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Preface to the Second Edition

We have received many comments and suggestions on our first edition from stu-
dents, instructors, and many friends. We also received requests for an instructor
manual and solutions to the chapter-end problems along with inclusion of examples
and exercises directly related to the text material in each chapter. In this new
edition, we (1) add a new chapter on Correlation diagram: an intuitive approach to
interactions in quantum Hall systems—one of new developments in the strongly
interacting two-dimensional electrons. We give (2) solutions to the chapter-end
problems in each chapter in Appendix C to fulfill the needs of both students and
instructors. The solutions in the appendix are incomplete leaving enough for the
students to complete, but are prepared to serve as helpful hints and guides. Some
of the existing problems are refined and updated to reflect contemporary research
activities, such as the electronic properties of massless Fermions in graphene. The
instructor manual is prepared containing complete solutions and hints for the
chapter-end problems, and is available for the instructors by sending an email
message to the authors along with plausible evidence showing that the corre-
spondent is a busy instructor. Instructors using the book may find a time-saving to
see our versions of the solutions to the chapter-end problems. The material treated
in Part II is more advanced topics and is not necessary to follow the text order. After
covering Chap. 9 (Magnetism in Solids) in Part I, one can continue to Chap. 10
(Magnetic Ordering and Spin Waves), Chap. 13 (Semiclassical Theory of
Electrons) and Chap. 14 (Electrodynamics of Metals). The material on many-body
interaction treated in Chaps. 11 and 12 can be covered later after Chap. 14 but
before Chap. 15 (Superconductivity). In our revision, more figures are put in color,
and all the errors known to us at this time are corrected along with clarification of
descriptions all throughout the book. Further corrections and suggestions will be
gratefully received if they could be addressed to ksyi @pusan.ac.kr.

Knoxville, USA John J. Quinn
Pusan, Korea (Republic of) Kyung-Soo Yi
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Preface to the First Edition

This textbook had its origin in several courses taught for two decades (1965-1985) at
Brown University by one of the authors (JJQ). The original assigned text for the
first-semester course was the classic “Introduction to Solid State Physics” by C.
Kittel. Many topics not covered in that text were included in subsequent semesters
because of their research importance during the 60s and 70s. A number of the topics
covered were first introduced in a course on “Many Body Theory of Metals” given
by JJQ as a Visiting Lecturer at the University of Pennsylvania in 1961-1962, and
later included in a course at Purdue University when he was a Visiting Professor
(1964-1965). A sojourn into academic administration in 1984 removed JJQ from
teaching for 8 years. On returning to a full-time teaching—research professorship at
the University of Tennessee, he again offered a 1-year graduate course in Solid State
Physics. The course was structured so that the first semester (roughly first half of the
text) introduced all the essential concepts for students who wanted exposure to solid
state physics. The first semester could cover topics from the first 10 chapters. The
second semester covered a selection of more advanced topics for students intending
to do thesis research in this field. One of the co-authors (KSY) took this course in
Solid State Physics as a PhD student at Brown University. He added to and improved
the lectures while teaching the subject at Pusan National University from 1984. The
text is a true collaborative effort of the co-authors.

The advanced topics covered in the second semester are covered briefly, but
thoroughly enough to convey the basic physics of each topic. References point the
students who want more detail in the right direction. An entirely different set of
advanced topics could have been chosen in place of those in the text. The choice
was made primarily because of the research interests of the authors.

In addition to Kittel’s classic Introduction to Solid State Physics, Tth edition,
Wiley, New York (1995), other books that influenced the evolution of the present
book are Methods of Quantum Field Theory in Statistical Physics by A.A.
Abrikosov, L.P. Gorkov, and L.E. Dzyaloshinsky, Prentice Hall Inc., Englewood,
New Jersey (1963); Solid State Physics by N.W. Ashcroft and N.D. Mermin,
Saunder’s College Publishing, New York (1975); Introduction to Solid State Theory
by O. Madelung, Springer—Verlag, Berlin—-Heidelberg—-New York (1978); and
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X Preface to the First Edition

Fundamentals of Semiconductors by P.Y. Yu and M. Cardona, Springer—Verlag,
Berlin—Heidelberg—New York (1995).

Many graduate students at Brown, Tennessee, and Pusan have helped to improve
these lecture notes by pointing out sections that were difficult to understand, and by
catching errors in the text. Dr. Alex Tselis presented the authors with his carefully
written notes of the course at Brown when he changed his field of study to medical
science. We are grateful to all the students and colleagues who have contributed to
making the lecture notes better.

Both of the co-authors want to acknowledge the encouragement and support
of their families. The book is dedicated to them.

Knoxville and Pusan John J. Quinn
August 2009 Kyung-Soo Yi
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Part I
Basic Concepts in Solid State Physics



Chapter 1
Crystal Structures

1.1 Crystal Structure and Symmetry Groups

Although everyone has an intuitive idea of what a solid is, we will consider (in this
book) only materials with a well defined crystal structure. What we mean by a well
defined crystal structure is an arrangement of atoms in a lattice such that the atomic
arrangement looks absolutely identical when viewed from two different points that
are separated by a lattice translation vector. A few definitions are useful:

Lattice
A lattice is an infinite array of points obtained from three primitive translation vectors

aj, ap, a3. Any point on the lattice is given by

n =nia; + npa; + nsas. (1.1)

Translation Vector

Any pair of lattice points can be connected by a vector of the form
Tn1n2n3 = nia; + nya, + nias. (1.2)

The set of translation vectors form a group called the translation group of the lattice.
Group

A set of elements of any kind with a set of operations, by which any two elements
may be combined into a third, satisfying following requirements is called a group:

e The product (under group multiplication) of two elements of the group belongs to
the group.

e The associative law holds for group multiplication.

e The identity element belongs to the group.

e Every element in the group has an inverse which belongs to the group.
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Fig. 1.1 Translation operations in a two-dimensional lattice

Translation Group

1

Crystal Structures

The set of translations through any translation vector T, ,,,, forms a group. Group
multiplication consists in simply performing the translation operations consecutively.
For example, asis showninFig. 1.1, wehave T3 = T3 T . For the simple translation
group the operations commute, i.e., T;;Ty; = Ty T;; for every pair of translation
vectors. This property makes the group an Abelian group.

Point Group

There are other symmetry operations which leave the lattice unchanged. These are
rotations, reflections, and the inversion operations. These operations form the point
group of the lattice.As an example, consider the two-dimensional square lattice
(Fig. 1.2). The following operations (performed about any lattice point) leave the
lattice unchanged.

E: identity

R, Rj3: rotations by +90°

R»: rotation by 180°

my, my: reflections about x-axis and y-axis, respectively
m,, m_: reflections about the lines x = +y

y

A
° ° ¢ ° ° °
° ° ® ° ° °

‘\ ROTATION
—— o4 X

° ° ® ° ° °
° ° ° ° ° °

Fig. 1.2 The two-dimensional square lattice
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Table 1.1 Multiplication table for the group 4 mm. The first (right) operations, such as m in
Rymy = my, are listed in the first column, and the second (left) operations, such as Ry in Rym =

my, are listed in the first row

Operation E Ry |[Ry |R3 |mx [my my m_
E'=E E |R; |R [R3 |mx [my |my m_
R;'=R; |R3 |[E |R; |Ry my |m_ |my |my
R,'=R, Ry Ry |[E |Ry 'my my m_ |my
R;y'=R;, Ry Ry |[R3 [E 'm_ my myg my
my = m, my |my my m- |E Ry |[R; |R3
my_1 =my my |m- |mgx m4 Ry |E R3 |R;
m;l =my |my |my m- |mxy |[R3 |[R; |E Ry
m-'=m_. |m_ |m my |my Ry |[R3 Ry |E

The multiplication table for this point group is given in Table 1.1. The operations
in the first column are the first (right) operations, such as m; in Rym, = my, and
the operations listed in the first row are the second (left) operations, such as R; in

Rim; = m,.

The multiplication table can be obtained as follows:

e label the corners of the square (Fig. 1.3).

e operating with a symmetry operation simply reorders the labeling. For example,
see Fig. 1.4 for symmetry operations of m, Ry, and my.

3

4

Fig. 1.3 Identity operation on a two-dimensional square

m,

.
.
1

4 1
3 2
1 2
4 3
1 p)
4 3

Fig. 1.4 Point symmetry operations on a two-dimensional square
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Table 1.2 Point group operations on a point (x, y)

Operation E |R; |Ry |R3 |my |my |my |m-
X x |y |=x|=yl|x |—=x|y |-y
y y —X | =y |X Y|y X —X
° °
° °

Fig. 1.5 The two-dimensional rectangular lattice

Therefore, Rym, = my. One can do exactly the same for all other products, for
example, such as myR; = my. Itis also very useful to note what happens to a point
(x, y) under the operations of the point group (see Table 1.2). Note that under every
group operation x — *+x or &y and y — £y or %x.

Exercise

Demonstrate the multiplication table of the point group of the square lattice given in
Table 1.1.

The point group of the two-dimensional square lattice is called 4 mm. The nota-
tion denotes the fact that it contains a four fold axis of rotation and two mirror
planes (my and my); the m and m_ planes are required by the existence of the other
operations. Another simple example is the symmetry group of a two-dimensional
rectangular lattice (Fig.1.5). The symmetry operations are E, R, my, my, and the
multiplication table is easily obtained from that of 4 mm. This point group is called
2mm, and it is a subgroup of 4 mm.

Exercise

Demonstrate the group operations on a point (x, y) under the operations of 4 mm
given in Table 1.2. Repeat the same under the group operation of 2 mm.

Allowed Rotations

Because of the requirement of translational invariance under operations of the trans-
lation group, the allowed rotations of the point group are restricted to certain angles.
Consider a rotation through an angle ¢ about an axis through some lattice point
(Fig. 1.6). If A and B are lattice points separated by a primitive translation a;, then
A’ (and B’) must be a lattice point obtained by a rotation through angle ¢ about B (or
—¢ about A). Since A’ and B’ are lattice points, the vector B’A’ must be a translation
vector. Therefore

|B'A’| = pay, (1.3)
where p is an integer. But |B'A’| = a; + 2a; sin (¢ — 3) = a; — 2a; cos ¢. Solving
for cos ¢ gives

l—p
cosp = — (1.4)
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|
|
B' |
|
|

A

A4

AT a 18

Fig. 1.6 Allowed rotations of angle ¢ about an axis passing through some lattice points A and B
consistent with translational symmetry

Table 1.3 Allowed rotations of the point group

P cos ¢ ¢ n (= 2m/¢))
—1 1 Oor2m 1
1 2
0 1 +2r 6
1 0 +2 4
1 2
2 -1 + 3
3 -1 +Z 2

Because —1 < cos ¢ < 1, we see that p must have only the integral values —1, 0, 1,
2, 3. This gives for the possible values of ¢ listed in Table 1.3.

Although only rotations of 60, 90, 120, 180, and 360° are consistent with trans-
lational symmetry, rotations through other angles are obtained in guasicrystals (e.g.,
five fold rotations). The subject of quasicrystals, which do not have translational
symmetry under the operations of the translation group, is an interesting modern
topic in solid state physics which we will not discuss in this book.

Primitive Unit Cell

From the three primitive translation vectors a;, a,, a3, one can form a parallelepiped
that can be used as a primitive unit cell. By stacking primitive unit cells together
(like building blocks) one can fill all of space.

Wigner—Seitz Unit Cell

From the lattice point (0, 0, 0) draw translation vectors to neighboring lattice points
(to nearest, next nearest, etc. neighbors). Then, draw the planes which are perpen-
dicular bisectors of these translation vectors (see, for example, Fig. 1.7). The interior
of these intersecting planes (i.e., the space closer to (0, 0, 0) than to any other lattice
point) is called the Wigner—Seitz unit cell.

Space Group

For a simple lattice, the space group is simply the product of the operations of the
translation group and of the point group. For a lattice with a basis, there can be other
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O WIGNER-SEITZ
| UNIT CELL
A o)
1 I ,e
] v d
] ”
a . NN g
A0
@1 PRIMITIVE
cosp= i &  PARALLELOGRAM
20,

Fig. 1.7 Construction of the Wigner—Seitz cell of a two-dimensional centered rectangular lattice.

Note that cos ¢ = aj/2a;

symmetry operations. Examples are glide planes and screw axes; illustration of each

is shown in Figs. 1.8 and 1.9, respectively.

Glide Plane

In Fig. 1.8, each unit cell contains six atoms and T;,my is a symmetry operation
even though neither T} > nor my are operation of the symmetry group by themselves.

Screw Axis

InFig. 1.9, T 3R 20- is a symmetry operation even though T3 and R9. themselves

are not.

O O O O
Q= = - —F O e) UNIT CELL

O e | T ‘ contains
(;5 ‘ o 6atoms

|

é B © O O

o @)
O O O O

O

O O O O

Fig. 1.8 Glide plane of a two-dimensional lattice. Each unit cell contains six atoms
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Fig. 1.9 Screw axis. Unit cell contains three layers and 7; is the smallest translation. Occupied
sites are shown by solid dots

Two-Dimensional Lattices

There are only five different types of two-dimensional lattices.

1.

2.

Square lattice: primitive (P) one only

It has a; = a; and ¢ = 90°.

Rectangular: primitive (P) and centered (C) ones
They have a; # a, but ¢ = 90°.

Hexagonal: primitive (P) one only

It has a; = a, and ¢ = 120° (or ¢ = 60°)).
Oblique: primitive (P) one only

It has a; # a; and ¢ # 90°.

Three-Dimensional Lattices

There are 14 different types of three-dimensional lattices.

1.

2.

Cubic: primitive (P), body centered I), and face centered (F) ones

For all of these a; = a; = az and a = 8 = v = 90°.

Tetragonal: primitive (P) and body centered (I) ones

For these a; = a; # az(= ¢) and a = § = v = 90°. One can think of them
as cubic lattices that have been stretched (or compressed) along one of the cube
axes.

Orthorhombic: primitive (P), body centered (I), face centered (F), and base cen-
tered (C) ones

For all of these a; # a; # a3 but a« = 3 = v = 90°. These can be thought of
as cubic lattices that have been stretched (or compressed) by different amounts
along two of the cube axes.
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Monoclinic: primitive (P) and base centered (C) ones
For these a; # a, # a3z and a = 3 = 90° # ~. These can be thought of as
orthorhombic lattices which have suffered shear distortion in one direction.

. Triclinic: primitive (P) one

This has the lowest symmetry with a; # a; # a3z and o # 5 # 7.

Trigonal:

Ithasa; = a, = azand a = [ = v # 90° < 120°. The primitive cell is a
rhombohedron. The trigonal lattice can be thought of as a cubic lattice which has
suffered shear distortion.

Hexagonal: primitive (P) one only

Ithas a; = a; # az(=c) and o = B = 90°, but v = 120°.

Bravais Crystal

If there is only one atom associated with each lattice point, the lattice is called Bravais
crystal. If there is more than one atom associated with each lattice point, the lattice
is called a lattice with a basis. One atom can be considered to be located at the lattice
point. For a lattice with a basis it is necessary to give the locations (or basis vectors)
for the additional atoms associated with the lattice point.

1.2 Common Crystal Structures

. Cubic

a. Simple cubic (sc): Fig. 1.10
For simple cubic crystal the lattice constant is a and the volume per atom is
a>. The nearest neighbor distance is also a, and each atom has six nearest
neighbors. The primitive translation vectors are a; = aX, a, = ay, a3 = az.

b. Body centered cubic (bcc): Fig. 1.11

<« a—>»

Fig. 1.10 Crystallographic unit cell of a simple cubic crystal of lattice constant a
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Fig. 1.11 Crystallographic unit cell of a body centered cubic crystal of lattice constant a

If we take a unit cell as a cube of edge a, there are two atoms per cell (one

at (0, 0, 0) and one at (% % %)) The atomic volume is %a3, and the nearest

neighbor distance is ga. Each atom has eight nearest neighbors. The primi-
tive translations can be takenasa; = la (8 + § +2), a0 = Ja (-2 + § + 2),
and a3 = 1a (=% — § 4 2). The parallelepiped formed by a;, a,, a3 is the
primitive unit cell (containing a single atom), and there is only one atom per
primitive unit cell.

c. Face centered cubic (fcc): Fig. 1.12
If we take a unit cell as a cube of edge a, there are four atoms per cell; %
of one at each of the eight corners and % of one on each of the six faces.

u3

The volume per atom is T the nearest neighbor distance is

a

el and each

Fig. 1.12 Crystallographic unit cell of a face centered cubic crystal of lattice constant a
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Fig. 1.13 Crystallographic unit cell of a simple hexagonal crystal of lattice constants aj, a2, and ¢

atom has 12 nearest neighbors. The primitive unit cell is the parallelepiped
B .o, . 1 A A 1 A A
formed from the primitive translations a; = Ja (X +3), a = Ja (3 +2),
anda; = 1a (2 + ).
All three cubic lattices have the cubic group as their point group. Because the
primitive translations are different, the simple cubic, bcc, and fcc lattices have
different translation groups.

2. Hexagonal

a. Simple hexagonal: See Fig. 1.13.

b. Hexagonal close packed (hcp):
This is a non-Bravais lattice. It contains two atoms per primitive unit cell
of the simple hexagonal lattice, one at (0, 0, 0) and the second at (%, %, %)
The hexagonal close packed crystal can be formed by stacking the first
layer (A) in a hexagonal array as is shown in Fig. 1.14. Then, the second
layer (B) is formed by stacking atoms in the alternate triangular holes on

o ---- o /an layer (B)
AN _ /N
/ v, / \

\

Yo v v 1st layer (A)
// /\’\\az//\»\\/ y

.\___/_/_"‘\ 7 /’ \
N o« N // )
N v ,
AN EN

N/ \
] N N

Fig. 1.14 Stacking of layers A and B in a hexagonal close packed crystal of lattice constants aj,
az, and ¢
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top of the first layer. This gives another hexagonal layer displaced from
the first layer by (3, 5 3 —) Then the third layer is placed above the first
layer (i.e., at (0, 0, 1)). The stacking is then repeated ABABAB .. .. If one
stacks ABCABC.. ., where C is the hexagonal array obtained by stacking
the third layer in the other set of triangular holes above the set B (instead of
the set A), one gets an fcc lattice. The closest possible packing of the hcp
atoms occurs when £ = /8/3 &~ 1.633. We leave this as an exercise for

the reader. Zn crystallizes in a hep lattice with a = 2.66 A and ¢ = 4.96 A
giving © ~ 1.85, larger than the ideal 7 value.

3. Zincblende Structure This is a non-Bravais lattice. Itis an FCC with two atoms per
primitive unit cell located at (0, 0, 0) and ( 7 4, —). The structure can be viewed
as two interpenetrating fcc lattices displaced by one fourth of the body diagonal.
Examples of the zincblende structure are ZnS (cubic phase), ZnO (cubic phase),
CuF, CuCl, ZnSe, CdS, GaN (cubic phase), InAs, and InSb. The metallic ions are
on one sublattice, the other ions on the second sublattice.

4. Diamond Structure This structure is identical to the zincblende structure, except
that there are two identical atoms in the unit cell. This structure (unlike zincblende)
has inversion symmetry about the point (% é %) Diamond, Si, Ge, and gray tin
are examples of the diamond structure.

5. Wurtzite Structure This structure is a simple hexagonal lattice with four atoms per
unit cell, located at (0, 0, 0), (3, 3, 1), (0,0, 3), and (3, 3, {). It can be pictured
as consisting of two interpenetrating hcp lattices separated by (0, 0, %) In the
wurtzite phase of ZnS, the Zn atoms sit on one hcp lattice and the S atoms on the
other. ZnS, BeO, ZnO (hexagonal phase), CdS, GaN (hexagonal phase), and AIN
are materials that can occur in the wurtzite structure.

6. Sodium Chloride Structure It consists of a face centered cubic lattice with a basis
of two unlike atoms per primitive unit cell, located at (0, 0, 0) and ( 2 2, —). In
addition to NaCl, other alkali halide salts like LiH, KBr, RbI form crystals with
this structure.

7. Cesium Chloride Structure It consists of a simple cubic lattice with two atoms per
unit cell, located at (0, 0,0) and (3, 1, 1). Besides CsCl, CuZn (3-brass), AgMg,
and LiHg occur with this structure.

8. Calcium Fluoride Structure It consists of a face centered cubic lattice with three
atoms per primitive unit cell. The Ca ion is located at (0, 0, 0), the F atoms at

11 333
(3+ 20 7) and (3. 3. 3)-

9. Graphite Structure This structure consists of a simple hexagonal lattice with
four atoms per primitive unit cell, located at (0, 0, 0), (1, %,0), (0,0, 1), and
(3,1.1). Two neighboring layers along the a3(= c)-axis are rotated by Z. It
can be pictured as two interpenetrating HCP lattices separated by (0, 0, %) It
therefore consists of tightly bonded planes (as is shown in Fig. 1.15) stacked in
the sequence ABABAB .. .. The individual planes are very tightly bound, but the
interplanar binding is rather weak. This gives graphite its well known properties,
like easily cleaving perpendicular to the ¢ axis.
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- = = _\o/
A LAYER B LAYER

Fig. 1.15 Stacking of layers A and B in a graphite structure

Miller Indices

Miller indices are a set of three integers that specify the orientation of a crystal plane.
The procedure for obtaining Miller indices of a plane is as follows:

1. Find the intercepts of the plane with the crystal axes.

2. Take the reciprocals of the three numbers.

3. Reduce (by multiplying by the same number) this set of numbers to the smallest
possible set of integers.

As an example, consider the plane that intersects the cubic axes at A, A;, A3

as shown in Fig.1.16. Then x;a; = OA;. The reciprocals of (xi,x;,x3) are

(xfl, x5! x;l),andtheMillerindices of the plane are (hhyh3) = p (xfl, x5! x;l),

xl’xz’ng :

where (h1h,h3) are the smallest possible set of integers (ﬂ £ L

Fig. 1.16 Intercepts of a plane with the crystal axes

Indices of a Direction

A direction in the lattice can be specified by a vector V = u a; + ura; + usaz, or
by the set of integers [u;u,u3] chosen to have no common integral factor. For cubic
lattices the plane (h;hyh3) is perpendicular to the direction [/1h,h3], but this is not
true for general lattices.
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Packing Fraction

The packing fraction of a crystal structure is defined as the ratio of the volume of
atomic spheres in the unit cell to the volume of the unit cell. For a two-dimensional
crystal, the packing fraction is defined as the area of atoms divided by the area of the
unit cell.

Examples

1. Simple cubic lattice:
We take the atomic radius as R = 5 (then neighboring atoms just touch). The

packing fraction p will be given by

2. Body centered cubic lattice:

Here we take R = % %a , 1.e., half the nearest neighbor distance. For the

non-primitive cubic cell of edge a, we have two atoms per cell giving

2 X %ﬂ' (“Z/g

3
) -
= = —v/3~0.68
P a3 8f

1.3 Reciprocal Lattice

If a;, a,, a3 are the primitive translations of some lattice, we can define the vectors
b1, by, b; by the condition
a,»-bj=27r5ij, (15)

where 0;; = 0 if i is not equal to j and §;; = 1. It is easy to see that

a; X a;

b, =27 (1.6)

a - (a; xa)

where i, j, and k are different. The denominator a; - (a jox ak) is simply the vol-
ume vy of the primitive unit cell. The lattice formed by the primitive translation
vectors by, by, b is called the reciprocal lattice (reciprocal to the lattice formed by
aj, a,, a3), and a reciprocal lattice vector is given by

G iy = hiby + hoba + hibs. (L.7)
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Useful Properties of the Reciprocal Lattice

1. If r = n1a; + npa, + n3a;z is a lattice vector, then we can write r as

1
rzgzi:(r-b,-)ai. (1.8)

2. The lattice reciprocal to by, b, bs is aj, a, a;3.

3. A vector Gy, from the origin to a point (hy, hy, h3) of the reciprocal lattice is
perpendicular to the plane with Miller indices (h;hyh3).

4. The distance from the origin to the first lattice plane (hhyh3) is d (hi1hyhs) =
27 |Gp| . This is also the distance between neighboring {/h,h3} planes.

The proof of 3 is established by demonstrating that Gy, is perpendicular to the plane
A1 A, Az shown in Fig. 1.16. This must be true if Gy, is perpendicular to both A| A,

and to A, As. But A;A, = OA, — OA, = p (;—z — ;—'l). Therefore

- a a
Gn-AA; = (b, +h2b2+h3b3)'l7(h—2 - h—l) (1.9)
2 1

which vanishes. The same can be done for A, As. The proof of 4 is established by

noting that

a Gh
d(hihohz) = — - ——.
(h1hah3) PMTEN

The first factor is just the vector O A for the situation where p = 1, and the second
factor is a unit vector perpendicular to the plane (hh2h3). Since a; - Gy, = 27hy, it
is apparent that d(h hoh3) = 27 |Gp| ™.

1.4 Diffraction of X-rays

Crystal structures are usually determined experimentally by studying how the crystal
diffracts waves. Because the interatomic spacings in most crystals are of the order of
afew A’s (1A = 0.1 nm), the maximum information can most readily be obtained
by using waves whose wave lengths are of that order of magnitude. Electromag-
netic, electron, or neutron waves can be used to study diffraction by a crystal. For
electromagnetic waves, E = hv, where E is the energy of the photon, v = { is
its frequency and ) its wave length, and / is Planck’s constant. For A = 1078 cm,
c=3x10""cm/sand h = 6.6 x 10~ erg - 5, the photon energy is equal to roughly
2 x 1078ergs or 1.24 x 10*eV. Photons of energies of tens of kV are in the X-ray
range. For electron waves, p = % ~ 6.6 x 107 g - cm/s when A = 10~% cm. This

gives £ = %, where m, >~ 0.9 x 1072 g, of 2.4 x 10~'% ergs or roughly 150eV.
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For neutron waves, we need simply replace m, by m, = 1.67 x 107>* g to obtain
E = 1.3 x 1073 ergs ~ 0.08 eV. Thus neutron energies are of the order of a tenth
of an eV. Neutron scattering has the advantages that the low energy makes inelas-
tic scattering studies more accurate and that the magnetic moment of the neutron
allows the researcher to obtain information about the magnetic structure. It has the
disadvantage that high intensity neutron sources are not as easily obtained as X-ray
sources.

1.4.1 Bragg Reflection

We have already seen that we can discuss crystal planes in a lattice structure. Assume
that an incident X-ray is specularly reflected by a set of crystal planes as shown in
Fig. 1.17. Constructive interference occurs when the difference in path length is an
integral number of wave length . It is clear that this occurs when

2d sinf = nA, (1.10)

where d is the interplanar spacing, 6 is the angle between the incident beam and the
crystal planes, as is shown on the figure, and n is an integer. Equation (1.10) is known
as Bragg’s law.

1.4.2 Laue Equations

A slightly more elegant discussion of diffraction from a crystal can be obtained as
follows:

1. Let 5y be a unit vector in the direction of the incident wave, and s be a unit vector
in the direction of the scattered wave.

2. Let R; and R; be the position vectors of a pair of atoms in a Bravais lattice, and
letr; = R; — Rs.

INCIDENT REFLECTED
WAVE WAVE
é et
€) € - Q ¢) O @)
[N
d 0
I
(G) (G) O (6) O O O (@]

Fig. 1.17 Specular reflection of X-rays by a set of crystal planes separated by a distance d
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Fig. 1.18 Scattering of X-rays by a pair of atoms in a crystal

Let us consider the waves scattered by R; and by R, and traveling different path
lengths as shown in Fig.1.18. The difference in path length is | R,A — BR; |.
But this is clearly equal to |rj; - § —rys - §0|. We define S as S = § — §p; then the
difference in path length for the two rays is given by

A=]r;-S|. (1.11)

For constructive interference, this must be equal to an integral number of wave length.
Thus we obtain
I‘]z-szm/\, (112)

where m is an integer and X is the wave length. To obtain constructive interference
from every atom in the Bravais lattice, this must be true for every lattice vector R,,.
Constructive interference will occur only if

R, - S = integer x A (1.13)

for every lattice vector R, in the crystal. Of course there will be different integers
for different R,, in general. Recall that

R, = nia; + nya, + n3az. (1.14)
The condition (1.13) is obviously satisfied if
a;-S=phi\, (1.15)
where £; is the smallest set of integers and p is acommon multiplier. We can obviously
express S as

2rS=(S-a;)b; + (S-ay) by + (S-a3z) bs. (1.16)

Therefore condition (1.13)is satisfied and constructive interference from every lattice
site occurs if

A
S = p (hib; +h2b2+h3b3)§, (1.17)
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or 2 S
% = pGn, (1.18)

where Gy, is a vector of the reciprocal lattice. Equation (1.18) is called the Laue
equation.

Connection of Laue Equations and Bragg’s Law

From (1.18) S must be perpendicular to the planes with Miller indices (#1h,h3). The
distance between two planes of this set is

2 A
d(hhahs) = == = p 2. (1.19)
|Gn| S|

We know that S is normal to the reflection plane PP’ with Miller indices (h;hoh3).
From Fig. 1.19, it is apparent that |S| = 2 sin §. Therefore (1.19) can be written by

2d(h1hyhs)sinf = p,

where p is an integer. According to Laue’s equation, associated with any reciprocal

lattice vector Gy, = hib; + hyby + hsbs, there is an X-ray reflection satisfying the

. S . .
equation == = pGy, where p is an integer.

Fig. 1.19 Relation between the scattering vector S = § — §p and the Bragg angle 0

1.4.3 Ewald Construction

This is a geometric construction that illustrates how the Laue equation works. The
construction goes as follows: see Fig. 1.20.

1. From the origin O of the reciprocal lattice draw the vector AO of length 27” parallel
to §p and terminating on O.

2. Construct a sphere of radius 2%

T centered at A.

)
If this sphere intersects a point B of the reciprocal lattice, then AB = 27”§ isina
direction in which a diffraction maximum occurs. Since A; O = 2—”§0 and A|B; =
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Fig. 1.20 Ewald construction for diffraction peaks

i—’:& %\—TS = %\—T(§ — 50) = OB, is a reciprocal lattice vector and satisfies the Laue
equation. If a higher frequency X-ray is used, A,, A, and B, replace A\, A, and By.
For a continuous spectrum with A; > A > ), all reciprocal lattice points between
the two sphere (of radii )\]_1 and \; ') satisfy Laue equation for some frequency in

the incident beam.
Wave Vector

It is often convenient to use the set of vectors K, = Gy,. Then, the Ewald construction
gives

q + Ky =gq, (1.20)
where qp = 27”50 and q = 27”5 are the wave vectors of the incident and scattered
waves. Equation (1.20) says that wave vector is conserved up to a vector of the
reciprocal lattice.

1.4.4 Atomic Scattering Factor

It is the electrons of an atom that scatter the X-rays since the nucleus is so heavy that
it hardly moves in response to the rapidly varying electric field of the X-ray. So far,
we have treated all of the electrons as if they were localized at the lattice point. In
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Fig. 1.21 Path difference between waves scattered at O and those at r

fact, the electrons are distributed about the nucleus of the atom (at position r = 0, the
lattice point) with a density p(r). If you know the wave function ¥ (ry, r, ..., I;)
describing the z electrons of the atom, p(r) is given by

o= (20— )= (v om) [ ae )
i=1 i=1

Now consider the difference in path length A between waves scattered at O and those
scattered at r (Fig. 1.21).

w(ry,..., rz)>. (1.21)

A=r-(§—5)=r-S. (1.22)
The phase difference is 51mply times A, the difference in path length. Therefore,

the scattering amplitude will be reduced from the value obtained by assuming all the
electrons were localized at the origin O by a factor z~! f, where f is given by

f= /d3r p(r)e s, (1.23)

This factor is called the atomic scattering factor (or atomic form factor). If p(r) is
spherically symmetric we have

00 1 )
f= / / 2rldr d(cos ¢)p(r)e > €59, (1.24)
0 -1

Recall that S = 2sin 6, Where 0 is the angle between §y and the reflecting plane PP’
of Fig. 1.19. Define y as 4T 1 sin 0; then f can be expressed as

sin pwr

f= / drénr? p(r)—— (1.25)
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If X\ is much larger than the atomic radius, pr is much smaller than unity wherever

p(r) is finite. In that case “Z% ~ 1 and f — z, the number of electrons.

1.4.5 Geometric Structure Amplitude

So far we have considered only a Bravais lattice. For anon-Bravais lattice the scattered
amplitude depends on the locations and atomic scattering factors of all the atoms in
the unit cell. Suppose a crystal structure contains atoms at positions r; with atomic
scattering factors f;. Itis not difficult to see that this changes the scattered amplitude
by a factor
Fhi, hy hy) =Y fre™ mStlah) (1.26)
J

for the scattering from a plane with Miller indices (h;h,k3). In (1.26) the position
vector r; of the jth atom can be expressed in terms of the primitive translation
vectors a;

r= > . (1.27)

For example, in a hcp lattice r; = (0,0,0) and r, = (%, %, %) when expressed in

terms of the primitive translation vectors. Of course, 2S(hhah3) equalto A D, hib,- .
where b; are primitive translation vectors in the reciprocal lattice. Therefore, 2 r iR
S(h1hyh3) is equal to 27i (ujlhl + pjoho + uj3h3), and the structure amplitude

F(hy, hy, h3) can be expressed as

F(hy, ho, ha) =) fe™ it (1.28)
J

If all of the atoms in the unit cell are identical (as in diamond, Si, Ge, etc.) all of the
atomic scattering factors f; are equal, and we can write

F(hi, ha, h3) = fS(hihahs). (1.29)

The S (hhyh3) is called the geometric structure amplitude. It depends only on crystal
structure, not on the atomic constituents, so it is the same for all hcp lattices or for
all diamond lattices, etc.

Example

A useful demonstration of the geometric structure factor can be obtained by consid-
ering a bec lattice as a simple cubic lattice with two atoms in the simple cubic unit
cell located at (0, 0, 0) and (% % %) Then

Spee(h1hahs) = 1 + e (Ghitahotshs) (1.30)
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If hy + hy + ks is odd, ei™Mith+hs) — 1 and Speo (b1 hohs) vanishes. If iy +hy + b3
is even, Spec(h1hoh3) = 2. The reason for this effect is that the additional planes
(associated with the body centered atoms) exactly cancel the scattering amplitude
from the planes made up of corner atoms when k) + h, + hj3 is odd, but they add
constructively when iy + h; + h3 is even.

The scattering amplitude depends on other factors (e.g. thermal motion and zero
point vibrations of the atoms) which we have neglected by assuming a perfect and
stationary lattice.

Exercise

Demonstrate the geometric structure factor of the fcc lattice considering an fcc lattice
as a simple cubic lattice with a basis of four identical atoms located at (0, 0, 0),

0.3 (5,0, 3). and (3. 3. 0).

1.4.6 Experimental Techniques

We know that constructive interference from a set of lattice planes separated by a
distance d will occur when
2dsinf = nA, (1.31)

where 6 is the angle between the incident beam and the planes that are scattering, \ is
the X-ray wave length, and n is an integer. For a given crystal the possible values of d
are fixed by the atomic spacing, and to satisfy (1.31), one must vary either 6 or A over
a range of values. Different experimental methods satisfy (1.31) in different ways.
The common techniques are (i) the Laue method, (ii) the rotating crystal method,
and (iii) the powder method.

Laue Method

In this method a single crystal is held stationary in a beam of continuous wave length
X-ray radiation (Fig. 1.22). Various crystal planes select the appropriate wave length
for constructive interference, and a geometric arrangement of bright spots is obtained
on a film.

4' SPOT
— ) —— —_— PATTERN
X - RAY s:
BEAM SAMPLE
COLLIMATOR

FILM

Fig. 1.22 Experimental arrangement of the Laue method
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w/

> —— | FILM
MONOCHROMATIC —
X-RAY BEAM \
ROTATABLE
SAMPLE

Fig. 1.23 Experimental arrangement of the rotating crystal method

Rotating Crystal Method

In this method a monochromatic beam of X-ray is incident on a rotating single
crystal sample. Diffraction maxima occur when the sample orientation relative to the
incident beam satisfies Bragg’s law (Fig. 1.23).

Powder Method

Here a monochromatic beam is incident on a finely powdered specimen. The small
crystallites are randomly oriented with respect to the incident beam, so that the
reciprocal lattice structure used in the Ewald construction must be rotated about the
origin of reciprocal space through all possible angles. This gives a series of spheres
in reciprocal space of radii Ky, K>, ... (we include the factor 27 in these reciprocal
lattice vectors) equal to the smallest, next smallest, etc. reciprocal lattice vectors.
The sequence of values :I‘EEZ:I ﬁ; give the ratios of [Ig—’l for the crystal structure. This
sequence is determined by the crystal structure. Knowledge of the X-ray wave length
A= 27” allows determination of the lattice spacing (Fig. 1.24).

DIFFRACTION

4%
RINGS

X-RAY BEAM

POWDER
SAMPLE

/I

FILM

Fig. 1.24 Experimental arrangement of the powder method
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1.5 Classification of Solids

1.5.1 Crystal Binding

Before considering even in a qualitative way how atoms bind together to form crystals,
it is worthwhile to review briefly the periodic table and the ground state configura-
tions of atoms. The single particle states of electrons moving in an effective central
potential (which includes the attraction of the nucleus and some average repulsion
associated with all other electrons) can be characterized by four quantum numbers: 7,
the principal quantum number takes on the values 1, 2, 3, .. .; [, the angular momen-
tum quantum number takes on values O, 1, ...,n — 1; m, the azimuthal quantum
number (projection of / onto a given direction) is an integer satisfying — < m < [;
and o, the spin quantum number takes on the values :I:%.

The energy of the single particle orbital is very insensitive to m and o (in the
absence of an applied magnetic field), but it depends strongly on n and . Of
course, due to the Pauli principle only one electron can occupy an orbital with given
n,l,m, and o. The periodic table is constructed by making an array of slots, with /
value increasing from / = 0 as one moves to the left, and the value of n + / increas-
ing as one moves down (Table 1.4). Of course, the correct number of slots must be
allowed to account for the spin and azimuthal degeneracy 2(2/ + 1) of a given [ value.
One then begins filling the slots from the top left, moving to the right, and then down
when all slots of a given (n + /) value have been used up.

See Table 1.4, which lists the atoms (H, He, ...) and their atomic numbers
in the appropriate slots. As the reader can readily observe, H has one electron,
and it will occupy the n = 1,/ = O0(ls) state. Boron has five electrons and
they will fill the (1s) and 2s states with the fifth electron in the 2p state. Every-
thing is very regular until Cr and Cu. These two elements have ground states in
which one 4s electron falls into the 3d shell, giving for Cr the atomic configu-
ration (15)%(25)2(2p)°(3s5)2(3p)°(4s)' (3d)°, and for Cu the atomic configuration
(15)%2(25)2(2p)°(35)>(3p)®(4s)' (3d)'°. Other exceptions occur in the second tran-
sition series (the filling of the 4d levels) and in the third transition series (filling the
5d levels), and in the rare earth series (filling the 4 f and 5 f levels). Knowing this
table allows one to write down the ground state electronic configuration of any atom.
Note that the inert gases He, Ne, Kr, Rn, complete the shellsn = 1,n = 2,n = 3,
and n = 4, respectively. Ar and Xe are inert also; they complete the n = 3 shell
(except for 3d electrons), and n = 4 shell (except for 4 f electrons), respectively.
Na, K, Rb, Cs, and Fr have one weakly bound s electron outside these closed shell
configurations; Fl, Cl, Br, I and At are missing one p electron from the closed shell
configurations. The alkali metals easily give up their loosely bound s electrons, and
the halogens readily attract one p electron to give a closed shell configuration. The
resulting Nat — CI™~ ions form an ionic bond which is quite strong. Atoms like C, Si,
Ge, and Sn have an (np)z(n +1s)? configuration. These four valence electrons can
be readily shared with other atoms in covalent bonds, which are also quite strong.
Compounds like GaAs, GaP, GaSb, or InP, InAs, InSb etc. are formed from column
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IIT and column V constituents. With the partial transfer of an electron from As to
Ga, one obtains the covalent bonding structure of Si or Ge as well as some degree
of ionicity as in NaCl. Metallic elements like Na and K are relatively weakly bound.
Their outermost s electrons become almost free in the solid and act as a glue holding
the positively charged ions together. The weakest bonding in solids is associated
with weak Van der Waals coupling between the constituent atoms or molecules. To
give some idea of the binding energy of solids, we will consider the binding of ionic
crystals like NaCl or CsCl.

1.6 Binding Energy of Ionic Crystals

The binding energy of ionic crystals results primarily from the electrostatic interac-
tion between the constituent ions. A rough order of magnitude estimate of the binding
energy per molecule can be obtained by simply evaluating

e (48 x107esu)’ b
(Vy=— = ~8 x 10" “ergs ~ SeV.
Ry 2.8 x 1078 ¢cm

Here Ry is the observed interatomic spacing (which we take as 2.8 A, the spacing in
NaCl). The experimentally measured value of the binding energy of NaCl is almost
8eV per molecule, so our rough estimate is not too bad.

Interatomic Potential

For an ionic crystal, the potential energy of a pair of atoms i, j can be taken to be

&2 A
Gij =+—+

rij

e (1.32)
ij

Here 7;; is the distance between atoms i and j. The & sign depends on whether the
atoms are like (+) or unlike (—). The first term is simply the Coulomb potential for a
pair of point charges separated by r;;. The second term accounts for core repulsion.
The atoms or ions are not point charges, and when a pair of them gets close enough
together their core electrons can repel one another. This core repulsion is expected to
decrease rapidly with increasing r;;. The parameters A and n are phenomenological;
they are determined from experiment.

Total Energy

The total potential energy is given by

1
U= §Z¢ff' (1.33)
i#]
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It is convenient to define ¢;, the potential energy of the ith atom as
I
& =D b (1.34)
J

Here the prime on the sum implies that the term i = j is omitted. It is apparent from
symmetry considerations that ¢; is independent of i for an infinite lattice, so we can
drop the subscript i. The total energy is then

U= % 2N = N¢, (1.35)

where 2N is the number of atoms and N is the number of molecules.

Itis convenient in evaluating ¢ to introduce a dimensionless parameter p;; defined
by pij = R™'r;, where R is the distance between nearest neighbors. In terms of p;;,
the expression for ¢ is given by

/

A ! _n 62 —1
¢ = FZ,.:””' - =2 F) (1.36)

J

Here the primes on the summations denote omission of the term i = j. We define
the quantities

J

and

a=> (Fr)" (1.38)

J

The acand A,, are properties of the crystal structure; o is called the Madelung constant.
The internal energy of the crystal is given by N ¢, where N is the number of molecules.
The internal energy is given by

A 2
U=N|A2t—aZ |, (1.39)
R" R
At the equilibrium separation Ry, (3—%) g, Must vanish. This gives the result
A, e?
A— = a—. (1.40)
RO }’lR()

Therefore, the equilibrium value of the internal energy is
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&2 1
Uy=Npo=—-Na—(1—--). (1.41)
Ry

Compressibility

The best value of the parameter n can be determined from experimental data on the
compressibility . k is defined by the negative of the change in volume per unit
change in pressure at constant temperature divided by the volume.

1 [0V
h=t (a_P)T. (1.42)

The subscript T means holding temperature 7' constant, so that (1.42) is the isother-
mal compressibility. We will show that at zero temperature

2
Kl=vVv (a—U) ) (1.43)
ovV2) 1o

Equation (1.43) comes from the thermodynamic relations
F=U-TS§, (1.44)

and
dU =TdS — PdV. (1.45)

By taking the differential of (1.44) and making use of (1.45), one can see that

dF = —PdV — SdT. (1.46)

OF
P=— (a_V)T' (1.47)

From (1.46) we have

Equation (1.42) can be written

OP O*F
T=—_v(=—) = —) . 1.48
o=y (8V)T Y (avz)T (149

Butat7 =0, F = U so that

2
K=V or (1.49)
ov2),_,

is the inverse of the isothermal compressibility at T = 0. We can write the volume

V as2NR? and use 3 = 280 = -2 in (1.39) and (1.43). This gives
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2

Krly = ——(n — 1), (1.50)
18R}
or
. 18R}
n=1+—30. (1.51)
ae K

From the experimental data on NaCl, the best value for n turns out to be ~9.4.
Evaluation of the Madelung Constant

For simplicity let us start with a linear chain. Each positive (+) atom has two neigh-
bors, which are negative (—) atoms, at pg; = 1. Therefore

/
1 1 1
-1
:E =2l =-4+ ==+ . 1.52
o j:FP,] |: 2+3 4+ i| (1.52)

If you remember that the power series expansion for In(1 + x) is given by — > 7,
(_ni =x— % + %3 — % + - -+ and is convergent for x < 1, it is apparent that

o =2In2. (1.53)

If we attempt the same approach for NaCl, we obtain

6 12 n 8 6

1 V2 J3 2
This is taking six opposite charge nearest neighbors at a separation of one nearest
neighbor distance, 12 same charge next nearest neighbors at /2 times that distance,
etc. It is clear that the series in (1.54) converges very poorly. The convergence can be
greatly improved by using a different counting procedure in which one works with
groups of ions which form a more or less neutral array. The motivation is that the

potential of a neutral assembly of charges falls off much more quickly with distance
than that of a charged assembly.

Evjen Method

We will illustrate Evjen method' by considering a simple square lattice in two dimen-
sions with two atoms per unit cell, one at (0, 0) and one at (% , %) . The crystal structure
is illustrated in Fig. 1.25. The calculation is carried out as follows:

SR (1.54)

1. One considers the charges associated with different shells where the first shell is
everything inside the first square, the second is everything outside the first but
inside the second square, etc.

2. Anionon a face is considered to be half inside and half outside the square defined
by that face; a corner atom is one quarter inside and three quarters outside.

I'H. M. Evjen, Phys. Rev. 39, 675 (1932).
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Fig. 1.25 Evjen’s method for a simple square lattice in two dimensions

3. The total Madelung constant is given by o = oy + o + a3 + - - -, where «; is
the contribution from the ith shell.

As an example, let us evaluate the total charge on the first few shells. The first shell
has four atoms on faces, all with the opposite charge to the atom at the origin and
four corner atoms all with the same charge as the atom at the origin. Therefore the
charge of shell number one is

Q=4 (1) —4 (1) =1 (1.55)
2 4

Doing the same for the second shell gives

IO RIC RICIO R

Here the first two terms come from the remainder of the atoms on the outside of the
first square; the next three terms come from the atoms on the inside of the second
square. To get a; and a; we simply divide the individual charges by their separations
from the origin. This gives

A Al
) = - 7 ~ 1.293, (1.57)
1 3 1 1 1
LAl @ 40 8 A s

T A 2 s Ton

This gives a >~ «a; + ap ~ 1.607. The readers should be able to evaluate as for
themselves.
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Madelung Constant for Three-Dimensional Lattices

33

For a three-dimensional crystal, Evjen method is essentially the same with the excep-

tion that

1. The squares are replaced by cubes.

2. Atoms on the face of a cube are considered to be half inside and half outside the

cube; atoms on the edge are

and % outside.

inside and % outside, and corner atoms are

Linside

We illustrate the case of the NaCl structure as an example in the three dimensions.

(see Fig. 1.26.)
For oy we obtain

For a; we have the following contributions

1. remainder of the contributions from the atoms on the first cube

6 (3 12 (3 8 (3
_ o) _ J<§>+5§>,

2. atoms on the interior of faces of the second cube

_6() s () _ 6 ()
) 75 7

6?----------

(1.59)

Fig. 1.26 Central atom and the first cube of the Evjen method for the NaCl structure
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3. atoms on the interior of edges of the second cube

_ 2@, 2036)
- VB NCEE

4. atoms on the interior of corners of the second cube

__ 3@
s
Adding them together gives

a_(3_i+i)+(_§+1_2_1_2)+(_i+9)_;Nozgs
o NN 25 Ve /83 m—('@

Thus to the approximation o >~ «; + a; we find that @ >~ 1.752. The exact result
for NaCl is o« = 1.747558 . . ., so Evjen method gives a surprisingly accurate result
after only two shells.

Results of rather detailed evaluations of « for several different crystal struc-
tures are a(NaCl) = 1.74756, a(CsCl) = 1.76267, a(zincblende) = 1.63806,
a(wurtzite) = 1.64132. The NaCl structure occurs much more frequently than the
CsCl structure. This may seem a bit surprising since a(CsCl) is about 1% larger than
a(NaCl). However, core repulsion accounts for about 10% of the binding energy
[see (1.41)]. In the CsCl structure each atom has eight nearest neighbors instead of
the six in NaCl. This should increase the core repulsion by something of the order of
25% in CsCl. Thus we expect about 2.5% larger contribution (from core repulsion)
to the binding energy of CsCl. This negative contribution to the binding energy more
than compensates the 1% difference in Madelung constants.

Exercise

Cesium chloride structure consists of a simple cubic lattice with two atoms per unit
cell, each located at (0, 0, 0) and (%, %, %) Evaluate the Madelung constant for CsCl
including only up to (i) the nearest neighbors and the next nearest neighbors, (ii) the
nearest neighbors, the next nearest neighbors, and the next-next nearest neighbors,
and (iii) the nearest neighbors, the next nearest neighbors, the next-next nearest
neighbors, and the next-next-next nearest neighbors in the summation.
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Problems

1.1 Demonstrate that

(a) the reciprocal lattice of a simple cubic lattice is simple cubic.

(b) the reciprocal lattice of a body centered cubic lattice is a face centered cubic
lattice.

(c) the reciprocal lattice of a hexagonal lattice is hexagonal.

1.2 Determine the packing fraction of

(a) a simple cubic lattice

(b) a face centered lattice

(c) abody centered lattice

(d) the diamond structure

(e) ahexagonal close packed lattice with an ideal £ ratio

1.3 Determine the separations between nearest neighbors, next nearest neighbors,
.. down to the 5th nearest neighbors for the lattices of the cubic system.

1.4 Work out the group multiplication table of the point group of an equilateral
triangle.

1.5 The Bravais lattice of the diamond structure is fcc with two carbon atoms per
primitive unit cell. If one of the two basis atoms is at (0, 0, 0), then the other is at
(33 3)-

(a) Illustrate thata reﬂection through the (100) plane followed by a non-primitive
translation through [ 1 4, 1 ] is a glide-plane operation for the diamond struc-
ture.

(b) Illustrate that a 4-fold rotation about an axis in diamond parallel to the x axis
passing through the point (1, 1 7> 0) (the screw axis) followed by the transla-
tion [Z’ 0, 0] parallel to the screw axis is a screw operation for the diamond
structure.

1.6 A two dimensional hexagonal crystal has primitive translation vectors a; = ax

and a, = ( x—i—«/—y)

(a) Show that the reciprocal lattice has primitive translation vectors b; =
(fx +y) and by = b§ with b = 42,

(b) Draw the vectors from the origin to the nearest reciprocal lattice points in
reciprocal space using by = % (ﬁi + 5)) and b, = by, and construct the
first Brillouin zone.

(c) An incident wave of wavevector K traveling in the x — y plane is scattered
by the two dimensional lattice into the direction of wavevector K in the x — y

plane. Find the values of k, for which there are maxima in the diffraction
pattern.
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(d) A graphene is a single layer of graphite of a hexagonal two dimensional lattice
with two atoms per unit cell located at r; = 0 and r, = %al + %az. What is
the two dimensional packing fraction of a graphene?

(e) What is the structure factor F'(h, h,) for X-ray scattering in a single layer of
graphene? Take f as the atomic scattering factor of carbon.

1.7 CsCl can be thought of as a simple cubic lattice with two different atoms [at
(0,0, 0) and (%, % %)] in the cubic unit cell. Let f, and f_ be the atomic scattering
factors of the two constituents.
(a) What is the structure amplitude F(h, hy, h3) for this crystal?
(b) An X-ray source has a continuous spectrum with wave numbers k satisfying:
k is parallel to the [110] direction and JLE (2) < k| <3 x v2 (%), where
a is the edge distance of the simple cube. Use the Ewald construction for a
plane that contains the direction of incidence to show which reciprocal lattice
vectors K(h1, h,, 0) display diffraction maxima.
(c) If f1 = f—, which of these maxima disappear?

1.8 A simple cubic structure is constructed in which two planes of A atoms followed
by two planes of B atoms alternate in the [100] direction.

O O e e O O e e O
A B

N
o\paooooboo

O O e @ O O e o O
—> [100] DIRECTION

(a) What is the crystal structure (viewed as a non-Bravais lattice with four atoms
per unit cell)?

(b) What are the primitive translation vectors of the reciprocal lattice?

(c) Determine the structure amplitude F (hy, hy, h3) for this non-Bravais lattice.

1.9 Powder patterns of three cubic crystals are found to have their first four diffrac-
tion rings at the values of the scattering angles ¢; given below (Table 1.5):

The crystals are monatomic, and the observer believes that one is body centered,
one face centered, and one is a diamond structure.

Table 1.5 Scattering angles of the samples

oA 30° 35° 50° 60°
oB 21° 29° 36° 42°
oc 30° 50° 60° 74°




Problems 37

(a) What structures are the crystals A, B, and C?
(b) The wave length A of the incident X-ray is 0.95 A. What is the length of the
cube edge for the cubic unit cell in A, B, and C, respectively?

1.10 Determine the ground state atomic configurations of C(6), O(8), Al(13), Si(14),
7Zn(30), Ga(31), and Sb(51).

1.11 Consider 2N ions in a linear chain with alternating +-e charges and a repulsive
potential AR™" between nearest neighbors.

(a) Show that the internal energy becomes

Ner |1 (Ry\""!
UR)=2In2— |~ (= -1,
R n \ R

where Ry is the equilibrium separation of the ions.

(b) Let the crystal be compressed such that Ry — Ry — J. Show that the work
done in compressing the crystal of a unit length can be written as %C 62, and
determine the expression for C.

Summary

In this chapter first we have introduced basic geometrical concepts useful in describ-
ing periodic arrays of objects and crystal structures both in real and reciprocal spaces
assuming that the atoms sit at lattice sites.

A lattice is an infinite array of points obtained from three primitive translation
vectors ay, a;, as. Any point on the lattice is given by

n = n;a; + nyay + n3asz.
Any pair of lattice points can be connected by a vector of the form
Thnony = miay + noa; + nias.

Well defined crystal structure is an arrangement of atoms in a lattice such that the
atomic arrangement looks absolutely identical when viewed from two different points
that are separated by a lattice translation vector. Allowed types of Bravais lattices
are discussed in terms of symmetry operations both in two and three dimensions.
Because of the requirement of translational invariance under operations of the lattice
translation, the rotations of 60, 90, 120, 180, and 360° are allowed.

If there is only one atom associated with each lattice point, the lattice of the crystal
structure is called Bravais lattice. If more than one atom are associated with each
lattice point, the lattice is called a lattice with a basis. If a;, a, a3 are the primitive
translations of some lattice, one can define a set of primitive translation vectors
b1, by, b; by the condition

a; -bj = 27T(Sij,
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where §;; = 0if i is not equal to j and J;; = 1. It is easy to see that

a; x a

b, =27 (aj x ay),

a
where i, j, and k are different. The lattice formed by the primitive translation vec-
tors by, by, bs is called the reciprocal lattice (reciprocal to the lattice formed by
aj, ap, a3), and a reciprocal lattice vector is given by

Gh|h2h3 = hib; 4+ hyby + h3bs.

Simple crystal structures and principles of commonly used experimental methods
of wave diffraction are also reviewed briefly. Connection of Laue equations and
Bragg’s law is shown. Classification of crystalline solids are then discussed according
to configuration of valence electrons of the elements forming the solid.



Chapter 2
Lattice Vibrations

2.1 Monatomic Linear Chain

Thus far in our discussion of the crystalline nature of solids we have assumed that the
atoms sat at lattice sites. This is not actually the case; even at the lowest temperatures
the atoms perform small vibrations about their equilibrium positions. In this chapter
we shall investigate the vibrations of the atoms in solids. Many of the significant fea-
tures of lattice vibrations can be understood on the basis of a simple one-dimensional
model, a monatomic linear chain. For that reason we shall first study the linear chain
in some detail.

We consider a linear chain composed of N identical atoms of mass M (see
Fig.2.1). Let the positions of the atoms be denoted by the parameters R;, i =
1,2, ..., N.Here we assume an infinite crystal of vanishing surface to volume ratio,
and apply periodic boundary conditions. That is, the chain contains N atoms and the
Nth atom is connected to the first atom so that

Riin = R;. 2.1
The atoms interact with one another (e.g., through electrostatic forces, core repulsion,

etc.). The potential energy of the array of atoms will obviously be a function of the
parameters R;, i.e.,

U=UR|,Ry,...,Ry). 2.2)
We shall assume that U has a minimum U (R?, Rg e R?V) for some particular
set of values (R?, Rg, el Rg,), corresponding to the equilibrium state of the linear

chain. Define u; = R; — R? to be the deviation of the ith atom from its equilibrium

Fig. 2.1 Linear chain of N identical atoms of mass M

© Springer International Publishing AG, part of Springer Nature 2018 39
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position. Now expand U about its equilibrium value to obtain

ou
U(Rl,Rz,...,RN)=U(R?,R3,...,R%)+Z(W) U
i t70

L] ( ’u ) L] ( ’u ) e @23)
— — ) wiu; + — ————— ) uivjur+--- (2.
2! = \OR;0R; ) T 47 \ORiOR;0R, ], !

The first term is a constant which can simply be absorbed in setting the zero of
energy. By the definition of equilibrium, the second term must vanish (the subscript
zero on the derivative means that the derivative is evaluated at uy, u,, ..., u, = 0).
Therefore we can write

1 1
UR(,R,,...,Ry) = 2 ZCijuiMj + 3 'kdijk”i”j“k +e (24
ij i,

where P o
U U
i = =—— ir=1—1 . 2.
€is (aRiaR ,-)0 and dij (8R,0R jaRk)o @5

For the present, we will consider only the first term in (2.4); this is called the harmonic
approximation. The Hamiltonian in the harmonic approximation is

P21
H = IZ YT + 3 ;cijuiuj. (2.6)

Here P; is the momentum and u; the displacement from the equilibrium position of
the ith atom.

Equation of Motion

Hamilton’s equations

. OH
Pi = —a—ui = —;cijuj,

L= of _ B 2.7
S ar T M :

can be combined to yield the equation of motion

Mu, = —ZC,']'MJ‘. (28)
J

In writing down the equation for P;, we made use of the fact that ¢; ; actually depends
only on the relative positions of atoms i and j, i.e., on |i — j|. Notice that —c;;u; is
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simply the force on the ith atom due to the displacement u; of the jth atom from its
equilibrium position. Now let R? = na, so that R? — R% = (n — m)a. We assume a
solution of the coupled differential equations of motion, (2.8), of the form

Uy (t) = & e/ =l (2.9)

By substituting (2.9) into (2.8) we find

Mw] =" cpme' 1", (2.10)

Because c,,;, depends only on ! = m — n, we can rewrite (2.10) as

N

Muw) =" c()e". 2.11)
=1

Boundary Conditions

Let us consider an infinite one dimensional crystal of vanishing surface to volume
ratio and apply periodic boundary conditions to our chain; this means that the chain
contains N atoms and that the Nth atom is connected to the first atom (Fig. 2.2). This
means that the (n + N)th atom is the same atoms as the nth atom, so that u, = u, 4 y.

Fig. 2.2 Periodic boundary conditions on a linear chain of N identical atoms
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Since u,, o e/9%¢, the condition means that

elaVe — 1, (2.12)

or that g = ,%]—7; x p where p = 0, £1, £2, .... However, not all of these values of
q are independent. In fact, there are only N independent values of g since there are
only N degrees of freedom. If two different values of ¢, say ¢ and ¢’ give identical
displacements for every atom, they are equivalent. It is easy to see that

igna

glana — gla'na (2.13)

for all values of nif ¢’ — g = %l, where ! = 0, 1, £2, . ... The set of independent
. . 2 N
values of g are usually taken to be the N values satisfying ¢ = 7 p, where —5 <
p < % We will see later that in three dimensions the independent values of q are
values whose components (g1, g2, g3) satisfy g; = ZL—W p, and which lie in the first

Brillouin zone, the Wigner—Seitz unit cell of the recipfocal lattice.
Long Wave Length Limit

Let us look at the long wave length limit, where the wave number g tends to zero.
Then u, (1) = &e~'“s—o! for all values of n. Thus, the entire crystal is uniformly
displaced (or the entire crystal is translated). This takes no energy if it is done very
very slowly, so it requires M wgﬁo = Zf; 1) =0, or wy0 = 0. In addition, it is
not difficult to see that since c(/) depends only on the magnitude of / that

Mo?, =" che M =" el = Muw?. (2.14)
1 14

In the last step in this equation we replaced the dummy variable / by [’ and used
the fact that c¢(—{") = c(!"). Equation (2.14) tells us that wg is an even function of ¢
which vanishes at ¢ = 0. If we make a power series expansion for small g, then wg
must be of the form

w =57q" 4+ (2.15)
The constant s is called the velocity of sound.
Nearest Neighbor Forces— An Example

Thus far we have not specified the interaction law among the atoms; (2.15) is valid
in general. To obtain w, for all values of ¢, we must know the interaction between
atoms. A simple but useful example is that of nearest neighbor forces. In that case,
the equation of motion is

1
ng = E e = c_1e719 4 ¢y + e, (2.16)
I=—1

Knowing that w,—o = 0 and that c_; = ¢; gives the relation ¢; = c_; = —%co.
Therefore, (2.16) is simplified to
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Va Va

Fig. 2.3 Dispersion relation of the lattice vibration in a monatomic linear chain

iqa —iqga
M = ¢ [1 - (%ﬂ . 2.17)

Since 1 — cos x = 2 sin® %, (2.17) can be expressed as

2
W2 = ﬁ sin? %, (2.18)

which is displayed in Fig.2.3. By looking at the long wave length limit, the coupling

. . > . .
constant is determined by ¢y = 24 where s is the velocity of sound.

a2

2.2 Normal Modes

The general solution for the motion of the nth atom will be a linear combination of
solutions of the form of (2.9). We can write the general solution as

m/a

u,(t) = Z [Qe“’”"‘m + cc] , (2.19)

q=—m/a

where cc means the complex conjugate of the previous term. The form of (2.19)
assures the reality of u, (7), and the 2N parameters (real and imaginary parts of &,)
are determined from the initial values of the position and velocity of the N atoms
which specify the initial state of the system.

In most problems involving small vibrations in classical mechanics we seek new
coordinates p; and g in terms of which the Hamiltonian can be written as

T/a
1 * 1 *
k k=—7/a

In terms of these normal coordinates p; and gy, the Hamiltonian is a sum of N inde-
pendent simple harmonic oscillator Hamiltonians. Because we use running waves of
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the form e/(@"=~4") the new coordinates g; and p; can be complex, but the Hamil-
tonian must be real. This dictates the form of (2.20).
The normal coordinates turn out to be

qe=N""7> u,e (2.21)

and A
pe= N2> petitne (2.22)

We will demonstrate this for g, and leave it for the student to do the same for py.
We can write (2.19) as

un (1) = a D & )e*™, (2.23)
k

where & is complex and satisfies £*, = &. With this condition u, (), given by
(2.23), is real and «v is simply a constant to be determined. We can write the potential
energy U = % > Cmnlmity, in terms of the new coordinates & as follows.

1 . -

U=3 01> cnn D &G > Gue e, (2.24)
mn k k'

Now, let k' = g — k to rewrite (2.24) as

1 ik(m—n ign
U=lal’>, [Z cnne’™ )"} Ebqre' ™. (2.25)

m

From (2.10) one can see that the quantity in the square bracket in (2.25) is equal to
Mw?. Thus U becomes

1 |
U= lal’ > Mg e, (2.26)
nkq

The only factor in (2.26) that depends on n is e/9"“. It is not difficult to prove that
> € = N§, 5. We do this as follows: Define Sy = 1+ x +x? + - + xV71;
then xSy = x + x> +--- + xV isequal to Sy — 1 + xV.

xSy =Sy —1+xV. (2.27)

Solving for Sy gives

. (2.28)
1—x
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Now let x = /9%, Then, (2.28) says

=

—1 1— eian

iga\" __
()" = ~— (2.29)

Il
=}

n

Remember that the allowed values of g were given by g = % x integer. Therefore
igaN = izZaN x integer, and ¢"4*N = 2 *INLeZET — | Therefore, the numerator
vanishes. The denominator does not vanish unless ¢ = 0. When g = 0, €9 = 1 and
the sum gives N. This proves that >, e'4"* = N&(q,0) when ¢ = 2—’; X integer.

N
Using this result in (2.26) gives
1
U=l ng,%fk&:N. (2.30)

Choosing o = N~!/2 puts U into the form of the potential energy for N simple

harmonic oscillators labeled by the k value. By assuming that P, is proportional to
>, pke k@ with p*, = py, it is not difficult to show that (2.22) gives the kinetic

energy in the desired form ”ZkA';Z . The inverse of (2.21) and (2.22) are easily
determined to be

m/a

ug =N " gt (2.31)
k=—m/a

and
w/a

Py=N""" 3" peitne (2.32)
k=—m/a

Exercise
Derive (2.31) and (2.32) by inverting (2.21) and (2.22).
Quantization

Up to this point our treatment has been completely classical. We quantize the system
in the standard way. The dynamical variables g; and p; are replaced by quantum
mechanical operators g; and p; which satisfy the commutation relation

[Prs ] = =i (2.33)
The quantum mechanical Hamiltonian is given by H = >", Hj, where
_ Dby

1 n A
He= "0+ EMw,%qkq,j . (2.34)
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132 and c},j are the Hermitian conjugates of py and gy, respectively. They are necessary
in (2.34) to assure that the Hamiltonian is a Hermitian operator. The Hamiltonian
of the one-dimensional chain is simply the sum of N independent simple Harmonic
oscillator Hamiltonians. As with the simple Harmonic oscillator, it is convenient to
introduce the operators a; and its Hermitian conjugate a,f , which are defined by

no\1/2 .

G = (2ka) (ak + aik) , (2.35)
. (AMw\'?

Pe=i ( . ) (a,j - a_k) . (2.36)

The commutation relations satisfied by the a;’s and a,I ’s are

[ak, a,:]i = 0 p and [ag, ap]_ = [az, az,]i =0. (2.37)

The displacement of the nth atom and its momentum can be written

h 12 ikna T

", = Zk: (m) e (ak + aik) , (2.38)
(haM 2 )

P, = ;l ( = ) g ikne (a,i —a,k). (2.39)

The Hamiltonian of the linear chain of atoms can be written

1
H=> hw (a,ﬁak + 5) , (2.40)
k

and its eigenfunctions and eigenvalues are

0>, (2.41)

and

1
Enl,nz,...,nN = Zh"dk,- (nj + z) . (242)
J

In (2.41) |0 >= |0; > |0, > ---|0y > is the ground state of the entire system;
it is a product of ground state wave functions for each harmonic oscillator. It is
convenient to think of the energy hwy as being carried by an elementary excitations
or quasiparticle. In lattice dynamics these elementary excitations are called phonons.
In the ground state, no phonons are present in any of the harmonic oscillators. In an
arbitrary state, such as (2.41), n, phonons are in oscillator k;, ny ink,, ..., ny inky.
We can rewrite (2.41) as |ny, ny, ..., ny >= |n; > |np > ---|ny >, a product of
kets for each oscillator.
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Exercise

Derive (2.38) and (2.39) by inserting (2.35) and (2.36) into (2.31) and (2.32), and
show that the Hamiltonian is given by (2.40).

2.3 Mossbauer Effect

With the simple one-dimensional harmonic approximation, we have the tools nec-
essary to understand the physics of some interesting effects. One example is the
Mossbauer effect." This effect involves the decay of a nuclear excited state via y-ray
emission (Fig.2.4). First, let us discuss the decay of a nucleus in a free atom; to
be explicit, let us consider the decay of the excited state of Fe>’ via emission of a
14.4keV ~ ray.

Fe’” — Fe’’ + . (2.43)

The excited state of Fe>’ has a lifetime of roughly 10~7 s. The uncertainty principle
tells us that by virtue of the finite lifetime At = 7 = 1075, there is an uncertainty
AE in the energy of the excited state (or a natural linewidth for the « ray) given by
AE = %. Using At = 1077 s gives Aw = 1075 or A (hw) ~ 6 x 10~ eV. Thus
the ratio of the linewidth Aw to the frequency w is % ~4x 10718,

Inaresonance experiment, the y-ray source emits and the target resonantly absorbs
the v rays. Unfortunately, when a ~ ray is emitted or absorbed by a nucleus, the

nucleus must recoil in order to conserve momentum. The momentum of the v ray

is py = hL—W, so that the nucleus must recoil with momentum 2K = p, or energy

E(K) = % where M is the mass of the atom. The recoil energy is given by
w 2 .

E(K) = % = W(}Z% But mc? ~ 0.5 x 10°eV and the ratio of the mass of

Fe“’ to the electron mass m is ~ 2.3 x 10°, giving E(K) ~ 2 x 1073 eV. This recoil
energy is much larger than the energy uncertainty of the y ray (6 x 10~ eV). Because
of the recoil on emission and absorption, the v ray is short by 4 x 1073 eV of energy

Excited State —

NN

7 13y

Ground State ee—— —

Source Absorber

Fig. 2.4 The exact transition energy is required to be reabsorbed because of the very sharply defined
nuclear energy states

IR.L. Mossbauer and D.H. Sharp, Rev. Mod. Phys. 36, 410-417 (1964).
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necessary for resonance absorption. Mossbauer had the idea that if the nucleus that
underwent decay was bound in a crystal (containing ~10?* atoms) the recoil of the
entire crystal would carry negligible energy since the crystal mass would replace the
atomic mass of a single Fe>’ atom. However, the quantum mechanical state of the
crystal might change in the emission process (via emission of phonons). A typical
phonon has a frequency of the order of 10'* s~!, much larger than Aw = 107 57!, the
natural line width. Therefore, in order for resonance absorption to occur, the v ray
must be emitted without simultaneous emission of phonons. This no phonon ~-ray
emission occurs a certain fraction of the time and is referred to as recoil free fraction.
We would like to estimate the recoil free fraction.

As far as the recoil-nucleus is concerned, the effect of the y-ray emission can be
represented by an operator H' defined by

H' = Ce¥Rv, (2.44)

where C is some constant, 7 K is the recoil momentum, and Ry is the position operator
of the decaying nucleus. This expression can be derived using the semiclassical theory
of radiation, but we simply state it and demonstrate that it is plausible by considering
a free nucleus.

Recoil of a Free Nucleus
The Hamiltonian describing the motion of the center of mass of a free atom is
P2

Hy= —
"= oM

(2.45)

The eigenstates of Hj are plane waves
k >= V~1/2¢/kRy

whose energy is
h*k?
Ek) = —-.
&)= =27
Operating on an initial state |k > with H’ gives a new eigenstate proportional to
|k + K >. The change in energy (i.e., the recoil energy) is

2
AE:E(k—i—K)—E(k):;—M(2k~K+K2).

For a nucleus that is initially at rest AE = %, exactly what we had given previ-
ously.

Moéssbauer Recoil Free Fraction

When the atom whose nucleus emits the  ray is bound in the crystal, the initial and
final eigenstates must describe the entire crystal. Suppose the initial eigenstate has
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ny excitations in the kth oscillator (where k = %n and —% <n< %), giving a ket
vector |ny) written as

m/a

12 ( +\™
= ramgo sy onzagnzh= [T w (al) 100
k=—m/a

We consider the corresponding final eigenstate (having my excitations in the kth
oscillator) given by |mp) written as

m/a

—172 ()™
|mF):|mk:J m;ﬂ;(lf%),...,mg(lf%),mg): H mk/ (ak) |0).

o
k=—7/a

In evaluating H’ operating on these states, we write Ry = R%, + uy to describe the
center of mass of the nucleus which emits the « ray. We can choose the origin of our
coordinate system at the position Rg, and write

N A 12 .
Rv=uy=>3 (m) (ak + a_k) . (2.46)
k=1

Because k is a dummy variable to be summed over, and because w; = w_;, we can
replace ajk by aZ in (2.46).

The probability of a transition from initial state |n;) to final state |mg) is propor-
tional to the square of the matrix element (mg | H'| ny). This result can be established
by using time dependent perturbation theory with H' as the perturbation. Let us write
this probability as P (mpg; ny). Then P (mp; ny) can be expressed as

P(mp; np) = a |(mp | Ce™ ¥ | ny) . 2.47)

In (2.47) v is simply a proportional constant, and we have set H' = Ce!¥ R Because
P (mg; ny) is the probability of going from |ny) to |mg), sz P(mg; ny) = 1. This
condition gives the relation

alCP > (mp [KF [ my)" (my [KR | ny) = 1. (2.48)

mg

iKRy iKRy

Because e/ KR is Hermitian, (mp |e | nl)* is equal to (ny e~ | mg). We use this
result in (2.48) and make use of the fact that |mg > is part of a complete orthonormal

set so that sz |mp >< mg| = 1, the unit operator, to obtain

alCP [ |e—iKRN % eiKRN|nI>]2 -1
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This is satisfied only if «|C|? = 1, establishing the result
; 2

P(mp; my) = |(mp |5 | ny)|”. (2.49)

Evaluation of P (ny; ny)

The probability of y-ray emission without any change in the state of the lattice is
simply P (n1; n1). We can write Ry in (2.49) as

m/a

Rv=> f(a+af). (2.50)
k=—7/a

12
where 3, = (ﬁ) If we write ng) = |ng, )|ng,) - - - Ingy ), then

(n[ |eiKRN|n1) = <nk1 ‘<”lk2 ei’(zkﬁk(ak_»raz)

- {mey mi )| o) [ @50

The operator a; and a,j operates only on the kth harmonic oscillator state |n;), so
that (2.51) can be rewritten as

T/a

e m) =TT

k=—m/a

ol K Bilacta))

nk> . (2.52)

Each factor in the product can be evaluated by expanding the exponential in power
series. This gives

<nk e Kikata) nk> =1+ (iKzek)z <i’lk )akaz + azak‘ nk>
+ %@k (@ +a)m)+ @53
The result for this matrix element is
<nk of Kk (a+ap) nk> =1- %n" +3 + O(N7?). (2.54)
k

We shall neglect terms of order N =2 N73, ..., etc. in this expansion. With this
approximation we can write

w/a 1
. E(K)ni+ %
(rrle ™ ¥ ny) ~ H [1— ™ TZ} (2.55)
k
k=—m/a
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To terms of order N~!, the product appearing on the right hand side of (2.55) is

1
E(K) gty
N Zk

equivalent to e he to the same order. Thus, for the recoil free fraction, we

obtain

_2 Exo ZW/a “k+%

P(ni,np) =e k==mfa R, (2.56)
Although we have derived (2.56) for a simple one-dimensional model, the result is
valid for a real crystal if sum over k is replaced by a three-dimensional sum over all
k and over the three polarizations. We will return to the evaluation of the sum later,
after we have considered models for the phonon spectrum in real crystals.

2.4 Optical Modes

Thus far we have restricted our consideration to a monatomic linear chain. Later on,
we shall consider three-dimensional solids (the added complication is not serious).
For the present, let us stick with the one-dimensional chain, but let us generalize to
the case of two atoms per unit cell (Fig.2.5).

jmmmmm - <~ d—
030 0 B0 300 B
(S «~— 20 —>

UNIT CELL

Fig. 2.5 Linear chain with two atoms per unit cell

If atoms A and B are identical, the primitive translation vector of the lattice is

a, and the smallest reciprocal vector is K = %’r If A and B are distinguishable

(e.g. of slightly different mass) then the smallest translation vector is 2a and the
2m

smallest reciprocal lattice vector is K = 57 = 7. In this case the part of the w

versus g curve lying outside the region |g| < 5~ must be translated (or folded back)
into the first Brillouin zone (region between —5- and 5-) by adding or subtracting
the reciprocal lattice vector 7. This results in the spectrum shown in Fig.2.6. Thus
for a non-Bravais lattice, the phonon spectrum has more than one branch. If there
are p atoms per primitive unit cell, there will be p branches of the spectrum in a
one-dimensional crystal. One branch, which satisfies the condition that w(g) — 0
as g — 0is called the acoustic branch or acoustic mode. The other (p — 1) branches
are called optical branches or optical modes. Due to the difference between the pair
of atoms in the unit cell when A # B, the degeneracy of the acoustic and optical
modes at ¢ = £ is usually removed. Let us consider a simple example, the linear
chain with nearest neighbor interactions of the force constant ¢ but with atoms of
mass M; and M, in each unit cell. Let u, be the displacement from its equilibrium
position of the atom of mass M, in the nth unit cell; let v, be the corresponding

quantity for the atom of mass M,. Then the equations of motion are
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Fig. 2.6 Dispersion curves for the lattice vibration in a linear chain with two atoms per unit cell

Mliin =c [(vn - un) - (Mn - vnfl)] s (257)

MZb‘n =cC [(un-H - vn) - (vn - un)] . (258)

In Fig. 2.7 we show unit cells n and n + 1. We assume solutions of (2.57) and (2.58)
of the form

u, = uqetannflwqt

’

Uy =1, ezq(2an+a)—zuqt .

(2.59)
(2.60)
where u, and v, are constants. Substituting (2.59) and (2.60) into equations of motion
gives the following matrix equation.

|:—M1w2 +2¢ —2ccosqa

"l =0,
—2ccosqa —Mrw? + 2¢ Uy

(2.61)
The nontrivial solutions are obtained by setting the determinant of the 2 x 2 matrix
multiplying the column vector [

vq equal to zero. The roots are
q
2 c
wi(q) = M,
1

(M + M> % [(My + M) — 4M M sin ga] )

(2.62)

1t

cell

Unt1 Vi

Fig. 2.7 Unit cells of a linear chain with two atoms per cell
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Fig. 2.8 Dispersion relations for the acoustical and optical modes of a diatomic linear chain

We shall assume that M| < M,. Then at ¢ = :I:% the two roots are w(z)P(q =

2 2 ~ ; ~

3q) = 37, and wiclg = &) = i1+ Atg ~ 0, the two roots are given by wic(q) =~
2ca? 2 2 _ 2c(M+M>) MM 2.2 : : :

w54 andwop(q) = =757 [ ARG ] The dispersion relations for

both modes are sketched in Fig.2.8.

2.5 Lattice Vibrations in Three-Dimensions

Now let us consider a primitive unit cell in three dimensions defined by the translation
vectors ay, a,, and a;. We will apply periodic boundary conditions such that N; steps
in the direction a; will return us to the original lattice site. The Hamiltonian in the
harmonic approximation can be written

. 1
H=Y L4 ->"u-Cj-u;. (2.63)
Here the tensor C;; (i and j refer to the ith and jth atoms and C;; is a three-

dimensional tensor for each value of i and j) is given by

Cij = [Vr VR, UR.. Ra, .. )] pogo - (2.64)

In obtaining (2.63) we have expanded U (Ry, Ry, ...) in powers of u; = R; — R?,
the deviation from the equilibrium position, and we have used the definition of
equilibrium to eliminate the term that is linear in u;.

From Hamilton’s equation we obtain the equation of motion

Mﬁi:_zcij'uj~ (2.65)
j
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We assume a solution to (2.65) of the form
u; = £ e R, (2.66)

Here &, is a vector whose magnitude gives the size of the displacement associated
with wave vector k and whose direction gives the direction of the displacement. It is
convenient to write

&k = &k gx, (2.67)

where &y is a unit polarization vector (a unit vector in the direction of &) and g is
the amplitude. Substituting the assumed solution into the equation of motion gives

2 (RO_RO
Mwiék = Z Cij . éke’k (Rj Ri). (268)
J
Because (2.68) is a vector equation, it must have three solutions for each value of k.
This is apparent if we define the tensor F(k) by

Fo = - 3 e F )¢, (2.69)
J

Then (2.68) can be written as a matrix equation

Mwlz("l' Fxx Fx_\r sz ékx
Fy. Mwl+F, Fy, £y | =0. (2.70)
Fox Fzy Mw]%""Fzz ékz

The three solutions of the three by three secular equation for a given value of k can
be labeled by a polarization index A. The eigenvalues of (2.70) will be wﬁ , and the
eigenfunctions will be

iy = (éi,\’ éi» élz()\)

with A =1, 2, 3.
When we apply periodic boundary conditions, then we must have the condition

| 2.71)

satisfied for the three primitive translation directions of i = 1, 2, 3.1In (2.71), k; is
the component of k in the direction of a; and A; is the period associated with the
periodic boundary conditions in this direction. From the conditions (2.71) it is clear
that the allowed values of the wave vector k must be of the form

np nyp nj
k=—b —b —bs, 2.72
N, 1+ N, 2+ N3 (2.72)
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where ny, n,, and ns are integers, and by, b, b3 are primitive translation vectors of
the reciprocal lattice. As in the one-dimensional case, not all of the values of k given
by (2.72) are independent. It is customary to chose as independent values of k those
which satisfy (2.72) and the condition

N;
- =<n < ——. (2.73)
2 2

Z

This set of k values is restricted to the first Brillouin zone, the set of all values of
k satisfying (2.72) that are closer to the origin in reciprocal space than to any other
reciprocal lattice point. The total number of k values in the first Brillouin zone is
N = NN, N3, and there are three normal modes (3 polarizations \) for each k value.
This gives a total of 3N normal modes, the number required to describe a system
of N = N;N,N3 atoms each having three degrees of freedom. For k values that lie
outside the Brillouin zone, one simply adds a reciprocal lattice vector K to obtain an
equivalent k value inside the Brillouin zone.

2.5.1 Normal Modes

As we did in the one-dimensional case, we can define new coordinates gx) and px)
as

u, =N Aage™™, (2.74)
k)

P, = N2 A prae R 2.75)
kA

The Hamiltonian becomes

H=Y Ho=> [ﬁpk)\lﬁt)\ + %Mwﬁquxqf&} - (2.76)
KA KA
It is customary to define the polarization vectors € to satisfy £_x, = —éx, and & -
£kv = 0\v. Remembering that >, ¢’ k—K)-R) — N& 1, one can see immediately
that
D G- fexe E TR = NG b 2.77)
n

The conditions resulting from requiring P, and u, to be real are

Piy = P-kx and g, = q_x» (2.78)
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where px) = €k pi) and qxy = €krgky. The condition on the scalar quantities pyy

and g differs by a minus sign from the vector relation (2.78) because £, changes
sign when k goes to —k.

2.5.2 Quantization

To quantize, the dynamical variables py, and g are replaced by quantum mechanical
operators Pk and gk which satisfy the commutation relations

[Prrs diov]_ = —ihbacdrn. (2.79)

It is again convenient to introduce creation and annihilation operators a,,, and ax
defined by

A 5 12 .
qxr = (2kax) (ak/\ - a—k)\) ; (2.80)
. hMw 12
Po =i ( > “) (e + a1 2.81)

The differences in sign from one-dimensional case result from using scalar quan-
tities gk and py, in defining ax, and a:{ 4+ The operators ax, and ayy satisfy the
commutation relations

@ ]| = dacinn, (2.82)

[ak)\a ak’)\’]— = [a]t)\a al"("/\’]_ = 0. (283)

The Hamiltonian is given by

1
H="> hu (agam + E) . (2.84)
kA

From this point on, the analysis is essentially identical to that of the one-dimensional
case which we have treated in detail already. In the three-dimensional case, we
can write the displacement u, and momentum P,, of the nth atom as the quantum
mechanical operators given below:

N7, awe :
u, = z (m) EkNE kR, (ak/\ — a—kA) , (285)
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AMwo\"? . )
=X (MR) ae (wran). e

Mean Squared Displacement of an Atom

As an example of how to use the quantum mechanical eigenstates and the operator
describing dynamical variables, let us evaluate the mean squared displacement of an
atom from its equilibrium position in a three-dimensional crystal. We can write

h A A N N
u,-u, = Z (m) (Wrawk' ) 172 €K\ ' EKN (dk/\ + CllL/\) (ak’)\’ + aII(//\’) .
KAV
(2.87)
Here, we have again chosen the origin at the equilibrium position of the nth atom
so that R® = 0. Then, we replace ék,\aim by —ékAa;iA in (2.85). This was done in

obtaining (2.87). If we assume the eigenstate of the lattice is |nk1Al s Akyhys - - .), it is
not difficult to see the that

(u,) = (nk],\I sk Mgy - - - Wy B A S Bl Ny s - - ) =0, (2.88)

and that
(W, - u,) = %) (%) Qmo + 1) . (2.89)

Exercise

Take the mean squared displacement of an atom in a simple lattice of the eigenstate
|1k s Mg - - -) and prove (2.89).

2.6 Heat Capacity of Solids

In the 19th century it was known from experiment that at room temperature the
specific heat of a solid was given by the Dulong—Petit law which said

C, = 3R, (2.90)
where R = Nakg, and Ny = Avogadro number (=6.03 x 10?3 atoms/mole)
and kg = Boltzmann’s constant (=1.38 x 107'%ergs/°K). Recall that 1cal =
4.18) = 4.18 x 107 ergs. Thus (2.90) gave the result

C, ~ 6 cal/deg mole. (2.91)

The explanation of the Dulong—Petit law is based on the equipartition theorem
of classical statistical mechanics. This theorem assumes that each atom oscillates
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\

T

Fig. 2.9 Temperature dependence of the specific heat of a typical solid

harmonically about its equilibrium position, and that the energy of one atom is

1 1
E="—+kr'=— (p+p2+p?) + sk (* +y* +7%). 2.92
ok 2m(px—i—p),—i—pz)—l—2 (> +y"+2°) (2.92)

The equipartition theorem states that for a classical system in equilibrium <5—n‘1> =
%k}g T. The same is true for the other terms in (2.92), so that the energy per atom at

temperature 7 is E = 3kgT. The energy of one mole is
U =3NaksT = 3RT. (2.93)

It follows immediately that C, which is equal to (g—g)v is given by (2.90). It was later
discovered that the Dulong—Petit law was valid only at sufficiently high temperature.
The temperature dependence of Cy, for a typical solid was found to behave as shown
in Fig.2.9.

2.6.1 Einstein Model

In order to explain why the specific heat decreased as the temperature was lowered,
Einstein made the assumption that the atomic vibrations were quantized. By this we
mean that if one assumes that the motion of each atom is described by a harmonic
oscillator, then the allowed energy values are given by ¢, = (n + %) hw, where
n=20,1,2,..., and w is the oscillator frequency.2 Einstein used a very simple
model in which each atom vibrated with the same frequency w. The probability p,
that an oscillator has energy ¢, is proportional to e ~*/*87_ Because p,, is a probability
and ZZO:O pn = 1, we find that it is convenient to write

Pn = Zﬁleian/kBT’ (2.94)

2See Appendix A for a quantum mechanical solution of a harmonic oscillator problem.
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and to determine the constant Z from the condition > .~ p, = 1. Doing so gives

Z = e kT i (e rtsTy" (2.95)
n=0

The power series expansion of (1 — x)~! is equal to > o, x". Making use of this
result in (2.95) gives

e—hw/2ksT ehw/2ksT

Z= 1 — e Tw/ksT = ehw/keT _ 1" (2.96)

The mean value of the energy of one oscillator at temperature 7 is given by
€ = >, &upn. Making use of (2.94) and (2.95) and the formula > n e™ =
—6‘—)( >, e " gives

hw

€= - + nhw. (2.97)

Here 7 is the thermal average of n; it is given by

_ 1
"= T 1 (2.98)

and is called the Bose—Einstein distribution function. The internal energy of a lattice

containing N atoms is simply U = 3N hw (ﬁ + %), where 7 is given by (2.98). If N
is Avogadro number, then the specific heat is given by

co=(2YY = ankgre (1 (2.99)
T \or ), TP kT )0 '

where the Einstein function Fg(x) is defined by

)C2

o) = G ha—e

(2.100)

Itis useful to define the Einstein temperature Tg by hw = kg Tg. Then the x appearing
in Fp(x) is 2.

In the high temperature limit (7 >> Tg) x is very small compared to unity. Expand-
ing Fg(x) for small x gives

1
Fe(x)=1- Exz 4 (2.101)

()
Cy=3Nkg|1—— (=) +--|. (2.102)

and
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This agrees with the classical Dulong—Petit law at very high temperature and it falls
off with decreasing 7.
In the low temperature limit (7 < Tg) x is very large compared to unity. In this
limit
Fr(x) ~ x%e ™, (2.103)

and

T. 2
C, = 3Nkg (?E) e T/ T, (2.104)

The Einstein temperature was treated as a parameter to be determined by compari-
son with experiment. The Einstein model reproduced the Dulong—Petit law at high
temperature and showed that C, decreased as the temperature was lowered. Careful
comparison of experimental data with the model showed that the low temperature
behavior was not quite correct. The experimental data fit a 72 law at low tempera-
ture (i.e., Cy o T?) instead of decreasing exponentially as predicted by the simple
Einstein model.

2.6.2 Modern Theory of the Specific Heat of Solids

We know from our study of lattice vibrations that Einstein’s assumption that each
atom in the crystal oscillated at a single frequency w is too great a simplification. In
fact, the normal modes of vibration have a spectrum wqy, where q is a wave vector
restricted to the first Brillouin zone, and ) is a label that defines the polarization of
the mode. The energy of the crystal at temperature 7T is given by

1
u=> (ﬁqA + 5) Awqa. (2.105)
qA

In (2.105) ngy; it is given by

1

i = T T (2.106)

From (2.105), the specific heat can be obtained; it is given by

ouU A \2 (M -1 g\ !
C, = (—) =kBZ( d ) (e —1) (l—e ) . (2.107)
ot ), <\ ks T

In order to carry out the summation appearing in (2.107) we must have either more
information or some model describing how wq) depends on q and A is needed.
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Density of States

Recall that the allowed values of q were given by

= (b, + Zp, + By (2.108)
q= N, 1 N 2 N K .

where b; were primitive translations of the reciprocal lattice, n; were integers, and
N; were the number of steps in the direction i that were required before the periodic
boundary conditions returned one to the initial lattice site. For simplicity, let us
consider a simple cubic lattice. Then b; = a~'%; where a is the lattice spacing and %;
is a unit vector (in the x, y, or z direction). The allowed (independent) values of q are
restricted to the first Brillouin zone. In this case, that implies that — %N,» <n; < %N,- .
Then, the summations over g, ¢y, and g, can be converted to integrals as follows:

qux L, /
— [ dg,. 2.109
z = 2w/Nya = 27 4 ( )

x

Therefore, the three-dimensional sum Zq becomes
L.L,L 14
Z = #/d%] = /d3q. (2.110)
— = Q) @m)?

In these equations Ly, Ly, and L are equal to the length of the crystal in the x, y,
and z directions, and V = L, L L. is the crystal volume. For any function f(q), we
can write

\%
> fl@= R / q f(@. 2.111)
q

Now it is convenient to introduce the density of states g(w) defined by

(W)dw = the number of normal modes per unit volume 2.112)
g ~ | whose frequency wq) satisfies w < wqy < w + dw. ’
From this definition, it follows that
g(w)dw = 1 > 1= 1 Z/ d’q (2.113)
\% " (27T)3 \ Jw<wg <wHdw

w <wgr <w+dw

Let Sy (w) be the surface in three-dimensional wave vector space on which wgy has the
value w. Then d S) (w) is an infinitesimal element of this surface of constant frequency
(see Fig.2.10). The frequency change dw in going from the surface S)(w) to the
surface S)(w + dw) can be expressed in terms of dq, an infinitesimal displacement
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W7}

,"\Sx (w+dw)
Fig. 2.10 Constant frequency surfaces in three-dimensional wave vector space

in q space as

dw=dq-[Vowq], _, or dw=dq. |Vewg| (2.114)

wp=w

Here dq, is the component of dq normal to the surface of constant frequency S (w).
The volume element d3g in wave vector space can be written dg = dq,dS)(w),
and using (2.114) allows us to write

dw
Wq q/\|

W )\—w

dq = dsS)(w). (2.115)

With this result, we can express the density of states as

dS\(w)
g(w) (27r)3 Z/ Noewl (2.116)

quq,\’

In (2.116) the integration is performed over the surface of constant frequency Sy (w).
The denominator contains the magnitude of the gradient of wq) (with respect to q)
evaluated at wg) = w.

2.6.3 Debye Model

In order to evaluate (2.107) and obtain the specific heat, Debye® introduced a simple
assumption about the phonon spectrum. He took wqy = s, |q| for all values of q in
the first Brillouin zone. Then, the surfaces of constant energy are spheres (i.e., S)(w)
is a sphere in q space of radius ¢ = i) In addition, Debye replaced the Brillouin
zone by a sphere of the same volume. Since >’ . up, 1 = N, we can write

LY’ vV 4
N=[— / d’q = - -Mg. (2.117)
2m lgl<gp (2m)

3P. Debye, Annalen der Physik 39, 789 (1912).
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In (2.117) we have introduced gp, the Debye wave vector. A sphere of radius gp
contains the N independent values of q associated with a crystal containing N atoms.
From (2.117), q% = 67r2N/ V, where V is the volume of the crystal.

The density of states for the Debye model is very simple since |V wg| = s).
Substituting this result into (2.116) gives

1 47rq2]
= — . 2.118
9@ = 553 ;[ e 2.118)

SA

If we introduce the unit step function 6(x) = 1 for x > 0 and f(x) = 0 for x < 0,
g(w) can be expressed

(2.119)

272 s,3 s3

2

w” [0(s;gp — w 20(s )
g(w):_[(ICID )+ (s:gp )]
Here, of course, s; and s, are the speed of a longitudinal and of a transverse sound
wave. Figure2.11 shows the frequency dependence of the three-dimensional density
of states in the Debye model. Any summation over allowed values of wave vector
can be converted into an integral over frequency by using the relation

S =V [ dogtor) (2.120)
qA

Here f(wgqy) is an arbitrary function of the normal mode frequencies wqy. Making
use of (2.120), the expression for the specific heat (2.107) can be written

hw)? hw/© -1 —hw/@)~1
cvszv/dw(E) e™? —1) (1-e ™) gw). (2.121)

Here we have introduced ® = kgT. We define the Debye temperature Tp by Op =
kgTp = hs;gp. Remembering that V = 67N 95 3 and that the integral [ dw goes
from w = 0 to w = wp = s;9p for longitudinal waves and from w = 0 to w =
Sigp = z—;wD for transverse waves, it is not difficult to demonstrate that

g(w)

e
S, dp Sedp

Fig. 2.11 Three-dimensional density of states in the Debye model
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Co=3Nkg | 2 Fo (E2) + 2, (292 (2.122)
v = B30 AT , .

where the Debye function Fp(x) is defined by

2dz
Fp(x) = / Y= (2.123)

Behavior at ® > ©p

In this limit x which equals 2 & or 6 s O > is much smaller than unity. Therefore we can
expand the exponentials for small argument to obtain

3 (Y 4d
FD(x):;/ ZZZZ ~1. (2.124)
0

In this limit Cy = 3Nkg, in agreement with the classical Dulong—Petit law.

Behavior at ® < Gp

In this limit x is much larger than unity, and because of the exponential in the
denominator of the integral little error arises from replacing the upper limit by infinity.
This gives

3 [ tdz

The integral is simply a constant. Its value can be obtained analytically

00 4
tdz 4
s 2.126
/O @ —Dl—c2 15" (2.126)

The result for Cy, at very low temperature is

4 3 o\?
_ T 4
CV—57r Nkg |:1+2(S) ](OD) . (2.127)

This agrees with the observed behavior of the specific heat at very low temperature,
viz. Cy = AT? where A is a constant.
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2.6.4 Evaluation of Summations over Normal Modes
Jor the Debye Model

In our calculation of the recoil free fraction in the Mossbauer effect [see (2.56)], and
in the evaluation of (2.89), the mean square displacement (u, - u,) of an atom from
its equilibrium position, we encountered sums of the form

- I
_ -l ngr + 3
—ND> o (2.128)

These sums can be performed by converting the sums to integrals through the standard
prescription

Zf (Wqr) = @ / dq f(wqp). (2.129)
or by making use of the density of states g(w) and the result that

D flwg) =V / dw g(W)f (W). (2.130)
qA

For simplicity, we will use a Debye model with the velocity of transverse and of
longitudinal wave both equal to s. Then

2

Py 553 0(skp — w). (2.131)

gw) =

The summation in (2.128) can then be written

1 1
N/ 27r2 3 T [ T m} (2.132)
Let z = %, and make use of ki, = 6m* 7. Then (2.132) can be rewritten
9 ® \2 [©v/O 1 |
"= \op dzz| 5 : 2.133
@D(@D)/o “[ﬁez_l] (2.133)

First, let us look at the high temperature limit of (2.133). If ® > ©p, then for
values of z appearing in the integrand e+l ~ % This corresponds to the classical
equipartition of energy since the energy of a mode of frequency wqy is given by

1 1 e 1
hwq)\[m+§j|_hwq)\|:ﬁw_(l,\+§]’
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1 ®/(5D

Fig. 2.12 Behavior of an integral / for ® < ®p

and this is equal to ® for every mode (the % is negligible if ® >> hwq,) as required
by classical statistical mechanics. With this approximation

9 (O [™° 96
I~— (—) / dz = —. (2.134)
@D @D 0 @D

At very low temperature, ® < ®p, we can approximate the upper limit by oo in
the term proportional to (e? — 1)~! since the contribution from very large values of
z is very small. This gives

9 e\’ ® dzz ©/0
I=—— dz = |. 2.135
ola) UL a5+ [ w3 ewo

. . . . . 9 2
The first integral in the square bracket is a constant, while the second is }1 (%) .

The second term is much larger than the first for ® <« Op, so it is a reasonable
approximation to take

9
~ 46p

(2.136)

(see, for example, Fig.2.12).

2.6.5 Estimate of Recoil Free Fraction in Mossbauer Effect

Equation (2.56) gave the probability of starting in a lattice state [n; >= |ny, na, ...,
ny > and ending, after the y-ray emission, in the same state. If we assume that the
crystal is in thermal equilibrium at a temperature @, then (2.56) is simply

P(ii;, ii;) = e 2EEOL, (2.137)

where 7n; is the Bose—Einstein distribution function, E (K) is the recoil energy, and /
is given by (2.132). We have just evaluated / using a simplified Debye model at both
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high (® > ©p) and low (® K Op) temperatures. If we use (2.134) and (2.137)
9E(K)

we find that at (@p > @), P ~ ¢~ 2 . Remember that E(K) ~ 2 x 1073 eV. For
a typical crystal @p ~ 300K - kg ~ 2.5 x 1072eV, giving for P, P ~ e™s ~ 0.7
This means that at very low temperature, 70% of the + rays are emitted without any
change in the number of phonons in the crystal.

At high temperature (let us take 7 = 400K, larger than but not much larger

9@ .. - - — 95([() 460 . . - -
than 7Tp >~ 300K) I ~ op giving P (n;,n;) ~ e 2 @, This gives P (n;, n;) at
T = 400K of roughly 0.14, so that, even at room temperature the Mossbauer recoil

free fraction is reasonably large.

2.6.6 Lindemann Melting Formula

The Lindemann melting formula is based on the idea that melting will occur when the
amplitude of the atomic vibrations (i.e., ((5 R)Z)l/z) becomes equal to some fraction

~ of the interatomic spacing. Recall that (u, - u,) = EMZI where [ is given by (2.128)
[see (2.89)]. We can use the & > @y limit for [ to write

92O
MOL

((OR)?) ~ (2.138)

2
The melting temperature is assumed to be given by Oygrring = %%ré, where rg

is the atomic spacing and -y is a constant in the range (0.2 < v < 0.25). This result
is only very qualitative since it is based on a very much oversimplified model.

Some Remarks on the Debye Model

One can obtain an intuitive picture of the temperature dependence of the specific
heat by applying the idea of classical equipartition of energy, but only to modes for
which iw < @. By this we mean that only modes whose energy Aw is smaller than
® = kgT can be thermally excited at a temperature & and make a contribution to
the internal energy U, and such modes contribute an energy ©®. Thus, we can write
for U

1 Vv ©/hs 5
U= 1 — ) hwgr = 3—— O 4 dq. 2.139
qu ("‘” i 2) © =2y /o - @139

In writing (2.139) we have omitted the zero point energy since it does not depend on
temperature and put hw[n(w)] >~ @ for all modes of energy less than @. This gives
(using V = 67;]\] and hiskp = Op)

D

o\3
U =3N (—) o. (2.140)
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Differentiating with respect to T gives

o\
C, = 12Nkg (—) . (2.141)
Gp

This rough approximation gives the correct T3 temperature dependence, but the
coefficient is not correct as might be expected from such a simple picture.

Experimental Data

Experimentalists measure the specific heat as a function of temperature over a wide
range of temperatures. They often use the Debye model to fit their data, taking the
Debye temperature as an adjustable parameter to be determined by fitting the data
to (2.122) or some generalization of it. Thus, if you see a plot of @ as a function
of temperature, it only means that at that particular temperature 7 one needs to take
®p = Op(T) for that value of T to fit the data to a Debye model. It is always
found that at very low T and at very high T the correct Debye temperature ®Op =
ks 671';]\]
fluctuations in ®p of the order of 10% from the correct value. The reason for this is
that g(w), the density of states, for the Debye model is a considerable simplification
of the actual of g(w) for real crystals. This can be illustrated by considering briefly

the critical points in the phonon spectrum.

1/3
agrees with experiment. At intermediate temperatures these might be

2.6.7 Critical Points in the Phonon Spectrum

Remember that the general expression for the density of states was given by (2.116).
Points at which Vqwg = Oare called critical points; the integrand in (2.116) becomes
infinite at such points.

Suppose that g, is a critical point in the phonon spectrum. Let £ = q — q; then
for points in the neighborhood of q, we can write

Wy = We + Qi€ + mE + asds, (2.142)
where &; are the components of £, and w, = w(q.). If a1, ay, and a3 are all negative,

by substituting into the expression for g(w) and evaluating in the neighborhood of
q., one obtains

) 0 ifw>w,, (2.143)
=1 constant (we —w)'? ifw < w,. '

Thus, although g(w) is continuous at a critical point, its first derivative is discontin-
uous.
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g

Fig. 2.13 Behavior of the density of states at various critical points

In three dimensions there are four kinds of critical points:

(i) Maxima: points at which all three «; are negative.
(i) Minima: points at which all three o; are positive.
(iii) Saddle Points of the First Kind: Points at which two «;’s are positive and one
is negative.
(iv) Saddle Points of the Second Kind: Points at which one «; is positive and the
other two are negative.

The critical points all show up as points at which % is discontinuous. A rough

sketch of g(w) versus w showing several critical points is shown in Fig.2.13. It is
not too difficult to demonstrate that in three dimensions the phonon spectrum must
have at least one maximum, one minimum, three saddle points of each kind. As an
example, we look at the simpler case of two dimensions. Then the phonon spectrum
must have at least one maximum, one minimum, and two saddle points (there is only
one kind of saddle point in two dimensions) (see Fig. 2.14). This can be demonstrated
as follows:

(i) We know w,, is a periodic function of q; values of q which differ by a reciprocal
lattice vector K give the same w,.

(i1) For a Brillouin zone of a two-dimensional square, we can consider w(gy, gy)
as a function of g, for a sequence of different fixed values of g,. Because
w(qx, gy) is a periodic function of g, there must be at least one maximum and
one minimum on each line g, = constant.
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Fig. 2.14 Behavior of critical points in two dimensions
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Fig. 2.15 Comparison of the density of states g(w) for a Debye model and that of a real crystal

(iii) Consider the locus of all maxima (represented by X’s in Fig.2.14). Along this
locus w(q) must have at least one maximum and one minimum as a function of
qy- These points will be an absolute maximum and a saddle point.

(iv) Doing the same for the locus of all minima (represented by O’s in Fig.2.14)
gives one absolute minimum and another saddle point.

Because of the critical points, the phonon spectrum of a real solid looks quite
different from that of the Debye model. However, the Debye model is constructed
so that

(i) The low frequency behavior of g(w) is correct because for very small w, wgy =
sy |g| is a very accurate approximation.

(i) The total area under the curve g(w) is correct since kp, the Debye wave vector
is chosen so that there are exactly the correct total number of modes 3N.

Because of this, the Debye model is good at very low temperature (where only
very low frequency modes are important) and at very high temperature (where only
the total number of modes and equipartition of energy are important). In Fig.2.15
we compare g(w) for a Debye model with that of a real crystal. We note that

J gpEBYE(W)dw =~ [ gactuaL(W)dw.

2.7 Qualitative Description of Thermal Expansion

‘We have approximated the interatomic potential in a crystal by

V(R) = V(Ry) + Z cijuiu; + higher terms. (2.144)
ij
In Fig.2.16 we show a sketch of the potential felt by one atom and the harmonic
approximation to it. There are two main differences in the two potentials:

(1) The true interatomic potential has a very strong repulsion at u = R — R negative
(i.e., close approach of the pair of atoms).
(ii) The true potential levels off as R becomes very large (i.e., for large positive u).



2.7 Qualitative Description of Thermal Expansion 71

TRUE INTERATOMIC

/ POTENTIAL
% '\ /" HARMONIC
\ " APPROXIMATION
Ro /
- >
N / R
AN v

Fig. 2.16 Comparison of the potential felt by an atom and the harmonic approximation to it

For a simple one-dimensional model we can write x = xg + u, where xp is the
equilibrium separation between a pair of atoms and u = x — xg is the deviation from
equilibrium. Then, we can model the behavior shown in Fig.2.16 by assuming that

V(x)= Vo +cu® — gu’ — fu®. (2.145)

Here g and f are positive constants. The fu* term simply accounts for the fact that
the harmonic approximation rises too quickly for large u. The gu> term accounts for
the asymmetry in the potential for u greater than or less than zero. When u is negative,
—gu? is positive making the short range repulsion larger; when u is positive, —gu?
is negative softening the interatomic repulsion for large R.

Now let us evaluate the expectation value of u at a temperature kg7 = 7.

00 —Bv
o duue

W e

(2.146)

But, V = Vy + cu® — gu® — fu*, and we can expand e’(#’+/%*) for small values
of u, to obtain ,
e PV — e—ﬂ(Vo-H’u ) (1 + ﬁglf 4 ﬁf,/‘) . (2.147)

The integrals in the numerator and denominator of (2.146) can be evaluated. Because
of the factor e 7’ we do not have to worry about the behavior of the integrand for
very large values of |u| so there is little error in taking the limit as u = £00. We can
easily see that

/ due ™ = e / due ™ (14 Bgu® + Bfu).  (2148)

o] o]

The Bgu? term vanishes because it is an odd function of u; the 3 fu* gives a small
correction to the first term so it can be neglected. This results in

e p g ™ 12
/ due ™V ~ eV (—) . (2.149)
oo Bc
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In writing down (2.149) we have made use of the result ffooo dze ™% = /7. The
integral in the numerator of (2.146) becomes

[e.¢] o0
/ duue™ = ef‘dvo/ duue 5 (1 + Bgu’ + 5f”4) : (2.150)
- —00

]

Only the Bgu? term in the square bracket contributes to the integral. The result is

o0
3
/ duue”V ~ e_["v"%%ﬁg (Be) 2. (2.151)
—o0
In obtaining (2.151) we have made use of the result [* dzz* e = %E. Substi-

tuting back into (2.146) gives

3 3
29 _ —gszT. (2.152)

1
w) = B4c?  4c

The displacement from equilibrium is positive and increases with temperature. This
suggests why a crystal expands with increasing temperature.

2.8 Anharmonic Effects

To get some idea about how one would go about treating anharmonic effect, let
us go back to the simple one-dimensional model and include terms that we have
neglected (up to this time) in the expansion of the potential energy. We can write
H = HHARMONIC + H/, where H' is giVCH by

, 1 1
H = 5 Zdlmnulumun + E Zﬁmnpul”munup 4+ (2.153)

Imn Imnp

As a first approximation, let us keep only the cubic anharmonic term and make use

of
h 12 ¥ ik
= ikma, 2.154
. Zk: (ZMka) (ax+aly) e (2.154)

Substituting (2.154) into (2.153) gives

/ 1 h 2 ;oo —1/2
H3 = 5 : dlmn k%{; m (wkwkwk)

(ak + aik) (a,/( + aik,) (akn + aik”) glknagikimagik'la (2.155)
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Asbefore, dj,,;,, does not depend on /, m, n individually, but on their relative positions.
We can therefore write d,,,, = d(n—m, n—I).Now introduceg = n—mand j = n—I[
and sum over all values of g, j, and n instead of [, m, and n. This gives for the cubic
anharmonic correction to the Hamiltonian

| hoO\32 1
=13 ae Y (A o)V
H;y = 312 d(g, J)kkk (2MN) (wrwp wir)
Vl,(]_] 1

(ak + aik) (ak/ + aik,) (aku + aik,/) glknagik (n=gyagik’(n=pa (3 156)

i(k+k'+k")na
9

The only factor depending on n is e and

Zei(kJrk’Jrk”)na = N§ (k +k + K, K) . (2.157)

Here K is a reciprocal lattice vector; the value of K is uniquely determined since
k, k', k" must all lie within the first Brillouin zone. Eliminate k" remembering that
if —(k + k') lies outside the first Brillouin zone, one must add a reciprocal lattice
vector K to k” to satisfy (2.157). With this H; becomes

1 " ik ; " h 3/2
Hy = N 5 2 d(g. jeoeel s (ZMN)
kk' 9j

(wkwkzwkﬁ/)*l/z (ak + aik) (ak/ + aik,) (a,(k+k/) + aZJrk,) . (2.158)

Now define

1 o h3 1/2
Gk, k) == D d(g, jeee -0 . (2159
(k, k) 3!§ (g, j)eive I N (2.159)

Then, Hj is simply

Hy =" Gl k) (a+a)) (v +aly) (aaomr +al) . 2160)
kk'

Feynman Diagrams

In keeping track of the results obtained by applying H’ to a state of the harmonic
crystal, it is useful to use Feynman diagrams. A wavy line will represent a phonon
propagating to the right (time increases to the right). The interaction (i.e., the result
of applying H3) is represented by a point into (or out of) which three wavy lines run.
There are four fundamentally different kinds of diagrams (see Fig.2.17):

(1) arara—_-+iy annihilates three phonons (Fig.2.17a).
(>i1) akak/a,: 4 annihilates two phonons and creates a third phonon (Fig. 2.17b).
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Fig.2.17 Scattering of phonons: (a) annihilation of three phonons, (b) annihilation of two phonons
and creation of a third phonon, (¢) annihilation of one phonon and creation of two phonons, (d)
creation of three phonons

(ili) aa’a) 4« annihilates a phonon but creates two phonons (Fig.2.17c).
(iv) aik“La“/Iﬂa creates three phonons (Fig.2.17d).

Due to the existence of anharmonic terms (cubic, quartic, etc. in the displacements
from equilibrium) the simple harmonic oscillators which describe the normal modes
in the harmonic approximation are coupled. This anharmonicity leads to a number
of interesting results (e.g., thermal expansion, phonon—phonon scattering, phonon
lifetime, etc.) We will not have space to take up these effects in this book. However
one should be aware that the harmonic approximation is an approximation. It ignores
all the interesting effects resulting from anharmonicity.

2.9 Thermal Conductivity of an Insulator

When one part of a crystal is heated, a temperature gradient is set up. In the presence
of the temperature gradient heat will flow from the hotter to the cooler region. The
ratio of this heat current density to the magnitude of the temperature gradient is called
the thermal conductivity kKr.

In an insulating crystal (i.e., one whose electrical conductivity is very small at low
temperatures as a result of the absence of nearly free electrons) the heat is transported
by phonons. Let us define u(x) as the internal energy per unit volume in a small region
about the position x in the crystal. We assume that u(x) depends on position because
there is a temperature gradient ?)_z in the x-direction. Because the temperature 7'

depends on x, the local thermal equilibrium phonon density 72, = [e“/€ — 1]_1
will also depend on x. This takes a little explanation. In our discussion of phonons
up until now, a phonon of wave vector k was not localized anywhere in the crystal.
In fact, all of the atoms in the crystal vibrated with an amplitude u; and different
phases e/*"¢~i“! In light of this, a phonon is everywhere in the crystal, and it seems
difficult to think about difference in phonon density at different positions. In order
to do so, we must construct wave packets with a spread in k values, Ak, chosen
such that (Ak)~! is much larger than the atomic spacing but much smaller than the
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Fig. 2.18 Phonon propagation in the presence of a temperature gradient in the x-direction

distance Ax over which the temperature changes appreciably. Then by a phonon of
wavenumber k we will mean a wave packet centered at wavenumber k. The wave
packet can then be localized to a region Ax of the order (Ak)~!. If the temperature
at position x is different from that at some other position, the phonon will transport
energy from the warmer to the cooler region. The thermal current density at position
x can be written

a2
jr(x) = / 4—s cosfu(x — [ cosb). (2.161)
vy

In this equation u(x) is the internal energy per unit volume at position x, s is the
sound velocity, [ is the phonon mean free path (! = s7, where 7 is the average time
between phonon collisions), and € is the angle between the direction of propagation
of the phonon and the direction of the temperature gradient (see Fig.2.18). A phonon
reaching position x at angle 6 (as shown in Fig.2.18) had its last collision, on the
average, at x’ = x — [ cos 6. But the phonons carry internal energy characteristic of
the position where they had their last collision, so such phonons carry internal energy
u(x — I cosf). We can expand u(x — [ cos 0) as u(x) — g—z [ cos 6, and integrate over
d$§2 = 2msin 0d0. This gives the result

1 Ou

iT(x) = —=sl—. 2.162
Jr(x) 35055 ( )
Of course the internal energy depends on x because of the temperature gradient, so
we can write 2 = 24 9T The result for the thermal conductivity rt = — jr (‘g—§)71
is
1,
KT = §S 7Cy. (2.163)

In (2.163) we have set [ = s7 and g—; = Cy, the specific heat of the solid.

2.10 Phonon Collision Rate

The collision rate 7-! of phonons depends on

(i) anharmonic effects which cause phonon—phonon scattering,
(ii) defects and impurities which can scatter phonons, and
(iii) the surfaces of the crystal which can also scatter phonons.
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Fig. 2.19 Phonon—phonon scattering (a) scattering of two phonons into one phonon, (b) scattering
of one phonon into two phonons, (¢) scattering of two phonons into two phonons

Only the phonon—phonon collisions are very sensitive to temperature, since the
phonon density available to scatter one phonon varies with temperature. For a perfect
infinite crystal, defects, impurities, and surfaces can be ignored.

