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Preface to the Second Edition

We have received many comments and suggestions on our first edition from stu-
dents, instructors, and many friends. We also received requests for an instructor
manual and solutions to the chapter-end problems along with inclusion of examples
and exercises directly related to the text material in each chapter. In this new
edition, we (1) add a new chapter on Correlation diagram: an intuitive approach to
interactions in quantum Hall systems—one of new developments in the strongly
interacting two-dimensional electrons. We give (2) solutions to the chapter-end
problems in each chapter in Appendix C to fulfill the needs of both students and
instructors. The solutions in the appendix are incomplete leaving enough for the
students to complete, but are prepared to serve as helpful hints and guides. Some
of the existing problems are refined and updated to reflect contemporary research
activities, such as the electronic properties of massless Fermions in graphene. The
instructor manual is prepared containing complete solutions and hints for the
chapter-end problems, and is available for the instructors by sending an email
message to the authors along with plausible evidence showing that the corre-
spondent is a busy instructor. Instructors using the book may find a time-saving to
see our versions of the solutions to the chapter-end problems. The material treated
in Part II is more advanced topics and is not necessary to follow the text order. After
covering Chap. 9 (Magnetism in Solids) in Part I, one can continue to Chap. 10
(Magnetic Ordering and Spin Waves), Chap. 13 (Semiclassical Theory of
Electrons) and Chap. 14 (Electrodynamics of Metals). The material on many-body
interaction treated in Chaps. 11 and 12 can be covered later after Chap. 14 but
before Chap. 15 (Superconductivity). In our revision, more figures are put in color,
and all the errors known to us at this time are corrected along with clarification of
descriptions all throughout the book. Further corrections and suggestions will be
gratefully received if they could be addressed to ksyi@pusan.ac.kr.

Knoxville, USA John J. Quinn
Pusan, Korea (Republic of) Kyung-Soo Yi

vii



Preface to the First Edition

This textbook had its origin in several courses taught for two decades (1965–1985) at
Brown University by one of the authors (JJQ). The original assigned text for the
first-semester course was the classic “Introduction to Solid State Physics” by C.
Kittel. Many topics not covered in that text were included in subsequent semesters
because of their research importance during the 60s and 70s. A number of the topics
covered were first introduced in a course on “Many Body Theory of Metals” given
by JJQ as a Visiting Lecturer at the University of Pennsylvania in 1961–1962, and
later included in a course at Purdue University when he was a Visiting Professor
(1964–1965). A sojourn into academic administration in 1984 removed JJQ from
teaching for 8 years. On returning to a full-time teaching–research professorship at
the University of Tennessee, he again offered a 1-year graduate course in Solid State
Physics. The course was structured so that the first semester (roughly first half of the
text) introduced all the essential concepts for students who wanted exposure to solid
state physics. The first semester could cover topics from the first 10 chapters. The
second semester covered a selection of more advanced topics for students intending
to do thesis research in this field. One of the co-authors (KSY) took this course in
Solid State Physics as a PhD student at Brown University. He added to and improved
the lectures while teaching the subject at Pusan National University from 1984. The
text is a true collaborative effort of the co-authors.

The advanced topics covered in the second semester are covered briefly, but
thoroughly enough to convey the basic physics of each topic. References point the
students who want more detail in the right direction. An entirely different set of
advanced topics could have been chosen in place of those in the text. The choice
was made primarily because of the research interests of the authors.

In addition to Kittel’s classic Introduction to Solid State Physics, 7th edition,
Wiley, New York (1995), other books that influenced the evolution of the present
book are Methods of Quantum Field Theory in Statistical Physics by A.A.
Abrikosov, L.P. Gorkov, and I.E. Dzyaloshinsky, Prentice Hall Inc., Englewood,
New Jersey (1963); Solid State Physics by N.W. Ashcroft and N.D. Mermin,
Saunder’s College Publishing, New York (1975); Introduction to Solid State Theory
by O. Madelung, Springer–Verlag, Berlin–Heidelberg–New York (1978); and

ix



Fundamentals of Semiconductors by P.Y. Yu and M. Cardona, Springer–Verlag,
Berlin–Heidelberg–New York (1995).

Many graduate students at Brown, Tennessee, and Pusan have helped to improve
these lecture notes by pointing out sections that were difficult to understand, and by
catching errors in the text. Dr. Alex Tselis presented the authors with his carefully
written notes of the course at Brown when he changed his field of study to medical
science. We are grateful to all the students and colleagues who have contributed to
making the lecture notes better.

Both of the co-authors want to acknowledge the encouragement and support
of their families. The book is dedicated to them.

Knoxville and Pusan John J. Quinn
August 2009 Kyung-Soo Yi
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Basic Concepts in Solid State Physics



Chapter 1
Crystal Structures

1.1 Crystal Structure and Symmetry Groups

Although everyone has an intuitive idea of what a solid is, we will consider (in this
book) only materials with a well defined crystal structure. What we mean by a well
defined crystal structure is an arrangement of atoms in a lattice such that the atomic
arrangement looks absolutely identical when viewed from two different points that
are separated by a lattice translation vector. A few definitions are useful:

Lattice

A lattice is an infinite array of points obtained from three primitive translation vectors
a1, a2, a3. Any point on the lattice is given by

n = n1a1 + n2a2 + n3a3. (1.1)

Translation Vector

Any pair of lattice points can be connected by a vector of the form

Tn1n2n3 = n1a1 + n2a2 + n3a3. (1.2)

The set of translation vectors form a group called the translation group of the lattice.

Group

A set of elements of any kind with a set of operations, by which any two elements
may be combined into a third, satisfying following requirements is called a group:

• The product (under group multiplication) of two elements of the group belongs to
the group.

• The associative law holds for group multiplication.
• The identity element belongs to the group.
• Every element in the group has an inverse which belongs to the group.

© Springer International Publishing AG, part of Springer Nature 2018
J. J. Quinn and K.-S. Yi, Solid State Physics, UNITEXT for Physics,
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4 1 Crystal Structures

Fig. 1.1 Translation operations in a two-dimensional lattice

Translation Group

The set of translations through any translation vector Tn1n2n3 forms a group. Group
multiplication consists in simply performing the translation operations consecutively.
For example, as is shown inFig. 1.1,wehaveT13 = T03T10.For the simple translation
group the operations commute, i.e., Ti jTkl = TklTi j for every pair of translation
vectors. This property makes the group an Abelian group.

Point Group

There are other symmetry operations which leave the lattice unchanged. These are
rotations, reflections, and the inversion operations. These operations form the point
group of the lattice.As an example, consider the two-dimensional square lattice
(Fig. 1.2). The following operations (performed about any lattice point) leave the
lattice unchanged.

• E: identity
• R1,R3: rotations by ±90◦
• R2: rotation by 180◦
• mx,my: reflections about x-axis and y-axis, respectively
• m+,m−: reflections about the lines x = ±y

Fig. 1.2 The two-dimensional square lattice
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Table 1.1 Multiplication table for the group 4mm. The first (right) operations, such as m+ in
R1m+ = my, are listed in the first column, and the second (left) operations, such as R1 in R1m+ =
my, are listed in the first row

Operation E R1 R2 R3 mx my m+ m−
E−1 = E E R1 R2 R3 mx my m+ m−
R−1
1 = R3 R3 E R1 R2 m+ m− my mx

R−1
2 = R2 R2 R3 E R1 my mx m− m+

R−1
3 = R1 R1 R2 R3 E m− m+ mx my

m−1
x = mx mx m+ my m− E R2 R1 R3

m−1
y = my my m− mx m+ R2 E R3 R1

m−1+ = m+ m+ my m− mx R3 R1 E R2

m−1− = m− m− mx m+ my R1 R3 R2 E

The multiplication table for this point group is given in Table1.1. The operations
in the first column are the first (right) operations, such as m+ in R1m+ = my, and
the operations listed in the first row are the second (left) operations, such as R1 in
R1m+ = my.

The multiplication table can be obtained as follows:

• label the corners of the square (Fig. 1.3).
• operating with a symmetry operation simply reorders the labeling. For example,
see Fig. 1.4 for symmetry operations of m+,R1, and mx.

Fig. 1.3 Identity operation on a two-dimensional square

Fig. 1.4 Point symmetry operations on a two-dimensional square
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Table 1.2 Point group operations on a point (x, y)

Operation E R1 R2 R3 mx my m+ m−
x x y −x −y x −x y −y

y y −x −y x −y y x −x

Fig. 1.5 The two-dimensional rectangular lattice

Therefore, R1m+ = my. One can do exactly the same for all other products, for
example, such as myR1 = m+. It is also very useful to note what happens to a point
(x, y) under the operations of the point group (see Table1.2). Note that under every
group operation x → ±x or ±y and y → ±y or ±x .

Exercise

Demonstrate the multiplication table of the point group of the square lattice given in
Table1.1.

The point group of the two-dimensional square lattice is called 4mm. The nota-
tion denotes the fact that it contains a four fold axis of rotation and two mirror
planes (mx and my); the m+ and m− planes are required by the existence of the other
operations. Another simple example is the symmetry group of a two-dimensional
rectangular lattice (Fig. 1.5). The symmetry operations are E,R2,mx,my, and the
multiplication table is easily obtained from that of 4mm. This point group is called
2mm, and it is a subgroup of 4mm.

Exercise

Demonstrate the group operations on a point (x, y) under the operations of 4mm
given in Table1.2. Repeat the same under the group operation of 2mm.

Allowed Rotations

Because of the requirement of translational invariance under operations of the trans-
lation group, the allowed rotations of the point group are restricted to certain angles.
Consider a rotation through an angle φ about an axis through some lattice point
(Fig. 1.6). If A and B are lattice points separated by a primitive translation a1, then
A′ (and B′) must be a lattice point obtained by a rotation through angle φ about B (or
−φ about A). Since A′ and B′ are lattice points, the vector B′A′ must be a translation
vector. Therefore

∣
∣B′A′∣∣ = pa1, (1.3)

where p is an integer. But
∣
∣B′A′∣∣ = a1 + 2a1 sin

(

φ − π
2

) = a1 − 2a1 cosφ. Solving
for cosφ gives

cosφ = 1 − p

2
. (1.4)
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

Fig. 1.6 Allowed rotations of angle φ about an axis passing through some lattice points A and B
consistent with translational symmetry

Table 1.3 Allowed rotations of the point group

p cosφ φ n (= |2π/φ|)
−1 1 0 or 2π 1

0 1
2 ± 2π

6 6

1 0 ± 2π
4 4

2 − 1
2 ± 2π

3 3

3 −1 ± 2π
2 2

Because −1 ≤ cosφ ≤ 1, we see that p must have only the integral values −1, 0, 1,
2, 3. This gives for the possible values of φ listed in Table1.3.

Although only rotations of 60, 90, 120, 180, and 360◦ are consistent with trans-
lational symmetry, rotations through other angles are obtained in quasicrystals (e.g.,
five fold rotations). The subject of quasicrystals, which do not have translational
symmetry under the operations of the translation group, is an interesting modern
topic in solid state physics which we will not discuss in this book.

Primitive Unit Cell

From the three primitive translation vectors a1, a2, a3, one can form a parallelepiped
that can be used as a primitive unit cell. By stacking primitive unit cells together
(like building blocks) one can fill all of space.

Wigner–Seitz Unit Cell

From the lattice point (0, 0, 0) draw translation vectors to neighboring lattice points
(to nearest, next nearest, etc. neighbors). Then, draw the planes which are perpen-
dicular bisectors of these translation vectors (see, for example, Fig. 1.7). The interior
of these intersecting planes (i.e., the space closer to (0, 0, 0) than to any other lattice
point) is called the Wigner–Seitz unit cell.

Space Group

For a simple lattice, the space group is simply the product of the operations of the
translation group and of the point group. For a lattice with a basis, there can be other
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Fig. 1.7 Construction of the Wigner–Seitz cell of a two-dimensional centered rectangular lattice.
Note that cosφ = a1/2a2

symmetry operations. Examples are glide planes and screw axes; illustration of each
is shown in Figs. 1.8 and 1.9, respectively.

Glide Plane

In Fig. 1.8, each unit cell contains six atoms and T1/2my is a symmetry operation
even though neither T1/2 nor my are operation of the symmetry group by themselves.

Screw Axis

In Fig. 1.9, T1/3R120◦ is a symmetry operation even though T1/3 and R120◦ themselves
are not.

Fig. 1.8 Glide plane of a two-dimensional lattice. Each unit cell contains six atoms
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Fig. 1.9 Screw axis. Unit cell contains three layers and T1 is the smallest translation. Occupied
sites are shown by solid dots

Two-Dimensional Lattices

There are only five different types of two-dimensional lattices.

1. Square lattice: primitive (P) one only
It has a1 = a2 and φ = 90◦.

2. Rectangular: primitive (P) and centered (C) ones
They have a1 �= a2 but φ = 90◦.

3. Hexagonal: primitive (P) one only
It has a1 = a2 and φ = 120◦ (or φ = 60◦)).

4. Oblique: primitive (P) one only
It has a1 �= a2 and φ �= 90◦.

Three-Dimensional Lattices

There are 14 different types of three-dimensional lattices.

1. Cubic: primitive (P), body centered I), and face centered (F) ones
For all of these a1 = a2 = a3 and α = β = γ = 90◦.

2. Tetragonal: primitive (P) and body centered (I) ones
For these a1 = a2 �= a3(= c) and α = β = γ = 90◦. One can think of them
as cubic lattices that have been stretched (or compressed) along one of the cube
axes.

3. Orthorhombic: primitive (P), body centered (I), face centered (F), and base cen-
tered (C) ones
For all of these a1 �= a2 �= a3 but α = β = γ = 90◦. These can be thought of
as cubic lattices that have been stretched (or compressed) by different amounts
along two of the cube axes.
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4. Monoclinic: primitive (P) and base centered (C) ones
For these a1 �= a2 �= a3 and α = β = 90◦ �= γ. These can be thought of as
orthorhombic lattices which have suffered shear distortion in one direction.

5. Triclinic: primitive (P) one
This has the lowest symmetry with a1 �= a2 �= a3 and α �= β �= γ.

6. Trigonal:
It has a1 = a2 = a3 and α = β = γ �= 90◦ < 120◦. The primitive cell is a
rhombohedron. The trigonal lattice can be thought of as a cubic lattice which has
suffered shear distortion.

7. Hexagonal: primitive (P) one only
It has a1 = a2 �= a3(= c) and α = β = 90◦, but γ = 120◦.

Bravais Crystal

If there is only one atom associatedwith each lattice point, the lattice is calledBravais
crystal. If there is more than one atom associated with each lattice point, the lattice
is called a lattice with a basis. One atom can be considered to be located at the lattice
point. For a lattice with a basis it is necessary to give the locations (or basis vectors)
for the additional atoms associated with the lattice point.

1.2 Common Crystal Structures

1. Cubic

a. Simple cubic (sc): Fig. 1.10
For simple cubic crystal the lattice constant is a and the volume per atom is
a3. The nearest neighbor distance is also a, and each atom has six nearest
neighbors. The primitive translation vectors are a1 = ax̂ , a2 = a ŷ, a3 = aẑ.

b. Body centered cubic (bcc): Fig. 1.11

Fig. 1.10 Crystallographic unit cell of a simple cubic crystal of lattice constant a
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Fig. 1.11 Crystallographic unit cell of a body centered cubic crystal of lattice constant a

If we take a unit cell as a cube of edge a, there are two atoms per cell (one
at (0, 0, 0) and one at

(
1
2 ,

1
2 ,

1
2

)

.) The atomic volume is 1
2a

3, and the nearest

neighbor distance is
√
3
2 a. Each atom has eight nearest neighbors. The primi-

tive translations can be taken as a1 = 1
2a

(

x̂ + ŷ + ẑ
)

, a2 = 1
2a

(−x̂ + ŷ + ẑ
)

,
and a3 = 1

2a
(−x̂ − ŷ + ẑ

)

. The parallelepiped formed by a1, a2, a3 is the
primitive unit cell (containing a single atom), and there is only one atom per
primitive unit cell.

c. Face centered cubic (fcc): Fig. 1.12
If we take a unit cell as a cube of edge a, there are four atoms per cell; 1

8
of one at each of the eight corners and 1

2 of one on each of the six faces.

The volume per atom is a3

4 ; the nearest neighbor distance is a√
2
, and each

Fig. 1.12 Crystallographic unit cell of a face centered cubic crystal of lattice constant a
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Fig. 1.13 Crystallographic unit cell of a simple hexagonal crystal of lattice constants a1, a2, and c

atom has 12 nearest neighbors. The primitive unit cell is the parallelepiped
formed from the primitive translations a1 = 1

2a
(

x̂ + ŷ
)

, a2 = 1
2a

(

ŷ + ẑ
)

,
and a3 = 1

2a
(

ẑ + x̂
)

.

All three cubic lattices have the cubic group as their point group. Because the
primitive translations are different, the simple cubic, bcc, and fcc lattices have
different translation groups.

2. Hexagonal

a. Simple hexagonal: See Fig. 1.13.
b. Hexagonal close packed (hcp):

This is a non-Bravais lattice. It contains two atoms per primitive unit cell
of the simple hexagonal lattice, one at (0, 0, 0) and the second at

(
1
3 ,

2
3 ,

1
2

)

.
The hexagonal close packed crystal can be formed by stacking the first
layer (A) in a hexagonal array as is shown in Fig. 1.14. Then, the second
layer (B) is formed by stacking atoms in the alternate triangular holes on

Fig. 1.14 Stacking of layers A and B in a hexagonal close packed crystal of lattice constants a1,
a2, and c
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top of the first layer. This gives another hexagonal layer displaced from
the first layer by

(
1
3 ,

2
3 ,

1
2

)

. Then the third layer is placed above the first
layer (i.e., at (0, 0, 1)). The stacking is then repeated ABABAB . . .. If one
stacks ABCABC . . ., where C is the hexagonal array obtained by stacking
the third layer in the other set of triangular holes above the set B (instead of
the set A), one gets an fcc lattice. The closest possible packing of the hcp
atoms occurs when c

a = √
8/3 ≈ 1.633. We leave this as an exercise for

the reader. Zn crystallizes in a hcp lattice with a = 2.66Å and c = 4.96Å
giving c

a ≈ 1.85, larger than the ideal c
a value.

3. Zincblende StructureThis is a non-Bravais lattice. It is an FCCwith two atoms per
primitive unit cell located at (0, 0, 0) and

(
1
4 ,

1
4 ,

1
4

)

. The structure can be viewed
as two interpenetrating fcc lattices displaced by one fourth of the body diagonal.
Examples of the zincblende structure are ZnS (cubic phase), ZnO (cubic phase),
CuF, CuCl, ZnSe, CdS, GaN (cubic phase), InAs, and InSb. The metallic ions are
on one sublattice, the other ions on the second sublattice.

4. Diamond Structure This structure is identical to the zincblende structure, except
that there are two identical atoms in the unit cell. This structure (unlike zincblende)
has inversion symmetry about the point

(
1
8 ,

1
8 ,

1
8

)

. Diamond, Si, Ge, and gray tin
are examples of the diamond structure.

5. Wurtzite Structure This structure is a simple hexagonal lattice with four atoms per
unit cell, located at (0, 0, 0),

(
1
3 ,

2
3 ,

1
2

)

,
(

0, 0, 3
8

)

, and
(
1
3 ,

2
3 ,

7
8

)

. It can be pictured
as consisting of two interpenetrating hcp lattices separated by

(

0, 0, 3
8

)

. In the
wurtzite phase of ZnS, the Zn atoms sit on one hcp lattice and the S atoms on the
other. ZnS, BeO, ZnO (hexagonal phase), CdS, GaN (hexagonal phase), and AlN
are materials that can occur in the wurtzite structure.

6. Sodium Chloride Structure It consists of a face centered cubic lattice with a basis
of two unlike atoms per primitive unit cell, located at (0, 0, 0) and

(
1
2 ,

1
2 ,

1
2

)

. In
addition to NaCl, other alkali halide salts like LiH, KBr, RbI form crystals with
this structure.

7. Cesium Chloride Structure It consists of a simple cubic lattice with two atoms per
unit cell, located at (0, 0, 0) and

(
1
2 ,

1
2 ,

1
2

)

. Besides CsCl, CuZn (β-brass), AgMg,
and LiHg occur with this structure.

8. Calcium Fluoride Structure It consists of a face centered cubic lattice with three
atoms per primitive unit cell. The Ca ion is located at (0, 0, 0), the F atoms at
(
1
4 ,

1
4 ,

1
4

)

and
(
3
4 ,

3
4 ,

3
4

)

.
9. Graphite Structure This structure consists of a simple hexagonal lattice with

four atoms per primitive unit cell, located at (0, 0, 0),
(
1
3 ,

2
3 , 0

)

,
(

0, 0, 1
2

)

, and
(
2
3 ,

1
3 ,

1
2

)

. Two neighboring layers along the a3(= c)-axis are rotated by π
3 . It

can be pictured as two interpenetrating HCP lattices separated by
(

0, 0, 1
2

)

. It
therefore consists of tightly bonded planes (as is shown in Fig. 1.15) stacked in
the sequence ABABAB . . .. The individual planes are very tightly bound, but the
interplanar binding is rather weak. This gives graphite its well known properties,
like easily cleaving perpendicular to the c axis.
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Fig. 1.15 Stacking of layers A and B in a graphite structure

Miller Indices

Miller indices are a set of three integers that specify the orientation of a crystal plane.
The procedure for obtaining Miller indices of a plane is as follows:

1. Find the intercepts of the plane with the crystal axes.
2. Take the reciprocals of the three numbers.
3. Reduce (by multiplying by the same number) this set of numbers to the smallest

possible set of integers.

As an example, consider the plane that intersects the cubic axes at A1, A2, A3

as shown in Fig. 1.16. Then xiai = OAi . The reciprocals of (x1, x2, x3) are
(

x−1
1 , x−1

2 , x−1
3

)

, and theMiller indices of theplane are (h1h2h3)= p
(

x−1
1 , x−1

2 , x−1
3

)

,

where (h1h2h3) are the smallest possible set of integers
(

p
x1

,
p
x2

,
p
x3

)

.

Fig. 1.16 Intercepts of a plane with the crystal axes

Indices of a Direction

A direction in the lattice can be specified by a vector V = u1a1 + u2a2 + u3a3, or
by the set of integers [u1u2u3] chosen to have no common integral factor. For cubic
lattices the plane (h1h2h3) is perpendicular to the direction [h1h2h3], but this is not
true for general lattices.



1.2 Common Crystal Structures 15

Packing Fraction

The packing fraction of a crystal structure is defined as the ratio of the volume of
atomic spheres in the unit cell to the volume of the unit cell. For a two-dimensional
crystal, the packing fraction is defined as the area of atoms divided by the area of the
unit cell.

Examples

1. Simple cubic lattice:
We take the atomic radius as R = a

2 (then neighboring atoms just touch). The
packing fraction p will be given by

p =
4
3π

(
a
2

)3

a3
= π

6
≈ 0.52

2. Body centered cubic lattice:

Here we take R = 1
2

(√
3
2 a

)

, i.e., half the nearest neighbor distance. For the

non-primitive cubic cell of edge a, we have two atoms per cell giving

p =
2 × 4

3π
(
a
√
3

4

)3

a3
= π

8

√
3 ≈ 0.68

1.3 Reciprocal Lattice

If a1, a2, a3 are the primitive translations of some lattice, we can define the vectors
b1,b2,b3 by the condition

ai · b j = 2πδi j , (1.5)

where δi j = 0 if i is not equal to j and δi i = 1. It is easy to see that

bi = 2π
a j × ak

ai · (

a j × ak
) , (1.6)

where i, j , and k are different. The denominator ai · (

a j × ak
)

is simply the vol-
ume v0 of the primitive unit cell. The lattice formed by the primitive translation
vectors b1,b2,b3 is called the reciprocal lattice (reciprocal to the lattice formed by
a1, a2, a3), and a reciprocal lattice vector is given by

Gh1h2h3 = h1b1 + h2b2 + h3b3. (1.7)
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Useful Properties of the Reciprocal Lattice

1. If r = n1a1 + n2a2 + n3a3 is a lattice vector, then we can write r as

r = 1

2π

∑

i

(r · bi ) ai . (1.8)

2. The lattice reciprocal to b1,b2,b3 is a1, a2, a3.
3. A vector Gh from the origin to a point (h1, h2, h3) of the reciprocal lattice is

perpendicular to the plane with Miller indices (h1h2h3).
4. The distance from the origin to the first lattice plane (h1h2h3) is d (h1h2h3) =

2π |Gh|−1. This is also the distance between neighboring {h1h2h3} planes.
The proof of 3 is established by demonstrating that Gh is perpendicular to the plane
A1A2A3 shown in Fig. 1.16. This must be true if Gh is perpendicular to both A1A2

and to A2A3. But A1A2 = OA2 − OA1 = p
(
a2
h2

− a1
h1

)

. Therefore

Gh · A1A2 = (h1b1 + h2b2 + h3b3) · p
(
a2
h2

− a1
h1

)

, (1.9)

which vanishes. The same can be done for A2A3. The proof of 4 is established by
noting that

d(h1h2h3) = a1
h1

· Gh

|Gh| .

The first factor is just the vector OA1 for the situation where p = 1, and the second
factor is a unit vector perpendicular to the plane (h1h2h3). Since a1 · Gh = 2πh1, it
is apparent that d(h1h2h3) = 2π |Gh|−1.

1.4 Diffraction of X-rays

Crystal structures are usually determined experimentally by studying how the crystal
diffracts waves. Because the interatomic spacings in most crystals are of the order of
a few Å’s (1Å = 0.1 nm), the maximum information can most readily be obtained
by using waves whose wave lengths are of that order of magnitude. Electromag-
netic, electron, or neutron waves can be used to study diffraction by a crystal. For
electromagnetic waves, E = hν, where E is the energy of the photon, ν = c

λ
is

its frequency and λ its wave length, and h is Planck’s constant. For λ = 10−8 cm,
c = 3× 1010 cm/s and h = 6.6× 10−27erg · s, the photon energy is equal to roughly
2 × 10−8ergs or 1.24 × 104 eV. Photons of energies of tens of kV are in the X-ray
range. For electron waves, p = h

λ
	 6.6 × 10−19 g · cm/s when λ = 10−8 cm. This

gives E = p2

2me
, where me 	 0.9 × 10−27 g, of 2.4 × 10−10 ergs or roughly 150eV.
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For neutron waves, we need simply replace me by mn = 1.67 × 10−24 g to obtain
E = 1.3 × 10−13 ergs 	 0.08 eV. Thus neutron energies are of the order of a tenth
of an eV. Neutron scattering has the advantages that the low energy makes inelas-
tic scattering studies more accurate and that the magnetic moment of the neutron
allows the researcher to obtain information about the magnetic structure. It has the
disadvantage that high intensity neutron sources are not as easily obtained as X-ray
sources.

1.4.1 Bragg Reflection

We have already seen that we can discuss crystal planes in a lattice structure. Assume
that an incident X-ray is specularly reflected by a set of crystal planes as shown in
Fig. 1.17. Constructive interference occurs when the difference in path length is an
integral number of wave length λ. It is clear that this occurs when

2d sin θ = nλ, (1.10)

where d is the interplanar spacing, θ is the angle between the incident beam and the
crystal planes, as is shown on the figure, and n is an integer. Equation (1.10) is known
as Bragg’s law.

1.4.2 Laue Equations

A slightly more elegant discussion of diffraction from a crystal can be obtained as
follows:

1. Let ŝ0 be a unit vector in the direction of the incident wave, and ŝ be a unit vector
in the direction of the scattered wave.

2. Let R1 and R2 be the position vectors of a pair of atoms in a Bravais lattice, and
let r12 = R1 − R2.

Fig. 1.17 Specular reflection of X-rays by a set of crystal planes separated by a distance d
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Fig. 1.18 Scattering of X-rays by a pair of atoms in a crystal

Let us consider the waves scattered by R1 and by R2 and traveling different path
lengths as shown in Fig. 1.18. The difference in path length is | R2A − BR1 |.
But this is clearly equal to

∣
∣r12 · ŝ − r12 · ŝ0

∣
∣. We define S as S = ŝ − ŝ0; then the

difference in path length for the two rays is given by

Δ = |r12 · S| . (1.11)

For constructive interference, thismust be equal to an integral number ofwave length.
Thus we obtain

r12 · S = mλ, (1.12)

where m is an integer and λ is the wave length. To obtain constructive interference
from every atom in the Bravais lattice, this must be true for every lattice vector Rn .
Constructive interference will occur only if

Rn · S = integer × λ (1.13)

for every lattice vector Rn in the crystal. Of course there will be different integers
for different Rn in general. Recall that

Rn = n1a1 + n2a2 + n3a3. (1.14)

The condition (1.13) is obviously satisfied if

ai · S = phiλ, (1.15)

wherehi is the smallest set of integers and p is a commonmultiplier.Wecanobviously
express S as

2πS = (S · a1)b1 + (S · a2)b2 + (S · a3) b3. (1.16)

Therefore condition (1.13) is satisfied and constructive interference fromevery lattice
site occurs if

S = p (h1b1 + h2b2 + h3b3)
λ

2π
, (1.17)
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or
2πS
λ

= pGh, (1.18)

where Gh is a vector of the reciprocal lattice. Equation (1.18) is called the Laue
equation.

Connection of Laue Equations and Bragg’s Law

From (1.18) Smust be perpendicular to the planes with Miller indices (h1h2h3). The
distance between two planes of this set is

d(h1h2h3) = 2π

|Gh| = p
λ

|S| . (1.19)

We know that S is normal to the reflection plane PP′ with Miller indices (h1h2h3).
From Fig. 1.19, it is apparent that |S| = 2 sin θ. Therefore (1.19) can be written by

2d(h1h2h3) sin θ = pλ,

where p is an integer. According to Laue’s equation, associated with any reciprocal
lattice vector Gh = h1b1 + h2b2 + h3b3, there is an X-ray reflection satisfying the
equation 2πS

λ
= pGh, where p is an integer.




Fig. 1.19 Relation between the scattering vector S = ŝ − ŝ0 and the Bragg angle θ

1.4.3 Ewald Construction

This is a geometric construction that illustrates how the Laue equation works. The
construction goes as follows: see Fig. 1.20.

1. From the originO of the reciprocal lattice draw the vector AO of length 2π
λ
parallel

to ŝ0 and terminating on O.
2. Construct a sphere of radius 2π

λ
centered at A.

If this sphere intersects a point B of the reciprocal lattice, then AB = 2π
λ
ŝ is in a

direction in which a diffraction maximum occurs. Since A1O = 2π
λ1
ŝ0 and A1B1 =
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 





Fig. 1.20 Ewald construction for diffraction peaks

2π
λ1
ŝ, 2π

λ1
S = 2π

λ1
(ŝ − ŝ0) = OB1 is a reciprocal lattice vector and satisfies the Laue

equation. If a higher frequency X-ray is used, λ2, A2, and B2 replace λ1, A1, and B1.
For a continuous spectrum with λ1 ≥ λ ≥ λ2, all reciprocal lattice points between
the two sphere (of radii λ−1

1 and λ−1
2 ) satisfy Laue equation for some frequency in

the incident beam.

Wave Vector

It is often convenient to use the set of vectorsKh = Gh. Then, the Ewald construction
gives

q0 + Kh = q, (1.20)

where q0 = 2π
λ
ŝ0 and q = 2π

λ
ŝ are the wave vectors of the incident and scattered

waves. Equation (1.20) says that wave vector is conserved up to a vector of the
reciprocal lattice.

1.4.4 Atomic Scattering Factor

It is the electrons of an atom that scatter the X-rays since the nucleus is so heavy that
it hardly moves in response to the rapidly varying electric field of the X-ray. So far,
we have treated all of the electrons as if they were localized at the lattice point. In
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Fig. 1.21 Path difference between waves scattered at O and those at r

fact, the electrons are distributed about the nucleus of the atom (at position r = 0, the
lattice point) with a density ρ(r). If you know the wave function Ψ (r1, r2, . . . , rz)
describing the z electrons of the atom, ρ(r) is given by

ρ(r) =
〈 z
∑

i=1

δ (r − ri )
〉

=
〈

Ψ (r1, . . . , rz)

∣
∣
∣
∣
∣

z
∑

i=1

δ(r − ri )

∣
∣
∣
∣
∣
Ψ (r1, . . . , rz)

〉

. (1.21)

Now consider the difference in path lengthΔ between waves scattered at O and those
scattered at r (Fig. 1.21).

Δ = r · (

ŝ − ŝ0
) = r · S. (1.22)

The phase difference is simply 2π
λ
times Δ, the difference in path length. Therefore,

the scattering amplitude will be reduced from the value obtained by assuming all the
electrons were localized at the origin O by a factor z−1 f , where f is given by

f =
∫

d3r ρ(r) e
2πi
λ r·S. (1.23)

This factor is called the atomic scattering factor (or atomic form factor). If ρ(r) is
spherically symmetric we have

f =
∫ ∞

0

∫ 1

−1
2πr2dr d(cosφ)ρ(r)e

2πi
λ Sr cosφ. (1.24)

Recall that S = 2 sin θ, where θ is the angle between ŝ0 and the reflecting plane PP′
of Fig. 1.19. Define μ as 4π

λ
sin θ; then f can be expressed as

f =
∫ ∞

0
dr4πr2ρ(r)

sinμr

μr
. (1.25)
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If λ is much larger than the atomic radius, μr is much smaller than unity wherever
ρ(r) is finite. In that case sin μr

μr 	 1 and f → z, the number of electrons.

1.4.5 Geometric Structure Amplitude

So farwehave consideredonly aBravais lattice. For a non-Bravais lattice the scattered
amplitude depends on the locations and atomic scattering factors of all the atoms in
the unit cell. Suppose a crystal structure contains atoms at positions r j with atomic
scattering factors f j . It is not difficult to see that this changes the scattered amplitude
by a factor

F(h1, h2, h3) =
∑

j

f je
2πi
λ r j ·S(h1h2h3) (1.26)

for the scattering from a plane with Miller indices (h1h2h3). In (1.26) the position
vector r j of the j th atom can be expressed in terms of the primitive translation
vectors ai

r j =
∑

i

μ j iai . (1.27)

For example, in a hcp lattice r1 = (0, 0, 0) and r2 = (
1
3 ,

2
3 ,

1
2

)

when expressed in
terms of the primitive translation vectors.Of course, 2πS(h1h2h3) equal toλ

∑

i hibi ,
where bi are primitive translation vectors in the reciprocal lattice. Therefore, 2πi

λ
r j ·

S(h1h2h3) is equal to 2πi
(

μ j1h1 + μ j2h2 + μ j3h3
)

, and the structure amplitude
F(h1, h2, h3) can be expressed as

F(h1, h2, h3) =
∑

j

f je
2πi

∑

i μ j i hi . (1.28)

If all of the atoms in the unit cell are identical (as in diamond, Si, Ge, etc.) all of the
atomic scattering factors f j are equal, and we can write

F(h1, h2, h3) = f S(h1h2h3). (1.29)

TheS(h1h2h3) is called the geometric structure amplitude. It depends only on crystal
structure, not on the atomic constituents, so it is the same for all hcp lattices or for
all diamond lattices, etc.

Example

A useful demonstration of the geometric structure factor can be obtained by consid-
ering a bcc lattice as a simple cubic lattice with two atoms in the simple cubic unit
cell located at (0, 0, 0) and

(
1
2 ,

1
2 ,

1
2

)

. Then

Sbcc(h1h2h3) = 1 + e2πi(
1
2 h1+ 1

2 h2+ 1
2 h3). (1.30)
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If h1 +h2 +h3 is odd, eiπ(h1+h2+h3) = −1 and Sbcc(h1h2h3) vanishes. If h1 +h2 +h3
is even, Sbcc(h1h2h3) = 2. The reason for this effect is that the additional planes
(associated with the body centered atoms) exactly cancel the scattering amplitude
from the planes made up of corner atoms when h1 + h2 + h3 is odd, but they add
constructively when h1 + h2 + h3 is even.

The scattering amplitude depends on other factors (e.g. thermal motion and zero
point vibrations of the atoms) which we have neglected by assuming a perfect and
stationary lattice.

Exercise

Demonstrate the geometric structure factor of the fcc lattice considering an fcc lattice
as a simple cubic lattice with a basis of four identical atoms located at (0, 0, 0),
(0, 1

2 ,
1
2 ),

(
1
2 , 0,

1
2

)

, and
(
1
2 ,

1
2 , 0

)

.

1.4.6 Experimental Techniques

We know that constructive interference from a set of lattice planes separated by a
distance d will occur when

2d sin θ = nλ, (1.31)

where θ is the angle between the incident beam and the planes that are scattering, λ is
the X-ray wave length, and n is an integer. For a given crystal the possible values of d
are fixed by the atomic spacing, and to satisfy (1.31), one must vary either θ or λ over
a range of values. Different experimental methods satisfy (1.31) in different ways.
The common techniques are (i) the Laue method, (ii) the rotating crystal method,
and (iii) the powder method.

Laue Method

In this method a single crystal is held stationary in a beam of continuous wave length
X-ray radiation (Fig. 1.22). Various crystal planes select the appropriate wave length
for constructive interference, and a geometric arrangement of bright spots is obtained
on a film.

Fig. 1.22 Experimental arrangement of the Laue method
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Fig. 1.23 Experimental arrangement of the rotating crystal method

Rotating Crystal Method

In this method a monochromatic beam of X-ray is incident on a rotating single
crystal sample. Diffraction maxima occur when the sample orientation relative to the
incident beam satisfies Bragg’s law (Fig. 1.23).

Powder Method

Here a monochromatic beam is incident on a finely powdered specimen. The small
crystallites are randomly oriented with respect to the incident beam, so that the
reciprocal lattice structure used in the Ewald construction must be rotated about the
origin of reciprocal space through all possible angles. This gives a series of spheres
in reciprocal space of radii K1, K2, . . . (we include the factor 2π in these reciprocal
lattice vectors) equal to the smallest, next smallest, etc. reciprocal lattice vectors.
The sequence of values sin(φi/2)

sin(φ1/2)
give the ratios of Ki

K1
for the crystal structure. This

sequence is determined by the crystal structure. Knowledge of the X-ray wave length
λ = 2π

k allows determination of the lattice spacing (Fig. 1.24).

Fig. 1.24 Experimental arrangement of the powder method
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1.5 Classification of Solids

1.5.1 Crystal Binding

Before considering even in aqualitativewayhowatomsbind together to formcrystals,
it is worthwhile to review briefly the periodic table and the ground state configura-
tions of atoms. The single particle states of electrons moving in an effective central
potential (which includes the attraction of the nucleus and some average repulsion
associatedwith all other electrons) can be characterized by four quantum numbers: n,
the principal quantum number takes on the values 1, 2, 3, . . .; l, the angular momen-
tum quantum number takes on values 0, 1, . . . , n − 1; m, the azimuthal quantum
number (projection of l onto a given direction) is an integer satisfying −l ≤ m ≤ l;
and σ, the spin quantum number takes on the values ± 1

2 .
The energy of the single particle orbital is very insensitive to m and σ (in the

absence of an applied magnetic field), but it depends strongly on n and l. Of
course, due to the Pauli principle only one electron can occupy an orbital with given
n, l,m, and σ. The periodic table is constructed by making an array of slots, with l
value increasing from l = 0 as one moves to the left, and the value of n + l increas-
ing as one moves down (Table1.4). Of course, the correct number of slots must be
allowed to account for the spin and azimuthal degeneracy 2(2l+1) of a given l value.
One then begins filling the slots from the top left, moving to the right, and then down
when all slots of a given (n + l) value have been used up.

See Table1.4, which lists the atoms (H, He, . . .) and their atomic numbers
in the appropriate slots. As the reader can readily observe, H has one electron,
and it will occupy the n = 1, l = 0(1s) state. Boron has five electrons and
they will fill the (1s) and 2s states with the fifth electron in the 2p state. Every-
thing is very regular until Cr and Cu. These two elements have ground states in
which one 4s electron falls into the 3d shell, giving for Cr the atomic configu-
ration (1s)2(2s)2(2p)6(3s)2(3p)6(4s)1(3d)5, and for Cu the atomic configuration
(1s)2(2s)2(2p)6(3s)2(3p)6(4s)1(3d)10. Other exceptions occur in the second tran-
sition series (the filling of the 4d levels) and in the third transition series (filling the
5d levels), and in the rare earth series (filling the 4 f and 5 f levels). Knowing this
table allows one to write down the ground state electronic configuration of any atom.
Note that the inert gases He, Ne, Kr, Rn, complete the shells n = 1, n = 2, n = 3,
and n = 4, respectively. Ar and Xe are inert also; they complete the n = 3 shell
(except for 3d electrons), and n = 4 shell (except for 4 f electrons), respectively.
Na, K, Rb, Cs, and Fr have one weakly bound s electron outside these closed shell
configurations; Fl, Cl, Br, I and At are missing one p electron from the closed shell
configurations. The alkali metals easily give up their loosely bound s electrons, and
the halogens readily attract one p electron to give a closed shell configuration. The
resulting Na+ −Cl− ions form an ionic bond which is quite strong. Atoms like C, Si,
Ge, and Sn have an (np)2(n + 1 s)2 configuration. These four valence electrons can
be readily shared with other atoms in covalent bonds, which are also quite strong.
Compounds like GaAs, GaP, GaSb, or InP, InAs, InSb etc. are formed from column
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III and column V constituents. With the partial transfer of an electron from As to
Ga, one obtains the covalent bonding structure of Si or Ge as well as some degree
of ionicity as in NaCl. Metallic elements like Na and K are relatively weakly bound.
Their outermost s electrons become almost free in the solid and act as a glue holding
the positively charged ions together. The weakest bonding in solids is associated
with weak Van der Waals coupling between the constituent atoms or molecules. To
give some idea of the binding energy of solids, we will consider the binding of ionic
crystals like NaCl or CsCl.

1.6 Binding Energy of Ionic Crystals

The binding energy of ionic crystals results primarily from the electrostatic interac-
tion between the constituent ions. A rough order ofmagnitude estimate of the binding
energy per molecule can be obtained by simply evaluating

〈V 〉 = e2

R0
=

(

4.8 × 10−10 esu
)2

2.8 × 10−8 cm
	 8 × 10−12 ergs ∼ 5 eV.

Here R0 is the observed interatomic spacing (which we take as 2.8Å, the spacing in
NaCl). The experimentally measured value of the binding energy of NaCl is almost
8eV per molecule, so our rough estimate is not too bad.

Interatomic Potential

For an ionic crystal, the potential energy of a pair of atoms i, j can be taken to be

φi j = ± e2

ri j
+ λ

rni j
. (1.32)

Here ri j is the distance between atoms i and j . The ± sign depends on whether the
atoms are like (+) or unlike (−). The first term is simply the Coulomb potential for a
pair of point charges separated by ri j . The second term accounts for core repulsion.
The atoms or ions are not point charges, and when a pair of them gets close enough
together their core electrons can repel one another. This core repulsion is expected to
decrease rapidly with increasing ri j . The parameters λ and n are phenomenological;
they are determined from experiment.

Total Energy

The total potential energy is given by

U = 1

2

∑

i �= j

φi j . (1.33)
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It is convenient to define φi , the potential energy of the i th atom as

φi =
′

∑

j

φi j . (1.34)

Here the prime on the sum implies that the term i = j is omitted. It is apparent from
symmetry considerations that φi is independent of i for an infinite lattice, so we can
drop the subscript i . The total energy is then

U = 1

2
2Nφ = Nφ, (1.35)

where 2N is the number of atoms and N is the number of molecules.
It is convenient in evaluating φ to introduce a dimensionless parameter pi j defined

by pi j = R−1ri j , where R is the distance between nearest neighbors. In terms of pi j ,
the expression for φ is given by

φ = λ

Rn

′
∑

j

p−n
i j − e2

R

′
∑

j

(∓pi j
)−1

. (1.36)

Here the primes on the summations denote omission of the term i = j . We define
the quantities

An =
′

∑

j

p−n
i j , (1.37)

and
α =

∑

j

(∓pi j
)−1

. (1.38)

Theα and An are properties of the crystal structure;α is called theMadelung constant.
The internal energyof the crystal is givenby Nφ,where N is the number ofmolecules.
The internal energy is given by

U = N

[

λ
An

Rn
− α

e2

R

]

. (1.39)

At the equilibrium separation R0,
(

∂U
∂R

)

R0
must vanish. This gives the result

λ
An

Rn
0

= α
e2

nR0
. (1.40)

Therefore, the equilibrium value of the internal energy is
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U0 = Nφ0 = −Nα
e2

R0

(

1 − 1

n

)

. (1.41)

Compressibility

The best value of the parameter n can be determined from experimental data on the
compressibility κ. κ is defined by the negative of the change in volume per unit
change in pressure at constant temperature divided by the volume.

κ = − 1

V

(
∂V

∂P

)

T

. (1.42)

The subscript T means holding temperature T constant, so that (1.42) is the isother-
mal compressibility. We will show that at zero temperature

κ−1 = V

(
∂2U

∂V 2

)

T=0

. (1.43)

Equation (1.43) comes from the thermodynamic relations

F = U − T S, (1.44)

and
dU = TdS − PdV . (1.45)

By taking the differential of (1.44) and making use of (1.45), one can see that

dF = −PdV − SdT . (1.46)

From(1.46) we have

P = −
(

∂F

∂V

)

T

. (1.47)

Equation (1.42) can be written

κ−1 = −V

(
∂P

∂V

)

T

= V

(
∂2F

∂V 2

)

T

. (1.48)

But at T = 0, F = U so that

κ−1 = V

(
∂2F

∂V 2

)

T=0

(1.49)

is the inverse of the isothermal compressibility at T = 0. We can write the volume
V as 2N R3 and use ∂

∂V = ∂R
∂V

∂
∂R = 1

6N R2
∂

∂R in (1.39) and (1.43). This gives
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κ−1
T=0 = αe2

18R4
0

(n − 1), (1.50)

or

n = 1 + 18R4
0

αe2κ
. (1.51)

From the experimental data on NaCl, the best value for n turns out to be ∼9.4.

Evaluation of the Madelung Constant

For simplicity let us start with a linear chain. Each positive (+) atom has two neigh-
bors, which are negative (−) atoms, at p01 = 1. Therefore

α =
′

∑

j

∓p−1
i j = 2

[

1 − 1

2
+ 1

3
− 1

4
+ · · ·

]

. (1.52)

If you remember that the power series expansion for ln(1 + x) is given by −∑∞
n=1

(−x)n

n = x − x2

2 + x3

3 − x4

4 + · · · and is convergent for x ≤ 1, it is apparent that

α = 2 ln 2. (1.53)

If we attempt the same approach for NaCl, we obtain

α = 6

1
− 12√

2
+ 8√

3
− 6

2
+ · · · . (1.54)

This is taking six opposite charge nearest neighbors at a separation of one nearest
neighbor distance, 12 same charge next nearest neighbors at

√
2 times that distance,

etc. It is clear that the series in (1.54) converges very poorly. The convergence can be
greatly improved by using a different counting procedure in which one works with
groups of ions which form a more or less neutral array. The motivation is that the
potential of a neutral assembly of charges falls off much more quickly with distance
than that of a charged assembly.

Evjen Method

Wewill illustrateEvjen method1 by considering a simple square lattice in two dimen-
sionswith two atoms per unit cell, one at (0, 0) and one at

(
1
2 ,

1
2

)

. The crystal structure
is illustrated in Fig. 1.25. The calculation is carried out as follows:

1. One considers the charges associated with different shells where the first shell is
everything inside the first square, the second is everything outside the first but
inside the second square, etc.

2. An ion on a face is considered to be half inside and half outside the square defined
by that face; a corner atom is one quarter inside and three quarters outside.

1H. M. Evjen, Phys. Rev. 39, 675 (1932).
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Fig. 1.25 Evjen’s method for a simple square lattice in two dimensions

3. The total Madelung constant is given by α = α1 + α2 + α3 + · · · , where α j is
the contribution from the i th shell.

As an example, let us evaluate the total charge on the first few shells. The first shell
has four atoms on faces, all with the opposite charge to the atom at the origin and
four corner atoms all with the same charge as the atom at the origin. Therefore the
charge of shell number one is

Q1 = 4

(
1

2

)

− 4

(
1

4

)

= 1. (1.55)

Doing the same for the second shell gives

Q2 = 4

(
1

2

)

− 4

(
3

4

)

− 4

(
1

2

)

+ 8

(
1

2

)

− 4

(
1

4

)

= 0. (1.56)

Here the first two terms come from the remainder of the atoms on the outside of the
first square; the next three terms come from the atoms on the inside of the second
square. To get α1 andα2 we simply divide the individual charges by their separations
from the origin. This gives

α1 = 4
(
1
2

)

1
− 4

(
1
4

)

√
2

	 1.293, (1.57)

α2 = 4
(
1
2

)

1
− 4

(
3
4

)

√
2

− 4
(
1
2

)

2
+ 8

(
1
2

)

√
5

+ 4
(
1
4

)

2
√
2

	 0.314. (1.58)

This gives α 	 α1 + α2 ∼ 1.607. The readers should be able to evaluate α3 for
themselves.



1.6 Binding Energy of Ionic Crystals 33

Madelung Constant for Three-Dimensional Lattices

For a three-dimensional crystal, Evjenmethod is essentially the samewith the excep-
tion that

1. The squares are replaced by cubes.
2. Atoms on the face of a cube are considered to be half inside and half outside the

cube; atoms on the edge are 1
4 inside and

3
4 outside, and corner atoms are 1

8 inside
and 7

8 outside.

We illustrate the case of the NaCl structure as an example in the three dimensions.
(see Fig. 1.26.)

For α1 we obtain

α1 = 6
(
1
2

)

1
− 12

(
1
4

)

√
2

+ 8
(
1
8

)

√
3

	 1.456. (1.59)

For α2 we have the following contributions

1. remainder of the contributions from the atoms on the first cube

= 6 ( 1
2 )
1 − 12 ( 3

4 )√
2

+ 8 ( 7
8 )√
3
,

2. atoms on the interior of faces of the second cube

= − 6 ( 1
2 )

2 + 6(4) ( 1
2 )√

5
− 6(4) ( 1

2 )√
6

,

Fig. 1.26 Central atom and the first cube of the Evjen method for the NaCl structure
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3. atoms on the interior of edges of the second cube

= − 12 ( 1
4 )√
8

+ 12(2) ( 1
4 )√

9
,

4. atoms on the interior of corners of the second cube

= − 8 ( 1
8 )√
12

.

Adding them together gives

α2 =
(

3 − 9√
2

+ 7√
3

)

+
(

−3

2
+ 12√

5
− 12√

6

)

+
(

− 3√
8

+ 6

3

)

− 1√
12

	 0.295.

(1.60)

Thus to the approximation α 	 α1 + α2 we find that α 	 1.752. The exact result
for NaCl is α = 1.747558 . . ., so Evjen method gives a surprisingly accurate result
after only two shells.

Results of rather detailed evaluations of α for several different crystal struc-
tures are α(NaCl) = 1.74756, α(CsCl) = 1.76267, α(zincblende) = 1.63806,
α(wurtzite) = 1.64132. The NaCl structure occurs much more frequently than the
CsCl structure. This may seem a bit surprising since α(CsCl) is about 1% larger than
α(NaCl). However, core repulsion accounts for about 10% of the binding energy
[see (1.41)]. In the CsCl structure each atom has eight nearest neighbors instead of
the six in NaCl. This should increase the core repulsion by something of the order of
25% in CsCl. Thus we expect about 2.5% larger contribution (from core repulsion)
to the binding energy of CsCl. This negative contribution to the binding energy more
than compensates the 1% difference in Madelung constants.

Exercise

Cesium chloride structure consists of a simple cubic lattice with two atoms per unit
cell, each located at (0, 0, 0) and

(
1
2 ,

1
2 ,

1
2

)

. Evaluate the Madelung constant for CsCl
including only up to (i) the nearest neighbors and the next nearest neighbors, (ii) the
nearest neighbors, the next nearest neighbors, and the next-next nearest neighbors,
and (iii) the nearest neighbors, the next nearest neighbors, the next-next nearest
neighbors, and the next-next-next nearest neighbors in the summation.
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Problems

1.1 Demonstrate that

(a) the reciprocal lattice of a simple cubic lattice is simple cubic.
(b) the reciprocal lattice of a body centered cubic lattice is a face centered cubic

lattice.
(c) the reciprocal lattice of a hexagonal lattice is hexagonal.

1.2 Determine the packing fraction of

(a) a simple cubic lattice
(b) a face centered lattice
(c) a body centered lattice
(d) the diamond structure
(e) a hexagonal close packed lattice with an ideal c

a ratio

1.3 Determine the separations between nearest neighbors, next nearest neighbors,
. . . down to the 5th nearest neighbors for the lattices of the cubic system.

1.4 Work out the group multiplication table of the point group of an equilateral
triangle.

1.5 The Bravais lattice of the diamond structure is fcc with two carbon atoms per
primitive unit cell. If one of the two basis atoms is at (0, 0, 0), then the other is at
(
1
4 ,

1
4 ,

1
4

)

.

(a) Illustrate that a reflection through the (100) plane followed by a non-primitive
translation through

[
1
4 ,

1
4 ,

1
4

]

is a glide-plane operation for the diamond struc-
ture.

(b) Illustrate that a 4-fold rotation about an axis in diamond parallel to the x axis
passing through the point (1, 1

4 , 0) (the screw axis) followed by the transla-
tion [ 14 , 0, 0] parallel to the screw axis is a screw operation for the diamond
structure.

1.6 A two dimensional hexagonal crystal has primitive translation vectors a1 = ax̂

and a2 = a
2

(

−x̂ + √
3ŷ

)

.

(a) Show that the reciprocal lattice has primitive translation vectors b1 =
b
2

(√
3x̂ + ŷ

)

and b2 = bŷ with b = 4π√
3a
.

(b) Draw the vectors from the origin to the nearest reciprocal lattice points in

reciprocal space using b1 = b
2

(√
3x̂ + ŷ

)

and b2 = bŷ, and construct the

first Brillouin zone.
(c) An incident wave of wavevector k0 traveling in the x − y plane is scattered

by the two dimensional lattice into the direction of wavevector k in the x − y
plane. Find the values of k, for which there are maxima in the diffraction
pattern.
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(d) A graphene is a single layer of graphite of a hexagonal two dimensional lattice
with two atoms per unit cell located at r1 = 0 and r2 = 1

3a1 + 2
3a2. What is

the two dimensional packing fraction of a graphene?
(e) What is the structure factor F(h1, h2) for X-ray scattering in a single layer of

graphene? Take f as the atomic scattering factor of carbon.

1.7 CsCl can be thought of as a simple cubic lattice with two different atoms [at
(0, 0, 0) and

(
1
2 ,

1
2 ,

1
2

)

] in the cubic unit cell. Let f+ and f− be the atomic scattering
factors of the two constituents.

(a) What is the structure amplitude F(h1, h2, h3) for this crystal?
(b) An X-ray source has a continuous spectrum with wave numbers k satisfying:

k is parallel to the [110] direction and 1√
2

(
2π
a

) ≤ |k| ≤ 3 × √
2

(
2π
a

)

, where
a is the edge distance of the simple cube. Use the Ewald construction for a
plane that contains the direction of incidence to show which reciprocal lattice
vectors K(h1, h2, 0) display diffraction maxima.

(c) If f+ = f−, which of these maxima disappear?

1.8 A simple cubic structure is constructed in which two planes of A atoms followed
by two planes of B atoms alternate in the [100] direction.

(a) What is the crystal structure (viewed as a non-Bravais lattice with four atoms
per unit cell)?

(b) What are the primitive translation vectors of the reciprocal lattice?
(c) Determine the structure amplitude F(h1, h2, h3) for this non-Bravais lattice.

1.9 Powder patterns of three cubic crystals are found to have their first four diffrac-
tion rings at the values of the scattering angles φi given below (Table1.5):

The crystals are monatomic, and the observer believes that one is body centered,
one face centered, and one is a diamond structure.

Table 1.5 Scattering angles of the samples

φA 30◦ 35◦ 50◦ 60◦

φB 21◦ 29◦ 36◦ 42◦

φC 30◦ 50◦ 60◦ 74◦
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(a) What structures are the crystals A, B, and C?
(b) The wave length λ of the incident X-ray is 0.95Å. What is the length of the

cube edge for the cubic unit cell in A, B, and C, respectively?

1.10 Determine the ground state atomic configurations of C(6), O(8), Al(13), Si(14),
Zn(30), Ga(31), and Sb(51).

1.11 Consider 2N ions in a linear chain with alternating ±e charges and a repulsive
potential AR−n between nearest neighbors.

(a) Show that the internal energy becomes

U (R) = 2 ln 2
Ne2

R

[

1

n

(
R0

R

)n−1

− 1

]

,

where R0 is the equilibrium separation of the ions.
(b) Let the crystal be compressed such that R0 → R0 − δ. Show that the work

done in compressing the crystal of a unit length can be written as 1
2Cδ2, and

determine the expression for C .

Summary
In this chapter first we have introduced basic geometrical concepts useful in describ-
ing periodic arrays of objects and crystal structures both in real and reciprocal spaces
assuming that the atoms sit at lattice sites.

A lattice is an infinite array of points obtained from three primitive translation
vectors a1, a2, a3. Any point on the lattice is given by

n = n1a1 + n2a2 + n3a3.

Any pair of lattice points can be connected by a vector of the form

Tn1n2n3 = n1a1 + n2a2 + n3a3.

Well defined crystal structure is an arrangement of atoms in a lattice such that the
atomic arrangement looks absolutely identicalwhen viewed from twodifferent points
that are separated by a lattice translation vector. Allowed types of Bravais lattices
are discussed in terms of symmetry operations both in two and three dimensions.
Because of the requirement of translational invariance under operations of the lattice
translation, the rotations of 60, 90, 120, 180, and 360◦ are allowed.

If there is only one atom associated with each lattice point, the lattice of the crystal
structure is called Bravais lattice. If more than one atom are associated with each
lattice point, the lattice is called a lattice with a basis. If a1, a2, a3 are the primitive
translations of some lattice, one can define a set of primitive translation vectors
b1,b2,b3 by the condition

ai · b j = 2πδi j ,
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where δi j = 0 if i is not equal to j and δi i = 1. It is easy to see that

bi = 2π
a j × ak

a i
· (

a j × ak
)

,

where i, j , and k are different. The lattice formed by the primitive translation vec-
tors b1,b2,b3 is called the reciprocal lattice (reciprocal to the lattice formed by
a1, a2, a3), and a reciprocal lattice vector is given by

Gh1h2h3 = h1b1 + h2b2 + h3b3.

Simple crystal structures and principles of commonly used experimental methods
of wave diffraction are also reviewed briefly. Connection of Laue equations and
Bragg’s law is shown.Classification of crystalline solids are then discussed according
to configuration of valence electrons of the elements forming the solid.



Chapter 2
Lattice Vibrations

2.1 Monatomic Linear Chain

Thus far in our discussion of the crystalline nature of solids we have assumed that the
atoms sat at lattice sites. This is not actually the case; even at the lowest temperatures
the atoms perform small vibrations about their equilibrium positions. In this chapter
we shall investigate the vibrations of the atoms in solids. Many of the significant fea-
tures of lattice vibrations can be understood on the basis of a simple one-dimensional
model, a monatomic linear chain. For that reason we shall first study the linear chain
in some detail.

We consider a linear chain composed of N identical atoms of mass M (see
Fig. 2.1). Let the positions of the atoms be denoted by the parameters Ri , i =
1, 2, . . . , N . Here we assume an infinite crystal of vanishing surface to volume ratio,
and apply periodic boundary conditions. That is, the chain contains N atoms and the
N th atom is connected to the first atom so that

Ri+N = Ri . (2.1)

The atoms interactwith one another (e.g., through electrostatic forces, core repulsion,
etc.). The potential energy of the array of atoms will obviously be a function of the
parameters Ri , i.e.,

U = U (R1, R2, . . . , RN ). (2.2)

We shall assume that U has a minimum U
(
R0
1, R0

2, . . . , R0
N

)
for some particular

set of values
(
R0
1, R0

2, . . . , R0
N

)
, corresponding to the equilibrium state of the linear

chain. Define ui = Ri − R0
i to be the deviation of the i th atom from its equilibrium

Fig. 2.1 Linear chain of N identical atoms of mass M

© Springer International Publishing AG, part of Springer Nature 2018
J. J. Quinn and K.-S. Yi, Solid State Physics, UNITEXT for Physics,
https://doi.org/10.1007/978-3-319-73999-1_2
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position. Now expand U about its equilibrium value to obtain

U (R1, R2, . . . , RN ) = U
(
R0
1, R0

2, . . . , R0
N

) +
∑

i

(
∂U

∂Ri

)

0

ui

+ 1

2!
∑

i, j

(
∂2U

∂Ri∂R j

)

0

ui u j + 1

3!
∑

i, j,k

(
∂3U

∂Ri∂R j∂Rk

)

0

ui u j uk + · · · (2.3)

The first term is a constant which can simply be absorbed in setting the zero of
energy. By the definition of equilibrium, the second term must vanish (the subscript
zero on the derivative means that the derivative is evaluated at u1, u2, . . . , un = 0).
Therefore we can write

U (R1, R2, . . . , RN ) = 1

2!
∑

i, j

ci j ui u j + 1

3!
∑

i, j,k

di jkui u j uk + · · · , (2.4)

where

ci j =
(

∂2U

∂Ri∂R j

)

0

and di jk =
(

∂3U

∂Ri∂R j∂Rk

)

0

. (2.5)

For the present, wewill consider only the first term in (2.4); this is called the harmonic
approximation. The Hamiltonian in the harmonic approximation is

H =
∑

i

P2
i

2M
+ 1

2

∑

i, j

ci j ui u j . (2.6)

Here Pi is the momentum and ui the displacement from the equilibrium position of
the i th atom.

Equation of Motion

Hamilton’s equations

Ṗi = −∂H

∂ui
= −

∑

j

ci j u j ,

u̇i = ∂H

∂Pi
= Pi

M
. (2.7)

can be combined to yield the equation of motion

Müi = −
∑

j

ci j u j . (2.8)

In writing down the equation for Ṗi , we made use of the fact that ci j actually depends
only on the relative positions of atoms i and j , i.e., on |i − j |. Notice that −ci j u j is
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simply the force on the i th atom due to the displacement u j of the j th atom from its
equilibrium position. Now let R0

n = na, so that R0
n − R0

m = (n − m)a. We assume a
solution of the coupled differential equations of motion, (2.8), of the form

un(t) = ξqe
i(qna−ωq t). (2.9)

By substituting (2.9) into (2.8) we find

Mω2
q =

∑

m

cnme
iq(m−n)a . (2.10)

Because cnm depends only on l = m − n, we can rewrite (2.10) as

Mω2
q =

N∑

l=1

c(l)eiqla . (2.11)

Boundary Conditions

Let us consider an infinite one dimensional crystal of vanishing surface to volume
ratio and apply periodic boundary conditions to our chain; this means that the chain
contains N atoms and that the N th atom is connected to the first atom (Fig. 2.2). This
means that the (n + N )th atom is the same atoms as the nth atom, so that un = un+N .

Fig. 2.2 Periodic boundary conditions on a linear chain of N identical atoms
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Since un ∝ eiqna , the condition means that

eiq Na = 1, (2.12)

or that q = 2π
Na × p where p = 0,±1,±2, . . .. However, not all of these values of

q are independent. In fact, there are only N independent values of q since there are
only N degrees of freedom. If two different values of q, say q and q ′ give identical
displacements for every atom, they are equivalent. It is easy to see that

eiqna = eiq ′na (2.13)

for all values of n if q ′ − q = 2π
a l, where l = 0,±1,±2, . . .. The set of independent

values of q are usually taken to be the N values satisfying q = 2π
L p, where − N

2 ≤
p ≤ N

2 . We will see later that in three dimensions the independent values of q are
values whose components (q1, q2, q3) satisfy qi = 2π

Li
p, and which lie in the first

Brillouin zone, the Wigner–Seitz unit cell of the reciprocal lattice.

Long Wave Length Limit

Let us look at the long wave length limit, where the wave number q tends to zero.
Then un(t) = ξ0e−iωq→0t for all values of n. Thus, the entire crystal is uniformly
displaced (or the entire crystal is translated). This takes no energy if it is done very
very slowly, so it requires Mω2

q→0 = ∑N
l=1 c(l) = 0, or ωq→0 = 0. In addition, it is

not difficult to see that since c(l) depends only on the magnitude of l that

Mω2
−q =

∑

l

c(l)e−iqla =
∑

l ′
c(l ′)eiql ′a = Mω2

q . (2.14)

In the last step in this equation we replaced the dummy variable l by l ′ and used
the fact that c(−l ′) = c(l ′). Equation (2.14) tells us that ω2

q is an even function of q
which vanishes at q = 0. If we make a power series expansion for small q, then ω2

q
must be of the form

ω2
q = s2q2 + · · · (2.15)

The constant s is called the velocity of sound.

Nearest Neighbor Forces– An Example

Thus far we have not specified the interaction law among the atoms; (2.15) is valid
in general. To obtain ωq for all values of q, we must know the interaction between
atoms. A simple but useful example is that of nearest neighbor forces. In that case,
the equation of motion is

Mω2
q =

1∑

l=−1

cle
iqla = c−1e

−iqa + c0 + c1e
iqa . (2.16)

Knowing that ωq=0 = 0 and that c−l = cl gives the relation c1 = c−1 = − 1
2c0.

Therefore, (2.16) is simplified to
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



Fig. 2.3 Dispersion relation of the lattice vibration in a monatomic linear chain

Mω2
q = c0

[
1 −

(
eiqa + e−iqa

2

)]
. (2.17)

Since 1 − cos x = 2 sin2 x
2 , (2.17) can be expressed as

ω2
q = 2c0

M
sin2

qa

2
, (2.18)

which is displayed in Fig. 2.3. By looking at the long wave length limit, the coupling
constant is determined by c0 = 2Ms2

a2 , where s is the velocity of sound.

2.2 Normal Modes

The general solution for the motion of the nth atom will be a linear combination of
solutions of the form of (2.9). We can write the general solution as

un(t) =
π/a∑

q=−π/a

[
ξqe

iqna−iωt + cc
]
, (2.19)

where cc means the complex conjugate of the previous term. The form of (2.19)
assures the reality of un(t), and the 2N parameters (real and imaginary parts of ξq )
are determined from the initial values of the position and velocity of the N atoms
which specify the initial state of the system.

In most problems involving small vibrations in classical mechanics we seek new
coordinates pk and qk in terms of which the Hamiltonian can be written as

H =
∑

k

Hk =
π/a∑

k=−π/a

[
1

2M
pk p∗

k + 1

2
Mω2

k qkq∗
k

]
. (2.20)

In terms of these normal coordinates pk and qk , the Hamiltonian is a sum of N inde-
pendent simple harmonic oscillator Hamiltonians. Because we use running waves of
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the form ei(qna−ωq t) the new coordinates qk and pk can be complex, but the Hamil-
tonian must be real. This dictates the form of (2.20).

The normal coordinates turn out to be

qk = N−1/2
∑

n

une
−ikna, (2.21)

and
pk = N−1/2

∑

n

Pne
+ikna . (2.22)

We will demonstrate this for qk , and leave it for the student to do the same for pk .
We can write (2.19) as

un(t) = α
∑

k

ξk(t)e
ikna, (2.23)

where ξk is complex and satisfies ξ∗
−k = ξk . With this condition un(t), given by

(2.23), is real and α is simply a constant to be determined. We can write the potential
energy U = 1

2

∑
mn cmnumun in terms of the new coordinates ξk as follows.

U = 1

2
|α|2

∑

mn

cmn

∑

k

ξke
ikma

∑

k ′
ξk ′eik ′na . (2.24)

Now, let k ′ = q − k to rewrite (2.24) as

U = 1

2
|α|2

∑

nkq

[
∑

m

cmne
ik(m−n)a

]

ξkξq−ke
iqna . (2.25)

From (2.10) one can see that the quantity in the square bracket in (2.25) is equal to
Mω2

k . Thus U becomes

U = 1

2
|α|2

∑

nkq

Mω2
k ξkξ

∗
k−qe

iqna . (2.26)

The only factor in (2.26) that depends on n is eiqna . It is not difficult to prove that∑
n e

iqna = Nδq,0. We do this as follows: Define SN = 1 + x + x2 + · · · + x N−1;
then x SN = x + x2 + · · · + x N is equal to SN − 1 + x N .

x SN = SN − 1 + x N . (2.27)

Solving for SN gives

SN = 1 − x N

1 − x
. (2.28)
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Now let x = eiqa . Then, (2.28) says

N−1∑

n=0

(
eiqa

)n = 1 − eiqaN

1 − eiqa
. (2.29)

Remember that the allowed values of q were given by q = 2π
Na × integer. Therefore

iqaN = i 2π
Na aN × integer, and eiqaN = e2πi×integer = 1. Therefore, the numerator

vanishes. The denominator does not vanish unless q = 0. When q = 0, eiqa = 1 and
the sum gives N . This proves that

∑
n e

iqna = Nδ(q, 0) when q = 2π
Na × integer.

Using this result in (2.26) gives

U = 1

2
|α|2

∑

k

Mω2
k ξkξ

∗
k N . (2.30)

Choosing α = N−1/2 puts U into the form of the potential energy for N simple
harmonic oscillators labeled by the k value. By assuming that Pn is proportional to∑

k pke−ikna with p∗
−k = pk , it is not difficult to show that (2.22) gives the kinetic

energy in the desired form
∑

k
pk p∗

k
2M . The inverse of (2.21) and (2.22) are easily

determined to be

un = N−1/2
π/a∑

k=−π/a

qke
ikna, (2.31)

and

Pn = N−1/2
π/a∑

k=−π/a

pke
−ikna . (2.32)

Exercise

Derive (2.31) and (2.32) by inverting (2.21) and (2.22).

Quantization

Up to this point our treatment has been completely classical. We quantize the system
in the standard way. The dynamical variables qk and pk are replaced by quantum
mechanical operators q̂k and p̂k which satisfy the commutation relation

[
p̂k, q̂k ′

] = −i�δk,k ′ . (2.33)

The quantum mechanical Hamiltonian is given by H = ∑
k Hk , where

Hk = p̂k p̂†
k

2M
+ 1

2
Mω2

k q̂k q̂†
k . (2.34)
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p̂†
k and q̂†

k are the Hermitian conjugates of p̂k and q̂k , respectively. They are necessary
in (2.34) to assure that the Hamiltonian is a Hermitian operator. The Hamiltonian
of the one-dimensional chain is simply the sum of N independent simple Harmonic
oscillator Hamiltonians. As with the simple Harmonic oscillator, it is convenient to
introduce the operators ak and its Hermitian conjugate a†

k , which are defined by

q̂k =
(

�

2Mωk

)1/2 (
ak + a†

−k

)
, (2.35)

p̂k = i

(
�Mωk

2

)1/2 (
a†

k − a−k

)
. (2.36)

The commutation relations satisfied by the ak’s and a†
k ’s are

[
ak, a†

k ′

]

−
= δk,k ′ and [ak, ak ′]− =

[
a†

k , a†
k ′

]

−
= 0. (2.37)

The displacement of the nth atom and its momentum can be written

un =
∑

k

(
�

2M Nωk

)1/2

eikna
(

ak + a†
−k

)
, (2.38)

Pn =
∑

k

i

(
�ωk M

2N

)1/2

e−ikna
(

a†
k − a−k

)
. (2.39)

The Hamiltonian of the linear chain of atoms can be written

H =
∑

k

�ωk

(
a†

k ak + 1

2

)
, (2.40)

and its eigenfunctions and eigenvalues are

|n1, n2, . . . , nN >=
(

a†
k1

)n1

√
n1!

· · ·
(

a†
kN

)nN

√
nN ! |0 >, (2.41)

and

En1,n2,...,nN =
∑

j

�ωk j

(
n j + 1

2

)
. (2.42)

In (2.41) |0 >= |01 > |02 > · · · |0N > is the ground state of the entire system;
it is a product of ground state wave functions for each harmonic oscillator. It is
convenient to think of the energy �ωk as being carried by an elementary excitations
or quasiparticle. In lattice dynamics these elementary excitations are called phonons.
In the ground state, no phonons are present in any of the harmonic oscillators. In an
arbitrary state, such as (2.41), n1 phonons are in oscillator k1, n2 in k2, . . ., nN in kN .
We can rewrite (2.41) as |n1, n2, . . . , nN >= |n1 > |n2 > · · · |nN >, a product of
kets for each oscillator.
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Exercise

Derive (2.38) and (2.39) by inserting (2.35) and (2.36) into (2.31) and (2.32), and
show that the Hamiltonian is given by (2.40).

2.3 Mössbauer Effect

With the simple one-dimensional harmonic approximation, we have the tools nec-
essary to understand the physics of some interesting effects. One example is the
Mössbauer effect.1 This effect involves the decay of a nuclear excited state via γ-ray
emission (Fig. 2.4). First, let us discuss the decay of a nucleus in a free atom; to
be explicit, let us consider the decay of the excited state of Fe57 via emission of a
14.4keV γ ray.

