ ∼ 45◦, the RHC component increases gradually
while the linear component decreases. In the region of 45◦ ∼ 90◦ the opposite
process is true. Taking the case of 0◦ ∼ 45◦ as an example, we can take the
right-hand elliptically-polarized beam being composed of a vertical, linearly-
polarized beam and a RHC-polarized beam. Therefore, in our experiment,
the original symmetric EIT configurations [Fig. 6.4 (d)] are replaced by two
linear EIT and three RHC EIT subsystems [Fig. 6.4 (e)] that are asymmetric
due to the difference in the dipole moments among different Zeeman sub-
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levels. The destruction of this symmetry results in different polarizable dark
states leading to the modified EIT spectrum. It is different from the case with
half-wave plate, which does not destroy the symmetry in the EIT spectral
shape. The situation in the rest of the period (45◦ ∼ 90◦) can be discussed in
the same way. So, the spectrum by rotating a quarter-wave plate is different
from the case of using a half-wave plate.

Fig. 6.7. Polarization dependence of the transmitted probe and FWM signal beams
versus the rotation angle of the quarter-wave plate. (a1) – (a7) The EIT (lower
curves) and FWM (upper curves) spectra versus the rotation angle. The experi-
mental parameters are G1 = 2π× 5 MHz, G2 = G′2 = 2π × 80 MHz, and Δ2 = 0.

The FWM spectra is modulated by the EIT spectra as shown in
Fig. 6.7. As the quarter-wave plate rotates, the FWM spectrum changes
from a two-peak structure to a three-peak one. The rule of evolution for each
peak includes not only the polarized property, but also effects of dark-state
modulation due to the asymmetric coupling structure in EIT spectrum. Simi-
lar to the analysis used for the half-wave plate, the rule of evolution in the
height of each absorption peak in the EIT profile follows the polarization ef-
fect of the probe beam. Although each peak [Fig. 6.8 (a1 – a3)] is significantly
modulated, the general trend in its evolution is not destroyed. Moreover, in
studying the detail dark-state coupling configuration for each peak, the peak
depths of the EIT curves have been investigated [Fig. 6.9 (a1 – a3)]. All of
them undergo the combined interactions of the selectively-polarized probe
beam and the polarized dark-state modulation. The two peaks in the posi-
tive part of the dispersion-like curve can be attributed to the asymmetric EIT
configuration, RHC polarization and vertical linearly-polarized EIT subsys-
tems. Due to the increase in absorption [Fig. 6.4 (e)], the right peak in the
probe transmission spectrum changes from EIT to EIA [Fig. 6.9 (a3)]. There-
fore, based on the above analysis of the EIT spectrum, the rule of change
in FWM spectrum can be understood easily. The left FWM peak [Figs. 6.8
(b1)], corresponding to the left EIT peak [Fig. 6.9 (a1)] dominated by the
polarized dark-state component, is dramatically modulated and the contri-
bution from polarization change of the probe beam is suppressed. As men-
tioned above, there could be combined contributions from the third-order
nonlinear susceptibility χ

(3)
ijkl(ωF ;ω1,−ω2, ω2) and the polarization effect of

the probe field in the form of
√
sin4 φ+ cos4 φ. Although it is affected by
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the polarized dark-state modulation, the trend of change for the middle peak
[Fig. 6.9 (a2)] follows the polarization change of the probe beam. As a re-
sult, the polarization property of the middle FWM peak survives [Fig. 6.8
(b2)]. The right FWM peak is modulated and its height increases gradually
due to the increased absorption of the right peak in the probe transmission
spectrum. Meanwhile, the middle FWM peak decreases gradually. These two
peaks have a competitive relationship, which can explain their opposite phase
evolutions [Fig. 6.8 (b3)].

Fig. 6.8. (a) Measured (dots) and calculated (solid curves) heights of the trans-
mitted EIT peaks. (b) Measured (dots) and calculated (solid curves) heights of the
FWM signal peaks.

On the other hand, by considering the quantum interference effects, it can
be considered that the FWM process and absorption process of probe field af-
fected by the interference among sub-dark states. Three dark states are iden-
tified, or noncoupled states for three subsystems of the RY-type system, that

are decoupled from the state |1〉: |D1〉 = (Ω2 |0〉 − Ω1 |2〉)/
√
|Ω1|2 + |Ω2|2 �

|0〉 − Ω1 |2〉 /Ω2, where Ω2 >> Ω1 is used; |D2〉 = (Ω3 |0〉 − Ω1 |3〉)/√
|Ω3|2 + |Ω1|2 � |0〉−Ω1 |3〉 /Ω3, where Ω3 >> Ω1 is used; |D3〉 = (Ω3 |2〉−

Ω2 |3〉)/
√
|Ω2|2+|Ω3|2 = cos θ |2〉−sin θ |3〉, where cos θ=Ω3/

√
|Ω2|2+|Ω3|2,

sin θ = Ω2/

√
|Ω2|2 + |Ω3|2. The total dark state is then given by: |D〉 =

|D1〉+ |D2〉+ |D3〉 = 2 |0〉+ (cos θ − Ω1/Ω2) |2〉 − (Ω1/Ω3 + sin θ) |3〉.
The population of the atoms in dark state |〈D | ψ〉|2 would like to be

found out when the three dark states interfere with each other, where |ψ〉 =
c0 |0〉+ c1 |1〉+ c2 |2〉+ c3 |3〉 is the wave function of the system in the bare-
state basis. Therefore, by considering the interference between dark states
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Fig. 6.9. (a) Peak depths for the EIT transmission peaks. (b) Differences between
the theoretical results and experimental data.

from subsystems, the intensity of the FWM signal is obtained as following:

I =
∣∣∣N ′μρ

(3)
10

∣∣∣2, where N ′ = N
(
1− |〈D | ψ〉|2

)
, and N is the particle num-

ber density, namely, it is believed that the particles in the dark state do not
interact with outer fields and so do not participate the FWM process. Simi-
larly, for absorption of probe field we have linear χ′ = N ′μρ

(1)
10 /ε0E1 and the

transmission intensity of probe field is T ′ = exp [2πIm[χ′]z/λ].

6.2 Polarization Spectroscopy of Dressed Four-Wave
Mixing in a Three-level Atomic System

The parametric FWM is a useful process for generating coherent radiations
from the vacuum ultraviolet to infrared wavelengths. The polarization chara-
cteristics of two-photon resonant FWM processes have been investigated in
several types of metal vapors gases. Tsukiyama [17] described polarization
properties of the near-infrared FWM signal produced in Kr vapor; Museur et
al. [18] studied the polarization dependence of the vacuum ultra-violet light
generated by a four-wave sum-frequency generation process in Hg; and Ishii
et al [15] investigated polarization characteristics of FWM in NO gas. Besides
of producing coherent emissions, parametric FWM processes can also be used
to study interference effects. Previous studies have used FWM processes to
observe interference effects between different atomic polarizations [21 – 25].
Studies of interference effects in multilevel atomic systems have become an
active field of research in recent years, which made it possible to coherently
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control the optical properties of atomic media [26, 27]. In parametric FWM
processes, there are multiple quantum paths for each step of the nonlinear
processes, and the probability amplitudes for these different transition paths
are intimately related to the polarizations of the input laser fields. Therefore,
it is possible to coherently control the nonlinear processes by manipulating
the polarization states of incident laser beams.

In this section, both theoretical and experimental studies are given on
the polarization dependence of FWM signals generated in Na atomic vapor.
Both two-level and three-level systems in Na atoms are used in these studies.
The classical, as well as quantum, theoretical models have been developed
to explain the dependence of FWM signals on the polarization states of the
incident laser beams. By comparing the FWM spectra for different laser po-
larization configurations, different contributions from third-order nonlinear
susceptibility elements under different conditions can be identified. Further-
more, the different contributions by the difference from combinations of tran-
sition paths for three incident beam polarization schemes are explained. More-
over, the polarization characteristics of the singly-dressed and doubly-dressed
FWM processes in either a two-level or a three-level atomic system in Na va-
por are shown. In the three-level atomic system, the FWM signal generated
by a linearly-polarized pumping field is greatly suppressed by the dressing
field while the one generated by a circularly-polarized pumping field is only
slightly influenced by the dressing field. Also, different change rules are ob-
served when the polarization of the probe field is changed. Different dressing
effects of two dressing schemes are used to explain this phenomenon. The
dressing effects, as well as the interference between the two coexisting FWM
signals, have been discussed in different laser polarization configurations. In-
vestigations of the interactions between different FWM processes and their
polarization properties can help us to understand the underlying physical
mechanisms and to optimize effectively the generated nonlinear optical sig-
nals. Controlling nonlinear optical processes can have many potential applica-
tions, such as in all-optical switches [28] and quantum-information processing
[29, 30].

The experiments are carried out in Na vapor (in a heat pipe oven), which
is heated up to a temperature of about 235◦C. Three energy levels from Na
atoms are involved in the experimental schemes. As shown in Fig. 6.10, energy
levels |0〉 (3S1/2) and |1〉 (3P3/2) form the two-level atomic system. Two laser
beams Ed (ωp, kd, and Rabi frequency Gd) and E′d (ωp, k′d, and Rabi fre-
quency G′d), connecting the transition between |0〉 and |1〉, propagate in the
opposite direction of the weak probe beam Ep (ωp, kp, and Rabi frequency
Gp), which also connects the transition between |0〉 and |1〉. The three laser
beams come from the same dye laser DL1 (wavelength of 589.0 nm, 10 Hz rep-
etition rate, 5 ns pulse width, and 0.04 cm−1 linewidth) with the frequency
detuning Δ1, pumped by the second harmonic beam of a Nd:YAG laser.
These three laser fields generate a degenerate-FWM (DFWM) process satis-
fying the phase-matching condition of ks1 = kp + kd − k′d. The energy levels



300 6 Multi-Wave Mixing Processes in Multi-level Atomic System

|0〉 (3S1/2)−|1〉 (3P3/2)−|2〉 (4D3/2) form the cascade three-level atomic sys-
tem. Two additional coupling laser beams Ec (ωc, kc, and Rabi frequency Gc)
and E′c (ωc, k′c, and Rabi frequency G′c), connecting the transition between
|1〉 to |2〉 are from another dye laser DL2 (which has the same characteristics
as the DL1) with a frequency detuning Δ2. Ec, E′c and Ep fields interact
with each other and generate a nondegenerate FWM (NDFWM) signal, sat-
isfying the phase-matching condition of ks2 = kp + kc − k′c. The generated
DFWM and NDFWM signals propagate along slightly different directions
due to their different spatial phase-matching conditions. Two photomultiplier
tube (PMT) detectors are used to receive the horizontally-polarized compo-
nent (P polarization) and the vertically-polarized component (S polarization)
for one of the signal beams, or horizontally-polarized components of both sig-
nal beams, respectively. A half-wave plate (HWP) and a quarter-wave plate
(QWP) are selectively used (in different experiments, respectively) to control
the polarization states of the incident fields. The generated FWM signals may
pass through another HWP and a polarization beam splitter (PBS) before
being detected by the two PMTs.

6.2.1 Various Nonlinear Susceptibilities for Different Polarization
Schemes

The polarization dependence of FWM signals can be explained using either
classical or quantum mechanical description [31]. Classically, the FWM signal
intensity is proportional to the square of the atomic polarization induced in
the medium. For example, as for phase-conjugated FWM generation in the
cascade atomic system at the frequency ωs = ωc − ωc + ωp (as shown in
Fig. 6.10, with beams kd and k′d blocked), the nonlinear polarization along
i(i = x, y) direction is given by

P
(3)
i (ωs) = ε0

∑
jkl

χ
(3)
ijkl (−ωs;ωc,−ωc, ωp)Ecj(ωc)E∗ck(ωc)Epl(ωp), (6.27)

Fig. 6.10. Schematic diagrams of the experimental arrangement and the relevant
energy levels in Na atom.
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where χ
(3)
ijkl (−ωs;ωc,−ωc, ωp) is the tensor component of the third-order non-

linear susceptibility. For an isotropic medium like Na atomic vapor and con-
sidering that all the incident beams and signals are transverse waves, only
four nonzero tensor elements are involved in this system which are denoted
as χxxxx, χyxxy, χyyxx, χyxyx. Different polarization configurations of the in-
cident fields can involve different nonlinear susceptibility elements. For exa-
mple, when a HWP is used to change the polarization of the Ep field while
the other two beams are originally polarized in the horizontal direction, the
probe field will have two perpendicular components: Epx = Ep cos 2θ and
Epy = Ep sin 2θ (θ is the rotated angle of the HWP’s axis from the x axis).
Consequently, the polarization has two corresponding components, i.e. hori-
zontal component P

(3)
x (ωs) = ε0χxxxx|Ec|2|Epx| and perpendicular compo-

nent P
(3)
y (ωs) = ε0χyxxy|Ec|2|Epy|. Then the effective susceptibility elements

χx and χy are defined as: χx = χxxxx cos 2θ and χy = χyxxy sin 2θ. As for the
other two cases with kc and k′c modulated by a HWP. χyyxx and χyxyx be-
come dominant on generating FWM signals polarized in the S direction (the
signals in the P direction for the three cases are all generated by χxxxx). The
microscopic mechanism of nonlinear different susceptibilities will be discussed
in Section 6.2.2.

If a QWP is used to modulate the incident beams, the effective nonlinear
susceptibilities will be different while the excited susceptibilities are the same
as in the corresponding cases with HWP modulation. Table 6.1 presents all
the effective susceptibilities for the three field polarization schemes.

Table 6.1 The effective nonlinear susceptibilities for different laser polarization
configurations.

kp, kc, k′c, P χxkp, S χxkc, S χxτ < k′c, S

HWP χx = χxxxx cos 2θ χy = χyxxy sin 2θ χy = χyyxx sin 2θ χy = χyxyx sin 2θ

QWP
χx = χxxxx

×
p
sin4 θ + cos4 θ

χy = χyxxy

×
q
2 |sin θ cos θ|2

χy = χyyxx

×
q
2 |sin θ cos θ|2

χy = χyxyx

×
q
2 |sin θ cos θ|2

In order to measure the polarization states of FWM signals, a HWP
and a PBS are placed in the path of the signal beam (as shown in Fig. 6.10).

When an arbitrarily-polarized field

(
Ex

Eyeiδ

)
passes through the HWP+PBS

combination, the detected intensities are

Ix = cos2 2α |Ex|2 + |Ey|2 sin2 2α+ |Ex| |Ey | sin 4α cos δ, (6.28)

Iy = sin2 2α |Ex|2 + |Ey|2 cos2 2α− |Ex| |Ey | sin 4α cos δ, (6.29)

respectively, where α is the rotation angle of the HWP from the x-axis and
τ < 0 is the phase difference between the two polarization [horizontal (x) and
vertical (y)] components of the signal beam.
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6.2.2 Nonlinear Susceptibilities for Zeeman-degenerate System
Interacting with Polarized Fields

The polarization dependence of FWM signals can also be described by the
semi classical treatment. It is based on the fact that there are different tran-
sition paths combinations consisting of various transitions between Zeeman
sublevels for different polarization schemes (as shown in Fig. 6.11). According

Fig. 6.11. Energy level diagrams and transition paths at different laser polarization
configurations. (a) and (e) Schematic diagrams of the P polarization generation in
two-level and three-level systems when the waveplates change kp, kd, and k′d. (b – d)
and (f – h) Schematic diagrams of S polarization generation in two-level and three-
level systems when the waveplates change kp, kd, and k′d, respectively. Dotted,
long-dashed, solid and short-dashed lines are transitions for the probe, coupling,
dressing, and FWM signal fields, respectively.
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to the experimental setup, the X-axis is the original polarization direction of
all the incident fields, and it is also the quantization axis. Then the arbitrary
field is decomposed into two components: parallel to and perpendicular to
the x axis, respectively. When this field interacts with atoms, the perpen-
dicular component can be decomposed into equally left-circularly- and right-
circularly-polarized components. Different polarization schemes can excite
different transition paths in the Zeeman-degenerate atomic systems, and so
it is necessary to take into account the Clebsch-Gordan coefficients associated
with the various transitions between Zeeman sub-levels in all pathways when
calculating the FWM intensities. Figure 6.11 shows the transition schematic
configurations for the Zeeman-degenerate two-level and three-level cascade
systems interacting with one arbitrarily-polarized and two horizontally-
polarized fields. Table 6.2 and Table 6.3 list all the perturbation chains for
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different cases, respectively. By considering the schematic figures and the ta-
bles, the expressions of various density matrices corresponding to nonlinear
susceptibilities for different polarization schemes can be obtained.

Figure 6.11 (a) shows the configuration of generating FWM signals in P-
polarization (represented as χxxxx) in the two-level system. It contains two
sub-two-level systems: |a− 1/2〉–|b− 1/2〉 and |a1/2〉–|b1/2〉. The respective
perturbation chains are listed in Table 6.2, and the total contribution of these
chains to the density-matrix element which induces the FWM signal in the
P-polarization direction is

ρ̃(3)
p = −i

∑
M=±1/2

∣∣G0
dM

∣∣2 G0
pM

(
1

(iΔp + ΓbM aM )
2 +

1
Δ2

p + Γ2
bM aM

)
×

(
1

ΓaM aM

+
1

ΓbM bM

)
. (6.30)

Then from χxxxx = Nμρ
(3)
p /ε0 |Ec|2 Ep, we can get χxxxx.

Figure 6.11 (b) presents the configuration for generating the S-polarized
FWM signals when the wave-plate (WP) changes kp (corresponds to suscep-
tibility χyxxy). It contains: two right-circularly-polarized V-type subsystems
(|a− 1/2〉 − |b1/2〉 − |b− 1/2〉 and |a1/2〉–|b3/2〉–|b1/2〉), two left-circularly-
polarized V-type subsystems (|a−1/2〉–|b−3/2〉–|b−1/2〉 and |a1/2〉–|b−1/2〉–
|b1/2〉), one right-circularly-polarized reversed V-type subsystem (|a− 1/2〉–
|b1/2〉–|a1/2〉) and one left-circularly-polarized RV-type subsystem (|a1/2〉–
|b − 1/2〉–|a − 1/2〉). Their perturbation chains are listed in Table 6.2, and
the total density-matrix element including contributions from all the pertur-
bation chains can be written as:
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ρ̃
(3)
s1 = −

⎡
⎢⎣ iG−p1/2

∣∣∣G0
d1/2

∣∣∣2(
iΔp + Γb−1/2a1/2

)2 Γa−1/2a1/2

+
iG+

p−1/2

∣∣∣G0
d−1/2

∣∣∣2(
iΔp + Γb1/2a−1/2

)2 Γa1/2a−1/2

⎤
⎥⎦−

∑
M=±1/2

2ΓbM aM

∣∣G0
dM

∣∣2
ΓaM aM

(
Δ2

p+Γ2
bM aM

)
[

iG+
pM(

iΔp + ΓbM+1aM

)+ iG−pM(
iΔp+ΓbM−1aM

)
]
.

(6.31)

When the polarization of the kd field is changed by the WP, the sub-
systems generating FWM signals in the P-polarization direction and their
expressions are the same as the ones for changing the kp field. However, the
configuration of generating the S-polarized FWM signal, as shown in Fig.
6.11(c), contains two left-circularly-polarized V-type subsystems (|a− 1/2〉–
|b−1/2〉–|b−3/2〉 and |a1/2〉–|b1/2〉–|b−1/2〉), two right-circularly-polarized
V-type subsystems (|a−1/2〉–|b−1/2〉–|b1/2〉 and |a1/2〉–|b1/2〉–|a3/2〉), one
right-circularly-polarized RV-type subsystem (|a − 1/2〉–|a1/2〉–|b1/2〉), and
one left-circularly-polarized RV-type subsystem (|a − 1/2〉–|a1/2〉–|b1/2〉).
The total contribution to the third-order nonlinear density-matrix element is

ρ̃
(r)
s2 = −

iG0
p−1/2

G+
d−1/2

(
G0

d−1/2

)∗
Γa−1/2a−1/2

(
iΔp + Γb−1/2a−1/2

) (
iΔp + Γb1/2a−1/2

) −
iG0

p1/2
G−d1/2

(
G0

d1/2

)∗
Γa1/2a1/2

(
iΔp + Γb1/2a1/2

) (
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)]. (6.32)

Then the nonlinear susceptibility element χxyxy can be obtained.
When changing the polarization of k′d field, as shown in Fig. 6.11 (d), there

are four perturbation chains as listed in Table 6.2. The total contribution
from all the perturbation chains to the third-order nonlinear density-matrix
element can be written as

ρ̃
(3)
s3 = −

4iG0
p−1/2

G0
d1/2

(
G′−d−1/2

)∗
Γa−1/2a1/2

(
iΔp + Γb1/2a−1/2

) (
iΔp + Γb−1/2a−1/2

) . (6.33)

This expression is simpler due to the symmetry of the configuration rela-
tive to M = 0. Then, the element χxxyy can be obtained.

For the three-level cascade-type (C3-type) system, the schematic charts
are shown in Fig. 6.11(e)–(h) [with dressing fields kd and k′d blocked], which
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change kp, kc, and k′c fields. The corresponding perturbation chains are
listed in Table 6.3. The expressions of the corresponding third-order non-
linear density-matrix elements are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
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(6.34)

6.2.3 Third-order Density-matrix Elements in Presence of
Dressing Fields

For the case with a singly-dressing by the kd filed (with k′d blocked), the
density-matrix elements of the dressed FWM signals (generated in the C3
system) are given by

ρ
(3)
bM aM

= − iG0
pM

∣∣G0
cM

∣∣2
(i(Δc +Δp) + ΓcMaM )

×
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⎜⎜⎜⎝iΔp+ΓbMaM+
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i (Δp−Δd)+ΓaMaM +

∣∣G0
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∣∣2
ΓaM aM

+

∣∣G0
cM

∣∣2
i(Δc+Δp) + ΓcM aM

⎞
⎟⎟⎟⎠

2 ,

(
M = ±1

2

)
(6.35)
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For the case of the doubly-dressing (with kd and k′d both on), the third-
order nonlinear density-matrix elements can be written as

ρ
(3)
bM aM

= − iG0
pM

∣∣G0
cM

∣∣2
i(Δc +Δp) + ΓcM aM

×
1⎛

⎜⎜⎜⎝iΔp+ΓbMaM+
2 |GdM |2

i (Δp−Δd)+ΓaMaM +

∣∣G0
pM

∣∣2
ΓaM aM

+

∣∣G0
cM

∣∣2
i(Δc+Δp)+ΓcMaM

⎞
⎟⎟⎟⎠

2 ,

(
M = ±1

2

)
(6.36)

One can easily see that the multi-dressed fields appear in the denominator
and the dressing effect is mainly caused by the strong dressing field Gd. The
other two fields, however, can enhance or suppress such dressing effect. In fact,
the coupling field Gc, which is denoted as in sequential with Gd, generally
enhances the dressed effect induced by Gd, while the probe field Gp, which
is denoted as in nested with Gd, generally suppresses the dressing effect [32,
33]

First, a HWP is used to modulate the polarization of one of the incident
beams, while the other two beams are kept being in horizontally polariza-
tion. In this case, the incident beams are all linearly polarized. Figure 6.12(a,
b) show the relative FWM intensities in the P and S polarizations, respec-
tively, in the cascade three-level atomic system with respect to the rotation
angle θ of the HWP. From Table 6.1 it can be seen that, for the horizontally-
polarized component [Fig. 6.12 (a)], the dependence of the FWM intensity on
θ follows (cos 2θ)2 while the vertically-polarized component obeys (sin 2θ)2

(represented by the solid curves in Fig. 6.12). This means that the FWM sig-
nals are linearly polarized. Similar results have been shown in other systems
[22]. From Fig. 6.12 (b), the signal amplitudes are different for the three laser
polarization configurations, which can be attributed to different contributions
from the third-order nonlinear susceptibility elements under different condi-
tions. As discussed in Section 6.2.3, different polarization schemes of incident
fields can excite different nonlinear susceptibilities, and they can have differ-
ent quantum transition paths. When the kp field is modulated by the HWP,
χyxxy is excited, which generates FWM signal in the S-polarization direc-
tion. In the other two cases, both the kc and k′c fields are modulated, so both
χyyxx and χyxyx are respectively stimulated. The signal amplitudes indicate
different contributions from third-order nonlinear susceptibility elements for
three different laser polarization schemes.

Figures 6.12 (c) and 6.12 (d) depict the polarization dependences of the
FWM signals on the rotation angle of the QWP in the two-level DFWM
process. First, the probe beam kp is elliptically polarized and the ellipticity
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Fig. 6.12. Variations of the relative FWM intensities versus the rotation angle of
the waveplate. (a) and (b) The FWM signals of the cascade three-level system with
the HWP. (c)–(d) The FWM signals of the two-level system with the QWP. The
scattered points are the experimental data and the solid curves are the theoretical
results Adopted from Ref. [33].

is controlled by the QWP, while the other beams have linear polarization
along the x-axis [the square points in Fig. 6.12 (c – d)]. In Fig. 6.12 (c, d), the
experimental results are well described by the functions sin4 ϕ + cos4 ϕ and
2(sinϕ cosϕ)2 (the solid curves), respectively. If one of the incident beams is
elliptically polarized, the generated FWM signal is also elliptically polarized,
which is in good agreement with the theoretical prediction. Comparing the
vertically-polarized intensities of the signal beams [Fig. 6.11 (b, d)], there
are different ratios of oscillation amplitudes. It indicates that the ratios of
the third-order nonlinear susceptibility elements are different for the cascade
three-level system and the two-level system, which are well described by Eq.
(6.34).

To detect the polarization states of FWM signals, one place a HWP+
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PBS combination as a polarization analyzer in the generated FWM signal
beam (as shown in Fig. 6.10). In fact, when a QWP is used to modulate the
kc field’s polarization (or ellipticity ε ), the polarizations of the FWM signals
are also changed. Besides, the excitednonlinear susceptibilities of the P and
S polarizations greatly modify the signal’s polarization states, which can be
detected by the HWP+PBS combination. Figure 6.13 presents the detected
results. Each curve is obtained by rotating the HWP while keeping the QWP
in the path of the kc field fixed. In this case, |Ex| ∝ χxxxx

√
sin4 θ + cos4 θ

and |Ey| ∝ χyyxx

√
sin2 θ cos2 θ. According to Eqs. (6.28)–(6.29), the detected

intensities should be

Ix = χ2
xxxx

(
cos4 θ + sin4 θ

)
cos2 2α+ χ2

yyxx

(
2 sin2 θ cos2 θ

)
sin2 2α+

χxxxxχyyxx

√(
cos4 θ + sin4 θ

) (
2 sin2 θ cos2 θ

)
sin 4α cos δ,

Iy = χ2
xxxx

(
cos4 θ + sin4 θ

)
sin2 2α+ χ2

yyxx

(
2 sin2 θ cos2 θ

)
cos2 2α−

χxxxxχyyxx

√(
cos4 θ + sin4 θ

) (
2 sin2 θ cos2 θ

)
sin 4α cos δ. (6.37)

If the kc field is linearly polarized (θ = 0◦, ε=1, the square points in
Fig. 6.13), the NDFWM signal is also linearly polarized, and the horizontal
(x) and vertical (y) signal intensities obey the relations of χ2

xxxx cos
2 2α and

χ2
xxxx sin

2 2α, respectively. When the polarization of the kc field is changed,
the other nonlinear susceptibility components are excited, and the FWM sig-
nal is then elliptically polarized. From Fig. 6.13 we can see that, if the kc

field is either elliptically (θ = 30◦, ε=0.5, the triangle points) or circularly
(θ = 45◦, ε=0, asterisk points) polarized, the NDFWM signals are also el-
liptically polarized. This can be confirmed by Eq. (6.37). When the input kc

field is circularly polarized, the FWM signal can be circularly polarized once
the condition is satisfied χxxxx = χyyxx.

Fig. 6.13. Dependence of the relative NDFWM signal intensity on α for three
values of the coupling laser’s ellipticity.

Figure 6.14 shows the dependence of the dressed FWM signal on the po-
larization of the kc field. Figures 6.14 (a) and 6.14 (b) depict the results for
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the kd singly-dressed and kd and k′d doubly-dressed FWM signals, respec-
tively, for three different ellipticities of the kc field. The dressing fields kd and
k′d are both linearly polarized along the x-axis. Comparing to Fig. 6.13 (a),
the reduction of the signal intensity is more than 50%. More interestingly, the
FWM signals generated by the linearly-polarized kc field [the square points
in Fig. 6.13 (a) and Fig. 6.14 (a)] are greatly suppressed by the kd dressing
field while the FWM signals generated by the circularly-polarized kc field
[the asterisk points in Fig. 6.13 (a) and Fig. 6.14 (a)] are only slightly sup-
pressed by the kd dressing field. So, in Fig. 6.14 (a) the square points are
lower than the other curves, which is opposite to the case in Fig. 6.13 (a).
Figure 6.13 (c) presents the dependences of the pure FWM and dressed FWM
signal intensities on the ellipticity of the kc field. The square points repre-

Fig. 6.14. Variations of the dressed NDFWM signal intensities versus α. (a) Singly-
dressed FWM signals when the coupling beam kc is modulated by the QWP.
(b) Doubly-dressed FWM signals when the coupling beam kc is modulated by
the QWP. (c) Variation of the relative FWM intensity versus the rotation angle θ
of the QWP.
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sent pure FWM case, which decreases as the kc’s ellipticity reduces (from
1 to 0 when the QWP is rotated from 0◦ to 45◦). The dot points represent
the singly-dressed FWM case, which shows an opposite variation from the
pure FWM. This result can be explained by the expression [Eq. (6.35)] for
the dressed FWM case. In the denominator of Eq. (6.35), Gd’s sequential
dressing field Gc can enhance the dressing effect. When the coupling field is
linearly polarized, its Rabi frequency Gc in the denominator is at its maxi-
mum, so the dressing effect is strongest [square points in Fig. 6.14 (a)] and
the FWM signal is lowest.