Phonon—phonon scattering can degrade the thermal current, but at very low tem-
perature, where only low frequency (w < wp or k < kp) phonons are excited,
most phonon—phonon scattering conserves crystal momentum. By this we mean that
in the real scattering processes shown in Fig.2.19, no reciprocal lattice vector K
is needed in the conservation of crystal momentum, and Fig.2.19a would contain
a delta function §(k; + k, — k3), Fig.2.19b a §(k; — k;, — k3), and Fig.2.19c a
d0(k; + k» — k3 — ky). This occurs because each k-value is very small compared
to the smallest reciprocal lattice vector K. These scattering processes are called N
processes (for normal scattering processes), and they do not degrade the thermal
current.

At high temperatures phonons with k values close to a reciprocal lattice vector
K will be thermally excited. In this case, the sum of k; and k; in Fig.2.19a might
be outside the first Brillouin zone so that k; = k; + k, — K. It turns out that these
processes, U-processes (for Umklapp processes) do degrade the thermal current. At
high temperatures it is found that 7 is proportional to temperature to the —n power,
where 1 < n < 2. The high temperature specific heat is the constant Dulong—Petit
value, so that according to (2.163) kT o« T~" at high temperature.

Atlow temperature, only U-processes limit the thermal conductivity (or contribute
to the thermal resistivity). But few phonons with k & kp are present at low temper-
ature. A rough estimate would give e "“/® for the probability of U-scattering at
low temperature. Therefore, 7y, the scattering time for U-processes is proportional
to e/ Since the low temperature specific heat varies as 7>, (2.163) would pre-
dict Ky oc T3e™/T for the thermal conductivity at low temperature. The result for
the temperature dependence of thermal conductivity of an insulator is sketched in
Fig.2.20.

\ /T3 exp(T, /T)
\

Fig. 2.20 Temperature dependence of the thermal conductivity of an insulator
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2.11 Phonon Gas

Landau introduced the concept of thinking of elementary excitations as particles.
He suggested that it was possible to have a gas of phonons in a crystal whose prop-
erties were analogous to those of a classical gas. Both the atoms or molecules of a
classical gas and the phonons in a crystal undergo collisions. For the former, the colli-
sions are molecule—molecule collisions or molecule—wall of container collisions. For
the latter they are phonon—phonon, phonon—imperfection or phonon—surface colli-
sions. Energy is conserved in these collisions. Momentum is conserved in molecule—
molecule collisions in a classical gas and in N-process phonon—phonon collisions
in a phonon gas. Of course, the number of particles is conserved in the molecule—
molecule collisions of a classical gas, but phonons can be created or annihilated in
phonon—phonon collisions, so their number is not a conserved quantity.

The sound waves of a classical gas are oscillations of the particle density. They
occur if wT < 1, so that thermal equilibrium is established very quickly compared
to the period of the sound wave. They also require that momentum be conserved in
the collision process.

Landau” called normal sound waves in a gas first sound. He proposed an oscillation
of the phonon density in a phonon gas that named second sound. This oscillation of
the phonon density (or energy density) occurred in a crystal if wmy < 1 (as in first
sound) but wry > 1 so that crystal momentum is conserved. Second sound has been
observed in He* and in a few crystals.

Problems

2.1 Consider a three dimensional Einstein model in which each degree of freedom
of each atom has a vibrational frequency wy.

(a) Evaluate G (w), the number of modes per unit volume whose frequency is less
than w.
(b) Evaluate g(w) = 45
(c) Make a rough sketch of both G(w) and g(w) as a function of w.
2.2 For a one dimensional lattice a phonon of wave number k has frequency wy =
wy Sin ”‘% for a nearest neighbor coupling model. Now approximate this model by a
Debye model withw = s | & |.

(a) Determine the value of s, the sound speed, and kp, the Debye wave vector.
(b) Sketch w as a function of k for each model over the entire Brillouin zone.
(c) Evaluate g(w) for each model, and make a sketch of g(w) versus w for each.

2.3 Consider a diatomic linear chain with equal distant between atoms. Evaluate

u, /v, for the acoustic and optical modes at ¢ = 0 and at g = 5.

L. Landau, J. Phys. U.S.S.R. 5,71 (1941).
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2.4 Consider a linear chain with two atoms per unit cell (each of mass M) located

at 0 and §, where § < 5, a being the primitive translation vector. Let C; be the force

constant between nearest neighbors and C, the force constant between next nearest

neighbors. Determine wy (k = 0) and wz (k = I).

a UNIT CELL
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2.5 Show that the normal mode density (for small w) in a d-dimensional harmonic
crystal varies as w?~!. Use this result to determine the temperature dependence of
the specific heat.

2.6 In a linear chain with nearest neighbor interactions we have w; = wy sin ”‘%
Show that g(w) = = —

2_ 2"
UJO w

2.7 For a certain three dimensional simple cubic lattice the phonon spectrum is
independent of polarization A and is given by

ky k, k 172
wky, ky, k) = wo |:sin2 (Ta) + sin® (%a) + sin® (%a)] )

(a) Sketch a graph of w versus k for

(1) ky =k, =0and0 <k, < g (i.e. along I' — X),

(2) k. =0andk, =k, = % for0 <k < Y21 (je. along I' — K),

3) ke=ky =k = K for0 <k < L1 (e along I' — L),

(b) Draw the w versus k curve for the Debye approximation to these dispersion
curves as dashes lines on the diagram used in part (a).

(c) What are the critical points of this phonon spectrum? How many are there?

(d) Make a rough sketch of the Debye density of states g(w). How will the actual
density of states differ from the Debye approximation?

(e) Using this example, discuss the shortcomings and the successes of the Debye
model in predicting the thermodynamic properties (like specific heat) of solids.

2.8 For a two dimensional crystal a simple Debye model takes w = sq for the
longitudinal and the single transverse modes for all allowed g values up to the Debye
wave number gp.

(a) Determine gp as a function of %, where N is the number of atoms and L? is
the area of the crystal.

(b) Determine g(w), the density of normal modes per unit area.

(c) Find the expression for the internal energy at a temperature 7' as an integral
over the density of states times an appropriate function of frequency and

temperature.
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(d) From the result of part (c) determine the specific heat c,.
(e) Evaluate ¢, for kgT < fuwp = hsqp.

Summary

In this chapter we discussed the vibrations of the atoms in solids. Quantum mechan-
ical treatment of lattice dynamics and dispersion curves of the normal modes are
described.

The Hamiltonian of a linear chain is written, in the harmonic approximation, as
H=3, % + % Zi’j ciju;uj, where P; is the momentum and u; = R; — R? is the
deviation of the ith atom from its equilibrium position. A general dispersion relation
of the normal modes is Mw, = >V, c(l)e'!e. The normal coordinates are given by

G = N71/2 Zunefikna; i = Nfl/ZZ PneJrikna'
n n

The inverse of g; and p; are written, respectively, as

m/a m/a
U, = N—]/2 Z qkeikna; P, = N—1/2 Z pke—ikna.
k=—m/a k=—7/a
The quantum mechanical Hamiltonian is given by H = >, H,_ =/ ¢ Ja» Where
_ ]

YV
+ =Mwiqrq, -

Hy
2M 2

The dynamical variables g, and py are replaced by quantum mechanical operators gy
and p; which satisfy the commutation relation [py, qi] = —ihdy . It is convenient
to rewrite g, and py in terms of the operators ay and a;, which are defined by

A A 12 . A (EMuw\ .
%=\ 2Mu (aHa—k);pk:l 2 (a"_a‘k)'

The a;’s and a;’s satisfy [ak, az,] = Opp and [ax, ap]l_ = [a,j, a,:] = 0. The

displacement of the nth atom and its momentum can be written

5 12 .
_ ikna
v =3 (gmz) @ (ral).

k

=S () o),

k
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The Hamiltonian of the linear chain of atoms can be written
H = Z hwy aTak + l
k 2 ?
k
and its eigenfunctions and eigenvalues are

(a)" (a)" o-

lny,ng, ..., ny >=

.....

In the three-dimensional case, the Hamiltonian is given by

1
H = Zﬁwk)\ (a;ikam + z) .

kX

and Ey ny...ny = 2 ey, (ni + 3) -

The allowed values of k are given by k = §-b; + §2bs + 52 bs. The displacement
u,, and momentum P, of the nth atom are written, respectively, as

h 2 kRO f
u, = _— e (a —a )
n Z (ZMka)\) kA kA —k\

kA
o ARM wi, 1/2A kRO [+
=2 (M) e (w v,
kA

The energy of the crystal is given by U = ZqA (ﬁqA + %) hwqy, where 7igy is

given by nq\ = o The lattice heat capacity is written as

1
STeqr kBT _
2 hugh -1 hugn -1
el —1 1—¢ ™7

oUu hwgn
o =(%) =t > (-2
(aT)V N qr (kBT

The density of states g(w) defined by

the number of normal modes per unit volume

gw)dw = [ whose frequency wgy satisfies w < wgy < w + dw.

_ 1 dSy(w) . soa
Then we have g(w) = rerel > f Vo] Here dS)(w) is an infinitesimal element
of the surface of constant frequency in three-dimensional wave vector space on which
wqy has the value w. Near a critical point ., at which Vqwgy = 0, in the phonon

spectrum, we can write

Wy = we + 1€ + wéd + azés,
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where ¢; are the components of £ = q — q., and w, = w(q,). In three dimensions,
there are four kinds of critical points: (1) Maxima: points at which all three o; are
negative. (2) Minima: points at which all three o are positive. (3) Saddle Points of
the First Kind: Points at which two «;’s are positive and one is negative. (4) Saddle
Points of the Second Kind: Points at which one «; is positive and the other two are
negative. The density of states for the Debye model is expressed as

g(w)

w? [9(316113 —w) n 20(s1gp — w)}

272 s} s}

Here s; and s; are the speed of a longitudinal and of a transverse sound wave.



Chapter 3
Free Electron Theory of Metals

3.1 Drude Model

The most important characteristic of a metal is its high electrical conductivity. Around
1900, shortly after J.J. Thomson’s discovery of the electron, people became interested
in understanding more about the mechanism of metallic conduction. The first work
by E. Riecke in 1898 was quickly superseded by that of Drude in 1900. Drude'
proposed an exceedingly simple model that explained a well-known empirical law,
the Wiedemann—Franz law (1853). This law states that at a given temperature the
ratio of the thermal conductivity to the electrical conductivity is the same for all
metals. The assumptions of the Drude model are:

(i) a metal contains free electrons which form an electron gas.

(i1) the electrons have some average thermal energy <%m v%), but they pursue random
motions through the metal so that (vr) = 0 even though (v%) # 0. The random
motions result from collisions with the ions.

(iii) because the ions have a very large mass, they are essentially immovable.

3.2 Electrical Conductivity

In the presence of an electric field E the electrons acquire a drift velocity vp which
is superimposed on the thermal motion. Drude assumed that the probability that an
electron collides with an ion during a time interval d¢ is simply proportional to %,
where 7 is called the collision time or relaxation time. Then Newton’s law gives

dVD VD
2 o) _ R, 3.1
m(dt + ) e (3.1

T

IP. Drude, Annalen der Physik 1, 566 (1900); ibid., 3, 369 (1900); ibid., 7, 687 (1902).
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where —e is the charge on an electron. Some appreciation of the term % can be
obtained by assuming that the system acquires a drift velocity vp in the presence
of an electric field E, and then, at time ¢t = 0, the electric field is turned off. The
behavior of v (¢) as a function of time is given by

vp(t) = vp(0)e ™"/, (3.2)

showing that vp relaxes from vp(0) toward zero with a relaxation time 7.
In the steady state (where vp = 0), vp is given by

_ eET

Vp =

(3.3)
m

The quantity <=, the drift velocity per unit electric field, is called y, the drift mobility.
The velocity of an electron including both thermal and drift components is

E
v=vr— 22, (3.4)
m

The current density caused by the electric field E is simply

i=v D (—ov. (3.5)
all
electrons
But> . vr=0,sothat
electrons
E

=V 'N(—e) (—i) — oE. (3.6)

m

nge*t

Here the electrical conductivity o is equal to where ng = % is the electron

concentration.

m

3.3 Thermal Conductivity

The thermal conductivity is the ratio of the thermal current (i.e., the energy current) to
the magnitude of the temperature gradient. In the presence of a temperature gradient
g—i, the average thermal energy (%m v%) will depend on the local temperature T (x).
The electrons sense the local temperature through collisions with the lattice. Thus,
the thermal energy of a given electron will depend on where it made its last collision.
If we choose an electron at random, the mean time back to its last collision is 7.
Therefore, an electron crossing the plane x = x( at an angle 6 to the x-axis had its
last collision at x = xg — vpT cos @ (see Fig.3.1). The energy of such an electron
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Fig. 3.1 An electron crossing the plane x = x¢ at an angle 6 to the x-axis

is E(x) = E (xo — vy7 cos ). The number of electrons per unit volume whose
direction of motion is in the solid angle d$2 is simply no (see Fig.3.2). The
number of such electrons crossing a unit area at x¢ is no%* dg vT cos 6, giving for the
energy flux through a unit area at xg

ds2
w(xg) = / E (xo — vr7 cos 0) nyvt cos HE. (3.7)

Just as we did for the thermal conductivity due to phonons we expand E (xo — vrT
cos 6) and perform the integral over 6 from O to 7. This gives

1 OE
w(x) = —gnov%T (5) . (3.8)

OE _ QE JT P -
But 3¢ = 57 ;> so the thermal conductivity « is given by

w 1 , dE
K= —NoVIT——

1
~oT/x = 3 = —vi7C,y, (3.9)

dT 3

where C, = no 1s the heat capacity per unit volume (or the specific heat).
Exercise

Derive (3.8) by expanding E (xo — vr7 cos #) and carrying out the angular integral.

d$) = 27sin 6d0

Fig. 3.2 Solid angle d£2 in which electrons moving to cross the plane x = xo at an angle 6 to the
X-axis
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3.4 Wiedemann-Franz Law

The ratio of « to o is given by
1.2
K 20pTC
2=3T = (3.10)
o noe-T1
m

Now Drude applied the classical gas laws to evaluation of vZ and Cy, viz., (%mv%) =
2kpT and Cy = ng (3) k. This gave

2
5=§(k—3) T G.11)
o 2\ e

In addition to agreeing with the Wiedemann—Franz law, the ratio £ = % had the

value % ( %3)2 which was equal to 1.24 x 10~'3 esu. The observed values for £, called
the Lorenz number,” averaged to roughly 2.72 x 10~'3 esu. Drude made an error of
a factor of 2in his original paper and found that £ ~ 2.48 x 10~!3 esu, remarkably

close to the experimental value.

3.5 Criticisms of Drude Model

1. If(%m v%) = %kBT, then the electronic contribution to Cy hadtobe C, = %NkB =
%R. This is half as big as the lattice contribution and was simply not observed.

2. Experimentally o varies as T~'. This implies that ng7 oc T~! since e* and m are
constants. In Drude’s picture, the mean free path / >~ vpT was thought to be of
the order of the atomic spacing and therefore independent of T'. Since vy o T'!/?
this would imply that 7 o« T~!/? and, to satisfy nor o< T~!, that ny oc T2
This did not make any sense.

3.6 Lorentz Theory

Since Drude’s simple model gave some results that agree fairly well with experiment,
Lorentz® decided to use the full apparatus of kinetic theory to investigate the model
more carefully. He did not succeed in improving on Drude’s model, but he did make
use of the Boltzmann distribution function and Boltzmann equation which we would
like to describe.

2Ludvig Valentin Lorenz (1829-1891).
3Hendrik Antoon Lorentz (1853-1928).
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3.6.1 Boltzmann Distribution Function

The Boltzmann distribution function f (v, r, ) is defined by

f(v,r,t)d*rd?v = the number of electrons in the volume element d3r centered at
r whose velocity is between v and v 4 dv at time ¢.

Boltzmann equation says that the total time rate of change in f(v, r, ) must be
balanced by its time rate of change due to collisions, i.e.,

df(v,x,t)  (Of
— = (5){ (3.12)

Here (%) d*r d3v dt is the net number of electrons forced into the volume element

d’rd3v (in phase space) by collisions in the time interval dt.

3.6.2 Relaxation Time Approximation

The simplest form of the collision term is

I _ N
(E)C—— — (3.13)

where fj is the thermal equilibrium distribution function, f the actual nonequilibrium
distribution function (which differs from fj due to some external disturbance), and 7
is arelaxation time. Once again if f — f; is nonzero due to some external disturbance,
and if at time ¢ = O the disturbance is turned off, one can simply write

F—fo)s = (f = fodioe'/". (3.14)

3.6.3 Solution of Boltzmann Equation

We are frequently interested in small perturbations away from equilibrium and can
linearize the Boltzmann equation. For example, suppose the external perturbation is
a small electric field E in the x-direction, and a temperature gradient g—i. The steady

state Boltzmann equation (g—{ = ) is

of ( eE o —_ f—fo
v, (—;) + a—xvx = (3.15)
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If f — fy is small we can approximate f on the left hand side by f; and obtain

E o o
m Ovy “ox |

f’lfo-i-T[ (3.16)

This is linear response since E and % are already linear in E or g—z. The electrical

current density and thermal current density are given, respectively, by

i, 1) =/(—€)Vf(r, v,0)d, (3.17)

and
w(r, 1) = /5Vf(r, v, 1) d>. (3.18)
In(3.18) e = %mv2 is the kinetic energy of the electron of velocity v. We substitute

the solution for f given by (3.16) into (3.17) and (3.18) to calculate j and w.

3.6.4 Maxwell-Boltzmann Distribution

To evaluate j and w it is necessary to know fy(v). Lorentz used the following expres-
sion

3/2
fov) = g (2;"@) e=</0. (3.19)

Here no = N/V,® = kgT,and ¢ = %mvz. The normalization constant has been

chosen so that [ fy(v)d*v = ng. The reader should check this. (Use [;°x!/?e™*dx =
r@)=%)

The use of classical statistical mechanics and the Maxwell-Boltzmann distribution
function is the source of the difficulty with the Lorentz theory. In 1925 Pauli* pro-
posed the exclusion principle; in 1926 Fermi and Dirac® proposed the Fermi-Dirac
statistics, and in 1928 Sommerfeld published the Sommerfeld Theory of Metals. The
Sommerfeld theory was simply the Lorentz theory with the Fermi—Dirac distribution
function replacing the Boltzmann—Maxwell distribution function.

4W. Pauli, Z. Physik 31, 765 (1925).
SE. Fermi, Z. Physik 36, 902 (1926); P. A. M. Dirac, Proc. Roy. Soc. London, A 112, 661 (1926).
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3.7 Sommerfeld Theory of Metals

Sommerfeld® treated the Drude electron gas quantum mechanically. We can assume
that the electron gas is contained in a cubic box of edge L, and that the potential
inside the box is constant. The Schrédinger equation is

2
- h—Vle/(r) = EW¥ (r), (3.20)
2m

and its solution is

lI/k(l‘) — V—]/zeikl‘
h*k?
Ex = — (3.21)

2m

To avoid difficulties with boundaries, we can assume periodic boundary conditions
so that x = 0 and x = L are the same point. Then the allowed values of k. (and k,
and k) satisfy k, = %’T n,, where n, =0, £1, +£2, ..., and

27\, ., .,
Ex = - (T) (n)C +nj —i—nz) . (3.22)

The functions |k) form a complete orthonormal set with
(k|K) = / d*rdp (1) W (r) = S (3.23)

> KKk =1or D) (r) = 6@’ — ). (3.24)
k

k

Fermi Energy

The Pauli principle states that only one electron can occupy a given quantum state.
In the Sommerfeld model, states are labeled by {k, o} = (ky, k,, k;) and o, where
o is a spin index which takes on the two values 4 or |. At T = 0, only the lowest
N energy states will be occupied by the N electrons in the system. Define kg as the
value of k for the highest energy occupied state. Then the number of particles is given

by
% / 5
N = 1= 2 k. (3.25)
Z Qm)3 " Jike
k < kF
ag

6 A. Sommerfeld, Zeits. fur Physik 47, 1 (1928).
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The factor of 2 comes from summing over spin. The integration simply gives %7‘1’]{13;,
resulting in the relation
ki = 37no. (3.26)

The Fermi energy ep (= ©OF), Fermi velocity vg, and Fermi temperature T (: :)—BF)

are defined, respectively, by

ke _ 1, 2 2] (3.27)
= —— = —MVg = UFp. .
Ty TR

For a typical metal, we have ny = 10%* cm™ giving er ~ 5eV, vg ~ 108 cm/s,
and Ty >~ 10° K.

Exercise

Demonstrate the values of ny and the corresponding g, v, and T given above for
a typical simple metal.

3.8 Review of Elementary Statistical Mechanics

Suppose that the states of an ideal Fermi gas are labeled ¢, ¢, ..., ¢;, ...and that
they have energies €;, €5, ..., €;, .... Thenif N is the total number of Fermions
> ni =N, (3.28)

where n; = 1 if the state ¢; is occupied and n; = 0 if it is not. The partition function
Zy for this N particle system is defined by

Zy =) e xima, (3.29)
{ni}

In (3.29) 8 = (kgT)~! and the symbol Zin[} means a summation over all sets
of values {n;} = {n,n,,...,n;, -} which satisfy the condition > . n; = N. This
restriction makes performing the sum to obtain Zy difficult. One can avoid this
difficulty by using the grand canonical ensemble instead of the canonical ensemble.
The grand partition function Q is defined by

0=> Nzy. (3.30)

N=0
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The symbol ( is called the chemical potential. When we substitute (3.29) into (3.30),
the summation over N removes the restriction on the sets of values {n;} included in
the sum appearing in (3.29). We can rewrite the grand partition function as follows:

0 7
—B> ni(ei—
0= Femneo
N=0 {n;}
1 1 1
— Z z o Z e BEe=0ma=BE=0n | o—BE=Oni (3.31)
n;:()

n1=0n,=0

It is easy to see that
1

Ze—ﬂ(a;—On; =14 0E-0

n;=0

so that
o=[][t+e"9]. (3.32)

The average occupancy of some quantum state / is given by

fip= Q"' D e ZinE0, (3.33)
{ni}

For all i # [, the factor involving i in the numerator is exactly canceled by the same
factor in Q! leaving us

—BE—0Om —BE—=0)

n;e e

iy = 2 e - . (3.34)

Zn e—Be—0On 1 4+ eFE=0
1
Thus we find the Fermi—Dirac distribution function of

T S 3.35
S NE (3-35)

At ® = 0 all states whose energy is smaller than ef are occupied; all states of higher
energy empty. Notice that (3.33) can be written

0
ny=—kgT—1InQ, (3.36)
861

a form that is sometimes useful.
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- c

Fig. 3.3 Fermi-Dirac distribution function fj(¢) for two different temperatures

3.8.1 Fermi-Dirac Distribution Function

At zero temperature the Fermi—Dirac distribution function can be written, as a func-
tion of energy ¢, as
life < ef,

PE =1 0ife > ep. (3.37)
At a finite temperature
1
Jo(e) = 00 1 1" (3.38)

Clearly at € = (, fy(e = () is equal to % (see Fig.3.3). The value of ( is determined
(as a function of T') by the condition

> folexs) =N. (3.39)
ko

3.8.2 Density of States

It is easiest to determine G (¢), the total number of states per unit volume whose
energy is less than ¢, and then obtain g(¢) from it.

dG
Ge+de)—G(e) = d—de = g(e)de. (3.40)
€
For free electrons we have
2 4r
Ge) =V 1= ———#&°, 3.41
©) > G 3 (3.41)

ko
ko = €
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Fig. 3.4 Particle density n(e) and the density of states g(¢)

where % = e. It is easy to see that
£\° 3/2
G(e) = no (k—) = o (65) . (3.42)
F F
Thus, from (3.40) we find
3ngf ¢ 12 1 2m\>"? 1
N LI Widd /2
9(e) =3 - (EF) =5alm) <% (3.43)

For electrons moving in a periodic potential, g(¢) does not have such a simple form.

Ata finite temperature @, the number of electrons per unit volume having energies
between ¢ and € + de¢ is simply the product of g(e)de and fy(¢): n(e)de = g(e)fp(e)de
(see Fig.3.4). The chemical potential ¢ is determined from

N = V/oog(e)fo(e)ds- (3.44)
0

3.8.3 Thermodynamic Potential

The thermodynamic potential §2 is defined by

2=-0lhQ=-6>In(l+e ), (3.45)

1

Functions that are commonly used in statistical mechanics are:

internal energy U,

Helmholtz free energy F = U — TS,

thermodynamic potential 2 =U — TS — (N = —PV, (3.46)
enthalpy H =U + PV =TS + (N,

Gibbs free energy G =U — TS+ PV = (N.
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These definitions together with Euler relation
U=TS—- PV +(N, (3.47)
and the second law of thermodynamics
dU =TdS — PdV + (dN (3.48)

are very useful to remember. By using (3.47) and (3.48) and 2 = — PV, one can
obtain

d§2 =—-8SdT — PdV — Nd¢. (3.49)

From (3.49) one can see that the entropy S, pressure P and particle number N can
be obtained from the thermodynamic potential £2

s=-(57)
or Jy .

0
P=—|— , (3.50)
ov ).
N — (89)
¢ Jvr
3.8.4 Entropy
We know that
2=-0) In(l4+°), 3.51)
But we can write
1—n;=1 ! = ! 3.52
THEIT @00 11 T o 11 (3-52)
so that
In(1—7;) =—In[1+e“=7°]. (3.53)

We can express (3.51) as

=0 In-7). (3.54)
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Since the entropy is given by § = —g—g, we can obtain
S=—Zln(1—ﬁ~)+(~)2(1—ﬁ')_1% (3.55)
i l i T 007 ‘
Evaluating g—g and multiplying by @ (1 — i1;)"! gives
® On; 1 —n;
— =l — . 3.56
1 — 7 00 ”n( 7ii ) (3:56)
Sustituting this result into (3.55) gives
S=—ks D [(1—7;)In(1 —ii;) +71; In7i;] . (3.57)
i

We have inserted the factor kg into (3.57); in the derivation we had essentially set it
equal to unity. Notice that the expression for S goes to zero as T goes to zero because
n; takes on the values O or 1in this limit. In addition we can write that

@S:—@Z[ln(l—ﬁi)wtﬁiln(lfiﬁ )]

i

=03 ml-i -0 i (g(;g),
=-0 > In(l—ii)) =D i+ D i, (3.58)

=-0> In(l—ii;) —(N+U.

If we write F = U — T S we have

F=N(+6> In(l—i), (3.59)
= NC—@Zln(l +e“*)
If we hold V and T constant, the energy levels ¢; are unchanged and

OF ac ) -
(8_N)T,v_CJFN(@_N)T,V_OaN[Zm(He ) (3.60)

It is not difficult to show that (since In [1 + e%] depends on N through () the last
two terms cancel and hence
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OF
(ﬁ)w =C. (3.61)

Demonstrate (3.61) by simplifying (3.60).

Exercise

3.9 Fermi Function Integration Formula

To study how the chemical potential ( and internal energy U vary with temperature,
we must evaluate the integrals

N o0
 =n= / de g(©)fo() (3.62)
0
and 00
v_ u :/ de eg(e)fo (e). (3.63)
Vv 0

In evaluating integrals of this type there is a very useful integration formula which
we will now derive. Let us define an integral [ as follows:

I=/ de fo(e )dF(g)
0

(3.64)

Integrating by parts gives

I=[hEF©], - /0 de §F(5) (3.65)

For many functions F (¢), F(0) = 0 and lim._, », fo(¢) F (¢) — 0. For such functions
we can write (3.65) simply as

I = —/ood %F( ). (3.66)
0 e

The functions f; changes rather quickly in an interval of width of the order of kg T
about £ = (. It is obvious that

0 R\,
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If the function F(¢) is slowly varying compared to in the region € >~ (, we
can expand F'(¢) in Taylor series as follows:

F(e) = F(C)+(€—C)F(C)+ (E—C) F'(Q) + (3.67)

Then we can write [ as

0
I—HO/ ( )+F@/'ﬁ@—o( ﬁ)

0
+ F”(C)/ ds(s—C)( Jz))+~-.

But we note that
afo efE—0

0 [ede=0 41>

Introduce the parameter z = (¢ — {) and note that

af()) n/oo "
de (e — —e dz .
/O eE-0" ( e e @D (et

If ¢ is much larger than © (this is certainly true in metals) the lower limit on the
integral over z can be replaced by —oo. Since is an odd function of z for
n odd, we obtain

Z"
(et+1)(e~2:+1)

~ 1 2 g * Z2
I_F(C)+—'@F(C)/ dz(eZ+1)(e—z+1)+"'+
2n
2n 7 (2n) Z
fam” (O/ erneirn O

The first few integrals are

/oodz z _12
o D4+ 37

/oo Z4 77T4

dz = —.
o @+ D (e724+1) 15
To order ®2 we have

2
I=FO) + %QZF”(C). (3.69)

To evaluate the integral given in (3.62), we note that F(() is just G(¢), the total
number of states per unit volume whose energy is less than . Then using (3.69)
gives us
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7T2
ny=G() + z@zc”(o. (3.70)

Define ( as the chemical potential at T = 0. Then ny = G((p) and

2
G(Q) =G — %@29/(0- (3.71)

Here we have used G'(¢) = g(¢) andsetng = G ((p) Write G(¢) as G ({y)+g({o)(C—
(o) and substitute into (3.71) to obtain

77_2@2 g'(Co)

(=09

1/2
But for free electrons g(¢) = %"—" (3) so that

72 (O)*
ngo[l_ﬁ(g) +:| (3.72)

Applying the integration formula to the integral for ¥, F () is simply fog e'g(e)
de’; therefore we have

Ul [fesorder T [ L oo (3.73)
V—/Oags 6+6 |:d5 6ga)i|5=C. .

Define Uy = V f()(“ €g(e) de and use the expression for g(¢) given above for free

electrons. One can find that

U U, 2
V= 70 + g@zg(go). (3.74)

3.10 Heat Capacity of a Fermi Gas

The heat capacity Cy, = (8—[;) v 1s given, using (3.74), by
n?
Gy = V?kBQ(Co)T =T. (3.75)
ﬂzké

For free electrons we have v = 5 & N. It is interesting to compare the quantum

mechanical Sommerfeld result CM = 4T with the classical Drude result C™ =
3

-]\’k};:

2
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C\(,QM 2 T
coM = 3 FF (3.76)

For a typical metal, Tz ~ 10°K, while at room temperature 7 ~ 300 K. This solves
the problem that perplexed Drude concerning why the classical specific heat CSM
was not observed. The correct quantum mechanical specific heat is so small (because
TlF <« 1) that it is difficult to observe even at room temperature.

One can obtain a rough estimate of the specific heat by saying that only quantum
states within kg7 of the Fermi energy contribute to the classical estimate of the
specific heat. This means that

Netr = V[G(er) — G(er — kgT)] .

This gives
3 3
U~ (EkBT) Neit = [EkBT} [Vg(epksT], (3.77)
and hence o
Co=om ™ V3kig(ep)T. (3.78)

3.11 Equation of State of a Fermi Gas
The equation of state relates the variables P, V, and T'. For the Fermi gas we know

that
02
P=—-—— , (3.79)
ov T

where the thermodynamic potential is given by 2 = —© >, In (1 +e“~/¢). At
constant values of ® = kg7 and (, 2 depends on V through ¢;:

R (27\*
& =5 (T) (n7, +np, +n7,). (3.80)
We can write 5 = % (2—2)71. Since &; o« L™ and V oc L? this gives 9% = —2.
Using this result in (3.79) gives
o=/ N
P:@Z(m) (07 5y (3.81)

From this we find (since G (¢) = %59(8) for a free Fermi gas) that
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oo
P=-— =/ deG(e)fp(e). (3.82)
0

If we keep terms to order @2 we obtain

2 /
P =P+ 0> [g(EF) _IED Gl (3.83)
6 g(er)
3.12 Compressibility
The compressibility x7 is defined by
opP
-1
Sy (_) (3.84)
T v ).

—V% /00 G(e)fy(e) de.

If we define H(e) = f(; G (¢) de, then the integral can be evaluated by integrating
by parts to get (at T = 0)

/ G(e)fo(e) de = H (ep) .
0

But we know that G (¢) = Ac*?, therefore H(e) = £Ae? = 2eG(e) to have

0 (2
liT __Va_V —EFN

since G(¢g) = ny. € is proportional to L2, and ny is proportional to L3 s0 epng
is proportional to L~ = V~/3 This gives

—1 V2 5 NoEF 2
kp =—=V-|—=) —— = znoer.
T s\ 3) v ~—3°F

Using g(ep) = %F—O allows us to write

2

Kyl = 0 (3.85)
(G
For free electrons g((y) = zr and Ky = 3>+ C The velocity of sound in a solid is

given by
s = (krp) 7, (3.86)
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where p is the mass density. xr is the compressibility of the material in (3.86), and
it includes the ion core repulsion as well as the pressure due to compressing the
electron gas. The ionic contribution is small in simple metals like the alkali metals.

If we neglect it and put p = ””ZM , where M is the ionic mass and z the number of
electrons per atom, we find
( “n )1/2 (3.87)
s = 3IM VF. .

This result was first obtained by Bohm and Staver in a somewhat different way.

3.13 Electrical and Thermal Conductivities

Assume that there is an electric field E = EX and a temperature gradient VT =
g—ii. In discussing the Lorentz model, we wrote down the solution to the linearized
Boltzmann equation

) —
_f_|_v.vrf_|_"r.vvf=—(f fo) (3.88)
ot T
in the form Eo 5
f=h—-1 _¢E % vxﬁ : (3.89)
m Ovy Ox
The equilibrium distribution function is the Fermi—Dirac distribution function
- 3.90
Jo= [T oc0me" (3.90)

Because of the temperature gradient, both 7" and ¢ depend on the coordinate x, but
the energy € does not. We can write

o o da

= —— 91
Ox  Oa Ox’ (3.91)
where o = 6;—)( This can be rewritten
fo Ofo 0 (e—¢
— =0—-—— 3.92
Ox Ot Ox ( ® (3:92)

_op[eoe o (¢
T Oe |:(~)8x+08x((~))i|'

Linv? we can write

Because ¢ = 5
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o 9f 0 Iy
dv,  Oe Ov, M ge (3-93)

We now substitute (3.90), (3.92), and (3.93) into (3.89) and use the resulting expres-
sion for f(¢) in the equations for the electrical current density j, and the thermal
current density w,:

oo
io= [ decengre (3.94)
0
oo
Wy = / de (evy)g(e)f (e). (3.95)
0
For the electrical current density we obtain

S _% £09 59 (<
Jx —e/o de vxg(s)Tvx( 85) [eE—}— 9 o +@8x (@)] (3.96)

Factoring all quantities that are independent of ¢ out of the integral gives

Jx = [e E —i—e@3 (i)]/ dev 9(6)7( fo) (3.97)
Ox \ ® 0 Oe

e 0O fo
+5§ ; dsv €g(€)’r( (’)5)

Now substitute v? = 2< and g(e) = %C’:—O €2 into (3.97) to have
0
0 (¢ e 00
. 2
=|eE+e@— (=) |+ ="K, 3.98
I [e te ax(@)} 't o ox (3.98)
where we have introduced the symbol /C,, defined by
_ "o = o\ _nv1/2
K, = " 3/2/0 de ( (’)5) T. (3.99)
In the calculation of w,, a factor of ¢ replaces (—e); this gives
a (¢ 1 06
y=—|eE+O0— =) |K——=——K 3.100
w [e +O- ( 0)] 2T 5o ( )

The function /C,, can be evaluated using the integration formula (3.69). We obtain

Kn=—5 3/2 [cn+1/z (g)+ oz (n+1/27(5)) |5_<] (3.101)
m

de?
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At T = 0 we have
no

Ky = —¢ (o). (3.102)
m

3.13.1 Electrical Conductivity
If we set % = 0, then j, is given by j, = ¢*EK;,and at T = 0 we have

_ e’

y =

=oE. (3.103)

m

This is exactly the Drude result for the conductivity o with 7(¢) evaluated on the
Fermi surface so that 7 = 7({p).

3.13.2 Thermal Conductivity

The thermal conductivity is defined as the ratio of the thermal current w, to (— g—g)
under conditions of zero electrical current. Therefore, we must set j, = 0 in (3.98)
and solve for E. This gives

) 90
j = |:62E teo (ﬁ)} K+ <2k, =0,

Ox \® ® 0x
o o (¢ 1 96

Substitute this into (3.100) to obtain w,; the result is

100 K» 1 00
TG0 0x KT 0 ox

K3

Ksky — K2 (06
=—=(——. 3.105
’C]@ Ox ( )
Thus the thermal conductivity k7 = kgw, (—%—?)71 is
K3k — K2
= kg————=. 3.106
RT B K,0 ( )

If we evaluate /C,, as a function of ® using (3.101) and the result

1 2 a\ 2
(é) :1—%(%) 1, (3.107)
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we find (for 7 independent of energy)

]C] ~ M,
m
noTQ) 5 ) ® 2
Ky >~ 14+ — — , 3.108
? m [ v (Co) ( )

G Y AN
K3 >~ - |:1+67T R .

Now, substitute these results into (3.106) to obtain

Thus the Sommerfeld expression for k7 can be written

7T2 not
Kr = ?k,%WT. (3.109)

The Lorenz ratio for the Sommerfeld model Ls is given by

2 k 2
Lo="T T (2B) ~ 271 x 10 Pesu. (3.110)
oT 3 e
Recall that for the Drude model
3 (ks\’
Lo =73 (_B) ~1.24 x 10" P esu, (3.111)
e

and the average experimental result is £ ~ 2.72 x 10~ Besu

3.14 Critique of Sommerfeld Model

The main achievements of the Sommerfeld model were as follows:

(i) Itexplained the specific heat dilemma by showing that C, for the electrons was
very small.
(ii) It showed that even though there was one free electron per atom, the Pauli
principle made only those in an energy range kg 7" about ( effectively free.
(iii) It not only explained the Wiedemann—Franz law but it gave a very accurate
value for the Lorenz ratio.
(iv) It correctly predicted the Pauli spin paramagnetism of metals.
(v) It predicted Fermi energies that agreed with observed X-ray band widths.
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The main shortcomings of the Sommerfeld model were

(1) It said nothing about the relaxation time 7 (¢), T appeared only as a phenomeno-
logical parameter. In order to agree with observed conductivities, the mean free
path [ = vpT had to be of the order of a 100 atomic spacings (&5 x 1075 cm),
and had to vary as T~ at room temperature. These requirements were difficult
to understand in 1928.

(i) The model ignored the interaction of the free electrons with the fixed ions
and with one another. These interactions were surely large. How could one
achieve such excellent agreement with experiment when they were ignored.
Furthermore, attempts to include these interaction ran into great difficulties.

3.15 Magnetoconductivity

In the presence of a large dc magnetic field B, the conductivity of a metal dis-
plays some new effects. These can be understood very simply using the Drude
model (the Sommerfeld model gives exactly the same result but involves much more
mathematics).

In the presence of an electric field E and a dc magnetic field B, the Drude model
would predict a drift velocity vp which was a solution of the equation

d
m (% n V—D) = —eE— vy x B. (3.112)

T Cc

Let us choose the z-axis along B and assume that E is spatially uniform but varies
in time as e’“’. Then (3.112) can be rewritten (we drop the subscript b of vp in the
rest of this section) as follows:

(I+iwt)vy = ——E, — —Bv,,
m mc
er er
(1+iwr)vy = ——E, + —Buv,, (3.113)
’ m ~  mc
i er
1I+iwnv, =——EFE,.
m

Let us define the cyclotron frequency w, = fn—f_ and solve for v. The result is

Uy = —

(eT) [(1 +iwn)E, — UJCTEy]
(1 4+iwt)? 4+ (wer)?
er [wcTEx + (1 + in)Ey]
V()
(1 +iwr)? 4+ (wer)?

(eT) E,
v,=—|—) —.
¢ m/ 1+iwt

m

- , (3.114)
m
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The current density is given by j = —engv. This can be written j = ¢ - E, where
o is called the magnetoconductivity tensor. Its components are oy, = 0,, = 0,; =
oz, =0, and

oo(1 +iwT)
o = O,, = s
YT (A +iwn)? + (wer)?
00(—WweT)
Oxy = —Oyy = , 3.115
® T (1 FiwT)? + (weT)? ( )
00
Oy = ——.
« 1+iwt
Here 0g = "“;27 is just the Drude’s dc conductivity.
Exercise

Demonstrate (3.114) by simplifying (3.113) and solving for vy, vy, and v,.

3.16 Hall Effect and Magnetoresistance

If we apply an electric field E in the x-direction, the Lorentz force, —£v x B causes
a drift velocity in the y-direction. If w = 0 charge will accumulate on the surfaces
normal to the y-direction until a field E, builds up that exactly cancels the Lorentz
force (see Fig.3.5). The condition j, = 0 gives

jy = UxxEy - nyEx = 07

or o
E, = 2E,.

y =
JX.)C

-evx B causes drift L E

Fig.3.5 Schematics of the Hall effect experiment. The initial drift of the negatively charged electron
is illustrated
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The Hall coefficient R is defined as the ratio of E, to j, B:

E,
R=—r (3.116)
Jx

But j, = 0 Ex+0., Ey = (07, +07,) /04, E,. If we substitute it into the expression
for the Hall coefficient, we find

R — i _ (O'xy/a-xx) E,
T B T [(RA0d)/on]EB
(TX)' l

2 ) .
(IXX+U“ B

Making use of (3.115) in the limit w —> 0 gives

1
R=—— (3.117)

no(—e)c’

Because R depends on the carrier concentration, the Hall effect is often used to
measure ny. Furthermore, the sign of charge carriers can be determined from a
measurement of the transverse voltage in a dc magnetic field.

Magnetoresistance

When B =0, j, = 0¢E,. In the presence of the magnetic field B, we have

jx=——"2E,. (3.118)

2 2
[ o

For the free electron model = 0 (One can check this relation as an exercise).
Therefore even in the presence of the B-field j, = oy E,. The magnetic field causes
no change in the ratio % = p, the resistivity, and we would say that

Ap = p(B) — p(0) = 0,

or that the magnetoresistance vanishes. This does not occur in more general cases
than the simple free electron model as we shall see later.
3.17 Dielectric Function

The electrical current density j can be thought of as the time rate of change of
the polarization P. Assume D, P, and E vary as ¢’“’. Then j = P = iwP and
D = ¢E = E + 47P where ¢ is the dielectric function. This gives us the relation

Ari
ew)=1—- —0oW), (3.119)
w



108 3 Free Electron Theory of Metals

where o (w) is the frequency dependent Drude conductivity. In the presence of a dc
magnetic field, the dielectric function and conductivity become tensor quantities:
o(w) and e(w), whose off-diagonal components result from the Lorentz force.

The dielectric function e(w) or conductivity o(w) appear in Maxwell’s equation
for V x B:

1. 4w, iw 47 1 .
VxB=-E+4+ —j=—|[1—-—0cWw)|-E=-¢Ww)-E. (3.120)
c c c w c
In the Drude model )
cw)y=1- ‘%a(a}),
=1- @noezT/m
w 4wt ”
Define the plasma frequency w, by wf, = %; then we have
(w)y=1 wlz’ (3.121)
=T sw—in '
€(w) has real and imaginary parts, €; and ¢;, respectively, as
W2
=1-——L—, 3.122
€1 @) Y (3.122)
W JwT
___“r
e(w) A1

In general, we can ask how electromagnetic waves propagate in a medium described
by adielectric tentor e(w). The wave equation can be obtained from the two Maxwell
equations:

1.
VxE=—-B, (3.123)
C

VxB=—-¢-E.

Q| =

Assume E and B vary as e/“’~'9F, The two Maxwell equations can then be com-
bined, by eliminating B, to give

2
4q-E)—¢’E+ Sc . E=0. (3.124)
C

This can be applied to a case in which a dc magnetic field By is present and oriented
in the z-direction. Then without loss of generality we can choose q = (0, qy, qz) and
write (3.124) as
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2 2

%GXX7 - C]2 f_zzﬁxy 0 E,
_0:_2€xy L:.;zexx - qzz qy4: Ey = 0. (3125)
0 4y9: U:_Zzezz - q}zv E,

The description of the bulk modes are given by setting the determinant of the matrix
multiplying the column vector equal to zero.

For surface modes at a metal—dielectric interface, think of w and g, (wave vec-
tor along the surface) as given and determine the allowed values of ¢, in the solid
(with a given e(w)) and in the dielectric. One can get modes from applying standard
boundary conditions.

Problems

3.1 A two-dimensional electron gas is contained within a square box of side L.

(a) Apply periodic boundary conditions and determine E(k,, k,) and ¥ (x, y)

Tron _ 1 (24 2
for the free electron Hamiltonian H = 57 (p3 + py). ,

(b) Determine the Fermi wave number & in terms of the density ng = 5.

(c) Evaluate G(¢) and g(¢) for this system.

(d) Useng = fooo de g(¢) fo(e) together with the Fermi function integration for-
mula to determine how the chemical potential ( depends on 7.

(e) Express the energy of the system in terms of the Fermi function integral and
determine the specific heat of the electrons at low temperatures.

3.2 Consider an electron inside a metallic nanowire of a square cross section with
sides Ly = L, = L lying along the 7 axis.

(a) Show that the single particle eigenstates can be written as 1, ., (k;) = sin ==
.oy e
sin —”’Zry e*:2 and Ey n, (k) = e(ny,ny) + 5=, where (ny,ny), k;, and

e(ny, ny) are the quantum numbers describing the finite size effects of the
cross section, the wave number along the wire, and the energy level of a
particle in an infinite two-dimensional quantum well of dimension L x L.

. L 22w OE—cugy)
(b) Show that the total density of states is given by g(E) = =7* —m,

where © (x) is the Heaviside function of unit step.
3.3 Consider the d dimensional system electrons or phonons for d > 1.

(a) Show that density of states of the free electron gas scales as g(E) ~ E4/>~1,
(b) Determine the corresponding scaling law for the phonon density of states in
the Debye model discussed in the previous chapter.

3.4 A metal is described by the conductivity tensor given by o, = o,y =
oo(1+iwT) _ _ 0o (—w,T) _ oo .
(1+iwT)2+(we )2’ Oxy = Oyx = (I+iwt)?+(w.r)?’ and Oz = I+iwT in the presence

of a dc magnetic field B = Bz.
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Y
A
DIELECTRIC METAL
€ E(w)
D -z
SURPACE
Z=0

Fig. 3.6 Interface between a dielectric and a metal

(a) Consider the propagation of an electromagnetic wave E1 = (E, £ iE,) e’
parallel to the z-axis. Use Maxwell’s equations to obtain the wave equation,
and show that ¢*k* = w?ey (W), where e, =1 — g, (w).

(b) Consider the cases w.7 > 1 and w, > w and show that w =

circular polarization.

2

2
Fve for one
“p

3.5 Let us consider the interface between a Qielectric of dielectric constant ep and
a metal of dielectric function e¢(w) = 1 — :—‘2’, where wg = 4”";:62. It is illustrated
in Fig.3.6. If the normal to the surface is in the z direction and the wave vector
q = (0, gy, q;), consider the region of w — g, space in which g, is imaginary (i.e.
qzz < 0) both in the dielectric and in the metal. Impose the appropriate boundary
conditions at z = 0 and at | z |—> 00, and determine the dispersion relation (w as

a function of ¢, ) for these surface plasma modes.

3.6 At a temperature 7' a semiconductor contains n. electrons and ny holes per
unit volume in parabolic energy bands. The mass, charge, and collision time of the
electrons and holes are m., —e, 7. and my, e, T, respectively.

(a) Use the equations of motion of charged particles in the presence of a dc
magnetic field B = BZ and an ac electric field E = Ege/“’ to determine g.(w)
and o, (w), the electron and hole contributions to the frequency dependent
magnetoconductivity tensor.

(b) Consider we = n% and wy, = ,ﬁ—fc to be large compared to 7, ! and 7',
respectively. Determine the Hall coefficient for w = 0.

(c) Under the conditions of part (b), determine the magnetoresistance.

Summary

In this chapter first we have briefly reviewed classical kinetic theories of an electron
gas both by Drude and by Lorentz as simple models of metals. Then Sommerfeld’s
elementary quantum mechanical theory of metals is discussed.
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In the Drude model, the electrical conductivity o = "= is determined by the
Newton’s law of motion given by

d
m (2 + V_D) — _eE'
dt T

Here ng = % and —e are the electron concentration and the charge on an electron.
The thermal conductivity is given by

w 1 ,dE 1,
K =nov3T—= = zv37Cy,

T —0T/ox 3 dT =~ 3
where C, = nOZ—g is the electronic specific heat.
The electrical current density j and thermal current density w are given, in terms
of distribution function f, by

jr, ) = /(—e)vf(r, v, 1) dv and w(r,t) = /svf(r, v, 1) d’v.

In the Sommerfeld model, states are labeled by {k, o} = (k., k,, k;) and o, where
o is a spin index. The Fermi energy cr (= Of) , Fermi velocity vp, and Fermi tem-
Or

perature Tr (: E) are defined, respectively, by

Pk 1, o
Ef = —— = —mv; = OF,
F=%m 2 FTF

where the Fermi wave number kg is related to the carrier concentration ng by kf: =
372ng. The density of states of an electron gas is

1 (2m\*?
g(E) — ﬁ (ﬁ) 81/2.

For electrons moving in a periodic potential, g(¢) does not have such a simple form.
At a finite temperature, the chemical potential ( is determined from

N = V/O g(e)fo(e)de.

The internal energy U is given by

U

v = :/0 de eg(e)fy(e).
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These integrals are of the form I = fo de fo(e) =~ ar (5) . At low temperatures, we have,
to order ©2,

7T2
I1=F(©)+ z@w(o.

The electronic heat capacity Cy, = (ggf) is given, at low temperature, by C, =

~T, where v = 7;2 éN for free electrons.

The electrical and thermal current densities Jx and w, are, respectively, written

as
je = |:e2E +e@% (%)} Ky + g%(j
and 0 (¢ 1 00
o= fes 0 ($)]ks- %k
where

The function K, is given by
n+1/2 2 n+1/2
K, = - 3/2 [C 270y + () e ( +1/ 7-(5)) |E§:|.

The electrical and thermal conductivities are given, in terms of Kj, by o = ¢K; and
kKt = kg %(;K% The Sommerfeld expression for k7 is k7 = %zké ':‘;—TT.

In the presence of an electric field E and a dc magnetic field B, the magnetocon-
ductivity tensor has nonzero components, for the case B along the z-axis, as follows:

— — oo(1+iwT) _ _ 00(=weT) —
Oxx = Oyy = Thiwvr? 1@’ 790 = T = {Giwntr@on?? Tz = - Here

We = Q and oy = ”0627 is just the Drude’s dc conductivity.

The electrlcal current density j can be thought of as the time rate of change of the
polarization P, that is, j = P = iwP, where P = 1E and D, P, and E are assumed
to vary as e’“’. Hence we have the relation

1+l )T

4mi
ewy=1— —oWw).
w

€(w) has real and imaginary parts, €; and e;, respectively, and in the Drude model,
2 u.)z)/wr

T

VXE=—= B andVxB=- e E can be combined to obtain the wave equation

we have ¢ (w) =1- wsz 7 and 6&Ww) = The two Maxwell equations

2
2 w
4q-B)—¢’E+ e E=0.



Chapter 4
Elements of Band Theory

4.1 Energy Band Formation

Thus far we have completely neglected the effects of the ion cores on the motion
of the valence electrons. We consider “valence electrons” to be those outside of a
closed shell configuration, so that

(i) Na has a single 3s valence electron outside a [Ne] core.
(i) Mg has two 3s electrons outside a [Ne] core.
(iii)) Ga has ten 3d electrons, two 4s electrons, and one 3 p electrons outside an [Ar]
core.

The s and p electrons are usually considered as the “valence” electrons, since they
are responsible for “bonding”. Sometimes the mixing of d-electron atomic states
with “valence” electron states is important.

To get some idea about the potential due to the ion cores let’s consider the simple
case of an isolated Na™ ion. This ion has charge +e and attracts an electron via the
Coulomb potential (see Fig.4.1).

Vir)
A

______/

T

Bound State

Fig. 4.1 Coulomb potential
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N ATOMIC
LEVELS

1A 10 & 10%

Fig. 4.2 Schematic illustration of energy band formation

2
V()= _< if » > ionic radius. 4.1)
r

For a pair of Na atoms separated by a large distance, each “conduction electron”
(3s-electron in Na) has a well defined atomic energy level. As the two atoms are
brought closer together, the individual atomic potentials of the two atoms V (r)
begin to overlap. Then each electron can feel the potential of both ions. This gives
rise a splitting of the degeneracy of atomic levels.

For alarge number of atoms, the same effect occur. Think of a crystal structure with
a nearest neighbor separation of one centimeter. The energy levels of the system will
be atomic in character. However, as we decrease the nearest neighbor separation the
atomic energy levels will begin to broaden into bands (see Fig.4.2). The equilibrium
separation of the crystal is the position at which the total energy of the system is
a minimum. In all crystalline solids the electronic energies form bands of allowed
energy values separated by energy gaps (bands of forbidden energy values). These
energy bands determine the electrical properties of the solid.

4.2 Translation Operator

Because the crystalline potential seen by a single electron in a solid is a periodic
function of position, with the period of the lattice, it is useful to introduce a translation
operator T defined by

Tfx)=fx+a), (4.2)

where f(x) is an arbitrary function of position and a is the period of the lattice. It is
clear that 7 commutes with the single particle Hamiltonian H
2 32
H=———+V(), 4.3
2m Ox? ) *+3)

because if we let x' = x + a, we can see that 9/9x’ = 9/0x and V(x') = V (x).
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One of the most useful theorems of linear algebra for the study of quantum systems
states that if two operators commute, one can find common eigenfunctions for them
(i.e., they can both be diagonal in the same representation). Let ¥ be an eigenfunction
of Handof T

HY = EY¥ and TV = \V. 4.4)

Here E and ) are eigenvalues. Clearly applying 7 to ¥ N times gives

TV (x) = AN (x) = ¥ (x + Na). 4.5)
If we apply periodic boundary conditions with period N, then ¥ (x + Na) = ¥ (x).
This implies that

TV (x) = ¥ (x), (4.6)

or that AV = 1. Thus, ) itself must be the N-th root of unity

A=ein", 4.7)
where n = 0, %1, .... We can write \ as
A = eike, (4.8)

where k = % x n. Then, it is apparent that two values of k which differ by %” times

an integer give identical values of A. As usual we choose the N independent values
of k to lie in the range —27” <k < 27”, the first Brillouin zone of a one dimensional
crystal.

For more than one dimension, 7x translates through a lattice vector R
TrY (r) = e *Ry (), (4.9)
where k = (n;b; + nyby + n3bs)/N. Here ny, ny, n3 are integers and by, by, bs
are primitive translations of the reciprocal lattice. We have assumed a period N for

periodic boundary condition with L; = Na;, L, = Nap, L3 = Naj and values of
ni, na, n3 are chosen to restrict k to the first Brillouin zone.

4.3 Bloch’s Theorem

We have just demonstrated that for a one dimensional crystal with N-atoms and
periodic boundary conditions

TW(x) = ¥(x +a) = ek (x), (4.10)
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where the N independent values of k are restricted to the first Brillouin zone. We can
define a function '
up(x) = e " (x). 4.11)

It is apparent that
Tup(x) = T{e W (x)} = e 0@ (x + a) = e W (x) = uy(x).

Therefore we can write A
W (x) = ™ ug(x), (4.12)

where uy (x) is a periodic functioni.e. uy (x +a) = u;(x). This is known to physicists
as Bloch’s theorem, although it had been proven sometime earlier than Bloch' and
is known to mathematicians as Floguet’s theorem.

4.4 Calculation of Energy Bands

There are two very different starting points from which one can approach energy
bands in solids. The first approach is to start with atomic orbitals and to form linear
combinations which satisfy Bloch’s theorem. The second is to start with a Sommer-
feld free electron gas picture (for the electrons outside a closed shell core) and to see
how the periodic potential of ions changes the ex = % free electron dispersion.
The first approach works well for systems of rather tightly bound electrons, while
the second works well for weakly bound electrons. We will spend a good deal of
time on the “nearly free electron” model and how group theory helps to make the
calculations easier. Before doing that, we begin with the first approach called the

tight binding method or the LCAO (linear combination of atomic orbitals).

4.4.1 Tight Binding Method

Suppose that a free atom has a potential V,(r), so that a “conduction electron”, like
the 3s electron in sodium, satisfies the Schrodinger equation

2
(—h—vz + V,(r) — E) d(r)=0 (4.13)
2m

Here E, is the atomic energy level of this conduction electron. When atoms form a
crystal, the potentials of the individual atoms overlap, as indicated schematically in
Fig.4.3.

IFelix Bloch, Z. Physik 52, 555 (1928).
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%

solid

Fig. 4.3 Tight binding potential

In the tight binding approximation one assumes that the electron in the unit cell
about R; is only slightly influenced by atoms other than the one located at R;. Its
wave function in that cell will be close to ¢(r —R ), the atomic wave function, and its
energy close to E,. One can make a linear combination of atomic orbitals ¢(r — R )
as a trial function for the electronic wave function in the solid.

To satisfy Bloch’s theorem we can write

1 .
Y (r) = N ;e‘k'quS(r —R)). (4.14)

Clearly the translation operator operating on ¥ (r) gives
Tr, W (r) = Y (r + R,)
wr 1 K (Ro— ik
— cikRy W Ze k-(R; R,l)d)(r ~R;+R,) =¢ kR"lI/k(l’).
J

The energy of a state ¥, (r) is given by

U | H| W
Ek:( k| H| k)y 4.15)
(WA [9K)
where H is the Hamiltonian for an electron in the crystal, and
(W) = Ze’k ®,;~Rn) / d*re*(r — R,)o(r — R)). (4.16)

If we neglect overlap between ¢(r — R;) and ¢(r — R,,), the d°r integration gives
0;.m and the sum over j simply gives a factor N, the number of atoms in the crystal.
The Hamiltonian for an electron in the solid contains the potential V (r). Let’s

write _
V)=V —-R;)+V,(r —Rj). 4.17)

In other words, V (r — R ;) is the full potential of the solid minus the potential of an
atom located at R;. It’s clear from the Fig.4.3 that V, is larger than V (r) in the cell
containing R; so that V (r — R;) is negative. Since
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2
[—%V2+Va(r—Rj)—Ea] ¢(r —R;) =0, (4.18)

Bu= oy 2SO [ - Ry [, + V- R otr - Ry
J m

(4.19)
In the first term E, is the constant value of the atomic energy level and it can be
taken out of the integration. All that remains in the integral is (¥ |¥) which is 1, so
the first term is just E,. We can define

a= —/d3r¢*(r —R)V(r —R,)é(r —R)), (4.20)

and
v = —/d3r¢*(r —~R,)V(r —R))é(r — R)). 4.21)

In the definition of v we assume that the only terms that are not negligible are terms
in which R,, is a nearest neighbor of R;. Then we have

Ex=Ei—a—7> e*®& R (4.22)

m

where the sum is over all nearest neighbors of R;. We chose minus signs in the
definition of «v and «y to make « and +y positive (since V (r — R;) is negative).

Exercise

Demonstrate the s-band tight binding formula (4.22) in terms of the overlap para-
meters « and ~y by simplifying (4.19).

Now look at what happens for a simple cubic lattice. There are six nearest neigh-
bors of R; located at R; & aX, R; £ ay, and R; £ aZ. Substituting into (4.22)
gives

Ex=E,—a—2y (cos kya + coskya + cos kza) . 4.23)
Because 1 is positive
EEN =E, —a—67, (4.24)
and
EYM = E, —a+67. (4.25)

The result is sketched in Fig.4.4.
For k| < 7/a

Ex ~ E, —a — 6y +~a’k*; k* :kﬁ+k§+k§
h*k?
2m*

= Ey™N 4
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~\/§n/a

Fig. 4.4 Tight binding dispersion along [111] direction for a simple cubic lattice

The effective mass m* = 2;% As vy decreases, the band width AE gets smaller and

the effective mass near £ = E}:’HN increases.
Exercise

Consider an fcc lattice and use the s-band tight binding formula, (4.22), to evaluate
Ex and discuss the band width, the band gap, and the effective mass near the zone
center.

4.4.2 Tight Binding in Second Quantization Representation

Suppose a system of free electrons is described by the Hamiltonian

H() = zgkclick, (426)
k

where ¢ = % is the kinetic energy. In the presence of a periodic potential V (r) =

>k Vke'®T, we can write the potential energy of the electrons as

H' =" Vkel gk (4.27)
kK
Now introduce the operators ¢, and ¢| which annihilate or create electrons at site
R.
1 KR
= — cxe ™, (4.28)
T

The inverse transformation is

0

1 —ik-R
k= — cpe (4.29)
K ~ E,,
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Substitute the latter equation into Hy to obtain

l KN . 0 0
H, = € —clepe™ iR, 4.30
Define .
Ton = 37 2 exet R, (431)
K
Then
Hy =" Tyncicn. (4.32)
Now look at H’
H = Z VK% Z Cj;ei(kJrK)RSCmefikRg,
kK nm
_ Z |:Z %eik.(RBRZ):| VKeiK.RSCZCm.
Knm k
Since % >k R ®R-R) _ 5 we have
H = Vge®Ricle,. (4.33)
Kn
But we note that >y VKe"K'Rf(1 = V(Rfl)) and hence H' becomes
H = Z VR)cic,. (4.34)
Adding Hy and H' gives
H=> [T+ VR)]clea+ D Tumchcm
n n#m
= anc:;cn + Z Tnchcm (4.35)
n n#Em
wheree, = T,,+V (RS) represents an energy on site n and 7,,,, denotes the amplitude

of hopping from site m to site n. Starting with atomic levels €, and allowing hopping
to neighboring sites results in energy bands, and the band width depends on the
hopping amplitude T,,,,. Later we will see that starting with free electrons and adding
a periodic potential V (r) = > Vke' K-r also results in energy bands. The band gaps
between bands depend on the Fourier components Vi of the periodic potential.
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4.5 Periodic Potential

Because the potential experienced by an electron is periodic with the period of the
lattice, it can be expanded in a Fourier series

V(r) = Z Vice' T, (4.36)
K
where the sum is over all vectors K of the reciprocal lattice, and
VK = 1 / d’r V(r)e KT,
94
For any reciprocal lattice vector K
K- R =27 x integer,
if R is any translation vector of the lattice. Thus
VI +R) =D Vge*r®,
K

=D Vke*T =V ().
K

The periodic part of the Bloch function can also be expanded in Fourier series. We
can write

un(k, 1) = D C(n.k)e' T, (4.37)
K

For the moment, let us omit the band index n and wave number k and simply write

W (r) = ™ Tu(r) = D Cge'*HOT, (4.38)
K

Use the Fourier expansion of V (r) and u(r) in the Schrodinger equation; this gives

h? K , )
Z [Z_(k + K/)2 + Z VK”elK 'I‘} CK’el(k+K )T
m

© <
=E Z Cioe' kKT (4.39)
K/

We multiply by e /*+K)T and integrate recalling that [ dre’® ™ = 246(K) where 2
is the volume. This gives
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h2
|:E — Vo — —(k + K)2] Ck = Z VaCx_u (4.40)
2m 20

Here we have set K” = H and have separated the H = 0 term from the other terms
in the potential. This is an infinite set of linear equations for the coefficients Ck. The
non-trivial solutions are obtained by setting the determinant of the matrix multiplying
the column vector

Cx
equal to zero. The roots give the energy levels (an infinite number — one for each

value of K) in the periodic potential of a crystal. We can express the infinite set of
linear equations in the following matrix notation.

VIR vy wvik) K
vy e PGV ) K2

_o (441)
Knl V IK)) KalVIKy) oo Ko Tl VIR G

Here ek = %(k +K)? and (K|V|K') = Vg_k/, where [K) = \/%e““. The object
of energy band theory is to obtain a good approximation to V (r) and to solve this
infinite set of equations in an approximate way.

4.6 Free Electron Model

If Vk = 0 for all K # 0, then in the notation used above
(E — Vo — 5k+K) CK =0. (442)

This is exactly the Sommerfeld model of free electrons in a constant potential V.
We can write

E]((O) = Vo + ex+k and

©) [ 1 for the band of K
Cx =

0 for all other bands. (4.43)
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Fig. 4.5 One dimensional free electron band

Let us discuss this more fully by considering a simple one dimensional case, for
example, as shown in Fig.4.5. The allowed values of the Bloch wave vector k are
restricted to the first Brillouin zone. Values of k outside the first Brillouin zone are
obtained by adding a reciprocal lattice vector K to k. The labels C, refer to the
non-zero coefficients for that particular band; For example, for C,, we have

©) K2 2m\T*. Lo ikr, (0)
E,”=Vo+ —[k+2|— ; Yo (r) = e uy/ (). (4.44)
2m a
Here we note that ¥ (r) = /e’ T, because u,, (r) = 3 Ck(k)e’X™ with
(0) (k)=1for | K |=K, = (2”) n. All of this is simply a restatement of the free

electron model in the “reduced” zone scheme (i.e. all Bloch k vectors are in the first
Brillouin zone, but energies of higher bands are obtained by adding reciprocal lattice
vectors K to k; the periodic part of the Bloch function is ug = e’T).

4.7 Nearly Free Electron Model

If we take Vi for | K |# O to be very small but non-zero, we can use “perturbation
theory” to solve the infinite set of coupled equations approximately.

For the lowest band (the one with Céo) = 1) we know that in zeroth order (i.e.
with Vg = 0 for | K |# 0)
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EO® = Vo + ek,
c¥ =1 and € =0for | K|#£0.

Rk

Here ¢ = 2— and let us look at other values of Cx (i.e. not | K |= 0 Value) for
Vk # 0 (but very small) when | K |# 0. The first order correction to CK is given
by
n? 2 [
E-Vo——k+K C V 4.45
[ 0 2m( +K) ] HZ#) K-HnVH. (4.45)

On the right hand side all the Vi appearing are small; therefore to first order we can
use for Cx_g the value CI((O)_H which equals unity for K —H = 0 and zero otherwise.
Solving for C1(<1 ) gives
M _ Vk
K ™ p2 .
E k2 — (k+K)?]

(4.46)

Here we have used E =~ 2 . Vo for the zeroth order approximation to the energy
of the lowest band (the one we are investigating). We substitute this result back into
the equation for Cy, which is approximately equal to unity.

Rk VW
(E vo——) = Co HVH_Z o KK (4.47)

HA0 — (k+K)?2|

Co=1+ C(()l), but C(()l) can be neglected since the right hand side is already small.
Setting Cyp =~ 1 and solving for E gives

V 2
E=Vot+e— D I (4.48)
KI20 Ek+K — €k

In this equation we have used V_g = Vjj and let —H = K. As long as | e x —
ex |>>| Vx |, this perturbation expansion is rather good. It clearly breaks down when

ek+k = ¢k or |k + K| = |k|. This is exactly the condition for a Bragg reflection;
when k' — k = K we get Bragg reflection.

4.7.1 Degenerate Perturbation Theory

Suppose that for some particular reciprocal lattice vector K
k + K] ~ K| (4.49)

Our simple perturbation theory result gave
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Itis clear that this result is inconsistent with our starting assumption that Cx was very
small except for K = 0. To remedy this shortcoming we assume that both Cy and Cg
(for the particular value satisfying |k| = |k 4 K]) are important. This assumption
gives us a pair of equations

(E—Vy—ex)Co=CkV_ik

4.50
(E — Vo — exx) Ck = Co Vk. (4.50)

The solutions are obtained by setting the determinant of the matrix multiplying the

C .
column vector ( CO ) equal to zero. The two roots are given by
K

12
1 £k — € 2
Ex(k) = Vo + 5 lex + ek & [|VK|2+ (%) ] (4.51)

For [k| = |k 4+ K], ek — ex+x = 0 and the solutions become

Ey(k) = Vo +ex £ |kl (4.52)

This behavior is shown in Fig.4.6. If we introduce q = % + k, where ¢ < %, we
can expand the roots for small g and obtain

1 EK
Ei:VO—f-E% +€qi|VK|[1+EW€q}.

If we define
Eo=Vo+ex —[Vkl,

A :
|
|
+I I /
= 7
v }2|VK|
e
/
| - ]{j
K h

. : K
Fig. 4.6 Bandgap formation at the zone boundary k = 7
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and choose zero of energy at E(, the two roots can be written (for small g)

E- =5k (4.53)
- 2,2 .
E. =Eg+ Zn—qi-

Here the energy gap Eg is equal to 2 | Vk| and the effective masses m’ are given by

m

*
m, = ————.
+ EK

1:|:—2WK|

(4.54)

It is common for ek to be larger than 2 | Vi | so that m* is negative. Then the two
roots are commonly expressed as

E, (k) = — LK,
Ec(k) = Eg + 2£
where my, = —m?* . These results are frequently used to describe the valence band

and conduction band in semiconductors. The results are only valid near ¢ = 0 since
we expanded the original equations for small deviations ¢ from the extrema. This
result is called the effective mass approximation.

4.8 Metals—Semimetals—Semiconductors—Insulators

The very simple Bloch picture of energy bands and energy gaps allows us to under-
stand in a qualitative way why some crystals are metallic, some insulating, and some
in between. For a one-dimensional crystal there will be a gap separating every band
(assuming that Vi is non-zero for all values of K). We know that the gaps occur
when |k| = |k + K]. This defines the first Brillouin zone’s boundaries.

In more than one-dimension, the highest energy levels in a lower band can exceed
the energy at the bottom of a higher band. This is referred to as band overlap. It is
illustrated for a two-dimensional square lattice in Fig.4.7. The square represents the
first Brillouin zone bounded by |k,| = 7/a and |ky| = m/a. The point I" indicates
the zone center of k = 0. The points X = (g, 0) and M = (f g) are particular
k-values lying on the zone boundary. The A and X are arbitrary points on the lines
connecting I’ — Xand I" — M, respectively. If we plot the energy along these lines
we obtain the result illustrated in Fig. 4.8. It is clear that if the gaps are not too large,
the maximum energy in the lower band E;g(M) is higher than the minimum energy
in the upper band Eyg (X). If we fill all the lowest energy states with electrons, being
mindful of the exclusion principle, then it is clear that there will be some empty
states in the lower band as we begin to fill the low energy states of the upper band.
The band overlap can be large (when the energy gaps are very small) or non-existent
(when the energy gaps are very large).
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The existence of

(i) band gaps in the energy spectrum at Brillouin zone boundaries,
(ii) band overlap in more than one dimension when energy gaps are small, and
(ii1) the Pauli exclusion principle allows us to classify solids as follows.

e Metal

1. Monovalent Metal A material which contains one electron (outside a closed
core) on each atom and one atom per unit cell. Na, K, Rb, Cs are good examples
of monovalent metals. Because the total number of allowed k values in the first
Brillouin zone is equal to N, the number of unit cells in the crystal, and because
each k-state can accommodate one spin up and one spin down electron, each
band can accommodate 2N electrons. A monovalent metal has N electrons, so
the conduction band will be half filled. The Fermi energy is far (in comparison
to kgT) from the band edges and band gaps. Therefore, the crystal acts very
much like a Sommerfeld free electron model. The same picture holds for any
odd valency solid containing 1, 3, 5, ... electrons per unit cell.
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2. Even-valency Metals When the band gaps are very small, there can be a very
large overlap between neighboring bands. The resultant solid will have a large
number ny, of empty states in the lower band and an equal number n, (n, = ny,
of electrons in the higher band. If n. and ny, are of the order of N, the number
of unit cells, the material is metallic.

e Insulator For a material with an even number of electrons per unit cell and a
large gap (>4¢eV) between the highest filled state and the lowest empty state, an
insulating crystal results. The application of a modest electric field cannot alter the
electron distribution function because to do so would require a large energy Eg.

e Semiconductor A material which is insulating at low temperature, but whose band
gap Eg is small (0.1eV < Eg < 2eV) is called a semiconductor. At finite
temperature a few electrons will be excited from the filled valence band to the
empty conduction band. These electrons and holes (empty states in the valence
band) can carry current. Because the concentration of electrons in the conduction
band varies like e ~£6/2%3T | the conductivity increases with increasing temperature.

e Semimetal These materials are even-valency materials with small band overlap.
The number of electrons n. equals the number of holes ny, but both are small
compared to N, the number of unit cells in the crystal. Typically n. and n, might
be 1073 or 10~ times the number of unit cells.

Examples

Monovalent Metals Li, Na, K, Rb, Cs, Cu, Ag, Au
Divalent Metals Zn, Cd, Ca, Mg, Ba

Polyvalent Metals Al, Ga, In, Tl

Semimetals As, Sb, Bi, Sn, graphite

Insulators Al,O3, diamond

Semiconductors Ge, Si, InSb, GaAs, AISb, InAs, InP.

Problems

4.1 In an infinite linear chain of A and B atoms (... ABABAB...) with equal
spacings R between each atom, the energies of electrons in the system are given by
Ey = £(* +4/32 cos® kR)'/?, where k is the wavevector of the electron state. What
is the band gap in the electronic band structure for this system? How would you
expect the electrical and optical properties of this structure to depend on € and 3?

4.2 Consider a crystal of sodium with a volume 0.10 cm?, estimate the average spac-
ing between the energy levels in the 3 s band given that the 3 s electron energies span
arange of 3.20eV. The electron concentration of a sodium crystal is approximately
2.65 x 102 m~3. (You can estimate this value by yourself.)

4.3 Consider abody centered cubic lattice of eight nearest neighbors atr = §(£x £
¥ % 2). Use the s-band tight binding formula, (4.22), to evaluate Ey and discuss the
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band structure such as the band width, the band gap, and the effective mass near the
zZone center.

4.4 Graphene — a single graphite sheet has a honeycomb structure. Let us simply
assume that there is one p, orbital, which is oriented perpendicular to the sheet, on
each carbon atom and forms the active valence and conduction bands of graphene.

(a) Using the tight-binding method and only nearest-neighbor interactions, eval-
uate and sketch the 7-electron band structure E (k) for graphene. One may
assume that the overlap matrix is the unity matrix.

(b) Show that this is a zero-gap semiconductor or a zero-overlap semimetal. Note
that there is one 7 electron per carbon atom.

(c) Locate the position where the zero gap occurs in the momentum space.

4.5 A one-dimensional attractive potential is given by V (z) = —\d(2).
(a) Show that the lowest energy state occurs at eg = — ﬁzz”’jz, where Kk = ’2—5\

(b) Determine the corresponding normalized wave function vy (z).

4.6 Consider a superlattice of period a with potential given by V(z) = =A>;2
0(z —la).

(a) Obtain gy(k;), the energy of the lowest band as a function of k, by using
the tight binding approximation including overlap between only neighboring
sites.

(b) Show that the tight binding form of the wave function ¥(k,, z) can be
expressed as .

Wo(ks, 2) = " ulks, 2),

where u(k;, z) is periodic with period a. Determine an expression for u(k_, z).

4.7 Let us consider electrons in a one-dimensional Bravais crystal described by
the wave function and potential written as ¥ (x) = ae’®™ 4 Be/*9* and V(x) =
2V; cos(Gx). The zone boundaries are located at k = G/2 = 4 m/a where a is the
lattice constant of the crystal.

(a) Obtain the band structure by solving the Schrédinger equation, and sketch the
band over the range 0 < k < G for V| = 0and V| = 0.2h2G2/2m. One may
need to solve 2 x 2 determinant equation.

(b) What kind of material is the crystal if V; = 0? Explain the reason.

(©) IfV; = 0.2K2G? /2m and each atom contributes 3 conduction electrons, what
kind of material is the crystal? Explain the reason.

Summary

In this chapter we studied the electronic states from the consideration of the periodic-
ity of the crystal structure. In the presence of periodic potential the electronic energies
form bands of allowed energy values separated by bands of forbidden energy values.
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Bloch functions were introduced as a consequence of the translational symmetry of
the lattice. Energy bands obtained by a simplest tight binding method and nearly free
electron model are discussed.

The eigenfunction of the Hamiltonian H can be written as

¥ (r) = e Ruk(r),

where u (r) is a lattice periodic function i.e. uk (r + R) = uk(r). This is the Bloch’s
theorem. For an electron in a crystalline potential, we have

TrY (r) = e *Ry(r),

where Ty is a lattice translation operator and k = Mw. Here ny, n,, n3 are
integers and by, by, b3 are primitive translations of the reciprocal lattice.

In the tight binding approximation one assumes that the electron in the unit cell
about R; is only slightly influenced by atoms other than the one located at R;. Its
wave function in that cell will be close to ¢(r —R ), the atomic wave function, and its
energy close to E,. One can make a linear combination of atomic orbitals ¢(r — R )
as a trial function for the electronic wave function in the solid:

1 .
W (r) = i ;e"‘"‘fqb(r —R)).

The energy of a state ¥ (r) is given by

’ .
Ee = By oy > R

m

where the sum is over all nearest neighbors of R; and

o= _/d3rq§*(r —R)V(@ —R)¢((r —R))

and

S / &ré*(r — R,V (r — R)(r —R;).

In second quantization representation, the tight binding Hamiltonian is given by

H = anclcn + Z Tnchcm
n

n#Em

wheree, = T,,,+V (Rg) represents an energy on site n and 7y, denotes the amplitude
of hopping from site m to site .
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The periodic part of the Bloch function is expanded in Fourier series as

u,(k,r) = Z Ck(n, k)e'Kr
K

and the energy eigenfunction is simply written as

Y (r) = e*Tu(r) = Z Cge' *Kr,
K

The Schrodinger equation of an electron in a lattice periodic potential is written as
an infinite set of linear equations for the coefficients Ck:

h2
[E — Vo — — (kK + K)2:| Ck = Z VaCx_H.
2m 20

We can express the infinite set of linear equations in a matrix notation:

W VIR vk viK K
ik K HERWIRD vk 2

: : =0
Kl V K1) KalVIKy) o Ko T OGlVIKG) G

Here e = 2 (k + K)? and (K |V|K') = Vi_k/, where [K) = Jee'Er.
In the nearly free electron method, the energies near the zone boundary become

Ei(K) = Vo +ex = | Vi .

The two roots can be written, for small g, as

h2 q2 h2 q2
E_ =— E.=Ec+ —,
2m* * N 2m?
where q = % + k. Here the energy gap Eg is equal to 2 | Vi | and the effective masses
m’_ are given by
my = "
+ =~ 7L ek
1+ 2\‘1/(K|
The results are only valid near q = 0 since we expanded the original equations for
small deviations ¢ from the extrema. This result is called the effective mass approxi-
mation. Crystalline solids are classified as metals, semimetals, semiconductors, and
insulators according to the magnitudes and shapes of the energy gap of the material.



Chapter 5
Use of Elementary Group Theory
in Calculating Band Structure

5.1 Band Representation of Empty Lattice States
For a three dimensional crystal the free electron energies and wave functions can be
expressed in the Bloch function form in the following way:

1. Write the plane wave vector as a sum of a Bloch wave vector and a reciprocal
lattice vector. The Bloch wave vector K is restricted to the first Brillouin zone;
the reciprocal lattice vectors are given by

K¢ =11b; + Lbby + I3b3 (5.1

where (I1, [, I3) = £ are integers and b; are primitive translations of the reciprocal
lattice. Then

W, (k, 1) = e'kTe/Ker, (5.2)
The second factor has the periodicity of the lattice since e®'® = 1 for any
translation vector R.
2. The energy is given by
h2
E¢(k) = — (k+K)p)’. (5.3)
2m

3. Each band is labeled by £ = (11, /5, [3) and has ¥, (k, r) given by (5.2) and E, (k)
given by (5.3).
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5.2 Review of Elementary Group Theory

In our brief discussion of translational and rotational symmetries of a lattice, we
introduced a few elementary concepts of group theory. The object of this chapter is
to show how group theory can be used in evaluating the band structure of a solid. We
begin with a few definitions.

Order of a group If a group G contains g elements, it is said to be of order g.
Abelian group A group in which all elements commute.
Cyclic group A group of g elements, in which the elements can be written

A A% A3 . AT AY=E,

Class When an element R of a group is multiplied by A and A~! to form R’ =
ARA™!, where A and A~! are elements of the group, the set of elements R’
obtained by using every A belonging to G is said to form a class. Elements belong
to the same class if they do essentially the same thing when viewed from different
coordinate system. For example, for 4 mm there are five classes:

(1) E, (2) Rgp- and R_gpe, (3) Rygpe, (4) m, and my, (5) m; and m_.

Rearrangement theorem If G = {E, A, B, ...} is the set of elements of a group,
AG = {AE, AA, AB, ...} is simply a rearrangement of this set. Therefore
SR €GF(R) = Dreg f(AR).

Generators If all the elements of a group can be expressed in form A™D”, where m
and n are integers, then A and D are called generators of the group. For example,
the four operators of 2mm can all be expressed in terms of R and m, such as
E=R>=m?,R=R,m; =m,, my=R'm!.

5.2.1 Some Examples of Simple Groups

Cyclic Group of Order

n Consider an n-sided regular polygon. Rotation by R; = 2,7’ x j with j = 0,1,
2,...,n — 1 form a group of symmetry operations. The generator of this group is
R| = rotation by 27”

G ={R\,R{,R},...,R] =E} (5.4)
Symmetry Operations of an Equilateral Triangle

G = {E, Ri20, R_120,Ja, JB, Jc} (5.5)

Here Ry, and J5 are generators of G. In this case, we have 3 classes of { E }, {Ry20,
R_120}, and {Ja, Jg, Jc} (see Fig.5.1).
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Fig. 5.1 Equilateral triangle

Symmetry Group of a Rectangle

G={E,R m,, my} (5.6)
Here R and my are generators of G, and each element belongs to a different class
since x and y directions differ (see Fig.5.2).

Symmetry Group of a Square

G ={E;Rgy (= R1),R 90 (= R3); Rig0 (= Ry); my, my;my,m_} (5.7
Here Ry and my are generators, and classes are discussed earlier (see Fig.5.3).
Other Examples:

Groups of matrices, e.g., (i) n X n matrices with determinant equal to unity and (ii)
n x n orthogonal matrices.
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5.2.2 Group Representation

A group of matrices that satisfy the same multiplication as the elements of the group
is said to form a representation of the group. To be concrete, suppose a group G =
{E, A, B, ...} of symmetry operations operates on some function ¥ (x, y, z). These
operations give us the set of functions.

EV,AY,BY, . ... (5.8)

which form a vector space that is invariant under the operations of the group. By this
we mean that the space of all functions of the form

@ = c|E¥ 4+ AY + c:BY + - - (5.9)
where ¢; are complex numbers is invariant under the operations of the group. We can

choose a basis set ¥; with j = 1,2,...,] < g, where g is the order of the group.
Then for any ¢ belonging to this vector space we can write

!
o= c;¥;. (5.10)
j=1
For any element R € G,
1
RY; = Z Dy (R)¥, (5.11)
k=1

where D(R) is a matrix. The set of matrices D(R) (for each R € G) form a repre-
sentation of G.

5.2.3 Examples of Representations of the Group 4 mm

Under the operations of the eight elements of the group 4 mm, x always transforms
into £x or into £y as shown in the Table5.1.

Table 5.1 Operations of the group 4 mm on functions of x and y

Operation E Rigo Rogo R_gg my my my m_

X X —x y -y X —x y -y

y y -y —-X d -y y x —-X
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Representation I'y Consider the function ¥, = x>+ y2. Itis obvious that under every
operation belonging to G, ¥ is unchanged. For example,

Rigo¥ = Riso(x® +3) = (—0)* + (=) =x> +y? =%.  (5.12)
Thus every operation of G can be represented by the unit matrix
D(E) = D(Rig0) = D(Rgg) = D(R_g9) =+ = D(m_) = 1. (5.13)

This set of matrices forms a representation of G that is called the “identity”
representation and denoted by the symbol I (i.e. the representation 7). Any
function f(x, y) that transforms under the group operation R in exactly the same
manner as multiplication by the matrix D (R) representing R in the representation
T, is said to belong to the representation I7,.

Representation I'y Consider the function ¥, = xy. It is obvious that E, Rgg, m,
and m_ operating on ¥, leave it unchanged but that Rgg, R_g9, m,, and m,
operating on ¥, change it to —¥,. Therefore the matrices

D(E) = D(Rigy) = D(m;) = D(m)y = 1
D(Rgg) = D(R_g9) = D(my) = D(my) = —1

form a representation of G. This representation is called the I'y representation.

X
By constructing ¥3 = x? — y2, ¥ = xy(x?> — y?), and ¥5 = , it is easy to
y

construct Table 5.2, which illustrates the sets of matrices Dr, (R) for each R € G of
the group 4 mm. The sets of matrices { D, (R)} for each R € G form representations
of the group 4 mm. Functions belonging to the representation I'; transform under the
operations of 4 mm in exactly the same way as multiplying them by the appropriate
Dr;(R).

5.2.4 Faithful Representation

You will notice that the set of matrices forming the representation I} of 4 mm to which
the function x> + y? belonged were all identical, i.e. D(E) = D(R;) = D(R,) =
.-+ = D(myx) = 1. Such a representation is a homomorphism between the group
of symmetry operators and the group of matrices, and it is said to be an unfaithful
representation. A representation in which each operation R € G is represented by
a different matrix D(R) is called a faithful representation. In this case the group of
symmetry operations and the group of matrices are isomorphic.
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Table 5.2 Group representation table of the group 4 mm
Wo=x?+y? | Wy =xy(x* —yY) | Ws=x2—y? | U=y v —(*
R T y
D, (R) Dp,(R) Dp,(R) Dr,(R) Drs(R)
10
E 1 1 1 1
01
-1 0
Rigo |1 1 1 1
0 —1
01
Ryo 1 1 —1 —1
-10
0 -1
R_g9 |1 1 —1 —1
10
10
my 1 -1 1 -1
0 -1
-10
m, 1 -1 1 -1
01
1 1 1 1 01
m _ _
i 10
0 —1
m_ 1 -1 -1 1
-1 0
f f fr f fr
n D I3 Iy Is

5.2.5 Regular Representation

If we construct a multiplication table for a finite group G as shown in Table 5.3 for
2mm and we form 4 x 4 matrices D(E), D(R), D(my), D(my) by substituting 1in
the 4 x 4 array wherever the particular operation appears and 0 everywhere else, the
set of matrices form a representation known as the regular representation. Thus we

have
Table 5.3 Multiplication table of the group 2 mm
E'=E R™!'=R my! =m, my_l—my
E |E R my my
R |R E my my
my | my my E R
my | my my R E
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1000 0100
0100 1000

D(E) = oo1o0 | DR) = 0oo1 | e (5.14)
0001 0010

5.2.6 Reducible and Irreducible Representations

Suppose DV (R) and D® (R) are two representations of the same group, then D(R)

defined by
DO®R) 0
DR) = 0 DO®) (5.15)

also forms a representation of G. D(R) is called the direct sum of the first two repre-
sentations DV (R) and D® (R). A representation which can be written as the direct
sum of two smaller representations is said to be reducible. Sometimes a representa-
tion is reducible, but it is not at all apparent. The reason for this is that if the matrices
D(R) form a representation of G, then

D®R) = S"'DR)S (5.16)

also form a representation (corresponding to a change in the basis vectors of the
vector space on which the matrices act). This similarity transformation can scramble
the block diagonal form so that the resulting D(R) do not look reducible. A rep-
resentation is reducible if and only if it is possible to perform the same similarity
transformation on all the matrices in the representation and reduce them to block diag-
onal form. Otherwise, the representation is irreducible. Clearly all one-dimensional
representations (1 x 1 matrices) are irreducible.

5.2.7 Important Theorems of Representation Theory
(Without Proof)

(i) Theorem One The number of irreducible representations (IR’s) is equal to the
number of conjugate classes.
(i1) Theorem Two Ifl; is the dimension of the ith IR and g is the number of operations

in the group G
Zl? =g. (5.17)
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Examples

(i) 2mm There are four operations E, R, m,, my and there are four classes (remem-
ber that because the x and y directions are distinct my and my belong to different
classes). From Theorem One there are 4 IR’s; from Theorem Two they are all
one-dimensional so that

4
Zz}:12+12+12+12=4=g.

i=1

(ii)) 4mm There are eight operations falling into five conjugate classes: E; Ry; R
and R3; my and my; m; and m_. Therefore there are 5 IR’s and four IR’s must
be one-dimensional and one must be two-dimensional so that

5
DE=P+1P+1IP+17+2=8=g

i=1

5.2.8 Character of a Representation

The character y of a representation D (R) is defined as
X(R) =D Dj;(R) for eachR € G. (5.18)
J

Because the application of a similarity transformation does not change the trace of a
matrix

(1) x(R) is independent of the basis used for the vector space.
(i1) x(R) is the same for all elements R belonging to the same conjugate class.

Thus we can define x(C) to be the common value of x(R) for all R belonging to
conjugate class C.!

5.2.9 Orthogonality Theorem

In trying to determine the IR’s and their characters certain orthogonality theorems
are very useful. We state them without proof.

'In the regular representation, each IR I} appears /; times, where /; is the dimension of the IR I}.
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()
> X RXR) = gdij, (5.19)
ReG

where x' and x/ are the characters of two representations. This can also be
written
: .
> nex (Ox"(C) = gdi;. (5.20)
c

where n¢ is the number of elements in the class C.
(i)
> VO () = %5@/. (5.21)

(iii) If D{)(R) is the pv matrix element of the ith IR for the operation R, then

-1
vy

> DiL®) [DV®R)]

g
= 0100 (5.22)
ReG !

-1

v

= D;(fr')* (R) so that for unitary repre-

v

For a unitary representation [ DY)(R)]

sentation g
i W

Z D;(le (R) Dp,j’y’ (R) = féij 5##’ 51/1/ . (523)

ReG !

Some Examples

(i) 2mm We know there are 4 IR’s all of which are one-dimensional. We label
them I7, I3, I3, I';. The 1 x 1 matrices representing each element are given in
Table5.4.

(ii)) 4mm There are 5 IR’s; one is two dimensional and the rest are one dimensional
as are shown in Table 5.5.

The reader should use these simple examples to demonstrate that the orthogonality
theorems hold.

Table 5.4 Irreducible representations of the group 2mm

I I I3 Iy
E 1 1 1 1
R 1 1 -1 —1
my 1 —1 1 —1
my 1 -1 —1 1
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Table 5.5 Irreducible representations of the group 4 mm

mg, m— 1 —1 —1 1

I I I3 Iy Is
10
E 1 1 1 1 =2
01
-1 0
R, 1 1 1 1 = -2
0 —1
01 0-—1
Ri,R3 1 1 -1 -1 R =0
-10 10
10 —-10
my, my 1 —1 1 —1 X =0
0 -1 01
(o

5.3 Empty Lattice Bands, Degeneracies and IR’s at High
Symmetry Points

In an earlier section we determined the free electron energies and wave functions in
the reduced zone scheme for a two-dimensional rectangular lattice. The starting point
for many band structure calculations is this empty lattice band structure obtained by

writing, as (5.3),
2

h 2
E¢ (k) = m k+ Ky,

where Kk is restricted to lie in the first Brillouin zone and K is a reciprocal lattice
vector of (5.1)
K; = l1b; + by + I3bs.

Here, b; are the primitive translation vectors of the reciprocal lattice and /; =
0, 1, £2, .... We evaluate the energy at particular symmetry points, e.g. at k = 0,
the I point, along k, = k, = 0, the line A, etc.

The group of symmetry operations which leave the lattice invariant also leaves
the reciprocal lattice invariant. Suppose we know some wave function ¥. A rotation
or reflection operation of the point group acting on ¥ will give the same result as
the rotation or reflection of k, that is

R (x) = Yre(x) = ¥ (R™'x). (5.24)
Here we used the fact that applying the same orthogonal transformation to both

vectors in a scalar product does not change the value of the product, for example
k-R7'r =Rk -RR™'r = Rk - r. By applying every R € G to a wave vector k, we
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Fig. 5.4 STAR of square lattice

generate the STAR of k. For a two-dimensional square lattice, all operations leave
I' invariant so I" is its own STAR (see Fig.5.4). For a general point k, there will
be g (=8 for 4mm) points in the STAR of k. The symmetry point X has four points
in its STAR; two of these lie along the x-axis and are equivalent because they are
separated by a reciprocal lattice vector. The other two points in the STAR of X are
not equivalent to the X-point along the x-axis because they are not separated from it
by a reciprocal lattice vector. All four points in the STAR of M are equivalent since
they are all separated by vectors of the reciprocal lattice.

5.3.1 Group of the Wave Vector K

The group (or subgroup of the original point group) of rotations and reflections that
transform Kk into itself or into a new k vector separated from the original k point by
a reciprocal lattice vector belong to the group of the wave vector k.

Example

For a two-dimensional square lattice (Fig. 5.5) we remember that A, Z, and X denote,
respectively, any point on the line from I" — X, X — M, and I’ — M. We have
the groups of the wave vectors as follows:

Gr =Gv = {E,R;, Ry, R3, m;, my, m;, m_}
gX = {Es R25 my, my}

Ga = {E.my) (5.25)
gy ={E, m;}
Gz = {E’ my}

When the empty lattice bands are calculated, there are often a number of degenerate
bands at points of high symmetry like the I"-point, the M-point, and the X-point.
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‘.M

I 2 * X

Fig. 5.5 First Brillouin zone of a square lattice

Because the operations of the group of the wave vector I" (or M or X) leave this
point invariant, one can construct linear combinations of these degenerate states that
belong to representations of the group of the wave vector I" (or M or X etc.).

Example

Empty lattice bands for a two-dimensional square lattice are written by

K2 2 .
Ep, (k) = o (k +K;;,)" and ¥, (k, 1) = e/ &)™, (5.26)

Here 5
m ~ ~
K, = s (1% + L3) (5.27)

with /1, = 0,1, %2, .... The empty lattice bands are labeled by the pair of
integers (/1, Ip) (see Fig.5.6). By defining £ and ) by

2
k= =[5 + 5] (5.28)

then we have

2

h 2mi ” |
Eni = 50— [(€ 4107+ 0+ 0)] and @, = T HEH02 1 (5.29)

The parameters & and 7 are restricted to the range [—%, %].
Exercise

Evaluate the energies E;,;,(I"), Ej,;,(X) for energies up to E = 2,},';2 x 10. Make a
sketch of the empty square lattice bands going from I — A — X. (Use straight
lines to connect Ej,;, (I") to Ej;,(X)). List the degeneracies at I, A, and X. For

example, see Table 5.6.
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E Square Lattice
8 V = 0 Energy Bands @ 8
2) (1) (4)
7t 17
(2) (6)
6 (2 16
(4)5 15
(2)
¢ (2 (4)
(44 m o 4 14
2'_1)(2)
(4)
3 3
(1,41) 2,0)
(2) (2)
(@2 (—1,+1) (1.0) {2
(2)
(1) (0,%1) (2) (4)
a1 11
“ =1.0) (1)
(1) (0.0) (@)
(10
r - A - X

Fig. 5.6 Empty lattice bands of a square lattice along the line I" — A — X. Energy is measured

in units of %z We have drawn straight lines connecting E; ;, (I") to Ej,;,(X) for the sake of
simplicity. The pair of integers (I1, [2) is indicated for each band, and the band degeneracy is given
in the parenthesis. In fact the energy along A varies as £2 + 21 € + 112 + l%

Table 5.6 Empty lattice bands of the group 4 mm

Il | 2L, () =13+ 2 gy, (X) = (I + 22+ 3
00 |0 1
-1 0 |1 1
10 |1 7
-2 0 |4 g
2 0 |4 el
0+l |1 3
0+2 |4 a
—1£1 |2 3
-1£2 |5 4
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5.4 Use of Irreducible Representations

It is apparent from the V (r) = 0 empty lattice structure that at some points in the
Brillouin zone more than one band has the same energy. If we refer to the two-
dimensional square lattice, we find that at E(X) = %% there are two degenerate
bands, viz. (I;,1;) = (0,0) and (—1,0). At E(I") = % there are four degenerate
bands (—1, 0), (1, 0), (0, 1), (0, —1). The vector space formed by the degenerate
bands at E (k) is invariant under the operations of the group of the wave vector k.
This means that the space of degenerate states at a point k in the Brillouin zone
provides a representation of the group of the wave vector k. We can decompose this
representation into its irreducible components and use the decomposition to label
the states. This process does not change the empty lattice band structure that we
have already obtained. It is simply a convenient choice of basis functions for each
of the spaces of degenerate energy states. However, once the periodic potential V (r)
is introduced, it is immediately seen that band gaps appear as a consequence of the
decomposition of degenerate states into irreducible components. We shall see that
states belonging to different IR’s do not interact (i.e. they are not coupled together
by the periodic potential).
The periodic potential V (r) can be expressed as a Fourier series

V(r) = Z Ve KT, (5.30)
K

where K is a reciprocal lattice vector. For the two-dimensional square lattice we can
write .
V)= D Vi e, (5:31)
lllz

Because V (r) is invariant under the operations of the point group, it is not difficult
to see that

Vi =Varn,=Vi-,=Voa =V, =V, =V, =V_i, ;. (5.32)

In our previous discussion of the effect of the periodic potential we were able to
obtain an infinite set of coupled algebraic equations, (4.40), which could be written

52
E—Vp——k+K)?|[Ck = VuCk_n. 5.33
|: 0 2m(+):|K HZ#)HKH (5.33)

Here Cx was the coefficient in the expansion of u(r), the periodic part of the
Bloch function, in Fourier series. This infinite set of equations could be expressed
as a matrix equation, (4.41). The off-diagonal matrix elements are of the form
< Ki|V(r)|K; >= Vk,_k;. When the degeneracy of a particular energy state

becomes large [e.g. at E(I") = 5% the degeneracy is 8], the degenerate states
must be treated exactly and there is no reason to suppose that any off-diagonal matrix


http://dx.doi.org/10.1007/978-3-319-73999-1_4
http://dx.doi.org/10.1007/978-3-319-73999-1_4
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elements vanish. However, when we classify the degenerate states according to the
irreducible representations of the group of the wave vector, we are able to simplify
the secular equation by virtue of a fundamental theorem on matrix elements.

Theorem on Matrix Elements (without proof)

Matrix elements of any operator which is invariant under all the operations of a
group are zero between functions belonging to different IR’s of the group. Matrix
elements are also zero between functions belonging to different rows of the same
representation.

When one classifies the degenerate states according to the IR’s of the group of the
wave vector, many of the degenerate states will belong to different IR’s and therefore
the off-diagonal matrix elements of V (r) between them will vanish.

5.4.1 Determining the Linear Combinations of Plane Waves
Belonging To Different IR’s

Let us begin by considering the states at I" of a square lattice. The plane-wave wave
functions and energies are given, respectively, by

2mi

(1) = 20 530
Ep,(IN) = 5,—= 17 +13).
Therefore, the energies at I", the bands corresponding to that energy, and the degen-
eracy are as given in Table5.7.

At E = 0, there is a single state (let us measure E in units of %). The wave
function is given by

Wo(IN) = 1 (5.35)

It is unchanged by every operation of G-, the group of the wave vector I". Therefore,
it belongs to the IR I} because every element of G- operating on ¥y gives +1 x Wy
or every operation is represented by the 1 x 1 unit matrix D = 1. This, of course, is
the I'| representation. At E = 1, there are four states

Table 5.7 Empty lattice energy at I" and its degeneracy for a two dimensional square lattice

2'}'l'—zazE(F) Bands (Iy, 1) Degeneracy
0 (0,0) 1
1 (£1,0); (0, £1) 4
2 (—1,£1); (1, £1) 4
4 (£2,0); (0, £2) 4
5 (—=1,£2); (1, £2); (=2, £1); 2, £1) | 8
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Wi o(I7) = =
Wo,u1 (1) = =57, (5.36)
The eight operations of G, change x into x and y into £y or x into £y and y

into £x. From the four function ¥4, o and ¥ +; we can form the following linear
combinations

2mx 2wy
W(F]) = COs 7 + cos 7 X Wl’() + lI/_1’0 + l1/()’] + '1/(),_1, (537)

27x 27y
Y (I3) =cos — —cos —— X lI/l,O + ‘1/7170 — qfo,l — lI/()’,l, (5.38)
a a

and
v\ _(sinZEY  (wg-w
¥([s) = = '8 ’ e 5.39
(75) (W(z)(Fs) sin T Vo1 — Yo,—1 (5-39)
Because the cosine function is an even function of its argument, every operation of
Gr leaves (cos === 2” + cos 2ﬂ) unchanged and this function transforms according to
the IR I. The functlon (cos <££ 2” — 27r‘) is left unchanged by operations (E, R,,

my, my) which change x — :I:x but it changes to minus itself under operations
(R, R3, my, m_) which change x — =£y. Thus the operations of G operating

on (cos ZZ — cos 2ﬂ) do exactly the same thing as multiplying by the matrices
belonging to the representation I'5. In a similar way one can show that the operations
i 2mx
sin ==
of G operating on the column vector { 27‘;}, ) have exactly the same effect as
sin =2
a

multiplying by the set of matrices forming the 2 x 2 representation [5.
Exercise

The reader should determine the linear combinations of plane waves at Ej = 2 and
E = 4 belonging to the appropriate IR’s of G-.
At Er = 5 there are eight states

2mi

— a3 (:I:x:I:Zy)
Vi) = ezﬂ (5.40)
Wip 41 (1) = e’ 22

The simplest way to determine the linear combinations belonging to IR’s of G is
first to form sine and cosine functions like



5.4 Use of Irreducible Representations
Y, = cos za—”x CcoS 27“2)),
Y, = cos —2x CcoS ‘y,
Y3 = sin —x sin —2y,
Y, = sin 27’r2x sin 20—”)1,
s = cos X =Lx sin —2y,
Y = cos —2x sin —y,

Y5 = sin 2—T)c cos —2y,

sin —2x cos 27Ty

Yy

149

Itis easy to see how these ¥/'s are transformed by the operations of G. For example,
all operations of G- which transform x — =x transform ¥ into itself; all operations
which transform x — =%y transform ¥; into ¥,. Therefore, the linear combination
¥, 4+ ¥, is unchanged by every operation of G and belongs to 7. The linear
combination ¥; — ¥, is unchanged by the operations which take x — =x, but

changed to —(¥, — ¥,) by operations which take x — =+y. Thus ¥,

to the IR I3 We find, by similar analysis

Y (I7) =cos %ﬁx cos Za—WZy + cos 27”2x cos %”y =U| + Y,

— 2r 2mgy 2n My — g, —
W (I3) =cos<xcos<r2y —cos =r2xcos Tty = ¥

¥ () =sinZE =Fxsin 2T2y 27T2x sin 2% Ty =¥ —

21

W (Iy) =sin="xsin —2y + sin 2—”2x sin —y =5+ Yy,

2
Ccos Ztx sin —2y
Ty = = ("’5),
co y sin —2x g
2

sin <L x cos —2y 0%
sin =y cos = 2x 6

— ¥, belongs

(5.41)
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The character tables for 4mm and its principal subgroups are listed in Tables 5.8,
5.9, 5.10 and 5.11. Notice that under the operation my, functions belonging to the

IR’s

SNk L=

Il and I3 are unchanged.
I, and Iy change sign.
X and X3 are unchanged.
X, and X4 change sign.
Ay are unchanged.

A; change sign.

Table 5.8 Character table of the groups 4 mm and its principal subgroups

I =M I, =M I3 =M3 Iy =My I's = M;

E 1 1 1 1 2
R, 1 1 1 1 -2
Ri,R3 1 1 -1 -1 0
my, My 1 —1 1 -1 0
my, m_ 1 -1 -1 1 0

Table 5.9 Character table of a principal subgroup Gx

X1 X X3 X4
E 1 1 1 1
Ry 1 1 -1 -1
my 1 -1 1 -1
m, 1 -1 -1 1

Table 5.10 Character table of a principal subgroup G

Ay

A

1

1

my

1

—1

Table 5.11 Character table of a principal subgroup Gx

P

by

1

1

1

—1
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Because of this only a A; band can begin at an I} or I3 band and only a A; band
can end at an X, or X3 band. We call such restrictions compatibility relations. For
our purpose it is sufficient to know that

A band A can connect I, I3, I'5to Xy, X3.
A band A, can connect 15, Iy, I'5 to X5, X4.
A band X; can connect I, Iy, I'5 to M, My, Ms.
A band X, can connect I, I3, I'5 to My, M3, Ms.

5.5 Using the Irreducible Representations in Evaluating
Energy Bands

Instead of labeling energy bands at particular symmetry points or along particular
symmetry lines by the integers (I, [;) [or in three-dimensions (I, I, [3)], itis possible
to label the states by their energy and by the linear combination belonging to a
particular IR of Gi. Thus, at the I" pointof E =1 - % we may write the four states
as

2mi

11,0) =ed”
| = 1,0y =e %7
I, ) = ni 5.42
l1, 1) 1.0) = e (5.42)
0,—1) =e
or we can write (in units of % =1
2mx 2wy
|[Er =1,17) = cos — + cos —— (5.43)
a a
2mx 2y
|Er =1, I[3) = cos — — cos —— (5.44)
a a
Er =115\ _ (¥Ou) _ (s
|[Er =1,T5), v (Is) sinzaﬂ

There is a distinct advantage to using the basis functions belonging to IR’s of G
that results from the theorem on matrix elements.

Any matrix elements of the periodic potential (i.e. an operator with the full sym-
metry of the point group) between states belonging to different IR’s is zero. Thus,
the secular equation becomes

o) — E (0|V|1IY) (0|V[113) (NMO0|V[1T5), ---
(n1|vior) ey —E£ (N1|V[1G) (I1|V]15); -
(I1|Vi0ry) (I31|\V|1h) &3 —E ((I31|V|1]5); ---
(ISTIVION) ((Is1IV1) ((I51 | V1) ei(I5) —E | =0 (5.46)

2,51 |VOIT) o(I51 |V 117)
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Equation (5.46) reduces to

Eo(rl)—E <F10|V|1F1) 0 0

(nl|viorn) 1) —E 0 0
0 0 e1(I3) — E 0
0 0 0 e(I's)—E---|=0 (5.47)
0 0 0 0---

Here e,(I) = %nz + (I'jn |V| I'jn). There are two things to be noted:

. The matrix elements of V between different IR’s vanish, so many off-diagonal
matrix elements are zero. This reduces the determinant equation to a block diag-
onal form.

. The diagonal matrix elements (I";n |V | I';n) are, in general, different for different
IR’s I';. This lifts the degeneracy at the symmetry points and splits the four-fold
degeneracy into non-degenerate states I and /3 and one doubly degenerate state
[sat E(N) ~ 152

2ma? "

When the energy bands along A and along X are classified according to the IR’s

of the appropriate symmetry group, a band structure like that sketched in Fig.5.7
results. The degeneracies at I" and X are lifted by the diagonal matrix elements
of the potential. The rare case when two different IR’s have the same value of the
diagonal matrix element of V(r) is called as accidental degeneracy. Two A-bands

E Electronic Energy Bands
4f= Sqaure Lattice V= 0

Fig. 5.7 Electronic energy bands of a square lattice with V # 0 along the line I" — A — X. The
bands are schematic, showing where splittings and anticrossings occur on the simplified diagram

(Fig.5.6) which connects E(I") and E(X) by straight lines
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belonging to Aj, or two belonging to A, cannot cross because they are coupled by
the non-vanishing matrix elements of V (r) between the two bands. However, a A
band can cross a A, band because (W4, |V (r)|¥a,) = 0. Bands that are widely
separated in energy (e.g. the bands at E(I") = 1 and E(I") = 4) can be treated by
perturbation theory as was done in the nearly free electron model. One can observe
that degeneracies do not occur frequently for bands belonging to the same IR’s at I”
(or at X) until the energies become high.

5.6 Empty Lattice Bands for Cubic Structure

5.6.1 Point Group of a Cubic Structure

Every operation of the cubic group will turn x into +x, £y, £z. It is easy to see that
there are 48 different operations that can be listed as follows.

x—> xx,y —> xy,z > £z.
x —> xx,y —> xz,7 > £y.
x—> ty,y—> +x,z > Fz.
x —> ty,y—> +z,7 > £x.
x —> *z,y —> +y,7 > £x.
X —> Fz,y > £x,7 = £y.

s »Ph =

Since there are =+ signs we have two possibilities at each step, giving 2° = 8 opera-
tions on each line or 48 operations all together.

We can also think of the 48 operations in terms of 24 proper rotations and 24
improper rotations:

Proper Rotations

E; Identity — 1 operation

4; Rotation by +90° about x, y, or z-axis — 6 operations

42: Rotation by £180° about x, y, or z-axis — 3 operations

2; Rotation by £180° about the six [110], [110], [101], [101], [011], [011] axes —
6 operations

3; Rotation by £120° about the four (111) axes — 8 operations Hence, we have 24
proper rotations in total.

Improper Rotations

Multiply each by J (inversion operator: r — —r) to have 24 improper rotations. The
24 improper rotations are obtained by multiplying each of the 24 proper rotations by
J, the inversion operation (r — —r). Clearly there are 10 classes and 48 operations.
Using the theorem

D=y

i=IR



154 5 Use of Elementary Group Theory in Calculating Band Structure

Table 5.12 Characters and IR’s of cubic group

(Number of operations) M 1B |® [6) [(]) [(I) |3 |©® |6, |8
Class — E (4 |4 |2 |3 |J 142 14 (12 |13
Representation |,
I (Ayy) 1 1 1 1 1 1 1 1 1 1
I (Agy) 1 -1 |-1 1 1 -1 |=1 1
I, (Ey) 2 2 0 0 |—1 2 2 0 0 |—1
rls (Tyy) 3 -1 1 |-1 0 3 -1 -1 0
Is (Tay) 3 -1 | -1 1 0 3 |1 |—=1 1 0
I (Aw) 1 1 1 1 1 |-1 |-1 =1 |-1 |-1
Iy (Aw) 1 1 |—1 -1 1 |=1 |=1 1 -1
Iy (B, 2 2 0 0 [-1 |—2 |=2 0 0
I'is (Tiu) 3 -1 1 -1 0 |[-3 1 |=1 1 0
Is (Tay) 3 |-1 |-1 1 0 |-3 1 1 | -1 0

we can see that there are 10 IR’s, four one-dimensional, and two two-dimensional,
and four three-dimensional ones, so that

2{12 417 + 2> + 32 + 32} = 48.

Characters and irreducible representations of the cubic group are listed in Table 5.12.

5.6.2 Face Centered Cubic Lattice
The primitive translation vectors of a face centered cubic lattice are given by
a. .. . a. . a .. .
a ZE(X-F)’),az:E(Z‘f‘x),aS:E()"l‘Z)- (548)

The primitive vectors of the reciprocal lattice (including the factor 27) are

2

2T . .. 2T . . A A A A
b, = 7(—)6 —y+2),b = 7(—x +y—2),b3= 7(x —-y—-2). (549
An arbitrary vector of the reciprocal lattice can be written as

Gk = hib; + haby + h3bs,

2 A A . (5.50)
Gy = 2 [(=h1 — hy + h3)% + (—hy + ha — h3)§ + (hy — hy — h3)Z].
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Fig. 5.8 The first Brillouin zone of the fcc lattice

Brillouin Zone

There are eight shortest and six next shortest reciprocal lattice vectors from the origin
of reciprocal space to neighboring points (remember that the reciprocal lattice of an
fcc is a bee). They are given by

(i) the eight vectors 2T [+£, j:y, +7] Whose length is |G| = 2Z/3.
(i) the six vectors ZX (:t2x) (:i:2y) “1(£2Z) whose length is |G| = =* - 2.

The first Brillouin zone is the volume enclosed by the planes which are the perpen-
dicular bisectors of these 14 G-vectors. The first Brillouin zone of the fcc lattice has
six square faces perpendicular to (100) and 8 hexagonal faces perpendicular to (111)
(see Fig.5.8).

The names of high symmetry points are labeled in Fig.5.8. I" is the origin. Arbi-
trary points along (100), (110), and (111) directions are called A, ¥, and A, respec-
tively. The special points X, L, K and W are

27T 111 2 (3 3 2
=—(100)L - ==}, K=—1{1-,-,0),W=— , 1,0
a \2 2 2 a \4 4 a 2’

The energy of a free electron is given by

2

E =
2ma?

[L+O*+ L +0)*+ G+ 7 (5.51)

where
liy=—hy—hy+h3,lb=—h;+hy —h3,l3=hy —hy — h3
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2

and h; are integers. If we measure energy in units of zh—z, then
ma

E(N=03+1B+13,
EX)= 0 +1)2+12+13, (5.52)
2 2 2
EL) =0L+3)"+0L+3) +B+1) .
One should obtain a table similar to Table 5.13. From the table you constructed, you
can draw the empty lattice band structure, showing the bands going from I" — X
and from I" — L. This empty lattice band structure is shown in Fig.5.9. Note that

k= 277)2 at Xandk = 7 (X + J +2) at L. The energy E is sketched as a function of
k.

5.6.3 Body Centered Cubic Lattice
The primitive translations of the reciprocal lattice (including 27) are
2T . 2T . 2T .
bi=""(F+2),by= (=3 + ), by = (= + ). (5.53)

Therefore a general reciprocal lattice vector Gy, p,p, 1 given by

Gy iyny, = hiby + hoby + hsbs
2 . . R
= [(hy — o)X + (hy — h3)3 + (hs + h)Z]. (5.54)

The 12 shortest reciprocal lattice vectors are

2, . 2 2
+— (x y y X

a a a

They have length 27” /2. The first Brillouin zone is formed by the 12 planes that bisect
these 12 shortest reciprocal lattice vectors (see Fig.5.10a). Figure 5.10b shows the
cross section of the four planes that bisect the shortest G = =+ 27” (x£) perpendicular
to the z axis of the first Brillouin zone of the bcc lattice. The empty lattice energy
bands can be written by

2

h
By = o — [+ 9+ G +m* + 5+ O] (5.55)
ma

where
Iy =hy —hy, b =hy —h3, I3 ="h3+hy,
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Table 5.13 Energies for fcc empty lattice £(I") < 8. Energy is measured in units of %

hy ha h3 I b I3 EUT) |EX) |EL)
0 0 0 0 0 0 0 1 3
1 0 0 -1 -1 1 3 2 4
-1 0 0 1 1 -1 3 6 2
0 1 0 -1 1 -1 3 2 a
0 -1 0 1 -1 1 3 6 2
0 0 1 1 -1 -1 3 6 4
0 0 -1 -1 1 1 3 2 2
1 1 1 -1 -1 -1 3 2 3
-1 -1 - 1 1 1 3 6 z
1 1 -2 0 4 1 a
-1 -1 2 0 4 9 e
1 0 1 0 -2 0 4 5 4
- 0 -1 0 0 4 5 a
1 1 0 -2 4 5 4
-1 -1 0 2 4 5 a
1 -1 0 0 -2 8 9 B
-1 1 0 0 -2 8 9 B
1 0 -1 -2 0 2 8 5 B
-1 0 1 2 -2 8 13 B
0 1 -1 -2 0 8 5 B
-1 1 2 -2 8 13 B
1 1 -2 -2 8 5 2
-2 -1 -1 2 8 13 e
1 2 1 -2 -2 8 5 2
-1 -2 -1 0 2 8 13 3
1 1 2 -2 -2 8 2
-1 -1 -2 2 2 8 e

and h; are integers. We use the symbols of k = 20—”(5, 7,(), H=

P=2(4, 5, 4),and N=

27
a

—(%, %, 0). Thus, we have, in units of

n?
2ma?