Fe57
∗ −→ Fe57 + γ. (2.43)

The excited state of Fe57 has a lifetime of roughly 10−7 s. The uncertainty principle
tells us that by virtue of the finite lifetime Δt = τ = 10−7 s, there is an uncertainty
ΔE in the energy of the excited state (or a natural linewidth for the γ ray) given by
ΔE = �

Δt . Using Δt = 10−7 s gives Δω = 107 s−1 or Δ(�ω) � 6 × 10−9 eV. Thus
the ratio of the linewidth Δω to the frequency ω is Δω

ω
� 4 × 10−13.

In a resonance experiment, theγ-ray source emits and the target resonantly absorbs
the γ rays. Unfortunately, when a γ ray is emitted or absorbed by a nucleus, the
nucleus must recoil in order to conserve momentum. The momentum of the γ ray
is pγ = �ω

c , so that the nucleus must recoil with momentum �K = pγ or energy

E(K ) = �
2K 2

2M where M is the mass of the atom. The recoil energy is given by

E(K ) = �
2ω2

2Mc2 = (�ω)2

2(M/m)mc2 . But mc2 � 0.5 × 106 eV and the ratio of the mass of

Fe57 to the electron mass m is ∼ 2.3× 105, giving E(K ) � 2× 10−3 eV. This recoil
energy is much larger than the energy uncertainty of the γ ray (6×10−9 eV). Because
of the recoil on emission and absorption, the γ ray is short by 4× 10−3 eV of energy

 rayγ

Fig. 2.4 The exact transition energy is required to be reabsorbed because of the very sharply defined
nuclear energy states

1R.L. Mössbauer and D.H. Sharp, Rev. Mod. Phys. 36, 410–417 (1964).
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necessary for resonance absorption. Mössbauer had the idea that if the nucleus that
underwent decay was bound in a crystal (containing ∼1023 atoms) the recoil of the
entire crystal would carry negligible energy since the crystal mass would replace the
atomic mass of a single Fe57 atom. However, the quantum mechanical state of the
crystal might change in the emission process (via emission of phonons). A typical
phonon has a frequency of the order of 1013 s−1, much larger thanΔω = 107 s−1, the
natural line width. Therefore, in order for resonance absorption to occur, the γ ray
must be emitted without simultaneous emission of phonons. This no phonon γ-ray
emission occurs a certain fraction of the time and is referred to as recoil free fraction.
We would like to estimate the recoil free fraction.

As far as the recoil-nucleus is concerned, the effect of the γ-ray emission can be
represented by an operator H ′ defined by

H ′ = CeiK·RN , (2.44)

whereC is someconstant,�K is the recoilmomentum, and RN is the positionoperator
of the decaying nucleus. This expression can be derived using the semiclassical theory
of radiation, but we simply state it and demonstrate that it is plausible by considering
a free nucleus.

Recoil of a Free Nucleus

The Hamiltonian describing the motion of the center of mass of a free atom is

H0 = P2

2M
(2.45)

The eigenstates of H0 are plane waves

|k >= V −1/2eik·RN

whose energy is

E(k) = �
2k2

2M
.

Operating on an initial state |k > with H ′ gives a new eigenstate proportional to
|k + K >. The change in energy (i.e., the recoil energy) is

ΔE = E(k + K ) − E(k) = �
2

2M

(
2k · K + K 2

)
.

For a nucleus that is initially at rest ΔE = �
2K 2

2M , exactly what we had given previ-
ously.

Mössbauer Recoil Free Fraction

When the atom whose nucleus emits the γ ray is bound in the crystal, the initial and
final eigenstates must describe the entire crystal. Suppose the initial eigenstate has
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nk excitations in the kth oscillator (where k = 2π
Na n and − N

2 < n ≤ N
2 ), giving a ket

vector |nI〉 written as

|nI〉 = ∣
∣nk=− π

a
, n− π

a (1− 2
N ), . . . , n π

a (1− 2
N ), n π

a

〉 =
π/a∏

k=−π/a

n−1/2
k

(
a†

k

)nk |0〉.

We consider the corresponding final eigenstate (having mk excitations in the kth
oscillator) given by |mF〉 written as

|mF〉 = ∣
∣mk=− π

a
, m− π

a (1− 2
N ), . . . , m π

a (1− 2
N ), m π

a

〉 =
π/a∏

k=−π/a

m−1/2
k

(
a†

k

)mk |0〉.

In evaluating H ′ operating on these states, we write RN = R0
N + uN to describe the

center of mass of the nucleus which emits the γ ray. We can choose the origin of our
coordinate system at the position R0

N and write

RN = uN =
N∑

k=1

(
�

2M Nωk

)1/2 (
ak + a†

−k

)
. (2.46)

Because k is a dummy variable to be summed over, and because ωk = ω−k , we can
replace a†

−k by a†
k in (2.46).

The probability of a transition from initial state |nI〉 to final state |mF〉 is propor-
tional to the square of the matrix element

〈
mF

∣∣H ′∣∣ nI
〉
. This result can be established

by using time dependent perturbation theory with H ′ as the perturbation. Let us write
this probability as P(mF; nI). Then P(mF; nI) can be expressed as

P(mF; nI) = α
∣
∣〈mF

∣
∣Cei K RN

∣
∣ nI

〉∣∣2 . (2.47)

In (2.47)α is simply a proportional constant, and we have set H ′ = Cei K RN . Because
P(mF; nI) is the probability of going from |nI〉 to |mF〉, ∑mF

P(mF; nI) = 1. This
condition gives the relation

α|C |2
∑

mF

〈
mF

∣
∣ei K RN

∣
∣ nI

〉∗ 〈
mF

∣
∣ei K RN

∣
∣ nI

〉 = 1. (2.48)

Because ei K RN is Hermitian,
〈
mF

∣∣ei K RN
∣∣ nI

〉∗
is equal to

〈
nI

∣∣e−i K RN
∣∣mF

〉
.We use this

result in (2.48) and make use of the fact that |mF > is part of a complete orthonormal
set so that

∑
mF

|mF >< mF| = 1, the unit operator, to obtain

α|C |2 [〈nI

∣∣e−i K RN × ei K RN
∣∣ nI

〉]2 = 1.
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This is satisfied only if α|C |2 = 1, establishing the result

P(mF; nI) = ∣∣〈mF

∣∣ei K RN
∣∣ nI

〉∣∣2 . (2.49)

Evaluation of P(nI; nI)

The probability of γ-ray emission without any change in the state of the lattice is
simply P(nI; nI). We can write RN in (2.49) as

RN =
π/a∑

k=−π/a

βk

(
ak + a†

k

)
, (2.50)

where βk =
(

�

2M Nωk

)1/2
. If we write |nI〉 = |nk1〉|nk2〉 · · · |nkN 〉, then

〈
nI

∣∣ei K RN
∣∣ nI

〉 =
〈
nk1

∣∣∣
〈
nk2

∣∣∣· · ·
〈
nkN

∣∣∣ei K
∑

k βk (ak+a†
k )
∣∣∣ nk1

〉∣∣∣ nk2

〉
· · ·

∣∣∣ nkN

〉
. (2.51)

The operator ak and a†
k operates only on the kth harmonic oscillator state |nk〉, so

that (2.51) can be rewritten as

〈
nI

∣∣ei K RN
∣∣ nI

〉 =
π/a∏

k=−π/a

〈
nk

∣∣∣ei Kβk (ak+a†
k )
∣∣∣ nk

〉
. (2.52)

Each factor in the product can be evaluated by expanding the exponential in power
series. This gives

〈
nk

∣
∣∣ei Kβk (ak+a†

k )
∣
∣∣ nk

〉
= 1 + (i Kβk)

2

2!
〈
nk

∣
∣∣aka†

k + a†
k ak

∣
∣∣ nk

〉

+ (i Kβk)
4

4!
〈
nk

∣∣∣(ak + a†
k )

4
∣∣∣ nk

〉
+ · · · . (2.53)

The result for this matrix element is

〈
nk

∣∣
∣ei Kβk (ak+a†

k )
∣∣
∣ nk

〉
= 1 − E(K )

�ωk

nk + 1
2

N
+ O(N−2). (2.54)

We shall neglect terms of order N−2, N−3, . . ., etc. in this expansion. With this
approximation we can write

〈
nI|ei K RN |nI

〉 �
π/a∏

k=−π/a

[

1 − E(K )

�ωk

nk + 1
2

N

]

. (2.55)
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To terms of order N−1, the product appearing on the right hand side of (2.55) is

equivalent to e− E(K )

N

∑
k

nk + 1
2

�ωk to the same order. Thus, for the recoil free fraction, we
obtain

P(nI, nI) = e−2 E(K )

N

∑π/a
k=−π/a

nk + 1
2

�ωk . (2.56)

Although we have derived (2.56) for a simple one-dimensional model, the result is
valid for a real crystal if sum over k is replaced by a three-dimensional sum over all
k and over the three polarizations. We will return to the evaluation of the sum later,
after we have considered models for the phonon spectrum in real crystals.

2.4 Optical Modes

Thus far we have restricted our consideration to a monatomic linear chain. Later on,
we shall consider three-dimensional solids (the added complication is not serious).
For the present, let us stick with the one-dimensional chain, but let us generalize to
the case of two atoms per unit cell (Fig. 2.5).

       

UNIT CELL
2

... ...

Fig. 2.5 Linear chain with two atoms per unit cell

If atoms A and B are identical, the primitive translation vector of the lattice is
a, and the smallest reciprocal vector is K = 2π

a . If A and B are distinguishable
(e.g. of slightly different mass) then the smallest translation vector is 2a and the
smallest reciprocal lattice vector is K = 2π

2a = π
a . In this case the part of the ω

versus q curve lying outside the region |q| ≤ π
2a must be translated (or folded back)

into the first Brillouin zone (region between − π
2a and π

2a ) by adding or subtracting
the reciprocal lattice vector π

a . This results in the spectrum shown in Fig. 2.6. Thus
for a non-Bravais lattice, the phonon spectrum has more than one branch. If there
are p atoms per primitive unit cell, there will be p branches of the spectrum in a
one-dimensional crystal. One branch, which satisfies the condition that ω(q) → 0
as q → 0 is called the acoustic branch or acoustic mode. The other (p −1) branches
are called optical branches or optical modes. Due to the difference between the pair
of atoms in the unit cell when A �= B, the degeneracy of the acoustic and optical
modes at q = ± π

2a is usually removed. Let us consider a simple example, the linear
chain with nearest neighbor interactions of the force constant c but with atoms of
mass M1 and M2 in each unit cell. Let un be the displacement from its equilibrium
position of the atom of mass M1 in the nth unit cell; let vn be the corresponding
quantity for the atom of mass M2. Then the equations of motion are
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Fig. 2.6 Dispersion curves for the lattice vibration in a linear chain with two atoms per unit cell

M1ün = c
[
(vn − un) − (un − vn−1)

]
, (2.57)

M2v̈n = c
[
(un+1 − vn) − (vn − un)

]
. (2.58)

In Fig. 2.7 we show unit cells n and n + 1. We assume solutions of (2.57) and (2.58)
of the form

un = uqe
iq2an−iωq t , (2.59)

vn = vqe
iq(2an+a)−iωq t . (2.60)

where uq and vq are constants. Substituting (2.59) and (2.60) into equations ofmotion
gives the following matrix equation.

[
−M1ω

2 + 2c −2c cos qa

−2c cos qa −M2ω
2 + 2c

][
uq

vq

]
= 0. (2.61)

The nontrivial solutions are obtained by setting the determinant of the 2 × 2 matrix

multiplying the column vector

[
uq

vq

]
equal to zero. The roots are

ω2
±(q) = c

M1M2

{
M1 + M2 ∓ [

(M1 + M2)
2 − 4M1M2 sin

2 qa
]1/2}

. (2.62)

Fig. 2.7 Unit cells of a linear chain with two atoms per cell
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Fig. 2.8 Dispersion relations for the acoustical and optical modes of a diatomic linear chain

We shall assume that M1 < M2. Then at q = ± π
2a the two roots are ω2

OP(q =
π
2a ) = 2c

M1
and ω2

AC(q = π
2a ) = 2c

M2
. At q ≈ 0, the two roots are given by ω2

AC(q) �
2ca2

M1+M2
q2 and ω2

OP(q) = 2c(M1+M2)

M1M2

[
1 − M1M2

(M1+M2)2
q2a2

]
. The dispersion relations for

both modes are sketched in Fig. 2.8.

2.5 Lattice Vibrations in Three-Dimensions

Now let us consider a primitive unit cell in three dimensions defined by the translation
vectors a1, a2, and a3. We will apply periodic boundary conditions such that Ni steps
in the direction ai will return us to the original lattice site. The Hamiltonian in the
harmonic approximation can be written

H =
∑

i

P2
i

2M
+ 1

2

∑

i, j

ui · Ci j · u j . (2.63)

Here the tensor Ci j (i and j refer to the i th and j th atoms and Ci j is a three-
dimensional tensor for each value of i and j) is given by

Ci j = [∇Ri ∇R j U (R1,R2, . . .)
]
R0

i R
0
j
. (2.64)

In obtaining (2.63) we have expanded U (R1,R2, . . .) in powers of ui = Ri − R0
i ,

the deviation from the equilibrium position, and we have used the definition of
equilibrium to eliminate the term that is linear in ui .

From Hamilton’s equation we obtain the equation of motion

M üi = −
∑

j

Ci j · u j . (2.65)
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We assume a solution to (2.65) of the form

ui = ξk e
ik·R0

i −iωk t . (2.66)

Here ξk is a vector whose magnitude gives the size of the displacement associated
with wave vector k and whose direction gives the direction of the displacement. It is
convenient to write

ξk = ε̂k qk, (2.67)

where ε̂k is a unit polarization vector (a unit vector in the direction of ξk) and qk is
the amplitude. Substituting the assumed solution into the equation of motion gives

Mω2
kε̂k =

∑

j

Ci j · ε̂ke
ik·

(
R0

j −R0
i

)

. (2.68)

Because (2.68) is a vector equation, it must have three solutions for each value of k.
This is apparent if we define the tensor F(k) by

F(k) = −
∑

j

e
ik·

(
R0

j −R0
i

)

Ci j . (2.69)

Then (2.68) can be written as a matrix equation

⎛

⎜
⎝

Mω2
k + Fxx Fxy Fxz

Fyx Mω2
k + Fyy Fyz

Fzx Fzy Mω2
k + Fzz

⎞

⎟
⎠

⎛

⎜
⎝

ε̂kx

ε̂ky

ε̂kz

⎞

⎟
⎠ = 0. (2.70)

The three solutions of the three by three secular equation for a given value of k can
be labeled by a polarization index λ. The eigenvalues of (2.70) will be ω2

kλ and the
eigenfunctions will be

ε̂kλ = (
ε̂x
kλ, ε̂

y
kλ, ε̂

z
kλ

)

with λ = 1, 2, 3.
When we apply periodic boundary conditions, then we must have the condition

eiki Ni ai = 1 (2.71)

satisfied for the three primitive translation directions of i = 1, 2, 3. In (2.71), ki is
the component of k in the direction of ai and Ni is the period associated with the
periodic boundary conditions in this direction. From the conditions (2.71) it is clear
that the allowed values of the wave vector k must be of the form

k = n1

N1
b1 + n2

N2
b2 + n3

N3
b3, (2.72)
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where n1, n2, and n3 are integers, and b1, b2, b3 are primitive translation vectors of
the reciprocal lattice. As in the one-dimensional case, not all of the values of k given
by (2.72) are independent. It is customary to chose as independent values of k those
which satisfy (2.72) and the condition

− Ni

2
≤ ni ≤ Ni

2
. (2.73)

This set of k values is restricted to the first Brillouin zone, the set of all values of
k satisfying (2.72) that are closer to the origin in reciprocal space than to any other
reciprocal lattice point. The total number of k values in the first Brillouin zone is
N = N1N2N3, and there are three normal modes (3 polarizations λ) for each k value.
This gives a total of 3N normal modes, the number required to describe a system
of N = N1N2N3 atoms each having three degrees of freedom. For k values that lie
outside the Brillouin zone, one simply adds a reciprocal lattice vectorK to obtain an
equivalent k value inside the Brillouin zone.

2.5.1 Normal Modes

As we did in the one-dimensional case, we can define new coordinates qkλ and pkλ

as

un = N−1/2
∑

kλ

ε̂kλqkλe
ik·R0

n , (2.74)

Pn = N−1/2
∑

kλ

ε̂kλ pkλe
−ik·R0

n . (2.75)

The Hamiltonian becomes

H =
∑

kλ

Hkλ =
∑

kλ

[
1

2M
pkλ p∗

kλ + 1

2
Mω2

kλqkλq∗
kλ

]
. (2.76)

It is customary to define the polarization vectors ε̂kλ to satisfy ε̂−kλ = −ε̂kλ and ε̂kλ ·
ε̂kλ′ = δλλ′ . Remembering that

∑
n e

i(k−k′) ·R0
n = Nδk,k′ , one can see immediately

that ∑

n

ε̂kλ · ε̂k′λ′ei(k−k′)·R0
n = Nδk,k′δλλ′ . (2.77)

The conditions resulting from requiring Pn and un to be real are

p∗
kλ = p−kλ and q∗

kλ = q−kλ (2.78)
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where pkλ = ε̂kλ pkλ and qkλ = ε̂kλqkλ. The condition on the scalar quantities pkλ

and qkλ differs by a minus sign from the vector relation (2.78) because ε̂kλ changes
sign when k goes to −k.

2.5.2 Quantization

Toquantize, the dynamical variables pkλ andqkλ are replacedbyquantummechanical
operators p̂kλ and q̂kλ which satisfy the commutation relations

[
p̂kλ, q̂k′λ′

]
− = −i�δkk′δλλ′ . (2.79)

It is again convenient to introduce creation and annihilation operators a†
kλ and akλ

defined by

q̂kλ =
(

�

2Mωkλ

)1/2 (
akλ − a†

−kλ

)
, (2.80)

p̂kλ = i

(
�Mωkλ

2

)1/2 (
a†
kλ + a−kλ

)
. (2.81)

The differences in sign from one-dimensional case result from using scalar quan-
tities q̂kλ and p̂kλ in defining akλ and a†

kλ. The operators akλ and ak′λ′ satisfy the
commutation relations [

akλ, a†
k′λ′

]

−
= δkk′δλλ′ , (2.82)

[akλ, ak′λ′ ]− =
[
a†
kλ, a†

k′λ′

]

−
= 0. (2.83)

The Hamiltonian is given by

H =
∑

kλ

�ωkλ

(
a†
kλakλ + 1

2

)
. (2.84)

From this point on, the analysis is essentially identical to that of the one-dimensional
case which we have treated in detail already. In the three-dimensional case, we
can write the displacement un and momentum Pn of the nth atom as the quantum
mechanical operators given below:

un =
∑

kλ

(
�

2M Nωkλ

)1/2

ε̂kλe
ik·R0

n

(
akλ − a†

−kλ

)
, (2.85)
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Pn =
∑

kλ

i

(
�Mωkλ

2N

)1/2

ε̂kλe
−ik·R0

n

(
a†
kλ + a−kλ

)
. (2.86)

Mean Squared Displacement of an Atom

As an example of how to use the quantum mechanical eigenstates and the operator
describing dynamical variables, let us evaluate the mean squared displacement of an
atom from its equilibrium position in a three-dimensional crystal. We can write

un · un =
∑

kλ,k′λ′

(
�

2M N

)
(ωkλωk′λ′)−1/2 ε̂kλ · ε̂k′λ′

(
akλ + a†

kλ

) (
ak′λ′ + a†

k′λ′

)
.

(2.87)

Here, we have again chosen the origin at the equilibrium position of the nth atom
so that R0

n = 0. Then, we replace ε̂kλa†
−kλ by −ε̂kλa†

kλ in (2.85). This was done in
obtaining (2.87). If we assume the eigenstate of the lattice is

∣∣nk1λ1 , nk2λ2 , . . .
〉
, it is

not difficult to see the that

〈un〉 = 〈
nk1λ1 , nk2λ2 , . . . |un| nk1λ1 , nk2λ2 , . . .

〉 = 0, (2.88)

and that

〈un · un〉 =
∑

kλ

(
�

2M Nωkλ

)
(2nkλ + 1) . (2.89)

Exercise

Take the mean squared displacement of an atom in a simple lattice of the eigenstate∣
∣nk1λ1 , nk2λ2 , . . .

〉
and prove (2.89).

2.6 Heat Capacity of Solids

In the 19th century it was known from experiment that at room temperature the
specific heat of a solid was given by the Dulong–Petit law which said

Cv = 3R, (2.90)

where R = NAkB, and NA = Avogadro number (=6.03 × 1023 atoms/mole)
and kB = Boltzmann’s constant (=1.38 × 10−16 ergs/0K). Recall that 1cal =
4.18 J = 4.18 × 107 ergs. Thus (2.90) gave the result

Cv � 6 cal/deg mole. (2.91)

The explanation of the Dulong–Petit law is based on the equipartition theorem
of classical statistical mechanics. This theorem assumes that each atom oscillates
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Fig. 2.9 Temperature dependence of the specific heat of a typical solid

harmonically about its equilibrium position, and that the energy of one atom is

E = p2

2m
+ 1

2
kr2 = 1

2m

(
p2

x + p2
y + p2

z

) + 1

2
k
(
x2 + y2 + z2

)
. (2.92)

The equipartition theorem states that for a classical system in equilibrium
〈

p2
x

2m

〉
=

1
2kBT . The same is true for the other terms in (2.92), so that the energy per atom at
temperature T is E = 3kBT . The energy of one mole is

U = 3NAkBT = 3RT . (2.93)

It follows immediately thatCv, which is equal to
(

∂U
∂T

)
v is given by (2.90). It was later

discovered that the Dulong–Petit law was valid only at sufficiently high temperature.
The temperature dependence of Cv for a typical solid was found to behave as shown
in Fig. 2.9.

2.6.1 Einstein Model

In order to explain why the specific heat decreased as the temperature was lowered,
Einstein made the assumption that the atomic vibrations were quantized. By this we
mean that if one assumes that the motion of each atom is described by a harmonic
oscillator, then the allowed energy values are given by εn = (

n + 1
2

)
�ω, where

n = 0, 1, 2, . . ., and ω is the oscillator frequency.2 Einstein used a very simple
model in which each atom vibrated with the same frequency ω. The probability pn

that an oscillator has energy εn is proportional to e−εn/kBT. Because pn is a probability
and

∑∞
n=0 pn = 1, we find that it is convenient to write

pn = Z−1e−εn/kBT , (2.94)

2See Appendix A for a quantum mechanical solution of a harmonic oscillator problem.
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and to determine the constant Z from the condition
∑∞

n=0 pn = 1. Doing so gives

Z = e−�ω/2kBT
∞∑

n=0

(
e−�ω/kBT

)n
. (2.95)

The power series expansion of (1 − x)−1 is equal to
∑∞

n=0 xn . Making use of this
result in (2.95) gives

Z = e−�ω/2kBT

1 − e−�ω/kBT
= e�ω/2kBT

e�ω/kBT − 1
. (2.96)

The mean value of the energy of one oscillator at temperature T is given by
ε̄ = ∑

n εn pn . Making use of (2.94) and (2.95) and the formula
∑

n n e−nx =
− ∂

∂x

∑
n e

−nx gives

ε̄ = �ω

2
+ n̄�ω. (2.97)

Here n̄ is the thermal average of n; it is given by

n̄ = 1

e�ω/kBT − 1
, (2.98)

and is called the Bose–Einstein distribution function. The internal energy of a lattice
containing N atoms is simply U = 3N�ω

(
n̄ + 1

2

)
, where n̄ is given by (2.98). If N

is Avogadro number, then the specific heat is given by

Cv =
(

∂U

∂T

)

v

= 3NkBFE

(
�ω

kBT

)
, (2.99)

where the Einstein function FE(x) is defined by

FE(x) = x2

(ex − 1)(1 − e−x )
. (2.100)

It is useful to define theEinstein temperature TE by �ω = kBTE. Then the x appearing
in FE(x) is TE

T .
In the high temperature limit (T � TE) x is very small compared to unity. Expand-

ing FE(x) for small x gives

FE(x) = 1 − 1

12
x2 + · · · , (2.101)

and

Cv = 3NkB

[

1 − 1

12

(
TE

T

)2

+ · · ·
]

. (2.102)
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This agrees with the classical Dulong–Petit law at very high temperature and it falls
off with decreasing T .

In the low temperature limit (T � TE) x is very large compared to unity. In this
limit

FE(x) � x2e−x , (2.103)

and

Cv = 3NkB

(
TE

T

)2

e−TE/T . (2.104)

The Einstein temperature was treated as a parameter to be determined by compari-
son with experiment. The Einstein model reproduced the Dulong–Petit law at high
temperature and showed that Cv decreased as the temperature was lowered. Careful
comparison of experimental data with the model showed that the low temperature
behavior was not quite correct. The experimental data fit a T 3 law at low tempera-
ture (i.e., Cv ∝ T 3) instead of decreasing exponentially as predicted by the simple
Einstein model.

2.6.2 Modern Theory of the Specific Heat of Solids

We know from our study of lattice vibrations that Einstein’s assumption that each
atom in the crystal oscillated at a single frequency ω is too great a simplification. In
fact, the normal modes of vibration have a spectrum ωqλ, where q is a wave vector
restricted to the first Brillouin zone, and λ is a label that defines the polarization of
the mode. The energy of the crystal at temperature T is given by

U =
∑

qλ

(
n̄qλ + 1

2

)
�ωqλ. (2.105)

In (2.105) n̄qλ; it is given by

n̄qλ = 1

e�ωqλ/kBT − 1
. (2.106)

From (2.105), the specific heat can be obtained; it is given by

Cv =
(

∂U

∂T

)

v

= kB
∑

qλ

(
�ωqλ

kBT

)2 (
e

�ωqλ
kBT − 1

)−1 (
1 − e− �ωqλ

kBT

)−1

. (2.107)

In order to carry out the summation appearing in (2.107) we must have either more
information or some model describing how ωqλ depends on q and λ is needed.
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Density of States

Recall that the allowed values of q were given by

q =
(

n1

N1
b1 + n2

N2
b2 + n3

N3
b3

)
, (2.108)

where bi were primitive translations of the reciprocal lattice, ni were integers, and
Ni were the number of steps in the direction i that were required before the periodic
boundary conditions returned one to the initial lattice site. For simplicity, let us
consider a simple cubic lattice. Then bi = a−1 x̂i where a is the lattice spacing and x̂i

is a unit vector (in the x , y, or z direction). The allowed (independent) values of q are
restricted to the first Brillouin zone. In this case, that implies that− 1

2 Ni ≤ ni ≤ 1
2 Ni .

Then, the summations over qx , qy , and qz can be converted to integrals as follows:

∑

qx

⇒
∫

dqx

2π/Nx a
⇒ Lx

2π

∫
dqx . (2.109)

Therefore, the three-dimensional sum
∑

q becomes

∑

q

= Lx L y Lz

(2π)3

∫
d3q = V

(2π)2

∫
d3q. (2.110)

In these equations Lx , L y , and Lz are equal to the length of the crystal in the x , y,
and z directions, and V = Lx L y Lz is the crystal volume. For any function f (q), we
can write ∑

q

f (q) = V

(2π)3

∫
d3q f (q). (2.111)

Now it is convenient to introduce the density of states g(ω) defined by

g(ω)dω =
{

the number of normal modes per unit volume
whose frequency ωqλ satisfies ω < ωqλ < ω + dω.

(2.112)

From this definition, it follows that

g(ω)dω = 1

V

∑

qλ

ω < ωqλ < ω + dω

1 = 1

(2π)3

∑

λ

∫

ω<ωqλ<ω+dω

d3q. (2.113)

Let Sλ(ω) be the surface in three-dimensionalwave vector space onwhichωqλ has the
valueω. Then d Sλ(ω) is an infinitesimal element of this surface of constant frequency
(see Fig. 2.10). The frequency change dω in going from the surface Sλ(ω) to the
surface Sλ(ω + dω) can be expressed in terms of dq, an infinitesimal displacement
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Fig. 2.10 Constant frequency surfaces in three-dimensional wave vector space

in q space as

dω = dq · [∇qωqλ

]
ωqλ=ω

or dω = dq⊥
∣∣∇qωqλ

∣∣
ωqλ=ω

. (2.114)

Here dq⊥ is the component of dq normal to the surface of constant frequency Sλ(ω).
The volume element d3q in wave vector space can be written d3q = dq⊥d Sλ(ω),
and using (2.114) allows us to write

d3q = dω
∣∣∇qωqλ

∣∣
ωqλ=ω

d Sλ(ω). (2.115)

With this result, we can express the density of states as

g(ω) = 1

(2π)3

∑

λ

∫
d Sλ(ω)
∣∣∇qωqλ

∣∣
ω

. (2.116)

In (2.116) the integration is performed over the surface of constant frequency Sλ(ω).
The denominator contains the magnitude of the gradient of ωqλ (with respect to q)
evaluated at ωqλ = ω.

2.6.3 Debye Model

In order to evaluate (2.107) and obtain the specific heat, Debye3 introduced a simple
assumption about the phonon spectrum. He took ωqλ = sλ |q| for all values of q in
the first Brillouin zone. Then, the surfaces of constant energy are spheres (i.e., Sλ(ω)

is a sphere in q space of radius q = ω
sλ
). In addition, Debye replaced the Brillouin

zone by a sphere of the same volume. Since
∑

q∈1stBZ 1 = N , we can write

N =
(

L

2π

)3 ∫

|q|<qD

d3q = V

(2π)3

4

3
πq3

D. (2.117)

3P. Debye, Annalen der Physik 39, 789 (1912).
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In (2.117) we have introduced qD, the Debye wave vector. A sphere of radius qD

contains the N independent values of q associated with a crystal containing N atoms.
From (2.117), q3

D = 6π2N/V , where V is the volume of the crystal.
The density of states for the Debye model is very simple since

∣∣∇qωqλ

∣∣ = sλ.
Substituting this result into (2.116) gives

g(ω) = 1

(2π)3

∑

λ

[
4πq2

sλ

]

q= ω
sλ

≤qD

. (2.118)

If we introduce the unit step function θ(x) = 1 for x > 0 and θ(x) = 0 for x < 0,
g(ω) can be expressed

g(ω) = ω2

2π2

[
θ(slqD − ω)

s3l
+ 2 θ(stqD − ω)

s3t

]
. (2.119)

Here, of course, sl and st are the speed of a longitudinal and of a transverse sound
wave. Figure2.11 shows the frequency dependence of the three-dimensional density
of states in the Debye model. Any summation over allowed values of wave vector
can be converted into an integral over frequency by using the relation

∑

qλ

f (ωqλ) = V
∫

dω g(ω)f (ω). (2.120)

Here f (ωqλ) is an arbitrary function of the normal mode frequencies ωqλ. Making
use of (2.120), the expression for the specific heat (2.107) can be written

Cv = kBV
∫

dω

(
�ω

Θ

)2 (
e�ω/Θ − 1

)−1 (
1 − e−�ω/Θ

)−1
g(ω). (2.121)

Here we have introduced Θ = kBT . We define the Debye temperature TD by ΘD =
kBTD = �slqD. Remembering that V = 6π2Nq−3

D and that the integral
∫

dω goes
from ω = 0 to ω = ωD = slqD for longitudinal waves and from ω = 0 to ω =
st qD = st

sl
ωD for transverse waves, it is not difficult to demonstrate that

Fig. 2.11 Three-dimensional density of states in the Debye model
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Cv = 3NkB

[
1

3
FD

(
ΘD

Θ

)
+ 2

3
FD

(
stΘD

slΘ

)]
, (2.122)

where the Debye function FD(x) is defined by

FD(x) = 3

x3

∫ x

0

z4 dz

(ez − 1)(1 − e−z)
. (2.123)

Behavior at Θ � ΘD

In this limit x which equals ΘD
Θ

or st ΘD
slΘ

is much smaller than unity. Therefore we can
expand the exponentials for small argument to obtain

FD(x) � 3

x3

∫ x

0

z4 dz

z2
≈ 1. (2.124)

In this limit Cv = 3NkB, in agreement with the classical Dulong–Petit law.

Behavior at Θ � ΘD

In this limit x is much larger than unity, and because of the exponential in the
denominator of the integral little error arises from replacing the upper limit by infinity.
This gives

FD(x) � 3

x3

∫ ∞

0

z4 dz

(ez − 1)(1 − e−z)
. (2.125)

The integral is simply a constant. Its value can be obtained analytically

∫ ∞

0

z4 dz

(ez − 1)(1 − e−z)
= 4

15
π4. (2.126)

The result for Cv at very low temperature is

Cv = 4

5
π4NkB

[

1 + 2

(
sl

st

)3
](

Θ

ΘD

)3

. (2.127)

This agrees with the observed behavior of the specific heat at very low temperature,
viz. Cv = AT 3 where A is a constant.



2.6 Heat Capacity of Solids 65

2.6.4 Evaluation of Summations over Normal Modes
for the Debye Model

In our calculation of the recoil free fraction in the Mössbauer effect [see (2.56)], and
in the evaluation of (2.89), the mean square displacement 〈un · un〉 of an atom from
its equilibrium position, we encountered sums of the form

I = N−1
∑

qλ

n̄qλ + 1
2

�ωqλ
. (2.128)

These sums can be performedby converting the sums to integrals through the standard
prescription

∑

q

f (ωqλ) → V

(2π)3

∫
d3q f (ωqλ), (2.129)

or by making use of the density of states g(ω) and the result that

∑

qλ

f (ωqλ) = V
∫

dω g(ω)f (ω). (2.130)

For simplicity, we will use a Debye model with the velocity of transverse and of
longitudinal wave both equal to s. Then

g(ω) = 3ω2

2π2s3
θ(skD − ω). (2.131)

The summation in (2.128) can then be written

I = V

N

∫ ωD

0
dω

3ω2

2π2s3
1

�ω

[
1

2
+ 1

e�ω/Θ − 1

]
. (2.132)

Let z = �ω
Θ
, and make use of k3

D = 6π2 N
V . Then (2.132) can be rewritten

I = 9

ΘD

(
Θ

ΘD

)2 ∫ ΘD/Θ

0
dz z

[
1

2
+ 1

ez − 1

]
. (2.133)

First, let us look at the high temperature limit of (2.133). If Θ � ΘD, then for
values of z appearing in the integrand 1

ez−1 � 1
z . This corresponds to the classical

equipartition of energy since the energy of a mode of frequency ωqλ is given by

�ωqλ

[
1

e�ωqλ/Θ − 1
+ 1

2

]
� �ωqλ

[
Θ

�ωqλ
+ 1

2

]
,
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Fig. 2.12 Behavior of an integral I for Θ ≤ ΘD

and this is equal to Θ for every mode (the 1
2 is negligible if Θ � �ωqλ) as required

by classical statistical mechanics. With this approximation

I � 9

ΘD

(
Θ

ΘD

)2 ∫ ΘD/Θ

0
dz = 9Θ

Θ2
D

. (2.134)

At very low temperature, Θ � ΘD, we can approximate the upper limit by ∞ in
the term proportional to (ez − 1)−1 since the contribution from very large values of
z is very small. This gives

I = 9

ΘD

(
Θ

ΘD

)2 [∫ ∞

0

dz z

ez − 1
+

∫ ΘD/Θ

0
dz

z

2

]
. (2.135)

The first integral in the square bracket is a constant, while the second is 1
4

(
ΘD
Θ

)2
.

The second term is much larger than the first for Θ � ΘD, so it is a reasonable
approximation to take

I = 9

4ΘD
(2.136)

(see, for example, Fig. 2.12).

2.6.5 Estimate of Recoil Free Fraction in Mössbauer Effect

Equation (2.56) gave the probability of starting in a lattice state |ni >= |n1, n2, . . . ,

nN > and ending, after the γ-ray emission, in the same state. If we assume that the
crystal is in thermal equilibrium at a temperature Θ , then (2.56) is simply

P(n̄i , n̄i ) = e−2E(K )I , (2.137)

where n̄i is the Bose–Einstein distribution function, E(K ) is the recoil energy, and I
is given by (2.132). We have just evaluated I using a simplified Debye model at both
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high (Θ � ΘD) and low (Θ � ΘD) temperatures. If we use (2.134) and (2.137)

we find that at (ΘD � Θ), P � e− 9E(K )

2ΘD . Remember that E(K ) � 2 × 10−3 eV. For
a typical crystal ΘD � 300K · kB ≈ 2.5 × 10−2 eV, giving for P , P � e− 1

3 ≈ 0.7
This means that at very low temperature, 70% of the γ rays are emitted without any
change in the number of phonons in the crystal.

At high temperature (let us take T = 400K, larger than but not much larger

than TD � 300K) I � 9Θ
Θ2

D
giving P (n̄i , n̄i ) � e− 9E(K )

2ΘD
4Θ
ΘD . This gives P (n̄i , n̄i ) at

T = 400K of roughly 0.14, so that, even at room temperature the Mössbauer recoil
free fraction is reasonably large.

2.6.6 Lindemann Melting Formula

The Lindemann melting formula is based on the idea that melting will occur when the

amplitude of the atomic vibrations (i.e.,
〈
(δR)2

〉1/2
) becomes equal to some fraction

γ of the interatomic spacing. Recall that 〈un · un〉 = �
2

M I where I is given by (2.128)
[see (2.89)]. We can use the Θ � ΘD limit for I to write

〈
(δR)2

〉 � 9�2Θ

MΘ2
D

. (2.138)

The melting temperature is assumed to be given by ΘMELTING = MΘ2
D

9�2 γ2r20 , where r0
is the atomic spacing and γ is a constant in the range (0.2 ≤ γ ≤ 0.25). This result
is only very qualitative since it is based on a very much oversimplified model.

Some Remarks on the Debye Model

One can obtain an intuitive picture of the temperature dependence of the specific
heat by applying the idea of classical equipartition of energy, but only to modes for
which �ω < Θ . By this we mean that only modes whose energy �ω is smaller than
Θ = kBT can be thermally excited at a temperature Θ and make a contribution to
the internal energy U , and such modes contribute an energy Θ . Thus, we can write
for U

U =
∑

qλ

(
n̄qλ + 1

2

)
�ωqλ � 3

V

(2π)3

∫ Θ/�s

0
Θ 4πq2 dq. (2.139)

In writing (2.139) we have omitted the zero point energy since it does not depend on
temperature and put �ω[n̄(ω)] � Θ for all modes of energy less than Θ . This gives
(using V = 6π2N

k3D
and �skD = ΘD)

U = 3N

(
Θ

ΘD

)3

Θ. (2.140)
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Differentiating with respect to T gives

Cv = 12NkB

(
Θ

ΘD

)3

. (2.141)

This rough approximation gives the correct T 3 temperature dependence, but the
coefficient is not correct as might be expected from such a simple picture.

Experimental Data

Experimentalists measure the specific heat as a function of temperature over a wide
range of temperatures. They often use the Debye model to fit their data, taking the
Debye temperature as an adjustable parameter to be determined by fitting the data
to (2.122) or some generalization of it. Thus, if you see a plot of ΘD as a function
of temperature, it only means that at that particular temperature T one needs to take
ΘD = ΘD(T ) for that value of T to fit the data to a Debye model. It is always
found that at very low T and at very high T the correct Debye temperature ΘD =
�s

(
6π2N

V

)1/3
agrees with experiment. At intermediate temperatures these might be

fluctuations in ΘD of the order of 10% from the correct value. The reason for this is
that g(ω), the density of states, for the Debye model is a considerable simplification
of the actual of g(ω) for real crystals. This can be illustrated by considering briefly
the critical points in the phonon spectrum.

2.6.7 Critical Points in the Phonon Spectrum

Remember that the general expression for the density of states was given by (2.116).
Points atwhich∇qωqλ = 0 are called critical points; the integrand in (2.116) becomes
infinite at such points.

Suppose that qc is a critical point in the phonon spectrum. Let ξ = q − qc; then
for points in the neighborhood of qc we can write

ωq = ωc + α1ξ
2
1 + α2ξ

2
2 + α3ξ

2
3 , (2.142)

where ξi are the components of ξ, and ωc = ω(qc). If α1, α2, and α3 are all negative,
by substituting into the expression for g(ω) and evaluating in the neighborhood of
qc, one obtains

g(ω) =
{
0 if ω > ωc,

constant (ωc − ω)1/2 if ω < ωc.
(2.143)

Thus, although g(ω) is continuous at a critical point, its first derivative is discontin-
uous.



2.6 Heat Capacity of Solids 69

Fig. 2.13 Behavior of the density of states at various critical points

In three dimensions there are four kinds of critical points:

(i) Maxima: points at which all three αi are negative.
(ii) Minima: points at which all three αi are positive.
(iii) Saddle Points of the First Kind: Points at which two αi ’s are positive and one

is negative.
(iv) Saddle Points of the Second Kind: Points at which one αi is positive and the

other two are negative.

The critical points all show up as points at which dg(ω)

dω
is discontinuous. A rough

sketch of g(ω) versus ω showing several critical points is shown in Fig. 2.13. It is
not too difficult to demonstrate that in three dimensions the phonon spectrum must
have at least one maximum, one minimum, three saddle points of each kind. As an
example, we look at the simpler case of two dimensions. Then the phonon spectrum
must have at least one maximum, one minimum, and two saddle points (there is only
one kind of saddle point in two dimensions) (see Fig. 2.14). This can be demonstrated
as follows:

(i) We know ωq is a periodic function of q; values of qwhich differ by a reciprocal
lattice vector K give the same ωq .

(ii) For a Brillouin zone of a two-dimensional square, we can consider ω(qx , qy)

as a function of qx for a sequence of different fixed values of qy . Because
ω(qx , qy) is a periodic function of qx there must be at least one maximum and
one minimum on each line qy = constant.

Fig. 2.14 Behavior of critical points in two dimensions
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Fig. 2.15 Comparison of the density of states g(ω) for a Debye model and that of a real crystal

(iii) Consider the locus of all maxima (represented by X’s in Fig. 2.14). Along this
locus ω(q) must have at least one maximum and one minimum as a function of
qy . These points will be an absolute maximum and a saddle point.

(iv) Doing the same for the locus of all minima (represented by O’s in Fig. 2.14)
gives one absolute minimum and another saddle point.

Because of the critical points, the phonon spectrum of a real solid looks quite
different from that of the Debye model. However, the Debye model is constructed
so that

(i) The low frequency behavior of g(ω) is correct because for very small ω, ωqλ =
sλ |q| is a very accurate approximation.

(ii) The total area under the curve g(ω) is correct since kD, the Debye wave vector
is chosen so that there are exactly the correct total number of modes 3N .

Because of this, the Debye model is good at very low temperature (where only
very low frequency modes are important) and at very high temperature (where only
the total number of modes and equipartition of energy are important). In Fig. 2.15
we compare g(ω) for a Debye model with that of a real crystal. We note that∫

gDEBYE(ω)dω ≈ ∫
gACTUAL(ω)dω.

2.7 Qualitative Description of Thermal Expansion

We have approximated the interatomic potential in a crystal by

V (R) = V (R0) +
∑

i j

ci j ui u j + higher terms. (2.144)

In Fig. 2.16 we show a sketch of the potential felt by one atom and the harmonic
approximation to it. There are two main differences in the two potentials:

(i) The true interatomic potential has a very strong repulsion at u = R− R0 negative
(i.e., close approach of the pair of atoms).

(ii) The true potential levels off as R becomes very large (i.e., for large positive u).
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Fig. 2.16 Comparison of the potential felt by an atom and the harmonic approximation to it

For a simple one-dimensional model we can write x = x0 + u, where x0 is the
equilibrium separation between a pair of atoms and u = x − x0 is the deviation from
equilibrium. Then, we can model the behavior shown in Fig. 2.16 by assuming that

V (x) = V0 + cu2 − gu3 − f u4. (2.145)

Here g and f are positive constants. The f u4 term simply accounts for the fact that
the harmonic approximation rises too quickly for large u. The gu3 term accounts for
the asymmetry in the potential for u greater than or less than zero.When u is negative,
−gu3 is positive making the short range repulsion larger; when u is positive, −gu3

is negative softening the interatomic repulsion for large R.
Now let us evaluate the expectation value of u at a temperature kBT = β−1.

〈u〉 =
∫ ∞
−∞ du u e−βV

∫ ∞
−∞ du e−βV

. (2.146)

But, V = V0 + cu2 − gu3 − f u4, and we can expand eβ(gu3+ f u4), for small values
of u, to obtain

e−βV = e−β(V0+cu2)
(
1 + βgu3 + β f u4

)
. (2.147)

The integrals in the numerator and denominator of (2.146) can be evaluated. Because
of the factor e−βcu2

, we do not have to worry about the behavior of the integrand for
very large values of |u| so there is little error in taking the limit as u = ±∞. We can
easily see that

∫ ∞

−∞
du e−βV = e−βV0

∫ ∞

−∞
du e−βcu2 (

1 + βgu3 + β f u4
)
. (2.148)

The βgu3 term vanishes because it is an odd function of u; the β f u4 gives a small
correction to the first term so it can be neglected. This results in

∫ ∞

−∞
du e−βV � e−βV0

(
π

βc

)1/2

. (2.149)



72 2 Lattice Vibrations

In writing down (2.149) we have made use of the result
∫ ∞
−∞ dz e−z2 = √

π. The
integral in the numerator of (2.146) becomes

∫ ∞

−∞
du u e−βV = e−βV0

∫ ∞

−∞
du u e−βcu2 (

1 + βgu3 + β f u4
)
. (2.150)

Only the βgu3 term in the square bracket contributes to the integral. The result is

∫ ∞

−∞
du u e−βV � e−βV0

3
√

π

4
βg (βc)−5/2 . (2.151)

In obtaining (2.151) we have made use of the result
∫ ∞
−∞ dz z4 e−z4 = 3

√
π

4 . Substi-
tuting back into (2.146) gives

〈u〉 = 1

β

3g

4c2
= 3g

4c2
kBT . (2.152)

The displacement from equilibrium is positive and increases with temperature. This
suggests why a crystal expands with increasing temperature.

2.8 Anharmonic Effects

To get some idea about how one would go about treating anharmonic effect, let
us go back to the simple one-dimensional model and include terms that we have
neglected (up to this time) in the expansion of the potential energy. We can write
H = HHARMONIC + H ′, where H ′ is given by

H ′ = 1

3!
∑

lmn

dlmnulumun + 1

4!
∑

lmnp

flmnpulumunu p + · · · . (2.153)

As a first approximation, let us keep only the cubic anharmonic term and make use
of

um =
∑

k

(
�

2M Nωk

)1/2 (
ak + a†

−k

)
eikma . (2.154)

Substituting (2.154) into (2.153) gives

H ′
3 = 1

3!
∑

lmn

dlmn

∑

kk ′k ′′

(
�

2M N

)3/2 (
ωkω

′
kω

′′
k

)−1/2

(
ak + a†

−k

) (
a′

k + a†
−k ′

) (
ak ′′ + a†

−k ′′

)
eiknaeik ′maeik ′′la . (2.155)
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As before, dlmn does not depend on l, m, n individually, but on their relative positions.
Wecan thereforewritedlmn = d(n−m, n−l). Now introduce g = n−m and j = n−l
and sum over all values of g, j , and n instead of l, m, and n. This gives for the cubic
anharmonic correction to the Hamiltonian

H ′
3 = 1

3!
∑

ng j

d(g, j)
∑

kk ′k ′′

(
�

2M N

)3/2

(ωkωk ′ωk ′′)−1/2

(
ak + a†

−k

) (
ak ′ + a†

−k ′

) (
ak ′′ + a†

−k ′′

)
eiknaeik ′(n−g)aeik ′′(n− j)a . (2.156)

The only factor depending on n is ei(k+k ′+k ′′)na , and

∑

n

ei(k+k ′+k ′′)na = Nδ
(
k + k ′ + k ′′, K

)
. (2.157)

Here K is a reciprocal lattice vector; the value of K is uniquely determined since
k, k ′, k ′′ must all lie within the first Brillouin zone. Eliminate k ′′ remembering that
if −(k + k ′) lies outside the first Brillouin zone, one must add a reciprocal lattice
vector K to k ′′ to satisfy (2.157). With this H ′

3 becomes

H ′
3 = N

∑

kk′

1

3!
∑

g j

d(g, j)e−ik′gaei(k+k′) ja
(

�

2M N

)3/2

(
ωkωk′ωk+k′

)−1/2
(

ak + a†
−k

) (
ak′ + a†

−k′
) (

a−(k+k′) + a†
k+k′

)
. (2.158)

Now define

G(k, k ′) = 1

3!
∑

g j

d(g, j)eik jaeik ′( j−g)a

(
�
3

23M3Nωkωk ′ωk+k ′

)1/2

. (2.159)

Then, H ′
3 is simply

H ′
3 =

∑

kk ′
G(k, k ′)

(
ak + a†

−k

) (
ak ′ + a†

−k ′

) (
a−(k+k ′) + a†

k+k ′

)
. (2.160)

Feynman Diagrams

In keeping track of the results obtained by applying H ′ to a state of the harmonic
crystal, it is useful to use Feynman diagrams. A wavy line will represent a phonon
propagating to the right (time increases to the right). The interaction (i.e., the result
of applying H ′

3) is represented by a point into (or out of) which three wavy lines run.
There are four fundamentally different kinds of diagrams (see Fig. 2.17):

(i) akak ′a−(k+k ′) annihilates three phonons (Fig. 2.17a).
(ii) akak ′a†

k+k ′ annihilates two phonons and creates a third phonon (Fig. 2.17b).
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Fig. 2.17 Scattering of phonons: (a) annihilation of three phonons, (b) annihilation of two phonons
and creation of a third phonon, (c) annihilation of one phonon and creation of two phonons, (d)
creation of three phonons

(iii) aka†
−k ′a

†
k+k ′ annihilates a phonon but creates two phonons (Fig. 2.17c).

(iv) a†
−ka†

−k ′a
†
k+k ′ creates three phonons (Fig. 2.17d).

Due to the existence of anharmonic terms (cubic, quartic, etc. in the displacements
from equilibrium) the simple harmonic oscillators which describe the normal modes
in the harmonic approximation are coupled. This anharmonicity leads to a number
of interesting results (e.g., thermal expansion, phonon–phonon scattering, phonon
lifetime, etc.) We will not have space to take up these effects in this book. However
one should be aware that the harmonic approximation is an approximation. It ignores
all the interesting effects resulting from anharmonicity.

2.9 Thermal Conductivity of an Insulator

When one part of a crystal is heated, a temperature gradient is set up. In the presence
of the temperature gradient heat will flow from the hotter to the cooler region. The
ratio of this heat current density to themagnitude of the temperature gradient is called
the thermal conductivity κT.

In an insulating crystal (i.e., one whose electrical conductivity is very small at low
temperatures as a result of the absence of nearly free electrons) the heat is transported
by phonons. Let us define u(x) as the internal energy per unit volume in a small region
about the position x in the crystal. We assume that u(x) depends on position because
there is a temperature gradient ∂T

∂x in the x-direction. Because the temperature T

depends on x , the local thermal equilibrium phonon density n̄qλ = [
e�ωqλ/Θ − 1

]−1

will also depend on x . This takes a little explanation. In our discussion of phonons
up until now, a phonon of wave vector k was not localized anywhere in the crystal.
In fact, all of the atoms in the crystal vibrated with an amplitude uk and different
phases eikna−iωk t . In light of this, a phonon is everywhere in the crystal, and it seems
difficult to think about difference in phonon density at different positions. In order
to do so, we must construct wave packets with a spread in k values, Δk, chosen
such that (Δk)−1 is much larger than the atomic spacing but much smaller than the
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Fig. 2.18 Phonon propagation in the presence of a temperature gradient in the x-direction

distance Δx over which the temperature changes appreciably. Then by a phonon of
wavenumber k we will mean a wave packet centered at wavenumber k. The wave
packet can then be localized to a region Δx of the order (Δk)−1. If the temperature
at position x is different from that at some other position, the phonon will transport
energy from the warmer to the cooler region. The thermal current density at position
x can be written

jT(x) =
∫

dΩ

4π
s cos θ u(x − l cos θ). (2.161)

In this equation u(x) is the internal energy per unit volume at position x , s is the
sound velocity, l is the phonon mean free path (l = sτ , where τ is the average time
between phonon collisions), and θ is the angle between the direction of propagation
of the phonon and the direction of the temperature gradient (see Fig. 2.18). A phonon
reaching position x at angle θ (as shown in Fig. 2.18) had its last collision, on the
average, at x ′ = x − l cos θ. But the phonons carry internal energy characteristic of
the position where they had their last collision, so such phonons carry internal energy
u(x − l cos θ). We can expand u(x − l cos θ) as u(x) − ∂u

∂x l cos θ, and integrate over
dΩ = 2π sin θdθ. This gives the result

jT(x) = −1

3
sl

∂u

∂x
. (2.162)

Of course the internal energy depends on x because of the temperature gradient, so

we can write ∂u
∂x = ∂u

∂T
∂T
∂x . The result for the thermal conductivity κT = − jT

(
∂T
∂x

)−1

is

κT = 1

3
s2τCv. (2.163)

In (2.163) we have set l = sτ and ∂u
∂T = Cv, the specific heat of the solid.

2.10 Phonon Collision Rate

The collision rate τ−1 of phonons depends on

(i) anharmonic effects which cause phonon–phonon scattering,
(ii) defects and impurities which can scatter phonons, and
(iii) the surfaces of the crystal which can also scatter phonons.
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(a) (b) (c)

Fig. 2.19 Phonon–phonon scattering (a) scattering of two phonons into one phonon, (b) scattering
of one phonon into two phonons, (c) scattering of two phonons into two phonons

Only the phonon–phonon collisions are very sensitive to temperature, since the
phonon density available to scatter one phonon varies with temperature. For a perfect
infinite crystal, defects, impurities, and surfaces can be ignored.

Phonon–phonon scattering can degrade the thermal current, but at very low tem-
perature, where only low frequency (ω � ωD or k � kD) phonons are excited,
most phonon–phonon scattering conserves crystal momentum. By this we mean that
in the real scattering processes shown in Fig. 2.19, no reciprocal lattice vector K
is needed in the conservation of crystal momentum, and Fig. 2.19a would contain
a delta function δ(k1 + k2 − k3), Fig. 2.19b a δ(k1 − k2 − k3), and Fig. 2.19c a
δ(k1 + k2 − k3 − k4). This occurs because each k-value is very small compared
to the smallest reciprocal lattice vector K. These scattering processes are called N
processes (for normal scattering processes), and they do not degrade the thermal
current.

At high temperatures phonons with k values close to a reciprocal lattice vector
K will be thermally excited. In this case, the sum of k1 and k2 in Fig. 2.19a might
be outside the first Brillouin zone so that k3 = k1 + k2 − K. It turns out that these
processes, U-processes (for Umklapp processes) do degrade the thermal current. At
high temperatures it is found that τ is proportional to temperature to the −n power,
where 1 ≤ n ≤ 2. The high temperature specific heat is the constant Dulong–Petit
value, so that according to (2.163) κT ∝ T −n at high temperature.

At low temperature, onlyU-processes limit the thermal conductivity (or contribute
to the thermal resistivity). But few phonons with k ≈ kD are present at low temper-
ature. A rough estimate would give e−�ωD/Θ for the probability of U-scattering at
low temperature. Therefore, τU, the scattering time for U-processes is proportional
to eΘD/Θ . Since the low temperature specific heat varies as T 3, (2.163) would pre-
dict κT ∝ T 3eTD/T for the thermal conductivity at low temperature. The result for
the temperature dependence of thermal conductivity of an insulator is sketched in
Fig. 2.20.

Fig. 2.20 Temperature dependence of the thermal conductivity of an insulator



2.11 Phonon Gas 77

2.11 Phonon Gas

Landau introduced the concept of thinking of elementary excitations as particles.
He suggested that it was possible to have a gas of phonons in a crystal whose prop-
erties were analogous to those of a classical gas. Both the atoms or molecules of a
classical gas and the phonons in a crystal undergo collisions. For the former, the colli-
sions are molecule–molecule collisions or molecule–wall of container collisions. For
the latter they are phonon–phonon, phonon–imperfection or phonon–surface colli-
sions. Energy is conserved in these collisions. Momentum is conserved in molecule–
molecule collisions in a classical gas and in N-process phonon–phonon collisions
in a phonon gas. Of course, the number of particles is conserved in the molecule–
molecule collisions of a classical gas, but phonons can be created or annihilated in
phonon–phonon collisions, so their number is not a conserved quantity.

The sound waves of a classical gas are oscillations of the particle density. They
occur if ωτ � 1, so that thermal equilibrium is established very quickly compared
to the period of the sound wave. They also require that momentum be conserved in
the collision process.

Landau4 called normal soundwaves in a gas first sound. He proposed an oscillation
of the phonon density in a phonon gas that named second sound. This oscillation of
the phonon density (or energy density) occurred in a crystal if ωτN � 1 (as in first
sound) but ωτU � 1 so that crystal momentum is conserved. Second sound has been
observed in He4 and in a few crystals.

Problems

2.1 Consider a three dimensional Einstein model in which each degree of freedom
of each atom has a vibrational frequency ω0.

(a) Evaluate G(ω), the number of modes per unit volume whose frequency is less
than ω.

(b) Evaluate g(ω) = dG(ω)

dω
.

(c) Make a rough sketch of both G(ω) and g(ω) as a function of ω.

2.2 For a one dimensional lattice a phonon of wave number k has frequency ωk =
ω0 sin

|k|a
2 for a nearest neighbor coupling model. Now approximate this model by a

Debye model with ω = s | k |.
(a) Determine the value of s, the sound speed, and kD, the Debye wave vector.
(b) Sketch ω as a function of k for each model over the entire Brillouin zone.
(c) Evaluate g(ω) for each model, and make a sketch of g(ω) versus ω for each.

2.3 Consider a diatomic linear chain with equal distant between atoms. Evaluate
uq/vq for the acoustic and optical modes at q = 0 and at q = π

2a .

4L. Landau, J. Phys. U.S.S.R. 5, 71 (1941).
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2.4 Consider a linear chain with two atoms per unit cell (each of mass M) located
at 0 and δ, where δ < a

2 , a being the primitive translation vector. Let C1 be the force
constant between nearest neighbors and C2 the force constant between next nearest
neighbors. Determine ω±(k = 0) and ω±

(
k = π

a

)
.



2.5 Show that the normal mode density (for small ω) in a d-dimensional harmonic
crystal varies as ωd−1. Use this result to determine the temperature dependence of
the specific heat.

2.6 In a linear chain with nearest neighbor interactions we have ωk = ω0 sin
|k|a
2 .

Show that g(ω) = 2
πa

1√
ω2
0−ω2

.

2.7 For a certain three dimensional simple cubic lattice the phonon spectrum is
independent of polarization λ and is given by

ω(kx , ky, kz) = ω0

[
sin2

(
kx a

2

)
+ sin2

(
kya

2

)
+ sin2

(
kza

2

)]1/2
.

(a) Sketch a graph of ω versus k for

(1) ky = kz = 0 and 0 ≤ kx ≤ π
a (i.e. along Γ → X),

(2) kz = 0 and kx = ky = k√
2
for 0 ≤ k ≤

√
2π
a (i.e. along Γ → K),

(3) kx = ky = kz = k√
3
for 0 ≤ k ≤

√
3π
a (i.e. along Γ → L).

(b) Draw the ω versus k curve for the Debye approximation to these dispersion
curves as dashes lines on the diagram used in part (a).

(c) What are the critical points of this phonon spectrum? How many are there?
(d) Make a rough sketch of the Debye density of states g(ω). How will the actual

density of states differ from the Debye approximation?
(e) Using this example, discuss the shortcomings and the successes of the Debye

model in predicting the thermodynamic properties (like specific heat) of solids.

2.8 For a two dimensional crystal a simple Debye model takes ω = sq for the
longitudinal and the single transverse modes for all allowed q values up to the Debye
wave number qD.

(a) Determine qD as a function of N
L2 , where N is the number of atoms and L2 is

the area of the crystal.
(b) Determine g(ω), the density of normal modes per unit area.
(c) Find the expression for the internal energy at a temperature T as an integral

over the density of states times an appropriate function of frequency and
temperature.
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(d) From the result of part (c) determine the specific heat cv.
(e) Evaluate cv for kBT � �ωD = �sqD.

Summary

In this chapter we discussed the vibrations of the atoms in solids. Quantum mechan-
ical treatment of lattice dynamics and dispersion curves of the normal modes are
described.

The Hamiltonian of a linear chain is written, in the harmonic approximation, as

H = ∑
i

P2
i

2M + 1
2

∑
i, j ci j ui u j , where Pi is the momentum and ui = Ri − R0

i is the
deviation of the i th atom from its equilibrium position. A general dispersion relation
of the normal modes is Mω2

q = ∑N
l=1 c(l)eiqla . The normal coordinates are given by

qk = N−1/2
∑

n

une
−ikna; pk = N−1/2

∑

n

Pne
+ikna .

The inverse of qk and pk are written, respectively, as

un = N−1/2
π/a∑

k=−π/a

qke
ikna; Pn = N−1/2

π/a∑

k=−π/a

pke
−ikna .

The quantum mechanical Hamiltonian is given by H = ∑
k Hπ/a

k=−π/a , where

Hk = p̂k p̂†
k

2M
+ 1

2
Mω2

k q̂k q̂†
k .

The dynamical variables qk and pk are replaced by quantummechanical operators q̂k

and p̂k which satisfy the commutation relation [pk, qk ′] = −i�δk,k ′ . It is convenient
to rewrite q̂k and p̂k in terms of the operators ak and a†

k , which are defined by

q̂k =
(

�

2Mωk

)1/2 (
ak + a†

−k

)
; p̂k = i

(
�Mωk

2

)1/2 (
a†

k − a−k

)
.

The ak’s and a†
k ’s satisfy

[
ak, a†

k ′

]

−
= δk,k ′ and [ak, ak ′]− =

[
a†

k , a†
k ′

]

−
= 0. The

displacement of the nth atom and its momentum can be written

un =
∑

k

(
�

2M Nωk

)1/2

eikna
(

ak + a†
−k

)
,

Pn =
∑

k

i

(
�ωk M

2N

)1/2

e−ikna
(

a†
k − a−k

)
.
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The Hamiltonian of the linear chain of atoms can be written

H =
∑

k

�ωk

(
a†

k ak + 1

2

)
,

and its eigenfunctions and eigenvalues are

|n1, n2, . . . , nN >=
(

a†
k1

)n1

√
n1!

· · ·
(

a†
kN

)nN

√
nN ! |0 >

and En1,n2,...,nN = ∑
i �ωki

(
ni + 1

2

)
.

In the three-dimensional case, the Hamiltonian is given by

H =
∑

kλ

�ωkλ

(
a†
kλakλ + 1

2

)
.

The allowed values of k are given by k = n1
N1
b1 + n2

N2
b2 + n3

N3
b3. The displacement

un and momentum Pn of the nth atom are written, respectively, as

un =
∑

kλ

(
�

2M Nωkλ

)1/2

ε̂kλe
ik·R0

n

(
akλ − a†

−kλ

)

Pn =
∑

kλ

i

(
�Mωkλ

2N

)1/2

ε̂kλe
−ik·R0

n

(
a†
kλ + a−kλ

)
.

The energy of the crystal is given by U = ∑
qλ

(
n̄qλ + 1

2

)
�ωqλ, where n̄qλ is

given by n̄qλ = 1
e�ωqλ/kBT −1

. The lattice heat capacity is written as

Cv =
(

∂U

∂T

)

v

= kB
∑

qλ

(
�ωqλ

kBT

)2 (
e

�ωqλ
kBT − 1

)−1 (
1 − e− �ωqλ

kBT

)−1

.

The density of states g(ω) defined by

g(ω)dω =
{

the number of normal modes per unit volume
whose frequency ωqλ satisfies ω < ωqλ < ω + dω.

Then we have g(ω) = 1
(2π)3

∑
λ

∫ d Sλ(ω)|∇qωqλ|ω . Here d Sλ(ω) is an infinitesimal element

of the surface of constant frequency in three-dimensional wave vector space onwhich
ωqλ has the value ω. Near a critical point qc, at which ∇qωqλ = 0, in the phonon
spectrum, we can write

ωq = ωc + α1ξ
2
1 + α2ξ

2
2 + α3ξ

2
3 ,
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where ξi are the components of ξ = q − qc, and ωc = ω(qc). In three dimensions,
there are four kinds of critical points: (1) Maxima: points at which all three αi are
negative. (2) Minima: points at which all three αi are positive. (3) Saddle Points of
the First Kind: Points at which two αi ’s are positive and one is negative. (4) Saddle
Points of the Second Kind: Points at which one αi is positive and the other two are
negative. The density of states for the Debye model is expressed as

g(ω) = ω2

2π2

[
θ(slqD − ω)

s3l
+ 2 θ(stqD − ω)

s3t

]
.

Here sl and st are the speed of a longitudinal and of a transverse sound wave.



Chapter 3
Free Electron Theory of Metals

3.1 Drude Model

Themost important characteristic of ametal is its high electrical conductivity.Around
1900, shortly after J.J. Thomson’s discovery of the electron, people became interested
in understanding more about the mechanism of metallic conduction. The first work
by E. Riecke in 1898 was quickly superseded by that of Drude in 1900. Drude1

proposed an exceedingly simple model that explained a well-known empirical law,
the Wiedemann–Franz law (1853). This law states that at a given temperature the
ratio of the thermal conductivity to the electrical conductivity is the same for all
metals. The assumptions of the Drude model are:

(i) a metal contains free electrons which form an electron gas.
(ii) the electrons have some average thermal energy

〈
1
2mv2

T

〉
, but they pursue random

motions through the metal so that 〈vT〉 = 0 even though
〈
v2
T

〉 �= 0. The random
motions result from collisions with the ions.

(iii) because the ions have a very large mass, they are essentially immovable.

3.2 Electrical Conductivity

In the presence of an electric field E the electrons acquire a drift velocity vD which
is superimposed on the thermal motion. Drude assumed that the probability that an
electron collides with an ion during a time interval dt is simply proportional to dt

τ
,

where τ is called the collision time or relaxation time. Then Newton’s law gives

m

(
dvD
dt

+ vD
τ

)
= −eE, (3.1)

1P. Drude, Annalen der Physik 1, 566 (1900); ibid., 3, 369 (1900); ibid., 7, 687 (1902).
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where −e is the charge on an electron. Some appreciation of the term dt
τ
can be

obtained by assuming that the system acquires a drift velocity vD in the presence
of an electric field E, and then, at time t = 0, the electric field is turned off. The
behavior of vD(t) as a function of time is given by

vD(t) = vD(0)e−t/τ , (3.2)

showing that vD relaxes from vD(0) toward zero with a relaxation time τ .
In the steady state (where v̇D = 0), vD is given by

vD = −eEτ

m
. (3.3)

The quantity eτ
m , the drift velocity per unit electric field, is called μ, the drift mobility.

The velocity of an electron including both thermal and drift components is

v = vT − eτE
m

. (3.4)

The current density caused by the electric field E is simply

j = V −1
∑

all
electrons

(−e)v. (3.5)

But
∑

all
electrons

vT = 0, so that

j = V −1N (−e)

(
−eτE

m

)
= σE. (3.6)

Here the electrical conductivity σ is equal to n0e2τ
m where n0 = N

V is the electron
concentration.

3.3 Thermal Conductivity

The thermal conductivity is the ratio of the thermal current (i.e., the energy current) to
the magnitude of the temperature gradient. In the presence of a temperature gradient
∂T
∂x , the average thermal energy

〈
1
2mv2

T

〉
will depend on the local temperature T (x).

The electrons sense the local temperature through collisions with the lattice. Thus,
the thermal energy of a given electron will depend on where it made its last collision.
If we choose an electron at random, the mean time back to its last collision is τ .
Therefore, an electron crossing the plane x = x0 at an angle θ to the x-axis had its
last collision at x = x0 − vTτ cos θ (see Fig. 3.1). The energy of such an electron
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Fig. 3.1 An electron crossing the plane x = x0 at an angle θ to the x-axis

is E(x) = E (x0 − vTτ cos θ). The number of electrons per unit volume whose
direction of motion is in the solid angle dΩ is simply n0

dΩ
4π (see Fig. 3.2). The

number of such electrons crossing a unit area at x0 is n0
dΩ
4π vT cos θ, giving for the

energy flux through a unit area at x0

w(x0) =
∫

E (x0 − vTτ cos θ) n0vT cos θ
dΩ

4π
. (3.7)

Just as we did for the thermal conductivity due to phonons we expand E (x0 − vTτ
cos θ) and perform the integral over θ from 0 to π. This gives

w(x) = −1

3
n0v

2
Tτ

(
∂E

∂x

)
. (3.8)

But ∂E
∂x = ∂E

∂T
∂T
∂x , so the thermal conductivity κ is given by

κ = w

−∂T/∂x
= 1

3
n0v

2
Tτ

d E

dT
= 1

3
v2
TτCv, (3.9)

where Cv = n0
d E
dT is the heat capacity per unit volume (or the specific heat).

Exercise

Derive (3.8) by expanding E (x0 − vTτ cos θ) and carrying out the angular integral.

Fig. 3.2 Solid angle dΩ in which electrons moving to cross the plane x = x0 at an angle θ to the
x-axis
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3.4 Wiedemann–Franz Law

The ratio of κ to σ is given by
κ

σ
=

1
3v

2
TτCv

n0e2τ
m

. (3.10)

Now Drude applied the classical gas laws to evaluation of v2
T and Cv, viz.,

〈
1
2mv2

T

〉 =
3
2kBT and Cv = n0

(
3
2

)
kB. This gave

κ

σ
= 3

2

(
kB
e

)2

T . (3.11)

In addition to agreeing with the Wiedemann–Franz law, the ratio L = κ
σT had the

value 3
2

( kB
e

)2
which was equal to 1.24×10−13 esu. The observed values forL, called

the Lorenz number,2 averaged to roughly 2.72 × 10−13 esu. Drude made an error of
a factor of 2 in his original paper and found that L ≈ 2.48 × 10−13 esu, remarkably
close to the experimental value.

3.5 Criticisms of Drude Model

1. If
〈
1
2mv2

T

〉 = 3
2kBT , then the electronic contribution toCv had to beCv = 3

2 NkB =
3
2 R. This is half as big as the lattice contribution and was simply not observed.

2. Experimentally σ varies as T −1. This implies that n0τ ∝ T −1 since e2 and m are
constants. In Drude’s picture, the mean free path l � vTτ was thought to be of
the order of the atomic spacing and therefore independent of T . Since vT ∝ T 1/2

this would imply that τ ∝ T −1/2 and, to satisfy n0τ ∝ T −1, that n0 ∝ T −1/2.
This did not make any sense.

3.6 Lorentz Theory

Since Drude’s simplemodel gave some results that agree fairly well with experiment,
Lorentz3 decided to use the full apparatus of kinetic theory to investigate the model
more carefully. He did not succeed in improving on Drude’s model, but he did make
use of the Boltzmann distribution function and Boltzmann equation which we would
like to describe.

2Ludvig Valentin Lorenz (1829–1891).
3Hendrik Antoon Lorentz (1853–1928).
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3.6.1 Boltzmann Distribution Function

The Boltzmann distribution function f (v, r, t) is defined by

f (v, r, t)d3rd3v = the number of electrons in the volume element d3r centered at
r whose velocity is between v and v + dv at time t .

Boltzmann equation says that the total time rate of change in f (v, r, t) must be
balanced by its time rate of change due to collisions, i.e.,

df (v, r, t)

dt
=

(
∂f

∂t

)

c

. (3.12)

Here
(

∂f
∂t

)

c
d3r d3v dt is the net number of electrons forced into the volume element

d3rd3v (in phase space) by collisions in the time interval dt .

3.6.2 Relaxation Time Approximation

The simplest form of the collision term is

(
∂f

∂t

)

c

= − f − f0
τ

, (3.13)

where f0 is the thermal equilibrium distribution function, f the actual nonequilibrium
distribution function (which differs from f0 due to some external disturbance), and τ
is a relaxation time. Once again if f − f0 is nonzero due to some external disturbance,
and if at time t = 0 the disturbance is turned off, one can simply write

(f − f0)t = (f − f0)t=0 e
−t/τ . (3.14)

3.6.3 Solution of Boltzmann Equation

We are frequently interested in small perturbations away from equilibrium and can
linearize the Boltzmann equation. For example, suppose the external perturbation is
a small electric field E in the x-direction, and a temperature gradient ∂T

∂x . The steady

state Boltzmann equation
(

∂f
∂t = 0

)
is

∂f

∂vx

(
−eE

m

)
+ ∂f

∂x
vx = − f − f0

τ
. (3.15)
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If f − f0 is small we can approximate f on the left hand side by f0 and obtain

f � f0 + τ

[
eE

m

∂f0
∂vx

− vx
∂f0
∂x

]
. (3.16)

This is linear response since E and ∂f0
∂x are already linear in E or ∂T

∂x . The electrical
current density and thermal current density are given, respectively, by

j(r, t) =
∫

(−e)v f (r, v, t) d3v, (3.17)

and

w(r, t) =
∫

εv f (r, v, t) d3v. (3.18)

In (3.18) ε = 1
2mv2 is the kinetic energy of the electron of velocity v. We substitute

the solution for f given by (3.16) into (3.17) and (3.18) to calculate j and w.