Moreover, comparing the singly-dressed and doubly-dressed FWM signals,
they have been similar suppressed intensities when the signals are linearly po-
larized. However, when the signals are elliptically polarized, the suppression
in the doubly-dressed case is stronger than in the singly-dressed case. In
order to explain this effect, mutual-dressing processes and constructive or
destructive interference between the two coexisting FWM channels should
be considered [13]. According to Eqs. (6.35) and (6.36), if one only conside-
rs the dressing effect, the FWM intensity should be further suppressed in
the doubly-dressed configuration. However, as can be seen from Fig. 6.10,
when five laser beams are all on, the DFWM signal ks1 and the NDFWM
signal ks2 coexist in the experiment, and these two FWM signals overlap in
frequency and the angle between their propagation directions is very small.
As mentioned above, if the incident beams are all linearly polarized, the
generated FWM signals are linearly polarized also, so constructive or de-
structive interference can occur in this system. Such interferences between
two FWM processes in the two-level and three-level atomic systems can gen-
erate entangled photon pairs [9]. Constructive or destructive interference can
be controlled by the phase difference between the two FWM processes, which
can be varied by adjusting the detuning difference Δ (Δ = Δ1−Δ2) between
the incident laser beams. By varying the detuning difference Δ from 0 to
very certain values, the phase difference between the two FWM processes
alters from in-phase to out-phase, so the interference can switch back and
forth between constructive and destructive values [34 – 36]. In this case, the
observed experimental data include two contributions: the dressing effect
and the interference effect. However, when the kc field is elliptically or cir-
cularly polarized, the NDFWM signal ks2 is elliptically polarized, but the
DFWM signal ks1 is still linearly polarized. In this case, the doubly-dressed
effect plays a dominant role to further suppress the intensity of the generated
FWM signal.

The dependences of the dressing effects on the polarization of the probe
field are shown in Fig. 6.15. Compared to Fig. 6.14 (a), the linearly-polarized
signal (square points) is higher than the other curves even though it is also
dressed. Such opposite behaviors in changing the pumping field kc and the
probe field kp can be accounted for by Eq. (6.35). In the denominator of the
equation, the dressing field Gd and the coupling field Gc are in summation
form, which is called as sequential-dressing scheme, and Gd and Gp are in
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the nest-dressing scheme [32]. According to the interaction properties of the
two dressing schemes, the sequentially dressing Gc field controls the FWM
process directly, which can enhance the Gd dressing effect. When the coupling
field is linearly polarized, the Rabi frequency Gc in the denominator is at its
maximum, so the dressing effect is strongest [square points in Fig. 6.14 (a)].
As Gp nested with Gd, it controls the FWM process only indirectly, and it
often suppresses the Gd dressing effect, so for the linearly-polarized kp field,
the signal [square points in Fig. 6.15(b)] is higher than the other curves.

Fig. 6.15. Dependence of the relative NDFWM signal intensity on α for three
values of probe laser’s ellipticity. (a) and (b) Pure and singly-dressed FWM signals,
respectively, of the cascade three-level system as the probe beam is modulated by
the QWP.

Figure 6.16 (a) depicts the dependence of the horizontal intensity of the
FWM signal on α generated in the two-level system when the probe beam
kp is modulated by the HWP. In this case, the generated FWM signals are
linearly polarized (δ = 0), with |Ex| ∝ χxxxx cos 2θ and |Ey| ∝ χyxxy sin 2θ.
From Fig. 6.16 (a), with a rotating HWP, the maximal values of the curves
are shifted, which indicates that the polarization of the FWM signal changes
with that of the probe beam. Previous experiment [23] in the rubidium vapor
has shown that the polarizations of the driving field and the signal wave are
identical and collinear.

If the signal and the probe beams are polarized along the same direction,
a maximum signal intensity is observed when the two HWPs are rotated
to be at the same angle [that is α = θ, the solid line in Fig. 6.16 (c)].
The experimental results (the scattered points) in Fig. 6.16 (c) present a
big difference from the solid theoretical line, which suggests that the signal
and the probe beams have different polarization directions. According to
Eqs. (6.28) and (6.29), the polarization of the FWM signal is dependent on
the ratio χyxxy/χxxxx. If χyxxy = χxxxx, the signal and the probe beams
would have polarization along the same direction. However, our theoretical
expressions [Eq. (6.30) and Eq. (6.31)], indicate that χyxxy 
= χxxxx, so the
signal and the probe beams have different polarization directions.
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Fig. 6.16. Variations of the DFWM signal intensities versus the rotation angle α.
(a) Pure FWM signal of the two-level system versus α for several different rotation
angles θ of the HWP. (b) Singly-dressed and doubly-dressed FWM signals when the
input beams are all horizontally polarized. (c) The rotation angle α of the polar-
ization analyzer when the maximum intensity is observed. The scattered points are
the experimental results, and the solid line represents the case with the polarization
analyzer and polarizer rotating the same angle (α = θ).

Figure 6.16 (b) presents the kc singly-dressed (the square points) and kc

and k′c doubly-dressed (the dot points) DFWM signals when the input beams
(kd, k′d, kp, kc and k′c) are all horizontally polarized. Comparing with the
pure-FWM signal [the square points in Fig. 6.16 (a)], the two FWM signals
dressed by either kc or kc and k′c are both significantly suppressed and have
been similar suppressed intensities. As discussed above, for kc and k′c doubly-
dressed FWM process, mutual-dressing effect and constructive or destructive
interference should also be considered simultaneously.
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6.3 Controlling FWM and SWM in Multi-Zeeman
Atomic System with Electromagnetically Induced
Transparency

The effects of efficient high-order multi-wave mixing processes have attracted
many interests in recent years [4]. Under the EIT condition, not only the
FWM processes can be resonantly enhanced but also the generated FWM
signals can be allowed to transmit through the atomic medium with little
absorption [2]. Enhanced SWM via induced atomic coherence was experi-
mentally observed in a four-level inverted-Y (RY) atomic system. Such SWM
signal can be made to even coexist, compete and spatially interfere with the
FWM signal in the same system [35] by the assistance of EIT. Moreover,
theoretical investigation on coexisting FWM, SWM and EWM processes in a
five-level system was also carried out [31]. The experimental demonstrations
of these phenomena were often carried out in atomic systems, such as sodium
and rubidium atomic vapors, in which each energy level actually consisting
of several Zeeman sublevels interacting with different polarized light fields.
However, for simplicity most theoretical analyses have been based on ideal
level schemes which generally neglect Zeeman sublevels. Nevertheless, these
analyses are reasonable in most cases because the differences will often be
offset by the Doppler broadening when the sample is the hot atoms in a va-
por cell. However, in certain cases, especially in the cold atomic samples, the
effects of the multi-Zeeman sublevels cannot be simply neglected.

For example, the investigations on the interactions of double EIT and the
corresponding effects of atomic systems were done in recent years [37, 38].
Effects due to dual-EIT windows with enhanced Kerr nonlinearity in a RY
configuration considering no Zeeman sublevels were theoretically explored.
On the other hand, interesting effects with singly-dressed EIT in a three-level
atomic system considering of multi-Zeeman sublevels have been investigated
both theoretically [16] and experimentally [18]. Furthermore, doubly-dressed
EIT in a tripod atomic system was demonstrated recently [39]. These works
were carried out either in the cold atomic system or in vapor cells but with
the atomic systems in the two-photon Doppler-free configuration [40]. In this
section, the double-EIT dark states and their interactions in a realistic RY-
type system with full consideration of the involved multi-Zeeman sublevels
are investigated. The stronger dressing field generates multi-Zeeman-dark-
states by inducing different spectral splits. The weaker coupling field can
selectively create the secondarily-dressed dark states on the generated multi-
Zeeman-dark-states by changing its frequency detuning.

Doubly-dressed multi-wave mixing and its three (i.e., nested, parallel,
and sequential) dressed configurations have been theoretically investigated
recently [31]. However, these previous works have only studied the ideal level
systems without considering the multi-dressed multi-wave mixing with multi-
Zeeman sublevels. Here, the FWM processes with multi-dressing fields in
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the RY system with multi-Zeeman sublevel structures are presented. Autler-
Townes (AT) splitting spectrum shows several peak pairs, which are from
two different types of dark states generated in different transition processes.
The enhanced transmission spectra clearly shows Zeeman characteristic fea-
ture, which is induced by the multiple resonances due to the split Zeeman
sublevels. An analytical expression is developed to determine the positions
of the enhanced multiple peaks. The results confirm that one can selectively
resonate from the arbitrary transition paths of the FWM channels by tuning
the frequency detuning of the dressing field. Finally, the coexistence of the
enhancement and suppression in the dually-dressed SWM spectrum will be
discussed. Besides three enhanced peaks, one suppressed dip is also obtained
simultaneously.

6.3.1 Basic Theory

This work refers to the real atomic system of 85Rb, as shown in Fig. 6.17.
One denote states 52S1/2(F = 2), 52P3/2(F = 3), 52D5/2 (F = 2, 3, 4, since
the frequency differences between these three hyperfine levels are less than
10 MHz, we consider them all together as degenerate.), and 52S1/2(F = 3) as
|aM 〉, |bM 〉, |cM 〉 and |dM 〉, respectively. M indicates the magnetic quan-
tum number. To emphasize the effects of the Zeeman sublevels, we con-
sider a special setup for the polarized laser beams similar to the one used
in Ref. [41]. A linearly-polarized probe field reduces to the two eigenstates
of the polarization by a weak magnetic field which is in the vertical di-
rection. Namely, the right- and left-circularly polarized beams connect the
transition from |aM 〉 to |bM 〉 with wave-vectors k±p , frequencies ω±p , and
Rabi frequencies G±p . Two linearly polarized coupling beams Gc (kc, ωc) and
G′c (k

′
c, ωc) link |bM 〉 to |cM 〉, while one dressing beam Gd (kd, ωd) drives

the transition from |bM 〉 to |dM 〉, respectively. As shown in Fig. 6.17, this
system consists of five right-circularly-polarized sub-RY systems (which are
|a−2〉− |b−1〉− |c−1〉− |d−1〉, |a−1〉− |b0〉− |c0〉− |d0〉, |a0〉− |b1〉− |c1〉− |d1〉,
|a1〉− |b2〉− |c2〉− |d2〉, and |a2〉− |b3〉− |c3〉− |d3〉, respectively) and five left-
circularly-polarized sub-RY systems (which are |a−2〉− |b−3〉− |c−3〉− |d−3〉,
|a−1〉−|b−2〉−|c−2〉−|d−2〉, |a0〉−|b−1〉−|c−1〉−|d−1〉, |a1〉−|b0〉−|c0〉−|d0〉,
and |a2〉−|b1〉−|c1〉−|d1〉, respectively). Since the transition from |b0〉 to |c0〉
is forbidden, |a−1〉− |b0〉− |c0〉− |d0〉 and |a1〉− |b0〉− |c0〉− |d0〉 are actually
sub-ladder systems. The probe beams with EIT, generated FWM and SWM
signals at the frequency ωp can coexist in this composite system [35].

Figure 6.18 shows the generation processes of dressed FWM and SWM
signals and their beam geometry. Figure 6.18 (a) gives the FWM process gene-
rated by the probe beam Ep and two coupling beams (Ec and E′c) with the
phase-matching condition of kF = kp +kc−k′c via the perturbation channel
of ρ

(0)
aa

ωp−−→ ρ
(1)
ba

ωc−−→ ρ
(2)
ca

−ωc−−−→ ρ
(3)
ba [35]. The probe polarization direction is
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Fig. 6.17. The RY-type system formed by the linearly-polarized probe, coupling
fields and dressing fields for 85Rb atom. Solid, dotted, dashed-dotted and dashed
lines are transitions for linearly-polarized dressing beams, left-circularly-polarized
probe beam, right-circularly-polarized probe beam, and linearly-polarized beam,
respectively.

orthogonal to the dressing and coupling fields’ polarization, namely the quan-
tization axis direction. In fact, this FWM generation process can be viewed
as a series of transitions: The first step is from |a〉 to |b〉 with absorption
of a probe photon Ep, and the final state of this process can be dressed by
the fields Ed (Gd) and Ec (Gc). The second step is the transition from |b〉 to
|c〉, and the final state can not be dressed by any field. The third step is the
transition from |c〉 to |b〉 with the emission of a coupling photon Ec and the
final state of this process can be dressed by Ed (Gd). Then, the last transition
is from |b〉 to |a〉, which emits a FWM photon at the frequency ωp. Thus,
one can obtain the dressed perturbation the chain: ρ

(0)
aa

ωp−−→ ρ
(1)
Gc±Gd±a

ωc−−→
ρ
(2)
ca

−ωc−−−→ ρ
(3)
Gd±a. This comprehension and dressed perturbation the chain will

be helpful for deriving the FWM expression from the density-matrix equa-
tions below. Other than this FWM process, two possible SWM processes,

via either the channel of ρ
(0)
aa

ωp−−→ ρ
(1)
ba

ωc−−→ ρ
(2)
ca

−ω′
c−−−→ ρ

(3)
ba

ωd−−→ ρ
(4)
da

−ωd−−−→ ρ
(5)
ba

or ρ
(0)
aa

ωp−−→ ρ
(1)
ba

ωd−−→ ρ
(2)
da

−ωd−−−→ ρ
(3)
ba

ωc−−→ ρ
(4)
ca

−ω′
c−−−→ ρ

(5)
ba , exist in this laser

beam configuration, as shown in Fig. 6.18 (b). Both of them use one pho-
ton from the probe beam Ep, two photons from the dressing beam Ed, and
one photon each from Ec and E′c with the same phase-matching condition of
kF = kp + kc − k′c + kd − kd. These FWM and SWM processes can coexist
and be phase-matched to travel in the same direction, as shown in Fig. 6.18
(c).

The evolution of the atomic variables in the interaction representation is
governed by the master equation:

∂ρ

∂t
= − i

�
[Hint, ρ] +

(
∂ρ

∂t

)
inc

, (6.38)

where the first term results from the coherent interaction and the second
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Fig. 6.18. (a), (b) Energy diagrams for generating FWM and SWM signals. (c)
Beam geometry used for the system.

term represents dampings due to decay with or without emission, dephasing,
and other irreversible processes. In the interaction representation and under
the dipole and rotating-wave approximation, the Hamiltonian for this system
can be described as

Hint = −�

(
3∑

M=−3

Δp |bM 〉 〈bM |+
3∑

M=−3

(Δp +Δc) |cM 〉×

〈cM |+
3∑

M=−3

(Δp −Δd) |dM 〉 〈dM |
)
−

�

[
2∑

M=−2

G−pM |aM 〉 〈bM−1|+
2∑

M=−2

G+
pM |aM 〉 〈bM+1|+ c.c.

]
−

�

[
3∑

M=−3

GdM |dM 〉 〈bM |+
3∑

M=−3

GcM |bM 〉 〈cM |+ c.c.

]
, (6.39)

where Δp = ωab−ωp, Δc = ωbc−ωc and Δd = ωdb−ωd are the frequency off-
sets of the probe, coupling, and dressing fields, respectively. ωab, ωbc, ωdb are
the transition frequencies from |a〉 to |b〉, |b〉 to |c〉 and |d〉 to |b〉, respectively.
G+

pM = μaM,bM+1E
+
p /� and G−pM = μaM,bM−1E

−
p /�(M = −2,−1, · · ·2),

GcM = μbM,cMEc/� and GdM = μbM,dMEd/� (M = −3,−2, · · ·3) are the
Rabi frequencies of the right-, left-circularly-polarized probe, coupling and
dressing beams for various transitions between different Zeeman sublevels,
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respectively. μiM,jM ′ (i, j = a, b, c, d) are the transition dipole moments be-
tween various Zeeman sublevels, which can be calculated by the following
expression [42]:

μiM,jM ′ = μJJCij (M, M ′)

= μJJ (−1)2F ′+J+I+M
√
(2F ′ + 1) (2J + 1) (2F + 1)×{

J J ′ 1

F ′ F I

}(
F ′ 1 F

M ′ q −M

)
, (6.40)

where μJJ is the reduced dipole matrix element, Cij (M, M ′) are the Clebsch-
Gordan (CG) coefficients. J, I, F are the quantum numbers of the total
electron angular momentum, the total nuclear angular momentum and the
total atomic angular momentum, respectively. The standard Rabi frequen-
cies are defined as G±p = μabE

±
p /�, Gc = μbcEc/�, Gd = μbdEd/�, so the

Rabi frequencies for the Zeeman sublevels can be easily expressed as G±pM =
Cab (M, M ± 1) × G±p , GcM = Cbc (M, M) × Gc, GdM = Cbd (M, M) × Gd,
which indicate that the Rabi frequencies for various transitions among dif-
ferent Zeeman sublevels are generally different.

The condition is considered that the probe beams connecting different
sub-RY systems are very weak, so these sub-systems are basically independent
of each other. Under this condition, as to each sub-system, there are sixteen
density-matrix elements but only ten of them are independent. One write
down few density-matrix equations from Eqs. (6.38) and (6.39), which are
useful for the derivations below:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ρbM±1aM

∂t
= −[iΔp + Γba]ρbM±1aM

+ iG±pM
e
ik±

pM
·r

ρaM aM +

iG∗cM±1
e
−ikcM±1 ·rρcM+1aM + iGdM±1e

ikdM±1
·r

ρdM±1aM
−

iG±pM
e
ik±

p
M
·r

ρbM±1bM±1 ,
∂ρcM±1aM

∂t
= −[i(Δp + Δc) + Γca]ρcM±1aM + iGcM±1e

ikcM+1 ·rρbM±1aM
−

iG±pM
e
ik±

p
M
·r

ρcM±1bM±1 ,
∂ρdM±1aM

∂t
= −[i(Δp − Δd) + Γda]ρdM±1aM

+ iG∗dM±1
e
−ikdM±1

·r
ρbM±1aM

−
iG±pM

e
ik±

pM
·r

ρdM±1bM±1
(M = −2,−1, . . . , 2),

(6.41)

where ρij (i, j = a, b, c, d) are the density-matrix elements, Γij (i, j=a, b, c, d)
are the decay rates describing decays of populations and coherences mainly
due to the spontaneous transitions. Decay rates between the same hyper-
fine levels but different Zeeman sublevels (i.e., ΓiM,jM ′ ) are generally dif-
ferent from each other. In this work, since the Rabi frequencies are always
far greater than the decay rates, the difference in the decay rates between
different Zeeman sublevels is neglected, which is now denoted as Γij on the
hyperfine levels to simplify our calculations. Otherwise, in the derivation be-
low, the last term of each equation which contains the probe Rabi frequency
will be neglected since the probe field is far weaker than the other two fields.
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6.3.2 Dual-dressed EIT

From the density-matrix equations (6.41), and under the weak probe fields
and the steady-state approximations, one obtains the expressions for the
matrix elements of the probe beams:

ρ±bM±1aM
=

iG±pM

iΔp + Γba +
|GcM±1|2

i(Δp +Δc) + Γca
+

|GdM±1|2
i(Δp −Δd) + Γda

ρ(0)
aM aM

,

(M = −2,−1, . . . , 2), (6.42)

where ρ
(0)
aM aM is the population of the ground state |aM 〉. So the linear sus-

ceptibility containing the dressing effect of such 85Rb atomic vapor can be
written as

χ =
2∑

M=−2

(
χ−bM−1aM

+ χ+
bM+1aM

)
=

N

ε0�Gp

[
2∑

M=−2

(
μ2

bM+1aM
ρ
(1)+
bM+1aM

+ μ2
bM−1aM

ρ
(1)−
bM−1aM

)]
, (6.43)

where N is the atom density. Then, the probe transmissivity T is given by

T = exp [−2πLIm(χ) /λ] . (6.44)

Figure 6.19 (a) depicts the calculated transmissivity of the probe beam
versus the probe frequency detuning Δp/2π and the Rabi frequency of the
dressing field Gd/2π. One can see that the EIT windows gradually emerge
as increasing Gd. Figure 6.19 (b) – (f) shows several cross sections of Fig.
6.19 (a). When the dressing field is weak (Gd = 10 MHz), as shown in Fig.
6.19 (b), only one EIT window appears, which indicates that all the splitting
Zeeman sublevels are almost degenerate. However, as the dressing field inten-
sity increases, more EIT windows appear and become clear in the spectrum,
which probe the multi-dark-state structure of this system [36].

This phenomenon from Eq. (6.44) can be easily explained. In the de-
nominator, the dressing field Gd and the coupling field Gc are related in a
summation, which is considered as in the sequentially-dressed scheme [31].
In such case, the two fields are intermixed and cannot be divided at the
resonant condition of Δc = Δd = 0. They split one energy level into two
dressed states, giving only two absorption peaks in the spectrum. In the
limit of |GcM±1|2 + |GdM±1|2 >> ΓcaΓda, positions of the split peaks (or

equally, split levels) are at ΔpM = ±
(
|GcM±1|2 + |GdM±1|2

)1/2

. Different
CG coefficients give different Rabi frequencies, and therefore different split-
ting distances, so multiple absorption peaks emerge [36]. For the linearly-
polarized dressing field, CG coefficients are symmetric with respect to M=0,
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Fig. 6.19. (a) Calculated transmissivity of the probe field versus Δp/2π and Gd/2π
when Gc/2π = 10 MHz, Δc/2π = Δd/2π = 0. (b) – (f) Several cross sections of (a)
versus Δp/2π for Gd/2π = 10, 25, 40, 80 and 100 MHz, respectively. (g) Gd/2π =
80 MHz, Gc/2π = 0 and Δc/2π = Δd/2π = 0. The other parameters are Γba/2π =
2.998 MHz, Γca/2π = 0.396 MHz, Γda/2π = 0.1 MHz, λ = 780.2 nm, N = 1.5 ×
1011/cm3, μD2 = 3.5843 × 10−29C ·m. The unit of the abscissa is MHz. Adopted
from Ref.[39].

namely Cij (M, M) = Cij (−M,−M). Hence, the symmetrical Zeeman sub-
levels must always be degenerate. Furthermore, from the values of CG coef-
ficients, one can conclude that the absorption peak pairs from inner to outer
frequencies in the spectrum are caused by Zeeman sublevelsM = 0, M = ±1,
M = ±2, M = ±3 respectively. These results are consistent with the ones
obtained in Ref. [36] which used singly-dressed EIT scheme in multi-type sub-
systems involving Zeeman sublevels. Note that the sublevel M = 0 is split
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only by the weak coupling field (Gc/2π = 10 MHz) because of Gd,M=0 = 0
(transition forbidden). Comparisons of Figs. 6.19 (e), (f) and (g) can confirm
this conclusion, i.e. as Gd (in Figs. 6.19 (e) and (f)) increases, the inner peak
pair does not move; however when the coupling field is blocked (Fig. 6.19 (g)
and comparing to Fig. 6.19 (e)), the inner peaks fuse together.

Figure 6.19 shows the variations of the probe spectrum as the dressing filed
intensity is increased when it is on resonant and the dark states induced by
the two fields are completely overlapped. Now, the coupling field (Δc/2π = 0,
17, 33, 45 MHz) is tuned under the same conditions as in Fig. 6.19 (f). As
Fig. 6.20 (a) shows, the coupling field splits each absorption peak generated
by the dressing field. The peaks (probing the shifted Zeeman sublevels) are
split again by the coupling field, as shown in Fig. 6.20 (b) (only the positive
split levels are shown.). The small peak in each secondary EIT window is
the two-photon-enhanced absorption peaks, which is generated by the two-
photon (the detuned coupling and probe fields which hit the same position)
resonance-enhanced absorption with the other split Zeeman sublevels which
are not secondarily split by the coupling field.

Therefore, under resonant condition, the dark states with multi-Zeeman
sublevels are lifted by the strong dressing field because of the differences
in the CG coefficients. The coupling and dressing fields are intermixed and
enhanced with each other. When it is frequency detuned, the coupling field
can selectively create secondary dark states on the split levels generated by
the dressing field.

The discussions above are all under the condition of not considering the
other hyperfine levels. However, for the real 85Rb atomic systems in exper-
iments related to narrow spectra, the multi-hyperfine levels should be con-
sidered. Figure 6.21 gives the comparison of the probe transmissivity with
and without the hyperfine level F = 2, which is the nearest hyperfine level
of F = 3 (63.4 MHz below F = 3). Figure 6.21 (a), (b) is the comparison
corresponding to Fig. 6.19 (f) while Figure 6.21 (c), (d) is the comparison at
the similar condition as the fourth figure of Fig. 6.20 (a) (with just an oppo-
site detuning of Δc/2π = −45 MHz). It can be seen that the peaks induced
by the hyperfine level F = 2 do not mix with F = 3 when proper dressing
beam intensity and frequency offset are used. So, if one wishes to distinguish
peaks from different hyperfine levels or to avoid the contributions from other
hyperfine levels, the frequency offset and detuning of the laser beams have
to be carefully controlled.

Fully simulating the spectra with all hyperfine levels can be done by
simply summing over all the hyperfine levels’ contributions for the permitting
transitions. However, since such spectra will be too complicated to see the
physics behind, the contribution from other hyperfine levels is avoided and
their impacts are minimized.
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Fig. 6.20. (a) Calculated transmissivity of the probe beam versus Δp/2π for
Δc/2π = 0, 17, 33, 45 MHz, respectively when Gd/2π = 100 MHz, Gc/2π = 10 MHz
and Δd/2π = 0. (b) Diagram of positive levels (including secondary-splitting) of
52P3/2, F = 3 corresponding to (a). Other parameters are the same as in Fig. 6.19.
The unit of the abscissa is MHz.
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Fig. 6.21. (a), (b) Comparison of the cases of whether to consider the hyperfine
level F = 2 or not at the same condition of Fig. 6.19 (f). (c), (d) Comparison of
the cases of whether to consider the hyperfine level F = 2 or not at the similar
condition (with just an opposite detuning of Δc/2π = −45 MHz) of the fourth
figure of Fig. 6.20 (a). The unit of the abscissa is MHz.

6.3.3 Four-Wave Mixing

By using the dressed perturbation the chain ρ
(0)
aa

ωp−−→ ρ
(1)
Gc±Gd±a

ωc−−→ ρ
(2)
ca

−ωc−−−→
ρ
(3)
Gd±a, One can obtain the expressions for FWM from the density-matrix
equations under similar approximations as for EIT:

ρ
(3)±
bM±1aM ,Fa = −

iG±pM |GcM±1|2

iΔp + Γba +
|GcM±1|2

i(Δp +Δc) + Γca
+

|GdM±1|2
i(Δp −Δd) + Γda

×

1

iΔp + Γba +
|GdM±1|2

i(Δp −Δd) + Γda

1
i(Δp +Δc) + Γca

(M = −2,−1, . . . , 2). (6.45)

The signal intensity is proportional to |Nμ1ρ|2, so the relative FWM
signal intensity is given by

IF ∝
∣∣∣∣∣

2∑
M=−2

(
μbM+1aM ρ

(3)+
bM+1aM

+ μbM−1aM ρ
(3)−
bM−1aM

)∣∣∣∣∣
2

. (6.46)

In order to clearly understand the simulation results, let us analyze the
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complex expressions as given by Eq. (6.45). For each expression, there are
three production terms. In the denominator of the first term, the Rabi fre-
quencies of the two fields (GcM±1 and GdM±1) are in sequential-dressing
scheme like the expressions for EIT. GdM±1 in the denominator of the sec-
ond term multiply the sequential term, which can be denoted as a parallel-
dressing scheme [31]. Therefore, the expression of FWM is a combination
of a sequentially-dressed scheme and a singly-dressed scheme. As to the
parallel scheme, which is different from the entanglement of two sequen-
tial fields, its two multiplying parts do not necessarily interact with each
other. So, the two parallel terms may give two independent groups of peaks.
Peaks in one group induced by the sequentially-dressed term are located at
ΔpM = ±(|GcM±1|2 + |GdM±1|2)1/2, and the peaks from the other group
induced by the singly-dressed term are at ΔpM = ±GdM±1.