(1,0, 0),
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E
(2,0,0) (2,0,0)
0,2,0) 6 ©)
/(0,0,2)
(0.22,0)
(1 1—11)9/4 U 4 s ©.0,22) @
(L1107 3
1, 1.1) za{g»g) <(1.11,41)
(0,0,-2)
(8) 4]+
©11 T (-1,£1,21)
% 1) 2
(-1,-1,1)
C1-1-1) 200
1M
3
@ /4
(0,0,0) ©.0.0
(1),
0
L - r X
k| =222 Al
k== Ikl=%

Fig.5.9 Empty lattice band of the fcc lattice. The energy E is measured in units of #22 and plotted
as a function of k. Each band is schematically represented by a straight line going from Ej(I") to
Ey(X) or Ej(L) even though the bands really have a more complicated (quadratic form) dependence
of the Bloch wave vector k. The set of integers (/1, [2, [3) is indicated for each band

(b) Y
T /AN A
EI/ N 27 (T+y)
// \\ /// :
AN
,// \ ,’/ \\\ :
/\ " f /\JI €T
\\\ r /KH
. \’\ four planes that
\f/—/7~\\ bisect shortest
N G vectors L2

Fig. 5.10 (a) First Brillouin zone of the bcc lattice. (b) Cross section of the four planes bisecting
the G = :I:za—” (X £ 9) perpendicular to the z axis of the first Brillouin zone of a bec lattice
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En, (D) =1 +15+13,
Enpis(H) = (4 + D>+ 15+ 13,

(5.56)
Enns® =0+ + L+ + 5+ 1),
EnyN) = (I + 1) + (b + 1) + 2.
Since ly = hy — ha, I = hy — h3, I3 = h3 + hy, we can write
E(I) = (hy — h2)* + (hy — h3)* + (hy + h3)?,
EM) = (hy — ha + 1)* + (hy — h3)* + (h1 + h3)?,
5.57)

ER) = (b —ha+3)"+ (o= hs + )"+ (b +hs +3)°,
EN) = (hy — hy + )* + (ha — hs + 1)* + (1 + ha)>.

5.7 Energy Bands of Common Semiconductors

Many common semiconductors which crystallize in the cubic zincblende structure
have valence—conduction band structures that are quite similar in gross features. This
results from the fact that each atom (or ion) has four electrons outside a closed shell
and there are two atoms per primitive unit cell. For example, silicon has the electron
configuration [Ne]3s23 p?,i.e., two 3s electrons and two 3 p electrons outside a closed
neon core. With two silicon atoms per primitive unit cell, this gives eight electrons
per primitive unit cell. The empty lattice has a single I} band at Ey = 0 and 8-
fold degenerate bands at £ = 3. The eightfold degeneracy is lifted by the periodic
potential, so the valence and conduction bands at I" will arise from these eight bands.
Germanium has the electron configuration of [Ar]3d %4524 p?, and III-V compounds
like GaAs {Ga ([Ar]3d'%4s*4p") As ([Ar]3d"°4s*4p?)} look just like Ge if one 4p
electron transfers from As to Ga leaving a somewhat ionic Ga~ As™ molecule in the
unit cell instead of two Ge atoms. The same is true if any III-V elements replace a
pair of Si atoms or Ge atoms in a zincblende structure.

A nice example of the use of group concepts in studying energy band structure
is a simple nearly free electron type model used to give a rather good description
of the valence—conduction band semiconductors with zincblende structures. We will
give a rough sketch of the calculation, referring the reader to an article by D. Brust.”
To describe the band structures of Si and Ge, Brust use the following 15 plane-
wave wave functions corresponding to the 15 bands at I which have energy E < 4
(see the 15 bands at I" in Fig.5.9). We can write these 15 plane waves as w;, with
i=1,2,3,..., 15 defined by

2D. Brust, Phys. Rev. 134, A1337 (1964).
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wy = 1 Eo(I") =0,

w) = wi =e% W) E () = Es(I") =3,
wy = wi =ee I Ey(IN) = Eg(I') = 3,
wy = wh = e’ D Ey(I) = Ef(I') =3,

wy = wj =ew ) By = Ey(I') =3,

wy = wi, = e Ey(I') = En(I') =4,
Wi = Wiy =¢€a? E(I") = Ez(I') =4,
2,
Wi =wWj, =€’ En(I') = Enu(I") =4,
From these 15 functions wy, wy, ..., w4, one can construct linear superpositions

belonging to IR’s of the group of the wave vector I", X, L, etc. Some examples are

Y, = «/LVwO belongs to 17,

1
U, = M[w' — wy — w3 — Wy + ws — wg — w7 — wg] belongs to I7,

Wy = J%fv[w, + wy — w3 + wq — ws — we + w7 — wg] belongs to I7s,

Yo = \/%—V[we» + wio + w1 — Wiz — Wiz — W4l belongs to 17,
U5 = \/%T/[w“ + w4l belongs to Is.

If you use these combinations of plane waves, the Schrodinger equation breaks up
into a block diagonal 15 x 15 matrix as shown in (5.58).

I
I3 x 3]
F15[3 X 3]
I —0. (558
I
I
T[22 x 2]
F25[3 X 3]

Here I and Iy are 1 x 1, Iy is a2 x 2, and I's, I35, and F2’5 are 3 x 3 matrices,
respectively. Off diagonal elements and bands in higher empty lattice states are treated
by standard non-degenerate perturbation theory.

Now the question arises “What do we use for the periodic potential V (r) =
2 Vi 1,1,/ X7 27 Brust simply treated the parameters V},;,;, as phenomenological
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L r X

Fig. 5.11 Simple band structure of Si along [111] and [100] directions

coefficients to be obtained by fitting band gaps and effective masses measured experi-
mentally or fitting more detailed first-principles band structure calculations. He found
that he could obtain a reasonably satisfactory fit by keeping only three parameters:

V(3) = Vi, whenl? +15+15 =3,
V(S) = ‘/111213 when l% + l% + l% = 8, (559)
V(1) = Vjp, when I§ + 13 + 15 = 11.

Remember, by cubic symmetry, Vi 11 = V11,1 = V11,1 = V_1,_1,—1 etc. For Si,
Brust found that V(3) >~ —0.21 Ry, V(8) ~ 0.04 Ry, V(11) ~ 0.08 Ry. For Ge he
found that V(3) ~ —0.23 Ry, V(8) ~ 0.00 Ry, V(11) ~ 0.06 Ry.

The band structure obtained for Si is illustrated in Fig.5.11 including momentum
independent exchange potential as calculated by Kleinman and Phillips.? This dia-
gram shows 11 bands at I" out of the 15 bands we put into the calculation. Since
there are two atoms per unit cell and four valence electrons per atom, we have eight
electrons per unit cell or enough to fill four bands. Thus the I's state is the top of
the valence band. The conduction band is |5 at I", but the minimum is at near the
X-point, so the conduction band minimum has six valleys, each very near one of the
six X points.

3L. Kleinman and J. C. Phillips, Phys. Rev. 118, 1153 (1960).
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Problems

5.1 Consider the empty lattice band of a two-dimensional square lattice. At E(X) =

0. 25 —7 there are two degenerate bands. At E(X) = 1.255 s -z there are four. Deter-
mine the linear combinations of degenerate states at these pomts belonging to the
IR’s of Gx. Do the same for E() = 5, — and 210

2maz2

5.2 Consider the group of a two-dimensional square lattice. Use your knowledge of
the irreducible representations at E(I") = 0, 1, 2 (in units of 5 2) and at E(X) =
0.25 and 1.25, together with the compatibility relations to determme the irreducible
representations for each of these bands along the line A.

5.3 Tabulate E(I"), E(H), E(P) for all bands that have £ < 4 [%] for a bee
lattice. Then sketch E vs. k along A(I" — H) and along A(I" — P).

5.4 Do the same as above in Problem 5.3 for a simple cubic lattice where

2

h
Ev= 2 [ 07 + (2 +0) + (6 + 0]

forI', X = ;—T(l, 0,0),and R = ;—T(l, 1, 1). Sketch E vs. k along I' — X and along
I' — R for all bands having E, < 4 [52].

2ma?

5.5 Use the irreducible representations at £ (X) = 0.25 [%] of a square lattice to
evaluate
Vij = (¥,(0.25) | V(r) | ¥x,(0.25))

where Wx, (0.25) is the wave function at E(X) = 0.25 [%] belonging to the
irreducible representation X;.

(a) Show that V;; =0ifi # j.
(b) Show that the diagonal matrix elements give the same energies (and band gap)
as obtained by degenerate perturbation theory with the original plane waves.

5.6 A two dimensional rectangular lattice has a reciprocal lattice whose primitive

translations, including the 27, are b; = —x andb, = 2% «/IE .
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M
)\
D/
2t 1
EN3 L S B
J2 A
\/
= 2 pe
a
(a) List the operations belonging to G.
(b) Do the same for Gx and G,.
(c) Forthe empty lattice the wave functions and energies can be written ¢ (k, r) =

(d
(e

®

expi(k + Kj) - rand Ej(k) = 2%21 k+ Kl)z. Here, K; = [1b; 4+ I1b,, and [;
and [, are integers. Tabulate the energies at I" and at X for (/1, ;) = (0, 0),
0, £1), (-1, 0), (1, 0), and (—1, £1).

Sketch (straight lines are OK) E vs. k along the line A (going from I" to X)
for these bands.

Two degenerate bands at the point E(I") = 0.5 connect to E(X) = 0.75.
Write down the wave functions for an arbitrary value of k, for these two
bands.

From these wave functions, construct the linear combinations belonging to
irreducible representations of G,4.

5.7 Graphene has a two-dimensional regular hexagonal reciprocal lattice whose
primitive translations are by = %(1, —%) and b, = %(0, %).

(a)
(b)
(©

(d)

(e
®

List the operations belonging to G.

Do the same for Gk and Gy;. Note that ky = 20—”(_2, 0) and ky; = 27”(%, ﬁ).
Write down the empty lattice wave functions and energies ¥;(k, r) and Ej(k)
at I" and K.

Tabulate the energies at I" and at K for ({1, 1) = (0, 0), (0, 1), (£1, 0), (—1,
—1),and (1, 1).

Sketch E versus k along the line going from I" to K for these bands.

Write down the wave functions for the three fold degenerate bands at the
energy E(K) =4/9.

5.8 Construct linear combinations of 15 plane waves w; (i = 1, 2, ..., 15), which
are given in the text, to construct ¥; belonging to irreducible representations of the
group of the wave vectors I, L, and X for the diamond structure.
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Summary

In this chapter we first reviewed elementary group theory and studied the electronic
band structure in terms of elementary concepts of the group theory. We have shown
that how group theory ideas can be used in obtaining the band structure of a solid.
Group representations and characters of two dimensional square lattice are discussed
in depth and empty lattice bands of the square lattice are illustrated. Concepts of
irreducible representations and compatibility relations are used in discussing the
symmetry character of bands connecting different symmetry points and the removal
of band degeneracies. We also discussed empty lattice bands of the cubic system and
sketched the band calculation of common semiconductors.

The starting point for many band structure calculations is the empty lattice
band structure. In the empty lattice band representation, each band is labeled by
£ = (1, I, I3) where the reciprocal lattice vectors are given by

K¢ =1ib; + Lbby 4+ I3b3

where (1, [, [3) = £ are integers and b; are primitive translations of the reciprocal
lattice. Energy eigenvalues and eigenfunctions are written as

h? )
Ee(k) = — (k + Ki)

and o
We(k, r) — elk»l‘elK(-r.

The Bloch wave vector Kk is restricted to the first Brillouin zone.

The vector space formed by the degenerate bands at E (k) is invariant under the
operations of the group of the wave vector k. That is, the space of degenerate states
at a point k in the Brillouin zone provides a representation of the group of the wave
vector. k. We can decompose this representation into its irreducible components and
use the decomposition to label the states.

When we classify the degenerate states according to the IR’s of the group of the
wave vector, we are able to simplify the secular equation by virtue of a fundamental
theorem on matrix elements:

1. The matrix elements of V between different IR’s vanish, so many off-diagonal
matrix elements are zero. This reduces the determinant equation to a block diag-
onal form.

2. The diagonal matrix elements (/"jn |V | I';n) are, in general, different for different
IR’s I';. This lifts the degeneracy at the symmetry points.

Many common semiconductors which crystallize in the cubic zincblende structure
have valence—conduction band structures that are quite similar in gross features. This
results from the fact that each atom has four electrons outside a closed shell and there
are two atoms per primitive unit cell.



Chapter 6
More Band Theory and the Semiclassical
Approximation

6.1 Orthogonalized Plane Waves

Thus far we have expanded the periodic part of the Bloch function u, (K, r) in a plane
wave basis, i.e. A
ug(k, 1) = D" Cop(k)e™™ 6.1)

Ky

It often occurs that the series for u (k, r) converges very slowly so that many different
plane waves must be included in the expansion. The reason for this is that plane wave
is not a very good description of the valence and conduction band states in the region
of real space in which the core levels are of large amplitude. What are the core levels?
They are the tightly bound atomic states associated with closed shell configurations.
States outside the core are valence states that are responsible for the binding energy
of the solid. For example, consider Table6.1.
Let us define the eigenfunction

lcj) = W, (r — R;) (6.2)

to be the core level ¢ (¢ = 1s, 25, 2p, 3s, . . .) of the atom located at position R ;. The
valence and conduction band states that we are interested in must be orthogonal to
these core states. When we expand the periodic part of the Bloch function in plane
waves, it takes a very large number of plane waves to give band wave functions with
all the necessary wiggles needed to make them orthogonal to core states. For this
reason, the orthogonalized plane waves (OPW) was introduced by Herring and Hill.!
We define

lwe) = |k) — Z(C’j/lk)lc/j/)- (6.3)

o'

Ic. Herring, Phys. Rev. 57, 1169 (1940) and C. Herring and A. G. Hill, Phys. Rev. 58, 132 (1940).
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Table 6.1 Electron configurations of core states and valence states of Na, Si, and Cu atoms

Atom | Core states Valence states

Na 152, 252, 2p6 3s! and higher

Si 152, 252, 2p6 3s2, 3]72 and higher
Cu 152, 25%,2p%, 352, 3p% | 3d'0,4s! and higher

Here |w;) is an OPW, |k) is a simple plane wave, and the sum is over all core levels
on all atoms in the crystal. The core levels are solutions of the Schrodinger equation

2m

R2V?
|:—_ + Vj‘ (r) - Eci| lIlcj =0 (64)

where V; (r) is the atomic potential for the atom located at 7;. Because the core levels
are tightly bound, this potential is essentially identical to the value of the periodic
crystalline potential in the unit cell centered at ;.

It is clear from (6.3) that |w;) is orthogonal to the core levels since

(cjlwe) = (cjlk) = D (¢ j'k){cile' '), (6.5)

cj’

but the core levels themselves satisfy
(leC/j/) = 506’6jj’ (66)

This gives (cj|wy) = 0.Inan OPW calculation the periodic part of the Bloch function
is expanded in OPW’s instead of in plane waves. This improves the convergence.

6.2 Pseudopotential Method
We can think of the operator P defined by

P=2lcj)cil (6.7)
cj

as a projection operator. It gives the projection of any eigenfunction |¢) onto the core
states. If we expand the wave function ¥, in OPW’s, we can write

W) = > axlwiik) = (1= P) > ax|(k + K)). (6.8)
K K
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Letus define |¢x) = D ax|k+K) as the pseudo-wavefunction. Clearly we have
[¥k) = (1 = P)|gx). (6.9)

We note that |¢y) is the plane wave part of the OPW expansion. Both |cj) and |¥;)
are solutions of the Schrodinger equation

2m

h2V2
[— + V(r)j| v =FEY, (6.10)

with eigenvalues E. and E (k), respectively. Let us substitute |¥) = (1 — P)|¢) into
(6.10). This gives

el
[— +V(r)—E](1—P)|¢) =0. (6.11)
2m

Recall that
Plg) =D lcj)(cilg). (6.12)
cj

Therefore we have

HP|g) = > Hlcj){cjlé)

7

= > Elcj)cjlo). (6.13)
cj

We use this in the Schrédinger equation to obtain

n?v?
[‘ am TV E] 16) + 2_(E = Ec)lej)ejlé) = 0. (6.14)

cj
We define an effective potential or pseudopotential by
W(r) = V() + D _(E = E)lcj){cjl. (6.15)
cj

The first term in the pseudopotential is just the usual periodic crystalline potential.
The second term is a non-local repulsive potential.

W(r)g(r) = V()o(r) + 2, (E — Ec)¥; (r){cjlor))

6.16
= [ & [VU30 = 1) + Xy (E = E )W (W07 | 60, (€10
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Itis clear that W is non-local since only the first term involving the periodic potential
contains a d-function. The second term

Ve = D (E — Ec))lcj){cjl (6.17)

cj

is repulsive as opposed to an attractive potential like V (). We can see this by eval-
uating (¢|Vg|@®) for any function ¢. We find that

(01Vrlo) = D (E = Ec)l(olc))I. (6.18)
cj
Because |(¢|cj)|? is positive and the valence—conduction band energies E are, by
definition, larger than core levels,

(9l Vklo) > 0. (6.19)

Therefore, Vg cancels a portion of the attractive periodic potential V. The diagram
shown in Fig.6.1 is a sketch of what the periodic potential V (r), the repulsive part
of the pseudopotential Vg, and the full pseudopotential look like.

A number of people have used model pseudopotentials in which the potential is
replaced by the one shown in Fig.6.2. The pseudopotential W (r) is taken to be a
local potential which has 1) a constant value Vj, inside a core or radius d and ii) the
actual potential V (r) for r > d. Both V;) and d are used as adjustable parameters to
fit the energy bands to experimental observation.

\/<- >
-7 W

(n

,~ actual periodic potential V(r)

Fig. 6.1 A sketch of various potentials
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‘_d_’/_

Fig. 6.2 A model pseudopotential

6.3 k. p Method and Effective Mass Theory

Often in discussing properties of semiconductors it is more important to have a simple
analytic description of the band structure very close to a conduction band minimum
or valence band maximum than to have detailed numerical calculations of E, (k)
and ¥,; throughout the Brillouin zone. One approach that has proven to be useful
is called the k - p method. We know that ¥, = expik - ru;(r) is a solution of the
Schrodinger equation

2
(p— YY) — Ek) W (r) = 0. (6.20)
2m

By substituting the Bloch wave form for ¥, it is easy to see that u; (r) satisfies the
Schrddinger equation

|:(p + 7k)?

+ V) — Ek:| ur(r) =0. (6.21)
2m

For k = 0 (i.e. at the I"-point) this equation can be written

2
(p— L V() — Eo) uo(r) = 0. (6.22)
2m
There are an infinite number of solutions u(()]) , uéz), u(()3), e u(()”), ... with energies
at the I"-point Eé]), . E((]'” , . ... Here the superscript (n) is a band index and the

subscript O stands for k = 0. For any fixed value of k the set of functions u,((")(r)
form a complete orthonormal set in which any function with the periodicity of the
lattice can be expanded. Therefore, we can use the set of function u(()")(r) as a basis
set for a perturbation expansion of u]((m) for k # 0 and for any band m. By this we
mean that we can write
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Z a™ (kyul". (6.23)

The Schrodinger equation for u,(cm) can be written

p2+hk R v > toul (r) = 0 (6.24)
. P+ r X > a ug’(r)=0. .

‘We omit the band superscript (i) for simplicity. We know that [ + V(r)] o _

Eé")ug” , therefore we can write
E + ﬁ — Ex Zan ")+ k. P> au’(r)=0. (625
m n

(m)|u(")) = §,un. This gives

Take the scalar product with u(()m) remembering that (u
[ EM 4 e — Ek] an + Z k ple)a, = 0. (6.26)

This is just a matrix equation of the form

E)) +en— Ex (ug'|Hilug”) -\ /a
WPl i) EQ +e— B | | @ . .
(ug? | Hilug”) (g | Hilug?) - | [ a3 ] 7 (©27

Here H| = hk p, where p = —ihV, g, = h , and we have put (u (")|p|u(")) =0.

This last result holds for crystals with a center of symmetry because parity is a good
quantum number and p is an operator that changes parity. If this matrix element does
not vanish it must be added to ¢.

If we consider k to be small (compared to Z), then if (u(m |

(")>

<Kk - pluy ) does not

vanish, it is usually quite small compared to |E” — EJ"|. When the off-diagonal

elements are treated by perturbation theory, the resulting expression for £ ,E") is written

as
h2k2 hz K- (n) Dy 2
By LS R GRE
mooomes By —Eg

This can be rewritten as

52
EP =E" + —k-m* ' .k, (6.29)
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where the inverse effective mass tensor (for the band n) is given by

(n) (l) @) (n)
T Wl 1 piludy (g 1plul”)
my; o =m jj E E(") E(l) (6.30)
Because ug') is a periodic function with period a, the lattice spacing, the matrix

element (uf,") | pi |ug)) is of the order of g if it does not vanish by symmetry consid-
erations. Thus for two coupled bands separated by an energy gap AE

mo g PIma 6.31)
= AE '

Since a ~ 3 x 10~8cm, mh—;z =~ 10eV, but typical gaps in semiconductors can be as
small as 10! eV. Thus in small gap semiconductors it is very possible to have

m )
1 + /ma

Effective masses of 0.1-0.01 m are not at all unusual in semiconductors.
Exercise

Demonstrate the effective masses of 0.1-0.01 m for typical small-gap semiconduc-
tors. Here m denotes the mass of a free electron.

The simple perturbation theory breaks down when there are a number of almost
degenerate bands at the point in k-space about which the k - p expansion is being
made. In that case, it is necessary to keep all the nearly degenerate states in the
matrix Schrédinger equation and refrain from using second order (non-degenerate)
perturbation theory. One example of this is the Kane model® used frequently in
zincblende semiconductors (like InSb, InAs, GaSb, GaAs, etc.). In these materials
there are four bands that are rather close together (see Fig. 6.3). If spin—orbit coupling
is included (it can be important in heavy atoms) one must add to the periodic potential
V (r) the atomic spin—orbit coupling

prcr (0 xV.V)-p (6.32)

Then the four bands become eight (including the spin splitting) and 7k - p is replaced
by IT - p where IT = 7k + Tne c2 o x V. V.The 8 x 8 matrix must be diagonalized to
obtain a good description of the conduction—valence band structure near the I" point.

2E. 0. Kane, J. Phys. Chem. Solids 1, 82 (1956); ibid. 1, 249 (1957); Semiconductors and
Semimetals, Vol. 1, pp. 75-100 (Academic Press, New York, 1966).
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Fig. 6.3 Schematics of the band structure of zincblende semiconductors near the I" point

6.4 Semiclassical Approximation for Bloch Electrons

When we considered the Sommerfeld model of free electrons, we discussed the
motion of electrons in response to electric fields and temperature gradients which
introduced r-dependence into the equilibrium distribution function

1

fO(E:) = exp[E_C(r)]/kBT(r) + 1.

(6.33)

The eigenfunctions of the Sommerfeld model were plane waves, so the probability
that an electron was at a given position r was independent of r. Therefore, the r-
dependence in fj(e) only made sense if we introduced the idea of localized wave
packets defined by

Ui, ) = D gk —kK)expi(k’ - T — wyt) (6.34)
=

where g(k — k') >~ 0 if |k — K’| is larger than some value Ak. By the Heisenberg
principle
AkAx ~ 1, (6.35)

so that the electron can be localized in a region Ax of the order of (Ak)™". We must
have

1. Ax > a, the atomic spacing
2. Ax « L the distance over which the potential ¢(x) = e Ex or the temperature
T (x) changes appreciably.

Thus the semiclassical wave packet picture can be applied only to slowly varying (in
space) perturbations on the free electrons.
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In the presence of a periodic potential we have Bloch states (or Bloch electrons)
described by

Ynk (r) = expik - ruqx(r) (6.36)

and
E =¢,(k) (6.37)

Here k is restricted to the first Brillouin zone, and there is a gap between different
energy bands at the same value of k, i.e., €,(k) — &,/ (k) = Egap(K) # 0.

The semiclassical wave packet picture can be used to describe the motion of Bloch
electrons in a given band in response to slowly varying perturbations by taking

Y1) = D g (k — K)o (1) (6.38)
k/
with g,(k — k') >~ 0 if |k — K| > Ak. Then, the standard expression for the group
velocity of a wave packet gives

Va(k) = %Vkan ®) 639)

as the velocity of a Bloch electron of wave vector k in the nth band. In the presence of
a force F, the work done in moving an electron wave packet a distance 0x is written
by

OW=F-0x=F. v, (6.40)

But this must equal the change in energy

SW = E,(k + 6k) — E, (k)
= ViE,(K) - 0k = hv,, - kot (6.41)

Equating (6.40) and (6.41) gives
k =1 'F. (6.42)

The semiclassical description of Bloch electrons satisfies the following rules:

(1) the band index n is a constant of the motion; no interband transitions are
allowed.

(2 .
i = va(k) = - Viee, (k). (6.43)

3) 1
hk = —e (E ) x B) . (6.44)
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(4) the contribution of the nth band to the electron density will be

&Ik &k /4
@m? 1 +expl(enk) — p) /ksT]’

2 fo (en(k)) (6.45)

For free electrons (Sommerfeld model), electrons are not restricted to one band but
move continuously in k-space according to ik = Force. For Bloch electrons k is
restricted to the first Brillouin zone and k = k + K. Clearly the restriction to band n
requirement must break down when the gap Egap (k) becomes very small. It can be
shown (but not very easily) that the conditions

E 2
< [Egap(k)]

E 6.46
eEa £ (6.46)
and 5
E k
fiw, < M' (6.47)
Er

must be satisfied for the semiclassical treatment of Bloch electrons to be valid. Here
E is the electric field and a the atomic spacing. w, is the electron cyclotron frequency
and Er the Fermi energy. The breakdown of the inequalities (6.46) and (6.47) lead to
interband transitions; they are known as electric breakdown and magnetic breakdown,
respectively.

Exercise

Estimate the threshold values for the electric field E and the cyclotron frequency w,
at which the electric and the magnetic breakdowns begin to occur.

6.4.1 Effective Mass

The acceleration of a Bloch electron in band »n can be written

dv, 1d
= = —-——V k
a, dt b dt kEn( )
L.V (k) dk (6.48)
= en(k) - — .
hoKTK dt

If we write this tensor equation in terms of components we have

dv™ 1 o 0 dk;
L=y — — ¢, (k)—2. 6.49
dr = b A Ok Ok R g (6.49)
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But h% = F;, the j-component of the force. Thus we can write

dv, 1
=m'~  -F 6.50
dt M ( )

where the effective mass tensor is defined by

el 1 9%, (k)
= — . 51
(mn )ij hZ (“)k,(?kj (65 )

Measured effective masses in different materials have widely different values. For
example, in nickel there are electrons with m* ~ 15m while in InSb there are
electrons with m* ~ 0.015m.

6.4.2 Concept of a Hole

Symmetry requires that if a band has an energy £(k), then the solid must have an
energy e(—k) satisfying e(—k) = e(k). The group velocity of the states k and —k
are equal in magnitude and opposite in direction. In equilibrium, if the state k is
occupied, so is the state —k. Since the velocities are equal in magnitude and opposite
in direction, there is no current. A current is obtained by changing the probability of
occupancy of the electron states.
A filled band cannot carry any current even in the presence of an electric field.
Each electron is accelerated according to the equation
dk 1
i hF' (6.52)
If F is in the x-direction, the electrons move in k space with &, (t) = k. (0) + %Fxt.
An electron arriving at k, = % (for a cubic crystal), the edge of the Brillouin zone,
reappears at k, = — 7 (i.e., it is Bragg reflected through k, —k;, = K = 27“ Thus at
all times the band is filled; for each electron at k there is one at —k with equal but
oppositely directed velocity. Therefore the electrical current density j = 0.
For a partially filled band we can write

1
i=+ > (—ew). (6.53)

occupied
k

. . . 1
This can be rewritten as j = [Zk’emim band (—€VK) — Zk’unmupied(—evk)] . The
first term vanishes, so that
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(b) €

goes over to

MOVES |WITH
ELECTRONS

>k

Fig. 6.4 Motion of an electron and a hole: panel (a) goes over to panel (b), and a hole moves with
electrons

j=— Z +e V. (6.54)
k empty

Thus for a nearly filled band, we can think of the current as being carried by holes,
empty states in the almost filled band. These act as if they have a charge +¢ instead
of —e, the charge on an electron.

Because the equation of motion in k space is

hk, = —eE, (6.55)

every electron in the nearly filled band moves in k space according to k,(f) =

ky(0)— e;‘;‘ t. Therefore the hole moves in the same direction; Fig. 6.4a goes over to b.

Of course, the effective mass m* near the top of a valence band is negative since

1 1 9%
—=—=—<0. 6.56
m*  h? Ok2 (6.56)
It is interesting to write down the following equations that describe the motion of
a hole

. 1
ik = —e (E + —v, X B) . (6.57)
c
1
vV = ﬁvk{:‘k. (658)
1 9%
-1

We can assume that a hole has a positive mass near the top of the band where an
electron has a negative mass. Then

th

e
Sr=m [eE + “ i B] . (6.60)
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Here we have used a positive mass my, and a positive charge +e to describe the hole.
In the valence band of a semiconductor, a few holes can be thermally excited. They
can be treated as particles having positive mass and positive charge.

6.4.3 Effective Hamiltonian of Bloch Electron

We know that for Bloch electrons we can write

(1) E = ¢, (k) for the energy of an electron in the nth band.
(i) W,k (r) = expik - ru,x(r), where u,x (r) is periodic with the lattice periodicity.

‘We have seen that close to a minimum (e.g. at k = 0) we can write

2
e, (k) = £,(0) + %k .m* k. 6.61)

The form of this equation might lead us to write an effective Hamiltonian

2
Her = £,(0) + % (—iV) -m* . (—=iV), (6.62)

and an effective Schrodinger equation
Heirp(r) = E(r). (6.63)

The solution ((r) of (6.63) is not a true wave function for an electron. For example,
if we set o(r) = V™12 expik - r, we obtain E = £,(0) + %’Zk -m*~! . k. However,
the true wave function ¥ is obtained from the pseudo-wavefunction ¢ by multiplying
it by u,k, the periodic part of the Bloch function.

So far, we have not really done anything new. However, if we introduce a potential
W (r) which is very slowly varying on the atomic scale, we can take as the effective
Hamiltonian

2
Heir = €,(0) + % (=iV)-m* ™ (=iV) + W(r). (6.64)

Then the solutions to (Heir — E) ¢(r) = 0 will mix Bloch wave functions with
different values of k. The smooth function ¢(r) is called the envelope function. This
approach can be justified rigorously if the perturbing potential W (r) and the energy
band ¢, (k) satisfy certain conditions.

It turns out that the effective Hamiltonian approach works not only in the regime
of the effective mass approximation. In fact, for a Bloch electron (in band ») in the
presence of a time independent vector potential A(r) and a scalar potential ¢(r, 7),
which is slowly varying in space and time, we may define an effective Hamiltonian
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i e
Hetr = €n —ﬁV + —A(r) ) —eo(r, 1). (6.65)
c
This effective Hamiltonian leads to the semiclassical equation of motion

r= %Vken k) = v, (k) (6.66)

Tk = —¢E — v, (k) x B, (6.67)
C

where E = —Vgand B=V x A.

Problems

6.1 A Wannier function for the nth band of a one-dimensional lattice can be written
1
VN

an(z — la) = > exp —iklaW¥,(2).
k

Here v, (z) is a Bloch function, a,(z — la) a Wannier function localized around
z=1la,and k = ]%,—’;n,where—% <n<%-1

(a) Use the orthogonality relation (¥, |W,,) = S to show that Wannier func-
tions on different sites are orthogonal, i.e.,

(an(z = l'a)lay(z — la)) = o

(b) For the model described in Problem 4.6, determine a,, (z), the Wannier function
for the site localized around the origin, i.e., [ = 0.

6.2 Consider wave packets formed by linear combinations of Bloch functions within
a single band, with a spread Ak in wave vectors about some particular value of k.
The wave packets are localized in coordinate space in a region Ax; (i = 1,2, 3)
centered on some point r = (x1, X2, x3), and Ax; Ak; >~ 1. The electron velocity is
given by the group velocity v, (k) = %Vke,, (k). The time rate of change of the wave

vector k is determined by % = th, where F is the external force on the electron.
(a) For the case of a uniform electric field E constant in time, i.e., F = —¢EX,
show that,

k(0) = ke (0) — %,

What happens when &, (¢) reaches the Brillouin zone boundary?
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(b) If F = —%v, x Bz, the Lorentz force in a magnetic field B = Bz, show
that the electron moves on a path in k-space that is the intersection of a plane
k, = constant and a surface of constant energy (k) = constant.

6.3 Consider an electron initially at rest in the tight binding s-orbital energy band
for a body centered cubic crystal of lattice constant a.

(a) Find the trajectory r(z) of the electron in the presence of a uniform constant
electric field E. (One may use the result obtained in Problem4.3.)

(b) Estimate the amplitude of the Bloch oscillation |ry| under an electric field
E = 1.0x [V/cm] and the band width v = 1.0eV.

6.4 Consider the tight binding m-electron energy band (k) of graphene described
in Problem4.4.

(a) Obtain the effective mass near k- = (0, 0), the center of the Brillouin zone.

(b) Repeat the same as above but near kg = (g—z, 3\2/7%0 ). What can you say about

the behavior of the carriers in the low energy states in graphene?

6.5 Consider an energy band £(k) = &g + c1kia® + c2k2a® + c3k?a® of a cubic
crystal with lattice constant a. Here ¢; are positive constants.

(a) Obtain the effective mass tensor m* of an electron.

(b) Assuming that c; = ¢; = ¢3 = ¢, consider the motion of an electron confined
in a potential W(r) = ar?. Here r> = x> + y> + z? and o > 0. Write
down the effective Schrodinger equations for the states of the electron in the
representation of the Bloch functions and then that in the representation of the
Wannier functions.

(c) Determine the lowest three energy eigenvalues of the electron in the presence

of the confinement potential W (r) = ar?.

Summary

In this chapter we studied more theories of band structure calculation and
semiclassical description of Bloch electrons. We first introduced orthogonalized
plane wave method for expanding the periodic part of the Bloch functions and dis-
cussed pseudopotential method and k - p effective mass theory as practical alternative
ways of including the effects of periodic symmetry of crystal potential. Then the
semiclassical wave packet picture is discussed to describe the motion of the Bloch
electrons in a given band. In addition, ideas of effective mass and hole are shown to
be convenient in describing the behavior of band electrons.

It often occurs that the series for uy(k, r) = ZKW Coo (k)eXe'T converges very
slowly so that many different plane waves must be included in the expansion. In
an orthogonalized plane wave calculation the periodic part of the Bloch function is
expanded in orthogonalized plane waves instead of in plane waves. This improves
the convergence. In many calculations, model pseudopotentials W (r) are introduced
in such a way that W(r) is taken to be a local potential which has (1) a constant


http://dx.doi.org/10.1007/978-3-319-73999-1_4
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value Vj inside a core or radius d and (2) the actual potential V (r) for » > d. Both
Vo and d are used as adjustable parameters to fit the energy bands to experimental
observation.

In discussing properties of semiconductors it is often more important to have a
simple analytic description of the band structure very close to a conduction band
minimum or valence band maximum than to have detailed numerical calculations of
E, (k) and ¥, throughout the Brillouin zone. In a k - p method, energy eigenvalue
E,E") is written as

h2
E(n) E(n) + 3 k- m*—l . k,
where the inverse effective mass tensor (for the band n) is given by
. —1 ("))

(n) )

-1 _ 1 uo |pz|” |pj|”0
my; =m0+ Z EM _ E(Z)
0 0

(l) ) (ul ¢

The semiclassical wave packet picture can be used to describe the motion of Bloch
electrons in a given band in response to slowly varying perturbations, and the group
velocity of a wave packet gives

1
vu(K) = ﬁvkgn (k)

as the velocity of a Bloch electron of wave vector k in the nth band. In the presence
of a force F, we have k = A~ 'F. The semiclassical description of Bloch electrons
satisfies the following rules:

(1) the band index n is a constant of the motion; no interband transitions are allowed.
2) ¥ =v,(K) = 1 Vie, (K).

(3) hk = —e (E+ 1v,(k) x B).

(4) The contribution of the nth band to the electron density is

2 £ (60 () d3k . d3k/47r3
0T 23 T T+ expl(enk) — p) ks T1

For free electrons, electrons are not restricted to one band but move continuously
in k-space according to ik = Force. For Bloch electrons k is restricted to the first
Brillouin zone and k = k + K. Clearly the restriction to band n requirement must
break down when the gap Egap (k) becomes very small. The conditions

£ 2 2
eEq <<[ Gap (k)] o, < [Egap(k)] '
EE Er
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must be satisfied for the semiclassical treatment of Bloch electrons to be valid. Here
E is the electric field and a the atomic spacing. w, is the electron cyclotron frequency
and Ey the Fermi energy.

The equation of motion becomes

dv, _
=m, L F
dt
where the effective mass tensor is defined by (m:fl)u =% ?;f(?(,:) :
The motion of a hole is described by
B o 1 B 1 v 1 1 0% 0
= —¢ -V, X v, = =Viexs m;, ' = ——— > 0.
¢ P T h2 Ok>

Since a hole has a positive mass near the top of the band where an electron has a
negative mass, we have

th

1 e
D m,[eE+ B].
Jr h [e +cvkx

The effective Hamiltonian of Bloch electron is written, in the presence of slowly
varying potential W (r), as
Herr = €,(0) + > (—=iV) -m*" - (=iV) + W(r).

In the presence of a time independent vector potential A(r) and a scalar potential
o(r, t), which is slowly varying in space and time, we have an effective Hamiltonian

e
Har = 2 (=iV + SA®M) — eo(r, 1),
c
This effective Hamiltonian leads to the semiclassical equation of motion

1 .
P = ﬁngn(k) = v, (k) and 1k = —¢E — v, (k) x B,
C

where E= —Vgand B=V x A.



Chapter 7
Semiconductors

7.1 General Properties of Semiconducting Material

In earlier sections we have seen that a perfect crystal will be

(1) an insulator at T = 0 K if there is a gap separating the filled and empty energy
bands.
(ii) a conductor at T = 0 K if the conduction band is only partially occupied.

A special case of the insulating crystal is that of the semiconductor. In a semicon-
ductor, the gap separating the filled and empty bands is very small, and at finite
temperature some electrons from the filled valence band are thermally excited across
the energy gap giving n.(T") electrons per unit volume in the conduction band and
ny(T) holes per unit volume in the valence band (of course ne = ny).

If we recall the expression for the conductivity of a free electron model

o= , (7.1)

where n is the number of carriers per unit volume, we find that different types of
materials can be described by different values of n. For ametal n ~ 10?* to 10> cm 3
and is independent of temperature. For a semimetal n >~ 10'® to 10* cm—3 and is
also roughly temperature independent. For an insulator or a semiconductor

_ Ec_
n >~ npe *s7,

where ny ~ 10?? to 10>} cm~3 and the energy gap Eg is large (Eg > 4eV) for an
insulator and is small (Eg < 2eV) for a semiconductor.
_ g
At room temperature, kg7 =~ 25meV, so that e %7 < e 30 ~ 1073 for an
_Eg_

insulator, while for a semiconductor e~ Z7 > ¢=20 ~ 10~ The factor 10~3° even
when multiplied by 10>} cm™3 gives n ~ 0 for an insulator. With 0.1eV < Eg <
2.0eV the carrier concentration satisfies 1022 cm— > n > 10'3 cm 3. The relaxation
© Springer International Publishing AG, part of Springer Nature 2018 183
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Fig. 7.1 Temperature dependence of carrier concentration (a) and electrical conductivity (b) of a
typical semiconductor

time 7 in the expression for the conductivity is associated with scattering events that
dissipate current. These are scattering due to impurities, defects, and phonons. At
room temperature, the relaxation time 7 of a very pure material will be dominated
by phonon scattering. For phonon scattering in this range of temperature 7 oc 7!,
Therefore, in a metal the conductivity o decreases as the temperature is increased.
For a semiconductor 7 behaves the same as in a metal for the same temperature range.
However the carrier concentration n increases as the temperature increases. Since n
increases exponentially with -, this increase outweighs the decrease in relaxation

kBT ’
time, which is a power law, and ¢ increases with increasing 7.

Intrinsic Electrical Conductivity

In a very pure sample the conductivity of a semiconductor is due to the excitation
of electrons from the valence to the conduction band by thermal fluctuations. For
a semiconductor at room temperature the resistivity is between 10~2 and 10° Q-
cm depending on the band gap of the material. In contrast, a typical metal has a
resistivity of 107 ©-cm and a typical insulator satisfies 10'* Q-cm < p < 10?*> Q-
cm. A plot of carrier concentration versus temperature and a plot of conductivity
versus temperature is shown in Fig.7.1a, b.

7.2 Typical Semiconductors

Silicon and germanium are the prototypical covalently bonded semiconductors. In our
discussions of energy bands we stated that their valence band maxima were at the I"-
point. The valence band originates from atomic p-states and is three fold degenerate
at I". Group theory tells us that this degeneracy gives rise to light hole and heavy
hole bands, and that an additional splitting occurs if spin—orbit coupling is taken
into account. The conduction band arises from an atomic s-state, but the minimum
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Fig. 7.2 Constant energy surfaces near the conduction band minima for Si

does not occur at the I"-point. In Si, the conduction band minimum occurs along the
line A, at about 90% of the way to the zone boundary. This gives six conduction
band minima or valleys (see Fig.7.2). In the effective mass approximation these
valleys have a longitudinal mass m; >~ 0.98m, along the axis and a transverse mass
m; >~ 0.19m, perpendicular to it. Here m, is the mass of a free electron.

For Ge, the conduction band minimum is located at the L-point. This gives the Ge
conduction band four minima (one half of each valley is at the zone boundary in the
(111) directions). In Ge, m; ~ 1.64m, and m; = 0.08m,. Silicon and germanium
are called indirect gap semiconductors because the valence band maximum and
conduction band minimum are at different point in k-space. Materials like InSb,
InAs, InP, GaAs, and GaSb are direct gap semiconductors because both conduction
minimum and valence band maximum occur at the I"-point. The band structures of
many III-V compounds are similar; the sizes of energy gaps, effective masses, and
spin splittings differ but the overall features are the same as those of Si and Ge (see
Table7.1). The energy gap is usually determined either by optical absorption or by
measuring the temperature dependence of the conductivity. In optical absorption, the
initial and final state must have the same wave vector k if no phonons are involved in
the absorption process because the kp, vector of the photon is essentially zero on the
scale of electron k vectors. This leads to a sharp increase in absorption at the energy
gap of a direct band gap material. For an indirect gap semiconductor, the absorption
process is phonon-assisted. It is less abrupt and shows a temperature dependence.

.. . _Eg_
The temperature dependence of the conductivity varies, as we shall show, as e 87
where Eg is the minimum gap, the energy difference between the conduction band
minimum and the valence band maximum.
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Table 7.1 Comparison of energy gaps of Si, Ge, diamond, and various III-V compound semicon-

ductors

Crystal Type of energy gap Eg [eV]atOK
Si Indirect 1.2
Ge Indirect 0.8
InSb Direct 0.2
InAs Direct 0.4
InP Direct 1.3
GaP Indirect 2.3
GaAs Direct 1.5
GaSb Direct 1.8
AlAs Indirect 2.24
GaN Direct 3.5
ZnO Direct 34
Diamond Indirect 5.48

7.3 Temperature Dependence of the Carrier Concentration

Let the conduction and valence band energies be given, respectively, by

k>
ec(k) =e. + (7.2)
2me
and g2
k
ev(k) = ey — (7.3)
2my

The minimum energy gap is Eg = €. — €y. The density of states in the conduction
band is given by ’

=_- &k (7.4)
Q) Jocety<ctde

gc(e)de

Since . (k) is isotropic d*k = 4nk’dk and de = %kdk. Substituting into (7.4) gives

V2mi"?
9e(&) = —55— (e = )2 (7.5)
In a similar way we have
V2my?
wE) =~ (e =) (7.6)

The number of electrons per unit volume in the conduction band is given by

ne(T) =/ dege(€) fo(e), (1.7
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1

—— is the Fermi distribution function. The concentration of holes
e

where fy(e) =
. e 41
in the valence band is written by

po(T) = / degu (@) [1 — fol©)]. (7.8)

oo

Note that 1 — fy(e) = 1/ [e% + 1]. Clearly n.(T') and p,(T) depend on the value of

the chemical potential (. We will make the simplifying assumption thate. — ¢ > @
and ( —ey > @, where O is, of course, kg T . This nondegeneracy assumption makes
the calculation much simpler, and we will evaluate ( in the course of the calculation
and check if the assumption is valid. With this assumption, we can write

fole) e T,
1— fole) xe~'e 79

The first line of (7.9) can be rewritten as fo(c) ~ e~ o e~“5". The second factor is
independent of € and can be taken out of the integral in (7.7) to obtain

n(T) = Ne(T)e™ %, (7.10)
where -
N(T) = / dege(e)e™ o . (7.11)
In a similar manner one can obtain

(—ev

p(T) =P, (T)e” =, (7.12)

and N
P(T) = / degy(e)e™ o . (7.13)
—00

1/2 172

Because the density of states varies as g. «x (¢ —&c)/“ and gy «x (ey —€)”/7,
the integral for N.(T) and P,(T) can be evaluated exactly by using the fact that
Jo dx /xe™ = 3/m. The results are

1 (2m.0\?
Ny = 2 (5 ) (7.14)

The result for P, (T') differs only in having m, replace m.. It is sometimes convenient
to use the practical expression
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m\32 (T \? 19 . -3
NC(T)_2.5(;) (W) .10 cm =3, (7.15)

Again for P,(T) we need only replace m. by m,. Note the very important fact that
the product n.(T) p,(T) is independent of (, so that

ne(T)py(T) = Ne(T)P,(T)e Ee/®. (7.16)

Exercise

Confirm the practical expression of (7.15).

7.3.1 Carrier Concentration: Intrinsic Case

In the absence of impurities, the only carriers are thermally excited electron—hole
pairs, so that n.(T) = py(T); this is defined as n;(T"), where i stands for intrinsic.
From (7.16), we have

ni(T) = [Ne(T) Py(T)]"/? e F6/2¢. (7.17)

To obtain the value of ( for this case (we will call it (j, i for the intrinsic case) we
note that n;(T) = n.(T), or

[N(T)P,(T)]"/? e £c/20 = N (T)e WO (7.18)

This can be rewritten by

G *€c+?l_yEG

[P((T)/No(T)]? =e & . (7.19)
Solving for (; gives
1 3 my
G=ec—=Eg+-0In|—). (7.20)
2 4 me

In writing (7.20) we have used [Py, (T)/N(T)] = (mv/mc)m. In terms of €, we can
express (7.20) as
1 3 my
Ci=5V+—EG+Z@ln — ). (7.21)

2 me

If my = mc, then (; always sits in mid-gap. If m, # m, ( sits at mid-gap at
® = 0, but moves away from the higher density of states band as @ is increased.
For Eg =~ 1eV, the separations (; — €, and . — (; are large compared to ® for any
reasonable temperature, so our assumption is justified.
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7.4 Donor and Acceptor Impurities

Si and Ge have four valence electrons. If a small concentration of a column V element
replaces some of the host atoms, then there is one electron more than necessary for the
formation of the covalent bonds. The extra electron must be placed in the conduction
band, and such atoms like As, Sb, and P are known as donors. For column III elements
(Al Ga, In, etc.) there is a shortage of one electron, thus the valence band is not full
and a hole exists for every acceptor atom.

Let us consider the case of donors (for acceptors, the same picture applies if
electrons in the conduction band are replaced by holes in the valence band and, as
an example, As™ ions are replaced by Al™ ions). To a first approximation the extra
electron of the As atom will go into the conduction band of the host material. This
would give one conduction electron for each impurity from the column V. However,
these conduction electron leaves behind an As™ ion, and the As* ion acts as a center
of attraction which can bind the conduction electron similar to the binding of an
electron by a proton to form a hydrogen atom.

For a hydrogen atom, the Hamiltonian for an electron moving in the presence of
a proton located at r = 0 is

P

H=———. (7.22)
2m r

The Schrodinger equation has, for its ground state eigenfunction and eigenvalue,

&2

Yy = Noe"/® and E,= — 3 (7.23)
ag

where ag = h—27 is the Bohr radius (ag ~ 0.5 A).

me~

For a conduction electron in the presence of a donor ion, we have

e 2
H = - (7.24)
2m.  €&r

Here m. is the conduction band effective mass and ¢ is the background dielectric
constant of the semiconductor. The ground state will have

62

Wy = Noe /% and Ej=— (7.25)

.
2esap

2
h”eg
mee?

The effective Bohr radius af is given by af = For a typical semiconductor

m¢ > 0.1m and ¢ >~ 10. This gives aj ~ 10%ag ~ 5 nm and E, ~ —1073.4 ~

2ag
—13 meV.
When donors are present, the chemical potential ¢ will move from its intrin-
sic value i to a value near the conduction band edge. We know that n.(T) =
NC(T)e’%; we can define the intrinsic carrier concentration ni(T) by ni(T) =
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NC(T)e_ECT;“. Then we can write for the general case

=

n(T) = ni(T)e% and py(T) = ni(T)e’LT. (7.26)

If( = (i, ne(T) = py(T) = ni(T). If ( # G, thenn(T) # py(T) and we can write

_ . ¢—G nt
An=n(T)— py(T) =2nysinh | ——— ) =n. — —. (7.27)
® Ne
The product n.(T) py(T) is still independent of { so we can write n.(T) py(T) = ”12

Using py = (7.27) gives a quadratic equation for n,

i
ne(T)”’

2 2 _
ng — Annc —ny =0

whose solution is

An An\? )
ne = 7 + 7 + ny. (728)

We take the positive (4) root because donor impurities must increase the concentra-
tion n.(T).

7.4.1 Population of Donor Levels

If the concentration of donors is sufficiently small (Ng < 10'° cm™3) that interactions
between donor electrons can be neglected, then the average occupancy of a single
donor impurity state is given by

Zj Njefﬁ(Ej*CN/)
(nq) = 5 o—BE—CN))

(7.29)

Here 8 = 1/© and the possible values of N; are

(i) N; =0 when donor atom is empty.
(i) N; =1 when donor atom is occupied by an electron of spin o.
(iii) N; = 1 when donor atom is occupied by an electron of spin —o.
(iv) N; = 2 when donor atom is occupied by two electrons of spin o and —o.

There is actually a large repulsion (repulsive energy U ) between the electrons in case
of N; =2, so that case of N; = 2 does not actually occur. If we use the cases listed
above in (7.29) we obtain

0 + 2eBEa—0) 4 e—BRea+U-20)
1 + 2e—PEa—0 4 —PRea+U-20) *

(na) = (7.30)



7.4 Donor and Acceptor Impurities 191

Fig.7.3 Impurity levels in semiconductors doped with Ng donors and N, acceptors per unit volume

If U is much larger than the other energies, then the terms involving U can be
neglected; the following result is obtained.

1

Toao 3T (7.31)

(ng) =

The numerical factor of % in this expression comes from the fact that either spin up
or spin down states can be occupied but not both.

Exercise

Demonstrate the average occupation (p,) of a single acceptor impurity state corre-
sponding to the one (7.31) for a single donor impurity state.

7.4.2 Thermal Equilibrium in a Doped Semiconductor

Let us assume that we have Nyq donors and N, acceptors per unit volume, and let us
take Ng > N,. This material would be doped n-type since it has many more donors
than acceptors. The energies of interest are shown in Fig.7.3.

At zero temperature, there must be

e n. = 0, no electrons in the conduction band,

e p, = 0, no holes in the valence band,

e p, = 0, no holes bound to acceptors,

e nqg = Ngq — N,, electrons bound to donor atoms.

The (N4 — N,) donors with electrons bound to them are neutral. The remaining N,
donors have lost their electrons to the N, acceptors. Thus we have N, positively
charged donor ions and N, negatively charged acceptor ions per unit volume. The
chemical potential must clearly be at the donor level since they are partially occupied,
and only at the energy of € = ( can the Fermi function have a value different from
unity or zero at 7 = 0.

At a finite temperature, we have

ne(T) = Ne(T)e &9, (7.32)
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po(T) = P (T)e 77, (7.33)
Ny
T)=+———— .34
nd( ) %eﬁ(‘fd*O—’—l’ (73 )
and
o p—— (135)
Pa = %eﬂ“_&) 1 .
In addition to these four equations we must have charge neutrality so that
ne+ng=~Ng— Na+ py+ pa (7.36)

Here n. + nq is the number of electrons that are either in the conduction band or
bound to a donor. If we forget about holes, n. + nq must equal Ny — N,, the excess
number of electrons introduced by the impurities. For every hole, either bound to an
acceptor or in the valence band, we must have an additional electron contributing to
n. + nq. Equations (7.32)—(7.36) form a set of five equations in five unknowns. We
know 3, Nq, Na, €, €v, €4, and €,; the unknowns are n.(T"), py(T), na(T), p.(T), and
((T). Although the equations can easily be solved numerically, it is worth looking
at the simple case where ¢4 — ¢ > @ and ( —¢, > ©. This does notoccurat 7' = 0
since ( = &4 in that case; nor does it apparently occur at very high temperature.
However, there is a range of temperature where the assumption is valid. With this
assumption

na(T) =~ 2 Nge =0 « Ny, (7.37)

and ,
pa(T) =~ 2 Npe P50 « N,. (7.38)

We know from (7.36)—(7.38) that
An=ne— py=Ng— Ny + p, —ng ® Nq — N,. (7.39)

From (7.27) An = 2 n; sinh( ({ — (;), and for low concentrations of impurities at
sufficiently high temperatures § (¢ — (;) must be small. We can then approximate
sinhx by x and obtain

An>~2n; B —G). (7.40)

We know that
ne(T) = ni(T)e =9 >~ ni [1 4 (¢ — &)1 (7.41)

Using (7.39)—(7.41) gives

1
ne >~ nj + 3 (Ng — Ny), (7.42)
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and 1
Dy = nj — 3 (Ng — N,) . (7.43)

For low concentrations of donors and acceptors at reasonably high temperatures
An < ni(T),sothat 25 (¢ — ;) < 1 and ( is relatively close to ¢;. Because 4 —
is an appreciable fraction of the band gap the assumptions (g4 —¢) > 1 and
B (¢ —&,) > 1 are valid.

7.4.3 High Impurity Concentration

For high donor concentration Ng — N, > n;; then 3 ({ — €,) > 1 since the chemical
potential moves from the midgap closer to the conduction band edge. Because

Pa(T) 222 Npe P70, (7.44)

and /
py(T) = niC*d(C*C‘) — PV(T)e*ﬁ(C*Ev)’ (7.45)

p, must be very small compared to N, and p, must be very small compared to n;
which is, in turn, small compared to Nq — N,. Thatis, p, < N, and p, << Nq — N,.
Equation (7.36) then gives

ne +nqg >~ Ng — N,. (7.46)
But ng(7T) = +«>+1 If B(eq — ¢) > 1, then ng < Ny, and we find
ne >~ Ng — Ny, (7.47)
n2

~ 1 =~ 7.48

A (7.48)

Pa >~ 2 Npe P62 ~ 0, (7.49)

ng ~ 2 Nge P€=9 ~ 0, (7.50)

7.5 p-n Junction

The p—n junction is of fundamental importance in understanding semiconductor
devices, so we will spend a little time discussing the physics of p—n junctions. We
consider a material with donor concentration Ny (z) and acceptor concentration N, (z)
given by

Ng(z) = NgO(z) and N,(z) = N, [1 —0(2)]. (7.51)
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Fig. 7.4 Impurity levels and chemical potential across the p—n junction

‘We know that for z > a, where a is the atomic spacing the chemical potential must
lie close to the donor levels and for z << —a it must lie close to the acceptor levels.
Since the chemical potential must be constant (independent of z) for the equilibrium
case, we expect a picture like that sketched in Fig. 7.4. On the left we have a normal
p-type material, and at low temperature, the chemical potential must sit very close
to the acceptor levels which are shown by the dots at the chemical potential (. One
the right, the chemical potential must be close to the donor levels (shown as dots at
€ = () which are near the conduction band edge. In between, there must be a region
in which there is a built-in potential ¢(z) that results from the transfer of electrons
from donors on the right to acceptors on the left in a region close to z = 0. We want
to calculate this potential ¢(z).

7.5.1 Semiclassical Model

The effective Hamiltonian describing the conduction or valence band of a system
containing a p—n junction can be written

H = ¢ (—ihV) — ed(2), (7.52)

where ¢(z) is an electrostatic potential that must be slowly varying on the atomic
scale in order for the semiclassical approximation to be valid. The energies of the
conduction and valence band edges will be given by

€c(2) = ec — ed(2),
ev(z) = &y — e9(2). (7.53)

The concentration of electrons and holes will vary with position z as

ne(z) = Ne(T)e leemeo@=Cl
pv(2) = PV(T)efB[Gsweo(z)]_ (7.54)
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The most important case to study is the high concentration limit where Ny >> n; and
N, > n; on the right and left sides of the junction, respectively. In that case, the
concentration of electrons and holes will vary with position z as

lim,_, o0 16 (z) = N(T)e Plee=ed=C ~ Ny,

lim. oo pu(2) = Pu(T)e Mmoo N, 73
These two equations can be combined to give
N4N,
AP = — ¢(— =FE Oln| —————|. 7.56
eAp = e[p(00) — p(—00)] = Eg + H[NC(T)PV(T)} (7.56)
The potential ¢(z) must satisfy Poisson’s equation given by
D¢(z) _ 4mp(2)
=— , 7.57
g - (1.57)
where the charge density p(z) is given by
p(z) = e[Na(z) — Na(2) — ne(2) + py(2)]. (7.58)

In using (7.55) we are assuming that all donors and acceptors are ionized [since
ne(00) = Ny, all the donor electrons are in the conduction band so the donors must
be positively charged]. Thus we have

Nq(z) = N4b0(2), (7.59)
Na(2) = No[1 = 0(2)], (7.60)
ne(z) = Nde—He[Gﬁ(OO)—d)(z)]’ (7.61)
Py(2) = Ny P0@=o=e0l, (7.62)

Equations (7.57)—(7.62) form a complicated set of nonlinear equations. The solution
is simple if we assume that the change in ¢(z) occurs entirely over a relatively small
region near the junction known as the depletion region.

We will assume that

$(z) = ¢p(—00) for z < —dp; region I
#(z) = ¢(00) for z > dy; region 11
¢(z) varies with z for — d, < z < d,,. region 111 (7.63)

The length dj, (or d,) is called the depletion length of the p-type (or n-type) region.
In region II the concentration of electron in the conduction band n. is equal to
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the number of ionized donors Ny so that p;(z) = —en. + eNg = 0. In region I
the concentration of holes p, is equal to the number of ionized acceptors so that
p1(z) = epy — eN, = 0. In region III there are no electrons or holes (the built-in
junction potential sweeps them out) so py(z) = n.(z) = 0 in this region. Therefore
for p(z) we have

+eNy for 0 < z < d,,

pm(z) = —eN, for —d, <z <0. (7.64)
We can integrate Poisson’s equation. In the region 0 < z < d,, we have
8o (2) 4me
S A Ny, 7.65
02 o N (7.65)
and integration gives
do(z 4re
@) =— Naz + Cy. (7.66)
0z €s
Here C; is a constant of integration. Integrating (7.66) gives
2meN,
$(z) = =222+ Ciz + Ca. (7.67)

S

We choose the constants so that ¢(z) evaluated at z = d, has the value ¢(0co0) and
()g—(;) = 0 at z = d,,. This gives

2meNyg

d(2) = d(00) — (z —dy)?, for0 <z < d,. (7.68)

S

Doing exactly the same thing in the region —d, < z < 0 gives

2me N,

P(2) = p(—00) + (z+dy)?, for—d, <z <0. (7.69)

S
Of course, for z > dy, ¢(z) = ¢(o0) and for z < —dp, p(z) = Pp(—00) (see Fig.7.5).
Charge conservation requires that

Nady = Nyd,. (7.70)

This condition insures the continuity of ‘3)—‘; at z = 0. The continuity of ¢(z) atz =0

requires that

2meN, 2meN,
TN 12— g(—o0) + We “a2. 7.71)

€ s

P(00) —

We can solve (7.71) for Ap = ¢(0c0) — ¢p(—00) to obtain
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Fig. 7.5 Band bending across the p—n junction
2me 2 )
A = [Nddn + Nadp] . (1.72)
€s

Combining (7.70) and (7.72) allows us to determine d, and d,

12
- [W] , (1.73)

2me(N, + Ny)

The equation for d, is obtained by interchanging N, and Ny. If N, were equal to Ny
then d, = d, = d and is given by

Ad\ /2 E 172
d~ (642 o (SEe VT (7.74)
4me?N 4me?N

where N = Ngq = N,. In the last result we have simply put eA¢p ~ Eg.

7.5.2 Rectification of a p—n Junction

The region of the p—n junction is a high resistance region because the carrier con-
centration in the region (—d, < z < d,) is depleted. When a voltage V is applied,
almost all of the voltage drop occurs across the high resistance junction region. We
write A¢ in the presence of an applied voltage V as

Ap = (Ap)y — V. (7.75)
Here (Ag), is, of course, the value of A¢ when V = 0. The sign of V is taken as

positive (forward bias) when V decreases the voltage drop across the junction. The
depletion layer width d, changes with voltage
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172
dn(V) = d,(0) [1 - } . (7.76)

(Ad)o

A similar equation holds for d, (V). When V = 0, there is no hole current J, and no
electron current J.. When V is finite both J. and J;, are nonzero. Let us look at J,,.
It has two components:

generation current  This current results from the small concentration of holes on
the n-side of the junction that are created in order to be in thermal equilibrium, i.e.,
to have ( remain constant. These holes are immediately swept into the p-side of
the junction by the electric field of the junction. This generation current is rather
insensitive to applied voltage V/, since the built-in potential (A¢), is sufficient to
sweep away all the carriers that are thermally generated.

recombination current  This current results from the diffusion of holes from the
p-side to the n-side. On the p-side there is a very high concentration of holes.
In order to make it cross the depletion layer (and recombine with an electron on
the n-side), a hole must overcome the junction potential barrier —e [(Aqﬁ)o — V].
This recombination current does depend on V' as

]gec x e—e[(Ad’)o—V]/@' 7.77)

Here J;*° indicates the number current density of holes from the p- to n-side.

Now at V = 0 these two currents must cancel to give J, = J/* — J&" = 0 We can
write
Jh = JE eV —1]. (7.78)

The electrical current density due to holes is j, = eJy, and it vanishes at V = 0 and
has the correct V dependence for J;*. If we do the same for electrons, we obtain
the current density J. = J& [e¢V/? — 1], which flows oppositely to the J,. The
electrical current density of electrons j, is parallel to the j,. Therefore, the combined
electrical current density becomes as follows:

J=e(JF"+ TE) (e —1). (7.79)

A plot of j versus V looks as shown in Fig.7.6. The applied-voltage behavior of an
electrical current across the p—n junction is called rectification because a circuit can
easily be arranged in which no current flows when V is negative (smaller than some
value) but a substantial current flows for positive applied voltage.

7.5.3 Tunnel Diode

In the late 1950s Leo Esaki! was studying the current voltage characteristics of
very heavily doped p—n junctions. He found and explained the j — V characteristic

IL. Esaki, Phys. Rev. 109, 603-604 (1958).
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Fig. 7.6 Current—voltage characteristic across the p—n junction

J

Fig. 7.7 Current—voltage characteristic across a heavily doped p—n junction

shown in Fig.7.7. Esaki noted that, for very heavily doped materials, impurity band
was formed and one would obtain degenerate n-type and p-type regions where the
chemical potential ( was actually in the conduction band on the n-side and in the
valence band on the p-side as shown in Fig.7.8. For a forward bias the electrons
on the n-side can tunnel through the energy gap into the empty states (holes) in the
valence band. This current occurs only for V > 0, and it cuts off when the voltage
V exceeds the value at which e.(00) = &,(—00). When the tunnel current is added
to the normal p—n junction current, the negative resistance region shown in Fig.7.7
occurs.

7.6 Surface Space Charge Layers

The metal-oxide—semiconductor (MOS) structure is the basis for all of current micro-
electronics. We will consider the surface space charge layers that can occur in an
MOS structure. Assume a semiconductor surface is produced with a uniform and
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Fig. 7.8 Chemical potential across the heavily doped p—n junction

thin insulating layer (usually on oxide), and then on top of this oxide a metallic gate
electrode is deposited as is shown in Fig.7.9.

In the absence of any applied voltage, the bands line up as shown in Fig.7.10.
If a voltage is applied which lowers the Fermi level in the metal relative to that in
the semiconductor, most of the voltage drop will occur across the insulator and the
depletion layer of the semiconductor.

For a relatively small applied voltage, we obtain a band alignment as shown
in Fig.7.11. In the depletion layer all of the acceptors are ionized and the hole
concentration is zero since the field in the depletion layer sweeps the holes into the
bulk of the semiconductor. The normal component of the displacement field D = €¢E
must be continuous at the semiconductor—oxide interface, and the sum of the voltage
drop V4 across the depletion layer and V. across the oxide must equal the applied
voltage V,. If we take the electrostatic potential to be ¢(z), then
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Fig. 7.9 Metal-oxide—semiconductor structure
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Fig. 7.10 Band edge alignment across an MOS structure
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Fig. 7.11 Band alignment across an MOS structure in the presence of a small applied voltage

P(2) = ¢(o0) for z > d,
2meN, )
@(2) = ¢p(00) + ——(z—d) for0 <z < d. (7.80)

€s

The potential energy V is —e¢p. Vox is simply Eqt, where Eq and ¢ are the electric
field in the oxide and the thickness of the oxide layer, respectively. Equating ey E o«
to —e;¢'(z = 0) gives

Vox
67060 = 47e’*N,d. (7.81)

2me

Equation (7.81) gives us d in terms of V4. Adding Vi to the voltage drop dez
across the depletion layer gives

2meN,

Vox = Vg — d>. (7.82)

€s
Note that d must grow as V, increases since the voltage drop is divided between
the oxide and the depletion layer. The only way that V4 can grow, since N, is fixed,
is by having d grow. The surface layer just discussed is called a surface depletion
layer since the density of holes in the layer is depleted from its bulk value. For a
gate voltage in the opposite direction the bands look as shown in Fig.7.12. Here
the surface layer will have an excess of holes either bound to the acceptors or in
the valence band. This is called an accumulation layer since the density of holes is

777V N—_ g
Ve . °
______ o \:Q.”H””HMCS
METAL OXIDE gy

Fig.7.12 Band alignment across an MOS structure in the presence of a small negative gate voltage
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Fig. 7.13 Band alignment across an MOS structure in the presence of a large applied voltage

increased at the surface. If the gate voltage V; is increased to a large value in the
direction of depletion, one can wind up with the conduction band edge at the interface
below (s, the chemical potential of the semiconductor. This is shown in Fig.7.13.

Now there can be electrons in the conduction band because (s is higher than
€c(z) evaluated at the semiconductor—oxide interface. The part of the diagram near
this interface is enlarged in Fig.7.14. This system is called a semiconductor surface
inversion layer because in this surface layer we have trapped electrons (minority
carriers in the bulk). The motion of the electrons in the direction normal to the
interface is quantized, so there are discrete energy levels ¢, €1, . . . forming subband
structure. If only g lies below the chemical potential and £; — ¢ > 0, the electronic
system behaves like a two-dimensional electron gas (2DEG) because

2

e=co+5— (K +kK), (7.83)

*
c

and |
Uitk = 7€ 08, ). (7.84)

OXIDE

SEMICONDUCTOR

- d u

Fig.7.14 Band edge near the interface of the semiconductor—insulator in the MOS structure in the
presence of a large applied voltage



7.6 Surface Space Charge Layers 203

Here &,(z) is the nth eigenfunction of a differential equation given by

2
|: ! (—ih2> + Ve (2) — 6,{| & () =0. (7.85)

2m} 0z

In (7.85) the effective potential V¢ (z) must contain contributions from the depletion
layer charge, the Hartree potential of the electrons trapped in the inversion layer,
an image potential if the dielectric constants of the oxide and semiconductor are
different, and an exchange—correlation potential of the electrons with one another
beyond the simple Hartree term. Because the electrons are completely free to move
in the x — y plane, but ‘frozen’ into a single quantized level €y in the z-direction,
the z-degree of freedom is frozen out of the problem, and in this sense the electrons
behave as a two-dimensional electron gas. We fill up a circle in k, — k, space up to
kg, and

2 > 1=N, (7.86)

ki, ky

€ < €f

giving2 (L) 7k2 = N.This means thatk? = 27n, where n, = N /L2 is the number
272
of electrons per unit area of the inversion layer. Of course eg = ZWI;F =( — €.
The potential due to the depletion charge is calculated exactly as before. The

Hartree potential is a solution of Poisson’s equation given below

o? Ve — 4me? @ (7.87)
6Z2 H = e PelZ). .

The electron density is given by

pe@) =D folew) ¥ DI, (7.88)

n,k

where W, (z) = L7'£,(2)e’*T is the envelope wave function for the electrons in
the effective potential. The exchange—correlation potential V. is a functional of the
electron density p,(z). This surface inversion layer system is the basis of all large
scale integrated circuit chips that we use every day. The basic unit is the MOS field
effect transistor (MOSFET) shown in Fig.7.15. The source—drain conductivity can
be controlled by varying the applied gate voltage V. This allows one to make all
kinds of electronic devices like oscillators, transistors etc. This was an extremely
active field of semiconductor physics from the late 60s till the present time. Some
basic problems that were investigated include:

e transport along the layer
surface electron density ng and relaxation time 7 as a function of the gate voltage
V4; cyclotron resonance; localization; magnetoconductivity, and Hall effect.
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Fig. 7.15 Schematic diagram of the metal-oxide—semiconductor field effect transistor

e transport perpendicular to the layer
optical absorption; Raman scattering; coupling to optical phonons; intra and inter-
subband collective modes.

e many-body effects on subband structure and on effective mass and effective g-

value.

(@) ° ° (@) (o) °
® ®
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Gh As Al
SC(Z)
GaAs AlAs GaAs AlAs

Fig. 7.16 Schematic diagram of the GaAs—AlAs superlattice system

7.6.1 Superlattices

By novel growth techniques like molecular beam epitaxy (MBE) novel structures
can be grown almost one atomic layer at a time. The requirements for such growth
are

(i) the lattice constants of the two materials must be rather close. Otherwise, large
strains lead to many crystal imperfections.
(ii) the materials must form appropriate bonds with one another.
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One very popular example is the GaAs—AlAs system shown in Fig.7.16. A single
layer of GaAs in an AlAs host would be called a quantum well. A periodic array
of such layers is called a superlattice. It can be thought of as a new material with a
supercell in real space that goes from one GaAs to AlAs interface to the next GaAs
to AlAs interface.

7.6.2 Quantum Wells

If a quantum well is narrow, it will lead to quantized motion and subbands just as
the MOS surface inversion layer did (see, for example, Fig.7.17). For the subbands
in the conduction band we have

2

ek) = + (k2 +&2). (7.89)

Y
2m?

The band offsets are difficult to predict theoretically, but they can be measured.

7.6.3 Modulation Doping

The highest mobility materials have been obtained by growing modulation doped
GaAs/Ga;_, Al As quantum wells. In these materials the donors are located in the
GaAlAs barriers, but no closer than several hundred Atothe quantum well. The bands
look as shown in Fig.7.18. A typical sample structure would look like GaAlAs with

T 6,0

’ e’
€,®

Fig. 7.17 Schematic diagram of the subbands formation in a quantum well of the GaAs—AlAs

structure
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Fig. 7.18 Schematic diagram of a quantum well in a modulation doped GaAs/Ga;_, Al As quan-
tum well
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Fig.7.19 Schematic layered structure of a typical modulation doped GaAs/Ga;_, Al As quantum
well system

N4 donors/cm? || pure GaAlAs of 20 nm thick // GaAs of 10 nm thick // pure GaAlAs
of 20nm thick // GaAlAs with N4 donors/ cm? (see, for example, Fig.7.19). Because
the ionized impurities are rather far away from the quantum well electrons, ionized
impurity scattering is minimized and very high mobilities can be attained.

7.6.4 Minibands

When the periodic array of quantum wells in a superlattice has very wide barriers,
the subband levels in each quantum well are essentially unchanged (see, for example,
Fig.7.20). However, a new periodicity has been introduced, so we have a quantum
number k, that has to do with the eigenvalues of the translation operator.

T, W (2) = 5" Wy (2) (7.90)

This looks just like the problem of atomic energy levels that give rise to band structure
when the atoms are brought together to form a crystal. For very large values of the
barrier width, no tunneling occurs, and the minibands are essentially flat as is shown
in Fig.7.21. The supercell in real space extends from z = 0 to z = a. The first
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Fig. 7.20 Schematic subband alignments in a superlattice of supercell width a
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Fig. 7.21 Schematic miniband alignment in a superlattice of very large barrier width
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Fig. 7.22 Miniband structure in a superlattice of very narrow barrier width

Brillouin zone in k-space extends —% < k; < Z. The minibands ¢, (k;) are flat if
the barriers are so wide that no tunneling from one quantum well to its neighbor
is possible. When the barriers are narrower and tunneling can take place, the flat
bands become k,-dependent. One can easily show that in tight binding calculation
one would get bands with sinusoidal shape as shown in Fig. 7.22. Of course, the same

band structure would result from taking free electrons moving in a periodic potential

Vi) = >V, el an, (7.91)

During the past twenty years there has been an enormous explosion in the study
(both experimental and theoretical) of optical and transport properties of quantum
wells, superlattices, quantum wires, and quantum dots. One of the most exciting
developments was the observation by Klaus von Klitzing of the quantum Hall effect
in a 2DEG in a strong magnetic field. Before we give a very brief description of
this work, we must discuss the eigenstates of free electrons in two dimensions in the
presence of a perpendicular magnetic field.

7.7 Electrons in a Magnetic Field

Consider a 2DEG with ng electrons per unit area. In the presence of a dc magnetic
field B applied normal to the plane of the 2DEG, the Hamiltonian of a single electron
is written by
1 e \2
H=— (p + —A) . (7.92)
2m c

Here p = (px, py) and A(r) is the vector potential whose curl gives B = (0, 0, B),
i.e., B = V x A. There are a number of different possible choices for A(r) (different
gauges) that give a constant magnetic field in the z-direction. For example, the Landau
gauge chooses A = (0, Bx, 0) giving us ()2 %) X (ﬁBx) = BZ. Another common
choice is A = %(—y, x, 0); this is called the symmetric gauge. Different gauges
have different eigenstates, but the observables have to be the same.

Let us look at the Schrodinger equation in the Landau gauge. (H — E)¥ = 0
can be rewritten by
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Fig. 7.23 Density of states for electrons in a dc magnetic field

2
D 1 e 2 _
[ . (py + CBx) E} w(r) =0. (7.93)

Because H is independent of the coordinate y, we can write

iky

U(x,y,z) =¢e"px). (7.94)

Substituting this into the Schrodinger equation gives

2 ik \?
[& t L2 (x N ) —E| w0 =0, (7.95)
2m 2 muwe

Here, of course, w, = % is the cyclotron frequency. If we define ¥ = x + -2k

mwe
8% = % and the Schrodinger equation is just the simple harmonic oscillator equation.

Its solutions are as follows:

1
Enkzhwc(n~|—§), n=0,1,2,...

. hk
W (x,y,2) = e u, (x + ) . (7.96)

mwe

The energy is independent of k, so the density of states (per unit length) is a series
of d-functions, as is shown in Fig.7.23.

9(e) x D6 (5 — hwe (n + %)) ) (7.97)

. . . . . 2
The constant of proportionality for a finite size sample of area L? is "‘2“;5 , so that
the total number of states per Landau level is

mw.L BL?
N =L = . 7.98
. ( 27h ) hc/e (7.98)
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For a sample of area L?, each Landau level can accommodate Ny, electrons (we have
omitted spin) and Ny, is the magnetic flux through the sample divided by the quantum
of magnetic flux % We note that the degeneracy of each Landau level can also be

rewritten by N = % in terms of the magnetic length £y = ./ :L_z(a
0

Exercise

Demonstrate the one-dimensional Schrédinger equation (7.95) by combining (7.94)
and (7.93).

7.7.1 Quantum Hall Effect

If we make contacts to the 2DEG, and send a current / in the x-direction, then we
expect

1 1
Oy X — and o,y X —. (7.99)
Vi ’ !

Here V; is the applied voltage in the direction of I and V/, is the Hall voltage. In the
simple classical (Drude model) picture we know that

(o) WeTO

xx — = ——— and xy = T O0yx = — 7T 5>
T TIYT T er)? T TOT T  ery?

(7.100)

2 ..
where 0p = =%Z. In the limit as 7 — oo we have 09 — 00, 0., — 0, and

ngec
Oxy — .

In the absence of scattering, g(¢) is a series of d-functions. With scattering, the
d-functions are broadened as shown in Fig.7.24. We know that, when one Landau
level is completely filled and the one above it is completely empty, there can be no
current, because to modify the distribution function fy(e) would require promotion
of electrons to the next Landau level. There is a gap for doing this, and at 7 = 0 there
will be no current. If we plot o versus ny/ny. = v, the filling factor (n, = Ni/L?)
we expect o, to go to zero at any integer values of v as shown in Fig.7.25.

Our understanding of the integral quantum Hall effect is based on the idea that
within the broadened d-functions representing the density of states, we have both
extended states and localized states as shown in Fig.7.26. The quantum Hall effect
was very important because it led to

(i) aresistance standard p = 64 %

(i1) better understanding of Anderson localization.
(iii) discovery of the fractional quantum Hall effect.
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Fig. 7.24 Density of states for electrons in a dc magnetic field in the presence of scattering
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Fig. 7.26 Scattering effects on the density of states and conductivity components in an integral
quantum Hall state
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7.8 Amorphous Semiconductors

Except for introducing donors and acceptors in semiconductors, we have essentially
restricted our consideration to ideal, defect-free infinite crystals. There are two impor-
tant aspects of order that crystals display. The first is short range order. This has to
do with the regular arrangement of atoms in the vicinity of any particular atom. This
short range order determines the local bonding and the crystalline fields acting on
a given atom. The second aspect is long range order. This is responsible for the
translational and rotational invariance that we used in discussing Bloch functions
and band structure. It allowed us to use Bloch’s theorem and to define the Bloch
wave vector k within the first Brillouin zone.
In real crystals there are always

e surface effects associated with the finite size of the sample
e clementary excitations (dynamic perturbations like phonons, magnons etc.)
e imperfections and defects (static disorder).

For an ordered solid, one can start with the perfect crystal as the zeroth approxi-
mation and then treat static and dynamic perturbations by perturbation theory. For a
disordered solid this type of approximation is not meaningful.

7.8.1 Types of Disorder

We can classify disorder by considering some simple examples in two dimensions
that we can represent on a plane.

Perfect Crystalline Order Atoms in perfect crystalline array (see Fig.7.27a).
Compositional Disorder Impurity atoms (e.g. in an alloy) are randomly distributed
among crystalline lattice sites (see Fig.7.27b).

Positional Disorder Some separations and some bond angles are not perfect (see
Fig.7.27c¢).

Topological Disorder Fig.7.27d shows some topological disorder.

@
@) ) © ™

HEEEE r
L]

Fig. 7.27 Various types of disorder. (a) Atoms in perfect crystalline array. (b) Impurity atoms are
randomly distributed among crystalline lattice sites. (¢) Some separations and some bond angles
are not perfect. (d) Not all four-fold rings, but some five- and six-fold rings leaving dangling bonds
represent topological disorder
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Fig. 7.28 Basic assumption of energy level distribution on different sites in the Anderson model
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Because we cannot use translational invariance and energy band concepts, it is dif-
ficult to evaluate the eigenstates of a disordered system. What has been found is
that in disordered systems, some of the electronic states can be extended states and
some can be localized states. An extended state is one in which, if |& (0)|? is finite,
W (r) |2 remains finite for r very large. A localized state is one in which |V (r) |2 falls
off very quickly as r becomes large (usually exponentially). There is an enormous
literature on disorder and localization (starting with a classic, but difficult, paper by
P. W. Anderson? in the 1950s).

7.8.2 Anderson Model

The Anderson model described a system of atomic levels at different sites n and
allowed for hopping from site zn to m. The Hamiltonian is written by

H=Y cuclea+T D chen (7.101)

nm

This is just the description of band structure in terms of an atomic level € on site n
where the periodic potential gives rise to the hopping term. In tight binding approx-
imation, we would restrict 7, the hopping term to nearest neighbor hops, and that is
what the prime on > in the second term means.

In Anderson model it was assumed that ¢, the energy on site n was not a constant,
but that it was randomly distributed over a range w (see, for example, Fig.7.28).
Anderson showed that if the parameter %, where B is the band width (caused by and
proportional to T') satisfied % > 5, the state at E = 0 (the center of the band) is
localized, while if & < 5 it is extended.

2P, W. Anderson, Phys. Rev. 109, 1492 (1958).
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Fig. 7.29 Density of states of an ordinary crystal and that of a disordered material

7.8.3 Impurity Bands

Impurity levels in semiconductors form Anderson-like systems. In these systems,
the energy E is independent of #; it is equal to the donor energy 4. However, the
hopping term T is randomly distributed between certain limits, since the impurities
are randomly distributed. Sometimes (when two impurities are close together) it is
easy to hop and T is large. Sometimes, when they are far apart, T is small.

7.8.4 Density of States

Although the eigenvalues of the Anderson Hamiltonian can not be calculated in a
useful way, it is possible to make use of the idea of density of states. In Fig. 7.29, we
sketch the density of states of an ordinary crystal and then the density of states of
a disordered material. In the latter, the tails on the density of states usually contain
localized states, while the states in the center of the band are extended. The energies
E. and E. are called mobility edges. They separate localized and extended states.
When Er is in the localized states, there is no conduction at 7 = 0. The field
of amorphous materials, Anderson localization, and mobility edges are of current
research interest, but we do not have time to go into greater detail.
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Problems

7.1 Intrinsic carrier concentration can be written

me moN34 (kT ((EgineV Y~ _ s
ni(T) = 2.5 (—C—V) (B—) (Gl—) e %o x 101°/cm?.
m m Eg = eV

)
Take Eg = 1.5 eV, my, = 0.7m, and m, = 0.06 m roughly those of GaAs, and plot
Inn; vs T in the range 7 = 3 K ~ 300 K.

7.2 Plot the chemical potential (;(T') vs T in the range T = 3 K ~ 300K for values
of Eg = 1.5eV, m, =0.7m, and m, = 0.06 m.

7.3 For InSb, we have Eg >~ 0.18¢eV, ¢, >~ 17, and m- ~ 0.014 m.

(a) Evaluate the binding energy of a donor.

(b) Evaluate the orbit radius of a conduction electron in the ground state.

(c) Evaluate the donor concentration at which overlap effects between neighbor-
ing impurities become significant.

(d) If Ny = 10" cm 3 in a sample of InSb, calculate n. at T = 4K. (One can
begin with the general charge neutrality condition in the low temperature
region.)

(e) Estimate the magnitude of the electric field needed to ionize the donor at zero
temperature.

7.4 Let us consider a case that the work function of two metals differ by 2eV;
EF] — EF2 =2eV.

Vacuum

If the metals are brought into contact, electrons will flow from metal 1 to metal 2.
Assume the transferred electrons are displaced by 3 x 10~8 cm. How many electrons
per cm? are transferred?

7.5 Consider a semiconductor quantum well consisting of a very thin layer of narrow
gap semiconductor of Eg = ¢, — €, contained in a wide band gap host material of
Eg = e — &M as shown in the figure below. The conduction and valence band
edges are shown in the figure below. The dashed lines indicate the positions of
energy levels associated with the quantized motion of electrons (ej) and holes (gp)
in this quantum well. We can write the electron and hole energies, respectively, as
ce(k) = G+ 4o (kK2 + k2) and £, (k) = &, — - (k2 + k2), where &, = . + = and
Ev=¢&y — €.
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(a) Calculate the two-dimensional density of states for the electrons and holes
assuming that other quantized levels can be ignored. Note that

L*ge(e)de = > 1.
ke ky, o
€ <ep <e+tde

(b) Determine N.(T) and P, (T') for this two-dimensional system. Remember that
Ne(T) = [)° de ge(e)e 5 kaT,

(c) Determine n.(T) and py(T) for the intrinsic case.

(d) Determine the value of the chemical potential for this case.

7.6 Consider the metal-oxide—semiconductor structure with oxide layer width of a
as shown below. We have assumed the semiconductor is p-type with N acceptors
per unit volume and, therefore Er located at the acceptor level.

METAL OXIDE SEMICONDUCTOR /SC
.
e Uy
z=-a z=0

We then apply a gate voltage V,, which lowers the Fermi level in the metal relative
to that in the bulk of the semiconductor.

(a) Sketch the resulting energy bands versus z if V; is less than Eg(= &, — €,).

(b) Where are the charges that give rise to the voltage drop across the oxide and the
semiconductor depletion layer? Sketch the profile of the charge distribution
across the oxide layer.

(c) For 0 < z < d, the voltage drop across the depletion layer of width d is
determined by
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(d)

(e
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where ¢ is the background dielectric constant of the semiconductor. Solve
this equation for V4(z) in the ‘standard’ depletion layer approximation.
Impose boundary conditions that (i) V4(z) = Vg(oo) for z > d and (ii)
€0 Eoxide = €5 Esemiconductor at 2 = 0, where ¢, is the background dielectric
constant of the oxide, and determine the voltage drop across the oxide and
that across the depletion layer.

When the voltage drop across the depletion layer exceeds Eg, electrons can
transfer from the valence band into the potential well formed by the conduction
band edge and the oxide band gap. Determine the value Viyeshola Of the gate
voltage at which this occurs.

For Ve > Vinreshola» the depletion width remains essentially constant, and
the conduction electrons in the ‘inversion layer’ produce a Hartree potential
Vu(z) which satisfies

0? 4me’ns )
5 V() = — W0 ()17,
z €

where 7, is the number of conduction electrons per unit area and ¥ (z) is the
solution of the differential equation

h2 02
(—ﬂa—zz + Va(@) + Vu(z) — Eo) Y (z) =0.

Because Vy(z) depends onngand Er — Ey = Zz—f = %}izns this must be done
self-consistently. Determine Vy(z) and Ej to obtain the average electronic
energy in the system E. Hint: One can assume a variational function ¥ (z, o) =
Nze™ to evaluate Ey(cv) and then minimize the average electronic energy
in the system given by E(a) =FEy— %(VH) + % (Er — Ey).

Summary

In this chapter we studied the physics of semiconducting material and artificial
structures made of semiconductors. General properties of typical semiconductors
are reviewed and temperature dependence of carrier concentration is considered for
both intrinsic and doped cases. Then basic physics of p—n junctions is covered in
equilibrium and the current-voltage characteristic of the junction is described. The
characteristics of two-dimensional electrons are discussed for the electrons in surface
space charge layers formed in metal-oxide-semiconductor structures, semiconductor
superlattices, and quantum wells. The fundamentals of the quantum Hall effects and
the effects of disorders and modulation doping are also discussed.
The densities of states in the conduction and valence bands are given by

Vam? Vamy?
ge(e) = e (e—e)'?; go(e) = e (& —e)2.

In the case of nondegenerate regime, we have e, — ( > ©® and ( — &, > O,
where @ is kg T. Then the carrier concentrations become
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C—ev

ne(T) = Ne(T)e™ 3 pu(T) = P(T)e™ 7",

where

N(T) = / dege(e)e= 5 PAT) = / " degu©).

¢ oo

The product n.(T) py(T) is independent of ¢ such that
ne(T)py(T) = Ne(T) Py(T)e /€.
In the absence of impurities, n.(T) = py(T) and we have
ni(T) = [Ne(T) P(T)]'/? e Fe/2.
The chemical potential now becomes

¢ Leat+20m (™) ¢ L e+ 3om (™
=& — = —OIn|{—); Gi=ev+ = —OIn{—).
€T reTy e vIRE Ty e

When donors are present, the chemical potential ¢ will move from its intrinsic

value ¢ to a value near the conduction band edge. If the concentration of donors is
sufficiently small, the average occupancy of a single donor impurity state is given by

1
(na) = T———=——-
%eﬁ(Ed*O +1
The numerical factor of % in (nq) comes from the fact that either spin up or spin
down states can be occupied but not both.
At a finite temperature, we have

ne(T) = Ne(T)e "7, py(T) = P(T)e ",

Na

ng(T) = m'

d
%eﬂ(5d_() + 1’ Pa(T) -

In addition, we have charge neutrality condition given by
ne +ng = Ny — Ny + py + pa.
The set of these five equations should be solved numerically in order to have self
consistent result for five unknowns.
The region of the p—n junction is a high resistance region and the electrical current
density becomes

= e (U4 ) (€ 1),

where J£" and JE are hole and electron generation current densities, respectively.
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Near the interface of metal-oxide-semiconductor structure under a strong enough
gate voltage, the motion of the electrons is characterized by

2

1 .
e=¢co+ (ki +K3) s Wk, = Zel(kxx+k”)§n (2).

*
c

Here &,(z) is the nth eigenfunction of a differential equation given by

1 'ha 2 V. =0
2_’/”:(_1 8_2) + eff(Z)_En En(z)— .

If a quantum well is narrow, it leads to quantized motion and subbands:

2

i
e (k) =57 + o (k5 + k)

C

In the presence of a dc magnetic field B applied normal to the plane of the 2DEG,
the Hamiltonian of a single electron is written by

1 e \2
H=— (p + —A) .
2m c
Here p = (px, py) and A(r) is the vector potential whose curl gives B = (0, 0, B).
The electronic states are described by

1 . hk
Etlk:Mc(n+_)’ lpnk(x7va):elk}Mn(X+ );n:0,1,2,..,.
2 muw.

The density of states (per unit length) is given by g(¢) « >, § (e — hwe(n + %))
The total number of states per Landau level is equal to the magnetic flux through the
sample divided by the flux quantum }%:

_ BL?
"~ hcle’

NL



Chapter 8
Dielectric Properties of Solids

8.1 Review of Some Ideas of Electricity and Magnetism

When an external electromagnetic disturbance is introduced into a solid, it will pro-
duce induced charge density and induced current density. These induced densities
produce induced electric and magnetic fields. We begin with a brief review of some
elementary electricity and magnetism. In this chapter we will neglect the magnetiza-
tion produced by induced current density and concentrate on the electric polarization
field produced by the induced charge density.

The potential ¢(r) set up by a collection of charges g; at positions r; is given by

oy => L 8.1)

Ir —r;]

i

The electric field E(r) is given by E(r) = —V¢(r).
Now consider a dipole at position r’ (see Fig.8.1).

q q

pr =g r-r+ gl

P(r) =

8.2)

By a dipole we mean p = gd is a constant, called the dipole moment, but |d| = d
itself is vanishingly small. If we expand for |r — r/| >|d |, we find

gd-(r—r) p-(r—r)

r) = = . 83
o(r) T —1) P (8.3)
The potential produced by a collection of dipoles p; located at r; is simply
o(r) = Z pi-(r—ri) (8.4)
= - .
— |r—r
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g s reig
! 7

Fig. 8.1 Electric dipole of moment p = gd located at r’

Again the electric field E(r) = —V¢(r), so

E(r) = Z 3(r—r;) [Pi -(r— rl-)] —(r—1)’pi |

8.5
Ir—r;)° 8->

i

8.2 Dipole Moment Per Unit Volume

Let us introduce the electric polarization P(r), which is the dipole moments per unit
volume. Consider a volume V bounded by a surface S filled with a polarization P(r”)
that depends on the position r’. Then

P / . _ /
o(r) = /d3r’ Lrsr) (8.6)
Ir —r’|

If we look at the divergence of ll:(_rr’?‘ with respect to r’, we note that

P(r) 1 P -(r—r')
V/ . [ — — — V/ . P(r/) + # (87)

Ir —r’| Ir —r’| lr —r'|

We can solve for % and substitute into our expression for ¢(r). The integral of

the divergence term can be expressed as a surface integral using divergence theorem.
This gives
Pr/ .ﬁ/ _v/'Pr/
o(r) = f{ ds’ L + / d’r’ & (8.8)
s [r —r'| v Ir—r'|

The potential ¢(r) can be associated with a potential produced by a volume distrib-
ution of charge density
pp(r) ==V -P(r) (8.9)
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and the potential produced by a surface charge density
op(r) =P(r) - . (8.10)
Here, of course, 1 is a unit vector outward normal to the surface S bounding the
volume V.
Poisson’s equation tells us that

V-E =47 (po + pp) 8.11)

where pg is some external charge density and pp is the polarization charge density.
Since pp = —V - P, we can write

V-E=4mpy — 47V - P. (8.12)
If we define D = E + 47P, then
V -D = 4mpyg. (8.13)
Thus D is the electric field that would be produced by the external charge density p
if a polarizable material were absent. E is the true electric field produced by all the
charge densities including both py and pp.

In general P and E need not be in the same direction. However, for sufficiently
small value of E, the relationship between P and E is linear. We can write

Pi =" xijEj. (8.14)
J

where x is called the electrical susceptibility tensor. We can write
D=¢-E, (8.15)

where € = 1 + 4y is the dielectric tensor.

8.3 Atomic Polarizability

An atom in its ground state has no dipole moment. However, in the presence of an
electric field E, an induced dipole moment results from the relative displacements
of the positive and negative charges within the atom. We can write

Pind = oK, (8.16)

and « is called the atomic polarizability.
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Fig. 8.2 Induced dipoles of moment p located on neighboring atoms

8.4 Local Field in a Solid

In a dilute gas of atoms the electric field E that produces the induced dipole moment
on an atom is simply the applied electric field. In a solid, however, all of the dipole
moments produced on other atoms in the solid make a contribution to the field acting
on a given atom. The value of this microscopic field at the position of the atom is
called the local field. The local field E;p(r) is different from the applied electric
field Ey and from the macroscopic electric field E (which is the average of the
microscopic field E; g(r) over a region that is large compared to a unit cell). Clearly,
the contributions to the microscopic field from the induced dipoles on neighboring
atoms vary considerably over the unit cell (see Fig.8.2). The standard method of
evaluating the local field E{g(r) in terms of the macroscopic field E is to make use
of the Lorentz sphere. Before introducing the Lorentz field, let us review quickly the
relation between the external field E and the macroscopic field E in the solid.

8.5 Macroscopic Field

Suppose the solid we are studying is shaped like an ellipsoid. It is a standard problem
in electromagnetism to determine the electric field E inside the ellipsoid in terms
of the external electric field Eq (see Fig.8.3). The applied field Eg is the value of
the electric field very far away from the sample. The macroscopic field inside the
ellipsoid is given by

E=E)—- P =Ey+E,. (8.17)

The field E; = — AP is called the depolarization field, due to surface charge density
n - P on the outer surface of the specimen, and ) is called the depolarization factor.
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Fig. 8.3 The macroscopic electric field E inside an ellipsoid located in an external electric field Eg
is the sum of Eq and polarization field E; = —AP due to the surface charge density n - P

8.5.1 Depolarization Factor

The standard electromagnetic theory problem of determining A involves
1. solving Laplace’s equation V2¢(r) = 0 in cylindrical coordinates so that
o(r) = (ar' +br~"*V) P(cos0) (C sinm¢ + D cosme)
(a) inside the sample (where r can approach 0)
(b) outside the sample (where r can approach co), and

2. imposing boundary conditions

(a) E well behaved as r — 0
() E— Eyasr — oo
(©) Dyormar = (E 4+ 47P) normar» and Eq.,sv be continuous at the surface.

For an ellipsoid with the depolarization factors A, A, and A3 along the three principal
axes.

AL+ A+ A3 =4, (8.18)

Some examples are listed in Table 8.1.

Table 8.1 Depolarization factors \ of typical ellipsoids

Type of ellipsoid | Axis A

7
Sphere Any 5
Thin slab Normal 47
Thin slab Parallel 0
Long cylinder Along axis 0
Long circular Normal to axis 2
cylinder
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8.6 Lorentz Field

Assume that we know E, the macroscopic field inside the solid. Now consider an atom
at position R. Draw a sphere of radius ¢ (named as Lorentz sphere) about R where
£ > a, the interatomic spacing (see Fig.8.4). The contribution to the microscopic
field at R from induced dipoles on other atoms can be divided into two parts:

(1) For atoms inside the sphere we will actually sum over the contribution from their
individual dipole moments p;.

(2) For atoms outside the sphere we can treat the contribution macroscopically,
treating them as part of a continuum with polarization P.

The dipole moments outside the Lorentz sphere contribute a surface charge density
on the surface of the Lorentz sphere, and we can write

P(r) - n(r)

(R) = / ds —> 7 (8.19)
¢) Lorentzsphere |R - I‘|

The field E, caused by this surface charge on the spherical cavity (Lorentz sphere)
is called the Lorentz field:

. (R—=r)
E>(R) = —Vro(R) = / dS P(r) ~n(r)m. (8.20)

To evaluate this integral note, from Fig. 8.4, that

r —R|=¢,

P(r) - n(r) = P cos ¥,

dS = 2m¢%sinf d6, and

R —r = £ (sin f cos ¢, sin A sin ¢, cos ) .

Hence we have

Fig. 8.4 A Lorentz sphere of radius ¢ centered at R
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4 £cosf
E,(R) = —/ 2706% d(cos 0) P cos 9%.
0

Only the z-component of R — r survives the integration. We find that

1
4
E,(R) = 27P / d(cos ) cosf = ?WP. (8.21)
-1

E; = “2F is the Lorentz field.
The final contribution E; arises from the contribution of the dipoles within the
Lorentz sphere (L.S.). It is given by

3(pi ) —rip;
E; = Z = ) (8.22)
ieL.S. i

This term clearly depends on the crystal structure. If p; = p = pZ, then the field at
the center of the Lorentz sphere is

322 —r?,
E;=(0,0,E3) =p Z r—sz. (8.23)
ieL.S. i

For a crystal with cubic symmetry

2 2 2 2
SH oy _Zz_i_lzr_i

5 5 = = 5°

r; —~ r; 3 —r;

5
r;
i i l

Thus, for a cubic crystal, the two terms cancel and E3 = 0. Hence, we find the local
field in a cubic crystal
Exp=Ey+E + Ex + E;3
——— ~—

(8.24)
= E +%P+o0.
The last expression is the Lorentz relation. We note that, since E; = —%’rP for a
spherical specimen, the local field at the center of a sphere of cubic crystal is simply
given by
4 4

Ei;;here:Eo_?P_i_?P—i—O:Eo.

8.7 Clausius—Mossotti Relation

The induced dipole moment of an atom is given, in terms of the local field, by
p = aEp . The polarization P is given, for a cubic crystal, by
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41
P=Np=NaEr=Na«a E+?P , (8.25)
where N is the number of atoms per unit volume. Solving for P gives

P=—_ E=\E. (8.26)

Na
X = 1 4nNa (8.27)
-3
Since D = ¢E with ¢ = 1 + 47y, we find that
47N
N (8.28)
1 =5
or -~
] 4 &2
€= 1_73%5 (8.29)

3

This relation between the macroscopic dielectric function € and the atomic polariz-
ability « is called the Clausius—Mossotti relation. It can also be written (solving for
4nNa ) b
—3 )by

e—1 4nNa

= . 8.30
e+2 3 ( )

8.8 Polarizability and Dielectric Functions of Some Simple
Systems

The total polarizability of the atoms or ions within a unit cell can usually be separated
into three parts:

(i) electronic polarizability «.: the displacement of the electrons relative to the
nucleus.
(i) ionic polarizability «;: the displacement of an ion itself with respect to its
equilibrium position.
(iii) dipolar polarizability oipole: the orientation of any permanent dipoles by the
electric field in the presence of thermal disorder.

Atoms and homonuclear diatomic molecules have no dipole moments in their ground
states. Molecules like KC1, HCI, H,O, ... do exhibit permanent dipole moments.
A typical dipole moment p = gd has ¢ ~ 4.8 x 107 '%esu and d ~ 1078 cm, giving
p =~ 5 x 10~'® stat-coulomb cm.
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8.8.1 Evaluation of the Dipole Polarizability

In the absence of an electric field, the probability that a dipole p will be oriented
within the solid angle d$2 = sinf df d¢ is independent of 6 and ¢ and is given
by 42 In the presence of a field E, the probability is proportional to d$2 e="/* T
Where W = —p - E is the energy of the dipole in the field E. If we choose the z
direction parallel to E, then the average values of p, and p, vanish and we have

fdQ epEcos()/kBT pCOS@

p: = [d2 epEcost/knT (8.31)
Let ,fB—[; = ¢, cos§ = x and rewrite p, as
! x xe&*
_Pdgl (251nh§) (coth{ )
Thus we can write p, as
Pz = pL(). (8.32)

Here L£(€) is the Langevin function defined by L(§) = coth £ — % The dipole moment
per unit volume is then given by

E
P=Np, _Np£<lf;T)

We note that for £ — oo, L(§) — 1, while for £ — 0, L(§) = E dfEK 1, P =

IXfo At room temperature the condition is satisfied if £ < kBT ~ 107 volts/cm.

The standard unit of dipole moment is the Debye, defined by 1 Debye =10""8esu
Figure 8.5 is a sketch of the temperature dependence of an electrical polarization P.

P/pN

Y

PE/kT

Fig. 8.5 Temperature dependence of an electrical polarization P
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Fig. 8.6 An electrical polarizability o as a function of temperature

The electronic polarizability o, and the ionic polarizability o, are almost inde-

pendent of temperature. Therefore, by measuring ;—; = w as a function of

temperature one can obtain the value of p? from the slope (see Fig. 8.6).

8.8.2 Polarizability of Bound Electrons

Assume that an electron (of charge ¢ = —e) is bound harmonically to a particular
location (e.g., the position of a particular ion). Its equation of motion is written by

m (i‘ + 5) — _kr — ¢E, (8.33)
T

where —kr is the restoring force and E is the perturbing electric field. Assume
E o e/’ and let k = mw{. Then we can solve for r o e/ to obtain

—eE/m P

= = —. 8.34
—W? tiw/T+wi —e (834
The dipole moment of the atom will be p = —er and the polarization P = Np =
—Ner = NagE. This gives for o,
(€?/m) [wé —w? - iw/T]
ol = 5 e > (8.35)
(wy —w?)? + (w/7)
The dielectric function € = 1 + 47Ny i
4rNe*/m) (Wi — w? —iw/T
e(w)=1+( /m) (% /). (8.36)

(@f —w?)? + /)2

It is clear that «, has a real and an imaginary part whose frequency dependences are
of the form sketched in Fig.8.7.
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Fig. 8.7 The frequency dependence of the dielectric function e of atoms with bound electrons. (a)
Real part of €(w), (b) imaginary part of €(w)

8.8.3 Dielectric Function of a Metal

In a metal (e.g., Drude model) the electrons are free. This means that the restoring
force vanishes (i.e., k — 0) or wy = 0. In that case we obtain

e’/m
e = —5—, (837)
—w* +iw/T
or ) )
47N w
ey =1 TNem W (8.38)
w?—iw/T w?—iw/T
The real and imaginary parts of e(w) are
272
_ P
and
272
Je(w) = ———L (8.40)

wr(l +w?r2)’

The fact that Re(w) < 0 for w? < wlz, — T% leads to an imaginary refractive index
and is responsible for the fact that metals are good reflectors.

8.8.4 Dielectric Function of a Polar Crystal

In an ionic crystal like NaCl, longitudinal optical phonons have associated with them
charge displacements, which result in a macroscopic polarization field P.. Here the
subscript L stands for the lattice polarization (see, for example, Fig. 8.8).
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Fig. 8.8 Polarization field due to charge displacements in a polar crystal

The polarization field Py consists of two parts: (i) the displacements of the charged
individual ions from their equilibrium positions, and (ii) the polarization of the ions
themselves resulting from the displacement of the electrons relative to the nucleus
under the influence of the E field. In determining each of these contributions to Pp,
we must use the local field E;g. We shall consider the following model of a polar
crystal.

(i) The material is a cubic lattice with two atoms per unit cell; the volume of the

unit cell is V.

(i) The charges, masses, and atomic polarizabilities of these ions are +ze, M,
and a4

(iii) In addition to long range electrical forces, there is a short range restoring force
that is proportional to the relative displacement of the pair of atoms in the same
cell.
Note: Here we are considering only the ¢ = 0 optical phonon, so that the

ionic displacements are identical in each cell. Therefore, the restoring force can
(n)

be written in such a way that: The force on M} depends on uﬂ'_’) —u™ and
uS':) —u"V butu™ = u"Y so the force is simply proportional to uﬁf) —u™
(see Fig.8.9).
We can write the equations of motion of u and u_ as
My = —k(uy —u-) + zeELr,
M_ii_. =k(uy —u_) —zeFEyp. (8.41)

Fig. 8.9 Ionic displacements in the nth unit cell and its nearest neighbor atoms
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The local field E is given, for cubic crystals, by (8.24):
4m
Er=E+ ?Ph

and
PL (“+—U)+ (04++04)ELF~

Substitute for E; r in terms of E and Py, and then solve for Py.. This gives us

ze o + o
P = ——E.
L Vﬁ r+ V3

Here § =1 — % (“4/%=) and r = u, — u_. Introduce

2 _ _k
QF =&,

2 — 4me?
‘Qpi = VMg

=M;'+ M.

The equations of motion can be rewritten

—wha, = .er+3 27 r+ wE,
— 2 2 e
—wul = +Qr - L0 r— F4E.

If we subtract the second equation from the first we obtain

[‘wz +(22+02%) - %} o ;_%E'
This can be rewritten r= % (wz + 1711)_l £
pM |
where , ,
bu=- {Qi - %] ) _W%'

231

(8.42)

(8.43)

(8.44)

(8.45)

(8.46)

(8.47)

(8.48)

(8.49)

—by, is a frequency squared and it is positive since Q[%i is always smaller than £2.
Let us call it +w3. Since we know the expression for Py in terms of r and E we can

write

ze ze E ay + o
RRTC ( ﬁM) W2 — Wi %

(8.50)
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Let us define

b22 _ apta
= BV
o _ e (8.51)
127 g2y
Then we can rewrite Py as
1722
P. = (b22 — rlwz) E = \E. (8.52)
T

PL(w)

) » and the dielectric

Recall that the electrical susceptibility is defined by x(w) =
function by
e(w) =1 +4mx(w). (8.53)

From (8.52) for Py we find

b2
X(W) = by — 5. (8.54)
w” — wr

The frequency wr is in the infrared (~10'3/s). If we look at frequencies much larger
than wr we find

Xoo = b22. (8.55)
For w — 0 we find that
b? b?
Xo =bn+ ﬁ = Xoo + ﬁ. (8.56)
T T
Therefore we can write
2 2 W%
by = wi (X0 — Xoo) = E (€0 — €00) - (8.57)

This, of course, is positive since €y contains contributions from the displacements of
the ions as well as the electronic displacements within each ion. The latter is very
fast while the former is slow. The dielectric function ¢(w) can be written

wi

(W) = €00 — (€0 — €x0)

5
w?—wi
2
_ B Wt
= €xo [1 (foo 1) wsz%il .

We define wf = wfL > wi. Then we can write

(W) = € [M} (8.58)
— o0 2 2 . .

w? — wip
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Table 8.2 Dielectric constants €y and e, for polar materials

Crystal €0 €00 €0/€co
LiF 8.7 1.93 4.5
NaCl 5.62 2.25 2.50
KBr 4.78 2.33 2.05
Cu, 0 8.75 4.0 2.2
PbS 17.9 2.81 6.37
1
3 |
3 1
E/—---- —: ——————————————
|
|
Co ~~ - : **************
i ‘”/ ®
OJT"

Fig. 8.10 Frequency dependence of the dielectric function e(w) of a polar crystal

Here, wi, and wy are the TO and LO phonon frequencies, respectively. We note that
W, > wr since €y > € in general. Values of €y and €., for some polar materials are
listed in Table 8.2. Instead of discussing the lattice polarization Py, we could have
discussed the lattice current density

jL= P, =iwP = iwx(W)E.
A plot of e(w) versus w is shown in Fig. 8.10. At w = 0 € has the static value €j, and

as w — oo it approaches the high frequency value €. € is always larger than €.
There is a resonance at w = wr.

8.9 Optical Properties

The dielectric and magnetic properties of a medium are characterized by the dielectric
function €(w) and the magnetic permeability p(w):

D = ¢E and B = ©H. (8.59)
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In terms of E and B, Maxwell’s equations can be written

V-E =4mp =47 (po + pp)
V-B=0
VxE=-1B (8.60)

V xB=1E+%(j+jp) + 47V x M.

The last equation involves the magnetization which is normally very small. Here we
will neglect it; this is equivalent to taking 1 = 1 or B = H. The sources of E are all
charges; external (pp) and induced polarization (pp) charge densities. The sources of
B are the rate of change of E and the total current (external jy and induced jp current
densities). Recall that jp = P and V - P = —pp.

Note: Sometimes the first Maxwell equation is replaced by V-D = 4mpg. Here D = E+47P

and as we have seen pp = —V - P. The fourth equation is sometimes replaced by V x H =
%D + 47” jo, which omits all polarization currents.

In this chapter we shall ignore all magnetic effects and take p(w) = 1. This is
an excellent approximation for most materials since the magnetic susceptibility is
usually much smaller than unity. There are two extreme ways of writing the equation
for V x B: L,
V x B = <E + “Zjjor
c Tl (8.61)
VxB=-E+ 7 (jo+0oE)
The first equation is just that for H in which we put © = 1 and D = €E. The
second equation is that for V x B in which we have taken jp = oE where o is the
conductivity. From this we see that “2e(w) = 2 + 4TfTU(w), or

dw=1—ﬁﬁﬂm (8.62)
w

is a complex dielectric constant and simply related to the conductivity o (w). We have
assumed that E and B are proportional to e'“’.

8.9.1 Wave Equation

For the propagation of light in a material characterized by a complex dielectric
function €(w), the external sources jy and py vanishes. Therefore, we have

VxE=-“B

. 8.63
VxB= @E ( )

Later on we will consider both bulk and surface waves. We will take the normal
to the surface as the z-direction and consider waves that propagate at some angle
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to the interface. There is no loss of generality in assuming that the wave vector
q = (0, gy, g;), so that the E field is given by

E = (E,, E,, E,)e!“ 97743,

The operators V and % become —iq and iw, and the two Maxwell equations for
V x E and V x B can be combined to give

Vx(VxE)=-2V xB=—X(LE)
=V(V-E) — V?E.

This can be rewritten
w? )
ge(w) —q°)E+q(q-E)=0. (8.64)

This vector equation can be expressed as a matrix equation

Lew)—q> 0 0 E.
0 Zew -¢> a4 E, | =0. (865
2
0 ayq:  ew)—q2 ) \E:

8.10 Bulk Modes

For an infinite homogeneous medium of dielectric function e(w), the nontrivial solu-
tions are obtained by setting the determinant of the 3 x 3 matrix (multiplying the
column vector E in (8.65)) equal to zero. This gives

w2 2
e(w) I:C—Ze(w) — q2:| =0. (8.66)

There are two transverse modes satisfying

2 2
2_ ¢4

T ()

w (8.67)

One of these has g, E, + q.E. = q-E = 0; E; = 0. The other has E, # 0 and
E, = E. = 0. The other mode is longitudinal and has £, = 0Oand q || E or g— = %,
and has the dispersion relation ' i

e(w) =0. (8.68)

First, let us look at longitudinal modes.
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8.10.1 Longitudinal Modes

Longitudinal modes, as we have seen, are given by the zeros of the dielectric function
€(w). For simplicity we will neglect collisions and set 7 — oo in the various dielectric
functions we have studied.

Bound Electrons

We found that (for 7 — 00)

47Ne?/m
(W) =1+ ”2—/2 (8.69)
Wy —w

We have seen the quantity 47 Ne?/m before. It is just the square of the plasma
frequency w, of a system of N electrons per unit volume. The zero of €(w) occurs at

W =wp +w) = 2% (8.70)
Free Electrons
For free electrons wy = 0. Therefore the longitudinal mode (plasmon) occurs at

w? = w?. (8.71)

Polar Crystal

For a polar dielectric, the dielectric function is given by

W2 — w2
(W) = €o——- (8.72)
w” — Wy

The longitudinal mode occurs at w = wy,, the longitudinal optical phonon frequency.

Degenerate Polar Semiconductor

For a polar semiconductor containing N free electrons per unit volume in the con-
duction band ,
2 2
w” — W, Wp

This can be written as

2 wi)(w2 —w?)

w(w? — wd)

(w

(W) = €so (8.74)

Here w3 are two solutions of the quadratic equation
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E(w)

Fig. 8.11 Frequency dependence of the dielectric function e(w) for a degenerate polar semicon-
ductor

4

w” — wz(wL + wz) + w2 2 -0, (8.75)

p
where wp = w—‘; with background dielectric constant ¢,,. The modes are coupled

plasmon—LO phonon modes. One can see where these two modes occur by plotting
€(w) versus w (see Fig.8.11).