3.6.4 Maxwell–Boltzmann Distribution

To evaluate j andw it is necessary to know f0(v). Lorentz used the following expres-
sion

f0(v) = n0

( m

2πΘ

)3/2
e−ε/Θ . (3.19)

Here n0 = N/V , Θ = kBT , and ε = 1
2mv2. The normalization constant has been

chosen so that
∫

f0(v)d3v = n0. The reader should check this.
(
Use

∫ ∞
0 x1/2e−x dx =

Γ
(
3
2

) =
√

π
2

)
.

Theuse of classical statisticalmechanics and theMaxwell–Boltzmanndistribution
function is the source of the difficulty with the Lorentz theory. In 1925 Pauli4 pro-
posed the exclusion principle; in 1926 Fermi and Dirac5 proposed the Fermi–Dirac
statistics, and in 1928 Sommerfeld published the Sommerfeld Theory of Metals. The
Sommerfeld theory was simply the Lorentz theory with the Fermi–Dirac distribution
function replacing the Boltzmann–Maxwell distribution function.

4W. Pauli, Z. Physik 31, 765 (1925).
5E. Fermi, Z. Physik 36, 902 (1926); P. A. M. Dirac, Proc. Roy. Soc. London, A 112, 661 (1926).
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3.7 Sommerfeld Theory of Metals

Sommerfeld6 treated the Drude electron gas quantum mechanically. We can assume
that the electron gas is contained in a cubic box of edge L , and that the potential
inside the box is constant. The Schrödinger equation is

− �
2

2m
∇2Ψ (r) = EΨ (r), (3.20)

and its solution is

Ψk(r) = V −1/2eik·r

Ek = �
2k2

2m
. (3.21)

To avoid difficulties with boundaries, we can assume periodic boundary conditions
so that x = 0 and x = L are the same point. Then the allowed values of kx (and ky

and kz) satisfy kx = 2π
L nx , where nx = 0,±1,±2, . . ., and

Ek = �
2

2m

(
2π

L

)2 (
n2

x + n2
y + n2

z

)
. (3.22)

The functions
∣∣k

〉
form a complete orthonormal set with

〈
k
∣∣k′〉 =

∫
d3rΨ ∗

k (r)Ψk′(r) = δkk′ . (3.23)

∑

k

∣∣k
〉〈
k
∣∣ = 1 or

∑

k

Ψ ∗
k (r′)Ψk(r) = δ(r′ − r). (3.24)

Fermi Energy

The Pauli principle states that only one electron can occupy a given quantum state.
In the Sommerfeld model, states are labeled by {k,σ} = (kx , ky, kz) and σ, where
σ is a spin index which takes on the two values ↑ or ↓. At T = 0, only the lowest
N energy states will be occupied by the N electrons in the system. Define kF as the
value of k for the highest energy occupied state. Then the number of particles is given
by

N =
∑

k < kF
σ

1 = V

(2π)3
2

∫

k<kF

d3k. (3.25)

6A. Sommerfeld, Zeits. fur Physik 47, 1 (1928).
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The factor of 2 comes from summing over spin. The integration simply gives 4
3πk3

F,
resulting in the relation

k3
F = 3π2n0. (3.26)

The Fermi energy εF (≡ ΘF), Fermi velocity vF, and Fermi temperature TF

(
= ΘF

kB

)

are defined, respectively, by

εF = �
2k2

F

2m
= 1

2
mv2

F = ΘF. (3.27)

For a typical metal, we have n0 = 1023 cm−3 giving εF � 5 eV, vF � 108 cm/s,
and TF � 105 K.

Exercise

Demonstrate the values of n0 and the corresponding εF, vF, and TF given above for
a typical simple metal.

3.8 Review of Elementary Statistical Mechanics

Suppose that the states of an ideal Fermi gas are labeled φ1, φ2, . . . , φi , . . . and that
they have energies ε1, ε2, . . . , εi , . . .. Then if N is the total number of Fermions

∑

i

ni = N , (3.28)

where ni = 1 if the state φi is occupied and ni = 0 if it is not. The partition function
Z N for this N particle system is defined by

Z N =
′∑

{ni }
e−β

∑
i ni εi . (3.29)

In (3.29) β = (kBT )−1 and the symbol
∑′

{ni } means a summation over all sets
of values {ni } = {n1, n2, . . . , ni , ·} which satisfy the condition

∑
i ni = N . This

restriction makes performing the sum to obtain Z N difficult. One can avoid this
difficulty by using the grand canonical ensemble instead of the canonical ensemble.
The grand partition function Q is defined by

Q =
∞∑

N=0

eβζN Z N . (3.30)
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The symbol ζ is called the chemical potential. When we substitute (3.29) into (3.30),
the summation over N removes the restriction on the sets of values {ni } included in
the sum appearing in (3.29). We can rewrite the grand partition function as follows:

Q =
∞∑

N=0

′∑

{ni }
e−β

∑
i ni (εi −ζ)

=
1∑

n1=0

1∑

n2=0

. . .

1∑

ni =0

. . . e−β(ε1−ζ)n1e−β(ε2−ζ)n2 · · · e−β(εi −ζ)ni · · · . (3.31)

It is easy to see that
1∑

ni =0

e−β(εi −ζ)ni = 1 + e−β(εi −ζ)

so that
Q =

∏

i

[
1 + e−β(εi −ζ)

]
. (3.32)

The average occupancy of some quantum state l is given by

n̄l = Q−1
∑

{ni }
nle

−β
∑

i ni (εi −ζ). (3.33)

For all i �= l, the factor involving i in the numerator is exactly canceled by the same
factor in Q−1 leaving us

n̄l =
∑

nl
nle−β(εl−ζ)nl

∑
nl
e−β(εl−ζ)nl

= e−β(εl−ζ)

1 + e−β(εl−ζ)
. (3.34)

Thus we find the Fermi–Dirac distribution function of

n̄l = 1

e(εl−ζ)/Θ + 1
. (3.35)

At Θ = 0 all states whose energy is smaller than εF are occupied; all states of higher
energy empty. Notice that (3.33) can be written

n̄l = −kBT
∂

∂εl
ln Q, (3.36)

a form that is sometimes useful.
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Fig. 3.3 Fermi–Dirac distribution function f0(ε) for two different temperatures

3.8.1 Fermi–Dirac Distribution Function

At zero temperature the Fermi–Dirac distribution function can be written, as a func-
tion of energy ε, as

f0(ε) =
{
1 if ε < εF,
0 if ε > εF.

(3.37)

At a finite temperature

f0(ε) = 1

e(ε−ζ)/Θ + 1
. (3.38)

Clearly at ε = ζ, f0(ε = ζ) is equal to 1
2 (see Fig. 3.3). The value of ζ is determined

(as a function of T ) by the condition

∑

kσ

f0 (εkσ) = N . (3.39)

3.8.2 Density of States

It is easiest to determine G(ε), the total number of states per unit volume whose
energy is less than ε, and then obtain g(ε) from it.

G(ε + dε) − G(ε) = dG

dε
dε = g(ε)dε. (3.40)

For free electrons we have

G(ε) = V −1
∑

kσ
εkσ ≤ ε

1 = 2

(2π)3

4π

3
k3, (3.41)
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Fig. 3.4 Particle density n(ε) and the density of states g(ε)

where �
2k2

2m = ε. It is easy to see that

G(ε) = n0

(
k

kF

)3

= n0

(
ε

εF

)3/2

. (3.42)

Thus, from (3.40) we find

g(ε) = 3

2

n0

εF

(
ε

εF

)1/2

= 1

2π2

(
2m

�2

)3/2

ε1/2. (3.43)

For electrons moving in a periodic potential, g(ε) does not have such a simple form.
At a finite temperatureΘ , the number of electrons per unit volume having energies

between ε and ε+ dε is simply the product of g(ε)dε and f0(ε):n(ε)dε = g(ε)f0(ε)dε
(see Fig. 3.4). The chemical potential ζ is determined from

N = V
∫ ∞

0
g(ε)f0(ε)dε. (3.44)

3.8.3 Thermodynamic Potential

The thermodynamic potential Ω is defined by

Ω = −Θ ln Q = −Θ
∑

i

ln
(
1 + e(ζ−εi )/Θ

)
. (3.45)

Functions that are commonly used in statistical mechanics are:

internal energy U,

Helmholtz free energy F = U − T S,

thermodynamic potential Ω = U − T S − ζN = −PV, (3.46)

enthalpy H = U + PV = T S + ζN ,

Gibbs free energy G = U − T S + PV = ζN .
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These definitions together with Euler relation

U = T S − PV + ζN , (3.47)

and the second law of thermodynamics

dU = T d S − PdV + ζd N (3.48)

are very useful to remember. By using (3.47) and (3.48) and Ω = −PV , one can
obtain

dΩ = −SdT − PdV − Ndζ. (3.49)

From (3.49) one can see that the entropy S, pressure P and particle number N can
be obtained from the thermodynamic potential Ω

S = −
(

∂Ω

∂T

)

V,ζ

,

P = −
(

∂Ω

∂V

)

T,ζ

, (3.50)

N = −
(

∂Ω

∂ζ

)

V,T

.

3.8.4 Entropy

We know that

Ω = −Θ
∑

i

ln
(
1 + e(ζ−εi )/Θ

)
. (3.51)

But we can write

1 − n̄i = 1 − 1

e(εi −ζ)/Θ + 1
= 1

e(ζ−εi )/Θ + 1
, (3.52)

so that

ln (1 − n̄i ) = − ln
[
1 + e(ζ−εi )/Θ

]
. (3.53)

We can express (3.51) as

Ω = Θ
∑

i

ln (1 − n̄i ) . (3.54)
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Since the entropy is given by S = − ∂Ω
∂Θ

, we can obtain

S = −
∑

i

ln (1 − n̄i ) + Θ
∑

i

(1 − n̄i )
−1 ∂n̄i

∂Θ
. (3.55)

Evaluating ∂n̄i
∂Θ

and multiplying by Θ (1 − n̄i )
−1 gives

Θ

1 − n̄i

∂n̄i

∂Θ
= n̄i ln

(
1 − n̄i

n̄i

)
. (3.56)

Sustituting this result into (3.55) gives

S = −kB
∑

i

[(1 − n̄i ) ln (1 − n̄i ) + n̄i ln n̄i ] . (3.57)

We have inserted the factor kB into (3.57); in the derivation we had essentially set it
equal to unity. Notice that the expression for S goes to zero as T goes to zero because
n̄i takes on the values 0 or 1 in this limit. In addition we can write that

ΘS = −Θ
∑

i

[
ln (1 − n̄i ) + n̄i ln

(
n̄i

1 − n̄i

)]
,

= −Θ
∑

i

ln (1 − n̄i ) − Θ
∑

i

n̄i

(
ζ − ε

Θ

)
,

= −Θ
∑

i

ln (1 − n̄i ) − ζ
∑

i

n̄i +
∑

i

n̄iεi , (3.58)

= −Θ
∑

i

ln (1 − n̄i ) − ζN + U.

If we write F = U − T S we have

F = Nζ + Θ
∑

i

ln (1 − n̄i ) , (3.59)

= Nζ − Θ
∑

i

ln
(
1 + e

ζ−εi
Θ

)
.

If we hold V and T constant, the energy levels εi are unchanged and

(
∂F

∂N

)

T,V

= ζ + N

(
∂ζ

∂N

)

T,V

− Θ
∂

∂N

∑

i

ln
(
1 + e

ζ−εi
Θ

)
. (3.60)

It is not difficult to show that (since ln
[
1 + e

ζ−εi
Θ

]
depends on N through ζ) the last

two terms cancel and hence
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(
∂F

∂N

)

T,V

= ζ. (3.61)

Exercise

Demonstrate (3.61) by simplifying (3.60).

3.9 Fermi Function Integration Formula

To study how the chemical potential ζ and internal energy U vary with temperature,
we must evaluate the integrals

N

V
= n0 =

∫ ∞

0
dε g(ε)f0(ε) (3.62)

and
U

V
= u =

∫ ∞

0
dε εg(ε)f0(ε). (3.63)

In evaluating integrals of this type there is a very useful integration formula which
we will now derive. Let us define an integral I as follows:

I =
∫ ∞

0
dε f0(ε)

d F(ε)

dε
. (3.64)

Integrating by parts gives

I = [
f0(ε)F(ε)

]∞
0 −

∫ ∞

0
dε

∂f0
∂ε

F(ε). (3.65)

For many functions F(ε), F(0) = 0 and limε→∞ f0(ε)F(ε) → 0. For such functions
we can write (3.65) simply as

I = −
∫ ∞

0
dε

∂f0
∂ε

F(ε). (3.66)

The functions f0 changes rather quickly in an interval of width of the order of kBT
about ε = ζ. It is obvious that

∫ ∞

0

(
−∂f0

∂ε

)
dε = 1.
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If the function F(ε) is slowly varying compared to ∂f0
∂ε

in the region ε � ζ, we
can expand F(ε) in Taylor series as follows:

F(ε) = F(ζ) + (ε − ζ)F ′(ζ) + 1

2! (ε − ζ)2 F ′′(ζ) + · · · . (3.67)

Then we can write I as

I = F(ζ)

∫ ∞

0
dε

(
−∂f0

∂ε

)
+ F ′(ζ)

∫ ∞

0
dε (ε − ζ)

(
−∂f0

∂ε

)

+ 1

2! F ′′(ζ)

∫ ∞

0
dε (ε − ζ)2

(
−∂f0

∂ε

)
+ · · · .

But we note that

−∂f0
∂ε

= β
eβ(ε−ζ)

[
eβ(ε−ζ) + 1

]2 .

Introduce the parameter z = β(ε − ζ) and note that

∫ ∞

0
dε (ε − ζ)n

(
−∂f0

∂ε

)
= Θn

∫ ∞

−ζ/Θ

dz
zn

(ez + 1) (e−z + 1)
.

If ζ is much larger than Θ (this is certainly true in metals) the lower limit on the
integral over z can be replaced by −∞. Since zn

(ez+1)(e−z+1) is an odd function of z for
n odd, we obtain

I � F(ζ) + 1

2!Θ
2F ′′(ζ)

∫ ∞

−∞
dz

z2

(ez + 1) (e−z + 1)
+ · · · +

+ 1

(2n)!Θ
2n F (2n)(ζ)

∫ ∞

−∞
dz

z2n

(ez + 1) (e−z + 1)
. (3.68)

The first few integrals are

∫ ∞

−∞
dz

z2

(ez + 1) (e−z + 1)
= π2

3
,

∫ ∞

−∞
dz

z4

(ez + 1) (e−z + 1)
= 7π4

15
.

To order Θ2 we have

I = F(ζ) + π2

6
Θ2F ′′(ζ). (3.69)

To evaluate the integral given in (3.62), we note that F(ζ) is just G(ε), the total
number of states per unit volume whose energy is less than ε. Then using (3.69)
gives us
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n0 = G(ζ) + π2

6
Θ2G ′′(ζ). (3.70)

Define ζ0 as the chemical potential at T = 0. Then n0 = G(ζ0) and

G(ζ) = G(ζ0) − π2

6
Θ2g′(ζ). (3.71)

Herewe have usedG ′(ε) = g(ε) and set n0 = G(ζ0)WriteG(ζ) asG(ζ0)+g(ζ0)(ζ−
ζ0) and substitute into (3.71) to obtain

ζ = ζ0 − π2

6
Θ2 g′(ζ0)

g(ζ0)
.

But for free electrons g(ζ) = 3
2

n0
ζ0

(
ε
ζ0

)1/2
so that

ζ = ζ0

[

1 − π2

12

(
Θ

ζ0

)2

+ · · ·
]

. (3.72)

Applying the integration formula to the integral for U
V , F(ε) is simply

∫ ε

0 ε′g(ε′)
dε′; therefore we have

U

V
=

∫ ζ

0
εg(ε) dε + π2

6
Θ2

[
d

dε
(ε g(ε))

]

ε=ζ

. (3.73)

Define U0 = V
∫ ζ0
0 εg(ε) dε and use the expression for g(ε) given above for free

electrons. One can find that

U

V
= U0

V
+ π2

6
Θ2g(ζ0). (3.74)

3.10 Heat Capacity of a Fermi Gas

The heat capacity Cv = (
∂U
∂T

)
V
is given, using (3.74), by

Cv = V
π2

3
k2
Bg(ζ0)T = γT . (3.75)

For free electrons we have γ = π2k2B
2ζ0

N . It is interesting to compare the quantum

mechanical Sommerfeld result CQM
v = γT with the classical Drude result CCM

v =
3
2 NkB:
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CQM
v

CCM
v

= π2

3

T

TF
. (3.76)

For a typical metal, TF � 105K, while at room temperature T � 300K. This solves
the problem that perplexed Drude concerning why the classical specific heat CCM

v
was not observed. The correct quantummechanical specific heat is so small (because
T
TF

� 1) that it is difficult to observe even at room temperature.
One can obtain a rough estimate of the specific heat by saying that only quantum

states within kBT of the Fermi energy contribute to the classical estimate of the
specific heat. This means that

Neff = V [G(εF) − G(εF − kBT )] .

This gives

U ≈
(
3

2
kBT

)
Neff =

[
3

2
kBT

]
[V g(εF)kBT ], (3.77)

and hence

Cv = ∂U

∂T
≈ V 3k2

Bg(εF)T . (3.78)

3.11 Equation of State of a Fermi Gas

The equation of state relates the variables P , V , and T . For the Fermi gas we know
that

P = −
(

∂Ω

∂V

)

T,ζ

, (3.79)

where the thermodynamic potential is given by Ω = −Θ
∑

i ln
(
1 + e(ζ−εi )/Θ

)
. At

constant values of Θ = kBT and ζ, Ω depends on V through εi :

εi = �
2

2m

(
2π

L

)2 (
n2

i x + n2
iy + n2

i z

)
. (3.80)

We can write ∂εi
∂V = ∂εi

∂L

(
∂V
∂L

)−1
. Since εi ∝ L−2 and V ∝ L3 this gives ∂εi

∂V = − 2
3

εi
V .

Using this result in (3.79) gives

P = Θ
∑

i

(
e(ζ−εi )/Θ

1 + e(ζ−εi )/Θ

) (−Θ−1
) ∂εi

∂V
. (3.81)

From this we find (since G(ε) = 2
3εg(ε) for a free Fermi gas) that
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P = 2

3

U

V
=

∫ ∞

0
dεG(ε)f0(ε). (3.82)

If we keep terms to order Θ2 we obtain

P = P0 + π2

6
Θ2

{
g(εF) − g′(εF)

g(εF)
G(εF)

}
. (3.83)

3.12 Compressibility

The compressibility κT is defined by

κ−1
T = −V

(
∂P

∂V

)

T,ζ

(3.84)

= −V
∂

∂V

∫ ∞

0
G(ε)f0(ε) dε.

If we define H(ε) = ∫ ε

0 G(ε) dε, then the integral can be evaluated by integrating
by parts to get (at T = 0)

∫ ∞

0
G(ε)f0(ε) dε = H (εF) .

But we know that G(ε) = Aε3/2, therefore H(ε) = 2
5 Aε5/2 = 2

5εG(ε) to have

κ−1
T = −V

∂

∂V

(
2

5
εFn0

)
,

since G(εF) = n0. εF is proportional to L−2, and n0 is proportional to L−3 so εFn0

is proportional to L−5 = V −5/3. This gives

κ−1
T = −V

2

5

(
−5

3

)
n0εF

V
= 2

3
n0εF.

Using g(εF) = 3
2

n0
εF

allows us to write

κ−1
T = n2

0

g(εF)
. (3.85)

For free electrons g(ζ0) = 3n0
2εF

and κT = 3
2n0ζ0

. The velocity of sound in a solid is
given by

s = (κT ρ)−1/2 , (3.86)
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where ρ is the mass density. κT is the compressibility of the material in (3.86), and
it includes the ion core repulsion as well as the pressure due to compressing the
electron gas. The ionic contribution is small in simple metals like the alkali metals.
If we neglect it and put ρ = n0M

z , where M is the ionic mass and z the number of
electrons per atom, we find

s =
( zm

3M

)1/2
vF. (3.87)

This result was first obtained by Bohm and Staver in a somewhat different way.

3.13 Electrical and Thermal Conductivities

Assume that there is an electric field E = Ex̂ and a temperature gradient ∇T =
∂T
∂x x̂ . In discussing the Lorentz model, we wrote down the solution to the linearized
Boltzmann equation

∂f

∂t
+ v · ∇rf + v̇ · ∇vf = −

(
f − f0

τ

)
(3.88)

in the form

f = f0 − τ

[
−eE

m

∂f0
∂vx

+ vx
∂f0
∂x

]
. (3.89)

The equilibrium distribution function is the Fermi–Dirac distribution function

f0 = 1

1 + e(ε−ζ)/Θ
. (3.90)

Because of the temperature gradient, both T and ζ depend on the coordinate x , but
the energy ε does not. We can write

∂f0
∂x

= ∂f0
∂α

∂α

∂x
, (3.91)

where α = ε−ζ
Θ

. This can be rewritten

∂f0
∂x

= Θ
∂f0
∂ε

∂

∂x

(
ε − ζ

Θ

)
(3.92)

= −∂f0
∂ε

[
ε

Θ

∂Θ

∂x
+ Θ

∂

∂x

(
ζ

Θ

)]
.

Because ε = 1
2mv2 we can write
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∂f0
∂vx

= ∂f0
∂ε

∂ε

∂vx
= mvx

∂f0
∂ε

. (3.93)

We now substitute (3.90), (3.92), and (3.93) into (3.89) and use the resulting expres-
sion for f (ε) in the equations for the electrical current density jx and the thermal
current density wx :

jx =
∫ ∞

0
dε (−evx )g(ε)f (ε), (3.94)

wx =
∫ ∞

0
dε (εvx )g(ε)f (ε). (3.95)

For the electrical current density we obtain

jx = e
∫ ∞

0
dε vxg(ε)τvx

(
−∂f0

∂ε

) [
eE + ε

Θ

∂Θ

∂x
+ Θ

∂

∂x

(
ζ

Θ

)]
. (3.96)

Factoring all quantities that are independent of ε out of the integral gives

jx =
[

e2E + eΘ
∂

∂x

(
ζ

Θ

)]∫ ∞

0
dε v2

xg(ε)τ

(
−∂f0

∂ε

)
(3.97)

+ e

Θ

∂Θ

∂x

∫ ∞

0
dε v2

xεg(ε)τ

(
−∂f0

∂ε

)
.

Now substitute v2
x = 2

3
ε
m and g(ε) = 3

2
n0

ζ
3/2
0

ε1/2 into (3.97) to have

jx =
[

e2E + eΘ
∂

∂x

(
ζ

Θ

)]
K1 + e

Θ

∂Θ

∂x
K2, (3.98)

where we have introduced the symbol Kn defined by

Kn = n0

mζ
3/2
0

∫ ∞

0
dε

(
−∂f0

∂ε

)
εn+1/2τ . (3.99)

In the calculation of wx , a factor of ε replaces (−e); this gives

wx = −
[

eE + Θ
∂

∂x

(
ζ

Θ

)]
K2 − 1

Θ

∂Θ

∂x
K3. (3.100)

The function Kn can be evaluated using the integration formula (3.69). We obtain

Kn = n0

mζ
3/2
0

[
ζn+1/2τ (ζ) + π2

6
Θ2 d2

dε2
(
εn+1/2τ (ε)

) |ε=ζ

]
. (3.101)
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At T = 0 we have
Kn = n0

m
ζn−1
0 τ (ζ0). (3.102)

3.13.1 Electrical Conductivity

If we set ∂T
∂x = 0, then jx is given by jx = e2EK1, and at T = 0 we have

jx = n0e2τ (ζ0)

m
E = σE . (3.103)

This is exactly the Drude result for the conductivity σ with τ (ε) evaluated on the
Fermi surface so that τ = τ (ζ0).

3.13.2 Thermal Conductivity

The thermal conductivity is defined as the ratio of the thermal current wx to
(− ∂T

∂x

)

under conditions of zero electrical current. Therefore, we must set jx = 0 in (3.98)
and solve for E . This gives

jx =
[

e2E + eΘ
∂

∂x

(
ζ

Θ

)]
K1 + e

Θ

∂Θ

∂x
K2 = 0,

or

−
[

eE + Θ
∂

∂x

(
ζ

Θ

)]
K1 = 1

Θ

∂Θ

∂x
K2. (3.104)

Substitute this into (3.100) to obtain wx ; the result is

wx = 1

Θ

∂Θ

∂x

K2

K1
K2 − 1

Θ

∂Θ

∂x
K3

= K3K1 − K2
2

K1Θ

(
−∂Θ

∂x

)
. (3.105)

Thus the thermal conductivity κT = kBwx
(− ∂Θ

∂x

)−1
is

κT = kB
K3K1 − K2

2

K1Θ
. (3.106)

If we evaluate Kn as a function of Θ using (3.101) and the result

(
ζ

ζ0

)l

� 1 − π2

12

(
Θ

ζ0

)2

l, (3.107)
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we find (for τ independent of energy)

K1 � n0τ

m
,

K2 � n0τζ0

m

[

1 + 5

12
π2

(
Θ

ζ0

)2
]

, (3.108)

K3 � n0τζ20
m

[

1 + 7

6
π2

(
Θ

ζ0

)2
]

.

Now, substitute these results into (3.106) to obtain

κT = kB
π2

3

n0τ

m
Θ.

Thus the Sommerfeld expression for κT can be written

κT = π2

3
k2
B

n0τ

m
T . (3.109)

The Lorenz ratio for the Sommerfeld model LS is given by

LS = κT

σT
= π2

3

(
kB
e

)2

� 2.71 × 10−13 esu. (3.110)

Recall that for the Drude model

LD = 3

2

(
kB
e

)2

� 1.24 × 10−13 esu, (3.111)

and the average experimental result is L ≈ 2.72 × 10−13esu.

3.14 Critique of Sommerfeld Model

The main achievements of the Sommerfeld model were as follows:

(i) It explained the specific heat dilemma by showing that Cv for the electrons was
very small.

(ii) It showed that even though there was one free electron per atom, the Pauli
principle made only those in an energy range kBT about ζ0 effectively free.

(iii) It not only explained the Wiedemann–Franz law but it gave a very accurate
value for the Lorenz ratio.

(iv) It correctly predicted the Pauli spin paramagnetism of metals.
(v) It predicted Fermi energies that agreed with observed X-ray band widths.
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The main shortcomings of the Sommerfeld model were

(i) It said nothing about the relaxation time τ (ε), τ appeared only as a phenomeno-
logical parameter. In order to agree with observed conductivities, the mean free
path l = vFτ had to be of the order of a 100 atomic spacings (≈5 × 10−6 cm),
and had to vary as T −1 at room temperature. These requirements were difficult
to understand in 1928.

(ii) The model ignored the interaction of the free electrons with the fixed ions
and with one another. These interactions were surely large. How could one
achieve such excellent agreement with experiment when they were ignored.
Furthermore, attempts to include these interaction ran into great difficulties.

3.15 Magnetoconductivity

In the presence of a large dc magnetic field B, the conductivity of a metal dis-
plays some new effects. These can be understood very simply using the Drude
model (the Sommerfeld model gives exactly the same result but involves much more
mathematics).

In the presence of an electric field E and a dc magnetic field B, the Drude model
would predict a drift velocity vD which was a solution of the equation

m

(
dvD
dt

+ vD
τ

)
= −eE − e

c
vD × B. (3.112)

Let us choose the z-axis along B and assume that E is spatially uniform but varies
in time as eiωt . Then (3.112) can be rewritten (we drop the subscript D of vD in the
rest of this section) as follows:

(1 + iωτ )vx = −eτ

m
Ex − eτ

mc
Bvy,

(1 + iωτ )vy = −eτ

m
Ey + eτ

mc
Bvx , (3.113)

(1 + iωτ )vz = −eτ

m
Ez .

Let us define the cyclotron frequency ωc = eB
mc and solve for v. The result is

vx = −
(eτ

m

) [
(1 + iωτ )Ex − ωcτ Ey

]

(1 + iωτ )2 + (ωcτ )2
,

vy = −
(eτ

m

) [
ωcτ Ex + (1 + iωτ )Ey

]

(1 + iωτ )2 + (ωcτ )2
, (3.114)

vz = −
(eτ

m

) Ez

1 + iωτ
.



106 3 Free Electron Theory of Metals

The current density is given by j = −en0v. This can be written j = σ · E, where
σ is called the magnetoconductivity tensor. Its components are σxz = σzx = σyz =
σzy = 0, and

σxx = σyy = σ0(1 + iωτ )

(1 + iωτ )2 + (ωcτ )2
,

σxy = −σyx = σ0(−ωcτ )

(1 + iωτ )2 + (ωcτ )2
, (3.115)

σzz = σ0

1 + iωτ
.

Here σ0 = n0e2τ
m is just the Drude’s dc conductivity.

Exercise

Demonstrate (3.114) by simplifying (3.113) and solving for vx , vy , and vz .

3.16 Hall Effect and Magnetoresistance

If we apply an electric field E in the x-direction, the Lorentz force, − e
cv×B causes

a drift velocity in the y-direction. If ω = 0 charge will accumulate on the surfaces
normal to the y-direction until a field Ey builds up that exactly cancels the Lorentz
force (see Fig. 3.5). The condition jy = 0 gives

jy = σxx Ey − σxy Ex = 0,

or
Ey = σxy

σxx
Ex .

E

EBv

B

Fig. 3.5 Schematics of theHall effect experiment. The initial drift of the negatively charged electron
is illustrated
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The Hall coefficient R is defined as the ratio of Ey to jx B:

R = Ey

jx B
. (3.116)

But jx = σxx Ex +σxy Ey = (σ2
xx +σ2

xy)/σxx Ex . If we substitute it into the expression
for the Hall coefficient, we find

R = Ey

jx B = (σxy/σxx ) Ex[
(σ2

xx +σ2
xy)/σxx

]
Ex B

= σxy

σ2
xx +σ2

xy

1
B .

Making use of (3.115) in the limit ω −→ 0 gives

R = 1

n0(−e)c
. (3.117)

Because R depends on the carrier concentration, the Hall effect is often used to
measure n0. Furthermore, the sign of charge carriers can be determined from a
measurement of the transverse voltage in a dc magnetic field.

Magnetoresistance

When B = 0, jx = σ0Ex . In the presence of the magnetic field B, we have

jx = σ2
xx + σ2

xy

σxx
Ex . (3.118)

For the free electron model
σ2

xx +σ2
xy

σxx
= σ0 (One can check this relation as an exercise).

Therefore even in the presence of the B-field jx = σ0Ex . The magnetic field causes
no change in the ratio Ex

jx
= ρ, the resistivity, and we would say that

Δρ = ρ(B) − ρ(0) = 0,

or that the magnetoresistance vanishes. This does not occur in more general cases
than the simple free electron model as we shall see later.

3.17 Dielectric Function

The electrical current density j can be thought of as the time rate of change of
the polarization P. Assume D, P, and E vary as eiωt . Then j = Ṗ = iωP and
D = εE = E + 4πP where ε is the dielectric function. This gives us the relation

ε(ω) = 1 − 4πi

ω
σ(ω), (3.119)
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where σ(ω) is the frequency dependent Drude conductivity. In the presence of a dc
magnetic field, the dielectric function and conductivity become tensor quantities:
σ(ω) and ε(ω), whose off-diagonal components result from the Lorentz force.

The dielectric function ε(ω) or conductivity σ(ω) appear in Maxwell’s equation
for ∇ × B:

∇ × B = 1

c
Ė + 4π

c
j = iω

c

[
1 − 4πi

ω
σ(ω)

]
· E = 1

c
ε(ω) · Ė. (3.120)

In the Drude model
ε(ω) = 1 − 4πi

ω
σ(ω),

= 1 − 4πi
ω

n0e2τ/m
1+iωτ

.

Define the plasma frequency ωp by ω2
p = 4πn0e2

m ; then we have

ε(ω) = 1 − ω2
p

ω(ω − i/τ )
. (3.121)

ε(ω) has real and imaginary parts, ε1 and ε2, respectively, as

ε1(ω) = 1 − ω2
p

ω2 + 1/τ 2
, (3.122)

ε2(ω) = − ω2
p/ωτ

ω2 + 1/τ 2
.

In general, we can ask how electromagnetic waves propagate in a medium described
by a dielectric tentor ε(ω). The wave equation can be obtained from the twoMaxwell
equations:

∇ × E = −1

c
Ḃ, (3.123)

∇ × B = 1

c
ε · Ė.

Assume E and B vary as eiωt−iq·r. The two Maxwell equations can then be com-
bined, by eliminating B, to give

q(q · E) − q2E + ω2

c2
ε · E = 0. (3.124)

This can be applied to a case in which a dc magnetic field B0 is present and oriented
in the z-direction. Then without loss of generality we can choose q = (

0, qy, qz
)
and

write (3.124) as
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⎛

⎜
⎝

ω2

c2 εxx − q2 ω2

c2 εxy 0
−ω2

c2 εxy
ω2

c2 εxx − q2
z qyqz

0 qyqz
ω2

c2 εzz − q2
y

⎞

⎟
⎠

⎛

⎝
Ex

Ey

Ez

⎞

⎠ = 0. (3.125)

The description of the bulk modes are given by setting the determinant of the matrix
multiplying the column vector equal to zero.

For surface modes at a metal–dielectric interface, think of ω and qy (wave vec-
tor along the surface) as given and determine the allowed values of qz in the solid
(with a given ε(ω)) and in the dielectric. One can get modes from applying standard
boundary conditions.

Problems

3.1 A two-dimensional electron gas is contained within a square box of side L .

(a) Apply periodic boundary conditions and determine E(kx , ky) and Ψk(x, y)

for the free electron Hamiltonian H = 1
2m

(
p2

x + p2
y

)
.

(b) Determine the Fermi wave number kF in terms of the density n0 = N
L2 .

(c) Evaluate G(ε) and g(ε) for this system.
(d) Use n0 = ∫ ∞

0 dε g(ε) f0(ε) together with the Fermi function integration for-
mula to determine how the chemical potential ζ depends on T .

(e) Express the energy of the system in terms of the Fermi function integral and
determine the specific heat of the electrons at low temperatures.

3.2 Consider an electron inside a metallic nanowire of a square cross section with
sides Lx = L y = L lying along the z axis.

(a) Show that the single particle eigenstates can bewritten asψnx ,ny (kz) = sin nx πx
L

sin nyπy
L eikz z and Enx ,ny (kz) = ε(nx , ny) + �

2k2z
2m , where (nx , ny), kz , and

ε(nx , ny) are the quantum numbers describing the finite size effects of the
cross section, the wave number along the wire, and the energy level of a
particle in an infinite two-dimensional quantum well of dimension L × L .

(b) Show that the total density of states is given by g(E) = 2
√
2m

�

Θ(E−εnx ,ny )√
E−εnx ,ny

,

where Θ(x) is the Heaviside function of unit step.

3.3 Consider the d dimensional system electrons or phonons for d ≥ 1.

(a) Show that density of states of the free electron gas scales as g(E) ≈ Ed/2−1.
(b) Determine the corresponding scaling law for the phonon density of states in

the Debye model discussed in the previous chapter.

3.4 A metal is described by the conductivity tensor given by σxx = σyy =
σ0(1+iωτ )

(1+iωτ )2+(ωcτ )2
, σxy = −σyx = σ0(−ωcτ )

(1+iωτ )2+(ωcτ )2
, and σzz = σ0

1+iωτ
in the presence

of a dc magnetic field B = Bẑ.
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DIELECTRIC METAL

D

Fig. 3.6 Interface between a dielectric and a metal

(a) Consider the propagation of an electromagnetic wave E± = (
Ex ± i Ey

)
eiωt

parallel to the z-axis. Use Maxwell’s equations to obtain the wave equation,
and show that c2k2 = ω2ε±(ω), where ε± = 1 − 4πi

ω
σ±(ω).

(b) Consider the cases ωcτ � 1 and ωc � ω and show that ω = c2k2ωc
ω2
p

for one

circular polarization.

3.5 Let us consider the interface between a dielectric of dielectric constant εD and

a metal of dielectric function ε(ω) = 1 − ω2
p

ω2 , where ω2
p = 4πne2

m . It is illustrated
in Fig. 3.6. If the normal to the surface is in the z direction and the wave vector
q = (0, qy, qz), consider the region of ω − qy space in which qz is imaginary (i.e.
q2

z < 0) both in the dielectric and in the metal. Impose the appropriate boundary
conditions at z = 0 and at | z |−→ ∞, and determine the dispersion relation (ω as
a function of qy) for these surface plasma modes.

3.6 At a temperature T a semiconductor contains ne electrons and nh holes per
unit volume in parabolic energy bands. The mass, charge, and collision time of the
electrons and holes are me, −e, τe and mh, e, τh, respectively.

(a) Use the equations of motion of charged particles in the presence of a dc
magnetic field B = Bẑ and an ac electric field E = E0eiωt to determine σe(ω)

and σh(ω), the electron and hole contributions to the frequency dependent
magnetoconductivity tensor.

(b) Consider ωce = eB
mec

and ωch = eB
mhc to be large compared to τ−1

e and τ−1
h ,

respectively. Determine the Hall coefficient for ω = 0.
(c) Under the conditions of part (b), determine the magnetoresistance.

Summary
In this chapter first we have briefly reviewed classical kinetic theories of an electron
gas both by Drude and by Lorentz as simple models of metals. Then Sommerfeld’s
elementary quantum mechanical theory of metals is discussed.
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In the Drude model, the electrical conductivity σ = n0e2τ
m is determined by the

Newton’s law of motion given by

m

(
dvD
dt

+ vD
τ

)
= −eE.

Here n0 = N
V and −e are the electron concentration and the charge on an electron.

The thermal conductivity is given by

κ = w

−∂T/∂x
= 1

3
n0v

2
Tτ

d E

dT
= 1

3
v2
TτCv,

where Cv = n0
d E
dT is the electronic specific heat.

The electrical current density j and thermal current density w are given, in terms
of distribution function f , by

j(r, t) =
∫

(−e)v f (r, v, t) d3v and w(r, t) =
∫

εv f (r, v, t) d3v.

In the Sommerfeld model, states are labeled by {k,σ} = (kx , ky, kz) and σ, where
σ is a spin index. The Fermi energy εF (≡ ΘF) , Fermi velocity vF, and Fermi tem-

perature TF

(
= ΘF

kB

)
are defined, respectively, by

εF = �
2k2

F

2m
= 1

2
mv2

F = ΘF,

where the Fermi wave number kF is related to the carrier concentration n0 by k3
F =

3π2n0. The density of states of an electron gas is

g(ε) = 1

2π2

(
2m

�2

)3/2

ε1/2.

For electrons moving in a periodic potential, g(ε) does not have such a simple form.
At a finite temperature, the chemical potential ζ is determined from

N = V
∫ ∞

0
g(ε)f0(ε)dε.

The internal energy U is given by

U

V
= u =

∫ ∞

0
dε εg(ε)f0(ε).
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These integrals are of the form I = ∫ ∞
0 dε f0(ε)

d F(ε)
dε

.At low temperatures, we have,
to order Θ2,

I = F(ζ) + π2

6
Θ2F ′′(ζ).

The electronic heat capacity Cv = (
∂U
∂T

)
V
is given, at low temperature, by Cv =

γT, where γ = π2k2B
2ζ0

N for free electrons.
The electrical and thermal current densities jx and wx are, respectively, written

as

jx =
[

e2E + eΘ
∂

∂x

(
ζ

Θ

)]
K1 + e

Θ

∂Θ

∂x
K2

and

wx = −
[

eE + Θ
∂

∂x

(
ζ

Θ

)]
K2 − 1

Θ

∂Θ

∂x
K3.

where

Kn = n0

mζ
3/2
0

∫ ∞

0
dε

(
−∂f0

∂ε

)
εn+1/2τ .

The function Kn is given by

Kn = n0

mζ
3/2
0

[
ζn+1/2τ (ζ) + π2

6
Θ2 d2

dε2
(
εn+1/2τ (ε)

) |ε=ζ

]
.

The electrical and thermal conductivities are given, in terms of K1, by σ = eK1 and

κT = kB
K3K1−K2

2
K1Θ

. The Sommerfeld expression for κT is κT = π2

3 k2
B

n0τ
m T .

In the presence of an electric field E and a dc magnetic field B, the magnetocon-
ductivity tensor has nonzero components, for the case B along the z-axis, as follows:
σxx = σyy = σ0(1+iωτ )

(1+iωτ )2+(ωcτ )2
, σxy = −σyx = σ0(−ωcτ )

(1+iωτ )2+(ωcτ )2
, σzz = σ0

1+iωτ
. Here

ωc = eB
mc and σ0 = n0e2τ

m is just the Drude’s dc conductivity.
The electrical current density j can be thought of as the time rate of change of the

polarization P, that is, j = Ṗ = iωP, where P = ε−1
4π E and D, P, and E are assumed

to vary as eiωt . Hence we have the relation

ε(ω) = 1 − 4πi

ω
σ(ω).

ε(ω) has real and imaginary parts, ε1 and ε2, respectively, and in the Drude model,

we have ε1(ω) = 1 − ω2
p

ω2+1/τ 2 and ε2(ω) = − ω2
p/ωτ

ω2+1/τ 2 . The two Maxwell equations

∇ × E = − 1
c Ḃ and ∇ × B = 1

c ε · Ė can be combined to obtain the wave equation

q(q · E) − q2E + ω2

c2
ε · E = 0.



Chapter 4
Elements of Band Theory

4.1 Energy Band Formation

Thus far we have completely neglected the effects of the ion cores on the motion
of the valence electrons. We consider “valence electrons” to be those outside of a
closed shell configuration, so that

(i) Na has a single 3s valence electron outside a [Ne] core.
(ii) Mg has two 3s electrons outside a [Ne] core.
(iii) Ga has ten 3d electrons, two 4s electrons, and one 3p electrons outside an [Ar]

core.

The s and p electrons are usually considered as the “valence” electrons, since they
are responsible for “bonding”. Sometimes the mixing of d-electron atomic states
with “valence” electron states is important.
To get some idea about the potential due to the ion cores let’s consider the simple
case of an isolated Na+ ion. This ion has charge +e and attracts an electron via the
Coulomb potential (see Fig. 4.1).

Fig. 4.1 Coulomb potential

© Springer International Publishing AG, part of Springer Nature 2018
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210

210

Fig. 4.2 Schematic illustration of energy band formation

V (r) = −e2

r
if r > ionic radius. (4.1)

For a pair of Na atoms separated by a large distance, each “conduction electron”
(3s-electron in Na) has a well defined atomic energy level. As the two atoms are
brought closer together, the individual atomic potentials of the two atoms V (r)
begin to overlap. Then each electron can feel the potential of both ions. This gives
rise a splitting of the degeneracy of atomic levels.

For a large number of atoms, the same effect occur. Think of a crystal structurewith
a nearest neighbor separation of one centimeter. The energy levels of the system will
be atomic in character. However, as we decrease the nearest neighbor separation the
atomic energy levels will begin to broaden into bands (see Fig. 4.2). The equilibrium
separation of the crystal is the position at which the total energy of the system is
a minimum. In all crystalline solids the electronic energies form bands of allowed
energy values separated by energy gaps (bands of forbidden energy values). These
energy bands determine the electrical properties of the solid.

4.2 Translation Operator

Because the crystalline potential seen by a single electron in a solid is a periodic
function of position,with the period of the lattice, it is useful to introduce a translation
operator T defined by

T f (x) = f (x + a), (4.2)

where f (x) is an arbitrary function of position and a is the period of the lattice. It is
clear that T commutes with the single particle Hamiltonian H

H = − �
2

2m

∂2

∂x2
+ V (x), (4.3)

because if we let x ′ = x + a, we can see that ∂/∂x ′ = ∂/∂x and V (x ′) = V (x).



4.2 Translation Operator 115

One of themost useful theorems of linear algebra for the study of quantum systems
states that if two operators commute, one can find common eigenfunctions for them
(i.e., they can both be diagonal in the same representation). LetΨ be an eigenfunction
of H and of T

HΨ = EΨ and TΨ = λΨ. (4.4)

Here E and λ are eigenvalues. Clearly applying T to Ψ N times gives

T NΨ (x) = λNΨ (x) = Ψ (x + Na). (4.5)

If we apply periodic boundary conditions with period N , then Ψ (x + Na) = Ψ (x).
This implies that

T NΨ (x) = Ψ (x), (4.6)

or that λN = 1. Thus, λ itself must be the N -th root of unity

λ = ei
2π
N n, (4.7)

where n = 0, ±1, . . . . We can write λ as

λ = eika, (4.8)

where k = 2π
Na × n. Then, it is apparent that two values of k which differ by 2π

a times
an integer give identical values of λ. As usual we choose the N independent values
of k to lie in the range − 2π

a < k ≤ 2π
a , the first Brillouin zone of a one dimensional

crystal.
For more than one dimension, TR translates through a lattice vector R

TRΨ (r) = eik·RΨ (r), (4.9)

where k = (n1b1 + n2b2 + n3b3)/N . Here n1, n2, n3 are integers and b1, b2, b3
are primitive translations of the reciprocal lattice. We have assumed a period N for
periodic boundary condition with L1 = Na1, L2 = Na2, L3 = Na3 and values of
n1, n2, n3 are chosen to restrict k to the first Brillouin zone.

4.3 Bloch’s Theorem

We have just demonstrated that for a one dimensional crystal with N -atoms and
periodic boundary conditions

TΨ (x) ≡ Ψ (x + a) = eikaΨ (x), (4.10)
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where the N independent values of k are restricted to the first Brillouin zone. We can
define a function

uk(x) = e−ikxΨ (x). (4.11)

It is apparent that

Tuk(x) = T {e−ikxΨ (x)} = e−ik(x+a)Ψ (x + a) = e−ikxΨ (x) = uk(x).

Therefore we can write
Ψ (x) = eikxuk(x), (4.12)

where uk(x) is a periodic function i.e. uk(x+a) = uk(x). This is known to physicists
as Bloch’s theorem, although it had been proven sometime earlier than Bloch1 and
is known to mathematicians as Floquet’s theorem.

4.4 Calculation of Energy Bands

There are two very different starting points from which one can approach energy
bands in solids. The first approach is to start with atomic orbitals and to form linear
combinations which satisfy Bloch’s theorem. The second is to start with a Sommer-
feld free electron gas picture (for the electrons outside a closed shell core) and to see
how the periodic potential of ions changes the εk = k2�2

2m free electron dispersion.
The first approach works well for systems of rather tightly bound electrons, while
the second works well for weakly bound electrons. We will spend a good deal of
time on the “nearly free electron” model and how group theory helps to make the
calculations easier. Before doing that, we begin with the first approach called the
tight binding method or the LCAO (linear combination of atomic orbitals).

4.4.1 Tight Binding Method

Suppose that a free atom has a potential Va(r), so that a “conduction electron”, like
the 3s electron in sodium, satisfies the Schrödinger equation

(
− �

2

2m
∇2 + Va(r) − Ea

)
φ(r) = 0 (4.13)

Here Ea is the atomic energy level of this conduction electron. When atoms form a
crystal, the potentials of the individual atoms overlap, as indicated schematically in
Fig. 4.3.

1Felix Bloch, Z. Physik 52, 555 (1928).
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Fig. 4.3 Tight binding potential

In the tight binding approximation one assumes that the electron in the unit cell
about R j is only slightly influenced by atoms other than the one located at R j . Its
wave function in that cell will be close to φ(r−R j ), the atomic wave function, and its
energy close to Ea . One can make a linear combination of atomic orbitals φ(r−R j )

as a trial function for the electronic wave function in the solid.
To satisfy Bloch’s theorem we can write

Ψk(r) = 1√
N

∑
j

eik·R j φ(r − R j ). (4.14)

Clearly the translation operator operating on Ψk(r) gives

TRnΨk(r) = Ψk(r + Rn)

= eik·Rn
1√
N

∑
j

eik·(R j−Rn)φ(r − R j + Rn) = eik·RnΨk(r).

The energy of a state Ψk(r) is given by

Ek = 〈Ψk |H | Ψk〉
〈Ψk|Ψk〉 , (4.15)

where H is the Hamiltonian for an electron in the crystal, and

〈Ψk|Ψk〉 = 1

N

∑
j,m

eik·(R j−Rm )

∫
d3rφ∗(r − Rm)φ(r − R j ). (4.16)

If we neglect overlap between φ(r − R j ) and φ(r − Rm), the d3r integration gives
δ j,m and the sum over j simply gives a factor N , the number of atoms in the crystal.

The Hamiltonian for an electron in the solid contains the potential V (r). Let’s
write

V (r) = Ṽ (r − R j ) + Va(r − R j ). (4.17)

In other words, Ṽ (r − R j ) is the full potential of the solid minus the potential of an
atom located at R j . It’s clear from the Fig. 4.3 that Va is larger than V (r) in the cell
containing R j so that Ṽ (r − R j ) is negative. Since
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[
− �

2

2m
∇2 + Va(r − R j ) − Ea

]
φ(r − R j ) = 0, (4.18)

Ek = 1

N

∑
j

∑
m

eik·(R j−Rm )

∫
d3rφ∗(r − Rm)

[
Ea + Ṽ (r − R j )

]
φ(r − R j ).

(4.19)
In the first term Ea is the constant value of the atomic energy level and it can be
taken out of the integration. All that remains in the integral is 〈Ψk|Ψk〉 which is 1, so
the first term is just Ea . We can define

α = −
∫

d3rφ∗(r − R j )Ṽ (r − R j )φ(r − R j ), (4.20)

and

γ = −
∫

d3rφ∗(r − Rm)Ṽ (r − R j )φ(r − R j ). (4.21)

In the definition of γ we assume that the only terms that are not negligible are terms
in which Rm is a nearest neighbor of R j . Then we have

Ek = Ea − α − γ
∑
m

′
eik·(R j−Rm ) (4.22)

where the sum is over all nearest neighbors of R j . We chose minus signs in the
definition of α and γ to make α and γ positive (since Ṽ (r − R j ) is negative).

Exercise

Demonstrate the s-band tight binding formula (4.22) in terms of the overlap para-
meters α and γ by simplifying (4.19).

Now look at what happens for a simple cubic lattice. There are six nearest neigh-
bors of R j located at R j ± ax̂ , R j ± a ŷ, and R j ± aẑ. Substituting into (4.22)
gives

Ek = Ea − α − 2γ
(
cos kxa + cos kya + cos kza

)
. (4.23)

Because γ is positive
EMIN
k = Ea − α − 6γ, (4.24)

and
EMAX
k = Ea − α + 6γ. (4.25)

The result is sketched in Fig. 4.4.
For |k| 
 π/a

Ek � Ea − α − 6γ + γa2k2; k2 = k2x + k2y + k2z

= EMIN
k + �

2k2

2m∗ .
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Fig. 4.4 Tight binding dispersion along [111] direction for a simple cubic lattice

The effective mass m∗ = �
2

2γa2 . As γ decreases, the band width ΔE gets smaller and

the effective mass near E = EMIN
k increases.

Exercise

Consider an fcc lattice and use the s-band tight binding formula, (4.22), to evaluate
Ek and discuss the band width, the band gap, and the effective mass near the zone
center.

4.4.2 Tight Binding in Second Quantization Representation

Suppose a system of free electrons is described by the Hamiltonian

H0 =
∑
k

εkc
†
kck, (4.26)

where εk = �
2k2

2m is the kinetic energy. In the presence of a periodic potential V (r) =∑
K VKeiK·r, we can write the potential energy of the electrons as

H ′ =
∑
kK

VKc
†
k+Kck. (4.27)

Now introduce the operators cn and c†n which annihilate or create electrons at site
R0

n .

cn = 1√
N

∑
k

cke
ik·R0

n . (4.28)

The inverse transformation is

ck = 1√
N

∑
n

cne
−ik·R0

n . (4.29)
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Substitute the latter equation into H0 to obtain

H0 =
∑
k

εk
∑
nm

1

N
c†ncme

ik·(R0
n−R0

m ). (4.30)

Define

Tnm = 1

N

∑
k

εke
ik·(R0

n−R0
m ). (4.31)

Then
H0 =

∑
nm

Tnmc
†
ncm . (4.32)

Now look at H ′

H ′ =
∑
kK

VK
1

N

∑
nm

c†ne
i(k+K)·R0

n cme
−ik·R0

m

=
∑
Knm

[∑
k

1

N
eik·(R0

n−R0
m )

]
VKe

iK·R0
n c†ncm .

Since 1
N

∑
k e

ik·(R0
n−R0

m ) = δnm , we have

H ′ =
∑
Kn

VKe
iK·R0

n c†ncn. (4.33)

But we note that
∑

K VKeiK·R0
n = V (R0

n) and hence H ′ becomes

H ′ =
∑
n

V (R0
n)c

†
ncn. (4.34)

Adding H0 and H ′ gives

H =
∑
n

[
Tnn + V (R0

n)
]
c†ncn +

∑
n �=m

Tnmc
†
ncm

=
∑
n

εnc
†
ncn +

∑
n �=m

Tnmc
†
ncm (4.35)

where εn = Tnn+V (R0
n) represents an energy on site n and Tnm denotes the amplitude

of hopping from sitem to site n. Starting with atomic levels εn and allowing hopping
to neighboring sites results in energy bands, and the band width depends on the
hopping amplitude Tnm . Later we will see that starting with free electrons and adding
a periodic potential V (r) = ∑

K VKeiK·r also results in energy bands. The band gaps
between bands depend on the Fourier components VK of the periodic potential.
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4.5 Periodic Potential

Because the potential experienced by an electron is periodic with the period of the
lattice, it can be expanded in a Fourier series

V (r) =
∑
K

VKe
iK·r, (4.36)

where the sum is over all vectors K of the reciprocal lattice, and

VK = 1

Ω

∫
d3r V (r) e−iK·r.

For any reciprocal lattice vector K

K · R = 2π × integer,

if R is any translation vector of the lattice. Thus

V (r + R) =
∑
K

VKe
iK·(r+R),

=
∑
K

VKe
iK·r = V (r).

The periodic part of the Bloch function can also be expanded in Fourier series. We
can write

un(k, r) =
∑
K

CK(n,k)eiK·r, (4.37)

For the moment, let us omit the band index n and wave number k and simply write

Ψk(r) = eik·ru(r) =
∑
K

CKe
i(k+K)·r. (4.38)

Use the Fourier expansion of V (r) and u(r) in the Schrödinger equation; this gives

∑
K′

[
�
2

2m
(k + K′)2 +

∑
K′′

VK′′eiK
′′ ·r

]
CK ′ei(k+K′)·r

= E
∑
K′

CK′ei(k+K′)·r. (4.39)

We multiply by e−i(k+K)·r and integrate recalling that
∫
d3reiK·r = Ωδ(K) where Ω

is the volume. This gives
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[
E − V0 − �

2

2m
(k + K)2

]
CK =

∑
H �=0

VHCK−H (4.40)

Here we have set K′′ = H and have separated the H = 0 term from the other terms
in the potential. This is an infinite set of linear equations for the coefficients CK. The
non-trivial solutions are obtained by setting the determinant of thematrixmultiplying
the column vector ⎛

⎜⎜⎝
...

CK
...

⎞
⎟⎟⎠

equal to zero. The roots give the energy levels (an infinite number – one for each
value of K) in the periodic potential of a crystal. We can express the infinite set of
linear equations in the following matrix notation.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

εK1 + 〈K1 |V |K1〉
−E

〈K1 |V |K2〉 · · · 〈K1 |V |Kn 〉 · · ·

〈K2 |V |K1〉 εK2 + 〈K2 |V |K2〉
−E

· · · 〈K2| V |Kn 〉 · · ·
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

〈Kn | V |K1〉 〈Kn | V |K2〉 · · · εKn + 〈Kn | V |Kn 〉
−E

· · ·
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

CK1

CK2

.

.

.

CKn

.

.

.

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0 (4.41)

Here εK = �
2

2m (k +K)2 and
〈
K |V |K′〉 = VK−K′ , where |K〉 = 1√

Ω
eiK·r. The object

of energy band theory is to obtain a good approximation to V (r) and to solve this
infinite set of equations in an approximate way.

4.6 Free Electron Model

If VK = 0 for all K �= 0, then in the notation used above

(E − V0 − εk+K)CK = 0. (4.42)

This is exactly the Sommerfeld model of free electrons in a constant potential V0.
We can write

E (0)
K = V0 + εk+K and

C (0)
K =

{
1 for the band of K
0 for all other bands.

(4.43)
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Fig. 4.5 One dimensional free electron band

Let us discuss this more fully by considering a simple one dimensional case, for
example, as shown in Fig. 4.5. The allowed values of the Bloch wave vector k are
restricted to the first Brillouin zone. Values of k outside the first Brillouin zone are
obtained by adding a reciprocal lattice vector K to k. The labels Cn refer to the
non-zero coefficients for that particular band; For example, for C+2, we have

E (0)
2 = V0 + �

2

2m

[
k + 2

(
2π

a

)]2

; Ψ
(0)
2k (r) = eik·ru(0)

2k (r). (4.44)

Here we note that Ψ
(0)
nk (r) = eik·reiKn ·r, because unk(r) = ∑

K CK(k)eiK·r with
C (0)
K (k) = 1 for | K |= Kn = (

2π
a

)
n. All of this is simply a restatement of the free

electron model in the “reduced” zone scheme (i.e. all Bloch k vectors are in the first
Brillouin zone, but energies of higher bands are obtained by adding reciprocal lattice
vectors K to k; the periodic part of the Bloch function is uK = eiK·r).

4.7 Nearly Free Electron Model

If we take VK for | K |�= 0 to be very small but non-zero, we can use “perturbation
theory” to solve the infinite set of coupled equations approximately.

For the lowest band (the one with C (0)
0 = 1) we know that in zeroth order (i.e.

with VK = 0 for | K |�= 0)
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E (0) = V0 + εk,

C (0)
0 = 1 and C (0)

K = 0 for | K |�= 0.

Here εk = �
2k2

2m , and let us look at other values of CK (i.e. not | K |= 0 value) for

VK �= 0 (but very small) when | K |�= 0. The first order correction to C (0)
K is given

by [
E − V0 − �

2

2m
(k + K)2

]
C (1)
K =

∑
H �=0

CK−HVH. (4.45)

On the right hand side all the VH appearing are small; therefore to first order we can
use for CK−H the value C (0)

K−H which equals unity forK−H = 0 and zero otherwise.

Solving for C (1)
K gives

C (1)
K = VK

�2

2m [k2 − (k + K)2] . (4.46)

Here we have used E � �
2k2

2m + V0 for the zeroth order approximation to the energy
of the lowest band (the one we are investigating). We substitute this result back into
the equation for C0, which is approximately equal to unity.

(
E − V0 − �

2k2

2m

)
C0 =

∑
H �=0

C0−HVH �
∑
K

V−KVK
�2

2m [k2 − (k + K)2] . (4.47)

C0 = 1 + C (1)
0 , but C (1)

0 can be neglected since the right hand side is already small.
Setting C0 � 1 and solving for E gives

E = V0 + εk −
∑
|K|�=0

|VK|2
εk+K − εk

. (4.48)

In this equation we have used V−H = V ∗
H and let −H = K. As long as | εk+K −

εk |
| VK |, this perturbation expansion is rather good. It clearly breaks down when
εk+K = εk or |k + K| = |k|. This is exactly the condition for a Bragg reflection;
when k′ − k = K we get Bragg reflection.

4.7.1 Degenerate Perturbation Theory

Suppose that for some particular reciprocal lattice vector K

|k + K| � |k| (4.49)

Our simple perturbation theory result gave



4.7 Nearly Free Electron Model 125

C (1)
K = VK

εk − εk+K
.

It is clear that this result is inconsistent with our starting assumption thatCK was very
small except forK = 0. To remedy this shortcoming we assume that bothC0 andCK

(for the particular value satisfying |k| = |k + K|) are important. This assumption
gives us a pair of equations

(E − V0 − εk)C0 = CKV−K

(E − V0 − εk+K)CK = C0VK.
(4.50)

The solutions are obtained by setting the determinant of the matrix multiplying the

column vector

(
C0

CK

)
equal to zero. The two roots are given by

E±(k) = V0 + 1

2
[εk + εk+K] ±

{
|VK|2 +

(
εk − εk+K

2

)2
}1/2

(4.51)

For |k| = |k + K|, εk − εk+K = 0 and the solutions become

E±(k) = V0 + εk ± |VK| (4.52)

This behavior is shown in Fig. 4.6. If we introduce q = K
2 + k, where q 
 K

2 , we
can expand the roots for small q and obtain

E± = V0 + ε K
2

+ εq ± |VK|
{
1 + 1

2

εK

|VK|2 εq

}
.

If we define
E0 = V0 + ε K

2
− |VK| ,

K

K

Fig. 4.6 Bandgap formation at the zone boundary k = K
2
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and choose zero of energy at E0, the two roots can be written (for small q)

E− = �
2q2

2m∗−
E+ = EG + �

2q2

2m∗+
.

(4.53)

Here the energy gap EG is equal to 2 |VK| and the effective masses m∗± are given by

m∗
± = m

1 ± εK
2|VK |

. (4.54)

It is common for εK to be larger than 2 | VK | so that m∗− is negative. Then the two
roots are commonly expressed as

Ev(k) = −�
2k2

2mv
,

Ec(k) = EG + �
2k2

2mc

where mv = −m∗−. These results are frequently used to describe the valence band
and conduction band in semiconductors. The results are only valid near q = 0 since
we expanded the original equations for small deviations q from the extrema. This
result is called the effective mass approximation.

4.8 Metals–Semimetals–Semiconductors–Insulators

The very simple Bloch picture of energy bands and energy gaps allows us to under-
stand in a qualitative way why some crystals are metallic, some insulating, and some
in between. For a one-dimensional crystal there will be a gap separating every band
(assuming that VK is non-zero for all values of K ). We know that the gaps occur
when |k| = |k + K|. This defines the first Brillouin zone’s boundaries.

In more than one-dimension, the highest energy levels in a lower band can exceed
the energy at the bottom of a higher band. This is referred to as band overlap. It is
illustrated for a two-dimensional square lattice in Fig. 4.7. The square represents the
first Brillouin zone bounded by |kx | = π/a and

∣∣ky∣∣ = π/a. The point Γ indicates
the zone center of k = 0. The points X = (

π
a , 0

)
and M = (

π
a , π

a

)
are particular

k-values lying on the zone boundary. The Δ and Σ are arbitrary points on the lines
connectingΓ → X andΓ → M, respectively. If we plot the energy along these lines
we obtain the result illustrated in Fig. 4.8. It is clear that if the gaps are not too large,
the maximum energy in the lower band ELB(M) is higher than the minimum energy
in the upper band EUB(X). If we fill all the lowest energy states with electrons, being
mindful of the exclusion principle, then it is clear that there will be some empty
states in the lower band as we begin to fill the low energy states of the upper band.
The band overlap can be large (when the energy gaps are very small) or non-existent
(when the energy gaps are very large).
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Fig. 4.7 Constant energy surface in two-dimensional square lattice

Fig. 4.8 Energy dispersion along the line M − Γ − X

The existence of

(i) band gaps in the energy spectrum at Brillouin zone boundaries,
(ii) band overlap in more than one dimension when energy gaps are small, and
(iii) the Pauli exclusion principle allows us to classify solids as follows.

• Metal

1. Monovalent Metal A material which contains one electron (outside a closed
core) on each atom and one atom per unit cell. Na, K, Rb, Cs are good examples
of monovalent metals. Because the total number of allowed k values in the first
Brillouin zone is equal to N , the number of unit cells in the crystal, and because
each k-state can accommodate one spin up and one spin down electron, each
band can accommodate 2N electrons. A monovalent metal has N electrons, so
the conduction band will be half filled. The Fermi energy is far (in comparison
to kBT ) from the band edges and band gaps. Therefore, the crystal acts very
much like a Sommerfeld free electron model. The same picture holds for any
odd valency solid containing 1, 3, 5, . . . electrons per unit cell.
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2. Even-valency Metals When the band gaps are very small, there can be a very
large overlap between neighboring bands. The resultant solid will have a large
number nh of empty states in the lower band and an equal number ne (ne = nh
of electrons in the higher band. If ne and nh are of the order of N , the number
of unit cells, the material is metallic.

• Insulator For a material with an even number of electrons per unit cell and a
large gap (≥4eV) between the highest filled state and the lowest empty state, an
insulating crystal results. The application of a modest electric field cannot alter the
electron distribution function because to do so would require a large energy EG.

• Semiconductor Amaterial which is insulating at low temperature, but whose band
gap EG is small (0.1 eV ≤ EG ≤ 2 eV) is called a semiconductor. At finite
temperature a few electrons will be excited from the filled valence band to the
empty conduction band. These electrons and holes (empty states in the valence
band) can carry current. Because the concentration of electrons in the conduction
band varies like e−EG/2kBT , the conductivity increases with increasing temperature.

• Semimetal These materials are even-valency materials with small band overlap.
The number of electrons ne equals the number of holes nh but both are small
compared to N , the number of unit cells in the crystal. Typically ne and nh might
be 10−3 or 10−4 times the number of unit cells.

Examples

Monovalent Metals Li, Na, K, Rb, Cs, Cu, Ag, Au
Divalent Metals Zn, Cd, Ca, Mg, Ba
Polyvalent Metals Al, Ga, In, Tl
Semimetals As, Sb, Bi, Sn, graphite
Insulators Al2O3, diamond
Semiconductors Ge, Si, InSb, GaAs, AlSb, InAs, InP.

Problems

4.1 In an infinite linear chain of A and B atoms (. . .ABABAB . . . ) with equal
spacings R between each atom, the energies of electrons in the system are given by
Ek = ±(ε2 + 4β2 cos2 kR)1/2, where k is the wavevector of the electron state. What
is the band gap in the electronic band structure for this system? How would you
expect the electrical and optical properties of this structure to depend on ε and β?

4.2 Consider a crystal of sodiumwith a volume 0.10 cm3, estimate the average spac-
ing between the energy levels in the 3 s band given that the 3 s electron energies span
a range of 3.20eV. The electron concentration of a sodium crystal is approximately
2.65 × 1028 m−3. (You can estimate this value by yourself.)

4.3 Consider a body centered cubic lattice of eight nearest neighbors at r = a
2 (±x̂ ±

ŷ ± ẑ). Use the s-band tight binding formula, (4.22), to evaluate Ek and discuss the
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band structure such as the band width, the band gap, and the effective mass near the
zone center.

4.4 Graphene – a single graphite sheet has a honeycomb structure. Let us simply
assume that there is one pz orbital, which is oriented perpendicular to the sheet, on
each carbon atom and forms the active valence and conduction bands of graphene.

(a) Using the tight-binding method and only nearest-neighbor interactions, eval-
uate and sketch the π-electron band structure E(k) for graphene. One may
assume that the overlap matrix is the unity matrix.

(b) Show that this is a zero-gap semiconductor or a zero-overlap semimetal. Note
that there is one π electron per carbon atom.

(c) Locate the position where the zero gap occurs in the momentum space.

4.5 A one-dimensional attractive potential is given by V (z) = −λδ(z).

(a) Show that the lowest energy state occurs at ε0 = −�
2κ2

2m , where κ = mλ
�2 .

(b) Determine the corresponding normalized wave function ψ0(z).

4.6 Consider a superlattice of period a with potential given by V (z) = −λ
∑∞

l=−∞
δ(z − la).

(a) Obtain ε0(kz), the energy of the lowest band as a function of kz by using
the tight binding approximation including overlap between only neighboring
sites.

(b) Show that the tight binding form of the wave function Ψ0(kz, z) can be
expressed as

Ψ0(kz, z) = eikz z u(kz, z),

where u(kz, z) is periodic with period a. Determine an expression for u(kz, z).

4.7 Let us consider electrons in a one-dimensional Bravais crystal described by
the wave function and potential written as Ψ (x) = αeikx + βei(kG)x and V (x) =
2V1 cos(Gx). The zone boundaries are located at k = G/2 = ±π/a where a is the
lattice constant of the crystal.

(a) Obtain the band structure by solving the Schrödinger equation, and sketch the
band over the range 0 ≤ k ≤ G for V1 = 0 and V1 = 0.2�

2G2/2m. One may
need to solve 2 × 2 determinant equation.

(b) What kind of material is the crystal if V1 = 0? Explain the reason.
(c) If V1 = 0.2�

2G2/2m and each atom contributes 3 conduction electrons, what
kind of material is the crystal? Explain the reason.

Summary

In this chapter we studied the electronic states from the consideration of the periodic-
ity of the crystal structure. In the presence of periodic potential the electronic energies
form bands of allowed energy values separated by bands of forbidden energy values.
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Bloch functions were introduced as a consequence of the translational symmetry of
the lattice. Energy bands obtained by a simplest tight binding method and nearly free
electron model are discussed.

The eigenfunction of the Hamiltonian H can be written as

Ψ (r) = eik·Ruk(r),

where uk(r) is a lattice periodic function i.e. uk(r+R) = uk(r). This is the Bloch’s
theorem. For an electron in a crystalline potential, we have

TRΨ (r) = eik·RΨ (r),

where TR is a lattice translation operator and k = n1b1+n2b2+n3b3
N . Here n1, n2, n3 are

integers and b1, b2, b3 are primitive translations of the reciprocal lattice.
In the tight binding approximation one assumes that the electron in the unit cell

about R j is only slightly influenced by atoms other than the one located at R j . Its
wave function in that cell will be close to φ(r−R j ), the atomic wave function, and its
energy close to Ea . One can make a linear combination of atomic orbitals φ(r−R j )

as a trial function for the electronic wave function in the solid:

Ψk(r) = 1√
N

∑
j

eik·R j φ(r − R j ).

The energy of a state Ψk(r) is given by

Ek = Ea − α − γ
∑
m

′
eik·(R j−Rm )

where the sum is over all nearest neighbors of R j and

α = −
∫

d3rφ∗(r − R j )Ṽ (r − R j )φ(r − R j )

and

γ = −
∫

d3rφ∗(r − Rm)Ṽ (r − R j )φ(r − R j ).

In second quantization representation, the tight binding Hamiltonian is given by

H =
∑
n

εnc
†
ncn +

∑
n �=m

Tnmc
†
ncm

where εn = Tnn+V (R0
n) represents an energy on site n and Tnm denotes the amplitude

of hopping from site m to site n.
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The periodic part of the Bloch function is expanded in Fourier series as

un(k, r) =
∑
K

CK(n,k)eiK·r

and the energy eigenfunction is simply written as

Ψk(r) = eik·ru(r) =
∑
K

CKe
i(k+K)·r.

The Schrödinger equation of an electron in a lattice periodic potential is written as
an infinite set of linear equations for the coefficients CK:

[
E − V0 − �

2

2m
(k + K)2

]
CK =

∑
H �=0

VHCK−H.

We can express the infinite set of linear equations in a matrix notation:

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

εK1 + 〈K1 |V |K1〉
−E

〈K1 |V |K2〉 · · · 〈K1 |V |Kn 〉 · · ·

〈K2 |V |K1〉 εK2 + 〈K2 |V |K2〉
−E

· · · 〈K2| V |Kn 〉 · · ·
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

〈Kn | V |K1〉 〈Kn | V |K2〉 · · · εKn + 〈Kn | V |Kn 〉
−E

· · ·
.
.
.

.

.

.

.

.

.

.

.

.

.

.

.

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

CK1

CK2

.

.

.

CKn

.

.

.

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 0

Here εK = �
2

2m (k + K)2 and
〈
K |V |K′〉 = VK−K′ , where |K〉 = 1√

Ω
eiK·r.

In the nearly free electron method, the energies near the zone boundary become

E±(k) = V0 + εk ± |VK| .

The two roots can be written, for small q, as

E− = �
2q2

2m∗−
; E+ = EG + �

2q2

2m∗+
,

where q = K
2 +k. Here the energy gap EG is equal to 2 |VK| and the effective masses

m∗± are given by

m∗
± = m

1 ± εK
2|VK |

.

The results are only valid near q = 0 since we expanded the original equations for
small deviations q from the extrema. This result is called the effective mass approxi-
mation. Crystalline solids are classified as metals, semimetals, semiconductors, and
insulators according to the magnitudes and shapes of the energy gap of the material.



Chapter 5
Use of Elementary Group Theory
in Calculating Band Structure

5.1 Band Representation of Empty Lattice States

For a three dimensional crystal the free electron energies and wave functions can be
expressed in the Bloch function form in the following way:

1. Write the plane wave vector as a sum of a Bloch wave vector and a reciprocal
lattice vector. The Bloch wave vector k is restricted to the first Brillouin zone;
the reciprocal lattice vectors are given by

K� = l1b1 + l2b2 + l3b3 (5.1)

where (l1, l2, l3) = � are integers andbi are primitive translations of the reciprocal
lattice. Then

Ψ�(k, r) = eik·reiK�·r. (5.2)

The second factor has the periodicity of the lattice since eiKl·R = 1 for any
translation vector R.

2. The energy is given by

E�(k) = �
2

2m
(k + Kl)

2 . (5.3)

3. Each band is labeled by � = (l1, l2, l3) and has Ψ�(k, r) given by (5.2) and E�(k)
given by (5.3).
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5.2 Review of Elementary Group Theory

In our brief discussion of translational and rotational symmetries of a lattice, we
introduced a few elementary concepts of group theory. The object of this chapter is
to show how group theory can be used in evaluating the band structure of a solid. We
begin with a few definitions.

Order of a group If a group G contains g elements, it is said to be of order g.
Abelian group A group in which all elements commute.
Cyclic group A group of g elements, in which the elements can be written

A,A2,A3, . . . ,Ag−1,Ag = E.