Figure 6.22 is the calculated relative intensity of FWM signal for dif-
ferent Rabi frequencies of the dressing and coupling fields. Seven irregular
peak pairs (which are denoted as 1, 2, · · ·,7 from lower to higher offset, re-
spectively.) are obtained (the single peak in the centre is generated by the
two-photon term of the expression which is not our focus of discussion here).
However, from comparing the three curves in Fig. 6.22, the complex peak
structures can be well understood. For curves (a) and (b), as Gc is changed
but not Gd, peaks (pairs) 2, 3, 5, 7 shift, while peaks 1, 4, 6 are stable.
So, peaks 2, 3, 5, 7 are generated by the sequential-dressing term (Gc and
Gd) which probes the group of multi-Zeeman dark states generated in the
first transition of the FWM process. Peaks 1, 4 and 6, however, are split by
the singly-dressed parallel Gd, which probes the other group of dark states

Fig. 6.22. Intensity of the FWM signal versus Δp/2π for (a) Gc/2π = 43 MHz,
Gd/2π = 115 MHz; (b) Gc/2π = 39 MHz, Gd/2π = 115 MHz; (c) Gc/2π =
39 MHz, Gd/2π = 110 MHz.The parameters are Δc/2π = Δd/2π = 0, Gp/2π =
2 MHz, and the others are the same as in Fig. 6.19. The unit of the abscissa is
MHz.
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generated in the third transition of the FWM process. For curves (b) and
(c), as Gd is changed but not Gc, the peak 2 is stable while the other peaks
move. Similar to EIT, peak 2 must be split only by Gc, since Gd = 0 for Zee-
man sublevel M = 0. Looking at the values of CG coefficients, which peaks
of the two groups are induced by which Zeeman sublevels can be decided.
By using the expressions of the peak positions, the positions of the peaks
for curve (b) can be calculated as: Δpeak1 = ±Gd,±1/2π = ±17.5 MHz,
Δpeak2 = ±Gc,0/2π = ±24.3 MHz, Δpeak3 = ±(|Gc,±1|2 + |Gd,±1|2)1/2/2π =
±29.6 MHz, Δpeak4 = ±|Gd,±2|/2π = ±35 MHz, Δpeak5 = ±(|Gc,±2|2 +
|Gd,±2|2)1/2/2π = ±41.6 MHz, Δpeak6 = ±Gd,±3/2π = ±52.5 MHz, and
Δpeak7 = ±(|Gc,±3|2 + |Gd,±3|2)1/2/2π = ±56.2 MHz. The numerically cal-
culated maxima in curve (b) are at ±17.9496, ±23.2243, ±29.837, ±35.1064,
±41.3738, ±53.2318, and ±55.4742 MHz, respectively, which agree very well
with the analytically calculated results, confirming that the expressions are
reasonable. Properly intensity of the dressing and coupling fields were con-
trolled for avoiding bringing hyperfine levels F = 2 and F = 1 in our discus-
sion.

As discussed above, the sequentially-dressed scheme induces one group
of multi-Zeeman dark states and the parallel singly-dressed field induces the
other group which does not interact with the first group. The basic reason for
such phenomenon is that the parallel dressing scheme represents two tran-
sition processes in FWM. The two groups of multi-Zeeman dark states gen-
erated in different processes are distinguishable because the weaker coupling
field enhances the dressed effect of the dressing field in the first transition
process.

For better understanding the enhancement and suppression effects of the
signals, Eq. (6.47) is divided by the original FWM expression which has no
dressing fields (i.e. let Gc and Gd in the denominator of Eq. (6.47) equal to
0). In such case, when the signal intensity is below one, it means suppression
of FWM, while above one means enhancement of FWM signal intensity. The
expression for normalized FWM signal with dressing fields reduces to

ρ±bM±1aM
=

iG±pM

iΔp + Γba +
|GcM±1|2

i(Δp +Δc) + Γca
+

|GdM±1|2
i(Δp −Δd) + Γda

ρ(0)
aMaM

.

(M = −2,−1, . . . , 2). (6.47)

The normalized FWM signal intensity is given by

ĨF ∝
∣∣∣∣∣

2∑
M=−2

(
μbM+1aM ρ̃

(3)+
bM+1aM

+ μbM−1aM ρ̃
(3)−
bM−1aM

)∣∣∣∣∣
2

. (6.48)

Figure 6.23 (a) depicts the intensity of the dressed FWM signal versus
Δc/2π and Δd/2π with Δp/2π = −60 MHz (To avoid the hyperfine level
F = 2, one choose Δp/2π < 0, Since for the probe field, the hyperfine level
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F = 4 over F = 3 is forbidden transition level (transition 5S1/2, F = 2 −→
5P3/2, F = 4 is forbidden), it can not involve other hyperfine levels other
than the F = 3 while the intensity is not strong enough. The field strengths
are Gd/2π = 100 MHz, Gc/2π = 15 MHz, Gp/2π = 3 MHz and the other
parameters are the same as in Fig. 6.19. A cross section of Fig. 6.23 (a) versus
Δd/2π when Δc/2π = 0, as shown in Fig. 6.23 (b), shows three enhanced
peaks, which is different from the case with only one enhanced peak in each
curve in Ref. [31]. Surely, the multi-Zeeman splitting sublevels induced by the
dressing fields are responsible for this phenomenon. As for the first transition
process, the enhancement condition is Δp − ΔpM = 0, where ΔpM is the
frequency shift of the given Zeeman sublevel (M). This represents the new
resonant condition between the probe field and the splitting levels in the
dressed-state picture. As shown in Fig. 6.23 (c) (the coupling beam is omitted
because of its less contribution in this case), the probe detuning is fixed at
Δp/2π = −60 MHz, the split Zeeman sublevels move as the dressing field
is scanned. Only three positive splitting levels can get through the resonant
position (Δp/2π = −60 MHz). If any of them are set at this position [dashed
line in Fig. 6.23 (c)], it will satisfy the enhancement condition and greatly
enhance the FWM signal. So the three negative splitting levels generate three
enhanced FWM peaks when the dressing field is scanned [as shown in Fig.
6.23 (c) (I–III)]. The huge values in the y-axis are caused by the parallel-
dressing scheme since the two simultaneously enhanced terms are multiplied.

Now let us derive the analytical expressions for the enhancement posi-
tions. By using Eq. (6.47) and under the approximations of Gd, Δd, Δp >>
Gc > Γba, the locations of the splitting levels relative to the original position
of the state |b〉 can be obtained as

ΔpM =
1
2

(
Δd ±

√
Δ2

d + 4 |GdM |2
)

. (6.49)

Combining this with the enhancement condition of Δp − ΔpM = 0, the
detuning values for the dressing field, when the FWM is enhanced, can be
determined to be

ΔdM =
(
Δ2

p − |GdM |2
)

/Δp. (6.50)

According to Fig. 6.23 (b), the three enhanced peaks are located at
Δd/2π = −25.278,−44.568, and −56.142 MHz. The calculated positions
for the three maxima are −24.968,−44.392, and −56.083 MHz, respectively,
which show very good agreements.

Figure 6.23 (d) presents several cross sections of Fig. 6.23 (a) versus
Δc/2π. for Δd/2π = −25,−45,−56 MHz. These three curves all give the
same dip at Δc/2π = 60 MHz on the enhancement background. This means
that the coupling field greatly suppresses the FWM signals which have been
enhanced by the dressing field, as shown in Fig. 6.23 (b). In fact, this obeys
the suppression condition: Δp + Δc = 0, at which the coupling and probe
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Fig. 6.23. (a) Intensity of FWM signal versus Δp/2π and Δd/2π with Δp/2π =
−60 MHz. The parameters are Gd/2π = 100 MHz, Gc/2π = 15 MHz and Gp/2π =
3 MHz, the other parameters are the same as in Fig. 6.19 (b) Cross section of (a)
versus Δd/2π for Δc/2π = 0. (c) Schematic dressed-state diagram for the enhance-
ment corresponding to (b). (d) Cross sections of (a) versus Δc/2π for Δd/2π =
−25 MHz (solid line), −45 MHz (dash-dotted line), −56 MHz (dash-dotted line),
respectively. (e) Schematic dressed-state diagram for the suppression of FWM sig-
nal, corresponding to (d) (the solid line with Δd/2π = −25 MHz). The unit of the
abscissa is MHz.
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fields hit the same position in frequency. So the probability for the probe
photon transition at Δp = −Δc has been greatly reduced because of the
dressing effect of the coupling field, even when the enhancement condition
is also satisfied. Figure 6.23 (e) shows the diagram for the split levels when
Δc/2π = 60 MHz and Δd/2π = −25 MHz. The split sublevels | ± 3+〉 are
further split into | ± 3 + +〉 and | ± 3 + −〉, respectively, by the coupling
field, similar to the secondary dressing in EIT case, so the FWM signal is
suppressed.

Therefore, the spectrum of the FWM signal versus the dressing field de-
tuning can also reveal the Zeeman structure in the atomic system. These are
triple single-photon resonance (Δp = 0) enhancements of FWM processes in
split Zeeman sublevels. The analytical expressions for the positions of the
dressing field fixed show that one can selectively enhance each FWM path
consisting of different split Zeeman sublevels. At the same time, secondary
dressing effects, induced by the coupling field like in the EIT case, also exist
in the FWM spectrum and can greatly suppress the FWM signal.

6.3.4 Six-Wave Mixing

Using similar derivation procedure as for FWM processes in the last section,
by means of the density-matrix equations and two SWM perturbation chains
and under similar approximation, the expressions for dressed SWM processes
can be obtained as [31]

ρ
(5)±
bM±1aM

=
iG±pM |GcM±1|2 |GdM±1|2

iΔp + Γba +
|GcM±1|2

i(Δp +Δc) + Γca

×

1

iΔp + Γba +
|GdM±1|2

i(Δp −Δd) + Γda

1
i(Δp −Δd) + Γda

×

1
iΔp + Γba

1
i(Δp +Δc) + Γca

(M = −2,−1, · · · , 2). (6.51)

The normalized expressions for the dressed SWM signals (by dividing
the original SWM expression without the dressing fields) with multi-Zeeman
sublevels are

ρ̃
(5)±
bM±1aM

=
(iΔp + Γba)

2

iΔp + Γba +
|GcM±1|2

i(Δp +Δc) + Γca

1

iΔp + Γba +
|GdM±1|2

i(Δp −Δd) + Γda

(M = −2,−1, · · · , 2). (6.52)

Since the signal intensity I is proportional to |Nμ1ρ|2, the relative SWM
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signal intensities (normalized) are given by

ĨS =

∣∣∣∣∣
2∑

M=−2

(
μbM+1aM ρ̃

(5)+
bM+1aM

+ μbM−1aM ρ̃
(5)−
bM−1aM

)∣∣∣∣∣
2

. (6.53)

Since the basic analyses and major results of AT splitting in the SWM
case are similar to the case of FWM, as discussed in the last section, it is no
need to repeat the discussions here.

Figure 6.24(a) is the normalized SWM intensity according to Eq. (6.52)
versus Δd/2π. when the probe beam is slightly detuned (Δp/2π = −10 MHz.
Other parameters are Gd/2π = 50 MHz, Gc/2π = 10 MHz and Δc/2π =
100 MHz. Similar to the FWM enhancement spectrum, three enhanced peaks
(from left to right) are induced by the single-photon resonances of the probe
beam with the dressed states |±3+〉 , |±2+〉, and |±1+〉, respectively. The
curves of Figure 6.24 (b) are respective singly-induced by |±3+〉 (dashed
line), |±2+〉 (dotted line) and |±1+〉 (solid line) under the same condition as
in Fig. 6.24 (a), which show different enhanced peaks (different positions).

Fig. 6.24. (a) Intensity of SWM signal versus Δd/2π with Δp/2π = −10 MHz.
The parameters are Gd/2π = 50 MHz, Gc/2π = 10 MHz and Gp/2π = 3 MHz,
Δc/2π = 100 MHz, the other parameters are the same as in Fig. 6.19 (b) The
curves show structures as singly-induced by |±3+〉 (dashed line), |±2+〉 (dotted
line) and |±1+〉 (solid line), respectively, under the same condition as in (a). (c)
Schematic dressed-state diagram for the signal enhancement corresponding to (a).
The unit of the abscissa is MHz.

Also, one suppression dip exists. Because of the suppression condition
of Δp − Δd = 0, only one suppression dip can exist at Δd/2π = Δp/2π =
−10 MHz for all the split Zeeman sublevels. Figures 6.24 (a) and 6.24 (b) both
confirm this conclusion. Figure 6.24 (c) is the schematic dressed-state diagram



330 6 Multi-Wave Mixing Processes in Multi-level Atomic System

to show the condition for suppression. One can see that as the dressing field
hits the position of the probe field, it effectively suppresses its transition, and
therefore, reduces the SWM process.

Therefore, as the dressing field is scanned in frequency, the SWM signal
gets not only multiple enhancement peaks, but also suppression dips when
the probe field is slightly detuned. The mechanism for enhancement is similar
to the one as in FWM. The suppressed dips, however, represent the dressed
effects of the dressing field, which cannot reveal the Zeeman structure in the
system.
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7 Controlling Spatial Shift and Spltting of
Four-Wave Mixing

When multiple laser beams interact with multi-level atomic systems, inter-
esting spatial effects for the probe beam, such as the pattern formation,
spatial displacement, and spatial soliton, can occur, controlled by stronger
coupling or pumping laser beams. In this chapter, spatial dispersion prop-
erties of the probe and generated four-waving mixing (FWM) beams are
presented, which can lead to spatial shift and splitting of these weak laser
beams. Such beam displacement and splitting can be controlled by the story
coupling/pumping laser beams via enhanced cross-Kerr nonlinearity in the
multi-level atomic systems near electromagnetically induced transparency
(EIT) resonance. Such enhanced spatial dispersion behaviors follow closely
to the traditional linear and nonlinear dispersion properties in a frequency
domain for multi-level EIT systems. By controlling the spatial displacements
of the weak probe and FWM beams with coupling/pumping beams, spatial
optical switching and routing of one beam or multiple optical beams can be
achieved. Such controllable spatial beam displacement and splitting effects
are illustrated in two- and three-level atomic system.

Additional story dressing beams can also affect the spatial splitting and
intensity of the FWM beam. Studies of such a controlled beam shift and
spatial splitting can be very useful in understanding image storage, spatial
soliton formation and dynamics, and in device applications for spatial signal
processing inducing switches and routers.

7.1 Basic Theory

The self-Kerr nonlinear index of refraction for rubidium atoms has been the-
oretically calculated and experimentally measured by Wang [1]. In this sec-
tion, we will present a simple theoretical treatment of the dressed cross-Kerr
nonlinear index of refraction for a two-level atomic system, a V-type and a
ladder-type three-level atomic system.

First we consider a two-level system, as shown in Fig. 7.1(a), where the
weak probe field E1 and the strong coupling fields E′1 come from the same
laser and both couple levels |0〉 and |1〉. They have the same frequency de-
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Fig. 7.1. Sketches of the (a) and (b) two-level atomic system, (c) a V-type and (d)
a ladder-type three-level atomic systems. E1 is the weak probe field, E′1 and E2 are
the strong coupling fields.

tuning Δ1 = Ω1 − ω1, where Ωi is the resonant frequency and ωi is the laser
frequency. For this system the following equations are derived for the slowly
varying density matrix elements:⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∂ρ
(r)
00

∂t
= −Γ00ρ

(r)
00 − iG1ρ

(r)
01 + iG∗1ρ

(r)
10 ,

∂ρ
(r)
11

∂t
= −Γ11ρ

(r)
11 − iG∗1ρ

(r)
10 + iG1ρ

(r)
01 ,

∂ρ
(r)
10

∂t
= −[iΔ1 + Γ10]ρ

(r)
10 − iG1ρ

(r)
11 + iG1ρ

(r)
00 ,

(7.1)

where Gi is the Rabi frequency, Γ00 and Γ11 are the longitudinal relaxation,
and Γ10 is the transverse relaxation from |1〉 to |0〉. A cross-Kerr process of
the weak probe field E1 induced by the strong coupling field E2 can be simply
presented via the four perturbation chains:⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ρ
(0)
00

E′
1−−→ ρ

(1)
10

E′∗
1−−→ ρ

(2)
00

E1−−→ ρ
(3)
10 ,

ρ
(0)
00

E′∗
1−−→ ρ

(1)
01

E′
1−−→ ρ

(2)
00

E1−−→ ρ
(3)
10 ,

ρ
(0)
00

E′
1−−→ ρ

(1)
10

E′∗
1−−→ ρ

(2)
11

E1−−→ ρ
(3)
10 ,

ρ
(0)
00

E′∗
1−−→ ρ

(1)
01

E′
1−−→ ρ

(2)
11

E1−−→ ρ
(3)
10 .

(7.2)

If we consider the dressing effect of the strong coupling field E′1, both the
energy levels |0〉 and |1〉 are dressed to create dressed states |+〉 and |−〉,
respectively. The dressed cross-Kerr nonlinear processes can be described as⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ρ
(0)
00

E′
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(1)
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ρ
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(1)
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E′∗
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(2)
1±1±
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(3)
1±0±,

ρ
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00

E′∗
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(1)
0±1±

E′
1−−→ ρ

(2)
1±1±

E1−−→ ρ
(3)
1±0±,

(7.3)
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where ρ1±0± represents dressing the chain ρ10
E′∗

1−−→ ρ00
E′

1−−→ ρ10
E′∗

1−−→ ρ11
E′

1−−→
ρ10, ρ0±1± represents dressing the chain ρ01

E′
1−−→ ρ11

E′∗
1−−→ ρ01

E′
1−−→ ρ00

E′∗
1−−→

ρ01, ρ0±0± represents dressing the chain ρ00
E′∗

1−−→ ρ01
E′

1−−→ ρ00
E′

1−−→ ρ10
E′∗

1−−→
ρ00 and ρ1±1± represents dressing the chain ρ11

E′∗
1−−→ ρ01

E′
1−−→ ρ11

E′
1−−→ ρ10

E′∗
1−−→

ρ11. Under the condition that the coupling field is much stronger than the
probe field and ρ

(0)
00 ≈ 1, equations can be solve together with the chain to

give

ρ
(3)
10 =

−iG1|G′1|2
F1

(
1

F ∗1
+

1
F1

)(
1
F2

+
1
F3

)
, (7.4)

where ⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

F1 = (Γ10 + iΔ1) +
|G′1|2
Γ00

+
|G′1|2
Γ11

,
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|G′1|2

Γ10 + iΔ1
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Γ01 − iΔ1

,
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|G′1|2

Γ10 + iΔ1
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Γ01 − iΔ1

.

(7.5)

Thus we can obtain χ(3) ∝ ρ
(3)
10 and the dressed cross-Kerr nonlinear index

of refraction nX
2 ∝ Reχ(3).

In this two-level system, when the weak probe field E1 and the strong coupling
fields E2 come from the different lasers but both couple levels |0〉 and |1〉,
as shown in Fig. 7.1(a). They have the different frequency detunings Δ1 and
Δ2 = Ω1 − ω2, respectively. The cross-Kerr process of the weak probe field
E1 induced by the strong coupling field E2 can be simply presented via the
four perturbation chains:

ρ
(0)
00

E1−−→ ρ
(1)
10

E∗
2−−→ ρ

(2)
00

E2−−→ ρ
(3)
10 . (7.6)

If we consider the dressing effect of the strong coupling field E2, the energy
level |1〉 is dressed to create dressed states |+〉 and |−〉. The dressed cross-
Kerr nonlinear processes can be described as

ρ
(0)
00

E1−−→ ρ
(1)
1±0

E∗
2−−→ ρ

(2)
00

E2−−→ ρ
(3)
1±0, (7.7)

where ρ1±0 represents the dressing chain ρ10
E∗

2−−→ ρ00
E2−−→ ρ10. Under the

same condition as before, equations can be solve together with the chain to
give

ρ
(3)
10 =

−iG1|G2|2
Γ00 {Γ10 + iΔ1 +G2

2/[Γ00 + i(Δ1 −Δ2)]}2
. (7.8)

Similarly, for a V-type three-level system, as shown in Fig. 7.1 (c), the
weak probe field E1 couples levels |0〉 and |1〉 with the frequency detuning Δ1
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and the strong coupling fields E2 couples levels |0〉 and |2〉 with the frequency
detuning Δ2 = Ω2 − ω2. For this system, the following equations are⎧⎪⎪⎪⎪⎪⎪⎪⎨
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(7.9)

Γ20 is the transverse relaxation from |2〉 to |0〉. A cross-Kerr process of the
weak probe field E1 induced by the strong coupling field E2 can be simply
presented via the four perturbation chains:

⎧⎪⎨
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20
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10 .

(7.10)

If we consider the dressing effect of the strong coupling field E2, the energy
levels |0〉 is dressed to create dressed states |+〉 and |−〉, respectively. The
dressed cross-Kerr nonlinear processes can be described as

⎧⎪⎨
⎪⎩

ρ
(0)
00

E2−−→ ρ
(1)
20±

E∗
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(3)
10±.

(7.11)

Under the condition that the coupling field is much stronger than the probe
field and ρ

(0)
00 ≈ 1, equations can be solved together with chains to give

ρ
(3)
10 =

−iG1|G2|2
F5F6
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1
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1
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)
. (7.12)

where ⎧⎪⎪⎪⎪⎪⎪⎨
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2
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(7.13)

At last, for a ladder-type three-level system, as shown in Fig. 7.1 (d), the
weak probe field E1 couples levels |0〉 and |1〉 with the frequency detuning Δ1

and the strong coupling fields E2 couples levels |1〉 and |2〉 with the frequency
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detuning Δ2. For this system, the following equations are⎧⎪⎪⎪⎪⎪⎪⎪⎨
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(7.14)

A cross-Kerr process of the weak probe field E1 induced by the strong cou-
pling field E2 can be simply presented via the four perturbation chains:

ρ
(0)
00

E1−−→ ρ
(2)
10

E2−−→ ρ
(2)
20

E∗
2−−→ ρ

(3)
10 . (7.15)

If we consider the dressing effect of the strong coupling field E2, the energy
levels |1〉 is dressed to create dressed states |+〉 and |−〉, respectively. The
dressed cross-Kerr nonlinear processes can be described as

ρ
(0)
00

E1−−→ ρ
(2)
1±0

E2−−→ ρ
(2)
20

E∗
2−−→ ρ

(3)
1±0. (7.16)

Under the condition that the coupling field is much stronger than the probe
field and ρ

(0)
00 ≈ 1, equations can be solved together with chains to give

ρ
(3)
10 =

−iG1|G2|2
[Γ20 + i(Δ1 +Δ2)]{(Γ10 + iΔ1) +G2

2/[Γ20 + i(Δ1 +Δ2)]}2 . (7.17)

7.2 Electromagnetically-induced Spatial Nonlinear
Dispersion of Four-Wave Mixing Beams

As two or more laser beams propagate through an atomic medium, the
cross-phase modulation (XPM), as well as the modified self-phase modu-
lation (SPM), can significantly affect the propagations and spatial patterns
of the traveling laser beams. Laser beam self-focusing [2], deflection [3], beam
breaking [4], and pattern formation [5, 6] have been extensively studied with
two laser beams propagating in two-level atomic vapors. The previous chap-
ters have shown that the self- and cross-Kerr nonlinearities can significantly
enhance and modify the linear and nonlinear optical properties in three-level
atomic systems due to laser-induced atomic coherence (or EIT) [7 – 9]. EIT-
induced waveguide effect [9], elimination of beam filamentation [10, 11] by
atomic coherence, and spatial all-optical switching of laser beams [12] were
reported in the past few years. At the same time, FWM processes have been
shown to be significantly enhanced in three-level EIT systems [13 – 15].

There are several features in this section that are distinctly different and
advantageous over the previously studied spatial shifts of laser beams in
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atomic systems. One of the distinct features in multi-level EIT systems is
the sharp linear [16], as well as nonlinear [2], dispersions in frequency near
the EIT resonance. By arranging the laser beams in certain spatial configu-
rations, such sharp dispersive features in the frequency domain for the probe
beam can be converted into spatial beam displacement controlled by the
strong coupling laser beam. For a three-level V-type system, as shown in
Fig. 7.2 (a), the control (coupling) beam E2 in one transition can spatially
deflect the probe beam Ep in another transition when these two laser beams
propagate through the atomic medium with a small angle. As the probe fre-
quency is detuned, the spatial deflection shows a dispersion-like change in
its displacement, which exactly mimics the dispersion curve as observed for
the Kerr-nonlinear index of refraction in the EIT system [2]. Also, when two
additional pump laser beams (E1 and E′

1) are applied to the probe transi-
tion, as shown in Fig. 7.2 (b), to generate a FWM signal EF1, this FWM
signal beam can also be spatially displaced by the control beam E2. Again,
a dispersion-like spatial deflection curve for the FWM signal is seen with
respect to the probe frequency detuning. Such electromagnetically-induced
spatial dispersion (EISD) can be used for spatial switching and routing, and
as an easy way to measure the Kerr-nonlinear indices of refraction for the
multi-level atomic media. When the control beam E2 is tuned to the same
transition as the probe and pump beams, as shown in Fig. 7.2(c), it becomes
an effective two-level system.

The three-level V-type atomic system is shown in Fig. 2 (a). Three energy
levels (|0〉(3S1/2), |1〉(3P1/2) and |2〉 (3P3/2)) from Na atoms (in a heat pipe
oven) are involved in the experiments. The pulse laser beams are aligned
spatially as shown in Fig. 7.2(d) with the control beam E2 (frequency ω2,
k2) and pumping beams E1 (frequency ω1, k1) and E′

1 (ω1, k′1) propagating
through the atomic medium in the same direction (E1 and E2 are collinear)
with a small angle (0.3◦) between them in a square-box pattern. The probe
beam Ep (ω1, kp) propagates in the opposite direction with a small angle as
shown in Fig. 7.2 (d). The laser beams E1, E′

1, and Ep (with Rabi frequencies
G1, G′1 and Gp, respectively, connecting the transition from |0〉 to |1〉) are
from the same near-transform-limited dye laser with frequency ω1 (10 Hz
repetition rate, 5 ns pulse-width and 0.04 cm−1 linewidth), which generate
a one-photon resonant FWM process [17]. The generated FWM beam EF1

(with Rabi frequency GF1) sampled by a CCD satisfies the phase-matching
condition kF1 = k1−k′1+kp. The control field E2 (with Rabi frequency G2)
drives the transition from |0〉 to |2〉), as shown in Fig. 7.2 (b), which is from
another dye laser of the frequency ω2 with the same characteristics as the first
dye laser. When the beams E1, E′

1 and Ep are also tuned to the transition
|0〉 − |2〉, the system becomes an effective two-level one, as shown in Fig. 7.2
(c). When the four laser beams are all on, two one-photon resonant FWM
processes, kF1 and kF2 = k2 − k′1 + kp, can be generated simultaneously.
However, since EF1 is always the dominant one [17, 18], we will only consider
this FWM process in this work.
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Fig. 7.2. (a) Three-level V-type EIT system. (b) Three-level V-type system with
FWM signal EF1 generated by the pump beams (E1, E

′
1) and the probe beam (Ep)

in the transition of |0〉−|1〉. The FWM process can be modified by the control beam
E2. (c1) Two-level system with four laser beams tuned to the same transition. (c2)
Dressed-state picture corresponding to the two-level system in (c1). (d) Spatial
beam geometry used in the experiments.

Under our experimental conditions, the sodium vapor is an EIT-enhanced
Kerr medium for the propagating laser beams. The laser beam E2 (or E1) is
approximately 102 times stronger than the beam E′

1, and 10
4 times stronger

than the weak probe beam Ep, so E1 and E2 beams can control the weaker
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Ep and EF1 beams. At the same time, the field E′
1 can also slightly affect

the displacement of the EF1 beam. The mathematical description of the
propagation properties of the weak beams Ep and EF1 due to self- and cross-
Kerr nonlinearities of the control and pump beams can be obtained through
numerically solving the following coupled equations:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∂Ap

∂z
− i∇2

⊥Ap

2kp
=
ikp

n0
(nS1

2 |Ap|2 + 2nX1
2 |A1|2 + 2nX2

2 |A2|2)Ap,

∂AF1

∂z
− i∇2

⊥AF1

2kF1
=
ikF1

n0

[
nS2

2 |AF1|2 + 2nX3
2 |A1|2 +

2nX4
2 |A2|2 + 2nX5

2 |A′1|2
]
AF1,

(7.18)

where z is the longitudinal coordinate in the propagation direction, A′1 and
A1,2 are the slowly varying envelope amplitudes of the fields E′

1 and E1,2,
respectively. kp = kF1 = ω1n0/c and n0 is the linear refractive index at ω1.
nS1

2 are the self-Kerr nonlinear coefficients of the fields Ep and nS2
2 is the self-

Kerr nonlinear coefficients of the fields EF1. nX1
2 is the cross-Kerr nonlinear

coefficient of the weak field Ep induced by the strong coupling field E1. nX2
2 is

the cross-Kerr nonlinear coefficient of the weak field Ep induced by the strong
coupling field E2. nX3

2 is the cross-Kerr nonlinear coefficient of the weak field
EF1 induced by the strong coupling field E1. nX4

2 is the cross-Kerr nonlinear
coefficient of the weak field EF1 induced by the strong coupling field E2.
nX5

2 is the cross-Kerr nonlinear coefficient of the weak field EF1 induced by
the strong coupling field E′

1. The Kerr nonlinear coefficient can be defined as
n2 = Reχ(3)/(ε0cn0), where the third-order nonlinear susceptibility is given
by χ(3) = Dρ

(3)
10 with D = Nμ2

pμ
2
i0/(�

3ε0GpG
2
i ). μp (μi0) is the dipole matrix

element between the states coupled by the probe beam Ep (between |i〉 and
|0〉). Since high-power pulsed dye lasers are used in the experiment, Doppler
effect and the power broadening effect are considered in the calculation using
Eq. (7.18). By assuming Gaussian profiles for the input fields, Eqs. (7.18a)
and (7.18b) are solved using the split-step method [2].