8.10.2 Transverse Modes

2 __

For transverse waves w Again we will take the limit 7 — oo.

e(w)

Dielectric

For a dielectric e(w) is a constant €y independent of frequency. Thus, we have

w=—09q. (8.76)

Here /€ is called the refractive index n, and the velocity of light in the medium s .
Metal

2
For a metal € = 1 — %, giving

w? = wf, + czqz. (8.77)

No transverse waves propagate for w < wy, since €(w) is negative there (see Fig. 8.12).
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Fig. 8.13 Frequency dependence of the dielectric function e(w) for bound electrons

Bound Electrons
w? Q22 . .
For bound electrons € = 1 + % = 5= giving for the transverse mode
wy—w wy—w
92 _ w2
’q* = W* (2—2 . (8.78)
wy —w

It is worth sketching e(w) versus w (see Fig.8.13).

The dielectric function is negative for wy < w < 2. The dispersion relation of
the transverse mode for bound electrons given by (8.78) is sketched in Fig.8.14.
No transverse modes propagate where e(w) < 0 since c?q? = w”e gives imaginary
values of ¢ in that region.

Polar Dielectric

2
:% and again it is worth plotting e(w) versus w. It is shown
T

(2
In this case €(w) = € :27
in Fig. 8.15. €(w) is negative in the region wy < w < wy. Plotting w versus cq we

have result shown in Fig. 8.16. There is a region between wr and wy, where no light
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cq

Fig. 8.16 Dispersion relation of the transverse modes in a polar dielectric

propagates the (reststrahlen region). The propagating modes are referred to as polari-
ton modes. They are linear combinations of transverse phonon and electromagnetic

modes.
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Fig. 8.17 Dispersion relation of the transverse modes in a polar semiconductor

Degenerate Polar Semiconductor

2 w? . . .
Here e(w) = em% — & (see Fig. 8.11). We have already shown in (8.74) that this

2
wr
can be written in terms of w and w_. The equation for a transverse mode becomes

(@ — W)@ — w?)
czq2 = €00 ; 5 . (8.79)
w? — wy

In Fig.8.11 the dielectric function e(w) was plotted as a function of w in order to
study the longitudinal modes. There we found that e(w) was negative if w < w_
or if wr < w < wy. The dispersion curve for the transverse mode is displayed in
Fig.8.17.

8.11 Reflectivity of a Solid

A vacuum-solid interface is located at z = 0. The solid (z > 0) is described by a
dielectric function €(w) and vacuum (z < 0) by ¢ = 1. An incident light wave of
frequency w propagates in the z-direction as shown in Fig. 8.18.

VACUUM SOLID

€=1 E(w)

Fig. 8.18 Reflection of light wave at the interface of vacuum and solid of dielectric function e(w)
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Here we take the wave to be polarized in the y-direction and go = < while

q = v/ €(w)qo. There are three waves to consider:

(i) the incident wave whose electric field is given by
E; = yEpe! @19,
(i) The reflected wave whose electric field is given by
Eg = §Ege! “+09, (8.80)
(iii)) The transmitted wave whose electric field is given by
Er = §Ere/ @19,

Because V x E = —%B, B = % x E, where ¢; = g for the wave in vacuum
and ¢g; = g for the wave in the solid. We can easily see that

B, = —fEIei(w—qUZ),
Br = & Ege! /900, (8.81)
B = —ie()Erel@—43),

The boundary conditions at z = 0 are continuity of E and B. This gives
Ei+ Egr = Er, —E +Eg=—¢"?Eq. (8.82)

Solving these equations for 2—1: gives

Er _ 1= Vew) (8.83)

El  1+/ew)

8.11.1 Optical Constants

The refractive index n(w) and extinction coefficient k(w) are real functions of fre-
quency defined by
e(w) = (n + ik)>. (8.84)

Therefore, the reflectivity, the fraction of power reflected defined by R = | Er/E;|?,
is given by
=)+

= e (8.85)
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The power absorbed is given by P = 9i(j - E). Butj = ¢E and 0 = %(e —1).

Therefore the power absorbed is proportional to ;=€ (w)|E |?. But the imaginary part
of e(w) is just 2nk, so that

Power absorbed o n(w) k(w). (8.86)

8.11.2 Skin Effect

We have seen that for a metal e(w) is given by

w2 w2 w2 wT
ew=1-—2__=1- P v/ ) (8.87)
ww—i/7) Ww41/72 Wi+ 172

At optical frequencies w is usually large compared to % Therefore, the real part
of e(w) is large compared to the imaginary part; however, it is negative. €; (w) =~
—w% Jw?, since w, is large compared to optical frequencies for most metals. The
wave vector of the transmitted wave is

w w w
el Z = TP

q:
c c\ w? c

Thus the wave
Er = ET)AI ei(wl—qz)

decays with increasing z as e™/* where \ = ¢/w), is called the skin depth. For
w, ~ 10571, X &~ 30nm. In a metal, light only penetrates this distance. This
analysis assumed that j(r) = oE(r), a local relationship between j and E. If the
mean free path / = vg7 is larger than A, the skin depth, this assumption is not valid.
Then one must use a more sophisticated analysis; this is referred to as the anomalous
skin effect.

8.12 Surface Waves

In solving the equations describing the propagation of electromagnetic waves in an
infinite medium, we considered the wave vector ¢, which satisfied the relation

2

2 w
¢’ = ew). (8.88)

to have components ¢, and g, which were real.
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MEDIUM [ MEDIUM I

€1 = CONST 811 = (W)

- Z

SURFACE
Z=0

Fig. 8.19 The interface of two different media of dielectric functions € and e

At a surface (z = 0) separating two different dielectrics it is possible to have
solutions for which qz2 is negative in one or both of the media. If qz2 is negative
in both media, implying that ¢, itself is imaginary, such solutions describe surface
waves.

Let us look at the system shown below in Fig.8.19. The wave equation can be

written

w2

=6 -4 (8.89)

where i = I or II. We think of w and g, as given and the same in each medium. Then
the wave equation tells us the value of q? in each medium.

Let us assume a p-polarized wave (the s-polarization in which E is parallel to the
surface does not usually give surface waves). We take

E = (0, Ey, E.) '@ "4, (8.90)

¥

Because there is no charge density except at the surface z = 0, we have V - E =
q - E = 0 everywhere except at the surface. This implies that

4yEy +q:E; =0, (8.91)
giving the value of E; in each medium in terms of ¢,, ¢.;, and E,. We take

— iwt—iqyy 2 _ 2
E| = (0’ EyIa Ezl) elw lqy)+mz7 ar = —(q, (8 92)
[wWt—iqyy— 2 2 .
EII = (07 Ey[ls Ezll) eIy anZ’ anq = _qZH-

Since )
e_qu[Z — e(ylz’ qz] =iog
e~ lqmz — e*aIIZ’ g1 = _l'aH_

Here oq and «q are positive and the form of E(z) has been chosen to vanish as
|z] = oo.
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Since E,, = — L E,, we obtain
! qz;
qy qy
Ey=—/—E, ,Eqn=——""-—E,,. 8.93
zI iOq VI ZII —iOlII Vi ( )
The boundary conditions are
(i) E,1(0) = Eyn(0) = E, (0), 5.9

(ii) e1E:1(0) = en Ezn(0).

These conditions give us the dispersion relation of the surface wave. Substituting
fields given by (8.93) into the second expression of (8.94) we have

QA _g o S @ (8.95)
o ooq Q, o ’ ’
where
w? w?
o = q}? C—2€0 and o= q§ - Ze(w). (8.96)
Exercise

Demonstrate the dispersion relation (8.95) with an explicit use of the boundary con-
ditions given by (8.94).

Non-retarded Limit

This is the case where cq, > w or ¢ may be taken as infinite. In this limit we have
a1 > o > g, and the dispersion relation becomes

€ + e(w) = 0. (8.97)
Surface Polaritons (with retardation effects)
We take the dispersion relation given by (8.95) and square both sides. This gives

Ea? = E(w)ag,

2 2
w w
& (q§ - ;e(w)) = (W) (q§ - C—zeo) .

This can be simplified to

or

)W
[0 +e(W)lgy = peoe(w)
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or

2
2 2 w7 €q€e(w)
=" 8.98
cqy et ) (3.98)

8.12.1 Plasmon

For a system containing n free electrons of mass m

2

(W) =e— 5, (8.99)
w
where ¢ is the background dielectric constant and wg = #. In the non-retarded
limit we find
“p
€+ €& — ) =0.
w
Solving for w? gives the surface plasmon (SP) frequency
wep = ——P (8.100)
Y Vate '
Recall the bulk plasmon (BP) is given by e(w) = 0
“ (8.101)
WBp = > Wsp. .
Ja
So that we have wsp < wpp. For the surface plasmon—polariton we find
w?e, (es — wg/wz)
gy = (8.102)

€0+ €5 — wg/w2

It is easy to see that, for very small values of cq,, w — 0 and we can neglect ¢, and
(€0 + €) compared to —wg /w? on the right hand side of (8.102).
czqf,

lim w? ~ ) (8.103)
cqy—0 €o

For very large cq,, the only solution occurs when the denominator of the right hand

side approaches zero.

wZ

lim w?>>~—F =2, 8.104
cqy—>00 €0 + € SP ( )
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Fig. 8.20 Dispersion curves of the bulk and surface plasmon—polariton modes

The dispersion curves of the bulk and surface plasmon—polariton modes are shown
in Fig. 8.20.

Exercise

Examine (8.102) and demonstrate the dispersion curves of the surface plasmon—
polariton modes shown in Fig. 8.20.

8.12.2 Surface Phonon-Polariton

Here we take the dielectric function of a polar crystal

22
(W) = en L. (8.105)
W™ — Wy

At the interface of a dielectric ¢; and a polar material described by (8.105) the surface
mode is given by (8.95)
€ e(w)

_ (8.106)

(03 «

Since €, g, and « are all positive, this equation has a solution only in the region
where e(w) < 0. Recall that e(w) versus w looks as shown below in Fig.8.21. e(w)
is negative if wr < w < wy. The dispersion relation, (8.106), is written by

2q2 . wrere(w) _ €r€cow? (W? — wﬁ)
Voatew)  aW?—wd) + e —wd)’

(8.107)

The denominator can be written as

D = (€1 + €x0)w? — (Wi + €oow}) = (€1 + €00) (W — W?), (8.108)
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Fig. 8.21 Dielectric function e(w) of a polar crystal

where the surface phonon frequency wy is given by

2 2
wf — M (8.109)

€1 + €x

It is easy to show that w3 < w? < w?. The dispersion relation can be written

20 r€cow? (W? — wi)

VU (a + eoo) (W — W)

(8.110)

Figure 8.22 shows the right hand side of (8.110) as a function of frequency. Since
surface modes can occur only where q§ > 0 and e(w) < 0, we see that the surface
mode is restricted to the frequency region wt < w < wy. It is not difficult to see that
as cqy, — 0o, the surface polariton approaches the frequency w;. It is also appar-
entthatatw = wr, czq% = elw%. This gives the dispersion curve sketched in Fig. 8.23.

Fig. 8.22 Dispersion curves of phonon—polariton modes
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Fig. 8.23 Dispersion relation of surface phonon—polariton modes. Also shown are the bulk mode
w4 and w_ which can occur outside the region wr < w < wr,

Exercise

Examine (8.110) and demonstrate the dispersion curves of the surface phonon—
polariton modes shown in Fig. 8.23.

Problems

8.1 Suppose an electric field E = EZ is applied to a hydrogen atom in its ground
state 1100(r, 0, ¢) = \%aof 3 26”/“0, where ay is the Bohr radius. In the presence
of an external electric field, the electron cloud of the hydrogen atom is displaced in
the opposite direction of the field to an induce dipole moment. Evaluate the atomic
polarizability a of the hydrogen atom assuming semiclassically that the atom remains

in its ground state.

8.2 In the presence of an external electric field E = EZ, the ground state in Problem
1 is no longer 1100 (r, 6, ¢), but is perturbed to be 1[)0 due to an additional term —g E'z
in the Hamiltonian. Evaluate the atomic polarizability of the hydrogen atom by
calculating (1;0 |qz|1ﬁo) to first order in E. Note the selection rule of An = any value,
Al = =1, and Am = 0.

8.3 A degenerate polar semiconductor contains ng free electrons per unit volume in
the conduction band. Its dielectric function e(w) is given by

2

w? —wﬁ Wp
W=eom 7 "2
w* — Wt w

where wy, and wr are the LO and TO phonon frequencies, and wy, = ,/ 4””7062.
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W)W —wi)

W (Wr—w?)

2

(a) Show that e(w) can be written as €(w) = €4 , and determine w

and w? .

(b) Make a sketch of e€(w) versus w; be sure to indicate the locations of wr, wr,,
W_, W4, €9, and €.

(c) Determine the dispersion relation of the longitudinal and transverse modes,
i.e. w as a function of g. In which regions of frequency are the transverse
waves unable to propagate?

y

A
€=1 €(w)
e 1

A
n o

0

VACUUM SOLID

8.4 Evaluate the reflectivity for an S-polarized and a P-polarized electromagnetic
wave incident at an angle 6 from vacuum on a material of dielectric function e(w)
as illustrated in the figure above. One can take E = (E,, 0, 0)e”" 4T and E =
(0, Ey, E;)e’*" 19T as the S- and P-polarized electric fields, respectively. Remember
thatq-E=0and q = (0, ¢y, q,).

8.5 (a) Consider a vacuum—degenerate polar semiconductor interface. Use the
results obtained in the text to determine the dispersion relations of the surface
modes.

(b) Make a sketch of w versus g, (g, is parallel to the interface) for these surface
modes and for the bulk modes which have g, = 0.

Summary

In this chapter we studied dielectric properties of solids in the presence of an exter-
nal electromagnetic disturbance. We first reviewed elementary electricity and mag-
netism, and introduced concept of local field inside a solid. Then dispersion relations
of self-sustaining collective modes and reflectivity of a solid are studied for var-
ious situations. Finally the collective modes localized near the surface of a solid
are also described and dispersion relations of surface plasmon-polariton and surface
phonon-polariton modes are discussed explicitly.

When an external electromagnetic disturbance is introduced into a solid, it will
produce induced charge density and induced current density. These induced densities
produce induced electric and magnetic fields. The local field E;g(r) at the position
of an atom in a solid is given by
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Eir =Eo +E{ +E; +Es,

where Ey, E|, E,, E3 are, respectively, the external field, depolarization field (=

—AP), Lorentz field (=¥), and the field due to the dipoles within the Lorentz sphere

(=D icLs. w) The local field at the center of a sphere of cubic crystal is
simply given by '

sphere 4 4
Ey =Ey— P+ —P+0=E,.
3 3
The induced dipole moment of an atom is given by p = aEyg. The polarization P
is given, for a cubic crystal, by P = I_AiﬁE = xE, where N is the number of atoms

per unit volume and Y is the electrical susceptibility. The electrical susceptibility and
the dielectric function (¢ = 1 + 47) of the solid are

No drNao

X = __ 4nNa ;e=1+ __ 47Na”
i [ —

The relation between the macroscopic dielectric function e and the atomic polariz-
ability « is called the Clausius—Mossotti relation:

e—1 _47TNO¢
e+2 3

The total polarizability of the atoms or ions within a unit cell can usually be
separated into three parts: (i) electronic polarizability «.: the displacement of the
electrons relative to the nucleus; (ii) ionic polarizability o;: the displacement of anion
itself with respect to its equilibrium position; (iii) dipolar polarizability cgipole: the
orientation of any permanent dipoles by the electric field in the presence of thermal
disorder.

In the presence of a field E, the average dipole moment per unit volume is given

byp.=pL (k’;—’;) , where £(§) is the Langevin function. The dipolar polarizability
Qugipole Shows strong temperature dependence. The electronic polarizability c. and

the ionic polarizability oo, are almost independent of temperature.
In a metal, the conduction electrons are free and the dielectric function becomes

AwNe*/m wf,
ew)y=1- - =1- - .
w?—iw/T w?—iw/T
In an ionic crystal, we have
w? —w?
€W) =€ | 57— |-
w? —wi
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Here, wy, and wr are the TO and LO phonon frequencies, respectively. We note that
wp, > wr since €y > € in general.

For the propagation of light in a material characterized by e(w), the external
sources jo and po vanishes. Therefore, we have

iwe(w)E

VxE=—"B; VxB=
c c
The two Maxwell equations for V x E and V x B can be combined to give a wave

equation:
2

w 2
ge(w)—q E+q(q-E)=0.

For an infinite homogeneous medium of dielectric function e(w), a general dis-
persion relation of the self-sustaining waves is written as

w? 2
e(w) [?e(w) — q2:| =0.

The two transverse modes and one longitudinal mode are characterized, respectively,
by
2.2
c
W= "1 ew) =0.

e(w)

For the interface (z = 0) of two different media of dielectric functions ¢; and ey,
the boundary conditions give us the general dispersion of the surface wave:

€1 €1 €o e(w)
— 4+ —=0 or 24+ =0.
ap afp (&%) «
where
, W 2 §
Qo =4/qy — c—zeo and  a=,/q; — c—ze(w)



Chapter 9
Magnetism in Solids

9.1 Review of Some Electromagnetism

9.1.1 Magnetic Moment and Torque

We begin with a brief review of some elementary electromagnetism. A current dis-
tribution j(r) produces a magnetic dipole moment at the origin that is given by

m = i/r x j(r)d>r. 9.1)
2c

If j(r) is composed from particles of charge ¢; at positions r; moving with velocity
Vi, J(r) = >, ¢ivi6(r —r;), and the magnetic moment m is

1
m= % Zqiri X V;. 9.2)

For a single particle of charge ¢ moving in a circle of radius ry at velocity vy, we
have !
m = —qryvy 9.3)
2c
and m is perpendicular to the plane of the circle. The current i in the loop is given
by g divided by ¢t = %, the time to complete one circuit. Thus

qvo

= . 9.4)
27'1'}’0
We can use this in our expression for m to get
ia
m = i}"O'UO = —. (9'5)
2c c
© Springer International Publishing AG, part of Springer Nature 2018 253
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Fig. 9.1 A magnetic moment m due to a current loop of radius rq located in a magnetic field B

Here a = 7§ is the area of the loop. We can write m = 2 if we associate vector
character with the a of the loop.

If a magnetic field were imposed on a magnetic moment, the magnetic moment
would experience a torque. To show this we begin with the Lorentz force

F=2v,xB. (9.6)
C

For a charge dqg the force dF is given by

dq ds
dF:——xB_—dst 9.7
c dt

Here ds is an infinitesimal element of path length (see, for example, Fig.9.1).
The torque 7 is given by [r x dF.

7-=/rxdF=£/rx(dst). 9.8)

c
But f r x ds = 2a, and hence we have

r=laxB=mxB. (9.9)
C

9.1.2 Vector Potential of a Magnetic Dipole

If a magnetic dipole m is located at the origin, it produces a vector potential at
position r given by
m X r

A(r) = 3

(9.10)
e

Of course the magnetic field B(r) = V x A(r). If we have a magnetization (magnetic
dipole moment per unit volume), then A(r) is given by
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M) x (r—r’
A(r) :/d3r/—( ) x ; ). (9.11)
r—r

As we did with the electric polarization P(r), we can transform this equation into

two parts.
5, Ve X M(1) M(r') x i
Am)=[dr——+¢dS—————, (9.12)
\ Ir —r’| S It —r’|

where 1 is a unit vector outward normal to the surface S. The volume integration is
carried out over the volume V of the magnetized material. The surface integral is
carried out over the surface bounding the magnetized object. Since A(r) is related
to a current density by

Ar) = %/d3r’ i) (9.13)

Ir —r'|
the vector potential produced by a magnetization is equivalent to volume distribution
of current
M) =cV x M(r) (9.14)
and a surface distribution of current

Js(r) = cM(r) x 7. (9.15)

Recall that if E = 0, Maxwell’s equation for V x B is
T . 47,
VxB=—o+ijm) = —jo+47V x M. (9.16)
c c
Defining H = B — 47M gives
47,
V x H=—j 9.17)
c

which shows that H is that part of the field arising from the free current density jo.
As we stated before the two Maxwell equations

V-E =47 (po + pind) » (9.18)
and
1. 4m
VxB=-E+ — (jo+jina) +47V xM (9.19)
¢ c

are sometimes written in terms of D and H.

V -D = 4mpy,
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(where D = E +47P and V - P = —p,, with bound charge density pp,) and

1. 4rm
VXH——D+—JO

9.2 Magnetic Moment of an Atom

9.2.1 Orbital Magnetic Moment

Let us consider the nucleus to be fixed and evaluate the orbital contribution of the
electron currents to the magnetic moment of an atom.

1

= — E T X V. 9.20

26‘ , qir; i ( )
l
Since g; = —e for every electron, and every electron has mass m., we can write
e e total angular momentum

m= — I X meV; = — X . 0921

2mec Z ! e 2mec ( of the electrons ) ( )
L

We know >, r; X m.V; is quantized and equal to iL, where [L| = 0,1, 2, ... and
L,=0,£1,£2,...,£L. Thus we have

eh

2mec

m= —

L= —uL. (9.22)

Here ug = =0.927 x 10~?°[ergs/gauss] or 5.8 x 1072 [meV /T] is called the
Bohr magneton The Bohr magneton corresponds to the magnetic moment of a 1s
electron in H.

9.2.2 Spin Magnetic Moment

In addition to orbital angular momentum AL, each electron in an atom has an intrinsic
spin angular momentum 7s, giving a total spin angular momentum AS where

s= s 9.23)

The z-component of spin is s, = =+ %, and the spin contribution to the magnetic
moment is Fug. Thus, for each electron, there is a contribution —2 g s to the magnetic



9.2 Magnetic Moment of an Atom 257

moment of an atom. If we sum over all spins, the total spin contribution to the
magnetic moment is

m = 25 »_s; = —245S. (9.24)

Note that the factor of 2 appearing in this expression is not exact. It is actually given
by g =2(1 + 5= —2.973% +---) > 2 x 1.0011454. However, in our discussion
here we will take the g-factor as 2.

9.2.3 Total Angular Momentum and Total Magnetic Moment

The total angular momentum of an atom is given by
J=L+S. (9.25)
The total magnetic moment is given by
m = —ug (L +2S). (9.26)
In quantum mechanics the components of J, L, and S are operators that satisfy com-

mutation relations. As we learned in quantum mechanics, it is possible to diagonalize
J? and J, simultaneously.

T2 ey = GG+ D) j=0,%,§,. 9.27)
Sl gy =g i ey —J=<J =< (9.28)
Note that j, =0,£1,...,£jor j, = j:%, :I:%, ..., xj. We can write that
m = —guglJ. (9.29)
This defines the operator g because we have J = L + S and
9y =L +2S. (9.30)
We can use these definitions to show that
J-J=L+S)-L+8S) =L>+8*+2L-S (9.31)
and
gJ-J=@L+S) - (L+25) =L*>+25*+3L"S. (9.32)

We can eliminate L - S and obtain
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3 Is(s+1)—I1I+1)
gL=z+z —
2 2 Jg+1D

(9.33)

This eigenvalue of ¢ is called the Landé g-factor.

9.2.4 Hund’s Rules

The ground state of an atom or ion with an incomplete shell is determined by Hund’s
rules:

(1) The ground state has the maximum S consistent with the Pauli exclusion prin-
ciple.
(ii) It has the maximum L consistent with the maximum spin multiplicity 25 + 1 of
Rule (1).
(iii)) The J-value is given by |L — S| when the incomplete shell is not more than half
filled and by L + S when more than half filled.

Example

Consider an ion of FeZt; it has 6 electrons in the 3d level. We can put 5 of them in
spin up states (since d means ! = 2 and m; can be —2, —1, 0, 1, 2) and to maximize
S, hence,

P11ty givess=2.

The maximum value of L-value is given by

L=-2—-140+1+242=2.
The J-value (since it is over half-filled) is
J=L+S=4.
Therefore we have
_ 3+ 12(3)—2(3) 3
=3T3 a5y 2

One can work out some examples listed in Table9.1. The ground state notation is
25+1p,, where L = 0,1,2,3,4,... are denoted by the letters S, P, D, F, G, .. .,
respectively.

Exercise

Demonstrate the spectroscopic notations for the ground state electron configurations
of the elements illustrated in Table9.1.
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Table 9.1 Ground state electron configurations and angular momentum quantum numbers for the
elements of atomic numbers 20 < Z < 29

Z Element | Configuration | Spectroscopic | § L J gL
notation

20 Ca (3p)°®(4s)? 1Sy 0 0 0 -

21 Sc Bd)'45)> | *D; 3 2 3 2
3 3

22 Ti (3d)%(45)? 3F 1 3 2 2

23 \ (Bd)34s)> | 4F3 3 3 3 z
2

24 Cr (3d)> (4s)! 783 3 0 3 2

25 Mn (3d)y’(4s)* | S5 3 0 3 2

26 Fe (3d)°(45)% 5Dy 2 2 4 3

27 Co Bd)'(45)> | 4Fy 3 3 5 3
2

28 Ni Bd)34s)®> | 3K 1 3 4 2

29 Cu Gd)'0¢4s)' | %8, 3 0 3 2

9.3 Paramagnetism and Diamagnetism of an Atom

In the presence of a magnetic field B the Hamiltonian describing the electrons in an
atom can be written as

H=H,+ z ﬁ (pi + ;A(ri))2 + 2B - Zs,-,
i i

(9.34)

where H is the non-kinetic part of the atomic Hamiltonian, p; = —iAV;, and the
sum is over all electrons in an atom. For a homogeneous magnetic field B, one can
choose a vector potential of

Here we take the magnetic field B in the z-direction.

1
A=—-r xB.
2

B = (0,0, By).

Then the vector potential is given by

A=—-B,

1 (¢ ’:)
I—xj).
3 y J

Substituting the vector potential into (9.34), we have

(9.35)

(9.36)

(9.37)
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2 B 2B2
H=Hy+ > Li 220 > (xipiy — vivir) + ¢ O (47 + y7) +2u8 Bo S..

2me  2mec 8mec
(9.38)
Here we note that
Xi Piy — YiPix = (ti X Pp)i; = hlj;.
Now we can write the Hamiltonian as
H = Hy+ Z < +25)B0 + 2 2457 (9.39)

But —ug (L, + 28S;) is simply m_, the z-component of the magnetic moment of the
atom in the absence of the applied magnetic field B. Therefore we have

H=H- szo+ ZZ (x7 +y7), (9.40)

where H = Hy + >, 2. In the presence of the magnetic field By,

12m

(pix - %}’i) )

(ply + Boxl) s (941)

Ul'y = iy =

-1
and the magnetic moment in the presence of By is (see (9.20))

p= Z( Crxvi— 2;; C2hS,~). (9.42)

Using (9.41), the expression for v;, and v;,,, one obtains
p: = —pgL. — 2upS. — ywed Z 7+ y7) (9.43)

Note that one can also obtain this result from (9.40) using the relation

L (9.44)
T :

Thus we have i, the z-component of magnetic moment of the atom in the magnetic
field By is given by

e 2 BO
4mec?

Yy =m; — ()cl2 + y,z) . (9.45)
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It differs from m, its value when By = 0 by a term that is negative and proportional
to B().

If the atom is in its ground state, mi,, the average value of m, is m; =
—us(L: +2S.) = —gusJ: = —gusj., where j. = —J,—J +1,...,J. Fora

spherically symmetric atom, x7 = y? = z? = 1r2. Therefore we obtain

P =

€2B0 -
2, 9.46
6mec? i ’i (9.46)

p: = —gpsd; —

The second term on the right hand side is the origin of diamagnetism. If J = 0 (so
that J, = 0), then a system containing N atoms per unit volume would produce a
magnetization

6230 )
M= —N re, (9.47)
6m.c? l,
and the diamagnetic susceptibility
M__y > 2 (9.48)
= —_—= — r-. .
XDIA =g 6mec?

Here we have assumed ypja < 1 and set y = % instead of % This result was first
derived by Langevin.

All substances exhibit diamagnetism. Paramagnetism occurs only in samples
whose atoms possess permanent magnetic moments (i.e. m # 0 when By = 0).
All free atoms except those having complete electronic shells are paramagnetic. In
solids, however, fewer substances exhibit paramagnetism because the electrons form
energy bands and filled bands do not contribute to paramagnetism.

Examples of paramagnetism in solids are

(i) Pauli spin paramagnetism of metals.
(i) Paramagnetism due to incomplete shells.

(a) Transition elements:

Iron group elements with incomplete 3d shell, for example,
[Ti*F(3d") ~ Cu**(3d)].

Palladium group elements with incomplete 4d shell, for example,
[2rF (4d") ~ Ag*t (4d%)].

Platinum group elements with incomplete 5d shell, for example,
[HE* (5d") ~ Au**(54)] .
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(b) Rare earth elements:

Rare earth group elements (or Lanthanides) with incomplete 4 f shell,
for example, [Ce’* (4 1) ~ YD T (4£13)].

Transuranic group elements (or Actinides) with incomplete 5 f or 6d
shells, for example, elements beyond Th.

9.4 Paramagnetism of Atoms

We have seen that the permanent magnetic dipole moment of an atom is given by
m = —g_upJ. (9.49)

We will assume that the separations between atoms in the systems of interest are
sufficiently large that the interactions between the atoms can be neglected. The energy
of an atom in a magnetic field B is

E=-—m-B=g ugBmy, (9.50)

where my = —J, —J +1,...,J — 1, J. The probability of finding an atom in state
|J, m; > at a temperature 7 is

1
p(my) = fe‘a’”’””, (9.51)

where 8 = (kg 7)~! and the normalization constant Z is chosen so that Zm, pimy) =
1. This gives

J
Z= > e fmmbn (9.52)

mj=—
Let SgLpugB = y. Then Z = 2,1,127 ; €72, This can be rewritten

7 =/ (1 +e¥ e _|_..._|_62Jy)
_ e_yj I:(e,v)zul_]] . (953)

e’—1

The result for Z can be rewritten

sinh 22+
Z(x)= —2 (9.54)

3 X
sinh 37
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where x = yJ = (gLugBJ. The magnetization of a system containing N atoms
per unit volume will be

m, M m 0
M = —NgLuBM = NgLpugJ—1InZ. (9.55)
Do, Pmy) Ox
This is usually written as
M = NgppsJ B;(BgLusBJ), (9.56)

where the function B (x) is called the Brillouin function. It is not difficult to see that

2J +1 2J +1 1 X
B = th — — coth —. 9.57
7(x) co 57 X 77 co 27 ( )
The argument of the Brillouin function % BgLps BJ is small compared to unity if

the magnetic field B is small compared to 500 T at room temperature. Under these
conditions (use coth z ~ % + 5 for z < 1) one can write

xJ+1
Bj(x) ~ 377 (9.58)
" wo NI D 959
N 3kgT '
Since (m - m) = g7 13 (J - J) = gL g J(J + 1) we can write
M  Nm?
XPARA = B = T (9.60)

for the paramagnetic susceptibility of a system of atoms of magnetic moment m
at high temperature (gLpugBJ < kgT). This is commonly known as Curie’s law.
Notice that when J becomes very large

1
Jlim Bj(x) = cothx — — = L(x), 9.61)
— 00 X

where L is the Langevin function that we encountered in studying electric dipole
moments. Thus, the quantum mechanical result goes over to the classical result as
J — 00, as expected. Curie’s law is often written

. Nuip’B

M ~ , 9.62
3kgT ©-62)
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Jlst excited state /

J, ground state :

Fig. 9.2 Energy level splitting of the ground state and first excited multiplets for an atom of the
total angular momentum quantum number J

where p = g /J(J + 1) is called the effective number of Bohr magnetons. Knowing
S, L, J and gy from the application of Hund’s rules immediately gives us p. For
example, for a Dy** ion the atomic configuration is (4 £)°(5s)%(5p)°. This results
from removing two 6s electrons and one 4 f electron from the neutral atom. The
S-value will be % (seven 4 f-electrons in 1 and two in | states), L = 5 (the two |

electrons have m, = 3 and 2 to maximize L), and J = L + § = %, and hence

go=%and p=3/8. 1 ~1063.

Observed and calculated p-values agree fairly well. There are exceptions when
excited state multiplets are not sufficiently high in energy (see, for example, Fig.9.2).

Until now we have assumed A > kgT and A > gpugJ B. If this is not true,
higher multiplets can be important in evaluation of y or p. Typically, for an ion
with partially filled shell with nonzero value of J, ypara ~ 1072 — 1073 at room
temperature and xpia ~ 107>, which is independent of temperature. Therefore, we
have xpara ~ 500xpia at room temperature.

9.5 Pauli Spin Paramagnetism of Metals

If we used the classical theory of paramagnetism for a particle with magnetic moment
m, the magnetization at a temperature 7' (with kg7 >> |m - B|) would be given by
Curie’s law

N(m?)B
B
For free electrons m = —2ps and (m?) = 4%(s - s) = 4p’s(s + 1). Since s = %

this gives (m?) = 3, and’

"Here ng is the number of free electrons per unit volume in a metal.
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M nop

— = . 9.64
B ksT ©-64)

Xclassical =

As we discussed earlier, this is not what is observed experimentally. In metals the
observed susceptibility is approximately independent of temperature and two orders
of magnitude smaller than the value of Xcjassicar €valuated at room temperature.

The qualitative explanation is exactly the same as that by which the Sommerfeld
model explained the electronic contribution to the specific heat. At a temperature 7
only electrons whose energy lies within a shell of width kg 7" about the Fermi energy
are effectively free. Other electrons are inefficient because of the Pauli exclusion
principle. If we replace ng by nes, where

kgT
Neff X No——- (9.65)
¢
2 2
The spin susceptibility becomes xqm =~ % ~ ’% Xelassical = "“é“’.

To obtain xqgm more rigorously, we simply assume that in the presence of the
magnetic field B the energy of an electron is changed by an amount

0F = :I:/,LBB =-—m: B; m = _gLMBS

depending on whether its spin is up or down relative to the direction of B.
The number of particles of spin up (or down) per unit volume is

1 o0
ne=s /0 dEfo(E)g (E F upB). (9.66)

where + and — in the subscript of n correspond to the cases of spin up (+) and
spin down (—) states, respectively (see Fig.9.3). We evaluated many integrals over

(b)

TN ’

Fig. 9.3 Energy level splitting of the electron gas in the presence of the magnetic field B. Energy
parabolas E (k) (a) and density of states g(E) (b) of electrons in two different spin states in the
presence of Zeeman splitting
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Fermi functions in Chapter III. Remember that the total number of states per unit
volume with energy less than € is given by

c 3 32
G(e) =/ g(e)de = ng (5) = o (i) .
0 kg EF

Using these results we can obtain

1 2
ne =3 [G(C F pusB) + 7TZ(’CBT)ZQ/(C F MBB)i| . (9.67)

The magnetization M isequal to ug(n_—n,). Expanding for > pugBandkgT < ¢
leads to

2
M~ 3B [Q(C) + %(kBT)zg”(C)} . (9.68)

The chemical potential is determined by requiring the number of particles to be
no = n_ + n,. This gives

2
no = G(C) + %(kng/(o + 013 B?). 9.69)

To order u3 B2, we note that

g'(Co)

. 9.70
9(Co) 10

2
C=¢— %(/cBT)2

1/2
Using g(¢) = %’Cﬂ (5—0) gives

3n0p23 7 (kgT 2
— 1—— =) +--- 9.71
XQM = 26 12 G ( )

for the Pauli spin (paramagnetic) susceptibility of a metal.

9.6 Diamagnetism of Metals

According to classical mechanics there should be no diamagnetism of a free electron
gas. Consider the effect of a magnetic field B on the motion of an electron. The force
acting on the electron is

F=—-SvxB (9.72)
C
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This force is always perpendicular to v, therefore F - dl = F - vdt = 0. Thus no
work is done on the electrons by the field B and their energy is unchanged. Further
the distribution function depends only on E, T, N and will also be unchanged. Thus
there can be no induced currents and no diamagnetism.

Quantum mechanics gives a different answer. Landau was the first to derive the
diamagnetic susceptibility of metals. We will not rederive his result in full, but simply
show how the result comes about in a quantum mechanical calculation.

Let A = (0, x B, 0) be the vector potential of a dc magnetic field B. The Hamil-
tonian for a single electron is (here we shall neglect the intrinsic magnetic moment
of the electron)

1 2 e 2 2
H=s- |:px+ (py+23x) +pz:|. (9.73)

Recall that p = —iAV. The Schrodinger equation is

s 8  .eB\ &
- | = — — |¥ = EV. 74
2m |:(9x2 + (8y i he ) + 812:| G749

Since the Hamiltonian is independent of y and z, let us assume a solution of the form
W (x, y,2) = e Eg(). (9.75)

The equation which ¢(x) must satisfy is

92 eB \’ 2m
[@ _ (ky + E}c) Sy } 6(x) =0 9.76)

Ifweletx' = x + % this equation becomes

w1 R
(————i——mw x' )(;S(x)— ( z)¢(J€ ). 9.77)
X 2m

This is just the equation for a simple harmonic oscillator of mass m and characteristic
frequency w. The energy levels are

hzkz2 1
=hwm+=-); n=0,1,2,... (9.78)
2m 2

Thus the eigenfunctions and eigenvalues for an electron in the presence of a magnetic
field B are

L hik,
Inkyk,) = L™'eirtikeg, (x+ ~‘). (9.79)

mwe
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E, (k)

J’ n=3

hw,

T n=2
n=1
n=0

B=0 B=0

Fig. 9.4 Energy level splitting of the electron gas due to orbital quantizations in the presence of
the magnetic field B

27,2
1
En(ky’ k;) = 2mz + hwe(n + E) (9.80)

We note that the eigenvalues E, (ky, k;) are independent of k. The allowed values
of ky and k; are determined by imposing periodic boundary conditions. If we require
the particles to be in a cube of length L, then because the center of each oscillator
must be in the box, the range of possible k, values must be

mw.L

Range of values of k, < (9.81)
The total number of allowed values of k,, for a given k_, is
L L*> BL?
— x Range of values of k, = Mo _ . (9.82)
27 27h hc/e
Thus for each value of n, k, (and spin s) there are % energy states. Consider the

following schematic plot of the energy levels for a given k, shown in Fig.9.4. In
quantum mechanics, a dc magnetic field can alter the distribution of energy levels.
Thus, there can be a change in the energy of the system and this can result in a
diamagnetic current. The diamagnetic susceptibility turns out to be

_ o (eh V' "oﬂzs(m)z (9.83)
=750 e ) T 72 ) '

Notice that we expect m* (not m) to appear because the diamagnetism is associated
with the orbital motion of the electrons. This is justifiable only if the cyclotron radius
is much larger than the interatomic spacing.
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VR VF
= —=—. 9.84
e We eBy/m*c ( )

Typically, v ~ 10% cm/s and w. ~ 1.76 x 107 By. Thus for By ~ 10° gauss,
re 2 107* cm = 10* A >> lattice constant. The total magnetic susceptibility of a

metal is )
3nopg 1 /m\2
— =B __ (= 9.85
XoM = Xp + XL 2% 3 (m*) (9.85)

Exercise

Derive the Landau diamagnetic susceptibility of a simple metal given by (9.83).

9.7 de Haas-van Alphen Effect

We have seen that the energy levels for an electron in a magnetic field look like, as
is shown in Fig. 9.5,

12k 1
Enlky k) = =&l (n+ 5 ).

The Fermi energy ( is a slowly varying function of B. As we increase B, the distance
between Landau levels increases, and at k, = 0 levels pass through the Fermi energy.
As the Landau level at k, = 0 passes through the Fermi level, the internal energy
abruptly decreases.

Let us consider a simple situation, where the Fermi energy ( is between two
orbits. Let us assume that 7 = 0 so that we have a perfectly sharp Fermi surface.
As we increase the field, the states are raised in energy so that the lowest occupied
state approaches ( in energy. Of course, all the energies in the presence of the field
will be higher than those in the absence of the field by an amount %hwc. As the

E, (k) LANDAU
LEVELS

1 2
E,(k)=Hhw.(n +§)+ﬁ2kz/2m

k.

Fig. 9.5 Schematics of energy levels for an electron in a magnetic field B
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levels approach the Fermi energy, the free energy of the electron gas approaches
a maximum. As the highest occupied level passes the Fermi surface, it begins to
empty, thus decreasing the free energy of the electron gas. When the Fermi level lies
below the cyclotron level the energy of the electron gas is again a minimum. Thus
we can see how the free energy is a periodic function of the magnetic field. Now,
since many physically observable properties of the system are derived from the free
energy (such as the magnetization), we see that they, too, are periodic functions of the
magnetic field. The periodic oscillation of the diamagnetic susceptibility of a metal
at low temperatures is known as the de Haas—van Alphen effect. The de Haas—van
Alphen effect arises from the periodic variation of the total energy of an electron gas
as a function of a static magnetic field. The energy variation is easily observed in
experiments as a periodic variation in the magnetic moment of the metal.

Density of States

Look at G(FE), the number of states per unit volume of energy less than E.

1 1 (LY
G(E) = 75 > 1:5(5) 2 Z /dkydkzl. (9.86)

nkykz

Enkz <E Enk: <E
We added a factor 2 to take account of spin. Since [ dk, = ’”“;{'L, we have
1 L\? mw.L
GEY=—=|=—]) 2 dk.,
(£) L3 (27r) ho Z / :

Enkz <E

where E, (ky, k;) = % + hw.(n + %). Define x, = @ (E — hw.(n + %))]/2. For

each value of n the k, integration goes from —&,, to x,,. This gives

mwe <X V2m 1\\"?
G(E) = 7 Z 2T (E — Fw, (n + E)) . (9.87)
n=0

; . dG
The density of states g(E) is 57.

mwe /2m wsX 1\ 2
Ey=——— E — hw, — . 9.88
9E) =25 n_o( ("+2)) (9-88)
We note that the g(E) has square root singularities at £ = hw,(n + %) as illustrated
in Fig.9.6.
In the limit as Aw, — 0, the sum on 7z can be replaced by an integral
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gE)

0 1 2 3 E 1
hw. 2

Fig. 9.6 Schematic plot of the density of states for an electron gas in a magnetic field B

NMAX

Z—>

1 E
dx
n=0 hwc ‘/(;

where x = nlw,. In this case the g(E) reduces to the free particle density of states
for B =0, i.e. go(E) = Y22 12,

Because g(E) has square root singularities, the internal energy, the magnetic
susceptibility, etc. show oscillations (see Fig.9.7). As hw, changes with N fixed (or
N changes with hw, fixed), the Fermi level passes through the bottoms of different
Landau levels. Let { > ugB or ¢ > hw.. Then the electron gas occupies states in
many different cyclotron levels. At low temperatures all cyclotron levels are partially
occupied up to a limiting energy ¢, which might lie between the threshold energies of
the nth and (n — 1)th cyclotron levels. As B-field increases, the energy and the number
of states in each subband increase, and hence the threshold energy likewise increases.
Since the total number of electrons is given, there is a continuous rearrangement of
the electrons with increasing the field. When the threshold energy E, = (n + %)hwc

B

Fig. 9.7 Schematic plot of the magnetic field dependence of the diamagnetic susceptibility
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grows from a value below ( to a value above (, the electrons in the nth band fall back
into states in the (n — 1)th band, decreasing the total energy. As the field increases,
it rises again until the next threshold energy E,_; exceeds the (. As a result ( itself
becomes (weakly) periodic. The separation between the individual threshold energy
is hw.. Therefore, hw, > kgT is an important condition; otherwise the electron
distribution in the region of ¢ is so widely spread that oscillations are smoothed out.
When the condition ¢ >> Aw, is no longer fulfilled, all the electrons are in the lowest
subband and the oscillations cease. This limit is called the quantum limit.

The oscillations in the magnetic susceptibility are observed in experiments when
hw. > kT in high purity (low scattering) samples. Oscillations in electrical
conductivity are called the Shubnikov—de Haas oscillations. Both the de Haas—van
Alphen oscillations and Shubnikov—de Haas oscillations are useful in studying elec-
tronic properties of metals and semiconductor quantum structures.

9.8 Cooling by Adiabatic Demagnetization
of a Paramagnetic Salt

The entropy of a paramagnetic salt is the sum of the entropy due to phonons and the
entropy due to the magnetic moments.

S = Sp+ S (9.89)

If the paramagnetic ion has angular momentum J, then the ground state in the absence
of any applied magnetic field must be 2J + 1 fold degenerate. This is because m ; can
have any value between —J and +J with equal probability. For a system containing
N paramagnetic ions (noninteracting), the total degeneracy is (2J + 1)V, and the
magnetic contribution to the entropy is

Sm(B =0) =kgIn(2J + 1)V = NkgIn(2J + 1). (9.90)

Introduce a magnetic field B (neglect local field corrections treating the ions as
noninteracting magnetic ions). Then the magnetic entropy must be given by

J
Sm(B) = —Nkg Z p(my)ln p(my), 9.91)
my=—J
where
7.‘/L/‘B3m
pm;)=272""e wr ™, (9.92)

Here we have used the relation S(B, T) = kBa%(T In Z) where the normalization
constant Z is defined so that ij p(my) =1, giving
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A Sm(B=0)

£ D B¢ C
% <—t. - " Sn(B>0)
F Y :
! 'E E
Ts T, Ty T

Fig. 9.8 Schematic plot of the process of cooling by adiabatic demagnetization of a paramagnetic
salt

JLiB B
Z= e ", (9.93)
my

Substitute the expression for p(m ;) into Sy, (B) to have

B
Sm(B) = NkgIn Z + Nkg g‘];“ ‘; 7. (9.94)

B

We note that the magnetization is given by M = —N g ugm; so that

MB

Notice that Sy, (B) depends only on the product 5B = ,(BLT. Thus we have

S, (B) — S (0) = Nkp In —2 MB (9.96)
m m) =M T T T :

It is easy to see that this quantity is always negative. This agrees with the intuitive

idea that the system is more disordered in the absence of the magnetic field. The

phonon contribution to the entropy is essentially independent of magnetic field.
Now consider the following process (see Fig.9.8):

(i) Apply amagnetic field B under isothermal conditions. This takes one from point
A to point C in the Sy, versus T plane.

(i) Now isolate the salt from the heat bath and adiabatically remove the magnetic
field to arrive at D.

This process has lowered the temperature from 7 to 7>. The process can be repeated.
In anideal system S, (B = 0) should approach zero as T approaches zero. In practice
there is a lower limit in T that can be reached; it is due to the internal magnetic fields
(i.e. coupling of magnetic moments to one another) in the paramagnetic salt.
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9.9 Ferromagnetism

Some materials possess a spontaneous magnetic moment; that is, even in the absence
of an applied magnetic field they have a magnetization M. The value of the sponta-
neous magnetic moment per unit volume is called the spontaneous magnetization,
M(T). The temperature T, above which the spontaneous magnetization vanishes is
called the Curie temperature.

The simplest way to account for the spontaneous alignment is by postulating the
existence of an internal field Hg, called the Weiss field, which causes the magnetic
moments of the atoms to line up. The value of Hg is determined from the Curie
temperature 7; by the relation gugJ Hg =~ kg T, to be

_ kBTc
gusJ

Hg 9.97)

Typically Hg has a value of about 500 Tesla. We shall see that effective field is not
of magnetic origin. If we take pp divided by the volume of a unit cell, we obtain
8~ 10° gauss « Hg. Weiss assumed that the effective field Hg was proportional
to the magnetization, i.e.

Hg = AM. (9.98)

For T > T, the magnetic susceptibility obeys Curie’s law, but now H + Hg would
replace H

M=—(H+HE)=%(H+>\M)

Therefore we have
C C
M = H =
T — \C T—-T,

H (9.99)

2,2
Since C = N”L’?TJB(]M, the molecular field parameter can be written

_ NgipgJ(J +1)
3kp T,

At (9.100)

For Fe, we have A ~ 5000.
Exercise

Demonstrate that the molecular field parameter of an iron is A >~ 5000.
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Problems

9.1 Consider a volume V bounded by a surface S filled with a magnetization M(r")
that depends on the position r’. The vector potential A produced by a magnetization

M(r) is given by
M / _
A = /dM
r —r'|’

() Show that V'L = I=r—
(b) Use this result together with the divergence theorem to show that A(r) can be

written as
v, M’ M’ o/
A®r) = / 2 Y X M) +]{dS’—(r) iy
\% S

r—1'| [r—1'|

where 1i is a unit vector outward normal to the surface S. The volume integra-
tion is carried out over the volume V of the magnetized material. The surface
integral is carried out over the surface bounding the magnetized object.

9.2 Demonstrate for yourself that Table9.1 is correct by placing 1 or | arrows
according to Hund’s rules as shown below for Cr of atomic configuration (3d Y (4s)!.

Table 9.2 The ground state atomic configuration of Cr

I 2 1 0 -1 -2
3d-shell 0 0 0 1 0
4s-shell 0

Clearly S =1 x6=3,L=0,J =L+ S=3,and

_3+13(3+1)—0(0+1)_
I=5373 33+ 1) =

2.

Therefore, the spectroscopic notation of Cr is 7 Ss.
Use Hund’s rules (even though they might not be appropriate for every case) to
make a similar table for Y%, Nb*!', Tc®3, La’’, Dy®, W74, and Am*.

9.3 A system of N electrons is confined to move on the x — y plane confined within
arectangular strip with sides of L, and L. A magnetic field B = BZ is perpendicular
to the plane.

(a) Show that the eigenstates of an electron are given by

1
6mf(k) = hwc(n + 5 - g*az/2)
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and
hk

mwe

Vno (k, X, y) = e (x +

Mo

where g* is the effective g-factor of an electronand o, = 1. Here k = %’T X j,
where j = —%, —% +1,..., % — 1, and 7, is a spin eigenfunction.

(b) Determine the density of states g, (¢) for electrons of spin o. Remember that
each cyclotron level can accommodate Np, = % electrons.

(c) Determine G, (<), the total number of states per unit area.

(d) Describe qualitatively how the chemical potential at 7 = 0 changes as the

magnetic field is increased from zero to a value larger than (%)%.

9.4 Consider the system of electrons sitting in the potential well V (x) = %mw(%xz.

Then apply a magnetic field B in such a way that A = (0, x B, 0).

(a) Write down the Hamiltonian of the system.

(b) Get the energy eigenvalues €, and eigenstates v, (x).

(c) Examinethe cases (i) wy — 0and (ii) wg =~ w,., where w, denotes the cyclotron
frequency of an electron.

9.5 Demonstrate that S, (B, T) < S (0, T) by showingthatdS(B, T) = O S|r.v+
OrS|p.vdT and that 95 S(B, T)|r,y < 0 for all values of %:%B if J # 0. Here
8TS|B,V iSjllSt %

Summary

The total angular momentum and magnetic moment of an atom are given by
J=L+S.; m=—ug(L+2S)=—jusl.

Here the eigenvalue of the operator ¢ is the Landé g-factor written as

§+ls(s+l)—l(l+1)
2 2 jiG+1D '

gL =

The ground state of an atom or ion with an incomplete shell is determined by
Hund’s rules:

(i) The ground state has the maximum S consistent with the Pauli exclusion
principle.
(i1) It has the maximum L consistent with the maximum spin multiplicity 2.5 + 1
of Rule (i).
(iii) The J-value is given by |L — S| when the incomplete shell is not more than
half filled and by L + S when more than half filled.
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In the presence of a magnetic field B the Hamiltonian describing the electrons in
an atom is written as

H = H,+ Z i (pi + ;A(ri))2 +2usB - Zs,-,
i i

where H) is the non-kinetic part of the atomic Hamiltonian and the sum is over all
electrons in an atom. For a homogeneous magnetic field B in the z-direction, we have

A= —%Bo (y; - xf) . In this gauge, the Hamiltonian becomes

H='H—mZB0+

eZB2
8m822 Z (7 + ylz) )
i

where H = Hy + >, % and m, = pug(L, + 25;). In the presence of By, the
z-component of magnetic moment of the atom becomes

62 Bo -

r2.
6mec? '
1

Mz =m; —

The second term on the right hand side is the origin of diamagnetism. If J = 0 (so
that J, = 0), the (Langevin) diamagnetic susceptibility is given by

M &2 —
=—=-—N r2.
XDIA Bo omoc? Z,: ;

The energy of an atom in a magnetic field B is £ = g ugBm;, where my =
—J,—J+1,...,J —1, J. The magnetization of a system containing N atoms per
unit volume is written as M = NgpugJ By (BgLusBJ), where the function B, (x)
is called the Brillouin function. If the magnetic field B is small compared to 500 T
at room temperature, M becomes

_ NgipugJ(J +1)

M >~ B,
3kgT

and we obtain the Curie’s law for the paramagnetic susceptibility:

M Nm?
XPARA = B ke T

at high temperature, (gLugBJ < kgT).
In the presence of the magnetic field B, the number of electrons of spin up (or
down) per unit volume is

1 o0
ny = 5/0 dEfy(E)g (E F usB).
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For ¢ > upB and kT < ¢, the magnetization M (= ug(n_ — n,)) reduces to
2 7T2 2 1
M >~ ugB | g(Q) + F(kBT) 9],

) 1/2
with ( = (p — 7Té(kB T)? %. Since g({) = %2’—3 (%) , we obtain the (quantum

mechanical) expression

3n > 72 (kgT\?
Xom = HB 1— — *BL 4.
200 12\ o
for the Pauli spin (paramagnetic) susceptibility of a metal.
In quantum mechanics, a dc magnetic field can alter the distribution of the elec-

tronic energy levels and the orbital states of an electron are described by the eigen-
functions and eigenvalues given by

. . hk h2k? 1
Inkykz) = L"e’k)'y’L’kuqS,, (x 4+ ) 3 En(ky, k) = L+ hwe(n + =).

muwe 2m 2

The quantum mechanical (Landau) diamagnetic susceptibility of a metal becomes

. ng eh 2_ nouzB(m)z
L= 20 \2m*c) — 2¢ \m*)

Appearance of m* (not m) indicates that the diamagnetism is associated with the
orbital motion of the electrons.

In a metal, as we increase B, the Landau level at k, = 0 passes through the Fermi
energy ( and the internal energy abruptly decreases. Many physically observable
properties of the system are periodic functions of the magnetic field. The periodic
oscillation of the diamagnetic susceptibility of a metal at low temperatures is known
as the de Haas—van Alphen effect. Oscillations in electrical conductivity are called
the Shubnikov—de Haas oscillations.
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Chapter 10
Magnetic Ordering and Spin Waves

10.1 Ferromagnetism

10.1.1 Heisenberg Exchange Interaction

The origin of the Weiss effective field is found in the exchange field between the
interacting electrons on different atoms. For simplicity, assume that atoms A and
B are neighbors and that each atom has one electron. Let v, and v, be the wave
functions of the electron on atom A and atom B respectively. The Pauli principle
requires that the wave function for the pair of electrons be antisymmetric. If we label
the two indistinguishable electrons 1 and 2, this means

w(1,2) = —w(2,1). (10.1)

The wave function for an electron has a spatial part and a spin part. Let 7,4 and n; | be
the spin eigenfunctions for electron i in spin up and spin down states, respectively.
There are two possible ways of obtaining an antisymmetric wave function for the
pair (1, 2).

¥ = Ps(r1, )xa(l, 2) (10.2)
U = Pa(ry, r2)xs(1, 2). (10.3)

The wave function ¥; has a symmetric space part and an antisymmetric spin part,
and the wave function ¥y; has an antisymmetric space part and a symmetric spin part.
In (10.2) and (10.3), the space parts are

1
Ps (r1,r2) = —= [La(DYp(2) £ Y (D)p(D], (10.4)
A V2
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and xa and xs are the spin wave functions for the singlet (s = 0) spin state (which
is antisymmetric) and for the triplet (s = 1) spin state (which is symmetric).

1
xa(l,2) = 7 [mam2y —mymy]s S.=0 (10.5)
7711¢772¢; S, =1
xs(1,2) =y 7 [mrmy +miymr]s S: =0 (10.6)
myn2ys S, =-1

If we consider the electron—electron interaction

v=2 (10.7)

s
I

we can evaluate the expectation value of V in state Y1 or in state ¥y. Since V is
independent of spin it is simple enough to see that

(A VW) = (s |V] D) (10.8)
= (Ya(MY2) V] 1ha(D16(2)) + (a(DY6(2) [V [ 1ha ()16 (1)).

When we do the same for ¥;; we obtain

(Y VI = (DA V] Pa) (10.9)
= (Ya(DYp(2) IV (D p(2)) — (a6 (2) [V [ 12 (2)90p(1)).
The two terms are called the direct and exchange terms and labeled V4 and 7, re-

spectively. Thus the expectation value of the Coulomb interaction between electrons
is given by

(V) = { V4 + J for the singlet state (S = 0) (10.10)

Va — J for the triplet state (S = 1)

Now S = §, +8 and §2 = (8 +8,)° = §2 + 82 + 28, - &,. Therefore, §; - § =
18 +§2)2 — 18 — 18 = 15(S + 1) — 2. Here we have used the fact that the
operator S” has eigenvalues S(S + 1) and §7 and 83 have eigenvalues (3 + 1) = 3.

Thus, one can write
o —3if§=0
S1 S =

ifS=1

Then, we write

<w=w+30—§y=m—;ﬂaﬁy@. (10.11)
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Here —2.78; - §; denotes the contribution to the energy from a pair of atoms (or ions)
located at sites 1 and 2. For a large number of atoms we need only sum over all pairs
to get

1 4 a
E = constant — > §2J,-js,- -S; (10.12)

Normally one assumes that 7;; is nonzero only for nearest neighbors and perhaps
next nearest neighbors. The factor % is introduced in order to avoid double counting
of the interaction. The introduction of the interaction term —2.7S - §, is the source of
the Weiss internal field which produces ferromagnetism. If z is the number of nearest

neighbors of each atom i, then for atom i we have

o = —2J28% = —gLupSHg (10.13)

10.1.2 Spontaneous Magnetization

From our study of paramagnetism we know that
M = NgLugSBs(x), (10.14)

where x = %@w Here Biocar is B + AM, i.e. it includes the Weiss field.
If we plot M versus x we get the behavior shown in Fig.10.1. But for B = 0,
BrocaL, = AM. Therefore x = "L‘;f# If we plot this straight line x versus M on
the panel of Fig. 10.1 for different temperatures 7 we find the behavior shown in
Fig. 10.2. Solutions (intersections) occur only at (M = 0,x = 0) for T > T.. For
T < T, there is a solution at some nonzero value of M, i.e.

™~ M= Ngh;SBq(2)

T

Fig.10.1 Schematic plot of the magnetization M of a paramagnet as a function of the dimensionless
parameter x defined by x = MBSB%



284

10 Magnetic Ordering and Spin Waves
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I ’
E ! // //
I / L
l’ /// 7 \MS (T)
1 7
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Fig. 10.2 Schematic plot of the magnetization M of a paramagnet for various different tempera-
tures, in the absence of an external magnetic field, as a function of the dimensionless parameter x

defined by x = gum]f BB;:OCAL
gLuBSAMs
Ms(T) = NgLupSBs(xo), xo = ——
B

The Curie temperature T¢ is the temperature, at which the gradient of the line M =
and the curve M = NgpupSBs(x) are equal at the origin. Recall that, for

kBTX
gLiBSA
small x, Bs(x) = % + O(x?). Then the T¢ is given by

AN [ /ST DT (10.15)

T =
¢ kg

It is not difficult to see that Ms(T) versus T looks like Fig. 10.3. If a finite external

magnetic field By is applied, then we have
kgT B

M= _fBLX -0
gLUB SA A

(10.16)

Plotting this straight line on the M — x plane gives the behavior shown in Fig. 10.4.

M (0)

M (T)

T

Te

Fig. 10.3 Schematic plot of the spontaneous magnetization Ms as a function of temperature 7'
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M(=)

X

Fig. 10.4 Schematic plot of the magnetization M of a paramagnet, in the presence of an external

magnetic field By, as a function of the dimensionless parameter x defined by x = Wmi}%

10.1.3 Domain Structure

If all the magnetic moments in a finite sample are lined up, then there will be flux
emerging from the sample as shown in Fig. 10.5. There is an energy density #H(r) .
B(r) associated with this flux emerging from the sample, and the total emergence
energy is given by

U= i/aﬂr H(r) - B(r) (10.17)
8

The emergence energy can be lowered by introducing a domain structures as shown
in Fig. 10.6. In order to have more than a single domain, one must have a domain
wall, and the domain wall has a positive energy per unit area.

Fig. 10.5 Schematic plot of the magnetic flux around a sample with a single domain of finite
spontaneous magnetization
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Fig.10.6 Domain structures in a sample with finite spontaneous magnetization. (a) Pair of domains,
(b) domains of closure

10.1.4 Domain Wall

Consider a chain of magnetic spins (Fig. 10.7a) interacting via Heisenberg exchange
interaction

He = =27 ) si-s;,

<i,j>

where the sum is over all pairs of nearest neighbors. Compare the energy of this
configuration with that having an abrupt domain wall as shown in Fig. 10.7b. Only
spins (i) and (j) have a misalignment so that

R IR

EEEEENRRNRY

A4 G e o Y VR R A

Fig. 10.7 A chain of magnetic spins interacting via Heisenberg exchange interaction. a Single
domain, b a domain wall, ¢ gradual spin flip

AE = Hex(i Tv .] \L) - Hex(i Tv] T)
275 (=H) - [27H 3] =7 (10.18)
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Energetically itis more favorable to have the spin flip gradually as shown in Fig. 10.7c.
If we assume the angle between each neighboring pair in the domain wall is ¢, we
can write

(Eex)ij = —2Jsi - 8j = =27 sis; 08 §. (10.19)

Now if the spin turns through an angle ¢ (¢9 = 7 in the case shown in Fig. 10.7b)
in N steps, where N is large, then ¢;; =~ %‘J within the domain wall, and we can

approximate cos ¢;; by cos ¢;; ~ 1 — %I‘fl—‘z‘z Therefore the exchange energy for a
neighboring spin pair will be
1 ¢3
_ 2 0
(Eex)ij = —2JS (l 3 N2> (10.20)

The increase in exchange energy due to the domain wall will be

E —N(jSz¢—%> —j52¢—% (10.21)
ex — N2 - N .

Clearly the exchange energy is lower if the domain wall is very wide. In fact, if
no other energies were involved, the domain wall width Na (where a is the atomic
spacing) would be infinite. However, there is another energy involved, the anisotropy
energy. Let us consider it next.

10.1.5 Anisotropy Energy

We realize that crystals are not spherically symmetric, but have finite point group
symmetry. In real crystals, certain directions are easy to magnetize and others are
hard. For example, Co is a hexagonal crystal. It is easy to magnetize Co along the
hexagonal axis, but hard to magnetize it along any axis perpendicular to the hexagonal
axis. The excess energy needed to magnetize the crystal in a direction that makes an
angle 6 with the hexagonal axis can be written

E
7‘* = K, sin®0 + K, sin* 0 > 0. (10.22)

For Fe, a cubic crystal, the < 100 > directions are easy axes and the < 111 >
directions are hard. The anisotropy energy must reflect the cubic symmetry of the
lattice. If we define ; = cos 6; as shown in Fig. 10.8, then an approximation to the
anisotropy energy can be written

— =~ K, (aiai + aia? + agai) + Kzaiaiag. (10.23)
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0.

Fig. 10.8 Orientation of the magnetization with respect to the crystal axes in a cubic lattice

The constants K; and K, in (10.22) and (10.23) are called anisotropy constants.
They are very roughly of the order of 10%erg/cm?.

Clearly if we make a domain wall, we must rotate the magnetization away from
one easy direction and into another easy direction (see, for example, Fig. 10.9). To
get an order of magnitude estimate of the domain wall thickness we can write the
energy per unit surface area as the sum of the exchange contribution o, and the
anisotropy contribution oz
Ex J S22
a®  Na?

(10.24)

Oex =

where a is the atomic spacing. The anisotropy energy will be proportional to the
anisotropy constant (energy per unit volume) times the number of spins times a.

oa ~ KNa ~10* — 10" J/m>. (10.25)

Thus the total energy per unit area will be

EASY T EASY
DIRECTION DIRECTION
HARD
DIRECTION
(OUT OF PAPER,
-L TO EASY AXIS)

Fig. 10.9 Rotation of the magnetization in a domain wall
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7T.2js2

The o has a minimum as a function of N, since the exchange part wants N to be very
large and the anisotropy part wants it very small. At the minimum we have

2 2N 1/2
N ~ (” J5 ) ~ 300. (10.27)

Ka3

The width of the domain wall is § = Na >~ 7§ (é) 172 and the energy per unit area
of the domain wall is o ~ 2w S(£K)!/2,

10.2 Antiferromagnetism

For a Heisenberg ferromagnet we had an interaction Hamiltonian given by

H=-27T Z Si - S, (10.28)

<i,j>

and the exchange constant 7 was positive. This made s; and s; align parallel to one
another so that the energy was minimized. It is not uncommon to have spin systems
in which 7 is negative. Then the Hamiltonian

H=2|T1 ) si-s, (10.29)

<i,j>

will attempt to align the neighboring spins antiparallel. Materials with J < 0 are
called antiferromagnets.

For a antiferromagnet, the magnetic susceptibility increases as the temperature
increases up to the transition temperature Ty = %, known as the Néel temperature.
Above Ty, the antiferromagnetic crystal is in the standard paramagnetic state.

10.3 Ferrimagnetism

In an antiferromagnet we can think of two different sublattices as shown in Fig. 10.10.
If the two sublattices happened to have a different spin on each (e.g. up sublattice
hass = %, down sublattice has s = 1), then instead of an antiferromagnet for J < 0,
we have a ferrimagnet.
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Fig. 10.10 Sublattice structure of spins in a ferrimagnet

10.4 Zero-Temperature Heisenberg Ferromagnet

In the presence of an applied magnetic field By oriented in the z-direction, the Hamil-
tonian of a Heisenberg ferromagnet can be written

H=-Y JR —R)S:-S; —gusBo »_ Si.. (10.30)

ij i
Here we take the usual practice that the symbol S; represents the total angular mo-
mentum of the ith ion and is parallel to the magnetic moment of the ion, rather than
opposite to the moment as was given by (9.26). The exchange integral 7 is defined
as a half of the difference between the singlet and triplet energies. Let us define the

operators S* by
S* =S8, +iS,. (10.31)

Remember that we can write S as

S= 50 (10.32)

where oy, 0y, o, are the Pauli spin matrices given by

01 0—i 1 0
ax=(10>, O'y=<l. 0), O'Z=<0 _1>. (10.33)

Let us choose units in which 2 = 1. Then §,, S, and S, satisfy the commutation
relations
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[S.. Sy]_ =iS..
[Sy,S.]_ =i, (10.34)
[S., 8] =iS,.

We will be using the symbols S and S, for quantum mechanical operators and for
numbers associated with eigenvalues. Where confusion might arise we will write S
and S'Z for the quantum mechanical operators. From quantum mechanics we know
that §? and S’ can be diagonalized in the same representation since they commute.
We usually write

$%18, S.) = S(S + IS, S.),

> (10.35)
S:18, 8.y = SIS, S2).
Let us look at $* operating on the state |S, S,). We recall that
[SZ, §+] —0, [S‘Z, Si] — 4§*, (10.36)
We can write . o o
§28+1s, 5.) = §+8%S, S.) + [sz, S+] 1S, S.). (10.37)

The second term vanishes because the commutator is zero, and §2|S , 5 =88+
DIS, S:) giving L .
S25%1S,S.) = S(S+ 1)ST|S, S.). (10.38)

Perform the same operation for S’Z operating on St1S, S.) to have

$.5%18,8.) = §+8.15, S.) + [SZ, §+] 1S, S.). (10.39)
Use the fact that [SZ, §+] — §+and 8,15, S.) = S.|S, S.). This gives

8,818, S,) = (S, + DSHIS, S,). (10.40)

This means that 3’+|S, S,) is proportional to |S, S, + 1). To determine the normal-
ization constant we write

$*1S,S,) = NI|S, S, + 1),

and note that
{NIS, S, + 1)} = N*(S, S, + 1

and

A

(8,18, 8} = (5, 8| 8.
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Thus we have

INIX(S, S, + 11, S, + 1) = (S, S,|S~§*S, S.)
=(S. S1(87 + 87 — 5)15. 8.) = (S. S.I(8* — §2 — §,)|S. 5.)

giving for N
N=[SS+1-5>-s.]".

We can then show that

S*1S,8.) = VT —S)S F 1+ 85,8, S, + 1)

§718,8.) = /S +S)S+1-15.)[S. 8. — 1). (1041)

Now note that
Vlero o oot
SuxSin + Sy Spy = 5 (srs7+5787). (10.42)

These are all operators, but we omit the "over the S. The Heisenberg Hamiltonian
(10.30) becomes

H=— ijsizsjz - %Zj] (S;’Sj‘ + S;sj) — gusBo Zs (10.43)
LJ 2% i

Exercise
Demonstrate that S* and S~ satisfy (10.41).

It is rather clear that the ground state will be obtained when all the spins are
aligned parallel to one another and to the magnetic field By. Let us define this state
as |GS) or |0). We can write

0) =[] 1S. $):. (10.44)

Here |S, S); is the state of the ith spin in which Siz has the eigenvalue S, = §, its
maximum value. It is clear that S,.Jr operating on |0) gives zero for every position i
in the crystal. Therefore, H operating on |0) gives

HI0) = — [ D T 8iSi + gusBo Y S | 10). (10.45)

i,j i

Equation (10.45) shows that the state, in which all the spins are parallel and aligned
along By = (0, 0, By), so that S, takes its maximum value §, has the lowest energy.
The ground state energy becomes
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Eg= -5 Jij — NgusBoS. (10.46)
i,j

If J;; = J for nearest neighbor pairs and zero otherwise, then ) ; ;1= Nz, where
z is the number of nearest neighbors. Then E, reduces to

Ey = —S’NzJ — NgugBoS

I s 1047
971

10.5 Zero-Temperature Heisenberg Antiferromagnet

If J is replaced by —7 so that the exchange interaction tends to align neighboring
spins in opposite directions, the ground state of the system is not quite simple. In
fact, it has been solved exactly only for the special case of spin % atoms in a one-
dimensional chain by Hans Bethe. Let us set the applied magnetic field By = 0. Then
the Hamiltonian is given by

H=>_ TS -S;. (10.48)

ij

If we assume that each sublattice acts as the ground state of the ferromagnet, but
has S, oriented in opposite directions on sublattices A and B, we would write a trial
wave function
PrriaL = [ ] 1S, $)ilS, =), (10.49)
i€A
jeB

Remember that the Hamiltonian is

1 _ 1
H = Zj,, (S,»ZSJ-Z + Esfs_,. +35; Sj) . (10.50)
LJ
The §;.S;. term would take its lowest possible value with this wave function, but
unfortunately S;” Sj+ operating on @tgriar would give a new wave function in which
sublattice A has one atom with S; having the value S — 1 and sublattice B has one
with S, = —§ + 1. Thus @1grraL is not an eigenfunction of H.

10.6 Spin Waves in Ferromagnet

The Heisenberg Hamiltonian for a system (with unit volume) consisting of N spins
with the nearest neighbor interaction can be written
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H=-27 ) 8-S;—gusBo) S, (10.51)

<i,j> i

where the symbol < i, j > below the ) implies a sum over all distinct pairs of nearest
neighbors. The constants of the motion are 8> = 3, S; - }°;S; and §; = ), §j.,

where § = > j S ;- The eigenvalues of $2 and S‘z are given by

§2|0) = NS(N'S + 1)]|0)

i 10.52
S:10) = NS|0). ( )

The ground state satisfies the equation
H|0) = — (gus BoN S + T Nz5?) |0). (10.53)

10.6.1 Holstein—Primakoff Transformation

If we write é,- .S j in terms of x, y, and z components of the spin operators, the
Heisenberg Hamiltonian becomes

H = —ZJZ (Sixgjx + S[ysj‘y + Sizgjz) — g,uBBo Z Siz- (1054)

()]

We can write
;’. (10.55)

Now the Hamiltonian is rewritten

A A

Lain 1. . .
H = —ZJZ <§si+sj + 5S,. T+ Sizsjz> — gusBy Z Si.. (10.56)
(i, J) i

The spin state of each atom is characterized by the value of S, which can take on
any value between —S and S separated by a step of unity. Because we are interested
in low lying states, we will consider excited states in which the value of S;, does
not differ too much from its ground state value S. It is convenient to introduce an
operator 71; defined by

=8-S (10.57)

n ; s called the spin deviation operator; it takes on the eigenvalues 0, 1, 2, ..., 2S
telling us how much the value of S, on site j differs from its ground state value S.
We now define a; and its Hermitian conjugate a; by
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hj=ala;. (10.58)
a} and a; are creation and annihilation operators for the jth atom. We will require a;
and aj- to satisfy the commutation relation [a;, a;] = 1, since a spin deviation looks
like a boson. Notice that a;, which creates one spin deviation on site j, acts like the
lowering operator S, while a; acts, by destroying one spin deviation on site j, like
S;F. Therefore, we expect a; to be proportional to S;” and a; to be proportional to
S;r. One can determine the coefficient by noting that

A

[ST,871=28. =2(S — ). (10.59)

If we introduce the Holstein—Primakoff transformation to boson creation and anni-
hilation operators a ]‘ and a;

St=@S;—i)"a; and §; =aj@2S; —h)'? (10.60)
and substitute into the expression for the commutator of St with §~ we obtain
[$*, 871 =2(5 — ) (10.61)

if[a,a™] = 1. The proof of (10.61) is given belew. We want to show that [S‘*, S"] =
2(S —#) if [a, a"] = 1. We start by defining G = (25 — 72)!/2. Then, we can write

[S*,87]1=[Ga,a'G] = Gla,a' Gl + [G,a'Gla
a'la, é] + G+ [é, a*]éa
24462 — a'G2a.

Il
o O

But, we note that

—a'G% = —a'2S — h)a = —d'
=—a"{—[n,al + aéz}
G

= —aT

{[2S —n,a]l+a2S — fz)}
—af {—[a*a,a] +aéz}

—[a",ala+a 2} = —h —aG2.

Therefore, we have
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In order to obtain this result we had to require [a', a] = —1. If we substitute (10.59)
and (10.60) into the Hamiltonian (10.56), we obtain

H=-2TSY {\/1 - z"—lsai“;\/l -5+ “ﬂﬂa’ (10.62)

+5(1 = (1 =)} = g Bos 2,1 = %),

Exercise

Demonstrate the Heisenberg Hamiltonian (10.62) from (10.56) carrying out the
Holstein—Primakoff transformation.

So far we have made no approximation other than those inherent in the Heisenberg
model. Now we will make the approximation that (7;) < 2 for all states of interest.

Therefore, in an expansion of the operator /1 — % we will keep only terms up to

J1 ﬁi~1 ﬁi+ (10.63)
25~ 48 ' ‘

We make this substitution into the Heisenberg Hamiltonian and write H as

those linear in 7;, i.e.

H=Ey+ Ho+ H;. (10.64)

Here Ej is the ground state energy that we obtained by assuming that the ground
state wave function was |0 >=[]. IS, S; = S);.

Ey=-28*%, . J;j— NgusB
0 S* 2.5y Jii — Nous B (10.65)
=—zJNS* —gugByNS.
‘Hy is the part of the Hamiltonian that is quadratic in the spin deviation creation and
annihilation operators.

Mo = (gusBo +2278) Y A —2JS Y (aiaj + aiTaj> : (10.66)

(i,J)

H; includes all higher terms. To fourth order in a™’s and a’s the expression for
is given explicitly by

_ P P I | A 1A 1t A
Hi=-2T 2 (”i”j — gidia; — 3aia;i; — 3hja;a; — 3a; ajn,-) (10.67)

+ higher order terms.

Let us concentrate on Hy. It is apparent that a;r a; transfers a spin deviation from the
Jjth atom to the ith atom. Thus, a state with a spin deviation on the jth atom is not an
eigenstate of . This problem is similar to that which we encountered in studying
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lattice vibrations. By this we mean that spin deviations on neighboring sites are
coupled together in the same way that atomic displacements of neighboring atoms
are coupled in lattice dynamics. As we did in studying phonons, we will introduce
new variables that we call magnon or spin wave variables defined as follows:

by = N2 Zeik"‘f a; and b:{ =N"1/2 Ze_ik"‘f a;. (10.68)
J J

As usual the inverse can be written

4y = N2 Y e ™5 by and o] = N2 Y ek g (10.69)
k k

Itis straightforward (but left as an exercise) to show, because [a;, aj/ ] = [a;, a;,] =0
and [a;, a},] = 4, that

by, bie] = [b,t,b,i,] —0 and [bk,b,i,] = k- (10.70)

Substitute into H the expression for spin deviation operators in terms of the magnon
operators; this gives

H() = (g//LBBO + ZZJS) Zj N—l Zkk’ ei(k—k/).x,-blibk/ o
_szNfl Z<N> Zkk’ (eik'x’iik/'x/’bk/blt + eikhxjfik.xlblt’bk) ) ( . )

We introduce d, one of the nearest neighbor vectors connecting neighboring sites and
write X, = X; + 4 in the summation ) so that it becomes § Y s = 1zN.
We also make use of the fact that

<j,I>>
> RN = N (10.72)
J

Then H, can be expressed as

Ho = (gusBo + 2275) Z biby — TS Z Z (akﬁbkb; + e’ik“sb:{bk) )
k k )

(10.73)
We now define

w=z"y (10.74)
é

If there is a center of symmetry about each atom then v_x = ~. Further, since
>, e*R = 0 unless R = 0, it is apparent that Y, v = 0. Using these results in
our expression for H gives
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Ho =Y _ hunbyby. (10.75)
K
where
hwy =2zFS(1 — %) + gus Bo. (10.76)

Thus, if we neglect H;, we have for the Hamiltonian of a state containing magnons

H =—(guBoNS +zINS?) + Y hunbyby. (10.77)
k

This tells us that the elementary excitations are waves (remember b = N~1/2 3"
; is a linear combination of spin deviations shared equally in amplitude by
all sites) of energy fwy. Provided that we stay at low enough temperature so that
(n;) < S, this approximation is rather good. At higher temperatures, where many
spin waves are excited, the higher terms (spin wave—spin wave interactions) become

important.

e—zk»x/- a

10.6.2 Dispersion Relation for Magnons

For long wave lengths |k - 8| < 1. In this region we can expand e’*¢

to get

in powers of k

| . (k6)2
=2 ;<1+zk-5— ) (10.78)
Using ) s 1 =z, and ) ;0 = 0 gives
1
~l— — k-3)>. 10.79
o ZZ;( ) (10.79)

Thus z(1 — ) =~ % >sk- 6)2 and in this limit we have

huk = gupBo+ TS ) (k- 6)*. (10.80)
é

For a simple cubic lattice |§| = a and ) 5 (k - )* = 2k%a? giving
T = gus By + 27 Sa’k>. (10.81)

In a simple cubic lattice the magnon energy is of the same form as the energy of a free
particle in a constant potential € = Vj + % where Vy = gug By and mL = ‘%ﬁ”z.
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Fig. 10.11 Magnon dispersion curves

The dispersion relation we have been considering is appropriate for a Bravais
crystal. In reciprocal space the k values will, as is usual in crystalline materials, be
restricted to the first Brillouin zone. For a lattice with more than one spin per unit cell,
optical magnons as well as acoustic magnons are found, as is shown in Fig. 10.11.

10.6.3 Magnon-Magnon Interactions

The terms in ; that we have omitted involve more than two spin deviation creation
and annihilation operators. These terms are responsible for magnon—-magnon scatter-
ing just as cubic and quartic anharmonic terms are responsible for phonon—phonon
scattering. Freeman J. Dyson studied the leading terms associated with magnon—
magnon scattering.! Rigorous treatment of magnon-magnon scattering is mathe-
matically difficult.

10.6.4 Magnon Heat Capacity

If the external magnetic field is zero and if magnon—-magnon interactions are neglect-
ed, then we can write the magnon frequency as wy, = Dk? for small values of k. Here
D = 2.7Sa”. The internal energy per unit volume associated with these excitations
is given by (we put i = 1 for convenience)

1
U=y Xk:wk(nk) (10.82)

IE. J. Dyson, Phys. Rev. 102, 1217 (1956).
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where (n;) = m is the Bose—FEinstein distribution function since magnons are

Bosons. Converting the sum to an integral over k gives

1 ,, Dk?
U= |, ¢ Kemere —1 (10.83)

Let Dk* = ©x?%; then U becomes

D [0\ X
v=—(2 d . 10.84
22 (D) / Yo 1 (10.54)

Here we have used d*k = 47k*dk.Letx*> = y and set the upper limitat yy = (D—’W)Z.

®
Then we find

Q512 w3
= ——— d . 10.
U 2D /o b — (10.85)

For very low temperatures ® < wy; and no serious error is made by replacing yy
by co. Then the integral becomes

0 y3/2 _ 5 5
/0 dy— =T (5) ¢ <§, 1) ) (10.86)

Here I'(x) and ((a, b) are the I" function and Riemann zeta function, respectively:
ré)=3-1r@) =3/mand ((,1) ~ 1.341. Thus for U we obtain

0.45 @32
and for the specific heat due to magnons
U 0\
C= a7 = 0.113kg (5) (10.88)

For an insulating ferromagnet the specific heat contains contributions due to phonons
and due to magnons. At low temperatures we have

C = AT?? + BT? (10.89)

Plotting CT ~3/? as a function of 7/? at low temperature should give a straight line
(see, for example, Fig. 10.12). For the ideal Heisenberg ferromagnet YIG (yttrium
iron garnet) D has a value approximately 0.8 erg - cm? implying an effective mass
m* >~ 6m..
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Fig. 10.12 Specific heat of an insulating ferromagnet

10.6.5 Magnetization

The thermal average of the magnetization at a temperature 7 is referred to as the
spontaneous magnetization at temperature 7. It is given by

M, =B ( Zb be) ) (10.90)

The first term is just the zero temperature value where S; = N S and gug = 2. The
second term results from the presence of spin deviations 7 ;. Remember that

Y=Y aa =Y 5 Y e Vb (10.91)
= Y e bibi ok = Yy bibx.

‘We can define
AM = M,(0) — M(T) =

<|‘:

v 3

where (ny) = W)l Replacing the sum over the wave number k by an integral in

the usual way gives

dk k*
= ot 2/;2“ ol e (10.92)
L V)
= ()

- 2r? 0 e—1"

Again if ® < fuwvy, ym can be replaced by co. Then the definite integral has the
value F(%)C(%, 1), and we obtain for AM

3/2 3/2
AM =0.117p | — =0117p —— . 10.93
o(3) i (3557) (10.93)
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For M (T) we can write

N w{ © \"?
M(T) = 72MS —0.1175 (m) ) (10.94)

For simple cubic, bec, and fec lattices, & has the values 1/a%, 2/a>, and 4/a°,
respectively. Thus we can write

28 e

where o« = 1,2, 4 for simple cubic, bcc, and fcc lattices, respectively. The T3/2
dependence of the magnetization is a well-known result associated with the presence
of noninteracting spin waves. Higher order terms in % are obtained if the full ex-
pression for 7 is used instead of just the long wave length expansion (correct up to
k? term) and the k-integral is performed over the first Brillouin zone and not inte-
grated to infinity. The first nonideal magnon term, resulting from magnon—-magnon

)

4
j> . Dyson obtained this term correctly in a classic

interactions, is a term of order (

paper in the mid 1950s.?

10.6.6 Experiments Revealing Magnons

Among the many experiments which demonstrate the existence of magnons, a few
important ones are as follows:

(i) The existence of side bands in ferromagnetic resonances. The uniform preces-
sion mode in a ferromagnetic resonance experiment excites a k = 0 spin wave.
In a ferromagnetic film, it is possible to couple to modes with wave length A
satisfying %)\ = % where d is the thickness of the film. This gives resonances
at magnon wave numbers k, = “7.

(i) The existence of inelastic neutron scattering peaks associated with magnons.

(iii) The coupling of magnons to phonons in ferromagnetic crystals (see Fig. 10.13).

10.6.7 Stability

We started with a Heisenberg Hamiltonian H = —7 >, S: - S;. In the ferro-
magnetic ground state the spins are aligned. However, the direction of the resulting
magnetization is arbitrary (since H has complete rotational symmetry) so that the

2F. J. Dyson, Phys. Rev 102, 1230 (1956).
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Fig. 10.13 Coupling of magnons-phonons

ground state is degenerate. If one selects a certain direction for M as the starting
point of magnon theory, the system is found to be unstable. Infinitesimal amount of
thermal energy excites a very large number of spin waves (remembering that when
By = 0 the k = 0 spin waves have zero energy). The difficulty of having an unstable
ground state with M in a particular direction is removed by removing the degeneracy
caused by spherical symmetry of the Hamiltonian. This is accomplished by either

(1) applying a field By in a particular direction or
(i1) introducing an effective anisotropy field Ba.

For ® « ug|B| where B is either By or By, only small deviations from the ground
state occur. The anisotropy field is a mathematical convenience which accounts for
anisotropic interaction in real crystals. It is not so important in ferromagnets, but it
is very important in antiferromagnets

10.7 Spin Waves in Antiferromagnets

The Heisenberg Hamiltonian of an antiferromagnet has J > 0 so that

H=+27) 8 8; —gusBo- Y _S.. (10.96)
(i,J) i

where the sum is over all possible distinct nearest neighbor pairs. The state in which
all N spins on sublattice 1 are 1 and all N spins on sublattice 2 are |, is a highly
degenerate state because the direction for 1 (or |) is completely arbitrary. This
degeneracy is not removed by introducing an external field By. For |By| not too
large, the spins align themselves antiferromagnetically in the plane perpendicular to
By. However, the direction of a given sublattice magnetization is still arbitrary in that
plane.
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Lack of stability can be overcome by introducing an anisotropy field B with the
following properties:

(1) B, is in the +z direction at sites in sublattice 1.
(2) B, isin the —z direction at sites in sublattice 2.
(3) ppBa is not too small (compared to %._7 ).

Then the Heisenberg Hamiltonian for an antiferromagnet in the presence of an applied
field Bo = Byz and an anisotropy field B can be written

H=+T 38 -8 — gun(Ba+ Bo) Y $i. + gun(Ba — By) 3 8b.. (10.97)

(i,J) lea peb

The superscript a and b refer to the two sublattices. In the limit where By — o0
while J — 0 and By — 0, the ground state will have

Si. =8 foralllca
b _ (10.98)

Sy, =—S forallpeb

This state is not true ground state of the system when B and J are both finite.

The spin wave theory of an antiferromagnet can be carried out in analogy with the

treatment for the ferromagnet. We introduce spin deviations from the ‘By — 00

ground state’ by writing

St =S—a/q forall/ € a

St = —(S—bib,) forall p b, (10.99)

where the spin deviation operators satisfy commutation relations [al, af ] = 1and

[bp. b},] = 1. Once again it is easy to show that

S = @S —ap' a8 =af (28 — i)'

2 X o R (10.100)
S0t =028 —mp)'/% $b = 28 —iy)' b,

Here n; = afal and m, = b;b,,. In spin wave theory we assume (1;) < 2S5 and
() < 28 and expand the square roots keeping only linear terms in 72; and 171 ,. The
Hamiltonian can then be written

H=Ey+Ho+H,. (10.101)
Here E is the ground state energy given by

Ey= —2NzJS* —2gugBANS, (10.102)
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and H) is the part of the Hamiltonian that is quadratic in the spin deviation creation
and annihilation operators

Ho=2983",, (a,b,, +afbl + i+ m,,)

) o (10.103)
+gun (Ba + Bo) 2oyt + gis (Ba — Bo) 3 et p-

The sum of products of a’s and b’s is over nearest neighbor pairs. H; is a sum of
an infinite number of terms each containing at least four a or b operators or their
Hermitian conjugates. We can again introduce spin wave variables

o= N-12Y k% g ol = NTI2Y emiken a;’

_ _ik. L _ kx4 (10.104)
dg = N l/zzpe K% p,, d. =N lﬂzpe kx, b,
In terms of the spin wave variables we can rewrite H as
Pu t
Ho=22T8 > (chkdk + Ycrdi + ok + dkdk> (10.105)

+gus (Ba + Bo) chick + gus (Ba — By) deidk'

Here we have introduced
-1 ik-&
w=ztYy e =y
5

once again. We are going to forget all about 7;, and consider for the moment that
the entire Hamiltonian is given by Hy + Ej. Hy is still not in a trivial form. We can
easily put it into normal form as follows:

1. Define new operators oy and Gk
o = ugex — vdy, 5 B = udy — vicy (10.106)
where u and vy are real and satisfy ug — vg = 1.
2. Solve these equations (and their Hermitian conjugates) for the ¢’s and d’s in terms
of e and 3. We can write

Ck = UgQg + vkﬂ;i ) Cli = I/tkalTK + vkﬂk (10.107)

and
di = veaf +uf ; dy = viay 4wy, (10.108)
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3. Substitute (10.107) and (10.108) in H to have

Ho =2z8T > ) {'Yk I:ukvk(a;ak + BBy + ey + B Bx)
(B + ) + Gl + aw)|
+up o ax + v BBy + uvi (o B + Breue)
+vgonoy + ud BBl + mevi(on B + ﬁlaf;)]
+guB(Ba + Bo) Y\ [uﬁa;ak + 03 By + wvi (o B + Bkak)]
+guB(Ba — Bo) Dy [Uiakal + ul B B + urvk (o B + ﬁial)] :
(10.109)

We can regroup these terms as follows:
Ho=2) [QZSJ (’ykukvk + Uﬁ) + g,uBBAU]%]
+>k [ZzSJ (27kukvk + ui + vﬁ) + 9uB BA(uIZ{ + vl%) + 9B Bo] oelioek
+Dk [ZZSJ (ZWkukUk + ui + Ul%) + g;LBBA(ulz( + vﬁ) - g,lLBB():I ﬂf;ﬂk

+>k {22&7 'yk(uﬁ + vl%) + 2ukvk] + ZQMBBAukvk} (aiﬂi + akﬂk> .
(10.110)

4. We put the Hamiltonian in diagonal form by requiring the coefficient of the last
term to vanish. We define w, and wa by

we =2JzS and wa = gupBa. (10.111)

‘We must solve
We ['yk(ui + vﬁ) + 2ukvk] + 2waugvg = 0, (10.112)

remembering that ulz( =1+ vﬁ. Then (10.112) reduces to

1+2v|% __i(w_A+1>

2uy/ 1+ vﬁ Tk

Solving for v gives

11 + we
=—3+5 WAt —. (10.113)
J@a +w)? —
Thus we have 1 : N
up =5+ AT e , (10.114)

2 s +wir = ajut
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and since
1 TkWe
UgVk = — =

2 2
+ vy),
ZwA—l—we(uk )

we have
1 TkWe
UKV = ——

2 \/(WA + we)? — Ypw?

Now, let us write the Hamiltonian in a diagonal form

Ho=C+ Z [(wk + gus Bo)ay o 4 (wi — gMBBO)ﬁlﬁk]
k

where

wk = 2287 (2cuxvi + ui + vi) + gup Ba(ug + vi)

= \/(wA + we)? — w2

The constant C is given by

C =23 [22857 (wunv + v) + gup Bavg]
=k [wk — (wa + we)].

Thus, to this order of approximation we have

H=—-2Nz7JS?*— ZguBBANS + > lwx - (wa + we)]
+ > (Wi +wp)ayou + Y (wi — wa) By B

where
wp = gus Bo.

Exercise

307

(10.115)

(10.116)

(10.117)

(10.118)

(10.119)

(10.120)

Work out that the Heisenberg Hamiltonian of an antiferromagnet is approximated by

(10.119).

10.7.1 Ground State Energy

In the ground state
(0 |ajox|0) = (0|85 0y = 0.

Thus the ground state energy is given by
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Egs = —2NzJ 8> — 2gugBANS + Z [wi — (wa + we)]. (10.121)
k

Let us consider the case By = Ba = 0; thus wa — 0 and wig — we(1 — 71%)1/2. But
we is simply 27zS. Hence for By = B, = 0 the ground state energy is given by

Egs = —2NzJS* — Nwe +we » (1 =)' (10.122)
k

By using w. = 27z, this can be rewritten by

Egs = —2NzJS[S+1—N""> " \/1-421. (10.123)
k

Let us define 3 = z (1 — Nt Dk 1l— 7]%); then Egs can be written as

Egs = —2NzJS(S +z7'p). (10.124)

For a simple cubic lattice 5 ~ 0.58. For other crystal structures § has slightly
different values.

10.7.2 Zero Point Sublattice Magnetization

For very large anisotropy field B,, the magnetization of sublattice a is gug N S while
that of sublattice b is equal in magnitude and opposite in direction. When By — O,
the resulting antiferromagnetic state will have a sublattice magnetization that differs
from the value of By, — oo. Then magnetization is given by

gus

M(T) = 7<0|‘§Z|o>, (10.125)

where the total spin operator 3z is given, for sublattice a, by

S:=) SL=NS—) ala. (10.126)
1

lea

But Y, a/a; = Y ¢ ck, and the ¢ and ¢ can be written in terms of the operators
ax, oy, fi, and f; to get

S.=NS-Y" (uka,i + vkﬁk) (ukak + vkﬁj;) . (10.127)
k
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Multiplying out the product appearing in the sum we can write

AS =NS — ‘§z = Z {vlz( —+ uioz;ak —+ vﬁﬁ;iﬂk =+ Uk vk (Ot;r(ﬂ]z =+ akﬁk)} .
k

(10.128)
At zero temperature the ground state |0) cgntains no excitations so that ag|0) =
0Ok|0) = 0. Thus, at T = 0, AS(T) = (0] AS|0) has a value AS, given by

!
AS =Y =33 |1~ WA+ Wwe . (10.129)
k K \/ (Wa + we)? — Yew?

Let us put wy = 0 corresponding to By — 0. This gives

N 1 1
ASO:—E+§Z—. (10.130)

Ky 1—%

If we define 3 = zN~!1 3", <1 — %), then we have
)

13N

ASy = ——
0 2z

(10.131)

For a simple cubic lattice z = 6 and (' has the value 0.94 giving for AS, the value
—0.078N.

10.7.3 Finite Temperature Sublattice Magnetization
At a finite temperature it is apparent from (10.128) and (10.129) that

AS(T) = AS) + Y [ulafan) + 95| (10.132)
k

But the excitations described by the creation operators a:; and ﬁli have energies
wg & wp (the sign — goes with 6]1'), so that

1
ePlwk—ws) — 1°

(oqax) = and (B]f) = (10.133)

e@(wk +wp) _ 1

In these equations 3 = ,{B#T, wp = 2up By, and wy = \/(wA + we)? — w2, At low

temperature only very low frequency or small wave number modes will be excited.
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Remember that

T = Z71 Zelk.é
&

where & indicates the nearest neighbors of the atom at the origin. To order k> for a
simple cubic lattice

. (k.6)2> k2a?
S (L US RS
5 2 z

Thus, the excitation energies €, = wy Fwp are approximated, in the long wave length
limit (k%a? < 2 <« 1), by

e = [walwa + 2wl 1+ e 4y

Wetwa) 2

(10.134)
o2
~ [wa(wa + Zu}e)]l/z + zl—zmkza2 + wg.

Thus, the uniform mode of antiferromagnetic resonance is given, in the presence of
an applied field, by
Ex=0 = vV wa (Wa + 2we) £ wp. (10.135)

In the long wave length limit, but in the region of 1 > k*a* > 72 (2 + “:—A>, we
expect the behavior given by

weka

Er =
W

Figure 10.14 shows the excitation energies w as a function of wave number k in the
long wave length limit.

Let us make an approximation like the Debye approximation of lattice dynamics
in the absence of an applied field. Replace the first Brillouin zone by a sphere of

+ wp &~ 2/27 Sak + wsp. (10.136)

A

l

Fig. 10.14 Antiferromagnetic spin wave excitation energies in the long wave length limit
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radius kyg, where

1 4 N
k3 = —
Qm)3P3 MT Y
to have o
e~ k. (10.137)
km

Here Oy is the value of ¢; at k = ky;. With a use of this approximation for ¢; of both
the 4+ and — (or ax and Jx) modes one can evaluate the spin fluctuation

AS(T) = ASO+Z ”“/j 'k (10.138)

Using our expressions for v (and u = 1 + v?), replacing the k-summation by an
integral, and evaluation for ® <« @y we have

o) 2
AS(T) = a8y + 2 (67%)°° N <—) : (10.139)
12 On

10.7.4 Heat Capacity Due to Antiferromagnetic Magnons

For ® < wy (E Jwa(wa + 2we)), the heat capacity will vary with temperature as
e~const/T since the probability of exciting a magnon will be exponentially small. For
somewhat higher temperatures (but not too high since we are assuming small |k|)
where modes with wg ~ O Xk are excited, the specific heat is very much like the low
temperature Debye spemﬁc heat (the temperature region in question is defined by
wp K O K O). The internal energy will be given by

Wk
U:22m. (10.140)
k

Here we have two antiferromagnetic magnons for every value of Kk, instead of three as
for phonons, and the factor of 2 results from counting two types of spin excitations,
al and ﬁl type modes. Replacing the sum by an integral and replacing the upper
limit ky; by infinity, as in the low temperature Debye specific heat, gives

kna)? O 27t 9
p=pytma o 5 2o (10.141)
5 0y 5 603

For the specific heat per particle one obtains

87r e\’
< lac) - (10.142)
N
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10.8 Exchange Interactions

Here we briefly describe various kinds of exchange interactions which are the un-
derlying sources of the long range magnetic ordering.

1. Direct exchange is the kind of exchange we discussed when we investigate the
simple Heisenberg exchange interaction. The magnetic ions interact through the
direct Coulomb interaction among the electrons on the two ions as a result of
their wave function overlap.

2. Superexchange is the underlying mechanism of a number of ionic solids, such as
MnO and MnF,, showing magnetic ground states. Even in the absence of direct
overlap between the electrons on different magnetic ions sharing a nonmagnetic
ion (one with closed electronic shells and located in between the magnetic ions),
the two magnetic ions can have exchange interaction mediated by the nonmag-
netic ion (see, for example, Fig. 10.15).

3. Indirect exchange is the magnetic interaction between magnetic moments local-
ized in a metal (such as rare earth metals) through the mediation of conduction
electrons in the metal. Itis a metallic analogue of superexchange in ionic insulators
and is also called as the Ruderman—Kittel-Kasuya—Yosida (RKKY) interaction.
For example, the unpaired f electrons in the rare earths are magnetic and they can
be coupled to f electrons in a neighboring rare earth ion through the exchange
interaction via nonmagnetic conduction electrons.

4. Double exchange coupling is the ferromagnetic superexchange in an extend-
ed system. The double exchange explains the ferromagnetic coupling between
magnetic ions of mixed valency. For example, La;_,Sr,MnO3(0 < x < 0.175)
shows ferromagnetic metallic behavior below room temperature. In this material,
a fraction x of the Mn ions are Mn** and 1 — x are Mn>*, because La exists as
La** and Sr exists as Sr>+.

p electrons of O

Mn d spin

NONMAGNETIC
ATOM

Fig. 10.15 Schematic illustration of superexchange coupling in a magnetic oxide. Two Mn ions
(each having unpaired electron in a d orbital) are separated by an oxygen ion having two p electrons
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5. Itinerant ferromagnetism occurs in solids (such as Fe, Co, Ni, . . .) containing the
magnetic moments associated with the delocalized electrons, known as itinerant
electrons, wandering through the sample.

10.9 Itinerant Ferromagnetism

Most of our discussion up to now has simply assumed a Heisenberg J;;S; - S;
type interaction of localized spins. The atomic configurations of some of the atoms
in the 3d transition metal series are Sc (3d)!(4s)?, Ti (3d)*(4s)?, V (3d)3(4s)?,
Cr (3d)°(4s)', Mn (3d)>(4s)?, Fe (3d)%(4s)?, Co (3d)"(4s)?, Ni (3d)¥(4s)?, Cu
Bd)'"O4s)!. If we simply calculate the band structure of these materials, completely
ignoring the possibility of magnetic order, we find that the density of states of the
solid has a large and relatively narrow set of peaks associated with the 3d bands,
and a broad but low peak associated with the 4s bands as is sketched in Fig. 10.16.
The position of the Fermi level determines whether the d bands are partially filled
or completely filled. For transition metals with partially filled d bands, the electrons
participating in the magnetic states are itinerant.

10.9.1 Stoner Model

In order to account for itinerant ferromagnetism, Stoner introduced a very simple
model with the following properties.

1. The Bloch bands obtained in a band structure calculation are maintained.
2. By adding an exchange energy to the Bloch bands a spin splitting, described by
an internal mean field, can be obtained.

A
3d bands
8 ~
[
4s bands
= T T T : = > 8
Fe CoNi Cu

Fig. 10.16 Schematic illustration of the density of states of the transition metals
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Fig. 10.17 Schematic illustration of the spin split Bloch bands in the Stoner model. (a) Energy
dispersion of the Bloch bands in the presence of spin splitting A. (b) The Fermi surfaces for spin
up and spin down electrons

3. States with spin antiparallel (—) to the internal field are lowered in energy relative
to those with parallel (4) spin.

We can write for spin up (+4) and spin down (—) electrons
2 2

hk hk
E_(k) ~ - and E, (k) ~ - + A, (10.143)

where A is the spin splitting. The spin split Bloch bands and Fermi surfaces for
spin up and spin down electrons are illustrated in Fig. 10.17 in the presence of spin
splitting A.

10.9.2 Stoner Excitations

A single particle excitation in which an electron with wave vector k and spin down
(—) is excited to an empty state with wave vector k 4 q and spin up (+) has energy
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Fig. 10.18 Schematic illustration of the energy dispersion of the Stoner excitations and spin wave
modes. The hatched area shows the single particle continuum of possible values of |k| for different
values of |q|

E=E,(k+q) — E_(k)
= Petq? | 4 1 (10.144)

2m* 2m*

=g (k+9)+A.

These Stoner single particle excitations define the single particle continuum shown in
Fig. 10.18. The single particle continuum of possible values of |k| for different values
of |q| are hatched. Clearly when ¢ = 0, the excitations all have energy A. These
are single particle excitations. In addition Stoner found spin waves of an itinerant
ferromagnet that started at the origin (E = 0 at ¢ = 0) and intersected the single
particle continuum at g, a finite value of ¢. The spin wave excitation is also indicated
in Fig. 10.18.

10.10 Phase Transition

Near T, the ferromagnet is close to a phase transition. Many observable proper-
ties should display interesting behavior as a function of T — T (see, for example,
Fig.10.19). Here we list only a few of the interesting examples.

1. Magnetization: As T increases toward 7. the spontaneous magnetization must
vanish as
M(T) ~ (T. — T)? with 3 > 0.

2. Susceptibility: As T decreases toward T in the paramagnetic state, the magnetic
susceptibility x(7") must diverge as

x(T) ~ (T — T.)”" with v > 0.
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M;(0)

FERRO PARA

~T

Fig.10.19 Schematic illustration of the temperature dependence of the spontaneous magnetization

3. Specific heat: As T decreases toward 7, in the paramagnetic state, the specific
heat has a characteristic singularity given by

C(T)~ (T —T,)"™ witha > 0.

In the mean field theory, where the interactions are replaced by their values in the
presence of a self-consistently determined average magnetization, we find 5 = %
and 7 = 1 for all dimensions. The mean field values do not agree with experiments or
with several exactly solvable theoretical models for T very close to Tt.. For example,

1. B = % in the two-dimensional Ising model.

2. B~ % in the three-dimensional Heisenberg model.

3. v =~ 1.25 for most three-dimensional phase transitions instead of the mean field
predictions of v = 1.

In the early 1970s K. G. Wilson developed the renormalization group theory of
phase transitions to describe the behavior of systems in the region T >~ 7.

Problems

10.1 Show that spin operators satisfy [3‘2, S‘i] = 0 and [S‘z, S*] = +5%. Evaluate
the commutator [S*, S™] and [S*, S.], and show that ST act as raising and lowering
operators.

102 If by = N~'/2 37 e™% a; and by = N~/ > ek a; are spin wave oper-
ators in terms of spin deviation operators, show that [a;, a;] = [a;, aj-,] = 0 and
[aj, a}] = 85 imply by, byl = [y, b, ] = 0 and by, by | = b

10.3 In the text the Heisenberg Hamiltonian was written as
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:—ZJSZ”{\/I Bad1- S val -1 -5

+5( =1 =} - gunBes 3,01 - %),

where 1, = a;a ; and a; (a;) creates (annihilates) a spin deviation on site j. Expand
the square roots for small 72 and show that the results for H, and H; agree with the
expressions shown in (10.66) and (10.67), respectively.

10.4 Evaluate wg, the spin wave frequencies, for arbitrary k within the first Bril-
louin zone of a simple cubic, body-centered, and face-centered lattices, and plot the
dispersion curves in the corresponding first Brillouin zones of the lattices. Expand
the result for small k£ and compare it with the result given by (10.81).

10.5 An antiferromagnet can be describedby H =}, , J;;S; - S, where J;; > 0.
Here, the exchange integral J is defined as a half of the difference between the
singlet and triplet energies. Show that the ground state energy E of the Heisenberg
antiferromagnet must satisfy

—SS+ DY Ty < Eo< -8 T

i ij
Hint: for the upper bound one can use the trial wave function
PrriaL = [ ] 1S, )lS, =5);,

ieA
jeB

where | §, £S); is the state with S, = &S on site k.

10.6 Prove that operators «y’s and (;’s defined in terms of spin wave operators
Qk = UKCk — dei and ﬁk = ukdk — vkclT(

satisfy the standard commutation rules. Here uﬁ — vﬁ =1 (see (10.1006)).

10.7 Consider spin wave excitations of the ferromagnetic spin alignment in a two-
dimensional square lattice.

(a) Discuss the 2D magnon contribution to the low temperature specific heat and
the magnetization.

(b) Evaluate the 2D magnon contribution to the thermal conductivity per unit
area. One can generalize the simple 3D formula k = %C v{ summing over all
the spin wave modes in the two dimensions.

Summary

In this chapter we studied magnetic ordering and spin wave excitations of magnet-
ic solids. We first reviewed Heisenberg exchange interactions of atoms and then
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discussed spontaneous magnetization and domain wall properties of ferromagnets.
The zero-temperature properties of Heisenberg ferromagnets and antiferromagnets
are described. Spin wave excitations and magnon heat capacities of ferromagnets
and antiferromagnets are also discussed. Finally Stoner model is introduced as an
illustration of itinerant ferromagnetism.

The Heisenberg interaction Hamiltonian is given by

H = —2:72& -Sj,
(i,J)

where the sum is over all pairs of nearest neighbors. The exchange constant 7 is
positive (negative) for ferromagnets (antiferromagnets). For a chain of magnetic
spins, it is more favorable energetically to have the spin flip gradually. If the spin
turns through an angle ¢y in N steps, where N is large, the increase in exchange

energy due to the domain wall is Eex = JS? % The exchange energy is lower if the
domain wall is very wide.

In the presence of an applied magnetic field By oriented in the z-direction, the
Hamiltonian of a Heisenberg ferromagnet becomes

H=— Zjijs,»zsjz - %ij (S,*S; + S,.‘Sf) — gusBo Zsiz.
i,] i, i

In the ground state all the spins are aligned parallel to one another and to the magnetic
field By: |0) =[], |S, S);. The ground state energy becomes

Eq = —S? Zjij — NgugBoS.
i,j

For Heisenberg antiferromagnets, J is replaced by —J but a trial wave function
OrriaL = [iea IS, S)ilS, —S§) is not an eigenfunction of .
j€B

Low lying excitations of ferromagnet can be studied by introducing spin deviation
operator i ; defined by

ij=8;=8;.=5-8;.=a
With a use of the Holstein—Primakoff transformation to operators a; and a;
SF=@S; — i)' a; and §; =al@S; —ap'?,
the Heisenberg Hamiltonian can be written, in the limit of (n;) < 2.5, as

H=Ey+Hy+ H;.
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Here Ey, Ho, and H; are given, respectively, by

Ey =-zJNS*—gusBoNS,
Ho = (guBo+2zJ8) Y ;i —2TS )y _; jy (a,-a;—i—afaj),
H1 = —ZJ Z<i,j) (ﬁiﬁj — %ﬁiaia; — }Taia;ﬁj — %ﬁjajaj - }Tajajﬁ,-)

+ higher order terms.

Introducing spin wave variables defined by

by =N~ Ze”‘"‘-f a; and b]t =N"I/2 Ze*”‘"‘-’ aj-,
i J

Ho becomes Hy = >\ hwkb:(bk, where fiwg = 227 S(1 — ) + gus Bo. Thus, if
we neglect H;, we have for the Hamiltonian of a state containing magnons

H =—(guBoNS +2INS?) + Y huxbyby.
k

We note that, at low enough temperature, the elementary excitations are waves of
energy hwy.
At low temperature, the internal energy and magnon specific heat are given by

0.45 ©3/2 oU AN

The spontaneous magnetization at temperature T is given by
gHB i
M= =7 (NS— < Xk:bkbk)> :

28T
In the presence of an applied field By = Byz and an anisotropy field By, the
Heisenberg Hamiltonian of an antiferromagnet can be written

32
At low temperature, M (T) becomes M (T) = %ZMS — 0‘117[% (i> .

H=+T Y S S;—gus(Ba+ Bo)Y_ i + gus(Ba — Bo) Y _ 5.

<i,j) lea peb

In the absence of magnon-magnon interaction, the ground state energy is given by

Egs = —2NzJS* — 2gup BAN S + Z [wk — (wa + we)].
k
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The internal energy due to antiferromagnetic magnons is given by
Wk
U _221(:—6%/@ —

The low temperature specific heat per particle becomes

8t [ O\’
C=—(—) .
5 oy



Chapter 11
Many Body Interactions—Introduction

11.1 Second Quantization

The Hamiltonian of a many particle system is usually of the form

1
H=ZHO(1')+EZV,~_,~. (11.1)
i i#]

Here Hy(i) is the single particle Hamiltonian describing the ith particle, and V;; is
the interaction between the ith and jth particles. Suppose we know the single particle
eigenfunctions and eigenvalues

Hylk) = exlk).

We can construct a basis set for the many particle wave functions by taking products
of single particle wave functions. We actually did this for bosons when we discussed
phonon modes of a crystalline lattice. We wrote

i, na, ..o, .. = (nng! o) ™V? (ai)nl (a;)nz ... (ali)nk .+ |0).
(112)

This represents a state in which the mode 1 contains n; excitations, .. ., the mode k
contains n; excitations. Another way of saying it is that there are n; phonons of wave
vector ky, n, phonons of wave vector k, . . .. The creation and annihilation operators
a’ and a satisfy

[ak, a;:lf = 6/<k’; [ak, ak’]_ = I:aZ’ a;/:li =0.

The commutation relations assure the symmetry of the state vector under interchange
of a pair of particles since

© Springer International Publishing AG, part of Springer Nature 2018 321
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Pob o f ot
aa = a,a.

The single particle part is given by
D Ho() =) ey (11.3)
i k

where &, = (k|Holk) and n; = a} ;.

For Fermions, the single particle states can be singly occupied or empty. This
means that n; can take only two possible values, O or 1. It is convenient to introduce
operators c,i and its Hermitian conjugate ¢, and to require them to satisfy anticom-
mutation relations

o I
[ck, c,{,]Jr = cxcp + Cpck = Ok,

: (11.4)
lek, e ]y = [C/'w C;L =0.

A2
These relations assure occupancy of 0 or 1 since (c,i) =0and (¢;)*> = 0:

I:CZ, cz] = ZCZCZ =0
+
[ck, ckly = 2¢ckc =0
from the anticommutation relations given by (11.4). It is convenient to order the

possible values of the quantum number k (e.g. the smallest ks first). Then an eigen-
function can be written

101, 12,03, 04, 15, L6, .o, gy o) = - -cf - cheled]01, 00, o Ok, o0, Oy . ).
The order is important, because interchanging cg and c; leads to
|01, 15,03, 04, 16, 15, ..., 1g,...) = —|01, 12,03, 04, 15, g, ..., If, ...).
The kinetic (or single particle) energy part is given by

> (klHolk)cfe = Y excier =) iy (11.5)
k k k

occupied

The more difficult question is “How do we represent the interaction term in the
second quantization or occupation number representation?”.

In the coordinate representation the many particle product functions must be either
symmetric for Bosons or antisymmetric for Fermions. Let us write out the case for
Fermions
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1
d=— PP Lo (Dps(2) -+ P (N 11.6
m;() [6a(D)Bs(2) -+ Pu(N)} (11.6)

Here ), means sum over all permutations and (=) is —1 for odd permutations and
+1 for even permutations. For example, for a three particle state the wave function
D34(1,2,3) can be written

Pagy = %5 [ 2a(D)$5(2)01(3) — pa(1)P5(3)91(2) + Pa(2)95(3) ¢4 (1)

—0a(2)93(1)P1(3) + 03P (1) D1 (2) — pa(3)Ps(2) (D]
(11.7)

Such antisymmetrized product functions are often written as Slater determinants

Pa(1) 9a(2) -+ Pa(N)
1 |98(1) ¢5(2) -+ pp(N)
? = 7l S (11.8)

Pu(1) ¢u(2) - -+ ¢u(N)

Look at Vi, operating on a two particle wave function ®@,5(1,2). We assume that
Viz = V(Iri —r2]) = V(r12) = Va1. Then

1
Via@ap(1,2) = EVIZ [6a(D5(2) — P3(Dpa(2)] -

The matrix element (®,5|Vi2|P,3) becomes

(@151Vi2| Pag) = 3 (78| VialaB) + 5(57I V12l Ber) (119)
—1161Vial B — L1671 Viala).

Since (y0|VizlafB) = fd3r1d3r2 ¢§(1)¢§(2)V(rlz)gba(l)qﬁﬂ(Z), we can see that it
must be equal to (dy|Vi2|Ba)by simple interchange of the dummy variables r; and
r». Thus, we find, for two-particle wave function, that

(P51 Vi2|Pag) = (v VizlaB) — (vd]Vi2|Ba). (11.10)

Just as we found in discussing the Heisenberg exchange interaction, we find that the
antisymmetry leads to a direct term and an exchange term. Had we been considering
Bosons instead of Fermions, a plus sign would have appeared in @,53(1, 2) and in
the expression for the matrix element.