Class When an element R of a group is multiplied by A and A−1 to form R′ =
ARA−1, where A and A−1 are elements of the group, the set of elements R′
obtained by using every A belonging to G is said to form a class. Elements belong
to the same class if they do essentially the same thing when viewed from different
coordinate system. For example, for 4mm there are five classes:
(1) E, (2) R90◦ and R−90◦ , (3) R180◦ , (4) mx and my , (5) m+ and m−.

Rearrangement theorem If G = {E,A,B, . . .} is the set of elements of a group,
AG = {AE,AA,AB, . . .} is simply a rearrangement of this set. Therefore∑

R ∈ G f (R) = ∑
R∈G f (AR).

Generators If all the elements of a group can be expressed in form AmDn , where m
and n are integers, then A and D are called generators of the group. For example,
the four operators of 2mm can all be expressed in terms of R and mx such as
E = R2 = m2

x , R = R, mx = mx , my = R1m1
x .

5.2.1 Some Examples of Simple Groups

Cyclic Group of Order

n Consider an n-sided regular polygon. Rotation by R j = 2π
n × j with j = 0, 1,

2, . . . , n − 1 form a group of symmetry operations. The generator of this group is
R1 = rotation by 2π

n .
G = {R1,R

2
1,R

3
1, . . . ,R

n
1 = E} (5.4)

Symmetry Operations of an Equilateral Triangle

G = {E,R120,R−120, JA, JB, JC} (5.5)

Here R120 and JA are generators of G. In this case, we have 3 classes of { E }, {R120,
R−120}, and {JA, JB, JC} (see Fig. 5.1).
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J

J

J

Fig. 5.1 Equilateral triangle

Symmetry Group of a Rectangle

G = {E,R,mx,my} (5.6)

Here R and mx are generators of G, and each element belongs to a different class
since x and y directions differ (see Fig. 5.2).

Symmetry Group of a Square

G = {E;R90 (≡ R1) ,R−90 (≡ R3) ;R180 (≡ R2) ;mx,my;m+,m−} (5.7)

Here R90 and mx are generators, and classes are discussed earlier (see Fig. 5.3).

Other Examples:

Groups of matrices, e.g., (i) n × n matrices with determinant equal to unity and (ii)
n × n orthogonal matrices.

m

m

Fig. 5.2 Rectangle

m
m

m

Fig. 5.3 Square
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5.2.2 Group Representation

A group of matrices that satisfy the same multiplication as the elements of the group
is said to form a representation of the group. To be concrete, suppose a group G =
{E,A,B, . . .} of symmetry operations operates on some function Ψ (x, y, z). These
operations give us the set of functions.

EΨ,AΨ,BΨ, . . . . (5.8)

which form a vector space that is invariant under the operations of the group. By this
we mean that the space of all functions of the form

Φ = c1EΨ + c2AΨ + c3BΨ + · · · (5.9)

where ci are complex numbers is invariant under the operations of the group. We can
choose a basis set Ψ j with j = 1, 2, . . . , l ≤ g, where g is the order of the group.
Then for any φ belonging to this vector space we can write

φ =
l∑

j=1

c jΨ j . (5.10)

For any element R ∈ G,
RΨ j =

l∑

k=1

Djk(R)Ψk, (5.11)

where D(R) is a matrix. The set of matrices D(R) (for each R ∈ G) form a repre-
sentation of G.

5.2.3 Examples of Representations of the Group 4 mm

Under the operations of the eight elements of the group 4mm, x always transforms
into ±x or into ±y as shown in the Table5.1.

Table 5.1 Operations of the group 4mm on functions of x and y

Operation E R180 R90 R−90 mx my m+ m−
x x −x y −y x −x y −y

y y −y −x x −y y x −x
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Representation Γ1 Consider the functionΨ0 = x2+ y2. It is obvious that under every
operation belonging to G, Ψ0 is unchanged. For example,

R180Ψ0 = R180(x
2 + y2) = (−x)2 + (−y)2 = x2 + y2 = Ψ0. (5.12)

Thus every operation of G can be represented by the unit matrix

D(E) = D(R180) = D(R90) = D(R−90) = · · · = D(m−) = 1. (5.13)

This set of matrices forms a representation of G that is called the “identity”
representation and denoted by the symbol Γ1 (i.e. the representation Γ1). Any
function f (x, y) that transforms under the group operation R in exactly the same
manner as multiplication by the matrix D(R) representing R in the representation
Γn is said to belong to the representation Γn .

Representation Γ4 Consider the function Ψ4 = xy. It is obvious that E,R180,m+,

and m− operating on Ψ4 leave it unchanged but that R90, R−90, mx , and my

operating on Ψ4 change it to −Ψ4. Therefore the matrices

D(E) = D(R180) = D(m+) = D(m) = 1

D(R90) = D(R−90) = D(mx) = D(my) = −1

form a representation of G. This representation is called the Γ4 representation.

By constructing Ψ3 = x2 − y2, Ψ2 = xy(x2 − y2), and Ψ5 =
(
x

y

)

, it is easy to

construct Table5.2, which illustrates the sets of matrices DΓ j (R) for each R ∈ G of
the group 4mm. The sets of matrices {DΓ j (R)} for each R ∈ G form representations
of the group 4mm. Functions belonging to the representation Γ j transform under the
operations of 4mm in exactly the same way as multiplying them by the appropriate
DΓ j (R).

5.2.4 Faithful Representation

Youwill notice that the set ofmatrices forming the representationΓ1 of 4mm towhich
the function x2 + y2 belonged were all identical, i.e. D(E) = D(R1) = D(R2) =
· · · = D(mx) = 1. Such a representation is a homomorphism between the group
of symmetry operators and the group of matrices, and it is said to be an unfaithful
representation. A representation in which each operation R ∈ G is represented by
a different matrix D(R) is called a faithful representation. In this case the group of
symmetry operations and the group of matrices are isomorphic.
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Table 5.2 Group representation table of the group 4mm

R

Ψ0 = x2 + y2

DΓ1 (R)

Ψ2 = xy(x2 − y2)

DΓ2 (R)

Ψ3 = x2 − y2

DΓ3 (R)

Ψ4 = xy

DΓ4 (R)

Ψ5 =
(
x

y

)

DΓ5 (R)

E 1 1 1 1

(
1 0

0 1

)

R180 1 1 1 1

(
−1 0

0 −1

)

R90 1 1 −1 −1

(
0 1

−1 0

)

R−90 1 1 −1 −1

(
0 −1

1 0

)

mx 1 −1 1 −1

(
1 0

0 −1

)

my 1 −1 1 −1

(
−1 0

0 1

)

m+ 1 −1 −1 1

(
0 1

1 0

)

m− 1 −1 −1 1

(
0 −1

−1 0

)

⇑ ⇑ ⇑ ⇑ ⇑
Γ1 Γ2 Γ3 Γ4 Γ5

5.2.5 Regular Representation

If we construct a multiplication table for a finite group G as shown in Table5.3 for
2mm and we form 4 × 4 matrices D(E), D(R), D(mx), D(my) by substituting 1 in
the 4× 4 array wherever the particular operation appears and 0 everywhere else, the
set of matrices form a representation known as the regular representation. Thus we
have

Table 5.3 Multiplication table of the group 2mm

E−1 = E R−1 = R m−1
x = mx m−1

y = my

E E R mx my

R R E my mx

mx mx my E R

my my mx R E
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D(E) =

⎛

⎜
⎜
⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎟
⎟
⎠ , D(R) =

⎛

⎜
⎜
⎝

0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞

⎟
⎟
⎠ , etc (5.14)

5.2.6 Reducible and Irreducible Representations

Suppose D(1)(R) and D(2)(R) are two representations of the same group, then D(R)

defined by

D(R) =
(
D(1)(R) 0

0 D(2)(R)

)

(5.15)

also forms a representation of G. D(R) is called the direct sum of the first two repre-
sentations D(1)(R) and D(2)(R). A representation which can be written as the direct
sum of two smaller representations is said to be reducible. Sometimes a representa-
tion is reducible, but it is not at all apparent. The reason for this is that if the matrices
D(R) form a representation of G, then

D̃(R) = S−1D(R)S (5.16)

also form a representation (corresponding to a change in the basis vectors of the
vector space on which the matrices act). This similarity transformation can scramble
the block diagonal form so that the resulting D̃(R) do not look reducible. A rep-
resentation is reducible if and only if it is possible to perform the same similarity
transformation on all thematrices in the representation and reduce them to block diag-
onal form. Otherwise, the representation is irreducible. Clearly all one-dimensional
representations (1 × 1 matrices) are irreducible.

5.2.7 Important Theorems of Representation Theory
(Without Proof)

(i) Theorem One The number of irreducible representations (IR’s) is equal to the
number of conjugate classes.

(ii) TheoremTwo If li is the dimension of the i th IR and g is the number of operations
in the group G ∑

i

l2i = g. (5.17)
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Examples

(i) 2mm There are four operations E, R, mx , my and there are four classes (remem-
ber that because the x and y directions are distinct mx and my belong to different
classes). From Theorem One there are 4 IR’s; from Theorem Two they are all
one-dimensional so that

4∑

i=1

l2i = 12 + 12 + 12 + 12 = 4 = g.

(ii) 4mm There are eight operations falling into five conjugate classes: E; R2; R1

and R3; mx and my; m+ and m−. Therefore there are 5 IR’s and four IR’s must
be one-dimensional and one must be two-dimensional so that

5∑

i=1

l2i = 12 + 12 + 12 + 12 + 22 = 8 = g

5.2.8 Character of a Representation

The character χ of a representation D(R) is defined as

χ(R) =
∑

j

D j j (R) for each R ∈ G. (5.18)

Because the application of a similarity transformation does not change the trace of a
matrix

(i) χ(R) is independent of the basis used for the vector space.
(ii) χ(R) is the same for all elements R belonging to the same conjugate class.

Thus we can define χ(C) to be the common value of χ(R) for all R belonging to
conjugate class C.1

5.2.9 Orthogonality Theorem

In trying to determine the IR’s and their characters certain orthogonality theorems
are very useful. We state them without proof.

1In the regular representation, each IR Γi appears li times, where li is the dimension of the IR Γi .
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(i) ∑

R∈G
χi (R)χ j ∗(R) = gδi j, (5.19)

where χi and χ j are the characters of two representations. This can also be
written ∑

C

nCχi (C)χ j ∗(C) = gδi j , (5.20)

where nC is the number of elements in the class C.
(ii) ∑

i

χi (C)χi ∗(C′) = g

nC
δC,C′ . (5.21)

(iii) If D(i)
μν(R) is the μν matrix element of the i th IR for the operation R, then

∑

R∈G
D(i)

μν(R)
[
D( j)(R)

]−1

ν ′μ′ = g

li
δi jδμμ′δνν ′ . (5.22)

For a unitary representation
[
D( j)(R)

]−1
ν ′μ′ = D( j)∗

μ′ν ′ (R) so that for unitary repre-
sentation ∑

R∈G
D(i)

μν(R)D( j)∗
μ′ν ′ (R) = g

li
δi jδμμ′δνν ′ . (5.23)

Some Examples

(i) 2mm We know there are 4 IR’s all of which are one-dimensional. We label
them Γ1, Γ2, Γ3, Γ4. The 1 × 1 matrices representing each element are given in
Table5.4.

(ii) 4mm There are 5 IR’s; one is two dimensional and the rest are one dimensional
as are shown in Table5.5.

The reader should use these simple examples to demonstrate that the orthogonality
theorems hold.

Table 5.4 Irreducible representations of the group 2mm

Γ1 Γ2 Γ3 Γ4

E 1 1 1 1

R 1 1 −1 −1

mx 1 −1 1 −1

my 1 −1 −1 1
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Table 5.5 Irreducible representations of the group 4mm

Γ1 Γ2 Γ3 Γ4 Γ5

E 1 1 1 1

(
1 0

0 1

)

⇒ 2

R2 1 1 1 1

(
−1 0

0 −1

)

⇒ −2

R1, R3 1 1 −1 −1

(
0 1

−1 0

)

,

(
0 −1

1 0

)

⇒ 0

mx, my 1 −1 1 −1

(
1 0

0 −1

)

,

(
−1 0

0 1

)

⇒ 0

m+, m− 1 −1 −1 1

(
0 1

1 0

)

,

(
0 −1

−1 0

)

⇒ 0

5.3 Empty Lattice Bands, Degeneracies and IR’s at High
Symmetry Points

In an earlier section we determined the free electron energies and wave functions in
the reduced zone scheme for a two-dimensional rectangular lattice. The starting point
for many band structure calculations is this empty lattice band structure obtained by
writing, as (5.3),

E�(k) = �
2

2m
(k + K�)

2 ,

where k is restricted to lie in the first Brillouin zone and K� is a reciprocal lattice
vector of (5.1)

K� = l1b1 + l2b2 + l3b3.

Here, bi are the primitive translation vectors of the reciprocal lattice and li =
0,±1,±2, . . .. We evaluate the energy at particular symmetry points, e.g. at k = 0,
the Γ point, along ky = kz = 0, the line Δ, etc.

The group of symmetry operations which leave the lattice invariant also leaves
the reciprocal lattice invariant. Suppose we know some wave functionΨk. A rotation
or reflection operation of the point group acting on Ψk will give the same result as
the rotation or reflection of k, that is

RΨk(x) = ΨRk(x) = Ψk
(
R−1x

)
. (5.24)

Here we used the fact that applying the same orthogonal transformation to both
vectors in a scalar product does not change the value of the product, for example
k · R−1r = Rk · RR−1r = Rk · r. By applying every R ∈ G to a wave vector k, we
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Fig. 5.4 STAR of square lattice

generate the STAR of k. For a two-dimensional square lattice, all operations leave
Γ invariant so Γ is its own STAR (see Fig. 5.4). For a general point k, there will
be g (=8 for 4mm) points in the STAR of k. The symmetry point X has four points
in its STAR; two of these lie along the x-axis and are equivalent because they are
separated by a reciprocal lattice vector. The other two points in the STAR of X are
not equivalent to the X-point along the x-axis because they are not separated from it
by a reciprocal lattice vector. All four points in the STAR of M are equivalent since
they are all separated by vectors of the reciprocal lattice.

5.3.1 Group of the Wave Vector K

The group (or subgroup of the original point group) of rotations and reflections that
transform k into itself or into a new k vector separated from the original k point by
a reciprocal lattice vector belong to the group of the wave vector k.

Example

For a two-dimensional square lattice (Fig. 5.5) we remember thatΔ, Z, and� denote,
respectively, any point on the line from Γ → X, X → M , and Γ → M. We have
the groups of the wave vectors as follows:

GΓ = GM = {
E,R1,R2,R3,mx ,my,m+,m−

}

GX = {
E,R2,mx ,my

}

GΔ = {E,mx} (5.25)

G� = {E,m+}
GZ = {

E,my
}

When the empty lattice bands are calculated, there are often a number of degenerate
bands at points of high symmetry like the Γ -point, the M-point, and the X-point.
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Fig. 5.5 First Brillouin zone of a square lattice

Because the operations of the group of the wave vector Γ (or M or X) leave this
point invariant, one can construct linear combinations of these degenerate states that
belong to representations of the group of the wave vector Γ (or M or X etc.).

Example

Empty lattice bands for a two-dimensional square lattice are written by

El1l2(k) = �
2

2m

(
k + Kl1l2

)2
and Ψl1l2(k, r) = ei(k+Kl1l2 )·r. (5.26)

Here

Kl1l2 = 2π

a

(
l1 x̂ + l2 ŷ

)
(5.27)

with l1, l2 = 0,±1,±2, . . .. The empty lattice bands are labeled by the pair of
integers (l1, l2) (see Fig. 5.6). By defining ξ and η by

k = 2π

a
[ξ x̂ + η ŷ] (5.28)

then we have

El1l2 = h2

2ma2
[
(ξ + l1)

2 + (η + l2)
2
]

and Ψl1l2 = e
2πi
a [(ξ+l1)x+(η+l2)y]. (5.29)

The parameters ξ and η are restricted to the range [− 1
2 ,

1
2 ].

Exercise

Evaluate the energies El1l2(Γ ), El1l2(X) for energies up to E = h2

2ma2 × 10. Make a
sketch of the empty square lattice bands going from Γ → Δ → X. (Use straight
lines to connect El1l2(Γ ) to El1l2(X)). List the degeneracies at Γ , Δ, and X. For
example, see Table5.6.
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Fig. 5.6 Empty lattice bands of a square lattice along the line Γ → Δ → X. Energy is measured

in units of h2

2ma2
. We have drawn straight lines connecting El1l2 (Γ ) to El1l2 (X) for the sake of

simplicity. The pair of integers (l1, l2) is indicated for each band, and the band degeneracy is given
in the parenthesis. In fact the energy along Δ varies as ξ2 + 2l1ξ + l21 + l22

Table 5.6 Empty lattice bands of the group 4mm

l1, l2
2ma2

h2
El1l2 (Γ ) = l21 + l22

2ma2

h2
El1l2 (X) = (l1 + 1

2 )2 + l22

0 0 0 1
4

−1 0 1 1
4

1 0 1 9
4

−2 0 4 9
4

2 0 4 25
4

0 ±1 1 5
4

0 ±2 4 17
4

−1 ±1 2 5
4

−1 ±2 5 17
4
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5.4 Use of Irreducible Representations

It is apparent from the V (r) = 0 empty lattice structure that at some points in the
Brillouin zone more than one band has the same energy. If we refer to the two-
dimensional square lattice, we find that at E(X) = 1

4
h2

2ma2 there are two degenerate

bands, viz. (l1, l2) = (0, 0) and (−1, 0). At E(Γ ) = h2

2ma2 there are four degenerate
bands (−1, 0), (1, 0), (0, 1), (0, −1). The vector space formed by the degenerate
bands at E(k) is invariant under the operations of the group of the wave vector k.
This means that the space of degenerate states at a point k in the Brillouin zone
provides a representation of the group of the wave vector k. We can decompose this
representation into its irreducible components and use the decomposition to label
the states. This process does not change the empty lattice band structure that we
have already obtained. It is simply a convenient choice of basis functions for each
of the spaces of degenerate energy states. However, once the periodic potential V (r)
is introduced, it is immediately seen that band gaps appear as a consequence of the
decomposition of degenerate states into irreducible components. We shall see that
states belonging to different IR’s do not interact (i.e. they are not coupled together
by the periodic potential).

The periodic potential V (r) can be expressed as a Fourier series

V (r) =
∑

K

VKe
iK·r, (5.30)

whereK is a reciprocal lattice vector. For the two-dimensional square lattice we can
write

V (r) =
∑

l1l2

Vl1,l2e
2πi
a (l1x+l2 y). (5.31)

Because V (r) is invariant under the operations of the point group, it is not difficult
to see that

Vl1,l2 = V−l1,l2 = Vl1,−l2 = V−l1,−l2 = Vl2,l1 = V−l2,l1 = Vl2,−l1 = V−l2,−l1 . (5.32)

In our previous discussion of the effect of the periodic potential we were able to
obtain an infinite set of coupled algebraic equations, (4.40), which could be written

[

E − V0 − �
2

2m
(k + K)2

]

CK =
∑

H �=0

VHCK−H. (5.33)

Here CK was the coefficient in the expansion of u(r), the periodic part of the
Bloch function, in Fourier series. This infinite set of equations could be expressed
as a matrix equation, (4.41). The off-diagonal matrix elements are of the form
< Ki |V (r)|K j >= VKi−K j . When the degeneracy of a particular energy state

becomes large [e.g. at E(Γ ) = 5 h2

2ma2 the degeneracy is 8], the degenerate states
must be treated exactly and there is no reason to suppose that any off-diagonal matrix

http://dx.doi.org/10.1007/978-3-319-73999-1_4
http://dx.doi.org/10.1007/978-3-319-73999-1_4


5.4 Use of Irreducible Representations 147

elements vanish. However, when we classify the degenerate states according to the
irreducible representations of the group of the wave vector, we are able to simplify
the secular equation by virtue of a fundamental theorem on matrix elements.

Theorem on Matrix Elements (without proof)

Matrix elements of any operator which is invariant under all the operations of a
group are zero between functions belonging to different IR’s of the group. Matrix
elements are also zero between functions belonging to different rows of the same
representation.

When one classifies the degenerate states according to the IR’s of the group of the
wave vector, many of the degenerate states will belong to different IR’s and therefore
the off-diagonal matrix elements of V (r) between them will vanish.

5.4.1 Determining the Linear Combinations of Plane Waves
Belonging To Different IR’s

Let us begin by considering the states at Γ of a square lattice. The plane-wave wave
functions and energies are given, respectively, by

Ψl1l2(Γ ) = e
2πi
a (l1x+l2 y)

El1l2(Γ ) = h2

2ma2 (l
2
1 + l22).

(5.34)

Therefore, the energies at Γ , the bands corresponding to that energy, and the degen-
eracy are as given in Table5.7.

At EΓ = 0, there is a single state (let us measure E in units of h2

2ma2 ). The wave
function is given by

Ψ00(Γ ) = 1 (5.35)

It is unchanged by every operation of GΓ , the group of the wave vector Γ . Therefore,
it belongs to the IR Γ1 because every element of GΓ operating onΨ00 gives+1×Ψ00

or every operation is represented by the 1× 1 unit matrix D = 1. This, of course, is
the Γ1 representation. At EΓ = 1, there are four states

Table 5.7 Empty lattice energy at Γ and its degeneracy for a two dimensional square lattice

2ma2

h2
E(Γ ) Bands (l1, l2) Degeneracy

0 (0,0) 1

1 (±1, 0); (0,±1) 4

2 (−1,±1); (1,±1) 4

4 (±2, 0); (0,±2) 4

5 (−1,±2); (1,±2); (−2,±1); (2,±1) 8
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Ψ±1,0(Γ ) = e± 2πi
a x ,

Ψ0,±1(Γ ) = e± 2πi
a y . (5.36)

The eight operations of GΓ change x into ±x and y into ±y or x into ±y and y
into ±x . From the four function Ψ±1,0 and Ψ0,±1 we can form the following linear
combinations

Ψ (Γ1) = cos
2πx

a
+ cos

2πy

a
∝ Ψ1,0 + Ψ−1,0 + Ψ0,1 + Ψ0,−1, (5.37)

Ψ (Γ3) = cos
2πx

a
− cos

2πy

a
∝ Ψ1,0 + Ψ−1,0 − Ψ0,1 − Ψ0,−1, (5.38)

and

Ψ (Γ5) =
(

Ψ (1)(Γ5)

Ψ (2)(Γ5)

)

=
(
sin 2πx

a

sin 2πy
a

)

∝
(

Ψ1,0 − Ψ−1,0

Ψ0,1 − Ψ0,−1

)

. (5.39)

Because the cosine function is an even function of its argument, every operation of
GΓ leaves (cos 2πx

a + cos 2πy
a ) unchanged, and this function transforms according to

the IR Γ1. The function (cos 2πx
a − cos 2πy

a ) is left unchanged by operations (E,R2,
mx,my) which change x → ±x , but it changes to minus itself under operations
(R1,R3, m+,m−) which change x → ±y. Thus the operations of GΓ operating
on (cos 2πx

a − cos 2πy
a ) do exactly the same thing as multiplying by the matrices

belonging to the representation Γ3. In a similar way one can show that the operations

of GΓ operating on the column vector

(
sin 2πx

a

sin 2πy
a

)

have exactly the same effect as

multiplying by the set of matrices forming the 2 × 2 representation Γ5.

Exercise

The reader should determine the linear combinations of plane waves at EΓ = 2 and
EΓ = 4 belonging to the appropriate IR’s of GΓ .

At EΓ = 5 there are eight states

Ψ±1,±2(Γ ) = e
2πi
a (±x±2y),

Ψ±2,±1(Γ ) = e
2πi
a (±2x±y).

(5.40)

The simplest way to determine the linear combinations belonging to IR’s of GΓ is
first to form sine and cosine functions like



5.4 Use of Irreducible Representations 149

Ψ1 = cos 2π
a x cos 2π

a 2y,

Ψ2 = cos 2π
a 2x cos

2π
a y,

Ψ3 = sin 2π
a x sin 2π

a 2y,

Ψ4 = sin 2π
a 2x sin

2π
a y,

Ψ5 = cos 2π
a x sin 2π

a 2y,

Ψ6 = cos 2π
a 2x sin

2π
a y,

Ψ7 = sin 2π
a x cos 2π

a 2y,

Ψ8 = sin 2π
a 2x cos

2π
a y.

It is easy to see how theseΨ ′
i s are transformed by the operations of GΓ . For example,

all operations of GΓ which transform x → ±x transformΨ1 into itself; all operations
which transform x → ±y transform Ψ1 into Ψ2. Therefore, the linear combination
Ψ1 + Ψ2 is unchanged by every operation of GΓ and belongs to Γ1. The linear
combination Ψ1 − Ψ2 is unchanged by the operations which take x → ±x , but
changed to −(Ψ1 − Ψ2) by operations which take x → ±y. Thus Ψ1 − Ψ2 belongs
to the IR Γ3 We find, by similar analysis

Ψ (Γ1) = cos 2π
a x cos 2π

a 2y + cos 2π
a 2x cos

2π
a y = Ψ1 + Ψ2,

Ψ (Γ3) = cos 2π
a x cos 2π

a 2y − cos 2π
a 2x cos

2π
a y = Ψ1 − Ψ2,

Ψ (Γ2) = sin 2π
a x sin 2π

a 2y − sin 2π
a 2x sin

2π
a y = Ψ3 − Ψ4,

Ψ (Γ4) = sin 2π
a x sin 2π

a 2y + sin 2π
a 2x sin

2π
a y = Ψ3 + Ψ4,

Ψ (1)(Γ5) =
(
cos 2π

a x sin 2π
a 2y

cos 2π
a y sin 2π

a 2x

)

=
(

Ψ5

Ψ8

)

,

Ψ (2)(Γ5) =
(
sin 2π

a x cos 2π
a 2y

sin 2π
a y cos 2π

a 2x

)

=
(

Ψ7

Ψ6

)

.

(5.41)
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5.4.2 Compatibility Relations

The character tables for 4mm and its principal subgroups are listed in Tables5.8,
5.9, 5.10 and 5.11. Notice that under the operation mx, functions belonging to the
IR’s

1. Γ1 and Γ3 are unchanged.
2. Γ2 and Γ4 change sign.
3. X1 and X3 are unchanged.
4. X2 and X4 change sign.
5. Δ1 are unchanged.
6. Δ2 change sign.

Table 5.8 Character table of the groups 4mm and its principal subgroups

Γ1 = M1 Γ2 = M2 Γ3 = M3 Γ4 = M4 Γ5 = M5

E 1 1 1 1 2

R2 1 1 1 1 −2

R1, R3 1 1 −1 −1 0

mx, my 1 −1 1 −1 0

m+, m− 1 −1 −1 1 0

Table 5.9 Character table of a principal subgroup GX

X1 X2 X3 X4

E 1 1 1 1

R2 1 1 −1 −1

mx 1 −1 1 −1

my 1 −1 −1 1

Table 5.10 Character table of a principal subgroup GΔ

Δ1 Δ2

E 1 1

mx 1 −1

Table 5.11 Character table of a principal subgroup G�

�1 �2

E 1 1

m+ 1 −1
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Because of this only a Δ1 band can begin at an Γ1 or Γ3 band and only a Δ1 band
can end at an X1 or X3 band. We call such restrictions compatibility relations. For
our purpose it is sufficient to know that

• A band Δ1 can connect Γ1, Γ3, Γ5 to X1,X3.
• A band Δ2 can connect Γ2, Γ4, Γ5 to X2,X4.
• A band �1 can connect Γ1, Γ4, Γ5 to M1,M4,M5.
• A band �2 can connect Γ2, Γ3, Γ5 to M2,M3,M5.

5.5 Using the Irreducible Representations in Evaluating
Energy Bands

Instead of labeling energy bands at particular symmetry points or along particular
symmetry lines by the integers (l1, l2) [or in three-dimensions (l1, l2, l3)], it is possible
to label the states by their energy and by the linear combination belonging to a
particular IR of Gk. Thus, at the Γ point of E = 1 · h2

2ma2 we may write the four states
as

|l1, l2〉 =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

|1, 0〉 = e
2πi
a x

| − 1, 0〉 = e− 2πi
a x

|1, 0〉 = e
2πi
a y

|0,−1〉 = e− 2πi
a y

(5.42)

or we can write (in units of h2

2ma2 = 1)

|EΓ = 1, Γ1〉 = cos
2πx

a
+ cos

2πy

a
(5.43)

|EΓ = 1, Γ3〉 = cos
2πx

a
− cos

2πy

a
(5.44)

( |EΓ = 1, Γ5〉1
|EΓ = 1, Γ5〉2

)

=
(

Ψ (1)(Γ5)

Ψ (2)(Γ5)

)

=
(
sin 2πx

a

sin 2πy
a

)

. (5.45)

There is a distinct advantage to using the basis functions belonging to IR’s of GΓ

that results from the theorem on matrix elements.
Any matrix elements of the periodic potential (i.e. an operator with the full sym-

metry of the point group) between states belonging to different IR’s is zero. Thus,
the secular equation becomes

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

ε0(Γ1) − E 〈Γ10 |V | 1Γ1〉 〈Γ10 |V | 1Γ3〉 〈Γ10 |V | 1Γ5〉1 · · ·
〈Γ11 |V | 0Γ1〉 ε1(Γ1) − E 〈Γ11 |V | 1Γ3〉 〈Γ11 |V | 1Γ5〉1 · · ·
〈Γ31 |V | 0Γ1〉 〈Γ31 |V | 1Γ1〉 ε1(Γ3) − E 〈Γ31 |V | 1Γ5〉1 · · ·
1〈Γ51 |V | 0Γ1〉 1〈Γ51 |V | 1Γ1〉 1〈Γ51 |V | 1Γ3〉1 ε1(Γ5) − E · · ·
2〈Γ51 |V | 0Γ1〉 2〈Γ51 |V | 1Γ1〉

...
...

...
...

...

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= 0 (5.46)
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Equation (5.46) reduces to

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

ε0(Γ1) − E 〈Γ10 |V | 1Γ1〉 0 0 · · ·
〈Γ11 |V | 0Γ1〉 ε1(Γ1) − E 0 0 · · ·

0 0 ε1(Γ3) − E 0 · · ·
0 0 0 ε1(Γ5) − E · · ·
0 0 0 0 · · ·
...

...
...

... · · ·

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= 0 (5.47)

Here εn(Γ j ) = h2

2ma2 n
2 + 〈Γ j n |V | Γ j n〉. There are two things to be noted:

1. The matrix elements of V between different IR’s vanish, so many off-diagonal
matrix elements are zero. This reduces the determinant equation to a block diag-
onal form.

2. The diagonal matrix elements 〈Γ j n |V | Γ j n〉 are, in general, different for different
IR’s Γ j . This lifts the degeneracy at the symmetry points and splits the four-fold
degeneracy into non-degenerate states Γ1 and Γ3 and one doubly degenerate state
Γ5 at E(Γ ) � 1 · h2

2ma2 .

When the energy bands along Δ and along X are classified according to the IR’s
of the appropriate symmetry group, a band structure like that sketched in Fig. 5.7
results. The degeneracies at Γ and X are lifted by the diagonal matrix elements
of the potential. The rare case when two different IR’s have the same value of the
diagonal matrix element of V (r) is called as accidental degeneracy. Two Δ-bands



Fig. 5.7 Electronic energy bands of a square lattice with V �= 0 along the line Γ → Δ → X. The
bands are schematic, showing where splittings and anticrossings occur on the simplified diagram
(Fig. 5.6) which connects E(Γ ) and E(X) by straight lines
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belonging to Δ1, or two belonging to Δ2 cannot cross because they are coupled by
the non-vanishing matrix elements of V (r) between the two bands. However, a Δ1

band can cross a Δ2 band because 〈ΨΔ1 |V (r)|ΨΔ2〉 = 0. Bands that are widely
separated in energy (e.g. the bands at E(Γ ) = 1 and E(Γ ) = 4) can be treated by
perturbation theory as was done in the nearly free electron model. One can observe
that degeneracies do not occur frequently for bands belonging to the same IR’s at Γ
(or at X) until the energies become high.

5.6 Empty Lattice Bands for Cubic Structure

5.6.1 Point Group of a Cubic Structure

Every operation of the cubic group will turn x into ±x , ±y, ±z. It is easy to see that
there are 48 different operations that can be listed as follows.

1. x → ±x , y → ±y, z → ±z.
2. x → ±x , y → ±z, z → ±y.
3. x → ±y, y → ±x , z → ±z.
4. x → ±y, y → ±z, z → ±x .
5. x → ±z, y → ±y, z → ±x .
6. x → ±z, y → ±x , z → ±y.

Since there are ± signs we have two possibilities at each step, giving 23 = 8 opera-
tions on each line or 48 operations all together.

We can also think of the 48 operations in terms of 24 proper rotations and 24
improper rotations:

Proper Rotations

E; Identity → 1 operation
4; Rotation by ±90◦ about x, y, or z-axis → 6 operations
42; Rotation by ±180◦ about x, y, or z-axis → 3 operations
2; Rotation by ±180◦ about the six [110], [11̄0], [101], [101̄], [011], [011̄] axes →

6 operations
3; Rotation by ±120◦ about the four 〈111〉 axes → 8 operations Hence, we have 24

proper rotations in total.

Improper Rotations

Multiply each by J (inversion operator: r → −r) to have 24 improper rotations. The
24 improper rotations are obtained by multiplying each of the 24 proper rotations by
J, the inversion operation (r → −r). Clearly there are 10 classes and 48 operations.
Using the theorem ∑

i=IR

l2i = g
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Table 5.12 Characters and IR’s of cubic group

(Number of operations)
Class →

Representation ↓

(1)
E

(3)
42

(6)
4

(6)
2

(8)
3

(1)
J

(3)
J42

(6)
J4

(6)
J2

(8)
J3

Γ1 (A1g) 1 1 1 1 1 1 1 1 1 1

Γ2 (A2g) 1 1 −1 −1 1 1 1 −1 −1 1

Γ12 (Eg) 2 2 0 0 −1 2 2 0 0 −1

Γ ′
15 (T1g) 3 −1 1 −1 0 3 −1 1 −1 0

Γ ′
25 (T2g) 3 −1 −1 1 0 3 −1 −1 1 0

Γ ′
1 (A1u) 1 1 1 1 1 −1 −1 −1 −1 −1

Γ ′
2 (A2u) 1 1 −1 −1 1 −1 −1 1 1 −1

Γ ′
12 (Eu) 2 2 0 0 −1 −2 −2 0 0 1

Γ15 (T1u) 3 −1 1 −1 0 −3 1 −1 1 0

Γ25 (T2u) 3 −1 −1 1 0 −3 1 1 −1 0

we can see that there are 10 IR’s, four one-dimensional, and two two-dimensional,
and four three-dimensional ones, so that

2{12 + 12 + 22 + 32 + 32} = 48.

Characters and irreducible representations of the cubic group are listed in Table5.12.

5.6.2 Face Centered Cubic Lattice

The primitive translation vectors of a face centered cubic lattice are given by

a1 = a

2
(x̂ + ŷ), a2 = a

2
(ẑ + x̂), a3 = a

2
(ŷ + ẑ). (5.48)

The primitive vectors of the reciprocal lattice (including the factor 2π) are

b1 = 2π

a
(−x̂ − ŷ + ẑ),b2 = 2π

a
(−x̂ + ŷ − ẑ),b3 = 2π

a
(x̂ − ŷ − ẑ). (5.49)

An arbitrary vector of the reciprocal lattice can be written as

Gk = h1b1 + h2b2 + h3b3,

Gk = 2π
a

[
(−h1 − h2 + h3)x̂ + (−h1 + h2 − h3)ŷ + (h1 − h2 − h3)ẑ

]
.

(5.50)
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WQ
Z

Fig. 5.8 The first Brillouin zone of the fcc lattice

Brillouin Zone

There are eight shortest and six next shortest reciprocal lattice vectors from the origin
of reciprocal space to neighboring points (remember that the reciprocal lattice of an
fcc is a bcc). They are given by

(i) the eight vectors 2π
a

[±x̂,±ŷ,±ẑ
]
whose length is |G| = 2π

a

√
3.

(ii) the six vectors 2π
a (±2x̂), 2π

a (±2 ŷ), 2π
a (±2ẑ) whose length is |G| = 2π

a · 2.
The first Brillouin zone is the volume enclosed by the planes which are the perpen-
dicular bisectors of these 14G-vectors. The first Brillouin zone of the fcc lattice has
six square faces perpendicular to (100) and 8 hexagonal faces perpendicular to (111)
(see Fig. 5.8).

The names of high symmetry points are labeled in Fig. 5.8. Γ is the origin. Arbi-
trary points along (100), (110), and (111) directions are called Δ, �, and �, respec-
tively. The special points X, L, K and W are

X = 2π

a
(1, 0, 0),L = 2π

a

(
1

2
,
1

2
,
1

2

)

,K = 2π

a

(
3

4
,
3

4
, 0

)

,W = 2π

a

(
1

2
, 1, 0

)

.

The energy of a free electron is given by

E = h2

2ma2
[
(l1 + ξ)2 + (l2 + η)2 + (l3 + ζ)2

]
(5.51)

where
l1 = −h1 − h2 + h3, l2 = −h1 + h2 − h3, l3 = h1 − h2 − h3
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and hi are integers. If we measure energy in units of h2

2ma2 , then

E(Γ ) = l21 + l22 + l23 ,

E(X) = (l1 + 1)2 + l22 + l23 ,

E(L) = (
l1 + 1

2

)2 + (
l2 + 1

2

)2 + (
l3 + 1

2

)2
.

(5.52)

One should obtain a table similar to Table5.13. From the table you constructed, you
can draw the empty lattice band structure, showing the bands going from Γ → X
and from Γ → L. This empty lattice band structure is shown in Fig. 5.9. Note that
k = 2π

a x̂ at X and k = π
a (x̂ + ŷ + ẑ) at L. The energy E is sketched as a function of

k.

5.6.3 Body Centered Cubic Lattice

The primitive translations of the reciprocal lattice (including 2π) are

b1 = 2π

a
(x̂ + ẑ),b2 = 2π

a
(−x̂ + ŷ),b3 = 2π

a
(−ŷ + ẑ). (5.53)

Therefore a general reciprocal lattice vector Gh1h2h3 is given by

Gh1h2h3 = h1b1 + h2b2 + h3b3

= 2π

a

[
(h1 − h2)x̂ + (h2 − h3)ŷ + (h3 + h1)ẑ

]
. (5.54)

The 12 shortest reciprocal lattice vectors are

±2π

a

(
x̂ ± ŷ

)
,±2π

a

(
ŷ ± ẑ

)
,±2π

a

(
x̂ ± ẑ

)
.

They have length 2π
a

√
2. The first Brillouin zone is formed by the 12 planes that bisect

these 12 shortest reciprocal lattice vectors (see Fig. 5.10a). Figure5.10b shows the
cross section of the four planes that bisect the shortestG = ± 2π

a (x̂± ŷ) perpendicular
to the z axis of the first Brillouin zone of the bcc lattice. The empty lattice energy
bands can be written by

El1l2l3 = h2

2ma2
[
(l1 + ξ)2 + (l2 + η)2 + (l3 + ζ)2

]
(5.55)

where
l1 = h1 − h2, l2 = h2 − h3, l3 = h3 + h1,
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Table 5.13 Energies for fcc empty lattice E(Γ ) ≤ 8. Energy is measured in units of h2

2ma2

h1 h2 h3 l1 l2 l3 E(Γ ) E(X) E(L)

0 0 0 0 0 0 0 1 3
4

1 0 0 −1 −1 1 3 2 11
4

−1 0 0 1 1 −1 3 6 19
4

0 1 0 −1 1 −1 3 2 11
4

0 −1 0 1 −1 1 3 6 19
4

0 0 1 1 −1 −1 3 6 11
4

0 0 −1 −1 1 1 3 2 19
4

1 1 1 −1 −1 −1 3 2 3
4

−1 −1 −1 1 1 1 3 6 27
4

1 1 0 −2 0 0 4 1 11
4

−1 −1 0 2 0 0 4 9 27
4

1 0 1 0 −2 0 4 5 11
4

−1 0 −1 0 2 0 4 5 27
4

0 1 1 0 0 −2 4 5 11
4

0 −1 −1 0 0 2 4 5 27
4

1 −1 0 0 −2 2 8 9 35
4

−1 1 0 0 2 −2 8 9 35
4

1 0 −1 −2 0 2 8 5 35
4

−1 0 1 2 0 −2 8 13 35
4

0 1 −1 −2 2 0 8 5 35
4

0 −1 1 2 −2 0 8 13 35
4

2 1 1 −2 −2 0 8 5 19
4

−2 −1 −1 2 2 0 8 13 51
4

1 2 1 −2 0 −2 8 5 19
4

−1 −2 −1 2 0 2 8 13 51
4

1 1 2 0 −2 −2 8 9 19
4

−1 −1 −2 0 2 2 8 9 51
4

and hi are integers. We use the symbols of k = 2π
a (ξ, η, ζ), H = 2π

a (1, 0, 0),

P = 2π
a ( 12 ,

1
2 ,

1
2 ), and N=2π

a ( 12 ,
1
2 , 0). Thus, we have, in units of

h2

2ma2
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(6)

Fig. 5.9 Empty lattice band of the fcc lattice. The energy E is measured in units of h2

2ma2
and plotted

as a function of k. Each band is schematically represented by a straight line going from El(Γ ) to
El(X) or El(L) even though the bands really have a more complicated (quadratic form) dependence
of the Bloch wave vector k. The set of integers (l1, l2, l3) is indicated for each band

(a) (b)

Fig. 5.10 (a) First Brillouin zone of the bcc lattice. (b) Cross section of the four planes bisecting
the G = ± 2π

a (x̂ ± ŷ) perpendicular to the z axis of the first Brillouin zone of a bcc lattice
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El1l2l3(Γ ) = l21 + l22 + l23 ,

El1l2l3(H) = (l1 + 1)2 + l22 + l23 ,

El1l2l3(P) = (
l1 + 1

2

)2 + (
l2 + 1

2

)2 + (
l3 + 1

2

)2
,

El1l2l3(N) = (
l1 + 1

2

)2 + (
l2 + 1

2

)2 + l23 .

(5.56)

Since l1 = h1 − h2, l2 = h2 − h3, l3 = h3 + h1, we can write

E(Γ ) = (h1 − h2)2 + (h2 − h3)2 + (h1 + h3)2,

E(H) = (h1 − h2 + 1)2 + (h2 − h3)2 + (h1 + h3)2,

E(P) = (
h1 − h2 + 1

2

)2 + (
h2 − h3 + 1

2

)2 + (
h1 + h3 + 1

2

)2
,

E(N) = (
h1 − h2 + 1

2

)2 + (
h2 − h3 + 1

2

)2 + (h1 + h3)2.

(5.57)

5.7 Energy Bands of Common Semiconductors

Many common semiconductors which crystallize in the cubic zincblende structure
have valence–conduction band structures that are quite similar in gross features. This
results from the fact that each atom (or ion) has four electrons outside a closed shell
and there are two atoms per primitive unit cell. For example, silicon has the electron
configuration [Ne]3s23p2, i.e., two 3s electrons and two 3p electrons outside a closed
neon core. With two silicon atoms per primitive unit cell, this gives eight electrons
per primitive unit cell. The empty lattice has a single Γ1 band at EΓ = 0 and 8-
fold degenerate bands at EΓ = 3. The eightfold degeneracy is lifted by the periodic
potential, so the valence and conduction bands atΓ will arise from these eight bands.
Germanium has the electron configuration of [Ar]3d104s24p2, and III–V compounds
like GaAs

{
Ga

([Ar]3d104s24p1
)
As

([Ar]3d104s24p3
)}

look just like Ge if one 4p
electron transfers from As to Ga leaving a somewhat ionic Ga−As+ molecule in the
unit cell instead of two Ge atoms. The same is true if any III–V elements replace a
pair of Si atoms or Ge atoms in a zincblende structure.

A nice example of the use of group concepts in studying energy band structure
is a simple nearly free electron type model used to give a rather good description
of the valence–conduction band semiconductors with zincblende structures. We will
give a rough sketch of the calculation, referring the reader to an article by D. Brust.2

To describe the band structures of Si and Ge, Brust use the following 15 plane-
wave wave functions corresponding to the 15 bands at Γ which have energy E ≤ 4
(see the 15 bands at Γ in Fig. 5.9). We can write these 15 plane waves as wi , with
i = 1, 2, 3, . . . , 15 defined by

2D. Brust, Phys. Rev. 134, A1337 (1964).
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w0 = 1 E0(Γ ) = 0,

w1 = w∗
5 = e

2πi
a (x+y+z) E1(Γ ) = E5(Γ ) = 3,

w2 = w∗
6 = e

2πi
a (x−y−z) E2(Γ ) = E6(Γ ) = 3,

w3 = w∗
7 = e

2πi
a (−x+y−z) E3(Γ ) = E7(Γ ) = 3,

w4 = w∗
8 = e

2πi
a (−x−y+z) E4(Γ ) = E8(Γ ) = 3,

w9 = w∗
12 = e

2πi
a x E9(Γ ) = E12(Γ ) = 4,

w10 = w∗
13 = e

2πi
a y E10(Γ ) = E13(Γ ) = 4,

w11 = w∗
14 = e

2πi
a z E11(Γ ) = E14(Γ ) = 4,

From these 15 functions w0, w1, . . . , w14, one can construct linear superpositions
belonging to IR’s of the group of the wave vector Γ , X, L, etc. Some examples are

Ψ1 = 1√
V
w0 belongs to Γ1,

Ψ2 = 1√
8V

[w1 − w2 − w3 − w4 + w5 − w6 − w7 − w8] belongs to Γ1,

...
...

Ψ9 = 1√
8V

[w1 + w2 − w3 + w4 − w5 − w6 + w7 − w8] belongs to Γ15,

Ψ10 = 1√
8V

[w9 + w10 + w11 − w12 − w13 − w14] belongs to Γ ′
2,

...
...

Ψ15 = 1√
2V

[w11 + w14] belongs to Γ25.

If you use these combinations of plane waves, the Schrödinger equation breaks up
into a block diagonal 15 × 15 matrix as shown in (5.58).

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

Γ1

Γ ′
25[3 × 3]

Γ15[3 × 3]
Γ ′
2

Γ1

Γ1

Γ12[2 × 2]
Γ25[3 × 3]

∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣
∣

= 0. (5.58)

Here Γ1 and Γ ′
2 are 1 × 1, Γ12 is a 2 × 2, and Γ15, Γ25, and Γ ′

25 are 3 × 3 matrices,
respectively.Off diagonal elements andbands in higher empty lattice states are treated
by standard non-degenerate perturbation theory.

Now the question arises “What do we use for the periodic potential V (r) =∑
l1l2l3

Vl1l2l3e
iKl·r ?” Brust simply treated the parameters Vl1l2l3 as phenomenological
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Fig. 5.11 Simple band structure of Si along [111] and [100] directions

coefficients to be obtained by fitting band gaps and effectivemassesmeasured experi-
mentally or fittingmore detailed first-principles band structure calculations.He found
that he could obtain a reasonably satisfactory fit by keeping only three parameters:

V (3) = Vl1l2l3 when l21 + l22 + l23 = 3,

V (8) = Vl1l2l3 when l21 + l22 + l23 = 8,

V (11) = Vl1l2l3 when l
2
1 + l22 + l23 = 11.

(5.59)

Remember, by cubic symmetry, V1,1,1 = V1,1,−1 = V1,−1,−1 = V−1,−1,−1 etc. For Si,
Brust found that V (3) � −0.21 Ry, V (8) � 0.04 Ry, V (11) � 0.08 Ry. For Ge he
found that V (3) � −0.23 Ry, V (8) � 0.00 Ry, V (11) � 0.06 Ry.

The band structure obtained for Si is illustrated in Fig. 5.11 including momentum
independent exchange potential as calculated by Kleinman and Phillips.3 This dia-
gram shows 11 bands at Γ out of the 15 bands we put into the calculation. Since
there are two atoms per unit cell and four valence electrons per atom, we have eight
electrons per unit cell or enough to fill four bands. Thus the Γ ′

25 state is the top of
the valence band. The conduction band is Γ15 at Γ , but the minimum is at near the
X-point, so the conduction band minimum has six valleys, each very near one of the
six X points.

3L. Kleinman and J. C. Phillips, Phys. Rev. 118, 1153 (1960).
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Problems

5.1 Consider the empty lattice band of a two-dimensional square lattice. At E(X) =
0.25 h2

2ma2 there are two degenerate bands. At E(X) = 1.25 h2

2ma2 there are four. Deter-
mine the linear combinations of degenerate states at these points belonging to the
IR’s of GX. Do the same for E() = h2

2ma2 and 2 h2

2ma2 .

5.2 Consider the group of a two-dimensional square lattice. Use your knowledge of
the irreducible representations at E(Γ ) = 0, 1, 2 (in units of h2

2ma2 ) and at E(X) =
0.25 and 1.25, together with the compatibility relations to determine the irreducible
representations for each of these bands along the line Δ.

5.3 Tabulate E(Γ ), E(H), E(P) for all bands that have E ≤ 4 [ h2

2ma2 ] for a bcc
lattice. Then sketch E vs. k along Δ(Γ → H) and along �(Γ → P).

5.4 Do the same as above in Problem 5.3 for a simple cubic lattice where

E� = h2

2ma2
[
(�1 + ξ)2 + (�2 + η)2 + (�3 + ζ)2

]

for Γ , X = π
a (1, 0, 0), and R = π

a (1, 1, 1). Sketch E vs. k along Γ → X and along

Γ → R for all bands having E� ≤ 4 [ h2

2ma2 ].

5.5 Use the irreducible representations at E(X) = 0.25 [ h2

2ma2 ] of a square lattice to
evaluate

Vi j = 〈ΨXi (0.25) | V (r) | ΨX j (0.25)〉

where ΨXi (0.25) is the wave function at E(X) = 0.25 [ h2

2ma2 ] belonging to the
irreducible representation Xi .

(a) Show that Vi j = 0 if i �= j .
(b) Show that the diagonal matrix elements give the same energies (and band gap)

as obtained by degenerate perturbation theory with the original plane waves.

5.6 A two dimensional rectangular lattice has a reciprocal lattice whose primitive
translations, including the 2π, are b1 = 2π

a x̂ and b2 = 2π
a

1√
2
ŷ.
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(a) List the operations belonging to GΓ .
(b) Do the same for GX and GΔ.
(c) For the empty lattice thewave functions and energies can bewrittenψl(k, r) =

exp i(k + Kl) · r and El(k) = �
2

2m (k + Kl)
2. Here, Kl = l1b1 + l2b2, and l1

and l2 are integers. Tabulate the energies at Γ and at X for (l1, l2) = (0, 0),
(0,±1), (−1, 0), (1, 0), and (−1,±1).

(d) Sketch (straight lines are OK) E vs. k along the line Δ (going from Γ to X)
for these bands.

(e) Two degenerate bands at the point E(Γ ) = 0.5 connect to E(X) = 0.75.
Write down the wave functions for an arbitrary value of kx for these two
bands.

(f) From these wave functions, construct the linear combinations belonging to
irreducible representations of GΔ.

5.7 Graphene has a two-dimensional regular hexagonal reciprocal lattice whose
primitive translations are b1 = 2π

a (1,− 1√
3
) and b2 = 2π

a (0, 2√
3
).

(a) List the operations belonging to GΓ .
(b) Do the same for GK and GM. Note that kK = 2π

a ( 23 , 0) and kM = 2π
a ( 12 ,

1
2
√
3
).

(c) Write down the empty lattice wave functions and energies Ψl(k, r) and El(k)

at Γ and K.
(d) Tabulate the energies at Γ and at K for (l1, l2) = (0, 0), (0,±1), (±1, 0), (−1,

−1), and (1, 1).
(e) Sketch E versus k along the line going from Γ to K for these bands.
(f) Write down the wave functions for the three fold degenerate bands at the

energy E(K) = 4/9.

5.8 Construct linear combinations of 15 plane waves wi (i = 1, 2, . . . , 15), which
are given in the text, to construct Ψi belonging to irreducible representations of the
group of the wave vectors Γ , L , and X for the diamond structure.
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Summary

In this chapter we first reviewed elementary group theory and studied the electronic
band structure in terms of elementary concepts of the group theory. We have shown
that how group theory ideas can be used in obtaining the band structure of a solid.
Group representations and characters of two dimensional square lattice are discussed
in depth and empty lattice bands of the square lattice are illustrated. Concepts of
irreducible representations and compatibility relations are used in discussing the
symmetry character of bands connecting different symmetry points and the removal
of band degeneracies. We also discussed empty lattice bands of the cubic system and
sketched the band calculation of common semiconductors.

The starting point for many band structure calculations is the empty lattice
band structure. In the empty lattice band representation, each band is labeled by
� = (l1, l2, l3) where the reciprocal lattice vectors are given by

K� = l1b1 + l2b2 + l3b3

where (l1, l2, l3) = � are integers and bi are primitive translations of the reciprocal
lattice. Energy eigenvalues and eigenfunctions are written as

E�(k) = �
2

2m
(k + Kl)

2

and
Ψ�(k, r) = eik·reiK�·r.

The Bloch wave vector k is restricted to the first Brillouin zone.
The vector space formed by the degenerate bands at E(k) is invariant under the

operations of the group of the wave vector k. That is, the space of degenerate states
at a point k in the Brillouin zone provides a representation of the group of the wave
vector. k. We can decompose this representation into its irreducible components and
use the decomposition to label the states.

When we classify the degenerate states according to the IR’s of the group of the
wave vector, we are able to simplify the secular equation by virtue of a fundamental
theorem on matrix elements:

1. The matrix elements of V between different IR’s vanish, so many off-diagonal
matrix elements are zero. This reduces the determinant equation to a block diag-
onal form.

2. The diagonal matrix elements 〈Γ j n |V | Γ j n〉 are, in general, different for different
IR’s Γ j . This lifts the degeneracy at the symmetry points.

Many common semiconductorswhich crystallize in the cubic zincblende structure
have valence–conduction band structures that are quite similar in gross features. This
results from the fact that each atom has four electrons outside a closed shell and there
are two atoms per primitive unit cell.



Chapter 6
More Band Theory and the Semiclassical
Approximation

6.1 Orthogonalized Plane Waves

Thus far we have expanded the periodic part of the Bloch function u�(k, r) in a plane
wave basis, i.e.

u�(k, r) =
∑

K�′

C��′(k)eiK�′ ·r (6.1)

It often occurs that the series for u�(k, r) converges very slowly so thatmany different
plane waves must be included in the expansion. The reason for this is that plane wave
is not a very good description of the valence and conduction band states in the region
of real space in which the core levels are of large amplitude.What are the core levels?
They are the tightly bound atomic states associated with closed shell configurations.
States outside the core are valence states that are responsible for the binding energy
of the solid. For example, consider Table6.1.

Let us define the eigenfunction

|cj〉 = Ψc j (r − R j ) (6.2)

to be the core level c (c = 1s, 2s, 2p, 3s, . . .) of the atom located at position R j . The
valence and conduction band states that we are interested in must be orthogonal to
these core states. When we expand the periodic part of the Bloch function in plane
waves, it takes a very large number of plane waves to give band wave functions with
all the necessary wiggles needed to make them orthogonal to core states. For this
reason, the orthogonalized plane waves (OPW)was introduced by Herring and Hill.1

We define
|wk〉 = |k〉 −

∑

c′, j ′
〈c′ j ′|k〉|c′ j ′〉. (6.3)

1C. Herring, Phys. Rev. 57, 1169 (1940) and C. Herring and A. G. Hill, Phys. Rev. 58, 132 (1940).

© Springer International Publishing AG, part of Springer Nature 2018
J. J. Quinn and K.-S. Yi, Solid State Physics, UNITEXT for Physics,
https://doi.org/10.1007/978-3-319-73999-1_6
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Table 6.1 Electron configurations of core states and valence states of Na, Si, and Cu atoms

Atom Core states Valence states

Na 1s2, 2s2, 2p6 3s1 and higher

Si 1s2, 2s2, 2p6 3s2, 3p2 and higher

Cu 1s2, 2s2, 2p6, 3s2, 3p6 3d10, 4s1 and higher

Here |w j 〉 is an OPW, |k〉 is a simple plane wave, and the sum is over all core levels
on all atoms in the crystal. The core levels are solutions of the Schrödinger equation

[
−�

2∇2

2m
+ Vj (r) − Ec

]
Ψcj = 0 (6.4)

where Vj (r) is the atomic potential for the atom located at r j . Because the core levels
are tightly bound, this potential is essentially identical to the value of the periodic
crystalline potential in the unit cell centered at r j .

It is clear from (6.3) that |w j 〉 is orthogonal to the core levels since

〈cj |wk〉 = 〈cj |k〉 −
∑

c′, j ′
〈c′ j ′|k〉〈cj |c′ j ′〉, (6.5)

but the core levels themselves satisfy

〈cj |c′ j ′〉 = δcc′δ j j ′ (6.6)

This gives 〈cj |wk〉 = 0. In anOPWcalculation the periodic part of theBloch function
is expanded in OPW’s instead of in plane waves. This improves the convergence.

6.2 Pseudopotential Method

We can think of the operator P defined by

P =
∑

cj

|cj〉〈cj | (6.7)

as a projection operator. It gives the projection of any eigenfunction |φ〉 onto the core
states. If we expand the wave function Ψk in OPW’s, we can write

|Ψk〉 =
∑

K

aK |wk+K 〉 = (1 − P)
∑

K

aK |(k + K)〉. (6.8)
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Let us define |φk〉 = ∑
K aK |k+K〉 as the pseudo-wavefunction. Clearly we have

|Ψk〉 = (1 − P)|φk〉. (6.9)

We note that |φk〉 is the plane wave part of the OPW expansion. Both |cj〉 and |Ψk〉
are solutions of the Schrödinger equation

[
−�

2∇2

2m
+ V (r)

]
Ψ = EΨ, (6.10)

with eigenvalues Ec and E(k), respectively. Let us substitute |Ψ 〉 = (1− P)|φ〉 into
(6.10). This gives

[
−�

2∇2

2m
+ V (r) − E

]
(1 − P)|φ〉 = 0. (6.11)

Recall that
P|φ〉 =

∑

cj

|cj〉〈cj |φ〉. (6.12)

Therefore we have

HP|φ〉 =
∑

cj

H |cj〉〈cj |φ〉

=
∑

cj

Ec j |cj〉〈cj |φ〉. (6.13)

We use this in the Schrödinger equation to obtain

[
−�

2∇2

2m
+ V (r) − E

]
|φ〉 +

∑

cj

(E − Ecj )|cj〉〈cj |φ〉 = 0. (6.14)

We define an effective potential or pseudopotential by

W (r) = V (r) +
∑

cj

(E − Ecj )|cj〉〈cj |. (6.15)

The first term in the pseudopotential is just the usual periodic crystalline potential.
The second term is a non-local repulsive potential.

W (r)φ(r) = V (r)φ(r) + ∑
cj (E − Ecj )Ψcj (r)〈cj |φ(r ′)〉

= ∫
d3r ′

[
V (r ′)δ(r − r ′) + ∑

cj (E − Ecj )Ψcj (r)Ψ ∗
cj (r

′)
]
φ(r ′).

(6.16)
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It is clear thatW is non-local since only the first term involving the periodic potential
contains a δ-function. The second term

VR =
∑

cj

(E − Ecj )|cj〉〈cj | (6.17)

is repulsive as opposed to an attractive potential like V (r). We can see this by eval-
uating 〈φ|VR|φ〉 for any function φ. We find that

〈φ|VR|φ〉 =
∑

cj

(E − Ecj )|〈φ|cj〉|2. (6.18)

Because |〈φ|cj〉|2 is positive and the valence–conduction band energies E are, by
definition, larger than core levels,

〈φ|VR|φ〉 > 0. (6.19)

Therefore, VR cancels a portion of the attractive periodic potential V . The diagram
shown in Fig. 6.1 is a sketch of what the periodic potential V (r), the repulsive part
of the pseudopotential VR , and the full pseudopotential look like.

A number of people have used model pseudopotentials in which the potential is
replaced by the one shown in Fig. 6.2. The pseudopotential W (r) is taken to be a
local potential which has i) a constant value V0 inside a core or radius d and ii) the
actual potential V (r) for r > d. Both V0 and d are used as adjustable parameters to
fit the energy bands to experimental observation.

V

V

W(r)

V(r)

r

Fig. 6.1 A sketch of various potentials
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V
r

Fig. 6.2 A model pseudopotential

6.3 k · p Method and Effective Mass Theory

Often in discussing properties of semiconductors it ismore important to have a simple
analytic description of the band structure very close to a conduction band minimum
or valence band maximum than to have detailed numerical calculations of En(k)
and Ψnk throughout the Brillouin zone. One approach that has proven to be useful
is called the k · p method. We know that Ψk = exp ik · ruk(r) is a solution of the
Schrödinger equation

(
p2

2m
+ V (r) − Ek

)
Ψk(r) = 0. (6.20)

By substituting the Bloch wave form for Ψk , it is easy to see that uk(r) satisfies the
Schrödinger equation

[
(p + �k)2

2m
+ V (r) − Ek

]
uk(r) = 0. (6.21)

For k = 0 (i.e. at the Γ -point) this equation can be written

(
p2

2m
+ V (r) − E0

)
u0(r) = 0. (6.22)

There are an infinite number of solutions u(1)
0 , u(2)

0 , u(3)
0 , . . ., u(n)

0 , . . .with energies
at the Γ -point E (1)

0 , . . ., E (n)
0 , . . .. Here the superscript (n) is a band index and the

subscript 0 stands for k = 0. For any fixed value of k the set of functions u(n)
k (r)

form a complete orthonormal set in which any function with the periodicity of the
lattice can be expanded. Therefore, we can use the set of function u(n)

0 (r) as a basis
set for a perturbation expansion of u(m)

k for k �= 0 and for any band m. By this we
mean that we can write
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u(m)
k =

∑

n

a(m)
n (k)u(n)

0 . (6.23)

The Schrödinger equation for u(m)
k can be written

[
p2

2m
+ �

m
k · p + �

2k2

2m
+ V (r) − Ek

] ∑

n

a(m)
n (k)u(n)

0 (r) = 0. (6.24)

We omit the band superscript (m) for simplicity. We know that
[

p2

2m + V (r)
]
u(n)
0 =

E (n)
0 u(n)

0 , therefore we can write

(
E (n)
0 + �

2k2

2m
− Ek

) ∑

n

anu
(n)
0 (r) + �

m
k · p

∑

n

anu
(n)
0 (r) = 0. (6.25)

Take the scalar product with u(m)
0 remembering that 〈u(m)

0 |u(n)
0 〉 = δmn . This gives

[
E (m)
0 + εk − Ek

]
am +

∑

n

〈u(m)
0 | �

m
k · p|u(n)

0 〉an = 0. (6.26)

This is just a matrix equation of the form

⎛

⎜⎜⎜⎜⎜⎝

E (1)
0 + εk − Ek 〈u(1)

0 |H1|u(2)
0 〉 · · ·

〈u(2)
0 |H1|u(1)

0 〉 E (2)
0 + εk − Ek · · ·

〈u(3)
0 |H1|u(1)

0 〉 〈u(3)
0 |H1|u(2)

0 〉 · · ·
...

...
. . .

⎞

⎟⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎝

a1
a2
a3
...

⎞

⎟⎟⎟⎟⎠
= 0 (6.27)

Here H1 = �

mk · p, where p = −i�∇, εk = �
2k2

2m , and we have put 〈u(n)
0 |p|u(n)

0 〉 = 0.
This last result holds for crystals with a center of symmetry because parity is a good
quantum number and p is an operator that changes parity. If this matrix element does
not vanish it must be added to εk .

If we consider k to be small (compared to π
a ), then if 〈u(m)

0 | �

mk · p|u(n)
0 〉 does not

vanish, it is usually quite small compared to |E (n)
0 − E (m)

0 |. When the off-diagonal
elements are treated by perturbation theory, the resulting expression for E (n)

k iswritten
as

E (n)
k = E (n)

0 + �
2k2

2m
+ �

2

m2

∑

l

|k · 〈u(n)
0 |p|u(l)

0 〉|2
E (n)
0 − E (l)

0

. (6.28)

This can be rewritten as

E (n)
k = E (n)

0 + �
2

2
k · m∗−1 · k, (6.29)
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where the inverse effective mass tensor (for the band n) is given by

m∗
i j

−1 = m−1δi j + 2

m2

∑

l

〈u(n)
0 |pi |u(l)

0 〉〈u(l)
0 |p j |u(n)

0 〉
E (n)
0 − E (l)

0

. (6.30)

Because u(n)
0 is a periodic function with period a, the lattice spacing, the matrix

element 〈u(n)
0 |pi |u(l)

0 〉 is of the order of �

a if it does not vanish by symmetry consid-
erations. Thus for two coupled bands separated by an energy gap �E

m

m∗ � 1 + 2
�
2/ma2

�E
(6.31)

Since a � 3 × 10−8 cm, �
2

ma2 � 10eV, but typical gaps in semiconductors can be as
small as 10−1 eV. Thus in small gap semiconductors it is very possible to have

m∗ = m

1 + �2/ma2

�E

� 10−2 m.

Effective masses of 0.1–0.01m are not at all unusual in semiconductors.

Exercise

Demonstrate the effective masses of 0.1–0.01m for typical small-gap semiconduc-
tors. Here m denotes the mass of a free electron.

The simple perturbation theory breaks down when there are a number of almost
degenerate bands at the point in k-space about which the k · p expansion is being
made. In that case, it is necessary to keep all the nearly degenerate states in the
matrix Schrödinger equation and refrain from using second order (non-degenerate)
perturbation theory. One example of this is the Kane model2 used frequently in
zincblende semiconductors (like InSb, InAs, GaSb, GaAs, etc.). In these materials
there are four bands that are rather close together (see Fig. 6.3). If spin–orbit coupling
is included (it can be important in heavy atoms) onemust add to the periodic potential
V (r) the atomic spin–orbit coupling

�

4m2
0c

2
(σ × ∇rV ) · p (6.32)

Then the four bands become eight (including the spin splitting) and �k ·p is replaced
by � ·p where � = �k+ �

4m0c2
σ ×∇rV . The 8× 8 matrix must be diagonalized to

obtain a good description of the conduction–valence band structure near the Γ point.

2E. O. Kane, J. Phys. Chem. Solids 1, 82 (1956); ibid. 1, 249 (1957); Semiconductors and
Semimetals, Vol. 1, pp. 75–100 (Academic Press, New York, 1966).
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E 

k 

Fig. 6.3 Schematics of the band structure of zincblende semiconductors near the Γ point

6.4 Semiclassical Approximation for Bloch Electrons

When we considered the Sommerfeld model of free electrons, we discussed the
motion of electrons in response to electric fields and temperature gradients which
introduced r-dependence into the equilibrium distribution function

f0(ε) = 1

exp[ε−ζ(r)]/kBT (r) + 1
. (6.33)

The eigenfunctions of the Sommerfeld model were plane waves, so the probability
that an electron was at a given position r was independent of r. Therefore, the r -
dependence in f0(ε) only made sense if we introduced the idea of localized wave
packets defined by

Ψk(r, t) =
∑

k ′
g(k − k′) exp i(k′ · r − ωk′ t) (6.34)

where g(k − k′) � 0 if |k − k′| is larger than some value �k. By the Heisenberg
principle

�k�x
>∼ 1, (6.35)

so that the electron can be localized in a region �x of the order of (�k)−1. We must
have

1. �x 
 a, the atomic spacing
2. �x � L the distance over which the potential φ(x) = eEx or the temperature

T (x) changes appreciably.

Thus the semiclassical wave packet picture can be applied only to slowly varying (in
space) perturbations on the free electrons.
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In the presence of a periodic potential we have Bloch states (or Bloch electrons)
described by

ψnk(r) = exp ik · runk(r) (6.36)

and
E = εn(k) (6.37)

Here k is restricted to the first Brillouin zone, and there is a gap between different
energy bands at the same value of k, i.e., εn(k) − εn′(k) = EGAP(k) �= 0.

The semiclassical wave packet picture can be used to describe themotion of Bloch
electrons in a given band in response to slowly varying perturbations by taking

Ψnk(r) =
∑

k ′
gn(k − k′)ψnk′(r) (6.38)

with gn(k − k′) � 0 if |k − k′| > �k. Then, the standard expression for the group
velocity of a wave packet gives

vn(k) = 1

�
∇kεn(k) (6.39)

as the velocity of a Bloch electron of wave vector k in the nth band. In the presence of
a force F, the work done in moving an electron wave packet a distance δx is written
by

δW = F · δx = F · vnδt (6.40)

But this must equal the change in energy

δW = En(k + δk) − En(k)

= ∇kEn(k) · δk = �vn · k̇δt (6.41)

Equating (6.40) and (6.41) gives

k̇ = �
−1F. (6.42)

The semiclassical description of Bloch electrons satisfies the following rules:

(1) the band index n is a constant of the motion; no interband transitions are
allowed.

(2)

ṙ = vn(k) = 1

�
∇kεn(k). (6.43)

(3)

�k̇ = −e

(
E + 1

c
vn(k) × B

)
. (6.44)
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(4) the contribution of the nth band to the electron density will be

2 f0 (εn(k))
d3k

(2π)3
= d3k/4π3

1 + exp [(εn(k) − μ) /kBT ]
. (6.45)

For free electrons (Sommerfeld model), electrons are not restricted to one band but
move continuously in k-space according to �k̇ = Force. For Bloch electrons k is
restricted to the first Brillouin zone and k ≡ k+K. Clearly the restriction to band n
requirement must break down when the gap EGAP(k) becomes very small. It can be
shown (but not very easily) that the conditions

eEa � [EGAP(k)]
2

EF
(6.46)

and

�ωc � [EGAP(k)]
2

EF
. (6.47)

must be satisfied for the semiclassical treatment of Bloch electrons to be valid. Here
E is the electric field and a the atomic spacing. ωc is the electron cyclotron frequency
and EF the Fermi energy. The breakdown of the inequalities (6.46) and (6.47) lead to
interband transitions; they are knownas electric breakdown andmagnetic breakdown,
respectively.

Exercise

Estimate the threshold values for the electric field E and the cyclotron frequency ωc

at which the electric and the magnetic breakdowns begin to occur.

6.4.1 Effective Mass

The acceleration of a Bloch electron in band n can be written

an ≡ dvn
dt

= 1

�

d

dt
∇kεn(k)

= 1

�
∇k∇kεn(k) · dk

dt
(6.48)

If we write this tensor equation in terms of components we have

dv
(n)
i

dt
= 1

�

∑

j

∂

∂k j

∂

∂ki
εn(k)

dk j

dt
. (6.49)
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But �
dk j

dt = Fj , the j-component of the force. Thus we can write

dvn
dt

= m∗
n
−1 · F (6.50)

where the effective mass tensor is defined by

(
m∗

n
−1

)

i j
= 1

�2

∂2εn(k)

∂ki∂k j
. (6.51)

Measured effective masses in different materials have widely different values. For
example, in nickel there are electrons with m∗ � 15m while in InSb there are
electrons with m∗ � 0.015m.

6.4.2 Concept of a Hole

Symmetry requires that if a band has an energy ε(k), then the solid must have an
energy ε(−k) satisfying ε(−k) = ε(k). The group velocity of the states k and −k
are equal in magnitude and opposite in direction. In equilibrium, if the state k is
occupied, so is the state−k. Since the velocities are equal in magnitude and opposite
in direction, there is no current. A current is obtained by changing the probability of
occupancy of the electron states.

A filled band cannot carry any current even in the presence of an electric field.
Each electron is accelerated according to the equation

dk
dt

= 1

�
F. (6.52)

If F is in the x-direction, the electrons move in k space with kx (t) = kx (0) + 1
�
Fx t .

An electron arriving at kx = π
a (for a cubic crystal), the edge of the Brillouin zone,

reappears at kx = − π
a (i.e., it is Bragg reflected through kx − k ′

x = K = 2π
a . Thus at

all times the band is filled; for each electron at k there is one at −k with equal but
oppositely directed velocity. Therefore the electrical current density j = 0.

For a partially filled band we can write

j = 1

V

∑

occupied

k

(−e vk) . (6.53)

This can be rewritten as j = 1
V

[∑
k,entire band(−evk) − ∑

k,unoccupied(−evk)
]
. The

first term vanishes, so that
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(b)(a)

Fig. 6.4 Motion of an electron and a hole: panel (a) goes over to panel (b), and a hole moves with
electrons

j = 1

V

∑

k empty

+e vk. (6.54)

Thus for a nearly filled band, we can think of the current as being carried by holes,
empty states in the almost filled band. These act as if they have a charge +e instead
of −e, the charge on an electron.

Because the equation of motion in k space is

�k̇x = −eEx (6.55)

every electron in the nearly filled band moves in k space according to kx (t) =
kx (0)− eEx

�
t . Therefore the hole moves in the same direction; Fig. 6.4a goes over to b.