The first feature in this section that is distinctly different and advan-
tageous over the previously studied spatial shifts of laser beams in atomic
systems is that the EISD of both the probe beam and the generated FWM
beam can be directly observed and controlled by another strong (control) laser
beam. Figure 7.3 shows spatial displacements of the probe field Ep and the
FWM beam EF1, respectively, versus frequency detuning Δ1 (Δ1 = Ω1−ω1

for the three-level system or Ω2 − ω1 for the two-level system) with a fixed
control beam (Δ2 = Ω2 − ω2 = 0). When the pump beams E1 and E′

1 are
blocked [Fig. 7.2 (a)], it is the simple three-level V-type EIT system. For the
fixed control (coupling) beam E2, the measured probe beam displacements
show a spatial dispersion-like displacement curve as depicted in Fig. 7.3 (a)
(the triangle points). The data points can be fitted well with the calculated
cross-Kerr nonlinear coefficient n2 vs Δ1. The inset in Fig. 7.3 (a) shows the
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images of the measured probe beam spots versus Δ1 in the two-level sys-
tem. In the region with Δ1 < 0, the smaller beam spots are an indication
of self-focusing effect for the probe beam due to positive self-Kerr nonlinear
index, while the larger beam spots in Δ1 > 0 region are due to self-defocusing
because of the sign change in the self-Kerr nonlinear coefficient. When the
probe beam Ep is tuned to the transition between |0〉 and |2〉, the system
becomes an effective two-level one. Similarly, with the control beam E2 fixed,
the spatial displacements (squares) also show the same dispersion-like curve,
as shown in Fig. 7.3 (a). Again the solid line is the calculated cross-Kerr
nonlinear coefficients as a function of Δ1, which fits perfectly well with the
measured EISD. When the pump beams (E1 and E′

1) are on [Fig. 7.2 (b)],
an efficient FWM signal EF1 is generated by the pump beams together with
the probe beam, which propagates in a different direction as shown in Fig.
7.2 (d). With a fixed control beam E2, the generated FWM signal beam
EF1 (in either the three-level or the two-level system) is deflected differently
when the frequency detuning of the probe beam (Δ1) is scanned, as shown
in Fig. 7.3 (b). The dispersion-like curves are narrower than for the cases
of the probe beam deflections, but the general behaviors are very similar to
the ones as in Fig. 7.3 (a). The spatial deflection curves are well fitted with
the calculated cross-Kerr nonlinear indices of refraction for the three-level
V-type and two-level systems (solid curves), respectively. The inset in Fig.
7.3 (b) shows the images of the measured FWM beam spots versus Δ1 in
the three-level system. Hence, the second feature that is distinctly different
and advantageous over the previously studied spatial shifts of laser beams in
atomic systems is that the cross-Kerr nonlinear index of refraction n2 can be
directly measured by such simple EISD technique.

The observed spatial displacements of probe (Ep) and FWM (EF1) beams
are caused by the non-colinear propagations of the laser beams and the
enhanced cross-Kerr nonlinear indices of refraction due to the strong laser
beams E2 and E1. For simplicity, let us only consider the strong control
beam E2. During its propagation through the vapor cell, the wing of the
beam E2 interacts with the intensity profile of either Ep or EF1, and dis-
torts its phase profile to induce an optical waveguide through XPM. The
nonlinear phase shift can be written as φNL = 2kF1n2 |A2|2 z/n0 and the
additional transverse propagation wave-vector is δk⊥ = φ′NL [2]. In this case,
when n2 > 0, the direction of δk⊥ is to the beam center of E2, and, therefore,
Ep,F1 is deflected closer to E2; when n2 < 0, the direction of δk⊥ is outward
from the beam center of E2, thus Ep,F1 is deflected away from the strong
control beam E2. According to the expression for φNL, the amount of spatial
shift is proportional to the cross-Kerr nonlinear coefficient, the field intensity
and the propagation distance. Hence, the spatial displacements of the probe
and FWM beams results from the cross-Kerr nonlinear coefficient induced by
the strong control field, therefore, can be controlled by it.

The spatial displacements of the probe and FWM signal beams can be
controlled by the intensity of the control beam (G2), as well as by the atomic
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Fig. 7.3. (a) EISD shift of the beam Ep and the fitted cross-Kerr nonlinear coeffi-
cient n2 versus Δ1 at 200

◦C in the two-level system (squares) and the three-level
system (triangles), respectively. Inset: EISD spots of Ep versus Δ1 in the two-level
system. (b) EISD shift of the beam EF1 and the fitted cross-Kerr nonlinear coef-
ficient versus Δ1 at 200 ◦C in the two-level system (squares) and the three-level
system (triangles), respectively. Inset: EISD spots of EF1 versus Δ1 in the three-
level V-type system. The parameters are Gp = 0.2 GHz, G1 = G′1 = 1.1 GHz and
Δ. Adopted from Ref. [19].

density N. As the Rabi frequency of the control field increases, not only
the spatial displacement gets bigger, but also an additional contribution,
independent of the frequency detuning Δ1, appears, as shown in Fig. 7.4
(a), (c). This constant spatial displacement depends on G2 and N , and adds
a constant shift to the dispersion-like displacement curve, as seen in the
two curves with larger G2 values in Fig. 7.4 (a). Figure 7.4 (a) presents the
temperature (atomic density) effects on the spatial displacement with bigger
spatial displacements at the higher atomic density. A similar constant shift in
the spatial displacement curve also appears at the higher atomic density. The
solid curves are the theoretically simulated spatial displacements of the FWM
beam based on the coupled equations (7.18). The differences in the maximum
spatial displacements for the three-level system [Fig. 7.2 (b)] and effective
two-level system [Fig. 7.2 (c)] as functions of the control beam Rabi frequency
(G2) and the atomic density (N) are plotted in Fig. 7.4 (b), (d), respectively.
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As one can see that the trends of changes as G2 and N increase are different
for the three-level and two-level systems, which can be better understood
in the dressed-state pictures. At low G2 values, the three-level system has a
bigger maximum shift than the two-level one, however, the FWM signal in the
two-level system has larger spatial shift when G2 is increased to certain value
[as shown in Fig. 7.4 (b)]. The opposite trend happens as the atomic density
increases [Fig. 7.4 (d)]. Hence, the third feature that is distinctly different
and advantageous over the previously studied spatial shifts of laser beams in
atomic systems is that enhanced cross-Kerr nonlinearity in the spatial domain
can be achieved by increasing atomic density (cell temperature) or the power
of the strong control beam.

Fig. 7.4. (a) Spatial dispersion curves of EF1 in the two-level system versus Δ1

with G2 = 19.1 (squares), 18.3 (triangles) and 11.7 GHz (reverse triangles) at
260 ◦C. (b) the maximum spatial displacements of EF1 versus G2 in two-level
system (squares) and three-level V-type system (triangles). (c) Spatial dispersion
curves of EF1 in the two-level system versus Δ1 with G2 = 9.7 GHz at 330
(squares), 280 (triangles), 230◦C (reverse triangles). (d) the maximum spatial
displacements of EF1 versus atom density N in the two-level system (squares) and
three-level V-type system (triangles). The other parameters are Gp = 0.8 GHz and
G1 = G′1 = 3.8 GHz. The scattered points are the experimental results, and the
solid lines are theoretically calculated spatial shifts.
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The last feature that is distinctly different and advantageous over the
previously studied spatial shifts of laser beams in atomic systems is that the
effects of different dressing schemes on spatial deflection of the FWM beam
have been carefully considered and compared. Let us consider the spatial
displacements of the probe and generated FWM beams with all the control
and pump beams on, but with different intensities. Other than the case of
having a strong control beam as discussed above (i.e., G2 >> G1, G

′
1 >>

Gp > GF1), one can also let one of the pump beams (say E1) to be very
strong (i.e., G1 >> G2, G

′
1 >> Gp > GF1), which is t is the doubly-dressing

scheme [18, 19]. Under these different conditions, the strong laser fields dress
the energy levels differently, and modify the degree of spatial deflections for
the probe [Fig. 7.5 (a)], as well as the FWM beams [Fig. 7.5 (c)], under
different conditions.

First, when E2 is the only strong field, it dresses the level |0〉 to create
the dressed states |G2±〉, as shown in the left side of Fig. 7.2 (c2). Under
this condition, we have [18] ρ

(3)
20 = −iGa/[d1d2(d1 +G2

2/d2)] for the two-level
system and ρ

(3)
10 = −iGa/[d3d4(d3+G2

2/d4)] for the three-level system, where
Ga = Gp,F1G

2
2, d1 = iΔ1 + Γ20, d2 = Γ2 + i(Δ1 −Δ2), d3 = iΔ1 + Γ10 and

d4 = i(Δ1−Δ2)+Γ12. Second, the pump field E1 is the only strong field (G1

>> G2, G
′
1). Since E1 and Ep have the same frequency detuning Δ1, the

upper-level (|2〉 for the two-level system and |1〉 for the three-level system)
and the lower-level (i.e., u1(t)) are always on resonance with and are dressed
by E1. In this case, two pairs of dressed states |G1±〉 are created [right side of
Fig. 7.2 (c2)], from which we can write [18] ρ

(3)
20 = −iGb/[d1Γ2(d1 +G2

1/Γ0+
G2

1/Γ2)] and ρ
(3)
10 = −iGb/[d3d4(d3 + G2

1/Γ0 + G2
1/Γ1)]. These expressions

indicate that the strong E1 field induces a larger XPM than the strong E2

can do, so the spatial displacements ofEp andEF1, controlled by the stronger
E1, is larger than that by the stronger E2 field [as seen for the probe beam
Ep in Fig. 7.5 (a) and the FWM beam EF1 in Fig. 7.5 (c)]. Third, when
both E1 and E2 beams are the strong ones (doubly-dressing case), they
share the common level |0〉 and interact with each other [18]. Under this
situation, we have [18] ρ

(3)
20 = −iGa/(d1d2da) and ρ

(3)
10 = −iGa/(d3d4db) for

the cross-Kerr nonlinear coefficients of E2, and ρ
(3)
20 = −iGb/(Γ2d1da) and

ρ
(3)
10 = −iGb/(Γ1d1db) for the cross-Kerr nonlinear coefficients of E1, where

da = d1+G2
1/Γ2+G2

2/(d2+G2
1/d5), db = d3+G2

1/Γ1+G2
2/(d4+G2

1/d5). E1

(the secondG1 in da or db, dressing the state|0〉) suppresses the dressing effect
of the “inner” dressing field E2 and contribute to the cross-Kerr nonlinear
coefficient indirectly. As a result, the XPM induced by the doubly-dressing
fields is weaker than the sum of the effects due to singly-dressing by E1 and
E2 alone.

Figure 7.5 (b) depicts the spatial displacements of Ep induced by two
dressing fields (strong E1 and E2). The spatial displacement for two-level
system (squares) is larger than the one for the three-level system (triangles).
That is mainly due to the larger dipole moment μ20 (comparing to μ10),
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Fig. 7.5. (a) Spatial displacements of Ep versus Δ1 in the two-level system con-
trolled by E2 (squares), E1 (triangles) and both E2 and E1 (reverse triangles)
at 260 ◦C. (b) spatial dispersion curves of Ep versus Δ1 in the two-level system
(reverse triangles) and V-type system (circles) dressed by both E2 and E1 beams.
(c) Spatial dispersion curves of EF1 versus Δ1 dressed by E2 (squares), E1 (trian-
gles) and both E2 and E1 (reverse triangles) at 270

◦C. The scattered points are the
experimental results, and the solid lines are the theoretically calculated spatial dis-
placements. (d) Temperature dependences of the maximum spatial displacements
of EF1 dressed by E2 (squares), E1 (triangles) and both E2 and E1 (reverse trian-
gles) in the two-level system. The other parameters are G1 = G2 = 17.6 GHz and
G′1 = 3.8 GHz, Gp = 0.8 GHz. Adopted from Ref. [19].

which makes n2 of the two-level system be larger than that of the three-
level system [17]. Figure 7.5 (d) shows the temperature dependences of the
spatial displacements of EF1 in the two-level system with different dressing
fields. The spatial displacements are proportional to the temperature, and
the spatial displacement with the E2 singly-dressing scheme is the smallest,
while that of the doubly-dressing scheme gives a closer but smaller spatial
displacement than that with the E1 singly-dressing scheme.

The spatial displacements of the probe and FWM beams are mainly de-
termined and controlled by the large cross-Kerr nonlinear coefficients of the
strong laser fields. However, the cross-Kerr effects induced by the relatively
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weaker pump beam(s) can also exist. Since each of the pump and probe beams
can be spatially displaced by the strong control beam (and by each other),
the final spatial displacement of the generated FWM beam can be affected
by such secondary displacement effects. In the above discussion and calcula-
tions, we have only considered the leading contributions from the strongest
fields, which explained the observed spatial displacements quite well. Also,
when the fields of Ep and EF1 get stronger (with higher probe and more
efficient FWM process), incoherently coupled soliton pairs can be formed by
these Ep and EF1 beams due to the interplays between the diffraction ef-
fect and self-Kerr nonlinear effect [4]. Under such conditions, we can obtain
the solutions of Ap,F1(x) = A0sech(A0x) for the bright-bright soliton pair
in the self-focusing EIT media and Ap,F1(x) = A0[1 − sech2(A0x)]1/2 for
the dark-dark soliton pair in self-defocusing EIT media [20]. Here A0 is the
initial envelope amplitude. The enhanced self-Kerr and cross-Kerr nonlinear
coefficients due to induced atomic coherence or EISD enable the formations
of such spatial soliton pairs with much lower input laser powers, which can
be very important for their applications in optical communications.

7.3 Spatial Dispersion Induced by Cross-phase
Modulation

In this section, we demonstrate the spatial beam displacement which results
from distinct dispersive features in the frequency domain. By arranging the
laser beams in a certain spatial configuration, the spatial displacement of the
probe beam can be controlled by the strong coupling laser beam.

We put three pulse lasers (E1, E2 and E3) into sodium vapor (in heat
pipe oven) which is a Kerr medium. Incident lasers are aligned spatially as
shown in Fig. 7.6(a). Beams E2 (frequency ω2, k2) andE3 (ω3, k3) propagate
in the opposite direction of the probe E1 (frequency ω1, k1). There is a small
angle θ1 (about 0.3◦) between E2 and E1 as well as E3 and E1 in a square-
box pattern. Three energy levels (|0〉(3S1/2), |1〉(3P1/2) and |2〉 (3P3/2)) from
Na atoms form three-level V-type atomic system. As shown in Fig. 7.6(b),
laser beams E2 (Rabi frequencies G2) and E1 (G1) connect transitions from
|0〉 to |2〉 and from |0〉 to |1〉, respectively. The strong control beam E2

can spatially deflect the weak probe beam E1 when these two laser beams
propagate through the atomic medium. As the probe frequency is detuned,
light bias shows a dispersion-like curve in the section plane of the propagating
direction, which exactly mimics the dispersion curve of the Kerr-nonlinear
index of refraction in the EIT system [18]. When the beamsE1 is also tuned to
the same transition as E2, the system becomes an effective two-level one [Fig.
7.6 (c)]. Later, we compare the spatial displacement in these two different
atomic systems. Such electromagnetically-induced spatial dispersion (EISD)
can be used for spatial switching and routing, and as an easy way to measure
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the Kerr-nonlinear indices of refraction for the multi-level atomic media.

Fig. 7.6. (a) Spatial beam geometry used in the experiments. (b) Three-level V-
type EIT system with the strong pump beam E2 in the same transition of |0〉− |2〉
and the probe beam E1 in the transition of |0〉 − |1〉. (c) Two-level subsystem with
the probe beam E1 and the strong pump beam E2 in the same transition of |0〉−|2〉.
(d) Three-level system with two pump beams E2 and E3 as well as the probe beam
E1.

In our experiment, the lasersE1 andE3 are from the same near-transform-
limited dye laser (10 Hz repetition rate, 5 ns pulse-width and 0.04 cm−1 line
width), while E2 are from another dye laser with the same characteristics as
the first dye laser. The strong pumping beams E2 and E3 are approximately
104 times larger than the weak probe beam E1 which is sampled by CCD and
a fast gated integrator (gate width of 50 ns). Thus, beams E2,3 are strong
enough to affect the spatial displacement of beam E1. The spatial displace-
ment of beam E1 that is affected by beams E3 and E2 respectively can be
described by coupled equations:

∂A1

∂z
− i∂2A1

2k1∂x2
=

ik1

n0

(
nS

2 |A1|2 + 2nX1
2 |A3|2

)
A1, (7.19)

∂A1

∂z
− i∂2A1

2k1∂y2
=

ik1

n0

(
nS

2 |A1|2 + 2nX2
2 |A2|2

)
A1, (7.20)

where z is the longitudinal coordinate; n0 is the linear refractive index at
ω1; nS

2 are the self-Kerr coefficient of E1; nX1
2 is the cross-Kerr nonlinear

coefficient of the weak field E1 induced by the strong coupling field E3 and
nX2

2 is the cross-Kerr nonlinear coefficient of the weak field E1 induced by the
strong coupling field E2, A1−3 are the slowly varying envelope amplitudes
of beams E1−3, respectively. The Kerr coefficient can be defined as n2 =
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CReχ(3), where C = (ε0cn0)
−1; the susceptibility is χ(3) = Dρ

(3)
10 , where

D = Nμ4
10/(�3ε0G1|G1|2) for nS

2 , D = Nμ4
10/(�3ε0G1|G3|2) for nX1

2 and
D = Nμ2

10μ
2
20/(�

3ε0G1|G2|2) for nX2
2 . N is the atomic density in the cell,

and μ10 (μ20) is the dipole matrix element between |0〉 and |1〉 (|2〉). Assuming
that input lasers are Gaussian profiles, Eqs. (7.19) and (7.20) can be solved
with the split-step method [2].

The spatial displacement of the weak beam is caused by the non-colinear
propagations of the strong laser beams and the enhanced cross-Kerr nonlinear
indices of refraction. First, let us only consider the case that the strong control
beamE2 affects the weak probe beamE1. During its propagation through the
vapor cell, the beam E2 distorts the phase profile of E1 to induce an optical
waveguide through cross-phase modulation (XPM). The nonlinear phase shift
can be written as φNL = 2k3n

X
2 |A2|2 z/n0 and the additional transverse

propagation wave-vector is δk⊥ = φ′NL [3]. The change of phase (φNL) in the
laser propagating expression is represented as the spatial displacement of the
laser beam. According to the expression for φNL, the amount of spatial shift
is proportional to the cross-Kerr nonlinear coefficient, the field intensity and
the propagation distance.

Figure 7.7 shows the spatial displacement of the probe field E1 versus
frequency detuning Δ1, where Δ1 = Ω1−ω1 in the three-level system and is
Δ1 = Ω2 − ω1 in the two-level system, with a fixed control beam E2 (Δ2 =
Ω2−ω2 = 0). TuningE1 andE2 respectively to the transition between |0〉 and
|1〉 and between |0〉 and |2〉 as in Fig. 7.6 (b), the probe beam displacement
shows an EISD curve (the triangles in Fig. 7.7.) in the three-level V-type
EIT system. When the probe beam E1 is tuned on the transition between
|0〉 and |2〉 as dress beam E2, the spatial displacement (squares) also shows
the same dispersion-like curve. Since the dipole moment μ20 is larger than
the dipole moment μ10, we can deduce that cross-Kerr coefficient n2 in the
two-level system is larger than that in the three-level system [21]. Apparently,
the spatial displacement of beam E1 in the two-level system is larger than
that in the three-level system. The inset in Fig. 7.7 shows the images of the
measured probe beam spots versus Δ1 in the three-level system.

Figure 7.8 (a) shows the spatial displacement of the probe beamE1 versus
Δ1 in the three-level system. The probe beam moves up (Δ1 < 0) and down
(Δ1 > 0) with a dispersion-like displacement curve at millimeter order of
magnitude. When increasing the Rabi frequency of E2 gradually, i.e. the
intensity ofE2 increases, the spatial displacement becomes distinct. Here, the
scattered points are the experimental results; the solid lines are theoretical
shift. They fit each other well. According to the expression of φNL, the spatial
displacement of the probe beam E3 can be affected by not only the intensity
of the control beam (G2) but also the atomic density N . Figure 7.8 (b)
presents the temperature (atomic density) effects on the spatial displacement.
A similar constant shift in the spatial displacement curve also appears at the
high atomic density. As we all know, the temperature influences the atomic
density N in the vapor cell. Based on the formula of n2 [18], it is proportional
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Fig. 7.7. EISD shift of the beam E1 and the fitted cross-Kerr nonlinear coefficient
n2 versus Δ1 at 230

◦C in the two-level system (squares) and the three-level system
(triangles), respectively. Upper and lower insets: EISD spots of E1 versus Δ1 in
the three- and two-level system. The parameters are G1 = 0.2 GHz and G2 =
9.7 GHz.

to N . According to theoretical calculation, we can see spatial shift increases
along with the thicken atomic density N .

We consider the spatial displacements of the probe with different control
beams on. We can let both two pump beams E2 and E3 to be strong (i.e.,
G2, G3 >> G1) to control the probe beam shown in Figs. 7.6 (a) and 7.6 (d),
which is the doubly-dressing scheme [12], or control the probe beam with
the only one pump beam (E2 or E3), which is the singly-dressing scheme.
Under these different conditions, the strong laser fields dress the energy levels
differently, and modify the degree of spatial deflections for the probe (Fig.
7.9).

In Fig. 7.9, we can see that the spatial displacement of E1, controlled by
E3 is the largest (square) and displacement induced by both the stronger
E2 and E3 is larger than that of E2. Actually, when we block E3 and leave
the strong field E2 to control E1, E2 dresses the level |0〉 to create the
dressed states |G2±〉. Under this condition, we have ρ

(3)
10 = −iGa/[(d1 +

G2
2/d2)2d2] for the three-level system, where Ga = G1G

2
2, d1 = iΔ1 + Γ10,

d2 = Γ12+i(Δ1−Δ2). Second, E2 is blocked and the pump fieldE3 is the only
strong field. Since E1 and E3 excite the same transition (from |0〉 to |1〉) and
have the same frequency detuning Δ1 (generated from the same laser), the
upper-level and the lower-level of E1 induced transition are always dressed
by E3. In this case, two pairs of dressed states |G3±〉 are created, from which
we can write ρ

(3)
10 = −iGb/[(d1 + G2

3/Γ0 + G2
3/Γ1)2Γ1] with Gb = G1G

2
3.

As a result, the corresponding cross-Kerr coefficient n2 induced by E3 is
larger than that of E2. The strong E3 field induces a larger XPM than
E2. Third, when both E3 and E2 beams are on (doubly-dressing case), they
share the common level |0〉 and interact with each other [18]. In this situation,
we have ρ

(3)
10 = −iGb/{[d1 + G2

3/Γ1 + G2
2/(d2 + G2

3/d3)]2Γ1} for E1, where
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Fig. 7.8. (a) Spatial dispersion curves of E1 in the three-level system versus Δ1 with
G2 = 11.7 GHz (squares), 16.3 GHz (circles), and 19.1 GHz (triangles) at 260 ◦C.
Right inset: the maximum spatial displacements of E1 versus G2 in the three-level
V-type system (circles) and two-level system (squares). Left inset: EISD spots of E1

in the three-level system versus Δ1 correspondingly. (b) Spatial dispersion curves
of E1 in the three-level system versus Δ1 with G2 = 9.7 GHz at 230 ◦C (squares),
250 ◦C (circles), 300 ◦C (triangles). Right inset: the maximum spatial displacements
of E1 versus atom density N in the three-level V-type system (circles) and two-level
system (squares). Left inset: EISD spots of E1 in the three-level system versus Δ1

correspondingly. The other parameters are G1 = 0.8 GHz and G2 = 15 GHz. The
scattered points are the experimental results, and the solid lines are theoretically
calculated spatial shifts.

d3 = Γ02 − iΔ2. From these expressions one can see that the dressing field
E3 (the first G3 dressing the upper-level) and the “inner” dressing field E2

(dressing the state |0〉) contribute to the cross-Kerr coefficient directly, while
the “outer” dressing field E3 (the second G3 dressing the state |0〉) suppresses
the dressing effect of the “inner” dressing field E2 to influence the cross-
Kerr nonlinear coefficient indirectly. Thus, the XPM induced by the doubly-
dressing fields is weaker than the sum of the effects due to singly-dressing by
E3 and E2 alone (Fig. 7.9).
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Fig. 7.9. Spatial displacements of E1 versus Δ1 in the three-level system controlled
by E2 (triangles), E3 (squares) and both E2 and E3 (reverse triangles) at 250

◦C.
The parameters are G1 = 0.8 GHz, G2 = G3 = 13 GHz, Δ2 = Δ3 = 0. The
scattered points are the experimental results and the solid lines are theoretically
calculated spatial displacements.

7.4 Experimental Demonstration of Optical Switching
and Routing via Four-Wave Mixing Spatial Shift

In order to develop the next generation of all-optical communication and com-
puting, certain optical elements are essential, such as all-optical switches and
routers. There have been several new schemes to demonstrate, in principle,
such all-optically controlled switching and routing functions [12, 22, 23]. A
weak beam was used to turn on/off selectively the spots in the spatial pattern
of a stronger laser beam via XPM in a two-level atomic medium [12], showing
a spatial switching effect. Also, controlling the linear [22] and nonlinear [23,
24] optical absorptions of one laser beam by another in coherently-prepared
atomic media were exploited to show all-optically controlled beam switching.
Recently, it was shown that a FWM signal beam can be spatially shifted
easily by frequency detunings and intensities of the dressing laser beams fol-
lowing a dispersion-like behavior [19]. Such EISD is greatly enhanced same
as for the frequency (linear and nonlinear) dispersions in the EIT systems [7,
16], which can give large and sensitive spatial displacements for FWM and
probe beams. Also, if one carefully chooses the parametric regime, the probe
and FWM beams can have been focusing effects in a self-defocusing medium
due to the strong XPM [1, 3], which compensate the beam diffraction when
propagating through the long atomic medium.

In this section, we show that by making use of the EISD effect in a three-
level ladder-type atomic system [19], all-optical switching/routing effects can
be experimentally demonstrated. The FWM signals are generated by two
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coupling beams in the three- or two-level system, with an additional dressing
field to shift the spatial location of the generated FWM beams. The intensities
of the initial (before shifting) and final (after shifting) spots of FWM signals
correspond to the “off” and “on” states of the switch. Different shift directions
and spot locations are studied as functions of experimental parameters. Since
there are two FWM beams and each beam has more than one final states
(spatial locations), it is possible to construct switching arrays in the current
system.

7.4.1 Theoretical Model and Experimental Scheme

The relevant experimental system is shown in Fig. 7.10 (a), (b). Three energy
levels from sodium atoms (in a heat-pipe oven of length 18 cm) are involved
in the experimental schemes. The pulse laser beams are aligned spatially as
shown in Fig. 7.10 (c). In Fig. 7.10 (a), energy levels |0〉 (3S1/2), |1〉(3P3/2)
and |2〉 (4D3/2) form a ladder-type three-level atomic system. Coupling field
E2 (wavelength of 568.8 nm, angular frequency ω2, detuning Δ2 = 0, wave
vector k2, and Rabi frequency G2 = 5.1 GHz) and E′2 (ω2, Δ2 = 0, k′2, G′2 =
15.5 GHz) connecting the transition between level |1〉 and level |2〉, which are
from the same near-transform-limited dye laser (10 Hz repetition rate, 5 ns
pulse-width and 0.04 cm−1 linewidth). The field E2 in beam 1 propagates in
the opposite direction of the weak probe field E3 (wavelength of 589.0 nm, ω1,
Δ1, k3, G3 = 4.8 GHz) in beam 4, as shown in Fig. 7.10 (c), connecting the
transition between |0〉 to |1〉. E′2 in beam 3 propagates in the plane (yz) having
a small angle (0.3◦) with E2. With the phase-matching condition, it generates
a non-degenerated FWM (NDFWM) process satisfying kF2 = k3 + k2 − k′2
(called EF2 for the subsystem |0〉 − |1〉 − |2〉). Then, additional fields E1

(ω1, Δ1, k1, G1 = 5.1 GHz) and E′1 (ω1, Δ1, k′1, G′1) are added, which are
from the other dye laser with similar characteristics as the first one, also
connecting the transition between |0〉 to |1〉. E1 adds onto beam 1 and E′1
(beam 2) propagates in another plane (xz) which is perpendicular to the yz
plane with a small angle relative to E1, as shown in the inset of Fig. 7.10
(c). When E1, E′1 and E3 are turned on simultaneously with blocking E2,
E′2, a DFWM process is generated satisfying the phase-matching condition
kF1 = k1−k′1+k3 (called EF1 for the subsystem |0〉−|1〉) [Fig. 7.10 (b)]. Here
we define detuning Δi = Ωi−ωi with the atomic resonant frequency Ωi. The
average powers of the laser beams E1, E′1, E2, E′2 and E3 are 3, 100, 5, 95,
and 0.14 μW, respectively. The laser beams E1(E′1), E2(E′2) and E3 (with
diameters of about 0.59, 0.82, and 0.59 mm, respectively) are horizontally
polarized.