Exactly the same result can be obtained by writing

Vi = Z <XM/|VIZM,J)C;,CDC#CA, (11.11)
AN !
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and )
Tor
| Do) = ﬁcgcaw), (11.12)
where |0) is the vacuum state, which contains no particles. It is clear that
Via| Pog) = Z W Via| A\ c/\ L,C/,C)\CJC |0)
/\/\ o

will vanish unless (i) A = § and ;4 = a or (ii)) A = « and p = (. From this we see
that

Via @ap) = IZ N/ |Vial o) = (N /| VialaB)] cf,c i 10).

N/
Taking the scalar product with (®.;| = \/%(O|c7c§ gives
1 ’ ! ’ 7
(@551Vial Pag) = 5 D [(Ni[VialBe) — (N[ VialaB) ] (Olescscycy10).

Ny
(11.13)

The matrix element (O|c, c(scj\,cz, |0) will vanish unless (i) 6 = X and v = ’ or (ii)
v = X and § = y'. The final result can be seen to be

(D151 Vi2| Pap) = (VoI Viz|uB) — (Yo V12| Bav). (11.14)

If we consider the operator 5 Z, +; Vij we need only note that we can consider a
particular pair i, j first. Then when V;; operates on a many particle wave function

1 .
il D (P {PaDds2) -+ du(N)} = cleh- - cl10) (11.15)
P

only particles i and j can change their single particle states. All the rest of the particles
must remain in the same single particle states.

The final result is that the Hamiltonian of a many particle system with two body
interactions can be written

. | -
H =" (K|Holk)c.ci + 3 > KTVIkD)ef clec. (11.16)
kk' kk'll

The operators c; and cz, satisfy either commutation relations for Bosons

[eocb] =oue and (e el = el cl] =o0. (11.17)
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or anticommutation relations for Fermions

[ct. c,j,L = b and [er, el = [df. cZ,]+ =0. (11.18)

11.2 Hartree—Fock Approximation

Now we are all familiar with the second quantized notation for a system of interacting
particles. We can write

. 1 P
H=> cclci+ 3 > GijIVIkle] clerey. (11.19)
i ijkl

Here cf creates a particle in the state ¢;, and

(ijIVIkl) = /dxdx/ 67 ()¢5 () (x, X )i (x) 1 (x). (11.20)

Remember that
(ijIVIkD) = (ji|V|lk) (11.21)

if V is a symmetric function of x and x’. In this notation Hy = ), Eicjc,v is the
Hamiltonian for a noninteracting system. It is simply the sum of the product of the

energy ¢; of the state ¢; and the number operator n; = cjci. The Hartree—Fock
j-C[ Crk by
a c-number (actually a ground state expectation value of a c'¢ product) multiplying

acte; thatis

approximation is obtained by replacing the product of the four operators cjc

cjcj:clck A c} (c;cl)ck + c;cl (c;'ck)
o S (11.22)
—c;cfcjer) — cjelc;ar).

By (£2) we mean the expectation value of £2 in the Hartree—Fock ground state, which
we are trying to determine. Because this is a diagonal matrix element, we see that

(cher) = 6,m;. (11.23)
Furthermore, momentum conservation requires

((jIVIjk) = (ijIV1ji)oiu, etc.
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Then one obtains for the Hartree—Fock Hamiltonian

H = ZEicjci, (11.24)

where
Ei=6,-+Zﬁj[<ij|V|ij>—(ijIVlji>]- (11.25)
J

One can think of E; as the eigenvalue of a one particle Schrodinger equation

Hiedi (6) = { B + [ 5V (e, x) 27867609, ) | 61 )

(11.26)

— [ &X'V (x,x') 37,05 (x) b (x) = Ei gy
Do not think the Hartree—Fock approximation is trivial. One must assume a ground
state configuration in order to compute (c;c,). One then solves the ‘one particle’
problem and hopes that the solution is such that the ground state of the N particle
system, determined by filling the N lowest energy single particle states just solved
for, is identical to the ground state assumed in computing (cjc;). If it is not, the
problem has not been solved.

11.2.1 Ferromagnetism of a Degenerate Electron Gas
in Hartree-Fock Approximation

One can easily verify that plane wave eigenfunctions
us (x) = 27125

with single particle energy
R*k?
Ehks = ——
ks 2m
form a set of solutions of the single particle Hartree—Fock Hamiltonian.
If the ground state is assumed to be the paramagnetic state, in which the N lowest
energy levels are occupied (each k state is occupied by one electron of spin 1 and
one of spin | ) then one obtains

Es = eks + Ex (k) (11.27)
where

Ex,(k) = — Z ny (kk'|V|K'k). (11.28)
=
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Here we assumed that the nuclei are fixed in a given configuration and pictured as a
4me?

fixed source of a static potential. The matrix element (kk'|V |k'k) = el and the
sum over k’ can be performed to obtain
R*k? 2k k2 — k* ke + k
Epy = e, R (R (11.29)
2m 2w kkp k]: —k
The total energy Ep of the paramagnetic state is
Ep=> my|e + L Ewm (11.30)
= n = Ex; . .
P ks | ks ) X
ks
The % in front of Ex, prevents double counting. This sum gives
3 W2k 3, 221 0916
Ep=N|-——— —¢“kg| = N[ - JRyd. (11.31)
52m  4n r2 Fs

One can easily see that Ey, is a monotonically increasing function of k, so that the
assumption about the ground state, viz that all k states for which k < kg are occupied,
is in agreement with the procedure of filling the N lowest energy eigenstates of the
single particle Hartree—Fock Hamiltonian.

Exercise
Work out the sum over k" in (11.28) and demonstrate (11.29).
Instead of assuming the paramagnetic ground state, we could assume that only

states of spin 1 are occupied, and that they are singly occupied for all k < 2'/3kg.
Then one finds that

272 1/3 ,2 22/3k2 2 1/3
EkT=hk_2 ekp[2+ 2 1n<2 kp+k):|

2m 27 2B kek 23 kp—k (11.32)
h2k2
E/w = S
This state is a solution to the Hartree—Fock problem only if
Eip k=131 < 0, (11.33)

otherwise some of the spin down states would be occupied in the ground state. This
condition is satisfied if

1 T 342 (1134
_— s —— ~ ——— =11. .
aokp ~ 22/3 T 1.588

It is convenient to introduce the parameter ry defined by
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ik 3 \% 372
3 (@r)” =5 = T
Then we have
4\ 13
(9_7r> rs = (aoke) ™",
or s
or\'? | 192
== kit~ 2 11.35
: < 4 > o T aokr ( )

Hence (11.34) corresponds to ry > 3.8.
Now we sum over k to get the energy Er of the ferromagnetic state

E —ZE =N 22/33%—21/3i 2k 11.36
P = 5 om 4z | (11.36)

Comparing Er with Ep we see that

) 1

EF < EP lfCl()kF < §21/3—+1’
which corresponds to

rs > 5.45, (11.37)

though the Hartree—Fock solution exists if r¢ > 3.8. The present, Hartree—Fock,
treatment neglects correlation effects and cannot be expected to describe accurately
the behavior of metals. The present treatment does, however, point up the fact that
the exchange energy prefers parallel spin orientation, but the cost in kinetic energy
is high for a ferromagnetic spin arrangement. Actually Cs has r¢ >~ 5.6 and does not
show ferromagnetic behavior; this is not too surprising.

Exercise

Demonstrate the ground state energy of the fully spin-polarized ferromagnetic phase
given by (11.36).

11.3 Spin Density Waves

We have seen that the exchange energy favors parallel spin alignment, but that the
cost in kinetic energy is high. Overhauser! proposed a solution of the Hartree—Fock
problem in which the spins are locally parallel, but the spin polarization rotates as

'A.W. Overhauser, Phys. Rev. 128, 1437 (1962).
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one moves through the crystal. This type of state enhances the (negative) exchange
energy but does not cost as much in kinetic energy.

For example, an Overhauser spiral spin density wave could exist with a net frac-
tional spin polarization perpendicular to the spin wave propagation given by

P, (r)= Pio(xcos Qz + ysin Q7). (11.38)

Overhauser showed that such a spin polarization P (r) can result from taking basis
functions of the form

lok) = axlk 1) +belk + Q ).
In order that (¢ |¢x) = 1, it is necessary that a,% +b,% = 1. This condition assures that

there is no fluctuation in the charge density associated with the wave. Thus, without
loss of generality we can take a; = cos 6 and by = sin ) and write

|pr) = cos bk 1) +sinbclk+ O ). (11.39)

The fractional spin polarization at a point r = r( is given by

2
P(ro) =< D (dxlad(r —ro)lde). (11.40)

k occupied

Here ¢ = 0.X + 0, + 0,2, where oy, 0y, 0, are Pauli spin matrices, so that

z x—iy
o= % 7). (11.41)
X+iy -z

We can write

Ik 1) = k)] 1) = 2712k ((1))

and
k+0l)=lk+ Q) ) = 2 2kt Or (?) .
Then
(tlal 1) =2
tlall)=x—iy o)
(ol 1) =x+iy :
(el ) = -z
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Evaluating (¢x|c §(r — ro)|ox) gives

(Prlad(r —ro)lok)
) cos? Okt 1al 1) +sin® B (L |al ) (11.43)

2| +cosfsin b, [eiQ"“ (A o] §) +e 2oy |o] T)]

Gathering together the terms allows us to express P (r() as

P(ro) = Pjz+ Py (¥cos Q -ro+ ysin @ - ry), (11.44)
where
1
Py = —— f cos 26 d°k, (11.45)
87T n occupied
and
1 ) 5
P = sin 26y d°k. (11.46)
8 71-3 n occupied
Here n = % and the integral is over all occupied states |¢y). We will not worry

about P because ultimately we will consider a linear combination of two spiral spin
density waves (called a linear spin density wave) for which the P;’s cancel.
It is worth noting that the density at point r( is given by

2k {PrlL(r — ro)| i)

é >k (0052 i + sin® Qk) = %

n(ro) (11.47)

When the unit matrix 1 is replaced by o, it is reasonable to expect the spin density.
One can form a wave function orthogonal to |¢y):

[be) = — sin Ok 1) + cos Ok + Q ). (11.48)

Thus far we have ignored these states (i.e. assumed they were unoccupied). We shall
see that this turns out to be correct for the Hartree—Fock spin density wave ground
state.

Recall that the Hartree—Fock wave functions ¢y (x) satisfy (11.26)

Huaedu®) = [ £+ [ dx'V (e, %) Xy g 05 () ()| )
— [dx'V (%, x") 32, Tg by (X" P (X ) bg (X) = Egpi.

(11.49)

We can write Hyr as
2

Hu =2 4 U+ A, (11.50)
2m
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where

U(x):/dx’V(x,x/) Z qbZ(x/)gbq(x’) (11.51)

( occupied

and

Ap(x) = — / dx'V e x) Y GG ). (11.52)

{ occupied
V(x, x’) can be written as
V(x,x') =) Vet (11.53)
q7#0

Now consider the matrix elements of A (with the Hartree—Fock ground state assumed
to be made up of the lowest energy ¢y states) between plane wave states.

LolAS) == "> Vylgule ™ [€a) (kale™™ | ¢x), (11.54)

k q#0

where Z;( means sum over all occupied states |y ). Now use the expressions

|9} = cos bk 1) +sinOlk + Q |)

. (11.55)
(or] = (k1 |cos O + (k+ Q | |sin0

to obtain
(LalAl'a’)
=~ Xk Do Va [l 11670 10 ) cos b + (k+ @ | e IE) sing ) (11.56)
x | (6o 1ef® [k 1) cos O + (€ole/® K + Q 4)sin by

Bgcz}use e*/4* is spin independent, we can use (o] 1) = dots (o] ) = b5y, ete. to
obtain

(Ea|AlE'a")

= =2k X yz0 Ve ((k+ql€)d54 cos b + (k+ Q + ql€')5, sin by) (11.57)

x ((€lk + q)0q1 cos O + (Llk + Q + q)5s sin ) .
For 0 =1 and ¢’ = we find

/

AL L) == " Vy Ot gig Sin bk Seiiq s by, (11.58)
k q#0
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which can be rewritten
1AL ) = —ZVg,k sin 0 cos O 0y ¢4 - (11.59)
k

Thus, the Hartree—Fock exchange term A has off diagonal elements mixing the simple
plane wave states [£ 1) and [£ + Q | ). It is straight forward to see that

(€ LA 1) == Vg sin by cos by 0. (11.60)
k

so that A also couples |[£ |) to |£ — @ 1). The spin diagonal terms are
(€1 |A[L 1) == Vigcos” b (11.61)
k

and

€+ QLIAL+ Q1) == Viysin’0,. (11.62)
k

Then, we need to solve the problem given by

2
(p— + Ap + Aop — Ek> W =0, (11.63)
2m
where
" Vi c08? O 0
PR DR L Y ., (11.64)
0 Zk’ kak’ s Hk,
and
A 01 (11.65)
oD = —Yk 10]" .

We can simply take |¥;) = cos O |k 1) + sin x|k + Q |) and observe that (11.63)

becomes
exr — E — cos
kB T G (11.66)
—gr  €rrol — Ex sin 0

In this matrix equation g; denotes the amplitude of the off-diagonal contribution of
the exchange term A
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ge= (k1 |Alk+ Q }) = Vi_y sinfp cos Oy, (11.67)
=

and g4 and € g, are the free electron energies plus the diagonal parts (Ap) of the
one electron exchange energy
272

ekt = g — 2k Vie-w 005 O
hz(k+Q)2 / .2 (1 1.68)

ko) = g — — 2k Vikk sin” Op
The eigenvalues Ej are determined from (11.66) by setting the determinant of the 2
X 2 matrix equal to zero. This gives

) | N 1
Epr = 3 (5k¢ + 5k+Q¢) + I (5kT — Ek+Q¢) + i . (11.69)

The eigenfunctions corresponding to Ej4 are given by (11.48) and (11.55), respec-
tively. The values of cosf; are determined from (11.66) using the eigenvalues
Ey_ given above. This gives

Gk

cosbty = >
[98 + (exr — Ex-)?

7 (11.70)

We note that the square modulus of the eigenfunction is a constant, and thus a charge
density wave does not accompany a spin density wave.

Solution of the Integral Equation

We have to solve the integral equation (11.67), which is rewritten as

3

(2m)3

g :/Vl_k cos G sin 0 (11.71)

Here cos 6y is given by (11.70), and the ground state eigenvalue E} is itself a function
of 6, and hence of g;. This equation is extremely complicated, and no solution is
known for the general case. To obtain some feeling for what is happening we study
the simple case where V,_; is constant instead of being given by ‘fff:‘z. We take
Ve—r = ~; this corresponds to replacing the Coulomb interaction by a J-function
interaction. Obviously g; will be independent of & in this case, and the integral

equation becomes

&’k g (e — Exo)
) g% + (exy — Ex-)?

g=7 (11.72)
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where

1 1 1/2
exp — Ep— = E(EkT — Ek+9y) + |:Z(5kT —eri0l)’ +92] . (11.73)

By direct substitution we have

gExy — Ex-) g
24 (exr — Ex)? 9Tl 2 4 2]V (11.74)
9~ + Crp — Ex 2[5(ext — enr0)? + 97
and the integral equation becomes
d*k
9= 55— g - (11.75)
@m)° 2 [5Exr — exro))? + ¢%]
We replace ex — €x4 0y in (11.75) by
€kt — €kt QL N —%ZQ(kz +9)
(11.76)

=2 (%)k:g (k:+9).

Here we note that we left out a term —~ f (27()3 cos? 0. This is the same term which
appeared in Pj, and it had better vanish when we evaluate it using the solution to the
integral equation for 6;. Now let us introduce

u=< a€> : (11.77)
Ok: ) j=—0p

Then we have

/ ) (11.78)
(27r) 2\/g + 12 (k; + )

Take the region of integration to be a circular cylinder of radius <, and of length x,
centered at k, = —% as shown in Fig. 11.1. Then, (11.78) becomes

oy 2wl dk. +Q/2) Kl 2 sinh™ (M> (11.79)
= 3 . .
Q2m)° J 2 2\/92 + 2 (kz + %)2 - 16m2pu 2g

Thus we obtain
K|

L (11.80)
2 sinh (8”2”)
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=i

I\”

ky
A1
e ~_ | “

k

Fig. 11.1 Region of integration for (11.78). The cylinder axis is parallel to the z axis

Exercise

Work out the integral over k in (11.78) and demonstrate (11.79).
One can now return to the equation for the ground state energy W

Was = 2 [ Lh [k cos? 0, + (k + Q)*sin® 0]

1 [ dkd’k 2 ’
-3 WV](_](' COS (ok — 9k)

(11.81)

and replace Vj_; by the constant v and substitute

(1) g = 0 for the trivial solution corresponding to the usual paramagnetic state, and
AP for the spin density wave state.

2 smh( br i )
"

If we again take the occupied region in k space to be a cylinder of radius ~; and
length k| centered at k, = we obtain the deformation energy of the spin density
wave state

_Q
2

2

2 2

KeK 8

Wepw — Wp = — e [coth( WZ") - 1} <0. (11.82)
327 YR

This quantity is negative definite, so that the spin density wave state always has the
lower energy than the paramagnetic state, i.e.

Wp > WSDW-

Note that in evaluation of Wp as well as of Wspw, the occupied region of k space
was taken to be a cylinder of radius s, and length x| centered at k, = —%. The
result does not prove that the spin density wave has lower energy than the actual
paramagnetic ground state (which will be a sphere in k space instead of a cylinder,
and hence have a smaller kinetic energy than the cylinder. Overhauser gave a general
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-Q %) 0 k.
K—Q ——

Fig. 11.2 Energies of 1 and | spin electrons as a function of k.. The spin 1 and spin | minima
have been separated by Q the wave number of the spin density wave. The thin dashed lines omit the
spin density wave exchange energy. The thick solid lines include it and give rise to the spin density
wave gap. Near the gap, the eigenstates are linear combinations of |k; 1) and |k, + O |)

(but somewhat difficult) proof that a spin density wave state always exists which has
lower energy than the paramagnetic state in the Hartree—Fock approximation.

The proof involves taking the wave vector of the spin density wave Q to be slightly
smaller than 2kg. Then, the spin up states at k, are coupled by the exchange interaction
to the spin down states at k, + Q as shown in Fig. 11.2. The gap (at |k,| = Q/2) of the
strongly coupled states causes a repopulation of k-space as indicated schematically
(for the states that were spin | without the spin density wave coupling) in Fig. 11.3.
The flattened areas occur, of course, at the energy gap centered at k, = —%. The

repopulation energy depends on k,, which is given by x; =, /k% — 0?%/4 and is
much smaller than kr. The dependence of the energy on the value of x; can be
used to demonstrate that the kinetic energy increase due to repopulation is small
for k) < kg and that in the Hartree—Fock approximation a spin density wave state
always exists with energy lower than that of the paramagnetic state.

For a spiral spin density wave the flat surface at |k,| = Q/2 occur at opposite sides
of the Fermi surface for spin 1 and spin |, electrons. Near these positions in k-space,

Fig. 11.3 Schematics of repopulation in k-space from originally occupied k |, states (inside sphere
of radius kr denoted by dashed circle) to inside of solid curve terminated plane k, = Q/2 at which
spin density wave gas occurs. The size of x| is exaggerated for sake of clarity
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one cannot really speak of spin 4 and spin |, electrons since the eigenstates are linear
combinations of the two spins with comparable amplitudes. Far away from these
regions (on the opposite sides of the Fermi surface) the spin states are essentially
unmixed. The total energy can be lowered by introducing a left-handed spiral spin
density wave in addition to the right-handed one. The resulting spiral spin density
waves form a linear spin density wave which has flat surfaces separated by the wave
vector @ of the spin density wave at both sides of the Fermi surface for each of the
spins.

11.3.1 Comparison with Reality

It is not at all clear what correlation effects will do to the balance which gave
Wp > Wgpw. So far no one has performed correlation calculations using the spin
density wave state as a starting point. Experiment seems to show that at low tempera-
tures the ground state of some metals, for example chromium, is a spin density wave
state. Shortly after introducing spin density wave states, Overhauser? introduced the
idea of charge density wave states. In a charge density wave state the spin magnetiza-
tion vanishes everywhere, but the electron charge density has an oscillating position
dependence. For a spin density wave distortion, exchange favors the distortion but
correlation does not. For a charge density wave distortion, both exchange and correla-
tion favor the distortion. However, the electrostatic (Hartree) energy associated with
the charge density wave is large and unfavorable unless some other charge distortion
cancels it. For soft metals like Na, K, and Pb, Overhauser claims the ground state is
a charge density wave state. Some other people believe it is not. There is absolutely
no doubt (from experiment) that the layered compounds like TaS, (and many others)
have charge density wave ground states. There are many experimental results for Na,
K, and Pb that do not fit the nearly free electron paramagnetic ground state, which
Overhauser can explain with the charge density wave model. At the moment, the
question is not completely settled. In the charge density wave materials, the large
electrostatic energy (due to the Hartree field produced by the electronic charge den-
sity distortion) must be compensated by an equal and opposite distortion associated
with the lattice.

11.4 Correlation Effects—Divergence of Perturbation
Theory

Correlation effects are those electron—electron interaction effects which come beyond
the exchange term. Picturesquely we can represent the exchange term as shown in
Fig. 11.4. The diagrams corresponding to the next order in perturbation theory are the

2A.W. Overhauser, Phys. Rev. 167, 691 (1968).
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Fig.11.5 Diagrammatic representation of the (a) direct and (b) exchange interactions in the second
order perturbation calculation

second order terms shown in Fig. 11.5 for (a) direct and (b) exchange interactions,
respectively. The second order perturbation to the energy is

@o|H'|®,,) (P, |H'|®
E2=Z< ol 'Eo>_(Em| %) (11.83)

m

Look at one term H;; of H' = %Zi# Vij.

2
Keik;.xeikj.x’ > ane” oig-(s—x') | ei(k;+q)~xei(kj—q)~x’>
a1 qi

Exp(ki, k;) = Z

g#0 Ey, + Ek/ - (Ek[+‘l + Ekj—‘l)

(11.84)

where the subscript D denotes the contribution of the direct interaction. Equation
(11.84) can be reduced to
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Exthi, k) = —m@re? Y T (11.85)
Zat k= il

where we have set i = 1. Thus, we have

1
Expt =3 > Ean(ki, k). (11.86)
ki #kj; ki, kj <kg
ki +ql, kj —q| > ke

Summing over spins and converting sums to integrals we have’
ETOTAL / d3 / . / d3k . 1
2 = i k<t j :
16 7 ki < kg J=tF ' q? (ki +k;
T Ik; +4q] > kg lkj+ql > kg 9" +q-ki+k)
(11.87)

It is not difficult to see that EJJ™L diverges because of the presence of the factor
g~*. In a similar way one can show that

TOTAL em & 3 3
E — 347 q_zq f ki < kg d ki f kj < kp d kj
ki +q1 > kp lkj +ql > kg (1188)

1 1
x [42+q-<ki+k_,-) X GFk+k)?

This number is finite and has been evaluated numerically (a very complicated numer-
ical job) with the result

2

EIOTAL _ NZe_ao % (0.046 = 0.002). (11.89)

All terms beyond second order diverge because of the factor ( q%)’" coming from
the matrix elements of the Coulomb interaction. The divergence results from the
long range of the Coulomb interaction. Gell-Mann and Brueckner overcame the
divergence difficulty by formally summing the divergent perturbation expansion
to infinite order. What they were actually accomplishing was, essentially, taking
account of screening. For the present we will concentrate on understanding something
about screening in an electron gas. Later on we will discuss the diagrammatic type
expansions and the ground state energy.

Exercise

Simplify the contribution of the direct interaction given by (11.84) and demonstrate
(11.85).

3M. Gell-Mann and K.A. Brueckner, Phys. Rev. 106, 364 (1957); J. J. Quinn and R. A. Ferrell,
Phys. Rev. 112, 812 (1958).
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Exercise

Simplify the integral representation of (11.88) and demonstrate (11.89) by carrying
out the resulting integral numerically.

11.5 Linear Response Theory

We will investigate the self—consistent (Hartree) field set up by some external dis-
turbance in an electron gas. In order to accomplish this it is very useful to introduce
the single particle density matrix.

11.5.1 Density Matrix

Suppose that we have a statistical ensemble of N systems labeledk = 1,2,3,..., N.
Let the normalized wave function for the kth system in the ensemble be given by ¥;.
Expand ¥, in terms of a complete orthonormal set of basis functions ¢,

W= cutns Y lom =1, (11.90)

The expectation value of some quantum mechanical operator A in the kth system of
the ensemble is

Ap = /drwk*Awk. (11.91)

The statistical average (over all systems in the ensemble) is given by

(A) = L0, Ay,

A (11.92)
=LYV, [T wrA.
Substitute for ¥ in terms of the basis functions ¢, . This gives
|
(A) = 223D o (dm| Aldn). (11.93)

k=1 m,n

But (¢m|A|¢)n) = A, the (m, n) matrix element of A in the representation {¢, }.
Now define a density matrix p as follows

N
1
prm = > ik (11.94)
k=1
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Then (A) can be written

(A) =3 pumAmn = Y (4)

m,n n

=Tr (ﬁA) . (11.95)

n

This states that the ensemble average of a quantum mechanical operator Ais simply
the trace of the product of the density operator (or density matrix) and the operator A.

11.5.2 Properties of Density Matrix

From the definition, (11.94), it is clear that p},, = pu,. Because the unit operator 1
must have an ensemble average of unity, we have that

Tep= 1. (11.96)

Because Trp = Y pun = 1, itisclear that 0 < p,, < 1 forevery n. p,, is simply the
probability that the state ¢, is realized in the ensemble.
11.5.3 Change of Representation

Let S be a unitary matrix that transforms the orthonormal basis set {¢,} into a new
orthonormal basis set {¢,}. If we write

G =" GuSu, (11.97)
then we have B
Sm =Y Sndu. (11.98)
1
It can be proved by remembering that, because S is unitary, S~' = §* = §* or

S =(S ~1),m. Now write the wave function for the kth system in the ensemble, in

terms of new basis functions, as

¥ = ZEIIJZBI- (11.99)
/

Remember that

W= Cuctn- (11.100)
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By substituting (11.98) into (11.100) we find

W= ey Sudi=) (Z cnks,’;,> 9. (11.101)
n ! l n

From comparing (11.101) with (11.99) we find

Cik = ZanS,Tl- (11.102)
n
The expression for the density matrix in the new representation is
~ IV, -
Pio =D ol (11.103)
k=1

Now use (11.102) and its complex conjugate in (11.103) to obtain

~ N
Pip = ﬁZk:l D CoiSmp Dy ke Sy

(11.104)
= Zmn Smppnm S:l’
since P, = % Z,]{vzl ¢ i Cni- But (11.104) can be rewritten
i = 32 (7)o
or
p=S"p8=5ps. (11.105)

The average (over the ensemble) of an operator Ais given in the new representation
by
(A) =Tr (pA) = Tr (57 pS5~" AS)
=Tr (S‘lpAS) .
But the trace of a product of two matrices is independent of the order, i.e. TrAB =

TrB A. Therefore we have y .
(A) = TrpA = (A). (11.106)

This means that the ensemble average of a quantum mechanical operator A is inde-
pendent of the representation chosen for the density matrix.
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11.5.4 Egquation of Motion of Density Matrix

343

The Schrodinger equation for the kth system in the ensemble can be written

i, = HY,.
Expressing ¥ in terms of the basis functions ¢,, gives

ihzémk(bm = I:I ch1k¢m~

Taking the scalar product with ¢, gives

ihéwe =Y _(n|H|Dcyw =Y Hucu.
I b

The complex conjugate of (11.107) can be written
—iniy = .
Expressing ¥,* in terms of the basis functions ¢; gives
- ihzéfkﬁb}k = ZI:ITCTk /-
! !
Now multiply by ¢, and integrate using
[ rdion = s

and
/dSTqb?(I:IT¢n = HTln = Hlnv

since the Hamiltonian is a Hermitian operator. This gives
S *
ihéy = — E ¢ Hin.
1

Now look at the time rate of change of p,,,.

1 N
i = > ik [Enemi + Chrlmi] -
k=1

(11.107)

(11.108)

(11.109)

(11.110)

(11.111)

(11.112)

(11.113)
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Now use (11.109) and (11.112) for ¢, and ¢}, to have

iBpmn = ~ P [— X Hincliemk + 3 ¢ Hmen]

(11.114)
= Zl [_I—Ilnpml + plnHml] .
We can reorder the terms as follows
ih'mnz Hm n — man
o > LHuipin — pmi Hin (11.115)
= (Hp— pH),, .

This is the equation of motion of the density matrix

ihp=1[H, p]_. (11.116)

11.5.5 Single Particle Density Matrix of a Fermi Gas

Suppose that the single particle Hamiltonian H has eigenvalues ¢, and eigenfunc-
tions |n).
Hyln) = €,|n). (11.117)

Corresponding to Hp, there is a single particle density matrix pg which is time
independent and represents the equilibrium distribution of particles among the single
particle states at temperature 7. Because pg = 0, Hy and pp must commute. Thus pg
can be diagonalized by the eigenfunctions of Hy. We can write

poln) = fo(en)ln). (11.118)

-1
For fy(e,) = [exp(%) + 1] , po is the single particle density matrix for the

grand ensemble with & = kgT and the chemical potential (.

11.5.6 Linear Response Theory

We consider a degenerate electron gas and ask what happens when some external
disturbance is introduced. For example, we might think of adding an external charge
density (like a proton) to the electron gas. The electrons will respond to the dis-
turbance, and ultimately set up a self-consistent field. We want to know what the
self-consistent field is, how the external charge density is screened etc.*

4See, for example, M.P. Greene, H.J. Lee, J.J. Quinn, and S. Rodriguez, Phys. Rev. 177, 1019
(1969).
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Let the Hamiltonian in the absence of the self-consistent field be simply given by
2

Ho =2

— 2m

Holk) = elk). (11.119)

Hj is time independent, thus the equilibrium density matrix py must be independent
of time. This means

[Ho, pol =0, (11.120)
and therefore
polk) = folex)|k), (11.121)
where 1
foler) = = (11.122)
ee +1

is the Fermi—Dirac distribution function. Now let us introduce some external distur-
bance. It will set up a self-consistent electromagnetic fields [E(r, t), B(r,t)]. We
can describe these fields in terms of a scalar potential ¢ and a vector potential A

B=VxA, (11.123)
and
E = 1A Vo (11.124)
T ¢ ot ' '

H—l(p+§A)2—e¢. (11.125)

T 2m

This can be written as H = H + H, where up to terms linear in the self-consistent
field B
Hy =2—(vo-A+A-vo)—e¢. (11.126)
c

Here vy = %. Now let p = pg + p1, where p; is a small deviation from p, caused by
the self-consistent field. The equation of motion of p is

dp i
— + —[H,p]_=0. 11.127
o + h[ Pl ( )

Linearizing with respect to the self-consistent field gives

/)

i i
— [H, —[H, _=0. 11.128
6‘t+h[ 0,P1]7+h[ 1> pol ( )
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We shall investigate the situation in which A, ¢, p; are of the form e/’ ~/¢", Taking
matrix elements gives

_ Sfolew) — foler)

klpi|k
e

(k| Hy[K). (11.129)

Let us consider a most general component of A(r, ¢) and ¢(r, 1)

A(r, 1) = A(q, w)e' e,

d(r, 1) = (g, w)e—r, (11.130)

Thus we have

(voe ™" + e g) — eg(q. w)e_i""i| e (11.131)

N =

e
Hl = |:_A(q’ W) :
c
Define the operator V, by

1 . 1 .
V,= zvoe"” + Ee’q"vo. (11.132)

Then, the matrix element of H; can be written
/ e / —iq- /
(kIH1 k') = ;A(q,W) (k|V _4|K) — ep(q, w)(kle™ T |K'). (11.133)

We want to know the charge and current densities at a position r( at time 7. We can
write

Jro.t) =Tr[—e (3v5(r — ro) + 15(r — ro)v) .,

(11.134)
n(ro,1) =Tr[—ed(r —ro)p].
Here —e [%vé(r —ro) + %6(r — ro)v] is the operator for the current density at posi-
tion ro, while —ed(r — rg) is the charge density operator. The velocity operator
v = %( p+ £A) = vy + ;A is the velocity operator in the presence of the self-
consistent field. Because vy = % contains the differential operator —%V, it is
important to express operators like voe'?” and vod(r — ro) in the symmetric form to
make them Hermitian operators.
It is easy to see that

Jro,t) = =< S (kIAGr, D8(r — ro)folk)

A (11.135)
—e (k| [3908(r = ro) + 36(r = ro)vo] pulk).
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6(r — rp) can be written as

S(r—ry) =0°7! Zef‘”’*m). (11.136)
q

It is clear that (k|A(r, 1)6(r — ro)polk) = 27 'A(ro, t) fo(ex). Here, of course, £2
is the volume of the system. For j(r(, t) we obtain

. en e , . .
Jro = =220 Awo 0 — = T KIV RS KIBIK).  (11137)
kK .q

But we know the matrix element (k|p|k’) from (11.129). Taking the Fourier trans-
form of j(rg, t) gives

J@,w0) = —SRAg, W) — 5 Yy BELE (V1) (K| V ) - Alg, w)
_I_g Zk,k’ Jolew)— folew) (k/|Vq|k> <k/|eiq-r|k>_

e —ex—hw
(11.138)
This equation can be written as
W2
J'(q,w)=—ﬁ[(1+L)-A(q,w)+K¢(q,w)]- (11.139)
Here wIZJ = ‘“T”T“‘"z is the plasma frequency of the electron gas whose density is

ng = %, and 1 is the unit tensor. The tensor I (g, w) and the vector K(q,w) are
given by

Lg.w) =5 Yo BEEBE KNV I KV g 1K), (11.140)
K(g,w) = 5 Tpp LB KNV ) (K 16 1K), '

For the plane wave wave functions |k) = £2~!/2¢’¥" the matrix elements are easily

evaluated )
(k' |k) = Opr kg

/ (11.141)
KNVlk) =L (k+12)60s4q-
11.5.7 Gauge Invariance
The transformations )
X X (11.142)

¢ =¢—Xx=0¢—i%
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leave the fields E and B unchanged. Therefore such a change of gauge must leave
J unchanged. Substitution into the expression for j gives the condition

(1+1) (—ig)+ K(=i2)=0, orq+1-q+—K =0. (11.143)
C C

Clearly no generality is lost by choosing the z-axis parallel to g. Then, because the
summand is an odd function of k, or k, we have

Ly=1y=1,=1,=1,=1,,=K,=K,=0. (11.144)
Thus, two of the three components of the relation
w
q+1-q9+ ZK =0
hold automatically. It remains to be proven that
w
q+Izzq+?Kz=O (11.145)

We demonstrate this by writing ., and K, in the following form

2
Izzzh_ Z_ So(er) (k L4 ) +Z Jo(errq) (k +_)}

mN Ek+qg — €k — Ek+qg — €k —
(11.146)
In the second term, let k + g = k so that k = k — g; then let the dummy variable k
equal —k to have

Jo(ktq) k. + %)2 N Soler)

9.2
e — (k. — )~
Ek+q — €k — €k — Ek+q — hw ‘ 2

With this replacement g I, can be written

h? q\? q q
I, =—— k = .
9z mN ;f()(gk)<z+2) |:€k+q—€k—ﬁw+€k+q—€k+hw]

(11.147)
Do exactly the same for K, to get

w 1 4 fiw e
;Kz=ﬁzk:f0(€k)<kz+§)|: —hw —5k+hwi|.

Ek+q — €k Ek+q
(11.148)
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Adding g1, to £ K, gives

2 2
w, 1 [ Egte,+9/2) —hw  Egk, +q/2) + hw
q]”—'_?KZ__N;fO(Ek) (kz+§> |: €ktq — €k — Tw + Ektq — €k + Iw
(11.149)

Butgiiy — e = %zq (k; + g /2), therefore the term in square brackets is equal to 2,
and hence we have

w 1 q
qlzz+;Kz_—N;fo(gk) (kz+§) % 2. (11.150)

The first term ), fo(ex)k, = O since it is an odd function of k.. The second term
is —% >« fo(ex) = —q. This gives qI.; + “K, = —q, meaning that (11.145)
is satisfied and our result is gauge invariant. Because we have established gauge
invariance, we may now choose any gauge. Let us take ¢ = 0; then we have

E(q,w) = —i?wA(q,w) (11.151)

for the fields having time dependence of e/“. Substitute this for A and obtain

. noe? i
Jjg.w)y=————[1+1(q.w)] E(q.w). (11.152)
mc w

We can write this equation as j(q,w) = o(q, w)- E(q, w), where o, the conductivity

tensor is given by
2

w
o(g.w) = —[14+1(q,w)]. (11.153)
driw
Recall that
_m Jolew) — folew) , *
Lg.w) = ; o — o e KVl KTV k). (11.154)

The gauge invariant result’

J(q.w)=0(q.w) - E(q,w) (11.155)

5See, for example, M.P. Greene, H.J. Lee, J.J. Quinn, and S. Rodriguez, Phys. Rev. 177, 1019
(1969) for three-dimensional case, and K.S. Yi and J.J. Quinn, Phys. Rev. B 27, 1184 (1983) for
quasi two-dimensional case.
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corresponds to a nonlocal relationship between current density and electric field

jr.t) = /dSr/g(r —r',t)-E@,1). (11.156)
This can be seen by simply writing

J@) = [dPrjr)er,
a(q) = [d(r —rar —r)etr), (11.157)
E(q) = [d*FE@r')e1",

and substituting into (11.155). Ohm’s law j(r) = o(r) - E(r), which is the local
relation between j(r) and E(r), occurs when o (q) is independent of g or, in other
words, when

ar—r)=amir—r).

Evaluation of 1(q, w)

We can see by symmetry that /., = I,, and I, are the only non-vanishing compo-
nents of I. The integration over k can be performed to obtain explicit expressions
for I, and I,,. We demonstrate this for 7,

L.(q, w) = ZfO(E"”) fole) 17 (k n 2)2. (11.158)

Ek+q — €k — hw m2

We can actually return to (11.147) and convert the sum over k to an integral to obtain

oLy} ke + 4 ko +9)°
I;(q,w) = ——— (7) 2/d3kf0(5k) = ( < 2) + ) ( < 2) .
mN \2m wrd (ke +93)—ho  STq (ke +3)+ho

(11.159)

For zero temperature, fy(cy) = 1 if k < kg and zero otherwise. This gives

kg
Lo(g.w) = f dk: (k2 — KD (k: + 2

)2[ 1 1 }
e kz—i— + %
(11.160)

42 noq

It is convenient to introduce dimensionless variables z, x, and u defined by

q k, w
==, x—k—, anduy = —. (11.161)

2kF F qVuF
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Then, I, can be written as

1
+
+z—u x+z+u

1
Izz(z,u)=—;—Z/ dx(l—xz)(x+z)2[x } (11.162)
-1

If we define Z,, by

! 1 1
I, :/ dxx"[ + } (11.163)
-1 X+z—u x+z2+u

then I, can be written
3
Lazou) = =& [-Z4 — 22T5 + (1 — 2T + 2274 + 2°T0 ] - (11.164)

From standard integral tables one can find

x" 1 n a n—1 aZ n—2 n
dx = —x"— X"+ X" =+ (—a)"In (x + a). (11.165)
X +a n n—1 n—2

Using this result to evaluate Z,, and substituting the results into (11.164) we find

I (z,u) = — (1 + %uz) - % [1 —(z— u)2] In (Z—u+1)

z—u—1
(11.166)
+[1 = @+ w?]n ()}
In exactly the same way, one can evaluate I,, (= I,,) to obtain
Lo =3 (@ +3u = 3) -5 {[1- @~ ”)2]21‘1 (;Zﬂ)l (11.167)
+[1— 2+ w?]In (£24)}.

11.6 Lindhard Dielectric Function

In general the electromagnetic properties of a material can be described by two
tensors (g, w) and H(q, w), where

D(q.w) = e(q.w) - E(q,w) and H(q,w) = p~'(q.w) - B(q.w). (11.168)

For a degenerate electron gas in the absence of a dc magnetic field e(q,w) and
p(q, w) will be scalars. In his now classic paper “On the properties of a gas of charged
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particles”, Jens Lindhard® used, instead of €(q,w) and H(‘I’ w), the longitudinal and
transverse dielectric functions defined by

2q?
) =¢and €™ =D 4 - (1 — ). (11.169)

Lindhard found this notation to be convenient because he always worked in the
particular gauge in which g - A = 0. In this gauge the Maxwell equation for V x B =
LE 4+ 2% (jia + Jo) can be written, for the fields of the form e/’ ~/¢",

. . 47 4
—ig x (—ig x A) = —E+—a E+—JO (11.170)
But defining
47i
e=1-—a,
w

andusing E = iq¢p — %A allows us to rewrite (11.170) as

2
4
¢ (1= o) A= S0 2, (11.171)
c2q c c

Here we have made use of the fact that € - ¢ involves only €, while € - A involves
only €™ since g - A = 0 If we compare (11.171) with the similar equation obtained
fromV x H = 1D + 4 “FJo when H is set equal to p~'Band D = ¢E, viz

2o —1 w2 4
q A_——equ—i——JO, (11.172)
czq
we see that
e=¢e?
and (11.173)
pt— %e(l) =1- %e(m.

This last equation is simply rewritten

2q2
eM=ely—- — (1=p . (11.174)

‘We have chosen ¢ to be in the z-direction, hence

4 4ri
LS R B . L (11.175)
w w

6J. Lindhard, Kgl. Danske Videnskab. Selskab, Mat.-Fys. Medd. 28, No. 8 (1954); ibid., 27, No. 15
(1953).
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Thus we have "
V(g w)=1-2%[1+L.(q,w)]

> (11.176)
eM(g,w) =1—3[1+ L(q,w)].

11.6.1 Longitudinal Dielectric Constant

It is quite apparent from the expression for /.. that ¢! has an imaginary part, because
for certain values of z and u, the arguments appearing in the logarithmic functions
in I, are negative. Recall that

1
In(x +iy) = 3 In(x? + y?) + i arctan )Xc (11.177)

One can write ¢ = egl) +i eg ) Tt is not difficult to show that

2 su forz+u <1
e;l):3u2—§x %[1—(z—u)2] forjz—u|l<1l<z4+u (11.178)
w z
0 for |z —u| > 1

The correct sign of eg) can be obtained by giving w a small positive imaginary part

(then e/“’ — 0 as t — o0o) which allows one to go to zero after evaluation of eg).

The meaning of eg) is not difficult to understand. Suppose that an effective electric
field of the form

E = Ege “'Har 4 cc. (11.179)
perturbs the electron gas. We can write E = —V ¢ and then ¢y = %. The pertur-
bation acting on the electrons is H' = —e¢. The power (dissipated in the system of

unit volume) involving absorption or emission processes of energy fuw is given by
P(q,w) = hwW(q,w). Here W(q, w) is the transition rate per unit volume, which
is given by the standard Fermi golden rule. Then, we can write the absorption power
by

2 1

P(qv UJ) = -0

b > [(K'| = egoe'" 1K) |* hw (e — 5 — hw).  (11.180)

k<k1:
k/>k]:

This results in
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27 1
P(g,w) = el Z e* ol hw 6 (Expg — 1 — hw). (11.181)
k < kp
Ik +q| > kr

Now convert the sums to integrals to obtain

2 2 E 2 L 3
Plg,w) = —= (—°> w2 (2—> / Pk Oy — e — w).  (11.182)
q 7r

The prime in the integral denotes the conditions k < kg and |k + q| > kg (see
Fig. 11.6). Now write [ d*k = [ dk,d*k,. Thus

2 2
e“wkj
27'('2 2 k < kg
lk+q| > kg

2
P(q,w) = dk,dzkl(s(%q(kﬁ%) —hw). (11.183)

Integrating over k, and using §(ax) = }15()6) gives k, = ”g—;” — 1 so that

me*wE; [’ )
Pl w) = F~—5= dok,. (11.184)
27Th2q3 kz:%_;
The solid sphere in Fig. 11.6 represents |k| = kg. The dashed sphere has |k —¢q| = kg.
Only electrons in the hatched region can be excited to unoccupied states by adding
wave vector ¢ to the initial value of k. We divide the hatched region into part I and

part I In region I, —% < k. < kg — q where k. = e — 2. Thus

m 1 i 1o oI

Fig. 11.6 Region of the integration indicated in (11.184)
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—%<mw—%<kF—q. (11.185)

Divide (11.185) by kg to obtain

—z<u—z<1-2z2

k.
where 7z = ;TF’X =

and u = q%/ Now add 2z to each term to have
z<u+z<loru+z<l. (11.186)

In this region the values of k; must be located between the following limits (see

Fig. 11.7).
2 2
mw q mw q
k%-(a*{‘z) <ki<k12;—<——§>.

Therefore, we have

2 2
PR e S ST O PN TR A
/dki—|:kF (hq 2)] |:kF <hq+2>}_ L (1L187)

Substituting into (11.184) gives

w me* 2mw
W)= — | Ey > =— —. 11.188
Paw) =5 Bl s = (11.188)

Here we recall that energy dissipated per unit time in the system of volume §2 is
also given by £ = fg j-Ed’ = 20,(q, w)|E|*$2 and we have that e(g, w) =
1+ %U(q, w) following the form e~ for the time dependence of the fields. The

power dissipation per unit volume is then written

w
P(g.w) = 5—e2(q.w) | Eo . (11.189)

™

K'={kp= (kA+a)

Fig. 11.7 Range of the values of k| appearing in (11.184)
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& (W)

1-z 1+z U= W/qUF

Fig. 11.8 Frequency dependence of eg)(w) the imaginary part of the dielectric function

We note that ¢;(q, w), the imaginary part of the dielectric function determines the
energy dissipation in the matter due to a field E of wave vector ¢ and frequency w.
By comparing (11.188) and (11.189) we see that, for region I,

2

(g, w) = if u4z<l. (11.190)

b T
2 % 2
In region I, kg — g < k, < kg. But k. % — 4 = kp(u — z). Combining these
and dividing by kg we have 1 — 2z < u — z < 1. Because z < 1 in region II, the
conditions can be expressed as | z —u |< 1 < z+ u. In this case 0 < kf_ < kI% — k?,
and, of course, k, = kg(u — 7). Carrying out the algebra gives for region 11

3w 2
(g, w) = pz ;T [1—G-w?if lz—ul<l<z+u (11191
F

For region III it is easy to see that 62) (w) = 0. Figure 11.8 shows the frequency
dependence of ¢, Y (w). Thus we see that the imaginary part of the dielectric function
eg )(q, w) is proportional to the rate of energy dissipation due to an electric field of

the form Ege™ '« 4 c.c.
11.6.2 Kramers—Kronig Relation

Let E(x, t) be an electric field acting on some polarizable material. The polarization
field P(x, t) will, in general, be related to E by an integral relationship of the form

P(x,t) = /d3x/dt’x(x —x' t—tE@X, 1. (11.192)
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Causality requires that xy(x — x’,# — ¢') = 0 for all t < ¢'. That is, the polarizable
material can not respond to the field until it is turned on. A well-known theorem
from the theory of complex variables tells us that the Fourier transform of x(r — )
is analytic in the upper half plane since /1“2 becomes e/“1e ™2’

THEOREM: Given a function f(z) such that f(z) = 0 for all z < 0, then the Fourier
transform of f(z) is analytic in the upper half plane.

Take the Fourier transform of the equation for P(x, )
P(q,w) = /d3x dt P(x, 1)/ =1~ (11.193)

Then
P(q.w) = [d’xdt [dx'dt x(x —x',t —t)E(x', 1')e!" 14~
= [dx —x)d(t — 1) x(x —x',t —t')ewi=ig =)
x [d3x'dt' E(x', t')e!w ~ia,

Therefore, we have
P(q,w) =x(q,wE(q,w). (11.194)

Here x(q,w) is the electrical polarizability [see (8.14)]. The dielectric constant
€(q, w) is related to the polarizability y by

e(q,w) =14+4mx(q,w) (11.195)
The theorem quoted above tells us that x (w) is analytic in the upper half w-plane.

From here on we shall be interested only in the frequency dependence of x(q, w),
so for brevity we shall omit the ¢ in x(q, w). Cauchy’s theorem states that

) = —— [ XD (11.196)
27 Jo W —w
where the contour C must enclose the point w and must lie completely in the region
of analyticity of the complex function y(w’). We choose the contour lying in the
upper half plane as indicated in Fig. 11.9.
As |w| = o0, x(w) — 0 since the medium can not follow an infinitely rapidly
oscillating disturbance. This allows us to discard the integral over the semicircle
when its radius approaches infinity. Thus, we have

W) = —— foo XD (11.197)

2w J oo W —w

We are interested in real frequencies w, so we allow w to approach the real axis. In
doing so we must be careful to make sure that w is enclosed by the original contour.
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One can satisfy all the conditions by deforming the contour as shown in Fig. 11.10.
Then, we have

I [ x@ 1 W
@) = —— x(@W) dof + Xwy o
2 ) _qo W —w 2mi J S'T‘ff”‘l w —w

, (11.198)

where { denotes the Cauchy’s principal value of the integral. We integrate the second
term in (11.198) by setting w’ — w = pe'? and letting p — 0

4 . /2 i¢ i(rd
[ smat f/(—fidw/ =1lim,_o [ /2 xwtpe')peidé

emicirel ,71—/2 pem
=imy(w).
Thus, we have
L [* xw) 1 .
X(Ww) = >— w + —imx(w)
27 ) oo W — W 2mi
or L oo )
Y@ = —f XD g (11.199)

M) _po W —w

This is the Kramers—Kronig relation. By writing x(w) = x1(w) +ix2(w), we can
use the Kramers—Kronig relation to obtain

Xi(w) = 2% L4 du (11.200)
Xa(w) = =17 M gy, |

-0 W—w

xW

W' PLANE

Fig. 11.9 The contour C appearing in (11.196)

3

w
\&J >

Fig. 11.10 Relevant contour C when w approaches the real axis
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or in terms of €
e (w) =14 L£2 2@ g,y
! wfoo 575 (11.201)

1 [0 gW)—1
o) = 1%,

where €, = 4my,. Here, we note that the reality requirement on the fields E and P

imposes the conditions y(w) = x1(—w) and x2(w) = —x2(—w). This allows us to
write
2 [ We(w 2 [ uwlegWw)—1 ,
e1(w) =1+—][ /22—()241&/; e W) =——][ [l/g—)z]dw.
T™Jo W™ —Ww T™Jo wT—=w
(11.202)

11.7 Effect of Collisions

In actual experiments, the conductivity of a metal (normal metal) is not infinite at zero
frequency because the electrons collide with lattice imperfections (phonons, defects,
impurities). Experimenters find it convenient to account for collisions by use of a
phenomenological relaxation time 7. When collisions are included, the equation of
motion of the density matrix becomes

0 g = (2 (11.203)
or Tho P \ar ) '

The assumption of a relaxation time is equivalent to saying that

dp P = Po
=) == . 11.204
() - s

C
Here py is a local equilibrium density matrix. We shall see that py must be chosen

with care or the treatment will be incorrect.” There are two requirements that jy must
satisfy

(i) po must transform properly under change of gauge
(ii) because collisions cannot alter the density at any point in space, pyp must be
chosen such that p and py correspond to the same density at every point 7.

It turns out that the correct choice for py which satisfies gauge invariance and
conserve particle number in collisions is

N 1
po(H., 1) = 5 (11.205)

es 1

7See, for example, M.P. Greene, H.J. Lee, J.J. Quinn, and S. Rodriguez, Phys. Rev. 177, 1019
(1969).
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Here H is the full Hamiltonian including the self-consistent potentials (A, ¢) and i
is the local chemical potential. We can determine 7 by requiring that

Tr {[p — po(H,m)]6(r —ro)} = 0. (11.206)

This condition implies that the local equilibrium distribution function py toward
which the nonequilibrium distribution function p is relaxing has exactly the same
density at every position r( as the nonequilibrium distribution function does at r.
Of course, the local chemical potential is n(r, t) = (y + (;(r, t), and the value of (;
is obtained by solving (11.206).

To understand this, think of the gauge in which the scalar potential ¢(r) vanishes.
Then, the Hamiltonian, including the self-consistent field can be written as

1 e N2 1

HxiNeric = 5— (P + —A) = ymv~.
2m c 2

For any gauge transformation A" = A + Vy and ¢/ = ¢ — % X, we can define

Hy = H' — £x. Here H' is the sum of Hy and —e¢’ with

iex iex

Hy = e 7 Hgeme. (11.207)

By choosing py to depend on Hg we guarantee that

iex iex

p6 — e hc Po€ he

transforms exactly as p itself transforms. There are two extreme cases

(1) H = Hx — e¢p,n = constant = ( (see Fig. 11.11a).
(2) H = Hg,n = (y+ e (see Fig. 11.11b).

Neither H nor 7 is gauge invariant, but their difference H — 7 is. This is the quantity
that appears in py. If we let n(r,t) = (o + (i (r, t) where (j is the actual overall
equilibrium chemical potential and (;(r, ) is the local deviation of 7 from (p, then
we can write

po(H, n) = po(Ho, Co) + pa. (11.208)
The equation of motion of the density matrix is

op i )
L 4+ _[H,p_=—-
az+h[ pl

(11.209)

where py = po(Ho, (o) + p2. We can write p = py + p;, where p; is the deviation
from the local thermal equilibrium value po. Then (11.209) becomes

i i
iw(pr + p2) + 7 [(Ho, p1 + p2]- + 7 [H1, pol_ = —%. (11.210)
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I. H=He-ed0), n=C,
(a) §,= CONSTANT

g ocp(r)”oc[e;o (Ee- e¢)1
SN \4\ ~E,
Ecehr) .

2. H=Hg, m=_(+ Cl(T)=C0+ ed(r)

(b) N=C +ed(r)
¥
1= - -4
£ o< p(r) oc [N - E]

Fig. 11.11 Local chemical potential 7 and local density matrix p(r). (a) n = constant(= 19), (b)
n(r) = (o + ep(r)

Take matrix elements as before and solve for (k|p1|k’); this gives

(klpilk') = | bz — 1] o)

folew)—foler) a1.21n
Ex')— &
+ o (kL HL K.
Using the result of Problem 11.10 for (k|p,|k’) in this equation gives
no_ | ik/T Jo(ew) fo(fk)
<WMw[jﬁﬁ?wJ:ﬂkMch data)
£ £,
o KUK,
The parameter (| appearing in (11.212) is determined by requiring that
Tr {p16(r —rop)} =0. (11.213)
The final result (after a lot of calculation) is
w? iwr (K, — K2)(K!, — KJ)
. p 1 2 1 2
yw) = 1+1-— - E, 11.214
J@w) = {—+— I +iwr L +iwrl, } (11.214)
where we used the notations i
iwtl; + 1,
I=——"—— (11.215)

- 14+ iwr
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_ Wtk + K, (11.216)
1+ iwT '
I’I’lC2 @) N aiqT 2
Li= =03 Al L K11k P, (11.217)
kk'
K, = ZA};,; K|V k) (K |7 k)", (11.218)
kk'
mc i ig-r
K, =— N D ALK €7 ) (K |V k) (11.219)
kk’
and
I = _ZA“> (K'|V g 1k) (K| V g 1k)*. (11.220)
kk’

The subscript (or superscript) i takes on the values 1 and 2, and

A = o) = o) (11.221)
v — €k — hw+ih/T

and

A/EZZ = M. (11.222)
Er — Ek

In the limitas 7 — 0o, I — I, and K — K, hence

w2
j@w) 7 2
LW

[1+1,]-E, (11.223)

exactly as we had before. For wr finite, there are corrections to this collisionless
result that depend on i

11.8 Screening

Our original objective in considering linear response theory was to learn more about
screening since we found that the long range of the Coulomb interaction was respon-
sible for the divergence of perturbation theory beyond the first order exchange. Later
on, when we mention Green’s functions and the electron self energy, we will discuss
some further details on dynamic screening, but for now, let us look at static screening
effects.

If we set w — 01in (11.166), we can write
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3, 11 1+z
l+Izz(Z’u)=_§u 1+§(E—Z)ln )| (11.224)

2
Here z = q/2kg and u = w/qvr. Substituting this result into € =1 — =L (1 + 1)
gives

3w
eD(q,0) = “ F(z) (11.225)
q*v

1 1/1 1+z
F(z) = 3 Z<2—1)1n<l_z>. (11.226)

Smceln(”z) ~2z(1 + é +--), F(2) = 1- %Z.Forz > 1, F(z) ~ # (see
Fig. 11.12). For very long wave lengths, we have

2
D (q) ~ (1 - ) + K (11.227)

3rapkp q%’

where

where k, = ‘/4kF is called the Thomas—Fermi screening wave number. At high
density 3mapkp >> 1 so the constant term is usually approximated by unity. erg(q) =

1 + is called the Thomas—Fermi dielectric constant. . One can certainly see that
screenlng eliminates the divergence in perturbation theory that resulted from the
do(q) = 4’”’ potential. We would write for the self-consistent screened potential by

®o(q) _ 4me
ere(q)  q>+ k%

o(q) = (11.228)

This potential does not diverge as g — 0.

11.8.1 Friedel Oscillations

If F(z) were identically equal to unity, then a point charge would give rise to the
screened potential given by (11.228), which is the Yukawa potential ¢(r) = fe’k*’
in coordinate space. However, at z = 1 (or ¢ = 2kg) F(z) drops very abruptly. In
fact, £ has infinite slope at z = 1 (see, for example, Fig. 11.12). The ability of the
electron gas to screen disturbances of wave vector ¢ drops abruptly at ¢ = 2kg. This
is the result of the fact that pair excitations of zero energy can be created if ¢ < 2kp,
but every pair excitation must have finite energy if ¢ > 2kg. This is apparent from a
plotof Ae = gpyy — &k = %q(kz + %) versus g for k, = kg (see Fig. 11.13). The
hatched area is called the electron—hole continuum. If F (z) were replaced by unity,
the self-consistent potential ¢(g) would be written as
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Fig. 11.12 Function F(z) appearing in (11.225)
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Fig. 11.13 Electron-hole pair excitation energies as a function of wave number ¢

dme 1 4me
q* V(@) q*+ kI

o(q) =

The Fourier transform ¢(r) is given by

_ d3q iqr
o(r) —/We‘l o(q) (11.229)

and one can show that this is equal to ¢(r) = fe_ksr, a Yukawa potential. Because
F(z) is not equal to unity, but decreases rapidly around z = 1, the potential ¢(r)
and the induced electron density n;(r) are different from the results of the simple
Thomas—Fermi model. In the equation for ¢(r) we must replace ks2 by kSZF (z) so that

. d3q iqr dre
¢(r)_./(27f)3e q* +k2F(q/2kg)’

(11.230)

The induced electron density is given by
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k2
ni(q) = —4S F(2)9(q). (11.231)
T

This can be obtained from %} +V.j=0,where j =0 E = (¥ — 1){2(+iq9)

and e =1+ Z—%F (z). After a little algebra one can show that the Fourier transform
of ny(q) is given by

12n9 [ sin2kgrz F(2)
ni(r) = s-dz (11.232)
mapke Jo 2kgrz 1+ F(Z)/(ﬂ'aokpz )
This can be written in a simpler form using
F F?
@) = F(z) — (@) (11.233)

1+ F(z)/(raoksz?) mwaokpz? + F(2)°

Then, n,(r) becomes

12n * sin 2kgrz ® sin 2kgrz F2(z
nir) = — / —FF(z)dz—/ . © 4.
maoke | Jo = 2kprz o 2kprz magkpz? + F(2)

(11.234)

In the high density limit wapkg > 1. Therefore in the region where F(z) deviates
appreciably from unity, i.e. for z > 1, magkpz> > F(z), and we make a small
error by replacing F(z) in the second term of (11.234) by unity. This high density
approximation gives

- 12n /OO sin 2kprzF( Vd /‘X’ sin 2kgrz dz
ni(r) = — .
! waokr [ Jo 2kgrz Laz 0 2kprz  magkpz? + 1

(11.235)

The first integral can be evaluated exactly in terms of known functions

*° sin 2kgrz
——F((2d
/0 Yera (z)dz

o 1 1 sin 2kgr
o kpr dkpr | 2kpr

S Qkgr),
(11.236)

+ cos 2k +1[7r Si(2k )] _
3 cos 2kgr 513 1(2kgr =5

where Si(x) = fox “IL’ dt is the sine integral function. For very large values of x, the
function f(x) in (11.236) behaves

Flx) ~ l n CoS X

X x3

1
4+ 0 (higher orders of —) . (11.237)
X

The second integral in (11.235) becomes
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X0 1 -
/ sin 2kgrz dz 4 (1 _ e’W) ) (11.238)
0

2kprz  magkpz? + 1 - Lkgr

Therefore, for high density limit (mapkr >> 1) and large distances from the point
charge impurity, the induced electron density is given by

6ng cos22kgr

/= 11.239
aokp (2kgr)3 ( )

ni(r) =

The oscillating behavior of the induced electron density at a wave vector ¢ = 2kg
is known as a Friedel oscillation.® Notice that the electron density induced by the
presence of the point charge impurity falls off in amplitude as r% For a Yukawa
potential (¢ = ‘;"e’k‘*’), the fall in the induced electron density is exponential.

Exercise

Demonstrate the induced electron density n;(g) given by (11.231) and its Fourier
transform 7, (r) shown in (11.232).

11.8.2 Kohn Effect

When we discussed the Sommerfeld model we found a result for s; the velocity of a
longitudinal sound wave that could be written

2
2 2.2 m 2

= ~ -— . 11.240

w=s7q (,/ Wi UF) q ( )

In other words the longitudinal sound velocity was given by

m
5 = /3—MUF (11.241)

where z is the valence (charge on the positive ions), M is the ionic mass, and vg the
Fermi velocity.
This result can easily be obtained by saying that the positive ions have a bare

plasma frequency
47 Ni(ze)?
sz,/”‘—(”), (11.242)
M

where Np is the number of ions per unit volume. However, the electrons will screen
the charge fluctuations in the ion density, so that the actual frequency of a longitudinal
sound wave of wave vector g will be

8]. Friedel, Phil. Mag. 43, 153 (1952).
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QP
= 11.243
“ Ve(g, w) ( )

where €(g, w) is the dielectric function of the electron gas. Because the acoustic
frequency is much smaller than the electron plasma frequency and w ~ 5,9 < qvg,
we can approximate €(g, w) by e(g, 0) in the first approximation

2 202
2 q-$2,

w? = P ~ (11.244)

1+ ’q‘—iF(z) q> +k2F(2)

Let us assume ks2 > ¢2. If we take F(z) ~ 1 we obtain
WP~ 22, (11.245)

But recall that £27 = 4 (%) &2 G and k2 = 2 Substituting into (11.245) gives the
result given by (1 1.240). However q need not be small compared to kg, even though
w 2= s;q will still be small compared to gvr and wy,. Then we must keep F'(z) and
write 5

2~ Lﬂao (11.246)

F(z) + Fhp q

Because F(z) has an infinite first derivative at ¢ = 2kg (or z = 1), the phonon
dispersion relation will show a small anomaly at ¢ = 2kg that is called the Kohn
anomaly.’

Problems

11.1 Let us consider the paramagnetic state of a degenerate electron gas, in which
nr, = 1 for e, < er and zero otherwise.

(a) Show that the exchange contribution to the energy of wave vector k and spin
ois

1 _ 4re?
Dxe(k) = ) kz o k1
(b) Convert the sum over k’ to an integral and perform the integral to obtain

%k 1 —x2 1+x
Dxa(k) = — WF [1+ In | |],

2x 1—x

9W. Kohn, Phys. Rev. Lett. 2, 393 (1959).
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where x = k/kg.

(c) Plot Xx, (k) as a function of

(d) Show that the total energy (klnetlc plus exchange) for the N particle param-
agnetic state in the Hartree—Fock approximation is

Ep =} 4, ko [% + EXoe(k):I
- N <2hkp _ 3e2_kp>

5 2m 4

11.2 Consider the ferromagnetic state of a degenerate electron gas, in which gy = 1
for k < kgy and 1y, = O for all k.

(a) Determine the Hartree—Fock energy Ey, = 2m + Xxe (k).

(b) Determine the value of kg (Fermi wave vector of the nonmagnetic state) for
which the ferromagnetic state is a valid Hartree—Fock solution.

(c) Determine the value of kg for which Er = Zk Ep4 has lower energy than
Ep obtained in Problem 11.1.

11.3 Evaluate /,,(g, w) in the same way as we evaluated I,,(q, w), which is given
by (11.166).

11.4 The longitudinal dielectric function is written as

w?
(g, w)y=1-%[1+4L.(q.w)].

Use In(x +iy) = & 1n(x +yH) +i arctan < Y to evaluate 62)(Z u), the imaginary part
of €V (g, w), Where 7=gq/2kgand u = w/qvp.

11.5 Let us consider the static dielectric function written as

3w?
¢(q,0) =1+ 55 F(2),
q~ Vg

where z = g/2kp and F(z) =  + 1 (l —z)ln(H‘)

(a) Expand F'(z) in power of z for z < 1. Repeat it in power of 1/z for z > 1.
(b) Determine the expressions of the static dielectric function e® (¢, 0) in the
corresponding limits.

11.6 In the absence of a d.c. magnetic field, we see that |V >= |k, k,, k; >= |k >,
the free electron states.

(a) Showthat< k'|V, |k >= 2 (k+%)0p 414, where V,, = 1[voei" +e/ 7 vg].
(b) Derive the Lindhard form of the conduct1v1ty tensor given by

a(g,w) =

Jo(Ex+q) — fo(Er) R
k k
|: E Ervy — Er — s ( )* (k + )(+ ):|



Problems 369
(c) Show that the Lindhard form of the dielectric tensor is written as

(1 Py Jo(Eks+q) — fo(Ex) R
(g, w) = (1 )1 Nwzz A (— )k + )(k+ )

11.7 Suppose that a system has a strong and sharp absorption line at a frequency wa
and that €, (w) can be approximated by

6(w) = Ad(w — wy) forw > 0.

(a) Evaluate €| (w) by using the Kronig—Kramers relation.
(b) Sketch €1 (w) as a function of w.

11.8 The equation of motion of a charge (—e) of mass m harmonically bound to a
lattice point R, is given, with x =r — R, by

m(¥ + % +wix) = —eEe'™".

Here wy is the oscillator frequency and the electric field E = EX.

(a) Solve the equation of motion for x (1) = X (w)e'“".

(b) Let us consider the polarization P(w) = —enoX (w), where ny is the number
of oscillators per unit volume. Write P(w) = a(w)E and determine a(w).

(c) Plot aj(w) and ap(w) vs. w, where o = ap + .

(d) Show that a(w) satisfies the Kronig-Kramers relation.

119 Take H = 3 (p+ £A)" —ep and H' = 5= (p + £A')* — e¢/ where A’ =
A+Vyxand¢ =¢— 1y

iey

(2) Show that H' — ¢ = e~ He'c.
(b) Show that p/ = e~ 7 pee satisfies the same equation of motion, viz. % +
+[H'. p']_ = 0as p does.
-1

11.10 Let us take po(H, n) = [exp(H 1y + 1] as the local thermal equilibrium
distribution function (or local equilibrium density matrix). Here n(r, t) = (+(,(r, t)
is the local value of the chemical potential at position r and time #, while ( is the
overall equilibrium chemical potential. Remember that the total Hamiltonian H is
written as H = Hy+ H,. Write po(H, 1) = po(Hp, ¢) + p; and show that the matrix
element of p, in the representation where Hy is diagonal is given, to terms linear in
the self-consistent field, by

klpalk'y = L2E T gy ey,
Ex — €k
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11.11 Longitudinal sound waves in a simple metal like Na or K can be represented
by the relation w? = %, where € (g, w) is the Lindhard dielectric function. We
know that, for finite w, €’ (¢, w) can be written as € (g, w) = €1(g, w) +iex(g, w).

This gives rise to w = w; + iw,, and w; is proportional to the attenuation of the

sound wave via excitation of conduction electrons. Estimate w,(q) for the case w% ~
202

q-$2, 2

= >

Summary

In this chapter we briefly introduced method of second quantization and Hartree—
Fock approximation to describe the ferromagnetism of a degenerate electron gas
and spin density wave states in solids. Equation of motion method is considered for
density matrix to describe gauge invariant theory of linear responses in the presence
of the most general electromagnetic disturbance. Behavior of Lindhard dielectric
functions and static screening effects are examined in detail. Oscillatory behavior of
the induced electron density in the presence of point charge impurity and an anomaly
in the phonon dispersion relation are also discussed.

In the second quantization or occupation number representation, the Hamiltonian
of a many particle system with two body interactions can be written as

1 .
H =Y eclc+ 3 > W1V k)] chec.
k kk'll’

where ¢; and CZ, satisfy commutation (anticommutation) relation for Bosons (Fermions).
The Hartree—Fock Hamiltonian is given by H = Zi E; c,-Tc,-, where

Ei=¢; +Zn_j[(ij|V|ij) = (jIvIji].
j

The Hartree—Fock ground state energy of a degenerate electron gas in the paramag-
2 2_12
netic phase is given by Eys = R _ ke [2 + k';ck: In (iiff )] . The total energy

2m 27

of the paramagnetic state is
3 h?k: 3
Ep =N [——F — —eszi| .

If only states of spin 4 are occupied, we have

K 2Pk [ 22K — K (21/3kp +k)] K

om 2 23 kek Wike—k )| T om

2m
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The total energy in the ferromagnetic phase is

3 12k2
Ee= S B =N | 2232005 _o1s 3 g
=) Ei = [ 5 2m an’

The exchange energy prefers parallel spin orientation, but the cost in kinetic energy is
high for a ferromagnetic spin arrangement. In a spin density wave state, the (negative)
exchange energy is enhanced with no costing as much in kinetic energy. The Hartree-
Fock ground state of a spiral spin density wave can be written as |¢y)=cos 6|k 1)
+sinbilk+ Q ).

In the presence of the self-consistent (Hartree) field {¢, A}, the Hamiltonian is
written as H = Hy + H;, where H is the Hamiltonian in the absence of the self-
consistent field and H; = 5= (vo- A + A - vo) — e, up to terms linear in {¢, A}.
Here vy = % and the equation of motion of p is % + ’ﬁ [H,p]_ =0.

The current and charge densities at (r, t) are given, respectively, by

jro,t) =Tr [—e (%vé(r —ro) + %S(r - ro)v) ﬁ] ;n(ro, 1) =Tr[—ed(r —ro)p].

Here —e [%vé(r —ro) + %5(r —ro) v] is the operator for the current density at posi-
tion r¢, while —ed (r —r) is the charge density operator. Fourier transform of j (ry, t)
gives

where the conductivity tensor is given by o (q, w) = 4W [1 + I(q, w)] Here

Iq.w) = ZMWV k) (K| V g 1K)

Ex —E
kk’ k k

and the operator V, is defined by V, = 1vge®" + Le@ "y,

The longitudinal and transverse dielectric functions are written as
W2 W2
Pgwy=1- w—;’ [1+L(qg. )] e™(qw)=1- w—’z’ [1+ L (g, w)].

Real part (€;) and imaginary part (e;) of the dielectric function satisty the relation

61(w):1+%foonw’;€2(w): ][ w[el(w)_l]
T™Jo mJo

w,2 — w2 w/2 — W2

The power dissipation per unit volume is then written P(q, w) = 5=€2(q, w) | Eo 1.
Due to collisions of electrons with lattice imperfections, the conductivity of a
normal metal is not infinite at zero frequency. In the presence of collisions, the
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equation of motion of the density matrix becomes, in a relaxation time approximation,

dp | i P = Po
L 4+ Z[H pl_=— .
o +h[ s Pl

Here py is a local equilibrium density matrix. Including the effect of collisions, the
induced current density becomes

w? ' K, — K))(K), — K,
R R ) )
dmiw 14+iwr Ly +iwtL,

In the static limit, the dielectric function reduces to

2

3w
e"(q,0) =14+ 55 F(2),
4~ Vg

where F(z) = % + % (% — z) In (i%;) and z = ¢q/2kg. The self-consistent screened

potential is written as
4re

D= TRk

g

where k, = o

. For high density limit (rapkr >> 1) and large distances from the
point charge impurity, the induced electron density is given by

6ng cos2kgr

M) = e Gy

Electronic screening of the charge fluctuations in the ion density modifies the dis-
persion relation of phonons, for example,

W~ 312‘12
- Tap 2
F(z) + ']

showing a small anomaly at g = 2kg.



Chapter 12
Many Body Interactions—Green’s Function
Method

12.1 Formulation

Let us assume that there is a complete orthogonal set of single particle states ¢; (£),
where ¢ = r, 0. By this we mean that

(@i | 6;) =0;; and D | &i){ei |=1. (12.1)

We can define particle field operators v and ' by

(€ =D ¢i©a and $7(€) =D ¢ (O, (12.2)

where a; (a;) is an annihilation (creation) operator for a particle in state i. From the
commutation relations (or anticommutation relations) satisfied by a; and a;, we can
easily show that
[w(f), Y] =[¢'©, viEH] =0, (123)
), YT(EN] = —-¢). )

The Hamiltonian of a many particle system can be written (Here we set i = 1.)

H= [d {L£ Vi) Vi) + UD @)Y (0))a(0)}

L [ dr e Ou U @ e, Y

Summation over spin indices « and ( is understood in (12.4). For the moment, let
us omit spin to simplify the notation. Then

b)) =D di(r)a;. (12.5)

© Springer International Publishing AG, part of Springer Nature 2018 373
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We can write the density at a position ry as
n(ro) = / Eryf (P —ro) = ¥ (ro) (o). (12.6)
The total particle number N is simply the integral of the density
N = /d3rn(r) = /d%/ﬁ(r)w(r). (12.7)

If we substitute (12.5) into (12.7) we obtain

N = / d3r(Z¢:‘<r>ai) D ¢ima; | =D (i | dj)ala;.  (12.8)
i J

ij
By (¢i | ¢j) = 0y, this reduces to

N=>dla; (12.9)

so that n; = a? a; is the number operator for the state i and N = Zi n; is the total
number operator. It simply counts the number of particles.

12.1.1 Schrodinger Equation

The Schrodinger equation of the many particle wave function ¥ (1,2, ..., N) is
iR 0 v =HY (12.10)
LN— = . .
ot

We can write the time dependent solution ¥ (¢) as (letting h = 1)
U(t) =e My, (12.11)

where ¥ is time independent. If F is some operator whose matrix element between
two states ¥, (¢) and ¥, (¢) is defined as

Fum () = (W (O F ¥, (1)), (12.12)
we can write |¥,, (1)) = e "H|Yn,,) and (¥, (1)| = (P le'™’. Then F,, (t) can be

rewritten
Fum (1) = (WP | F (D) |[YHm), (12.13)
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where Fy(t) = ef" Fe=f', The process of going from (12.12) to (12.13) is a
transformation from the Schrodinger picture (where the state vector ¥ (¢) depends
on time but the operator F' does not) to the Heisenberg picture (where Wy is a time
independent state vector but Fy(¢) is a time dependent operator). The transformation
from (to) Schrodinger picture to (from) Heisenberg picture can be summarized by

Us(r) = e "H'gy and Fy(r) = e Fge 711, (12.14)
From these equations and (12.10) it is clear that

OFu(1)
ot

= i[H, Fyl. (12.15)

12.1.2 Interaction Representation

Suppose that the Hamiltonian H can be divided into two parts Hy and H’, where H'
represents the interparticle interactions. We can define the state vector ¥ (¢) in the
interaction representation as

Yi(r) = e g (1). (12.16)

Operate i9/0t on Wi(t) and make use of the fact that Ws(¢) satisfies the Schrodinger
equation. This gives

AONS Hi()¥(1), (12.17)
ot
where ‘ '
Hi(r) = e' ol gle=itht (12.18)

From (12.12) and the fact that Ws(¢) = e~ 'Yy (¢) it is apparent that

Fi(r) = /! Fge=i ot (12.19)

oR

By explicit evaluation of =

from (12.19), it is clear that

or,

5, =i Ho. F(]. (12.20)

The interaction representation has a number of advantages for interacting systems;
among them are:
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(1) All operators have the form of Heisenberg operators of the noninteracting system,
ie. (12.19).

(2) Wave functions satisfy the Schrodinger equation with Hamiltonian H(t), i.e.
(12.17).

Because operators satisfy commutation relations only for equal times, Hi(#;) and
Hi(t;) do not commute if #; # ;. Because of this, we can not simply integrate the
Schrodinger equation, (12.17), to obtain

(1) oc e~ O (12.21)

Instead, we do the following:

(1) Assume that ¥ (¢) is known at t = t,.
(2) Integrate the differential equation from 7 to 7.

This gives that
t
U (t) — () = —i/ dt’ Hi(t)W(t). (12.22)

to
This is an integral equation for ¥ (¢) that we can try to solve by iteration. Let us write
— O )] (n)
=+ O+ e+ (12.23)
Here
w (1) =
T (1) = ¥1(10), .
s rlog ’ ’
v V(1) = —i Jidt H(H (),
w0 = —i [ di’ ()" (@), (12.24)
" (1) = —i [} dt’ Byt "0 ().
This result can be expressed as
(1) = S(1, 10) Wi (ko) (12.25)
where S(z, ty) is the so-called S matrix is given by
S(t,10) =1—i [y diy Hi(ty) + (—i)* [} dny [} dy Hi(t) Hi(t2) + - - -

=2l (=i)" [y dn [ diy - [ dt, [Hl(n)HI(tz) T Hl(tn)}.

(12.26)
Let us look at the third term involving integration over #; and f,

! h 1 1
I =/ dl]/ duHi(t)Hi(t) = =L, + = I>. (12.27)
f fo 2 2
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In the second %Iz, let us reverse the order of integration (see Fig.12.1). We first
integrated over t, from 7y to ¢, then over #; from # to 7. Inverting the order gives

t n t t
/ dn / dt, = / dlz/ dty,
0 fo 4] 5]

Therefore, we have

1 1 t 151 1 t t
h=1 / dn, / dt Hi(t) (1) = » / dn, / dty i) i), (1228)
2 2 fo to 2 o 153

But #; and #, are dummy integration variables and we can interchange the names to
get

1 1 t t
Ly / dn, / dty Hy () Hi(1). (12.2)
2 2 Jy f

Adding this term to the %Iz that was left in its original form gives

1 /! hn 1t '
12 = —/ df]/ dlel(tl)HI(tZ) + —/ dll/ dlel(lz)H[(ll). (1230)
2 1 1o 2 f "

We are integrating over a square of edge At = ¢ — tj in the t,f,-plane. The second
term, with , > ¢y, is just an integral on the lower triangle shown in Fig. 12.1. The first
term, where #; > t;, is an integral on the upper triangle. Therefore, we can combine
the time integrals and write the limits of integration from #; to ¢.

1/ t
L = 5/ dﬁ/ dt, [Hi(t)) Hi(1:)0(t; — 1) + Hi(tp) Hi(1)0(t, — t1)]. (12.31)

i
tl = tz
t
->
()
t,
to t ta

Fig. 12.1 Order of integration /I, appearing in (12.27)
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The thing we have to be careful about here, however, is that H(¢;) and Hi(#,) do not
necessarily commute. We can get around this difficulty by using the time ordering
operator T. The product of functions Hi(;) that follows the operator T must have
the largest ¢ values on the left. In the first term of (12.31), #; > #,, so we can write
the integrand as
Hy(t)) Hi(2) = T{H (1)) H(#2)}.
In the second term, with #, > #;, we may write

Hi () Hi(t)) = T{Hi(t|) Hi(t2)}.

Equation (12.31) can, thus, be rewritten as

1 t t
L, = 5/ dll/ dt, T{H(t))Hi(t,)}. (12.32)
I T
For the general term we have

I = [y dn [;'diy- - [ di, Hi(t)Hi(t) - - Hi(t,)
= [dndt,---dt, Hi(t)Hi(tz) - - - Hi(ty) witht > 1) > 1, > -+ > 1y,

and it is not difficult to see that the same technique can be applied to give

1 t 1 1
b= [an [Cdne [ anTime e ) a23)
n: T fo fo

Now the integrals are written with a common upper time limit ¢, at the expense of
complicating the integrand a bit. The # appears because there are n! ways of ordering
the times t1, t5, . .., t, all giving the same contribution to the integral on the right,
but only one of these orderings is present in the integral on the left hand side. Note
that

T{H (1) Hi(22) - - - Hi(tp)} = Hi(t) Hi() - - - Hy(8,) if 1y > 15 > -+ - > 1.
Making use of (12.33), the S matrix can be written in the compact form

S(t.t9) =T {e"' I Hl“’)‘“’} , (12.34)

where it is understood that in the nth term in the expansion of the exponential, (12.33)
holds. We note that, at + = 0, the wave functions ¥s, ¥; coincide,

Ws(0) = ¥1(0) = S(0, t)¥i(to) = S(O, to)e' ™" Ws(ty),

where we have used ¥1(¢) = e/ Wy (¢) and ¥;(1) = S(t, to) ¥ (to).
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12.2 Adiabatic Approximation

Suppose that we multiply H; by e ~”I"l where 3 > 0, and treat the resulting interaction
as one that vanishes at t+ = Z£o00. Then, the interaction is slowly turned on from

t = —oo up to t = 0 and slowly turned off from ¢ = 0 till # = 4+-00. We can write
H(t = —00) = Hy, the noninteracting Hamiltonian, and
Yi(t = —00) = Yyt = —00) = Py. (12.35)

Here @y is the Heisenberg state vector of the noninteracting system. We know that
eigenstates of the interacting system in the Heisenberg, Schrodinger, and interaction
representation are related by

Uu(t) = ' Pg(t) and (1) = e Mg (1). (12.36)
Therefore, at time t = 0,

Wt =0) = Wyt = 0) = Wy. (12.37)

Henceforth, we will use ¥y to denote the state vector of the fully interacting system
in the Heisenberg representation. We can express ¥y as

Yy = S0, —00) Py, (12.38)
where S is the S matrix defined in (12.34). Because ¥1(t = 0) = ¥y we can write
Yi(t) = S, 0¥y = S(t, —00)Dy. (12.39)

In the last step we have used S(f,, —00) = S(, 11) S(t1, —00). If we write |¥;(t)) =
S(t, 0)|¥y) and (¥(¢)| = (Pu|S~'(z, 0), then for some operator F

(WO FI¥®) = (Pl S™' (¢, 00 F S, 0)[ W) = (P ()| Ful¥u(®).  (12.40)
But this must equal (¥y | Fy|Wy). Therefore, we have
Fy = S7'(t,0)FS(, 0). (12.41)

Now look at the expectation value in the exact Heisenberg interacting state ¥y of
the time-ordered product of Heisenberg operators

(Ya|IT{Aua(t) Bu(t2) - - - Zu(t) }1¥h).

If we assume that the #;’s have been arranged in the order t; > t, >3 > --- > t,,
then we can write
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| T{An (1) Bu ()~ Zu )} )
(Pul¥h)
(Pu[S(00,0) 87! (11,0) A1 (1) S (11.0) S~ (52.0) Bi (1) S (15.0) S~ (#3.0) -+ S~ (1,,0) Z1 (1) S (1,.0) S (0, —00) | D)
(Pn|S(00,0)S(0,—00)|Py) ’
(12.42)

But from S(t;, 0) = S(t1, 1) S(t,, 0) we can see that
(11,0087 (12,0) = S(11, 1o). (12.43)
Using this in (12.42) gives

(Pu|T{Au (1) Bu(t2) - - - Zu(ta)}|Wu)
(Yu|¥n)
(Pu|S (00, 1) A1) S(t1, 12) Bi(t2) S(t2, 13) - - - Z1(t,) S (8, —00) | Py)
(@y|S(00, —00)|Ph) '

(12.44)

We note that, in (12.44), the operators are in time-ordered form, i.e. ¢, > —oo,
1] > tp, 00 > t1, so the operators

S(00, 1) Al(1)S(t1, 12) Bi(12) S (82, 13) - - - Z1(8,) S (8, —00)
are chronologically ordered, and hence we can rewrite (12.44) as

(Pu|T{Au(t1) Bu(t2) - - - Zu(t)}|Wu)
(Pu|¥n)
(PuIT{S (00, —00) A1(t1) Bi(12) - - - Z1(1,)}|Pn)
(@y|S (00, —00)|Ph)

. (12.45)

12.3 Green’s Function

We define the Green’s function G.g(x, x’), where x = {r, ¢} and «, ( are spin
indices, by
(Wl T vl (o)) W)

Guplx,x’) = —i G| . (12.46)

Here 9! (x) is an operator (particle field operator) in the Heisenberg representation.
By using (12.45) in (12.46), we obtain

o (@uIT{S(00, —00)L ()WY ()} Br)
Gop(x,x') = —i al5(o0. —00) B . (12.47)
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The operator ! (x) is now in the interaction representation. If we write out the
expansion for §(co, —o0) in the numerator and are careful to keep the time ordering,
we obtain

Gop(r, 1,1, 1) = — === > /0 [ andt, - - - dt,
’ T, 597 200 o [os dns (12.48)
X (@u|T{L(x, )y (¢, ) Hi(ty) - - - Hi(1,)}|Pn).
12.3.1 Averages of Time-Ordered Products of Operators
If Fi(t) and F,(t") are Fermion operators, then by T{F;(t) F>(t')} we mean
TR R} = FOFRG)  ift >1 (12.49)

= —Fz(t/)Fl(I) ifr <t

In other words, we need a minus sign for every permutation of one Fermion operator
past another. For Bosons no minus sign is needed.

In G, we find the ground state average of products of time ordered operators
like T{ABC ...}. Here A, B, ... are field operators (or products of field operators).
In order to simplify the notation, the spin labels are omitted for the moment. When
the entire time-ordered product is expressed as a product of 1/"’s and 1/’s, it is useful
to put the product in what is called normal form, in which all annihilation operators
appear to the right of all creation operators. For example, the normal product of
T (1)9(2) can be written

N{»"(H)¥(2)} = ¢ (DY) while N{p(Dy'(2)} = —T@)p(1).  (12.50)

The difference between a T product and an N product is called a pairing or a con-
traction. For example, the difference in the T ordered product and the N product of
AB is given by

T(AB) — N(AB) = A°B°. (12.51)

We note that the contraction of a pair of operators is the anticommutator we omit

when we formally reorder a T product of a pair of operators to get an N product. The
contractions are c-numbers for the operators we are interested in.

12.3.2 Wick’s Theorem

The Wick’s theorem states that T product of operators ABC...can be expressed as
the sum of all possible N products with all possible pairings. By this we mean that
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T(ABCD ---XYZ)

=N(ABCD---XYZ)

+N(ASB°CD ---XYZ) + N(ABC°D --- XYZ) + N(A°BCD® - -- XY Z)
+--++N(ABCD--- XY*Z°)

+N(A°B°C2D?--- XYZ) + -+ N(ABCD - -- WeX°Y3Z%)

+N(ABSCD? - .- Y*Z") + N(A°B*C°D? - - - Y®Z’) + all other pairings.

(12.52)
In evaluating the ground state expectation value of (12.52) only the term in which
every operator is paired with some other operator is nonvanishing since the normal
products that contain unpaired operators must vanish (they annihilate excitations
that are not present in the ground state). In the second and third lines on the right,
in each term we bring two operators together by anticommuting, but neglecting the
anticommutators, then replace the pair by its contraction, and finally take the N
product of the remaining n — 2 operators. We do this with all possible pairings so
we obtain @ terms, each term containing an N product of the n — 2 remaining
operators. In the fourth line on the right, we choose two pairs in all possible ways,
replace them by their contractions, and leave in each term an N products of the n — 4
remaining operators. We repeat the same procedure, and in the last line on the right,
every operator is paired with some other operator in all possible ways leaving no
unpaired operators. Only the completely contracted terms (last line on the right of
(12.52)) give finite contributions in the ground state expectation value. That is, we
have

(T(ABCD---XYZ))o
= (T(AB))(T(CD)) -- - (T(Y2)) £ (T(AC)(T(BD)) -- - (T(YZ))  (12.53)
= all other pairings.

Here we have used A°B° = T(AB) — N(AB) and noted that (N(AB)) = 0, so
the ground state expectation value of (A°B¢) = (T(AB)). Now let us return to the
expansion of the Green’s function. The first term in the sum over z in (12.48) is

/ ! l / I
GO, t.x 1) = ———————(&y | TWu(r, D5 1)} | D)o, (12.54)

where, now, the operators ¥, (r, t) and zb; (r, t) are in the interaction representation.

Giﬁ; is the noninteracting Green’s function (i.e. it is the Green function when H’ = 0).
Here we shall take the interaction to be given, in second quantized form (with spin

labels omitted for simplicity), by

1
el / Brdr 00 () U (1) — )W) (r). (12.55)
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Now introduce a function V(x; — xp) = U(r; — r)d(ty — ) to write the first
correction due to the interaction as (let x =r, t)

3GV (x,x) = —sr5m=agy J A 1d 02V (11 — x2)

(S(00,—00)) J | (12.56)

X AT )P YT (DY ()P (x2)1(x1)}o.
The time-ordered product of the six operators (3 v’s and 31/’s) can be written out
by using (12.53)

(T{l/J(x)VJJT(x’)lw(xl)i./ﬁ(x2)¢(xz)¢(xl)})o )
= (T@W @)Y )INT W (x2) P )T (W (x) YT (x)))
—(T@W )Y e NT W ()Y (1)) (T(W(x2)0 T (x))) + all other pairings.
(12.57)
But (T (¢ (x;)¥"(x;))) is proportional to G (x;, x;). Therefore the first term on the
right hand side of (12.57) is proportional to

GO (x, x1)G (x2, %) GO (x1, ). (12.58)

It is simpler to draw Feynman diagram for each of the possible pairings. There
are six of them in GV (x, x") because there are six ways to pair one 1" with one ).
The diagrams are shown in Fig. 12.2. Note that x; and x, are always connected by
an interaction line V (x; — x3). An electron propagates in from x and out to x’. At
each x; and x, there must be one G entering and one leaving.

In a standard book on many body theory, such as Fetter—Walecka (1971), Mahan
(1990), and Abrikosov—Gorkov—Dzyaloshinskii (1963), one can find 1. rules for
constructing the Feynman diagrams for the nth order correction and 2. rules for
writing down the analytic expression for §G™ associated with each diagram. Let
us give one simple example of constructing diagrams. For the nth order corrections,
there are n interaction lines and (2n + 1) directed Green’s functions, G(*’s. The
rules for the nth order corrections are as follows.

1. Form all connected, topologically nonequivalent diagrams containing 2n vertices
and two external points. Two solid lines and one wavy line meet at each vertex.

2. With each solid line associate a Green’s function G@ (x, x”) where x and x’ are
the coordinates of the initial and final points of the line.

3. With each wavy line associate V(x — x") = U(r — r')d(t — t’) for a wavy line
connecting x and x’.

4. Integrate over the internal variables d*x; = d°r; dt; for all vertex coordinates

(and sum over all internal spin variables if spin is included).

Multiply by i” (=) where F is the number of closed Fermion loops.

6. Understand equal time G@’s to mean, as § — 0T,

9,1

GO, 101) = GO(ryt, rat + 6).
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1.2

(a) T T X

(b) x%x
ajl

() x T x

() x%x
xl :EZ

(€ T 7'

xl@xz
® x x'

Fig. 12.2 Feynman diagrams in the first order perturbation calculation

The allowed diagrams contributing to the second-order perturbation 6G® (x, x') are
shown in Fig. 12.3.

Exercise

Demonstrate that the first-order correction to the Green’s function GV (x, x’) due
to the interaction is written as (12.56).

12.3.3 Linked Clusters

In writing down the rules we have only considered linked (or connected) diagrams,
but diagrams (e) and (f) in Fig. 12.2 are unlinked diagrams. By this we mean that
they fall into two separate pieces, one of which contains the coordinates x and x’ of
G (x, x). It can be shown (see a standard many body text like Abrikosov—Gorkov—
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(b) (d)
(e) 3 ® (® g (h)
0)]

® E

Fig. 12.3 Feynman diagrams in the second order perturbation calculation

(a) (c)

Dzyaloshinskii (1963).) that when the contributions from unlinked diagrams are
included, they simply multiply the contribution from linked diagrams by a factor
(S(00, —00)). Since this factor appears in denominator of G,s(x, x") in (12.48), it
simply cancels out. Furthermore, diagrams (a) and (c) in Fig. 12.2 are identical except
for interchange of the dummy variables x; and x,, and so too are (b) and (d). The
rules for constructing diagrams for §G (x, x’) take this into account correctly and
one can find the proof in standard many body texts mentioned above.

12.4 Dyson Equations

If we look at the corrections to G (x, x’) we notice that for our linked cluster
diagrams the corrections always begin with a GO (x, x1), and this is followed by
something called a self energy part. Look, for example, at the figures labeled (a) or
(b)inFig. 12.2 or (j) in Fig. 12.3. The final part of the diagram has another G© (x,,, x’).
Suppose we represent the general self energy by X'. Then we can write

G=G69+60x¢G. (12.59)

This equation says that G is the sum of G and G© followed by X which in turn
can be followed by the exact G we are trying to determine. We can express (12.59)
in diagrammatic terms as is shown in Fig. 12.4a. The simplest self energy part that
is of importance in the problem of electron interactions in a degenerate electron gas
is Xy, where

o =GOw. (12.60)

In diagrammatic terms this is expressed as shown in Fig. 12.4b, where the double
wavy line is a screened interaction and we can write a Dyson equation for it by
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@ G G G” — G
S - SO

(b) —
GO
©) vvarArans = + VWW

G(O)
() =

Fig. 12.4 Diagrammatic expressions of (a) Dyson equation G = G + GO £ G, (b) self energy
Y. (¢) Dyson equation W = V 4+ VITW, (d) polarization part [Ty = G©@G©®

\\%

G(O)

W=V+VIIW. (12.61)
The [T is called a polarization part; the simplest polarization part is
Iy =G2GO, (12.62)

the diagrammatic expression of which is given in Fig. 12.4d. Of course, in (12.60) and
(12.62) we could replace G© by the exact G to have a result that includes many terms
of higher order. Approximating the self energy by the product of a Green’s function G
and an effective interaction W is often referred to as the GW approximation to the self
energy. The simplest G W approximation is the random phase approximation (RPA).
In the RPA, the G is replaced by G and W is the solution to (12.61) with (12.62)
used for the polarization part. This RPA approximation for W is exactly equivalent to
E‘(;(Zj) , where €(g, w) is the Lindhard dielectric function. The key role of the electron
self energy in studying electron—electron interactions in a degenerate electron gas
was initially emphasized by Quinn and Ferrell.! In their paper the simplest GW
approximation to X was used. G was used for the Green’s function and 6‘(/4({2) ,
the RPA screened interaction (equivalent to Lindhard screened interaction) was used
for W.

12.5 Green’s Function Approach to the Electron—Phonon
Interaction

In this section we apply the Green’s function formalism to the electron—phonon
interaction. The Hamiltonian H is divided into three parts:

17.J. Quinn and R.A. Ferrell, Phys. Rev 112, 812 (1958).
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H = H, + Hy + Hj, (12.63)
where
2
Ho=> ;’_’;1 +> U@ -R) |, (12.64)
i 1
Hy = Z —L + Z VR, — , (12.65)
1 I>m
and )
H :Z:— ~> w VU - RD). (12.66)
i>j ! il

Here U (r; — R;) and V (R; — R,,,) represent the interaction between an electron at r;
and an ion at R; and the interaction potential of the ions with each other, respectively.
Let us write R; = R? + u; for an ion where R? is the equilibrium position of the ion
and wy is its atomic displacement. The electronic Hamiltonian H, is simply a sum
of one-electron operators, whose eigenfunctions and eigenvalues are the object of
considerable investigation for energy band theorists. To keep the calculations simple,
we shall assume that the effect of periodic potential can be approximated to sufficient
accuracy for our purpose by the introduction of an effective mass. The nuclear or
ionic Hamiltonian Hy has already been analyzed in normal modes in earlier chapters.
It should be pointed out that the normal modes of (12.65) are not the usual sound
waves. The reason for this is that V(R; —R,,) is a ‘bare’ ion-ion interaction, for a pair
of ions sitting in a uniform background of negative charge, not the true interaction
which is screened by the conduction electrons. We can express (12.64)—(12.66) in
the usual second quantized notation as

k2.
H. = —C ¢k, (12.67)
m

Hy = Ziw(y (b by + ) (12.68)

and

Hi= > V@l ch_jeven+ D 7. G)bo — b )el gogor.  (12.69)
k.k'.q k,a,G

The ¢, and b, are the destruction operators for an electron in state |k) and a phonon
in state |a) = |q, \) of wave vector q and polarization ), respectively.” The creation

2We should really be careful to include the spin state in describing the electrons. We will omit the
spin index for simplicity of notation, but the state |k) should actually be understood to represent a
given wave vector and spin as |k) = |k, o).
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and annihilation operators satisfy the usual commutation (phonon operators) or anti-
commutation (electron operators) rules. The coupling constant V (g) is simply the

_ 4ré?
= o

Fourier transform of the Coulomb interaction ( ) and v(«, G) is given by

AN \'?
Yo, G) = —i(q+ G) - &, (—) U(q+G) (12.70)
2Mw,,

where €, and U (q + G) are the phonon polarization vector and the Fourier transform
of U (r —R), respectively. For simplicity we shall limit ourselves to normal processes
(i.e., G = 0), and take U (r — R) as the Coulomb interaction — | rZ_elil between an
electron of charge —e and an ion of charge Ze. With these simplifications v(«, G)

reduces to

4nZe? { AN \'?
(12.71)

v(g) =i M,

for the interaction of electrons with a longitudinal phonon wave, and zero for inter-
action with a transverse wave. Furthermore, when we make these assumptions, the
longitudinal modes of the ‘bare’ ions all have the frequency

2 hQP
wa= 2 and PP = —LV(@) (12.72)

1/2
where §2, = (‘%) is the plasma frequency of the ions.

Exercise

Demonstrate that the electron—phonon coupling strength v(«, G) for the normal
process with the longitudinal phonons is given by (12.71).

We want to treat Hj as a perturbation. The brute-force application of perturbation
theory is plagued by divergence difficulties. The divergences arise from the long
range of the Coulomb interaction, and are reflected in the behavior of the coupling
constants as g tends to zero. We know that in the solid, the Coulomb field of a given
electron is screened because of the response of all the other electrons in the medium.
This screening can be taken into account by perturbation theory, but it requires
summing certain classes of terms to infinite order. This is not very difficult to do if
one makes use of Green’s functions and Feynman diagrams. Before we discuss these
we would like to give a very qualitative sketch of why a straightforward perturbation
approach must be summed to infinite order.

Suppose we introduce a static positive point charge in a degenerate electron gas.
In vacuum the point charge would set up a potential @y. In the electron gas the point
charge attracts electrons, and the electron cloud around it contributes to the potential
set up in the medium. Suppose that we can define a polarizability factor « such that
a potential @ acting on the electron gas will distort the electron distribution in such a
way that the potential set up by the distortion is a®. We can then apply a perturbation
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approach to the potential @,. @ distorts the electron gas: the distortion sets up a
potential @; = a®,. But @ further distorts the medium and this further distortion
sets up a potential @, = a®, etc. such that &, ;| = a®,. The total potential @ set
up by the point charge in the electron gas is

P=Py+ P+ P+ =Dl +a+a’>+--)
= o1 —a)~ L. (12.73)

We see that we must sum the straightforward perturbation theory to infinite order. It is
usually much simpler to apply ‘self-consistent’ perturbation theory. In this approach
one simply says that @, will ultimately set up some self-consistent field @. Now the
field acting on the electron gas and polarizing it is not @, but the full self-consistent
field @. Therefore, the polarization contribution to the full potential should be a®:
this gives

D =Py + a?, (12.74)

which is the same result obtained by summing the infinite set of perturbation contri-
butions in (12.73).

We want to use some simple Feynman propagation functions or Green’s functions,
so we will give a very quick definition of what we must know to use them. If we have

the Schrodinger equation

ov
ih— = HY. 12.75
th— , ( )

and we know W (#;), we can determine ¥ at a later time from the equation
V(x2, ) = /d3x1Go(X2, b x1, ¥ (x1, 1). (12.76)
By substitution one can show that G satisfies the differential equation
., 0 .
lha_t — H(x) | Go(2,1) = lhé(l‘z — tl)(S()CQ — X1), (12.77)
2

where (2, 1) denotes (xz, t2; x1, #;). One can easily show that Gy(2, 1) can be
expressed in terms of the stationary states of H. That is, if

Hl/ln = Eyly, (1278)
then Gy(2, 1) can be shown to be

Go(2, 1) = D> un(xp)uj(xp)e /" if 1y > 0,

=0 otherwise. (12.79)
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If we are considering a system of many Fermions, we can take into account the exclu-
sion principle in a very simple way. We simply subtract from (12.79) the summation
over all states of energy less than the Fermi energy Ef.

Go2, 1) = D up(xpus(x)e /" if 1y > 0,

en>Er

— D unu e =M i 1y < 0. (12.80)

en<Ep

We always represent a Fermion propagator by a directed solid line. A negative (rel-
ative to the last filled state Er) energy Fermion propagates backward in time. This
corresponds to the propagation of a hole in a normally filled state. For free electrons
the functions u, (x) are plane waves. We are often interested in G(q, w), the Fourier
transform of Gy(2, 1):

3
G2, ) = [ L44 i it 12.81
0(2, 1) ) (g, w)e : (12.81)

The single particle propagator G(q, w) for a system of free electrons is

1

Golg,w) = m,

(12.82)

where £(q) = %(q2 - k%) is the energy measured relative to the Fermi energy and
takes on both positive and negative values. kg is the Fermi wave number, and § is a
positive infinitesimal.

In the language of second quantization Gy(2, 1) can also be expressed as the
ground state expectation value of the time-ordered product of two electron field
operators

Go(2, 1) = (GS | T{w )¢ (1)} | GS). (12.83)

In this expression ¥ (2) = ¥ (x3, 1) is the electron field operator and wT(2) is its
conjugate. These operators satisfy the usual Fermion anticommutation relations. 7 is
the chronological operator. It should be pointed out that people often define Go(2, 1)
with an additional factor of i on the right hand side of (12.83). This arbitrariness
in defining the propagation functions is compensated for by slight differences in
the rules for calculating the amplitudes of the Feynman diagrams which appear in
perturbation theory.

We can also define a propagation function for the instantaneous Coulomb interac-
tion %6 (t21) between electrons at two points in space time. We shall use the Fourier

transform of %5 (t21) as the bare Coulomb propagator V (g, w)

47e?

V(Qf w) = qu :

(12.84)
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If we define the phonon field operator @ (x) by the equation

B (x) = D (@ (b + bLy) (12.85)
q

with v(g)(= —7y(—q)) given by (12.71) and bq(t) = bqe_i“"l’, then we can define
the space time representation for the phonon propagator in the usual way

Py(2, 1) = —i(GS | T{®;(x2, )Py (x1, 11)} | GS) (12.86)

where @;(x,, 1) = e 102 (x,)e! 0”2 The Fourier transform of (12.86) is Py(q, w),
the wave vector—frequency space representation of Py. For the phonon system
described by (12.71) and (12.72), Py(g, w) is given by

282,|v(q)I?

Py(q,w) = , 12.87
@9 = S (12.87)

where £2, is the bare phonon frequency. It is quite convenient to use Feynman dia-
grams to keep track of the various terms in perturbation theory. The rules for con-
structing diagrams are quite simple. Each electron in an excited state is represented
by a solid line directed upward. Each hole in a normally filled state is represented
by a solid line directed downward. The instantaneous Coulomb interaction is repre-
sented by a horizontal dotted line connecting the two-particles undergoing a virtual
scattering, and propagation of a phonon is represented by a wavy line.

Consider the scattering of two electrons. In vacuum they can scatter by the
exchange of one virtual photon (Coulomb line) in only one way, which is shown
in Fig. 12.5. Now consider the Coulomb interaction in the medium. The set of dia-
grams, of which Figs. 12.6a, b are representative, are additional processes which can
not occur in the absence of the polarizable medium. In Fig. 12.6c¢, the circle represents
any possible part of a diagram which is connected to the remainder by two Coulomb
interaction lines only. All such parts of a general diagram are called polarization
parts, because they obviously represent the response or screening of the polarizable
medium.

Fig. 12.5 Diagrammatic expression of the exchange of virtual photon
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(@) (b)

O _0_{5_ (>O<

Fig. 12.6 Diagrammatic expressions of representative polarization parts in pair approximation

The effective Coulomb interaction between two-particles should be the sum of all
the possible polarization parts (the bare interaction can be thought of as the zeroth
order polarization part). Actually we can not sum all the possible polarization parts,
but we can sum the class of which Fig. 12.6a, b are representative, that is, the chain
of bubbles. The approximation of replacing the effective interaction by the sum of all
bubble graph is called the pair approximation or ring approximation. Before looking
at the sum we will write down the rules for calculating the amplitude associated with
a given Feynman diagram which appears in perturbation theory. The amplitude for
a given diagram contains a product of

(1) a propagation function G((k,w) for each internal electron—hole line of wave
vector k and frequency w

(2) a propagation function Py(k,w) for each phonon line of wave vector q and
frequency w

(3) apropagation function V (g, w) for each Coulomb line of wave vector q

(4) afactor (—1) for each closed loop

(5) (—i/h)" for the nth order term in perturbation theory

(6) delta functions conserving energy, momentum, and spin at each vertex

(7) Finally we must integrate over the wave vectors and frequencies of all internal
lines

The set of diagrams we would like to sum in order to obtain the effective Coulomb
propagator W(q, w) can easily be seen to be the solution of the equation given
pictorially by Fig. 12.7. This equation can be written

Wi(g,w)=V(g,w)+ V(g,w (g, w)W(q,w). (12.88)
Here I1y(q, w)[= —xo0(g,w)], where

d3k1 dwl

2n) Go(ki, w1)Gok1 +¢q, w1 +w) (12.89)

Io(q. w) = —zm—'/

is the propagation function for the electron—hole pair. The factor of two is introduced
to account for the two possible spin orientations and the minus sign comes from the
fact that I1y(g, w) contains one closed fermion loop. Using the electron propagation
functions defined by (12.82) and integrating gives
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Fig. 12.7 Diagrammatic expression of Dyson equation for the effective Coulomb propagator W =
V + VIIZW with ITy = —xo

Xo(q.w) = —h" o2 [ dk [6(\k+q\—ky|)e(ky—\kn

W—Wktqtwk+in
_ e(kF—|k+q|>9<|k|—kF>] (12.90)

W—Wkt+q+wk—in
where hwq = %. The solution of (12.88) is simply

W(g,w) = V(g «) (12.91)

1+ V(g.w)xo(q, w)

and using (12.90) one can easily see that 1 + Vxq is just the Lindhard dielectric
function e(q, w). This dielectric function is discussed at some length in the previous
chapter, and the reader is referred to Lindhard’s paper? for a complete treatment. For
our purposes we must note two things: first e(q, w) is complex, the imaginary part
being proportional to the number of electrons which can be excited to an unoccupied
state by addition of a momentum /iq whose energy change is equal to /w. The second
point is that for zero frequency e(g, 0) is given by

@ =1+F(2 K (12.92)
e(q) = ) 7% .

where k; is the Fermi—Thomas screening parameter and kg is the Fermi wave number.
The function F (Z‘ITF) is the function sketched in Fig. 11.12. F(x) is equal to unity

for x equal to zero, approaches zero as x approaches infinity, and has logarithmic
singularity in slope at x = 1.

Now let us return to a ‘model solid’ containing longitudinal phonons as well as
electrons. Two electrons can scatter via the virtual exchange of phonons. In fact
anywhere a Coulomb interaction line has appeared previously a phonon line may
equally well appear. If we call the sum of V(q,w) and Py(q,w)/h as Dy(q, w),
we can just replace V and W by Dy and D in (12.88). D(q,w) then represents
the renormalized propagator for the total interaction, i.e. the sum of the Coulomb
interaction and the interaction due to virtual exchange of phonons. It is apparent that

3J. Lindhard, Kgl. Danske Videnskab. Selskab, Mat.-Fys. Medd. 28, No. 8 (1954); ibid., 27, No. 15
(1953).
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DO(q’ (4))
1 + Dy(q, w)xo(q, w) "

D(q,w) = (12.93)

By substituting into (12.93) the expressions for the bare propagation functions and
using the fact that 1 4+ V (¢, w)xo0(g,w) = e(g, w), one can obtain

4me?
D(q,w) = . (12.94)
g [eg,0) - 22707
The propagator D has a pole at
92
w=—L (12.95)
(g, w)

The solutions of this equation are the frequencies of the ‘renormalized’ phonons.
From the long wavelength, zero frequency dielectric constant we get the approximate

solution
2y

For most metals % is within about 15-20% of the velocity of longitudinal sound
waves. If we look at the derivative of wg with respect to g we see a logarithmic
singularity at ¢ = 2kg. This is responsible for the Kohn effect, which has been
observed by neutron scattering. If we take account of the imaginary as well as the
real part of the dielectric constant, the solution of (12.95) has both real and imaginary
part. If we write w = w; + iw,, then w; turns out to be

2
ki ¢

™
N - —wi, 12.97
A+ q vol ( )

w2

where c; is the velocity of sound and vg the Fermi velocity. The coefficient of atten-
uation of the sound wave (due to excitation of conduction electrons) is simply "f
This result agrees with the more standard calculations of the attenuation coefficient.

Finally, if we wish to define the effective interaction between electrons due to
virtual exchange of phonons, or the effective phonon propagator, we can simply
subtract from D(g, w) that part which contains no phonons, namely W (g, w). If we
call the resultant effective phonon propagator P (g, w)/h, we obtain

2w | eff( )|2
P(q.w) = %, (12.98)

q

where w, is given by (12.96) and
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v (q) |=

41 Ze? ( AN

i £f hwy
or | (g) |= —=—WI(q). (12.99)
qe(g, wy) 2qu) v 4

2

Replacing (g, w,) by its long wavelength, zero frequency limit [1 + 1;—%], reduces

(12.99) to the result of Bardeen and Pines* for the effective electron—electron inter-
action.

Exercise

Work out that the effective electron—phonon coupling strength 7°(¢) is written as
(12.99).

12.6 Electron Self Energy

The Dyson equation for the Green’s function can be written
Gk, w) =GPk, w) + GOk, w) X (k, w)G(k, w). (12.100)
Dividing by GG? gives
2k, w) =[GV, ) =[Gk, w)]™". (12.101)
The energy of a quasiparticle can be written
E,=¢,+XZ(p,w) lu=k, - (12.102)

E, and ¢, the kinetic energy, are usually measured relative to Er, the Fermi energy.
Knowing how X (p, w) depends on p, w, and r¢ allows one to calculate almost all the
properties of an electron gas that are of interest. Some results of interest are worth
mentioning.

(1) X (p, E,) has both a real and an imaginary part.
S(p,Ep) = Z1(p, E,) +i5:(p, Ey). (12.103)

The imaginary part is related to the lifetime of the quasiparticle excitation.
(2) The spectral function A(p, w) is defined by

_222(p7 (U)

) (12.104)
[ =2 — Z1(p. )] + [Z2(p, )P

A(p,w) =

4J. Bardeen and D. Pines, Phys. Rev. 99, 1140 (1955).
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For noninteracting electrons A(p, w) has a § function singularity at w = ¢, the
energy of the excitation. The § function is broadened by X, (p, w).If A(p, w) has
a pole in a region where X, (p, w) is zero, the strength of the pole is decreased
by a renormalization factor Z(p).

A(p,w) =27Z(p)d (w—sp—El(p,w)) (12.105)
and
1
Z(p)=|——F——"— . (12.106)
[ - %zl(p,wLEp
(3) The quasiparticle excitations at the Fermi surface have an effective mass m*
given by
m 1+ d):é]’g:,w)
= [W k—kp (12.107)

w=0

(4) Properties like the spin susceptibility, the specific heat, the compressibility, and
the ground state energy can be evaluated from a knowledge of X' (k, w). But, we
do not have time to go through these in any detail.

(5) The self energy approach leads very naturally to an understanding of the Landau
theory of a Fermi liquid. We will describe a very brief and intuitive explanation
of the theory.

12.7 Quasiparticle Interactions and Fermi Liquid Theory

Instead of describing the interacting ground state and excited states of an electron
gas, we can think of simply describing how many quasiparticles are present in some
excited state. Let us start by noting that if we begin with a filled Fermi sphere of
noninteracting electrons (i.e. the Sommerfeld model) and adiabatically turn on the
electron—electron interaction, we will generate at r = 0 the exact interacting ground
state. Now consider the noninteracting state described by a filled Fermi sphere plus
one electron of momentum p outside the Fermi sphere (or one hole of momentum
p inside the Fermi sphere). When interactions are adiabatically turned on, this is a
single quasiparticle state. The energy of this quasielectron (or quasihole) is written
by

Ey=¢p+ X(p, Ep). (12.108)

If E}, is much larger than X, (p, Ep), the imaginary part of X (p, E}), then the qua-
siparticles have long lifetimes. It is much simpler to describe a state by saying how
many quasielectrons and quasiholes are present. Then, the energy of the state can be
written as
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1
E= EO + ZénpaEpa + E Z faa’(ps p/)énnaénp’a“ (12109)
po

p.p

a0

The first term on the right is the ground state energy, the second is the quasiparticle
energy E,, multiplied by the quasiparticle distribution function, and the third repre-
sents the interactions of the quasiparticles with one another. X (p, E,) represents the
interaction of a quasiparticle of momentum p with the ground state of the interacting
electron gas. But if the electron gas is not in its ground state, there are quasielectrons
and quasiholes present that change the energy of the quasiparticle of momentum p.
We can get a simple picture of the Fermi liquid interaction between quasiparticles by
considering the Feynman diagrams that describe the scattering processes that take a
pair of quasiparticles in states (p, o) and (p’, ¢’) from this initial state to an equiva-
lent final state. These processes are represented in diagrammatic terms in Fig. 12.8a,
b. Here the interaction W (denoted by wavy lines) will be taken as the RPA screened
interaction. In the first term (a) W(q, w) corresponds to zero momentum transfer
since p — p and p’ — p’. This term is exactly zero since the Coulomb interaction is
canceled by the interaction with the uniform background of positive charge at q = 0.
The second term (b) gives the same final state as the initial state only if 0 = ¢’.
Then W(q, w) is W(p — p’, 0) since the momentum transfer is p — p’ and there is
no change in energy.