Of course, the effective mass m∗ near the top of a valence band is negative since

1

m∗ = 1

�2

∂2εk

∂k2
< 0. (6.56)

It is interesting to write down the following equations that describe the motion of
a hole

�k̇ = −e

(
E + 1

c
vh × B

)
. (6.57)

vh = 1

�
∇kεk. (6.58)

m−1
h = − 1

�2

∂2ε

∂k2
> 0. (6.59)

We can assume that a hole has a positive mass near the top of the band where an
electron has a negative mass. Then

dvh
dt

= mh
−1 ·

[
eE + e

c
vkh × B

]
. (6.60)
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Here we have used a positive massmh and a positive charge +e to describe the hole.
In the valence band of a semiconductor, a few holes can be thermally excited. They
can be treated as particles having positive mass and positive charge.

6.4.3 Effective Hamiltonian of Bloch Electron

We know that for Bloch electrons we can write

(i) E = εn(k) for the energy of an electron in the nth band.
(ii) Ψnk(r) = exp ik · runk(r), where unk(r) is periodic with the lattice periodicity.
We have seen that close to a minimum (e.g. at k = 0) we can write

εn(k) = εn(0) + �
2

2
k · m∗−1 · k. (6.61)

The form of this equation might lead us to write an effective Hamiltonian

Heff = εn(0) + �
2

2
(−i∇) · m∗−1 · (−i∇) , (6.62)

and an effective Schrödinger equation

Heffϕ(r) = Eϕ(r). (6.63)

The solution ϕ(r) of (6.63) is not a true wave function for an electron. For example,
if we set ϕ(r) = V−1/2 exp ik · r, we obtain E = εn(0) + �

2

2 k · m∗−1 · k. However,
the true wave functionΨ is obtained from the pseudo-wavefunctionϕ bymultiplying
it by unk, the periodic part of the Bloch function.

So far, we have not really done anything new. However, if we introduce a potential
W (r) which is very slowly varying on the atomic scale, we can take as the effective
Hamiltonian

Heff = εn(0) + �
2

2
(−i∇) · m∗−1 · (−i∇) + W (r). (6.64)

Then the solutions to (Heff − E) ϕ(r) = 0 will mix Bloch wave functions with
different values of k. The smooth function ϕ(r) is called the envelope function. This
approach can be justified rigorously if the perturbing potential W (r) and the energy
band εn(k) satisfy certain conditions.

It turns out that the effective Hamiltonian approach works not only in the regime
of the effective mass approximation. In fact, for a Bloch electron (in band n) in the
presence of a time independent vector potential A(r) and a scalar potential φ(r, t),
which is slowly varying in space and time, we may define an effective Hamiltonian
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Heff = εn

(
− i

�
∇ + e

c
A(r)

)
− eφ(r, t). (6.65)

This effective Hamiltonian leads to the semiclassical equation of motion

ṙ = 1

�
∇kεn(k) = vn(k) (6.66)

�k̇ = −eE − e

c
vn(k) × B, (6.67)

where E = −∇φ and B = ∇ × A.

Problems

6.1 AWannier function for the nth band of a one-dimensional lattice can be written

an(z − la) = 1√
N

∑

k

exp−iklaΨnk(z).

Here ψnk(z) is a Bloch function, an(z − la) a Wannier function localized around
z = la, and k = 2π

Na n, where − N
2 ≤ n ≤ N

2 − 1.

(a) Use the orthogonality relation 〈Ψnk |Ψnk ′ 〉 = δkk ′ to show that Wannier func-
tions on different sites are orthogonal, i.e.,

〈an(z − l ′a)|an(z − la)〉 = δll ′ .

(b) For themodel described in Problem4.6, determine an(z), theWannier function
for the site localized around the origin, i.e., l = 0.

6.2 Considerwave packets formed by linear combinations of Bloch functionswithin
a single band, with a spread �k in wave vectors about some particular value of k.
The wave packets are localized in coordinate space in a region �xi (i = 1, 2, 3)
centered on some point r = (x1, x2, x3), and �xi�ki � 1. The electron velocity is
given by the group velocity vn(k) = 1

�
∇kεn(k). The time rate of change of the wave

vector k is determined by dk
dt = 1

�
F, where F is the external force on the electron.

(a) For the case of a uniform electric field E constant in time, i.e., F = −eE x̂ ,
show that,

kx (t) = kx (0) − eE

�
t.

What happens when kx (t) reaches the Brillouin zone boundary?

http://dx.doi.org/10.1007/978-3-319-73999-1_4
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(b) If F = − e
cvn × Bẑ, the Lorentz force in a magnetic field B = Bẑ, show

that the electron moves on a path in k-space that is the intersection of a plane
kz = constant and a surface of constant energy ε(k) = constant.

6.3 Consider an electron initially at rest in the tight binding s-orbital energy band
for a body centered cubic crystal of lattice constant a.

(a) Find the trajectory r(t) of the electron in the presence of a uniform constant
electric field E. (One may use the result obtained in Problem4.3.)

(b) Estimate the amplitude of the Bloch oscillation |r0| under an electric field
E = 1.0x̂ [V/cm] and the band width γ = 1.0eV.

6.4 Consider the tight binding π-electron energy band ε(k) of graphene described
in Problem4.4.

(a) Obtain the effective mass near kΓ = (0, 0), the center of the Brillouin zone.
(b) Repeat the same as above but near kK = ( 2π3a , 2π

3
√
3a

). What can you say about
the behavior of the carriers in the low energy states in graphene?

6.5 Consider an energy band ε(k) = ε0 + c1k2xa
2 + c2k2ya

2 + c3k2z a
2 of a cubic

crystal with lattice constant a. Here ci are positive constants.

(a) Obtain the effective mass tensor m∗ of an electron.
(b) Assuming that c1 = c2 = c3 = c, consider the motion of an electron confined

in a potential W (r) = αr2. Here r2 = x2 + y2 + z2 and α > 0. Write
down the effective Schrödinger equations for the states of the electron in the
representation of the Bloch functions and then that in the representation of the
Wannier functions.

(c) Determine the lowest three energy eigenvalues of the electron in the presence
of the confinement potential W (r) = αr2.

Summary
In this chapter we studied more theories of band structure calculation and
semiclassical description of Bloch electrons. We first introduced orthogonalized
plane wave method for expanding the periodic part of the Bloch functions and dis-
cussed pseudopotential method and k ·p effective mass theory as practical alternative
ways of including the effects of periodic symmetry of crystal potential. Then the
semiclassical wave packet picture is discussed to describe the motion of the Bloch
electrons in a given band. In addition, ideas of effective mass and hole are shown to
be convenient in describing the behavior of band electrons.

It often occurs that the series for u�(k, r) = ∑
K�′ C��′(k)eK�′ ·r converges very

slowly so that many different plane waves must be included in the expansion. In
an orthogonalized plane wave calculation the periodic part of the Bloch function is
expanded in orthogonalized plane waves instead of in plane waves. This improves
the convergence. In many calculations, model pseudopotentialsW (r) are introduced
in such a way that W (r) is taken to be a local potential which has (1) a constant

http://dx.doi.org/10.1007/978-3-319-73999-1_4
http://dx.doi.org/10.1007/978-3-319-73999-1_4
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value V0 inside a core or radius d and (2) the actual potential V (r) for r > d. Both
V0 and d are used as adjustable parameters to fit the energy bands to experimental
observation.

In discussing properties of semiconductors it is often more important to have a
simple analytic description of the band structure very close to a conduction band
minimum or valence band maximum than to have detailed numerical calculations of
En(k) and Ψnk throughout the Brillouin zone. In a k · p method, energy eigenvalue
E (n)
k is written as

E (n)
k = E (n)

0 + �
2

2
k · m∗−1 · k,

where the inverse effective mass tensor (for the band n) is given by

m∗
i j

−1 = m−1δi j + 2

m2

∑

l

〈u(n)
0 |pi |u(l)

0 〉〈u(l)
0 |p j |u(n)

0 〉
E (n)
0 − E (l)

0

.

The semiclassical wave packet picture can be used to describe themotion of Bloch
electrons in a given band in response to slowly varying perturbations, and the group
velocity of a wave packet gives

vn(k) = 1

�
∇kεn(k)

as the velocity of a Bloch electron of wave vector k in the nth band. In the presence
of a force F, we have k̇ = �

−1F. The semiclassical description of Bloch electrons
satisfies the following rules:

(1) the band index n is a constant of themotion; no interband transitions are allowed.
(2) ṙ = vn(k) = 1

�
∇kεn(k).

(3) �k̇ = −e
(
E + 1

cvn(k) × B
)
.

(4) The contribution of the nth band to the electron density is

2 f0 (εn(k))
d3k

(2π)3
= d3k/4π3

1 + exp [(εn(k) − μ) /kBT ]
.

For free electrons, electrons are not restricted to one band but move continuously
in k-space according to �k̇ = Force. For Bloch electrons k is restricted to the first
Brillouin zone and k ≡ k + K. Clearly the restriction to band n requirement must
break down when the gap EGAP(k) becomes very small. The conditions

eEa � [EGAP(k)]
2

EF
; �ωc � [EGAP(k)]

2

EF
.
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must be satisfied for the semiclassical treatment of Bloch electrons to be valid. Here
E is the electric field and a the atomic spacing. ωc is the electron cyclotron frequency
and EF the Fermi energy.

The equation of motion becomes

dvn
dt

= m∗
n
−1 · F

where the effective mass tensor is defined by
(
m∗

n
−1)

i j
= 1

�2
∂2εn(k)

∂ki∂k j
.

The motion of a hole is described by

�k̇ = −e

(
E + 1

c
vh × B

)
; vh = 1

�
∇kεk; m−1

h = − 1

�2

∂2ε

∂k2
> 0.

Since a hole has a positive mass near the top of the band where an electron has a
negative mass, we have

dvh
dt

= mh
−1 ·

[
eE + e

c
vk × B

]
.

The effective Hamiltonian of Bloch electron is written, in the presence of slowly
varying potential W (r), as

Heff = εn(0) + �
2

2
(−i∇) · m∗−1 · (−i∇) + W (r).

In the presence of a time independent vector potential A(r) and a scalar potential
φ(r, t), which is slowly varying in space and time, we have an effective Hamiltonian

Heff = εn

(
−i∇ + e

c
A(r)

)
− eφ(r, t).

This effective Hamiltonian leads to the semiclassical equation of motion

ṙ = 1

�
∇kεn(k) = vn(k) and �k̇ = −eE − e

c
vn(k) × B,

where E = −∇φ and B = ∇ × A.



Chapter 7
Semiconductors

7.1 General Properties of Semiconducting Material

In earlier sections we have seen that a perfect crystal will be

(i) an insulator at T = 0 K if there is a gap separating the filled and empty energy
bands.

(ii) a conductor at T = 0 K if the conduction band is only partially occupied.

A special case of the insulating crystal is that of the semiconductor. In a semicon-
ductor, the gap separating the filled and empty bands is very small, and at finite
temperature some electrons from the filled valence band are thermally excited across
the energy gap giving ne(T ) electrons per unit volume in the conduction band and
nh(T ) holes per unit volume in the valence band (of course ne = nh).

If we recall the expression for the conductivity of a free electron model

σ = ne2τ

m
, (7.1)

where n is the number of carriers per unit volume, we find that different types of
materials can be described by different values of n. For ametal n � 1022 to 1023 cm−3

and is independent of temperature. For a semimetal n � 1018 to 1020 cm−3 and is
also roughly temperature independent. For an insulator or a semiconductor

n � n0e
− EG

2kBT ,

where n0 � 1022 to 1023 cm−3 and the energy gap EG is large (EG ≥ 4 eV) for an
insulator and is small (EG ≤ 2 eV) for a semiconductor.

At room temperature, kBT � 25meV, so that e− EG
2kBT ≤ e−80 � 10−35 for an

insulator, while for a semiconductor e− EG
2kBT ≥ e−20 � 10−9. The factor 10−35 even

when multiplied by 1023 cm−3 gives n � 0 for an insulator. With 0.1eV ≤ EG <

2.0eV the carrier concentration satisfies 1022 cm−3 > n > 1013 cm−3. The relaxation

© Springer International Publishing AG, part of Springer Nature 2018
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(a) (b)

T T

Fig. 7.1 Temperature dependence of carrier concentration (a) and electrical conductivity (b) of a
typical semiconductor

time τ in the expression for the conductivity is associated with scattering events that
dissipate current. These are scattering due to impurities, defects, and phonons. At
room temperature, the relaxation time τ of a very pure material will be dominated
by phonon scattering. For phonon scattering in this range of temperature τ ∝ T−1.
Therefore, in a metal the conductivity σ decreases as the temperature is increased.
For a semiconductor τ behaves the same as in ametal for the same temperature range.
However the carrier concentration n increases as the temperature increases. Since n
increases exponentially with 1

kBT
, this increase outweighs the decrease in relaxation

time, which is a power law, and σ increases with increasing T .

Intrinsic Electrical Conductivity

In a very pure sample the conductivity of a semiconductor is due to the excitation
of electrons from the valence to the conduction band by thermal fluctuations. For
a semiconductor at room temperature the resistivity is between 10−2 and 109 �-
cm depending on the band gap of the material. In contrast, a typical metal has a
resistivity of 10−6 �-cm and a typical insulator satisfies 1014 �-cm ≤ ρ ≤ 1022 �-
cm. A plot of carrier concentration versus temperature and a plot of conductivity
versus temperature is shown in Fig. 7.1a, b.

7.2 Typical Semiconductors

Silicon andgermaniumare the prototypical covalently bonded semiconductors. In our
discussions of energy bands we stated that their valence band maxima were at the Γ -
point. The valence band originates from atomic p-states and is three fold degenerate
at Γ . Group theory tells us that this degeneracy gives rise to light hole and heavy
hole bands, and that an additional splitting occurs if spin–orbit coupling is taken
into account. The conduction band arises from an atomic s-state, but the minimum
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Fig. 7.2 Constant energy surfaces near the conduction band minima for Si

does not occur at the Γ -point. In Si, the conduction band minimum occurs along the
line Δ, at about 90% of the way to the zone boundary. This gives six conduction
band minima or valleys (see Fig. 7.2). In the effective mass approximation these
valleys have a longitudinal mass ml � 0.98me along the axis and a transverse mass
mt � 0.19me perpendicular to it. Here me is the mass of a free electron.

For Ge, the conduction band minimum is located at the L-point. This gives the Ge
conduction band four minima (one half of each valley is at the zone boundary in the
〈111〉 directions). In Ge, ml � 1.64me and mt = 0.08me. Silicon and germanium
are called indirect gap semiconductors because the valence band maximum and
conduction band minimum are at different point in k-space. Materials like InSb,
InAs, InP, GaAs, and GaSb are direct gap semiconductors because both conduction
minimum and valence band maximum occur at the Γ -point. The band structures of
many III–V compounds are similar; the sizes of energy gaps, effective masses, and
spin splittings differ but the overall features are the same as those of Si and Ge (see
Table7.1). The energy gap is usually determined either by optical absorption or by
measuring the temperature dependence of the conductivity. In optical absorption, the
initial and final state must have the same wave vector k if no phonons are involved in
the absorption process because the kph vector of the photon is essentially zero on the
scale of electron k vectors. This leads to a sharp increase in absorption at the energy
gap of a direct band gap material. For an indirect gap semiconductor, the absorption
process is phonon-assisted. It is less abrupt and shows a temperature dependence.

The temperature dependence of the conductivity varies, as we shall show, as e− EG
2kBT

where EG is the minimum gap, the energy difference between the conduction band
minimum and the valence band maximum.
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Table 7.1 Comparison of energy gaps of Si, Ge, diamond, and various III–V compound semicon-
ductors

Crystal T̃ype of energy gap EG [eV] at 0K

Si Indirect 1.2

Ge Indirect 0.8

InSb Direct 0.2

InAs Direct 0.4

InP Direct 1.3

GaP Indirect 2.3

GaAs Direct 1.5

GaSb Direct 1.8

AlAs Indirect 2.24

GaN Direct 3.5

ZnO Direct 3.4

Diamond Indirect 5.48

7.3 Temperature Dependence of the Carrier Concentration

Let the conduction and valence band energies be given, respectively, by

εc(k) = εc + �
2k2

2mc
(7.2)

and

εv(k) = εv − �
2k2

2mv
(7.3)

The minimum energy gap is EG = εc − εv. The density of states in the conduction
band is given by

gc(ε)dε = 2

(2π)3

∫
ε<εc(k)<ε+dε

d3k (7.4)

Since εc(k) is isotropic d3k = 4πk2dk and dε = �
2

mc
kdk. Substituting into (7.4) gives

gc(ε) =
√
2m3/2

c

π2�3
(ε − εc)

1/2 . (7.5)

In a similar way we have

gv(ε) =
√
2m3/2

v

π2�3
(εv − ε)1/2 . (7.6)

The number of electrons per unit volume in the conduction band is given by

nc(T ) =
∫ ∞

εc

dεgc(ε) f0(ε), (7.7)
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where f0(ε) = 1

e
ε−ζ
Θ +1

is the Fermi distribution function. The concentration of holes

in the valence band is written by

pv(T ) =
∫ εv

−∞
dεgv(ε) [1 − f0(ε)] . (7.8)

Note that 1− f0(ε) = 1/
[
e

ζ−ε
Θ + 1

]
. Clearly nc(T ) and pv(T ) depend on the value of

the chemical potential ζ. We will make the simplifying assumption that εc − ζ 
 Θ

and ζ −εv 
 Θ , whereΘ is, of course, kBT . This nondegeneracy assumption makes
the calculation much simpler, and we will evaluate ζ in the course of the calculation
and check if the assumption is valid. With this assumption, we can write

f0(ε) � e− ε−ζ
Θ ,

1 − f0(ε) � e− ζ−ε
Θ

(7.9)

The first line of (7.9) can be rewritten as f0(ε) � e− ε−εc
Θ e− εc−ζ

Θ . The second factor is
independent of ε and can be taken out of the integral in (7.7) to obtain

nc(T ) = Nc(T )e− εc−ζ
Θ , (7.10)

where

Nc(T ) =
∫ ∞

εc

dεgc(ε)e
− ε−εc

Θ . (7.11)

In a similar manner one can obtain

pv(T ) = Pv(T )e− ζ−εv
Θ , (7.12)

and

Pv(T ) =
∫ εv

−∞
dεgv(ε)e

− εv−ε
Θ . (7.13)

Because the density of states varies as gc ∝ (ε − εc)
1/2 and gv ∝ (εv − ε)1/2,

the integral for Nc(T ) and Pv(T ) can be evaluated exactly by using the fact that∫ ∞
0 dx

√
xe−x = 1

2

√
π. The results are

Nc(T ) = 1

4

(
2mcΘ

π�2

)3/2

. (7.14)

The result for Pv(T ) differs only in havingmv replacemc. It is sometimes convenient
to use the practical expression
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Nc(T ) � 2.5
(mc

m

)3/2
(

T

300K

)3/2

· 1019 cm−3. (7.15)

Again for Pv(T ) we need only replace mc by mv. Note the very important fact that
the product nc(T )pv(T ) is independent of ζ, so that

nc(T )pv(T ) = Nc(T )Pv(T )e−EG/Θ. (7.16)

Exercise

Confirm the practical expression of (7.15).

7.3.1 Carrier Concentration: Intrinsic Case

In the absence of impurities, the only carriers are thermally excited electron–hole
pairs, so that nc(T ) = pv(T ); this is defined as ni(T ), where i stands for intrinsic.
From (7.16), we have

ni(T ) = [Nc(T )Pv(T )]1/2 e−EG/2Θ. (7.17)

To obtain the value of ζ for this case (we will call it ζi, i for the intrinsic case) we
note that ni(T ) = nc(T ), or

[Nc(T )Pv(T )]1/2 e−EG/2Θ = Nc(T )e−(εc−ζi)Θ . (7.18)

This can be rewritten by

[Pv(T )/Nc(T )]1/2 = e
ζi−εc+ 1

2 EG
Θ . (7.19)

Solving for ζi gives

ζi = εc − 1

2
EG + 3

4
Θ ln

(
mv

mc

)
. (7.20)

In writing (7.20) we have used [Pv(T )/Nc(T )] = (mv/mc)
3/2. In terms of εv we can

express (7.20) as

ζi = εv + 1

2
EG + 3

4
Θ ln

(
mv

mc

)
. (7.21)

If mv = mc, then ζi always sits in mid-gap. If mv �= mc, ζi sits at mid-gap at
Θ = 0, but moves away from the higher density of states band as Θ is increased.
For EG � 1eV, the separations ζi − εv and εc − ζi are large compared to Θ for any
reasonable temperature, so our assumption is justified.
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7.4 Donor and Acceptor Impurities

Si andGe have four valence electrons. If a small concentration of a columnV element
replaces some of the host atoms, then there is one electronmore than necessary for the
formation of the covalent bonds. The extra electron must be placed in the conduction
band, and such atoms likeAs, Sb, and P are known as donors. For column III elements
(Al, Ga, In, etc.) there is a shortage of one electron, thus the valence band is not full
and a hole exists for every acceptor atom.

Let us consider the case of donors (for acceptors, the same picture applies if
electrons in the conduction band are replaced by holes in the valence band and, as
an example, As+ ions are replaced by Al− ions). To a first approximation the extra
electron of the As atom will go into the conduction band of the host material. This
would give one conduction electron for each impurity from the column V. However,
these conduction electron leaves behind an As+ ion, and the As+ ion acts as a center
of attraction which can bind the conduction electron similar to the binding of an
electron by a proton to form a hydrogen atom.

For a hydrogen atom, the Hamiltonian for an electron moving in the presence of
a proton located at r = 0 is

H = p2

2m
− e2

r
. (7.22)

The Schrödinger equation has, for its ground state eigenfunction and eigenvalue,

Ψ0 = N0e
−r/aB and E0 = − e2

2aB
, (7.23)

where aB = �
2

me2 is the Bohr radius (aB ∼ 0.5Å).
For a conduction electron in the presence of a donor ion, we have

H = p2

2mc
− e2

εsr
. (7.24)

Here mc is the conduction band effective mass and εs is the background dielectric
constant of the semiconductor. The ground state will have

Ψ0 = N0e
−r/a∗

B and E0 = − e2

2εsa∗
B

. (7.25)

The effective Bohr radius a∗
B is given by a∗

B = �
2εs

mce2
. For a typical semiconductor

mc � 0.1m and εs � 10. This gives a∗
B ≈ 102aB � 5 nm and E0 ≈ −10−3 e2

2aB
�

−13 meV.
When donors are present, the chemical potential ζ will move from its intrin-

sic value ζi to a value near the conduction band edge. We know that nc(T ) =
Nc(T )e− εc−ζ

Θ ; we can define the intrinsic carrier concentration ni(T ) by ni(T ) =
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Nc(T )e− εc−ζi
Θ . Then we can write for the general case

nc(T ) = ni(T )e
ζ−ζi
Θ and pv(T ) = ni(T )e− ζ−ζi

Θ . (7.26)

If ζ = ζi, nc(T ) = pv(T ) = ni(T ). If ζ �= ζi, then nc(T ) �= pv(T ) and we can write

Δn ≡ nc(T ) − pv(T ) = 2 ni sinh

(
ζ − ζi

Θ

)
= nc − n2i

nc
. (7.27)

The product nc(T )pv(T ) is still independent of ζ so we can write nc(T )pv(T ) = n2i .

Using pv = n2i
nc(T )

, (7.27) gives a quadratic equation for nc

n2c − Δnnc − n2i = 0

whose solution is

nc = Δn

2
+

√(
Δn

2

)2

+ n2i . (7.28)

We take the positive (+) root because donor impurities must increase the concentra-
tion nc(T ).

7.4.1 Population of Donor Levels

If the concentration of donors is sufficiently small (Nd ≤ 1019 cm−3) that interactions
between donor electrons can be neglected, then the average occupancy of a single
donor impurity state is given by

〈nd〉 =
∑

j N je−β(E j−ζN j )∑
j e

−β(E j−ζN j )
. (7.29)

Here β = 1/Θ and the possible values of N j are

(i) N j = 0 when donor atom is empty.
(ii) N j = 1 when donor atom is occupied by an electron of spin σ.
(iii) N j = 1 when donor atom is occupied by an electron of spin −σ.
(iv) N j = 2 when donor atom is occupied by two electrons of spin σ and −σ.

There is actually a large repulsion (repulsive energyU ) between the electrons in case
of N j = 2, so that case of N j = 2 does not actually occur. If we use the cases listed
above in (7.29) we obtain

〈nd〉 = 0 + 2e−β(εd−ζ) + 2e−β(2εd+U−2ζ)

1 + 2e−β(εd−ζ) + e−β(2εd+U−2ζ)
. (7.30)
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Fig. 7.3 Impurity levels in semiconductors dopedwith Nd donors and Na acceptors per unit volume

If U is much larger than the other energies, then the terms involving U can be
neglected; the following result is obtained.

〈nd〉 = 1
1
2e

β(εd−ζ) + 1
. (7.31)

The numerical factor of 1
2 in this expression comes from the fact that either spin up

or spin down states can be occupied but not both.

Exercise

Demonstrate the average occupation 〈pa〉 of a single acceptor impurity state corre-
sponding to the one (7.31) for a single donor impurity state.

7.4.2 Thermal Equilibrium in a Doped Semiconductor

Let us assume that we have Nd donors and Na acceptors per unit volume, and let us
take Nd 
 Na. This material would be doped n-type since it has many more donors
than acceptors. The energies of interest are shown in Fig. 7.3.

At zero temperature, there must be

• nc = 0, no electrons in the conduction band,
• pv = 0, no holes in the valence band,
• pa = 0, no holes bound to acceptors,
• nd = Nd − Na, electrons bound to donor atoms.

The (Nd − Na) donors with electrons bound to them are neutral. The remaining Na

donors have lost their electrons to the Na acceptors. Thus we have Na positively
charged donor ions and Na negatively charged acceptor ions per unit volume. The
chemical potential must clearly be at the donor level since they are partially occupied,
and only at the energy of ε = ζ can the Fermi function have a value different from
unity or zero at T = 0.

At a finite temperature, we have

nc(T ) = Nc(T )e−β(εc−ζ), (7.32)
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pv(T ) = Pv(T )e−β(ζ−εv), (7.33)

nd(T ) = Nd
1
2 e

β(εd−ζ) + 1
, (7.34)

and

pa(T ) = Na
1
2 e

β(ζ−εa) + 1
. (7.35)

In addition to these four equations we must have charge neutrality so that

nc + nd = Nd − Na + pv + pa (7.36)

Here nc + nd is the number of electrons that are either in the conduction band or
bound to a donor. If we forget about holes, nc + nd must equal Nd − Na, the excess
number of electrons introduced by the impurities. For every hole, either bound to an
acceptor or in the valence band, we must have an additional electron contributing to
nc + nd. Equations (7.32)–(7.36) form a set of five equations in five unknowns. We
know β, Nd, Na, εc, εv, εd, and εa; the unknowns are nc(T ), pv(T ), nd(T ), pa(T ), and
ζ(T ). Although the equations can easily be solved numerically, it is worth looking
at the simple case where εd − ζ 
 Θ and ζ − εa 
 Θ . This does not occur at T = 0
since ζ = εd in that case; nor does it apparently occur at very high temperature.
However, there is a range of temperature where the assumption is valid. With this
assumption

nd(T ) � 2 Nde
−β(εd−ζ) � Nd, (7.37)

and
pa(T ) � 2 Nae

−β(ζ−εa) � Na. (7.38)

We know from (7.36)–(7.38) that

Δn ≡ nc − pv = Nd − Na + pa − nd ≈ Nd − Na. (7.39)

From (7.27) Δn = 2 ni sinhβ (ζ − ζi), and for low concentrations of impurities at
sufficiently high temperatures β (ζ − ζi) must be small. We can then approximate
sinhx by x and obtain

Δn � 2 ni β (ζ − ζi) . (7.40)

We know that
nc(T ) = ni(T )eβ(ζ−ζi) � ni [1 + β (ζ − ζi)] . (7.41)

Using (7.39)–(7.41) gives

nc � ni + 1

2
(Nd − Na) , (7.42)
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and

pv � ni − 1

2
(Nd − Na) . (7.43)

For low concentrations of donors and acceptors at reasonably high temperatures
Δn � ni(T ), so that 2β (ζ − ζi) � 1 and ζ is relatively close to ζi. Because εd − ζi
is an appreciable fraction of the band gap the assumptions β (εd − ζ) 
 1 and
β (ζ − εa) 
 1 are valid.

7.4.3 High Impurity Concentration

For high donor concentration Nd−Na 
 ni; then β (ζ − εa) 
 1 since the chemical
potential moves from the midgap closer to the conduction band edge. Because

pa(T ) � 2 Nae
−β(ζ−εa), (7.44)

and
pv(T ) = nie

−β(ζ−ζi) = Pv(T )e−β(ζ−εv), (7.45)

pa must be very small compared to Na and pv must be very small compared to ni
which is, in turn, small compared to Nd − Na. That is, pa � Na and pv � Nd − Na.
Equation (7.36) then gives

nc + nd � Nd − Na. (7.46)

But nd(T ) = Nd
1
2 e

β(εd−ζ)+1
. If β(εd − ζ) 
 1, then nd � Nd, and we find

nc � Nd − Na, (7.47)

pv � n2i
Nd − Na

≈ 0, (7.48)

pa � 2 Nae
−β(ζ−εa) ≈ 0, (7.49)

nd � 2 Nde
−β(εd−ζ) ≈ 0. (7.50)

7.5 p–n Junction

The p–n junction is of fundamental importance in understanding semiconductor
devices, so we will spend a little time discussing the physics of p–n junctions. We
consider amaterial with donor concentration Nd(z) and acceptor concentration Na(z)
given by

Nd(z) = Ndθ(z) and Na(z) = Na [1 − θ(z)] . (7.51)
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Fig. 7.4 Impurity levels and chemical potential across the p–n junction

We know that for z 
 a, where a is the atomic spacing the chemical potential must
lie close to the donor levels and for z � −a it must lie close to the acceptor levels.
Since the chemical potential must be constant (independent of z) for the equilibrium
case, we expect a picture like that sketched in Fig. 7.4. On the left we have a normal
p-type material, and at low temperature, the chemical potential must sit very close
to the acceptor levels which are shown by the dots at the chemical potential ζ. One
the right, the chemical potential must be close to the donor levels (shown as dots at
ε = ζ) which are near the conduction band edge. In between, there must be a region
in which there is a built-in potential φ(z) that results from the transfer of electrons
from donors on the right to acceptors on the left in a region close to z = 0. We want
to calculate this potential φ(z).

7.5.1 Semiclassical Model

The effective Hamiltonian describing the conduction or valence band of a system
containing a p–n junction can be written

H = ε (−i�∇) − eφ(z), (7.52)

where φ(z) is an electrostatic potential that must be slowly varying on the atomic
scale in order for the semiclassical approximation to be valid. The energies of the
conduction and valence band edges will be given by

εc(z) = εc − eφ(z),

εv(z) = εv − eφ(z). (7.53)

The concentration of electrons and holes will vary with position z as

nc(z) = Nc(T )e−β[εc−eφ(z)−ζ],

pv(z) = Pv(T )e−β[ζ−εv+eφ(z)]. (7.54)
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The most important case to study is the high concentration limit where Nd 
 ni and
Na 
 ni on the right and left sides of the junction, respectively. In that case, the
concentration of electrons and holes will vary with position z as

limz→∞ nc(z) = Nc(T )e−β[εc−eφ(∞)−ζ] ≈ Nd,

limz→−∞ pv(z) = Pv(T )e−β[ζ−εv+eφ(−∞)] ≈ Na.
(7.55)

These two equations can be combined to give

eΔφ = e [φ(∞) − φ(−∞)] = EG + Θ ln

[
NdNa

Nc(T )Pv(T )

]
. (7.56)

The potential φ(z) must satisfy Poisson’s equation given by

∂2φ(z)

∂z2
= −4πρ(z)

εs
, (7.57)

where the charge density ρ(z) is given by

ρ(z) = e [Nd(z) − Na(z) − nc(z) + pv(z)] . (7.58)

In using (7.55) we are assuming that all donors and acceptors are ionized [since
nc(∞) = Nd, all the donor electrons are in the conduction band so the donors must
be positively charged]. Thus we have

Nd(z) = Ndθ(z), (7.59)

Na(z) = Na [1 − θ(z)] , (7.60)

nc(z) = Nde
−βe[φ(∞)−φ(z)], (7.61)

pv(z) = Nae
−βe[φ(z)−φ(−∞)]. (7.62)

Equations (7.57)–(7.62) form a complicated set of nonlinear equations. The solution
is simple if we assume that the change in φ(z) occurs entirely over a relatively small
region near the junction known as the depletion region.

We will assume that

φ(z) = φ(−∞) for z < −dp; region I

φ(z) = φ(∞) for z > dn; region II

φ(z) varies with z for − dp < z < dn. region III (7.63)

The length dp (or dn) is called the depletion length of the p-type (or n-type) region.
In region II the concentration of electron in the conduction band nc is equal to
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the number of ionized donors Nd so that ρII(z) = −enc + eNd = 0. In region I
the concentration of holes pv is equal to the number of ionized acceptors so that
ρI(z) = epv − eNa = 0. In region III there are no electrons or holes (the built-in
junction potential sweeps them out) so pv(z) = nc(z) = 0 in this region. Therefore
for ρ(z) we have

ρIII(z) =
{+eNd for 0 < z < dn,

−eNa for − dp < z < 0.
(7.64)

We can integrate Poisson’s equation. In the region 0 < z < dn, we have

∂2φ(z)

∂z2
= −4πe

εs
Nd, (7.65)

and integration gives
∂φ(z)

∂z
= −4πe

εs
Ndz + C1. (7.66)

Here C1 is a constant of integration. Integrating (7.66) gives

φ(z) = −2πeNd

εs
z2 + C1z + C2. (7.67)

We choose the constants so that φ(z) evaluated at z = dn has the value φ(∞) and
∂φ(z)

∂z = 0 at z = dn . This gives

φ(z) = φ(∞) − 2πeNd

εs
(z − dn)

2, for 0 < z < dn. (7.68)

Doing exactly the same thing in the region −dp < z < 0 gives

φ(z) = φ(−∞) + 2πeNa

εs
(z + dp)

2, for − dp < z < 0. (7.69)

Of course, for z > dn, φ(z) = φ(∞) and for z < −dp, φ(z) = φ(−∞) (see Fig. 7.5).
Charge conservation requires that

Nddn = Nadp. (7.70)

This condition insures the continuity of ∂φ
∂z at z = 0. The continuity of φ(z) at z = 0

requires that

φ(∞) − 2πeNd

εs
d2
n = φ(−∞) + 2πeNa

εs
d2
p . (7.71)

We can solve (7.71) for Δφ ≡ φ(∞) − φ(−∞) to obtain
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Fig. 7.5 Band bending across the p–n junction

Δφ = 2πe

εs

[
Ndd

2
n + Nad

2
p

]
. (7.72)

Combining (7.70) and (7.72) allows us to determine dn and dp

dn =
[

(Na/Nd) εsΔφ

2πe(Na + Nd)

]1/2

. (7.73)

The equation for dp is obtained by interchanging Na and Nd. If Na were equal to Nd

then dn = dp = d and is given by

d �
(

εseΔφ

4πe2N

)1/2

≈
(

εsEG

4πe2N

)1/2

, (7.74)

where N = Nd = Na. In the last result we have simply put eΔφ ≈ EG.

7.5.2 Rectification of a p–n Junction

The region of the p–n junction is a high resistance region because the carrier con-
centration in the region (−dp < z < dn) is depleted. When a voltage V is applied,
almost all of the voltage drop occurs across the high resistance junction region. We
write Δφ in the presence of an applied voltage V as

Δφ = (Δφ)0 − V . (7.75)

Here (Δφ)0 is, of course, the value of Δφ when V = 0. The sign of V is taken as
positive (forward bias) when V decreases the voltage drop across the junction. The
depletion layer width dn changes with voltage
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dn(V ) = dn(0)

[
1 − V

(Δφ)0

]1/2

. (7.76)

A similar equation holds for dp(V ). When V = 0, there is no hole current Jh and no
electron current Je. When V is finite both Je and Jh are nonzero. Let us look at Jh.
It has two components:

generation current This current results from the small concentration of holes on
the n-side of the junction that are created in order to be in thermal equilibrium, i.e.,
to have ζ remain constant. These holes are immediately swept into the p-side of
the junction by the electric field of the junction. This generation current is rather
insensitive to applied voltage V , since the built-in potential (Δφ)0 is sufficient to
sweep away all the carriers that are thermally generated.

recombination current This current results from the diffusion of holes from the
p-side to the n-side. On the p-side there is a very high concentration of holes.
In order to make it cross the depletion layer (and recombine with an electron on
the n-side), a hole must overcome the junction potential barrier −e

[
(Δφ)0 − V

]
.

This recombination current does depend on V as

J rec
h ∝ e−e[(Δφ)0−V ]/Θ. (7.77)

Here J rec
h indicates the number current density of holes from the p- to n-side.

Now at V = 0 these two currents must cancel to give Jh = J rec
h − J gen

h = 0 We can
write

Jh = J gen
h

[
eeV/Θ − 1

]
. (7.78)

The electrical current density due to holes is jh = eJh, and it vanishes at V = 0 and
has the correct V dependence for J rec

h . If we do the same for electrons, we obtain
the current density Je = J gen

e
[
eeV/Θ − 1

]
, which flows oppositely to the Jh. The

electrical current density of electrons je is parallel to the jh. Therefore, the combined
electrical current density becomes as follows:

j = e
(
J gen
h + J gen

e

) (
eeV/Θ − 1

)
. (7.79)

A plot of j versus V looks as shown in Fig. 7.6. The applied-voltage behavior of an
electrical current across the p–n junction is called rectification because a circuit can
easily be arranged in which no current flows when V is negative (smaller than some
value) but a substantial current flows for positive applied voltage.

7.5.3 Tunnel Diode

In the late 1950s Leo Esaki1 was studying the current voltage characteristics of
very heavily doped p–n junctions. He found and explained the j − V characteristic

1L. Esaki, Phys. Rev. 109, 603–604 (1958).
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Fig. 7.6 Current–voltage characteristic across the p–n junction

Fig. 7.7 Current–voltage characteristic across a heavily doped p–n junction

shown in Fig. 7.7. Esaki noted that, for very heavily doped materials, impurity band
was formed and one would obtain degenerate n-type and p-type regions where the
chemical potential ζ was actually in the conduction band on the n-side and in the
valence band on the p-side as shown in Fig. 7.8. For a forward bias the electrons
on the n-side can tunnel through the energy gap into the empty states (holes) in the
valence band. This current occurs only for V > 0, and it cuts off when the voltage
V exceeds the value at which εc(∞) = εv(−∞). When the tunnel current is added
to the normal p–n junction current, the negative resistance region shown in Fig. 7.7
occurs.

7.6 Surface Space Charge Layers

Themetal–oxide–semiconductor (MOS) structure is the basis for all of currentmicro-
electronics. We will consider the surface space charge layers that can occur in an
MOS structure. Assume a semiconductor surface is produced with a uniform and
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Fig. 7.8 Chemical potential across the heavily doped p–n junction

thin insulating layer (usually on oxide), and then on top of this oxide a metallic gate
electrode is deposited as is shown in Fig. 7.9.

In the absence of any applied voltage, the bands line up as shown in Fig. 7.10.
If a voltage is applied which lowers the Fermi level in the metal relative to that in
the semiconductor, most of the voltage drop will occur across the insulator and the
depletion layer of the semiconductor.

For a relatively small applied voltage, we obtain a band alignment as shown
in Fig. 7.11. In the depletion layer all of the acceptors are ionized and the hole
concentration is zero since the field in the depletion layer sweeps the holes into the
bulk of the semiconductor. The normal component of the displacement field D = εE
must be continuous at the semiconductor–oxide interface, and the sum of the voltage
drop Vd across the depletion layer and Vox across the oxide must equal the applied
voltage Vg. If we take the electrostatic potential to be φ(z), then

Fig. 7.9 Metal–oxide–semiconductor structure

Fig. 7.10 Band edge alignment across an MOS structure
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Fig. 7.11 Band alignment across an MOS structure in the presence of a small applied voltage

φ(z) = φ(∞) for z > d,

φ(z) = φ(∞) + 2πeNa

εs
(z − d)2 for 0 < z < d. (7.80)

The potential energy V is −eφ. Vox is simply Eoxt , where Eox and t are the electric
field in the oxide and the thickness of the oxide layer, respectively. Equating ε0Eox

to −εsφ
′(z = 0) gives

e
Vox

t
ε0 = 4πe2Nad. (7.81)

Equation (7.81) gives us d in terms of Vox. Adding Vox to the voltage drop 2πeNa
εs

d2

across the depletion layer gives

Vox = Vg − 2πeNa

εs
d2. (7.82)

Note that d must grow as Vg increases since the voltage drop is divided between
the oxide and the depletion layer. The only way that Vd can grow, since Na is fixed,
is by having d grow. The surface layer just discussed is called a surface depletion
layer since the density of holes in the layer is depleted from its bulk value. For a
gate voltage in the opposite direction the bands look as shown in Fig. 7.12. Here
the surface layer will have an excess of holes either bound to the acceptors or in
the valence band. This is called an accumulation layer since the density of holes is

Fig. 7.12 Band alignment across anMOS structure in the presence of a small negative gate voltage
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Fig. 7.13 Band alignment across an MOS structure in the presence of a large applied voltage

increased at the surface. If the gate voltage Vg is increased to a large value in the
direction of depletion, one canwind upwith the conduction band edge at the interface
below ζs, the chemical potential of the semiconductor. This is shown in Fig. 7.13.

Now there can be electrons in the conduction band because ζs is higher than
εc(z) evaluated at the semiconductor–oxide interface. The part of the diagram near
this interface is enlarged in Fig. 7.14. This system is called a semiconductor surface
inversion layer because in this surface layer we have trapped electrons (minority
carriers in the bulk). The motion of the electrons in the direction normal to the
interface is quantized, so there are discrete energy levels ε0, ε1, . . . forming subband
structure. If only ε0 lies below the chemical potential and ε1 − ζ 
 0, the electronic
system behaves like a two-dimensional electron gas (2DEG) because

ε = ε0 + �
2

2m∗
c

(
k2x + k2y

)
, (7.83)

and

Ψn,kx ,ky = 1

L
ei(kx x+ky y)ξn(z). (7.84)

Fig. 7.14 Band edge near the interface of the semiconductor–insulator in the MOS structure in the
presence of a large applied voltage
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Here ξn(z) is the nth eigenfunction of a differential equation given by

[
1

2m∗
c

(
−i�

∂

∂z

)2

+ Veff(z) − εn

]
ξn(z) = 0. (7.85)

In (7.85) the effective potential Veff(z)must contain contributions from the depletion
layer charge, the Hartree potential of the electrons trapped in the inversion layer,
an image potential if the dielectric constants of the oxide and semiconductor are
different, and an exchange–correlation potential of the electrons with one another
beyond the simple Hartree term. Because the electrons are completely free to move
in the x − y plane, but ‘frozen’ into a single quantized level ε0 in the z-direction,
the z-degree of freedom is frozen out of the problem, and in this sense the electrons
behave as a two-dimensional electron gas. We fill up a circle in kx − ky space up to
kF, and

2
∑
kx , ky
ε < εF

1 = N , (7.86)

giving2
(

L
2π

)2
πk2F = N . Thismeans that k2F = 2πns,wherens ≡ N/L2 is the number

of electrons per unit area of the inversion layer. Of course εF ≡ �
2k2F
2m∗

c
= ζ − ε0.

The potential due to the depletion charge is calculated exactly as before. The
Hartree potential is a solution of Poisson’s equation given below

∂2

∂z2
VH = −4πe2

εs
ρe(z). (7.87)

The electron density is given by

ρe(z) =
∑
n,k

f0(εnk) |Ψnk(z)|2 , (7.88)

where Ψnk(z) = L−1ξn(z)eik·r is the envelope wave function for the electrons in
the effective potential. The exchange–correlation potential Vxc is a functional of the
electron density ρe(z). This surface inversion layer system is the basis of all large
scale integrated circuit chips that we use every day. The basic unit is the MOS field
effect transistor (MOSFET) shown in Fig. 7.15. The source–drain conductivity can
be controlled by varying the applied gate voltage Vg. This allows one to make all
kinds of electronic devices like oscillators, transistors etc. This was an extremely
active field of semiconductor physics from the late 60s till the present time. Some
basic problems that were investigated include:

• transport along the layer
surface electron density ns and relaxation time τ as a function of the gate voltage
Vg; cyclotron resonance; localization; magnetoconductivity, and Hall effect.
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Fig. 7.15 Schematic diagram of the metal–oxide–semiconductor field effect transistor

• transport perpendicular to the layer
optical absorption; Raman scattering; coupling to optical phonons; intra and inter-
subband collective modes.

• many-body effects on subband structure and on effective mass and effective g-
value.

Fig. 7.16 Schematic diagram of the GaAs–AlAs superlattice system

7.6.1 Superlattices

By novel growth techniques like molecular beam epitaxy (MBE) novel structures
can be grown almost one atomic layer at a time. The requirements for such growth
are

(i) the lattice constants of the two materials must be rather close. Otherwise, large
strains lead to many crystal imperfections.

(ii) the materials must form appropriate bonds with one another.
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One very popular example is the GaAs–AlAs system shown in Fig. 7.16. A single
layer of GaAs in an AlAs host would be called a quantum well. A periodic array
of such layers is called a superlattice. It can be thought of as a new material with a
supercell in real space that goes from one GaAs to AlAs interface to the next GaAs
to AlAs interface.

7.6.2 Quantum Wells

If a quantum well is narrow, it will lead to quantized motion and subbands just as
the MOS surface inversion layer did (see, for example, Fig. 7.17). For the subbands
in the conduction band we have

ε(c)
n (k) = ε(c)

n + �
2

2m∗
c

(
k2x + k2y

)
. (7.89)

The band offsets are difficult to predict theoretically, but they can be measured.

7.6.3 Modulation Doping

The highest mobility materials have been obtained by growing modulation doped
GaAs/Ga1−xAlxAs quantum wells. In these materials the donors are located in the
GaAlAs barriers, but no closer than several hundredÅ to the quantumwell. The bands
look as shown in Fig. 7.18. A typical sample structure would look like GaAlAs with

Fig. 7.17 Schematic diagram of the subbands formation in a quantum well of the GaAs–AlAs
structure

Fig. 7.18 Schematic diagram of a quantum well in a modulation doped GaAs/Ga1−xAlxAs quan-
tum well
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Fig. 7.19 Schematic layered structure of a typical modulation doped GaAs/Ga1−xAlxAs quantum
well system

Nd donors/cm3 ‖ pure GaAlAs of 20nm thick // GaAs of 10nm thick // pure GaAlAs
of 20nm thick // GaAlAs with Nd donors/cm3 (see, for example, Fig. 7.19). Because
the ionized impurities are rather far away from the quantum well electrons, ionized
impurity scattering is minimized and very high mobilities can be attained.

7.6.4 Minibands

When the periodic array of quantum wells in a superlattice has very wide barriers,
the subband levels in each quantumwell are essentially unchanged (see, for example,
Fig. 7.20). However, a new periodicity has been introduced, so we have a quantum
number kz that has to do with the eigenvalues of the translation operator.

TaΨnk(z) = eikzaΨnk(z) (7.90)

This looks just like the problemof atomic energy levels that give rise to band structure
when the atoms are brought together to form a crystal. For very large values of the
barrier width, no tunneling occurs, and the minibands are essentially flat as is shown
in Fig. 7.21. The supercell in real space extends from z = 0 to z = a. The first

Fig. 7.20 Schematic subband alignments in a superlattice of supercell width a

Fig. 7.21 Schematic miniband alignment in a superlattice of very large barrier width
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Fig. 7.22 Miniband structure in a superlattice of very narrow barrier width

Brillouin zone in k-space extends −π
a ≤ kz ≤ π

a . The minibands εn(kz) are flat if
the barriers are so wide that no tunneling from one quantum well to its neighbor
is possible. When the barriers are narrower and tunneling can take place, the flat
bands become kz-dependent. One can easily show that in tight binding calculation
one would get bands with sinusoidal shape as shown in Fig. 7.22. Of course, the same
band structure would result from taking free electrons moving in a periodic potential

V (r) =
∑
n

Vn e
i 2πa nz . (7.91)

During the past twenty years there has been an enormous explosion in the study
(both experimental and theoretical) of optical and transport properties of quantum
wells, superlattices, quantum wires, and quantum dots. One of the most exciting
developments was the observation by Klaus von Klitzing of the quantum Hall effect
in a 2DEG in a strong magnetic field. Before we give a very brief description of
this work, we must discuss the eigenstates of free electrons in two dimensions in the
presence of a perpendicular magnetic field.

7.7 Electrons in a Magnetic Field

Consider a 2DEG with ns electrons per unit area. In the presence of a dc magnetic
fieldB applied normal to the plane of the 2DEG, the Hamiltonian of a single electron
is written by

H = 1

2m

(
p + e

c
A

)2
. (7.92)

Here p = (px , py) and A(r) is the vector potential whose curl gives B = (0, 0, B),
i.e., B = ∇ ×A. There are a number of different possible choices forA(r) (different
gauges) that give a constantmagnetic field in the z-direction. For example, theLandau
gauge chooses A = (0, Bx, 0) giving us

(
x̂ ∂

∂x

) × (
ŷ Bx

) = Bẑ. Another common
choice is A = B

2 (−y, x, 0); this is called the symmetric gauge. Different gauges
have different eigenstates, but the observables have to be the same.

Let us look at the Schrödinger equation in the Landau gauge. (H − E) Ψ = 0
can be rewritten by
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Fig. 7.23 Density of states for electrons in a dc magnetic field

[
p2x
2m

+ 1

2m

(
py + e

c
Bx

)2 − E

]
Ψ (r) = 0. (7.93)

Because H is independent of the coordinate y, we can write

Ψ (x, y, z) = eikyϕ(x). (7.94)

Substituting this into the Schrödinger equation gives

[
p2x
2m

+ 1

2
mω2

c

(
x + �k

mωc

)2

− E

]
ϕ(x) = 0. (7.95)

Here, of course, ωc = eB
mc is the cyclotron frequency. If we define x̃ = x + �k

mωc
,

∂
∂x = ∂

∂ x̃ and the Schrödinger equation is just the simple harmonic oscillator equation.
Its solutions are as follows:

Enk = �ωc

(
n + 1

2

)
, n = 0, 1, 2, . . .

Ψnk(x, y, z) = eiky un

(
x + �k

mωc

)
. (7.96)

The energy is independent of k, so the density of states (per unit length) is a series
of δ-functions, as is shown in Fig. 7.23.

g(ε) ∝
∑
n

δ

(
ε − �ωc

(
n + 1

2

))
. (7.97)

The constant of proportionality for a finite size sample of area L2 is mωcL2

2π�
, so that

the total number of states per Landau level is

NL = L

(
mωcL

2π�

)
= BL2

hc/e
. (7.98)
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For a sample of area L2, each Landau level can accommodate NL electrons (we have
omitted spin) and NL is themagnetic flux through the sample divided by the quantum
of magnetic flux hc

e . We note that the degeneracy of each Landau level can also be

rewritten by NL = L2

2π�20
in terms of the magnetic length �0 =

√
�c
eB .

Exercise

Demonstrate the one-dimensional Schrödinger equation (7.95) by combining (7.94)
and (7.93).

7.7.1 Quantum Hall Effect

If we make contacts to the 2DEG, and send a current I in the x-direction, then we
expect

σxx ∝ I

Vx
and σxy ∝ I

Vy
. (7.99)

Here Vx is the applied voltage in the direction of I and Vy is the Hall voltage. In the
simple classical (Drude model) picture we know that

σxx = σyy = σ0

1 + (ωcτ )2
and σxy = −σyx = − ωcτσ0

1 + (ωcτ )2
, (7.100)

where σ0 = nse2τ
m . In the limit as τ → ∞ we have σ0 → ∞, σxx → 0, and

σxy → − nsec
B .

In the absence of scattering, g(ε) is a series of δ-functions. With scattering, the
δ-functions are broadened as shown in Fig. 7.24. We know that, when one Landau
level is completely filled and the one above it is completely empty, there can be no
current, because to modify the distribution function f0(ε) would require promotion
of electrons to the next Landau level. There is a gap for doing this, and at T = 0 there
will be no current. If we plot σxx versus ns/nL ≡ ν, the filling factor

(
nL = NL/L2

)
we expect σxx to go to zero at any integer values of ν as shown in Fig. 7.25.

Our understanding of the integral quantum Hall effect is based on the idea that
within the broadened δ-functions representing the density of states, we have both
extended states and localized states as shown in Fig. 7.26. The quantum Hall effect
was very important because it led to

(i) a resistance standard ρ = h
e2

1
n .

(ii) better understanding of Anderson localization.
(iii) discovery of the fractional quantum Hall effect.
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Fig. 7.24 Density of states for electrons in a dc magnetic field in the presence of scattering

Fig. 7.25 Conductivities as a function of the Landau level filling factor. (a) Longitudinal conduc-
tivity σxx . (b) Hall conductivity σxy

Fig. 7.26 Scattering effects on the density of states and conductivity components in an integral
quantum Hall state
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7.8 Amorphous Semiconductors

Except for introducing donors and acceptors in semiconductors, we have essentially
restricted our consideration to ideal, defect-free infinite crystals. There are two impor-
tant aspects of order that crystals display. The first is short range order. This has to
do with the regular arrangement of atoms in the vicinity of any particular atom. This
short range order determines the local bonding and the crystalline fields acting on
a given atom. The second aspect is long range order. This is responsible for the
translational and rotational invariance that we used in discussing Bloch functions
and band structure. It allowed us to use Bloch’s theorem and to define the Bloch
wave vector k within the first Brillouin zone.

In real crystals there are always

• surface effects associated with the finite size of the sample
• elementary excitations (dynamic perturbations like phonons, magnons etc.)
• imperfections and defects (static disorder).

For an ordered solid, one can start with the perfect crystal as the zeroth approxi-
mation and then treat static and dynamic perturbations by perturbation theory. For a
disordered solid this type of approximation is not meaningful.

7.8.1 Types of Disorder

We can classify disorder by considering some simple examples in two dimensions
that we can represent on a plane.
Perfect Crystalline Order Atoms in perfect crystalline array (see Fig. 7.27a).
Compositional Disorder Impurity atoms (e.g. in an alloy) are randomly distributed
among crystalline lattice sites (see Fig. 7.27b).
Positional Disorder Some separations and some bond angles are not perfect (see
Fig. 7.27c).
Topological Disorder Fig. 7.27d shows some topological disorder.

(a) (b) (c)

(d)

Fig. 7.27 Various types of disorder. (a) Atoms in perfect crystalline array. (b) Impurity atoms are
randomly distributed among crystalline lattice sites. (c) Some separations and some bond angles
are not perfect. (d) Not all four-fold rings, but some five- and six-fold rings leaving dangling bonds
represent topological disorder
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Fig. 7.28 Basic assumption of energy level distribution on different sites in the Anderson model

Because we cannot use translational invariance and energy band concepts, it is dif-
ficult to evaluate the eigenstates of a disordered system. What has been found is
that in disordered systems, some of the electronic states can be extended states and
some can be localized states. An extended state is one in which, if |Ψ (0)|2 is finite,
|Ψ (r)|2 remains finite for r very large. A localized state is one in which |Ψ (r)|2 falls
off very quickly as r becomes large (usually exponentially). There is an enormous
literature on disorder and localization (starting with a classic, but difficult, paper by
P. W. Anderson2 in the 1950s).

7.8.2 Anderson Model

The Anderson model described a system of atomic levels at different sites n and
allowed for hopping from site n to m. The Hamiltonian is written by

H =
∑
n

εnc
†
ncn + T

′∑
nm

c†mcn (7.101)

This is just the description of band structure in terms of an atomic level ε on site n
where the periodic potential gives rise to the hopping term. In tight binding approx-
imation, we would restrict T , the hopping term to nearest neighbor hops, and that is
what the prime on

∑′ in the second term means.
In Anderson model it was assumed that εn the energy on site n was not a constant,

but that it was randomly distributed over a range w (see, for example, Fig. 7.28).
Anderson showed that if the parameter w

B , where B is the band width (caused by and
proportional to T ) satisfied w

B ≥ 5, the state at E = 0 (the center of the band) is
localized, while if w

B ≤ 5 it is extended.

2P. W. Anderson, Phys. Rev. 109, 1492 (1958).
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Fig. 7.29 Density of states of an ordinary crystal and that of a disordered material

7.8.3 Impurity Bands

Impurity levels in semiconductors form Anderson-like systems. In these systems,
the energy E is independent of n; it is equal to the donor energy εd. However, the
hopping term T is randomly distributed between certain limits, since the impurities
are randomly distributed. Sometimes (when two impurities are close together) it is
easy to hop and T is large. Sometimes, when they are far apart, T is small.

7.8.4 Density of States

Although the eigenvalues of the Anderson Hamiltonian can not be calculated in a
useful way, it is possible to make use of the idea of density of states. In Fig. 7.29, we
sketch the density of states of an ordinary crystal and then the density of states of
a disordered material. In the latter, the tails on the density of states usually contain
localized states, while the states in the center of the band are extended. The energies
Ec′ and Ec are called mobility edges. They separate localized and extended states.
When EF is in the localized states, there is no conduction at T = 0. The field
of amorphous materials, Anderson localization, and mobility edges are of current
research interest, but we do not have time to go into greater detail.
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Problems

7.1 Intrinsic carrier concentration can be written

ni (T ) = 2.5
(mc

m

mv

m

)3/4
(
kBT

EG

)3/2
(
EG in eV

1
40 eV

)3/2

e− EG
2kBT × 1019/cm3.

Take EG = 1.5 eV, mh = 0.7m, and me = 0.06m roughly those of GaAs, and plot
ln ni vs T in the range T = 3 K ∼ 300 K.

7.2 Plot the chemical potential ζi (T ) vs T in the range T = 3K ∼ 300K for values
of EG = 1.5 eV, mh = 0.7m, and me = 0.06m.

7.3 For InSb, we have EG � 0.18 eV, εs � 17, and mc∗ � 0.014m.

(a) Evaluate the binding energy of a donor.
(b) Evaluate the orbit radius of a conduction electron in the ground state.
(c) Evaluate the donor concentration at which overlap effects between neighbor-

ing impurities become significant.
(d) If Nd = 1014 cm 3 in a sample of InSb, calculate nc at T = 4K. (One can

begin with the general charge neutrality condition in the low temperature
region.)

(e) Estimate the magnitude of the electric field needed to ionize the donor at zero
temperature.

7.4 Let us consider a case that the work function of two metals differ by 2eV;
EF1 − EF2 = 2eV.

If the metals are brought into contact, electrons will flow from metal 1 to metal 2.
Assume the transferred electrons are displaced by 3×10−8 cm. Howmany electrons
per cm2 are transferred?

7.5 Consider a semiconductor quantumwell consisting of a very thin layer of narrow
gap semiconductor of EG = εc − εv contained in a wide band gap host material of
EG = εHc − εHv as shown in the figure below. The conduction and valence band
edges are shown in the figure below. The dashed lines indicate the positions of
energy levels associated with the quantized motion of electrons (εc0) and holes (εv0)
in this quantum well. We can write the electron and hole energies, respectively, as
εc(k) = ε̃c + �

2

2mc

(
k2x + k2y

)
and εv(k) = ε̃v − �

2

2mv

(
k2x + k2y

)
, where ε̃c = εc + εc0 and

ε̃v = εv − εv0.
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H

H

c
c
0 +

v
0

(a) Calculate the two-dimensional density of states for the electrons and holes
assuming that other quantized levels can be ignored. Note that

L2gc(ε)dε =
∑

kx , ky,σ
ε < εk < ε + dε

1.

(b) Determine Nc(T ) and Pv(T ) for this two-dimensional system. Remember that
Nc(T ) = ∫ ∞

0 dε gc(ε)e−(ε−ε̃c)/kBT .

(c) Determine nc(T ) and pv(T ) for the intrinsic case.
(d) Determine the value of the chemical potential for this case.

7.6 Consider the metal–oxide–semiconductor structure with oxide layer width of a
as shown below. We have assumed the semiconductor is p-type with NA acceptors
per unit volume and, therefore EF located at the acceptor level.

z=-a z=0

FE

We then apply a gate voltage Vg, which lowers the Fermi level in the metal relative
to that in the bulk of the semiconductor.

(a) Sketch the resulting energy bands versus z if Vg is less than EG(= εc − εv).
(b) Where are the charges that give rise to the voltage drop across the oxide and the

semiconductor depletion layer? Sketch the profile of the charge distribution
across the oxide layer.

(c) For 0 < z < d, the voltage drop across the depletion layer of width d is
determined by

∂2

∂z2
Vd(z) = −4πe2

εs
NA,
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where εs is the background dielectric constant of the semiconductor. Solve
this equation for Vd(z) in the ‘standard’ depletion layer approximation.

(d) Impose boundary conditions that (i) Vd(z) = Vd(∞) for z ≥ d and (ii)
εoEoxide = εs Esemiconductor at z = 0, where εo is the background dielectric
constant of the oxide, and determine the voltage drop across the oxide and
that across the depletion layer.

(e) When the voltage drop across the depletion layer exceeds EG, electrons can
transfer from the valence band into the potentialwell formed by the conduction
band edge and the oxide band gap. Determine the value Vthreshold of the gate
voltage at which this occurs.

(f) For Vgate > Vthreshold, the depletion width remains essentially constant, and
the conduction electrons in the ‘inversion layer’ produce a Hartree potential
VH(z) which satisfies

∂2

∂z2
VH(z) = −4πe2ns

εs
|Ψ0(z)|2,

where ns is the number of conduction electrons per unit area and Ψ0(z) is the
solution of the differential equation

(
− �

2

2m

∂2

∂z2
+ Vd(z) + VH(z) − E0

)
Ψ0(z) = 0.

Because VH(z) depends on ns and EF−E0 = �
2k2F
2m = π�

2

m ns, this must be done
self-consistently. Determine VH(z) and E0 to obtain the average electronic
energy in the system Ẽ .Hint:One can assumeavariational functionΨ (z,α) =
Nze−αz to evaluate E0(α) and then minimize the average electronic energy
in the system given by Ẽ(α) = E0 − 1

2 〈VH〉 + 1
2 (EF − E0).

Summary
In this chapter we studied the physics of semiconducting material and artificial
structures made of semiconductors. General properties of typical semiconductors
are reviewed and temperature dependence of carrier concentration is considered for
both intrinsic and doped cases. Then basic physics of p–n junctions is covered in
equilibrium and the current-voltage characteristic of the junction is described. The
characteristics of two-dimensional electrons are discussed for the electrons in surface
space charge layers formed in metal-oxide-semiconductor structures, semiconductor
superlattices, and quantum wells. The fundamentals of the quantum Hall effects and
the effects of disorders and modulation doping are also discussed.

The densities of states in the conduction and valence bands are given by

gc(ε) =
√
2m3/2

c

π2�3
(ε − εc)

1/2 ; gv(ε) =
√
2m3/2

v

π2�3
(εv − ε)1/2 .

In the case of nondegenerate regime, we have εc − ζ 
 Θ and ζ − εv 
 Θ ,
where Θ is kBT . Then the carrier concentrations become
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nc(T ) = Nc(T )e− εc−ζ
Θ ; pv(T ) = Pv(T )e− ζ−εv

Θ ,

where

Nc(T ) =
∫ ∞

εc

dεgc(ε)e
− ε−εc

Θ ; Pv(T ) =
∫ εv

∞
dεgv(ε).

The product nc(T )pv(T ) is independent of ζ such that

nc(T )pv(T ) = Nc(T )Pv(T )e−EG/Θ.

In the absence of impurities, nc(T ) = pv(T ) and we have

ni(T ) = [Nc(T )Pv(T )]1/2 e−EG/2Θ.

The chemical potential now becomes

ζi = εc − 1

2
EG + 3

4
Θ ln

(
mv

mc

)
; ζi = εv + 1

2
EG + 3

4
Θ ln

(
mv

mc

)
.

When donors are present, the chemical potential ζ will move from its intrinsic
value ζi to a value near the conduction band edge. If the concentration of donors is
sufficiently small, the average occupancy of a single donor impurity state is given by

〈nd〉 = 1
1
2e

β(εd−ζ) + 1
.

The numerical factor of 1
2 in 〈nd〉 comes from the fact that either spin up or spin

down states can be occupied but not both.
At a finite temperature, we have

nc(T ) = Nc(T )e−β(εc−ζ), pv(T ) = Pv(T )e−β(ζ−εv),

nd(T ) = Nd
1
2 e

β(εd−ζ) + 1
, pa(T ) = Na

1
2 e

β(ζ−εa) + 1
.

In addition, we have charge neutrality condition given by

nc + nd = Nd − Na + pv + pa.

The set of these five equations should be solved numerically in order to have self
consistent result for five unknowns.

The region of the p–n junction is a high resistance region and the electrical current
density becomes

j = e
(
J gen
h + J gen

e

) (
eeV/Θ − 1

)
,

where J gen
h and J gen

e are hole and electron generation current densities, respectively.
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Near the interface of metal-oxide-semiconductor structure under a strong enough
gate voltage, the motion of the electrons is characterized by

ε = ε0 + �
2

2m∗
c

(
k2x + k2y

) ; Ψn,kx ,ky = 1

L
ei(kx x+ky y)ξn(z).

Here ξn(z) is the nth eigenfunction of a differential equation given by

[
1

2m∗
c

(
−i�

∂

∂z

)2

+ Veff(z) − εn

]
ξn(z) = 0.

If a quantum well is narrow, it leads to quantized motion and subbands:

ε(c)
n (k) = ε(c)

n + �
2

2m∗
c

(
k2x + k2y

)
.

In the presence of a dc magnetic field B applied normal to the plane of the 2DEG,
the Hamiltonian of a single electron is written by

H = 1

2m

(
p + e

c
A

)2
.

Here p = (px , py) and A(r) is the vector potential whose curl gives B = (0, 0, B).
The electronic states are described by

Enk = �ωc

(
n + 1

2

)
, Ψnk(x, y, z) = eiky un

(
x + �k

mωc

)
; n = 0, 1, 2, . . . .

The density of states (per unit length) is given by g(ε) ∝ ∑
n δ

(
ε − �ωc(n + 1

2 )
)
.

The total number of states per Landau level is equal to the magnetic flux through the
sample divided by the flux quantum hc

e :

NL = BL2

hc/e
.



Chapter 8
Dielectric Properties of Solids

8.1 Review of Some Ideas of Electricity and Magnetism

When an external electromagnetic disturbance is introduced into a solid, it will pro-
duce induced charge density and induced current density. These induced densities
produce induced electric and magnetic fields. We begin with a brief review of some
elementary electricity and magnetism. In this chapter we will neglect the magnetiza-
tion produced by induced current density and concentrate on the electric polarization
field produced by the induced charge density.

The potential φ(r) set up by a collection of charges qi at positions ri is given by

φ(r) =
∑

i

qi
|r − ri | . (8.1)

The electric field E(r) is given by E(r) = −∇φ(r).
Now consider a dipole at position r′ (see Fig. 8.1).

φ(r) = q∣∣r − r′ − d
2

∣∣ − q∣∣r − r′ + d
2

∣∣ . (8.2)

By a dipole we mean p = qd is a constant, called the dipole moment, but |d| = d
itself is vanishingly small. If we expand for

∣∣r − r′∣∣�| d |, we find

φ(r) = qd · (r − r′)
(r − r′)3

= p · (r − r′)
|r − r′|3 . (8.3)

The potential produced by a collection of dipoles pi located at ri is simply

φ(r) =
∑

i

pi · (r − ri )

|r − ri |3
. (8.4)
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r'

r

d

r'+d/2r'-d/2

Fig. 8.1 Electric dipole of moment p = qd located at r′

Again the electric field E(r) = −∇φ(r), so

E(r) =
∑

i

3(r − ri )
[
pi · (r − ri )

]− (r − ri )2pi

|r − ri |5
. (8.5)

8.2 Dipole Moment Per Unit Volume

Let us introduce the electric polarization P(r), which is the dipole moments per unit
volume. Consider a volume V bounded by a surface S filled with a polarization P(r′)
that depends on the position r′. Then

φ(r) =
∫

d3r ′ P(r′) · (r − r′)
|r − r′|3 . (8.6)

If we look at the divergence of P(r′)
|r−r′ | with respect to r′, we note that

∇′ ·
[

P(r′)
|r − r′|

]
= 1

|r − r′|∇
′ · P(r′) + P(r′) · (r − r′)

|r − r′|3 . (8.7)

We can solve for P(r′)·(r−r′)
|r−r′ |3 and substitute into our expression forφ(r). The integral of

the divergence term can be expressed as a surface integral using divergence theorem.
This gives

φ(r) =
∮

S
dS′ P(r′) · n̂′

|r − r′| +
∫

V
d3r ′

[−∇′ · P(r′)
]

|r − r′| . (8.8)

The potential φ(r) can be associated with a potential produced by a volume distrib-
ution of charge density

ρP(r) = −∇ · P(r) (8.9)
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and the potential produced by a surface charge density

σP(r) = P(r) · n̂. (8.10)

Here, of course, n̂ is a unit vector outward normal to the surface S bounding the
volume V .

Poisson’s equation tells us that

∇ · E = 4π (ρ0 + ρP) , (8.11)

where ρ0 is some external charge density and ρP is the polarization charge density.
Since ρP = −∇ · P, we can write

∇ · E = 4πρ0 − 4π∇ · P. (8.12)

If we define D = E + 4πP, then

∇ · D = 4πρ0. (8.13)

Thus D is the electric field that would be produced by the external charge density ρ0
if a polarizable material were absent. E is the true electric field produced by all the
charge densities including both ρ0 and ρP .

In general P and E need not be in the same direction. However, for sufficiently
small value of E, the relationship between P and E is linear. We can write

Pi =
∑

j

χi j E j , (8.14)

where χ is called the electrical susceptibility tensor. We can write

D = ε · E, (8.15)

where ε = 1 + 4πχ is the dielectric tensor.

8.3 Atomic Polarizability

An atom in its ground state has no dipole moment. However, in the presence of an
electric field E, an induced dipole moment results from the relative displacements
of the positive and negative charges within the atom. We can write

pind = αE, (8.16)

and α is called the atomic polarizability.
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p

p p p

p p

p

p

Fig. 8.2 Induced dipoles of moment p located on neighboring atoms

8.4 Local Field in a Solid

In a dilute gas of atoms the electric field E that produces the induced dipole moment
on an atom is simply the applied electric field. In a solid, however, all of the dipole
moments produced on other atoms in the solid make a contribution to the field acting
on a given atom. The value of this microscopic field at the position of the atom is
called the local field. The local field ELF(r) is different from the applied electric
field E0 and from the macroscopic electric field E (which is the average of the
microscopic field ELF(r) over a region that is large compared to a unit cell). Clearly,
the contributions to the microscopic field from the induced dipoles on neighboring
atoms vary considerably over the unit cell (see Fig. 8.2). The standard method of
evaluating the local field ELF(r) in terms of the macroscopic field E is to make use
of the Lorentz sphere. Before introducing the Lorentz field, let us review quickly the
relation between the external field E0 and the macroscopic field E in the solid.

8.5 Macroscopic Field

Suppose the solid we are studying is shaped like an ellipsoid. It is a standard problem
in electromagnetism to determine the electric field E inside the ellipsoid in terms
of the external electric field E0 (see Fig. 8.3). The applied field E0 is the value of
the electric field very far away from the sample. The macroscopic field inside the
ellipsoid is given by

E = E0 − λP = E0 + E1. (8.17)

The field E1 = −λP is called the depolarization field, due to surface charge density
n̂ · P on the outer surface of the specimen, and λ is called the depolarization factor.
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Fig. 8.3 The macroscopic electric field E inside an ellipsoid located in an external electric field E0
is the sum of E0 and polarization field E1 = −λP due to the surface charge density n̂ · P

8.5.1 Depolarization Factor

The standard electromagnetic theory problem of determining λ involves

1. solving Laplace’s equation ∇2φ(r) = 0 in cylindrical coordinates so that

φ(r) = (arl + br−(l+1)
)
Pl(cos θ) (C sinmφ + D cosmφ)

(a) inside the sample (where r can approach 0)
(b) outside the sample (where r can approach∞), and

2. imposing boundary conditions

(a) E well behaved as r → 0
(b) E → E0 as r → ∞
(c) Dnormal = (E + 4πP)normal, and Etransv be continuous at the surface.

For an ellipsoidwith the depolarization factorsλ1,λ2, andλ3 along the three principal
axes.

λ1 + λ2 + λ3 = 4π. (8.18)

Some examples are listed in Table8.1.

Table 8.1 Depolarization factors λ of typical ellipsoids

Type of ellipsoid Axis λ

Sphere Any 4π
3

Thin slab Normal 4π

Thin slab Parallel 0

Long cylinder Along axis 0

Long circular
cylinder

Normal to axis 2π



224 8 Dielectric Properties of Solids

8.6 Lorentz Field

Assume thatwe knowE, themacroscopic field inside the solid.Nowconsider an atom
at position R. Draw a sphere of radius � (named as Lorentz sphere) about R where
� � a, the interatomic spacing (see Fig. 8.4). The contribution to the microscopic
field at R from induced dipoles on other atoms can be divided into two parts:

(1) For atoms inside the sphere we will actually sum over the contribution from their
individual dipole moments pi .

(2) For atoms outside the sphere we can treat the contribution macroscopically,
treating them as part of a continuum with polarization P.