When E1, E′1, E2, E′2, and E3 are all turned on simultaneously, the
NDFWM processEF2 and DFWM processEF1 are generated simultaneously.
These two generated FWM signals have the same frequency ωF1,2(= ω1),
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but propagate in two different directions, which are monitored by a charge
coupled device (CCD) camera [Fig. 7.10 (c)]. In the experiment, the intensity
of laser beams E′1 is about 5 times stronger than the beam E′2, and about 100
times stronger than the beams E1,2,3. According to the insert of Fig. 7.10 (c),
with cross-Kerr effect, such horizontal alignment of strong dressing field E′1
and E′2 beams induce the horizontal shift of NDFWM EF2and DFWM EF1,
respectively [19]. The probe E3beam is influenced by the combined effect of
E′1 and E′2 beams but mainly shifted horizontally by E′1 beam. Thus, a pair
of E3 and EF2 beams can be switched on and off by E′1 beam, while one EF1

beam can be switched on and off by E′2 beam at the same time.

Fig. 7.10. (a), (b) The diagrams of Na energy levels with different coupling
schemes. The bold arrows refer to the dressing fields. (c) The experimental scheme
and arrangements (Inset: the spatial alignments of the incident beams).

The theoretical description of the spatial properties of the beams E3,F1,F2

due to self- and cross-Kerr nonlinearities can be given through numerically
solving the following propagation equations:

∂E3

∂z
− i
2k3

∂2E3

∂ξ2

=
ik3

n0
(nS1

2 |E3|2 + 2nX1
2 |E′1|2 + 2nX2

2 |E′2|2)E3, (7.21)

∂EF1

∂z
− i
2kF1

∂2EF1

∂ξ2

=
ikF1

n0
(nS2

2 |EF1|2 + 2nX3
2 |E1|2 + 2nX4

2 |E′2|2 + 2nX5
2 |E′1|2)EF1, (7.22)

∂EF2

∂z
− i
2kF2

∂2EF2

∂ξ2

=
ikF2

n0
(nS3

2 |EF2|2 + 2nX6
2 |E′1|2 + 2nX7

2 |E2|2 + 2nX8
2 |E′2|2)EF2, (7.23)

where k3 = kF1 = kF2 = ω1n0/c, z and ξ are the longitudinal and transverse
coordinates, respectively, n0 is the linear refractive index, nS1−S3

2 are the
self-Kerr coefficients of E3,F1,F2, respectively. nX1

2 is the cross-Kerr nonlinear
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coefficient of the weak field E3 induced by the strong coupling fieldE′
1, n

X2
2 is

the cross-Kerr nonlinear coefficient of the weak field E3 induced by the strong
coupling field E′

2, nX3
2 is the cross-Kerr nonlinear coefficient of the weak field

EF1 induced by the strong coupling field E1, nX4
2 is the cross-Kerr nonlinear

coefficient of the weak field EF1 induced by the strong coupling field E′
2,

nX5
2 is the cross-Kerr nonlinear coefficient of the weak field EF1 induced
by the strong coupling field E′

1, nX6
2 is the cross-Kerr nonlinear coefficient

of the weak field EF2 induced by the strong coupling field E′
1, nX7

2 is the
cross-Kerr nonlinear coefficient of the weak field EF2 induced by the strong
coupling field E2, nX8

2 is the cross-Kerr nonlinear coefficient of the weak field
EF2 induced by the strong coupling field E′

2. Generally, the Kerr coefficient
can be defined by n2 = Reχ(3)/(ε0cn0), with the nonlinear susceptibility
χ(3) = Dρ

(3)
10 , where D = Nμ2

3μ
2
ij/�

3ε0G3G
2
j , ρ

(3)
10 (EF1) = −iGF1|G2|2/η,

ρ
(3)
10 (EF2) = −iGF2|G1|2/η, ρ

(3)
10 (E3) = −iG3|G1|2/η and η = D2

1D2. D1,2

are the parameters related to the Rabi frequency of the dressing field, the
frequency detuning, and the atomic coherence rate. μ3 (μij) is the dipole
matrix element between the states coupled by the probe beam E3 (between
|i〉 and |j〉). By assuming Gaussian profiles for the input fields, Eqs. (7.21)–
(7.23) are solved by the split-step method.

7.4.2 Optical Switching and Routing via Spatial Shift

When four laser beams (E′1, E2, E′2, and E3) are on, in the presence of the
dressing beam E′1, the spatial shift of EF2 beam spot versus probe laser
frequency detuning ω3 is shown in Fig. 7.11 (a). The moving trace of the
light spot is dispersion-like as frequency scans [19]. It means EF2 beam can
have right or left shift. There are two maximal displacements corresponding
to the positive maximum nonlinear refraction coefficient and the negative
maximum coefficient. Without E′1 beam, the probe field E3 and EF2 are
single strong spots, as shown in Fig. 7.12 (a). When the dressing field E′1 is
on, the intensities of the probe and EF2 beams become weaker [21] and are
shifted (one to the right and another to the left of the original position). Since
we use one more mirror in the probe beam scheme than that of EF2, they
have opposite direction of the shift on CCD screen [Fig. 7.12(a)]. In fact, in
the heated pipe both two beams have a right shift, as shown in Fig. 7.12 (b,
c). Larger spatial shift occurs with an increasing E′1 intensity, which can be
understood from the expression: ϕNL(z, ξ) = 2k3,F2n2I

′
1 exp(−ξ2)z/n0. The

nonlinear phase shift ϕNL is directly proportional to the dressing intensity
I ′1. The component of the wave vector of the ω3 spot δkξ (which we use to
measure the shif t effect of the optical switch) is the derivative of ϕNL, i.e.,
δkξ = ∂ϕNL/∂ξ, so the beam spots also move more as the dressing laser
intensity increases.

Figure 7.11 (b) shows the dressing field dependences of the spatial shifts
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based on the numerical calculation and the experimental measurements. Fig-
ure 7.11 (c) presents the temperature dependence (atomic density N) of the
shift curves for the theoretical and the experimental results, respectively.
We see that increasing the atomic density equals to increasing propagation
distance z, and the shift of the spot becomes larger.

Fig. 7.11. (a) Spatial dispersion curves of EF2 in the ladder-type three-level system
versus Δ1 with G′1 = 52 GHz at 250◦C. (b) The spatial displacement of EF2

versus G′1 in the ladder-type three-level system at Δ1 = −18 GHz and 250◦C. (c)
The spatial displacement of EF2 versus atomic density N with G′1 = 52 GHz at
Δ1 = −18 GHz. The solid lines are theoretically calculated spatial shifts, and the
scattered points are the experimental results. Adopted from Ref. [24].

So, as shown above the beam spots can have different spatial shifts with
different experimental parameters (such as frequency, intensity, and atomic
density), which can correspond to different on-off combinations. The switch-
ing or routing time is the rising and falling times of the switch-in and switch-
out signal. The cross-Kerr refractive index change (n2 ∝ Re(ρ(3)

10 )) limited by
the overall spin dephasing time determines the response time of the switch
[23, 25, 26]. The estimated switching times of EF1 and EF2 are about 32 ns
and 400 ns, respectively. Here, it should be noted that the overall spin de-
phasing times of the two-level [Fig. 7.10 (b)] and ladder-type three-level [Fig.
7.10 (a)] atomic systems in sodium are determined by the transverse relax-
ation rates: 1/(2πΓ10) and 1/(2πΓ20), where Γ10 = 4.85 MHz and Γ20 = 398
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kHz for transitions |0〉−|1〉 and |0〉−|2〉, respectively. However, the switching
speed in Fig. 7.12 is limited to a microsecond time scale by the speed of the
CCD used to take the image.

Fig. 7.12. (a) Results of the optical switches and the spot shifts of the probe (lower)
and EF2 (upper) beams obtained from the CCD at Δ1 = −18 GHz. The arrows
are the initial position in the x direction. The spatial shift of (b) the probe and
(c) EF2 beams in the ladder-type three-level atomic system with G′1 = 34 GHz at
Δ1 = −18 GHz and 250 ◦C.

Figure 7.12 (a) shows the two states of the probe and EF2 beams by
switching the strong laser beam E′1 off and on as the laser frequency detuning
is tuned to get the maximal spatial displacement. When a spot stays at its
initial position, it means that the switch is in the “off” state. When the
frequencies of the probe and EF2 beams are set at their peak shift positions,
the light spots will have their largest shifts, so the switch stands at its “on”-
state. Such two states form two ports of the optical switch. The upper spot
is the EF2 beam, and the lower spot is the probe beam. Initially, two spots
are set at same vertical line without the dressing laser beam. As the dressing
beam E′1 turns on, the upper spot moves to the left side and the lower spot
moves to the right side, both of which leave their initial positions completely.
The switching contrast can be defined as C = (Ioff−Ion)/(Ion+Ioff), where
Ioff is the light intensity at the “off”-state and Ion is the light intensity
at the “on”-state. The contrast derived from the experiment is about C =
92%. This experiment provides a physical mechanism to realize an all-optical
switching/routing by controlling the dressing laser beam.

A chopper is used to control the dressing field, subtracting the laser pulse
repetition time of 0.1 s, which is considered as an idle load state. The laser
pulse width is 5 ns. The detected switching time is limited by the response
time of the CCD, which is about 3 μs, far larger than the laser pulse width.
Thus, the switching speed in the current experiment is greatly constrained
as shown in Fig. 7.12 (b, c). The on-state just lasts 5 ns, followed by a 3 μs
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rising time, and then a 5 ns off-state, followed by a 3 μs falling time, and so
on. Since the spatial displacements of the probe and EF2 beams are mainly
determined and controlled by the large cross-Kerr nonlinear coefficients of the
strong laser field E′1, the switching speed should be much faster and limited
by the atomic coherence time in nanosecond time scale.

Next, when five laser beams (E1, E′1, E2, E′2, and E3) are all on, there are
interplays between the generated EF1,F2 signals [21] and we can control the
shifts of the probe, EF1 and EF2 beams, to achieve a triple binary optical
switch. The initial locations of the spots are the “off” states and the switches
are considered to come to their “on” states when the spots shift away to new
locations. The repetition frequency of the chopper is much longer than 5 ns
pulse-width of the dressing laser, so the “on”-state lasts several 5ns intervals
and then turns to the “off”-state. In Fig. 7.13, at Δ1 = −18 GHz for the self-
focusing side and temperature 250 ◦C, when E′1 is on, the probe and EF2

beams have right shifted due to the E′1 beam via the cross-Kerr nonlinear co-
efficients. At the same time, the EF1 beam is shifted to the left by the dressing
field E′2. When E′1 is off, all the beams come back to their original position
(“off”-state). Since the cross-Kerr nonlinear coefficients nX4

2 and nX6
2 (nX1

2 )
of the EF1 and EF2 (probe) beams induced by the dressing fields E′2 and E′1
are all positive, respectively, the spots of EF1 and EF2 (E3) beams are shifted
to the opposite directions, as shown in Fig. 7.13. According to the nonlin-
ear phase shifts ϕF1 = 2kF1n

X4
2 |A′2|2 z0/n0 and ϕF2 = 2kF2n

X6
2 |A′1|2 z0/n0

(ϕ3 = 2k3n
X1
2 |A′1|2 z0/n0) induced by the dressing fields E′2 and E′1, re-

spectively, we can use two controllable parameters, i.e., the frequency and
intensity of the laser, to control the different shifts of the three spots. Such
simultaneous optical switching for three beams can perform the functions of
choosing different addresses in data transmissions and can be used as the
optical routings, the multiplexer or all-optical switching arrays for all-optical

Fig. 7.13. The switching processes of the dressing beam E′1 (square), EF1 (trian-
gle), EF2 (circle), and the probe beam (diamond) in the ladder-type three-level
system with G′1 = 21 GHz at Δ1 = −18 GHz and 250 ◦C.
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networks.
In the above discussion, we have controlled the probe, EF1 and EF2 by

two dressing fields E′2 and E′1, respectively. In that case, EF1 and EF2 are
shifted towards the opposite directions (Fig. 7.13). Actually, such three beams
can also be shifted to the same direction when the sign of the cross Kerr-
nonlinear coefficient of the EF1 signal is opposite to those of the EF2 (probe)
beams at the proper laser detuning. So, each spot can have left and right
locations. Including the initial position, every spot has three possible spatial
locations. Totally there are 3×3 controllable spatial positions. It can such
achieve a switch array.

7.5 Controlled Spatial Beamsplitter Using Four-Wave
Mixing Images

Spatially shifting and splitting one weak laser beam by another stronger
beam in Kerr nonlinear optical media were predicted and experimentally
demonstrated in early 1990s [2, 4]. These interesting beam coupling effects
are governed by the cross-phase modulation (XPM) between the two laser
beams in the Kerr nonlinear medium [16]. Also, degenerate and nondegen-
erate four-wave mixing (FWM) processes in two-level atomic systems have
been investigated previously [27 – 29]. Here, we experimentally demonstrate
that by arranging the pump and coupling laser beams in a specially-designed
spatial configuration (to satisfy phase-matching for the FWM processes),
the generated FWM signals from the degenerate and nondegenerate FWM
processes can be spatially split easily. Both the spatial separation and the
number of the split beams of FWM signals can be well controlled by the
additional dressing laser beams via XPM. The enhanced self- and cross-Kerr
nonlinearities due to induced atomic coherence in the system [1] are essen-
tial in generating the efficient FWM processes, and in the spatial splitting of
the FWM signal beams. Full theoretical simulations are carried out and used
to provide good matches to the observed phenomena. Studies of the spatial
beam shift and splitting can be very useful in understanding the formation
and interactions of spatial solitons [30], gap solitons [31, 32], vortex solitons
[33], as well as their dynamics [32], in the Kerr nonlinear systems. Also, such
spatial beam controls can be very useful for signal processing applications,
such as spatial beam splitter [34, 35], routing [19], and switching [12].

Let us consider a two-level atomic system, as shown in Fig. 7.14(a). Five
laser beams (with diameters of 0.2 mm) are applied to the atomic system
with the spatial configuration given in Fig.1(b). E1 (k1, and the Rabi fre-
quency G1) and E′

1 (k′1, and G′1) are the pump beams propagating in one
direction with a small angle (0.3◦) between them. E3 (k3, G3) is the probe
beam propagating in the opposite direction with a small angle (0.05◦) from
beam E1. These three beams (E1, E′

1, and E3) have the same frequency ω1
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(from the same laser), and generate an efficient degenerate FWM signal EF1

(kF1 = k1−k′1 +k3) in the direction shown at the lower right corner of Fig.
7.14(b). Another pair of beams, E2 (k2, G2) and E′

2 (k′2, G′2), are the cou-
pling beams with E2 propagating in the same direction as E1 and E′

2 having
a small angle (0.3◦) from E2. E2 and E′

2 have the same frequency ω2 (from
the same laser) and they interact with the probe beam E3 to generate an
efficient nondegenerate FWM signal EF2 (kF2 = k2 − k′2 + k3) in the direc-
tion of the upper left corner in Fig. 7.14 (b) due to the given phase-matching
condition.

Fig. 7.14. (a) Two FWM processes to generate EF1 and EF2 in a two-level atomic
system. (b) Spatial geometry for the laser beams used in the experiment.

The experiment was done with Na vapor in a 18 cm long heat pipe. The
ground state of the two-level system (|0〉) is the 3S1/2 energy level and the
excited state (|1〉) is the 3P3/2 level. Both lasers (with frequencies ω1 and
ω2, respectively) are near-transform-limited dye lasers with 10 Hz repetition
rate, 3.5 ns pulse width, pulse-by-pulse stability of 3%, and energy per pulse
of 0.1 mJ. One laser is split to produce beams E1, E′

1, and E3 with frequency
ω1, and another laser is used for beams E2 and ω3. These laser beams are
carefully aligned in the spatial configuration as shown in Fig. 7.14 (b). In
order to optimize the beam shift and splitting effects, E′

2 beam is made to be
the strongest, approximately 5 times larger than E′

1 beam, 100 times larger
than the beam E1, 1000 times larger than the beam E2, and 104 times larger
than the weak probe beam E3, as well as the two generated FWM signal
beams (EF1 and EF2). These weak beams are recorded by a CCD and a fast
gated integrator (gate width of 50 ns).

As shown in the insets of Fig. 7.15 (a), (b) (lower panels), the probe
and FWM signal (EF1) beams are displaced and split as the frequency of
the probe beam (frequency detuning is defined as Δ1 = Ω1 − ω1, where
Ω1 is the atomic transition frequency) is scanned through resonance. The
displacements of the probe and FWM beams follow the shape of nonlinear
dispersion [7, 19]. Here, we concentrate only on the beam splitting effect.
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Figure 7.15 (a) gives the splitting distance of the probe beam for different
probe frequency detunings. The solid curve is a fit to the cross-Kerr nonlinear
index n2 for the probe beam [1, 7, 16]. The splitting distance of the FWM
signal EF1 is given in Fig. 7.15 (b) as a function of Δ1, which is also fitted
to n2, as will be discussed later.

The Kerr nonlinear index is always zero at the exact resonant condition
[1]. The temperature dependence of the FWM beam splitting distance is given
in Fig. 7.15 (c), which shows a quick increase as temperature rises and then a
slow decrease as the temperature further increases. Double-beam profiles are
clearly shown in the figure. The intensity dependence of the FWM beam shift
as a function of the pump beam (E′

1) intensity is depicted in Fig. 7.15 (d),
which gives a continued increase as G′1 gets larger. It is interesting to notice
that when Δ1 < 0 the beam splitting occurs in the y (vertical) direction,
but becomes in the x (horizontal) direction when Δ1 > 0 in Fig. 7.15 (a),
(b). This phenomenon can be explained by the relative positions between
the weak beams and the strong dressing (controlling) beams shown in Fig.
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Fig. 7.15. (a) Measured probe beam splitting versus Δ1 (square) and the fitted
n2 curve (solid) with G′1 = 20.6 GHz at 250 ◦C. Inset: spots of the probe beam
versus Δ1. (b) Measured EF1 beam splitting versus Δ1 = −30 GHz (triangle),
Δ1 = −22 GHz (square), Δ1 = −17 GHz (circle) in top right corner; and spots of
the EF1 beam versus Δ1 in bottom. (c) EF1 beam profiles at 230 ◦C (triangle),
240 ◦C (square), 260 ◦C (circle) and 280 ◦C (reverse triangle), respectively, with
G′1 = 20.6 GHz at Δ1 = −10 GHz. Inset: EF1 beam splitting versus atomic density
N . Spots of EF1 beam versus N . (d) EF1 beam splitting versus G′1 with Δ1 = −10
GHz at 265 ◦C. The other parameters are Δ2 = 0, G2 = 0, G1 = 1.5 GHz, and
G′2 = 10.8 GHz. Adopted from Ref. [35].

7.14 (b). For the weak probe beam E3 [Fig. 15 (a)], in the Δ1 < 0 region,
the beam shift in the y direction results from the attraction (n2 > 0) of the
strong E′

2 beam. This makes it get closer to the E′
2 beam, which also splits

the probe beam in y direction. In the Δ1 > 0 region, the probe beam shifts
to the down-right direction due to the repulsion (n2 < 0) of the strong E′

2

beam (which is slightly misaligned to the left side) and gets closer to the E′
1

beam, which can split the probe beam in the x direction. Also, for the weak
FWM beam EF1 [Fig. 7.15 (b)], in the Δ1 < 0 region, it shifts above the
E′

1 beam in the y direction induced by the E′
2 beam, and such E′

1 beam can
split EF1 in y direction. While in the Δ1 > 0 region, the FWM EF1 beam
shifts in the down-right direction due to the repulsion (n2 < 0) of the E′

2

beam and, therefore, splits in the x direction induced by the E′
1 beam.

Figure 7.16 depicts the beam profiles of the FWM beam EF2 as functions
of various parameters. Figure 7.16 (a) presents the FWM beam (EF2) profiles
for different probe frequency detunings. As one can see that the beam breaks
up into two beams at certain value of Δ1. For Δ1 < 0, the atomic system is
a focusing medium due to self-Kerr nonlinearity. For fixed parameters (Δ1 =
−3 GHz, Δ2 = 0, G3 = 0.1 GHz, G1 = G′1 = 0), as the temperature of
the atomic medium (atomic density N) increases, the FWM beam changes
from one into four pieces as shown in Fig. 7.16 (b). Similarly, in the Δ1 > 0
region, the atomic system is a defocusing medium, and the beam profile
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becomes wider. Under the similar experimental parameters (except Δ1 = 3
GHz), the single FWM beam also breaks up into four as the temperature gets
higher [Fig. 7.16 (c)]. The insets in Fig. 7.16 show the spatial beam images.

Fig. 7.16. (a) EF2 beam profiles versus Δ1 at 250
◦C. EF2 beam profiles at (b)

Δ1 = −3 GHz and (c) Δ1 = 3 GHz at 230 ◦C, 240 ◦C, 250 ◦C and 260 ◦C. The
other parameters are G1 = G′1 = 0, G2 = 1.9 GHz, and G′2 = 20.8 GHz. The solid
lines are the experimental results, and the dotted lines are the calculated EF2 beam
profiles.

Figure 7.17 presents the effects due to the doubly-dressing fields. The
images in Fig. 7.17 (a) show (i) the FWM EF2 beam at different probe
detunings; (ii) the FWM EF2 beam shifts with E′

1 dressing; and (iii) splitting
into three or four parts with the E′

2 dressing. So, with both the E′
1 and E′

2

dressing fields on, the FWM EF2 beam not only shifts, but also splits, as
shown in (iv) of Fig. 7.17 (a). These phenomena are evident in Fig. 7.17 (b),
which presents the FWM beam profiles of Fig. 7.17 (a) at Δ1 = 25 GHz.
With stronger E′

2 dressing beam, the EF2 beam changes from two into five
split peaks. The inset of Fig. 7.17 (b) shows that the shift of EF2 beam is
mainly caused by E′

1, since E′
1 is at the down-right corner of the EF2 beam

while E′
2 almost overlaps with EF2. Thus, EF2 is shifted by E′

1 and split by
E′

2.
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Fig. 7.17. Spots (a) and profiles (b) of the EF2 beam versus Δ1 at 250
◦C with

G′1 = 0 and G′2 = 1.5 GHz (i), G′1 = 20.6 GHz and G′2 = 1.5 GHz (ii), G′1 = 0
& G′2 = 20.6 GHz (iii), and G′1 = G′2 = 20.6 GHz (iv). The solid lines are the
experimental results, and the dotted lines are the calculated EF2 beam profiles.
Inset of (b): spatial shift of the EF2 beam versus Δ1 with E′1 dressing (square),
E ′2 dressing (reverse triangle), E ′1 and E ′2 dressing (triangle), respectively. The
scattered points are the measured results, and the solid lines are theoretical n2

curves. The other parameters are G1 = G2 = 1.5 GHz.

To understand the observed beam splitting and spatial shift of the probe
and FWM beams, we need to consider various self-phase modulation (SPM)
and XPM processes. The spatial beam breaking is mainly due to the over-
lap between the weak probe and/or FWM beams and the strong coupling or
pump beams [2]. Due to XPM, the nonlinear phase can have more than one
minimum when the cross-Kerr index n2 increases, which generates several in-
tensity minima in the profiles of the FWM beams. The propagation equations
for the probe and FWM beams with only the most relevant coupling/pump
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beams for beam splitting are⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩
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[
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[
nS3

2 |EF2|2 + 2nX4
2 |E′2|2

]
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(7.24)

Here, z is the longitudinal coordinate; k3 = kF1 = kF2 = ω1n1/c; n1 is
the linear refractive index; nS1−S3

2 are the self-Kerr coefficients of E3,F1,2;
nX1

2 is the cross-Kerr nonlinear coefficient of the weak field E3 induced by
the strong coupling field E′

1, nX2
2 is the cross-Kerr nonlinear coefficient of

the weak field E3 induced by the strong coupling field E′
2, nX3

2 is the cross-
Kerr nonlinear coefficient of the weak field EF1 induced by the strong cou-
pling field E′

1, and nX4
2 is the cross-Kerr nonlinear coefficient of the weak

field EF2 induced by the strong coupling field E′
2. Using Gaussian pro-

files for the input fields, Eq. (7.24) are solved by using the commonly em-
ployed split-step method. Note that the linear and FWM coupling terms
(ρ(3)

F1 = −iG3G1G
′∗
1 exp(ikF1 · r)F−1

1 [(F ∗1 )
−1 + F−1

1 ](F−1
2 + F−1

3 ), ρ
(3)
F2 =

−iG3G2G
′∗
2 exp(ikF2 · r)F−1

5 F−1
6 [F−1

4 + (F ∗4 )−1]) are neglected [19], where
Fi factors are the parameters related to the dressing field, the frequency
detuning, and the atomic coherence rate.

The Kerr nonlinear coefficient is negative for a self-defocusing medium
and positive for a self-focusing one, which is given by n2 ≈ Reρ(3)

10 /(ε0cn0).
One can solve the coupled density-matrix equations to obtain all ρ

(3)
10 , i.e.,

ρ
(3)
a = −iGF1G

′2
1 /[d1Γ1(d1+G′21 /Γ0+G′21 /Γ1)] for nX3

2 (induced by the strong
E′

1 field), ρ
(3)
b = −iGF2G

′2
2 /[d1d2(d1+G′22 /d2)] for nX4

2 (induced by E′
2) and

ρ
(3)
c = −iG3G

′2
1,2/(d1d2d3) for nX1,2

2 (induced by both E′
1 and E′

2 fields) with
d1 = Γ10+ iΔ1, d2 = Γ1+ i(Δ1−Δ2), d3 = d1+G′21 /Γ1+G′22 /(d2+G′21 /d4),
d4 = Γ1− iΔ2. Here, GF1,F2 are the Rabi frequencies of EF1,F2 and Δ1 (Δ2)
is the detuning of the fields E1,3 and E′

1(E2 and E′
2). In addition, these three

weak beams can be spatially shifted by the other coupling/pump beams that
do not have total overlaps with them [19].

The solid curves in Fig. 7.15 (a), (b) are the calculated cross-Kerr non-
linear coefficients, which show good fits to the measured data. So, the mea-
surements of spatial splitting can be used to determine the cross-Kerr non-
linear index. With fixed experimental parameters (such as atomic density,
frequency detunings, spot sizes, and atomic decay rates), the measured beam
profiles are fitted to the calculated results (from the propagation equations)
with adjustable signal amplitudes and constant background, which show ex-
cellent agreements, as shown in Figs. 7.16 and 7.17. Such direct compar-
isons indicate the validity of Eq. (7.24) in describing the spatial splitting of
FWM beams by other laser beams. The nonlinear phase for the split beams is
given by ϕNL(z, ξ) = 2k3,F1,2n2I2,1e−ξ2

z/n0 and the transverse wave-vector
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is δk⊥ = ∂ϕNL/∂ξ. So the amounts of the splitting for the probe and FWM
beams are proportional to the dressing beam intensities I2,1, the nonlinear
dispersion n2, and the propagation distance z (or equivalently atomic den-
sity).

The ability to control spatial position and beam profile of one laser beam
(or the FWM signal beam) by another laser beam can be very useful in
understanding nonlinear dynamics between multiple laser beams in nonlinear
media. In the self-defocused nonlinear medium (Δ1 > 0), the XPM due to
the presence of another laser beam can generate a focusing effect [2, 4], which
can be used to generate spatial solitons and other interesting nonlinear effects
in the media.

7.6 Spatial Splitting and Intensity Suppression
of Four-Wave Mixing in V-type Three-level
Atomic System

Recently, we experimentally observe the strong spatial shift and splitting of
the probe and generated FWM beams in a two-level system [35 – 37]. The
coexisting spatial splitting and intensity suppression of the FWM beam in a
V-type three-level system will be discussed in this work.

In this section, by arranging laser beams as illustrated in Fig. 7.18 (a),
we demonstrate the spatial splitting of the FWM signal owing to the cross-
Kerr effect induced by the control field. Furthermore, the coexisting spatial
splitting and intensity suppression of FWM induced by the proper dressing
field and control field are also achieved. We also compare the spatial splitting
phenomenon in different atomic systems

Three energy levels (|0〉(3S1/2), |1〉(3P1/2) and |2〉 (3P3/2)) in Na atoms
form V-type three-level atomic system, as shown in Fig. 7.18 (b). The laser
beams E2 and E′

2 (with Rabi frequencies G2 and G′2 respectively) can be
scanned to connect either the transition from |0〉 to |1〉 in the V-type three-
level or the transition from |0〉 to |2〉 in the two-level atomic systems. While
the dressing beam E′1 and the probe beam E3 (with G′1 and G3 respectively)
connect the transition from |0〉 to |2〉 in both the atomic systems. The gen-
erated FWM beam EF2 (with Rabi frequency GF2) connect the transition
from |0〉 to |2〉.

The experiment was carried out with Na vapor in a 18-cm-long heat pipe.
The four laser beams come from two dye lasers (10 Hz rate, 5 ns pulse width,
and 0.04 cm−1 linewidth), the control beam E′

2 and beam E2 with the
frequency ω2, the dressing beam E′

1 and beam E3 with ω1. As shown in
Fig. 7.18(a), the pulse laser beams (horizontally polarized) with diameters
of about 1 mm are aligned spatially with the control beams E2 (k2) and
E′

2 (k
′
2) propagating through the atomic medium in the same direction with

small angles (0.3◦). The probe beam E3 (k3) propagates in the opposite di-
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Fig. 7.18. (a) Spatial beam geometry used in the experiments with four laser
beams. (b) Energy-level diagram of a V-type three-level and (c) the corresponding
dressed-state picture, (d) energy-level diagram of a two-level atomic system.

rection of E2. Satisfying the phase-matching condition kF2 = k2 − k′2 + k3,
a generated FWM beam EF2 which propagates along the opposite direction
of beam E′

2 is monitored by a charge coupled device (CCD).
As shown in Fig. 7.18 (a), beams E2, E′

2, E3, and EF2 are all in the yz
plane. The dressing field E′

1 propagates in the xz plane, and the intensity is
approximately 5 times larger than the control beam E′

2, 50 times larger than
E2, 100 times larger than P1 and the probe beam E3. Thus, the dressing
beam E′

1 can split the resonance levels |0〉 and |2〉 into dressed-state |±〉,
respectively. Since it does not overlap with the FWM beam EF2, it only leads
to the suppression of the FWM signal intensity. While E′

2 almost overlaps
with EF2 and the induced cross-Kerr nonlinear effect causes the splitting of
the EF2 beam spot.