Of course, higher order processes in the effective interaction could be important,
but we will ignore them to get the simplified picture. We take Landau’s f,, (p, p’)
to be equal to

4me? - o
for (P, P) = | (p—pf)'zgp—p/jo) gg ; Z/ (12.110)

Here e(p — p’, 0) is the static Lindhard dielectric function for ¢ = p — p’. With
this simple approximation a rather good estimate of m™* (and hence of the electronic
specific heat) can be obtained. Results for the spin susceptibility are not quite as good,
and the estimate of the interaction contribution to the compressibility is poor. One

(a) po » po
\\%

p'o’ p'o’

(b) po . p'c
\\%

p'o po

Fig. 12.8 Diagrammatic representation of quasiparticle scattering of (a) zero momentum transfer
and (b) of finite momentum transfer
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important effect that is omitted is the effect of spin fluctuations (in addition to charge
density fluctuations) and another is the local field corrections to the RPA. In order to

get a more thorough understanding of these ideas, one needs to read advanced texts
on many body theory.

Problems

12.1 Show explicitly that

i dn [i"dey [ dis Hi(t) Hi(62) Hi(13)
=% [ dn [} dn [} dsT{H\(t)Hi(n) Hy(53)).

12.2 The complete first order contributions to G (x, x") are shown in the figure.

'/'rz
oz % x
@ 1@2 x
G x x'
x]@xz
@ x '

(a) Write each term dGV(x, y) out in terms of noninteraction two-particle
Green'’s function G (x, y) and the interaction V (x; —x) = U (r; —r2)d(t; —
ty). Here x = (r, t) and one may omit the spin to simplify the notation.

(b) Let us now restore the spin labels («, 3) and introduce the Fourier transform
G.p(k) of the G,3(x, y) as follows:

Gop(x,x') = / d*ke* TG 5(k)

1
@m)*

0
Gfu;(x,x')

— d4k ik-(x—x’)G(O? k ,
(27r)4/ ¢ s ®)

where k = (k, w), d*k = d’k dw, and k - x = k - x — wt. In addition, for the
interaction given by V (x; — x) = U(r; — rp)d(t; — o) we can write
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e K e { ST
= # fd3k el.(xfx)U(k)aa,’ﬁﬁ,(;(t — 1),

where V(K)o 55 = UK) oo 5 = # [ d3x e **U (K)o g is the spatial

Fourier transform of the interparticle potential. Express each term obtained in
part (a) in terms of ng (k) and V (k) in the momentum space.

12.3 By definition the noninteracting fermion Green’s function is given by
GO, x't)) = —i < (i (N, X1)}® >,

the noninteracting ground state vector is taken to be normalized. Show that

fog(k, w) = 0,3 [ 0k — k) n Ok — k) } |

w—hleg+in w—hle —in

12.4 Let us define the phonon field operator @ (x) by

B(x) = D (@ (bg +bLy).
q

1/2

where v(q) = i‘”qi‘?2 th—N . Then we can define the phonon propagator
“q

by Po(2,1) = —i(GS | T{@;(x2,2)P;(x1,11)} | GS) where &;(x2, ) =

e*iH()[z ¢ (xz)eiH(]lz .

(a) Take the Fourier transform of Py(2, 1) to obtain Py(gq, w), the wave vector—
frequency space representation of Py(2, 1).
(b) Show that Py(q, w) can be written as

22,1y

Py, w) = ——7F—,
0(g. ) w? — Q25 +in

1/2
where 2, = (‘%) is the bare plasma frequency of the ions.

12.5 Let us consider a Dyson equation given by
W(g,w) =V(g,w) = V(g,wxo(g, W)W(q,w),
where the polarization function for the electron-hole pair is given by

d3k1dw1

WGO(]Q, w)Gokr +q, w1 +w).

xo(g, w) = 2ih!

(a) Show that xo(g, w) can be written as
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Xo(q, w) = ="' o5 [ &Pk Ok + gl — k)0 (ke — |KI)

% 1 _ 1
w—(Wk+q—wk)+in w—(Wk4q—wk)—in |’

where Iwq = e(q) = Zz—r‘f: Note that the single particle propagator Go(g, w)
is written as
20,2 _ 12
1 h(g” — kg) -

Go(q. w) = with wgj, = — 1 >0,
0 ) = (A iy Vi Cak o

(b) Show that the solution of the Dyson equation given above is simply W =
v

+Vxo'
() Shoé&? that 1 4+ Vxo is the same as the Lindhard dielectric function e(q, w).

12.6 Let us consider a model solid containing electrons as well as longitudinal
optical phonons.

(a) Show that effective propagator D(q, w) is given by
4re? 1

q> [e(q, w) — 9§/w2] ’

D(q.w) =

where €(g, w) and £2, are the Lindhard dielectric function and the bare plasma
frequency of the ions.
(b) Demonstrate that the effective electron—phonon coupling constant v (g) is
given by
Vig) hwy

eff _
|7 (@) |= S@uwy 2

where w, = 2,1, the renormalized plasmon frequency of the lattice in the

long wavelength regime.

Summary

In this chapter we study Green’s function method — a formal theory of many body
interactions. Green’s function is defined in terms of a matrix element of time-ordered
Heisenberg operators in the exact interacting ground state. We then introduce the
interaction representation of the state functions of many particle states and write the
Green’s function in terms of time-ordered products of interaction operators. Wick’s
theorem is introduced to write the exact Green’s function as a perturbation expansion
involving only pairings of field operators in the interaction representation. Dyson
equations for Green’s function and the screened interaction are illustrated and Fermi
liquid picture of quasiparticle interactions is also discussed.

The Hamiltonian H of a many particle system can be divided into two parts H
and H', where H’ represents the interparticle interactions given, in second quantized
form, by
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1 .
H = 3 / d*rid®rap (e () U (1) — 1) ()3 (x).

Particle density at a position r(y and the total particle number N are written, respec-
tively, as n(ro) = ¢ (r)i(ro); N = [d*ry"(r)y(r).

The Schrodinger equation of the many particle wave function ¥ (1,2, ..., N) is
ih%d/ = HY, where i == 1 and ¥ (¢) = e "'y, Here Wy is time independent.
The state vector ¥;(¢) and operator Fi(t) in the interaction representation are written
as

Wi(r) = ™MW (1) Fi(r) = e Fge™ .

The equation of motion for Fi(¢) is 30? =i [Hyp, Fi(t)] and the solution for Fi(¢) can

be expressed as Wi (1) = S(t, 1) ¥1(ty), where S(z, t) is the S matrix given by
S, 1) =T {e_i Jo Hl(t’)dt’} .

The eigenstates of the interacting system in the Heisenberg, Schrodinger, and inter-
action representation are related by

Pu(t) = e 'Wg(t) and Wi(r) = e ' gg(1).

Attime t =0, ¥1(t = 0) = Yyt = 0) = Yy. Py is the state vector of the fully
interacting system in the Heisenberg representation: ¥y = S(0, —00) Py
The Green’s function G,3(x, x) is defined, in terms of 1/)(1;' and ng, by

WHlT{¢H(X)1/1 (x")} %)
a?(x X ) - ’
(WH|YH)

where x = {r, t} and «, 3 are spin indices.
In normal product of operators, all annihilation operators appear to the right of
all creation operators: for example,

N{" ()(2)} = ¢ (DY) while N{p(Dy'(2)} = =" () (D).

Fairing or a contraction is the difference between a T product and an N product:
T(AB) — N(AB) = A°B°. The Wick’s theorem states that T product of operators
ABC --- can be expressed as the sum of all possible N products with all possible
pairings.

Dyson equations for the interacting Green’s function G and the screened inter-
action W are written as G = GO + GOXG; W = V 4+ VIIW. Here X and IT
denote the self energy and polarization part, and the simplest of which are given,
respectively, by Xy = GOW; My = GPG©. In the RPA, the G is replaced by
GO and W is exactly equivalent to E‘(/q(qj,) , Where €(g, w) is the Lindhard dielectric
function. '
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The Hamiltonian H of a system with the electron—phonon interaction is divided
into three parts: H = H. + Hx + Hj, where

1
HN_Zhw (b*b + 2)

and Hy = D 4. g ‘g;z ck+ch,_qck/ck + 2 kg V(@ G)(by — bf_a,)chJchk. Once
we know W (¢)) of the Schrodinger equation, ih%—"f = HY, we have

¥ (x2, 1) =/d3x1Go(x2,lz;x1,ll)‘l’(xhh)-

For free electrons, G(q, w) is the Fourier transform of G((2, 1):

1

OO = L ea

For a ‘model solid’ containing longitudinal phonons as well as electrons, two elec-
trons can scatter via the virtual exchange of phonons and the total interaction, i.e.
the sum of the Coulomb interaction and the interaction due to virtual exchange
of phonons, is given, in terms of bare interaction Dy and polarization Y, by
D(q, w) = Do(q,w)

1+Do(q.w)x0(q.w) *
The Dyson equation for the Green’s function can be written

Gk, w) =GOk, w)+ GO®%, w) X (k, w)G (k, w).

The electron self energy is X (k, w) = [G© (k, w)]™' — [G(k, w)]~! and the energy
of a quasiparticle is written as £, = €, + X(p, w) |v=kg, - X (P, Ep) represents the
interaction of a quasiparticle of momentum p with the ground state of the interacting
electron gas. The energy of the state is written as

E=FEy+ Zénpg po T = Z Joor (Ps P )6nn06np0

PP
a0

The first term on the right is the ground state energy, the second is the quasiparti-
cle energy Ep, multiplied by the quasiparticle distribution function, and the third
represents the interactions of the quasiparticles with one another.



Chapter 13
Semiclassical Theory of Electrons

13.1 Bloch Electrons in a dc Magnetic Field

In the presence of an electric field E and a dc magnetic field B, the equation of motion
of a Bloch electron in k-space takes the form

Tk = —eE — v x B. (13.1)
C

Here v = %Vka(k) is the velocity of the Bloch electron whose energy (k) is an
arbitrary function of wave vector k. In deriving (13.1) we noted that no interband
transitions were allowed, and that when k became equal to a value on the boundary
of the Brillouin zone this value of k was identical to the value on the opposite side
of the Brillouin zone separated from it by a reciprocal lattice vector K.

Equation (13.1) can be obtained from an effective Hamiltonian

p e
H=z(T+A) - eo, 13.2
v ¢ (13.2)
where (k) is the energy as a function of k in the absence of the magnetic field and
B =V x A. Hamilton’s equations give, since p = ik — €A,

OH 1 0e

= = —-——, 13.3
T Ope  hok, (133)

) OH 0 e 09 e 0A 1))
—pr=—=Vge:-— [—A)—e—=—-|Vv:-— ) —e—. 13.4
Px Ox ke Ox (hc ) eax c (V 8x) eax (134

But we also know that p, = Tk, — fo, or
. e 8AX e an an 8AX

x—hkx__ - = X A . 135
P c ot ¢ (U Ox + dy v 0z ) (13.3)
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Equating the p, from (13.4) with that from (13.5) gives
Wy = —eE, — < (v x B), . (13.6)
c

Since the equation of motion, (13.1) or (13.6), is derived from Hamilton’s equations,
(13.3) and (13.4) using the effective Hamiltonian (13.2), p and r must be canonically
conjugate coordinates.

13.1.1 Energy Levels of Bloch Electrons in a Magnetic Field

Onsager determined the energy levels of electrons in a dc magnetic field by noting
that

Tk =—-SvxB (13.7)

c

could be written as ] ¢
kL = ——|VL|B. (138)

he

Here v, is the component of v perpendicular to B and k is perpendicular to both B
and v. Integrating (13.7) gives

k, = s X r, + constant. (13.9)
he

We can choose the origin of k and r space such that the constant vanishes for the
electron of interest. Thus the orbit in real space (by this we mean the periodic part
of the motion in r-space that is perpendicular to B) will be exactly the same shape
as the orbit in k-space except that it is rotated by 90° and scaled by a factor ‘;L—Ij. This

factor % is called [, 2, where [y is the magnetic length.
Exercise

Demonstrate (13.9) by combining (13.7) and (13.8).

Let us choose B to define the z-direction. Then léz = 0 and k; is a constant of the
motion. Now look at the time rate of change of the energy

¢ B) (13.10)
h V X . .

This is clearly zero since v is perpendicular to v x B, meaning that € is a constant
of the motion also. Thus the orbit of a particle in k-space is the intersection of a
constant energy surface (k) = € and a plane of constant k, (see Fig. 13.1).
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Surface g (k)= CONSTANT

k.= CONSTANT

_______________ k.

Orbit in k-space

Fig. 13.1 A constant energy surface (k) = € and the orbit of a particle in k-space

Let us look at the different kinds of orbits that are possible by considering the
intersections of a plane k, = 0 with a number of different energy surfaces for a simple
model (k) (see, for example, Fig. 13.2). The orbits can be classified as

e closed electron orbits like A and B
e closed hole orbits like C
e open orbits like D

Often one simply repeats the Brillouin zone a number of times to show how the
pieces of hole orbits or the open orbits look as illustrated in Fig. 13.3.

Fig. 13.2 Different kinds of orbits of a particle in k-space
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Fig. 13.3 Repeated zone scheme of the orbits in k-space

13.1.2 Quantization of Energy

For closed orbits in k-space, the motion is periodic. The real space orbits in the
direction perpendicular to B will also be periodic. Because p and r are canonically
conjugate coordinates we can apply the Bohr—Sommerfeld quantization condition

%pL -dr) =2mh(n + ), (13.11)

where v is a constant satisfying 0 <y <1, and n =0,1,2,.... We can use

pL = hk, — A, and the fact thatk, (1) = ;Tl: x r1 (7). Then

?{plwirl:EB-?{erer—E%A-drl.
c c

But f r; X drj isjusttwice the area of the orbit as is illustrated in Fig. 13.4. Further-
more § A - dr; = [qurpace V X A - dS = B x (area of orbit). Therefore we obtain

pr cdry = $BA=2nh(n + ), (13.12)
C

dn.

Fig. 13.4 r, x dr, is twice the area of the triangle within the orbit
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where A is the area of the orbit. A depends on energy ¢ and on k,. We know that

A(e, k;) is proportional to the area S(e, k) of the orbit in k-space, from (13.9), with
S k) = (%)2 A(e, k.). Thus the quantization condition can be written

B
(n+7). (13.13)

2me
S, k) = >

Example

For free electrons € = hz— The area S(e, k;) is equal to k%, where k3 + k2 = k2.
Therefore

S k) =7 (2;"—25 - kz) (13.14)

Setting this result equal to =<22= 2763 2222 (n + ) and solving for energy € gives

h2k?
- 2m

(13.15)

where w, = fn—li is the cyclotron frequency.

13.1.3 Cyclotron Effective Mass

In the absorption of radiation direct transitions between energy levels (Landau levels)
occur. If we make a transition from ¢, (k;) to €, (k,) we can write

S(enlk). k) = ZL 0+ ),
S(enpike), ko) = 2;;? (n+1+7).

(13.16)

We define the energy difference €,4(k;) — €,(k;) as hw., where w.(¢, k;) is the
cyclotron frequency associated with the orbit {¢, k,}. By subtracting the first equation
of (13.16) from the second we can obtain

a8 (5 k. ) 2mweB
he

[En-H(k ) En(k )]

and from this we obtain

—1
e,k = 278 2meB |:8S({-: k, )] _ ﬁ’ (13.17)
h2c Oe m*c
or )
m*(e, k)_h m (13.18)

Oe
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13.1.4 Velocity Parallel to B

Consider two orbits that have different values of k, separated by Ak,. Then, for the
same ¢, we have

S [entk, + Ak, ke + Ak.] — S [entky), k] = 0 (13.19)

22¢8 (n 4 ). We can write

because both orbits have cross-sectional area equal to

(13.19) as
a8 Oe, (k)  OS
—_— ' =0. 13.20
Oe Ok, Ok, ( )
But g—]i = hv, and %—f = 27};% giving
h dS(g, k;)
k) = — 13.21
v k) = ek Ok (13.21)
Example
For the free electron gas model, we have S = 7 (222 £ — kzz) Therefore, % = 27k,
and, hence, . 5 )
k,
v, (e, k) = —ﬁ(—%rkz) =—.
™m m

13.2 Magnetoresistance

The study of the change in resistivity of a metal as a function of the strength of an
applied magnetic field is very useful in understanding certain properties of the Fermi
surface of a metal or semiconductor. The standard geometry for magnetoresistance
measurements is shown in Fig. 13.5. Current flows only in the x direction. Usually
B is in the z direction and the transverse magnetoresistance is defined as

RB) —RO) _ AR(B,). (13.22)
R(0)
Sometimes people also study the case where B is parallel to E and measure the
longitudinal magnetoresistance.
It might seem surprising that anything of interest arises from studying the
magnetoresistance, because, as we described, for the simple free electron model
AR(B;) = 0. This resulted from the equation

Jx =0 Ex + O'x_vEy

jy = _O—x}'EX + UxxEy =0. (1323)
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E
........................... —
z

yx>

Fig. 13.5 Standard geometry for magnetoresistance measurements

Combining these gives

2 2
oL +o,
e = %Ex. (13.24)
XX
But for free electrons
J— g0
Oxx = T2
s (13.25)
Oxy = — 1+w?r?’

noe’t

where o9 = *— is the dc conductivity. Using (13.25) in (13.24) gives j, = oo Ey,
independent of B so that the magnetoresistance vanishes.

Experimental Results

Before discussing other models than the simple one band free electron model, let us
discuss briefly the experimental results. The following types of behavior are common:

(1) The magnetoresistance is nonzero, but it saturates at very high magnetic fields
at a value that is several times larger than the zero field resistance.

(2) The magnetoresistance does not saturate, but continues to increase with increas-
ing B in all directions.

(3) The magnetoresistance saturates in some crystal directions but does not saturate
in other directions.

Simple metals like Na, Li, In and Al belong to the type (1). Semimetals like Bi and
Sb belong to type (2). The noble metals (Cu, Ag, and Au), Mn, Zn, Cd, Ga, Sn, and
Pb belong to type (3). One can obtain some understanding of magnetoresistance by
using a two band model.

13.3 Two-Band Model and Magnetoresistance

Let us consider two simple parabolic bands with mass, cyclotron frequency, charge,
concentration, and collision time given by m;, we;, €;, n;, and 7;, respectively where
i = 1 or 2. Each band has a conductivity ¢;, and the total current is simply the sum
of j; and j,

Jr=(g, +a,)-E. (13.26)
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But
1 Wei Ti 0
—Wei Ti 1 0 . (1327)

2
o _onie;Ti/m;
=T 13
1+ wg; 2.2
cili 0 0 14w

Note that we are taking we; = % which is negative for an electron; this is why

the o, has a plus sign. At very high magnetic fields |w;7;| >> 1 for both types of

carriers. Therefore we can drop the 1 in 1 + w77

L1 0
nje;c [ Wt
o~ -1 — 0 , (13.28)
—i B Wei T
0 0 Wei Ti
and
ne + nyen n 0
Y+ 1e1 + nae;
C Wel Tl We2 T2 niel naes
or &= — —(nlel +n2€2) m+m 0 s (1329)
0 0 nie1welTi + n2e2wea
Now suppose that n; = n, = n and e; = —e, = e. This corresponds to a semimetal

with an equal number of electrons and holes. Then (13.29) reduces to

1 1
nec [ lwaml + lwea 72| | 0 | 0
- B |wer |wea |
0 0 lwer 1| + lwea |

The Hall field vanishes since o, = 0 and

. nec 1 1
Jx =0 Ey = — |:eB_ + °B :| E,.. (13.30)

The resistivity is the ratio of E, to j, giving

_ B? ( [te1 [ 2] ) (1331)
nec? \ || + |pal

CiTi

where p; = . is the mobility of the ith type. Thus we find for equal numbers
of electrons and holes the magnetoresistance does not saturate, but continues to
increase as B?. The arguments can be generalized to two bands described by
energy surfaces ¢;(k), but we will not bother with that much detail. If n, # ny,

while o, = ("— + ”—') %. For |weiri| > 1, 04y > 0, and

__ (ne—np)ec
B |WeeTe |wen | Th

Oxy
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o2 +o?, ! a2 - . .
p=|—= >~ [ =] . This saturates to a constant because o,, « B ~! while

Oxx Oxx

04y X B72.
Influence of Open Orbits

For the sake of concreteness we will first consider a model which is extremely
simple and has open orbits to see what happens. Suppose there is a section of the
Fermi surface with energy given by

2
e(k) = h—(kf +k2), (13.32)
2m

i.e. (k) is independent of k, as is shown in Fig. 13.6. Again take the magnetic field
in the z direction. Then the orbits are all open orbits, and run parallel to the cylinder
axis. Note that

hk, hk,
v, = , vy,=0, and v, = —. (13.33)
m m

Look at equations of motion in the presence of B, and E = (E,, E,, 0):

hk, = —e (Ex + %vyBZ) = —¢E,,
hky = —e (Ey — 1v,B.) (13.34)
k., = 0.

The equation of motion for Ak, can be written as

[
o

(13.35)

Uy = —

We have completely neglected collisions so far; they can be added by simply writing

Fig. 13.6 A model energy surface with open orbits
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Uy + — =— (13.36)
m
Then in the steady state we have
eE,. T
Uy = — . (13.37)
m
If n, is the number of open orbit states per unit volume, then
nee®t (10

90open = T (O 0) . (13.38)

Here we have used 0, = 0,, = 0,, = 0; this is correct because j, depends only on
E, and v, must be zero since the mass in the y direction is infinite.

Now suppose there is another piece of Fermi surface that contains n. electrons
per unit volume all in closed orbit states. We can approximate the contribution of
these electrons to the 2 x 2 conductivity matrix by

1 1
2 w2T?

neet g weT
I Closed — (1339)
m L _1
WeT  w2T?
The total conductivity is simply the sum of g., and o geq:
e Ne
627' no + w2T? weT
or = — (13.40)
m _ne ne
wWeT Ww2T?

Let n,, the concentration of open orbit electrons, be equal to a number S times #.,
the concentration of closed orbit electrons. Then we have

. e 1 1
o=z (S ) B+ EE

i (13.41)
iy =557 [~ LB + By |

Let us consider two different cases:

1. In the standard geometry j, is nonzero but j, is zero.
2. In the standard geometry j, is nonzero but j, is zero.

Case1:

Jy = 0 implies that
Ey, =w.rE,. (13.42)
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Therefore, j, is given by

2 1
=T (3+ — + 1) E,. (13.43)
w

The magnetoresistivity is f— giving

__m/(nee’r) m/(nee’r)
S+ s+ S+1

2,2
T

as B — oo. (13.44)

Thus, in this geometry the magnetoresistance saturates as B tends to infinity.
Case?2:

Jr = 0 implies that

1
Ey=———F——CE,. (13.45)
WeT (8 + wlez)
This means that 5
. nee’t 1 1
Iy = m |:ng2$ +1 + wcsz] Ey. (13.46)

But the magnetoresistivity is % and it is given by

2, 2¢ 2 25 1 S
_ M wrwer S+ om wirlas B — co.  (13.47)
nee?T w2t (S + 1) + 1 nee’r S+ 1

p

Since p is proportional to w?, the magnetoresistance does not saturate but increases
as B? as long as S is finite.

13.4 Magnetoconductivity of Metals

We consider an electron gas for which the energy is an arbitrary function of k. We
introduce a uniform dc magnetic field By, and an ac electric field E of the form

E o e iar, (13.48)

The Boltzmann equation is

r—h

T

af e v
E—FVVf—ﬁ(E—F;XB(])ka——

(13.49)
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As we shall see later, some care must be taken in the collision term — , to choose
fo to be the proper local equilibrium distribution toward which the electrons relax. !
For now we shall just put fo = fp, the actual thermal equilibrium function for the
system. This gives the conduction current correctly, but omits a diffusion current
which is actually present. We put f = fy + f1 and then the Boltzmann equation
becomes

f=fo
T

iwfl—iq~vf1—eE~v%f0——( x By) - ka1+£:O. (13.50)
5
Here we have used the fact that
0 0
Vi fo = ﬁvk _ 2l (13.51)
Oe e’

and have linearized with respect to the ac field. We can write the Boltzmann equation

as
(I +iwr —iq-v7)fi — —(V x Bg) - Vi fi = eTE - Va_fo (13.52)

From the equation of motion, we remember, when the ac fields are E = 0 = B, that
. e

hk = —-v x By, (13.53)
c

and we were able to show that

1. The orbit of an electron in k space is along the intersection of a surface of constant
energy and a plane of constant k,.

2. The motion in k space is periodic either because the orbit is closed, or because
an open orbit is actually periodic in Kk space also.

We introduce a parameter s with the dimension of time which describes the position
of an electron on its orbit of constant energy and constant k,. By this we mean that
if s = 0 is a point on the orbit, s = T corresponds to the same point, where T is the
period. The equation of motion can be written

dk
W= = Sy x By, (13.54)
ds c
and the rate of change of ¢ is
de dk dk
ds ke ds v ds

because v is perpendicular to v x By. Now consider % as

ISee, for example, M.P. Greene, H.J. Lee, J.J. Quinn, and S. Rodriguez, Phys. Rev. 177, 1019
(1969).
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af; ke
g—kal'g—_g(VXBO)'kal- (13.55)

This is exactly one of the terms in our Boltzmann equation which can be written as

1
%+(—+iw—iq~v) fi =eE~V%. (13.56)
s T Oe

Closed Orbits:

Let us consider closed orbits first. We can write
h— = —-v| x By, (13.57)
c

where v, is the component of v perpendicular to By. Let kx and k7 be the normal
and tangential components of k; as shown in Fig. 13.7. Then

dk
T _ ¢y By, (13.58)
ds c

because v is in the direction of ky. Solving for ds gives

he dk
ds = 1< 48T (13.59)
eB() V]

Thus, the period is given by

2 h dk
T(e k) = _ar e e

= — . (13.60)
CUc({':a kz) EBO vy

From now on we shall use the independent variables ¢, k,, and s to describe the
location of an electron in k space.

de = Vie - dky = hv | dky, (13.61)

Fig. 13.7 A closed orbit in k space
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and hence

dkny = —. (13.62)
hUJ_

Now, the volume element in k space is given by

5 de ev)
d°k = dk, dkn dkt = dk,— —— Byds,
hv, hc
hence
3 eB()
d’k = ——dk,deds. (13.63)
h%c

Now let us return to the differential equation given by (13.56)

%4_ l+iw—iq-v fIZeE-V%. (13.64)
Os T Oe

Multiply by
ef(;' dz’[}-&-iw—iq-V(t')]. (13.65)

Then we have

elo ar'[F+iv—iqv)] {_61353‘) +[L+iw—iq-v(s)] f1(s)}

(13.66)
=¢E - V(s)%eﬁ; dr'[ 3 +iw—iqv()]
Notice that the left hand side can be simplified to write
0 OFo 1 yrflos oo
a |:fl CJU ar' (L +iw—igqv(r )):I —¢E . V(S)a_];oejo dr' (L +iw—iqv()) ) (13.67)

Integrate and get

fl (S)ejos dt'(%«wa[q.V(t’)) _ /S di ¢E - V([)?C‘M d[’(£+i»’d7[q-v(t/))’ (1368)
(3

—00
or s 5
fi(s) = / dt ¢E - V(t)a—foe* I dr (A tiv—iqv)) (13.69)
—o0 5
Note that the lower limit #+ = —oo is chosen in the integration over ¢ for a very

importantreason. fj(k;, €, s) mustbe a periodic function of s with period 7'. Consider
the function f(s + 7T') for an arbitrary lower limit (LL)

s+T afo _f.v+T dt/(1+iw—i ~v(r’))
fis+T) = / dt eE - V(I)Ee , T q . (13.70)
LL
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Nowletw=t—T,sothatt=s+7T — w=sandt=LL — w=LL-T.
We know v(¢) is a periodic function of ¢ with period 7. Likewise, if we let t' =
w’' + T, we can get

s B i
fis+T) = / dw eE - V(w)ﬁe_hd“) [+ +iw—igve)],
LL-T 0e

Itis obvious fi(s + T) = fi(s) if LL — T = LL. This is valid for LL. = —o00 as we
have chosen. Now look at the exponential

/ dt’ (; +iw—iq- V(t/)) = (% + iw) (s—1) —iq-[R(c kz,5) — R kz, )],
t

(13.71)
so that

s 0 , N ,
fl (5, kZ? s) — / ds/ eE . v(s/)ﬁ_‘ioe_(%'ﬂw)(s—s )+lq-[R(6,k;,s)—R(£,kg,s )] (1372)
—0

The current density is given by
. 2 3
i, 1) = W (—E)Vfl d’k. (13.73)

Or, substituting the result of (13.63) for d>k, we have

2e B
il / dedk.dsv fi(e, k., 5). (13.74)

D= =508 T

Now substitute the solution fi (¢, k,, s) given by (13.72) to obtain

: o2 00 00 T(e,k;)
i) = -2 [*de [ dk Ddsv
(2n)’h? fo f oo “"z Jo (13.75)

x [* ds'eE - v(s/)% e~ (FHiw) =5+ q [R(e.ko.5)—R(Ek:s]
We define the conductivity tensor by j = o - E. Then it is apparent that
263 B, o0 A fi 00 T (e.kz) —(L4iw)s+iqR(e ks
o = ol o de (< 52) [ dke Jy O ds vie ke, s)em (s HaREE

X [* . ds' V(e ky, s")e(F ) —iaREk
(13.76)
We assume that 7 depends only on e. Now look at the function v(e, k;, s)e/ 4 RE k9,

The position vector R(g, k., 5) consists of two parts

1. a periodic part Ry (e, k;, $):

R, [e, ko, s + T(e, k)] = R, (&, ks, ) . (13.77)



418 13 Semiclassical Theory of Electrons
2. a nonperiodic or secular part Rs(¢, k;, §):
R(¢, k;, ) = vs(g, k)s. (13.78)

Remember that the variable s is time. The vy is the average value of v(e, k;, s) over
one period and is written as

1 T
(e k)= —— k., 1) dr. 13.79
vs(g, k) T(E,kz)/t v(e, kg, 1) ( )

Then, we have, since R = R;, + vgs,
v(e, ky, 5)e!IREKS) — vy k., 5)edVsEkIseiaR (Ekers) (13.80)

Thus for ¢ we can write

o = o [ de (= 22) [ dke Jy O ds v, ke, e i e Rl

% el 4Rp(ekz.5) fjoo ds'v(e, k,, s/)e[;+iw7iq-v5(s,kz)]s’efiq-Rp(g,kz,s’).

(13.81)
We now expand the periodic function v(e, &, 5)e! 4R (Ek9) in Fourier series in s. Let
we(e, k) = T(E k 5 Then
V(e ke, )e R STy o g yeinees, (13.82)
n=—00

Obviously the Fourier coefficients v, (¢, k) are given by
(g, k 27 Jwe i ) )
Vo(e, k) = % / dsv(e, k,, s)eiaRo(Ekes) —inwes (13.83)
u 0

‘We substitute the Fourier expansions, (13.82), into the expression for ¢ to obtain

g = (227;3%]2 fO dE( 8fo)f dk IZT/wcd e [ +iw+iqvs(e,k;)]s
X 3% Vale, ke [0 ds! el tivmiavekols (13.84)

X D% VE(e, ke,

First perform the integration over s’ to obtain

s [L+iv—iqvs—in'w]s

. . . / ceLr

/ ds/ e[%+lw71q-v,(€,k;)*lwcn/]s - ' . . . (1385)
—00 - tiw—iq-vs—in'w,

Thus we have
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_ 2B 00 A fi
0 = Gyt fo de ( 0) f dk;
V(e k V(2. kel = s

” n'=-00 %-‘riw—iq-vs—in’wC

(13.86)

X f“ dsY.
W ioe s i
However, |; T/ g gf (1=nwes — 285, Thus we have

o= 26333(; /oods( 8f0)/ dk. 27 Zoo 1 Vu (e, ko)Vii(e, k) .
(2m)°h=c Jo Oe 0 we (e, kz) n=-00 H +iw—iq-vs—inwe

(13.87)

This can be rewritten

2¢” B a
= (2:)%02 Jo d (_a_éo) T
x f dk T(&‘ k )Zoo V(. k) v, (e,k;) (1388)
—00 Z s VT n=—00

1+ir[u—q Vi— T(ZYZ ):| .

This expression is valid even for the case of open orbits. For closed orbits it is

customary to define
EB() 2w

m*(e, k;)c - T (e, k;)

we(e, k) =
where m* is the cyclotron effective mass. Then o can be written

a= 2;227# Jo~ de (_%) ()
w(€.k)V, (€.k,
x [ dkom* (e, k) 300 G AACL)

—00 1+i7(e)[w—q-Vs—nwe(e,k;)]*

(13.89)

At very low temperatures the integration over energy just picks out the Fermi energy
because —% acts just like a ¢ function, and we have

62 0 Vn(EF’ kz)v*(EF’ kz)
= — dk, m*(k 1
7= 5T Er) /F,S_ m k) D, 1+ it(ep)lw — q - Vs — nwe(er, k2)]
(13.90)

where all quantities are evaluated on the Fermi surface.

13.4.1 Free Electron Model

For the free electron model m*(k;) = m is a constant independent of k,. We
shall assume that 7 is also constant. The energy (k) and velocity v are, respec-
tively, given by

e(k) = B
&) h?k (13.91)
vV ==

m
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a“d he] ce,
hk7
v j— <,
UJ‘ | J‘| Z m ( hZ Z) :

We shall choose s, the time along the orbit, such that

Uy = V) COSWcS,
vy = V| sinwcs.

(13.92)

Thus for v(e, k,, s) we have

P 2
v(e, k., 5) = ;(,/% — K2 coswes. ,/% — k2 sin ws, kz). (13.93)

The periodic part of the position vector is given by

R, (. k.. 5) = /vl(s, k., s)ds = 2 (sin wes, — cos wes, 0) . (13.94)
w,

C

Thus, we have

- |
iq-Ry(e. ke s) = EEED (0 Gnwes — g, coswes) (13.95)

We

There is no loss in generality incurred by choosing the vector q to lie in the y — z
plane, i.e. g, = 0. Thus

ivy (e, k;)
We

iq-Rye k) = qy COS WS. (13.96)

Now let us evaluate the Fourier coefficients v, in (13.83)

’k 27 fwe iv) (e.kz)qy N
V(e k) = —wc(;r 2 / dsv(e, k;, s)e_%“’w“_’”““‘. (13.97)
0
Letw' = q:)i and x = w,s to have
1 2w o )
vu(e, k;) = %/ dxv(e, k,, x)e™" cosxminx, (13.98)
0

Now, we use the relation

iw'sinx e INailx
e :Z;:m Ji(wHe'™. (13.99)
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One can easily see that

efiw’cosx — eiw/sin(er%') — 272700 Jl(w/)eilxeil‘%"

=200 (=D (et

Thus we have

V(e k) = 0 Tdx v(e, ky, x)eT 30 (=) Ji(w')e'™,
= z,zm(—z)’J,(w’)E ST dx v(e, ky, x)ei

Now let us investigate the individual components of v,,.

Un, (e, k) = Zfifoo(—i)ljl(w’)%vj_ foh dx cosx e=mx

_ ZZ——oo( l)l] (') ] 277 27r dx [ei(lfnwtl)x + ei(lfnfl)x],

=537 (=D)w) [51n 1+ Ot ]
_c EX vy [Jpma W) = Jur (@)]

In an analogous way we can obtain

_nyn—1
o, (6. k) = ’2).

and
Un, (€, k) = (=0)"v: T, (W),

Here we recall some properties of Bessel functions:

2m+n 1

[o¢] m Z
(@) :Zm=0(_l) (E) ml(m +n)!’
J_n(2) = (=1)"J,(2),
. I sz\»
tim =5 (3)
d 1
Ji(z) = i@ = [ w-1(2) — a1 (2)]

and
n 1
Sh@ =3 [Jn-1(@) + Jur1 (2)] -

Using some of these equations we can write the vector v, as

ivLJ,;(w’)
Va(e, k) = (=0)" (nwc/qy) Jn(w')
v Ju(w')

vi [t @) + Jur ()]

421

(13.100)

(13.101)

(13.102)

(13.103)

(13.104)

(13.105)
(13.106)

(13.107)

(13.108)

(13.109)

(13.110)
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If we take the zero temperature limit, we have (—%) = §(e — () and, hence, we
have

2 kr k * k
B AP SR LR
2m2h? )y, n=—c0 | —iT[nw(ef, k;) + q - v — w]

Exercise
Demonstrate (13.103) and (13.104) from (13.101).
For free electrons, the secular part of the velocity is simply v,, thus

q - Vs = q:v; = q;vpcos b,
dk, = Fdv, = Fd(cos 0),

: _ (13.112)
v, =,/vg —v? = vpsinb,
w = D — DY i) = wsin 6.

We We

Here the dimensionless parameter w is defined by w = q;ﬂ By substituting (13.112)
into (13.111), we obtain

o= [ d(ost)
i sin6J, (w sin )
( 1% Jy (w sin @) ) (—isin6J;(wsin6), £ J,(wsin6), cosb.J,(wsind)) (13.113)
cos 0J, (w sin 6)
l—iT[an(EF,kz)—w+qva cos r‘)]

3

where J)(x) = dJ,(x)/dx and oy is the dc conductivity given by o¢ = ”O’Zi In
addition, sin 8J) (w sin§) = %Jn (w sin #). Hence we can rewrite (13.113) as

o= 3% > f_ll d(cos 0)
i 2 J,(wsin6)

& J,(w sin 0) (ﬂ'ijn(w sin 6), 2 J, (w sin §),cos 6.J, (w sin 6) ) (13.114)
w

w

cos 0.J, (w sin 6)
1—i7[nwe(eF,k;) —w—+q; vE cos 0]

This result was first obtained by Cohen, Harrison, and Harrison.?

2M.H. Cohen, M.J. Harrison, and W.A. Harrison, Phys. Rev. 117, 937 (1960).
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13.4.2 Propagation Parallel to By

To acquaint ourselves with the properties of o, let us first evaluate it for the case
q || By,i.e. q = (0, 0, g). In the limit g, — 0, w — 0 and, hence, we have

L Jp(wsin ) —> % sjn 0(0n.1 + 0n.—1),
i2Jy(wsinf) — £sin0(S,1 — 6u-1), (13.115)
cos 0J, (w sin @) —> cos 69,,.o.

Itis easy to see that 0., = 0.« = 0,; = 0, = 0 because of the ¢ functions involved.
The nonvanishing components of ¢ are oy, = 0y,, 0y, = —0y, and 0. They can
easily be evaluated to be written

3 /1 d(cos 8) cos? 6 (13.116)
0, = =0 , )
“ 7 2% | T+ iwr —igupTcosf
and
, 3 /' d(cos 0) sin’ 6 (13117
O+ = Oyxyx 1Oxy = — O . . . .
£ = Oax F10x 4°° 1 14+ i(wFw)T —iq,vpT cos b

Notice that when ¢, — 0 the integral in (13.116) becomes fll d(cos ) cos?f = %

so that, in that case, we have
oo

T 1tiwr

(13.118)

Ozz

The g, — 0 limit of the integral in (13.117) becomes fll d(cos6) sin®6 = ‘31 so that

a0

=—. (13.119)
14+i(wFw)T

O+

13.4.3 Propagation Perpendicular to B

We consider the case q L By, i.e. q = (0, g, 0), resulting w = "wﬂ to write (13.114),
as

o= 3% Z:;foo fil d(cos8)
i 2 J,(wsin 0)
%Jn(w sin 6) (—i%],l(w sin 6), 2 J, (w sin §),cos 6.1, (w sin 6) ) (13.120)
cos 0.J, (w sin )

1—iT[nwe (e, k;)—w]

We define the following functions
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cp(w) = %f_ d(cos ) cos® 0J(wsin ),
sew) =1 1 d(cos ) sin® O[J, (wsin O) %, (13.121)
gn(w) =1 [1 d(cos§) J2(wsin 6).

It is obvious that the angular integrations appearing in o, 0., 0., and o, vanish
because the integrands are odd functions of cos 6. For the nonvanishing components
we obtain

=300 l;(::) — (13.122)
Oyy = :1%0 :iioo % (13.123)
Oxy = —Oyx = 320;))1' Z:i_oo % (13.124)
and . . ()
0w =300y, T — (13.125)

13.4.4 Local Versus Nonlocal Conduction

What we have been studying is the nonlocal theory of the electrical conductivity of
a solid. It is worth emphasizing once again what is meant by nonlocal conduction,
and in which case the nonlocal theory reduces to a local theory. The result we have
obtained is

Jj(q,w) = 0(q,w) - E(q, w). (13.126)

It is easy to show that this expression corresponds to the relation
j, ) = /E(r —r,t—1t)-E@, "hd*dr. (13.127)

Let us take the Fourier transforms of each side by multiplying by e’4"~/“" and inte-
grating

[, 0)el 9T d3rdt
= [K(@—rx/ 1 —1) B )e/d™ il el =) =iet=1q3, /41 d3rdy.

The left hand side is simply j(q, w). The right hand side can be simplified by letting
r—r=xandt—¢ =s
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j(q’ Ct)) — /K(X’ S)eiq.x—iwsd3xds '/E(I’l, t/)eiq.r’—i;,.)t’d3r/dt/ )

(13.128)
a(q, w) E(q,w)
This is just the relation we gave in (13.126) if
o(q, w) :/E(x, $)elIXTiws By s
or
/ ’ 1 iw(t—t')—iq-(r—r’) 43
Ko-r,t—t)=—— [ o(q,w)e” q d’qdw. (13.129)
2m)*

Consider for a moment what would happen if o(q, w) were independent of q. In that
case we have | ) 3
- —_ 1 —iq-(r—r
K(r r ’ W) (271.)3 fg(w)e/ d q7 (13130)
=oW)di(—r).
Thus we have
jor,w) = o) - E(r,w). (13.131)

This is just Ohm’s law in the local theory, in which j(r) depends only on the electric
field at the same point r. Thus, the local theory is the special case of the general
nonlocal theory, in which the q dependence of ¢ is unimportant. By looking at the
expressions we derived one can see that ¢ is essentially independent of q becoming
local if

1. gl « 1, in the absence of a magnetic field, where [ = vpT is the electron mean
free path.

2. qire K lorgily < 1,and q.lp < 1, in the presence of a magnetic field. Here
r¢ 1s the radius of the cyclotron orbit.

13.5 Quantum Theory of Magnetoconductivity of an
Electron Gas

The evaluation of o(q, w, By) for a quantum mechanical system is very similar to our
evaluation of the wave vector and frequency dependent conductivity in the absence
of the field By. We will give a very brief summary of the technique here.?

The zero order Hamiltonian for an electron in the presence of a vector potential
Ay = (0, x By, 0) is given by

3For details one is referred to the references by J.J. Quinn and S. Rodriguez, Phys. Rev. 128, 2480
(1962) and M.P. Greene, H.J. Lee, J.J. Quinn, and S. Rodriguez, Phys. Rev. 177, 1019 (1969).
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1 5 e 2 2
Hy=— |p*+ (py n —Box) + 2. (13.132)
2m c N

The eigenfunctions and eigenvalues of Hj can be written as

_ _ 1aikyytikz Tk,
lv > = |nkyk, >= 7™y, (x+ )

R2k? 1
Ey = Enky k, = S + hw, (n + 5) .

(13.133)

Perturbing self consistent electromagnetic fields E(r, ¢) and B(r, ¢) are assumed to

be of the form e/’ ~/4" These fields can be derived from the potentials A(r, ¢) and

o(r, 1): . A
E=—-1A-V¢=-A+iqo,

c

B=VxA=-iqxA. (13.134)
As in the Lindhard case, the theory can be shown to be gauge invariant (we will not
prove it here but it is done in the references listed above). Therefore, we can take
a gauge in which the scalar potential ¢ = 0. Then we write the linearized (in A)
Hamiltonian as

H = Hy+ Hi, (13.135)

where Hj is given by (13.132) and H, is the perturbing part
H = 2£(VO-A+A~VO). (13.136)
c

Here vy = % (p + on) is the velocity operator in the presence of the field Ag. From
here on, one can simply follow the steps we carried out in evaluating o (q, w, By = 0).
We use

Hylv > =¢,|lv >,

polv > = folen)lv > . (13.137)

The perturbation is given by (13.136) and use that
A(r, 1) = A(q, w)e™" 19T,

The resulting expression for j(q, w) can be written (for the collisionless limit where
T — 00)

W2
i@w =-+= ©[1+1(q,w)] - A(q, w). (13.138)
me
Here wg = ‘”T:’n—"ez and ng = % The symbol 1 stands for the unit tensor and

I(q,w) = %Z % <V|IV@)v >< V|V(g)|lv >*. (13.139)

%%
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The operator V(g) is given by
1 1 .
Vig) = —vw"‘r + Ee"”vO, (13.140)
and vo = L {p + ¢A¢}. The matrix elements of V(g) are given by

< VIVl > = 0K, ky + g0k, ke + g 2 (ke + ) fun(ay).
A2 L)
()" xG ).

. A2 -
< V/|Vx(4)|l’ > =6(kl,, ky +¢Iy)5(k£a kz +qz) {l (%) X( ((Iy)}

< V/|Vy(Q)|V > =0k}, ky +Qy)5(kés kz +qz) [

(13.141)

In these equations we have taken ¢, = 0; this can be done without loss of generality.
The function f,,(q,) is the two-center harmonic oscillator integral:

o0 hq
Jun(qy) = / Uy (x + —y) u, (x)dx, (13.142)
o0 muwe
and
XS (g) = n+ D2 fynii(qy) £02 frai(qy). (13.143)

The function f,, also appears in another useful matrix element
< V[ v >= 6K}, ky + qy)0 (K., k: + q2) fun(gy)- (13.144)

The function f,, can be evaluated in terms of associated Laguerre polynomials. For
n’ > n, we have

4

1/2
fun(q) = (—') g=m2e=t2 ' =n gy, (13.145)

_hg*

where £ = TN

and L (&) is the associated Laguerre polynomial of order n. For
n' <n we have f,,(q) = (—1)"~ " fan(q). Some useful facts about the functions
fun are

fn/n (q) = in—n’ f_OOOO dx eiqxun’(x)un (x),

Fin(=@) = fuw (@) = (=1 " fyn (@),

ZOO n' n(Q) = ]

Do’ = n)fl(q) =€, (13.146)
5r 172

G = (%) X, @),

(' —n — &) fun(q) = 12X (@)
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Exercise
Demonstrate the various matrix elements shown in (13.141).
Exercise

Demonstrate the useful identities on the two-center harmonic oscillator integral
shown in (13.146).

13.5.1 Propagation Perpendicular to By

As an illustration, let us consider the case of q = (0, g, 0). We recall that

Jx(q,w) =0 Ex(q,w) + o'xyEy(Qs w),
J'y(f], w) = nyEx(q’ w) + O'nyy(CIs W)v (13147)
J2(q,w) = 0. E(q,w).

The nonvanishing components of o(g, w) can be evaluated and they are written as

w2

B 2
_ 2mwe 1 / O futan
Oxx (CI, W) = 471'?:;.) 1— n;:lc N an(\‘k:a fO(EnkZ) ( 0:; ) az(j/wc)2:| s

imwlw 1 ’ 2 e
0yy(4, W) = T N 2k ke JOE) Fivan =7 (13.148)
. o dwe 0((]2<Tyy)
Oxy(g, W) = =0y = 550 =5.

wp 2 1~ 2 22 a
0:(q.w) = s | = o w nkyko Joenr Dk fn+a,nm] :

In these equations the sum on « is to be performed from —n to co (because 0 < n’ =
n + a < 00). The summations over n, ky, k, extend over all values of the quantum
numbers for which ¢, < ¢, where ( is the chemical potential of the electron gas in
the field By. This restriction is indicated by a prime following the summation sign.

The semiclassical limit can be obtained by replacing the sum over z by an integral.
Remember that in general we can write

mwe L

L\? TR mw. 2
3 :>2(E) Z/o dky/dkz e dkzzn:, (13.149)

nkyk;

where 2 is the volume of the sample, 2 = L3. We define ng = ML — % and let
n = ngsin” 6. For zero temperature, we can integrate over 6 from § = 0 to § = Z
instead of summing over n. For ng >> 1 itis not hard to see that the main contribution

to the integrals comes from rather large values of n. For large n, we can approximate

Fotan = Jo [(4n 4+ 2a 4+ 2)!2¢' 2] >~ J,(wsin6), (13.150)
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where w = qwﬁ By substituting into the expressions for the components of g we
obtain

300 — Sa(w)
O =— . , (13.151)
driv — 14 owe/w

where

/2
So(w) = / d0sin® 0 [J. (wsin )]’ . (13.152)
0

Equation (13.151) is the semiclassical expression we already obtained in (13.122) in
the collisionless limit.

The quantum mechanical conductivity tensor can be written as the sum of a
semiclassical term and a quantum oscillatory part

o(q,w) = (g, w) + (g, w), (13.153)

where the semiclassical part 05 has been given earlier. As an example of the quantum
oscillatory part we give, without derivation, one example

3 w? W& 1 9
Q _ ~ P 1 ! .
i 262 driw |: + 3w2 Z a? — (w/we)? ( + waw) cu(w)j|

€ a=—o00
(13.154)
Here 4, is a quantum oscillatory function of the de Haas—van Alphen type and is

given by
kBT °° (=1)"v="2sin (_22240 — %)
Oy = . . (13.155)
sin. h—wc

The function ¢, (w) was defined by (13.121) in the discussion of the semiclassical
conductivity. If kg T becomes large compared to fuv., the amplitude of the quantum
oscillations becomes negligibly small and ¢ reduces to the semiclassical result ¢5¢
given previously. What the quantum mechanical conductivity tensor contains, but
what the semiclassical one does not, is the quantum structure of the energy levels.
This, of course, determines all the guantum effects like

1. de Haas—van Alphen oscillations in the magnetism,
2. Shubnikov—de Haas oscillations in the resistivity,
3. quantum oscillations in acoustic attenuation, etc.
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Problems

13.1 The energy of an electron in a particular band of a solid is given by

21,2
PR PR

S(kxs kyv kz) = m m s
x y

m T

where —7- < k; < 7 is the first Brillouin zone of a simple cubic lattice.

(a) Determine v; (k) fori = x, y, and z.

(b) Show that 7i (k; (1), k; (1)) = (v/2m;e coswet, \/2m je sinwt) where (i, j) =
x or y for a d.c. magnetic field By in the z-direction.
(c¢) Determine w, in terms of m;, By, etc.

13.2 Consider an electron in a two-dimensional system subject to a dc magnetic
field B perpendicular to the system. The constant energy surface of the particle is
shown in in Fig. 13.8.

(a) Sketch the orbit of the particle in real space.
(b) Sketch the velocity v, (¢) as a function of 7.

ky

Surface g (k) = CONSTANT

Fig. 13.8 A constant energy surface (k) in a two-dimensional system
13.3 Take direction of current flow to make an angle 6 with x axis as is shown in

Fig. 13.9. First, transform to x” — y’ frame. Then, put j,» = 0, and check for what
angles 6 the magnetoresistance fails to saturate.

Yoy
wl
(/ {’C

Fig. 13.9 A simple geometry of current flow
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13.4 Consider a band for a simple cubic structure with energy (k) given by (k) =
golcos(kya) + cos(kya) + cos(k.a)], where a is the lattice constant. Let an electron
at rest (k = 0) at r = 0 feel a uniform external electric field E which is constant in
time.

(a) Find the real space trajectory [x(¢), y(¢), z(¢)].
(b) Sketch the trajectory in the k-space for the electric field E in a [120] direction.

13.5 Consider an electron in a state with a linear energy dispersion given by (k) =
+hvp|k|, where k is a two-dimensional wave vector. (It occurs in the low energy
states in a graphene—a single layer of graphite.)

(a) When a dc magnetic field B is applied perpendicular to the graphene layer,
write down the area S(¢) and sketch S(e,,) for various values of n.

(b) Solve for the quantized energies ¢, and plot the resulting &, for —5hw. <
&n < Shwe.

(b) What can you say about the effective mass of the particle in a graphene subject
to the magnetic field B?

13.6 Consider two-dimensional electrons with a linear dispersion given by (k) =
hvg|K|, where k is a two-dimensional wave vector. Now apply a dc magnetic field B
perpendicular to the system. We shall assume that 7 is constant.

(a) Write down the v(g, s) and the periodic part of the position vector R, (¢, s).
(b) Evaluate the Fourier coefficients v, (¢), and discuss the conductivity tensor &
defined by j = ¢ - E.

Summary

In this chapter we study behaviors of Bloch electrons in the presence of a dc magnetic
field. Energy levels and possible trajectories of electrons are discussed, and simple
two band model of magnetoresistance is illustrated including the effect of colli-
sions. General expression of semiclassical magnetoconductivity tensor is derived
by solving the Boltzmann equation of the distribution function, and the results are
applied to the case of free electrons. The relationship between the local and nonlocal
descriptions are discussed. Finally quantum mechanical theory of magnetoconduc-
tivity tensor is described and quantum oscillatory behavior in magnetoconductivity
of Bloch electrons is compared with its semiclassical counterpart.

In the presence of an electric field E and a dc magnetic field B(= V x A), an
effective Hamiltonian is given by H = ¢ (% + éA) — e¢, where (K) is the energy
as a function of k in the absence of B. The equation of motion of a Bloch electron in
k-space takes the form

Tk = —¢E — Sv x B.
C

Here v = %Vks(k) is the velocity of the Bloch electron whose energy (k) is an
arbitrary function of wave vector k. The orbit in real space will be exactly the same
shape as the orbit in k-space except that it is rotated by 90° and scaled by a factor



432 13 Semiclassical Theory of Electrons

¢B:k, =2 xr,. The factor <2 is 152, where [y is the magnetic length. The orbit
of a particle in k-space is the 1ntersect10n of a constant energy surface (k) = ¢ and

a plane of constant k,:

de dk (
dt B

The area of the orbit A(e, k;) in real space is proportional to the area S(g, k;) of

the orbit in k-space: S(g, k;) = (%)2 Ale, k;). The area S(e, k;) is quantized by

S, k) = 2”3 (n + ~) and the cyclotron effective mass is given by m*(e, k;) =
12 9S(e,k,)
27 0

k) The Bloch electron velocity parallel to the magnetic field becomes

ho 0S(e. k)

(e k) = —
v k) = ek ok

The transverse magnetoresistance is defined by W = AR(B;). The simple
free electron model gives AR(B;) = 0, which is different from the experimental
results.

The current density is given by j(r, ) = (27T)3 J(=e)vfi d3k. In the presence of a
uniform dc magnetic field By, the semiclassical magnetoconductivity of an electron

gas is written as

e? s~ Vo (er, k)Vi(er, k)
2= g Ten) | dhkem k) n;m 1+ i7(en)w — q - Vs — nwe(em k)’

where v, (¢, k;) is defined by
, k 27 Jwe ) )
v, (5‘, kz) _ WC(€ z) / ds V(€, kZ’ S)ezqu(s,k:,x)fmwcs-
2w 0

Here R (e, k., s) denotes the periodic part of the position vector in real space.

For the free electron model m*(k,) = m is a constant independent of k, and
the periodic part of the position vector is given by Ry(e, k;, 5) = == (sinws,
— cos w,s, 0) . For the propagationq L By, i.e.q = (0, g, 0), the nonvamshmg com-
ponents of semiclassical conductivity ¢ are

o0

5n (W) 300 ~ n?g,(w)
= 3 —, = —_— D
T = 300 n;w I—irtwe—w) 77 w? A T it —w)

[ee]

3000~ ng, (w) cn(w)
Oxy = —Oyx = Z 3 Oz = 309 Z

2w 1 —it(hw, —w)’ 1 —itT(hw, —w)’

n=—0o0

Here c,(w) = %fll d(cos 0) cos’> 0J*(wsinb), s,(w) = %fll d(cos 0)) sin® 0[J;
(wsin#)1%, and g, (w) = % fil d(cos 0) J?2(w sin ).
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In the presence of a vector potential Ay = (0, x By, 0), the electronic states are
described by Hy = 5-- [ pi+ (py+ fBox)2 + pf] The eigenfunctions and eigen-
values of Hj can be written as

— _ 1 Likyy+ik,z fiky
lv > = |nkyk, >= ;e'™? uy, (x + oo )

h2k? 1
Ev = 5n,k}.,k2 = <+ hwc (}’l + 5) .

2m

The quantum mechanical version of the nonvanishing components of o(g, w) are
given, for the case of q = (0, ¢, 0), by

— w}% 1 mec 1 !/ 0f/l+l},n 2 o
T (g W) = s | 1= T Zokka JoCEn) (=5 T —(wlw? |
imwlw |~ ) ,
oy, W) = 55w nkykza fO(e”kz)f"%w"#W’

iw, 0(g%0yy)
1W,
Oxy(q, W) = =0y = 350 =5

wp 2h 1 N 2 2 o
0o w) = o [1= 2k S o Foent K S |-

where f,,(gy) is the two-center harmonic oscillator integral:

fn’n(Qy) :/ Up (x + hqy ) U (x)dx

00 mwe

and
XD(g) =+ DV fynii(qy) £0 fra1(gy).

The quantum mechanical conductivity tensor is the sum of a semiclassical term and
a quantum oscillatory part:

a(q,w) = 0°(q, w) + (g, w).



Chapter 14
Electrodynamics of Metals

14.1 Maxwell’s Equations

There are two aspects of the electrodynamics of metals. The first is linear response
theory and the second is the problem of boundary conditions. We have already dis-
cussed linear response theory in some detail in Chap. 11. Its application to waves in
an infinite medium is fairly straightforward. The problem of boundary conditions is
usually much more involved. We shall cover some examples of each type in the rest
of this chapter.

We consider an electromagnetic disturbance with space—time dependence of the
form e'“!~14T Maxwell’s equations can be written, in Gaussian units, as

10B
VXE=——— (14.1)
c Ot
and
10E 4r,
VxB=-—+4 —jr+47V x M. (14.2)
c Ot c

In (14.2) jy is the total current in the system; it includes any external current and the
diamagnetic response current in the medium. The term M is the spin magnetization
in the case of a system containing spins. Equation (14.1) can be written as

B=¢xE, (14.3)

where £ = Cw—q Therefore the magnetic induction B can be eliminated from (14.2) to
have

4mi 41
EXEXE)+E=—jr+ —&xM,
w c
or i 4
Tl T
€€ E)—CE+E=—jr+ —{x M. (14.4)
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Normally the total current jr can be written as

Jt =Jo + Jina (14.5)
where jo is some external current and jing is the current induced (in the electron gas)
by the self-consistent field. The spin magnetization My and the induced current jig

are found in terms of the self-consistent fields E and B from linear response theory.
For example ji,g might simply be the electron current density

je=oc-E, (14.6)
and the spin magnetization M will be some similar function of B
M; =a-B. (14.7)

For the moment, let us ignore the effect of spin to drop the term M;. Then (14.4)
can be solved for jr.

ir=

I~

'E, (14.8)

where )
_Yre_p1-
L= {€-D1-¢gg}. (14.9)

If we choose g, = 0 (as we did in linear response theory), I” can be written

2 2 2
ic2 qy +qz N % 0 0
2
I = m 0 q? — ”L"—z —q,q; . (14.10)
0 -4y4: 45 — %

Notice that I” is diagonal for propagation parallel or perpendicular to the dc magnetic
field (which we take to be in the z-direction).

14.2 Skin Effect in the Absence of a DC Magnetic Field

Consider a semi-infinite metal to fill the space z > 0 and vacuum the space z < 0.
Let us consider the propagation of an electromagnetic wave parallel to the z-axis.
Electromagnetic radiation is a self-sustaining oscillation of any medium in which it
propagates. Therefore, we need no external ‘driving’ current jj, and the total current
is simply the electronic current

Je(q, w) = a(q, w) - E(q, w). (14.11)
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But Maxwell’s equations require that jr = I” - E, and we have just seen that jp = je.
Therefore, the electromagnetic waves must be solutions of the secular equation

| —o|=0, (14.12)
which can be written
czqz
——r telqw) 0 0
0 —EC Loqw) 0 |=0 (14.13)
0 0 e(q, w)

Here we have introduced the dielectric function
4ri
e(qw)=1-—0o(q,w), (14.14)
w

and we have assumed that ¢ is diagonal (this is true for an electron gas in the absence
of a dc magnetic field). The transverse electromagnetic waves which can propagate
in the medium are solutions of the equation

2q? = We(q, w). (14.15)
In addition there is a longitudinal wave which is the solution of the equation

e(q,w) =0. (14.16)

Normal Skin Effect

In the absence of a dc magnetic field, the local theory of conduction gives

Wit /Am
S N (14.17)
1+iwr 1+iwr
Therefore we have
1 ing/w 14.18
e(q,w) = e (14.18)
or
1+ (W? — (,«JFZ,)T2 ) ngz 1419
Q. w) = 14 w?r? B le(l + w?72) (14.19)

Usually in a good metal w, >~ 10'°/s, a frequency in the ultraviolet. Therefore, in
the optical or infrared range w, > w. The parameter T can be as small as 10~"s or
as large as 1077 s in very pure metals at very low temperatures. Let us first consider
the case wr > 1. Then, since w, > w, we have
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%
e(g.w) = ——. (14.20)

Substituting this result into the wave equation ¢?>q? = w?c(q, w) gives

. Wp i
c 1)
We choose the well-behaved solution g = —% so that the field in the metal is of the
form ‘
E(z,1) = Ege™'=/°, (14.22)

What we find is that electromagnetic waves do not propagate in the metal (for fre-
quencies lower than wy), and that the electric field in the solid drops off exponentially
with distance from the surface. The distance 6 = < is called the normal skin depth.

If wr « 1, (this is usually true at rf frequen01es even at low temperatures with
pure materials) we have

ng wng
eqw)y~1l—i— =~ —i 5 when wp, > w. (14.23)
w w
The solution of the wave equation is given by
Wp (WT 172 .
g=+2(25) " a-i, (14.24)
c \2
so that the field E is of the form
E(z.1) = Egel'e= (D) (14.25)
Thus the skin depth is given by
2\ /2
s=S< (—) . (14.26)
wp \wT

If the mean free path / is much greater than the skin depth, [ >> ¢, then the local theory
is not valid. In good metals at low temperatures, it turns out that / ~ vg7 ~ 10’ nm
and 0 ~ 10 nm, so that / > ¢, and we must use the nonlocal theory.

Anomalous Skin Effect

The normal skin effect was derived under the assumption that the q dependence of
o was unimportant. Remember that this assumption is valid if g/ = qupT < 1. We
have found that the electric field varies like e ™%/, If § turns out to be smaller than
[ = vgT, our initial assumption was certainly incorrect. The skin depth ¢ is of the
order of
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o~ —. (14.27)
Wp
Therefore, if
we
< wT, (14.28)
WpVF

the theory is inconsistent because the field E(z) changes appreciably over a mean
free path [ contradicting the assumption that the q dependence of ¢ can be neglected.
The theory for this case in which the q dependence of g must be included is called
the theory of the anomalous skin effect. In the nonlocal theory, we can write, (here,
we take the y-axis to be perpendicular to the metal’s surface),

jey) = / dy'a(y. y') -EG). (14.29)

which is true for an infinite medium. However, we have to take into account the surface
of the metal here. We shall do this by using the formalism for the infinite medium,
and imposing appropriate boundary conditions, namely, the method of images.

14.3 Azbel-Kaner Cyclotron Resonance

The theory of the anomalous skin effect in the presence of a dc magnetic field aligned
parallel to the surface is the theory of Azbel-Kaner cyclotron resonance in metals. We
shall present a brief treatment of this effect, and leave the problem of the anomalous
skin effect in the absence of a dc magnetic field as an exercise (see Problem 14.1).
Let us choose a Cartesian coordinate system with the y-axis normal to the surface,
and the z-axis parallel to the dc magnetic field (see Fig. 14.1). For a polarization in

NN

Ned /

/
Y=0

Fig. 14.1 The coordinate system for an electromagnetic wave propagating parallel to the y-axis
with the surface at y = 0. A dc magnetic field By is parallel to the z-axis
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which E(r, ¢) is parallel to the z-axis, the wave equation can be written, since q is
along the y direction,

w? driw
(—cﬁ + ;) E(q,w) = jr(q, w). (14.30)

c2

This comes from the Fourier transform of the wave equation. For the case of self-
sustaining oscillations of an infinite medium, we would set jt equal to the induced
electron current given by o, (g, w) E(q, w). For the semi-infinite medium, however,
one must exercise some care to account for the boundary conditions. The electric
field in the metal will decay in amplitude with distance from the surface y = 0.
There is a discontinuity in the first derivative of E(r, #) at y = 0. Actually the term
—¢”E in the wave equation came from making the assumption that E(y) was of the
form €~9”. One can use this ‘infinite medium’ picture by replacing the vacuum by
the mirror image of the metal as shown in Fig. 14.2. The fictitious surface current
Jo o< 4(y) must be introduced to properly take account of the boundary conditions.
By putting j. (¢, w) = 0,,(¢q, w)E(g, w), we can solve the wave equation for E(g, w).
The fictitious surface current sheet of density jj is very simply related to the magnetic
field at the surface

. c . cH(0)
Joy) = 2—H(0)5(y) or Jo(q) = . (14.31)
us 2w
Solving (14.30) for E(q, w) gives
2iwH

E(g,w) = - 4(0.,)/C . (14.32)

—q¢>+ % — o (g, w)

Ez
Yy
MIRROR METAL
IMAGE OF METAL

Fig. 14.2 A semi-infinite medium in terms of infinite medium picture. An electric field E.(y) in
the metal is shown near the surface y = 0
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By substituting this result into the Fourier transform

1 [ iy
E(y) = —/ dqe 'Y E(q,w), (14.33)

)

and the surface impedance Z defined by the ratio of the tangential electric field at
surface to the total current per unit area

__EO) 4T E©)
C O idy ¢ H©)

(14.34)

we can easily obtain the electric field as a function of position and the surface
impedance of the metal. In (14.34), E(0) and H (0) are the electric field and the
magnetic field at the surface, respectively.
For the case of a transverse wave polarized in the x-direction instead of the z-
direction, o, is replaced by
a2,
OT = Oxy + —. (14.35)
Tyy

This is equivalent to assuming that electrons are specularly reflected at the boundary
y = 0.Figure 14.3 shows the coordinate system for a wave propagating perpendicular
to the boundary of the metal with polarization in the x-direction normal to the dc
magnetic field. One can see that although E(y) is continuous, its first derivative is

not: (dg—(;)) L= (ag—iy)) . Therefore, in defining the Fourier transform of
y=0 y=0~

PE(y)

oy We must add terms to take account of these continuities.

X —

&

(=)

NNV NN

\
<

/
Y=0

Fig. 14.3 The coordinate system for an electromagnetic wave propagating parallel to the y-axis to
the metal surface (y = 0) for the case of polarization in the x-direction. A dc magnetic field By is
parallel to the z-axis
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00 ) 2E
/ dy e””a8 (2y) = —qu(q) — igAEq + AE, (14.36)
—00 Yy
where oE -
AE), = (ﬁ) - ( (y)) , (14.37)
dy y=0+ dy y=0-
and
AE; = E@O") —E@0). (14.38)

For the case of specular reflection of electrons at the surface we take AE; = 0 and
AE( = 2E/(0"). This adds a constant term to the wave equation

2 w? ,  A4rmiw,
—¢ + 5 JE@.w) = —AE + ——je(q. w). (14.39)

This added term can equally well be thought of as a fictitious surface current jo(y)
given by
2 /

c“AE
Jo) = —— 95(y), (14.40)
TLW

so that the infinite medium result (or infinite medium wave equation) can be used if
we take for jr(q, w)
Jr(g, w) = je(q, w) + jo(q)- (14.41)

Actually the results just derived are valid in the absence of a magnetic field as well
as in the presence of a dc magnetic field. In the absence of a magnetic field the
conductivity tensor is given by

2

“p
(g, w) = ——{1+1(q,w)}, (14.42)
dmiw
where
m Solew) — folex) , ,
I(g,w) = — —— — < K|V, ]k K|V, |k >*. 14.43
q.w) = 5 302 T <K IValk > < KIVolk > (14.43)

14.4 Azbel-Kaner Effect

If we use the Cohen—Harrison—Harrison expression for o, (g, w), (13.125) we have

o0

cn(w)
=300 » 14.44
7= TN L T i (e — w) (1449
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where |
1
cn(w) = 3 / d(cos 0) cos® 6J2(w sin 0). (14.45)
-1

Since w >> 1 (i.e. we assume w = £ > 1 for the values of ¢ of interest in this
problem) we can replace J, (w sin 6) by its asymptotic value for large argument.

. [ 2 1\~
lim J,(z) &,/ — cos |:z - (n + —) —:|. (14.46)
700 Tz 2)2

Substituting (14.46) into the expression for ¢, (w), (14.45) gives

1
cr(w) ~ —. (14.47)
4w
Therefore, we have, for w > 1,
3w 1 & 1

P
L, A — _— 14.48
Oz 4milo 4w n;w 1 4+ nw/w ( )

I
> T (14.49)

and —i cot x = cothix, one can easily see that

3(,02 1 .
oo o | T IOT) (14.50)
16qvg WeT
This can be rewritten
) .
o o [T D) (14.51)
« 16qvg We ’ ’

In the limit w7 >> 1, this function has sharp peaks at w >~ nw,. In the limit wr > 1,
0., shows periodic oscillations as a function of w,.. These oscillations also show up
in the surface impedance. In using the Cohen—Harrison—Harrison expression for o,
we have obviously omitted quantum oscillations. By using the quantum mechanical
expression for g, for example 09° (g, w) given by (13.154), one can easily obtain
the quantum oscillations of the surface impedance.

Exercise

Show the asymptotic expression (14.47) by combining (14.45) and (14.46).
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14.5 Magnetoplasma Waves

We have seen that if we omit spin magnetization, the Maxwell equations for a wave
of the form e'“'~'4T can be written

jr=IL(q,w)-E. (14.52)

The total current is usually the sum of some external current and the induced electron
current. If one is interested in the self-sustaining oscillations of the system, one wants
the external driving current to be equal to zero. Then the electron current is given by
je = o - E, and this is the only current. Thus, jr = I” - E = ¢ - E, so that we have

|L—o|=0 (14.53)

gives the dispersion relation for the normal modes of the system.
In the absence of a dc magnetic field (14.53) reduces to

(W?e —c*gP*e =0. (14.54)

In the local (collisionless) theory, the dielectric function is given by

ex1— —g, (14.55)
so the normal modes are two degenerate transverse modes of frequency
w? = wg +c?q°, (14.56)
and a longitudinal mode of frequency
W = wp. (14.57)

Fig. 14.4 shows the dispersion curves of transverse and longitudinal plasmon modes
in the absence of a dc magnetic field. There are no propagating modes for frequencies
w smaller than the plasma frequency w.

Now consider the normal modes of the system in the presence of a dc magnetic
field. We choose the z-axis parallel to the magnetic field, and let the wave vector q
lie in the y — z plane. The secular equation can be written

Exx — 62 Exy 0
—ty & §& | =0. (14.58)
0 fygz €z — 55
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0 | : v
1 2 2
¢ q/ Wp

Fig. 14.4 The dispersion curves of transverse and longitudinal plasmon modes in the absence of a
dc magnetic field

In writing down (14.58) we have introduced & = %, and now assume a local theory
of conductivity in which the nonvanishing elements of ¢ are

2

ea(W) = ey =1 - 725,
wzw w
ey (W) = £y, (W) = _l% (14.59)

2

ex(w) =1— 4.

Because the dielectric constant is independent of q, the secular equation turns out to
be rather simple. It is a quadratic equation in g2

aq* + Bg* +v =0, (14.60)
where
a = e (W) sin? O + £, (w) cos? 6,
B =—{en e ()1 + cos? ) + [e1, (w) + 7, (W)] sin? 0} w?/c?,  (14.61)
v = [ (w) + eiy(w)] e.wt/ct.

Here 6 is the angle between the direction of propagation and the direction of the dc
magnetic field. For § = 0 (14.60) reduces to

e::(w) {lg° — exx W)W/ + 7 (W)w'/c} = 0. (14.62)

The roots can easily be plotted; there are four roots as are shown in Fig. 14.5.
The longitudinal plasmon w = wy, is the solution of €, (w) = 0. The two transverse

1/2
plasmons start outat g = 0 as w = [wg + (we/ 2)2] + “. At very large g they are
just light waves, but there is a difference in the phase velocity for the two different

(circular) polarizations. Their difference in phase velocity is responsible for the
Faraday effect—the rotation of the plane of polarization in a plane polarized wave.
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w /—— TRANSVERSE
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Wp
Y we
wir (wf> 5T MODES FOR
a7 B,
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ooy
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q

Fig. 14.5 The dispersion curves of magnetoplasma modes in a metal when the wave propagates in
the z-direction parallel to the dc magnetic field Bg

The low frequency mode is the well-known helicon. For small values of g it begins
as

2.2
w=24 (14.63)
w
P
and it asymptotically approaches w = w, for large g.
Exercise
Demonstrate (14.60) by simplifying the secular equation (14.58).

For 6 = 7 (14.60) reduces to
[q7 — e (W’ /1@ ere (W) — [7, (W) + &1, (W)W’ /P = 0. (14.64)

The mode corresponding to g% = ¢, (w)w?/c? is a transverse plasmon of frequency

W= [wg + czqz] . The helicon mode appears no longer. The other two modes
have mixed longitudinal and transverse character. They start at

T2 we L7112 we
we =2+ 7] £ (14.65)
for ¢ = 0. For very large ¢ one mode is nearly transverse and varies as w &~ cq while

the other approaches the finite asymptotic limitw = /wg + w?. The roots of (14.64)

are sketched in Fig. 14.6.
For an arbitrary angle of propagation, the helicon mode has a frequency' (we

assume wp > W)
2.2 ;
wee“q=cosf i
== " {14+ —1). 14.66
w2 +c2q? ( W T COS 9) ( )

M. A. Lampert, J. J. Quinn, and S. Tosima, Phys. Rev. 152, 661 (1966).
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Mixed Longitudinal & Transverse Modes

W/ Wp

—_

MODES FOR
qLB,

cq v,

Fig. 14.6 The dispersion curves of magnetoplasma modes in a metal when the wave propagates in
the z-direction normal to the dc magnetic field By

Here the collisional damping is included with the finite mean collision time 7 (see
Problem 14.2).

For very large values of £, the two finite frequency modes are sometimes referred
to as the hybrid-magnetoplasma modes. Their frequencies are

| 1 ) 1/2
wi = > (w2 + wcz) + |:Z (wg + wcz) — wgwg cos? 9i| . (14.67)

For propagation at an arbitrary angle we can think of the four modes as coupled
magnetoplasma modes. The wy modes described above for very large values of g
are obviously the coupled helicon and longitudinal plasmon.

14.6 Discussion of the Nonlocal Theory

By considering the q dependence of the conductivity one can find a number of inter-
esting effects that have been omitted from the local theory (as well as the quantitative
changes in the dispersion relation which are to be expected). Among them are:

1. Landau Damping and Doppler Shifted Cyclotron Resonance
Suppose an electromagnetic wave of frequency w and wave number g propagates
inside a metal. In order to absorb energy from the electromagnetic wave, the
component of the velocity of an electron along the applied dc magnetic field
By must satisfy aw. + ¢g,v, = w, in the long wave length limit, for some integral
values of . Here @ = n’ — n if the electronic initial and final states are denoted by
& = nhw. + % ander = n'hw, + W, respectively. When aw, — ¢, vr <
w < aw, + q.Vr, there are electrons capable of direct absorption of energy from
the wave via single particle excitations inside a metal, and we have cyclotron
damping even in the absence of collisions. Here v is the Fermi velocity of the
metal. For ao = 0, this effect is usually known as Landau damping. Then, we
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have —q,Ur < w < g, VR OF —VUR < Uppase < VF. It corresponds to having a phase
velocity vphase Of the wave parallel to By equal to the velocity of some electrons in
the solid, i.e., —vr < v, < vg. These electrons will ride the wave and thus absorb
power from it resulting in collisionless damping of the wave. For o # 0, the
effect is usually called Doppler shifted cyclotron resonance, because the effective
frequency seen by the moving electronis wef = w — g, v, and itis equal to o times
the cyclotron resonance frequency w.

2. Bernstein Modes or Cyclotron Modes
These are the modes of vibration in an electron plasma, which occur only when o
has a q-dependence. They are important in plasma physics, where they are known
as Bernstein modes. In solid state physics, they are known as nonlocal waves or
cyclotron waves. These modes start out at w = nw, for ¢ = 0. They propagate
perpendicular to the dc magnetic field, and depend for their existence (even at
very long wavelengths) on the q dependence of o.

3. Quantum Waves
These are waves which arise from the gigantic quantum oscillations in ¢. These
quantum effects depend, of course, on the q dependence of o.

14.7 Cyclotron Waves

We will give only one example of the new kind of wave that can occur when the
q dependence of ¢ is taken into account. We consider the magnetic field in the z-
direction and the wave vector q in the y-direction. The secular equation for wave
propagation is the familiar

Exx — 52 Exy 0
—Exy Eyy 0 =0. (14.68)
0 0 e,—¢&
This secular equation reduces to a2 x 2 matrix and a 1 x 1 matrix. For the polariza-
tion with E parallel to the z-axis we are interested in the 1 x 1 matrix. The Lorentz

force couples the x-y motions giving the 2 x 2 matrix for the other polarization. For
the simple case of the 1 x 1 matrix we have

2q® 4mi
cat_y i, (14.69)
w

where, in the collisionless limit (i.e. 7 — 00),

3iw2 &, ¢, (w) 2w
p n
., = 14.70
Oz 4 Z(; 1+ 6,0 (Mwe)? —w? ( )
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with .
ca(w) = / d(cos 0) cos’ 0J2(w sin ). (14.71)
0

If we let f = g, we can write
(4

4ri 6wy [co/2 | Cn
AL J VS T . 14.72
Oz w? |:—a2 1—a2+ +n2—a2+ :| ( )
Let us look at the long wavelength limit where w = qwﬂ « 1. Remember that for
small x
0o =4 (3) [r- 1525+ (14.73)
"=\ 1-(n+1) ' ‘

We keep terms to order w?. Because ¢, an, ¢, o w". Therefore, if we retain
only terms of order w?, we can drop all terms but the first two. Then we have

Xz X2
JE(x) ~ 1 — = and J}(x) ~ —. (14.74)
2 4
Substituting (14.74) into ¢ and ¢, yields
: 2 1 5.9 1w’
co(w) %/ d(cosf) cos“ 0|1 — —w”sin“f| = - — —, (14.75)
0 2 3 15
and for ¢; we find
1 2 2
¢1(w) ~/ d(cos 0) cos? 02— sin2f = 2. (14.76)
0 4 30
Substituting these results into the secular equation, (14.69), gives
Gy [ ws (14.77)
w2a? w2a? 1—a? |’ ’
This is a simple quadratic equation in a?, where a = . The general solution is

we

5
(14.78)

R B S S Y S P L
w :E(u}p—{—wc—kcq):t Z(wp—}—wc—{—cq) —we\wp +coqgt — —— )
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For g — 0, the two roots are

o Loy 5 Loy, 5 wp
w = E (u)p —{—wc) + E (wp — wc) = 2 (14.79)
2.

If wp > we, the lower root can be obtained quite well by setting

2
- w</5 _o,
1—a?

which gives

w\? w?
(—) —1——. (14.80)
We 5
Actually going back to (14.72)
4ri 6ws [ co/2 1 Cn
—“zzz—w—g[_—az I~ t " ta_a +]

it is not difficult to see that, for w, >> nwc, there must be a solution at w? = n’w? +
O(g*"). We do this by setting ¢, = a,,w* forn > 1. If w, > nw,, then the solutions
are given, approximately, by

a? 1—a? n? —a?

—co/2 c Cn
|: o/ + ! _|_...+—_|_...i|:().

Let us assume a solution of the form a2 = n% + A, where A < n. Then the above
equation can be written

—%(1 — w?z) N ajw? Qw2 a,w? N ~0
n? 12 —n? (n—1)2—n? A -

Solving for A gives A >~ 3n%a,w?". Thus we have a solution of the form

2
(i) —n2 4+ 0(g™). (14.81)

We

These modes are called cyclotron modes or Bernstein modes.
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14.8 Surface Waves

There are many kinds of surface waves in solids—plasmons, magnetoplasma waves,
magnons, acoustic phonons, optical phonons etc. In fact, we believe that every bulk
wave has associated with it a surface wave. To give some feeling for surface waves,
we shall consider one simple case; surface plasmons in the absence of a dc magnetic
field.

We consider a metal of dielectric function ¢; to fill the space z > 0, and an
insulator of dielectric constant g, the space z < 0. The wave equation which describes
propagation in the y — z plane is given by

e—¢& 0 0 E,
0 e-¢& && E, | =0. (14.82)
0 §& e— 55 E;

Here £ = % and £ = §§ + fzz. For the dielectric € = ¢y, a constant, and we find only
two transverse waves of frequency w = % for the bulk modes. For the metal (to be
referred to as medium 1) there are one longitudinal plasmon of frequency w = wy

and two transverse plasmons of frequency w = | /w3 + c¢2¢* as the bulk modes. Here
w2
we are assuming thate; = 1 — :75 is the dielectric function of the metal.

In order to study the surface waves, we consider w and g, to be given real numbers
and solve the wave equation for ¢,. For the transverse waves in the metal, we have

w? — w?
q: = C—zp - q;. (14.83)
In the insulator, we have
r_ W 14.84
9 =¢c7 ~ 4 (14.84)

The g, = 0 lines are indicated in Fig. 14.7 as solid lines. Notice that in region III of
Fig. 14.7, qz2 < 0 in both the metal and the insulator. This is the region of interest
for surface waves excitations, because negative qz2 implies that g, itself is imaginary.
Solving for ¢V (value of ¢. in the metal) and ¢ (value of ¢. in the insulator), when
w and g, are such that we are considering region III, gives

gV = £i(w; +q; — ' = Hiay,

12 (14.85)

q§0) = :tl(qg — Eow = :tiOé().

This defines oy and «vy, which are real and positive. The wave in the metal must be of
the form e*®? and in the insulator of the form e*®Z. In order to have solutions well
behaved at z — 400 in the metal and z — —o0 in the insulator we must choose the
wave of the proper sign. Doing so gives
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o | a@>0
3‘3* in metal SLOPE =1
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1 SLOPE = ¢,
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q; >0
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q:<0

(€qy,/wp)?

Fig. 14.7 The w? — ¢2 plane for the waves near the interface of a metal and an insulator at z = 0.
The solid lines show the region where g, = 0 in the solid (line separating regions I and II) and in
the dielectric (line separating II and III). In region III q2 < 0 in both media, therefore excitations
in this region are localized at the surface

E(l) (I', t) — E(l)eiwl—iqyy—mz’

E(O) (l’, t) — E(O)eiwz‘fiqnyraoZ. (1486)
The superscripts 1 and O refer, respectively, to the metal and dielectric. The boundary
conditions at the plane z = 0 are the standard ones of continuity of the tangential com-
ponents of E and H, and of the normal components of D and B. By applying the bound-
ary conditions (remembering that B =i 5V x E = S(qyE; — q:Ey, g Ex, —qyE.)
we find that

(i) For the independent polarization with £, = E, = 0, but E, # 0 there are no
solutions in region III.
(ii) For the polarization with £, = 0,but E, # 0 # E_, there is a dispersion relation

SRy, (14.87)
(03] (7))

If we substitute for o and a1, (14.87) becomes

202 NI 2
e wWeoe (W) _ gow” (wy — w?) [w (e0—1) +wp] (14.58)
4 €0+ €1(w) (W2 —w?)? — whel ’ ’

For very large gy the root is approximately given by the zero of the denominator,
JT For small values of ¢, it goes as w = \qu Figure 14.8 shows the
dispersion curve of the surface plasmon.

vizw =
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Fig. 14.8 Dispersion relation of surface plasmon

14.9 Magnetoplasma Surface Waves

In the presence of a dc magnetic field B, oriented at an arbitrary angle to the surface,
the problem of surface plasma waves becomes much more complicated.” We will
discuss here only the nonretarded limit of cqg > w.
Let the metal or semiconductor be described by a dielectric function
2

“p

W (w? — w?) [‘*’251'1 — We;We; — iwwckEijk] ) (14.89)

gij(w) = eLdij —

where | is the background dielectric constant of metal or semiconductor, w, = 42

mc’
and we, = eflg;‘ . Symbol ¢;jx = +1(—1) if i jk is an even (odd) permutation of 123,
and zero otherwise. Let the insulator have dielectric constant €,. The wave equation

is given by

Exx — qz/wz Exy Exz Ex
Eyx ey — G2 /W ey + qyq./w? E, | =0. (14.90)
Ezx Ezy + CIyCIz/wz €2z — q}g/wz E,

In the nonretarded limit (cg >> w) the off-diagonal elements €, €,x, €x;, €,x can be
neglected and (14.90) can be approximated (we put ¢ = 1) by

(612 — wer) [f‘:zzqz? + Eyyqfv + (gy; + 5z‘\')QyQZ] ~ 0. (14.91)

2 A summary of magnetoplasma surface wave results in semiconductors is reviewed by Quinn and
Chiu in Polaritons, edited by E. Burstein and F. DeMartini, Pergamon, New York (1974), p. 259.
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The surface magneto-plasmon solution arises from the second factor. Solving for g,
in the metal we find

2
gy €2z 2e,, 2ez

The superscript 1 refers to the metal. In the dielectric (superscript 0) ¢ = +ig,.
The eigenvectors are

E(l)(r, t) ~ (O, Eél): _Ei]q)qf')) eiwl—i‘lyy—iqé”z’

1 D (1 iwi—igqyy—ig"z A
(@B — VBP0 0) s
E(O)(I' t) ~ (0 E(O) _Eﬁo)qém)eiwtfiqyyfiqz(o)z ’

s » Ly _qy ,

B(O) (I‘, t) ~ c (qu§0) _ q§0) E}(]O)’ 0’ 0) eiwtfiq}.yfiq;mz ~ 0.

The dispersion relation obtained from the standard boundary conditions is

¢!
+ig, = ——¢€; + &y (14.94)
¥

With g1, = g,, (14.94) simplifies to
w2
W=t wtw) -2 =0, (14.95)
: o

where the & signs correspond to propagation in the £ y-directions, respectively. For
“p

the case By = 0, this gives w = T For By L x, we have

wf—f-wg/eL
w:,/T,

and with By || x we obtain

2 ¢ €L 2

where the two roots correspond to propagations in the +y-directions, respectively.
Exercise

Demonstrate the dispersion relation (14.94) by imposing the standard boundary con-
ditions on the fields given by (14.93).
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14.10 Propagation of Acoustic Waves

Now we will try to give a very brief summary of propagation of acoustic waves in
metals. Our discussion will be based on a very simple model introduced by Quinn and
Rodriguez.’ The model treats the ions completely classically. The metal is considered
to consist of

1. alattice (Bravais crystal for simplicity) of positive ions of mass M and charge ze.
2. an electron gas with n( electrons per unit volume.

In addition to electromagnetic forces, there are short range forces between the ions
which we represent by two ‘unrenormalized’ elastic constants C, and Cy. The elec-
trons encounter impurities and defects and have a collision time 7 associated with
their motion.First, let us investigate the classical equation of motion of the lattice.
Let £(r, 7) be the displacement field of the ions. Then we have

02¢ ze .
M%2 = CiV(V ) =~ GV x (VX €) + 2B+ & x (By +B) + F.

or?
(14.96)
The forces appearing on the right hand side of (14.96) are

1. the short range ‘elastic’ forces (the first two terms)

2. the Coulomb interaction of the charge ze with the self-consistent electric field
produced by the ionic motion (the third term)

3. the Lorentz force on the moving ion in the presence of the dc magnetic field By and
the self-consistent ac field B. The term %5 x B is always very small compared
to zeE, and we shall neglect it (the fourth term).

4. the collision drag force F exerted by the electrons on the ions (the last term).

The force F results from the fact that in a collision with the lattice, the electron
motion is randomized, not in the laboratory frame of reference, but in a frame of
reference moving with the local ionic velocity. Picture the collisions as shown in
Fig. 14.9. Here (v) is the average electron velocity (at point r where the impurity is
located) just before collision. Just after collision (v)gn ~ 0 in the moving system,
or (V) final ~ 5 in the laboratory. Thus the momentum imparted to the positive ion
must be Ap = m({v) — é). This momentum is imparted to the lattice per electron
collision; since there are z electrons per atom and % collisions per second for each
electron, it is apparent that

F=2m(v)—§€). (14.97)
T
We can use the fact that the electronic current j. (r) = —nge(v(r)) to write
zm ;
F = ———(je + noef). (14.98)
nopet

317, Quinn and S. Rodriguez, Phys. Rev. 128, 2487 (1962).
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LAB SYSTEM MOVING ION’S SYSTEM
BEFORE B—t )
7> f<6>—&
AFTER B—¢ ),
<v>final = & <U>ﬁna1 = O

Fig. 14.9 Schematic of electron—impurity collision in the laboratory frame and in the coordinate
system moving with the local ionic velocity. Here an impurity is indicated by a circle. In the latter
system a typical electron has velocity < v > —& before collision and zero afterwards. In the lab
system the corresponding velocities are < v > before collision and £ afterwards

But the ionic current density is j; = noe€ so that the collision drag force on the ions
is

wim . .
F=—"—(e+in. (14.99)
noet

The self-consistent electric field E appearing in the equation of motion, (14.96),
is determined from the Maxwell equations, which can be written

Jr=rI(q,w)-E. (14.100)

Let us consider jr. It consists of the ionic current ji, the electronic current j., and
any external driving current j,. For considering the normal modes of the system (and
the acoustic waves are normal modes) we set the external driving current j, equal to
zero and look for self-sustaining modes. Perhaps, if we have time, we can discuss
the theory of direct electromagnetic generation of acoustic waves; in that case jo
is a “fictitious surface current” introduced to satisfy the boundary conditions in a
finite solid (quite similar to the discussion given in our treatment of the Azbel-Kaner
effect). For the present we consider the normal modes of an infinite medium. In that
case jo = 0 so that j7 = j; + je. The electronic current would be simply jo = ¢ - E
except for the effect of “collision drag” and diffusion. These two currents arise from
the fact that the correct collision term in the Boltzmann equation must be

(6f) :—f_fo, (14.101)

o T

where f; differs from the overall equilibrium distribution function f; in two respects:

1. fo(r,t)isthelocal equilibrium distribution at (r, ¢), and it depends on the electron
kinetic energy measured in the coordinates system of the moving lattice.



14.10 Propagation of Acoustic Waves 457

2. The chemical potential ¢ appearing in f; is not (o, the actual chemical potential
of the solid, but a local chemical potential ((r, t) which is determined by the
condition

/d3k [f-fo]=0. (14.102)

i.e. the local equilibrium density at point r must be the same as the nonequilibrium
density. Therefore, collisions can not change the carrier density but can change
current density.

We can expand f; as follows:

_ P .
Jok,r, 1) = fo(k) + a—J;O {—=mvi - €+ G0}, (14.103)

where () (r, t) = ((r, t) — (p. Because of these two changes, instead of jo = ¢ - E,
we have )
. m§
jelqw)=c(q,w)- |E— —|+eD-Vn, (14.104)
er

where
ag

D=——"—"
%8¢ +iwT)

(14.105)

is the diffusion tensor. In (14.105), g((p) is the density of states at the Fermi surface
andn(r, t) = no + n(r, t) is the electron density at point (r, ¢). The electron density
is determined from the distribution function f, which must be solved for. However, at
all but the very highest ultrasonic frequencies, n(r, ¢) can be determined accurately
from the condition of charge neutrality.

pe(r,t) + pi(r, 1) =0, (14.106)

where p.(r, t) = —en(r, t) and py can be determined from the equation of continuity
iwpr — iq - jy = 0. Using these results, we find

je(q. w) = (g, w) - [E ey U
er eg(Co)(1 +iwT)

q(q - £):| . (14.107)

If we define a tensor A by

noeiw 1 q*1? A
A=— 11— —F——qq, (14.108)
09 3iwr(l +iwT)

where § = I%I’ we can write

Je(q, w) = 0(q,w) - E(q, w) —a(q,w) - A(q, w) - £(q, w). (14.109)



458 14 Electrodynamics of Metals

We can substitute (14.109) into the relation j. + j; = I - E, and solve for the self-
consistent field E to obtain

E(qw) = [ —o] ' (iwnel—g- A)-&. (14.110)

Knowing E, we also know j. and hence F, (14.98) in terms of the ionic displacement
&. Thus every term on the right hand side of (14.96), the equation of motion of the
ions can be expressed in terms of £. The equation of motion is thus of the form

T(q,w) - &(q,w) =0, (14.111)

where T is a very complicated tensor. The nontrivial solutions are determined from
the secular equation
det | T(q,w) |[=0. (14.112)

The roots of this secular equation give the frequencies of the sound waves (2 trans-
verse and 1 longitudinal modes) as a function of q, By, 7, etc. Actually the solutions
w(q) have both a real and imaginary parts; the real part determines the velocity of
sound and the imaginary part the attenuation of the wave.

Here we do not go through the details of the calculation outlined above. We will
discuss special cases and attempt to give a qualitative feeling for the kinds of effects
one can observe.

14.10.1 Propagation Parallel to B

For propagation parallel to the dc magnetic field, it is convenient to introduce circu-
larly polarized transverse waves with

Ei = fx + igy»

. (14.113)
O+ = Oxx + 10xy.

. L,2q2 62(]2
We also introduce the parameter 5 = =

Then the nonvanishing compo-

4nwoy ung'
nents of I” are I'y, = I,y =ifBog and I, = —%. Define the resistivity tensor p
by

p=o" (14.114)

Then p+ = 03 ' and p.. = az’zl. The secular equation | T |= 0 reduces to two simple
equations:

2 2,2 = zewBy zmiw (1 —ifB)(opp+ — 1)

14.115
Mc Mt 1 —ifBoyp+ ( )
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for the circularly polarized transverse waves, and

; 272
2 2o, MW q-1-/3
wo=siq" + Mr (Jop“_l_—l—i—wzrz . (14.116)

for the longitudinal waves. In (14.115) and (14.116), s; and s, are the speeds of
transverse and longitudinal acoustic waves given, respectively, by

o zm v% Cy
I S Y L B 14.117
ST e \/3M T2 T M ( )

From these results, we observe that

1. w has both real and imaginary parts. The real part gives the frequency and hence
velocity as a function of By. The imaginary part gives the acoustic attenuation as
a function of ¢!, w7, By etc.

2. For longitudinal waves, if we use the semiclassical result for o, w is completely
independent of Bj.

3. In the case where the quantum mechanical result for o, is used, both the velocity
and attenuation display quantum oscillations of the de Haas—van Alphen type.

4. For shear waves, the right and left circular polarizations have slightly different
velocity and attenuation. This leads to a rotation of the plane of polarization of a
linearly polarized wave. This is the acoustic analogue of the Faraday effect.

5. p+ does depend on the magnetic field, and the acoustic wave shows a fairly
abrupt increase in attenuation as the magnetic field is lowered below w. = qvg.
This effect is called Doppler shifted cyclotron resonances (DSCRs).

6. The helicon wave solution actually appears in (14.115), so that the equation for
wy actually describes helicon—phonon coupling.

Exercise

Derive the dispersion relations (14.115) and (14.116) for the transverse and longitu-
dinal acoustic waves, respectively.

14.10.2 Helicon—Phonon Interaction

Look at (14.115), the dispersion relation of the circularly polarized shear waves
propagating parallel to By:

2,2 = zewBy  zmiw (1 —if)(ogps — 1)

14.118
Mc M 1 —iBogp+ ( )
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In the local limit, where ¢ is shown in (13.116) and (13.117), we have

oop+ = 1 +iwT FiwT. (14.119)

2,2 .
L. Therefore, 1 — i Sopp+ can be written
P

2
C
WTW,

Remember that § =~

2.2

1 —ifogpr =1 —1i [l +iwT FiwT]. (14.120)

2
WTWP

Let us assume w.7 > 1, we > w, and # K 1. Then we can write that

| —iBoope ~ 15 2, (14.121)
w
where wy = 52 (1 - r) is the helicon frequency. Substituting this into (14.118)
2 :
gives
Q 2
W2 — 52q? = Fw2e £ — (14.122)
W F WH
where 2, = Z;ﬁ(’ is the ionic cyclotron frequency. Equation (14.122) can be rewritten
as

(W —s5¢)(w + 519) (W F wy) =~ wwy 2. (14.123)

The dispersion curves are illustrated in Fig. 14.10. The helicon and transverse sound
wave of the same polarization are strongly coupled by the term on the right hand
side of (14.123), when their phase velocities are almost equal. The solid lines depict
the coupled helicon—phonon modes.

Coupled

helicon-phonon modes
q
Y S¢q

Fig. 14.10 Schematic of the roots of (14.123). The region of strongly coupled helicon—phonon
modes for circularly polarized acoustic shear waves
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14.10.3 Propagation Perpendicular to By

For propagation to the dc magnetic field, the resistivity tensor has the following
nonvanishing elements:

P — Tyy p — Oxx
xx O-LXO-VVJ'»UZ‘ > Fyy Uxxa'vv+‘72~ ’
T o (14.124)
=—Ry=—2=21 p.=0
Pxy = YX T goytol, 0 22T Pz

The secular equation |T| = 0 again reduces to a 2 x 2 matrix and a 1 x 1 matrix,

which can be written
w2 - Axx _Ax X
, S) = 0 (14.125)
—Ay wT— Ay, &

(W —A.)& =0, (14.126)

and

where

_ G2 zmiw (1=iB)(gopu—1)
Axx - Mq + MT 1—iBoopax ’
2 . i Bg2 p2 272
—C 2 2mg’ v miw _q_ _iBopyy, g
w =59 T Saar T e |90y — 1 —ifoopss  3(14+a272)

A
Ay
A

} " (14.127)

iw [ (1=iB)oopsy
_Ayx _ Zmiw { 12)00pPxy

- Mr 1—i 300 pxx _WCT}’

miw (1-1B)(00p.—1)

— G2 d
z = ud + ZM_T 1—ifoop;.

The velocity and attenuation of sound can display several different types of oscil-
latory behavior as a function of applied magnetic field. Here we mention very briefly
each of them.

1. Cyclotron resonances
When w = nw, for propagation perpendicular to By, the components of the con-
ductivity tensor become very large. This gives rise to absorption peaks.

2. de Haas—van Alphen type oscillations
Because the conductivity involves sums > , over quantum mechanical energy
levels, as is shown in (13.82), the components of the conductivity tensor display
de Haas—van Alphen type oscillations exactly as the magnetization, free energy
etc. One small difference is that instead of being associated with extremal orbits
v, = 0, these oscillations in acoustic attenuation are associated with orbits for
which v, = s.

3. Geometric resonances
Due to the matrix elements (2/|e’9F|v) which behave like Bessel function in
the semiclassical limit, we find oscillations associated with J,,_, (g1 vp/w.) for
propagation perpendicular to By. The physical origin is associated with matching
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Fig. 14.11 Schematic of the origin of the geometric resonances in ultrasonic attenuation

the cyclotron orbit diameter to multiples of the acoustic wavelength. Figure 14.11
shows the schematic of geometric resonances.

4. Giant quantum oscillations
These result from the quantum nature of the energy levels together with ‘reso-
nance’ due to vanishing of the energy denominator in ¢. The physical picture
and feeling for the ‘giant’ nature of the oscillations can easily be obtained from
consideration of

(1) Energy conservation and momentum conservation in the transition E, (k;) +
hwq — En’ (kz + qz)~
(2) The Pauli exclusion principle.

Suppose that we had a uniform field B parallel to the z-axis. Then, with usual choice
of gauge, our states are |nk,k;), with energies given by

272
kz

E,(k;) = hwe(n + %) + (14.128)

2m
Now, we can do spectroscopy with these electrons, and have them absorb phonons.
Thus, suppose that an electron absorbs a phonon of energy hw and momentum Ag,.
Then, energy conservation gives

Ey(k; +q;) — Eq(k;) = hw,... (14.129)

The conservations of energy and momentum require that an electron making a tran-
sition (1, k;) — (0, k, + q.) has a value of k, given by

m

k., =
° hg.

(W T awe) + % =K., (14.130)
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Ky K+ 4, Ky Ko+ 4y

k-

Fig. 14.12 Schematic of the transitions giving rise to giant quantum oscillations. Only electrons
with k; = K, can make the transition (n, k;) —> (n + a, k; + g;) and absorb energy hw,,

where o« = n’ — n. Figure 14.12 shows a schematic picture of the transitions giving
rise to giant quantum oscillations.

The exclusion principle requires that E,,(k;) < ( and E, 1, (k; + q.) = E,(k;) +
fw > (. For w. >> w this occurs only when the initial and final states are right at the
Fermi surface. Then the absorption is ‘gigantic’; otherwise it is zero. The velocity
as well as the attenuation displays these quantum oscillations. The oscillations, in
principle, are infinitely sharp, but actually they are broadened out due to the fact
that the Landau levels themselves are not perfectly sharp, and various other things.
However, the oscillations are actually quite sharp, and so the amplitudes are much
larger than the widths of absorption peaks.

Problems

14.1 Consider a semi-infinite metal with the surface at y = 0, in the absence of a
dc magnetic field, subject to an electromagnetic wave propagating parallel to the
y-axis, which is normal to the surface for the case of polarization in the x-direction
(see Fig. 14.13).

(a) The quantum mechanical conductivity tensor is written, in the absence of a
dc magnetic field, as

w2
,w)= —{1+1(qg,w)},
(g, w) = —— {1+1(q.w)}
where
m Solew) — folew) .
g, w) =+ Zm <KV [k >< K|V, [k >*.

kK’

Evaluate o,, (g, w) at zero temperature.
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RV NN ‘

/
Fig. 14.13 The coordinate system for a semi-infinite metallic medium for y > 0 subject to an

electromagnetic wave propagating parallel to the y-axis to the metal surface (y = 0) for the case of
polarization in the x-direction

(b) Determine the electric field inside the metal with the specular reflection bound-
ary condition. This is the problem of the anomalous skin effect in the absence
of a dc magnetic field.

driw E(0)

(c) Show that the surface impedance is written as Z = =5

P m, and eval-
uate Z.

14.2 Consider a helicon wave in a metal propagating at an angle 6 to the direction
of a dc magnetic field applied along the z-axis. One may include the effect of the col-
lisional damping by the finite mean collision time 7. Demonstrate that the frequency
of the helicon mode is given by

wec?q? cos i
Ve + c2g? (1 + w TCOS@) '
P C
14.3 Investigate the coupling of helicons and plasmons propagating at an arbitrary
angle 6 with respect to the applied dc magnetic field B in a degenerate semiconductor
in which w;, and w, are of the same order of magnitude. Take w.7 > 1 but let wt be

arbitrary in the local theory, and study the frequency w of the mode as a function of
By.

14.4 Evaluate o4y, 0y, and o, from the Cohen—Harrison—Harrison result for prop-

agating perpendicular to B in the limit that w = gvg/w. < 1. Calculate to order w?.
€2

See if any modes exist (at cyclotron harmonics) for the wave equation £2 = ¢, + =

Eyy

where £ = cq/w.
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/

Fig. 14.14 The coordinate system of a semi-infinite metallic medium for z > O subject to an
electromagnetic wave propagating onto the metal surface (z = 0)

14.5 Consider an electromagnetic wave of q = (0, g,, ;) propagating onto a semi-
infinite metal of dielectric function £; to fill the space z > 0, and an insulator of
dielectric constant ¢ in the space z < 0 (see Fig. 14.14).

(a) Show that the dispersion relation of the surface plasmon for the polarization
with E, =0 and E, # O £ E.Z is written by - + 2 = O where ag and o
are the decay constants in the insulator and metal, respectively.

(b) Sketch wi as a function of % for the surface plasmon excitation.
P P

Summary

In this chapter we study electromagnetic behavior of waves in metals. The linear
response theory and Maxwell’s equations are combined to obtain the condition
of self-sustaining oscillations in metals. Both normal skin effect and Azbel-Kaner
cyclotron resonance are discussed, and dispersion relations of plasmon modes and
magnetoplasma modes are illustrated. Nonlocal effects in the wave dispersions are
also pointed out, and behavior of cyclotron waves is considered as an example of the
nonlocal behavior of the modes. General dispersion relation of the surface waves in
the metal—insulator interface is derived by imposing standard boundary conditions,
and the magnetoplasma surface waves are illustrated. Finally we briefly discussed
propagation of acoustic waves in metals.

The wave equation in metals, in the present of the total current jr(= jo + jina), iS
written as

jr=I"E,

where I" = 12 {(£2 — 1)1 — £¢} . Here the spin magnetization is neglected and £ =
i—‘,’. The jo and ji,g denote, respectively, some external current and the induced current
Jje = o - E by the self-consistent field E.
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For a system consisting of a semi-infinite metal filling the space z > 0 and vac-
uum in the space z < 0 and in the absence of jy, the wave equation reduces to
[c(q,w) — I'(q,w)] - E =0, and the electromagnetic waves are solutions of the
secular equation | I” — ¢ |= 0. The dispersion relations of the transverse and lon-
gitudinal electromagnetic waves propagating in the medium are given, respectively,
by

22 _ 2 -
c°q° =we(q,w) and e(q, w) = 0.

In the range wp, > w and for wt > 1, the local theory of conduction (g/ < 1)
gives a well-behaved field, inside the metal, of the form

E(z,1) = Ege™' ™/,

whereqg = % =—: Thedlstance5 = < iscalled the normal skin depth.1f1 > ¢,
the local theory is not Vahd The theory for this case, in which the q dependence of
o must be included, explains the anomalous skin effect.
In the absence of a dc magnetic field, the condition of the collective modes reduces
to
(wzs — czqz)za =0.

Using the local (collisionless) theory of the d1electr1c funct1on 5 ~ 1 — -5, we have
two degenerate transverse modes of frequency w’ = w + %% and a longltudlnal
mode of frequency w = wp.

In the presence of a dc magnetic field along the z-axis and q in the y-direction,
the secular equation for wave propagation is given by

Exx — 62 Exy 0
—Exy &y 0 =0.
0 0 €z — 52

For the polarization with E parallel to the z-axis we have

c2q? 4mi
=1- Uzz(qv w),
w

where 0,;(q, w) is the nonlocal conductivity. For wp > nw, and in the limit ¢ —
0, we obtain the cyclotron waves given by w? = n’w? + O(¢*"). They propagate
perpendicular to the dc magnetic field, and depend for their existence on the q
dependence of ¢.

For a system consisting of a metal of dielectric function ¢, filling the space z > 0
and an insulator of dielectric constant £ in the space z < 0, the waves localized near
the interface (z = 0) are written as

E(l)(r, 1) = E(l)eiwt*iqyy*alz’
E(O) (l‘, t) — E(O)eiwt—iq,y—&-(yoz_
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The superscripts 1 and O refer, respectively, to the metal and dielectric. The boundary
conditions at the plane z = 0 are the standard ones of continuity of the tangential
components of E and H, and of the normal components of D and B. For the polariza-
tion with E, = 0, but E, # 0 # E_, the dispersion relation of the surface plasmon
is written as

€1 €0

—+ =2 =0,
o e%]

where a; = (wg +q; —wh)'? and g = (q5 — gow?)'/2.
The classical equation of motion of the ionic displacement field £(r, #) in a metal
is written as

o? ze .
M(?_tf =C,V(V- & —-CV x(VxE) +zeE+ ?E x (Bp+B)+F.
Here C, and C, are elastic constants, and the collision drag force FisF = — 2 (j. +

R noet
j1), where the ionic current density is j; = nge&. The self-consistent electric field E
is determined from the Maxwell equations jr = I"'(q, w) - E:

E(qw) = [[ —g] ' (iwnel—g- 4)-¢.
ngeiw 1 _ qr

Here a tensor A is defined by A = 2% {l -3 mﬁfl} , where q = %. The
equation of motion is thus of the form T(q, w) - £€(q, w) = 0, where T is a very
complicated tensor. The normal modes of an infinite medium are determined from
the secular equation

det | T(q, w) [=0.

The solutions w(q) have both a real and imaginary parts; the real part determines the
velocity of sound and the imaginary part the attenuation of the wave.



Chapter 15
Superconductivity

15.1 Some Phenomenological Observations
of Superconductors

Superconductors are materials that behave as normal metals at high temperatures
(T > T.; however, below T, they have the following properties:

(i) the dc resistivity vanishes.

(ii) they are perfect diamagnets; by this we mean that any magnetic field that is
present in the bulk of the sample when T > T is expelled when T is lowered
through the transition temperature. This is called the Meissner effect.

(iii) the electronic properties can be understood by assuming that an energy gap 2A
exists in the electronic spectrum at the Fermi energy.

Some common superconducting elements and their transition temperatures are given
in Table 15.1.

Resistivity

A plot of p(T), the resistivity versus temperature 7', looks like the diagram shown in
Fig. 15.1. Current flows in superconductor without dissipation. Persistent currents in
superconducting rings have been observed to circulate without decaying for years.
There is a critical current density j. which, if exceeded, will cause the superconductor
to go into the normal state. The ac current response is also dissipationless if the
frequency w satisfies w < %, where A is an energy of the order of kg 7.

Thermoelectric Properties

Superconducting materials are usually poor thermal conductors. In normal metals an
electric current is accompanied by a thermal current that is associated with the Peltier
effect. No Peltier effect occurs in superconductors; the current carrying electrons
appear to carry no entropy.
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Table 15.1 Transition temperatures of some selected superconducting elements
Elements | Al Sn Hg In fcc La hcpLa |Nb Pb

T: (K) 1.2 3.7 42 34 6.6 4.9 9.3 7.2

)
Q

\Normal Metal Resistivity
PoFr-—-—-—-° - decreases with T to

some power

T

Te

Fig. 15.1 Temperature dependence of the resistivity of typical superconducting metals

Magnetic Properties

There is a critical magnetic field H.(T), which depends on temperature. When H is
above H.(T), the material is in the normal state; when H < H.(T) itis superconduct-
ing. A plot of H.(T') versus T is sketched in Fig. 15.2. In a type I superconductor, the
magnetic induction B must vanish in the bulk of the superconductor for H < H.(T).
But we have

B=H+47M =0 for H < H.(T), (15.1)

which implies that

H
M =—— for H < H.(T). (15.2)
4

This behavior is illustrated in Fig. 15.3.

In a type Il superconductor, the magnetic field starts to penetrate the sample at an
applied field H.; lower than the H.. The Meissner effect is incomplete yet until at
H.,. The B approaches H only at an upper critical field H.,. Figure 15.4 shows the

H
NORMAL STATE

SUERCONDUCTING
STATE

T

T,

Fig. 15.2 Temperature dependence of the critical magnetic field of a typical superconducting
material
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(a) (b)

. B

-4TTM
\

He H H H

Fig. 15.3 Magnetic field dependence of the magnetization M and magnetic induction B of a type
I superconducting material

(a) (b)

-4TM
\
\
o]

Fig. 15.4 Magnetic field dependence of the magnetization M and magnetic induction B of a type
II superconducting material

magnetic field dependence of the magnetization, —47 M, and the magnetic induction
B in a type II superconducting material. Between H., and H.; flux penetrates the
superconductor giving a mixed state consisting of superconductor penetrated by
threads of the material in its normal state or flux lines. Abrikosov showed that the
mixed state consists of vortices each carrying a single flux @ = }2’—2 These vortices
are arranged in a regular two-dimensional array.

Specific Heat

The specific heat shows a jump at 7. and decays exponentially with an energy A of the
order of kg T, as e~ 2/*T: below Ty, as is shown in Fig. 15.5. There is a second order
phase transition (constant entropy, constant volume, no latent heat) with discontinuity
in the specific heat.

HU
<
[0 PR
© N
/Normal State
1 ) : Specefic Heat
1

T/T.

Fig. 15.5 Temperature dependence of the specific heat of a typical superconducting material
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Fig. 15.6 Tunneling current behavior for (a) a normal metal-oxide—normal metal structure and (b)
a superconductor—oxide—normal metal structure

Tunneling Behavior

If one investigates tunneling through a thin oxide, in the case of two normal metals,
one obtains a linear current—potential difference curve, as is sketched in Fig. 15.6a.
For a superconductor—oxide—normal metal structure, a very different behavior of
the tunneling current versus potential difference is obtained. Figure 15.6b shows
the tunneling current—potential difference curve of a superconductor—oxide—normal
metal structure.

Acoustic Attenuation

ForT < T.andw < 2A, there is no attenuation of sound due to electron excitation. In
Fig. 15.7, the damping constant « of low frequency sound waves in a superconductor
is sketched as a function of temperature.

T, T

Fig. 15.7 Temperature dependence of the damping constant of low frequency sound waves in a
superconducting material
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15.2 London Theory

Knowing the experimental properties of superconductors, London introduced a phe-
nomenological theory that can be described as follows:

1. The superconducting material contains two fluids below 7. @ is the fraction

of the electron fluid that is in the super fluid state. "NT(T) = [1 — @] is the

fraction in the normal state. The total density of electrons in the superconducting
material is n = ny + ns.

2. Both the normal fluid and super fluid respond to external fields, but the super-
fluid is dissipationless while the normal fluid is not. We can write the electrical
conductivities for the normal and super fluids as follows:

ON = =
2 (15.3)
0s = )

but 7¢ — o0 giving o5 — 0.

ns(T) > nasT — 0,
ns(T) > 0as T — T..

4. In order to explain the Meissner effect, London proposed the London equation
2
. nse
Vxj+—B=0. (15.4)
mc

How does the London equation arise? Let us consider the equation of motion of a
super fluid electron, which is dissipationless, in an electric field E that is momentarily
present in the superconductor:

Ds _ ek
m— - =—e
where vg is the mean velocity of the super fluid electron caused by the field E. But
the current density j is simply

j = —ngevs. (155)
Notice that this gives the relation
dj dvs ns€2
= = —nge— = E. 15.6
dt S m (15.6)

Equation (15.6) describes the dynamics of collisionless electrons in a perfect con-
ductor, which cannot sustain an electric field in stationary conditions. Now, from
Faraday’s induction law, we have
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1.