The dipole moments outside the Lorentz sphere contribute a surface charge density
on the surface of the Lorentz sphere, and we can write

φ(R) =
∫

Lorentzsphere
dS

P(r) · n̂(r)
|R − r| . (8.19)

The field E2 caused by this surface charge on the spherical cavity (Lorentz sphere)
is called the Lorentz field:

E2(R) = −∇Rφ(R) =
∫

dS P(r) · n̂(r)
(R − r)

|R − r|3 . (8.20)

To evaluate this integral note, from Fig. 8.4, that

|r − R| = �,

P(r) · n̂(r) = P cos θ,
dS = 2π�2 sin θ dθ, and
R − r = � (sin θ cosφ, sin θ sin φ, cos θ) .

Hence we have

0

r-R
r

R

r

rP

Fig. 8.4 A Lorentz sphere of radius � centered at R
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E2(R) = −
∫ π

0
2π�2 d(cos θ)P cos θ

� cos θ

�3
.

Only the z-component of R − r survives the integration. We find that

E2(R) = 2πP
∫ 1

−1
d(cos θ) cos2 θ = 4π

3
P. (8.21)

E2 = 4πP
3 is the Lorentz field.

The final contribution E3 arises from the contribution of the dipoles within the
Lorentz sphere (L.S.). It is given by

E3 =
∑

i∈L.S.

3 (pi · ri ) ri − r2i pi

r5i
. (8.22)

This term clearly depends on the crystal structure. If pi = p = pẑ, then the field at
the center of the Lorentz sphere is

E3 = (0, 0, E3) = p
∑

i∈L.S.

3z2i − r2i
r5i

ẑ. (8.23)

For a crystal with cubic symmetry

∑

i

x2i
r5i

=
∑

i

y2i
r5i

=
∑

i

z2i
r5i

= 1

3

∑

i

r2i
r5i

.

Thus, for a cubic crystal, the two terms cancel and E3 = 0. Hence, we find the local
field in a cubic crystal

ELF = E0 + E1︸ ︷︷ ︸ + E2︸︷︷︸ + E3

= E + 4π
3 P + 0.

(8.24)

The last expression is the Lorentz relation. We note that, since E1 = − 4π
3 P for a

spherical specimen, the local field at the center of a sphere of cubic crystal is simply
given by

E sphere
LF = E0 − 4π

3
P + 4π

3
P + 0 = E0.

8.7 Clausius–Mossotti Relation

The induced dipole moment of an atom is given, in terms of the local field, by
p = αELF. The polarization P is given, for a cubic crystal, by
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P = Np = NαELF = Nα

(
E + 4π

3
P
)

, (8.25)

where N is the number of atoms per unit volume. Solving for P gives

P = Nα

1 − 4πNα
3

E ≡ χE. (8.26)

Thus, the electrical susceptibility of the solid is

χ = Nα

1 − 4πNα
3

. (8.27)

Since D = εE with ε = 1 + 4πχ, we find that

ε = 1 + 4πNα

1 − 4πNα
3

. (8.28)

or

ε = 1 + 8πNα
3

1 − 4πNα
3

. (8.29)

This relation between the macroscopic dielectric function ε and the atomic polariz-
ability α is called the Clausius–Mossotti relation. It can also be written (solving for
4πNα

3 ) by
ε − 1

ε + 2
= 4πNα

3
. (8.30)

8.8 Polarizability and Dielectric Functions of Some Simple
Systems

The total polarizability of the atoms or ions within a unit cell can usually be separated
into three parts:

(i) electronic polarizability αe: the displacement of the electrons relative to the
nucleus.

(ii) ionic polarizability αi: the displacement of an ion itself with respect to its
equilibrium position.

(iii) dipolar polarizability αdipole: the orientation of any permanent dipoles by the
electric field in the presence of thermal disorder.

Atoms and homonuclear diatomicmolecules have no dipolemoments in their ground
states. Molecules like KCl, HCl, H2O, . . . do exhibit permanent dipole moments.
A typical dipole moment p = qd has q 	 4.8× 10−10 esu and d 	 10−8 cm, giving
p 	 5 × 10−18 stat-coulomb cm.
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8.8.1 Evaluation of the Dipole Polarizability

In the absence of an electric field, the probability that a dipole p will be oriented
within the solid angle dΩ = sin θ dθ dφ is independent of θ and φ and is given
by dΩ

4π . In the presence of a field E, the probability is proportional to dΩ e−W/kBT ,
where W = −p · E is the energy of the dipole in the field E. If we choose the z
direction parallel to E, then the average values of px and py vanish and we have

p̄z =
∫
dΩ epE cos θ/kBT p cos θ∫

dΩ epE cos θ/kBT
. (8.31)

Let pE
kBT

= ξ, cos θ = x and rewrite p̄z as

p̄z = p
∫ 1
−1 dx xeξx

∫ 1
−1 dx eξx

= p d
dξ

ln
∫ 1
−1 dx eξx

= p d
dξ

ln
(
2 sinh ξ

ξ

)
= p

(
coth ξ − 1

ξ

)
.

Thus we can write p̄z as
p̄z = pL(ξ). (8.32)

HereL(ξ) is the Langevin function defined byL(ξ) = coth ξ− 1
ξ
. The dipolemoment

per unit volume is then given by

P = N p̄z = NpL
(

pE

kBT

)
.

We note that for ξ → ∞, L(ξ) → 1, while for ξ → 0, L(ξ) = ξ
3 . If ξ 
 1, P =

Np2E
3kBT

. At room temperature the condition is satisfied if E 
 kBT
p 	 107 volts/cm.

The standard unit of dipole moment is the Debye, defined by 1 Debye = 10−18 esu.
Figure8.5 is a sketch of the temperature dependence of an electrical polarization P .

Fig. 8.5 Temperature dependence of an electrical polarization P
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i

Fig. 8.6 An electrical polarizability α as a function of temperature

The electronic polarizability αe and the ionic polarizability αion are almost inde-
pendent of temperature. Therefore, by measuring ε−1

ε+2 ≡ 4πNα
3 as a function of

temperature one can obtain the value of p2 from the slope (see Fig. 8.6).

8.8.2 Polarizability of Bound Electrons

Assume that an electron (of charge q = −e) is bound harmonically to a particular
location (e.g., the position of a particular ion). Its equation of motion is written by

m

(
r̈ + ṙ

τ

)
= −kr − eE, (8.33)

where −kr is the restoring force and E is the perturbing electric field. Assume
E ∝ eiωt and let k = mω2

0. Then we can solve for r ∝ eiωt to obtain

r = −eE/m

−ω2 + iω/τ + ω2
0

≡ p
−e

. (8.34)

The dipole moment of the atom will be p = −er and the polarization P = Np =
−Ner ≡ NαelE. This gives for αel

αel = (e2/m)
[
ω2
0 − ω2 − iω/τ

]

(ω2
0 − ω2)2 + (ω/τ )2

. (8.35)

The dielectric function ε = 1 + 4πNαel is

ε(ω) = 1 +
(
4πNe2/m

) (
ω2
0 − ω2 − iω/τ

)

(ω2
0 − ω2)2 + (ω/τ )2

. (8.36)

It is clear that αe has a real and an imaginary part whose frequency dependences are
of the form sketched in Fig. 8.7.
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R
e

el

Im
el

(a) (b)

Fig. 8.7 The frequency dependence of the dielectric function ε of atoms with bound electrons. (a)
Real part of ε(ω), (b) imaginary part of ε(ω)

8.8.3 Dielectric Function of a Metal

In a metal (e.g., Drude model) the electrons are free. This means that the restoring
force vanishes (i.e., k → 0) or ω0 = 0. In that case we obtain

αe = e2/m

−ω2 + iω/τ
, (8.37)

or

ε(ω) = 1 − 4πNe2/m

ω2 − iω/τ
= 1 − ω2

p

ω2 − iω/τ
. (8.38)

The real and imaginary parts of ε(ω) are

�ε(ω) = 1 − ω2
pτ

2

1 + ω2τ 2
(8.39)

and


ε(ω) = − ω2
pτ

2

ωτ (1 + ω2τ 2)
. (8.40)

The fact that �ε(ω) < 0 for ω2 < ω2
p − 1

τ 2 leads to an imaginary refractive index
and is responsible for the fact that metals are good reflectors.

8.8.4 Dielectric Function of a Polar Crystal

In an ionic crystal like NaCl, longitudinal optical phonons have associated with them
charge displacements, which result in a macroscopic polarization field PL. Here the
subscript L stands for the lattice polarization (see, for example, Fig. 8.8).
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Fig. 8.8 Polarization field due to charge displacements in a polar crystal

The polarization fieldPL consists of two parts: (i) the displacements of the charged
individual ions from their equilibrium positions, and (ii) the polarization of the ions
themselves resulting from the displacement of the electrons relative to the nucleus
under the influence of the E field. In determining each of these contributions to PL,
we must use the local field ELF. We shall consider the following model of a polar
crystal.

(i) The material is a cubic lattice with two atoms per unit cell; the volume of the
unit cell is V .

(ii) The charges, masses, and atomic polarizabilities of these ions are ±ze, M±,
and α±.

(iii) In addition to long range electrical forces, there is a short range restoring force
that is proportional to the relative displacement of the pair of atoms in the same
cell.
Note: Here we are considering only the q = 0 optical phonon, so that the
ionic displacements are identical in each cell. Therefore, the restoring force can
be written in such a way that: The force on M (n)

+ depends on u(n)
+ − u(n)

− and
u(n)

+ −u(n−1)
− , but u(n)

− = u(n−1)
− so the force is simply proportional to u(n)

+ −u(n)
−

(see Fig. 8.9).

We can write the equations of motion of u+ and u− as

M+ü+ = −k(u+ − u−) + zeELF,

M−ü− = k(u+ − u−) − zeELF. (8.41)

Fig. 8.9 Ionic displacements in the nth unit cell and its nearest neighbor atoms
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The local field ELF is given, for cubic crystals, by (8.24):

ELF = E + 4π

3
PL, (8.42)

and

PL = ze

V
(u+ − u−) + 1

V
(α+ + α−) ELF. (8.43)

Substitute for ELF in terms of E and PL, and then solve for PL. This gives us

PL = ze

Vβ
r + α+ + α−

Vβ
E. (8.44)

Here β = 1 − 4π
3

(α++α−
V

)
and r = u+ − u−. Introduce

Ω2± ≡ k
M± ,

Ω2
p± ≡ 4πe2

V M± ,

M
−1 ≡ M−1

+ + M−1
− .

(8.45)

The equations of motion can be rewritten

−ω2u+ = −Ω2+r + 1
3β Ω2

p+r + ze
M+β

E,

−ω2u− = +Ω2−r − 1
3β Ω2

p−r − ze
M−β

E.
(8.46)

If we subtract the second equation from the first we obtain

[
−ω2 + (Ω2

+ + Ω2
−
)− Ω2

p+ + Ω2
p−

3β

]
r = ze

βM
E. (8.47)

This can be rewritten
r = − ze

βM

(
ω2 + b11

)−1
E, (8.48)

where

b11 = −
[
Ω2

+ + Ω2
− − Ω2

p+ + Ω2
p−

3β

]
≡ −ω2

T. (8.49)

−b11 is a frequency squared and it is positive since Ω2
p± is always smaller than Ω±.

Let us call it +ω2
T. Since we know the expression for PL in terms of r and E we can

write

PL = ze

Vβ

(
− ze

βM

)
E

ω2 − ω2
T

+ α+ + α−
βV

E. (8.50)
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Let us define
b22 = α++α−

βV ,

b212 = z2e2

β2MV
.

(8.51)

Then we can rewrite PL as

PL =
(
b22 − b212

ω2 − ω2
T

)
E ≡ χE. (8.52)

Recall that the electrical susceptibility is defined by χ(ω) = PL(ω)

E(ω)
, and the dielectric

function by
ε(ω) = 1 + 4πχ(ω). (8.53)

From (8.52) for PL we find

χ(ω) = b22 − b212
ω2 − ω2

T

. (8.54)

The frequency ωT is in the infrared (∼1013/s). If we look at frequencies much larger
than ωT we find

χ∞ = b22. (8.55)

For ω → 0 we find that

χ0 = b22 + b212
ω2
T

= χ∞ + b212
ω2
T

. (8.56)

Therefore we can write

b212 = ω2
T (χ0 − χ∞) = ω2

T

4π
(ε0 − ε∞) . (8.57)

This, of course, is positive since ε0 contains contributions from the displacements of
the ions as well as the electronic displacements within each ion. The latter is very
fast while the former is slow. The dielectric function ε(ω) can be written

ε(ω) = ε∞ − ω2
T

ω2−ω2
T
(ε0 − ε∞)

= ε∞
[
1 −

(
ε0
ε∞ − 1

)
ω2
T

ω2−ω2
T

]
.

We define ω2
L = ω2

T
ε0
ε∞ > ω2

T. Then we can write

ε(ω) = ε∞
[
ω2 − ω2

L

ω2 − ω2
T

]
. (8.58)
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Table 8.2 Dielectric constants ε0 and ε∞ for polar materials

Crystal ε0 ε∞ ε0/ε∞
LiF 8.7 1.93 4.5

NaCl 5.62 2.25 2.50

KBr 4.78 2.33 2.05

Cu2O 8.75 4.0 2.2

PbS 17.9 2.81 6.37

Fig. 8.10 Frequency dependence of the dielectric function ε(ω) of a polar crystal

Here, ωL and ωT are the TO and LO phonon frequencies, respectively. We note that
ωL > ωT since ε0 > ε∞ in general. Values of ε0 and ε∞ for some polar materials are
listed in Table8.2. Instead of discussing the lattice polarization PL, we could have
discussed the lattice current density

jL = ṖL = iωPL = iωχ(ω)E.

A plot of ε(ω) versus ω is shown in Fig. 8.10. At ω = 0 ε has the static value ε0, and
as ω → ∞ it approaches the high frequency value ε∞. ε0 is always larger than ε∞.
There is a resonance at ω = ωT.

8.9 Optical Properties

The dielectric andmagnetic properties of amediumare characterized by the dielectric
function ε(ω) and the magnetic permeability μ(ω):

D = εE and B = μH. (8.59)
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In terms of E and B, Maxwell’s equations can be written

∇ · E = 4πρ = 4π(ρ0 + ρP)
∇ · B = 0
∇ × E = − 1

c Ḃ

∇ × B = 1
c Ė + 4π

c (j0 + jP) + 4π∇ × M.

(8.60)

The last equation involves the magnetization which is normally very small. Here we
will neglect it; this is equivalent to taking μ = 1 or B = H. The sources of E are all
charges; external (ρ0) and induced polarization (ρP) charge densities. The sources of
B are the rate of change of E and the total current (external j0 and induced jP current
densities). Recall that jP = Ṗ and ∇ · P = −ρP.

Note: Sometimes the firstMaxwell equation is replaced by∇·D = 4πρ0. HereD = E+4πP
and as we have seen ρP = −∇ · P. The fourth equation is sometimes replaced by ∇ × H =
1
c Ḋ + 4π

c j0, which omits all polarization currents.

In this chapter we shall ignore all magnetic effects and take μ(ω) = 1. This is
an excellent approximation for most materials since the magnetic susceptibility is
usually much smaller than unity. There are two extreme ways of writing the equation
for ∇ × B:

∇ × B = ε
c Ė + 4π

c j0or

∇ × B = 1
c Ė + 4π

c (j0 + σE)
(8.61)

The first equation is just that for H in which we put μ = 1 and D = εE. The
second equation is that for ∇ × B in which we have taken jP = σE where σ is the
conductivity. From this we see that iω

c ε(ω) = iω
c + 4π

c σ(ω), or

ε(ω) = 1 − 4πi

ω
σ(ω) (8.62)

is a complex dielectric constant and simply related to the conductivity σ(ω). We have
assumed that E and B are proportional to eiωt .

8.9.1 Wave Equation

For the propagation of light in a material characterized by a complex dielectric
function ε(ω), the external sources j0 and ρ0 vanishes. Therefore, we have

∇ × E = − iω
c B

∇ × B = iωε(ω)

c E.
(8.63)

Later on we will consider both bulk and surface waves. We will take the normal
to the surface as the z-direction and consider waves that propagate at some angle
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to the interface. There is no loss of generality in assuming that the wave vector
q = (0, qy, qz), so that the E field is given by

E = (Ex , Ey, Ez)e
i(ωt−qy y−qz z).

The operators ∇ and ∂
∂t become −iq and iω, and the two Maxwell equations for

∇ × E and ∇ × B can be combined to give

∇ × (∇ × E) = − iω
c ∇ × B = − iω

c

(
iωε
c E
)

= ∇(∇ · E) − ∇2E.

This can be rewritten

(
ω2

c2
ε(ω) − q2

)
E + q (q · E) = 0. (8.64)

This vector equation can be expressed as a matrix equation

⎛

⎜⎝

ω2

c2 ε(ω) − q2 0 0
0 ω2

c2 ε(ω) − q2
z qyqz

0 qyqz
ω2

c2 ε(ω) − q2
y

⎞

⎟⎠

⎛

⎝
Ex

Ey

Ez

⎞

⎠ = 0. (8.65)

8.10 Bulk Modes

For an infinite homogeneous medium of dielectric function ε(ω), the nontrivial solu-
tions are obtained by setting the determinant of the 3 × 3 matrix (multiplying the
column vector E in (8.65)) equal to zero. This gives

ε(ω)

[
ω2

c2
ε(ω) − q2

]2
= 0. (8.66)

There are two transverse modes satisfying

ω2 = c2q2

ε(ω)
. (8.67)

One of these has qy Ey + qz Ez ≡ q · E = 0; Ex = 0. The other has Ex �= 0 and
Ey = Ez = 0. The other mode is longitudinal and has Ex = 0 and q ‖ E or Ez

Ey
= qz

qy
,

and has the dispersion relation
ε(ω) = 0. (8.68)

First, let us look at longitudinal modes.
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8.10.1 Longitudinal Modes

Longitudinal modes, as we have seen, are given by the zeros of the dielectric function
ε(ω). For simplicitywewill neglect collisions and set τ → ∞ in the various dielectric
functions we have studied.
Bound Electrons

We found that (for τ → ∞)

ε(ω) = 1 + 4πNe2/m

ω2
0 − ω2

. (8.69)

We have seen the quantity 4πNe2/m before. It is just the square of the plasma
frequency ωp of a system of N electrons per unit volume. The zero of ε(ω) occurs at

ω2 = ω2
0 + ω2

p ≡ Ω2. (8.70)

Free Electrons

For free electrons ω0 = 0. Therefore the longitudinal mode (plasmon) occurs at

ω2 = ω2
p . (8.71)

Polar Crystal

For a polar dielectric, the dielectric function is given by

ε(ω) = ε∞
ω2 − ω2

L

ω2 − ω2
T

. (8.72)

The longitudinal mode occurs at ω = ωL, the longitudinal optical phonon frequency.

Degenerate Polar Semiconductor

For a polar semiconductor containing N free electrons per unit volume in the con-
duction band

ε(ω) = ε∞
(

ω2 − ω2
L

ω2 − ω2
T

)
− ω2

p

ω2
. (8.73)

This can be written as

ε(ω) = ε∞
(ω2 − ω2+)(ω2 − ω2−)

ω2(ω2 − ω2
T)

. (8.74)

Here ω2± are two solutions of the quadratic equation
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Fig. 8.11 Frequency dependence of the dielectric function ε(ω) for a degenerate polar semicon-
ductor

ω4 − ω2(ω2
L + ω̃2

p) + ω2
Tω̃

2
p = 0, (8.75)

where ω̃2
p = ω2

p

ε∞ with background dielectric constant ε∞. The modes are coupled
plasmon–LO phonon modes. One can see where these two modes occur by plotting
ε(ω) versus ω (see Fig. 8.11).

8.10.2 Transverse Modes

For transverse waves ω2 = c2q2

ε(ω)
. Again we will take the limit τ → ∞.

Dielectric

For a dielectric ε(ω) is a constant ε0 independent of frequency. Thus, we have

ω = c√
ε0
q. (8.76)

Here
√

ε0 is called the refractive index n, and the velocity of light in the medium is c
n .

Metal

For a metal ε = 1 − ω2
p

ω2 , giving

ω2 = ω2
p + c2q2. (8.77)

No transversewaves propagate forω < ωp since ε(ω) is negative there (see Fig. 8.12).
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Fig. 8.12 Dispersion relations of the transverse modes in a metal

Fig. 8.13 Frequency dependence of the dielectric function ε(ω) for bound electrons

Bound Electrons

For bound electrons ε = 1 + ω2
p

ω2
0−ω2 = Ω2−ω2

ω2
0−ω2 giving for the transverse mode

c2q2 = ω2

(
Ω2 − ω2

ω2
0 − ω2

)
. (8.78)

It is worth sketching ε(ω) versus ω (see Fig. 8.13).
The dielectric function is negative for ω0 < ω < Ω . The dispersion relation of

the transverse mode for bound electrons given by (8.78) is sketched in Fig. 8.14.
No transverse modes propagate where ε(ω) < 0 since c2q2 = ω2ε gives imaginary
values of q in that region.

Polar Dielectric

In this case ε(ω) = ε∞
ω2−ω2

L

ω2−ω2
T
and again it is worth plotting ε(ω) versus ω. It is shown

in Fig. 8.15. ε(ω) is negative in the region ωT < ω < ωL. Plotting ω versus cq we
have result shown in Fig. 8.16. There is a region between ωT and ωL where no light
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Fig. 8.14 Dispersion relation of the transverse modes for bound electrons

Fig. 8.15 Frequency dependence of the dielectric function ε(ω) in a polar dielectric

Fig. 8.16 Dispersion relation of the transverse modes in a polar dielectric

propagates the (reststrahlen region). The propagatingmodes are referred to as polari-
ton modes. They are linear combinations of transverse phonon and electromagnetic
modes.
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Fig. 8.17 Dispersion relation of the transverse modes in a polar semiconductor

Degenerate Polar Semiconductor

Here ε(ω) = ε∞
ω2−ω2

L

ω2−ω2
T
− ω2

p

ω2 (see Fig. 8.11). We have already shown in (8.74) that this
can be written in terms of ω+ and ω−. The equation for a transverse mode becomes

c2q2 = ε∞
(ω2 − ω2+)(ω2 − ω2−)

ω2 − ω2
T

. (8.79)

In Fig. 8.11 the dielectric function ε(ω) was plotted as a function of ω in order to
study the longitudinal modes. There we found that ε(ω) was negative if ω < ω−
or if ωT < ω < ω+. The dispersion curve for the transverse mode is displayed in
Fig. 8.17.

8.11 Reflectivity of a Solid

A vacuum–solid interface is located at z = 0. The solid (z > 0) is described by a
dielectric function ε(ω) and vacuum (z < 0) by ε = 1. An incident light wave of
frequency ω propagates in the z-direction as shown in Fig. 8.18.

Fig. 8.18 Reflection of light wave at the interface of vacuum and solid of dielectric function ε(ω)
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Here we take the wave to be polarized in the ŷ-direction and q0 = ω
c while

q = √
ε(ω)q0. There are three waves to consider:

(i) the incident wave whose electric field is given by

EI = ŷEIe
i(ωt−q0z).

(ii) The reflected wave whose electric field is given by

ER = ŷERe
i(ωt+q0z). (8.80)

(iii) The transmitted wave whose electric field is given by

ET = ŷETe
i(ωt−qz).

Because ∇ × E = − 1
c Ḃ, B = cqi

ω
× E, where qi = q0 for the wave in vacuum

and qi = q for the wave in the solid. We can easily see that

BI = −x̂ EIei(ωt−q0z),

BR = x̂ ERei(ωt+q0z),

BT = −x̂
√

ε(ω)ETei(ωt−qz).

(8.81)

The boundary conditions at z = 0 are continuity of E and B. This gives

EI + ER = ET, −EI + ER = −ε1/2ET. (8.82)

Solving these equations for ER
EI

gives

ER

EI
= 1 − √

ε(ω)

1 + √
ε(ω)

. (8.83)

8.11.1 Optical Constants

The refractive index n(ω) and extinction coefficient k(ω) are real functions of fre-
quency defined by

ε(ω) = (n + ik)2. (8.84)

Therefore, the reflectivity, the fraction of power reflected defined by R = |ER/EI|2,
is given by

R = (1 − n)2 + k2

(1 + n)2 + k2
. (8.85)
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The power absorbed is given by P = �(j · E). But j = σE and σ = iω
4π (ε − 1).

Therefore the power absorbed is proportional to ω
4π ε2(ω)|E |2. But the imaginary part

of ε(ω) is just 2nk, so that

Power absorbed ∝ n(ω) k(ω). (8.86)

8.11.2 Skin Effect

We have seen that for a metal ε(ω) is given by

ε(ω) = 1 − ω2
p

ω(ω − i/τ )
= 1 − ω2

p

ω2 + 1/τ 2
− i

ω2
p/ωτ

ω2 + 1/τ 2
. (8.87)

At optical frequencies ω is usually large compared to 1
τ
. Therefore, the real part

of ε(ω) is large compared to the imaginary part; however, it is negative. ε1(ω) 	
−ω2

p/ω
2, since ωp is large compared to optical frequencies for most metals. The

wave vector of the transmitted wave is

q = ω

c
ε1/2 	 ω

c

√
−ω2

p

ω2
= ±i

ωp

c

Thus the wave
ET = ET ŷ e

i(ωt−qz)

decays with increasing z as e−z/λ where λ = c/ωp is called the skin depth. For
ωp 	 1016 s−1, λ ≈ 30nm. In a metal, light only penetrates this distance. This
analysis assumed that j(r) = σE(r), a local relationship between j and E. If the
mean free path l = vFτ is larger than λ, the skin depth, this assumption is not valid.
Then one must use a more sophisticated analysis; this is referred to as the anomalous
skin effect.

8.12 Surface Waves

In solving the equations describing the propagation of electromagnetic waves in an
infinite medium, we considered the wave vector q, which satisfied the relation

q2 = ω2

c2
ε(ω). (8.88)

to have components qy and qz which were real.
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SURFACE

Fig. 8.19 The interface of two different media of dielectric functions εI and εII

At a surface (z = 0) separating two different dielectrics it is possible to have
solutions for which q2

z is negative in one or both of the media. If q2
z is negative

in both media, implying that qz itself is imaginary, such solutions describe surface
waves.

Let us look at the system shown below in Fig. 8.19. The wave equation can be
written

q2
zi = ω2

c2
εi − q2

y , (8.89)

where i = I or II. We think of ω and qy as given and the same in each medium. Then
the wave equation tells us the value of q2

z in each medium.
Let us assume a p-polarized wave (the s-polarization in which E is parallel to the

surface does not usually give surface waves). We take

E = (0, Ey, Ez) e
i(ωt−qy y−qz z). (8.90)

Because there is no charge density except at the surface z = 0, we have ∇ · E =
q · E = 0 everywhere except at the surface. This implies that

qy Ey + qz Ez = 0, (8.91)

giving the value of Ez in each medium in terms of qy , qzi , and Ey . We take

EI = (0, EyI, EzI
)
eiωt−iqy y+αIz, α2

I = −q2
zI

EII = (0, EyII, EzII
)
eiωt−iqy y−αIIz, α2

II = −q2
zII.

(8.92)

Since
e−iqzIz = eαIz, qzI = iαI

e−iqzIIz = e−αIIz, qzII = −iαII.

Here αI and αII are positive and the form of E(z) has been chosen to vanish as
|z| → ∞.
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Since Ezi = − qy
qzi

Ey , we obtain

EzI = − qy
iαI

EyI , EzII = − qy
−iαII

EyII . (8.93)

The boundary conditions are

(i) EyI(0) = EyII(0) = Ey(0),
(ii) εIEzI(0) = εIIEzII(0).

(8.94)

These conditions give us the dispersion relation of the surface wave. Substituting
fields given by (8.93) into the second expression of (8.94) we have

εI

αI
+ εII

αII
= 0 or

εo

αo
+ ε(ω)

α
= 0, (8.95)

where

αo =
√
q2
y − ω2

c2
εo and α =

√
q2
y − ω2

c2
ε(ω). (8.96)

Exercise

Demonstrate the dispersion relation (8.95) with an explicit use of the boundary con-
ditions given by (8.94).

Non-retarded Limit

This is the case where cqy � ω or c may be taken as infinite. In this limit we have
αI 	 αII 	 qy and the dispersion relation becomes

εo + ε(ω) = 0. (8.97)

Surface Polaritons (with retardation effects)

We take the dispersion relation given by (8.95) and square both sides. This gives

ε2oα
2 = ε2(ω)α2

0,

or

ε2o

(
q2
y − ω2

c2
ε(ω)

)
= ε2(ω)

(
q2
y − ω2

c2
εo

)
.

This can be simplified to

[εo + ε(ω)] q2
y = ω2

c2
εoε(ω)
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or

c2q2
y = ω2εoε(ω)

εo + ε(ω)
. (8.98)

8.12.1 Plasmon

For a system containing n0 free electrons of mass m

ε(ω) = εs − ω2
p

ω2
, (8.99)

where εs is the background dielectric constant and ω2
p = 4πn0e2

m . In the non-retarded
limit we find

εo +
(

εs − ω2
p

ω2

)
= 0.

Solving for ω2 gives the surface plasmon (SP) frequency

ωSP = ωp√
εo + εs

. (8.100)

Recall the bulk plasmon (BP) is given by ε(ω) = 0

ωBP = ωp√
εs

> ωSP. (8.101)

So that we have ωSP < ωBP. For the surface plasmon–polariton we find

c2q2
y =

ω2εo

(
εs − ω2

p/ω
2
)

εo + εs − ω2
p/ω

2
(8.102)

It is easy to see that, for very small values of cqy , ω → 0 and we can neglect εs and
(εo + εs) compared to −ω2

p/ω
2 on the right hand side of (8.102).

lim
cqy→0

ω2 	 c2q2
y

εo
. (8.103)

For very large cqy , the only solution occurs when the denominator of the right hand
side approaches zero.

lim
cqy→∞ ω2 	 ω2

p

εo + εs
= ω2

SP. (8.104)
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Fig. 8.20 Dispersion curves of the bulk and surface plasmon–polariton modes

The dispersion curves of the bulk and surface plasmon–polariton modes are shown
in Fig. 8.20.

Exercise

Examine (8.102) and demonstrate the dispersion curves of the surface plasmon–
polariton modes shown in Fig. 8.20.

8.12.2 Surface Phonon–Polariton

Here we take the dielectric function of a polar crystal

ε(ω) = ε∞
ω2 − ω2

L

ω2 − ω2
T

. (8.105)

At the interface of a dielectric εI and a polar material described by (8.105) the surface
mode is given by (8.95)

εI

αI
= −ε(ω)

α
. (8.106)

Since εI, αI, and α are all positive, this equation has a solution only in the region
where ε(ω) < 0. Recall that ε(ω) versus ω looks as shown below in Fig. 8.21. ε(ω)

is negative if ωT < ω < ωL. The dispersion relation, (8.106), is written by

c2q2
y = ω2εIε(ω)

εI + ε(ω)
= εIε∞ω2(ω2 − ω2

L)

εI(ω2 − ω2
T) + ε∞(ω2 − ω2

L)
. (8.107)

The denominator can be written as

D ≡ (εI + ε∞)ω2 − (εIω
2
T + ε∞ω2

L) = (εI + ε∞)(ω2 − ω2
s ), (8.108)
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Fig. 8.21 Dielectric function ε(ω) of a polar crystal

where the surface phonon frequency ωs is given by

ω2
s = εIω

2
T + ε∞ω2

L

εI + ε∞
. (8.109)

It is easy to show that ω2
T < ω2

s < ω2
L. The dispersion relation can be written

c2q2
y = εIε∞ω2(ω2 − ω2

L)

(εI + ε∞)(ω2 − ω2
s )

. (8.110)

Figure8.22 shows the right hand side of (8.110) as a function of frequency. Since
surface modes can occur only where q2

y > 0 and ε(ω) < 0, we see that the surface
mode is restricted to the frequency region ωT < ω < ωs. It is not difficult to see that
as cqy → ∞, the surface polariton approaches the frequency ωs. It is also appar-
ent that atω = ωT, c2q2

y = εIω
2
T. This gives the dispersion curve sketched in Fig. 8.23.

Fig. 8.22 Dispersion curves of phonon–polariton modes
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Fig. 8.23 Dispersion relation of surface phonon–polariton modes. Also shown are the bulk mode
ω+ and ω− which can occur outside the region ωT < ω < ωL

Exercise

Examine (8.110) and demonstrate the dispersion curves of the surface phonon–
polariton modes shown in Fig. 8.23.

Problems

8.1 Suppose an electric field E = Eẑ is applied to a hydrogen atom in its ground
state ψ100(r, θ,φ) = 1√

2
a−3/2
0 e−r/a0 , where a0 is the Bohr radius. In the presence

of an external electric field, the electron cloud of the hydrogen atom is displaced in
the opposite direction of the field to an induce dipole moment. Evaluate the atomic
polarizabilityα of the hydrogen atom assuming semiclassically that the atom remains
in its ground state.

8.2 In the presence of an external electric field E = Eẑ, the ground state in Problem
1 is no longer ψ100(r, θ,φ), but is perturbed to be ψ̃0 due to an additional term−qEz
in the Hamiltonian. Evaluate the atomic polarizability of the hydrogen atom by
calculating 〈ψ̃0|qz|ψ̃0〉 to first order in E . Note the selection rule ofΔn = any value,
Δ� = ±1, and Δm = 0.

8.3 A degenerate polar semiconductor contains n0 free electrons per unit volume in
the conduction band. Its dielectric function ε(ω) is given by

ε(ω) = ε∞
ω2 − ω2

L

ω2 − ω2
T

− ω2
p

ω2

where ωL and ωT are the LO and TO phonon frequencies, and ωp =
√

4πn0e2

m .
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(a) Show that ε(ω) can be written as ε(ω) = ε∞
(ω2−ω2−)(ω2−ω2+)

ω2(ω2−ω2
T)

, and determine ω2−
and ω2+.

(b) Make a sketch of ε(ω) versus ω; be sure to indicate the locations of ωT, ωL,
ω−, ω+, ε0, and ε∞.

(c) Determine the dispersion relation of the longitudinal and transverse modes,
i.e. ω as a function of q. In which regions of frequency are the transverse
waves unable to propagate?

8.4 Evaluate the reflectivity for an S-polarized and a P-polarized electromagnetic
wave incident at an angle θ from vacuum on a material of dielectric function ε(ω)

as illustrated in the figure above. One can take E = (Ex , 0, 0)eiωt−iq·r and E =
(0, Ey, Ez)eiωt−iq·r as the S- and P-polarized electric fields, respectively. Remember
that q · E = 0 and q = (0, qy, qz).

8.5 (a) Consider a vacuum–degenerate polar semiconductor interface. Use the
results obtained in the text to determine the dispersion relations of the surface
modes.

(b) Make a sketch of ω versus qy (qy is parallel to the interface) for these surface
modes and for the bulk modes which have qz = 0.

Summary
In this chapter we studied dielectric properties of solids in the presence of an exter-
nal electromagnetic disturbance. We first reviewed elementary electricity and mag-
netism, and introduced concept of local field inside a solid. Then dispersion relations
of self-sustaining collective modes and reflectivity of a solid are studied for var-
ious situations. Finally the collective modes localized near the surface of a solid
are also described and dispersion relations of surface plasmon-polariton and surface
phonon-polariton modes are discussed explicitly.

When an external electromagnetic disturbance is introduced into a solid, it will
produce induced charge density and induced current density. These induced densities
produce induced electric and magnetic fields. The local field ELF(r) at the position
of an atom in a solid is given by
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ELF = E0 + E1 + E2 + E3,

where E0, E1, E2, E3 are, respectively, the external field, depolarization field (=
−λP), Lorentz field (= 4πP

3 ), and the field due to the dipoles within the Lorentz sphere

(=∑i∈L.S.

3(pi ·ri )ri−r2i pi

r5i
). The local field at the center of a sphere of cubic crystal is

simply given by

E sphere
LF = E0 − 4π

3
P + 4π

3
P + 0 = E0.

The induced dipole moment of an atom is given by p = αELF. The polarization P
is given, for a cubic crystal, by P = Nα

1− 4πNα
3

E ≡ χE,where N is the number of atoms

per unit volume and χ is the electrical susceptibility. The electrical susceptibility and
the dielectric function (ε = 1 + 4πχ) of the solid are

χ = Nα

1 − 4πNα
3

; ε = 1 + 4πNα

1 − 4πNα
3

.

The relation between the macroscopic dielectric function ε and the atomic polariz-
ability α is called the Clausius–Mossotti relation:

ε − 1

ε + 2
= 4πNα

3

The total polarizability of the atoms or ions within a unit cell can usually be
separated into three parts: (i) electronic polarizability αe: the displacement of the
electrons relative to the nucleus; (ii) ionic polarizabilityαi: the displacement of an ion
itself with respect to its equilibrium position; (iii) dipolar polarizability αdipole: the
orientation of any permanent dipoles by the electric field in the presence of thermal
disorder.

In the presence of a field E, the average dipole moment per unit volume is given

by p̄z = pL
(

pE
kBT

)
,whereL(ξ) is the Langevin function. The dipolar polarizability

αdipole shows strong temperature dependence. The electronic polarizability αe and
the ionic polarizability αion are almost independent of temperature.

In a metal, the conduction electrons are free and the dielectric function becomes

ε(ω) = 1 − 4πNe2/m

ω2 − iω/τ
= 1 − ω2

p

ω2 − iω/τ
.

In an ionic crystal, we have

ε(ω) = ε∞
[
ω2 − ω2

L

ω2 − ω2
T

]
.
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Here, ωL and ωT are the TO and LO phonon frequencies, respectively. We note that
ωL > ωT since ε0 > ε∞ in general.

For the propagation of light in a material characterized by ε(ω), the external
sources j0 and ρ0 vanishes. Therefore, we have

∇ × E = − iω

c
B; ∇ × B = iωε(ω)

c
E.

The twoMaxwell equations for∇ ×E and∇ ×B can be combined to give a wave
equation: (

ω2

c2
ε(ω) − q2

)
E + q (q · E) = 0.

For an infinite homogeneous medium of dielectric function ε(ω), a general dis-
persion relation of the self-sustaining waves is written as

ε(ω)

[
ω2

c2
ε(ω) − q2

]2
= 0.

The two transverse modes and one longitudinal mode are characterized, respectively,
by

ω2 = c2q2

ε(ω)
; ε(ω) = 0.

For the interface (z = 0) of two different media of dielectric functions εI and εII,
the boundary conditions give us the general dispersion of the surface wave:

εI

αI
+ εII

αII
= 0 or

εo

αo
+ ε(ω)

α
= 0.

where

αo =
√
q2
y − ω2

c2
εo and α =

√
q2
y − ω2

c2
ε(ω).



Chapter 9
Magnetism in Solids

9.1 Review of Some Electromagnetism

9.1.1 Magnetic Moment and Torque

We begin with a brief review of some elementary electromagnetism. A current dis-
tribution j(r) produces a magnetic dipole moment at the origin that is given by

m = 1

2c

∫
r × j(r)d3r. (9.1)

If j(r) is composed from particles of charge qi at positions ri moving with velocity
vi , j(r) = ∑

i qiviδ(r − ri ), and the magnetic moment m is

m = 1

2c

∑
i

qiri × vi . (9.2)

For a single particle of charge q moving in a circle of radius r0 at velocity v0, we
have

m = 1

2c
qr0v0 (9.3)

and m is perpendicular to the plane of the circle. The current i in the loop is given
by q divided by t = 2πr

v0
, the time to complete one circuit. Thus

i = qv0

2πr0
. (9.4)

We can use this in our expression for m to get

m = q

2c
r0v0 = ia

c
. (9.5)
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Fig. 9.1 A magnetic moment m due to a current loop of radius r0 located in a magnetic field B

Here a = πr20 is the area of the loop. We can write m = ia
c if we associate vector

character with the a of the loop.
If a magnetic field were imposed on a magnetic moment, the magnetic moment

would experience a torque. To show this we begin with the Lorentz force

F = q

c
v0 × B. (9.6)

For a charge dq the force dF is given by

dF = dq

c

ds
dt

× B = i

c
ds × B. (9.7)

Here ds is an infinitesimal element of path length (see, for example, Fig. 9.1).
The torque τ is given by

∫
r × dF.

τ =
∫

r × dF = i

c

∫
r × (ds × B). (9.8)

But
∫
r × ds = 2a, and hence we have

τ = i

c
a × B = m × B. (9.9)

9.1.2 Vector Potential of a Magnetic Dipole

If a magnetic dipole m is located at the origin, it produces a vector potential at
position r given by

A(r) = m × r
r3

. (9.10)

Of course the magnetic fieldB(r) = ∇×A(r). If we have a magnetization (magnetic
dipole moment per unit volume), then A(r) is given by
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A(r) =
∫

d3r ′M(r′) × (
r − r′)

|r − r′|3 . (9.11)

As we did with the electric polarization P(r), we can transform this equation into
two parts.

A(r) =
∫
V

d3r ′ ∇r ′ × M(r′)
|r − r′| +

∮
S

d S′M(r′) × n̂′

|r − r′| , (9.12)

where n̂ is a unit vector outward normal to the surface S. The volume integration is
carried out over the volume V of the magnetized material. The surface integral is
carried out over the surface bounding the magnetized object. Since A(r) is related
to a current density by

A(r) = 1

c

∫
d3r ′ j(r′)

|r − r′| , (9.13)

the vector potential produced by a magnetization is equivalent to volume distribution
of current

jM(r) = c∇ × M(r) (9.14)

and a surface distribution of current

jS(r) = cM(r) × n̂. (9.15)

Recall that if E = 0, Maxwell’s equation for ∇ × B is

∇ × B = 4π

c
(j0 + jM) = 4π

c
j0 + 4π∇ × M. (9.16)

Defining H = B − 4πM gives

∇ × H = 4π

c
j0 (9.17)

which shows that H is that part of the field arising from the free current density j0.
As we stated before the two Maxwell equations

∇ · E = 4π (ρ0 + ρind) , (9.18)

and

∇ × B = 1

c
Ė + 4π

c
(j0 + jind) + 4π∇ × M (9.19)

are sometimes written in terms of D and H.

∇ · D = 4πρ0,



256 9 Magnetism in Solids

(where D = E + 4πP and ∇ · P = −ρpol with bound charge density ρpol) and

∇ × H = 1

c
Ḋ + 4π

c
j0.

9.2 Magnetic Moment of an Atom

9.2.1 Orbital Magnetic Moment

Let us consider the nucleus to be fixed and evaluate the orbital contribution of the
electron currents to the magnetic moment of an atom.

m = 1

2c

∑
i

qiri × vi . (9.20)

Since qi = −e for every electron, and every electron has mass me, we can write

m = − e

2mec

∑
i

ri × mevi = − e

2mec
×

(
total angular momentum

of the electrons

)
. (9.21)

We know
∑

i ri × mevi is quantized and equal to �L, where |L| = 0, 1, 2, . . . and
Lz = 0,±1,±2, . . . ,±L . Thus we have

m = − e�

2mec
L = −μBL. (9.22)

Here μB = e�

2mec
= 0.927 × 10−20[ergs/gauss] or 5.8 × 10−2 [meV/T] is called the

Bohr magneton. The Bohr magneton corresponds to the magnetic moment of a 1s
electron in H.

9.2.2 Spin Magnetic Moment

In addition to orbital angular momentum �L, each electron in an atom has an intrinsic
spin angular momentum �s, giving a total spin angular momentum �S where

S =
∑

i

si . (9.23)

The z-component of spin is sz = ± 1
2 , and the spin contribution to the magnetic

moment is∓μB. Thus, for each electron, there is a contribution−2μBs to themagnetic
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moment of an atom. If we sum over all spins, the total spin contribution to the
magnetic moment is

ms = −2μB

∑
i

si = −2μBS. (9.24)

Note that the factor of 2 appearing in this expression is not exact. It is actually given
by g = 2(1 + α

2π − 2.973α2

π2 + · · · ) � 2 × 1.0011454. However, in our discussion
here we will take the g-factor as 2.

9.2.3 Total Angular Momentum and Total Magnetic Moment

The total angular momentum of an atom is given by

J = L + S. (9.25)

The total magnetic moment is given by

m = −μB (L + 2S) . (9.26)

In quantum mechanics the components of J, L, and S are operators that satisfy com-
mutation relations. As we learned in quantummechanics, it is possible to diagonalize
J 2 and Jz simultaneously.

J 2 | j, jz 〉 = j ( j + 1) | j, jz 〉; j = 0,
1

2
,
3

2
, . . . (9.27)

Jz | j, jz 〉 = jz | j, jz 〉; − j ≤ jz ≤ j (9.28)

Note that jz = 0,±1, . . . ,± j or jz = ± 1
2 ,± 3

2 , . . . ,± j . We can write that

m = −ĝμBJ. (9.29)

This defines the operator ĝ because we have J = L + S and

ĝJ = L + 2S. (9.30)

We can use these definitions to show that

J · J = (L + S) · (L + S) = L2 + S2 + 2L · S (9.31)

and
ĝJ · J = (L + S) · (L + 2S) = L2 + 2S2 + 3L · S. (9.32)

We can eliminate L · S and obtain
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gL = 3

2
+ 1

2

s(s + 1) − l(l + 1)

j ( j + 1)
(9.33)

This eigenvalue of ĝ is called the Landé g-factor.

9.2.4 Hund’s Rules

The ground state of an atom or ion with an incomplete shell is determined by Hund’s
rules:

(i) The ground state has the maximum S consistent with the Pauli exclusion prin-
ciple.

(ii) It has the maximum L consistent with the maximum spin multiplicity 2S + 1 of
Rule (i).

(iii) The J -value is given by |L − S| when the incomplete shell is not more than half
filled and by L + S when more than half filled.

Example

Consider an ion of Fe2+; it has 6 electrons in the 3d level. We can put 5 of them in
spin up states (since d means l = 2 and ml can be −2,−1, 0, 1, 2) and to maximize
S, hence,

↑ ↑ ↑ ↑ ↑ ↓ gives S = 2.

The maximum value of L-value is given by

L = −2 − 1 + 0 + 1 + 2 + 2 = 2.

The J -value (since it is over half-filled) is

J = L + S = 4.

Therefore we have

gL = 3

2
+ 1

2

2(3) − 2(3)

4(5)
= 3

2
.

One can work out some examples listed in Table9.1. The ground state notation is
2S+1L J , where L = 0, 1, 2, 3, 4, . . . are denoted by the letters S, P, D, F, G, . . .,
respectively.

Exercise

Demonstrate the spectroscopic notations for the ground state electron configurations
of the elements illustrated in Table9.1.
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Table 9.1 Ground state electron configurations and angular momentum quantum numbers for the
elements of atomic numbers 20 ≤ Z ≤ 29

Z Element Configuration Spectroscopic
notation

S L J gL

20 Ca (3p)6(4s)2 1S0 0 0 0 –

21 Sc (3d)1(4s)2 2D 3
2

1
2 2 3

2
4
5

22 Ti (3d)2(4s)2 3F2 1 3 2 2
3

23 V (3d)3(4s)2 4F 3
2

3
2 3 3

2
2
5

24 Cr (3d)5(4s)1 7S3 3 0 3 2

25 Mn (3d)5(4s)2 6S 5
2

5
2 0 5

2 2

26 Fe (3d)6(4s)2 5D4 2 2 4 3
2

27 Co (3d)7(4s)2 4F 9
2

3
2 3 9

2
4
3

28 Ni (3d)8(4s)2 3F4 1 3 4 5
4

29 Cu (3d)10(4s)1 2S 1
2

1
2 0 1

2 2

9.3 Paramagnetism and Diamagnetism of an Atom

In the presence of a magnetic field B the Hamiltonian describing the electrons in an
atom can be written as

H = H0 +
∑

i

1

2m

(
pi + e

c
A(ri )

)2 + 2μBB ·
∑

i

si , (9.34)

where H0 is the non-kinetic part of the atomic Hamiltonian, pi = −i�∇i , and the
sum is over all electrons in an atom. For a homogeneous magnetic field B, one can
choose a vector potential of

A = −1

2
r × B. (9.35)

Here we take the magnetic field B in the z-direction.

B = (0, 0, B0). (9.36)

Then the vector potential is given by

A = −1

2
B0

(
yî − x ĵ

)
. (9.37)

Substituting the vector potential into (9.34), we have
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H = H0+
∑

i

p2
i

2me
+ eB0

2mec

∑
i

(
xi piy − yi pix

)+ e2B2
0

8mec2
∑

i

(
x2

i + y2i
)+2μBB0Sz .

(9.38)
Here we note that

xi piy − yi pix = (ri × pi )i z = �li z .

Now we can write the Hamiltonian as

H = H0 +
∑

i

p2
i

2me
+ μB(Lz + 2Sz)B0 + e2B2

0

8mec2
∑

i

(
x2

i + y2i
)
. (9.39)

But −μB(Lz + 2Sz) is simply mz , the z-component of the magnetic moment of the
atom in the absence of the applied magnetic field B. Therefore we have

H = H − mz B0 + e2B2
0

8mec2
∑

i

(
x2

i + y2i
)
, (9.40)

where H = H0 + ∑
i

p2
i

2me
. In the presence of the magnetic field B0,

vi x = ∂H
∂ pix

= 1
m

(
pix − eB0

2c yi
)
,

viy = ∂H
∂ piy

= 1
m

(
piy + eB0

2c xi
)
,

(9.41)

and the magnetic moment in the presence of B0 is (see (9.20))

μ =
∑

i

(
− e

2c
ri × vi − e

2mec
2�Si

)
. (9.42)

Using (9.41), the expression for vi x and viy , one obtains

μz = −μBLz − 2μBSz − e2B0

4mec2
∑

i

(
x2

i + y2i
)
. (9.43)

Note that one can also obtain this result from (9.40) using the relation

μz = − ∂H

∂B0
. (9.44)

Thus we have μz , the z-component of magnetic moment of the atom in the magnetic
field B0 is given by

μz = mz − e2B0

4mec2
∑

i

(
x2

i + y2i
)
. (9.45)
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It differs from mz , its value when B0 = 0 by a term that is negative and proportional
to B0.

If the atom is in its ground state, mz , the average value of mz is mz =
−μB(Lz + 2Sz) = −gμB Jz = −gμB jz , where jz = −J,−J + 1, . . . , J . For a
spherically symmetric atom, x2

i = y2i = z2i = 1
3r2i . Therefore we obtain

μz = −gμB Jz − e2B0

6mec2
∑

i

r2i . (9.46)

The second term on the right hand side is the origin of diamagnetism. If J = 0 (so
that Jz = 0), then a system containing N atoms per unit volume would produce a
magnetization

M = −N
e2B0

6mec2
∑

i

r2i , (9.47)

and the diamagnetic susceptibility

χDIA = M

B0
= −N

e2

6mec2
∑

i

r2i . (9.48)

Here we have assumed χDIA 
 1 and set χ = M
B instead of M

H . This result was first
derived by Langevin.

All substances exhibit diamagnetism. Paramagnetism occurs only in samples
whose atoms possess permanent magnetic moments (i.e. m �= 0 when B0 = 0).
All free atoms except those having complete electronic shells are paramagnetic. In
solids, however, fewer substances exhibit paramagnetism because the electrons form
energy bands and filled bands do not contribute to paramagnetism.

Examples of paramagnetism in solids are

(i) Pauli spin paramagnetism of metals.
(ii) Paramagnetism due to incomplete shells.

(a) Transition elements:

Iron group elements with incomplete 3d shell, for example,[
Ti3+(3d1) ∼ Cu2+(3d9)

]
.

Palladium group elements with incomplete 4d shell, for example,[
Zr3+(4d1) ∼ Ag2+(4d9)

]
.

Platinum group elements with incomplete 5d shell, for example,[
Hf3+(5d1) ∼ Au2+(5d9)

]
.
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(b) Rare earth elements:

Rare earth group elements (or Lanthanides) with incomplete 4 f shell,
for example,

[
Ce3+(4 f 1) ∼ Yb3+(4 f 13)

]
.

Transuranic group elements (or Actinides) with incomplete 5 f or 6d
shells, for example, elements beyond Th.

9.4 Paramagnetism of Atoms

We have seen that the permanent magnetic dipole moment of an atom is given by

m = −gLμBJ. (9.49)

We will assume that the separations between atoms in the systems of interest are
sufficiently large that the interactions between the atoms can be neglected. The energy
of an atom in a magnetic field B is

E = −m · B = gLμBBm J , (9.50)

where mJ = −J,−J + 1, . . . , J − 1, J . The probability of finding an atom in state
|J, m J > at a temperature T is

p(m J ) = 1

Z
e−βE(m J ), (9.51)

whereβ = (kBT )−1 and thenormalization constant Z is chosen so that
∑

m J
p(m J ) =

1. This gives

Z =
J∑

m j =−J

e−βgLμBBm J . (9.52)

Let βgLμBB = y. Then Z = ∑J
m=−J e

−ym . This can be rewritten

Z = e−y J
(
1 + ey + e2y + · · · + e2J y

)
= e−y J

[
(ey)2J+1−1

ey−1

]
.

(9.53)

The result for Z can be rewritten

Z(x) = sinh 2J+1
2J x

sinh x
2J

, (9.54)



9.4 Paramagnetism of Atoms 263

where x = y J = βgLμBB J . The magnetization of a system containing N atoms
per unit volume will be

M = −NgLμB

∑
m J

m J p(m J )∑
m J

p(m J )
= NgLμB J

∂

∂x
ln Z . (9.55)

This is usually written as

M = NgLμB J BJ (βgLμBB J ), (9.56)

where the function BJ (x) is called the Brillouin function. It is not difficult to see that

BJ (x) = 2J + 1

2J
coth

2J + 1

2J
x − 1

2J
coth

x

2J
. (9.57)

The argument of the Brillouin function 2J+1
2J βgLμBB J is small compared to unity if

the magnetic field B is small compared to 500T at room temperature. Under these
conditions (use coth z � 1

z + z
3 for z 
 1) one can write

BJ (x) � x

3

J + 1

J
, (9.58)

and

M � Ng2Lμ
2
B J (J + 1)

3kBT
B. (9.59)

Since 〈m · m〉 = g2Lμ
2
B〈J · J〉 = g2Lμ

2
B J (J + 1) we can write

χPARA = M

B
= N 〈m2〉

3kBT
(9.60)

for the paramagnetic susceptibility of a system of atoms of magnetic moment m
at high temperature (gLμBB J 
 kBT ). This is commonly known as Curie’s law.
Notice that when J becomes very large

lim
J→∞ BJ (x) ⇒ coth x − 1

x
= L(x), (9.61)

where L is the Langevin function that we encountered in studying electric dipole
moments. Thus, the quantum mechanical result goes over to the classical result as
J → ∞, as expected. Curie’s law is often written

M � Nμ2
B p2B

3kBT
, (9.62)
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Fig. 9.2 Energy level splitting of the ground state and first excited multiplets for an atom of the
total angular momentum quantum number J

where p = gL
√

J (J + 1) is called the effective number of Bohr magnetons. Knowing
S, L , J and gL from the application of Hund’s rules immediately gives us p. For
example, for a Dy3+ ion the atomic configuration is (4 f )9(5s)2(5p)6. This results
from removing two 6s electrons and one 4 f electron from the neutral atom. The
S-value will be 5

2 (seven 4 f -electrons in ↑ and two in ↓ states), L = 5 (the two ↓
electrons have mz = 3 and 2 to maximize L), and J = L + S = 15

2 , and hence

gL = 4
3 and p = 4

3

√
15
2 · 17

2 � 10.63.
Observed and calculated p-values agree fairly well. There are exceptions when

excited state multiplets are not sufficiently high in energy (see, for example, Fig. 9.2).
Until now we have assumed Δ � kBT and Δ � gLμB J B. If this is not true,

higher multiplets can be important in evaluation of χ or p. Typically, for an ion
with partially filled shell with nonzero value of J , χPARA ∼ 10−2 − 10−3 at room
temperature and χDIA ∼ 10−5, which is independent of temperature. Therefore, we
have χPARA ∼ 500χDIA at room temperature.

9.5 Pauli Spin Paramagnetism of Metals

If we used the classical theory of paramagnetism for a particle withmagneticmoment
m, the magnetization at a temperature T (with kBT � |m · B|) would be given by
Curie’s law

M = N 〈m2〉B

3kBT
. (9.63)

For free electrons m = −2μBs and 〈m2〉 = 4μ2〈s · s〉 = 4μ2s(s + 1). Since s = 1
2

this gives 〈m2〉 = 3μ2 and1

1Here n0 is the number of free electrons per unit volume in a metal.
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χclassical = M

B
= n0μ

2
B

kBT
. (9.64)

As we discussed earlier, this is not what is observed experimentally. In metals the
observed susceptibility is approximately independent of temperature and two orders
of magnitude smaller than the value of χclassical evaluated at room temperature.

The qualitative explanation is exactly the same as that by which the Sommerfeld
model explained the electronic contribution to the specific heat. At a temperature T
only electrons whose energy lies within a shell of width kBT about the Fermi energy
are effectively free. Other electrons are inefficient because of the Pauli exclusion
principle. If we replace n0 by neff , where

neff � n0
kBT

ζ
. (9.65)

The spin susceptibility becomes χQM � n0μ
2
B

ζ
� kBT

ζ
χclassical = n0μ

2
B

ζ
.

To obtain χQM more rigorously, we simply assume that in the presence of the
magnetic field B the energy of an electron is changed by an amount

δE = ±μBB = −m · B; m = −gLμBS

depending on whether its spin is up or down relative to the direction of B.
The number of particles of spin up (or down) per unit volume is

n± = 1

2

∫ ∞

0
d E f0(E)g (E ∓ μBB) , (9.66)

where + and − in the subscript of n± correspond to the cases of spin up (+) and
spin down (−) states, respectively (see Fig. 9.3). We evaluated many integrals over

(a) (b)

Fig. 9.3 Energy level splitting of the electron gas in the presence of the magnetic field B. Energy
parabolas E(k) (a) and density of states g(E) (b) of electrons in two different spin states in the
presence of Zeeman splitting
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Fermi functions in Chapter III. Remember that the total number of states per unit
volume with energy less than ε is given by

G(ε) =
∫ ε

0
g(ε)dε = n0

(
k

kF

)3

= n0

(
ε

εF

)3/2

.

Using these results we can obtain

n± = 1

2

[
G(ζ ∓ μBB) + π2

6
(kBT )2g′(ζ ∓ μBB)

]
. (9.67)

Themagnetization M is equal toμB(n−−n+). Expanding for ζ � μBB and kBT 
 ζ
leads to

M � μ2
BB

[
g(ζ) + π2

6
(kBT )2g′′(ζ)

]
. (9.68)

The chemical potential is determined by requiring the number of particles to be
n0 = n− + n+. This gives

n0 = G(ζ) + π2

6
(kBT )2g′(ζ) + O(μ2

BB2). (9.69)

To order μ2
BB2, we note that

ζ = ζ0 − π2

6
(kBT )2

g′(ζ0)
g(ζ0)

. (9.70)

Using g(ζ) = 3
2

n0
ζ0

(
ε
ζ0

)1/2
gives

χQM = 3n0μ
2
B

2ζ0

[
1 − π2

12

(
kBT

ζ0

)2

+ · · ·
]

(9.71)

for the Pauli spin (paramagnetic) susceptibility of a metal.

9.6 Diamagnetism of Metals

According to classical mechanics there should be no diamagnetism of a free electron
gas. Consider the effect of a magnetic field B on the motion of an electron. The force
acting on the electron is

F = −e

c
v × B. (9.72)
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This force is always perpendicular to v, therefore F · dl = F · vdt = 0. Thus no
work is done on the electrons by the field B and their energy is unchanged. Further
the distribution function depends only on E , T , N and will also be unchanged. Thus
there can be no induced currents and no diamagnetism.

Quantum mechanics gives a different answer. Landau was the first to derive the
diamagnetic susceptibility ofmetals.Wewill not rederive his result in full, but simply
show how the result comes about in a quantum mechanical calculation.

Let A = (0, x B, 0) be the vector potential of a dc magnetic field B. The Hamil-
tonian for a single electron is (here we shall neglect the intrinsic magnetic moment
of the electron)

H = 1

2m

[
p2

x +
(

py + e

c
Bx

)2 + p2
z

]
. (9.73)

Recall that p = −i�∇. The Schrödinger equation is

− �
2

2m

[
∂2

∂x2
+

(
∂

∂y
+ i

eB

�c
x

)2

+ ∂2

∂z2

]
Ψ = EΨ. (9.74)

Since the Hamiltonian is independent of y and z, let us assume a solution of the form

Ψ (x, y, z) = eiky y+ikz zφ(x). (9.75)

The equation which φ(x) must satisfy is

[
∂2

∂x2
−

(
ky + eB

�c
x

)2

− k2
z + 2m E

�2

]
φ(x) = 0 (9.76)

If we let x ′ = x + �ky

mωc
this equation becomes

(
− �

2

2m

∂2

∂x ′2 + 1

2
mω2

c x ′2
)

φ(x ′) =
(

E − �
2k2

z

2m

)
φ(x ′). (9.77)

This is just the equation for a simple harmonic oscillator of massm and characteristic
frequency ωc. The energy levels are

E − �
2k2

z

2m
= �ωc(n + 1

2
); n = 0, 1, 2, . . . (9.78)

Thus the eigenfunctions and eigenvalues for an electron in the presence of amagnetic
field B are ∣∣nkykz 〉 = L−1eiky y+ikz zφn

(
x + �ky

mωc

)
. (9.79)
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Fig. 9.4 Energy level splitting of the electron gas due to orbital quantizations in the presence of
the magnetic field B

En(ky, kz) = �
2k2

z

2m
+ �ωc(n + 1

2
). (9.80)

We note that the eigenvalues En(ky, kz) are independent of ky . The allowed values
of ky and kz are determined by imposing periodic boundary conditions. If we require
the particles to be in a cube of length L , then because the center of each oscillator
must be in the box, the range of possible ky values must be

Range of values of ky ≤ mωcL

�
. (9.81)

The total number of allowed values of ky , for a given kz , is

L

2π
× Range of values of ky = mωcL2

2π�
= BL2

hc/e
. (9.82)

Thus for each value of n, kz (and spin s) there are mωcL2

2π�
energy states. Consider the

following schematic plot of the energy levels for a given kz shown in Fig. 9.4. In
quantum mechanics, a dc magnetic field can alter the distribution of energy levels.
Thus, there can be a change in the energy of the system and this can result in a
diamagnetic current. The diamagnetic susceptibility turns out to be

χL = − n0

2ζ0

(
e�

2m∗c

)2

= −n0μ
2
B

2ζ0

( m

m∗
)2

. (9.83)

Notice that we expect m∗ (not m) to appear because the diamagnetism is associated
with the orbital motion of the electrons. This is justifiable only if the cyclotron radius
is much larger than the interatomic spacing.
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rc = vF

ωc
= vF

eB0/m∗c
. (9.84)

Typically, vF ≈ 108 cm/s and ωc ≈ 1.76 × 107B0. Thus for B0 ∼ 105 gauss,
rc ≈ 10−4 cm = 104 Å � lattice constant. The total magnetic susceptibility of a
metal is

χQM = χP + χL = 3n0μ
2
B

2ζ0

[
1 − 1

3

( m

m∗
)2

]
(9.85)

Exercise

Derive the Landau diamagnetic susceptibility of a simple metal given by (9.83).

9.7 de Haas–van Alphen Effect

We have seen that the energy levels for an electron in a magnetic field look like, as
is shown in Fig. 9.5,

En(ky, kz) = �
2k2

z

2m
+ �ωc

(
n + 1

2

)
.

The Fermi energy ζ is a slowly varying function of B. As we increase B, the distance
between Landau levels increases, and at kz = 0 levels pass through the Fermi energy.
As the Landau level at kz = 0 passes through the Fermi level, the internal energy
abruptly decreases.

Let us consider a simple situation, where the Fermi energy ζ is between two
orbits. Let us assume that T = 0 so that we have a perfectly sharp Fermi surface.
As we increase the field, the states are raised in energy so that the lowest occupied
state approaches ζ in energy. Of course, all the energies in the presence of the field
will be higher than those in the absence of the field by an amount 1

2�ωc. As the

Fig. 9.5 Schematics of energy levels for an electron in a magnetic field B
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levels approach the Fermi energy, the free energy of the electron gas approaches
a maximum. As the highest occupied level passes the Fermi surface, it begins to
empty, thus decreasing the free energy of the electron gas. When the Fermi level lies
below the cyclotron level the energy of the electron gas is again a minimum. Thus
we can see how the free energy is a periodic function of the magnetic field. Now,
since many physically observable properties of the system are derived from the free
energy (such as themagnetization), we see that they, too, are periodic functions of the
magnetic field. The periodic oscillation of the diamagnetic susceptibility of a metal
at low temperatures is known as the de Haas–van Alphen effect. The de Haas–van
Alphen effect arises from the periodic variation of the total energy of an electron gas
as a function of a static magnetic field. The energy variation is easily observed in
experiments as a periodic variation in the magnetic moment of the metal.

Density of States

Look at G(E), the number of states per unit volume of energy less than E .

G(E) = 1

L3

∑
nky kz
Enkz < E

1 = 1

L3

(
L

2π

)2

2
∑

n
Enkz < E

∫
dky dkz 1. (9.86)

We added a factor 2 to take account of spin. Since
∫

dky = mωcL
�

, we have

G(E) = 1

L3

(
L

2π

)2

2
mωcL

�

∑
n
Enkz < E

∫
dkz,

where En(ky, kz) = �
2k2z
2m +�ωc(n + 1

2 ). Define κn =
√
2m
�

(
E − �ωc(n + 1

2 )
)1/2

. For
each value of n the kz integration goes from −κn to κn . This gives

G(E) = mωc

2π2�

nMAX∑
n=0

2

√
2m

�

(
E − �ωc

(
n + 1

2

))1/2

. (9.87)

The density of states g(E) is dG
d E .

g(E) = mωc

2π2�

√
2m

�

nMAX∑
n=0

(
E − �ωc

(
n + 1

2

))−1/2

. (9.88)

We note that the g(E) has square root singularities at E = �ωc(n + 1
2 ) as illustrated

in Fig. 9.6.
In the limit as �ωc → 0, the sum on n can be replaced by an integral
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Fig. 9.6 Schematic plot of the density of states for an electron gas in a magnetic field B

nMAX∑
n=0

−→ 1

�ωc

∫ E

0
dx

where x = n�ωc. In this case the g(E) reduces to the free particle density of states
for B = 0, i.e. g0(E) =

√
2m3/2

π2�3 E1/2.
Because g(E) has square root singularities, the internal energy, the magnetic

susceptibility, etc. show oscillations (see Fig. 9.7). As �ωc changes with N fixed (or
N changes with �ωc fixed), the Fermi level passes through the bottoms of different
Landau levels. Let ζ � μBB or ζ � �ωc. Then the electron gas occupies states in
many different cyclotron levels. At low temperatures all cyclotron levels are partially
occupied up to a limiting energy ζ, which might lie between the threshold energies of
the nth and (n−1)th cyclotron levels. As B-field increases, the energy and the number
of states in each subband increase, and hence the threshold energy likewise increases.
Since the total number of electrons is given, there is a continuous rearrangement of
the electrons with increasing the field. When the threshold energy En = (n + 1

2 )�ωc

Fig. 9.7 Schematic plot of the magnetic field dependence of the diamagnetic susceptibility
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grows from a value below ζ to a value above ζ, the electrons in the nth band fall back
into states in the (n − 1)th band, decreasing the total energy. As the field increases,
it rises again until the next threshold energy En−1 exceeds the ζ. As a result ζ itself
becomes (weakly) periodic. The separation between the individual threshold energy
is �ωc. Therefore, �ωc � kBT is an important condition; otherwise the electron
distribution in the region of ζ is so widely spread that oscillations are smoothed out.
When the condition ζ � �ωc is no longer fulfilled, all the electrons are in the lowest
subband and the oscillations cease. This limit is called the quantum limit.

The oscillations in the magnetic susceptibility are observed in experiments when
�ωc � kBT in high purity (low scattering) samples. Oscillations in electrical
conductivity are called the Shubnikov–de Haas oscillations. Both the de Haas–van
Alphen oscillations and Shubnikov–de Haas oscillations are useful in studying elec-
tronic properties of metals and semiconductor quantum structures.

9.8 Cooling by Adiabatic Demagnetization
of a Paramagnetic Salt

The entropy of a paramagnetic salt is the sum of the entropy due to phonons and the
entropy due to the magnetic moments.

S = Sp + Sm. (9.89)

If the paramagnetic ion has angularmomentum J , then the ground state in the absence
of any applied magnetic field must be 2J +1 fold degenerate. This is because m J can
have any value between −J and +J with equal probability. For a system containing
N paramagnetic ions (noninteracting), the total degeneracy is (2J + 1)N , and the
magnetic contribution to the entropy is

Sm(B = 0) = kB ln(2J + 1)N = NkB ln(2J + 1). (9.90)

Introduce a magnetic field B (neglect local field corrections treating the ions as
noninteracting magnetic ions). Then the magnetic entropy must be given by

Sm(B) = −NkB

J∑
m J =−J

p(m J ) ln p(m J ), (9.91)

where
p(m J ) = Z−1e− gLμBB

kBT m J . (9.92)

Here we have used the relation S(B, T ) = kB
∂

∂T (T ln Z) where the normalization
constant Z is defined so that

∑
m J

p(m J ) = 1, giving
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Fig. 9.8 Schematic plot of the process of cooling by adiabatic demagnetization of a paramagnetic
salt

Z =
∑
m J

e− gLμBB
kBT m J . (9.93)

Substitute the expression for p(m J ) into Sm(B) to have

Sm(B) = NkB ln Z + NkB
gLμBB

kBT
m J . (9.94)

We note that the magnetization is given by M = −NgLμBm J so that

Sm(B) = NkB ln Z − M B

T
. (9.95)

Notice that Sm(B) depends only on the product βB = B
kBT . Thus we have

Sm(B) − Sm(0) = NkB ln
Z

2J + 1
− M B

T
. (9.96)

It is easy to see that this quantity is always negative. This agrees with the intuitive
idea that the system is more disordered in the absence of the magnetic field. The
phonon contribution to the entropy is essentially independent of magnetic field.

Now consider the following process (see Fig. 9.8):

(i) Apply a magnetic field B under isothermal conditions. This takes one from point
A to point C in the Sm versus T plane.

(ii) Now isolate the salt from the heat bath and adiabatically remove the magnetic
field to arrive at D.

This process has lowered the temperature from T1 to T2. The process can be repeated.
In an ideal system Sm(B = 0) should approach zero as T approaches zero. In practice
there is a lower limit in T that can be reached; it is due to the internal magnetic fields
(i.e. coupling of magnetic moments to one another) in the paramagnetic salt.
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9.9 Ferromagnetism

Somematerials possess a spontaneous magnetic moment; that is, even in the absence
of an applied magnetic field they have a magnetization M . The value of the sponta-
neous magnetic moment per unit volume is called the spontaneous magnetization,
Ms(T ). The temperature Tc above which the spontaneous magnetization vanishes is
called the Curie temperature.

The simplest way to account for the spontaneous alignment is by postulating the
existence of an internal field HE, called the Weiss field, which causes the magnetic
moments of the atoms to line up. The value of HE is determined from the Curie
temperature Tc by the relation gμB J HE � kBTc to be

HE = kBTc

gμB J
. (9.97)

Typically HE has a value of about 500 Tesla. We shall see that effective field is not
of magnetic origin. If we take μB divided by the volume of a unit cell, we obtain
μB

a3 � 103 gauss 
 HE. Weiss assumed that the effective field HE was proportional
to the magnetization, i.e.

HE = λM. (9.98)

For T > Tc, the magnetic susceptibility obeys Curie’s law, but now H + HE would
replace H

M = C

T
(H + HE) = C

T
(H + λM)

Therefore we have

M = C

T − λC
H = C

T − Tc
H (9.99)

Since C = Ng2Lμ2
B J (J+1)
3kB

, the molecular field parameter can be written

λ−1 = Ng2Lμ
2
B J (J + 1)

3kBTc
. (9.100)

For Fe, we have λ � 5000.

Exercise

Demonstrate that the molecular field parameter of an iron is λ � 5000.
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Problems

9.1 Consider a volume V bounded by a surface S filled with a magnetizationM(r′)
that depends on the position r′. The vector potential A produced by a magnetization
M(r) is given by

A(r) =
∫

d3r ′M(r′) × (
r − r′)

|r − r′|3 .

(a) Show that ∇′ 1
|r−r′ | = r−r′

|r−r′ |3 .
(b) Use this result together with the divergence theorem to show that A(r) can be

written as

A(r) =
∫
V

d3r ′ ∇r ′ × M(r′)
|r − r′| +

∮
S

d S′M(r′) × n̂′

|r − r′| ,

where n̂ is a unit vector outward normal to the surface S. The volume integra-
tion is carried out over the volume V of the magnetized material. The surface
integral is carried out over the surface bounding the magnetized object.

9.2 Demonstrate for yourself that Table9.1 is correct by placing ↑ or ↓ arrows
according to Hund’s rules as shown below for Cr of atomic configuration (3d)5(4s)1.