The EF2 process is dressed by E′
1 in a V-type three-level system, we

can easily obtain ρF2 = −iG3G
′2
2 /[d1d2(d1 + G′22 /d2)] for four-wave mixing

(FWM) signal intensity by solving the coupled density-matrix equations un-
der the weak field approximation, here d1 = iΔ1+Γ10, d2 = Γ1+i(Δ1−Δ2).
On the other hand, for cross-Kerr coefficients of the FWM beamEF2, we have
ρ
(3)
10 = ρa = −iGa/[d1Γ1(d1+G′21 /Γ0+G′21 /Γ1)], ρ

(3)
10 = ρb = −iGb/[d1d2(d1+

G′22 /d2)] and ρ
(3)
10 = ρc = −iGc/(d1d2d3), respectively, where Ga = GF2G

′2
1 ,

Gb = GF2G
′2
2 , Gc = GF2G

′2
1,2.

The beam splitting can be described by the nonlinear Schrodinger equa-
tion

∂AF2

∂z
− i∇2

⊥AF2

2kF2
=
ikF2

n0

[
nS

2 |AF2|2 + 2nX1
2 |A′2|2 + 2nX2

2 |A′1|2
]
AF2,

(7.25)
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where z is the longitudinal coordinate, kF2 = ω1n0/c, n0 is the linear re-
fractive index, nS

2 are the self-Kerr coefficient of EF2, nX1
2 is the cross-Kerr

nonlinear coefficient of the weak fieldEF2 induced by the strong coupling field
E′

2 and nX2
2 is the cross-Kerr nonlinear coefficient of the weak field EF2 in-

duced by the strong coupling field E′
1. AF2, A′1, and A′2 are the slowly varying

envelope amplitudes of beams EF2, E′
1, and E′

2, respectively. Assuming that
input lasers are Gaussian profiles, Eq. (7.25) can be numerically solved with
the split-step method. For a self-defocusing medium, the Kerr coefficient is
negative, while for a self-focusing one it is positive. We can obtain the nonlin-
ear phase shift φNL (z, x) = 2kF2n2Ie−(w′

0x)2z/n0(F2), where n2 = CReχ(3),
C = (ε0cn0)

−1, the susceptibility χ(3) = Dρ
(3)
10 and D = Nμ4

10/(�3ε0GF2G
2
i ).

N is the atomic density in the sample cell, and μ10 is the dipole matrix ele-
ment between |0〉 and |2〉.

The nonlinear phase shift φNL (z, x) becomes larger with increasing n2,
and due to |EF2|2 ∝ sin2 φNL more spatial splitting appears in the EF2 beam
profile. Figure 7.19 shows the spatial splitting evolution of EF2 beam versus
the frequency detuning Ep1. Since E′

2 is just below the EF2 beam, the FWM
signal beam is vertically split by E′

2, as shown in Fig. 7.18 (a). Correspond-
ingly, the peak separation number in the EF2 beam profiles increases from
one to three while the nonlinear refractive index |n2| changes from the mini-
mum to the maximum. There is no peak separation at the resonant frequency
where n2 approximates to zero. Apparently, when |n2| reaches the largest,
we can obtain strong peak separation.

Fig. 7.19. EF2 beam profiles versus Δ1 at 250
◦C in a V-type three-level system.

The parameters are Δ2 = 0, G′1 = 0 (E ′1is blocked), G3 = 0.1 GHz, G2 = 1.9 GHz,
G′2 = 20.8 GHz.

Figure 7.20 shows the spatial splitting of the EF2 beam profile when E′
1

increases gradually. In fact, according to ρF2 = −iG3G
′2
2 /(d1d2d3), we can

see that EF2 is suppressed when E′
1 becomes stronger. The reason is that

E′
1 breaks the resonance levels |0〉 and |2〉 into dressed-state |±〉 respectively,

as shown in Fig. 7.18 (c). Moreover, when E′
1 is small and EF2 is partly

overlaped with the laser beam E′
2, the EF2 beam splits into two asymmetric

parts (the square, circle, and triangle curves). When E′
1 is strong enough, the
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EF2 beam has down a shift induced by E′
1 and overlapE′

2. Thus the splitting
of the FWM beam will be more balance, and two splitting parts turn almost
the same at G′1 = 20.6 GHz (diamond curve).

Fig. 7.20. EF2 beam profiles with G′1 = 6.8 GHz (square), 13.8GHz (circle),
19.7 GHz (triangle) and 20.6 GHz (diamond) at 265 ◦C in a V-type three-level
system. The other parameters are Δ1 = 17 GHz, Δ2 = 0, G3 = 0.1 GHz, G2 =
1.5 GHz, G′2 = 10 GHz.

As it is known, the temperature influences the atomic density in the vapor
medium which is proportional to the propagation distance z in φNL (z, x) =
2kF2n2Ie−(w′

0x)2z/n0(F2). With increasing temperature, φNL becomes larger,
which indicates more spatial splitting in the FWM beam profile. To exam-
ine the temperature effect imposed on the FWM signal, the temperature in
the vapor sample is increased gradually. Figure 7.21 shows intensity curves
of FWM signals under different temperatures. The peak separation number
of the FWM beam profiles increases as temperature rises. There are four
separation peaks of the beam profile at 280 ◦C.

Fig. 7.21. EF2 beam profiles in a V-type three level system at 230 ◦C (solid curve),
240 ◦C (dashed curve), 260 ◦C (doted curve) and 280 ◦C (dash doted curve). Inset:
spots of EF2 beam profile at 280 ◦C to 230 ◦C from top to bottom. The other
parameters are Δ1 = −10 GHz, Δ2 = 0, G3 = 0.1 GHz, G2 = 1.5 GHz, G′2 = 10
GHz.
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The different Kerr nonlinear index of refraction n2 leads to the change of
φNL in the spatial phase expression which is represented by spatial splitting
of the FWM beam. Since the dipole moment μ20 of transition |0〉 − |2〉is
larger than the dipole moment μ10 transition |0〉−|1〉 we can deduce that the
cross-Kerr coefficient n2 in a two-level system is larger than that in a V-type
three-level system [35 – 37]. We can see that the peak separation number of
beam profile in a two-level system (solid curve) is more than that in a V-
type three level system (dashed curve) for larger n2. The inset in Fig. 7.22
shows the spatial splitting of EF2 via n2 in two different atomic energy-level
systems at 230◦C, 240◦C, 260◦C, and 280◦C from top to bottom where all
the spot-splitting in the two-level system is apparently larger than that in
the V-type three-level system.

Fig. 7.22. EF2 beam profiles in a two-level (solid) and V-type three-level (dash)
atomic systems at 260◦C. Curves: Intensities of EF2 beams versus frequency de-
tuning in a two-level (left) and V-type three-level (right) atomic systems at 230◦C,
240◦C, 260◦C, and 280◦C from top to bottom. The other parameters are Δ1 = −10
GHz, Δ2 = 0, G3 = 0.1 GHz, G2 = 1.5 GHz, G′2 = 10 GHz.

Above sections have shown that EISD shifts for the probe and FWM
beams can be induced by the enhanced cross-Kerr nonlinear effects due to
induced atomic coherence in mulit level atomic systems, which can be used
as the “on” and “off” states of the spatial all-optical switch. At the same
time, the opposite-direction shifting has been realized simultaneously for dif-
ferent FWM beams, which could be employed to construct switching/routing
arrays. Also, controllable beam splitting for the degenerate and nondegener-
ate FWM signal beams exist in the two-level and three-level atomic systems.
The spatial shift and splitting of beams can be well controlled by the inten-
sities and frequencies of the laser beams, as well as atomic density. Further,
these observed splitting can be fitted to the calculated cross-Kerr nonlinear
coefficients in the systems, which provide a new and easier way to determine
various cross-Kerr nonlinear coefficients in the multi-level atomic systems.
The current work opens the doors for further studies on formations of spa-
tial soliton pairs [20], spatially correlated (entangled) laser beams [15], and
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storage of images [38] in multi-level coherent atomic systems.
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8 Spatial Modulation of Four-Wave Mixing
Solitons

Since the cross-Kerr and self-Kerr nonlinearities are greatly enhanced in the
multi-level electromagnetically-induced transparency (EIT) systems, the spa-
tial diffractions of the probe, as well as the generated four-waving mixing
(FWM) beams can be the compensated to form spatial solitons during their
propagations. When multiple laser beams are involved, the spatial patterns
can be quite complicated depending on their beam overlaps, frequency detun-
ings, atomic density, and relative intensities. Various novel soliton patterns
can appear in different parametric regions for the probe and the generated
FWM beams, making the multi-level atomic systems good playground to in-
vestigate novel types of solitons, such as gap, dipole, and vortex solitons.
Due to the easy access of experimental parameters in the multi-level EIT
system, the soiton patterns can be easily controlled, so the transition from
one type of solion pattern to another can be experimentally observed. Such
easy controllability provides a platform for comparisons between theoratical
models and experimental observations. Controlling spatial solitons can find
important applications in imaging storage, processing, and communication.

8.1 Basic Theory

In the previous section, we have shown the simple theoretical treatment of
the cross-Kerr nonlinear index of refraction dressed by one strong coupling
field for two- and three-level atomic systems; in this section, the calculation of
the self-Kerr and the cross-Kerr nonlinear index of refractions dressed by two
different strong coupling fields, the inner dressing field and the outer dressing
field, in a two-level atomic system, a V-type and a ladder-type three-level
atomic system. On the other hand, exact analytical solutions of bright and
dark spatial solitons to one-dimensional the nonlinear propagation equation
in Kerr media have been presented.
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8.1.1 Calculation of Double Dressed Cross-Kerr Nonlinear Index
of Refraction

In the two-level atomic system, V-type and ladder-type three-level atomic
systems of Fig. 8.1, there exist two types of strong coupling fields, or dressing
fields, to influence the probe field E1. The first one is the inner dressing field
E′1, it comes from the same laser as the probe field E1. They both couple
levels |0〉 and |1〉 and have the same frequency detuning Δ1 = Ω1−ω1, where
Ωi is the resonant frequency and ωi is the laser frequency. The second one
is the outer dressing field E2. It comes from the different laser and has the
different detuning Δ2 from the weak probe field E1.

Fig. 8.1. Sketches of the (a) two-level atomic system, (b) a V-type, and (c) a
ladder-type three-level atomic systems. E1 is the weak probe field, E′1 is the strong
inner dressing field and E2 is the strong outer field corresponding to the probe field.

First we consider a two-level system, as shown in Fig. 8.1 (a). The inner
dressing field E′1 and the outer dressing field E2 both couple levels |0〉 and
|1〉 and the outer dressing field E2 has the frequency detuing Δ2 = Ω1 − ω2.
For this system, the following equations are derived for the slowly varying
density matrix elements:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ρ
(r)
00

∂t
= −Γ00ρ

(r)
00 − iG1ρ

(r)
01 + iG∗1ρ

(r)
10 ,

∂ρ
(r)
11

∂t
= −Γ11ρ

(r)
11 − iG∗1ρ

(r)
10 + iG1ρ

(r)
01 ,

∂ρ
(r)
10

∂t
= −[iΔ1 + Γ10]ρ

(r)
10 − iG1ρ

(r)
11 + iG1ρ

(r)
00 ,

(8.1)

where Gi is the Rabi frequency, Γii is the longitudinal relaxation, and Γij

is the transverse relaxation from |i〉 to |j〉. A self-Kerr process of the probe
field E1 can be simply presented via the four perturbation chains:
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ρ
(0)
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E1−−→ ρ
(1)
10

E∗
1−−→ ρ

(2)
00

E1−−→ ρ
(3)
10 ,

ρ
(0)
00

E∗
1−−→ ρ

(1)
01

E1−−→ ρ
(2)
00

E1−−→ ρ
(3)
10 ,

ρ
(0)
00

E1−−→ ρ
(1)
10

E∗
1−−→ ρ

(2)
11

E1−−→ ρ
(3)
10 ,

ρ
(0)
00

E∗
1−−→ ρ

(1)
01

E1−−→ ρ
(2)
11

E1−−→ ρ
(3)
10 .

(8.2)

Then we consider the dressing effect of the strong inner dressing field E′1
which dresses both the energy levels |0〉 and |1〉 to create dressed states |+〉
and |−〉, respectively, and the dressing effect of the strong outer dressing field
E2 which only dresses the energy level |1〉 to create dressed states |+〉 and
|−〉. The dressed self-Kerr nonlinear processes can be described as

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

ρ
(0)
00

E1−−→ ρ
(1)
1±0±

E∗
1−−→ ρ

(2)
0±0±

E1−−→ ρ
(3)
1±0±,

ρ
(0)
00

E∗
1−−→ ρ

(1)
0±1±

E1−−→ ρ
(2)
0±0±

E1−−→ ρ
(3)
1±0±,

ρ
(0)
00

E1−−→ ρ
(1)
1±0±

E∗
1−−→ ρ

(2)
1±1±

E1−−→ ρ
(3)
1±0±,

ρ
(0)
00

E∗
1−−→ ρ

(1)
0±1±

E1−−→ ρ
(2)
1±1±

E1−−→ ρ
(3)
1±0±,

(8.3)

where ρ1±0± represents the dressing the chain

ρ10
E′∗

1−−→ ρ00
E′

1−−→ ρ10
E∗

2−−→ ρ00
E2−−→ ρ10

E′∗
1−−→ ρ11

E′
1−−→ ρ10, (8.4)

ρ0±1± represents the dressing the chain

ρ01
E′

1−−→ ρ11
E′∗

1−−→ ρ01
E′

1−−→ ρ00
E′∗

1−−→ ρ01
E2−−→ ρ00

E∗
2−−→ ρ01, (8.5)

ρ0±0± represents the dressing the chain

ρ00
E′∗

1−−→ ρ01
E′

1−−→ ρ00
E′

1−−→ ρ10
E′∗

1−−→ ρ00,

ρ1±1± represents the dressing the chain

ρ11
E′∗

1−−→ ρ01
E′

1−−→ ρ11
E∗

2−−→ ρ01
E2−−→ ρ11

E′
1−−→ ρ10

E′∗
1−−→ ρ11

E2−−→ ρ10
E∗

2−−→ ρ11. (8.6)

Under the condition that the coupling field is much stronger than the probe
field and ρ

(0)
00 ≈ 1, equations can be solved together with chains to give

ρ
(3)
10 =

−iG1|G1|2
F1

(
1

F ∗1
+

1
F1

)(
1
F2

+
1
F3

)
, (8.7)
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where⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

F1 = (Γ10 + iΔ1) +
|G′1|2
Γ00
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|G2|2
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+
|G′1|2
Γ11
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+
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,

F3 = Γ11 +
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+
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Γ01 − iΔ1

+
|G2|2

Γ10 + iΔ2
+

|G2|2
Γ01 − iΔ2

.

(8.8)

On the other hand, the cross-Kerr process of the probe field E1 induced by
the strong coupling field E′1 can be simply presented via the four perturbation
chains: ⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

ρ
(0)
00

E′
1−−→ ρ

(1)
10

E′∗
1−−→ ρ

(2)
00

E1−−→ ρ
(3)
10 ,

ρ
(0)
00

E′∗
1−−→ ρ

(1)
01

E′
1−−→ ρ

(2)
00

E1−−→ ρ
(3)
10 ,

ρ
(0)
00

E′
1−−→ ρ

(1)
10

E′∗
1−−→ ρ

(2)
11

E1−−→ ρ
(3)
10 ,

ρ
(0)
00

E′∗
1−−→ ρ

(1)
01

E′
1−−→ ρ

(2)
11

E1−−→ ρ
(3)
10 .

(8.9)

Then we consider the dressing effect of the strong inner dressing field E′1 and
the strong outer dressing field E2. The dressed cross-Kerr nonlinear processes
can be described as⎧⎪⎪⎪⎪⎪⎪⎪⎨
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(8.10)

Under the condition that the coupling field is much stronger than the probe
field and ρ

(0)
00 ≈ 1, equations can be solved together with chains to give

ρ
(3)
10 =

−iG1|G′1|2
F1

(
1

F ∗1
+

1
F1

)(
1
F2

+
1
F3

)
. (8.11)

Third, the cross-Kerr process of the probe field E1 induced by the strong
coupling field E2 can be simply presented via the four perturbation the chain:

ρ
(0)
00

E1−−→ ρ
(1)
10

E∗
2−−→ ρ

(2)
00

E2−−→ ρ
(3)
10 . (8.12)

The dressed cross-Kerr nonlinear processes can be described as

ρ
(0)
00

E1−−→ ρ
(1)
1±0±

E∗
2−−→ ρ

(2)
0±0±

E2−−→ ρ
(3)
1±0±. (8.13)



8.1 Basic Theory 377

We can obtain

ρ
(3)
10 =

−iG1|G2|2
F 2

1 F4
, (8.14)

where

F4 = Γ00 + i(Δ1 −Δ2) +
|G′1|2

Γ10 + i(2Δ1 −Δ2)
+

|G′1|2
Γ01 − iΔ2

. (8.15)

Similarly, for a V-type three-level system, as shown in Fig. 8.1 (b), the
strong coupling fields E2 couples levels |0〉 and |2〉 with the frequency detun-
ing Δ2 = Ω2 − ω2. For this system the following equations are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ρ
(r)
00

∂t
= −Γ00ρ

(r)
00 − iG2ρ

(r)
02 + iG∗2ρ

(r)
20 + iG∗1ρ

(r)
10 − iG1ρ

(r)
01 ,

∂ρ
(r)
11

∂t
= −Γ11ρ

(r)
11 − iG∗1ρ

(r)
10 − iG2ρ

(r)
12 + iG1ρ

(r)
01 + iG∗2ρ

(r)
21 ,

∂ρ
(r)
10

∂t
= −[iΔ1 + Γ10]ρ

(r)
10 − iG1ρ

(r)
11 − iG2ρ

(r)
12 + iG1ρ

(r)
00 ,

∂ρ
(r)
20

∂t
= −[iΔ2 + Γ20]ρ

(r)
20 − iG1ρ

(r)
21 − iG2ρ

(r)
22 + iG2ρ

(r)
00 ,

∂ρ
(r)
21

∂t
= −[i(−Δ1 +Δ2) + Γ21]ρ

(r)
21 − iG∗1ρ

(r)
20 + iG2ρ

(r)
01 ,

∂ρ
(r)
22

∂t
= −Γ22ρ

(r)
22 − iG∗2ρ

(r)
20 + iG2ρ
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(8.16)

The self-Kerr process of the probe field E1 is the same as that in the
two-level system. If we consider the dressing effect of the strong coupling
field E2, the energy levels |0〉 is dressed to create dressed states |+〉 and |−〉,
respectively. In the dressed self-Kerr nonlinear processes, ρ1±0± represents
the dressing the chain

ρ10
E′∗

1−−→ ρ00
E′

1−−→ ρ10
E′∗

1−−→ ρ11
E′

1−−→ ρ10
E∗

2−−→ ρ12
E2−−→ ρ10, (8.17)

ρ0±1± represents the dressing the chain

ρ01
E′

1−−→ ρ11
E′∗

1−−→ ρ01
E2−−→ ρ21

E∗
2−−→ ρ01

E′
1−−→ ρ00

E′∗
1−−→ ρ01, (8.18)

ρ0±0± represents the dressing the chain

ρ00
E′∗
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E′
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E∗
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E′
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E′∗
1−−→ ρ00

E2−−→ ρ20
E∗

2−−→ ρ00, (8.19)
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ρ1±1± represents the dressing the chain

ρ11
E′∗

1−−→ ρ01
E′

1−−→ ρ11
E′

1−−→ ρ10
E′∗

1−−→ ρ11. (8.20)

Under the condition that the coupling field is much stronger than the probe
field and ρ

(0)
00 ≈ 1, equations can be solved together with chains to give

ρ
(3)
10 =

−iG1|G1|2
F5

(
1
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1
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)(
1
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+
1
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)
, (8.21)

where⎧⎪⎪⎪⎪⎪⎪⎪⎨
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(8.22)

On the other hand, the cross-Kerr process of the probe field E1 induced by
the strong coupling field E′1 is the same as that in the two-level system, and
the dressed cross-Kerr nonlinear process can be solved to give

ρ
(3)
10 =

−iG1|G′1|2
F5

(
1
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+

1
F5

)(
1
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+
1
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)
. (8.23)

A cross-Kerr process of the weak probe field E1 induced by the strong cou-
pling field E2 can be simply presented via the two perturbation chains:⎧⎪⎨
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(8.24)

The dressed cross-Kerr nonlinear processes can be described as⎧⎪⎨
⎪⎩
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(8.25)

where ρ20± represents the dressing the chain

ρ20
E′∗

1−−→ ρ21
E′

1−−→ ρ20
E∗

2−−→ ρ22
E2−−→ ρ20, (8.26)

ρ0±2 represents the dressing the chain

ρ02
E′

1−−→ ρ12
E′∗

1−−→ ρ02
E2−−→ ρ22

E∗
2−−→ ρ02. (8.27)



8.1 Basic Theory 379

Under the condition that the coupling field is much stronger than the probe
field and ρ

(0)
00 ≈ 1, equations can be solved together with chains to give
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where

F8 = (Γ20 + iΔ2) +
G2

2

Γ22
+

G′21
Γ21 + i(Δ2 −Δ1)

. (8.29)

At last, for a ladder-type three-level system, as shown in Fig. 8.1(c),
the strong coupling fields E2 couples levels |1〉 and |2〉 with the frequency
detuning Δ2. For this system, the following equations are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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(8.30)

The self-Kerr process of the probe field E1 is the same as that in the two-
level system. If we consider the dressing effect of the strong coupling field E2,
the energy levels |1〉 is dressed to create dressed states |+〉 and |−〉, respec-
tively. In the dressed self-Kerr nonlinear processes, where ρ1±0± represents
the dressing the chain

ρ10
E′∗

1−−→ ρ00
E′

1−−→ ρ10
E2−−→ ρ20

E∗
2−−→ ρ10

E′∗
1−−→ ρ11

E′
1−−→ ρ10, (8.31)

ρ0±1± represents the dressing the chain

ρ01
E′

1−−→ ρ11
E′∗

1−−→ ρ01
E′

1−−→ ρ00
E′∗

1−−→ ρ01
E∗

2−−→ ρ02
E2−−→ ρ01, (8.32)

ρ0±0± represents the dressing the chain

ρ00
E′∗

1−−→ ρ01
E′

1−−→ ρ00
E′

1−−→ ρ10
E′∗

1−−→ ρ00, (8.33)
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ρ1±1± represents the dressing the chain

ρ11
E′∗

1−−→ ρ01
E′

1−−→ ρ11
E2−−→ ρ21

E∗
2−−→ ρ10

E′
1−−→ ρ10

E′∗
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E∗
2−−→ ρ12

E2−−→ ρ10.

(8.34)

Under the condition that the coupling field is much stronger than the probe
field and ρ

(0)
00 ≈ 1, equations can be solved together with chains to give
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(
1

F ∗9
+

1
F9

)(
1

F10
+

1
F11

)
, (8.35)

where⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

F9 = (Γ10 + iΔ1) +
|G′1|2
Γ00

+
|G2|2

Γ20 + i(Δ1 +Δ2)
+
|G′1|2
Γ11

,

F10 = Γ00 +
|G′1|2

Γ10 + iΔ1
+

|G′1|2
Γ01 − iΔ1

,

F11 = Γ11 +
|G′1|2

Γ10 + iΔ1
+

|G′1|2
Γ01 − iΔ1

+
|G2|2

Γ21 + iΔ2
+

|G2|2
Γ12 − iΔ2

.

(8.36)

On the other hand, the cross-Kerr process of the probe field E1 induced by
the strong coupling field E′1 is the same as before, and the dressed cross-Kerr
nonlinear process can be solved to give

ρ
(3)
10 =

−iG1|G′1|2
F9

(
1

F ∗9
+

1
F9

)(
1

F10
+

1
F11

)
. (8.37)

A cross-Kerr process of the probe field E1 induced by the strong coupling
field E2 can be simply presented via the perturbation the chain

ρ
(0)
00

E1−−→ ρ
(2)
10

E2−−→ ρ
(2)
20

E∗
2−−→ ρ

(3)
10 . (8.38)

The dressed cross-Kerr nonlinear processes can be described as

ρ
(0)
00

E1−−→ ρ
(2)
1±0±

E2−−→ ρ
(2)
20±

E∗
2−−→ ρ

(3)
1±0±. (8.39)

Under the condition that the coupling field is much stronger than the probe
field and ρ

(0)
00 ≈ 1, equations can be solved together with chains to give

ρ
(3)
10 =

−iG1|G2|2
F 2

9 [Γ20 + i(Δ1 +Δ2) +G′21 /(Γ21 + iΔ2)]
. (8.40)

8.1.2 Calculation of Analytical Solution of One-dimensional Bright
and Dark Spatial Solitons

The nonlinear Schrodinger equation is the main equation which describes
the evolution of optical fields in a nonlinear medium. We consider the non-
linear Schrodinger equation which governs the evolution for a continuous
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wave beam propagating inside a nonlinear optical medium with Kerr nonlin-
earity. We assume the two copropagating beams propagate along the z-axis
and diffract along the two transverse directions x-and y-axis. In the paraxial
approximation, we take the equation form

∂A1

∂z
− i
2k1

(
∂2A1

∂x2
+

∂2A1

∂y2

)
=
ik1

n1

[
nS

2 |A1|2 + nX
2 A2

]
A1, (8.41)

where A1 and A2 are the slowly varying envelope amplitude of the probe, and
the copropagating field, k1 = 2πn1/λ1 and n1 is the linear refractive index at
the wavelength λ1. The nonlinearity coefficient nS

2 is the self-Kerr coefficient
of the probe field and nX

2 is the cross-Kerr coefficient of the probe field
induced by the copropagating field. Since it is hand to solve two-dimension
equations, we allow the probe beam diffract only along the x direction and
introduce the normalized variables

ξ =
x

w0
, Z =

z

k1w2
0

, U1 =
A1

I
1/2
1

, U2 =
A2

I
1/2
1

, (8.42)

where w0 is the spot size, and I1 is the peak intensity of the probe beam.
For simplicity, we consider the cross-Kerr term is constant, i.e., g = nX

2 |U2|2.
Equation 8.42 can be written as

∂U1

∂Z
− i∂2U1

2∂ξ2
=
ik2

1w
2
0I1

n1

[
nS

2 |U1|2 + g
]
U1. (8.43)

Let us consider a self-focusing nonlinearity which corresponds to nS
2 > 0. We

search for the bright soliton solution to Eq. 8.43 with the form

U1 = u (ξ) exp (iΓZ) . (8.44)

where the profile u (x) is real, symmetric, and exponentially localized, Γ is
the propagation constant. We substitute Eq. 8.44 into Eq. 8.43 and obtain

iΓu(ξ) exp(iΓZ)− i∂2u(ξ)
2∂ξ2

exp(iΓZ) =
ik2

1w
2
0I1

n1
[nS

2 u(ξ)2 + g]u(ξ) exp(iΓZ).

(8.45)
We canceling the common factors i exp(iΓZ) and lead to

Γu(ξ)− ∂2u(ξ)
2∂ξ2

=
k2
1w

2
0I1

n1
[nS

2 u(ξ)2 + g]u(ξ), (8.46)

i.e.,

Γu(ξ)− ∂2u(ξ)
2∂ξ2

=
[
k2
1w

2
0I1n

S
2

n1
u(ξ)2 +

gk2
1w

2
0I1

n1

]
u(ξ). (8.47)

We take the first term of left hand to right hand,

−∂2u(ξ)
2∂ξ2

=
[
k2
1w

2
0I1n

S
2

n1
u(ξ)2 +

gk2
1w

2
0I1

n1
− Γ

]
u(ξ), (8.48)
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i.e.,

∂2u(ξ)
∂ξ2

=
[
2
(
Γ− gk2

1w
2
0I1

n1

)
− 2k2

1w
2
0I1n

S
2

n1
u(ξ)2

]
u(ξ). (8.49)

For simplicity, we let

a = 2
(
Γ− gk2

1w
2
0I1

n1

)
, b =

2k2
1w

2
0I1n

S
2

n1
. (8.50)

Thus Eq. 8.49 can be written as

u′′ =
(
a− bu2

)
u. (8.51)

Both sides of Eq. 8.51 are multiplied by u′(x) and we obtain

u′′u′ = auu′ − bu3u′. (8.52)

Then we integrate both sides of Eq. 8.52 and have∫
u′du′ =

∫
(au− bu3)du, (8.53)

i.e.,
1
2
(u′)2 =

a

2
u2 − b

4
u4 + C. (8.54)

For the index solution, we have C = 0, i.e.,

1
2
(u′)2 +

(
b

4
u2 − a

2

)
u2 = 0. (8.55)

The boundary conditions are obvious that at the beam center ξ = 0 the peak
amplitude is u0, i.e., u(ξ)|ξ=0 = u0 and ∂ξu|ξ=0 = 0. Substitution of these
equations into Eq. 8.55 leads to the relation a = bu2

0/2. Hence, Eq. 8.55 can
be simplified to

(u′)2 +
b(u2 − u2

0)u
2

2
= 0.