VxE=—-B. (15.7)
c

Combining this with (15.6) gives us

d . ngé?
—|Vxj+—B|=0. (15.8)
dt mc

The solution of (15.8) is that

2
nse

V xj+ % B = constant.
mc

Because in the bulk of a superconductor the magnetic induction B must be zero,
London proposed that for superconductors, the ‘constant’ had to be zero and j =
— %A [called the London gauge] giving (15.4). The London equation implies that, in
stationary conditions, a superconductor cannot sustain a magnetic field in its interior,
but only within a narrow surface layer. If we use the relation

VxB=—j, (15.9)
C

(This is the Maxwell equation for V x B in stationary conditions without the dis-
placement current %E.), we can obtain

4 A7 nge?
Vx(VxB)= Lyxj=_-t0¢pg (15.10)
c c mc
But, V x (V x B) = V(V - B) — V?B giving
2 47nge? 1
VB= T p_ g (15.11)
mc? A

The solutions of (15.11) show a magnetic field decaying exponentially with a char-

acteristic length A. One can also obtain the relation V2j = dmnse? J- The quantity

mc-

AL =,/ 4#6;2 is called the London penetration depth. For typical semiconducting

materials, A_ ~ 10 — 10> nm. If we have a thin superconducting film filling the
space —a < z < 0 as shown in Fig. 15.8a, then the magnetic field B parallel to the
superconductor surface has to fall off inside the superconductor from By, the value
outside, as

B(z) = Bye ¥/t pear the surface z = 0

and
B(z) = Boe T4/t near the surface z = —a.
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(a)
B, Tﬁo
—a 0 | <
(b) B
B(]
B W

Fig. 15.8 A superconducting thin film (a) and the magnetic field penetration (b)

Fig. 15.8b shows the schematic of the flux penetration in the superconducting film.
The flux penetrates only a distance Ap < 10°nm. One can show that it is impossible
to have a magnetic field B normal to the superconductor surface but homogeneous
in the x — y plane.

15.3 Microscopic Theory—An Introduction

In the early 1950’s Frolich suggested that the attractive part of the electron—phonon
interaction was responsible for superconductivity predicting the isotopic effect. The
isotope effect, the dependence of T, on the mass of the elements making up the
lattice was discovered experimentally independent of Frolich’s work, but it was in
complete agreement with it. Both Frolich, and later Bardeen, attempted to describe
superconductivity in terms of an electron self-energy associated with virtual exchange
of phonons. Both attempts failed. In 1957, Bardeen, Cooper, and Schrieffer (BCS)
produced the first correct microscopic theory of superconductivity.! The critical idea
turned out to be the pair correlations that became manifest in a simple little paper
by L. N. Cooper.”

13, Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108, 1175 (1957).
2Leon. N. Cooper, Phys. Rev. 104, 1189 (1956).
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Let us consider electrons in a simple metal described by the Hamiltonian H =
Hy + H.p, where Hy and H., are, respectively the unperturbed Hamiltonian for a
Bravais lattice and the interaction Hamiltonian of the electrons with the screened
ions. Here we neglect the effect of the periodic part of the stationary lattice to write
H() by

i t
Hy = E EkCyyCko + E hwq sy saq,s,
k,o q.s

where ¢ and s denote, respectively, the spin of the electrons and the three dimensional
polarization vector of the phonons, and a4, annihilates a phonon of wave vector g
and polarization s, and ck, annihilates an electron of wave vector k and spin 0. We
will show the basic ideas leading to the microscopic theory of superconductivity.

15.3.1 Electron—-Phonon Interaction

The electron—phonon interaction can be expressed as

Hep = Z Mq (aiq + aq) c]t+qqck07 (15.12)
k.q,0

where M is the electron—phonon matrix element defined, in a simple model discussed
earlier, by

. Nh
My =i
2Mwqy

lq | V.

Here Vy is the Fourier transform of the potential due to a single ion at the origin,
and the phonon spectrum is assumed isotropic for simplicity. (In this case only
the longitudinal modes of s parallel to q give finite contribution to Hep.) This H,
can give rise to an effective electron—electron interaction associated with virtual
exchange of phonons as denoted in Fig.15.9a. The figure shows that an electron
polarizes the lattice and another electron interacts with the polarized lattice.There
are two possible intermediate states in this process as shown in Fig.15.9b and c.
In Fig. 15.9b the initial energy is E; = €k + €x and the intermediate state energy
is E,, = ex + €w—q + Awgq. In Fig.15.9¢ the initial energy is the same, but the
intermediate state energy is E,, = €xiq + €k + Awq. We can write this interaction
in the second order as

Z (f | Hep | m)(m | Hep | i>. (15.13)

E, - E,

m
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Fig. 15.9 Electron—phonon interaction (a) Effective electron—electron interaction through virtual
exchange of phonons (b) and (¢): Two possible intermediate states in the effective electron—electron
interaction

This gives us the interaction part of the Hamiltonian as follows:

P i :
fl‘k+qgckoaq‘m><m‘ck/ anck’u’a;‘l)

(
H' = My |? -
Zlffk;/q | My | e —[ew—q+iwg]

n <f|c;,qﬂ,ckwaq|m><m|c£+q(,ckﬂaui>] (15.14)
ex—[ek+q+hwg |
One can take the Hamiltonian
H = Hy+ H'
=Dko 5koC|T<aCko + 2 F’an;aq + 2 kg0 Mg (afq + aq) Clt-&-qacka (15.15)
and make a canonical transformation
Hy =e SHeS (15.16)
where the operator S is defined by
s=> M, (aaiq + ﬂaq) el s qoCho (15.17)

kqo
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in order to eliminate the a4 and aiq operators to lowest order. To do so, o and (3 in
(15.17) must be chosen, respectively, as

= [ek — kg — hwq]_]

_ (15.18)
8= [Ek — Ek+q T h/.uq] .
Then, the transformed Hamiltonian is
Hs = ckoCiptho + D WK @)y, Cho_gorChiorChirs (15.19)
ko ko kK'o’,q
where Wyq is defined by
| My |* hw
Wiq = i (15.20)
[ekrq — ] — (fiwg)

Note that when AE = e — € is smaller than Awgq, Wiq is negative. This results
in an effective electron—electron attraction.

15.3.2 Cooper Pair

Leon Cooper investigated the simple problem of a pair of electrons interacting in
the presence of a Fermi sea of ‘spectator electrons’. He took the pair to have total
momentum P = 0 and spin § = 0. The Hamiltonian is written as

1
H = ZEZCZO,C[U — EV ZCZ,GCL,&C_Z(-,CKU, (15.21)
Lo Wo

where ¢, = %, {ceo, CZ/U,} = dppdy0, and the strength of the interaction, V, is
taken as a constant for a small region of k-space close to the Fermi surface. The
interaction term allows for pair scattering from (Lo, —€5) to (¢'o, —€'). Cooper
took a variational trial function

¥ =" axey,cl i | G > (15.22)
k

where | G) is the Fermi sea of spectator electrons, | G) = Hﬁflf ciacikﬁ | 0). If we

evaluate
<Y |H|Y¥ >=E, (15.23)

we get

E = 225561;611 -V Zazag. (15.24)
€ o
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The coefficient a, is determined by requiring E{a,} to be minimum subject to the
constraint >, a;a, = 1. This can be carried out using a Lagrange multiplier A as
follows:

0

o [226361;‘@ —V Y agag— A aja, | =0. (15.25)
A ) o ¢

This gives
2exax — V Zae — dax = 0. (15.26)
¢
This can be written vy
e e
==t 15.27
ax 2ok — A ( )

Define a constant C = >, a,. Then we have

ax = 25:3 3 (15.28)
Summing over k and using the fact C =}, a; we have
c=vc)y L (15.29)
- 2e — A
or | |
fo=> v (15.30)

k

The values of € form a closely spaced quasi continuum extending from the energy
Er toroughly Er + fwp where wp is the Debye frequency. In Fig. 15.10 the function
f () is displayed as a function of A, and it shows the graphical solution of (15.30).
Note that f(\) goes from —oo to oo every time A crosses a value of 2¢y in the quasi
continuum.

If we take (15.26)

Qex—Nax—V Y ar =0, (15.31)
£

multiply by a;; and sum over k, we obtain

> Qe —Nagax — VY apag=0. (15.32)
k k¢

This is exactly the same equation we obtained from writing

<W|H-E|W¥>=0, (15.33)
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Fig. 15.10 Graphical solution of (15.30)

if we take A = E, the energy of the variational state ¥. Thus, our equation for
f) = % could be rewritten

1 1
— = — 15.34
\% ; 25k —F ( )

Approximate the sum in (15.34) by an integral over the energy ¢ and write

1 Ex+hwp g(E)
— = ——de. 15.35
% /E 2-E% (15.35)

Now let us take g(¢) ~ g(Er) = g in the region of integration in order to obtain

1 g [Bethe gx
—=Z _— 15.36
vV 2 /EF x—E/2 ( )
Integrating (15.36) out gives
2 Eg + hwp — £
< = (‘:Jr—DEZ) (15.37)
gV Er— 3
or
EF + th 2 _ ez/gv'

. . 2 —2/qV . .
For the case of weak coupling regime v > 1 and e=*/9Y « 1. This gives

E ~ 2Ep — 2hwpe 29V (15.38)
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The quantity 2hwpe™%9" is the binding energy of the Cooper pair. Notice that

1. One can get a bound state no matter how weakly attractive V is. The free electron
gas is unstable with respect to the paired bound state.

2. This variational result, which predicts the binding energy proportional to e
could not be obtained in perturbation theory.

3. The material with higher value of V would likely show higher 7.

=2/9V
9

The BCS theory uses the idea of pairing to account of the most important correlations.

15.4 The BCS Ground State

Let us write the model Hamiltonian, (15.21) by

H = Hy+ H,, (15.39)
where . .
Ho =" e (cipent + ¢y e (15.40)
k
and
Hy ==V cipcly cxen. (15.41)
kk’

Note that we have included in the interaction only the interaction of k 1 with —k | .
In our discussion of the totally noninteracting electron gas, we found it convenient
to use a description in terms of quasielectrons and quasiholes, where a quasielectron
was an electron with |k| > kg and a quasihole was the absence of an electron with
|k| < kg. We could define
d =c, fork <k ,
ko = “ko F (15.42)
dxo = ¢y, for k < Kg.
Then dlia creates a ‘hole’ and dy, annihilates a ‘hole’. If we measure all energies ex
relative to the Fermi energy, then Hj can be written as

Ho = 3k OOk ) (15.43)
= FEy+ Z‘k‘>kF’g EkNks + Z‘k‘<kF’g | €k | (1 = nke),

where ny, = cimckg, &k = ek — Eg, and Ej (: Z|k|<kF - 6k) is the energy of the

filled Fermi sphere. Because CLT adds a momentum k and spin o to the system while
dli(r subtract k and o (or adds —k and ), it is useful to introduce
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oy, = uxey, + V_kCois (15.44)
and its Hermitian conjugate
Qko = UKCko + v,kcik&. (15.45)

Here we take ug and vy to be real. The operator O‘I;a adds momentum k and spin o
to the system. If (ux, vg) = (1, 0) for |k| > kg and (uk, vx) = (0, 1) for |k| < kg,
we have simply the noninteracting electron gas described in terms of ax, and alg.
We must have ux = u_g and vg = —v_x. Also uj + v = 1 in order to satisfy
the anticommutation relations [ay, af(,]+ = Ok . Then, from (15.44) and (15.45) we
have that

+ 2 7 2 i Pt
CroCko = U Oy Oks + VK5O 5 + UkVk (akaa7k6 + a,k(—,akg) .
Hence, for the noninteracting electron gas, we have

.
2 k.o EkCieyCko

2.7 2 T = i
=D Kk [”kakTO‘kT + (1= O‘—k¢a7k¢)] = Z\k\<kp €k + Zk,a | €k | ogep 00
Therefore, in terms of the oy and a;, the noninteracting Hamiltonian is written as

Hy = Ey + Z | & | o, 0. (15.46)
k,o

The ground state of the noninteracting electron gas (filled Fermi sphere) can be
constructed by annihilating quasiholes in all states with | k |< kg and is given by

| GS) = [ [ exoo1s | VAC), (15.47)
ko

where | VAC) is the true vacuum state. Using (15.44) and (15.45) gives

| GS) = [ [ vickyclys | VAC). (15.48)

ko

But, for the noninteracting system vk = 1 if |k| < kp and zero otherwise so that

1GS) =[] cloclss | VAC). (15.49)
|k|<kg,o

For the interacting system we will use a slight generalization of the notation used
above.
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15.4.1 Bogoliubov-Valatin Transformation

For the Hamiltonian given in (15.40) and (15.41), we make the transformation (called
Bogoliubov—Valatin transformation) defined by

.
Qg = UKCkt — ka_ki

(15.50)
Bt = uely ) + veks.

with real c-number coefficients ux and vk to have Hermitian conjugates oy, = ”kcl:m -

vkC_k, and Ok = UgC_gy + UkClT(T.

Note that the up spin 1 is associated with the index k and the down spin | is
associated with the index —k. The operators a]i and oy create or destroy an excited
state of the system, which is a correlated electron—hole pair. We take uyx = u_g
and vy = —v_g; in addition uj + v} must be equal unity in order to satisfy the
anticommutation relations:

[Oék, OZLL = [51“ ﬂl:lr = ok Lok, o]y = [Bx, Bl =0.
We can solve (15.50) for ¢y and c_g, and their Hermitian conjugates

P
k= Uk + vy Cy = ke, + vi Bk

¥ t (15.51)
C x|, = “kﬁlt — UkOk; C—k| = ukﬂk — vkal‘(,

Exercise

Invert the Bogoliubov—Valatin transformation (15.50) and demonstrate (15.51).

Note that ui is the probability that a pair of states with opposite k and o is
unoccupied and vﬁ is the probability that it is occupied. Substituting (15.51) into
(15.40) gives

Ho = 2 ) & [“12(0411041( + 02 Bi B+ unvi (o B + B

2 gt 200 o i i (1552)
+ui By B + v ooy, — ug vk (Broy, + ozkﬁk)] .

Let us put the operators in normal form using Jx ﬂli =1- ﬁ]i Ok This gives
_ = 2 2 _ .2 il T T ot
Ho= > &[208 + @} — vd) (afon + G0 + 2o (ol B + fhaw) | (15.53)
k
If we do the same thing for the interaction part H; given by (15.41)

/
Hy ==V Y cipcly conenr (15.54)
kK’
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we obtain

Hy =~V Y (twog, + vk’ﬁk/)(l{k'ﬁi/ — o) (e B — vka)) (ko 4 vi3y)
= —V D[ viemnvi(l — ay e — By i) (1 = ey — Bifo)
Fu v (1 — af aue — B i) g — vd) (g By + Bren)
+4th order off-diagonal terms].
(15.55)
When this expression is multiplied out and then put in normal form (with all annihi-
lation operators on the right of all creation operators), the result can be written

H=H®O) +HQ2) + H®). (15.56)

Here H(2n) contains terms involving products of 2n Fermion operators (v, al, B8,
and 37). It is simple to evaluate H (0):

H©0) =2 & — VD ittty vie.- (15.57)
k

kk’

The terms in H(2) can be written

H2) = 2 [ = ) + V(o 2uvomenn] (e + 880 (1550
+ 3 [2ukviéx — (U — vV 3y movie ] (g B + Braw). '

We will neglect the terms in H (4); they contain interactions between the elementary
excitations. H(0) + H(2) is not exactly in the form we desire because of the term
proportional to (aiﬁf( + Okaxk). We are still at liberty to choose ug and vy; we do
this by requiring the coefficient of (aiﬁﬂ + Pkax) to vanish. This gives us

2u ol = (Ui — vV Z Ui Vi - (15.59)
kl
Let us define A by
A=V ueve (15.60)
k/

and use it in (15.59) after squaring both sides. This gives
duivics = A(up — vi)*. (15.61)

We can eliminate uj since we already know that uj + vi = 1. Doing so gives the

. . . 2
quadratic equation in vj.

A2
UlEs + A% —vi[E + A%+ = =0 (15.62)
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We choose the solution of the form

1
vk =5 (1= &0 (15.63)

_ & p 2_1_ .2
Here & = o Furthermore since uy = 1 — v}, we find that

1
uy = (1480 (15.64)

But (15.60), the definition of A, can now be written

A:%vz,h—gﬁ. (15.65)
k

With a little algebra equation (15.65) becomes

A= KZL. (15.66)

NG R

Thus the equation for the energy gap A is given by

1=KZ;. (15.67)

2 k /G + A2

Now, replace the sum by an integral taking for the density of states % g(EFg) of the pair.

The % results from the fact that only k 1 and —k | are coupled by the interaction.
Then (15.67) becomes

V g(E Fuwy d
= V9tEr) / < (15.68)
2 2 Jope, V24 A?

Using f % = In(x + v/x2 + A2) = sinh~! (x/A), the result for A becomes

A = 2hw e TV (15.69)

If the interaction V is zero, the one-particle states of the system would be occupied
up to |k| = kg, and A agrees with the binding energy of a Cooper pair.
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15.4.2 Condensation Energy

The condensation energy AE(= EJ — EY) defined by the difference between the
ground state energy in the normal state and the state with finite A is approximately
given by

AE >~ (E)AXA— (E)A2 (15.70)
—9F2 2—9F4- .

The ground state wave function ¥ of the superconducting system is the eigenfunction
of the diagonalized BCS Hamiltonian, so that

ag | Yo) = Bk | o) = 0. (15.71)

One can obtain ¥, by writing

| W) = Hakﬂk | VAC). (15.72)
k

This gives the normalized wave function

| o) = [ [ + vefycy,) | VAC), (15.73)
k

which is the BCS variational wave function normalized so that (¥|¥,) = 1.

15.5 Excited States

From (15.58) we can see that

HQ2) =" Ex(ogan + B30 (15.74)
k

where
Ex = éx(up — vy) + 2 Auyvg. (15.75)

Knowing that uy = \/Li«/l + &k and vk = «/LE“/ 1 — & allows us to obtain the energy

of an individual quasiparticle
Ex = /& + A2, (15.76)
thZ

where £k = 5 - — EF, i.e., the energy is measured relative to the Fermi energy EF.

Thus, there is a gap A for the creation of elementary excitations alt | ¥) or ﬂ; | ¥p).
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Fig. 15.11 Elementary excitations in a normal metal and in a superconductor

The state alt | ¥y) is a quasiparticle state of wave vector k, involving a superposition
of an electron of wave vector k and a hole of wave vector —k. In Fig. 15.11 quasi-
particle energy spectra for a normal metal and for a superconductor are illustrated.
The excitation spectrum has a gap A, which is known as the gap parameter. We
notice that, since ai and ﬁli are linear combinations of single Fermion operators and
always appear in pairs in the interaction Hamiltonian. Therefore, quasiparticles can
be excited in pairs with the minimum excitation energy of 2A. The experimental gap
should be 2 A in experiments on absorption of electromagnetic radiation.

The density of quasiparticle states in the superconductor can be obtained using
the quasiparticle dispersion relation Ey.

(E) = 1dN 2 d 4nk3\ dk . K1 (15.77)
9 QdE ~ 2midk\ 3 )dE ~ mdEjdk '
where 4£ dk is written, from (15.76), by
dE dE dé E2 — A2 W2k
db _dbde VBT Z AWK (15.78)
dk dé dk E m
Substituting (15.78) into (15.79) gives
kp E
gs(E) = = gN(EF) ———== (15.79)

h? VEE—A? VvE

where gn(E) = % is the density of states of the normal metal. Since we consider
the quasiparticle energies close to the Fermi surface, we replaced gn (E) by its value at
the Fermi energy Er. Notice that the density of quasiparticles in the superconducting
states shows a singularity at the energies E = £+ A measured with respect to the Fermi
energy.

Essentially all the other properties of a BCS superconductor can be evaluated
knowing that

1. The ground state energy given by H(0), (15.57), is lower than the normal state
~ 2
energy (ER = >, &) by —5-g(Eg), (15.70).
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2. The energy of elementary excitations is given by Ex = ,/&f + A2, (15.76).
3. The Fermi distribution function ny is given by

1

f(Ek) =Nk = m-

Here, of course, £k appearing in Ey is measured relative to Eg.
4. The BCS wave function is given by (15.73)

| o) = [ [ + viciycly)) | VAC),
k

where uy denotes the amplitude for a pair of orbitals to be empty and v, the amplitude
for them to be occupied.

One final example shows how to calculate the energy gap A as a function of
temperature. We note that states k 1 and —k | are occupied statistically at finite
temperatures. The A given in (15.69) was obtained under the assumption that nx, = 0
at T = 0. But, at finite temperatures the Fermi distribution function should be
understood as the occupation probability, and we expect nx # 0 and A = A(T). In
order to evaluate A(T") we need to extend (15.59) by writing

2upviéi = (uy — vV D uevie (1= 2 (Ex)) . (15.80)

K

The correction factor on the right hand side comes from keeping a term —(al, ax +
ﬁ]i Ok) averaged at T # 0 in

(1= (afau + BLB)) =1 — e — e = 1 = 2 (Ey),

instead of just unity as was done in writing (15.58). Now we define

AT) =V > e [1 = 2f(Ex)]. (15.81)
k

. - _ v 1-2f () .
Substituting (15.64) and (15.63) for uy and vy gives 1 = 3 Dk NEY T which

reduces to

V g(Ep) /’“D de
1=— 1-2 24 AX(T)) . 15.82
Rl By sy [1-2r/Zraxmy].  ass)

At T = O thisis the T = 0 gap equation, (15.68). As T increases from 7 = 0, A(T)
would decreases from Ay, the zero temperature value. A(T) vanishes for T > T
where A = 0 is the only stable solution. The superconductivity disappears above T-..
Now, (15.82) can be written
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hwp hwp
/ 2 (V2 + A(T)).
g(EF)V JZ 1 24T + AZ(T - €2 + AZ(T
(15.83)
Since A becomes zero at T = T, we can determine 7, by setting A = 0 in (15.83).
This gives
2 v d
_ / % fanh ==, (15.84)
g(Ep)V 0 € 20,
where @, = kgT,. Introducing the dimensionless variable x = % we have
2 hwp /26, dx
aEv — Jo tanh x (15.85)

hwp /20,

0 “In x sech®x dx.

ln tanh th -

Since n = hwp /26, > 1, in general for weak coupling superconductors, we may
extend the upper limit of the integral to oo to have

2
=1In 15.86
g(Ep)V 2() 2() ( )
where the constant In C is given, in terms of Euler’s constant ~:
o 4
InC = —/ In x sech®x dx = v + In — ~ 0.81876.
0 T
Then, one can write
2
O, >~ 1.13hwpe” v = 0.57A(0), (15.87)

where w is replaced by the Debye frequency wp. The Debye temperature &p is much
larger than the superconducting transition temperature ®.. Figure 15.12 sketches the
A(T) obtained by numerical integration of (15.82).

1760,

3.060,|1- 7

0 Te

Fig. 15.12 Temperature dependence of the superconducting energy gap parameter A(7) in the
weak coupling limit
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15.6 Type I and Type II Superconductors

Correlations in superconductors involve electrons in a very limited range of values in
momentum space. The range J p about the Fermi momentum pg must be restricted to

i, e tOp’ _pp

A. 15.88
2m 2m - 2m + ( )

This gives | dp |< ﬁ. The spread of momentum 9 p leads to a coherence length

in coordinate space & = % ~ %. &o indicates the spatial range of the pair wave

function. We distinguish type I and type II superconductors by whether the ratio of

%(: &) to A =/ %, the London penetration depth, is large or small com-
pared to unity. For example, we have vg ~ 10% cm/s and T, &~ 0.574, ~ 1.2 K
for Al, and thus &, ~ 3.4 x 10° nm and A ~ 30 nm resulting % ~ 100. But,
for the case of Nb3Sn we have vg ~ 10° cm/s and 7. &~ 0.57A¢ ~ 20 K, and thus

& ~ 2 nm and Ap ~ 200 nm resulting i—"L ~ 1072

Exercise

Demonstrate the magnitudes of the coherence length &), the London penetration
depth Ay, and the corresponding j—“L for Al and Nb3Sn, respectively.
Let us consider the London equation given by (15.4)

. nse’
Vxj+—B=0. (15.89)
mc

Using B = V x A allows us to write

2
i) =~ A@m). (15.90)
mc

This local relation between j and A is valid only for type II materials where Ay is
much larger than &) and A(r) varies slowly on the scale of &,. For type I materials,
Pippard suggested a nonlocal relation between j and A. The Pippard relation is written
as

AT)-R
jr) = c/%Re—'R'/%d%/, (15.91)

where R = r —r’ and C is determined by requiring that slowly varying A (r) yields
the London equation. Then A(r) comes outside the integral (and taking A || ) and
(15.91) reduces to

< ' Rcosf 4
J:(r) = CA(r)/ / ;c:s R cos Oe R%27d (cos ) R*dR = C%T{OA(r).
0o J-
(15.92)
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We note that, by comparing (15.90) and (15.92), C = —=3= 47@ and picking & =

f—ZFO (at T = 0) gives excellent agreement with the microscopic theory. For the case
Aer K &, the vector potential A(r) is finite only in a surface layer and we can write

nse Aeff

€o

i) = A(r) (15.93)

) N
leading us to A =~ AL (A—“L) .

Flux Penetration

When adisc shaped type I superconductor is aligned perpendicular to an applied mag-
netic field Hy, the magnetic field at the boundary of the sample (where the applied
field is partially excluded) would become much greater than the magnitude of Hy
(see Fig. 15.13). Then the sample starts to loose superconductivity at an applied field
much below the critical field H, forming a large number of normal and superconduct-
ing regions side by side, and the magnetic field energy gain is reduced significantly.
The specimen is known to be in the intermediate state. It is a mixture of normal
and superconducting regions due to geometric factors. The intermediate state has a
domain structure that depends on competition among (1) superconducting conden-
sation energy % g(Ef) A2, (2) magnetic field energy g—;, and (3) surface energy of N-S
boundary (positive for type I material). In type II materials the surface energy of the
Normal Superconducting

type I
Superconductor
layer layer

w/y/f INTERMEDIATE STATE

NORMAL @UPLR( ()NL)U( TING
LAYERS

Fig. 15.13 Schematics of the intermediate state in a planar type I superconductor. It occurs when a
planar sample is held perpendicular to an applied magnetic field as indicated in (a). Domain structure
of normal and superconducting regions is formed as sketched in (b) and (c) by the magnified
magnetic field due to geometric factors
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:
SO

|

\normal core

r

Fig. 15.14 Schematic representation of flux and field penetration in a type Il superconductor

superconducting — normal boundary turns out to be negative, and flux penetrates in
individual vortices each carrying one flux quantum (see Fig. 15.14). In alloys, impu-

rity scattering leads mean free path . Then in the Pippard relation, e ~®/% is replaced
1

1
by efR(ah). In the extreme dirty limit of & >> I, relation between j(r) and A(r)

becomes 2
. nse
i) = == —A@),
me o

and the corresponding penetration depth A = Ap+/&p/ ! is increased greatly.

Problems

15.1 Demonstrate that the electronic contribution to the specific heat of common
intrinsic semiconductors shows the exponential temperature behavior at low temper-
atures.

15.2 Let’s consider the equation of motion of a super fluid electron, which is dissipa-

tionless, in an electric field E that is momentarily present in the superconductor. That
is, m% = —eE, where vg is the mean velocity of the super fluid electron caused
by the field E. In order to explain the Meissner effect, London proposed the London

mc?

. . . 2 : 1 s
equation written as V x j + =B = 0. Show that V3= 2l where AL =/ 2=

is the so-called the London penetration depth.
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15.3 Assume cg, and CL”, satisfy standard Fermion anticommutation relations.

Show that [ak, aﬂ,] and [ﬂk, ﬂﬂ] each equal due for ay and 5, defined by the
+ +
Bogoliubov—Valatin transformation

O = UKCkp — Ukcim
O = MkCiM + UkCkt
with real c-number coefficients uy and vy.
15.4 Let us consider the interaction Hamiltonian H; given by
/
H =-V Z cLTcT_k,lc,kickT.
KK/

Use the Bogoliubov—Valatin transformation to show that H; can be written as

Hy = -V X (uway, + v i) (e B — vieane) (B — vieay) (o + vieBy)
—V e [mevem (1 — af, o — Bl Bie) (1 — ofon — BB
Finevie (1 — g one — Bl Bie) (uf — vi) (g By + o)
+4th order off-diagonal terms |.

15.5 Consider the condition given by

2ukvk§k = (ulz( - Uﬁ)v E Uy Vg’ .
k/

(a) Determine uy and v satisfying the condition given above. Note that uj + v =
1

(b) Obtain the expression A definedby A =V > upvg.

Summary

In this chapter we first briefly review some phenomenological observations of super-
conductivity and discuss a phenomenological theory by London. Then we introduce
ideas of electron—phonon interaction and Cooper pairing to discuss microscopic the-
ory by Bardeen, Cooper, and Schrieffer. The BCS ground state and excited states are
discussed through Bogoliubov—Valatin transformation, and condensation energy and
thermodynamic behavior of the superconducting energy gap are analyzed. Finally
type I and type II superconductors are compared in terms of coherence length and
London penetration depth.
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The Meissner effect indicates that any magnetic field that is present in a bulk
superconductor when 7 > T is expelled when T is lowered through the transition
temperature 7. In a rype I superconductor, the magnetic induction B vanishes in
the bulk of the superconductor for H < H.(T). In a type Il superconductor, the
magnetic field starts to penetrate the sample at an applied field H.; lower than the
H.. Between H., and H,; flux penetrates the superconductor giving a mixed state
consisting of superconductor penetrated by threads of the material in its normal state
or flux lines. The mixed state consists of vortices each carrying a single flux @ = h_:

The London equation is written as V x j + ",fl‘; B = 0, which implies that, in
stationary conditions, a superconductor cannot sustain a magnetic field in its interior,

but only within a narrow surface layer: V’B = 47,7:6523 B = 12 B. Here the quantity
L

AL =,/ 47m 82 is called the London penetration depth.
The Hamiltonian of the electrons in a metal is written as

T A
H = E €koCkyCko T+ E WK, Q)¢ g5 Cr—qoCk'o" Ckos
ko ko K'o’.q

| Mq|* hwq

where Wyq is defined by Wiq = [E el
Ek+q—ck] —(wg

matrix element.
A pair of electrons interacting in the presence of a Fermi sea of ‘spectator elec-

Here M, is the electron—phonon

trons’ is described by H = X, cecy oo — 3V D 4po ChCl ysC_t5Cer, Where
22 . .

g = % and the strength of the interaction, V, is taken as a constant for a

small region of k-space close to the Fermi surface A variational trial function

v = 3, akerc s | G > gives us T = Zk 2ﬁ —. Here | G) is the Fermi

sea of spectator electrons, | G) Hﬁf‘l;r kUcfkg | 0) Approximating the sum

by an integral over the energy ¢, we have E ~ 2Egr — 2hwpe >/9V. The quantity
2hwpe 29V is the binding energy of the Cooper pair.
In the BCS theory, H is rewritten as H = Hy + H;, where

I
Hy = Zek (CITkaT + Cimc—ki) and H = -V cht’TCik’,LC—lekT'
k Kk’

Introducing afm = ukc]Tw +v_kC_ks and o, = UKCko + v_ch_k > the noninteracting
Hamiltonian becomes Hy = Ej + Zk‘g | €k | aiiaakg. The ground state of the
noninteracting electron gas (filled Fermi sphere) is given by | GS) = [ ], ®ko0—ks
| VAC), where | VAC) is the true vacuum state.

The Bogoliubov—Valatin transformation defined by

T . At T
= UkCkp — V€| 3 Py = ukcy ) + vkCky
Qy = Mkcfm — VkCky ; Ok = uxc_ky + VkCiq
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gives
H=HO) +HQ2)+ H(4),

where

H(0) = 225kvﬁ -V Zukvkuk/vk/ s HQ2) = Z Ex (o cau + B Be).
k k

kK’

Here Ex = &x(ui — v) + 2Auxvx and H(4) contains interactions between the
elementary excitations. The equation for the energy gap A is given by

\% 1 _
1=— ————=and A = 2hw,e fl‘EzFW.

k /& + A2

The ground state wave function ¥, of the superconducting system is

| o) = [ [ + vkefycTy)) | VAC).
k

The energy of a quasiparticleis Ex = ./ é’f( + A2, where éx = hzz—; — Er. The density
of quasiparticle states in the superconductor is given by

mkp E

Ey=——F7——.
gs(E) PR T

The type I and type Il superconductors are distinguished by whether the ratio
of the coherence length &y to the London penetration depth Ay is large or small
compared to unity. The local relation j(r) = —%A(r) is valid only for type II
materials where Ap > &) and A(r) varies slowly on the scale of &,. For the case

Aegr K &, the vector potential A(r) is finite only in a surface layer and we have

. nse* Aefr
jr)y=——
mc &

A(r)

1/3
leading to A =~ AL (f‘—"L) . The intermediate state is a mixture of normal and

superconducting regions due to geometric factors and it has a domain structure. In
the extreme dirty limit of &y >> I, we have

2
i = =5 LA,
me o

and the effective penetration depth A. = Ap/&o/ ! is increased greatly.



Chapter 16

The Fractional Quantum Hall Effect:
The Paradigm for Strongly Interacting
Systems

16.1 Electrons Confined to a Two Dimensional Surface
in a Perpendicular Magnetic Field

The study of the electronic properties of quasi two dimensional systems has been a
very exciting area of condensed matter physics during the last quarter of the 20th
century. Among the most interesting discoveries in this area are the incompressible
states showing integral and fractional quantum Hall effects. Incompressible quan-
tum liquid states of the integral quantum Hall effect result from an energy gap in
the single particle spectrum. The incompressibility of the fractional quantum Hall
effect is completely the result of electron—electron interactions in a highly degener-
ate fractionally filled Landau level. Since the quantum Hall effect involves electrons
moving on a two dimensional surface in the presence of a perpendicular magnetic
field, we begin with a description of this problem.

The application of a large dc magnetic field perpendicular to the two dimensional
layer results in some notable novel physics. The Hamiltonian describing the motion
of a single electron (of mass 1) confined to the x-y plane, in the presence of a dc
magnetic field B = Bz, is simply
2

H=0w ™ [p+ §A<r>] (16.1)

The vector potential A(r) is given by A(r) = %B(—y}? + x¥) in a symmetric gauge.
We use X, y, and Z as unit vectors along the Cartesian axes. The Schrodinger equation
(H — E)¥ (r) = 0 has eigenstates'

W (1, ¢) = eimounm(’")» (16.2)

ISee, for example, L.D. Landau and E.M. Lifshitz, Quantum Mechanics (Pergamon, Oxford, 1977)
p. 458; S. Gasiorowicz Quantum Mechanics (Wiley, New York, 1996) chap. 13.

© Springer International Publishing AG, part of Springer Nature 2018 497
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1

where n and m are principal and angular momentum quantum numbers, respectively,
and w.(= eB/uc) is the cyclotron angular frequency. The radial function u(r) in
(16.2) satisfies the differential equation

d*u du
w + n_ld_n —m*n '+t —e)u =0, (16.4)

where 7 and € are, respectively, defined by n = /eB/2hcr = ﬁ and € =
0

4E /hw. — 2m. Here Iy = +/hc/eB is the magnetic length. The radial wavefunc-
tion u,,, (r) can be expressed in terms of associated Laguerre polynomials L' as

U () = ™e™ 2L (2, (16.5)

Here L|" (%) is independent of  and L!"'(n?) o (jm|+1—1n?). The lowest energy
level has n = 0 and m = 0, —1, —2,.... The first excited level has n = 1 and
m=0,—-1,-2,...,orn = 0 and m = 1. These highly degenerate levels are
separated from neighboring levels by hw.. These quantized energy levels are called
Landau levels; the lowest Landau level wavefunction can be written as

Wy, = N, zmle 12l /40 (16.6)

where M, is the normalization constant and z stands for z(= x — iy) = re~'%. The
maximum value of |, (z)|* occurs at r,,, oc m'/2.

For a finite size sample of area S = 7 R?, the number of allowed values of m in
the lowest Landau level is given by Ny = BS/¢o, where ¢y = hc/e is the quantum
of magnetic flux. The filling factor v of a given Landau level is defined by N/N,,
so that v~! is simply equal to the number of flux quanta of the dc magnetic field
per electron. For the lowest Landau level, degeneracy of the level is N, because the
allowed values of |m| are given by |m| =0,1,2,..., Ny — 1.

Exercise

Work out the eigenvalue problem of the Hamiltonian (16.1) and demonstrate the
eigenfunctions and eigenvalues given by (16.2) and (16.3).

16.2 Integral Quantum Hall Effect

The integral quantum Hall effect occurs when N electrons exactly fill an integral
number of Landau levels resulting in an integral value of the filling factor v. When v
is equal to an integer, there is an energy gap (equal to fw,) between the filled states
and the empty states. This makes the noninteracting electron system incompressible,
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because an infinitesimal decrease in the area S, which decreases Ny, requires a finite
energy fw, to promote an electron across the energy gap into the first unoccupied
Landau level. This incompressibility is responsible for the integral quantum Hall
effect.”> To understand the minima in the diagonal resistivity p., and the plateaus in
the Hall resistivity pyy, it is necessary to notice that each Landau level, broadened by
collisions with defects and phonons, must contain both extended states and localized
states. The extended states lie in the central portion of the broadened Landau level,
and the localized states in the wings. As the chemical potential { sweeps through
the Landau level (by varying either B or the particle number N), zeros of p,, (at
T = 0K) and flat plateaus of p,, occur when ( lies within the localized states.

A many particle wavefunction of N electrons at filling factor v = 1 can be con-
structed by antisymmetrizing the product function which places one electron in each
of the N states with 0 < |m| < N, — 1. Here, the product function should be anti-
symmetric under exchange of any two electrons, and the many particle wavefunction
is written, for v = 1, as

V21, ... o) = Afuo@)ui (z2) .. un—1(zn)} (16.7)

where A denotes the antisymmetrizing operator. Since u, (z) o Zmle= 21145 ag
given by (16.6) and (16.7) can be written out as follows:

1 1 L1
21 22 ce e IN 1 .
2 2 Lo g2 =7 2,y lal
V(21 ... zy) o | BT %2 Iv e W TEw (16.8)
1 _N-1 -1
A ) n

The determinant in (16.8) is the well-known Van der Monde determinant written,
simply, as HNzi>jzl (zi —z ;). This is ea§ily demonstrated by.subt.ra.cting column j
from column i and noting z;; = z; — z; is a common factor. Since it is true for every
i # j, the result is apparent. Then the N-particle wavefunction corresponding to a
filled Landau level becomes

1
- S lul?

Wi,z o [ ze

Nzi>j=1

(16.9)

In (16.9), the highest power of z; is N — 1. This means that the allowed values of
|m| are equal to 0, 1,2, ..., N — 1 or that the Landau level degeneracy N, is equal
to N giving v = N/N, = 1. We obtain (16.9) by the requirement of antisymmetry
imposed on the product of single particle eigenfunctions.

2K. von Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett. 45, 494 (1980).
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Exercise

Demonstrate that the N-particle wavefunction corresponding to a filled Landau level
is written as (16.9).

16.3 Fractional Quantum Hall Effect

When the filling factor v is smaller than unity, the standard approach of placing
N particles in the lowest energy single particle states is not applicable, because
more degenerate states than the number of particles are present in the lowest Landau
level. For example, for the case of ¥ = 1/3, it is not apparent how to construct
antisymmetric product function for N electrons in 3N states to describe fractional
quantum Hall states. In this case, no gap occurs in the absence of electron-electron
interaction, and it is not easy to understand why fractional quantum Hall states are
incompressible. At very high values of the applied magnetic field, there is only
one relevant energy scale in the problem, the Coulomb scale e?/{,, where £; is
the magnetic length. In that case standard many body perturbation theory is not
applicable. Laughlin used remarkable physical insight to propose a ground state
wavefunction, for filling factor v = 1/n,3

Win(1,2, ... Ny = [ [ 2y e Zo =i, (16.10)

i>j

where n is an odd integer. We note that the product [ ], _ j Zi; contains terms with z;
to different powers. The largest possible power of any z; is n(N — 1), resulting from
taking z}' out of the (N — 1) factors of (z; — z;)" for j #i.

The Laughlin wavefunction has the properties that (1) it is antisymmetric under
interchange of any pair of particles as long as n is odd, (2) particles stay farther apart
and have lower Coulomb repulsion for n > 1, and (3) the largest value of m in the
Landau level, Ny — 1, is equal to n(N — 1) giving v = N/N4, —> 1/n for large
systems in agreement with experiment.*

16.4 Numerical Studies

Remarkable confirmation of Laughlin’s hypothesis was obtained by exact diagonal-
ization carried out for relatively small systems. Exact diagonalization of the inter-
action Hamiltonian within the Hilbert subspace of the lowest Landau level is a very
good approximation at large values of B, where fiw, > €2/ l,. Although real exper-
iments are performed on a two dimensional plane, it is more convenient to use a

3R.B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983).
4D.C. Tsui, H.L. Stormer, and A.C. Gossard, Phys. Rev. Lett. 48, 1559 (1982).
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Fig.16.1 Haldane sphere of radius R with magnetic monopoles of strength 20 located at the center
of the sphere

spherical two dimensional surface for numerical diagonalization studies.” Haldane
introduced the idea of the spherical geometry putting a small number of electrons
on a spherical surface at the center of which is located a magnetic monopole. We
consider the case that the N electrons are confined to a Haldane surface of radius R.
At the center of the sphere, a magnetic monopole of strength 2 Q ¢, where 2Q is an
integer, is located, as illustrated in Fig. 16.1. The radial magnetic field is written as

2 R
_ Od¢o 2,
47 R?

B (16.11)

where R is a unit vector in the radial direction. The single particle Hamiltonian can
be expressed as

(1 — hQé)z. (16.12)

Ho = 2mR?
Here, 1 is the orbital angular momentum operator. The components of 1 satisfy the
usual commutation rules [/, [3g] = iheqg,l,, where the eigenvalues of [? and [, are,
respectively, h2[(I + 1) and hm.® The single particle eigenstates of (16.12) denoted
by | Q, [, m) are called monopole harmonics. The states | Q, [, m) are eigenfunctions
of 12 and [, as well as of Hy, the single particle Hamiltonian, with eigenvalues

hw, 2
e(Q,l,m) = 2Q[l(l—kl)— 0l (16.13)

SE.D.M. Haldane, Phys. Rev. Lett. 51, 605 (1983).

SWe note that, in the presence of the magnetic field, the total angular momentum is given by
A =r1 X [—iAV + eA(r)] and that the eigenvalues of A? are not equal to /(I + 1)A2. Here A is the
vector potential and [A;, R;] = i he;jx Ry.
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In writing (16.13), we noted that A - R=R-A=0 and, hence, 1 - R=R-1= hQ.
Because this energy must be positive, the allowed values of [ are givenby [, = Q +n,
wheren =0, 1, 2, .. .. The lowest Landau level (or angular momentum shell) occurs
for [y = Q and has the energy ¢y = fw,./2, which is independent of m as long as
m is a non-positive integer. Therefore, the lowest Landau level has (20 + 1)-fold
degeneracy. The nth excited Landau level occurs for /[, = Q + n with energy

_hwc
=50

[(Q+n)(Q+n+1)— 02 (16.14)

€n

An N -particle eigenfunction of the lowest Landau level can be written, in general,
as . .
lmy,ma,....my)=cj, ---ch ch 10). (16.15)
Here |m;| < Q and czﬁ_ creates an electron in state | [y, m; ). Since we are concentrating
on apartially filled lowest Landau level we have only 2 0+ 1 degenerate single particle
states. The number of possible ways of constructing N-electron antisymmetric states
from 2Q + 1 single particle states or choosing N distinct values of m out of the 20 + 1
allowed values is given by

_(20+1) _ o+
GNQ_( N )_N!(ZQ—I—I—N)!' (16.16)

Then, there are Gy N-electron states in the Hilbert subspace of the lowest Landau
level. For the Laughlin v = 1/m state, we have 2Q,,_1;,, = m(N — 1). For example,
for the case of 2Q = 9 and N = 4 (v = 1/3 state for 4 electrons in the lowest
Landau level of degeneracy 2Q + 1 = 10), we have [ = 4.5 and there are Gy =
10!/[4!(10—4)!] = 210 of 4-electron states in the Hilbert space of the lowest Landau
level.

Table 16.1 lists the values of the electron angular momentum /., 2Q + 1 (the
Landau level degeneracy), Gy (the number of antisymmetric N-electron states),
Lyax (the largest possible angular momentum of the system), and the allowed values
of L (the total angular momentum) with a superscript indicating how many times
they appear. The number in parenthesis in the allowed L-value column is the total
number of different L-multiplets that appear. For three electrons there are five such
states, all with different L values. For four electrons there are 18 states; L = 12, 10,
9,7, 5, and 3 each appearing once, L = 8, 2, and 0 each appearing twice, and L = 6
and 4 each three times. For N = 10 and Q = 13.5 (v = 1/3 state of 10 electrons)
Gy = 13,123, 110 and there are 246,448 distinct L multiplets with 0 < L < 90.

The numerical problem is to diagonalize the interaction Hamiltonian

Hip = D" V(Iri — 1)) (16.17)

i<j
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Table 16.1 The angular momentum /. of an electron in the lowest Landau level; 2Q + 1 the Landau
level degeneracy; Gy ¢ the dimension of N-electron Hilbert space; Lmax the maximum value of
the total angular momentum L; the allowed L-values for a system consisting of N electrons on the
surface of a Haldane sphere. The exponent of the allowed L-values indicates the number of times
the L-multiplet appears, and the number in parenthesis denotes the total number of L-multiplets

N le 20+1 | Gng Lvax Allowed L-values
3 3.0 7 35 6 6D4D3B2d0(5)
R2OI0B998*dTH6°D
4 45 10 210 12 5048 3022002
(18)
200180170162 152 @ 14°)
13¥e125011* 10°® 9
5 6.0 13 1,287 20 8706’ d5 @40 a3
29 1@0?
(73)
6 7.5 16 8, 008 30 NOB8G--
(338)
7 9.0 19 50, 382 42 Lo
(1, 656)
4@...
8 10.5 22 319, 770 56 B34
(8,512)
9 12.0 25 2,042,975 |72 2O
(45,207)
10 135 28 13,123,110 |90 NOBS---
(246, 448)

in the Gy dimensional space. The problem is facilitated by first determining the
eigenfunctions |L M «) of the total angular momentum L. Here L= > fi, M =
> . m;, and « is an additional label that accounts for distinct multiplets with the
same total angular momentum L (for example, for the five electron system the seven
L = 6 states correspond to seven different values of «). The 210 four-electron states
of four electrons give us an 18 x 18 matrix that is block diagonal with two 3 x 3
blocks, three 2 x 2 blocks, and six 1 x 1 blocks. For small numbers of electrons these
finite matrices can easily be diagonalized to obtain the many-body eigenvalues and
eigenfunctions.’

"Because Hiy is a scalar, the Wigner—Eckart theorem
(L'M'o/ | Hind LM &) = 6.1/ 6pa (L o | Hint| Lov)

tells us that matrix elements of Hiy are independent of M and vanish unless L’ = L. This reduces
the size of the matrix to be diagonalized enormously. For example, for N = 10 and Q0 = 27/2
(v = 1/3 state of ten electrons) Gyg = 13, 123, 110 and there are 246,448 distinct L multiplets
with 0 < L < 90. However, the largest matrix diagonalized is only 7069 by 7069.
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Fig. 16.2 The energy spectrum of 10 electrons in the lowest Landau level calculated on a Haldane
sphere with 20 = 27. The open circle denotes the L = 0 ground state

In a planar geometry, the allowed values of m, the z-component of the single parti-
cle angular momentum, are 0, 1,...,Ny—1. M = Zi m; is the total z—component of
angular momentum, where the sum is over all occupied states. It can be divided into
the center-of-mass (CM) and relative (R) contributions Mcy + Mg. The connection
between the planar and spherical geometries is as follows.

M=NI+L,, Mg=NI-L, Mcu=L+L, (16.18)

The interactions depend only on Mg, so |Mgr, Mcm) acts just like |L, L;). The
absence of boundary conditions and the complete rotational symmetry make the
spherical geometry attractive to theorists. Many experimentalists prefer using the
| MR, Mcwm) states of the planar geometry. The calculations give the eigenenergies E
as a function of the total angular momentum L. The numerical results for the lowest
Landau level always show one or more L multiplets forming a low energy band. As
an example, the numerical results (E vs L) are shown in Figs. 16.2 and 16.3 for a
system of 10 electrons with values of 2Q between 25 and 29.% It is clear that the
states fall into a well defined low energy sector and slightly less well defined excited
sectors. The Laughlin v = 1/3 state occurs at 2Q = 3(N — 1) = 27 and the low
energy sector consists of a singlet L = 0 state as illustrated in Fig. 16.2. States with
larger values of Q contain one, two, or three quasiholes (2Q = 28, 29, 30), and
states with smaller values of Q, such as2Q = 25 or 26, contain quasielectrons in the
ground states. For 2Q = 26 the system is one single particle state shy of having the
Laughlin v = 1/3 filling. In this case the low energy sector corresponds to having a
single Laughlin quasielectron of angular momentum L = 5.

83.J. Quinn and A. Wojs, J. Phys.: Condens. Matter 12, R265 (2000).
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Fig. 16.3 The energy spectra of 10 electrons in the lowest Landau level calculated on a Haldane
sphere with 2Q = 28, 29, 26, 25. The open circles and solid lines mark the lowest energy bands
with the fewest composite fermion quasiparticles of nqqy = 1 for 2Q = 28 in a, ngqy = 2 for
20 =29inb,nqgg = 1 for2Q =26inc¢,and ngg =2 for2Q =25ind

Exercise

Demonstrate the allowed values of the total angular momentum L and the maximum
allowed values Lyax of the cases N = 3 with/ = 3.0 and N = 4 with [ = 4.5,
respectively, as indicated in Table 16.1.

16.5 Statistics of Identical Particles in Two Dimensions

Let us consider a system consisting of two particles each of charge —e and mass
1, confined to a plane, in the presence of a perpendicular dc magnetic field B =
(0,0, B) = VxA(r). Since A(r) is linear in the coordinate r = (x, y), (for example,
A(r) = %B(— ¥, x) in a symmetric gauge), the Hamiltonian separates into the pieces
corresponding to the center-of-mass R = %(rl + 1) and relative coordinates (r =
r, —ry), respectively. The energy spectra for the center-of-mass and relative motion
of the particles are identical to that of a single particle of mass p and charge —e. We
have seen that, as given by (16.6), for the lowest Landau level, the single particle
wavefunction is
lI’/()m (rl) = mrineiiméeirlz/é%z'
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For the relative motion ¢ is equal to ¢; — ¢,, and the interchange of the pair, denoted
by PY¥ (r, ;) = ¥(r,, 1), is accomplished by replacing ¢ by ¢ + .

For two identical particles initially at positions r; and r; in a three dimensional
space, the amplitude for the path that takes the system from the initial state (ry, r;)
to the same final state (ry, r;) depends on the angle of rotation ¢ of the vector
ri2(= r; — ry). The end points represented by ¢ = 7 or 0 correspond to exchange
or non-exchange processes, and the angle ¢ is only defined modulo 27. The angle of
rotation ¢ is not a well-defined quantity in three dimensions, but the statistics can not
be arbitrary. Under the exchange of two particles, the wavefunction picks up either
a plus sign named bosonic statistics or a minus sign named fermionic statistics with
no other possibilities. Since two consecutive interchanges must result in the original
wavefunction, e/”™ must be equal to either +1 (m is even; bosons) or —1 (m is odd;
fermions).

In two dimensions the angle ¢ is perfectly well-defined for a given trajectory. It is
possible to keep track of how many times the angle ¢ winds around the origin. Any
two trajectories can not be deformed continuously into one another since any two
particles can not go through each other. The space of particle trajectories falls into
disconnected pieces that cannot be deformed into one another if [r;;| is not allowed
to vanish. Each piece has a definite winding number. Therefore, it is not enough to
specify the initial and final configurations to characterize a given system completely.
In constructing path integrals, the weighting of trajectories can depend on a new
parameter @ (defined modulo 27) through a factor e*?/™. For § = 0 or § = 7 we
have the conventional boson or fermion statistics. For the most general case we have

PL¥(1,2) =ew(l,2). (16.19)

For arbitrary values of # the particles are called anyons and satisfy a new form of
quantum statistics.’

Let us consider a simple Lagrangian describing the relative motion of two inter-
acting particles, the relative position and reduced mass of which are denoted by
r[= (r, ¢)] and p, respectively. A simple way to realize anyon statistics is to add a
term hﬁ(ﬁ called a Chern—Simons term to the Lagrangian, where (= 0/7) = q®/ hc
is the anyon parameter with 0 < 3 < 1. While ¢ and @ are a fictitious charge and
flux, 4 is the numerical parameter of 0 < 6 < 1. For example, if

L= 2u +r2¢) — V() + R (16.20)

the added Chern—Simons term does not affect the classical equations of motions
because g and @ are time independent. However, the canonical angular momentum

is given by py(= %) = ur?¢ + hB3. Because e2™P¢/" generates rotations of 27,

9A. Lerda, Anyons: Quantum Mechanics of Particles with Fractional Statistics, Lecture Notes in
Physics (Springer-Verlag, Berlin, 1992) and F. Wilczek, Fractional Statistics and Anyon Supercon-
ductivity (World Scientific, Singapore, 1990).
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h~! ps must have integral eigenvalues /. However, the gauge invariant kinetic angular
momentum, given by pgs — 23, can take on fractional values, which will result in
fractional quantum statistics for the particles.

16.6 Chern-Simons Gauge Field

Let us consider a two dimensional system of particles satisfying some particular
statistics and described by a Hamiltonian

1 2
H = 2 2. [pi + SA(ri)] +> V). (16.21)

i i>j

Then we can change the statistics by attaching to each particle a fictitious charge g
and flux tube carrying magnetic flux @. The fictitious vector potential a(r;) at the
position of the ith particle caused by flux tubes, each carrying flux of @, on all the
other particles at r;(# r;) is written as

ar =0 ° jzr"j . (16.22)
i ij

The Chern—Simons gauge field due to the gauge potential a(r;) becomes

b(r) =& > 5(r — )2, (16.23)

where r; is the position of the ith particle carrying gauge potential a(r;). Because
two electrons can not occupy the same position, a given electron can never sense the
d-function magnetic field attached to other electrons. Therefore, b(r) has no effect
on the classical equations of motion.

In a quantum mechanical system, we rewrite the vector potential a(r) as follows:

a(r,) = @ / a2 O ). (16.24)

Ir —r;|?

Here 97 (r;)1(r;) denotes the density operator p(r;) for the electron liquid and
the gauge potential a(r) introduces a phase factor into the quantum mechanical
wavefunction.

Chern—Simons transformation is a singular gauge transformation which trans-
forms an electron creation operator ¢ (r) into a composite particle creation operator
T (r) as follows: _

w* (r) = w; (r)eiaf d*rarg (=1L ) (') (16.25)
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Here arg(r — r’) denotes the angle that the vector r — r’ makes with the x-axis
and « is a gauge parameter. Then, the kinetic energy operator K. of an electron is
transformed into

1 . 2
Kes = Z/dzmp' (r) [—ihV + EA(r) + Sa(r)] W(r), (16.26)

where a(r) is the total gauge potential formed at the position r due to the Chern—
Simons flux attached to other particles.

a(r) = ado / Pr ’er(—w*( ).

Hence, the Chern—Simons transformation corresponds to a transformation attaching
to each particle a flux tube of fictitious magnetic flux @ (= a¢() and a fictitious charge
—e so that the particle could couple to the flux tube attached to other particles.

The new Hamiltonian, through Chern—Simons gauge transformation, is obtained
by simply replacing £A(r;) in (16.21) by £A(r;) + fa(r;).

1 N 2
Hes = 5 / ry ) [p+ SA® + Zam | v@ + D Ve, (1627)

The composite fermions obtained in this way carry both electric charge and magnetic
flux. The Chern—Simons transformation is a gauge transformation and hence the
composite fermion energy spectrum is identical with the original electron spectrum.
Since attached fluxes are localized on electrons and the magnetic field acting on each
electron is unchanged, the classical Hamiltonian of the system is also unchanged.
However, the quantum mechanical Hamiltonian includes additional terms describing
an additional charge—flux interaction, which arises from the Aharanov—Bohm phase
attained when one electron’s path encircles the flux tube attached to another electron.

The net effect of the additional Chern—Simons term is to replace the statistics
parameter 6 describing the particle statistics in (16.19) with 0 + 7@ ;L. If & = p’%
when p is an integer, then § — 6 + 7wpg/e. For the case of ¢ = e and p = 1,
0 = 0 — 6 = 7 converting bosons to fermions and § = 7 — 6 = 27 converting
fermions to bosons. For p = 2, the statistics would be unchanged by the Chern—
Simons terms.

The Hamiltonian Hcg contains terms proportional to a"(r) (n = 0, 1,2). The
a'(r) term gives rise to a standard two-body interaction. The a?(r) term gives three-
body interactions containing the operator

v O )Y ()Y ()W (r2).
The three-body terms are complicated, and they are frequently neglected. The Chern—

Simons Hamiltonian introduced via a gauge transformation is considerably more
complicated than the original Hamiltonian given by (16.21). Simplification results
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only when the mean-field approximation is made. This is accomplished by replacing
the density operator p(r) in the Chern-Simons vector potential (16.24) by its mean-
field value ng, the uniform equilibrium electron density. The resulting mean-field
Hamiltonian is a sum of single particle Hamiltonians in which, instead of the external
field B, an effective magnetic field B* = B + a¢gong appears.

16.7 Composite Fermion Picture

The difficulty in trying to understand the fractionally filled Landau level in two
dimensional systems comes from the enormous degeneracy that is present in the
noninteracting many body states. The lowest Landau level contains N, states and
Ny = BS/¢o, the number of flux quanta threading the sample of area S. Therefore,
Ny/N = v~ is equal to the number of flux quanta per electron. Let us think of the
v = 1/3 state as an example; it has three flux quanta per electron. If we attach to each
electron a fictitious charge g(= —e, the electron charge) and a fictitious flux tube
(carrying flux @ = 2p¢, directed opposite to B, where p is an integer and ¢ the flux
quantum), the net effect is to give us the Hamiltonian described by (16.21), (16.22)
and to leave the statistical parameter 6 unchanged. The electrons are converted into
composite fermions which interact through the gauge field term as well as through
the Coulomb interaction.

Why does one want to make this transformation, which results in a much more
complicated Hamiltonian? The answer is simple if the gauge field a(r;) is replaced
by its mean value, which simply introduces an effective magnetic field B* = B+ (b).
Here, (b) is the average magnetic field associated with the fictitious flux. In the mean
field approach, the magnetic field due to attached flux tubes is evenly spread over
the occupied area S. The mean field composite fermions obtained in this way move
in an effective magnetic field B*. Since, for v = 1/3 state, B corresponds to three
flux quanta per electron and (b) corresponds to two flux quanta per electron directed
opposite to the original magnetic field B, we see that B* = %B. The effective mag-
netic field B* acting on the composite fermions gives a composite fermion Landau
level containing %N » states, or exactly enough states to accommodate our N particles.
Therefore, the v = 1/3 electron Landau level is converted, by the composite fermion
transformation, to a v* = 1 composite fermion Landau level. Now, the ground state
is the antisymmetric product of single particle states containing N composite fermi-
ons in exactly N states. The properties of a filled (composite fermion) Landau level
is well investigated in two dimensions. The fluctuations about the mean field can be
treated by standard many body perturbation theory. The vector potential associated
with fluctuation beyond the mean field level is given by da(r) = a(r) — (a(r)). The
perturbation to the mean field Hamiltonian contains both linear and quadratic terms
in da(r), resulting in both two body and three body interaction terms.

The idea of a composite fermion was introduced initially to represent an electron
with an attached flux tube which carries an even number o (= 2p) of flux quanta.
In the mean field approximation the composite fermion filling factor v* is given by
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the number of flux quanta per electron of the dc field less the composite fermion flux
per electron, i.e.
vl =y . (16.28)

We remember that v~! is equal to the number of flux quanta of the applied mag-
netic field B per electron, and « is the (even) number of Chern—Simons flux quanta
(oriented oppositely to the applied magnetic field B) attached to each electron in the
Chern—Simons transformation. Negative v* means the effective magnetic field B*
seen by the composite fermions is oriented opposite to the original magnetic field
B. Equation (16.28) implies that when v* = £1, &2, ... and a nondegenerate mean
field composite fermion ground state occurs, then

*

y=_"7 (16.29)

14+ av*
generates, for « = 2, condensed states at v = 1/3,2/5,3/7,... and v =
1,2/3,3/5,.... These are the most pronounced fractional quantum Hall states
observed in experiment. The v* = 1 states correspond to Laughlin v = H;a states. If

v* isnot an integer, the low lying states contain a number of quasiparticles (Ngp < N)
in the neighboring incompressible state with integral *. The mean field Hamiltonian
of noninteracting composite fermions is known to give a good description of the low
lying states of interacting electrons in the lowest Landau level.

It is quite remarkable to note that the mean field picture predicts not only the Jain
sequence of incompressible ground states, given by v = ﬁ (with integer p), but
also the correct band of low energy states for any value of the applied magnetic field.
This is illustrated very nicely for the case of N electrons on a Haldane sphere. In
the spherical geometry one can introduce an effective monopole strength 2 Q* seen
by one composite fermion. When the monopole strength seen by an electron has the
value 20, 2Q* is given, since the o flux quanta attached to every other composite
fermion must be subtracted from the original monopole strength 2Q, by

20 =20 — a(N — 1). (16.30)

This equation reflects the fact that a given composite fermion senses the vector
potential produced by the Chern—Simons flux on all other particles, but not its own
Chern—Simons flux.

Now | Q*| = [ plays the role of the angular momentum of the lowest composite
fermion shell just as Q = Iy was the angular momentum of the lowest electron shell.'?
When 20 is equal to an odd integer (1 + «) times (N — 1), the composite fermion
shell [ is completely filled (v* = 1), and an L = 0 incompressible Laughlin state at
filling factor v = (1+a)~! results. When 2| Q*| + 1 is smaller than N, quasielectrons
appear in the shell log = [§+-1. Similarly, when 2| 9*|4-1 is larger than N, quasiholes
appear in the shell lqy = [;. The low energy sector of the energy spectrum consists

10X M. Chen, J.J. Quinn, Solid St. Commun. 92, 865 (1994).
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Table 16.2 The effective CF monopole strength 2Q0*, the number of CF quasiparticles (quasiholes
nqH and quasielectrons nqg ), the quasiparticle angular momenta /g and /gy, the composite fermion
and electron filling factors v* and v, and the angular momenta L of the lowest lying band of multiplets
for a ten electron system at 2Q between 29 and 15

20 29 28 27 26 25 24 23 22 21 15
20 |11 10 9 8 7 6 5 4 3 3
now |2 1 0 0 0 0 0 0 0 0
nog |0 0 0 1 2 3 4 5 6 6
lon 5.5 5 45 4 35 3 25 2 15 15
Iqe 6.5 6 5.5 5 45 4 3.5 3 25 2.5
v 1 2 2
v 1/3 2/5 2/3
L 10,8, |5 0 5 8,6,4,19,7,6,(8,6,5,/5,3,1 |0 0

6,4,2, 2,0 |5,4, |42,22,

0 32,1 |0

of the states with the minimum number of quasiparticle excitations required by the
values of 2Q* and N. The first excited band of states will contain one additional
quasielectron—quasihole pair. The total angular momentum of these states in the
lowest energy sector can be predicted by addition of the angular momenta (/g or
Iqr) of the nqy or ngg quasiparticles treated as identical fermions. In Table 16.2 we
demonstrate how these allowed L values are found for a 10 electron system with
20 in the range 29 > 20 > 15. By comparing with numerical results presented
in Fig.16.1, one can readily observe that the total angular momentum multiplets
appearing in the lowest energy sector are correctly predicted by this simple mean
field Chern—Simons picture.

For example, the Laughlin L = 0 ground state at v = 1/3 occurs when 2[5 =
N —1, so that the N composite fermions fill the lowest shell with angular momentum
I5(= NT’I). The composite fermion quasielectron and quasihole states occur at 2/ =
N — 1 £ 1 and have one too many (for quasielectron) or one too few (for quasihole)
quasiparticles to give integral filling. The single quasiparticle states (ngp = 1) occur
at angular momentum N /2, for example, at Igg = 5 with 2Q* = 8 and lgg = 5
with 20Q* = 10 for N = 10 as indicated in Table 16.2. The two quasielectron or two
quasihole states (ngp = 2) occur at 2[; = N — 132, and they have 2lgg = N —1 and
2lgn = N + 1. For example, we expect that, for N = 10, log = 4.5 with20* =7
and /gy = 5.5 with2Q* = 11 as indicated in Table 16.2, leading to low energy bands
with L =092®4® 6@ 8 for 2 quasielectronsand L = 09204 P 6D 8P 10 for
2 quasiholes. In the mean field picture, which neglects quasiparticle-quasiparticle
interactions, these bands are degenerate.

We emphasize that the low lying excitations can be described in terms of the
number of quasiparticles ngg and ngy. The total angular momentum can be obtained
by addition of the individual quasiparticle angular momenta, being careful to treat
the quasielectron excitations as a set of fermions and quasihole excitations as a set
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of fermions distinguishable from the quasielectron excitations. The energy of the
excited state would simply be the sum of the individual quasiparticle energies if
interactions between quasiparticles were neglected. However, interactions partially
remove the degeneracy of different states having the same values of ngg and ngn.
Numerical results in Fig. 16.3b, d illustrate that two quasiparticles with different L
values have different energies. From this numerical data one can obtain the residual
interaction Vp(L') of a quasiparticle pair as a function of the pair angular momentum
L’ InFig. 16.2, in addition to the lowest energy band of multiplets, the first excited
band containing one additional quasielectron-quasihole pair can be observed. The
‘magnetoroton’ band can be observed lying between the L = 0 Laughlin ground state
of incompressible quantum liquid and a continuum of higher energy states. The band
contains one quasihole with Iqq = 9/2 and one quasielectron with [gg = 11/2. By
adding the angular momenta of these two distinguishable particles, aband comprising
L of 1(= lgg — lgn) < L < 10(= Igg + lgn) would be predicted. But, from
Fig.16.2 we conjecture that the state with L = 1 is either forbidden or pushed
up by interactions into the higher energy continuum above the magnetoroton band.
Furthermore, the states in the band are not degenerate indicating residual interactions
that depend on the angular momentum of the pair L’. Other bands that are not quite
so clearly defined can also be observed in Fig. 16.3.

Although fluctuations beyond the mean field interact via both Coulomb and
Chern—Simons gauge interactions, the mean field composite fermion picture is
remarkably successful in predicting the low energy multiplets in the spectrum of
N electrons on a Haldane sphere. It was suggested originally that this success of
the mean field picture results from the cancellation of the Coulomb and Chern—
Simons gauge interactions among fluctuations beyond the mean field level. It was
conjectured that the composite fermion transformation converts a system of strongly
interaction electrons into one of weakly interacting composite fermions. The mean
field Chern—Simons picture introduces a new energy scale Aw proportional to the
effective magnetic field B*, in addition to the energy scale e/ Iy (o ~/B) associated
with the electron—electron Coulomb interaction. The Chern—Simons gauge interac-
tions convert the electron system to the composite fermion system. The Coulomb
interaction lifts the degeneracy of the noninteracting electron bands. The low lying
multiplets of interacting electrons will be contained in a band of width e?/ [y about the
lowest electron Landau level. The noninteracting composite fermion spectrum con-
tains a number of bands separated by Aw}. However, for large values of the applied
magnetic field B, the Coulomb energy can be made arbitrarily small compared to the
Chern—Simons energy /w}, resulting in the former being too small to reproduce the
separation of levels present in the mean field composite fermion spectrum. The new
energy scale is very large compared with the Coulomb scale, and it is totally irrelevant
to the determination of the low energy spectrum. Despite the satisfactory description
of the allowed angular momentum multiplets, the magnitude of the mean field com-
posite fermion energies is completely wrong. The structure of the low energy states is
quite similar to that of the fully interacting electron system but completely different

Hgee, for example, J.J. Quinn, A. Wojs, K.S. Yi, G. Simion, Phys. Rep. 481, 29 (2009).
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from that of the noninteracting system. The magnetoroton energy does not occur at
the effective cyclotron energy /ww;. What is clear is that the success of the composite
fermion picture does not result from a cancellation between Chern—Simons gauge
interactions and Coulomb interactions. '

16.8 Fermi Liquid Picture

The numerical result of the type displayed in Fig.16.2 could be understood in a
very simple way within the composite fermion picture. For the 10 particle system,
the Laughlin v = 1/3 incompressible ground state at L = 0 occurs for 2Q =
3(N —1) = 27. The low lying excited states consist of a single quasiparticle pair with
the quasielectron and quasihole having angular momentum lgg = 11/2 and lgy =
9/2. The mean field composite fermion picture does not account for quasiparticle
interactions and would give a magnetoroton band of degenerate states with 1 <
L < 10 at2Q = 27. It also predicts the degeneracies of the bands of two identical
quasielectron states at 2Q = 25 and of two identical quasihole states at 2Q = 29.

The energy spectra of states containing more than one composite fermion qua-
siparticle can be described in the following phenomenological Fermi liquid model.
The creation of an elementary excitation, quasielectron or quasihole, in a Laugh-
lin incompressible ground state requires a finite energy, eqg or £qn, respectively.
In a state containing more than one Laughlin quasiparticle, quasiparticles interact
with one another through appropriate quasiparticle-quasiparticle pseudopotentials,
Vop—qp'. Here Vgp_qp (L) is defined as the interaction energy of a pair of electrons
as a function of the total angular momentum L' of the pair.

An estimate of the quasiparticle energies can be obtained by comparing the energy
of a single quasielectron (for example, for the 10 electron system, the energy of the
ground state at L = N/2 = 5 for 20 = 27 — 1 = 26) or a single quasihole (the
L = N/2 =5groundstate at2Q = 27+ 1 = 28 for the 10 electron system) with the
Laughlin L = 0 ground state at 2Q = 27. There can be finite size effects, because
the quasiparticle states occur at different values of 2Q from that of the ground state.
But estimation of reliable eqg and gy should be possible for a macroscopic system
by using the correct magnetic length Iy = R/+/Q (R is the radius of the Haldane
sphere) in units of energy ¢/ [, at each value of 2Q and by extrapolating the results
as a function of N~! to an infinite system.'3

The quasiparticle pseudopotentials Vgp_qp can be obtained from the energies
of the two quasiparticle states evaluated numerically (at 2Q = 25 (2QE state),
20 =27 (1QE — 1QH state), and 2Q = 29 (2QH state)) by subtracting the energy
of the Laughlin ground state (at 2Q = 27) and 2eqp, twice of the energy egp of

127.J. Quinn, A. Wojs, Physica E 6, 1 (2000).
13p. Sitko, S.-N. Yi, K.-S. Yi, J. J. Quinn, Phys. Rev. Lett. 76, 3396 (1996).
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appropriate noninteracting quasiparticles. As for the single quasiparticle, the energies
calculated at different value of 2Q must be taken in correct units of e /ly = v/ Qe?/R
to avoid finite size effects.

16.9 Pseudopotentials

Electron pair states in the spherical geometry are characterized by a pair angular
momentum L'(= Lj;). The Wigner-Eckart theorem tells us that the interaction
energy V, (L) depends only on L’ and the Landau level index n. The reason for
the success of the mean field Chern—Simons picture can be seen by examining the
behavior of the pseudopotential Vop_qp (L) of a pair of particles. In the mean field
approximation the energy necessary to create a quasielectron—quasihole pair is Aw}.
However, the quasiparticles will interact with the Laughlin condensed state through
the fluctuation Hamiltonian. The renormalized quasiparticle energy will include this
self-energy, which is difficult to calculate. We can determine the quasiparticle ener-
gies phenomenologically using exact numerical results as input data. The picture we
are using is very reminiscent of Fermi liquid theory. The ground state is the Laughlin
condensed state; it plays the role of a vacuum state. The elementary excitations are
quasielectrons and quasiholes. The total energy can be expressed as

1
E=Eo+ ) eqpnop + 5 > Vap-qe (L)ngengp- (16.31)
QP QP,QP"

The last term represents the interactions between a pair of quasiparticles in a state
of angular momentum L. One can take the energy spectra of finite systems, and
compare the two quasiparticle states, such as |2QE), |2QH), or |1QE + 1QH), with
the composite fermion picture. The values of Vop_qp/ (L) are obtained by subtract-
ing the energies of the noninteracting quasiparticles from the numerical values of
E (L) for the |1QP + 1QP’) states after the appropriate positive background energy
correction. It is worth noting that the interaction energy for unlike quasiparticles
depends on the total angular momentum L, while for like quasiparticles it depends
on the relative angular momentum R, which is defined by R = Lyax — L. One can
understand it by considering the motions in the two dimensional plane. Oppositely
charged quasiparticles form bound states, in which both charges drift in the direction
perpendicular to the line connecting them, and their spatial separation is related to
the total angular momentum L. Like charges repel one another orbiting around one
another due to the effect of the dc magnetic field. Their separation is related to their
relative angular momentum R.'*

14The angular momentum L of a pair of identical fermions in an angular momentum shell or a
Landau level is quantized, and the convenient quantum number to label the pair states is the relative
angular momentum R = 2/gp — L2 (on a sphere) or relative angular momentum m (on a plane).
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If Vgp—qp (L) is a “harmonic” pseudopotential of the form written as
Vu(L)=A+ BL'(L'+ 1), (16.32)

every angular momentum multiplet having the same value of the total angular
momentum L has the same energy. Here A and B are constants and it will be seen
below that the harmonic interactions do not remove the degeneracy of different states
with the same value of the total angular momentum, that is, they introduce no correla-
tions. Any linear combination of eigenstates with the same total angular momentum
has the same energy. We define Vop_qp (L) to be ‘superharmonic’ (‘subharmonic’)
at L' = 21 — R if it increases approaching this value more quickly (slowly) than
the harmonic pseudopotential appropriate at L’ — 2. For harmonic and subharmonic
pseudopotentials, Laughlin correlations do not occur. In Fig. 16.3b, d, it is clear that
residual quasiparticle—quasiparticle interactions are present. If they were not present,
then all of the 2QH states in frame (b) would be degenerate, as would all of the 2QE
states in frame (d). In fact, these frames give us the pseudopotentials Vo (R) and
Voe(R), up to an overall constant, describing the interaction energy of pairs with
angular momentum L’ = 2/ — R.

Figure 16.4 gives a plot of quasipotentials V, (L) vs L'(L’ + 1) for electrons in
the n = 0 and n = 1 Landau levels at different values of 2/.'3 For electrons in the
lowest Landau level (n = 0), Vp(L') is superharmonic at every value of L’. For
excited Landau levels (n > 1), V,(L’) is not superharmonic at all allowed values
of L'. The allowed values of L’ for a pair of fermions each of angular momentum
[ are given by L’ = 2] — R, where the relative angular momentum R is usually an
odd integer. We often write the pseudopotential as V (R) since L' = 2/ — R. For
the lowest Landau level V(R) is superharmonic everywhere. This is apparent for
the largest values of L’ in Fig. 16.4. For the first excited Landau level V; increases
between L' = 2] — 3 and L’ = 2] — 1, but it increases either harmonically or more
slowly, and hence V| (R) is superharmonic only for R > 1. Generally, for higher
Landau levels (for example, n = 2, 3,4, ...) V,(L') increases more slowly or even
decreases at the largest values of L’. The reason for this is that the wavefunctions
of higher Landau levels have one or more nodes giving structure to the electron
charge density. When the separation between the particles becomes comparable to
the scale of the structure, the repulsion is weaker than for structureless particles.'¢
When plotted as a function of R, the pseudopotentials calculated for small systems
containing different number of electrons (hence for different values of quasiparticle
angular momenta /opp) behave similarly and, for N — oo, i.e., 2Q — o0, they seem
to converge to the limiting pseudopotentials Vop_qp (R = m) describing an infinite
planar system.

157 7. Quinn, A. Wojs, K. S. Yi, and J. J. Quinn, The Electron Liquid Paradigm in Condensed Matter
Physics, pp. 469—497 (10S Press, Amsterdam, 2004).

16As for a conduction electron and a valence hole pair in a semiconductor, the motion of a
quasielectron—quasihole pair, which does not carry a net electric charge is not quantized in a
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Fig. 16.4 Pseudopotential V,, (L") of the Coulomb interaction in the lowest (a) and the first excited
Landau level (b) as a function of the eigenvalue of the squared pair angular momentum L' (L’ + 1).
Here n indicates the Landau level index. Squares (I = 5), triangles (! = 15/2), diamonds (/ = 10),
and circles (I = 25/2) indicate data for different values of Q =1+ n

The number of electrons required to have a system of quasiparticle pairs of reason-
able size is, in general, too large for exact diagonalization in terms of electron states
and the Coulomb pseudopotential. However, by restricting our consideration to the
quasiparticles in the partially field composite fermion shell and by using Vop_qp (R)
obtained from numerical studies of small systems of electrons, the numerical diago-
nalization can be reduced to manageable size.!” Furthermore, because the important
correlations and the nature of the ground state are primarily determined by the short
range part of the pseudopotential, such as at small values of R or small quasiparticle—
quasiparticle separations, the numerical results for small systems should describe the
essential correlations quite well for systems of any size.

Figure 16.5 displays Vog—qr (R) and Vou_qw (R) as a function of R =2/ — L',
where L’ is the angular momentum of the pair. It is appropriate to N electron systems
containing two quasiparticles in the » = 1/3 and v = 1/5 Laughlin incompressible
quantum liquid states.'® We note that the behavior of quasielectrons is similar for
v = 1/3 and v = 1/5 states, and the same is true for quasiholes of the v = 1/3
and v = 1/5 Laughlin states. Because Voo (R = 1) < Vog—qr'(R = 3) and
Voe—qe'(R = 5) < Vge—qr(R = 7), we can readily ascertain that Vog_qg (R)
is subharmonic at R = 1 and R = 5. Similarly, Vou_qu (R) is subharmonic at
‘R = 3 and possibly at R = 7. There are clearly finite size effects since Vop_qp (R)
is different for different values of the electron number N. However, Vop_qp (R)

magnetic field. The appropriate quantum number to label the states is the continuous wavevec-
tor k, which is given by k = L/R = L/ly+/Q on a sphere.

"The quasiparticle pseudopotentials determined in this way are quite accurate up to an overall
constant which has no effect on the correlations.

18 A. Wojs and J.J. Quinn, Phys. Rev. B 61, 2846 (2000).
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Fig. 16.5 Pseudopotentials Vop_qp' (R) of a pair of quasielectrons and quasiholes in Laughlin
v = 1/3and v = 1/5 states, as a function of relative pair angular momentum R (= 2/ — L’). Here L’
is the angular momentum of the pair. Different symbols denote data obtained in the diagonalization

of between six and eleven electrons

converges to a rather well defined limit when plotted as a function of N ~!. The results
are quite accurate up to an overall constant, which is of no significance when one is
interested only in the behavior of Vop_qp' as a function of R. Once the quasiparticle—
quasiparticle pseudopotentials and the bare quasiparticle energies are known, one can
evaluate the energies of states containing three or more quasiparticles.

Problems

16.1 The many particle wavefunction is written, for v = 1, by

Yi(zi, .. an) = Auo(z)u (z2) - - - un—1(zn)}

where A denotes the antisymmetrizing operator. Demonstrate explicitly that

¥(z1, ..., zy) can be written as follows:
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16.2 Consider a system of N electrons confined to a Haldane surface of radius R.
There is a magnetic monopole of strength 2 Q¢ at the center of the sphere.

(a) Demonstrate that, in the presence of a radial magnetic field B = i%‘g;’ R, the
single particle Hamiltonian is given by

(1—hQ1é)2.

Hy=——
0= 2mR?

Here R and 1 are, respectively, a unit vector in the radial direction and the
angular momentum operator.
(b) Show that the single particle eigenvalues of Hj are written as

hwe
20

e(Q,1,m) = (i +1 — 0%.

16.3 Figure 16.5 displays Voe(R) and Vou(R) obtained from numerical diagonal-
ization of N (6 < N < 11) electron systems appropriate to quasiparticles of the
v = 1/3 and v = 1/5 Laughlin incompressible quantum liquid states. Demonstrate
that Vop(R) converges to a rather well defined limit by plotting Vop(R) as a function
of N""atR =1, 3, and 5.

Summary

In this chapter we introduce basic concepts commonly used to interpret experimental
data on the quantum Hall effect. We begin with a description of two dimensional
electrons in the presence of a perpendicular magnetic field. The occurrence of incom-
pressible quantum fluid states of a two-dimensional system is reviewed as a result
of electron—electron interactions in a highly degenerate fractionally filled Landau
level. The idea of harmonic pseudopotential is introduced and residual interactions
among the quasiparticles are analyzed. For electrons in the lowest Landau level the
interaction energy of a pair of particles is shown to be superharmonic at every value
of pair angular momenta.

The Hamiltonian of an electron (of mass ) confined to the x-y plane, in the
presence of a dc magnetic field B = BZ,is simply H = (2u)~! [p + fA(r)]2 , where
A(r) is given by A(r) = %B(—y}? + xy) in a symmetric gauge. The Schrédinger
equation (H — E)¥ (r) = 0 has eigenstates described by

o 1
lpnm(ra ¢) = elmq)unm(r) and Ewm = §th(2n +1+m+ |m|)9
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where n and m are principal and angular momentum quantum numbers, respectively,
and w. (= eB/ic) is the cyclotron angular frequency. The lowest Landau level wave-
function can be written as ¥, = Nmz"”‘e"“z/ 40" where N, is the normalization
constant and z stands for z(= x —iy) = re~'?. The filling factor v of a given Landau
level is defined by N /Ny, so that v~! is simply equal to the number of flux quanta
of the dc magnetic field per electron. The integral quantum Hall effect occurs when
N electrons exactly fill an integral number of Landau levels resulting in an integral
value of the filling factor v. The energy gap (equal to hw,) between the filled states
and the empty states makes the noninteracting electron system incompressible. A
many particle wavefunction of N electrons at filling factor v = 1 becomes

1 2
=27 2w |2l
V(215 ..., 2N) X | I zije Mo TN

Nzi>j=>1

For filling factor v = 1/n, Laughlin ground state wavefunction is written as

Vin(1, 2, Ny = [ 2fy e i/,

i>]

where n is an odd integer.

It is convenient to introduce a Haldane sphere at the center of which is located
a magnetic monopole and a small number of electrons are confined on its sur-
face. The numerical problem is to diagonalize the interaction Hamiltonian Hj, =
> ; V(Ir; — r;]). The calculations give the eigenenergies E as a function of the
total angular momentum L.

Considering a two dimensional system of particles described by a Hamiltonian

H = i Z [p[ + ;A(r,-)]2 + Z V(rij),

i i>j

we can change the statistics by attaching to each particle a fictitious charge ¢ and flux
tube carrying magnetic flux @. The fictitious vector potential a(r;) at the position
of the ith particle caused by flux tubes, each carrying flux of @, on all the other

ZXrij

particles at r;(# r;) is written as a(r;) = @ zj;éi The Chern—Simons gauge

field due to the gauge potential a(r;) becomes b(r) =@ > 0(r—r;)Z, wherer; is
the position of the ith particle carrying gauge potential a(r;). The new Hamiltonian,

through Chern—Simons gauge transformation, is

1 . 2
Hes = 5- / ri [p+ SAm + a0 | v + > V.

i>

The net effect of the additional Chern—Simons term is to replace the statistics para-
meter 6 with 0 + 7® L. If & = p}% when p is an integer, then § — 0 + wpq/e.
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For the case of ¢ = e and p = 2, the statistics would be unchanged by the Chern—
Simons terms, and the gauge interactions convert the electrons system to the com-
posite fermions which interact through the gauge field term as well as through the
Coulomb interaction. In the mean field approach, the composite fermions move in
an effective magnetic field B*. The composite fermion filling factor v* is given by
v*~! = =1 — . The mean field picture predicts not only the sequence of incom-
pressible ground states, given by v = # (with integer p), but also the correct
band of low energy states for any value of the applied magnetic field. The low lying
excitations can be described in terms of the number of quasiparticles nqg and ngy.

In a state containing more than one Laughlin quasiparticles, quasiparticles interact
with one another through appropriate quasiparticle-quasiparticle pseudopotentials,
Vop—qp'- The total energy can be expressed as

1
E =Ey+ Z€QPHQP + 3 Z Vap—qp (L)ngphgp:
QP QP,QP

If Vop_qp (L) is a “harmonic” pseudopotential of the form Vi (L) = A+BL'(L'+1)
every angular momentum multiplet having the same value of the total angular
momentum L has the same energy. We define Vgp_qp (L’) to be ‘superharmonic’
(‘subharmonic’) at L’ = 21 — R if it increases approaching this value more quickly
(slowly) than the harmonic pseudopotential appropriate at L’ — 2. For harmonic and
subharmonic pseudopotentials, Laughlin correlations do not occur. Since the har-
monic pseudopotential introduces no correlations, only the anharmonic part of the
pseudopotential AV (R) = V(R) — Vy(R) lifts the degeneracy of the multiplets
with a given L.



Chapter 17

Correlation Diagrams: An Intuitive
Approach to Interactions in Quantum Hall
Systems

17.1 Introduction

In this chapter, we study correlations resulting from Coulomb interactions in frac-
tional quantum Hall systems. Our objective is to use correlation diagrams to gain
new insights into correlations in strongly interacting many-body systems. We intro-
duce correlation diagrams to guide in the selection of the correlation function caused
by interactions. Electrons are represented by points located at positions z; in the com-
plex plane, and there are correlation lines connecting pairs of electrons. A correlation
line connecting particles i and j represents a correlation factor (cf) z;; = z; — z;.
Although our correlation diagrams appear to resemble chemical bonds, they are just
the opposite. A factor z;; forbids the pair (i, j) from having a separation smaller than
m'/?\, where A\ = (hc/eBy)'/? is the magnetic length. Here By is the applied dc
magnetic field. An N electron system can be partitioned into subsets (A, B, C, ...);
one example is (N) — (N /2, N/2). There can be different numbers of cfs between
pairs belonging to different subsets, and still different numbers between particles in
different subsets. The number of cf lines associated with a particular partition can be
determined. The subgroup of the full symmetric group which is associated with the
conjugacy class of the partition is used to obtain the full symmetric correlation func-
tion. New electronic correlation functions are obtained for states containing a few
quasielectrons (QEs) in a partially filled QE shell, as well as for the incompressible
quantum liquid states containing integrally filled QE shells.

For weakly interacting many-body systems, the interaction Hamiltonian H; can
be treated as a perturbation acting on energy eigenfunctions of a non-interacting
Hamiltonian Hy. For strongly interacting systems, this standard many-body pertur-
bation approach' is not applicable because the interaction energy is much larger than
the single particle energy scale. The fractional quantum Hall (FQH) effect? is the

TA. A. Abrikosov, L. P. Gorkov, and 1. E. Dzyaloshinski, Method of Quantum Field Theory in
Statistical Physics, (Prentice-Hall, Englewood Cliffs, N.J., 1963).

2D. C. Tsui, H. L. Stormer, and A. C. Gossard, Phys. Rev. Lett. 48, 1559 (1982).
© Springer International Publishing AG, part of Springer Nature 2018 521

J. J. Quinn and K.-S. Yi, Solid State Physics, UNITEXT for Physics,
https://doi.org/10.1007/978-3-319-73999-1_17
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ultimate example of strongly interacting many-body systems. In determining the low
energy spectrum of the interacting system at the very large values of the applied mag-
netic field By, there is only one relevant energy scale, the Coulomb scale V. = ¢?/\.
The non-interacting single particle states® for an electron confined to the x-y plane
have eigenvalues ¢,,, = hw:[n + %(1 + m + |m|)], where w. = eBy/uc is the
electron cyclotron frequency, m = 0, =1, £2, ..., and »n is a non-negative integer.
The lowest energy level (Landau level LLO) has n = 0, and m equal to a negative
integer or zero. For a disk of finite area A, the allowed values of m for the LLO are
{0, —-1,-2,..., =Ny}, where Ny = .ABO(hc/e)’1 is the number of flux quanta of
the applied magnetic field By passing through the sample. Each of the N, + 1 single
particle states has the same energy %hwc. The non-interacting eigenfunction can be
expressed in terms of a complex coordinate z = x — iy of the electron as ¢(z) o 7.
Then, for LLO, m € go = {0, +1, ..., +Ny}. Antisymmetrized products of N func-
tions ¢, (z) selected from the set gy form the function space (2/, N) of the LLO. Here
we use 2/ in place of N, for convenience. Because the particles are fermions, an N
electron trial wave function can be written as a ubiquitous Gaussian weighting factor
e~ 2 lal/@X) (which is often not explicitly written but is understood), multiplied
by the product of an antisymmetric fermion factor F{z;;} = [],_ ; Zij caused by
the Pauli exclusion principle, and a symmetric correlation function G{z;;} caused by
Coulomb interactions. Here z;; = z; — z; and we often refer to it as a correlation
factor, even when it is caused by the Pauli principle and not by Coulomb correlations.

17.2 Electron Correlations

Laughlin* realized that if the interacting electrons could avoid the most strongly
repulsive pair states, an incompressible quantum liquid (IQL) state could result. He
suggested a trial wave function for a filling factor v (defined as ZINﬁ) equal to the
reciprocal of an odd integer n, in which the correlation function G, (z;;) was given
by ]_[i<j szl. This function is symmetric and avoids all pair states with relative
pair angular momentum smaller than n (or all pair separations smaller than r, =
n'/2)). One can represent this Laughlin correlation function diagrammatically by
distributing N dots, representing N electrons on the circumference of a circle, and
drawing double lines, representing two correlation factors connecting each pair. Thus,
there are 2(N —1) cf factors in G{z;;} emanating from each particle i. Adding (N —1)
cf factors emanating from each particle due to the fermion factor F{z;;} gives a total
of 3(N — 1) cfs emanating from each particle in the trial wave function W. This
number cannot exceed Ny = 2/ defining the function space (2/, N) of the LLO. The

other well-known trial wave function is the Moore—Read paired function’ describing

3See, for example, S. Gasiorowicz, Quantum Physics, Third ed. (John Wiley & Sons, Hoboken,
N.J., 2003).

4R. B.Laughlin, Phys. Rev. Lett. 50, 1395 (1983).
5G. Moore and N. Read, Nucl. Phys. B 360, 362 (1991).
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the IQL state of a half-filled, spin polarized first excited Landau level (LL1). This
wave function W can be written in the form & = F - Gyr, where the correlation
function is taken as Gur = F{zi;} Pf (Zi}l). The second factor is called the Pfaffian

of zf/.l. It can be expressed as®

N/2

Pf(z;) = A [aio1 — 207", (17.1)

i=1

where A is an antisymmetrizing operator and the product is over pairs of electrons.
There has been considerable interest in the Moore—Read paired state and its gen-
eralizations’ based on rather formidable conformal field theory. Let us introduce a
simple intuitive picture of Moore—Read correlations with the hope that it might lead
to new insight into correlations in strongly interacting many-body systems.

For the simple case of an N = 4 particle system, the Pfaffian can be written as

Pf(z;") = Az ™ = [z ™ — @)™+ @uno™] . (17.2)
The product of F{z;;} and Pf (zl.;l) gives for the Moore—Read correlation function

OMr{zij} = 213214223204 — 212214223234 + 212213224234 - (17.3)

The correlation diagram for Gyir {z;;} contains four points with a pair of cfs emanating
from each particle i going to different particles j and k. There are three distinct
diagrams shown in Fig. 17.1. Note that Gyr is symmetric under permutation, as it
must be, since it is a product of two antisymmetric functions F{z;;} and P f {zfl}.
A simpler, but seemingly different, correlation is the quadratic function given
by Gg = S (z3,23,), where S is a symmetrizing operator. The correlation diagram
for Go{zi;} is shown in Fig. 17.2. Gur and Gq are clearly different. However, when
they are expressed as homogeneous polynomials in the independent variables z; to
Z4, the two polynomials are the same up to a normalization constant. The same is
true for the N = 6 particle system, leading to the conjecture that Gur{z;;} was
equivalent to Go{z;;} for all N. There are several advantages to the use of Gg. First,
it is simpler to partition N into two subsets of N/2,e.g., {1,2,..., N/2} = A and
{N/2+1,...,N} = B, and define gap = gagp = Hi<j€A zi2j [izien z,%l. Then
the full correlation function can be written as S ~{gap}, where S N Symmetrizes gp
over all N particles. This symmetrization is equivalent to summing g4p over all
possible partitions of N into two equal size subsets A and B. Figure 17.3 shows the
contribution to Gg for N = 8 particles for one partition in which A = {1, 3,5, 7}

SM. Greiter, X.-G. Wen, and F. Wilczek, Phys. Rev. Lett. 66, 3205 (1991); Nucl. Phys. B 374, 507
(1992).

7A. Cappelli, L. S. Georgiev, and I. T. Todorov Proc. of Supersymmetries and Quantum Symmetries
(SQS’99, July 1999, Dubna) Ed. by E. Ivanov, S. Krivonos, and A. Pashev (JINR) p. 235 (2000).
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Fig. 17.1 Moore—Read correlation diagrams for N = 4. Dots represent particles, and solid lines
represent cfs z;;. GmR is the symmetric sum given by (17.3)
1 2 1 2 1
o——0
.:.
4 3 4 3 4
Fig. 17.2 Quadratic correlation functions. A double line represents z,-zj, the square of a cf. Gq is
the sum of the contributions from the three diagrams

3

and B = {2, 4, 6, 8}. In Fig. 17.2 we show the three terms which are summed to give
the symmetric Go{z;;} in place of the Moore—Read (Pfaffian) correlation function. In
Fig.17.3 we display the Go{z;;} (Laughlin correlation function) for an eight electron
system. It is much simpler than the Gyr{z;;} of Moore—Read.

Fig. 17.3 Correlation diagram for Ggz;; in an eight electron system due to the partition A =
{1,3,5,7} and B = {2,4, 6, 8}. The full correlation function is the sum over all distinct par-
titions into subsets A and B, each containing N/2 = 4 particles. The trial wave function is
Vo(l,2,...,8) = F{zij}Gqlzi;}. This is the correlation diagram for (N, 2/) = (8, 13), giving a
v =2+ 1/2 filled IQL state
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17.3 Composite Fermion Approach (Revisited)

In Chap. 16, we introduced a composite fermion (CF) picture by attaching to each
electron (via a gauge transformation) a flux tube which carried an even number
2p of magnetic flux quanta.® This Chern—Simons (CS) flux has no effect on the
classical equations of motion since the CS magnetic field b(r) = 2p¢y >, 6(r—r;)z
vanishes at the position of each electron (it is assumed that no electron senses its
own CS flux). Here ¢9 = hc/e is the quantum of flux, and the sum is over all
electron coordinates r;. The classical Lorentz force on the ith electron due to the
CS magnetic field is (—e/c)v; x b(r;) and b(r;) caused by the CS flux on every
J (not equal to i) vanishes at the position r;. The CF model results in a much
more complicated interaction Hamiltonian, but simplification results from making
a mean field (MF) approximation in which the CS flux and the electron charge are
uniformly distributed over the entire sample. The average electronic charge —eN /A
is canceled by the fixed background of positive charge introduced to make the total
charge vanish. This MF CF approximation results in a system of N non-interacting
CFs (CF = electron plus attached flux tube) moving in an effective magnetic field
b* = vb. An effective CF filling factor v* was introduced satisfying the equation

vl=pt—2p. (17.4)

This resulted in a filled CF level when v* was equal to an integer (v* = n =
+1,42,...) and an IQL daughter state at v = n(1 4 2pn)~". This Jain sequence of
states was the most robust set of fractional quantum Hall states observed in experi-
ments.

Making use of Haldane’s spherical geometry”:'%!! Chen and Quinn'? introduced
an effective CF angular momentum [* satisfying the relation I[j = [ — p(N — 1),

8J. K. Jain, Phys. Rev. Lett. 63, 199 (1989).

9F. D. M. Haldane, Phys. Rev. Lett. 51, 605 (1983); F. D. M. Haldane and E. H. Rezayi, Phys. Rev.
Lett. 54, 237 (1985).

10G, Fano, F. Ortolani, and E. Colombo, Phys. Rev. B 34,2670 (1986).

There is a one to one correspondence between N electrons on a plane described by coordinates
(r, ¢) and N electrons on a sphere described by (I, [;). For the plane, the z-component of angular
momentum takes on the valuesm = 0, 1, ..., Ny and the total z component of angular momentum is
M = ZINZI m; where m; is the z-component of angular momentum of a particle (i = 1,2, ..., N).
M 1is the sum of the relative angular momentum MR and the center of mass angular momentum
Mcm. On a sphere, the z-component of the single particle angular momentum is written as I,
and |/;| < [, where [ is the angular momentum in the shell (or Landau level). The total angular
momentum L is determined by addition of the angular momenta of N Fermions, each with angular
momentum /. N electron states are designated by |L, L., o), where « is used to label different
multiplets with the same value of L. It is apparent that M = NI + L, and one can show that
MR = NI — L and Mcy = L + L. Therefore, for a state of angular momentum L = 0, Mr must
be equal to NI. In general the value of L for a given correlation function is given by the equation
L =NIl—- Kz — Kg, where Kx = N(N — 1)/2 is the number of cf lines appearing in the Fermi
function F and K is the number of cf lines in the correlation function G.

12X M. Chen and J. J. Quinn, Solid State Commun. 92, 865 (1994).
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Table 17.1 Values of / for an N = 4 electron system and the values of [, nqE, IQE, ku, and L
which result

l lé nQE lQE km L
4.5 1.5 0 2.5 6 0
4 1 1 2 5 2
35 0.5 2 1.5 4 02
3 0 3 1 3 0

where 2 p is the number of CS flux quanta per electron. The lowest CF Landau level
(CF LLO) could hold (2I* + 1) CFs. There were ngg = N — (2I* + 1) composite
fermion QEs of angular momentum lgg = [* 4+ 1 or noy = (2I* + 1) — N CF QHs
of angular momentum /oy = [* if 2/* 4 1 was not equal to N. This resulted in a
lowest band of quasiparticle (QP) states separated by a gap from the higher energy
quasi continuum. This allowed the total angular momentum states in this band to be
determined by addition of angular momentum of ngp quasiparticles each of angular
momentum /gp using the rules for addition of fermion angular momenta.

In Table 17.1 we summarize the results of Jain’s MF CF picture of the low energy
states of an N = 4 electron system for values of 2/ equal to 9, 8, 7, and 6. These
correspond to the v = 1/3 filled IQL states and its excited states containing one, two,
and three QEs. The table shows the values of the single electron angular momentum
[, the resulting values of the CF angular momentum /j = [ — (N — 1), the number
of QEs ngg = N — (2[5 + 1), the QE angular momentum /gg, the maximum number
of correlation factor (cf) lines k), = 2/ — (N — 1) that can emanate from an electron
in the correlation function G, and the allowed values of the total angular momentum
L which result.

It might seem surprising that Jain’s very simple CF picture correctly predicts the
angular momenta in the lowest band of states for any value of (2/, N) which defines
the function space of the many-body system. The initial guess that the Chern—Simons
gauge interaction and the Coulomb interaction between fluctuations beyond the mean
field canceled is certainly not correct. The gauge field interactions are proportional to
hw,, which varies linearly with By, the applied magnetic field. However, the Coulomb
interactions are proportional to e?/\ (where ) is the magnetic length) and vary as
Bé/ * The two energy scales cannot possibly cancel for all values of By. For very large
values of By, only the Coulomb scale is relevant in determining the low energy band
of states. One can demonstrate that the MF CF picture gives a valid description of the
lowest band of states if the pair interaction energy V (L) increases with increasing
L, faster than the eigenvalue of ﬁ%z the square of the pair angular momentum.'?
Knowing this and the occupancies of CF LLs from Jain’s MF CF picture makes it
interesting to explore the correlations among the original electrons. We do this using
correlation diagrams for small systems in the following section.

137, J. Quinn, R. E. Wooten, and J. H. Macek, Proc. of the 21st Int. Conf. on High Magnetic Fields
in Semiconductor Physics (Panama City, Florida, 2014) p. 44.
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17.4 Correlation Diagrams

We have already stated that Laughlin correlation can be described by drawing two
cf lines between each pair (i, j). A cf line between i and j represents a correlation
factor z;;. The wave function W(1,2,..., N) = F{z;;}G{z;;} describing the IQL
state at v = 1/3 will contain 3(N — 1) cf lines emanating from each particle i.
(N — 1) cf lines are associated with F{z;;}, leaving 2(N — 1) cf lines associated
with G{z;;}. The correlation diagram for a Laughlin v = m ™! filling factor is simple
because every pair has exactly the same correlations. For other states, like a state
with ngg quasielectrons, the correlations are more complicated.14

For simplicity, let’s use as an example the N = 4 particle system with values of
2/ in the range 6 < 2/ < 9. The values of [}, nqg, lgE, ku, and the total angular
momentum L of the lowest energy bands for these states are given in Table 17.1.
We define K = N(N — 1)/2 as the number of cf lines appearing in the Fermi
function F{z;;}, and K¢ as the number appearing in the correlation function G{z;;}.
Knowing N/, K r, and, from Jain’s MF CF picture, the allowed values of total angular
momentum L, we can determine K¢ for each of the states listed in Table 17.1. For
[ =4.5, 4, and 3 the corresponding values of Kg are 12, 8, and 6. For [ = 3.5, there
are two multiplets, L = 0 (Kg = 8) and L = 2 (Kg = 6). We also know kj; from
the table. With this information, we can construct correlation functions which have
to be symmetric under permutation of a pair of particles. We show one correlation
diagram for each of the values of 2/. If it is not symmetric, we must apply S, on the
function to symmetrize over all four particles.

For (21, N) = (9, 4) there is only a single diagram for each choice of the partition
of N = 4 into (n,n) = (2, 2). It has two cfs connecting each pair of particles in
subset A = {1, 3,5, 7} and two cfs connecting each pair in subset B = {2, 4, 6, 8}
as illustrated in Fig. 17.3. For a one QE state, we must partition (4) into (3,1). The
single particle i belongs to subset A and the other three, j, k, and [, belong to subset
B. The latter subset has Laughlin correlations (z?k) between each pair belonging
to B. Particle i (in subset A) is the QE, and has single cf lines connecting it with
two of the three particles in subset B. Figure 17.4 shows one diagram. The diagram
corresponds to zlzzlgz%3zg4z§4, and this function must be symmetrized by summing
over all partitions of (4) into (3,1), i.e., including diagrams in which A can be 1, 2,
3, or 4. Here we notice that ky; = 5, NI = 16, and Kg = 8, giving an L = 2 state
for the single QE. For the two QE state with (2I, N) = (7, 4), we partition (4) into
(2,2). For example, let one partition be A = (1, 2) and B = (3, 4). One term in the
correlation diagram is shown in Fig.17.5. This diagram corresponds to z3,23,23;,
and it must be symmetrized over all four particles. Notice that k), = 4, NI = 14,
and Kg = 6, giving an L = 2. To obtain the L = 0 multiplet, we must add two more
cfs. Figure 17.6 shows one diagram for this case. It corresponds to a contribution
(212223234241)°, and it must be symmetrized. Now Kg =8and L = 0 results.

l48ee, for example, S. B. Mulay, J. J. Quinn, and M. A. Shattuck, Proceedings of 18th International
Conference on Recent Progress in Many-Body Theories (MBT18) 10P Publishing; J. of Physics:
Conference Series 702, 012007 (2016).
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Fig. 17.6 One contribution to G for (2/, N) = (7, 4) that gives L =0
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Fig. 17.7 One contribution to G for (2I, N) = (6, 4)

For (21, N) = (6, 4), we must have three QEs with k;; = 3, and we can construct
the diagram shown in Fig. 17.7. When symmetrized, it can be factored to obtain the
expression
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Glzij} = (212234 + 213204) (213242 + 214232) (214223 + 223234) . (17.5)

There is only one state of angular momentum L = 0, and the wave function ¥ =
F G obtained using (17.5) agrees exactly with that obtained by standard angular
momentum addition.

Itis worth mentioning that there are three diagrams when Fig. 17.6 is symmetrized
giving three terms (212223234241)% (212213224234)%, and (213214223224)°. Their sum
gives a symmetric G{z;;}. For Fig. 17.7, there are six diagrams giving (212234)%213224»
(212234)° 214223, (213224)°212234» (213224)*214223, (214223)*212234> and (214223)* 213224
Plus or minus signs must be chosen for each term so that the resulting correlation
function G{z;;} is symmetric.

In Chap. 16, we presented numerical diagonalization results for a system of ten
electrons residing in the lowest Landau level (LLO). Frames (b) and (d) in Fig. 16.3
contain two QHs and two QEs, respectively. From the numerical results one can
easily extract Vog_or' (L12) and Vou-qur(z.,,)» the interaction energies of a pair of QEs
(QHs) as a function of the QP pair angular momentum. These interaction energies
(or pseudopotentials) are obtained up to an overall constant which has no effect on
correlations. In frame (d) of Fig. 16.3 there are two QEs each with lop = 9/2, and
in frame (b) there are two QHs each with loy = 11/2. The lowest energy bands,
separated from a quasi-continuum of higher states by a gap, gives us Voggr’ (L12)
for L = 0@2@4@6@8,311(1 VQH—QH’(LIZ) for L=00204060 8 10.
Voe-Qe’(L12) has a maximum at L = 6 and minima at L1 = 8 and L, = 4.
Von-ow' (L12) has maxima at L = 10 and L1, = 6 and minima at L, = 8 and
Ly, = 4. This behavior is quite different from the electron pseudopotential in the
LLO which increases monotonically with increasing L.

Forlarge systems (e.g. N > 14) numerical diagonalization of the electron-electron
interactions becomes difficult, so we have investigated the low lying energy states
by determining the number of QEs or QHs (ngg or ngn), their angular momenta
loe and lgn, and their interaction energies Vogqr' (L12) and Vou.gu' (L12). Since
nge (or ngy) is much smaller than N, and [gg (and /on) much smaller than [, the
electron angular momentum, we can easily diagonalize these smaller systems. One
example is shown in Fig. 17.8 for the case (2I, N) = (29, 12), which corresponds to
(2lgE, nor) = (9, 4)."° The low lying states of the (21, N) = (29, 12) are obtained by
numerical diagonalization of twelve electrons interacting through standard Coulomb
interactions.'® The spectrum of four QEs 2l =21 =2(N—-1)=29-22= 17,
Ig =7/2yngg = N—-Qlg+1) =12—-8 =4, lgg =I5 +1 = 9/2; and
(2lge, nge) = (9, 4)} each with /og = 9/2 is obtained by diagonalizing Vog.qe (L 12)
in the function space (2lgg, nge) = (9, 4). From Fig.17.8 it is clear that the two
spectra, though not identical, are remarkably similar, suggesting that the description
of QP excitations interacting via Vgp.gp (L12) is reasonable.

The relation between the electron filling factor 1 and the effective CF filling factor
1 is given by the equation vy ' = (1) =" 42 po, where 2 py is the number of Chern—

153, J. Quinn, A. Wojs, and K. S. Yi, J. Korean Phys. Soc. 45, S491-S495 (2004).
163, J. Quinn, A. Wojs, K. S. Yi, and G. Simion, Physics Reports 481, 29 (2009).
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http://dx.doi.org/10.1007/978-3-319-73999-1_16
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Fig. 17.8 Energy spectra for N = 12 electrons in LLO with 2/ = 29, and for N = 4 QEs in
CF LL1 with 2/ = 9. The energy scales are the same, but the QE spectrum was determined using
Voe—gr(R) as the pair pseudopotential (up to an arbitrary constant) !0

Simons flux quanta attached to each electron in the CF transformation. This gave rise
to the Jain sequence® of IQL states when vy was equal to an integer n. What happens
when 1 is not an integer? It was suggested'” that then one could write 1§ = n; +1,
where n; was an integer and v represented the filling factor of the partially filled CF
QP shell. If Haldane’s assumption that the pair interaction energy Vop.gp(L12), as
a function of the angular momentum L, of the QP pair, was sufficiently similar to
Vo(L12), the interaction energy of the electrons in the LLO, then one could reapply the
CF transformation to the CF QPs by writing (1/?‘)’1 =v; ' — 2p,. Here v is the CF
QP filling factor and 2 p is the number of CS flux quanta added to the original CF QPs
to produce a second generation of CFs. For /] = n,, an integer, this results in | =
ny(2piny+1)~", and a daughter IQL state at v, ' = 2p; +[n+n22pina+ 1)1
This new odd denominator fraction does not belong to the Jain sequence. If v} is not
an integer, then set v = 2p; + (n;41 + 1/1+1)’1. When v = 0, there is a filled CF
shell at the /th generation of the CF hierarchy. This procedure generates Haldane’s
continued fraction leading to IQL states at all odd denominator fractional electron
fillings. The Jain sequence is a special case in which v; = n gives an integral filling
of the first CF QP shell, and the gap is the separation between the last filled and first
empty CF levels.

The CF hierarchy picture was tested by Sitko et al.!” for the simple case of
(21, N) = (18, 8) in LLO by comparing its prediction to the result of *exact’ numerical
diagonalization. For this case 2/; = 2] — 2(N — 1) = 18 — 2(7) = 4. Therefore,
CF LLO can accommodate 2/; + 1 = 5 CFs. The three remaining CFs must go into
CF LL1 as CF QEs of angular momentum lgg = [ + 1 = 3. This generates a band
of states with L = 0@ 2 & 3 @ 4 & 6. This is exactly what is found for the lowest
energy band of states obtained by numerical diagonalization shown in Fig.16.3.

17p, Sitko, K. S. Yi, and J. J. Quinn, Phys. Rev. B 56, 12417 (1997); P. Sitko, S. N. Yi, K. S. Yi, and
J. J. Quinn, Phys. Rev. Lett. 76, 3396 (1996).
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Reapplying the CF transformation to the first generation of CF QEs would generate
217 =2I5 —2(Ngg — 1) =4 —2(2) = 0, giving an L = 0 daughter IQL state if the
CF hierarchy were correct. Clearly, the lowest energy state obtained in the numerical
diagonalization does not have angular momentum L = 0 as predicted by the CF
hierarchy. The L = 0 and L = 3 multiplets clearly have higher energies than the
other three multiplets. Sitko et al. conjectured that this must have resulted because the
pseudopotential Vog.qr» (L12) was not sufficiently similar to that of electrons in LLO
to support Laughlin correlations. Laughlin correlations are essential for forming a
next generation of CFss.

The QEs and QHs have residual interactions that are more complicated than the
simple Coulomb interaction in LLO. We have already seen from Fig. 16.3b and d that
one can obtain Vgp.gp' (L12) up to an overall constant from numerical diagonaliza-
tion of the N-electron systems in LLO. More careful estimates of Vgg.qr' (R) and
Von-qw (R) (where R = 2] — L, and L, is the pair angular momentum) are shown
in Figs. 16.4 and 16.5. We define a pseudopotential to be harmonic if it increases
with L as V(L) = A+ BL,(L12 + 1), where A and B are constants. For
LLO, the electron pseudopotential V (L,) always increases with L, more rapidly
than Vy(L12). For QEs in CF LL1, the pseudopotential Vg qr' (L12) has minima
Ly =2l—1andat L, =2/ —5, and amaximum at L, = 2/ — 3. This oscillatory
behavior of the interaction energy of a QE pair must be responsible for the failure of
the CF hierarchy prediction of an L = 0 IQL state.

In Fig.17.9 we display the energy spectrum of N = 8 electrons in a Landau
level of single particle angular momentum /; satisfying the relation 2/, = 18. If we
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Fig. 17.9 Low energy spectrum of 8 electrons at 2/ = 18. The lowest band contains 3 QEs each
with Iqg = 3. Reapplying the CS mean-field approximation to these QEs would predict an L = 0
daughter state corresponding to v = 4/11. The data makes clear that this is not valid'?
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attach two flux quanta to each of eight electrons, Jain’s MF CF picture gives a CF
angular momentum [ satisfying 2[5 = 2l — 2(N — 1). Since 2l = 18, we obtain
2l5 = 18 — 14 = 4. The lowest CF Landau level has [ = 2 and can accommodate
only 2[5 +1 = 5 CFs. The remaining three CFs must go into the first excited CF level
with angular momentum /j = [j 4+ 1 = 3. Three fermions of angular momentum
If = 3 produce a band of CF quasielectrons each with /j = 3, and a total QE
angular momentum L = 0P 2@ 3 @ 4 @ 6. This is exactly what we see in Fig. 17.9.
However, if the CF hierarchy were valid, we could make a second CF transformation
on the three CF QEs in the shell of angular momentum /gg; (2lgg; = 6). This yields
2lgr2 = 2lgr1 — 2(Ngr2 — 1) = 6 — 2(3 — 1) = 2. This angular momentum shell
can accommodate 2/gg, + 1 = 3 second generation CF QEs, exactly the number
we have, so a daughter state with L = 0 should be the IQL ground state. Clearly,
the L = O state is not the ground state. The multiplets L = 2 @ 3 @ 4 are clearly
of lower energy than those with L € 0 @ 6. Sitko er al.'® suggested that the FQH
hierarchy did not predict the observed result (by giving an L = 0 IQL ground state)
because the QE-QE interaction was not sufficiently similar to the electron-electron
interaction for electrons residing in LLO.

It has been demonstrated that Laughlin correlations can occur only if the inter-
action energy of a pair of fermions in a partially filled Landau level increases with
increasing pair angular momentum L, more quickly than L,(L; + 1). This does
not happen for QEs in the lowest CF Landau level, so no second generation of CFs
is expected.

Exercise

Demonstrate the three fermions of angular momentum /; = 3 produce a band of CF
QEs of total QE angular momentum L = 0 & 2 & 3 & 4 & 6. The band is seen in
Fig.17.9.