Table 9.2 The ground state atomic configuration of Cr

lz 2 1 0 −1 −2

3d-shell ↑ ↑ ↑ ↑ ↑
4s-shell ↑

Clearly S = 1
2 × 6 = 3, L = 0, J = L + S = 3, and

g = 3

2
+ 1

2

3(3 + 1) − 0(0 + 1)

3(3 + 1)
= 2.

Therefore, the spectroscopic notation of Cr is 7S3.
Use Hund’s rules (even though they might not be appropriate for every case) to

make a similar table for Y39, Nb41, Tc43, La57, Dy66, W74, and Am95.

9.3 A system of N electrons is confined to move on the x − y plane confined within
a rectangular strip with sides of Lx and L y . Amagnetic fieldB = Bẑ is perpendicular
to the plane.

(a) Show that the eigenstates of an electron are given by

εnσ(k) = �ωc(n + 1

2
− g∗σz/2)
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and

ψnσ(k, x, y) = eikyφn(x + �k

mωc
)ησ,

where g∗ is the effective g-factor of an electron andσz = ±1. Here k = 2π
L × j ,

where j = − N
2 , -

N
2 + 1, . . ., N

2 − 1, and ησ is a spin eigenfunction.
(b) Determine the density of states gσ(ε) for electrons of spin σ. Remember that

each cyclotron level can accommodate NL = BL2

hc/e electrons.
(c) Determine Gσ(ε), the total number of states per unit area.
(d) Describe qualitatively how the chemical potential at T = 0 changes as the

magnetic field is increased from zero to a value larger than ( hc
e ) N

L2 .

9.4 Consider the system of electrons sitting in the potential well V (x) = 1
2mω2

0x2.
Then apply a magnetic field B in such a way that A = (0, x B, 0).

(a) Write down the Hamiltonian of the system.
(b) Get the energy eigenvalues εn and eigenstates ψn(x).
(c) Examine the cases (i)ω0 → 0 and (ii)ω0 � ωc, whereωc denotes the cyclotron

frequency of an electron.

9.5 Demonstrate that Sm(B, T ) < Sm(0, T )by showing thatd S(B, T ) = ∂B S|T,V +
∂T S|B,V dT and that ∂B S(B, T )|T,V < 0 for all values of gLμBB

kBT if J �= 0. Here
∂T S|B,V is just cv

T .

Summary
The total angular momentum and magnetic moment of an atom are given by

J = L + S.; m = −μB (L + 2S) = −ĝμBJ.

Here the eigenvalue of the operator ĝ is the Landé g-factor written as

gL = 3

2
+ 1

2

s(s + 1) − l(l + 1)

j ( j + 1)
.

The ground state of an atom or ion with an incomplete shell is determined by
Hund’s rules:

(i) The ground state has the maximum S consistent with the Pauli exclusion
principle.

(ii) It has the maximum L consistent with the maximum spin multiplicity 2S + 1
of Rule (i).

(iii) The J -value is given by |L − S| when the incomplete shell is not more than
half filled and by L + S when more than half filled.
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In the presence of a magnetic field B the Hamiltonian describing the electrons in
an atom is written as

H = H0 +
∑

i

1

2m

(
pi + e

c
A(ri )

)2 + 2μBB ·
∑

i

si ,

where H0 is the non-kinetic part of the atomic Hamiltonian and the sum is over all
electrons in an atom. For a homogeneous magnetic fieldB in the z-direction, we have

A = − 1
2 B0

(
yî − x ĵ

)
. In this gauge, the Hamiltonian becomes

H = H − mz B0 + e2B2
0

8mec2
∑

i

(
x2

i + y2i
)
,

where H = H0 + ∑
i

p2
i

2me
and mz = μB(Lz + 2Sz). In the presence of B0, the

z-component of magnetic moment of the atom becomes

μz = mz − e2B0

6mec2
∑

i

r2i .

The second term on the right hand side is the origin of diamagnetism. If J = 0 (so
that Jz = 0), the (Langevin) diamagnetic susceptibility is given by

χDIA = M

B0
= −N

e2

6mec2
∑

i

r2i .

The energy of an atom in a magnetic field B is E = gLμBBm J , where mJ =
−J,−J + 1, . . . , J − 1, J . The magnetization of a system containing N atoms per
unit volume is written as M = NgLμB J BJ (βgLμBB J ), where the function BJ (x)

is called the Brillouin function. If the magnetic field B is small compared to 500T
at room temperature, M becomes

M � Ng2Lμ
2
B J (J + 1)

3kBT
B,

and we obtain the Curie’s law for the paramagnetic susceptibility:

χPARA = M

B
= N 〈m2〉

3kBT

at high temperature, (gLμBB J 
 kBT ).
In the presence of the magnetic field B, the number of electrons of spin up (or

down) per unit volume is

n± = 1

2

∫ ∞

0
d E f0(E)g (E ∓ μBB) .



278 9 Magnetism in Solids

For ζ � μBB and kBT 
 ζ, the magnetization M(= μB(n− − n+)) reduces to

M � μ2
BB

[
g(ζ) + π2

6
(kBT )2g′′(ζ)

]
,

with ζ = ζ0 − π2

6 (kBT )2
g′(ζ0)
g(ζ0)

. Since g(ζ) = 3
2

n0
ζ0

(
ε
ζ0

)1/2
, we obtain the (quantum

mechanical) expression

χQM = 3n0μ
2
B

2ζ0

[
1 − π2

12

(
kBT

ζ0

)2

+ · · ·
]

for the Pauli spin (paramagnetic) susceptibility of a metal.
In quantum mechanics, a dc magnetic field can alter the distribution of the elec-

tronic energy levels and the orbital states of an electron are described by the eigen-
functions and eigenvalues given by

∣∣nkykz 〉 = L−1eiky y+ikz zφn

(
x + �ky

mωc

)
; En(ky, kz) = �

2k2
z

2m
+ �ωc(n + 1

2
).

The quantum mechanical (Landau) diamagnetic susceptibility of a metal becomes

χL = − n0

2ζ0

(
e�

2m∗c

)2

= −n0μ
2
B

2ζ0

( m

m∗
)2

.

Appearance of m∗ (not m) indicates that the diamagnetism is associated with the
orbital motion of the electrons.

In a metal, as we increase B, the Landau level at kz = 0 passes through the Fermi
energy ζ and the internal energy abruptly decreases. Many physically observable
properties of the system are periodic functions of the magnetic field. The periodic
oscillation of the diamagnetic susceptibility of a metal at low temperatures is known
as the de Haas–van Alphen effect. Oscillations in electrical conductivity are called
the Shubnikov–de Haas oscillations.
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Chapter 10
Magnetic Ordering and Spin Waves

10.1 Ferromagnetism

10.1.1 Heisenberg Exchange Interaction

The origin of the Weiss effective field is found in the exchange field between the
interacting electrons on different atoms. For simplicity, assume that atoms A and
B are neighbors and that each atom has one electron. Let ψa and ψb be the wave
functions of the electron on atom A and atom B respectively. The Pauli principle
requires that the wave function for the pair of electrons be antisymmetric. If we label
the two indistinguishable electrons 1 and 2, this means

Ψ (1, 2) = −Ψ (2, 1). (10.1)

The wave function for an electron has a spatial part and a spin part. Let ηi↑ and ηi↓ be
the spin eigenfunctions for electron i in spin up and spin down states, respectively.
There are two possible ways of obtaining an antisymmetric wave function for the
pair (1, 2).

ΨI = ΦS(r1, r2)χA(1, 2) (10.2)

ΨII = ΦA(r1, r2)χS(1, 2). (10.3)

The wave function ΨI has a symmetric space part and an antisymmetric spin part,
and the wave functionΨII has an antisymmetric space part and a symmetric spin part.
In (10.2) and (10.3), the space parts are

Φ S
A
(r1, r2) = 1√

2
[ψa(1)ψb(2) ± ψa(2)ψb(1)] , (10.4)
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and χA and χS are the spin wave functions for the singlet (s = 0) spin state (which
is antisymmetric) and for the triplet (s = 1) spin state (which is symmetric).

χA(1, 2) = 1√
2

[
η1↑η2↓ − η1↓η2↑

] ; Sz = 0 (10.5)

χS(1, 2) =
⎧
⎨

⎩

η1↑η2↑; Sz = 1
1√
2

[
η1↑η2↓ + η1↓η2↑

] ; Sz = 0
η1↓η2↓; Sz = −1

(10.6)

If we consider the electron–electron interaction

V = e2

r12
, (10.7)

we can evaluate the expectation value of V in state ΨI or in state ΨII. Since V is
independent of spin it is simple enough to see that

〈ΨI |V | ΨI〉 = 〈ΦS |V | ΦS〉 (10.8)

= 〈ψa(1)ψb(2) |V | ψa(1)ψb(2)〉 + 〈ψa(1)ψb(2) |V | ψa(2)ψb(1)〉.

When we do the same for ΨII we obtain

〈ΨII |V | ΨII〉 = 〈ΦA |V | ΦA〉 (10.9)

= 〈ψa(1)ψb(2) |V | ψa(1)ψb(2)〉 − 〈ψa(1)ψb(2) |V | ψa(2)ψb(1)〉.

The two terms are called the direct and exchange terms and labeled Vd and J , re-
spectively. Thus the expectation value of the Coulomb interaction between electrons
is given by

〈V 〉 =
{
Vd + J for the singlet state (S = 0)
Vd − J for the triplet state (S = 1)

(10.10)

Now S = ŝ1 + ŝ2 and S2 = (ŝ1 + ŝ2
)2 = ŝ21 + ŝ22 + 2ŝ1 · ŝ2. Therefore, ŝ1 · ŝ2 =

1
2

(
ŝ1 + ŝ2

)2 − 1
2 ŝ

2
1 − 1

2 ŝ
2
2 = 1

2 S(S + 1) − 3
4 . Here we have used the fact that the

operator S2 has eigenvalues S(S + 1) and ŝ21 and ŝ
2
2 have eigenvalues

1
2 (

1
2 + 1) = 3

4 .
Thus, one can write

ŝ1 · ŝ2 =
{− 3

4 if S = 0
1
4 if S = 1.

Then, we write

〈V 〉 = Vd + J (1 − S2
) = Vd − 1

2
J − 2J ŝ1 · ŝ2. (10.11)
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Here−2J ŝ1 · ŝ2 denotes the contribution to the energy from a pair of atoms (or ions)
located at sites 1 and 2. For a large number of atoms we need only sum over all pairs
to get

E = constant − 1

2

∑

i �= j

2Ji j ŝi · ŝ j (10.12)

Normally one assumes that Ji j is nonzero only for nearest neighbors and perhaps
next nearest neighbors. The factor 1

2 is introduced in order to avoid double counting
of the interaction. The introduction of the interaction term−2J ŝ1 · ŝ2 is the source of
theWeiss internal field which produces ferromagnetism. If z is the number of nearest
neighbors of each atom i , then for atom i we have

Eex = −2J zS2 = −gLμBSHE (10.13)

10.1.2 Spontaneous Magnetization

From our study of paramagnetism we know that

M = NgLμBSBS(x), (10.14)

where x = gLμBSBLOCAL

kBT
. Here BLOCAL is B + λM , i.e. it includes the Weiss field.

If we plot M versus x we get the behavior shown in Fig. 10.1. But for B = 0,
BLOCAL = λM . Therefore x = gLμBSλM

kBT
. If we plot this straight line x versus M on

the panel of Fig. 10.1 for different temperatures T we find the behavior shown in
Fig. 10.2. Solutions (intersections) occur only at (M = 0, x = 0) for T > Tc. For
T < Tc there is a solution at some nonzero value of M , i.e.

Fig. 10.1 Schematic plot of themagnetizationM of a paramagnet as a function of the dimensionless
parameter x defined by x = gLμBSBLOCAL

kBT
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L

L

L

Fig. 10.2 Schematic plot of the magnetization M of a paramagnet for various different tempera-
tures, in the absence of an external magnetic field, as a function of the dimensionless parameter x
defined by x = gLμBSBLOCAL

kBT

MS(T ) = NgLμBSBS(x0), x0 = gLμBSλMS

kBT
.

The Curie temperature TC is the temperature, at which the gradient of the line M =
kBT x

gLμBSλ
and the curve M = NgLμBSBS(x) are equal at the origin. Recall that, for

small x , BS(x) = (S+1)x
3S + O(x3). Then the TC is given by

TC = λN
[
gLμB

√
S(S + 1)

]2

3kB
. (10.15)

It is not difficult to see that MS(T ) versus T looks like Fig. 10.3. If a finite external
magnetic field B0 is applied, then we have

M = kBT x

gLμBSλ
− B0

λ
. (10.16)

Plotting this straight line on the M − x plane gives the behavior shown in Fig. 10.4.

Fig. 10.3 Schematic plot of the spontaneous magnetization MS as a function of temperature T
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Fig. 10.4 Schematic plot of the magnetization M of a paramagnet, in the presence of an external
magnetic field B0, as a function of the dimensionless parameter x defined by x = gLμBSBLOCAL

kBT

10.1.3 Domain Structure

If all the magnetic moments in a finite sample are lined up, then there will be flux
emerging from the sample as shown in Fig. 10.5. There is an energy density 1

8πH(r) ·
B(r) associated with this flux emerging from the sample, and the total emergence
energy is given by

U = 1

8π

∫
d3r H(r) · B(r) (10.17)

The emergence energy can be lowered by introducing a domain structures as shown
in Fig. 10.6. In order to have more than a single domain, one must have a domain
wall, and the domain wall has a positive energy per unit area.

Fig. 10.5 Schematic plot of the magnetic flux around a sample with a single domain of finite
spontaneous magnetization
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(a)

(b)

Fig. 10.6 Domain structures in a samplewith finite spontaneousmagnetization. (a) Pair of domains,
(b) domains of closure

10.1.4 Domain Wall

Consider a chain of magnetic spins (Fig. 10.7a) interacting via Heisenberg exchange
interaction

Hex = −2J
∑

<i, j>

si · s j ,

where the sum is over all pairs of nearest neighbors. Compare the energy of this
configuration with that having an abrupt domain wall as shown in Fig. 10.7b. Only
spins (i) and ( j) have a misalignment so that

(a)

(c)

(b)

Fig. 10.7 A chain of magnetic spins interacting via Heisenberg exchange interaction. a Single
domain, b a domain wall, c gradual spin flip

ΔE = Hex(i ↑, j ↓) − Hex(i ↑, j ↑)

= −2J ( 12 )(− 1
2 ) − [−2J ( 12 )(

1
2 )
] = J .

(10.18)
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Energetically it ismore favorable to have the spinflipgradually as shown inFig. 10.7c.
If we assume the angle between each neighboring pair in the domain wall is φ, we
can write

(Eex)i j = −2J si · s j = −2J si s j cosφ. (10.19)

Now if the spin turns through an angle φ0 (φ0 = π in the case shown in Fig. 10.7b)
in N steps, where N is large, then φi j � φ0

N within the domain wall, and we can

approximate cosφi j by cosφi j ≈ 1 − 1
2

φ2
0

N 2 . Therefore the exchange energy for a
neighboring spin pair will be

(Eex)i j = −2J S2
(
1 − 1

2

φ2
0

N 2

)
(10.20)

The increase in exchange energy due to the domain wall will be

Eex = N

(
J S2

φ2
0

N 2

)
= J S2

φ2
0

N
. (10.21)

Clearly the exchange energy is lower if the domain wall is very wide. In fact, if
no other energies were involved, the domain wall width Na (where a is the atomic
spacing) would be infinite. However, there is another energy involved, the anisotropy
energy. Let us consider it next.

10.1.5 Anisotropy Energy

We realize that crystals are not spherically symmetric, but have finite point group
symmetry. In real crystals, certain directions are easy to magnetize and others are
hard. For example, Co is a hexagonal crystal. It is easy to magnetize Co along the
hexagonal axis, but hard tomagnetize it along any axis perpendicular to the hexagonal
axis. The excess energy needed to magnetize the crystal in a direction that makes an
angle θ with the hexagonal axis can be written

EA

V
= K1 sin

2 θ + K2 sin
4 θ > 0. (10.22)

For Fe, a cubic crystal, the < 100 > directions are easy axes and the < 111 >

directions are hard. The anisotropy energy must reflect the cubic symmetry of the
lattice. If we define αi = cos θi as shown in Fig. 10.8, then an approximation to the
anisotropy energy can be written

EA

V
≈ K1

(
α2
xα

2
y + α2

yα
2
z + α2

zα
2
x

)+ K2α
2
xα

2
yα

2
z . (10.23)
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Fig. 10.8 Orientation of the magnetization with respect to the crystal axes in a cubic lattice

The constants K1 and K2 in (10.22) and (10.23) are called anisotropy constants.
They are very roughly of the order of 105erg/cm3.

Clearly if we make a domain wall, we must rotate the magnetization away from
one easy direction and into another easy direction (see, for example, Fig. 10.9). To
get an order of magnitude estimate of the domain wall thickness we can write the
energy per unit surface area as the sum of the exchange contribution σex and the
anisotropy contribution σA

σex = Eex

a2
= J S2π2

Na2
(10.24)

where a is the atomic spacing. The anisotropy energy will be proportional to the
anisotropy constant (energy per unit volume) times the number of spins times a.

σA ≈ K Na � 102 − 107 J/m3. (10.25)

Thus the total energy per unit area will be

Fig. 10.9 Rotation of the magnetization in a domain wall
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σ = π2J S2

Na2
+ K Na. (10.26)

The σ has a minimum as a function of N , since the exchange part wants N to be very
large and the anisotropy part wants it very small. At the minimum we have

N �
(

π2J S2

Ka3

)1/2

≈ 300. (10.27)

The width of the domain wall is δ = Na � πS( J
Ka )1/2, and the energy per unit area

of the domain wall is σ � 2πS( J K
a )1/2.

10.2 Antiferromagnetism

For a Heisenberg ferromagnet we had an interaction Hamiltonian given by

H = −2J
∑

<i, j>

si · s j , (10.28)

and the exchange constant J was positive. This made si and s j align parallel to one
another so that the energy was minimized. It is not uncommon to have spin systems
in which J is negative. Then the Hamiltonian

H = 2 |J |
∑

<i, j>

si · s j (10.29)

will attempt to align the neighboring spins antiparallel. Materials with J < 0 are
called antiferromagnets.

For a antiferromagnet, the magnetic susceptibility increases as the temperature
increases up to the transition temperature TN = |J |

kB
, known as the Néel temperature.

Above TN, the antiferromagnetic crystal is in the standard paramagnetic state.

10.3 Ferrimagnetism

In an antiferromagnetwe can think of two different sublattices as shown in Fig. 10.10.
If the two sublattices happened to have a different spin on each (e.g. up sublattice
has s = 3

2 , down sublattice has s = 1), then instead of an antiferromagnet for J < 0,
we have a ferrimagnet.
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Fig. 10.10 Sublattice structure of spins in a ferrimagnet

10.4 Zero-Temperature Heisenberg Ferromagnet

In the presence of an applied magnetic field B0 oriented in the z-direction, the Hamil-
tonian of a Heisenberg ferromagnet can be written

H = −
∑

i, j

J (Ri − R j )Si · S j − gμBB0

∑

i

Siz . (10.30)

Here we take the usual practice that the symbol Si represents the total angular mo-
mentum of the i th ion and is parallel to the magnetic moment of the ion, rather than
opposite to the moment as was given by (9.26). The exchange integral J is defined
as a half of the difference between the singlet and triplet energies. Let us define the
operators S± by

S± = Sx ± i Sy . (10.31)

Remember that we can write S as

S = �

2
σ, (10.32)

where σx , σy , σy are the Pauli spin matrices given by

σx =
(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (10.33)

Let us choose units in which � = 1. Then Sx , Sy , and Sz satisfy the commutation
relations

http://dx.doi.org/10.1007/978-3-319-73999-1_9
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[
Sx , Sy

]
− = i Sz,[

Sy, Sz
]
− = i Sx ,[

Sz, Sx
]
− = i Sy .

(10.34)

We will be using the symbols S and Sz for quantum mechanical operators and for
numbers associated with eigenvalues. Where confusion might arise we will write Ŝ
and Ŝz for the quantum mechanical operators. From quantum mechanics we know
that Ŝ2 and Ŝz can be diagonalized in the same representation since they commute.
We usually write

Ŝ2|S, Sz〉 = S(S + 1)|S, Sz〉,
Ŝz|S, Sz〉 = Sz|S, Sz〉. (10.35)

Let us look at Ŝ+ operating on the state |S, Sz〉. We recall that

[
Ŝ2, Ŝ+

]
= 0,

[
Ŝz, Ŝ

±
]

= ±Ŝ±. (10.36)

We can write
Ŝ2 Ŝ+|S, Sz〉 = Ŝ+Ŝ2|S, Sz〉 +

[
Ŝ2, Ŝ+

]
|S, Sz〉. (10.37)

The second term vanishes because the commutator is zero, and Ŝ2|S, Sz〉 = S(S +
1)|S, Sz〉 giving

Ŝ2 Ŝ+|S, Sz〉 = S(S + 1)Ŝ+|S, Sz〉. (10.38)

Perform the same operation for Ŝz operating on Ŝ+|S, Sz〉 to have

Ŝz Ŝ
+|S, Sz〉 = Ŝ+ Ŝz|S, Sz〉 +

[
Ŝz, Ŝ

+
]
|S, Sz〉. (10.39)

Use the fact that
[
Ŝz, Ŝ+

]
= Ŝ+ and Ŝz|S, Sz〉 = Sz|S, Sz〉. This gives

Ŝz Ŝ
+|S, Sz〉 = (Sz + 1)Ŝ+|S, Sz〉. (10.40)

This means that Ŝ+|S, Sz〉 is proportional to |S, Sz + 1〉. To determine the normal-
ization constant we write

Ŝ+|S, Sz〉 = N |S, Sz + 1〉,

and note that
{N |S, Sz + 1〉}† = N ∗〈S, Sz + 1|

and
{Ŝz
∣∣S, Sz〉}† = 〈S, Sz

∣∣ Ŝz .
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Thus we have

|N |2〈S, Sz + 1|S, Sz + 1〉 = 〈S, Sz |Ŝ− Ŝ+|S, Sz〉
=〈S, Sz|(Ŝ2x + Ŝ2y − Ŝz)|S, Sz〉 = 〈S, Sz|(Ŝ2 − Ŝ2z − Ŝz)|S, Sz〉

giving for N
N = [S(S + 1) − S2z − Sz

]1/2
.

We can then show that

Ŝ+|S, Sz〉 = √
(S − Sz)(S + 1 + Sz)|S, Sz + 1〉

Ŝ−|S, Sz〉 = √
(S + Sz)(S + 1 − Sz)|S, Sz − 1〉. (10.41)

Now note that

Six S jx + Siy S jy = 1

2

(
S+
i S

−
j + S−

i S
+
j

)
. (10.42)

These are all operators, but we omit the ˆ over the S. The Heisenberg Hamiltonian
(10.30) becomes

H = −
∑

i, j

Ji j Siz S jz − 1

2

∑

i, j

Ji j

(
S+
i S

−
j + S−

i S
+
j

)
− gμBB0

∑

i

Siz . (10.43)

Exercise

Demonstrate that S+ and S− satisfy (10.41).

It is rather clear that the ground state will be obtained when all the spins are
aligned parallel to one another and to the magnetic field B0. Let us define this state
as |GS〉 or |0〉. We can write

|0〉 =
∏

i

|S, S〉i . (10.44)

Here |S, S〉i is the state of the i th spin in which Ŝi z has the eigenvalue Sz = S, its
maximum value. It is clear that Ŝ+

i operating on |0〉 gives zero for every position i
in the crystal. Therefore, H operating on |0〉 gives

H|0〉 = −
⎛

⎝
∑

i, j

Ji j Ŝi z Ŝ j z + gμBB0

∑

i

Ŝi z

⎞

⎠ |0〉. (10.45)

Equation (10.45) shows that the state, in which all the spins are parallel and aligned
along B0 = (0, 0, B0), so that Sz takes its maximum value S, has the lowest energy.
The ground state energy becomes
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E0 = −S2
∑

i, j

Ji j − NgμBB0S. (10.46)

If Ji j = J for nearest neighbor pairs and zero otherwise, then
∑

i, j 1 = Nz, where
z is the number of nearest neighbors. Then E0 reduces to

E0 = −S2NzJ − NgμBB0S

= −gμBNS
[
B0 + z J S

g2μ2
B

]
.

(10.47)

10.5 Zero-Temperature Heisenberg Antiferromagnet

If J is replaced by −J so that the exchange interaction tends to align neighboring
spins in opposite directions, the ground state of the system is not quite simple. In
fact, it has been solved exactly only for the special case of spin 1

2 atoms in a one-
dimensional chain by Hans Bethe. Let us set the applied magnetic field B0 = 0. Then
the Hamiltonian is given by

H =
∑

i, j

Ji jSi · S j . (10.48)

If we assume that each sublattice acts as the ground state of the ferromagnet, but
has Sz oriented in opposite directions on sublattices A and B, we would write a trial
wave function

ΦTRIAL =
∏

i ∈ A
j ∈ B

|S, S〉i |S,−S〉 j . (10.49)

Remember that the Hamiltonian is

H =
∑

i, j

Ji j

(
Siz S jz + 1

2
S+
i S

−
j + 1

2
S−
i S

+
j

)
. (10.50)

The Siz S jz term would take its lowest possible value with this wave function, but
unfortunately S−

i S
+
j operating on ΦTRIAL would give a new wave function in which

sublattice A has one atom with Sz having the value S − 1 and sublattice B has one
with Sz = −S + 1. Thus ΦTRIAL is not an eigenfunction of H.

10.6 Spin Waves in Ferromagnet

The Heisenberg Hamiltonian for a system (with unit volume) consisting of N spins
with the nearest neighbor interaction can be written
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H = −2J
∑

<i, j>

Ŝi · Ŝ j − gμBB0

∑

i

Siz, (10.51)

where the symbol< i, j >below the
∑

implies a sumover all distinct pairs of nearest
neighbors. The constants of the motion are Ŝ2 = ∑i Ŝi ·∑ j Ŝ j and Ŝz = ∑ j Ŝ j z ,

where Ŝ =∑ j Ŝ j . The eigenvalues of Ŝ2 and Ŝz are given by

Ŝ2|0〉 = NS(NS + 1)|0〉
Ŝz|0〉 = NS|0〉. (10.52)

The ground state satisfies the equation

H|0〉 = − (gμBB0NS + J NzS2
) |0〉. (10.53)

10.6.1 Holstein–Primakoff Transformation

If we write Ŝi · Ŝ j in terms of x , y, and z components of the spin operators, the
Heisenberg Hamiltonian becomes

H = −2J
∑

〈i, j〉

(
Ŝi x Ŝ j x + Ŝiy Ŝ j y + Ŝi z Ŝ j z

)
− gμBB0

∑

i

Ŝi z . (10.54)

We can write

Ŝi x Ŝ j x + Ŝiy Ŝ j y = 1

2
Ŝ+
i Ŝ

−
j + 1

2
Ŝ−
i Ŝ

+
j . (10.55)

Now the Hamiltonian is rewritten

H = −2J
∑

〈i, j〉

(
1

2
Ŝ+
i Ŝ

−
j + 1

2
Ŝ−
i Ŝ

+
j + Ŝi z Ŝ j z

)
− gμBB0

∑

i

Ŝi z . (10.56)

The spin state of each atom is characterized by the value of Sz , which can take on
any value between −S and S separated by a step of unity. Because we are interested
in low lying states, we will consider excited states in which the value of Siz does
not differ too much from its ground state value S. It is convenient to introduce an
operator n̂ j defined by

n̂ j = Sj − Ŝ j z = S − Ŝ j z . (10.57)

n̂ j is called the spin deviation operator; it takes on the eigenvalues 0, 1, 2, . . ., 2S
telling us how much the value of Sz on site j differs from its ground state value S.
We now define a†j and its Hermitian conjugate a j by
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n̂ j = a†j a j . (10.58)

a†j and a j are creation and annihilation operators for the j th atom.We will require a j

and a†j to satisfy the commutation relation [a j , a
†
j ] = 1, since a spin deviation looks

like a boson. Notice that a†j , which creates one spin deviation on site j , acts like the
lowering operator S−

j while a j acts, by destroying one spin deviation on site j , like

S+
j . Therefore, we expect a

†
j to be proportional to S−

j and a j to be proportional to
S+
j . One can determine the coefficient by noting that

[Ŝ+, Ŝ−] = 2Ŝz = 2(S − n̂). (10.59)

If we introduce the Holstein–Primakoff transformation to boson creation and anni-
hilation operators a†j and a j

Ŝ+
j = (2Sj − n̂ j )

1/2a j and Ŝ−
j = a†j (2Sj − n̂ j )

1/2 (10.60)

and substitute into the expression for the commutator of Ŝ+ with Ŝ− we obtain

[Ŝ+, Ŝ−] = 2(S − n̂) (10.61)

if [a, a†] = 1. The proof of (10.61) is given below.We want to show that [Ŝ+, Ŝ−] =
2(S − n̂) if [a, a†] = 1. We start by defining Ĝ = (2S − n̂)1/2. Then, we can write

[Ŝ+, Ŝ−] = [Ĝa, a†Ĝ] = Ĝ[a, a†Ĝ] + [Ĝ, a†Ĝ]a
= Ĝa†[a, Ĝ] + Ĝ2 + [Ĝ, a†]Ĝa
= Ĝ2 + n̂Ĝ2 − a†Ĝ2a.

But, we note that

−a†Ĝ2a = −a†(2S − n̂)a = −a†
{[2S − n̂, a] + a(2S − n̂)

}

= −a†
{
−[n̂, a] + aĜ2

}
= −a†

{
−[a†a, a] + aĜ2

}

= −a†
{
−[a†, a]a + aĜ2

}
= −n̂ − n̂Ĝ2.

Therefore, we have

[Ŝ+, Ŝ−] = Ĝ2 + n̂Ĝ2 − a†Ĝ2a
= Ĝ2 + n̂Ĝ2 − n̂ − n̂Ĝ2

= Ĝ2 − n̂ = 2(S − n̂) = 2Ŝz .
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In order to obtain this result we had to require [a†, a] = −1. If we substitute (10.59)
and (10.60) into the Hamiltonian (10.56), we obtain

H = −2J S
∑

〈i, j〉

{√
1 − n̂i

2S aia
†
j

√
1 − n̂ j

2S + a†i

√
1 − n̂i

2S

√
1 − n̂ j

2S a j

+S(1 − n̂i
S )(1 − n̂ j

S )
}

− gμBB0S
∑

i (1 − n̂i
S ).

(10.62)

Exercise

Demonstrate the Heisenberg Hamiltonian (10.62) from (10.56) carrying out the
Holstein–Primakoff transformation.

So far we havemade no approximation other than those inherent in theHeisenberg
model. Nowwe will make the approximation that 〈n̂i 〉 � 2S for all states of interest.

Therefore, in an expansion of the operator
√
1 − n̂i

2S we will keep only terms up to

those linear in n̂i , i.e. √

1 − n̂i
2S

� 1 − n̂i
4S

+ · · · . (10.63)

We make this substitution into the Heisenberg Hamiltonian and write H as

H = E0 + H0 + H1. (10.64)

Here E0 is the ground state energy that we obtained by assuming that the ground
state wave function was |0 >=∏i |S, Sz = S〉i .

E0 = −2S2
∑

〈i, j〉 Ji j − NgμBB0

= −zJ NS2 − gμBB0NS.
(10.65)

H0 is the part of the Hamiltonian that is quadratic in the spin deviation creation and
annihilation operators.

H0 = (gμBB0 + 2zJ S)
∑

i

n̂i − 2J S
∑

〈i, j〉

(
aia

†
j + a†i a j

)
. (10.66)

H1 includes all higher terms. To fourth order in a†’s and a’s the expression for H1

is given explicitly by

H1 = −2J ∑〈i, j〉
(
n̂i n̂ j − 1

4 n̂i aia
†
j − 1

4aia
†
j n̂ j − 1

4 n̂ j a
†
i a j − 1

4a
†
i a j n̂i

)

+ higher order terms.
(10.67)

Let us concentrate onH0. It is apparent that a
†
i a j transfers a spin deviation from the

j th atom to the i th atom. Thus, a state with a spin deviation on the j th atom is not an
eigenstate of H. This problem is similar to that which we encountered in studying
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lattice vibrations. By this we mean that spin deviations on neighboring sites are
coupled together in the same way that atomic displacements of neighboring atoms
are coupled in lattice dynamics. As we did in studying phonons, we will introduce
new variables that we call magnon or spin wave variables defined as follows:

bk = N−1/2
∑

j

eik·x j a j and b†k = N−1/2
∑

j

e−ik·x j a†j . (10.68)

As usual the inverse can be written

a j = N−1/2
∑

k

e−ik·x j bk and a†j = N−1/2
∑

k

eik·x j b†k. (10.69)

It is straightforward (but left as an exercise) to show, because [a j , a j ′ ] = [a†j , a†j ′ ] = 0

and [a j , a
†
j ′ ] = δ j j ′ , that

[bk, bk′ ] =
[
b†k, b

†
k′

]
= 0 and

[
bk, b

†
k′

]
= δkk′ . (10.70)

Substitute intoH0 the expression for spin deviation operators in terms of the magnon
operators; this gives

H0 = (gμBB0 + 2zJ S)
∑

j N
−1∑

kk′ ei(k−k′)·x j b†kbk′

−2J SN−1∑
< j,l>

∑
kk′

(
eik·xl−ik′ ·x j bk′b†k + eik

′ ·x j−ik·xl b†k′bk
)

.
(10.71)

We introduce δ, one of the nearest neighbor vectors connecting neighboring sites and
write xl = x j + δ in the summation

∑
< j,l>, so that it becomes 1

2

∑
j

∑
δ = 1

2 zN .
We also make use of the fact that

∑

j

ei(k−k′)·x j = δkk′ N . (10.72)

Then H0 can be expressed as

H0 = (gμBB0 + 2zJ S)
∑

k

b†kbk − J S
∑

k

∑

δ

(
eik·δbkb†k + e−ik·δb†kbk

)
.

(10.73)
We now define

γk = z−1
∑

δ

eik·δ. (10.74)

If there is a center of symmetry about each atom then γ−k = γk. Further, since∑
k e

ik·R = 0 unless R = 0, it is apparent that
∑

k γk = 0. Using these results in
our expression forH0 gives
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H0 =
∑

k

�ωkb
†
kbk, (10.75)

where
�ωk = 2zJ S(1 − γk) + gμBB0. (10.76)

Thus, if we neglect H1, we have for the Hamiltonian of a state containing magnons

H = − (gμBB0NS + zJ NS2
)+
∑

k

�ωkb
†
kbk. (10.77)

This tells us that the elementary excitations are waves (remember b†k = N−1/2∑
j

e−ik·x j a†j is a linear combination of spin deviations shared equally in amplitude by
all sites) of energy �ωk. Provided that we stay at low enough temperature so that
〈n̂ j 〉 � S, this approximation is rather good. At higher temperatures, where many
spin waves are excited, the higher terms (spin wave–spin wave interactions) become
important.

10.6.2 Dispersion Relation for Magnons

For long wave lengths |k · δ| � 1. In this region we can expand eik·δ in powers of k
to get

γk = z−1
∑

δ

(
1 + ik · δ − (k · δ)2

2
+ · · ·

)
. (10.78)

Using
∑

δ 1 = z, and
∑

δ δ = 0 gives

γk ≈ 1 − 1

2z

∑

δ

(k · δ)2 . (10.79)

Thus z(1 − γk) � 1
2

∑
δ (k · δ)2 and in this limit we have

�ωk = gμBB0 + J S
∑

δ

(k · δ)2 . (10.80)

For a simple cubic lattice |δ| = a and
∑

δ (k · )2 = 2k2a2 giving

�ωk = gμBB0 + 2J Sa2k2. (10.81)

In a simple cubic lattice the magnon energy is of the same form as the energy of a free
particle in a constant potential ε = V0 + �

2k2

2m∗ where V0 = gμBB0 and 1
m∗ = 4J Sa2

�2 .
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E

Fig. 10.11 Magnon dispersion curves

The dispersion relation we have been considering is appropriate for a Bravais
crystal. In reciprocal space the k values will, as is usual in crystalline materials, be
restricted to the first Brillouin zone. For a lattice withmore than one spin per unit cell,
optical magnons as well as acoustic magnons are found, as is shown in Fig. 10.11.

10.6.3 Magnon–Magnon Interactions

The terms inH1 that we have omitted involve more than two spin deviation creation
and annihilation operators. These terms are responsible for magnon–magnon scatter-
ing just as cubic and quartic anharmonic terms are responsible for phonon–phonon
scattering. Freeman J. Dyson studied the leading terms associated with magnon–
magnon scattering.1 Rigorous treatment of magnon–magnon scattering is mathe-
matically difficult.

10.6.4 Magnon Heat Capacity

If the external magnetic field is zero and if magnon–magnon interactions are neglect-
ed, then we can write the magnon frequency as ωk = Dk2 for small values of k. Here
D = 2J Sa2. The internal energy per unit volume associated with these excitations
is given by (we put � = 1 for convenience)

U = 1

V

∑

k

ωk〈nk〉 (10.82)

1F. J. Dyson, Phys. Rev. 102, 1217 (1956).
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where 〈nk〉 = 1
eωk/Θ−1 is the Bose–Einstein distribution function since magnons are

Bosons. Converting the sum to an integral over k gives

U = 1

(2π)3

∫

BZ
d3k

Dk2

eDk2/Θ − 1
. (10.83)

Let Dk2 = Θx2; then U becomes

U = D

2π2

(
Θ

D

)5/2 ∫
dx

x4

ex2 − 1
. (10.84)

Herewehaveusedd3k = 4πk2dk. Let x2 = y and set the upper limit at yM = ( DkM
Θ

)2
.

Then we find

U = Θ5/2

4π2D3/2

∫ yM

0
dy

y3/2

ey − 1
. (10.85)

For very low temperatures Θ � ωM and no serious error is made by replacing yM
by ∞. Then the integral becomes

∫ ∞

0
dy

y3/2

ey − 1
= Γ

(
5

2

)
ζ

(
5

2
, 1

)
. (10.86)

Here Γ (x) and ζ(a, b) are the Γ function and Riemann zeta function, respectively:
Γ ( 52 ) = 3

2 · 1
2Γ ( 12 ) = 3

4

√
π and ζ( 52 , 1) ≈ 1.341. Thus for U we obtain

U � 0.45

π2

Θ5/2

D3/2
(10.87)

and for the specific heat due to magnons

C = ∂U

∂T
= 0.113kB

(
Θ

D

)3/2

(10.88)

For an insulating ferromagnet the specific heat contains contributions due to phonons
and due to magnons. At low temperatures we have

C = AT 3/2 + BT 3 (10.89)

PlottingCT−3/2 as a function of T 3/2 at low temperature should give a straight line
(see, for example, Fig. 10.12). For the ideal Heisenberg ferromagnet YIG (yttrium
iron garnet) D has a value approximately 0.8 erg · cm2 implying an effective mass
m∗ � 6me.
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Fig. 10.12 Specific heat of an insulating ferromagnet

10.6.5 Magnetization

The thermal average of the magnetization at a temperature T is referred to as the
spontaneous magnetization at temperature T . It is given by

Ms = gμB

V

(

NS − 〈
∑

k

b†kbk〉
)

. (10.90)

The first term is just the zero temperature value where Sz = NS and gμB = 2μ. The
second term results from the presence of spin deviations n̂ j . Remember that

∑
j n̂ j =∑ j a

†
j a j =∑ j

1
N

∑
kk′ ei(k−k′)·x j b†kbk′

=∑kk′ b
†
kbk′δkk′ =∑k b

†
kbk.

(10.91)

We can define

ΔM = Ms(0) − Ms(T ) = 2μ

V

∑

k

〈nk〉,

where 〈nk〉 = 1
eDk2/Θ−1

. Replacing the sum over the wave number k by an integral in
the usual way gives

ΔM = 2μ
(2π)3

4π
∫

dk k2

eDk2/Θ−1

= μ
2π2

(
Θ
D

)3/2 ∫ yM
0

dy y1/2

ey−1 .
(10.92)

Again if Θ � �ωM, yM can be replaced by ∞. Then the definite integral has the
value Γ ( 32 )ζ( 32 , 1), and we obtain for ΔM

ΔM = 0.117μ

(
Θ

D

)3/2

= 0.117μ

(
Θ

2a2SJ
)3/2

. (10.93)
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For Ms(T ) we can write

Ms(T ) = N

V
2μS − 0.117

μ

a3

(
Θ

2SJ
)3/2

. (10.94)

For simple cubic, bcc, and fcc lattices, N
V has the values 1/a3, 2/a3, and 4/a3,

respectively. Thus we can write

Ms(T ) � 2μS

a3

[
α − 0.02

Θ3/2

S5/2J 3/2

]
, (10.95)

where α = 1, 2, 4 for simple cubic, bcc, and fcc lattices, respectively. The T 3/2

dependence of the magnetization is a well-known result associated with the presence
of noninteracting spin waves. Higher order terms in Θ

J are obtained if the full ex-
pression for γk is used instead of just the long wave length expansion (correct up to
k2 term) and the k-integral is performed over the first Brillouin zone and not inte-
grated to infinity. The first nonideal magnon term, resulting from magnon–magnon

interactions, is a term of order
(

Θ
J
)4
. Dyson obtained this term correctly in a classic

paper in the mid 1950s.2

10.6.6 Experiments Revealing Magnons

Among the many experiments which demonstrate the existence of magnons, a few
important ones are as follows:

(i) The existence of side bands in ferromagnetic resonances. The uniform preces-
sion mode in a ferromagnetic resonance experiment excites a k = 0 spin wave.
In a ferromagnetic film, it is possible to couple to modes with wave length λ
satisfying 1

2λ = d
n where d is the thickness of the film. This gives resonances

at magnon wave numbers kn = nπ
d .

(ii) The existence of inelastic neutron scattering peaks associated with magnons.
(iii) The coupling of magnons to phonons in ferromagnetic crystals (see Fig. 10.13).

10.6.7 Stability

We started with a Heisenberg Hamiltonian H = −J ∑〈i, j〉 Ŝi · Ŝ j . In the ferro-
magnetic ground state the spins are aligned. However, the direction of the resulting
magnetization is arbitrary (since H has complete rotational symmetry) so that the

2F. J. Dyson, Phys. Rev 102, 1230 (1956).
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Fig. 10.13 Coupling of magnons-phonons

ground state is degenerate. If one selects a certain direction for M as the starting
point of magnon theory, the system is found to be unstable. Infinitesimal amount of
thermal energy excites a very large number of spin waves (remembering that when
B0 = 0 the k = 0 spin waves have zero energy). The difficulty of having an unstable
ground state withM in a particular direction is removed by removing the degeneracy
caused by spherical symmetry of the Hamiltonian. This is accomplished by either

(i) applying a field B0 in a particular direction or
(ii) introducing an effective anisotropy field BA.

For Θ � μB|B| where B is either B0 or BA, only small deviations from the ground
state occur. The anisotropy field is a mathematical convenience which accounts for
anisotropic interaction in real crystals. It is not so important in ferromagnets, but it
is very important in antiferromagnets

10.7 Spin Waves in Antiferromagnets

The Heisenberg Hamiltonian of an antiferromagnet has J > 0 so that

H = +2J
∑

〈i, j〉
Ŝi · Ŝ j − gμBB0 ·

∑

i

Ŝi , (10.96)

where the sum is over all possible distinct nearest neighbor pairs. The state in which
all N spins on sublattice 1 are ↑ and all N spins on sublattice 2 are ↓ is a highly
degenerate state because the direction for ↑ (or ↓) is completely arbitrary. This
degeneracy is not removed by introducing an external field B0. For |B0| not too
large, the spins align themselves antiferromagnetically in the plane perpendicular to
B0. However, the direction of a given sublattice magnetization is still arbitrary in that
plane.
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Lack of stability can be overcome by introducing an anisotropy field BA with the
following properties:

(1) BA is in the +z direction at sites in sublattice 1.
(2) BA is in the −z direction at sites in sublattice 2.
(3) μBBA is not too small (compared to 1

NJ ).

Then theHeisenbergHamiltonian for an antiferromagnet in the presence of an applied
field B0 = B0 ẑ and an anisotropy field BA can be written

H = +J
∑

〈i, j〉
Ŝi · Ŝ j − gμB(BA + B0)

∑

l∈a
Ŝalz + gμB(BA − B0)

∑

p∈b
Ŝbpz . (10.97)

The superscript a and b refer to the two sublattices. In the limit where BA → ∞
while J → 0 and B0 → 0, the ground state will have

Salz = S for all l ∈ a
Sbpz = −S for all p ∈ b

(10.98)

This state is not true ground state of the system when BA and J are both finite.
The spin wave theory of an antiferromagnet can be carried out in analogy with the
treatment for the ferromagnet. We introduce spin deviations from the ‘BA → ∞
ground state’ by writing

Salz = S − a†l al for all l ∈ a
Sbpz = −(S − b†pbp) for all p ∈ b,

(10.99)

where the spin deviation operators satisfy commutation relations
[
al , a

†
l

]
= 1 and

[
bp, b†p

] = 1. Once again it is easy to show that

Ŝa+l = (2S − n̂l)1/2al; Ŝa−l = a†l (2S − n̂l)1/2

Ŝb+p = b†p(2S − m̂ p)
1/2; Ŝb−p = (2S − m̂ p)

1/2bp
(10.100)

Here n̂l = a†l al and m̂ p = b†pbp. In spin wave theory we assume 〈n̂l〉 � 2S and
〈m̂ p〉 � 2S and expand the square roots keeping only linear terms in n̂l and m̂ p. The
Hamiltonian can then be written

H = E0 + H0 + H1. (10.101)

Here E0 is the ground state energy given by

E0 = −2NzJ S2 − 2gμBBANS, (10.102)
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andH0 is the part of the Hamiltonian that is quadratic in the spin deviation creation
and annihilation operators

H0 = 2J S
∑′

<l,p〉
(
albp + a†l b

†
p + n̂l + m̂ p

)

+gμB (BA + B0)
∑

l∈an̂l + gμB (BA − B0)
∑

p∈bm̂ p.
(10.103)

The sum of products of a’s and b’s is over nearest neighbor pairs. H1 is a sum of
an infinite number of terms each containing at least four a or b operators or their
Hermitian conjugates. We can again introduce spin wave variables

ck = N−1/2∑
le

ik·xl al , c†k = N−1/2∑
le

−ik·xl a†l ,
dk = N−1/2∑

pe
−ik·xp bp, d

†
k = N−1/2∑

pe
ik·xp b†p.

(10.104)

In terms of the spin wave variables we can rewriteH0 as

H0 = 2zJ S
∑

k

(
γkc

†
kd

†
k + γkckdk + c†kck + d†

kdk
)

+gμB (BA + B0)
∑

kc
†
kck + gμB (BA − B0)

∑
kd

†
kdk.

(10.105)

Here we have introduced
γk = z−1

∑

δ

eik·δ = γ−k

once again. We are going to forget all about H1, and consider for the moment that
the entire Hamiltonian is given byH0 + E0.H0 is still not in a trivial form. We can
easily put it into normal form as follows:

1. Define new operators αk and βk

αk = ukck − vkd
†
k ; βk = ukdk − vkc

†
k, (10.106)

where uk and vk are real and satisfy u2k − v2
k = 1.

2. Solve these equations (and their Hermitian conjugates) for the c’s and d’s in terms
of α and β. We can write

ck = ukαk + vkβ
†
k ; c†k = ukα

†
k + vkβk (10.107)

and
dk = vkα

†
k + ukβk ; d†

k = vkαk + ukβ
†
k. (10.108)



306 10 Magnetic Ordering and Spin Waves

3. Substitute (10.107) and (10.108) inH0 to have

H0 = 2zSJ ∑k

{
γk

[
ukvk(α

†
kαk + βkβ

†
k + αkα

†
k + β†

kβk)

+u2k(α
†
kβ

†
k + αkβk) + v2

k(β
†
kα

†
k + βkαk)

]

+u2kα
†
kαk + v2

kβkβ
†
k + ukvk(α

†
kβ

†
k + βkαk)

+v2
kαkα

†
k + u2kβkβ

†
k + ukvk(αkβk + β†

kα
†
k)
}

+gμB(BA + B0)
∑

k

[
u2kα

†
kαk + v2

kβkβ
†
k + ukvk(α

†
kβ

†
k + βkαk)

]

+gμB(BA − B0)
∑

k

[
v2
kαkα

†
k + u2kβ

†
kβk + ukvk(αkβk + β†

kα
†
k)
]
.

(10.109)

We can regroup these terms as follows:

H0 = 2
∑

k

[
2zSJ

(
γkukvk + v2k

)
+ gμBBAv2k

]

+∑k

[
2zSJ

(
2γkukvk + u2k + v2k

)
+ gμBBA(u2k + v2k) + gμBB0

]
α†
kαk

+∑k

[
2zSJ

(
2γkukvk + u2k + v2k

)
+ gμBBA(u2k + v2k) − gμBB0

]
β†
kβk

+∑k

{
2zSJ

[
γk(u2k + v2k) + 2ukvk

]
+ 2gμBBAukvk

} (
α†
kβ†

k + αkβk

)
.

(10.110)

4. We put the Hamiltonian in diagonal form by requiring the coefficient of the last
term to vanish. We define ωe and ωA by

ωe = 2J zS and ωA = gμBBA. (10.111)

We must solve
ωe
[
γk(u

2
k + v2

k) + 2ukvk
]+ 2ωAukvk = 0, (10.112)

remembering that u2k = 1 + v2
k. Then (10.112) reduces to

1 + 2v2
k

2vk
√
1 + v2

k

= − 1

γk

(
ωA

ωe
+ 1

)
.

Solving for v2
k gives

v2
k = −1

2
+ 1

2

ωA + ωe√
(ωA + ωe)2 − γ2

kω
2
e

. (10.113)

Thus we have

u2k = 1

2
+ 1

2

ωA + ωe√
(ωA + ωe)2 − γ2

kω
2
e

, (10.114)
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and since

ukvk = −1

2

γkωe

ωA + ωe
(u2k + v2

k),

we have

ukvk = −1

2

γkωe√
(ωA + ωe)2 − γ2

kω
2
e

. (10.115)

Now, let us write the Hamiltonian in a diagonal form

H0 = C +
∑

k

[
(ωk + gμBB0)α

†
kαk + (ωk − gμBB0)β

†
kβk

]
(10.116)

where

ωk = 2zSJ (2γkukvk + u2k + v2
k

)+ gμBBA(u2k + v2
k)

=
√

(ωA + ωe)2 − γ2
kω

2
e .

(10.117)

The constant C is given by

C = 2
∑

k

[
2zSJ (γkukvk + v2

k

)+ gμBBAv2
k

]

=∑k [ωk − (ωA + ωe)] .
(10.118)

Thus, to this order of approximation we have

H = −2NzJ S2 − 2gμBBANS +∑k [ωk − (ωA + ωe)]
+∑k(ωk + ωB)α†

kαk +∑k(ωk − ωB)β†
kβk,

(10.119)

where
ωB = gμBB0. (10.120)

Exercise

Work out that the Heisenberg Hamiltonian of an antiferromagnet is approximated by
(10.119).

10.7.1 Ground State Energy

In the ground state

〈0
∣∣∣α†

kαk

∣∣∣ 0〉 = 〈0
∣∣∣β†

kβk

∣∣∣ 0〉 = 0.

Thus the ground state energy is given by
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EGS = −2NzJ S2 − 2gμBBANS +
∑

k

[ωk − (ωA + ωe)] . (10.121)

Let us consider the case B0 = BA = 0; thus ωA → 0 and ωk → ωe(1 − γ2
k)

1/2. But
ωe is simply 2J zS. Hence for B0 = BA = 0 the ground state energy is given by

EGS = −2NzJ S2 − Nωe + ωe

∑

k

(1 − γ2
k)

1/2. (10.122)

By using ωe = 2J zS, this can be rewritten by

EGS = −2NzJ S[S + 1 − N−1
∑

k

√
1 − γ2

k]. (10.123)

Let us define β = z

(
1 − N−1∑

k

√
1 − γ2

k

)
; then EGS can be written as

EGS = −2NzJ S(S + z−1β). (10.124)

For a simple cubic lattice β � 0.58. For other crystal structures β has slightly
different values.

10.7.2 Zero Point Sublattice Magnetization

For very large anisotropy field BA, the magnetization of sublattice a is gμBNS while
that of sublattice b is equal in magnitude and opposite in direction. When BA → 0,
the resulting antiferromagnetic state will have a sublattice magnetization that differs
from the value of BA → ∞. Then magnetization is given by

M(T ) = gμB

V
〈0|Ŝz|0〉, (10.125)

where the total spin operator Ŝz is given, for sublattice a, by

Ŝz =
∑

l∈a
Salz = NS −

∑

l

a†l al . (10.126)

But
∑

l a
†
l al =∑k c

†
kck, and the ck and c†k can be written in terms of the operators

αk, α
†
k, βk, and β†

k to get

Ŝz = NS −
∑

k

(
ukα

†
k + vkβk

) (
ukαk + vkβ

†
k

)
. (10.127)
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Multiplying out the product appearing in the sum we can write

ΔŜ ≡ NS − Ŝz =
∑

k

{
v2
k + u2kα

†
kαk + v2

kβ
†
kβk + ukvk

(
α†
kβ

†
k + αkβk

)}
.

(10.128)
At zero temperature the ground state |0〉 contains no excitations so that αk|0〉 =
βk|0〉 = 0. Thus, at T = 0, ΔS(T ) = 〈0|ΔŜ|0〉 has a value ΔS0 given by

ΔS0 =
∑

k

v2
k = −1

2

∑

k

⎡

⎣1 − ωA + ωe√
(ωA + ωe)2 − γ2

kω
2
e

⎤

⎦ . (10.129)

Let us put ωA = 0 corresponding to BA → 0. This gives

ΔS0 = −N

2
+ 1

2

∑

k

1
√
1 − γ2

k

. (10.130)

If we define β′ = zN−1∑
k

(
1 − 1√

1−γ2
k

)
, then we have

ΔS0 = −1

2

β′N
z

. (10.131)

For a simple cubic lattice z = 6 and β′ has the value 0.94 giving for ΔS0 the value
−0.078N .

10.7.3 Finite Temperature Sublattice Magnetization

At a finite temperature it is apparent from (10.128) and (10.129) that

ΔS(T ) = ΔS0 +
∑

k

[
u2k〈α†

kαk〉 + v2
k〈β†

kβk〉
]
. (10.132)

But the excitations described by the creation operators α†
k and β†

k have energies
ωk ± ωB (the sign − goes with β†

k), so that

〈α†
kαk〉 = 1

eβ(ωk+ωB) − 1
and 〈β†

kβk〉 = 1

eβ(ωk−ωB) − 1
. (10.133)

In these equations β = 1
kBT

, ωB = 2μBB0, and ωk =
√

(ωA + ωe)2 − γ2
kω

2
e . At low

temperature only very low frequency or small wave number modes will be excited.
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Remember that
γk = z−1

∑

δ

eik·δ

where δ indicates the nearest neighbors of the atom at the origin. To order k2 for a
simple cubic lattice

γk = z−1
∑

δ

(
1 − (k · δ)2

2

)
= 1 − k2a2

z
.

Thus, the excitation energies εk ≡ ωk±ωB are approximated, in the longwave length
limit (k2a2 � zωA

ωe
� 1), by

εk � [ωA(ωA + 2ωe)]
1/2
√
1 + ω2

e
ωA(2ωe+ωA)

k2a2
z ± ωB

≈ [ωA(ωA + 2ωe)]
1/2 + 1

2z
ω2
e√

ωA(ωA+2ωe)
k2a2 ± ωB.

(10.134)

Thus, the uniform mode of antiferromagnetic resonance is given, in the presence of
an applied field, by

εk=0 = √ωA(ωA + 2ωe) ± ωB. (10.135)

In the long wave length limit, but in the region of 1 � k2a2 � z ωA
ωe

(
2 + ωA

ωe

)
, we

expect the behavior given by

εk � ωeka√
z

± ωB ≈ 2
√
zJ Sak ± ωB. (10.136)

Figure10.14 shows the excitation energies ωk as a function of wave number k in the
long wave length limit.

Let us make an approximation like the Debye approximation of lattice dynamics
in the absence of an applied field. Replace the first Brillouin zone by a sphere of

Fig. 10.14 Antiferromagnetic spin wave excitation energies in the long wave length limit
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radius kM, where
1

(2π)3

4

3
πk3M = N

V

to have

εk � ΘN

kM
k. (10.137)

Here ΘN is the value of εk at k = kM. With a use of this approximation for εk of both
the + and − (or αk and βk) modes one can evaluate the spin fluctuation

ΔS(T ) = ΔS0 +
∑

k

u2k + v2
k

eεk/Θ − 1
. (10.138)

Using our expressions for v2
k (and u2k = 1 + v2

k), replacing the k-summation by an
integral, and evaluation for Θ � ΘN we have

ΔS(T ) = ΔS0 +
√
3

12

(
6π2
)2/3

N

(
Θ

ΘN

)2

. (10.139)

10.7.4 Heat Capacity Due to Antiferromagnetic Magnons

For Θ < ω0
(≡ √

ωA(ωA + 2ωe)
)
, the heat capacity will vary with temperature as

e−const/T , since the probability of exciting a magnon will be exponentially small. For
somewhat higher temperatures (but not too high since we are assuming small |k|)
where modes with ωk � ΘN

kM
k are excited, the specific heat is very much like the low

temperature Debye specific heat (the temperature region in question is defined by
ω0 � Θ � ΘN). The internal energy will be given by

U = 2
∑

k

ωk

eωk/Θ − 1
. (10.140)

Here we have two antiferromagnetic magnons for every value of k, instead of three as
for phonons, and the factor of 2 results from counting two types of spin excitations,
α†
k and β†

k type modes. Replacing the sum by an integral and replacing the upper
limit kM by infinity, as in the low temperature Debye specific heat, gives

U = N
(kMa)3

15

Θ4

Θ3
N

π2 = N
2π4

5

Θ4

Θ3
N

. (10.141)

For the specific heat per particle one obtains

C = 8π4

5

(
Θ

ΘN

)3

. (10.142)
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10.8 Exchange Interactions

Here we briefly describe various kinds of exchange interactions which are the un-
derlying sources of the long range magnetic ordering.

1. Direct exchange is the kind of exchange we discussed when we investigate the
simple Heisenberg exchange interaction. The magnetic ions interact through the
direct Coulomb interaction among the electrons on the two ions as a result of
their wave function overlap.

2. Superexchange is the underlying mechanism of a number of ionic solids, such as
MnO and MnF2, showing magnetic ground states. Even in the absence of direct
overlap between the electrons on different magnetic ions sharing a nonmagnetic
ion (one with closed electronic shells and located in between the magnetic ions),
the two magnetic ions can have exchange interaction mediated by the nonmag-
netic ion (see, for example, Fig. 10.15).

3. Indirect exchange is the magnetic interaction between magnetic moments local-
ized in a metal (such as rare earth metals) through the mediation of conduction
electrons in themetal. It is ametallic analogueof superexchange in ionic insulators
and is also called as the Ruderman–Kittel–Kasuya–Yosida (RKKY) interaction.
For example, the unpaired f electrons in the rare earths aremagnetic and they can
be coupled to f electrons in a neighboring rare earth ion through the exchange
interaction via nonmagnetic conduction electrons.

4. Double exchange coupling is the ferromagnetic superexchange in an extend-
ed system. The double exchange explains the ferromagnetic coupling between
magnetic ions of mixed valency. For example, La1−xSrxMnO3(0 ≤ x ≤ 0.175)
shows ferromagnetic metallic behavior below room temperature. In this material,
a fraction x of the Mn ions are Mn4+ and 1 − x are Mn3+, because La exists as
La3+ and Sr exists as Sr2+.

Fig. 10.15 Schematic illustration of superexchange coupling in a magnetic oxide. Two Mn ions
(each having unpaired electron in a d orbital) are separated by an oxygen ion having two p electrons
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5. Itinerant ferromagnetism occurs in solids (such as Fe, Co, Ni, . . .) containing the
magnetic moments associated with the delocalized electrons, known as itinerant
electrons, wandering through the sample.

10.9 Itinerant Ferromagnetism

Most of our discussion up to now has simply assumed a Heisenberg Ji jSi · S j

type interaction of localized spins. The atomic configurations of some of the atoms
in the 3d transition metal series are Sc (3d)1(4s)2, Ti (3d)2(4s)2, V (3d)3(4s)2,
Cr (3d)5(4s)1, Mn (3d)5(4s)2, Fe (3d)6(4s)2, Co (3d)7(4s)2, Ni (3d)8(4s)2, Cu
(3d)10(4s)1. If we simply calculate the band structure of these materials, completely
ignoring the possibility of magnetic order, we find that the density of states of the
solid has a large and relatively narrow set of peaks associated with the 3d bands,
and a broad but low peak associated with the 4s bands as is sketched in Fig. 10.16.
The position of the Fermi level determines whether the d bands are partially filled
or completely filled. For transition metals with partially filled d bands, the electrons
participating in the magnetic states are itinerant.

10.9.1 Stoner Model

In order to account for itinerant ferromagnetism, Stoner introduced a very simple
model with the following properties.

1. The Bloch bands obtained in a band structure calculation are maintained.
2. By adding an exchange energy to the Bloch bands a spin splitting, described by

an internal mean field, can be obtained.

Fig. 10.16 Schematic illustration of the density of states of the transition metals
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(a)

(b)

Fig. 10.17 Schematic illustration of the spin split Bloch bands in the Stoner model. (a) Energy
dispersion of the Bloch bands in the presence of spin splitting Δ. (b) The Fermi surfaces for spin
up and spin down electrons

3. States with spin antiparallel (−) to the internal field are lowered in energy relative
to those with parallel (+) spin.

We can write for spin up (+) and spin down (−) electrons

E−(k) � �k2

2m∗ and E+(k) � �k2

2m∗ + Δ, (10.143)

where Δ is the spin splitting. The spin split Bloch bands and Fermi surfaces for
spin up and spin down electrons are illustrated in Fig. 10.17 in the presence of spin
splitting Δ.

10.9.2 Stoner Excitations

A single particle excitation in which an electron with wave vector k and spin down
(−) is excited to an empty state with wave vector k + q and spin up (+) has energy
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Fig. 10.18 Schematic illustration of the energy dispersion of the Stoner excitations and spin wave
modes. The hatched area shows the single particle continuum of possible values of |k| for different
values of |q|

E = E+(k + q) − E−(k)

= �
2(k+q)2

2m∗ + Δ − �k2

2m∗

= �
2

m∗ q · (k + q
2

)+ Δ.

(10.144)

These Stoner single particle excitations define the single particle continuum shown in
Fig. 10.18. The single particle continuum of possible values of |k| for different values
of |q| are hatched. Clearly when q = 0, the excitations all have energy Δ. These
are single particle excitations. In addition Stoner found spin waves of an itinerant
ferromagnet that started at the origin (E = 0 at q = 0) and intersected the single
particle continuum at qc, a finite value of q. The spin wave excitation is also indicated
in Fig. 10.18.

10.10 Phase Transition

Near Tc, the ferromagnet is close to a phase transition. Many observable proper-
ties should display interesting behavior as a function of T − Tc (see, for example,
Fig. 10.19). Here we list only a few of the interesting examples.

1. Magnetization: As T increases toward Tc the spontaneous magnetization must
vanish as

M(T ) ≈ (Tc − T )β with β > 0.

2. Susceptibility: As T decreases toward Tc in the paramagnetic state, the magnetic
susceptibility χ(T ) must diverge as

χ(T ) ≈ (T − Tc)
−γ with γ > 0.
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Fig. 10.19 Schematic illustration of the temperature dependence of the spontaneous magnetization

3. Specific heat: As T decreases toward Tc in the paramagnetic state, the specific
heat has a characteristic singularity given by

C(T ) ≈ (T − Tc)
−α with α > 0.

In the mean field theory, where the interactions are replaced by their values in the
presence of a self-consistently determined average magnetization, we find β = 1

2
and γ = 1 for all dimensions. Themean field values do not agree with experiments or
with several exactly solvable theoretical models for T very close to Tc. For example,

1. β = 1
8 in the two-dimensional Ising model.

2. β � 1
3 in the three-dimensional Heisenberg model.

3. γ � 1.25 for most three-dimensional phase transitions instead of the mean field
predictions of γ = 1.

In the early 1970s K. G. Wilson developed the renormalization group theory of
phase transitions to describe the behavior of systems in the region T � Tc.

Problems

10.1 Show that spin operators satisfy [Ŝ2, Ŝ±] = 0 and [Ŝz, Ŝ+] = ±Ŝ±. Evaluate
the commutator [S+, S−] and [S±, Sz], and show that S± act as raising and lowering
operators.

10.2 If bk = N−1/2∑
j e

ik·x j a j and b†k = N−1/2∑
j e

−ik·x j a†j are spin wave oper-

ators in terms of spin deviation operators, show that [a j , a j ′ ] = [a†j , a†j ′ ] = 0 and

[a j , a
†
j ′ ] = δ j j ′ imply [bk, bk′ ] =

[
b†k, b

†
k′

]
= 0 and

[
bk, b

†
k′

]
= δkk′ .

10.3 In the text the Heisenberg Hamiltonian was written as
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H = −2J S
∑

〈i, j〉

{√
1 − n̂i

2S aia
†
j

√
1 − n̂ j

2S + a†i

√
1 − n̂i

2S

√
1 − n̂ j

2S a j

+S(1 − n̂i
S )(1 − n̂ j

S )
}

− gμBB0S
∑

i (1 − n̂i
S ),

where n̂ j = a†j a j and a
†
j (a j ) creates (annihilates) a spin deviation on site j . Expand

the square roots for small n̂ and show that the results for H0 and H1 agree with the
expressions shown in (10.66) and (10.67), respectively.

10.4 Evaluate ωk, the spin wave frequencies, for arbitrary k within the first Bril-
louin zone of a simple cubic, body-centered, and face-centered lattices, and plot the
dispersion curves in the corresponding first Brillouin zones of the lattices. Expand
the result for small k and compare it with the result given by (10.81).

10.5 An antiferromagnet can be described by H =∑〈i, j〉 Ji jSi ·S j , whereJi j > 0.
Here, the exchange integral J is defined as a half of the difference between the
singlet and triplet energies. Show that the ground state energy E0 of the Heisenberg
antiferromagnet must satisfy

−S(S + 1)
∑

i, j

Ji j ≤ E0 ≤ −S2
∑

i, j

Ji j .

Hint: for the upper bound one can use the trial wave function

ΦTRIAL =
∏

i ∈ A
j ∈ B

|S, S〉i |S,−S〉 j ,

where | S,±S〉k is the state with Sz = ±S on site k.

10.6 Prove that operators αk’s and βk’s defined in terms of spin wave operators

αk = ukck − vkd
†
k and βk = ukdk − vkc

†
k

satisfy the standard commutation rules. Here u2k − v2
k = 1 (see (10.106)).

10.7 Consider spin wave excitations of the ferromagnetic spin alignment in a two-
dimensional square lattice.

(a) Discuss the 2D magnon contribution to the low temperature specific heat and
the magnetization.

(b) Evaluate the 2D magnon contribution to the thermal conductivity per unit
area. One can generalize the simple 3D formula κ = 1

3Cv� summing over all
the spin wave modes in the two dimensions.

Summary
In this chapter we studied magnetic ordering and spin wave excitations of magnet-
ic solids. We first reviewed Heisenberg exchange interactions of atoms and then



318 10 Magnetic Ordering and Spin Waves

discussed spontaneous magnetization and domain wall properties of ferromagnets.
The zero-temperature properties of Heisenberg ferromagnets and antiferromagnets
are described. Spin wave excitations and magnon heat capacities of ferromagnets
and antiferromagnets are also discussed. Finally Stoner model is introduced as an
illustration of itinerant ferromagnetism.

The Heisenberg interaction Hamiltonian is given by

H = −2J
∑

〈i, j〉
si · s j ,

where the sum is over all pairs of nearest neighbors. The exchange constant J is
positive (negative) for ferromagnets (antiferromagnets). For a chain of magnetic
spins, it is more favorable energetically to have the spin flip gradually. If the spin
turns through an angle φ0 in N steps, where N is large, the increase in exchange

energy due to the domain wall is Eex = J S2 φ2
0
N . The exchange energy is lower if the

domain wall is very wide.
In the presence of an applied magnetic field B0 oriented in the z-direction, the

Hamiltonian of a Heisenberg ferromagnet becomes

H = −
∑

i, j

Ji j Siz S jz − 1

2

∑

i, j

Ji j

(
S+
i S

−
j + S−

i S
+
j

)
− gμBB0

∑

i

Siz .

In the ground state all the spins are aligned parallel to one another and to themagnetic
field B0: |0〉 =∏i |S, S〉i . The ground state energy becomes

E0 = −S2
∑

i, j

Ji j − NgμBB0S.

For Heisenberg antiferromagnets, J is replaced by −J but a trial wave function
ΦTRIAL =∏ i ∈ A

j ∈ B
|S, S〉i |S,−S〉 j is not an eigenfunction ofH.

Low lying excitations of ferromagnet can be studied by introducing spin deviation
operator n̂ j defined by

n̂ j = Sj − Ŝ j z = S − Ŝ j z ≡ a†j a j .

With a use of the Holstein–Primakoff transformation to operators a†j and a j

Ŝ+
j = (2Sj − n̂ j )

1/2a j and Ŝ−
j = a†j (2Sj − n̂ j )

1/2,

the Heisenberg Hamiltonian can be written, in the limit of 〈n̂i 〉 � 2S, as

H = E0 + H0 + H1.
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Here E0,H0, and H1 are given, respectively, by

E0 = −zJ NS2 − gμBB0NS,

H0 = (gμBB0 + 2zJ S)
∑

i n̂i − 2J S
∑

<i, j〉
(
aia

†
j + a†i a j

)
,

H1 = −2J ∑<i, j〉
(
n̂i n̂ j − 1

4 n̂i aia
†
j − 1

4aia
†
j n̂ j − 1

4 n̂ j a
†
i a j − 1

4a
†
i a j n̂i

)

+ higher order terms.

Introducing spin wave variables defined by

bk = N−1/2
∑

j

eik·x j a j and b†k = N−1/2
∑

j

e−ik·x j a†j ,

H0 becomes H0 = ∑k �ωkb
†
kbk, where �ωk = 2zJ S(1 − γk) + gμBB0. Thus, if

we neglect H1, we have for the Hamiltonian of a state containing magnons

H = − (gμBB0NS + zJ NS2
)+
∑

k

�ωkb
†
kbk.

We note that, at low enough temperature, the elementary excitations are waves of
energy �ωk.

At low temperature, the internal energy and magnon specific heat are given by

U � 0.45

π2

Θ5/2

D3/2
and C = ∂U

∂T
= 0.113kB

(
Θ

D

)3/2

.

The spontaneous magnetization at temperature T is given by

Ms = gμB

V

(

NS− <
∑

k

b†kbk〉
)

.

At low temperature, Ms(T ) becomes Ms(T ) = N
V 2μS − 0.117 μ

a3

(
Θ

2SJ
)3/2

.

In the presence of an applied field B0 = B0 ẑ and an anisotropy field BA, the
Heisenberg Hamiltonian of an antiferromagnet can be written

H = +J
∑

<i, j〉
Ŝi · Ŝ j − gμB(BA + B0)

∑

l∈a
Ŝalz + gμB(BA − B0)

∑

p∈b
Ŝbpz .

In the absence of magnon-magnon interaction, the ground state energy is given by

EGS = −2NzJ S2 − 2gμBBANS +
∑

k

[ωk − (ωA + ωe)] .
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The internal energy due to antiferromagnetic magnons is given by

U = 2
∑

k

ωk

eωk/Θ − 1
.

The low temperature specific heat per particle becomes

C = 8π4

5

(
Θ

ΘN

)3

.



Chapter 11
Many Body Interactions–Introduction

11.1 Second Quantization

The Hamiltonian of a many particle system is usually of the form

H =
∑

i

H0(i) + 1

2

∑

i �= j

Vi j . (11.1)

Here H0(i) is the single particle Hamiltonian describing the i th particle, and Vi j is
the interaction between the i th and j th particles. Suppose we know the single particle
eigenfunctions and eigenvalues

H0|k〉 = εk |k〉.

We can construct a basis set for the many particle wave functions by taking products
of single particle wave functions. We actually did this for bosons when we discussed
phonon modes of a crystalline lattice. We wrote

|n1, n2, . . . , nk, . . .〉 = (n1!n2! · · · nk !)−1/2
(
a†1

)n1 (
a†2

)n2 · · ·
(
a†k

)nk · · · |0〉.
(11.2)

This represents a state in which the mode 1 contains n1 excitations, . . ., the mode k
contains nk excitations. Another way of saying it is that there are n1 phonons of wave
vector k1, n2 phonons of wave vector k2, . . .. The creation and annihilation operators
a† and a satisfy

[
ak, a

†
k ′

]

−
= δkk ′ ; [ak, ak ′ ]− =

[
a†k , a

†
k ′

]

−
= 0.

The commutation relations assure the symmetry of the state vector under interchange
of a pair of particles since

© Springer International Publishing AG, part of Springer Nature 2018
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a†k a
†
k ′ = a†k ′a

†
k .