(u′)2 =
b(u2

0 − u2)u2

2
.

(u′)2 = ±u

√
u2

0 − u2√
2/b

.

√
2/b

u
√

u2
0 − u2

du = ±dξ. (8.56)

The expression of left hand of Eq. 8.56 is integrated as∫
du

u
√
(u2

0 − u2)
=
∫

du

uu0

√(
1− u2

u2
0

) =
1
u2

0

∫
du

u

u0

√(
1− u2

u2
0

) . (8.57)
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Let u/u0 = sin θ , thus Eq. 8.57 becomes

1
u2

0

∫
u0 cos θdθ
sin θ cos θ

=
1
u0

∫
dθ
sin θ

=
1
u0

∫
sin θdθ
sin2 θ

= − 1
u0

∫
d cos θ

1− cos2 θ
.

Let cos θ = t, thus we have

− 1
u0

∫
d cos θ

1− cos2 θ
=

1
u0

∫
dt

t2 − 1
=

1
2u0

∫ (
1

t− 1
− 1

t+ 1

)
dt

=
1
2u0

[ln |t− 1| − ln |t+ 1|]

=
1
2u0

ln
∣∣∣∣ t− 1
t+ 1

∣∣∣∣ = 1
2u0

ln
∣∣∣∣cos θ − 1
cos θ + 1

∣∣∣∣ . (8.58)

Due to sin θ = u/u0, we have cos θ =
√

u2
0 − u2/u0 and Eq. 8.58 becomes

1
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∣∣∣∣∣ .
Thus, we finally obtain∫

du
u
√
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0 − u2)
= − 1

u0
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√
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u

∣∣∣∣∣ . (8.59)

We substitute Eq. 8.59 into Eq. 8.56 and lead to the equations

−
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= 2u0u exp
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.
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Finally, we can obtain the bright soliton solution as

u =
2u0 exp

(
u0 (b/2)

1/2
ξ
)

1 + exp (u2
0 (b/2) ξ2)

,

u =
u0[

exp
(
−u0 (b/2)

1/2
ξ
)
+ exp

(
u0 (b/2)

1/2
ξ
)]

/2
,

i.e.,

u = u0sech
[
u0 (b/2)

1/2
ξ
]
. (8.60)

We substitute Eq. 8.50 into Eq. 8.60 and have the bright soliton solution of
Eq. 8.43 as

u = u0sech

[
u0

(
k2
1w

2
0I1n

S
2

n1

)1/2

ξ

]
. (8.61)

8.2 Novel Spatial Gap Solitons of Four-Wave Mixing

As a laser beam propagates in a Kerr-type nonlinear medium, its spatial
beam profile can become unchanged when the spatial diffraction is balanced
by the self-focusing effect due to the self-phase modulation Kerr nonlinearity,
which is generally called spatial optical solitons [1]. Also, optical solitons can
form in the nonlinear media due to cross-phase modulation (XPM) in the
self-defocusing regime [2, 3], in which the spatial diffraction of the beam is
compensated by the strong XPM nonlinearity [4]. In recent years, many new
spatial soliton effects, such as discrete solitons [5, 6], gap solitons [7], surface
gap solitons [8, 9], and vortex solitons [10], have been investigated (both
theoretically and experimentally) in waveguide arrays [9], fiber Bragg gratings
[11], Bose-Einstein condensates [12], and photorefractive crystals [5, 6]. In
achieving such interesting spatial effects, large refractive index modulations
are needed either by fixed periodic structures (such as waveguide arrays and
fiber Bragg grating) or reconfigurable optical lattices by laser beams as in the
photorefractive crystals [7]. For example, to observe spatial gap solitons in a
photorefractive crystal, two strong laser beams are used to write an optical
lattice in the crystal with refractive index variation of at least 10−4. When
two probe Gaussian laser beams are launched into this optical lattice in the
opposite directions, the two counter-propagating waves are Bragg scattered
and nonlinearly coupled to generate spatial gap solitons at the output [7].

Spatial solitons were observed in atomic media many years ago [1]. In
the following, we can show that by making use of the greatly enhanced Kerr
nonlinearity due to atomic coherence in multi-level atomic systems [13], large
refractive index modulation can be achieved with pulsed laser beams. Also,
due to strongly enhanced four-wave mixing (FWM) processes in such atomic
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media [14 – 18], the strong nonlinear couplings between propagating waves
can easily generate modulated spatial optical solitons, or gap solitons, in the
probe laser beams, as well as in the generated FWM beams. More impor-
tantly, the spatial Kerr nonlinear index of the atomic medium, and therefore,
the spatial gap soliton patterns, can be easily controlled by the intensities
and frequency detunings of the pump (dressing) laser beams [13, 16].

Two relevant experimental systems are shown in Fig. 8.2 (b, c). Three
energy levels from Na atoms (in a heat-pipe oven) are involved in the experi-
mental schemes. In Fig. 8.2 (c), energy levels of |0〉 (3S1/2),|1〉(3P1/2) and |2〉
(3P3/2) form a three-level V-type atomic system. When the energy level |2〉
is not used, the system reduces into a two-level one [Fig. 8.2(b)]. The laser
beams are aligned spatially as shown in Fig. 8.2(a), with two dressing beams

Fig. 8.2. (a) Spatial beam geometry used in the experiments. (b) The FWM
processes (to generate EF2 or EF1 with two beams E2 and E ′2 or E1 and E ′1,
respectively) in a two-level atomic system. (c) The FWM processes (to generate
EF2 or EF1 with two beams E2 and E ′2 or E1 and E′1, respectively) in the V-type
three-level atomic system.

(E′
1 and E′

2) and two pump beams (E1 and E2) propagating through the
atomic medium in the same direction with small angles (0.3◦) between them
in a square-box pattern. The probe beam (E3) propagates in the opposite
direction with a small angle as shown in Fig. 8.2(a). Three laser beams (E1,
E′

1, and E3, with Rabi frequencies G1, G′1 and G3, connecting transition
|0〉 to |1〉) have the same frequency ω1 (from the same laser with a 10 Hz
repetition rate, 5 ns pulse-width and 0.04 cm−1 line-width), and generate an
efficient degenerate FWM signal EF1 (kF1 = k1 − k′1 + k3) [Fig. 8.2 (b)] in
the direction shown at the lower right corner of Fig. 8.2 (a). The beams E2
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and E′
2 (with Rabi frequencies G2 and G′2, and connecting transition |0〉 to

|1〉) are from another near-transform-limited dye laser of frequency ω2 and
form a nondegenerate FWM process to generate EF2 (kF2 = k3 + k2 − k′2)
[Fig. 8.2(b)]. When the five laser beams are all on, there also exist other two
one-photon resonant nondegenerate FWM processes kF3 = k3+k2−k′1 and
kF4 = k3+k1−k′2. However, the coexisting EF1 and EF2 are the dominant
ones [14,16].

When the beams E2 andE′
2 are tuned to |0〉−|2〉, the system becomes the

three-level V-type one [Fig. 8.2 (c)], which generates a different one-photon
resonant nondegenerate FWM process EF2 [14].

In the experiments, the sodium vapor is heated to 255◦C (with an atomic
density of 3.6× 1013cm−3 approximately) when the typical gap solitons start
to appear. The stronger dressing beams E′

1,2 are approximately 10 times
larger than the pump beams E1,2, and 1000 times larger than the weak probe
beam E3 and the two generated FWM beams EF1,2. So, E′

1,2 can strongly
influence the signal beams EF1,2. The mathematical description of the self-
and cross-Kerr nonlinearities of the weak beams EF1,2 can be obtained by
numerically solving the following propagation equations:

∂uF1

∂Z
− i∂2uF1

2∂ξ2
=
ik2

F1w
2
0I1

n1
(nS1

2 |uF1|2 + 2nX1
2 |u′1|2 + 2nX2

2 |u′2|2)uF1,

(8.62a)

∂uF2

∂Z
− i∂2uF2

2∂ξ2
=
ik2

F2w
2
0I1

n1
(nS2

2 |uF2|2 + 2nX3
2 |u′1|2 + 2nX4

2 |u′2|2)uF2,

(8.62b)

where Z = z/LD (LD = k1w
2
0 has the physical meaning of the Rayleigh

range, and w0 is the spot size of the probe beam); ξ = x/w0 and y/w0 are
the longitudinal and transverse coordinates, respectively; uF1,2 = AF1,2/I

1/2
1

and u′1,2 = A′1,2/I
1/2
1 are the normalized amplitudes of the beams EF1,2 and

E′
1,2, kF1 = kF2 = ω1n1/c, with n1 being the linear refractive index. nS1,2

2

are the self-Kerr indices for the EF1 and EF2 beams, respectively; nX1
2 is

the cross-Kerr nonlinear coefficient of the weak field EF1 induced by the
strong coupling field E′

1, n
X2
2 is the cross-Kerr nonlinear coefficient of the

weak field EF1 induced by the strong coupling field E′
2, n

X3
2 is the cross-Kerr

nonlinear coefficient of the weak field EF2 induced by the strong coupling
field E′

1, and nX4
2 is the cross-Kerr nonlinear coefficient of the weak field EF2

induced by the strong coupling field E′
2; The FWM signal fields EF1 (from

four perturbation chains) and EF2 (from two perturbation chains), dressed
by E′

1 and E′
2, in Fig. 8.2(b) can be obtained by solving the density-matrix

equations. Similarly, the cross-Kerr nonlinear coefficients [13, 16] are nX1
2 ∝

G3|G′1|2/η1, nX2
2 ∝ G3|G′2|2/η2, nX3

2 ∝ G3|G′1|2/η3 and nX4
2 ∝ G3|G′2|2/η4

in this two-level atomic system, where η1−4 represent the complex formulas
with frequency detuning, relaxation rates and Rabi frequency of the dressing
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fields.
The interference pattern from the beams E1 and E′

1 (or E2 and E′
2)

induces the spatial grating (or the optical “lattice” with a period Λ) for
generating the gap solitons, which are observed in the images captured by a
CCD camera. The refractive index varies inside the spatial grating. We need
to include both the frequency detuning and intensity dependences of the
refractive index in addition to its one-dimensional periodic variation along
the ξ axis by using n(Δ, I, ξ) = n1(Δ) + n2(Δ)I + δn(ξ), where I is the
dressing field intensity. δn = n2 cos(2πξ/Λ) accounts for the periodic index
variation inside the grating, with the refractive index contrast to be about
n2(Δ)I = 2.65 × 10−4. The grating period is given by Λ = λ/θ ≈ 10 μm,
where θ = 0.3◦ is the angle between the beams E1 and E′

1 (E2 and E′
2).

For simplicity, one can get uF1,2 ≈ u0sech[u0(k2
F1,2w

2
0I1n

S1,S2
2 /n1)1/2ξ]

cosφNL, where the nonlinear phase shift φNL(z, ξ)=2kF1,2n2Ie−[w′
0(ξ−1)]2z/n1

and w′0 is the spot size of the dressing beams. n2 is negative for a self-
defocusing medium while positive for a self-focusing medium. We assume
Gaussian profiles for the input beams and solve. (Eg. 8.62) by using the
commonly employed split-step method.

Figure 8.3 shows the splitting in the self-focusing region (Δ1 < 0) and
forming of gap solitons in the self-defocusing region (Δ1 > 0) of the FWM sig-
nal EF1, and the nonlinear refractive index n2 versus Δ1. In the self-focusing
side, while the nonlinear refractive index n2 changes from the minimum to
the maximum (left to right), EF1 beam breaks up from one to three parts,
with one large and two small pieces. Thus, the EF1 beam in the self-focusing
side propagates with discrete diffraction. However, in the self-defocusing side,
where the n2 changes from near zero to large negative value, EF1 beam breaks
up into many peaks with an approximate fringe space of Λ and forms gap
solitons, which is due to the nonlinear coupling between the laser beams
in the Kerr nonlinear medium [4]. There only exists one spot at resonance
where n2 is close to zero. The reason is that according to the expression of
nonlinear phase shift φNL, when n2 is zero, φNL(y) becomes zero too. With
increasing n2, the oscillation frequency w(n2) (φNL(y) ≈ w(n2)y2), propor-
tional to n2 along ξ, gets big too. When the XPM-induced focusing [2 – 4]
exactly compensates the diffraction, the beam becomes trapped and forms
spatial solitons. Here, we have demonstrated a transition from a self-focusing
to a self-defocusing region and from forming discrete to gap solitons solely
by adjusting the nonlinear dispersion with frequency detuning [6].

With the temperature in the heat pipe oven increased gradually, the
temperature effect on the FWM signal can be investigated. Figure 8.4 (a)
presents intensity curves of the FWM signal EF2 under different tempera-
tures. The beam profile of the FWM signal is quite irregular at low tempera-
tures (T = 230 ◦C and 240 ◦C), but becomes more vivid at higher tempera-
tures. The atomic density N is determined by the temperature in the atomic
vapor, which is equivalent to the change in the propagation distance z. The
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Fig. 8.3. Images (lower) and cross sections in the y-direction (upper) of EF1 signal
versus Δ1 in the two-level system with G1 = 1.2 GHz, G′1 = 15.2 GHz and G3 =
0.5 GHz at 250 ◦C. The corresponding nonlinear dispersion is illustrated in the
figure at the right side.

periodic refractive index of the medium is modulated by the term cos2 φNL

in u2
F1,2, which is the reason of forming the gap solitons in such system. Now,

let us consider the influence of the dressing field on of the FWM signal, as
shown in Fig. 8.4 (b). Gap soliton in the EF2 beam does not exist when the
dressing field power (G′2) is low. When G′2 gets larger, the influence of the
dressing field intensity on gap solitons becomes dramatic, and gap solitons
obviously appear with G′2 = 14.5 GHz and G′2 = 21.7 GHz. This is due to the
fact that for EF2, the gap solitons are induced by the interference patterns
formed by E′

2 and E2 beams. One can also explain this phenomenon with
φNL(x), i.e., when the dressing field E′

2 becomes stronger, the oscillation fre-
quency w(I) gets larger accordingly. Figure 8.4 (c) shows the difference of the
FWM signal EF2 between the two-level and the V-type three-level systems.
Apparently, the gap solitons in the FWM beam profile are more vivid in the
two-level system than in the V-type three-level system. This is because the
gap solitons of EF2 are caused by the interference between the E′

2 and E2

beams, which are the inner dressing fields for the two-level system and have
stronger cross-Kerr effect. However, for the V-type three-level system, these
fields are the outer dressing fields and have a weaker cross-Kerr effect [16].
The dotted curves in Fig. 8.4 are the simulated results from the propaga-
tion equations with practical parameters used in the experiment, which show
excellent agreements with the experimentally measured spatial profiles.

To get the steady gap solitons, the focusing effect due to the XPM should
exactly compensate the spatial diffraction of the generated FWM signal
beam. Figure 8.5 (a, b) show the trapped gap solitons of the EF1 and EF2

beams in the two-level system, respectively. As one can see that with in-
creasing temperature, the spatial profiles of the EF1 and EF2 beams change
very little (except with a breathing). This indicates that at certain probe
frequency detuning and dressing field intensity, steady propagation of gap
solitons (i.e., no change with increasing temperature) can be achieved.

Figure 8.6 presents an interesting phenomenon: splitting gap solitons.
With E′

2 field dressing, the EF2 beam forms gap solitons in the x-direction
[Fig. 8.6 (i)]. Figure 8.6 (iii) shows the gap solitons in the x-direction and
splitting in the y-direction with E′

1 and E′
2 dressing, respectively. One can
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Fig. 8.4. (a) Cross-sections (left) and images (right) of EF2 beam in the two-level
system versus Δ1 with T=230, 240, 250 and 260

◦C, respectively (from down to up).
(b) Cross-sections (left) and images (right) of EF2 beam in the two-level system
versus Δ1 with G′2 = 0, 4.8, 9.6, 14.5, 21.7, and 29.7 GHz, respectively (from
down to up). (c) EF2 profile in two-level system and three-level V-type system.
Inset: images of EF2 beam in the two-level system (left) and the three-level V-type
system (right). The dotted curves are the theoretical results.

understand the formation of the splitting gap solitons [Fig. 8.6 (iii)] in the
following. The dressing field E′

2 and the signal field EF2 overlap partially in
the x-direction [Fig. 8.2 (a)], so the influence of the intensity of the dressing
field E′

2 leads to the formation of gap solitons of EF2 in the x-direction. At
the same time, the dressing field E′

1 and the signal field EF2 overlap in the
y-direction, which induces a splitting of the EF2 beam in the y-direction.
Similarly, with the E′

1 and E′
2 dressings, EF1 beam shows the gap solitons in

the y-direction and the splitting in the x-direction [Fig. 8.6 (iv)]. The cross
sections of the EF1 and EF2 beam images in the y-direction and x-direction
are shown in the right side of Fig. 8.6. Furthermore, interacting FWM gap
soliton pairs of EF1 and EF2 beams can coexist in the same self-defocusing
atomic system

Comparing with the gap solitons created in the photorefractive crystals,
the gap solitons formed in the atomic medium are with flexible and easy to
control parameters, such as atomic density, intensities of the dressing fields,
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Fig. 8.5. (a) Images of the EF2 beam with E′2 dressing field in the two-level system
with different temperatures from 230 ◦C to 260 ◦C with G′2 = 15.2 GHz and Δ1 =
15.3 GHz. (b) Images of the EF1 beam with E ′1 dressing in the two-level system
with different temperatures from 230 ◦C to 260 ◦C with G′1 = 9.6 GHz and Δ1 =
14.2 GHz.

Fig. 8.6. Images of EF2 beam (i) with G′2 = 14.5 GHz and EF1 (ii) with G′1 =
15.2 GHz with different Δ1 values. Images of EF2 (iii) and EF1 (iv) beams with
G′1 = 15.2 GHz and G′2 = 14.5 GHz with different Δ1 values in the two-level system.
Corresponding cross sections of the EF1 and EF2 field in the y-direction (left) and
x-direction (right) with Δ1 = 14 GHz, respectively.

and nonlinear dispersion.
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8.3 Dipole-mode Spatial Solitons of Four-Wave Mixing

If a phase mask is used to introduce a certain phase delay for half of the
soliton beam, the soliton can split into two parts with opposite (π) phases
between them, called dipole-mode vector soliton with a Hermite-Gaussian
mode structure [19, 20]. In an optically-induced two-dimensional photonic
lattice, the dipole-mode solitons can be created with either opposite phases
or same phase between the two parts [21]. Vector solitons with one nodeless
fundamental component and another dipole-mode component can couple to
each other and be trapped jointly in the photonic lattices [19, 22]. The ra-
dially symmetric vortex-mode solitons can decay into radially asymmetric
dipole-mode solitons that have nonzero angular momentum, which can sur-
vive for very long propagation distances [19]. In the past few years, studying
formations and properties of such novel spatial solitons has become an active
field of research [1, 4, 19 – 29].

Such dipole-mode solitons can also be created in the FWM beams gen-
erated inside a multi-level atomic medium with greatly enhanced self-Kerr
and cross-Kerr nonlinearities [13]. The key is to create a high enough index
contrast (via Kerr nonlinearity n2I) in the atomic medium by laser-induced
index gratings. This can be achieved at high atomic density and large pump
laser powers with certain frequency detunings, so the Kerr nonlinear index n2

is enhanced and at its maximum [16]. Two-component dipole-mode solitons
are generated in two coexisting FWM signal beams in two- and three-level
atomic systems. Interesting phenomena, such as energy exchange or breathing
between soliton components, decays of more complicated vortex solitons into
the dipole-mode ones, and suppression/enhancement of such dipole solitons,
are also observed under various experimental conditions. The easy controls of
the experimental parameters in the multi-level atomic systems make the cur-
rent system ideal to investigate the formations of multi-component solitons
and their nonlinear dynamics [23 – 25].

The laser beams are spatially aligned as shown in Fig. 8.7 (a). Four energy
levels of Na atoms (in a heat-pipe oven) are involved in the three experimental
configurations as shown in Fig. 8.7 (b – d). In Fig. 8.7 (b), energy levels |0〉
(3S1/2), |1〉(3P1/2) and |2〉 (4D3/2) form a cascade three-level atomic system.
Two fields E1 and E′1 (with Rabi frequencies G1 and G′1, and frequency ω1)
connecting transition |0〉 to |1〉, with a small angle θ1 ≈ 0.3◦ between them,
propagate in the opposite direction of a weak probe field E3 (with Rabi
frequency G3 and frequency ω1), as shown in Fig. 8.7 (a). The three beams
are from the same near-transform-limited dye laser (10 Hz repetition rate,
5 ns pulse-width and 0.04 cm−1 linewidth). They generate an efficient one-
photon resonant FWM signal EF1 satisfying the phase-matching condition
of kF1 = k3+k1−k′1, which propagates nearly opposite to the field E′1, and
sampled by a CCD camera. Two additional coupling fields E2 and E′2 (with
Rabi frequencies G2 and G′2, and a small angle θ2 ≈ 0.3◦ between them) are
applied between the transition |1〉 and |2〉, which are from another similar dye
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laser with frequency ω2. They, together with the probe beam E3, generate a
two-photon resonant FWM signal EF2 with kF2 = k3+k2−k′2, propagating
nearly opposite to the field E′2 [Fig. 8.7 (a)] [15, 16].

Fig. 8.7. (a) Spatial beam geometry used in the experiment. Two FWM processes
EF1 and EF2 with five beams E1, E

′
1, E2, E

′
2, and E3 on, in (b) cascade three-level,

(c) V-type three-level, and (d) two-level atomic systems, respectively. EF1 and EF2

are mainly steered by the horizontally and vertically aligned beams E′1 and E′2.

When the two fields E2 and E′2 are tuned to the transition |3S1/2〉 −
|3P3/2〉, they generate another one-photon resonant nondegenerate FWM sig-
nal EF2 in the V-type three-level system [Fig. 8.7 (c)]. Also, when they are
changed to the transition |3S1/2〉−|3P1/2〉, another one-photon resonant non-
degenerate FWM signal EF2 is generated in the two-level system [Fig. 8.7
(d)]. Two-component dipole solitons are induced by the balanced interactions
between the spatial diffractions and the cross-Kerr nonlinearities of the fields
E1,2 and E′1,2. To generate dipole-mode solitons, the sodium atomic density
needs to reach 2.9× 1013cm−3 (T = 250 ◦C), which can produce a variation
in the nonlinear index of Δn = 1.94× 10−4 at high enough laser intensities.
The dipole-like patterns of EF1 and EF2 are created by the horizontally and
vertically aligned beams E′1 and E′2 in Fig. 8.7 (a), respectively. One of the
advantages of such spatial solitons is that the waveguiding effect is induced by
focusing due to cross-Kerr nonlinearity of the FWM beam, not self-focusing
with a catastrophic absorption [4].
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A radially asymmetric dipole-mode vector soliton includes one nodeless
component (probe beam E3) and two dipole-like components with spatial
structures of Hermite-Gaussian (HG10 for EF1 and HG01 for EF2) modes.
We mainly study the two coupled FWM beams EF1 and EF2 (with the
same frequency), which have perpendicularly oriented dipole components,
propagating along z direction and diffusing along a transverse direction. We
assume EF1 = AF1(x) exp(ikF1z), EF2 = AF2(x) exp(ikF2z), and Etot =
EF1+EF2. Such the two coupled FWM fields satisfy the evolution equations
in the Kerr medium as

∂AF1

∂z
− i
2kF1

∂2AF1

∂x2
=
ikF1

n0
(nS1

2 |AF1|2 + 2nX1
2 |A1|2 + 2nX2

2 |A′1|2 +
2nX3

2 |A′2|2)AF1 + η1A1(A′1)
∗AF2, (8.63a)

∂AF2

∂z
− i
2kF2

∂2AF2

∂x2
=
ikF2

n0
(nS2

2 |AF2|2 + 2nX4
2 |A2|2 + 2nX5

2 |A′2|2 +
2nX6

2 |A′1|2)AF2 + η2A2(A′2)
∗AF1. (8.63b)

The two-component dipole-mode solitons are natural results from such energy-
dependent nonlinear propagation equations. nS1,S2

2 are the self-Kerr nonlinear
coefficients of EF1 and EF2, and nX1−X6

2 are the cross-Kerr nonlinear coeffi-
cients due to fields E1,2 and E′1,2, respectively. The Kerr nonlinear coefficients
are defined as n2 = Reχ(3)/(ε0cn0). The third-order nonlinear susceptibility
χ(3) = Dρ

(3)
10 , where D = Nμ4

10/(�
3ε0gG2

i ) with g = GF1,2 (the Rabi frequen-
cies of EF1,2). N is the atomic density and μ10 is the dipole-matrix element
between |0〉 and |1〉. For the cross-Kerr nonlinear coefficients of the weak
FWM beams EF1,2 induced by E′1 dressing, we have

ρ
(3)
10 = −igG′21 [F

−1
1 + (F ∗1 )

−1][F−1
2 + (F−1

3 )]F−1
1 ,

where F1 = d1+G′21 /[Γ11+G′22 /d2]+G′21 /Γ00+G′22 /d3, F2 = Γ11+G′21 [d
−1
1 +

(d−1
1 )∗] + G′22 [d

−1
2 + (d−1

2 )∗], F3 = Γ00 + G′21 /(d1 + G′22 d−1
3 ) + G′21 /[d∗1 +

G′22 (d∗2)−1], d1 = Γ10 + iΔ1, d2 = Γ12 − iΔ2�d3 = Γ20 + i(Δ1 + Δ2) for
the cascade three-level system. Δ1 and Δ2 are the frequency detunings be-
tween the fields E1,3,F1,2 and E′1 (E2 and E′2). Similarly, we can obtain other
Kerr nonlinear coefficients.

The resulting superposition of the two perpendicular dipole soliton com-
ponents, EF1 and EF2, can be regarded as a generalization from a two-
component dipole-mode soliton (E3, EF ) to a three-component one (E3,
EF1, EF2). However, in the current case, the total intensity of EF1 and
EF2 is approximately constant (two-component FWM dipole soliton |EF |2 =
|EF1|2 + |EF2|2, where EF1 = EF cosψ and EF2 = EF sinψ with ψ being a
transformation parameter), and the power of the probe beam is close to that
of EF1 +EF2. The total intensity (I = |E3|2 + |EF1|2 + |EF2|2) of the three
components is quasi-stable in propagation after a long enough propagation
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distance (or high enough atomic density). The three components of the solu-
tion carry topological charges 0, +1, −1, respectively, and the total angular
momentum is zero, which makes the solution stable [24].

The in-phase dipole modes of EF1 and EF2 are created (or split) by
the horizontally and vertically aligned beams E′1 and E′2, respectively. Thus,
the two-component dipole-mode soliton solutions of EF1 and EF2 can be
written as EF1 ∝ u1 sec h[u1(kF1n

S1
2 /n0)1/2(r − r1)] cos(Mϕ/2) exp(im1ϕ +

iφ1) exp(ikF1z) and EF2 ∝ u2 sec h[u2(kF2n
S2
2 /n0)1/2(r − r2)] cos(Mϕ/2)

exp(im2ϕ + iφ2) exp(ikF2z), where u1,2 are soliton amplitudes; r1,2 are ini-
tial peak positions; M is the number of intensity peaks; m1,2 are topological
charges; and φ1,2 are the nonlinear phase shifts (φ1,2 = 2k1,2n2I2,1e−r2/2z/n0).
Such solutions possess the dipole-soliton characteristics with m1,2 = ±1, and
two humps form the two poles of the dipole soliton.

The generated EF2 beam is dressed by G′1, G1, or G′1 & G1 in the cascade
three-level system (Fig. 8.8). We present the vertical dipole-mode solitons of
EF2 with different dressing configurations. The EF2 beam splits into two
coherent spots (i.e., dipole pattern, as shown in Fig. 8.8) due to the mod-
ulated transverse nonlinear phase shift φ2 induced by the vertically-aligned
beam E′2. At low nonlinear dispersion |n2|, EF2 beam only experiences the
linear diffraction. With maximum |n2| at |Δ1| = 10 GHz vertically-oriented
dipole soliton is generated due to the balanced interaction between the spa-
tial diffraction and the cross-Kerr nonlinearity. In the self-focusing region of
the atomic medium (from Δ1 = −30 GHz to Δ1 = −10 GHz), there exists
energy exchange between the two parts of the EF2 dipole mode. At resonance
or large frequency detunings, the dipole-mode soliton of EF2 decays into a
nodeless fundamental one. In dressing enhancement case [Fig. 8.8(a)], EF2

with both G′1 and G1 dressing is stronger than with G′1 or G1 dressing sepa-
rately, or without dressing field. For stronger G′1, the dressing effect of G′1 is
larger than that of G1. In the suppressed case with dressing fields [Fig. 8.8
(b)] [15, 16], EF2 with both G′1 and G1 dressing fields gets weaker than with
G′1 or G1 dressing separately, or without dressing field.