17.5 Thoughts on Larger Systems

Up to now we have used the N = 4 particle system as a simple example, and it is
not difficult to generalize to the case in which N is an arbitrary even integer. First, let
us consider the Moore—Read (M-R) state.? For the Moore—Read state, 2] = 2N — 3,
and we let N = 2n, where n is an integer. Then we have

(i) 2l=4n-3
(i) ky =2n —2
(iii) Take a partition such as A = (1,2,...,N/2), B = (N/2+ 1,...,N).
Take Laughlin correlations within subsets and write g4 = Hi<j cA Zl?j, g =

2
[1i<rcp zig» and
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G= D 9ags- (17.6)

all partitions

Notethat Nl = n(4n—3), Kx = n(2n—1),and Kg = n(2n—2), giving L = 0. There
are Laughlin correlations among the n particles in A and among the » particles in B,
but no correlations between particles in different subsets. This is a simple, intuitive
way of fitting N particles into the function space (2/, N) with maximum avoidance
of the most repulsive pair states (ones with pair angular momentum L, < 2/ — 3).
For the Jain state at v = 2/5, we can apply the same technique. In that case, we have

(i) 2l=5n—-4

(i) kyy =3n -3

(iii) Partition into two subsets (A, B), as with the Moore—Read case. Take g4 and
gp exactly as in that case.

(iv) Add a factor due to intersubset correlations to increase Kg so thatan L = 0
state is produced despite the increase in the value of 2/. For a partition such
asA=(1,2,...,n), B=(m+1,...,2n), define the intersubset correlation
function

gar =111z | 22T 1zmtymsi- (17.7)

icA jeB oes, i=1

In (17.7), the first factor gives a product of n* correlation factors z;;. The second
factor is a sum of products of n factors of zi;l. Define G = gagpgap for a given
partition (A, B). Then the full correlation function G in this case is the sum of the
G 4 p taken over all possible partitions.

The M-R correlation function has been discussed before,”-!% but the wave function
given above for the Jain v = 2/5 state is not well-known.'* The Moore-Read wave
function can be written as W = F{z;;}Gmr{z:;}, where Gy is a product of a second
fermion factor F{z;;} and the Pfaffian. One can demonstrate that Gyr gives the same
correlations as the quadratic correlation function Gg = S {z%zz§4}. For a system of
four electrons, both correlation functions produce wave functions which have very
large overlap with the one determined by ‘exact’ numerical diagonalization. For
N > 4, the overlap falls to a slightly lower value. We believe that the reason for
this is that Gur, like Gq, limits the powers of the correlation factors in G{z;;} to
(z; j)z. For N > 4, higher powers of cfs are needed, and the overlap with numerical
diagonalization decreases. As N is increased to values larger than six, the number
of correlation diagrams satisfying all of the necessary conditions to give a state with
a particular total angular momentum L increases very rapidly. Some of the terms
in g4ap cannot be symmetrized, and therefore cannot contribute to the correlation
function. All of the additional diagrams must be investigated for symmetrization.
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17.6 Residual Interactions

The QEs and QHs have residual interactions that are more complicated than simple
Coulomb interactions.'® They are difficult to calculate analytically, but if we look at
an N electron system at a value of 2/ = 3(N — 1) =2, we know that the lowest band
of states in the spectrum will correspond to 2 QEs or 2 QHs of the Laughlin v = 1/3
FQH state (for the minus and plus signs respectively).

The spectra for N = 10 electrons at 2/ = 25 (2 QE case) and 2/ = 29 (2 QH
case) are shown in Figs.16.2 and 16.3. It is clear that the low energy bands are
not degenerate, but that the energy E depends on L, which (as we have seen) can
be understood as the total angular momentum of the QP pair. For QEs, E(L) has a
maximum at L = 2/gg —3 and minima at L = 2lgy — 1 and 2/qyq — 5. For QHs, E(L)
has a maximum at L = 2lgg — 1 and L = 2lgy — 5 and a minimum at L = 2/gy — 3.
This is quite different from the pseudopotentials for electrons, and it is undoubtedly
the reason why the CF picture fails when it is reapplied to QEs. In Fig.17.10 we
display the pseudopotentials for electrons in LLO and LL1 with that for QEs of the
Laughlin v = 1/3 IQL state in CF LL1. The electron pseudopotentials are the same
ones presented in Fig. 16.4 but are presented here as a function of R = 21 — L/,
the relative angular momentum of a pair. The QE pseudopotentials in frame (c)
were taken from the calculations of Lee et al.'"” and from the diagonalization of
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Fig. 17.10 Pair interaction pseudopotentials as a function of relative angular momentum R for
electrons in LLO (a), LL1 (b) and for the QEs of the Laughlin v = 1/3 state calculated by Lee
et al.!? (squares) and by Wojs et al.2° (triangles), displaced from each other for clarity'> (c)

!8The final sections of this chapter followed very closely the review Electron Correlations in
Strongly Interacting Systems by J. J. Quinn and G. E. Simion in New Trends in Statistical Physics,
edited by A. Macias and L. Dagdug (World Scientific Publishing Co., Singapore, 2010). The inter-
ested reader should read this work for a more complete discussion.

195 Y. Lee, V. W. Scarola, and J. K. Jain, Phys. Rev. Lett. 87, 256803 (2001);S.-Y. Lee, V. W.
Scarola, and J. Jain, Phys. Rev. B. 66, 085336 (2002).
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small electron systems done by Wojs et al.? and are known up to a constant. The
magnitude of interaction of CF QEs is much smaller than the interaction between
electrons, and has a sharp maximum at R = 3 and minima at R = 1 and 5.

These pseudopotentials have been obtained for 2D electron layers of zero width. It
is well known that the finite extent of the subband wavefunction in the direction per-
pendicular to the layer introduces a correction to the electron pseudopotentials.?! The
QP pseudopotentials are also sensitive to the layer width since they are obtained from
the energy of the two QP band obtained by exact diagonalization of the appropriate
electron system including the specific form of the (lowest) subband wavefunction.

Laughlin correlated states belonging to the Laughlin—Jain sequence v =
n(2pn £ 1)~! occur for LLO for p = land 2, and forn = 1,2, 3,.... For elec-
trons in LL1, robust FQH states occur v = 5/2,7/3, and 11/5 (corresponding to
v =v—2=1/2,1/3, and 1/5), and their e — h conjugate at v; = 1 —v;. However,
the Jain states at vy = 2/5,3/7, .. ., and their e — h conjugates are either not observed
at all, or appear as very weak minima in p,,. FQH daughter states arising from inter-
acting QPs in CFLL1 occur at vgg or vgg = 1/3 (corresponding to v = 4/11 and
4/13) and vgg = 1/2 (v = 3/8). These states are thought to be fully spin polarized,
but that is not absolutely certain. Numerical studies of the interactions between CF
QPs suggest that the spin polarized states are not Laughlin correlated.

Because electrons in LLO and LL1, and QPs in CFLLI, are interacting fermions
in a degenerate Landau level, the differences in their properties can only be attributed
to the differences in the pseudopotentials describing their interactions. For QPs in
CFLL1, Vgg.ge'(L2) and Vou.qu' (L2) are clearly not monotonic functions. They
have maxima and minima at values of R < 7. It seems that Jain’s picture is valid
for LLO, but not for LL.1 when 2/3 > v > 1/3 or for CF QPs of Laughlin v = 1/3
state.

In the following sections we explore the conditions for which the CF picture is
valid. We give examples of situations in which it is not valid, and we suggest new
kinds of correlations that might occur in such cases.

17.7 Validity of the CF Hierarchy Picture

From the experimental results of Pan et al.?? it is clear that there are IQL states which

do not belong to the Jain sequence of integrally filled CF levels (e.g. the totally spin
polarized v = 4/11 state). This state should occur in the CF (or equivalent Haldane)
hierarchy if the interaction between CFQEs results in Laughlin correlations among
them. Numerical diagonalization (See, for example, the reference in footnote 17)

204, Wojs, D. Wodzinski, and J. J. Quinn, Phys. Rev. B. 74, 035315 (2006).

218ee, for example, A. Wojs and J. J. Quinn, Phys. Rev. B. 75, 085318 (2007); S. He, F. C. Zhang,
X. C. Xie, and S. Das Sarma, Phys. Rev. B. 42, 11376 (1990).

22W. Pan, H. L. Stormer, D. C. Tsui, L. N. Pfeier, K. W. Baldwin, and K. W. West, Phys. Rev. Lett.
90, 016801 (2003).
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of small systems did not find a Laughlin correlated L = 0 ground state of the
CFQEs at vgg = 1/3. Furthermore, Pan et al. observed strong minima in py, at even
denominator filling factors (v = 3/8 and v = 3/10), suggesting IQL states which do
not belong to the CF hierarchy. It has been proved rigorously>® that Jain’s elegant CF
picture is applicable under restricted condition. Because there is no small parameter
to guarantee the convergence of many body perturbation theory, the proof does not
involve treating the interactions between fluctuations by a perturbative expansion.
It involves proving several rigorous mathematical theorems®* and applying them,
together with well-known concepts used frequently in atomic and nuclear physics.?’
For a system of N fermions of the total angular momentum operator L, thereisa

very simple identity
L+ NN —2)> — Z L} =0, (17.8)

(i.J)

where the sum is over all pairs. We have already seen that a spin polarized shell con-
taining N fermions each with angular momentum / can be described by eigenfunc-
tions of the total angular momentum £ = > I; and its z-component M = > imi.
We define f; (N, ) as the number of multiplets of total angular momentum L that
can be formed from N fermions each with angular momentum /. Let us label these
multiplets as |{V; La) where it is understood that each multiplet contains 2L + 1
states having —L < M < L, and « is the label that distinguishes different multiplets
with the same value of L. We define L; = Ii+1 j» the angular momentum of the pair
i, j each with angular momentum /. Below we outline useful theorems, referring to
earlier publications for proofs:

Theorem 1 Since |IV; La) is the ath multiplet of total angular momentum L formed
from N fermions in a shell of angular momentum l, taking the expectation value of
this identity (17.8) in the state |IV; La) gives

<1N Lo ZL2 v La> =LIL+D)+NN-=DII+1). (17.9)

Here ilzj is the square of the angular momentum operatorfi +1 | for electrons i and
J, and the sum is over all pairs (i, j).

Itis interesting to note that the expectation value of square of the pair angular momen-
tum summed over all pairs is totally independent of the multiple index «. It depends
only on the total angular momentum L.

23 A. Wojs and J. J. Quinn, Solid State Commun. 108, 493 (1998).

2*We make use of an operator identities, which states that for N fermlonq in a shell of angular
momentum /, L2+ N (N — 2)l = Z (l +l )2. Here 12 and 2 are the squares of the angular
momentum operators, and the sum is over all pairs (i, j).

25 A. de Shalit and L. Talmi, Nuclear Shell Theory (Academic Press, New York, 1963).
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Theorem 2 [t is well known in atomic and nuclear shell model studies that |1V ; Le)
can be written as a sum of product functions.*>>

Vi La)= D" Growa L) [P Lo 1N, Lo L) . (17.10)

Lo’ L]z

Here G 1o(L12) is called a coefficient of fractional parentage and [IN=2, L'a/)
is the o multiplet of total angular momentum L' of N — 2 fermions each with
angular momentum l. The ket vector [IPLyp; IN72, L'a/; LY isa product of |12, L15)
and IN72; L') selected to give a state of total angular momentum L.

This states that the G, 1/« (L12) produces a totally antisymmetric eigenfunction
|IN: La), even though |12, L1»; IN72, L'a/; L) is not antisymmetric under exchange
of particle 1 or 2 with any of the other particles.

Theorem 3 Because |IV; La) is totally antisymmetric

. 1
<1N;La Zij ZN;La>= SN - 1)2L12(L12+1)PL“(L12). (17.11)

(i,J) Ly

This is simply a statement that the sum over all pairs can be replaced by a sum over
all allowed values of the pair angular momentum L, of one pair, multiplied by the
total number of pairs N(N — 1)/2. Pp,(L») is defined by

Pra(L) = O [Graww Li)]* | (17.12)

Lo

where the summation is over all intermediate state. Because the eigenfunctions
[IN; La) are orthonormal, one can show that

D> GravwLi)Grsrw (L) = bap. (17.13)

L]2 Lo/

From the (17.10)—(17.13) one can have a useful sum rule involving Pr,(L12) (see
Problem 17.3).

> Prallin) =1 (17.14)

L,

The energy of the multiplet |[V; La) is given by

1
Eo(L)=ZN(N -1 > Prali)V (L), (17.15)

Ly
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where V (Lj,) is the pseudopotential describing the interaction energy of a pair of
fermions with pair angular momentum L ;.

Exercise

Demonstrate the identity on the coefficients of fractional parentage given by (17.13)
and the energy of the multiplet |[V; La) as given by (17.15).

Theorem 4 If the pseudopotential is harmonic, by which we mean V(L;) =
Vu(L1z) = A+ BL13(L1a + 1), where A and B are constants, then every mul-
tiplet o with the same total angular momentum L has the same energy given by

E (L) = %N(N —DA+BIN(N =2l + 1)+ L(L+1D]. (17.16)

This means that the degeneracy of the angular momentum multiplets of non-
interacting fermions is not removed by a harmonic pseudopotential for differ-
ent multiplets having the same L. Any linear combination of the eigenstates of
the total angular momentum having the same eigenvalue L is an eigenstate of
the harmonic pseudopotential. Only the anharmonic part of the pseudopotential
AV (L1p) = V(L12) — V4(R) causes correlations.

Theorem 5 If Gy;(L) is the number of independent multiplets of total angular
momentum L that can be formed from N fermions in a shell of angular momentum
I, then GN;x(L) < Gyy(L) forevery L, ifI* =1 — (N — 1).26

Theorem 6 The subset G y;+(L) of angular momentum multiplets of the set G y;(L)
avoids the largest allowed pair angular momentum Ly, = 2l — 1, which for LLO,
corresponds to the largest pair repulsion.

This is obvious for N = 2, where L%AX =2/ —1and LT%’IAX =2I*—1=2-3,
but it is true for arbitrary N. This theorem means that the set of states selected by
Jain’s mean field CF picture (where [* plays the role of the effective CF angular
momentum) is subset of G y;(L). This subset avoids pair states with L = 21 — 1
and contains multiplets with low angular momentum and low energy.

Theorem 7 By adding an integral number; o, of Chern—Simons flux quanta (oriented
opposite to the applied magnetic field) to the Hamiltonian for N electrons, not via a
gauge transformation but adiabatically, the pair eigenstate (in the planar geometry)
W, = Py, (r), where up, (r) is the radial wave function, transforms to v, =

imo

e un,m+a(r)-27

26 A, T. Benjamin, J. J. Quinn, J. J. Quinn, and A. Wojs J. of Combinatorial Theory A 95(2) 390
(2001).

27John J. Quinn and Jennifer J. Quinn, Phys. Rev. B 68, 153310 (2003).
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These theorems justify Jain’s CF picture when applied to LLO. Is this important?
In our opinion, Jain’s mean field CF picture has been a brilliant success. It is used
very often to interpret experimental data. However, because Coulomb and CS gauge
interactions beyond the mean field involve two entirely different energy scales (hw} =
vB and €2 /A X \/E), these two interactions between fluctuations beyond the mean
field cannot possibly cancel for all values of B.

Because correlations (i.e. the lifting of the degeneracy of the angular momentum
multiplets |l N La) of non-interacting electrons in partially filled LLO) depend on the
deviation of the actual pseudopotential from harmonic behavior (i.e.on AV (L) =
V(L12) — Vg (L12)), it is interesting to explore the simplest possible anharmonicity.
If we assume that AV (L) = kd(L2, 21 — 1) with k > 0, then it is obvious that the
lowest energy multiplet |La) for every value of L is the one that has the smallest
value of Pp, (L, = 2l — 1). This is exactly what is meant by Laughlin correlations
and is the reason why the Laughlin wavefunction is the exact solution to the short
range pseudopotential V (L13) = d(L2, 2l — 1). It should be noted that if k¥ < O,
the opposite is true. For this case, the lowest multiplet for each value of L has a
maximum value of Pr,(Lj» = 2] — 1), and the particles have a tendency to form
pairs with L, = 2] — 1. Laughlin correlations at a given value of L, occur only if
the pseudopotential is superharmonic at that value of L ;.

17.8 Spin Polarized Quasiparticles in a Partially Filled
Composite Fermion Shell

17.8.1 Heuristic Picture

We have demonstrated that the simplest repulsive anharmonic pseudopotential
V(Ry) = Vg(Ry) + kd6(Ry, 1) caused the lowest energy state for each value of
the total angular momentum L to be Laughlin correlated. For a spin polarized LLO
with 1/3 < v < 2/3 such a potential (superharmonic at R = 1) gives rise to
the Laughlin-Jain sequence of integrally filled CF levels with v, = n(2n £ 1)7!,
where n is an integer. Haldane suggested that if the highest occupied CF level is
only partially filled, a gap could result from the residual interactions between the
QPs in the same way that the original gap resulted from the electron interactions.’
However, this would require Vgp.gp'(r) to be “superharmonic” at R = 1 to give rise
to Laughlin correlations. We have already shown that in a Laughlin v = 1/3 or 1/5
state Voge-qr’ (R) was not superharmonic at R = 1 and R = 5, and that Vou.qw
was not at R = 3. This means that many of the novel IQL states observed by Pan et
al.?? have to result from correlations among the QPs that are quite different from the
Laughlin correlations.

Just as electrons in LL1 tend to form clusters,?® we expect QPs in CF LL1 to tend
to form pairs or larger clusters. The major differences between electrons in LL1 and

28G. E. Simion and J. J. Quinn, Physica E 41, 1 (2008).
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Fig. 17.11 Vqg.qge' (R) and Vou-qu' (R) for (a) QEs of v = 1/3 state (b) QHs of v = 1/3 state,
and (¢) QHs of v =2/5 state!?

QPs in CF LL1 are: (i) the pseudopotential V(L) for electrons in LL1 (shown in
Fig. 17.10) is an increasing function L’, but it is not superharmonic at R = 1, while
Voe-qe' (L) is strongly subharmonic, having a maximum at R = 2/ — L’ = 3 and
minima at R = 1 and 5 and (ii) the e-h symmetry of LL1 is not applicable to QEs and
QHs in CF LL1.% The QEs are quasiparticles of the Laughlin v = 1/3 IQL state,
while QHs in CF LL1 are actually quasiholes of the Jain v = 2/5 state. The QE and
QH pseudopotentials in frames (a) and (c) are similar, but not identical, as shown in
Fig.17.11."5 The QHs of the v = 1/3 state reside in CF LLO and have a different
pseudopotential [frame (b)]. The experimental results of Pan et al. suggest that the
novel v = 4/11 IQL ground state is fully spin polarized. Because Vog qp (L’) is
not superharmonic at R’ = 2/ — L’ = 1, the CF picture could not be reapplied to
interacting QEs in the partially filled CF shell.® This leads to the suggestion®! that
the QEs forming the daughter state had to be spin reversed and reside in CF LLO as
quasielectrons with reverse spin (QERs). Szlufarska et al.*? evaluated Voer (L), the
pseudopotential of QERs. They showed that Vopr (L’) was superharmonic at R = 1,
so that unlike majority spin QEs, they could support Laughlin correlations at R = 1.

This leaves at least two possible explanations of the v = 4/11 IQL state. It could
be a Laughlin correlated daughter state of spin reversed QEs (i.e. QERSs), or it could
be a spin polarized state in which the QEs form pairs or large clusters. Here we
investigate only the completely polarized case. The simplest idea is exactly that used
for electrons in LL1, namely the formation of pairs with /[p = 2/ — 1, where [ is
the angular momentum of the shell occupied by the QEs.?® If one assumes that the
QEs form pairs and treat them as fermions,?® the effective angular momentum of
Laughlin correlated fermion pairs (FPs) is given by 2/* = 2lgp —2p(Np — 1), where

29 A. Wojs, Phys. Rev. B 63, 235322 (2001).

30A. Wojs and J. J. Quinn, Phys. Rev. B 61, 2846 (2000).

3IK. Park and J. K. Jain, Phys. Rev. B 62, R13274 (2000).

321, Szlufarska, A. Wojs, and J. J. Quinn, Phys. Rev. B 64, 165318 (2001).
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Table 17.2 Values of vgp = m™!, the resulting values of vqE, Vg, and the electron filing factors
they generate (only for the observed FQH states)

QEs in CFLL1 QHs in CFLLO

Vep 5 9 Vpp 9 13
VQE 12 173 VQH 1/4 1/5
v 3/8 4/11 v 3/10 4/13

2lgp = 2(21 — 1) — 3(Np — 1). The term —3(Np — 1) keeps the CF pair separation
large enough to avoid violation of the Pauli principle. The FP filling factor satisfies
vgp = 4v~! — 3. The factor of four results from the uncorrelated pairs Np having
charge —2e, and the number of pairs Np being equal to N /2. Correlations between
FPs are introduced in the standard way by attaching 2 p CS flux quanta to each FP to
obtain the effective angular momentum 2/, for correlated FPs. For vgp = m !, where
m is an odd integer, we can obtain the value of vgg corresponding to the Laughlin
correlated state of FPs (pairs of quasielectrons with /p = 2/ — 1). Exactly the same
procedure can be applied to QHs in CF LL1 since Vggqr (R) and Vou.qu' (R) are
dominated by their short range behavior R < 5. The QH pseudopotential is not as
well determined for R > 5 because it requires larger N electron systems that we
can treat numerically. The electron filling factor is given by v~! =2 + (1 + vgg) !
or by vl=240- VQH)’l. For QHs in CF LLO /p = 2] — 3, and the term that
prevents violation of the Pauli principle is —7(Np — 1).

The value of v, , vog for CFLL1 and voy for CFLLO, together with the resulting
values of the electron filling factor v for novel IQL states observed experimentally by
Pan et al., are given in Table 17.2. QHs in CFLL1 with vqq = 2/3 and 1/2 produce
the same v = 4/11 and v = 3/8 states as the QEs if we assume QE-QH symmetry.
IQL states at vy = 7 in CFLLI, and vy = 11 in CFLLO could possible occur, but
they have not been observed.

17.8.2 Numerical Studies of Spin Polarized QP States

Standard numerical calculations for N, electrons are not useful for studying such new
states as v = 4/11 because convincing results require large values of N,. Therefore
we take advantage of the knowledge of the dominant features of the pseudopotential
Voe-ge' (R) of the QE-QE interaction!”!*3% and diagonalize the (much smaller)
interaction Hamiltonian of Nk qg’ systems. This procedure was shown to reproduce
accurately the low energy N,-electron spectra at filling factors v between 1/3 and
2/5.17

One might question whether using the pair pseudopotential for QPs obtained by
diagonalization of a finite system of N electrons (containing two QEs or two QHs)
gives a reasonably accurate description of systems containing more than a few QPs.
One can account for finite size effects®*?*3%32 by plotting the values of Vgp.gp (R)
for each value of R as a function of N~!, where N is the number of electrons in
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Fig.17.12 Energy spectra for N = 12 electrons in the lowest LL with 2/ = 29 and for N = 4 QEs
in the CF LL1 with 2/ = 9. The energy scales are the same, but the QE spectrum obtained using
VQE(R) is determined only up to an arbitrary constant!®

the system that produced the two CF QPs.* We then extrapolate Vop.gp (R) to the
macroscopic limit. In addition, the low energy spectra of an N electron system that
contains Ngp quasiparticles is obtained using Vgp.gp (R) as the interaction energy
of a QP pair. The results for the system with (N, 2/) = (12, 19) and the one obtained
after applying a CF transformation, (Ngg, 2lgg) = (4.9), are shown in Fig. 17.12.
In Fig. 17.13 probability functions of pair states P(R) are displayed for the L = 0
ground states of the 12 electron system and the 4 quasielectron system illustrated in
Fig.17.12. The electrons are clearly Laughlin correlated avoiding R = 1 pair states,

02 (a) electrons, N=12, 2/=29|| (b) QE's, N=4, 2/=9
’ 0.5
ol L
00 ‘v S | ol . ! : 0.0
1 9 17 25 1 3 5 7 9
= =

Fig. 17.13 Pair probability functions P(R) for the L = 0 ground states of the 12 electron system
(a) and the 4 quasielectron system (b) shown in Fig. 17.1216

$X. C. Xie, S. Das Sarma, and S. He, Phys. Rev. B. 47, 15942 (1993).
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but the quasielectrons are not Laughlin correlated because they avoid R = 3 and
‘R =7 pair states but not R = 1 state.

We realize that using the values of Vg.qp' (L) obtained by extrapolation to the
macroscopic limit (N, — oo) for systems containing Nog < 16 QESs is an inconsis-
tency. We believe it introduces only small errors since Nqg systems result from a much
larger N electron system. However, this assumption should be checked carefully. The
fact that the (Ngg, 2/gg) system has an L = 0 ground state at 2lgg = 3Ngg — 3
led a number of researchers** to suggest that it represented a second generation of
CFs giving rise to a daughter state and resulting v = 4/11 spin polarized IQL state
observed by Pan et al.?2 This idea cannot be correct because Voe-ge (L) is not super-
harmonic at R = 1 and cannot cause a Laughlin correlated CF daughter state of spin
polarized QEs.

The fact that the magnitude of Vgg.qr'(R) is only about one fifth as large as
the energy necessary to create an additional QE-QH pair in a Laughlin correlated
state permits diagonalization in the subspace of the partially filled QE Landau level
with reasonably accurate results (see, for example, Figs. 16.2 and 16.3). For cases in
which the width of the band of two QP states is closer to the energy needed to create
a QE-QH pair, higher bands (or higher QP LL) cannot be neglected.

The value of 2/ at which the IQL state at filling factor v occurs in the spherical
geometry is given by 2/ = v~!N + ~(v), where N is the number of particles and
v(v) is a finite size effect shift.” For Laughlin correlated electrons in LLO at filling
factor v equal to the inverse of an odd integer, y(v) = —v~!, so that the v = 1/3
IQL states occur at 2/ = 3N — 3. For quasielectrons of the Laughlin v = 1/3
state, an IQL state occurs at (N, 2]) = (4, 9). Since QEs will not support Laughlin
correlations at ¥ = 1/3, it is understood to be an “aliased” state® at 21 = 2N + 1
(conjugate to 2/ = 2N — 3) that supports pairing correlations. By “aliased” states we
mean two states with the same values of N and 2/ that belong to different sequences
2] = v~ 'N + ~(v). Different values of v(v) for IQL states of electrons in LLO
and QEs in CFLLI suggest that the QE correlations are different from the Laughlin
correlations for electrons in LLO. It also gives emphasis to how important it is to
select a value of N and then diagonalize the N particle system for many different
values of 2/. One cannot assume that v (v) is known. For example, when v = 1/3, we
assume 2/ = 3N — j, where j is an integer, and we diagonalize for many different
values of j. L = 0 IQL ground states with a substantial gap separating them from
the lowest excited states are found to fall into families with the values of j (or of
~v(v)) depending on the kind of correlations. Elaborate calculations for N-particle
systems only at 2/gr = 3Ngg — 3 totally miss most of the IQL states.

3See, for example, J. H. Smet, Nature 422, 391 (2003); M. Goerbig, P. Lederer, and C. M. Smith,
Physica E. 34, 57 (2006); M. O. Goerbig, P. Lederer, and C. M. Smith, Phys. Rev. B. 69, 155324,
(2004); A. Lopez and E. Fradkin, Phys. Rev. B. 69, 155322 (2004); C.-C. Chang and J. K. Jain,
Phys. Rev. Lett. 92, 196806 (2004).

35R. H. Morf, Phys. Rev. Lett. 80, 1505 (1998); R. H. Morf, N. d’Ambrumenil, and S. Das Sarma,
Phys. Rev. B. 66, 075408 (2002).
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Fig. 17.14 (a) Energy spectra as a function of total angular momentum L of 10 QEs at 2/ =
2N — 3 = 17 corresponding to vqg = 1/2 and v = 3/8. It is obtained by exact diagonalization
in terms of individual QEs interacting through the pseudopotential of Fig. 17.10c (triangles). (b)
Coefficient of P(R), the probability associated with pair states of relative angular momentum R,
for the lowest L = 0 state. The solid dots are for 10 QEs of the vgr = 1/2 state in a shell of angular
momentum / = 17/2. The open circles are for 10 electrons in LLO at [y = 17/236

Figure 17.14a shows the energy spectrum of a system of ten QEs in a shell of
angular momentum / = 17/2.3° It is obtained by numerical diagonalization of the
QP interaction presented in Fig. 17.10c.’” The spectrum contains an L = 0 ground
state separated from the lowest excited state by a substantial gap. Frame (b) shows
the probability P(R) that the ground state contains pairs with total pair angular
momentum L' =2/ —R =1, 3,5, .... The solid dots represent the results for the 10
QE system; open circles show P (R) for 10 Laughlin correlated electrons in LLO for
contrast. The maxima in P(R) at R = 1 and 5 and the minimum at R = 3 for the
QE system are in sharp contrast to the Laughlin correlated P (R) of the 10 electron
system in LLO. The QE maximum at R = | and minimum at R = 3 suggests the
formation of QE pairs with [p = 2/ — 1 and the avoidance of pairs with R = 3, the
pair state with the largest repulsion. This IQL ground state occurs at 2/ = 2N — 3
and corresponds to vog = 1/2 and v = 3/8. The vgp = 1/2 state should occur at the
conjugate values of 2/ given by 2/ = 2N — 3 and 2N + 1. Therefore, Fig. 17.14 can
be thought of as Nop = 10 or Ngp = 8, the former corresponding to 2/ = 2N — 3
and the latter to 2/ = 2N + 1. We have already mentioned that QEs in the CFLL1
are Laughlin QEs of the » = 1/3 IQL, while QHs in the CFLL1 are QHs of the Jain
v = 2/5 state. It seems reasonable to diagonalize Vgp.qp (R) for QHs when CFLL1
is more than half-filled and for QEs when it is less than half-filled. If only Vop_qp (R)

365, 7. Quinn, A. Wojs, and K.-S. Yi, Physics Letters A 318, 152 (2003).

377, 7. Quinn, A. Wojs, K.-S. Yi, and J. J. Quinn in The electron liquid paradigm in condensed
matter physics, pp. 469-497, (I10S Press, Amsterdam, 2004).
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for R < 5 is important, Voe.qe' (R) and Vou.qw' (R) are qualitatively similar (but
not identical). We should then expect the same correlations independent of which
Vaop-op (R) is used in the numerical diagonalization. This suggests that the result in
Fig. 17.14 be interpreted as of the case containing Nog = 8 and 2/ = 2Ngu+1 = 17
instead of as Nog = 10 and 2] =2N —3 =17.

Energy spectra are evaluated for many values of (2/, N), and the FQH states
with the largest gaps are found to fall into families. The vgp = 1/2 state occurs
at 2/ = 2N — 3 (and its conjugate 2N + 1). The vgg = 1/3 state is found at
2] = 3N — 7. In the numerical studies the vgp = 1/2 state occurs only when the
number of QPs is even, suggesting that QP pairs are formed. However, IQL states
are formed only when the number of minority QPs in CFLLI is 8 or 12, but not
when it is 10 or 14. This could indicate that the CF pairs form quartets (i.e. pairs of
CF pairs) in the IQL state. This is completely speculative since we have very little
knowledge of the pseudopotential describing the interaction between CF pairs. The
“shift” describing the 2] = 3N — 7 sequence identified here (y = 7) is different not
only from v = 3 describing a Laughlin state, but also from v = 5 that results for
a Laughlin correlated state of fermion pairs (FPs). This precludes the interpretation
of these finite-size vgg = 1/3 ground states found numerically (and also of the
experimentally observed v = 4/11 FQH state) as a state of Laughlin correlated
pairs of QEs (i.e., particles in the partially filled CF LL1). However, it is far more
surprising that a paired state of QEs turns out as an invalid description for these
states, as well. Clearly, the correlations between the pairs of QEs at vgg = 1/3 must
be of a different, non-Laughlin type, and we do not have a simple model to describe
this state.

While the correlations between QEs at vgg = 1/3 are not completely understood,
it may be noteworthy that the value of v = 7 appropriate for the series of incompress-
ible states found here can be obtained for the Laughlin state of QE triplets (QEjs,),
each with the maximum allowed angular momentum, It = 3/ — 3, or of quartets
(made up of pairs of pairs) with maximum allowed angular momentum of the quartet
lg = 4l — 10. The quartet state can be thought of as consisting of four filled states
({,1 —1,1 —4,1 —5) separated by two empty states (! — 2,/ — 3). Both of these
heuristic pictures give 2 = 3N — 7 for the v = 1/3 state.

17.9 Useful Observations and Summary

1. Itis established that a harmonic pseudopotential V(L) = A+ BL12(L1ip+ 1),
where L, is the angular momentum of a fermion pair, does not cause correlations
(i.e. it does not lift the degeneracy of different multiplets with the same value of
the total angular momentum L).

2. The pseudopotential V,,(L1,) for electrons in a partially filled nth Landau level
(LLn) is evaluated and the interaction energies of quasielectrons and of quasiholes
are determined.

3. The use of partitions and permutation symmetry is introduced to construct corre-
lation diagrams and correlation functions causing the most important correlations.
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4. Comparison of the energy spectra of an (N, 2[) electron system with the corre-
sponding (Ngg, 2lgg) quasielectron system shows that the latter system, which
is much smaller, gives a very reasonable approximation to the low energy states
of the former.

5. Because of the form V;(L;) for the LLO there can be no Laughlin correlated
states for 2/5 > v > 1/3, and that states like ¥ = 4/11 must involve pairing of
the electrons and a much weaker interaction between these pairs.

6. The trial wavefunction for the v = 2/5 state of four electrons is known to be
exact, and the trial wavefunction for six electrons is very close to the wavefunction
obtained by ‘exact’ numerical diagonalization, and we discussed why this is true.

7. Conditions on the correlation function G{z;;} are imposed in terms of #;, the
number of pairs in the correlation diagram containing j correlation factors, which
greatly limit the allowed choices of K¢, the total number of correlation factors in
Glzij}.

8. ‘Exact’ numerical diagonalization is considered to have the states of numeri-
cal experiments. In the numerical diagonalizations illustrated above, the intuitive
model wave function is in reasonable qualitative agreement with numerical exper-
iment. This demonstrates that the novel intuitive approach to fermion correlations
does give new insight into understanding many fermion interactions.

9. Rigorous mathematical proofs have not been presented for every conjecture based
on physical intuition. Such proofs do exist.*

Problems

17.1 Consider a system of N fermions and prove an identity given by

2 72 £2
L*+ N(N —2)i —ZLU_O.
(i,J)

Here L is the total angular momentum operator, L ;= I +1 j» and the sum is over
all pairs. Hint: One can write out the definitions of L? and " @) Lizj and eliminate

I -1 ; from the pair of equations.

17.2 Demonstrate that the expectation value of square of the pair angular momentum
L;; summed over all pairs is totally independent of the multiplicity o and depends
only on the total angular momentum L.

38See the Springer’s series of monographs Mathematical Physics and Applications. These rigorous
proofs would be of more interest to mathematicians than to the physicists for whom this book
in intended. An extended review by Mulay, Shattuck, and Quinn on ‘An intuitive approach to
correlations in many-Fermion systems’ is expected to appear in 2018 in Springer’s Monograph
Series.
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17.3 Derive the two sum rules involving Pr. (L), i.e., the probability that the
multiplet |IV; Na) contains pairs having pair angular momentum L 5:

%N(N —-1) Zng(le + DPra(Lip) =LL+1D)+NN-=2I(I+1)

Ly

and

D Prallin) =1.

Ly,

17.4 Show that the energy of the multiplet |IV; Lc) is given, for harmonic pseudopo-
tential Vy(L2), by

E,(L)=N [%(N — DA+ BN —2)I( + 1)] +BL(L+ 1).

Summary

Here we study correlations resulting from Coulomb interactions in fractional quan-
tum Hall systems, and correlation diagrams are introduced to guide in the selection
of the correlation functions caused by interactions.

It is established that a harmonic pseudopotential does not cause correlations (i.e.
it does not lift the degeneracy of different multiplets with the same value of the total
angular momentum L). The pseudopotential V, (L) for electrons in a partially filled
nth Landau level (LLn) is evaluated and the interaction energies of quasielectrons
and of quasiholes are determined. The use of partitions and permutation symmetry
is introduced to construct correlation diagrams and correlation functions causing the
most important correlations. Comparison of the energy spectra of an (N, 2/) electron
system with the corresponding (Ngg, 2/ge) quasielectron system shows that the latter
system gives a very reasonable approximation to the low energy states of the former.
Because of the form V;(L,) for the LLO there can be no Laughlin correlated states
for 2/5 > v > 1/3, and that states like v = 4/11 must involve pairing of the
electrons and a much weaker interaction between these pairs.

Conditions on the correlation function G{z;;} are imposed in terms of the number
of pairs n; in the correlation diagram containing j correlation factors, which greatly
limit the allowed choices of the total number K¢ of correlation factors in G{z;;}. In
the numerical diagonalizations, the intuitive model wave function is in reasonable
qualitative agreement with numerical experiment. This demonstrates that the novel
intuitive approach to fermion correlations does give new insight into understanding
many fermion interactions in fractional quantum Hall effect — the paradigm for
strongly interacting systems.



Appendix A
Operator Method for the Harmonic
Oscillator Problem

Hamiltonian

The Hamiltonian of a particle of mass m moving in a one-dimensional harmonic
potential is

2
1
H = f—m + Smet (A.1)
The quantum mechanical operators p and x satisfy the commutation relation
[p, x]_ = —ih where i = 4/—1. The Hamiltonian can be written
1 ) . 1
H = — (mwx —ip) (mw +ip) + -hw. (A2)
2m 2

To see the equivalence of (A.1) and (A.2) one need only multiply out the product
in (A.2) remembering that p and x are operators which do not commute. Equation
(A.2) can be rewritten by

(mwx —ip) (mwx +ip) 1

H = hw + (A.3)
N 2mhw A 2mhw 2
We now define the operator a and its adjoint a' by the relations
a = mwx +ip (A 4)
V2mhw :
T _ mwx—ip
a' = (A.S)
These two equations can be solved for the operators x and p to give
B\ 1/2
X = (Zm;,.)) (aT + a) ’ (A6)
. 12/ 4
p=i (me;) (a1 — a) . (A.7)
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It follows from the commutation relation satisfied by x and p that

[a. a']_ =1, (A3)
la, al_=[a", a']_=0. (A.9)

By using the relation
[A,BC]_=BI[A,C]_+[A,B]_C, (A.10)

it is not difficult to prove that
2 .
[a, al ] =2a",

[a, a*3] = 3412, (A.11)

-1
[a, aTn] =nat""".

Here a' and a are called as raising and lowering operators, respectively.
From (A.3)—(A.5) it can be seen that

H = hw (a*a + %) ) (A.12)

Now assume that |n) is an eigenvector of H with an eigenvalue ¢,. Operate on |n)
with ', and consider the energy of the resulting state. We can certainly write

H (a|n)) = a"H|n) +[H, a"] |n). (A.13)

But we have assumed that H|n) = ¢,|n), and we can evaluate the commutator
[H,a".

[H, a*] = hw [a’ha, aT] = hwa' [a, a%]
= hwa'. (A.14)

Therefore (A.13) gives
Ha'|n) = (e, + hw) a’|n). (A.15)

Equation (A.15) tells us that if |n) is an eigenvector of H with eigenvalue ¢,, then
a’|n) is also an eigenvector of H with eigenvalue £, + Aw. Exactly the same technique
can be used to show that

Haln) = (g, — hw) a|n). (A.16)
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Thus, a' and a act like raising and lowering operators, raising the energy by Aw or
lowering it by fw.

Ground State

Since V(x) > 0 everywhere, the energy must be greater than or equal to zero.
Suppose the ground state of the system is denoted by |0). Then, by applying the
operator a to |0) we generate a state whose energy is lower by fw, i.e.,

Hal0) = (o — hw) al0). (A.17)

The only possible way for (A.17) to be consistent with the assumption that |0) was
the ground state is to have a|0) give zero. Thus we have

al0) = 0. (A.18)

If we use the position representation where ¥ (x) is the ground state wavefunction
and p can be represented by p = —ihd/0x, (A.18) becomes a simple first order
differential equation

0 mw
(a_x + ?x) Y (x) = 0. (A.19)

One can see immediately see that the solution of (A.19) is

2

Wo(x) = Noe 2, (A.20)

where Ny is a normalization constant, and o> = % The normalization constant is

given by Ny = o!/>7~1/4. The energy is given by g9 = %, since a’a|0) = 0.

Excited States

We can generate all the excited states by using the operator a' to raise the system to
the next higher energy level, i.e., if we label the nth excited state by |n),

1
) xaf|0), & = hw(l + 5),

1
12) & at?|0), ey = Fw (2 + E) , (A21)

n 1
|n) ocat”|0y, anzhw(n+§).

Because a' creates one quantum of excitation and a annihilates one, a' and a are
often called creation and annihilation operators, respectively.
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If we wish to normalize the eigenfunctions |n) we can write
In) = Cna'"0). (A.22)
Assume that |0) is normalized [see (A.20)]. Then we can write

(nln) = G, (0

a"a" o). (A23)
Using the relations given by (A.12) allows one to show that
a"a™|0) = n!|0). (A.24)

So that {
In) = —a™0) (A.25)
Vn!

is the normalized eigenfunction for the nth excited state.
1.2.2 .
One can use ¥y(x) = a'/?r~ /%=1 and express a™" in terms of p and x to
obtain

1 [—i(—=ihd/0 "all? e
W (x) = —— i (—ih0/0x) + mwx a—ef =23 (A26)
Vn! 2mhw ml/4
This can be simplified a little to the form
1/2 n
(/Vm) (=" (0 5\ _a2e
v, (x) = W a — X e 2. (A.27)
Summary
The Hamiltonian of the simple harmonic oscillator can be written
. 1
H = hw a'a—i—i . (A.28)
and H|n) = hw(n + %)|n). The excited eigenkets can be written
In) = ——=a""|0) (A29)
ny=——a . .
V!

The eigenfunctions (A.29) form a complete orthonormal set, i.e.,

(nlm) = 5}11117 (A.30)
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and

> ln)(nl = 1. (A31)

The creation and annihilation operators satisfy the commutation relation
[a, a'l= 1.

Problems

A

A.1 Prove that [A, BCA'], = E[A CA'],—i—[A, lA?],C, where A, l§, and C are quantum
mechanical operators.

A.2 Prove that [a, (@%)"]_ = n@"H" .



Appendix B
Neutron Scattering

A beam of neutrons interacts with a crystal through a potential

V(r) :Zv(r—R,-), (B.1)

R;

where r is the position operator of the neutron, and R; is the position operator of
the ith atom in the crystal. It is common to write v(r — R;) in terms of its Fourier
transform v(r) = >, vke™®T. Then (B.1) can be rewritten

V() = ne R, (B.2)

kR,
The potential v(r) is very short-range, and vk is almost independent of k. The
k-independent coefficient vy is usually expressed as v = 2’;‘?2“, where a is defined

as the scattering length and M, is the mass of the neutron.
The initial state of the system can be expressed as

@ (R, Ry, ..., 1) = V20T 0y ny, . ny) . (B.3)

Here V~!/2¢! % T is the initial state of a neutron of momentum p-Theket|ny,ny, ..., ny)
represents the initial state of the crystal, with n; phonons in mode i. The final state,
after the neutron is scattered, is

W, (R, Ry, ..., 1) = V25T my my, .. my) . (B.4)

The transition rate for going from ¥; to ¥y can be calculated from Fermi’s golden
rule.

2
R~y = % (s 1vIw)[*s (E; - E). (B.5)
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Here E; and E are the initial and final energies of the entire system. Let us write

2 12
g =E; — ﬁ ande; = Ef — 2’77”. The total rate of scattering out of initial state ¥;
is given by

2
Rout of iy = " 25 (7 —&i = hw) [(¥r 1V Wi)|2’ (B.6)
f

where fw = £ ;&p s the change in energy of the neutron. If we write p’ = p + 7k,

where 7K is the momentum transfer, the matrix element becomes

—ik-R;
Z(ml,mg,...,mN vge N nl,nz,...,nN). (B.7)
ik

But we can take vk (= v) outside the sum since it is a constant. In addition, we can
write R; = R? +u; and

B v
u; = —_— e IRig (a —a’ ) . B.8
=2 (ZMqu,\) ar (Tar ™ an ®-5)

qA
The matrix element of e/9"% between harmonic oscillator states |y, na, ..., ny) and
|my, my, ..., my) is exactly what we evaluated earlier in studying the Mossbauer

effect. By using our earlier results and then summing over the atoms in the crystal,
one can obtain the transition rate. The cross-section is related to the transition rate
divided by the incident flux.

One can find the following result for the cross-section:

47 _ PN 5w (B.9)
dQdw ~ p o ne '

where dS2 is solid angle, dw is energy transfer, N is the number of atoms in the
crystal, a is the scattering length, and S(g, w) is called the dynamic structure factor.
It is given by
2
S(q,w) = N_l Z Z<m1, oo,y ’eiq'“-f}nl, ...,I’lN> 5(6‘}0 — & — ﬁw) .
fol
(B.10)

Again, there is an elastic scattering part of S(g, w), corresponding to no-phonon
emission or absorption in the scattering process. For that case S(g, w) is given by

So(g. w) =e VSN D" S,k (B.11)
K
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Here e 2V is the Debye—Waller factor. W is proportional to

[ o |[a wo [, o)

From (B.11) we see that there are Bragg peaks. In the harmonic approximation the
peaks are d-functions [because of d(w)] due to energy conservation. The peaks occur
at momentum transfer p’ — p = hK, a reciprocal lattice vector.

In the early days of X-ray scattering there was some concern over whether the
motion of the atoms (both zero point and thermal motion) would broaden the §-
function peaks and make X-ray diffraction unobservable. The result, in the harmonic
approximation, is that the d-function peaks are still there, but their amplitude is
reduced by the Debye—Waller factor e —2W

For the one-phonon contribution to the cross-section, we obtain

do _ p Ear
o= 2w P 2 z 2M:q,\ 14+ nq,\) ) (w + wq,\) + ng\d (w - qu)} .

(B.12)

There are still unbroadened J-function peaks at € & hwgy = &;, corresponding
to the emission or absorption of a phonon. The peaks occur at a scattering angle
determined from p’ — p = h(q + K) where K is a reciprocal lattice vector. The
amplitude again contains the Debye—Waller factor e~>" . Inelastic neutron scattering
allows a experimentalist to determine the phonon frequencies wg) as a function of
q and of \. The broadening of the §-function peaks occurs only when anharmonic
terms are included in the calculation. Anharmonic forces lead to phonon—phonon
scattering and to finite phonon lifetimes.




Appendix C
Hints and Solutions

Chapter 1 Crystal Structures

L1 @by =2r s = 3, by = 2r s = 30, by = 2n s =
zjﬂ'k, Hence |b1| = |b2| = |b3| and b1 L b2 1 b3. (b) b1 = Wali;:::’lz) =
ZG+k). by =2t = Bk 1), by = 277% =2G+). ©
a =ala = §(l+\/_j) a; = ci. by = 2r 2 — (/3 ), by =
dmoBEh — 20 by = 2m s — Bk

1.2 (a) p = 0.524, (b) p =~ 0.740, (c)p~0680 (d) p = 0.340, (e) p =~ 0.740.
1.3 Hint: Sketch a simple cubic lattice, a BCC lattice, and an FCC lattice, and then
identify the NNs, NNNs, ... down to the 5th nearest neighbors (Table C.1).

1.4 Hint: Point group operations of an equilateral triangle are as follows:

{E, Ri20, Roa9, m1, mp, m3}. Here E is no operation at all or a rotation about the axis
perpendicular to the center of the triangle through 27. Ry, is the counterclockwise
rotation by 27 /3. Ry4g is the counterclockwise rotation by 47 /3. m , m,, m3 stand for
three individual reflections with respect to the three axes of symmetry perpendicular
to the sides. Now work out the multiplication table following the steps described in
the text (see Table 1.1).

1.5 Hints: (a) Review the definition of the glide planes illustrated in Fig. 1.8, sketch
the crystal structure of diamond, and then apply the steps given in the question to the
diamond structure to confirm the glide-plane operation for the diamond structure.

Table C.1 Table for Problem 1.3

nthNN Simple cubic BCC FCC
1 a */Tga %a
2 V2a a a
3 V3a J2a V3/2a
4 2a J11/2a 2a
5 V3a V3a V3/2a
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(b) Review the definition of the screw axis illustrated in Fig. 1.9, sketch the crystal
structure of diamond, and then apply the steps given in the question to confirm the
screw operation for the diamond structure.

1.6 (b) One should get a hexagonal shape of the first Brillouin zone. (c) k =
ko + (h1b; + hyby), where h; and h, are integers. (d) p = 0.605. (e) F =
f [1 + e%"i(hl+2h2):|’

1.7 (a) F(hy, hy, h3) = fr + f-if (hy + hy + h3) = even and F (hy, hy, h3) =
f+ — f—if (h; + hy 4+ h3) = odd. (b) Review the Ewald construction described
in Sect. 1.4.3, and sketch a reciprocal simple cubic lattice in the plane of b;-b,. (c)
With fi = f_, the diffraction maxima corresponding to (h; + hy + h3) = odd
disappear.

1.8 (a) A non-Bravais lattice with four atoms per unit cell w1th a; = ap; = a and c =
4a alongwitha = =y =n/4. (b)b; = —32 Xaz = 1 b, = —a3 xa; = —J,
m=%mxm=%k@F%ﬁmw—ﬁ+ﬁwm+ﬁW“H#2“=
(L4+i")[fa+ (=D" f3].

1.9 (a) The sample A is of FCC, B is BCC, and C is of diamond structure. (b)
ay = 3.151A, ap = 3.794A, ac = 3.151A.

1.10 C(6):1s%2522p%, O(8):15225%2p*, Al(13):15225%2p%3s%3 p!,
Si(14):15225%2p®3523p2, Sb(51):15225%2p®3523 p3d 104524 p®4d'0552553,
Zn(30):15225%2p03523p03d 19452, Ga(31):1522522p%3523 34104524 p!.

1.11 Hint: Sketch the linear crystal consisting of 2N ions, and count each pair

of interaction only once. The internal energy is written as U(R) = N (% — o

R

(a) At the equilibrium separation Ry, dU(R) |r=r,= 0, and the internal energy is
U(R) = 2125 [ (Boy ! — ] (b) c = 21025 (4 — 1). For a crystal of a
0

unit length, C = %(n —1).

Chapter 2 Lattice Vibrations
2.1 For a 3D crystal of volume V consisting of N primitive unit cells with p atoms

per primitive unit cell: (a) G(w) = 3#9(@0 — wp), where 6(w — wp) (1)’ Z i zg
@M@-WWW—M)

22 (a)s =« (b)kD_g =§, (c)g(w):ﬁ-ﬁ:%.mmmbye
model, g(w) 27T |vfw| = Woa for w < wp.

23 Atk = O,anoptlcalmodeofwop =2c(1/M; + 1/M) withu, /v, = —M,/M;,
and an acoustical mode of w2, = 0 with u, /v, = 1. Atk = 7/(2a), w2 = 1%4—01
with v, = 0 and u, = {can be any values}, and wﬁc = ;1‘ with u, =0 and v, =

{can be any values}.

24 Atg =0,wi(g =0) = \/W and w_(g = 0) =/ 5572559 Atg = 7,
wilg=2£)= /% andw_(¢ = L) =,/22.
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x T4,

d+1,x
25 ¢y T [P dx x47' T4~ l(ef el)z T 7 dx (’éxif)z

(i) When T > Tp(= hwp/kg),c, =d NkB, where

d d/2 d _dj2
p 2m lgl<ap 5T(5) 2r) SI(5)

(ii)) When T « Tp(= hwp/ k),
L d 2% d/2 kT d 1 d 00 d+1
VR B i
2r) ¢ \n —~\u) Jo (et =) (1 —e™)

26 gw)dw =2 ,“”"“d[sm 1( )]and g(w) = !

> .
w uJa—UJZ

27 (@) 1) wk,0,0) = wp|sink 5-|. In the Debye approximation w(ky, 0,0)

wok;‘ = vk for w < wp, where v = woa/2 and wp = vkp &~ 1.95wq; kp ~ 1.24°

2) wiky, ky, 0) = 2w sin ( ) |. In the Debye approximation, w(k,, ky, 0)
Wt = vk for v < wp. 3) wike, ky, k) = \/_wolsm( )I In the Debye

approximation, w(ky, ky, k;) ~ on = vk forw < wp.

(c) The critical points occur at |Vkxw(k)| = 0 with [Vkw(K)];, = % sin (k;a): (1)
the six face centers (3 sets of two equivalent points separated by reciprocal lattice
vectors) of the Brillouin zone: (£, 0, 0), (0, 7, 0), (0, 0, &7) of w, = wy, (ii) 12
edge centers (3 sets of four equivalent points) of the zone: (£, £, 0), (£, 0, £7),
0, £m, £7) of w, = \/Ewo, and (iii) 8 corners (all equivalent points) of the zone:
(£m, &7, 7)) of w, = \/gwo. Note that |Vxw (k)| # 0 at the zone center of (0, 0, 0)
because w(k) also Vanishes there. There are 7 non-equivalent critical points. (d)
There are singularities i 1n 9 at w = wy, v/2w, and at /3wy dropping to zero.

28 (@qp =27 (ﬁ) and wp =27 (ﬁ)l/zs.
(b) glw) = g [utp=) 4 St

S¢ Y1
(C)U=%Zn(§) mddwhwz(m—k%).
W3
e, = 27kaT° ZYA “’D dw (e/kBT —1)(1—e~Fe/kpT) *
(e) For kT < hwp = hqu,

W P w? eT? 11
T S rkaT? %” /0 do ol =1~ 30 2 T2

4 t

Q8P

2

. . 4
For the isotropic case of s, = s, = 5, ¢, & 4”151‘3 N (T_Y;) , where kgTp = hwp =
hsqp.

~
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Chapter 3 Free Electron Theory of Metals

3.0 @) Ehe ky) = 2 (22)? (02 + n2), where ny,ny = 0, £1,£2, ... (b) kp =
V2. (©) G(€) = 1 Dhckpan<e | = Hme. g(@) = 25 (d) G(uo)
G(po) + g(uo)(p — po)l + %z(kT)z x 0. Therefore, g(p0)(1 — po) =0 — p =

1o : independent of T in 2D. (e) ¢, = 3 ~ T 22T

32 () E, (k) = c(ng, ny) + h;’f, where n, and n, are the quantum numbers.

_ dk _ 2v2m OE—uyny)
() g(E) =2 255 = =57 N

3.3 (a) For an electron gas, g(E) o« k?'E~1/2 o« E?/>~1_ (b) For a phonon gas,
g(w) o< k%71 o w¥! in the Debye model.

34 (a) Ex = (EX; + iEyf) etk BLo= EgelvTiki B = Eoe/@' ki and

By o e/“'=ikZ Maxwell equations gives V x (V x E1) = —%%(V x B.), where
the right hand side becomes %zeiEi. j+ = o E. Hence w?ey = c?k?, where € =
1-— ‘%g(w). (b) For a circular polarization E, = —i E, = E¢e'™! with Eg = Ae™'%,

e2ngr/m

enot/m
1+i(w—we)T

e7'/m
1+i(w—we)T

e =1-—

vV=— E. Hence j = E = oE, where o(w) = and

2
In the limit of w.7 > 1 and we > w, €4 (w) ~ —£. Then,

w 1+1(w We)T "

1/2
24202141 24202141 2
3502 = w,+c g~ (14+1/€p) + [WP+C q-(1+ /ED)] _ ngzwlzi/ED] )

2 2
oo (1+iwT,) —00eWee Te 0
(+HiwT)* +(WeeTe)?  (1+HiwTe)? +H(weeTe)?
3.6 (a) o.(w) = T0eWeeTe 00 (1+iwT,) 0 and
(I+iwTe ) +(WeeTe)?  (14iwTe)* +(WeeTe)?
(70()
1+iwT,
oon (1+iwTy) O0hWeh Th 0
A+iwm)? +Hwann)?  A+iwm)?+Hwann)?
op(w) = —00hWeh Th oon (1+iwTy) 0
A+iwm)? +Hwenn)?  (A+iwm)2+HwenTh)?
O0h
1+iwT,
_ o1+ (0) 1~ Nl [Tetn M [Th
b)R = 070 +07,,(0) B ec(nh ne) (©) p(B) ~ e(ny—ne)*  °

Chapter 4 Elements of Band Theory
4.1 (a) Bandgap=2¢ atk = +5%. (b) Zero-gap 1D material for e = 0 and flat band

with vanishing 3.
42 6.04 x 10722 eV.
43 Eyx = 2 cos 2.

44 () E(k) = e+ |h|\/1 + 4 cos 32k, cos Lk, + 4 cos? (@ky) (©) (ky, ky) =

( 3fa)
45 (0) () = e HH
4.6 (a)eo(k,) = —';F, a(l 4+ 2cosh "’)‘a)cosk a. (b) Wy(k,, z) = e*2u(k,, z),

where u(k,, z) = ﬁ—‘h > gik:(na—2) g}z 1i—nal,
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47 (a)For V|, = 0, EL(k) = €;c and E_(k) = &. For V| = 0.2h*G?*/2m =
0.2e6, Ex(k) = 1 (e + ex46) £ 3 [(Ekv — &) + ().168(;]1/2 . The crystal shows
an indirect band gap of Eg,p ~ 0.052¢¢ for V| = 0.2e5. (b) Zero-gap material for
Vi = 0. (c) The crystal shows a metallic behavior.

Chapter 5 Use of Elementary Group Theory in Calculating Band Structure
50 At EX) = 0 251 Spas WO degenerate wave functions are 19 o(X) = ea” and

Y_10(X) = e« %% Two linear combinations of Yo,0(X) and 1 o(X) give wave
functions each belonging to the IR’s X and X3, respectively:

W (X)) = cos gx o i0,0(X) +_1.0(X); ¥ (X3) = sin gx o 0,0(X) — tr_1.0(X).

At EX) = 1. 25 S Four wave functions each belonging to IR’s X, X», X3, and
X4 are, respectlvely,

W(X1) = cos Zx cos 2y o< g1 (X) + 1o, —1(X) + 1_1,1(X) + -1 —1(X),
W (X5) = sin Zx sin 2y oc g1 (X) — 0,1 (X) — th_1.1(X) + _1,—1(X),
W (X3) = sin Zx cos 2y oc 1,1 (X) 4 o1 (X) — ¢¥_1,1(X) — ¢_1,_1(X),
W(X4) = cos Zxsin 2y o o 1(X) — o1 (X) + 1-1,1(X) — P11 (X).

At E(I') =
respectively,

2maz , four wave functions each belonging to IR’s I, I3, and I are,

‘I’(Fl)=COS—X+COS—)’0<¢10(F)+1/J01(F)+1/J 1o(I") + o1 (1),
W(I3) = cos2Zx — cos Zy o by (1) — Yo,1 (1) + th_1,0(I") — tho,—1(I"),

W(Is) = srn ox o [(Prod) = Yooy
S zczly Yo (I") — o1 (I)

AtE(l') =2x 2ma~ , four degenerate wave functions each belonging to IR’s I, I,
and [ are, respectively,

W(I) = cos Zxcos Zy oc by, (1) + 1,1 (1) + Y11 (D) + Y1, —1(D),
W (Iy) =sin 21x sin *y < Y1) =Y, (5N =Y (D) +¢—, -1 (),

v sin 2 x cos 22 y o Y110 + 1,15 — Y11 () — Y1 1 (1)
: & Y1) =11 (D) + 1 (D) =y (1) )

Cos —x sin 7);

5.2 Character tables of the IR’s of G, Gx, and G4 are shown in the tables below.
The compatibility relations are as below: {7, I35, I5} <— A «<— {X|, X3} and
(I, Iy, I's} <— Ay <— {X,, X4} (Fig.C.1 and TableC.2).
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hZ
ElZmuzl
"
- X - 2
“‘lulrlll I‘;.‘_I] ﬁt_:lj
(a"a a0y 1.25
{X‘,l'x‘_," xiln x;”l
ildl]!-ill I'HJI i
1 '3 Ps A
(1 A 0.25
I f
1 (1) 4 (1)
0 (X;7% 7}
r A

Fig. C.1 The band structure of the empty square lattice along I" — A — X of Problem 5.2

Table C.2 Character tables of G, Gx, and G4 of Problem 5.2
Ih I I5 1y I
112131415 X, X X3 X4

EJL LIV 2 59717 1 (a4
Rs 1 11 12

Ry1 1 -1-1 E|1 1
Ri,R3 |1 1 -1-10

my|1l -1 1 -1 my|1 -1
m,v-,mylfllfl()m1111
my,m—|1 -1-11 0 Y

5.3
EIN) = zmaz [(h1 — h2)?* + (hy — h3)* + (h3 + h1)?],

E(H) = 2maz [(hy — hy + D + (ha — h3)* + (hs + h)?] .
E(P) = 525 [(hy — ha + D2 + (hy — hs + D? + (s + Iy + 1)?].
See the figure below for the empty lattice bands (Fig. C.2).

5.4

E(N) = Mz [+ G +8],EX) =55 [+ D2+ 63+ 43],

ER) = 5 [(6r + D2+ (2 + D2+ 5 + 1.

See the figure below for the empty lattice bands (Fig. C.3).

5.5 (b) The band gap is 2| Vk| = 2|V1 0]

56 (A Gr = {E Ry, my,m y} (b) Gx = {E, Ry, m,,m y} and G, = {E, my}.
© Bk = s [E+1)*+30+D0)?], EU) = 5= [If +35], BX) =
ana G+ + 315]

(d) See the figure below for the empty lattice bands (Fig. C.4).
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ﬁz
¥ E J\[zmall 1
9 - 9 -
8 -
7 -
m 6.75
6+ 3
5 5 -
“@ @ 4,75
(4
3)
34 s e - ;
2 2.75
™ ()
&)
1 14+ Q
= ) 0.75
0
H A r A P

Fig. C.2 The band structure along A(I" — H) and along A(I" — P) of Problem 5.3

6.75

6.25

4.75
4.25

325
275
2.25

1.25

0.75
0.25

Fig. C.3 The band structure along I — X and along I" — R of Problem 5.4
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hz
E:[Zmazl
2.25
2o 42
1.5
14 L1
0.75
0.5
0.25
Or A X

Fig. C.4 The band structure along I" — X of Problem 5.6(d)

hZ
E |

L

M 9

(@
(1)

O

r A X

Fig. C.5 The low-lying energy bands of graphene lattice along the line going from I" to K in
Problem 5.7(¢)

(ewmm)—e" o] Jand 1/J0—1(A)—C“ [5" 2w wan = o+
Yo, —1(A) x cos 2 =t&x cos f y +isin —§x cos =X f y. ¥(Ay) = ¥o.1(A) — o.—1
(A) o cos 2 =t€x sin Ty + i sin —§x sin 2ay (Fig.C.5).

57 (a) G[‘ ={E, R, R3, Ry, R 3, R_g,my,my,m 5,m_ s, m+%,m7%}.
(b) GK = {E, R3, R_3, my, m+f, mﬂ@}; GM = {E, Rz,mif, m+%}

(c) ALT = 2(0,0), ¥y, (I') = et = eizul[llx-k%(—ll-&-%z)y] and Ey,,(I") =

e[+ (11 —2b)*].
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Table C.3 E(I'), E(H), E(P) for all bands with £ < 4[%] of Problem 5.3
(h1. ha. h3) E(I) [52] E(H) [515] E(P) [52;]
0, 0,0) 0 1 0.75
(-1,0,0) 2 1 0.25
(-1,0, 1) 2 1 0.75
0, 1,0) 2 1 2.75
(0,-1,-1) 2 5 2.75
©,1,1) 2 1 2.75
(1,0,-1) 2 5 4.75
0,0, 1) 2 3 2.75
0,0,-1) 2 3 2.75
(1,1,0) 2 3 475
(-1.-1,0) 2 3 0.75
0,-1,0) 2 5 2.75
(1,0,0) 2 5 4.75
111 4 1 275
1,-1,1) 4 5 2.75
-1,-1,-1) 4 5 2.75
(1, 1, 1) 4 5 6.75
(1, 1,-1) 4 5 6.75
(1,-1,-1) 4 9 6.75

AtK = 2(2,0), ¥_y;,(K) = e/®ctKip)r — ei%”[<h+%>x+%(—zl+zzz)y] and
Enn,(K) = o [+ 22 + Ly — 20)7].

2ma?
(d) See the table below for the empty lattice energies (Table C.5).
(e) See the figure below for the empty lattice bands (Fig. C.5).
i _2mily_ 1L 2wl 1
() o0 (K) = e 595y o(K) =e ™« 7y (K) =e @ Y,
5.8 Hint: See the wave functions ¥ ~ W5 listed in the text of Sect.5.7, and write
out, and then simplify the right hand side of each ¥; fori = 1,2, ..., 15.


http://dx.doi.org/10.1007/978-3-319-73999-1_5
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Table C4 E(I'), E(X), E(R) for all bands with E < 4[%;] of Problem 5.4

(L1, €2, 43) | E(I) E(X) E(R) (41, €2, £3) E(I) E(X) E(R)
(0,0,0) 0 0.25 0.75 1,-1,-1) |3 2.25 0.75
(-1,0,0) 1 0.25 0.75 L,-1,1) |3 225 275
(0, -1, 0) 1 1.25 0.75 1, 1,-1) |3 2.25 2.75
(0,0,-1) 1 1.25 0.75 1, 1,1 3 2.25 4.75
0,1,0) 1 1.25 2.75 1,-1,-1) |3 425 4.75
(0,0, 1) 1 1.25 275 (1,-1,1) 3 425 475
(1,0,0) 1 2.25 2.75 (1,1,-1) 3 4.25 4.75
-1,-1,0) |2 1.25 0.75 1,1, 1 3 4.25 6.75
-1,0,-1) |2 1.25 0.75 (-2,0,0) 4 225 275
-1,1,00 |2 1.25 2.75 (0,-2,0) 4 4.25 2.75
1,0, 1) |2 1.25 2.75 (0,0,-2) 4 4.25 2.75
©,-1,-1) |2 2.25 0.75 (0,2, 0) 4 425 6.75
o,-1,1) |2 2.25 275 (0,0,2) 4 425 6.75
©,1,-1) |2 2.25 2.75 (2,0,0) 4 6.25 6.75
©,1,1) 2 2.25 4.75

(1,-1,0) |2 3.25 2.75

(1,0,-1) |2 3.25 275

(1,1,0) 2 3.25 4.75

(1,0, 1) 2 3.25 4.75

Table C.5 E(I") and E(X) for an empty lattice of graphene lattice in Problem 5.7(d)

(1. £2) SHE) 28 £(X)
(0,0) 0 3
1) 0 5
1.0 ¥ s
0.1) ® ®
0.1 ¥ ¥
.0 g ¥
1D § 3
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Chapter 6 More Band Theory and Semiclassical Approximation

6.1 (a) (an(z —l'a)|ay(z = l'a)) = 2, &% = 6. (b) ap(z) = /re "L,
6.2 (a) At the zone boundary, for example, > the electron reappears at the equlvalent
point in the opposite side of the zone boundary at —5. (b) r(¢) —r(0) = ——z X
[k(z) — k(0)], resulting in r(z) — r(0) perpendlcular to B = BZ. Now, V(t) =
—Be 7 xk(t), while 6 = e(k+0k)—e(k) = hv(k)-kdr = h[—22 x k(t)]-két =0
(Table C.3).

)C( ) _ 2y 1—cos 5E (Ex+E,+E;)t 1—cos 5z (Ex—E,+E;)t
63 (a) =% E+E,+E. E,—E,+E.
: 1—cos 5E (Ex+Ey—E)t 1—cos 5% (Ex—Ey—E )t
E.+Ey—E; E«—Ey—E.
(l) _ 2 1—cos 5% (Ex+E,+E)t . 1—cos 5% (Ex—E,—E)t
i) == E,+E,+E- E,—E,—E.
+ 1—cos 5z (Ex+Ey—E)t . 1—cos 5% (Ex—E,+E,)t
E.+E,—E. E.—E,+E,

1—cos % (Ex—Ey+E)t

2y [l—cos SE(Ex+E,+E)t +

z(t) = -

E.+Ey+E; Ex—Ey+E.
1—cos 5% (Ex—Ey—E )t 1—cos 5% (Ex+Ey—E )t
- E.—E,—E, - E«+E,—E;

(b) 1% = 16 cm.

. — o2
6.4 Hll’ltSZ Definition of the effective mass tensor: (m* ')ij = L oeal

72 O 0k, *
12
3 3 3
e(k) = ¢ =+ |h| { 1+ 4cos ;kx cos %ky + 4 cos? (%k})}

(a) One needs to apply the definition of the effective mass tensor to the 7-electron
energy band (k) and then expand the resulting expression about kp = (0, 0)
to examine the effective mass near the zone center.

(b) One can repeat the same as above except near ky = ( [ ) and examine the
result to find the zero effective mass at K and the massless behavior of the low
energy carriers at the special point K (Tables C.4 and C.5).

|
-00
¢l
6.5 (a) (m*),;; = : 0 é 0 |. (b) In the Bloch representation, [¢g + ca’k* —
00 L
Cc3

aVﬁ]ng(k) = E¢(k). In the Wannier representation, [y — caZVr2 + ozrz]gb(r) =
E¢(r). (¢c) E; = ¢9 + 3a/ac, E; = g9 + Sa/ac, and E3 = g9 + Ta/ac.

Chapter 7 Semiconductors

7.1 The figure below illustrates the intrinsic carrier density in a GaAs as a function
of temperature (Fig. C.6).

7.2 The chemical potential is given by (;(T) = ¢, + %Egap + %kBT In :Z_ See the
figure below (Fig. C.7).
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Fig. C.6 Temperature dependence of the intrinsic carrier density in a GaAs in Problem 7.1
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Fig. C.7 Temperature dependence of the intrinsic chemical potential measured from the top of the
valence band edge in Problem 7.2

7.3 (a) Ep ~ 0.659 meV. (b) ajy ~ 643 nm. (c) n. = ﬁ ~ 8.97 x 10" cm™3

B

(d) n(T) = ¥lie=Pec=enl2 () E = £2L¢ ~ 5,12 x 10° V/m.
B
74 N, =~ 1.1 x 108 cm—2
7.5 @ g2°(e) = ,g2P(e) = 20 C =0 O Ne(T) = JahaT,
P.(T) = th Vm m”k Te 2"BT = py(T), where Egap =&, —&, =

Egup + €5 + 5. (d) G=¢c+ % — By Tk T InGm, /m.).

7.6 (a) See the figure for the band alignment in equilibrium (Fig. C.8).

(b) See the figure for the proﬁle of the charge distribution across the oxide layer
(Fig.C.9). (c) Wy(2) = —2” Naz2 + ciz+ ¢, for 0 < z < d, where ¢; and
¢ are the integration constants to be fixed with boundary conditions. (d) Vgye =
AVox + AVy = 47762NAd (f_a + ;) (e) Vitreshold = gap [1 + 224 a] . (f) E(Ol) =

— (Vi) + 5 (Er — Ep) .

7rTL
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Fig. C.8 The band alignment in equilibrium of Problem 7.6(a)
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Fig. C.9 The charge distribution across the oxide layer of Problem 7.6(b)

Chapter 8 Dielectric Properties of Solids
8.1 o =B =3meaj ~ 1.2 x 107*'[C?m/N] in SL.

8.2 Fortn10 = 5=, " (r/ag)e™/** cos 6, (210]2[100) ~ 0.744aq and eg—e, =
hZ

2maZ (niz —1). > axno~238 [A%]in cgs.

2t TR AR i
83 (@) wi = i ts) (w2"+w") ™ . (b) See the figure below (Fig.C.10).
_ e [

(c)wi = 5 for the longitudinal modes.

1/2
2 _ 1,2 ~2 4 4P 1 2~ 2\ 2 (~2 4 24P !
w® = sl\wpto,+ ) £ 5w to, + — 4wy \w, + - for

€00

transverse modes. For frequencies of w < w_ and wy < w < wq, e(w) < 0
and thus g2 < 0 prohibiting the transverse waves to propagate.

E(m)

Fig. C.10 The figure below for the dielectric function of Problem 8.3(b)
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Fig. C.11 The figure below for the dispersion of the modes of Problem 8.5(a)

4_

' Surfa(:;e modes |

m\.__,><\>< wse
4

=
f‘ 2 iB_quTrapsversvmcde i
wf AT HANIFE
. D P T = S
I L
of

cqy ()

Fig. C.12 The figure below for the dispersion of the modes of Problem 8.5(b)

2
_ |E |7 _ |cosf—e(w) cos@’ E, /e() cos —cos §’ cost' |
84 R= ’E:‘ T | cos f++/e(w) cos O for S-polarization. R = ‘ Vew) cos O+cos ¢’
for P-polarization.
20,2 2N\ 2
8.5 (a)c’q; = (16+_°§) D)@ ) he figure below shows c?q; versus
oo 4

(e et
w? for the case of GaAs with n = 2 x 10'® cm™3. The dashed line denotes the slop

of the curve at zero frequency (Fig.C.11).
(b) See the figure for the dispersion of the surface modes (Fig. C.12).

Chapter 9 Magnetism in Solids

9.2 See the table below (Table C.6).

9.3 (b) go(c) = hc/e Do 0(e = €no,)- () Gole) = ,,C/e Do O = €ng.).
94 () H =72, 5 (p2+ (py +iLx)>+ p?) + —wox + ZMBBSZ, where S,

Z,‘ Siz. (b) En(kyy k;,0) = h(wc + wy )1/2(1’1 + )+ 2m +

+ IJ'BBa.Zv

kz
2m u2+w2
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Table C.6 Table for Problem 9.2

V4 Element Configuration Spectroscopic | S L J gL
notation
39 Y [Kr](4d)! (55)% ’D3p 7 2 3 2
41 Nb [Kr](4d)*(55)! °Dij 3 2 1 D
43 | Te [Kr](4d)° (5s)? 6852 3 0 3 2
57 La [Xel(5d)" (65)% 2Dsp 3 2 3 2
66 Dy [Xe@f)10(5d)° SIg 2 6 8 2
74 W [Xe(4 )4 (5d)* (6s)? 5Do 2 2 0 -
95 | Am [Rn](51)7(6d)°(75)> | 887, z 0 z 2

wheren =0, 1,2, ..., and o, = 1. lI’(r) = el kg (x 4 Ky () (1)

m(w? +w2)

wo = 0:e,(ky, ky0) = hw (n+ 2)—}- +MBBO'Z (i) wo = we 1 enlky, k;, 0) =

272 2
Vhwen+ 5+ 25 L B B

2m

Chapter 10 Magnetic Ordering and Spin Waves

10.1 [8F,87] =28, [§*,8.] = £8%, 8§15, 8.) = VIS = SHE + T+ SIS,
S+ 1,878, 8) =V +S)HES +1-5)1S, 8, — 1).

10.4 hwy = gupBo + 2J Sa’k>.

Chapter 11 Many Body Interactions — Introductlon
111 (¢) Zxe(k) = —262—"FF(x) where F(x) = 1 4 125 I | 1= | withx = k/ k.

12 @ By = 58 =202 (24 5080 n 3ttt )) | By = 55 () ke < 21
(c) apkp < %m

114 Forz+u <1, = 3% forz 4y < L For |z —ul < 1 < z+u,
ey = jj [1 - (z—w?] Forlz —ul > 1, = 0.

115 (a) F(2) ~ 1 4. (b)

1+ 2v° (1 - —) at low frequency
(g, 0) =1+ penvd F(Z)

b L

3. .
qzwv 732 at high frequency.
F

1+

117 () (W) = 1+ 2§77 <LA0%0) gy = | 24 (b) Figure below

W —w? m(wx —w?)
illustrates €; (w) of the case wp =3 and A =1 (Flg C.13).
— E _ W2—w?
11.8 (a) X(w) ——m = ;NTWE'FmeE (b)

2 2 .
a(w) = e”}:g [(wg_ufz)z+72w2 —1 (wg—u;y)‘;+72u2i| .
(c) Figure below illustrates 1 (w) and ap (w) in units of e% of the case wy = 3 and
v = 1.5 (Fig.C.14).
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0.15
F o
0.10 1
0.05
4 6 0
-0.05 F
020 F
o
015 2
0.10
005 F
2 4 6 8 10

€m0 for Problem 11.8(c)

m

Fig. C.14 «;(w) and ap(w) in units of

Chapter 12 Many Body interactions — Green’s Function Method

12.1 Hints: One can follow exactly the same steps done for I, defined by (12.27)
and shown explicitly in the text to show (12.32), which is written with a common
upper time limit 7 in each integral, at the expense of complicating the integrand a
bit. For I, one would divide the volume in the ¢, #,, 3 space into 3! parts for the
permutations of ¢, t,, t3 in H;(t;) H;(t,) H;(t3). The % occurs because there are 3!
ways of ordering the times #,, ,, t3 all giving the same contribution to the integral
on the right, but only one of these orderings is present in the integral on the left.


http://dx.doi.org/10.1007/978-3-319-73999-1_12
http://dx.doi.org/10.1007/978-3-319-73999-1_12
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12.2 (a)

(1) 6GV (x,x') = —% Jd*x1d*x:V(x1 — %) GO (x, x)) G (x2, x2) GO (x1, x')
(2)6GV(x, x') = %fd4x1d4sz(x1 —1)GOx, x)N)GO(x1, ) GO (x, x)

(3) GV (x, x') = %G(O)(x,x’) [d*xid*x2V (x) — x2) GO (x1, x1)) GO (x2, x2)

4) 66V (x, x') = —%G(O)(x,x’)fd4x1d4x2V(x1 —x2)GO(x1, x)GO(xy, x1)
(b) (1) GV (p, w) = —§G<°>(p, W) gk [ dPp dw &GO (P, )G (p, w).
266V (p,w) = 4GV (p,w) s [ d*p' dw’ U—p)e "GO (p', )G (p, w).
(3) 066GV (p,w) = —5G OV (p, w) 55k [dny [ d* ping, [ d®pany,,

where [ dwe™1G (p, w) = 2min, with np, denoting the number of particles in
state p.

(4’) 56(1)([’7“)) iG(O)(pv UJ) (27]1.)% fdtl fd3p]np] fd3p2np2U(p2 _pl)

124 (a) Py(2,1) = 2m)~* [ d?qdw|vy(q)|?e'd X eI (2= ’l)m, where
Po(q,w) = |7(Q)|2Tq_m)z

12.5 (¢) e(g, w) = 1+ V(g)x0(q, w).

Chapter 13 Semiclassical Theory of Electrons

13.1 (a) v, (k) == 0, v, (k) = m—'ikx, and v, (k) = mivky. (©) we = WA

13.2 (a) and (b) (Fig.C.15)
133 0 = tan™"! (%) — tan-! ( e )

eByT |

ky

TS

Surface ) = CQNSTANT

Fig. C.15 A constant energy surface (red curve) (k) and the real space trajectory (dark curve) of
the particle in a 2D system of Problem 13.2



576 Appendix C: Hints and Solutions

en(n)

Fig. C.16 Plot of quantized energies for —5hw, < e, < Shw, in Problem 13.5(b)

134 (2)z =20 = constant = 0, x(r) = Z-(cos 241 — 1), y(r) = S (cos
t—1).
13.5 (a) S(e) = k% = (=

o 2 = hz’ngaz = Bomn. (b) &, = Fvp,/Z<En. See
the figure below for the quantized energies of —5hw, < ¢, < Shw, (Fig.C.16).

2heB 1 . 2heB 2heB 1
©my =3 = [HE f.mO—Oml—,/fUF m; = ==+ \/_
* __ 2heB 1
m3 =,/=— UF«/g,....

13.6 (a) vi(g, s) = VrCOSwW.S, Vy(g,s) = vpsinwes, Rp(e,s) = fvl(a, s)ds =

U (8in wes, — €08 wes, 0). (b) v, (€) = (—i)" [ (nuf”/FqJ ")(?)(w)}
c/Yy) JIn

= NI:

_ ém o0 Vu (€F)V;, (€F) . _
T = TR 2o o ineer rave—al For free electrons in 2D, o(q,w) =
.
( »l,z}’((ww)) )(41,;(w) 2 g, (w))

m* v n , _ _
D e e e o , where J/(x) = dJ,(x)/dx and oy =

noe’r k_p &2

p w1th no =5 = o

Chapter 14 Electrodynamics of Metals

14.1 (a)
Ceca ) = gt [ 437+ 1= L {[1 = @~ w?]n (221
+ [1 = G+ w?]in (Z55)}-

. _HOE 1 [Foo ety _ dniw E©)  _
®) EG) = 25 |+ ‘LOO dq —P+ 5o qw) © 2 e Grly=or
4iw 100 1
¢ Jmoo Tl i (qw)

14.2 In terms of the dimensionless variables 7;; = 4::#0,- ;= —:’—;(ei j — 0ij), the

secular equation becomes
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0 = Q?[Gyx(w) sin’ § + .. (w) cos? 0]
+0 {G1x (W) (W) (1 + cos? ) + [62,(w) + G2, (w)] sin” O}
+0.(w) [5,%,( (W) + &%y (W)] >

2q? _ c*q*w.cosf
where Q = w2 W= w2 +c2q? l+w7—cos9

14.3  For the case of By = (0, 0, By) and q = (0, ¢y, ;) = (0, g sin 8, g cos ),

WA w0 cosf 1— 1 ]+l 1 Q(14+Qsin® 6)
A 1420+02sin? 0 2w272(142Q+Q? sin” 6) T 1420402 sin’ 0

cosf+i/T) if w,~w. > q*c?

14.4 For the case of q L By with By = (0,0, By), i.e. q = (0,¢,0), w =

. 3iw 3iw? 2
quE ~ » 2ws, (w) ~ p 00 2wn”g, (w) ~
w > Txx ¥ Tam 200 o0l ?—w1> Ty drw? £=n=0 (nwe)>—w?’ and oy
30.120.1(» 00 nzg’ (w) . .
_ 7 n
peral) =7 in the collisionless limit, where 1
sa(w) = 1 [, d(cosb) sin*0[J,(wsin#)]* and g,(w) = 3 [ d(cosb)J?
(w sin 6).

In the long wavelength and high field limit of w = %F <1,

. W 6w w? 14w 9u.zw2 3ww?
Oxx = 17071'11)2 (_ :1 + 1-a2 = 1-a? + 47112)’
w2 5 2 2
=i (Sw _ ww o
Tyy = L50na7 (l—az et ) and
w5 5 2w’
_ _ % _ w?
Oxy = 207w, (l a? 1 a2 + 1—q2
14.5 (b) For the case of ¢y = 1, the ﬁgure below illustrates the sketch of = as a

function of Cj‘ for the surface plasmon excitation (Fig. C.17).
P

(oa/oap)2

8k

(CCIy/(’Jp)2

Fig. C.17 The dispersion of the surface plasmons of Problem 14.5(b)
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Chapter 15 Superconductivity
2
151 Cq = 20320 = ky [ (%) +1} NN e ol

- 2
15.5 (@) v = §(1=&0), where & = —Z—uf = 3(1460). (B) A = 2huwye” 77
Kk

Chapter 16 The Fractional Quantum Hall Effect: The Paradigm for Strongly
Interacting Systems
16.1 wyn)(z) = Npyz™le /40 where 7 stands for z(= x — iy) = re ™.

uo(z1) uo(za) -+ uo(zy)
ui(z1) ui(z2) - uizy)
Wi (z1,...,28) = \/LN—, uz(z1)  ua(z2) - u2(zn) reduces to
uny_1(z1) uy-1(z2) -~ un—1(2n)
11 1
<1 22 et IN s N
2 2 2 LS P
Ui(z1,..zy) o |G 22 AN e W T T
NN

16.2 (a) In the Haldane configuration, = r x [-iAV + SA(r)] =1 hQIé withr =

RR and A(r) = %;S";mé. In the spherical coordinates, V x A = B = ig;fg R;

N 2
0 # 7. The single particle Hamiltonian is Hy = 2mlW (l — hQR) .
(b) Note that [I,, 5] = ihl,€a3, and [, R] = O to have 1- R = R -1 = hQ. The

eigenvalues of 2 are MET’"RZ[I(I +1) = 0%.8(Q.1,m) = B0+ 1) — Q°1.

0.01 -~

0.00 =

-0.01 -

V (e?/h)

Fig. C.18 The Quasielectron pseudopotential Vog(R) as a function of N —1, the inverse of the
particle number for the values of relative angular momenta R = 1, 3, and 5 in Problem 16.3
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16.3 See the figure below. See, for example, J.J. Quinn, A. Wojs, and K.S. Yi, Physics
Letters A 318, 152 (2003) for further reading (Fig. C.18).

Chapter 17 Correlation Diagrams: An Intuitive Approach to Interactions in
Quantum Hall Systems

17.2 Hint: Note the identity L2+ N(N =2)2 = 3,
angular momentum operator, i,, =i+ f j» and the sum is over all pairs. The angular
momentum multiplet state |IV; La) of N fermions each with angular momentum [
is written as

I:izj = 0, where L is the total

Y La) =D Gravw(L)|l?, L IN72, La/s L),

L'a’ Lip

where |IY72, L'a/) and |I%, Ly,) are the o/ multiplet of total angular momentum
L’ of N — 2 fermions each with angular momentum / and a pair wavefunction,
respectively. Then the expectation value of the identity in the state |IV; L) becomes
(IV; Lal 20 ﬁ?jUN; Loa)y=L(L+1)+ NN -=-2)I(I+1).

17.4 Hint: For the harmonic pseudopotential V(L) = A + BL2(L12 + 1), the
energy E (L) = %N(N —1) Zle Pra(L12)V (L) of the multiplet state becomes
E (L) = N[3(N — 1A+ B(N —=2)I( + 1)] + BL(L + 1), where the two sum
rules shown in the previous problem are used in the last stage.
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Acceptor, 189
Acoustic attenuation, 429
Acoustic wave, 455

electromagnetic generation of, 456
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Adiabatic demagnetization, 272
Aharanov—Bohm phase, 508
Amorphous semiconductor, 211
Anderson localization, 209
Anderson model, 212
Anharmonic effect, 74
Anisotropy constant, 288
Anisotropy energy, 287
Antiferromagnet, 289

ground state energy, 307
Antiferromagnetism, 289
Anyon, 506

parameter, 506

statistics, 506
Atomic form factor, 21
Atomic polarizability, 221
Atomic scattering factor, 21
Attenuation coefficient, 394
Azbel-Kaner effect, 442, 456

B
BCS theory, 475
ground state, 481
Bernstein mode, 448, 450
Binding energy, 28
Bloch electron
in a dc magnetic field, 403
semiclassical approximation for, 172
Bloch’s theorem, 116
Bogoliubov—Valatin transformation, 482

Bohr magneton, 256
effective number of, 264
Boltzmann equation, 87
linearized, 101
Bose—Einstein distribution, 61
Bragg reflection, 17
Bragg’s law, 17
Bravais lattice
three-dimensional, 9
two-dimensional, 9
Brillouin function, 263
Bulk mode
for an infinite homogeneous medium,
235
longitudinal mode, 235
of coupled plasmon-LO phonon, 237
transverse mode, 235, 237

C
Carrier concentration, 186
extrinsic case, 191
intrinsic case, 188
Cauchy’s theorem, 357
Charge density, 346
external, 221
polarization, 221
Chemical potential, 91
actual overall, 361
local, 359
Chern-Simons
flux, 508, 525
flux quanta, 538
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gauge interaction, 512
magnetic field, 509, 525
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term, 506
transformation, 507
Clausius—Mossotti relation, 225
Collision
effect of, 359
Collision drag, 455
Collision time, 83
Compeatibility relation, 151
Composite fermion, 508, 525
effective angular momentum, 525
filling factor, 509, 525
hierarchy picture, 530
picture, 509, 525
transformation, 509
Compressibility, 30, 100
isothermal, 30
Conductivity
local, 425
nonlocal, 424
Connected diagram, 383
Contraction, 381
Cooper pair, 478
binding energy, 481
Core repulsion, 28
Correlation
diagram, 521, 527
factor, 521, 522
Correlation effect, 328, 337
Correlation function
Laughlin, 524
Moore—Read, 523
Critical point
in phonon spectrum, 70
Crystal binding, 25
Crystal structure, 3
body centered cubic, 11
calcium fluoride, 13
cesium chloride, 13
diamond, 13
face centered cubic, 11
graphite, 13
hexagonal close packed, 12
simple cubic, 10
simple hexagonal, 12
sodium chloride, 13
wurtzite, 13
zincblende structure, 13
Curie’s law, 263
Curie temperature, 274
Current
conduction, 414
diffusion, 414
Current density, 346

Index

including the effect of collisions, 361

Cyclotron damping, 447
Cyclotron frequency, 208, 407, 522
Cyclotron mode, 448, 450
Cyclotron orbit

radius of, 425
Cyclotron resonance

Azbel-Kaner, 439

Doppler shifted, 447
Cyclotron wave, 448

D

Debye, 227

Debye model, 64

Debye temperature, 65
Debye—Waller factor, 557
2DEG, 202

de Haas—van Alphen effect, 269

de Haas—van Alphen oscillation, 429, 461

Density matrix, 340
equation of motion of, 344
equilibrium, 359
single particle, 344

Density of states, 63, 92, 109

Depletion layer, 215
approximation, 216
surface, 201

Depletion length, 195

Depletion region, 195

Depolarization factor, 222

Depolarization field, 222

Diamagnetic susceptibility, 261
Landau, 268
of metals, 266

Diamagnetism, 259
classical, 266
origin of, 261
quantum mechanical, 267

Dielectric constant
longitudinal, 353

Dielectric function, 107
Lindhard, 351
longitudinal, 351
of a metal, 229
of a polar crystal, 229
transverse, 351

Dielectric tensor, 221

Diffraction
electron wave, 16
neutron wave, 17
X-ray, 16

Diffusion tensor, 457
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Dipole moment, 219

Direct gap, 185

Direct term, 282

Disorder
compositional, 211
positional, 211
topological, 211
types of, 211

Disordered solid, 211

Distribution function
Boltzmann, 87
Fermi—Dirac, 91
Maxwell-Boltzmann, 88

Divalent metal, 128

Domain structure, 285
emergence energy, 285

Domain wall, 286

Donor, 189

Doppler shifted cyclotron resonances, 459

Drift mobility, 84

Drude model, 83
criticisms of, 86

Dyson equation, 385, 393, 395, 401

E
Easy direction, 287
Effective electron—electron interaction, 476
Effective Hamiltonian, 177
Effective mass, 126
cyclotron, 407, 419
Effective mass approximation, 126
Effective mass tensor, 171, 175
Effective phonon propagator, 394
Effective potential, 167
Einstein function, 61
Einstein model, 60
Einstein temperature, 61
Electrical conductivity, 84, 103
intrinsic, 184
Electrical susceptibility, 226
Electrical susceptibility tensor, 221
Electric breakdown, 174
Electric polarization, 220
Electrodynamics
of metal, 435
Electron—electron interaction, 337, 386
Electron-hole continuum, 364
Electron—phonon interaction, 386, 402, 476
Elementary excitation, 47
Empty lattice band, 142
Ensemble
canonical, 90
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grand canonical, 90
Enthalpy, 94
Entropy, 94
Envelope function, 177
Envelope wave function, 203
Equation of states
Fermi gas, 99
Euler relation, 94
Evjen method, 31
Ewald construction, 19
Exchange field, 281
Exchange—correlation potential, 203
Exchange interaction, 312, 323
direct exchange, 312
double exchange, 312
indirect exchange, 312
superexchange, 312
Exchange term, 282
Exclusion principle, 88
Extended states, 209

F
Faraday effect, 459
Fermi—Dirac statistics, 88
Fermi energy, 89
Fermi liquid, 96, 397
Fermi liquid picture, 513
Fermi liquid theory, 396
Fermi temperature, 90
Fermi-Thomas screening parameter, 393
Fermi velocity, 90
Ferrimagnet, 289
Ferromagnetism, 274
Feynman diagram, 383, 390, 397
Field effect transistor, 203
Finite size effect, 516
First Brillouin zone, 57
Floquet’s theorem, 116
Flux penetration, 491
Fractional grandparentage

coefficient of, 537
Free electron model, 122
Free energy

Gibbs, 94

Helmholtz , 94
Friedel oscillation, 364

G

Gap parameter, 487

Gauge field interaction, 526
Gauge invariance, 347
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Gaussian weighting factor, 522
Generation current, 198
Geometric resonance, 461
Geometric structure amplitude, 22
Giant quantum oscillation, 448, 462
Glide plane, 8
Grand partition function, 90
Graphene, 36, 129, 163, 179, 431
Green'’s function, 373, 380
Group, 3

Abelian, 4

class, 134

cyclic, 134

generator, 134

2mm, 6

4mm, 5

multiplication, 3

multiplication table, 5

of matrices, 135

of wave vector, 143

order of, 134

point, 4

representation, 136

space, 7

translation, 4
Group representation, 136

character of, 140

faithful, 137

irreducible, 139

reducible, 139

regular, 138

unfaithful, 137
GW approximation, 386

H

Haldane sphere, 501, 525

Hall coefficient, 107

Hard direction, 287

Harmonic approximation, 40

Hartree—Fock approximation, 325
ferromagnetism of a degenerate electron

gas in, 326

Hartree potential, 203, 216

Heat capacity
Debye model, 64
due to antiferromagnetic magnons, 311
Dulong—Petit law, 59
Einstein model, 60

Heisenberg antiferromagnet
zero-temperature, 293

Heisenberg exchange interaction, 281

Heisenberg ferromagnet

Index

zero-temperature, 290
Heisenberg picture, 375
Helicon, 446
Helicon frequency, 460
Helicon—phonon coupling, 459
Hole, 176
Holstein—Primakoff transformation, 294
Hopping term, 212
Hund’s rules, 258
Hybrid-magnetoplasma modes, 447

|
Improper rotation, 153
Impurity band, 199, 213
Incompressible quantum liquid, 522
Indirect gap, 185
Insulator, 128
Interaction

direct, 338

exchange, 338
Interaction representation, 375
Intermediate state, 491
Internal energy, 29, 94
Inversion layer, 216
Itinerant electrons, 313
Itinerant ferromagnetism, 313

J
Jain sequence, 510, 525

K

Kohn anomaly, 367

Kohn effect, 366, 394

k - p method, 169
Kramers—Kronig relation, 356

L
Landau damping, 447
Landau gauge, 207
Landau level, 497, 498, 522
filling factor, 209
Landau’s interaction parameter, 397
Landé g-factor, 258
Langevin function, 227, 263
Lattice, 3
Bravais, 10
hexagonal, 9
monoclinic, 10
oblique, 9
orthorhombic, 9
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reciprocal, 15
rectangular, 6, 9
square, 4, 6,9
tetragonal, 9
translation vector, 3
triclinic, 10
trigonal, 10
with a basis, 10
Lattice vibration, 39
acoustic mode, 53
anharmonic effect, 74
dispersion relation, 55
equation of motion, 40
in three-dimension, 55
longitudinal waves, 65
long wave length limit, 43
monatomic linear chain, 39
nearest neighbor force, 43
normal coordinates, 44
normal modes, 44
optical mode, 53
phonon, 47
polarization, 56
quantization, 46
transverse waves, 65
Laudau diamagnetism, 267
Laue equation, 17
Laue method, 23
Laughlin correlation, 515, 531
Lindemann melting formula, 69

Lindhard dielectric function, 351, 393

Linear response theory, 340, 344
gauge invariance of, 347
Linear spin density wave, 337
Linked diagram, 384
Local field
in a solid, 222
Localized states, 209
London equation, 473, 490
London gauge, 474
London penetration depth, 474
Long range order, 211
Lorentz field, 224
Lorentz relation, 225
Lorentz sphere, 222, 224
Lorentz theory, 86
Lorenz number, 86

M

Mossbauer effect, 48, 68
Macroscopic electric field, 222
Madelung constant, 29

CsCl, 34

evaluation of, 31

Evjen method, 31

NaCl, 34

wurtzite, 34

zincblende, 34
Magnetic breakdown, 174
Magnetic flux, 209

quantum of, 209
Magnetic length, 209, 404, 521
Magnetic moment

of an atom, 256

orbital, 256

spin, 256
Magnetic monopole, 501
Magnetization

spontaneous, 301
Magnetoconductivity, 105, 413

free electron model, 419

quantum theory, 425
Magnetoplasma surface wave, 453
Magnetoplasma wave, 444
Magnetoresistance, 107, 408, 409

influence of open orbit, 411

longitudinal, 408

transverse, 408
Magnetoroton, 512
Magnon, 297

acoustic, 299

dispersion relation, 298

heat capacity, 299, 311

optical, 299

specific heat, 317

stability, 302

thermal conductivity, 317

two-dimensional, 317
Magnon-magnon interaction, 299

Mean Field (MF) approximation, 525

Mean field theory, 316

Mean squared displacement
of an atom, 59

Meissner effect, 469
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Metal-oxide—semiconductor structure, 199,
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Miller index, 14
Miniband structure, 206
Mobility edge, 213
Molecular beam epitaxy, 204
Monopole harmonics, 501
Monovalent metal, 127
Moore-Read

paired function, 522
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wave function, 533
MOSFET, 203

N
Nanowire, 109
Nearest neighbor distance, 11
Nearly free electron model, 123
Néel temperature, 289
Negative resistance, 199
Neutron scattering, 555

cross section, 556

dynamic structure factor, 556

scattering length, 555
Nonlocal theory

discussion of, 447
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Normal form, 381
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N-process, 78
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Occupation number representation, 322
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Operator
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electron, 405
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Orthogonalized plane waves, 165
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P-n junction, 193
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Pair approximation, 392
Pairing, 381
Pairing correlation, 543
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Partition function, 90
Pauli principle, 89
Pauli spin paramagnetism

of metals, 264
Pauli spin susceptibility, 266
Periodic boundary condition, 39
Perturbation theory

divergence of, 337
Pfaffian, 523
Phase transition

magnetic, 315
Phonon, 47

collision rate, 77

density of states, 63

emission, 49

field operator, 399

phonon—phonon scattering, 77

propagator, 399

renormalized, 394
Phonon collision

N-process, 78

U-process, 78
Phonon gas, 79
Phonon scattering

Feynman diagram, 75
Pippard relation, 490
Plasma frequency, 108, 388

bare, 366
Plasmon, 245

bulk, 245

surface, 245
Plasmon—polariton mode, 246
Point group

of cubic structure, 153
Polariton mode, 239
Polarizability

dipolar, 226

electronic, 226

ionic, 226

of bound electrons, 228
Polarizability factor, 388
Polarization part, 386, 391
Population

donor level, 190
Powder method, 23
Primitive translation vector, 3
Projection operator, 166
Proper rotation, 153
Pseudopotential, 167, 513, 529

anharmonic, 538
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Quantization condition
Bohr—Sommerfeld, 406
Quantum Hall effect
fractional, 209, 497, 500, 521
integral, 209, 499
planar geometry, 504
spherical geometry, 501
Quantum limit, 272
Quantum oscillation, 443
Quantum wave, 448
Quantum well
semiconductor, 205
two-dimensional, 109
Quasicrystal, 7
Quasielectron, 396
Quasihole, 396
Quasiparticle, 47
interaction, 396
Quasiparticle excitation
effective mass of, 396
lifetime, 395

R
Random Phase Approximation (RPA), 386
Rearrangement theorem, 134
Reciprocal lattice, 15
Recombination current, 198
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Reflectivity, 241
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Refractive index, 237
Relaxation time, 83
Relaxation time approximation, 87
Renormalization factor, 396
Renormalization group theory, 316
Repopulation energy, 336
Representation
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interaction, 375
Residual interaction, 531, 534
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Ring approximation, 392
Rotating crystal method, 23
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interaction, 312
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Saddle point
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Schrodinger picture, 375

Screened interaction
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Second quantization, 321
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single particle energy, 322
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Self energy
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Skin depth, 242
normal, 438
Skin effect
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spiral, 329
Spin deviation operator, 294
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Stoner excitation, 314

Stoner model, 313

Structure amplitude, 22

Subband structure, 202
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Sublattice magnetization
finite temperature, 309
zero-Point, 308

Sum rule, 537
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Superconductivity, 469
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magnetic properties, 470
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phenomenological observation, 469
Superconductor
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coherence length, 490
condensation energy, 485
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flux penetration, 491
gap parameter, 487
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London equation, 473, 490
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pair correlations, 475
Peltier effect, 469
quasiparticle density of states, 487
resistivity, 469
specific heat, 472
thermal current, 469
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Thermal conductivity, 77, 84, 103
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Wave equation
in a material, 234
Weiss field, 274
Weiss internal field
source of the, 283
Wick’s theorem, 381
Wiedemann-Franz law, 83, 86
Wigner—Eckart theorem, 514

V4
Zero point vibration, 23



	Preface to the Second Edition
	Preface to the First Edition
	Contents
	Part I Basic Concepts in Solid State Physics
	1 Crystal Structures
	1.1 Crystal Structure and Symmetry Groups
	1.2 Common Crystal Structures
	1.3 Reciprocal Lattice
	1.4 Diffraction of X-rays
	1.4.1 Bragg Reflection
	1.4.2 Laue Equations
	1.4.3 Ewald Construction
	1.4.4 Atomic Scattering Factor
	1.4.5 Geometric Structure Amplitude
	1.4.6 Experimental Techniques

	1.5 Classification of Solids
	1.5.1 Crystal Binding

	1.6 Binding Energy of Ionic Crystals

	2 Lattice Vibrations
	2.1 Monatomic Linear Chain
	2.2 Normal Modes
	2.3 Mössbauer Effect
	2.4 Optical Modes
	2.5 Lattice Vibrations in Three-Dimensions
	2.5.1 Normal Modes
	2.5.2 Quantization

	2.6 Heat Capacity of Solids
	2.6.1 Einstein Model
	2.6.2 Modern Theory of the Specific Heat of Solids
	2.6.3 Debye Model
	2.6.4 Evaluation of Summations over Normal Modes  for the Debye Model
	2.6.5 Estimate of Recoil Free Fraction in Mössbauer Effect
	2.6.6 Lindemann Melting Formula
	2.6.7 Critical Points in the Phonon Spectrum

	2.7 Qualitative Description of Thermal Expansion
	2.8 Anharmonic Effects
	2.9 Thermal Conductivity of an Insulator
	2.10 Phonon Collision Rate
	2.11 Phonon Gas

	3 Free Electron Theory of Metals
	3.1 Drude Model
	3.2 Electrical Conductivity
	3.3 Thermal Conductivity
	3.4 Wiedemann--Franz Law
	3.5 Criticisms of Drude Model
	3.6 Lorentz Theory
	3.6.1 Boltzmann Distribution Function
	3.6.2 Relaxation Time Approximation
	3.6.3 Solution of Boltzmann Equation
	3.6.4 Maxwell--Boltzmann Distribution

	3.7 Sommerfeld Theory of Metals
	3.8 Review of Elementary Statistical Mechanics
	3.8.1 Fermi--Dirac Distribution Function
	3.8.2 Density of States
	3.8.3 Thermodynamic Potential
	3.8.4 Entropy

	3.9 Fermi Function Integration Formula
	3.10 Heat Capacity of a Fermi Gas
	3.11 Equation of State of a Fermi Gas
	3.12 Compressibility
	3.13 Electrical and Thermal Conductivities
	3.13.1 Electrical Conductivity
	3.13.2 Thermal Conductivity

	3.14 Critique of Sommerfeld Model
	3.15 Magnetoconductivity
	3.16 Hall Effect and Magnetoresistance
	3.17 Dielectric Function

	4 Elements of Band Theory
	4.1 Energy Band Formation
	4.2 Translation Operator
	4.3 Bloch's Theorem
	4.4 Calculation of Energy Bands
	4.4.1 Tight Binding Method
	4.4.2 Tight Binding in Second Quantization Representation

	4.5 Periodic Potential
	4.6 Free Electron Model
	4.7 Nearly Free Electron Model
	4.7.1 Degenerate Perturbation Theory

	4.8 Metals--Semimetals--Semiconductors--Insulators

	5 Use of Elementary Group Theory in Calculating Band Structure
	5.1 Band Representation of Empty Lattice States
	5.2 Review of Elementary Group Theory
	5.2.1 Some Examples of Simple Groups
	5.2.2 Group Representation
	5.2.3 Examples of Representations of the Group 4 mm
	5.2.4 Faithful Representation
	5.2.5 Regular Representation
	5.2.6 Reducible and Irreducible Representations
	5.2.7 Important Theorems of Representation Theory (Without Proof)
	5.2.8 Character of a Representation
	5.2.9 Orthogonality Theorem

	5.3 Empty Lattice Bands, Degeneracies and IR's at High Symmetry Points
	5.3.1 Group of the Wave Vector K

	5.4 Use of Irreducible Representations
	5.4.1 Determining the Linear Combinations of Plane Waves Belonging To Different IR's
	5.4.2 Compatibility Relations

	5.5 Using the Irreducible Representations in Evaluating Energy Bands
	5.6 Empty Lattice Bands for Cubic Structure
	5.6.1 Point Group of a Cubic Structure
	5.6.2 Face Centered Cubic Lattice
	5.6.3 Body Centered Cubic Lattice

	5.7 Energy Bands of Common Semiconductors

	6 More Band Theory and the Semiclassical Approximation
	6.1 Orthogonalized Plane Waves
	6.2 Pseudopotential Method
	6.3 k cdotp Method and Effective Mass Theory
	6.4 Semiclassical Approximation for Bloch Electrons
	6.4.1 Effective Mass
	6.4.2 Concept of a Hole
	6.4.3 Effective Hamiltonian of Bloch Electron


	7 Semiconductors
	7.1 General Properties of Semiconducting Material
	7.2 Typical Semiconductors
	7.3 Temperature Dependence of the Carrier Concentration
	7.3.1 Carrier Concentration: Intrinsic Case

	7.4 Donor and Acceptor Impurities
	7.4.1 Population of Donor Levels
	7.4.2 Thermal Equilibrium in a Doped Semiconductor
	7.4.3 High Impurity Concentration

	7.5 p--n Junction
	7.5.1 Semiclassical Model
	7.5.2 Rectification of a p--n Junction
	7.5.3 Tunnel Diode

	7.6 Surface Space Charge Layers
	7.6.1 Superlattices
	7.6.2 Quantum Wells
	7.6.3 Modulation Doping
	7.6.4 Minibands

	7.7 Electrons in a Magnetic Field
	7.7.1 Quantum Hall Effect

	7.8 Amorphous Semiconductors
	7.8.1 Types of Disorder
	7.8.2 Anderson Model
	7.8.3 Impurity Bands
	7.8.4 Density of States


	8 Dielectric Properties of Solids
	8.1 Review of Some Ideas of Electricity and Magnetism
	8.2 Dipole Moment Per Unit Volume
	8.3 Atomic Polarizability
	8.4 Local Field in a Solid
	8.5 Macroscopic Field
	8.5.1 Depolarization Factor

	8.6 Lorentz Field
	8.7 Clausius--Mossotti Relation
	8.8 Polarizability and Dielectric Functions of Some Simple Systems
	8.8.1 Evaluation of the Dipole Polarizability
	8.8.2 Polarizability of Bound Electrons
	8.8.3 Dielectric Function of a Metal
	8.8.4 Dielectric Function of a Polar Crystal

	8.9 Optical Properties
	8.9.1 Wave Equation

	8.10 Bulk Modes
	8.10.1 Longitudinal Modes
	8.10.2 Transverse Modes

	8.11 Reflectivity of a Solid
	8.11.1 Optical Constants
	8.11.2 Skin Effect

	8.12 Surface Waves
	8.12.1 Plasmon
	8.12.2 Surface Phonon--Polariton


	9 Magnetism in Solids
	9.1 Review of Some Electromagnetism
	9.1.1 Magnetic Moment and Torque
	9.1.2 Vector Potential of a Magnetic Dipole

	9.2 Magnetic Moment of an Atom
	9.2.1 Orbital Magnetic Moment
	9.2.2 Spin Magnetic Moment
	9.2.3 Total Angular Momentum and Total Magnetic Moment
	9.2.4 Hund's Rules

	9.3 Paramagnetism and Diamagnetism of an Atom
	9.4 Paramagnetism of Atoms
	9.5 Pauli Spin Paramagnetism of Metals
	9.6 Diamagnetism of Metals
	9.7 de Haas--van Alphen Effect
	9.8 Cooling by Adiabatic Demagnetization  of a Paramagnetic Salt
	9.9 Ferromagnetism

	Part II Advanced Topics in Solid State Physics
	10 Magnetic Ordering and Spin Waves
	10.1 Ferromagnetism
	10.1.1 Heisenberg Exchange Interaction
	10.1.2 Spontaneous Magnetization
	10.1.3 Domain Structure
	10.1.4 Domain Wall
	10.1.5 Anisotropy Energy

	10.2 Antiferromagnetism
	10.3 Ferrimagnetism
	10.4 Zero-Temperature Heisenberg Ferromagnet
	10.5 Zero-Temperature Heisenberg Antiferromagnet
	10.6 Spin Waves in Ferromagnet
	10.6.1 Holstein–Primakoff Transformation
	10.6.2 Dispersion Relation for Magnons
	10.6.3 Magnon–Magnon Interactions
	10.6.4 Magnon Heat Capacity
	10.6.5 Magnetization
	10.6.6 Experiments Revealing Magnons
	10.6.7 Stability

	10.7 Spin Waves in Antiferromagnets
	10.7.1 Ground State Energy
	10.7.2 Zero Point Sublattice Magnetization
	10.7.3 Finite Temperature Sublattice Magnetization
	10.7.4 Heat Capacity Due to Antiferromagnetic Magnons

	10.8 Exchange Interactions
	10.9 Itinerant Ferromagnetism
	10.9.1 Stoner Model
	10.9.2 Stoner Excitations

	10.10 Phase Transition

	11 Many Body Interactions–Introduction
	11.1 Second Quantization
	11.2 Hartree–Fock Approximation
	11.2.1 Ferromagnetism of a Degenerate Electron Gas  in Hartree–Fock Approximation

	11.3 Spin Density Waves
	11.3.1 Comparison with Reality

	11.4 Correlation Effects–Divergence of Perturbation Theory
	11.5 Linear Response Theory
	11.5.1 Density Matrix
	11.5.2 Properties of Density Matrix
	11.5.3 Change of Representation
	11.5.4 Equation of Motion of Density Matrix
	11.5.5 Single Particle Density Matrix of a Fermi Gas
	11.5.6 Linear Response Theory
	11.5.7 Gauge Invariance

	11.6 Lindhard Dielectric Function
	11.6.1 Longitudinal Dielectric Constant
	11.6.2 Kramers–Kronig Relation

	11.7 Effect of Collisions
	11.8 Screening
	11.8.1 Friedel Oscillations
	11.8.2 Kohn Effect


	12 Many Body Interactions--Green's Function Method
	12.1 Formulation
	12.1.1 Schrödinger Equation
	12.1.2 Interaction Representation

	12.2 Adiabatic Approximation
	12.3 Green's Function
	12.3.1 Averages of Time-Ordered Products of Operators
	12.3.2 Wick's Theorem
	12.3.3 Linked Clusters

	12.4 Dyson Equations
	12.5 Green's Function Approach to the Electron--Phonon Interaction
	12.6 Electron Self Energy
	12.7 Quasiparticle Interactions and Fermi Liquid Theory

	13 Semiclassical Theory of Electrons
	13.1 Bloch Electrons in a dc Magnetic Field
	13.1.1 Energy Levels of Bloch Electrons in a Magnetic Field
	13.1.2 Quantization of Energy
	13.1.3 Cyclotron Effective Mass
	13.1.4 Velocity Parallel to B

	13.2 Magnetoresistance
	13.3 Two-Band Model and Magnetoresistance
	13.4 Magnetoconductivity of Metals
	13.4.1 Free Electron Model
	13.4.2 Propagation Parallel to B0
	13.4.3 Propagation Perpendicular to B0
	13.4.4 Local Versus Nonlocal Conduction

	13.5 Quantum Theory of Magnetoconductivity of an Electron Gas
	13.5.1 Propagation Perpendicular to B0


	14 Electrodynamics of Metals
	14.1 Maxwell's Equations
	14.2 Skin Effect in the Absence of a DC Magnetic Field
	14.3 Azbel--Kaner Cyclotron Resonance
	14.4 Azbel--Kaner Effect
	14.5 Magnetoplasma Waves
	14.6 Discussion of the Nonlocal Theory
	14.7 Cyclotron Waves
	14.8 Surface Waves
	14.9 Magnetoplasma Surface Waves
	14.10 Propagation of Acoustic Waves
	14.10.1 Propagation Parallel to B0
	14.10.2 Helicon--Phonon Interaction
	14.10.3 Propagation Perpendicular to B0


	15 Superconductivity
	15.1 Some Phenomenological Observations  of Superconductors
	15.2 London Theory
	15.3 Microscopic Theory--An Introduction
	15.3.1 Electron--Phonon Interaction
	15.3.2 Cooper Pair

	15.4 The BCS Ground State
	15.4.1 Bogoliubov--Valatin Transformation
	15.4.2 Condensation Energy

	15.5 Excited States
	15.6 Type I and Type II Superconductors

	16 The Fractional Quantum Hall Effect:  The Paradigm for Strongly Interacting Systems
	16.1 Electrons Confined to a Two Dimensional Surface  in a Perpendicular Magnetic Field
	16.2 Integral Quantum Hall Effect
	16.3 Fractional Quantum Hall Effect
	16.4 Numerical Studies
	16.5 Statistics of Identical Particles in Two Dimensions
	16.6 Chern--Simons Gauge Field
	16.7 Composite Fermion Picture
	16.8 Fermi Liquid Picture
	16.9 Pseudopotentials

	17 Correlation Diagrams: An Intuitive Approach to Interactions in Quantum Hall Systems
	17.1 Introduction
	17.2 Electron Correlations
	17.3 Composite Fermion Approach (Revisited)
	17.4 Correlation Diagrams
	17.5 Thoughts on Larger Systems
	17.6 Residual Interactions
	17.7 Validity of the CF Hierarchy Picture
	17.8 Spin Polarized Quasiparticles in a Partially Filled Composite Fermion Shell
	17.8.1 Heuristic Picture
	17.8.2 Numerical Studies

	17.9 Useful Observations and Summary

	Appendix A Operator Method for the Harmonic Oscillator Problem
	Appendix B Neutron Scattering
	Appendix C Hints and Solutions
	Appendix  References
	Index