When five laser beams are turned on at the same time in the cascade
three-level system, as shown in Fig. 8.9 (a), the probe beam acts as a fun-
damental nodeless soliton and propagates with a stable shape for different
atomic densities (or effective propagation distances [4]). However, the beam
shapes of EF1 and EF2 become quite different at different propagation dis-
tances (or atomic densities) showing rich dynamics. The probe, EF1 and EF2

beams have the same wavelength. EF1 beam has the dipole component with
the horizontal orientation (m1 = −1) while the EF2 beam has the vertical
dipole component (m2 = +1), which are induced by the horizontally- and
vertically-aligned beams E′1 and E′2, respectively. During propagations of the
EF1 and EF2 beams, energy flows back and forth between the two spots,
so the dipole solitons of EF1 and EF2 survive with strong oscillation and
breathing in propagation. The superposition of these modes shows intriguing
dynamics, associated with rotation instability in EF1 + EF2 [24]. The fun-
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Fig. 8.8. Images (left) and profiles (right) of dipole-soliton component EF2 in the
cascade three-level system at different frequency detunings in (a) enhanced or (b)
suppressed case with G′1 = 55 GHz and G1 = 45 GHz [(i) and square], G′1 =
55 GHz and G1 = 0 [(ii) and circle], and G′1 = 0 and G1 = 45 GHz [(iii) and
triangle], and without dressing fields [(iv) and diamond]

damental probe soliton is stable, which has the stronger contribution to the
total superposition mode.

Moreover, when the propagation distance increases gradually, one can see
energy transfers among the probe, EF1 and EF2 beams [30]. The energy
exchanges between the probe and EF1 +EF2 components (start at a certain
propagation distance), as shown in the right side of Fig. 8.9 (a). The total
intensity of the probe, EF1 and EF2reaches an equilibrium state (no energy
exchange afterward) after a long interaction distance.

For different frequency detunings, the energy of the dipole soliton can
be concentrated in one part or another. With Δ1 changes from –26 GHz to
–10 GHz in the self-focusing regime, energy flows from the left spot of EF1

(or upper spot of EF2) to the right (or lower) spot. The symmetric behaviors
appear in the positive frequency detuning (self-defocusing) side [Fig. 8.9 (b)].
Since the phase φ in the current dipole solution has values 0 < φ < π (the out-
of-phase repelling dipole soliton is more stable than the in-phase attracting
one) [21, 22], energy exchange occurs. Because of the bounding effect induced
by the cross-phase modulation (XPM) of the strong dressing field, energy will
flow between the two parts of the dipole-mode soliton periodically.

Figure 8.9 (c) presents the discrete dipole soliton [26] of EF1 beam in the
cascade three-level system, which is induced by periodic nonlinear refraction
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Fig. 8.9. (a) Experimental (left) and numerical (middle) results of three-component
dipole solitons of probe, EF1 and EF2 with z = 0, 42, 104 in the cascade three-level
system at Δ1 = −15 GHz, Δ2 = −10 GHz. Intensity changes (right) of dipole-
soliton components during propagation for the probe (square), EF1 (circle), EF2

(triangle), EF1 + EF2 (reverse triangle), and total (diamond) fields. (b) Breathing
effects of EF1 (lower) and EF2 (upper) versus Δ1. (c) Dipole soliton of EF1 only
dressed by G2 versus Δ1 in the cascade three-level system.

due to the interference pattern of the two dressing beams G′1 and G1. When
Δ1 is close to zero, the periodic modulation of the nonlinear refraction index
via the interference pattern will disappear, i.e., the discrete dipole soliton
decays into the general dipole soliton at resonance [Fig. 8.9 (c)].

Figure 8.10 (a) shows the evolutions of the three-component solitons (i.e.,
the nodeless probe, horizontal dipole-mode EF1 and vertical dipole-mode
EF2 beams) versus Δ1 in the cascade three-level system. The probe beam
is a fundamental soliton, which propagates with a stable Gaussian shape
for different frequency detunings. The EF1 dipole component is horizontally
oriented while EF2 is the vertically oriented dipole mode. The dipole solu-
tions can appear at different conditions for EF1 and EF2 beams. Also, a
fundamental soliton can become a breathing dipole soliton for EF1 beam.
EF2 beam also shows energy exchange between the dipole parts. Since the
probe component is strong and stable, it dominates in the superimposed total
images.

Since there exist three [Fig. 8.7 (c)] or five [Fig. 8.7 (d)] waves with the
same frequency in the three-level V-type or two-level system in generating
FWM EF1, their spatial destructive interference patterns create certain phase
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singularities or optical vortices [31, 32]. Figure 8.10(b) depicts evolutions of
the two vector-soliton components, i.e. vortex-mode EF1 and dipole-mode
EF2 beams, versus probe detuning in the three-level V-type system. The
crescent vortex solitons [27] with the horizontal orientation of EF1 are ob-
served at large detunings in both the self-focusing and self-defocusing sides,
which decay into the modulated vortex soliton with the peak number M = 3
at Δ1 = −41.5 GHz. In the self-defocusing (positive detuning) side, the EF1

beam first becomes dipole-mode soliton, then breaks and forms the modu-
lated vortex soliton with M = 3. The dipole soliton of EF2 rotates in the
self-focusing regime, where energy exchange occurs within the dipole soliton.
While in the self-defocusing case EF2 dipole soliton does not rotate, but be-
comes unstable and splits into three spots along the vertical direction, and
finally returns to the stable dipole-mode soliton, as the frequency detuning
changes from Δ1 = 10.9 GHz to Δ1 = 67 GHz.

Figure 8.10 (c) presents the evolutions of the three-component solitons of
the dipole-mode probe (induced by the vertically-aligned beams E1 and E2),
the vortex-mode EF1 (created by the interference pattern of the five waves
in Fig. 8.7 (d)), and the dipole-mode EF2 (induced by the vertically-aligned
beam E′2) beams versus probe detuning in the two-level system. The attrac-
tion between two in-phase spots in the probe beam leads to the generation of
a fundamental nodeless soliton when |n2| is small. The repulsive interaction
with large |n2| (Δ1 = −47.3 GHz) results in an increased relative separation
between the two parts. Under the self-focusing condition (Δ1 < 0), the node-
less probe component first undergoes radial breaking into the dipole soliton.
While for EF1, the beam rotates, then splits into four spots (M = 4) with
energy exchanging circularly, and finally fuses into a modulated vortex soli-
ton induced by the interferences of the five waves [31,32]. However, for EF2,
the beam has the stable dipole spots where the energy current is bounded by
the strong XPM. We also observed crescent vortex soliton (Δ1 = −3.9,−2.1
GHz) in the EF1 beam, and breathing vertical dipole soliton in the EF2

beam. Such bound effects are induced by the asymmetric energy flow in the
transverse direction.

In conclusion, we have experimentally demonstrated controllable dipole-
mode solitons for the generated FWM beams in the three-level cascade, the V-
type, and the two-level atomic systems. These composite spatial solitons with
perpendicularly-oriented dipole components are steady with the propagation
distance variation. Energy exchanges occur between the two parts in the
dipole solution. We also discussed the decays into the dipole soliton from the
discrete dipole soliton of EF1 and vortex soliton, as well as the suppressed and
enhanced dipole solitons under different dressing conditions. Theoretically
simulated results match well with the experimentally observed phenomena.
This study will help us to understand fundamental mechanisms in soliton
formation and dynamics. It exploits new ways in controlling the diffraction
of optical beams and designing new devices of spatial optical switching, and
logic gating for optical communication and all-optical signal processing.
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Fig. 8.10. (a) Families of the three-component dipole solitons of probe, EF1 and
EF2 versus Δ1 in the cascade three-level system. (b) Two perpendicular dipole
components of EF1 and EF2 versus Δ1 in the V-type three-level system. (c)
Families of the three-component dipole-mode solitons of probe, EF1 and EF2

versus Δ1 in the two-level system.

8.4 Modulated Vortex Solitons of Four-Wave Mixing

Vortices play important roles in many branches of physics [1]. The first experi-
mental observation of optical vortex soliton was reported in a self-defocusing
medium where the field propagates as a soliton, owing to the counterbal-
anced effects of diffraction and nonlinear refraction at the phase singular-
ity [20]. Such singularity corresponding to vortices can exist in the Bose-
Einstein condensates, which links the physics of superfluidity, phase transi-
tions, and singularities in nonlinear optics [33 – 36]. The topological states
of a Bose-Einstein condensate can be prepared experimentally [34]. Spatially
modulated vortex solitons (azimuthons) have been theoretically considered
in self-focusing nonlinear media [10]. Transverse energy flow occurs between
the intensity peaks (solitons) associated with the phase structure, which is
a staircase-like nonlinear function of the polar angle ϕ. The necklace-ring
solitons can merge into vortex and fundamental solitons in dissipative media
[37].

With the self-phase modulation, spatial bright soliton in self-focusing
medium or dark soliton in the self-defocusing medium can be created [1].
Focusing effect can also be induced by XPM in a self-defocusing nonlinear
medium [2]. In such case, the spatial soliton can form by balancing the spa-
tial diffraction with the XPM-induced focusing [4]. Moreover, when three or
more planewaves overlap in the medium, complete destructive interference
patterns can give rise to phase singularities or optical vortices [31, 32, 38,



8.4 Modulated Vortex Solitons of Four-Wave Mixing 399

39], which are associated with zeros in the modulated light intensity patterns
and can be recognized by specific helical wavefronts.

In this section, we present experimentally demonstration of the formations
of modulated vortex solitons in two generated FWM waves in a two-level,
as well as a cascade three-level, atomic systems. These vortex solitons are
created by the interference patterns by superposing three or more waves,
and by the greatly enhanced cross-Kerr nonlinear dispersion due to atomic
coherence [13, 40].

Two relevant experimental systems are shown in Figs. 8.11 (a) and 8.11
(b). Three energy levels from Na atoms (the atomic vapor is heated with an
atomic density of 5.6 × 1013cm−3 and a refractive index contrast of Δn =
n2I = 4.85×10−4 approximately, where n2 is the cross-Kerr nonlinear coeffi-
cient and I is the beam intensity) are involved in the experimental schemes.
In Fig. 8.11 (b), energy levels |0〉 (3S1/2), |1〉(3P3/2) and |2〉 (4D3/2,5/2) form
a three-level cascade atomic system. When the energy level |2〉 is not used,
the system reduces into a two-level one [Fig. 8.11 (a)]. The laser beams are
aligned spatially as shown in Fig. 8.11 (c), with two dressing beams (E′

1

and E′
2) and two pump beams (E1 and E2) propagating through the atomic

medium in the same direction with small angles (0.3◦) between them in a
square-box pattern. The probe beams (E3 and E′

3) propagate in the op-
posite direction with a small angle as shown in Fig. 8.11 (c). Three laser
beams (E1, E′

1, and E3, with Rabi frequencies G1, G′1, and G3, connecting
transition |0〉 to |1〉) have the same frequency ω1 (from the same dye laser
with a 10 Hz repetition rate, 5 ns pulse-width and 0.04 cm−1 line-width),
and generate an efficient degenerate FWM signal EF1 (kF1 = k1 − k′1 + k3)
[Fig. 8.11 (a)] in the direction shown at the lower right corner of Fig. 8.11
(c). These beams E2, E′

2, and E′
3 (with Rabi frequencies G2, G′2 and G′3,

and connecting the same transition |0〉 to |1〉 in the two-level system) are
from another near-transform-limited dye laser of frequency ω2, and produce
a nondegenerate FWM signal EF2 (kF2 = k2 − k′2 + k3) [Fig. 8.11 (a)]. All
laser beams are horizontally polarized. The diameters of the laser beams are
about 25 μm. When the six laser beams are all on, there also exist other two
FWM processes kF3 = k1 − k′1 + k′3 and kF4 = k2 − k′2 + k′3. However, the
coexisting EF1 and EF2 are the dominant ones in the experiment due to
phase-matching and chosen beam intensities [15, 40].

When E2 and E′
2 are tuned to the |1〉−|2〉 transition, the system becomes

a cascade three-level system [Fig. 8.11 (b)], which generates a two-photon
resonant nondegenerate FWM process EF2 [15, 40].

The mathematical description of the two generated (dominant) FWM
beams (including the self- and cross-Kerr nonlinearities) can be obtained by
numerically solving the following propagation equations in cylindrical coor-
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Fig. 8.11. Two FWM processes kF1 and kF2 with five beams k1, k
′
1, k2, k

′
2, k3, and

k′3 in (a) two-level and (b) cascade three-level atomic systems, respectively, dressed
by two beams k′1 and k′2. (c) Spatial beam geometry used in the experiment.
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2, nX6
2 is the

cross-Kerr nonlinear coefficient of the field EF2 induced by the field E3, nX7
2

is the cross-Kerr nonlinear coefficient of the field EF2 induced by the field
E1, nX8

2 is the cross-Kerr nonlinear coefficient of the field EF2 induced by
the field E2, nX9

2 is the cross-Kerr nonlinear coefficient of the field EF2 in-
duced by the field E′

1, and nX10
2 is the cross-Kerr nonlinear coefficient of

the field EF2 induced by the field E′
2. The Kerr nonlinear coefficients are

defined as n2 = Reχ(3)/(ε0cn1). The third-order nonlinear susceptibility is
given by χ(3) = N0μ

4
10ρ

(3)
10 /(�3ε0G3,F1,F2G

2
i ). N0 is the atomic density. μij

is the dipole matrix element between transition |i〉 to |j〉. Δ1 (Δ2 = 0) is the
detuning of the fields E1, 3 and E′

1 (E2 and E′
2, 3) from the atomic transition.

We can obtain these Kerr nonlinear coefficients of the FWM beams EF1,2 by
calculating the density-matrix element ρ

(3)
10 [13, 40]. In addition, the Doppler

effect and power broadening effect are considered in calculating these Kerr
nonlinear coefficients.

Solving the propagation equations in the cylindrical coordinate, we demon-
strate that the modulated vortex solitons with a screw-type dislocation phase
can be characterized by two independent integer numbers [1,10] (i.e., the
topological charge m and the number of intensity peak N), and parametrized
by the rotating angular velocity (i.e., energy flow velocity) w. We can obtain
the stationary transverse solution of the modulated vortex soliton as [10, 37]
EF1 ∝ E sec h[E(kF1n

S1
2 /n1)1/2(r−R0)] cos(Nϕ/2) exp(imϕ+iφNL) with an

initial radius R0. Moreover, we have w1 = φNL(r, z)/z = 2kF1n2I2e−r2/2/n1,
w2 = φNL(r, z)/n2 = 2kF1I2e−r2/2z/n1 and w3 = φNL(r, z)/I2 =
2kF1n2e−r2/2z/n1.

The spatial interference patterns are formed by superposing three or more
waves (E1, 2, 3 and E′

1, 2, 3) in the medium, as shown in Fig. 8.11 (c). The de-
structive interference of two waves with similar intensity can result in spatial
patterns with zero intensities, which create phase singularities or optical vor-
tices [32]. When multi-beam interference occurs, spatial polygon patterns (i.e,
closed triangle from three beams, quadrangle from four beams, which gives
one vortex point [31, 32].) can be formed, with the side lengths being the com-
plex amplitude vectors of the waves. The polygons with more beams will look
like a circular shape, and the phase complexity will be enhanced. The complex
amplitude vectors can be overlaid at the observation plane and give rise to the
total complex amplitude vector (CX , CY ) of the interfering planewaves [31,
32]. The local structures of the optical vortices are given by the polarization
ellipse relation C2

X/(T 2
X + T 2

Y ) sin
2(β + α) +C2

Y /(T 2
X + T 2

Y ) cos
2(β + α) = 1,

where β = arctan(TX/TY ) and α is the ellipse orientation. The ellipse axes
TX , TY are related to the spatial configuration (including the incident beam
directions, phase differences between beams, etc.) and beam intensities.
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The dressing beams E′
1, 2 are approximately 10 times stronger than the

beams E1, 2, 102 times stronger than the weak probe beams E3 and E′
3,

and 104 times stronger than the two generated FWM beams EF1, 2. The
generated weak beam EF1 (or EF2) partly overlaps with the strong beam
E′

1 (or E′
2), and other stronger beams (E1, 2, 3, E′

3) lie around them [Fig.
8.11 (c)]. As a result, the same frequency waves can interfere to the construct
polarization ellipse, create phase singularity [31, 32], and induce local changes
of the refractive index. The interference induces a vortex pattern with the

superposed nF1
2 =

5∑
i=1

ΔnXi
2 and nF2

2 =
10∑

i=6

ΔnXi
2 (the center of such a

vortex lies in the minimum of nF1,2
2 ), and the horizontally- and vertically-

aligned dressing fields E′
1 and E′

2 modulate a circular-type splitting, with
three or four parts around the ellipse. Note that E′

1 (or E′
2) is the dominant

dressing field ofEF1 (orEF2). Such two contributions induce the vortices and
splittings of EF1 (or EF2), and finally form the modulated vortex solitons in
the two- and three-level atomic systems, as shown in Figs. 8.12–8.15 below.

Figure 8.12 (a) presents the effects of spatial dispersion on the FWM sig-
nal EF1 in the two-level system, which shows the splitting in the self-focusing
region (Δ1 < 0) and formation of vortex solitons in the self-defocusing region
(Δ1 > 0). In the self-focusing side, while the nonlinear refractive index n2

increases from left to right, EF1 beam breaks up from one to three parts
via φNL(nX4

2 ), with one large and two small pieces. Thus, the EF1 beam
propagates with discrete diffraction in the self-focusing side. By contrast, in
the Δ1 > 0 region, the strong dressing fields E′

1,2 separate the EF1 beam
into three spots along a ring (N = 3). Then these spots propagate through
the induced spiral phase polarization ellipse. Such screw dislocations create a
stationary beam structure with a phase singularity. The interference among
the four beams (E1,3 and E′

1,2) induced a modulated vortex pattern with

nF1
2 =

5∑
i=1,i�=3

ΔnXi
2 . Finally, the EF1 beam spot decays into a modulated

vortex soliton due to the balanced interaction between the spatial diffraction
and the cross-Kerr nonlinearity. There are energy exchanges among three the
spots, which rotate around the point of phase singularity. However, when n2

is very small with large detuning or Δ1 = 0, the phase singularity disappears
and the three spots fuse together into a stable fundamental spot.

Figure 8.12 (b) shows the modulated vortex solitons of EF1 for differ-
ent intensities of the dressing field E′

2 in the self-defocusing regime. With
increasing E′

2 intensity, the spiral phase of EF1 changes into jumping phase
between two parts, and the modulated vortex soliton of EF1 decays into
the dipole-mode soliton at the high intensity, which is created by the hori-
zontally aligned beam E′

1. Specifically, EF1 is circularly modulated by the
horizontally-aligned E′

1 and vertically-aligned E′
2 beams. With E′

2 getting
stronger, EF1 is shifted away from E′

2 and then splits into two parts by E′
1.
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The dominant phase of EF1 is changed gradually from a spiral phase evolu-
tion to a jumping phase (i.e., from interference among four beams E1,3, E′

1,2

to the dressing of E′
1.

Fig. 8.12. (a) Images of EF1 versus Δ1 with G′2 = 14.7 GHz at 265 ◦C. (b) Images
of EF1 at Δ1 = 8 GHz with different values of G′2 at 265 ◦C. Upper and lower
panels are for experimental and simulated results, respectively. (c) Images of EF1

at Δ1 = 8 GHz with different temperatures from 200 ◦C to 300 ◦C. G′2 = 9.5 GHz.
Top and bottom rows are the cross sections in y and x directions, respectively. The
parameters are G′1 = 12.7 GHz, G1 = 1.8 GHz, and G3 = 0.2 GHz in the two-level
system. Adopted from Ref. [36].

Figure 8.12 (c) shows EF1 soliton cluster with different temperatures
between 200 ◦C and 300 ◦C in the two-level system. EF1 beam is a single
spot at both low and high temperature sides. The single spot breaks up into
several fragments (soliton cluster) as the temperature increases from 200 ◦C to
240 ◦C, the nonlinear phase φNL gets larger as the temperature (equivalent to
propagation distance z) rises, which leads to several splitting parts with weak
absorption. As the temperature gets higher with an increased absorption,
the beam intensity decreases. φNL (proportional to both beam intensity and
propagation distance z) reaches its optimal value at 250 ◦C. Moreover, the
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soliton cluster of EF1 results from two contributions in the two-level system:
(i) the interference among the four waves (E1,3, E′

1,2) with the same frequency

induces an interference pattern with nF1
2 =

5∑
i=1,i�=3

ΔnXi
2 , and (ii) E′

1,2 induce

a beam splitting via φNL(nX4
2 ) and φNL(nX5

2 ). As temperature gets even
higher, the dressing beams are significantly absorbed by the hot atoms, so
their intensities are reduced and the cross Kerr nonlinear effects are gradually
weakened too. Under such condition, the spots merge into a single spot due to
strong absorption. So the ideal temperature for the modulated vortex soliton
is around 265 ◦C for the given experimental conditions (i.e., the modulated
vortex soliton can be obtained at a certain propagation distance).

In the cascade three-level system with five laser beams (E1,2,3, E′
1,2)

on, the frequencies of E2 and E′
2 are different from E1,3 and E′

1. The in-

terference
(

nF2
2 =

9∑
i=6,i�=8

ΔnXi
2

)
among three beams E1, E′

1, and E3 in-

duces a rotating vortex. Figure 8.13 (a, b) show the rotating vortices of the
FWM beams with three spots (N = 3) for different frequency detunings.
Here, the ellipse orientation α approaches to zero and TX/TY ≈ 1.1. From
I ∝ cos2(Nϕ/2) cos2(mϕ + Ω2|n2|) with Ω2 = sgn[n2]w2 (I2 = 51 W/cm2,
r = 0.25 mm), EF2 circumvolves anticlockwise with n2 > 0 and Ω2 =
1.63×103 W/cm2

> 0 in the self-focusing regime [Fig. 8.13 (a)], while moves
clockwise with n2 < 0 and Ω2 = −1.63×103 W/cm2 < 0 in the self-defocusing
regime [Fig. 8.13 (b)].

Figure 8.13 (c) presents the stationary solitons with w2 = 0 in the cascade
three-level system. nX4

2 can be a positive value with resonant dressing of E′
1.

When nX1
2 and nX2

2 have negative values under the self-defocusing condition,

the superposed nF1
2 =

4∑
i=1,i�=3

ΔnXi
2 is close to zero (or φNL ≈ 0). Under

this condition, a uniform energy flow exists along the ring, and nonrotating
(w2 = 0) spatially-localized multihump structures can be obtained.

Comparing to the three-level system, there exist five nearly degenerate fre-
quency waves (E1, 2, 3, E′

1, 2) in the two-level system. Figure 8.14 (a) shows
the rotating vortices of the FWM beam with four spots (N = 4) for different
frequency detunings in the two-level system. The modulated vortex pattern
(N = 4) of EF2 is induced by the interference of five waves, and the non-
resonant dressing field E′

2 induces a splitting via φNL(nX10
2 ). For EF2, E′

2

is the nonresonant dressing field, energy flow exists along the ring of spots
unequally, inducing a modulated vortex [Fig. 8.14 (a)].

In Fig. 8.14 (b), there exists a stationary, four-spot modulated vortex soli-
ton with N = 4 and non-uniform energy distribution for different detunings
in the two-level system. The vortex pattern (horizontally-oriented polariza-
tion ellipse with α = 0 and TX/TY = 1.5) is induced by the interference of the
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Fig. 8.13. The rotating EF2 solitons with (a) Ω2 > 0 and (b) Ω2 < 0 versus Δ1.
(c) Stationary nonrotating EF1 solitons (w2 = 0) versus Δ1. Lower images are the
simulated results (N = 3, m = 1). The parameters are G′2 = 19.7 GHz, G′1 =
12.7 GHz, G1 = 1.8 GHz, G2 = 1.1 GHz, and G3 = 0.2 GHz in the cascade
three-level system at 265 ◦C.

five beams. With the nonresonant dressing of E′
2, all terms in nF2

2 have the

same negative sign [Fig. 8.14 (a)], but the positive nX4
2 in nF1

2 =
5∑

i=1

ΔnXi
2

has an opposite sign with the other terms nX1,2,3,5
2 in nF1

2 due to the resonant
dressing of E′

1, so one can get nF1
2 ≈ 0. Therefore, there exist four spots in

the stationary (φNL ≈ 0) modulated vortex soliton of EF1 with N = 4 and
energy is mainly stored in one diagonal pair of spots [Fig. 8.14 (b)], which
results from the resonant dressing of E′

1.
The radially symmetric vortex solitons (m = 1) in a self-defocusing

medium are depicted in Fig. 8.15 (a, b), which separately demonstrate vor-
tices and steady crescent FWM vortex solitons under different temperatures
(atomic densities). The effective propagation distance z increases with the
temperature. According to the solution of Eq. (8.3) EF2 ∝ E sec h[E(kF2n

S2
2 /

n1)1/2(r−R0)] cos(Nϕ/2) exp(imϕ+iw1z), the spots rotate with an angular
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Fig. 8.14. (a) Anticlockwise rotating (Ω2 = −1.53× 103 W/cm2)EF2 solitons and
(b) stationary nonrotating EF1 solitons with four spots versus Δ1 at 265 ◦C in
the two-level system. Lower images are simulated (N = 4, m = 1) results. The
parameters are G′2 = 15 GHz, G′1 = 12.7 GHz, G1 = 1.8 GHz, G2 = 1.1 GHz, and
G3 = 0.2 GHz.

velocity w1. In the two-level system with nF2
2 =

10∑
i=6,i�=7

ΔnXi
2 , the vortex

pattern of EF2 is induced by the interference of E2,3, E′
1,2 while the dress-

ing fields E′
1,2 generate the circular splittings. Here, EF2 forms a crescent

FWM modulated vortex soliton with an anticlockwise rotation [Fig. 8.15
(a)], Moreover, w1z changes 300◦ from 245 ◦C to 275 ◦C. When setting z = 1
at 245 ◦C, we obtain w1 = −1.1 rad/m, which is close to the theoretical value
of w1 = −1.03 rad/m. However, in Fig. 8.15 (b) with the resonant dressing
E′

1 and nF1
2 =

5∑
i=1,i�=3

ΔnXi
2 ≈ 0, EF1 beam becomes a stationary vortex

soliton at certain I1 and z values.
Last, we let all six beams on, and set the E1, 2, 3 and E′

3 beams just
10 times weaker than the dressing beams E′

1, 2. Figure 8.15 (c) shows the
optical vortices created by the interferences of three, four, five, six waves
(and the dressing fields) in the two-level system, respectively. Initially, there
are three beams E1, 3, E′

1 on, which create the image 3 in Fig. 8.15 (c) As
fourth interference beam E′

2 is added, the split spots change from two to
three [Image 4 in Fig. 8.15 (c)]. Similarly, as beams E2 and E′

3 are added
gradually, the interference beams increase from four to five (Image 5); and
then to six (Image 6), the split spots in the vortex patterns of EF1 then
change from three to four, and then to six, respectively, along the ring, and
the shape of the vortex ellipse tends to become more circular. The final
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Fig. 8.15. Under different temperatures, (a) the rotating EF2 solitons (w1 =
−1.1rad/m) with E2,3 and E ′1 on, and (b) stationary nonrotating EF1 solitons
(w1 = 0) with E1,3 and E′1,2 on. Lower images are simulation (N = 3, m = 1)
results. (c) Optical vortices of EF1 formed by the interferences of three, four, five,
and six waves at 265 ◦C, respectively. The parameters are G′2 = 19.7 GHz, G′1 =
12.7 GHz, G1 = 1.8 GHz, G2 = 1.1 GHz, G3 = G′3 = 0.2 GHz, and Δ1 = 6 GHz in
the two-level system.

superposition nonlinear index is nF1
2 =

5∑
i=1

ΔnXi
2 +nX11

2 |E′3|2, where nX11
2 is

the nonlinear index induced by E′
3. The FWM modulated vortex solitons are

created jointly by the effects of the complex patterns induced by the multiple
interference waves [31, 32] and the cross-Kerr nonlinear dispersions induced
by the dressing field [4].

In conclusion, we have experimentally demonstrated controllable mod-
ulated vortex solitons of the degenerate and nondegenerate FWM beams
created by the interference patterns via the superposing three or more waves
and the cross-Kerr nonlinear dispersion due to atomic coherence in the two-
level and cascade three-level atomic systems. The vortex angular velocity and
intensity split peaks of the FWM modulated vortex solitons can be controlled
by laser intensities, nonlinear dispersion, as well as atomic density. Our theo-
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retical model can explain the observed FWM modulated vortex solitons very
well. The current study has opened the door to understand better the forma-
tion and dynamics of complex vortex solitons, especially in multi-level atomic
media, in which more parameters can be easily controlled. Understanding the
formation and control of complex solitons can lead to potential applications
in soliton communications and computations.

In this chapter, we have experimentally demonstrated controllable gap
solitons, dipole-mode solitons, and modulated vortex solitons of FWM beams.
The modulated vortex solitons are created by the interference patterns via the
superposing three or more waves and the cross-Kerr nonlinear dispersion due
to atomic coherence. Comparing with the gap, dipole-mode, and modulated
vortex solitons created in the photorefractive crystals, spatial solitons formed
in the atomic medium are with flexible and easy to control parameters, such
as atomic density, intensities of the dressing fields, and nonlinear dispersion.
These studies will help us to understand fundamental mechanisms in soliton
formation and dynamics. It exploits new ways in controlling the diffraction
of optical beams and designing new devices of spatial optical switching, and
logic gating for optical communication and all-optical signal processing.
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