The single particle part is given by

∑

i

H0(i) =
∑

k

εknk, (11.3)

where εk = 〈k|H0|k〉 and nk = a†k ak .
For Fermions, the single particle states can be singly occupied or empty. This

means that nk can take only two possible values, 0 or 1. It is convenient to introduce
operators c†k and its Hermitian conjugate ck and to require them to satisfy anticom-
mutation relations [

ck, c
†
k ′

]

+
≡ ckc

†
k ′ + c†k ′ck = δkk ′,

[ck, ck ′ ]+ =
[
c†k , c

†
k ′

]

+
= 0.

(11.4)

These relations assure occupancy of 0 or 1 since
(
c†k

)2 = 0 and (ck)
2 = 0:

[
c†k , c

†
k

]

+
= 2c†kc

†
k = 0

[ck, ck]+ = 2ckck = 0

from the anticommutation relations given by (11.4). It is convenient to order the
possible values of the quantum number k (e.g. the smallest k’s first). Then an eigen-
function can be written

|01, 12, 03, 04, 15, 16, . . . , 1k, . . .〉 = · · · c†k · · · c†6c†5c†2|01, 02, . . . 0k, . . . , 0n, . . .〉.

The order is important, because interchanging c†6 and c†5 leads to

|01, 12, 03, 04, 16, 15, . . . , 1k, . . .〉 = −|01, 12, 03, 04, 15, 16, . . . , 1k, . . .〉.

The kinetic (or single particle) energy part is given by

∑

k

occupied

〈k|H0|k〉c†kck =
∑

k

εkc
†
kck =

∑

k

εknk . (11.5)

The more difficult question is “How do we represent the interaction term in the
second quantization or occupation number representation?”.

In the coordinate representation themany particle product functionsmust be either
symmetric for Bosons or antisymmetric for Fermions. Let us write out the case for
Fermions
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Φ = 1√
N !

∑

P

(−)P P
{
φα(1)φβ(2) · · · φω(N )

}
(11.6)

Here
∑

P means sum over all permutations and (−)P is−1 for odd permutations and
+1 for even permutations. For example, for a three particle state the wave function
Φαβγ(1, 2, 3) can be written

Φαβγ = 1√
3! [ φα(1)φβ(2)φγ(3) − φα(1)φβ(3)φγ(2) + φα(2)φβ(3)φγ(1)

−φα(2)φβ(1)φγ(3) + φα(3)φβ(1)φγ(2) −φα(3)φβ(2)φγ(1)
]
.

(11.7)

Such antisymmetrized product functions are often written as Slater determinants

Φ = 1√
N !

∣∣∣∣∣∣∣∣∣∣

φα(1) φα(2) · · · φα(N )

φβ(1) φβ(2) · · · φβ(N )

...
...

...
...

φω(1) φω(2) · · · φω(N )

∣∣∣∣∣∣∣∣∣∣

(11.8)

Look at V12 operating on a two particle wave function Φαβ(1, 2). We assume that
V12 = V (|r1 − r2|) = V (r12) = V21. Then

V12Φαβ(1, 2) = 1√
2
V12

[
φα(1)φβ(2) − φβ(1)φα(2)

]
.

The matrix element 〈Φγδ|V12|Φαβ〉 becomes

〈Φγδ|V12|Φαβ〉 = 1
2 〈γδ|V12|αβ〉 + 1

2 〈δγ|V12|βα〉
− 1

2 〈γδ|V12|βα〉 − 1
2 〈δγ|V12|αβ〉. (11.9)

Since 〈γδ|V12|αβ〉 = ∫
d3r1d3r2 φ∗

γ(1)φ
∗
δ(2)V (r12)φα(1)φβ(2), we can see that it

must be equal to 〈δγ|V12|βα〉by simple interchange of the dummy variables r1 and
r2. Thus, we find, for two-particle wave function, that

〈Φγδ|V12|Φαβ〉 = 〈γδ|V12|αβ〉 − 〈γδ|V12|βα〉. (11.10)

Just as we found in discussing the Heisenberg exchange interaction, we find that the
antisymmetry leads to a direct term and an exchange term. Had we been considering
Bosons instead of Fermions, a plus sign would have appeared in Φαβ(1, 2) and in
the expression for the matrix element.

Exactly the same result can be obtained by writing

V12 =
∑

λλ′μμ′
〈λ′μ′|V12|λμ〉c†λ′c

†
μ′cμcλ, (11.11)



324 11 Many Body Interactions–Introduction

and

|Φαβ〉 = 1√
2
c†βc

†
α|0〉, (11.12)

where |0〉 is the vacuum state, which contains no particles. It is clear that

V12|Φαβ〉 = 1√
2

∑

λλ′μμ′
〈λ′μ′|V12|λμ〉c†λ′c

†
μ′cμcλc

†
βc

†
α|0〉

will vanish unless (i) λ = β and μ = α or (ii) λ = α and μ = β. From this we see
that

V12|Φαβ〉 = 1√
2

∑

λ′μ′

[〈λ′μ′|V12|βα〉 − 〈λ′μ′|V12|αβ〉] c†λ′c
†
μ′ |0〉.

Taking the scalar product with 〈Φγδ| = 1√
2
〈0|cγcδ gives

〈Φγδ|V12|Φαβ〉 = 1

2

∑

λ′μ′

[〈λ′μ′|V12|βα〉 − 〈λ′μ′|V12|αβ〉] 〈0|cγcδc
†
λ′c

†
μ′ |0〉.

(11.13)

The matrix element 〈0|cγcδc
†
λ′c

†
μ′ |0〉 will vanish unless (i) δ = λ′ and γ = μ′ or (ii)

γ = λ′ and δ = μ′. The final result can be seen to be

〈Φγδ|V12|Φαβ〉 = 〈γδ|V12|αβ〉 − 〈γδ|V12|βα〉. (11.14)

If we consider the operator 1
2

∑
i �= j Vi j we need only note that we can consider a

particular pair i, j first. Then when Vi j operates on a many particle wave function

1√
N !

∑

P

(−)P P
{
φα(1)φβ(2) · · · φω(N )

} = c†αc
†
β · · · c†ω|0〉 (11.15)

only particles i and j can change their single particle states.All the rest of the particles
must remain in the same single particle states.

The final result is that the Hamiltonian of a many particle system with two body
interactions can be written

H =
∑

kk ′
〈k ′|H0|k〉c†k ′ck + 1

2

∑

kk ′ll ′
〈k ′l ′|V |kl〉c†k ′c

†
l ′clck . (11.16)

The operators ck and c†k ′ satisfy either commutation relations for Bosons

[
ck, c

†
k ′

]

−
= δkk ′, and [ck, ck ′ ]− =

[
c†k , c

†
k ′

]

−
= 0. (11.17)
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or anticommutation relations for Fermions
[
ck, c

†
k ′

]

+
= δkk ′ and [ck, ck ′ ]+ =

[
c†k , c

†
k ′

]

+
= 0. (11.18)

11.2 Hartree–Fock Approximation

Nowwe are all familiar with the second quantized notation for a system of interacting
particles. We can write

H =
∑

i

εi c
†
i ci + 1

2

∑

i jkl

〈i j |V |kl〉c†i c†j clck . (11.19)

Here c†i creates a particle in the state φi , and

〈i j |V |kl〉 =
∫

dxdx′ φ∗
i (x)φ∗

j (x
′)V (x, x′)φk(x)φl(x′). (11.20)

Remember that

〈i j |V |kl〉 = 〈 j i |V |lk〉 (11.21)

if V is a symmetric function of x and x′. In this notation H0 = ∑
i εi c

†
i ci is the

Hamiltonian for a noninteracting system. It is simply the sum of the product of the
energy εi of the state φi and the number operator ni = c†i ci . The Hartree–Fock
approximation is obtained by replacing the product of the four operators c†i c

†
j clck by

a c-number (actually a ground state expectation value of a c†c product) multiplying
a c†c; that is

c†i c
†
j clck ≈ c†i 〈c†j cl〉ck + c†j cl〈c†i ck〉

−c†i cl〈c†j ck〉 − c†j ck〈c†i cl〉.
(11.22)

By 〈Ω̂〉wemean the expectation value of Ω̂ in the Hartree–Fock ground state, which
we are trying to determine. Because this is a diagonal matrix element, we see that

〈c†j cl〉 = δ jl n j . (11.23)

Furthermore, momentum conservation requires

〈i j |V | jk〉 = 〈i j |V | j i〉δik, etc.
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Then one obtains for the Hartree–Fock Hamiltonian

H =
∑

i

Ei c
†
i ci , (11.24)

where
Ei = εi +

∑

j

n j [〈i j |V |i j〉 − 〈i j |V | j i〉] . (11.25)

One can think of Ei as the eigenvalue of a one particle Schrödinger equation

HHFφi (x) ≡
{

p2

2m + ∫
d3x ′V (x, x′)

∑
j n jφ

∗
j (x

′)φ j (x′)
}

φi (x)

− ∫
d3x ′V (x, x′)

∑
j n jφ

∗
j (x

′)φi (x′)φ j (x) = Eiφi

(11.26)

Do not think the Hartree–Fock approximation is trivial. One must assume a ground
state configuration in order to compute 〈c†j cl〉. One then solves the ‘one particle’
problem and hopes that the solution is such that the ground state of the N particle
system, determined by filling the N lowest energy single particle states just solved
for, is identical to the ground state assumed in computing 〈c†j cl〉. If it is not, the
problem has not been solved.

11.2.1 Ferromagnetism of a Degenerate Electron Gas
in Hartree–Fock Approximation

One can easily verify that plane wave eigenfunctions

φks(x) = Ω−1/2eik·xηs,

with single particle energy

εks = �
2k2

2m

form a set of solutions of the single particle Hartree–Fock Hamiltonian.
If the ground state is assumed to be the paramagnetic state, in which the N lowest

energy levels are occupied (each k state is occupied by one electron of spin ↑ and
one of spin ↓) then one obtains

Eks = εks + EXs(k) (11.27)

where
EXs(k) = −

∑

k′
nk′ 〈kk′|V |k′k〉. (11.28)
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Here we assumed that the nuclei are fixed in a given configuration and pictured as a
fixed source of a static potential. The matrix element 〈kk′|V |k′k〉 = 4πe2

|k−k′|2 , and the
sum over k′ can be performed to obtain

Eks = �
2k2

2m
− e2kF

2π

[
2 + k2F − k2

kkF
ln

(
kF + k

kF − k

)]
. (11.29)

The total energy EP of the paramagnetic state is

EP =
∑

ks

nks

[
εks + 1

2
EXs(k)

]
. (11.30)

The 1
2 in front of EXs prevents double counting. This sum gives

EP = N

[
3

5

�
2k2F
2m

− 3

4π
e2kF

]
� N [2.21

r2s
− 0.916

rs
]Ryd. (11.31)

One can easily see that Eks is a monotonically increasing function of k, so that the
assumption about the ground state, viz that all k states for which k < kF are occupied,
is in agreement with the procedure of filling the N lowest energy eigenstates of the
single particle Hartree–Fock Hamiltonian.

Exercise

Work out the sum over k′ in (11.28) and demonstrate (11.29).

Instead of assuming the paramagnetic ground state, we could assume that only
states of spin ↑ are occupied, and that they are singly occupied for all k < 21/3kF.
Then one finds that

Ek↑ = �
2k2

2m − 21/3e2kF
2π

[
2 + 22/3k2F−k2

21/3kFk
ln
(
21/3kF+k
21/3kF−k

)]

Ek↓ = �
2k2

2m .
(11.32)

This state is a solution to the Hartree–Fock problem only if

Ek↑|k=21/3kF < 0, (11.33)

otherwise some of the spin down states would be occupied in the ground state. This
condition is satisfied if

1

a0kF
>

π

22/3
� 3.142

1.588
= 1.98 (11.34)

It is convenient to introduce the parameter rs defined by
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4π

3
(a0rs)

3 = V

N
= 3π2

k3F
.

Then we have (
4

9π

)1/3

rs = (a0kF)
−1 ,

or

rs =
(
9π

4

)1/3

a−1
0 k−1

F � 1.92

a0kF
. (11.35)

Hence (11.34) corresponds to rs ≥ 3.8.
Now we sum over k to get the energy EF of the ferromagnetic state

EF =
∑

Ek↑ = N

[
22/3

3

5

�
2k2F
2m

− 21/3
3

4π
e2kF

]
. (11.36)

Comparing EF with EP we see that

EF < EP if a0kF <
5

2π

1

21/3 + 1
,

which corresponds to
rs > 5.45, (11.37)

though the Hartree–Fock solution exists if rs ≥ 3.8. The present, Hartree–Fock,
treatment neglects correlation effects and cannot be expected to describe accurately
the behavior of metals. The present treatment does, however, point up the fact that
the exchange energy prefers parallel spin orientation, but the cost in kinetic energy
is high for a ferromagnetic spin arrangement. Actually Cs has rs � 5.6 and does not
show ferromagnetic behavior; this is not too surprising.

Exercise

Demonstrate the ground state energy of the fully spin-polarized ferromagnetic phase
given by (11.36).

11.3 Spin Density Waves

We have seen that the exchange energy favors parallel spin alignment, but that the
cost in kinetic energy is high. Overhauser1 proposed a solution of the Hartree–Fock
problem in which the spins are locally parallel, but the spin polarization rotates as

1A.W. Overhauser, Phys. Rev. 128, 1437 (1962).
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one moves through the crystal. This type of state enhances the (negative) exchange
energy but does not cost as much in kinetic energy.

For example, an Overhauser spiral spin density wave could exist with a net frac-
tional spin polarization perpendicular to the spin wave propagation given by

P⊥(r) = P⊥0(x̂ cos Qz + ŷ sin Qz). (11.38)

Overhauser showed that such a spin polarization P⊥(r) can result from taking basis
functions of the form

|φk〉 = ak |k ↑〉 + bk |k + Q ↓〉.

In order that 〈φk|φk〉 = 1, it is necessary that a2k +b2k = 1. This condition assures that
there is no fluctuation in the charge density associated with the wave. Thus, without
loss of generality we can take ak = cos θk and bk = sin θk and write

|φk〉 = cos θk |k ↑〉 + sin θk |k + Q ↓〉. (11.39)

The fractional spin polarization at a point r = r0 is given by

P(r0) = Ω

N

∑

k occupied

〈φk|σδ(r − r0)|φk〉. (11.40)

Here σ = σx x̂ + σy ŷ + σz ẑ, where σx , σy , σz are Pauli spin matrices, so that

σ =
(

ẑ x̂ − i ŷ

x̂ + i ŷ −ẑ

)
. (11.41)

We can write

|k ↑〉 = |k〉| ↑〉 = Ω−1/2eik·r
(
1

0

)

and

|k + Q ↓〉 = |k + Q〉| ↓〉 = Ω−1/2ei(k+Q)·r
(
0

1

)
.

Then

〈↑ |σ| ↑〉 = ẑ

〈↑ |σ| ↓〉 = x̂ − i ŷ

〈↓ |σ| ↑〉 = x̂ + i ŷ

〈↓ |σ| ↓〉 = −ẑ.

(11.42)
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Evaluating 〈φk|σ δ(r − r0)|φk〉 gives

〈φk|σδ(r − r0)|φk〉

= 1
Ω

{
cos2 θk〈↑ |σ| ↑〉 + sin2 θk〈↓ |σ| ↓〉
+ cos θk sin θk

[
ei Q·r0 〈↑ |σ| ↓〉 + e−i Q·r0〈↓ |σ| ↑〉]

}
.

(11.43)

Gathering together the terms allows us to express P(r0) as

P(r0) = P‖ ẑ + P⊥
(
x̂ cos Q · r0 + ŷ sin Q · r0

)
, (11.44)

where

P‖ = 1

8π3n

∫

occupied

cos 2θk d
3k, (11.45)

and

P⊥ = 1

8π3n

∫

occupied

sin 2θk d
3k. (11.46)

Here n = N
Ω

and the integral is over all occupied states |φk〉. We will not worry
about P‖ because ultimately we will consider a linear combination of two spiral spin
density waves (called a linear spin density wave) for which the P‖’s cancel.

It is worth noting that the density at point r0 is given by

n(r0) = ∑
k〈φk|1δ(r − r0)|φk〉

= 1
Ω

∑
k

(
cos2 θk + sin2 θk

) = N
Ω

.
(11.47)

When the unit matrix 1 is replaced by σ, it is reasonable to expect the spin density.
One can form a wave function orthogonal to |φk〉:

|ψk〉 = − sin θk |k ↑〉 + cos θk |k + Q ↓〉. (11.48)

Thus far we have ignored these states (i.e. assumed they were unoccupied). We shall
see that this turns out to be correct for the Hartree–Fock spin density wave ground
state.

Recall that the Hartree–Fock wave functions φk(x) satisfy (11.26)

HHFφk(x) ≡
{

p2

2m + ∫
dx′V (x, x′)

∑
q nqφ

∗
q(x

′)φq(x′)
}

φk(x)

− ∫
dx′V (x, x′)

∑
q nqφ

∗
q(x

′)φk(x′)φq(x) = Ekφk.
(11.49)

We can write HHF as

HHF = p2

2m
+U + A, (11.50)
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where

U (x) =
∫

dx′V (x, x′)
∑

q occupied

φ∗
q(x

′)φq(x′) (11.51)

and

Aψ(x) = −
∫

dx′V (x, x′)
∑

q occupied

φ∗
q(x

′)ψ(x′)φq(x). (11.52)

V (x, x′) can be written as

V (x, x′) =
∑

q �=0

Vqe
iq·(x−x′). (11.53)

Now consider thematrix elements of A (with the Hartree–Fock ground state assumed
to be made up of the lowest energy φk states) between plane wave states.

〈�σ|A|�′σ′〉 = −
′∑

k

∑

q �=0

Vq〈φk|e−iq·x′ |�′σ′〉〈�σ|eiq·x |φk〉, (11.54)

where
∑′

k means sum over all occupied states |φk〉. Now use the expressions

|φk〉 = cos θk |k ↑〉 + sin θk |k + Q ↓〉
〈φk| = 〈k ↑ | cos θk + 〈k + Q ↓ | sin θk

(11.55)

to obtain

〈�σ|A|�′σ′〉
= −∑′

k
∑

q �=0 Vq
{
〈k ↑ |e−iq·x′ |�′σ′〉 cos θk + 〈k + Q ↓ |e−iq·x |�′σ′〉 sin θk

}

×
{
〈�σ|eiq·x′ |k ↑〉 cos θk + 〈�σ|eiq·x |k + Q ↓〉 sin θk

}
.

(11.56)

Because e±iq·x is spin independent, we can use 〈σ| ↑〉 = δσ↑, 〈σ| ↓〉 = δσ↓, etc. to
obtain

〈�σ|A|�′σ′〉
= −∑′

k
∑

q �=0 Vq
(〈k + q|�′〉δσ′↑ cos θk + 〈k + Q + q|�′〉δσ′↓ sin θk

)

× (〈�|k + q〉δσ↑ cos θk + 〈�|k + Q + q〉δσ↓ sin θk
)
.

(11.57)

For σ =↑ and σ′ =↓ we find

〈� ↑ |A|�′ ↓〉 = −
′∑

k

∑

q �=0

Vq δk+Q+q,�′ sin θk δ�,k+q cos θk, (11.58)
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which can be rewritten

〈� ↑ |A|�′ ↓〉 = −
′∑

k

V�−k sin θk cos θk δ�′,�+Q . (11.59)

Thus, theHartree–Fock exchange term A has off diagonal elementsmixing the simple
plane wave states |� ↑〉 and |� + Q ↓〉. It is straight forward to see that

〈� ↓ |A|�′ ↑〉 = −
′∑

k

V�′−k sin θk cos θk δ�′,�−Q, (11.60)

so that A also couples |� ↓〉 to |� − Q ↑〉. The spin diagonal terms are

〈� ↑ |A|� ↑〉 = −
′∑

k

V�−k cos
2 θk (11.61)

and

〈� + Q ↓ |A|� + Q ↓〉 = −
′∑

k

V�−k sin
2 θk . (11.62)

Then, we need to solve the problem given by

(
p2

2m
+ AD + AOD − Ek

)
Ψk = 0, (11.63)

where

AD = −
(∑′

k′ Vk−k ′ cos2 θk ′ 0

0
∑′

k′ Vk−k ′ sin2 θk ′

)
(11.64)

and

AOD = −gk

(
0 1

1 0

)
. (11.65)

We can simply take |Ψk〉 = cos θk |k ↑〉 + sin θk |k + Q ↓〉 and observe that (11.63)
becomes (

εk↑ − Ek −gk

−gk εk+Q↓ − Ek

)(
cos θk

sin θk

)
= 0. (11.66)

In this matrix equation gk denotes the amplitude of the off-diagonal contribution of
the exchange term A
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gk = 〈k ↑ |A|k + Q ↓〉 =
′∑

k′
Vk−k′ sin θk ′ cos θk ′, (11.67)

and εk↑ and εk+Q↓ are the free electron energies plus the diagonal parts (AD) of the
one electron exchange energy

εk↑ = �
2k2

2m −∑′
k′ V|k−k′| cos2 θk ′

εk+Q↓ = �
2(k+Q)2

2m −∑′
k′ V|k−k′| sin2 θk ′ .

(11.68)

The eigenvalues Ek are determined from (11.66) by setting the determinant of the 2
× 2 matrix equal to zero. This gives

Ek± = 1

2

(
εk↑ + εk+Q↓

)±
[
1

4

(
εk↑ − εk+Q↓

)2 + g2k

]1/2
. (11.69)

The eigenfunctions corresponding to Ek± are given by (11.48) and (11.55), respec-
tively. The values of cos θk are determined from (11.66) using the eigenvalues
Ek− given above. This gives

cos θk = gk
[
g2k + (εk↑ − Ek−)2

]1/2 . (11.70)

We note that the square modulus of the eigenfunction is a constant, and thus a charge
density wave does not accompany a spin density wave.

Solution of the Integral Equation

We have to solve the integral equation (11.67), which is rewritten as

gl =
∫

Vl−k cos θk sin θk
d3k

(2π)3
. (11.71)

Here cos θk is given by (11.70), and the ground state eigenvalue Ek is itself a function
of θk and hence of gk . This equation is extremely complicated, and no solution is
known for the general case. To obtain some feeling for what is happening we study
the simple case where V�−k is constant instead of being given by 4πe2

|�−k|2 . We take
V�−k = γ; this corresponds to replacing the Coulomb interaction by a δ-function
interaction. Obviously gk will be independent of k in this case, and the integral
equation becomes

g = γ

∫
d3k

(2π)3

g (εk↑ − Ek−)

g2 + (εk↑ − Ek−)2
(11.72)
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where

εk↑ − Ek− = 1

2
(εk↑ − εk+Q↓) +

[
1

4
(εk↑ − εk+Q↓)2 + g2

]1/2
. (11.73)

By direct substitution we have

g (εk↑ − Ek−)

g2 + (εk↑ − Ek−)2
= g

2
[
1
4 (εk↑ − εk+Q↓)2 + g2

]1/2 , (11.74)

and the integral equation becomes

g = γ

∫
d3k

(2π)3

g

2
[
1
4 (εk↑ − εk+Q↓)2 + g2

]1/2 . (11.75)

We replace εk↑ − εk+Q↓ in (11.75) by

εk↑ − εk+Q↓ ≈ −�
2

m Q(kz + Q
2 )

= 2
(

∂ε
∂kz

)

kz=− Q
2

(
kz + Q

2

)
.

(11.76)

Here we note that we left out a term −γ
∫

d3k
(2π)3

cos2 θk . This is the same term which
appeared in P‖, and it had better vanish when we evaluate it using the solution to the
integral equation for θk . Now let us introduce

μ =
(

− ∂ε

∂kz

)

kz=−Q/2

. (11.77)

Then we have

1 = γ

(2π)3

∫
d3k

2
√

g2 + μ2
(
kz + Q

2

)2 . (11.78)

Take the region of integration to be a circular cylinder of radius κ⊥ and of length κ‖,
centered at kz = − Q

2 as shown in Fig. 11.1. Then, (11.78) becomes

1 = γ

(2π)3

∫ κ‖/2

−κ‖/2

πκ2
⊥ d(kz + Q/2)

2
√

g2 + μ2
(
kz + Q

2

)2 = γκ2
⊥

16π2μ
2 sinh−1

(
κ‖μ
2g

)
. (11.79)

Thus we obtain

g = κ‖μ

2 sinh
(
8π2μ
γκ2⊥

) (11.80)
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Fig. 11.1 Region of integration for (11.78). The cylinder axis is parallel to the z axis

Exercise

Work out the integral over k in (11.78) and demonstrate (11.79).

One can now return to the equation for the ground state energy W

WGS = �
2

2m

∫
d3k

(2π)3

[
k2 cos2 θk + (k + Q)2 sin2 θk

]

− 1
2

∫
d3k d3k ′
(2π)6

Vk−k ′ cos2
(
θk − θ′

k

) (11.81)

and replace Vk−k ′ by the constant γ and substitute

(i) g = 0 for the trivial solution corresponding to the usual paramagnetic state, and
(ii) g = κ‖μ

2 sinh

(
8π2μ

γκ2⊥

) for the spin density wave state.

If we again take the occupied region in k space to be a cylinder of radius κ⊥ and
length κ‖ centered at kz = − Q

2 , we obtain the deformation energy of the spin density
wave state

WSDW − WP = −μκ2
‖κ

2
⊥

32π2

[
coth

(
8π2μ

γκ2
⊥

)
− 1

]
< 0. (11.82)

This quantity is negative definite, so that the spin density wave state always has the
lower energy than the paramagnetic state, i.e.

WP > WSDW.

Note that in evaluation of WP as well as of WSDW, the occupied region of k space
was taken to be a cylinder of radius κ⊥ and length κ‖ centered at kz = − Q

2 . The
result does not prove that the spin density wave has lower energy than the actual
paramagnetic ground state (which will be a sphere in k space instead of a cylinder,
and hence have a smaller kinetic energy than the cylinder. Overhauser gave a general
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Fig. 11.2 Energies of ↑ and ↓ spin electrons as a function of kz . The spin ↑ and spin ↓ minima
have been separated by Q the wave number of the spin density wave. The thin dashed lines omit the
spin density wave exchange energy. The thick solid lines include it and give rise to the spin density
wave gap. Near the gap, the eigenstates are linear combinations of |kz ↑〉 and |kz + Q ↓〉

(but somewhat difficult) proof that a spin density wave state always exists which has
lower energy than the paramagnetic state in the Hartree–Fock approximation.

The proof involves taking thewave vector of the spin densitywave Q to be slightly
smaller than 2kF. Then, the spin up states at kz are coupled by the exchange interaction
to the spin down states at kz +Q as shown in Fig. 11.2. The gap (at |kz| = Q/2) of the
strongly coupled states causes a repopulation of k-space as indicated schematically
(for the states that were spin ↓ without the spin density wave coupling) in Fig. 11.3.
The flattened areas occur, of course, at the energy gap centered at kz = − Q

2 . The

repopulation energy depends on κ⊥, which is given by κ⊥ =
√
k2F − Q2/4 and is

much smaller than kF. The dependence of the energy on the value of κ⊥ can be
used to demonstrate that the kinetic energy increase due to repopulation is small
for κ⊥ � kF and that in the Hartree–Fock approximation a spin density wave state
always exists with energy lower than that of the paramagnetic state.

For a spiral spin density wave the flat surface at |kz| = Q/2 occur at opposite sides
of the Fermi surface for spin ↑ and spin ↓ electrons. Near these positions in k-space,

Fig. 11.3 Schematics of repopulation in k-space from originally occupied k ↓ states (inside sphere
of radius kF denoted by dashed circle) to inside of solid curve terminated plane kz = Q/2 at which
spin density wave gas occurs. The size of κ⊥ is exaggerated for sake of clarity
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one cannot really speak of spin ↑ and spin ↓ electrons since the eigenstates are linear
combinations of the two spins with comparable amplitudes. Far away from these
regions (on the opposite sides of the Fermi surface) the spin states are essentially
unmixed. The total energy can be lowered by introducing a left-handed spiral spin
density wave in addition to the right-handed one. The resulting spiral spin density
waves form a linear spin density wave which has flat surfaces separated by the wave
vector Q of the spin density wave at both sides of the Fermi surface for each of the
spins.

11.3.1 Comparison with Reality

It is not at all clear what correlation effects will do to the balance which gave
WP > WSDW. So far no one has performed correlation calculations using the spin
density wave state as a starting point. Experiment seems to show that at low tempera-
tures the ground state of some metals, for example chromium, is a spin density wave
state. Shortly after introducing spin density wave states, Overhauser2 introduced the
idea of charge density wave states. In a charge density wave state the spin magnetiza-
tion vanishes everywhere, but the electron charge density has an oscillating position
dependence. For a spin density wave distortion, exchange favors the distortion but
correlation does not. For a charge densitywave distortion, both exchange and correla-
tion favor the distortion. However, the electrostatic (Hartree) energy associated with
the charge density wave is large and unfavorable unless some other charge distortion
cancels it. For soft metals like Na, K, and Pb, Overhauser claims the ground state is
a charge density wave state. Some other people believe it is not. There is absolutely
no doubt (from experiment) that the layered compounds like TaS2 (and many others)
have charge density wave ground states. There are many experimental results for Na,
K, and Pb that do not fit the nearly free electron paramagnetic ground state, which
Overhauser can explain with the charge density wave model. At the moment, the
question is not completely settled. In the charge density wave materials, the large
electrostatic energy (due to the Hartree field produced by the electronic charge den-
sity distortion) must be compensated by an equal and opposite distortion associated
with the lattice.

11.4 Correlation Effects–Divergence of Perturbation
Theory

Correlation effects are those electron–electron interaction effectswhich comebeyond
the exchange term. Picturesquely we can represent the exchange term as shown in
Fig. 11.4. The diagrams corresponding to the next order in perturbation theory are the

2A.W. Overhauser, Phys. Rev. 167, 691 (1968).
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Fig. 11.4 Diagrammatic representation of the exchange interaction in the lowest order

(a)

(b)

Fig. 11.5 Diagrammatic representation of the (a) direct and (b) exchange interactions in the second
order perturbation calculation

second order terms shown in Fig. 11.5 for (a) direct and (b) exchange interactions,
respectively. The second order perturbation to the energy is

E2 =
∑

m

〈
Φ0|H ′|Φm

〉 〈
Φm |H ′|Φ0

〉

E0 − Em
(11.83)

Look at one term Hi j of H ′ = 1
2

∑
i �= j Vi j .

E2D(ki , k j ) =
∑

q �=0

∣∣∣
〈
eiki ·xeik j ·x′ | ∑q1

4πe2

q2
1
eiq1·(x−x′) | ei(ki+q)·xei(k j−q)·x′

〉∣∣∣
2

Eki + Ek j − (
Eki+q + Ek j−q

)

(11.84)

where the subscript D denotes the contribution of the direct interaction. Equation
(11.84) can be reduced to
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E2D(ki , k j ) = −m(4πe2)2
∑

q �=0

1

q4

1

q2 + q · (ki − k j )
, (11.85)

where we have set � = 1. Thus, we have

ETOTAL
2D = 1

2

∑

ki �= k j ; ki , k j < kF

|ki + q|, |k j − q| > kF

E2D(ki , k j ). (11.86)

Summing over spins and converting sums to integrals we have3

ETOTAL
2D = − e4m

16π7

∫
d3q

q4

∫
ki < kF

|ki + q| > kF

d3ki

∫
k j < kF

|k j + q| > kF

d3k j
1

q2 + q · (ki + k j )
.

(11.87)

It is not difficult to see that ETOTAL
2D diverges because of the presence of the factor

q−4. In a similar way one can show that

ETOTAL
2X = e4m

32π7

∫ d3q
q2

∫
ki < kF

|ki + q| > kF

d3ki
∫

k j < kF

|k j + q| > kF

d3k j

×
[

1
q2+q·(ki+k j )

× 1
(q+ki+k j )2

]
.

(11.88)

This number is finite and has been evaluated numerically (a very complicated numer-
ical job) with the result

ETOTAL
2X = N

e2

2a0
× (0.046 ± 0.002). (11.89)

All terms beyond second order diverge because of the factor ( 1
q2 )

m coming from
the matrix elements of the Coulomb interaction. The divergence results from the
long range of the Coulomb interaction. Gell-Mann and Brueckner overcame the
divergence difficulty by formally summing the divergent perturbation expansion
to infinite order. What they were actually accomplishing was, essentially, taking
account of screening. For the presentwewill concentrate on understanding something
about screening in an electron gas. Later on we will discuss the diagrammatic type
expansions and the ground state energy.

Exercise

Simplify the contribution of the direct interaction given by (11.84) and demonstrate
(11.85).

3M. Gell-Mann and K.A. Brueckner, Phys. Rev. 106, 364 (1957); J. J. Quinn and R. A. Ferrell,
Phys. Rev. 112, 812 (1958).
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Exercise

Simplify the integral representation of (11.88) and demonstrate (11.89) by carrying
out the resulting integral numerically.

11.5 Linear Response Theory

We will investigate the self–consistent (Hartree) field set up by some external dis-
turbance in an electron gas. In order to accomplish this it is very useful to introduce
the single particle density matrix.

11.5.1 Density Matrix

Suppose that we have a statistical ensemble of N systems labeled k = 1, 2, 3, . . . , N .
Let the normalized wave function for the kth system in the ensemble be given by Ψk .
Expand Ψk in terms of a complete orthonormal set of basis functions φn

Ψk =
∑

n

cnkφn;
∑

n

| cnk |2= 1. (11.90)

The expectation value of some quantum mechanical operator Â in the kth system of
the ensemble is

Ak =
∫

dτ Ψ ∗
k ÂΨk . (11.91)

The statistical average (over all systems in the ensemble) is given by

〈A〉 = 1
N

∑N
k=1 Ak,

= 1
N

∑N
k=1

∫
d3τ Ψ ∗

k ÂΨk .
(11.92)

Substitute for Ψk in terms of the basis functions φn . This gives

〈A〉 = 1

N

N∑

k=1

∑

m,n

c∗
mkcnk〈φm | Â|φn〉. (11.93)

But 〈φm | Â|φn〉 = Amn , the (m, n) matrix element of Â in the representation {φn}.
Now define a density matrix ρ̂ as follows

ρnm = 1

N

N∑

k=1

c∗
mkcnk . (11.94)
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Then 〈A〉 can be written

〈A〉 =
∑

m,n

ρnm Amn =
∑

n

(
ρ̂ Â

)

nn
= Tr

(
ρ̂ Â

)
. (11.95)

This states that the ensemble average of a quantum mechanical operator Â is simply
the trace of the product of the density operator (or density matrix) and the operator Â.

11.5.2 Properties of Density Matrix

From the definition, (11.94), it is clear that ρ∗
nm = ρmn . Because the unit operator 1

must have an ensemble average of unity, we have that

Trρ̂ = 1. (11.96)

Because Trρ̂ = ∑
ρnn = 1, it is clear that 0 ≤ ρnn ≤ 1 for every n. ρnn is simply the

probability that the state φn is realized in the ensemble.

11.5.3 Change of Representation

Let S be a unitary matrix that transforms the orthonormal basis set {φn} into a new
orthonormal basis set {φ̃n}. If we write

φ̃l =
∑

n

φn Snl , (11.97)

then we have
φm =

∑

l

S∗
ml φ̃l . (11.98)

It can be proved by remembering that, because S is unitary, S−1 = S† = S̃∗ or
S∗
ml = (S−1)lm . Now write the wave function for the kth system in the ensemble, in

terms of new basis functions, as

Ψk =
∑

l

c̃lk φ̃l . (11.99)

Remember that
Ψk =

∑

n

cnkφn. (11.100)
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By substituting (11.98) into (11.100) we find

Ψk =
∑

n

cnk
∑

l

S∗
nl φ̃l =

∑

l

(
∑

n

cnk S
∗
nl

)
φ̃l . (11.101)

From comparing (11.101) with (11.99) we find

c̃lk =
∑

n

cnk S
∗
nl . (11.102)

The expression for the density matrix in the new representation is

ρ̃lp = 1

N

∑

k=1

N
c̃∗
pk c̃lk . (11.103)

Now use (11.102) and its complex conjugate in (11.103) to obtain

ρ̃lp = 1
N

∑
k=1

N ∑
m c∗

mk Smp
∑

n cnk S
∗
nl

= ∑
mn Smpρnm S∗

nl ,

(11.104)

since ρnm = 1
N

∑N
k=1 c

∗
mkcnk . But (11.104) can be rewritten

ρ̃lp =
∑

mn

(
S−1

)
ln ρnm Smp

or
ρ̃ = S−1ρ̂S = S†ρ̂S. (11.105)

The average (over the ensemble) of an operator Â is given in the new representation
by

〈 Ã〉 = Tr
(
ρ̃ Ã

)
= Tr

(
S−1ρSS−1AS

)

= Tr
(
S−1ρAS

)
.

But the trace of a product of two matrices is independent of the order, i.e. TrAB =
TrBA. Therefore we have

〈 Ã〉 = Trρ Â = 〈A〉. (11.106)

This means that the ensemble average of a quantum mechanical operator Â is inde-
pendent of the representation chosen for the density matrix.
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11.5.4 Equation of Motion of Density Matrix

The Schrödinger equation for the kth system in the ensemble can be written

i�Ψ̇k = ĤΨk . (11.107)

Expressing Ψk in terms of the basis functions φm gives

i�
∑

m

ċmkφm = Ĥ
∑

m

cmkφm . (11.108)

Taking the scalar product with φn gives

i�ċnk =
∑

l

〈n|Ĥ |l〉clk =
∑

l

Hnlclk . (11.109)

The complex conjugate of (11.107) can be written

− i�Ψ̇ ∗
k = Ĥ †Ψ ∗

k . (11.110)

Expressing Ψ ∗
k in terms of the basis functions φl gives

− i�
∑

l

ċ∗
lkφ

∗
l =

∑

l

Ĥ †c∗
lkφ

∗
l . (11.111)

Now multiply by φn and integrate using

∫
d3τφ∗

l φn = δln

and ∫
d3τφ∗

l Ĥ
†φn = H †

ln = Hln,

since the Hamiltonian is a Hermitian operator. This gives

i�ċ∗
nk = −

∑

l

c∗
lk Hln. (11.112)

Now look at the time rate of change of ρmn .

i�ρ̇mn = 1

N

N∑

k=1

i�
[
ċ∗
nkcmk + c∗

nk ċmk
]
. (11.113)
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Now use (11.109) and (11.112) for ċnk and ċ∗
nk to have

i�ρ̇mn = 1
N

∑N
k=1

[−∑
l Hlnc∗

lkcmk +∑
l c

∗
nk Hmlclk

]
,

= ∑
l [−Hlnρml + ρln Hml ] .

(11.114)

We can reorder the terms as follows

i�ρ̇mn = ∑
l [Hmlρln − ρml Hln] ,

= (Hρ − ρH)mn .
(11.115)

This is the equation of motion of the density matrix

i�ρ̇ = [H, ρ]− . (11.116)

11.5.5 Single Particle Density Matrix of a Fermi Gas

Suppose that the single particle Hamiltonian H0 has eigenvalues εn and eigenfunc-
tions |n〉.

H0|n〉 = εn|n〉. (11.117)

Corresponding to H0, there is a single particle density matrix ρ0 which is time
independent and represents the equilibrium distribution of particles among the single
particle states at temperature T . Because ρ̇0 = 0, H0 and ρ0 must commute. Thus ρ0
can be diagonalized by the eigenfunctions of H0. We can write

ρ0|n〉 = f0(εn)|n〉. (11.118)

For f0(εn) =
[
exp( εn−ζ

Θ
) + 1

]−1
, ρ0 is the single particle density matrix for the

grand ensemble with Θ = kBT and the chemical potential ζ.

11.5.6 Linear Response Theory

We consider a degenerate electron gas and ask what happens when some external
disturbance is introduced. For example, we might think of adding an external charge
density (like a proton) to the electron gas. The electrons will respond to the dis-
turbance, and ultimately set up a self-consistent field. We want to know what the
self-consistent field is, how the external charge density is screened etc.4

4See, for example, M.P. Greene, H.J. Lee, J.J. Quinn, and S. Rodriguez, Phys. Rev. 177, 1019
(1969).
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Let the Hamiltonian in the absence of the self-consistent field be simply given by
H0 = p2

2m H0|k〉 = εk |k〉. (11.119)

H0 is time independent, thus the equilibrium density matrix ρ0 must be independent
of time. This means

[H0, ρ0] = 0, (11.120)

and therefore
ρ0|k〉 = f0(εk)|k〉, (11.121)

where

f0(εk) = 1

e
εk−ζ

Θ + 1
(11.122)

is the Fermi–Dirac distribution function. Now let us introduce some external distur-
bance. It will set up a self-consistent electromagnetic fields [E(r, t), B(r, t)]. We
can describe these fields in terms of a scalar potential φ and a vector potential A

B = ∇ × A, (11.123)

and

E = −1

c

∂A
∂t

− ∇φ. (11.124)

The Hamiltonian in the presence of the self-consistent field is written as

H = 1

2m

(
p + e

c
A
)2 − eφ. (11.125)

This can be written asH = H0 +H1, where up to terms linear in the self-consistent
field

H1 = e

2c
(v0 · A + A · v0) − eφ. (11.126)

Here v0 = p
m . Now let ρ = ρ0 + ρ1, where ρ1 is a small deviation from ρ0 caused by

the self-consistent field. The equation of motion of ρ is

∂ρ

∂t
+ i

�
[H, ρ]− = 0. (11.127)

Linearizing with respect to the self-consistent field gives

∂ρ1

∂t
+ i

�
[H0, ρ1]− + i

�
[H1, ρ0]− = 0. (11.128)
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We shall investigate the situation in which A, φ, ρ1 are of the form eiωt−iq·r . Taking
matrix elements gives

〈k|ρ1|k ′〉 = f0(εk ′) − f0(εk)

εk ′ − εk − �ω
〈k|H1|k ′〉. (11.129)

Let us consider a most general component of A(r, t) and φ(r, t)

A(r, t) = A(q,ω)eiωt−iq·r ,
φ(r, t) = φ(q,ω)eiωt−iq·r .

(11.130)

Thus we have

H1 =
[
e

c
A(q,ω) · 1

2

(
v0e

−iq·r + e−iq·rv0
)− eφ(q,ω)e−iq·r

]
eiωt . (11.131)

Define the operator V q by

V q = 1

2
v0e

iq·r + 1

2
eiq·rv0. (11.132)

Then, the matrix element of H1 can be written

〈k|H1|k ′〉 = e

c
A(q,ω) · 〈k|V−q |k ′〉 − eφ(q,ω)〈k|e−iq·r |k ′〉. (11.133)

We want to know the charge and current densities at a position r0 at time t . We can
write

j(r0, t) = Tr
[−e

(
1
2vδ(r − r0) + 1

2δ(r − r0)v
)
ρ̂
]
,

n(r0, t) = Tr
[−eδ(r − r0)ρ̂

]
.

(11.134)

Here−e
[
1
2vδ(r − r0) + 1

2δ(r − r0)v
]
is the operator for the current density at posi-

tion r0, while −eδ(r − r0) is the charge density operator. The velocity operator
v = 1

m ( p + e
c A) = v0 + e

mc A is the velocity operator in the presence of the self-
consistent field. Because v0 = p

m contains the differential operator − i�
m ∇, it is

important to express operators like v0eiq·r and v0δ(r − r0) in the symmetric form to
make them Hermitian operators.

It is easy to see that

j(r0, t) = − e2

mc

∑
k〈k|A(r, t)δ(r − r0)ρ̂0|k〉

−e
∑

k〈k|
[
1
2v0δ(r − r0) + 1

2δ(r − r0)v0
]
ρ̂1|k〉.

(11.135)
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δ(r − r0) can be written as

δ(r − r0) = Ω−1
∑

q

eiq·(r−r0). (11.136)

It is clear that 〈k|A(r, t)δ(r − r0)ρ0|k〉 = Ω−1A(r0, t) f0(εk). Here, of course, Ω
is the volume of the system. For j(r0, t) we obtain

j(r0, t) = −e2n0
mc

A(r0, t) − e

Ω

∑

k,k′,q

〈k ′|V q |k〉e−iq·r0〈k|ρ̂1|k ′〉. (11.137)

But we know the matrix element 〈k|ρ1|k ′〉 from (11.129). Taking the Fourier trans-
form of j(r0, t) gives

j(q,ω) = − e2n0
mc A(q,ω) − e2

Ωc

∑
k,k ′

f0(εk′ )− f0(εk )
εk′−εk−�ω

〈k ′|V q |k〉〈k|V q |k ′〉 · A(q,ω)

+ e2

Ω

∑
k,k′

f0(εk′ )− f0(εk )
εk′−εk−�ω

〈k ′|V q |k〉〈k ′|eiq·r |k〉.
(11.138)

This equation can be written as

j(q,ω) = − ω2
p

4πc

[
(1 + I) · A(q,ω) + Kφ(q,ω)

]
. (11.139)

Here ω2
p = 4πn0e2

m is the plasma frequency of the electron gas whose density is
n0 = N

Ω
, and 1 is the unit tensor. The tensor I(q,ω) and the vector K (q,ω) are

given by

I(q,ω) = m
N

∑
k,k′

f0(εk′ )− f0(εk )
εk′ −εk−�ω

〈k ′|V q |k〉〈k ′|V q |k〉∗,
K (q,ω) = mc

N

∑
k,k′

f0(εk′ )− f0(εk )
εk′−εk−�ω

〈k ′|V q |k〉〈k ′|eiq·r |k〉. (11.140)

For the plane wave wave functions |k〉 = Ω−1/2eik·r the matrix elements are easily
evaluated

〈k ′|eiq·r |k〉 = δk ′,k+q ,

〈k ′|V q |k〉 = �

m

(
k + q

2

)
δk ′,k+q .

(11.141)

11.5.7 Gauge Invariance

The transformations
A′ = A + ∇χ = A − iqχ

φ′ = φ − 1
c χ̇ = φ − i ω

c χ
(11.142)
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leave the fields E and B unchanged. Therefore such a change of gauge must leave
j unchanged. Substitution into the expression for j gives the condition

(
1 + I

) · (−iq) + K (−i
ω

c
) = 0, or q + I · q + ω

c
K = 0. (11.143)

Clearly no generality is lost by choosing the z-axis parallel to q. Then, because the
summand is an odd function of kx or ky we have

Ixz = Izx = Iyz = Izy = Ixy = Iyx = Kx = Ky = 0. (11.144)

Thus, two of the three components of the relation

q + I · q + ω

c
K = 0

hold automatically. It remains to be proven that

q + Izzq + ω

c
Kz = 0 (11.145)

We demonstrate this by writing Izz and Kz in the following form

Izz = �
2

mN

{
∑

k

− f0(εk)

εk+q − εk − �ω
(kz + q

2
)2 +

∑

k

f0(εk+q)

εk+q − εk − �ω
(kz + q

2
)2

}

(11.146)

In the second term, let k + q = k̃ so that k = k̃ − q; then let the dummy variable k̃
equal −k to have

f0(εk+q)

εk+q − εk − �ω
(kz + q

2
)2 → f0(εk)

εk − εk+q − �ω
(−kz − q

2
)2.

With this replacement q Izz can be written

q Izz = − �
2

mN

∑

k

f0(εk)
(
kz + q

2

)2 [ q

εk+q − εk − �ω
+ q

εk+q − εk + �ω

]
.

(11.147)
Do exactly the same for Kz to get

ω

c
Kz = 1

N

∑

k

f0(εk)
(
kz + q

2

) [
�ω

εk+q − εk − �ω
− �ω

εk+q − εk + �ω

]
.

(11.148)
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Adding q Izz to ω
c Kz gives

q Izz + ω

c
Kz = − 1

N

∑

k

f0(εk)
(
kz + q

2

)[ �
2

m q(kz + q/2) − �ω

εk+q − εk − �ω
+

�
2

m q(kz + q/2) + �ω

εk+q − εk + �ω

]

(11.149)

But εk+q − εk = �
2

m q(kz + q/2), therefore the term in square brackets is equal to 2,
and hence we have

q Izz + ω

c
Kz = − 1

N

∑

k

f0(εk)
(
kz + q

2

)
× 2. (11.150)

The first term
∑

k f0(εk)kz = 0 since it is an odd function of kz . The second term
is − q

N

∑
k f0(εk) = −q. This gives q Izz + ω

c Kz = −q, meaning that (11.145)
is satisfied and our result is gauge invariant. Because we have established gauge
invariance, we may now choose any gauge. Let us take φ = 0; then we have

E(q,ω) = − iω

c
A(q,ω) (11.151)

for the fields having time dependence of eiωt . Substitute this for A and obtain

j(q,ω) = −n0e2

mc

i

ω

[
1 + I(q,ω)

] · E(q,ω). (11.152)

We canwrite this equation as j(q,ω) = σ(q,ω)·E(q,ω), whereσ, the conductivity
tensor is given by

σ(q,ω) = ω2
p

4πiω

[
1 + I(q,ω)

]
. (11.153)

Recall that

I(q,ω) = m

N

∑

k,k′

f0(εk ′) − f0(εk)

εk ′ − εk − �ω
〈k ′|V q |k〉〈k ′|V q |k〉∗. (11.154)

The gauge invariant result5

j(q,ω) = σ(q,ω) · E(q,ω) (11.155)

5See, for example, M.P. Greene, H.J. Lee, J.J. Quinn, and S. Rodriguez, Phys. Rev. 177, 1019
(1969) for three-dimensional case, and K.S. Yi and J.J. Quinn, Phys. Rev. B 27, 1184 (1983) for
quasi two-dimensional case.
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corresponds to a nonlocal relationship between current density and electric field

j(r, t) =
∫

d3r ′σ(r − r ′, t) · E(r ′, t). (11.156)

This can be seen by simply writing

j(q) = ∫
d3r j(r)eiq·r ,

σ(q) = ∫
d3(r − r ′)σ(r − r ′)eiq·(r−r ′),

E(q) = ∫
d3r ′E(r ′)eiq·r ′

,

(11.157)

and substituting into (11.155). Ohm’s law j(r) = σ(r) · E(r), which is the local
relation between j(r) and E(r), occurs when σ(q) is independent of q or, in other
words, when

σ(r − r ′) = σ(r)δ(r − r ′).

Evaluation of I(q,ω)

We can see by symmetry that Ixx = Iyy and Izz are the only non-vanishing compo-
nents of I . The integration over k can be performed to obtain explicit expressions
for Ixx and Izz . We demonstrate this for Izz

Izz(q,ω) = m

N

∑

k

f0(εk+q) − f0(εk)

εk+q − εk − �ω

�
2

m2

(
kz + q

2

)2
. (11.158)

We can actually return to (11.147) and convert the sum over k to an integral to obtain

Izz(q, ω) = − �
2

mN

(
L

2π

)3
2
∫

d3k f0(εk)

[ (
kz + q

2

)2

�2

m q
(
kz + q

2

)− �ω
+

(
kz + q

2

)2

�2

m q
(
kz + q

2

)+ �ω

]
.

(11.159)

For zero temperature, f0(εk) = 1 if k < kF and zero otherwise. This gives

Izz(q,ω) = − 1

4π2n0q

∫ kF

−kF
dkz(k

2
F − k2z )(kz + q

2
)2

[
1

kz + q
2 − mω

�q

+ 1

kz + q
2 + mω

�q

]
.

(11.160)

It is convenient to introduce dimensionless variables z, x , and u defined by

z = q

2kF
, x = kz

kF
, and u = ω

qvF
. (11.161)
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Then, Izz can be written as

Izz(z, u) = − 3

8z

∫ 1

−1
dx(1 − x2)(x + z)2

[
1

x + z − u
+ 1

x + z + u

]
. (11.162)

If we define In by

In =
∫ 1

−1
dx xn

[
1

x + z − u
+ 1

x + z + u

]
, (11.163)

then Izz can be written

Izz(z, u) = − 3

8z

[−I4 − 2zI3 + (1 − z2)I2 + 2zI1 + z2I0
]
. (11.164)

From standard integral tables one can find

∫
dx

xn

x + a
= 1

n
xn− a

n − 1
xn−1+ a2

n − 2
xn−2−· · ·+(−a)n ln (x + a). (11.165)

Using this result to evaluate In and substituting the results into (11.164) we find

Izz(z, u) = − (
1 + 3

2u
2
)− 3u2

8z

{[
1 − (z − u)2

]
ln
(
z−u+1
z−u−1

)

+ [
1 − (z + u)2

]
ln
(
z+u+1
z+u−1

)}
.

(11.166)

In exactly the same way, one can evaluate Ixx (= Iyy) to obtain

Ixx (z, u) = 3
8

(
z2 + 3u2 − 5

3

)− 3
32z

{[
1 − (z − u)2

]
ln
(
z−u+1
z−u−1

)

+ [
1 − (z + u)2

]
ln
(
z+u+1
z+u−1

)}
.

(11.167)

11.6 Lindhard Dielectric Function

In general the electromagnetic properties of a material can be described by two
tensors ε(q,ω) and μ(q,ω), where

D(q,ω) = ε(q,ω) · E(q,ω) and H(q,ω) = μ−1(q,ω) · B(q,ω). (11.168)

For a degenerate electron gas in the absence of a dc magnetic field ε(q,ω) and
μ(q,ω)will be scalars. In his now classic paper “On the properties of a gas of charged
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particles”, Jens Lindhard6 used, instead of ε(q,ω) andμ(q,ω), the longitudinal and
transverse dielectric functions defined by

ε(l) = ε and ε(Tr) = ε(l) + c2q2

ω2

(
1 − μ−1) . (11.169)

Lindhard found this notation to be convenient because he always worked in the
particular gauge in which q · A = 0. In this gauge theMaxwell equation for∇×B =
1
c Ė + 4π

c ( j ind + j0) can be written, for the fields of the form eiωt−iq·r ,

− iq × (−iq × A) = iω

c
E + 4π

c
σ · E + 4π

c
j0. (11.170)

But defining

ε = 1 − 4πi

ω
σ,

and using E = iqφ − iω
c A allows us to rewrite (11.170) as

q2

(
1 − ω2

c2q2
ε(Tr)

)
A = −ω

c
ε(l)qφ + 4π

c
j0. (11.171)

Here we have made use of the fact that ε · q involves only ε(l), while ε · A involves
only ε(Tr) since q · A = 0. If we compare (11.171) with the similar equation obtained
from ∇ × H = 1

c Ḋ + 4π
c j0 when H is set equal to μ−1B and D = εE, viz

q2

(
μ−1 − ω2

c2q2
ε

)
A = −ω

c
εqφ + 4π

c
j0, (11.172)

we see that
ε = ε(l)

and

μ−1 − ω2

c2q2 ε
(l) = 1 − ω2

c2q2 ε
(Tr).

(11.173)

This last equation is simply rewritten

ε(Tr) = ε(l) + c2q2

ω2

(
1 − μ−1) . (11.174)

We have chosen q to be in the z-direction, hence

ε(l) = 1 − 4πi

ω
σzz and ε(tr) = 1 − 4πi

ω
σxx . (11.175)

6J. Lindhard, Kgl. Danske Videnskab. Selskab, Mat.-Fys. Medd. 28, No. 8 (1954); ibid., 27, No. 15
(1953).
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Thus we have
ε(l)(q,ω) = 1 − ω2

p

ω2

[
1 + Izz(q,ω)]

ε(Tr)(q,ω) = 1 − ω2
p

ω2 [1 + Ixx (q,ω)].
(11.176)

11.6.1 Longitudinal Dielectric Constant

It is quite apparent from the expression for Izz that ε(l) has an imaginary part, because
for certain values of z and u, the arguments appearing in the logarithmic functions
in Izz are negative. Recall that

ln(x + iy) = 1

2
ln(x2 + y2) + i arctan

y

x
. (11.177)

One can write ε(l) = ε(l)
1 + iε(l)

2 . It is not difficult to show that

ε(l)
2 = 3u2

ω2
p

ω2
×

⎧
⎪⎨

⎪⎩

π
2 u for z + u < 1
π
8z

[
1 − (z − u)2

]
for |z − u| < 1 < z + u

0 for |z − u| > 1

(11.178)

The correct sign of ε(l)
2 can be obtained by giving ω a small positive imaginary part

(then eiωt → 0 as t → ∞) which allows one to go to zero after evaluation of ε(l)
2 .

The meaning of ε(l)
2 is not difficult to understand. Suppose that an effective electric

field of the form
E = E0e

−iωt+iq·r + c.c. (11.179)

perturbs the electron gas. We can write E = −∇φ and then φ0 = i E0
q . The pertur-

bation acting on the electrons is H ′ = −eφ. The power (dissipated in the system of
unit volume) involving absorption or emission processes of energy �ω is given by
P(q,ω) = �ωW (q,ω). Here W (q,ω) is the transition rate per unit volume, which
is given by the standard Fermi golden rule. Then, we can write the absorption power
by

P(q,ω) = 2π

�

1

Ω

∑

k < kF
k ′ > kF

∣∣〈k ′| − eφ0e
iq·r |k〉∣∣2 �ω δ(εk ′ − εk − �ω). (11.180)

This results in
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P(q,ω) = 2π

�

1

Ω

∑

k < kF
|k + q| > kF

e2 |φ0|2 �ω δ(εk+q − εk − �ω). (11.181)

Now convert the sums to integrals to obtain

P(q,ω) = 2π

�

e2

Ω

(
E0

q

)2

�ω 2

(
L

2π

)3 ∫ ′
d3k δ(εk+q − εk − �ω). (11.182)

The prime in the integral denotes the conditions k < kF and |k + q| > kF (see
Fig. 11.6). Now write

∫
d3k = ∫

dkz d2k⊥. Thus

P(q,ω) = e2ωE2
0

2π2q2

∫

k < kF
|k + q| > kF

dkz d
2k⊥ δ

(
�
2q

m
(kz + q

2
) − �ω

)
. (11.183)

Integrating over kz and using δ(ax) = 1
a δ(x) gives kz = mω

�q − q
2 so that

P(q,ω) = me2ωE2
0

2π�2q3

∫ ′

kz= mω
�q − q

2

d2k⊥. (11.184)

The solid sphere in Fig. 11.6 represents |k| = kF. The dashed sphere has |k−q| = kF.
Only electrons in the hatched region can be excited to unoccupied states by adding
wave vector q to the initial value of k. We divide the hatched region into part I and
part II. In region I, − q

2 < kz < kF − q where kz = mω
�q − q

2 . Thus

Fig. 11.6 Region of the integration indicated in (11.184)
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− q

2
<

mω

�q
− q

2
< kF − q. (11.185)

Divide (11.185) by kF to obtain

−z < u − z < 1 − 2z

where z = q
2kF

, x = kz
kF

, and u = ω
qvF

. Now add 2z to each term to have

z < u + z < 1 or u + z < 1. (11.186)

In this region the values of k⊥ must be located between the following limits (see
Fig. 11.7).

k2F −
(
mω

�q
+ q

2

)2

< k2⊥ < k2F −
(
mω

�q
− q

2

)2

.

Therefore, we have

∫
d2k⊥ =

[
k2F −

(
mω

�q
− q

2

)2
]

−
[
k2F −

(
mω

�q
+ q

2

)2
]

= 2mω

�
. (11.187)

Substituting into (11.184) gives

P(q,ω) = ω

2π
| E0 |2 me2

�2q3

2mω

�
. (11.188)

Here we recall that energy dissipated per unit time in the system of volume Ω is
also given by E = ∫

Ω
j · E d3r = 2σ1(q,ω)|E0|2Ω and we have that ε(q,ω) =

1 + 4πi
ω

σ(q,ω) following the form e−iωt for the time dependence of the fields. The
power dissipation per unit volume is then written

P(q,ω) = ω

2π
ε2(q,ω) | E0 |2 . (11.189)

Fig. 11.7 Range of the values of k⊥ appearing in (11.184)
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Fig. 11.8 Frequency dependence of ε
(l)
2 (ω) the imaginary part of the dielectric function

We note that ε2(q,ω), the imaginary part of the dielectric function determines the
energy dissipation in the matter due to a field E of wave vector q and frequency ω.
By comparing (11.188) and (11.189) we see that, for region I,

ε(l)
2 (q,ω) = 3ω2

p

q2v2
F

π

2
u if u + z < 1. (11.190)

In region II, kF − q < kz < kF. But kz = mω
�q − q

2 = kF(u − z). Combining these
and dividing by kF we have 1 − 2z < u − z < 1. Because z < 1 in region II, the
conditions can be expressed as | z − u |< 1 < z + u. In this case 0 < k2⊥ < k2F − k2z ,
and, of course, kz = kF(u − z). Carrying out the algebra gives for region II

ε(l)
2 (q,ω) = 3ω2

p

q2v2
F

π

8z

[
1 − (z − u)2

]
if | z − u |< 1 < z + u. (11.191)

For region III it is easy to see that ε(l)
2 (ω) = 0. Figure11.8 shows the frequency

dependence of ε(l)
2 (ω). Thus we see that the imaginary part of the dielectric function

ε(l)
2 (q,ω) is proportional to the rate of energy dissipation due to an electric field of
the form E0e−iωt+iq·r + c.c.

11.6.2 Kramers–Kronig Relation

Let E(x, t) be an electric field acting on some polarizable material. The polarization
field P(x, t) will, in general, be related to E by an integral relationship of the form

P(x, t) =
∫

d3x ′ dt ′ χ(x − x′, t − t ′)E(x′, t ′). (11.192)
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Causality requires that χ(x − x′, t − t ′) = 0 for all t < t ′. That is, the polarizable
material can not respond to the field until it is turned on. A well-known theorem
from the theory of complex variables tells us that the Fourier transform of χ(t − t ′)
is analytic in the upper half plane since ei(ω1+iω2)t becomes eiω1e−ω2t .

THEOREM: Given a function f (z) such that f (z) = 0 for all z < 0, then the Fourier
transform of f (z) is analytic in the upper half plane.

Take the Fourier transform of the equation for P(x, t)

P(q,ω) =
∫

d3x dt P(x, t)eiωt−iq·x . (11.193)

Then

P(q,ω) = ∫
d3x dt

∫
d3x ′ dt ′ χ(x − x′, t − t ′)E(x′, t ′)eiωt−iq·x

= ∫
d(x − x′) d(t − t ′)χ(x − x′, t − t ′)eiω(t−t ′)−iq·(x−x′)

× ∫
d3x ′ dt ′ E(x′, t ′)eiωt ′−iq·x′

.

Therefore, we have
P(q,ω) = χ(q,ω)E(q,ω). (11.194)

Here χ(q,ω) is the electrical polarizability [see (8.14)]. The dielectric constant
ε(q,ω) is related to the polarizability χ by

ε(q,ω) = 1 + 4πχ(q,ω) (11.195)

The theorem quoted above tells us that χ(ω) is analytic in the upper half ω-plane.
From here on we shall be interested only in the frequency dependence of χ(q,ω),
so for brevity we shall omit the q in χ(q,ω). Cauchy’s theorem states that

χ(ω) = 1

2πi

∫

C

χ(ω′)
ω′ − ω

dω′, (11.196)

where the contour C must enclose the point ω and must lie completely in the region
of analyticity of the complex function χ(ω′). We choose the contour lying in the
upper half plane as indicated in Fig. 11.9.

As |ω| → ∞, χ(ω) → 0 since the medium can not follow an infinitely rapidly
oscillating disturbance. This allows us to discard the integral over the semicircle
when its radius approaches infinity. Thus, we have

χ(ω) = 1

2πi

∫ ∞

−∞
χ(ω′)
ω′ − ω

dω′. (11.197)

We are interested in real frequencies ω, so we allow ω to approach the real axis. In
doing so we must be careful to make sure that ω is enclosed by the original contour.

http://dx.doi.org/10.1007/978-3-319-73999-1_8
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One can satisfy all the conditions by deforming the contour as shown in Fig. 11.10.
Then, we have

χ(ω) = 1

2πi
−
∫ ∞

−∞
χ(ω′)
ω′ − ω

dω′ + 1

2πi

∫

small

semicircle

χ(ω′)
ω′ − ω

dω′, (11.198)

where −
∫
denotes the Cauchy’s principal value of the integral. We integrate the second

term in (11.198) by setting ω′ − ω = ρeiφ and letting ρ → 0

∫
small

semicircle

χ(ω′)
ω′−ω

dω′ = limρ→0
∫ π/2
−π/2

χ(ω+ρeiφ)ρeiφidφ
ρeiφ

= iπχ(ω).

Thus, we have

χ(ω) = 1

2πi
−
∫ ∞

−∞
χ(ω′)
ω′ − ω

dω′ + 1

2πi
iπχ(ω)

or

χ(ω) = 1

πi
−
∫ ∞

−∞
χ(ω′)
ω′ − ω

dω′. (11.199)

This is theKramers–Kronig relation. By writing χ(ω) = χ1(ω)+ iχ2(ω), we can
use the Kramers–Kronig relation to obtain

χ1(ω) = 1
π

−
∫∞
−∞

χ2(ω
′)

ω′−ω
dω′

χ2(ω) = − 1
π

−
∫∞
−∞

χ1(ω
′)

ω′−ω
dω′,

(11.200)

Fig. 11.9 The contour C appearing in (11.196)

Fig. 11.10 Relevant contour C when ω approaches the real axis
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or in terms of ε

ε1(ω) = 1 + 1
π

−
∫∞
−∞

ε2(ω
′)

ω′−ω
dω′

ε2(ω) = − 1
π

−
∫∞
−∞

ε1(ω
′)−1

ω′−ω
dω′,

(11.201)

where ε2 = 4πχ2. Here, we note that the reality requirement on the fields E and P
imposes the conditions χ1(ω) = χ1(−ω) and χ2(ω) = −χ2(−ω). This allows us to
write

ε1(ω) = 1 + 2

π
−
∫ ∞

0

ω′ε2(ω′)
ω′2 − ω2

dω′; ε2(ω) = − 2

π
−
∫ ∞

0

ω[ε1(ω′) − 1]
ω′2 − ω2

dω′.

(11.202)

11.7 Effect of Collisions

In actual experiments, the conductivity of ametal (normalmetal) is not infinite at zero
frequency because the electrons collide with lattice imperfections (phonons, defects,
impurities). Experimenters find it convenient to account for collisions by use of a
phenomenological relaxation time τ . When collisions are included, the equation of
motion of the density matrix becomes

∂ρ

∂t
+ i

�
[H, ρ]− =

(
∂ρ

∂t

)

c

. (11.203)

The assumption of a relaxation time is equivalent to saying that

(
∂ρ

∂t

)

c

= −ρ − ρ̃0

τ
. (11.204)

Here ρ̃0 is a local equilibrium density matrix. We shall see that ρ̃0 must be chosen
with care or the treatment will be incorrect.7 There are two requirements that ρ̃0 must
satisfy

(i) ρ̃0 must transform properly under change of gauge
(ii) because collisions cannot alter the density at any point in space, ρ̃0 must be

chosen such that ρ and ρ̃0 correspond to the same density at every point r0.

It turns out that the correct choice for ρ̃0 which satisfies gauge invariance and
conserve particle number in collisions is

ρ̃0(H, η) = 1

e
H−η
Θ + 1

. (11.205)

7See, for example, M.P. Greene, H.J. Lee, J.J. Quinn, and S. Rodriguez, Phys. Rev. 177, 1019
(1969).
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Here H is the full Hamiltonian including the self-consistent potentials (A,φ) and η
is the local chemical potential. We can determine η by requiring that

Tr
{[

ρ − ρ̃0(H, η)
]
δ(r − r0)

} = 0. (11.206)

This condition implies that the local equilibrium distribution function ρ̃0 toward
which the nonequilibrium distribution function ρ is relaxing has exactly the same
density at every position r0 as the nonequilibrium distribution function does at r0.
Of course, the local chemical potential is η(r, t) = ζ0 + ζ1(r, t), and the value of ζ1
is obtained by solving (11.206).

To understand this, think of the gauge in which the scalar potential φ(r) vanishes.
Then, the Hamiltonian, including the self-consistent field can be written as

HKINETIC = 1

2m

(
p + e

c
A
)2 = 1

2
mv2.

For any gauge transformation A′ = A + ∇χ and φ′ = φ − 1
c χ̇, we can define

H ′
K = H ′ − e

c χ̇. Here H ′ is the sum of H ′
K and −eφ′ with

H ′
K = e− ieχ

�c HKe
ieχ
�c . (11.207)

By choosing ρ̃0 to depend on HK we guarantee that

ρ̃′
0 = e− ieχ

�c ρ̃0e
ieχ
�c

transforms exactly as ρ itself transforms. There are two extreme cases

(1) H = HK − eφ, η = constant = ζ0 (see Fig. 11.11a).
(2) H = HK, η = ζ0 + eφ (see Fig. 11.11b).

Neither H nor η is gauge invariant, but their difference H − η is. This is the quantity
that appears in ρ̃0. If we let η(r, t) = ζ0 + ζ1(r, t) where ζ0 is the actual overall
equilibrium chemical potential and ζ1(r, t) is the local deviation of η from ζ0, then
we can write

ρ̃0(H, η) = ρ0(H0, ζ0) + ρ2. (11.208)

The equation of motion of the density matrix is

∂ρ

∂t
+ i

�
[H, ρ]− = −ρ − ρ̃0

τ
(11.209)

where ρ̃0 = ρ0(H0, ζ0) + ρ2. We can write ρ = ρ̃0 + ρ1, where ρ1 is the deviation
from the local thermal equilibrium value ρ̃0. Then (11.209) becomes

iω(ρ1 + ρ2) + i

�
[H0, ρ1 + ρ2]− + i

�
[H1, ρ0]− = −ρ1

τ
. (11.210)
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(a)

(b)

Fig. 11.11 Local chemical potential η and local density matrix ρ(r). (a) η = constant(= ı0), (b)
η(r) = ζ0 + eφ(r)

Take matrix elements as before and solve for 〈k|ρ1|k ′〉; this gives

〈k|ρ1|k ′〉 =
[

i�/τ
εk′ −εk−�ω+i�/τ

− 1
]
〈k|ρ2|k ′〉

+ f0(εk′ )− f0(εk )
εk′−εk−�ω+i�/τ

〈k|H1|k ′〉.
(11.211)

Using the result of Problem11.10 for 〈k|ρ2|k ′〉 in this equation gives

〈k|ρ1|k ′〉 =
[
−1 + i�/τ

εk′ −εk−�ω+i�/τ

]
f0(εk′ )− f0(εk )

εk′ −εk
〈k|H1 − ζ1|k ′〉

+ f0(εk′ )− f0(εk )
εk′−εk−�ω+i�/τ

〈k|H1|k ′〉.
(11.212)

The parameter ζ1 appearing in (11.212) is determined by requiring that

Tr {ρ1δ(r − r0)} = 0. (11.213)

The final result (after a lot of calculation) is

j(q,ω) = ω2
p

4πiω

{
1 + I − iωτ

1 + iωτ

(K 1 − K 2)(K ′
1 − K ′

2)

L1 + iωτ L2

}
· E, (11.214)

where we used the notations

I = iωτ I1 + I2
1 + iωτ

, (11.215)
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K = iωτ K 1 + K 2

1 + iωτ
, (11.216)

Li = mc2

N

∑

kk ′
Λ

(i)
k ′k | 〈k ′|eiq·r |k〉 |2, (11.217)

K i = mc

N

∑

kk ′
Λ

(i)
k ′k〈k ′|Vq |k〉〈k ′|eiq·r |k〉∗, (11.218)

K ′
i = mc

N

∑

kk ′
Λ

(i)
k ′k〈k ′|eiq·r |k〉〈k ′|Vq |k〉∗, (11.219)

and
I i = m

N

∑

kk ′
Λ

(i)
k ′k〈k ′|Vq |k〉〈k ′|Vq |k〉∗. (11.220)

The subscript (or superscript) i takes on the values 1 and 2, and

Λ
(1)
k ′k = f0(εk ′) − f0(εk)

εk ′ − εk − �ω + i�/τ
(11.221)

and

Λ
(2)
k ′k = f0(εk ′) − f0(εk)

εk ′ − εk
. (11.222)

In the limit as τ → ∞, I → I1 and K → K 1, hence

j(q,ω) → ω2
p

4πiω

[
1 + I1

] · E, (11.223)

exactly as we had before. For ωτ finite, there are corrections to this collisionless
result that depend on 1

ωτ
.

11.8 Screening

Our original objective in considering linear response theory was to learn more about
screening since we found that the long range of the Coulomb interaction was respon-
sible for the divergence of perturbation theory beyond the first order exchange. Later
on, when we mention Green’s functions and the electron self energy, we will discuss
some further details on dynamic screening, but for now, let us look at static screening
effects.

If we set ω → 0 in (11.166), we can write
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1 + Izz(z, u) = −3

2
u2
[
1 + 1

2
(
1

z
− z) ln

(
1 + z

1 − z

)]
. (11.224)

Here z = q/2kF and u = ω/qvF. Substituting this result into ε(l) = 1 − ω2
p

ω2 (1 + Izz)
gives

ε(l)(q, 0) = 1 + 3ω2
p

q2v2
F

F(z), (11.225)

where

F(z) = 1

2
+ 1

4

(
1

z
− z

)
ln

(
1 + z

1 − z

)
. (11.226)

Since ln
(
1+z
1−z

) � 2z(1 + z2

3 + · · · ), F(z) −→
z→0

1 − z2

3 . For z � 1, F(z) � 1
3z2 (see

Fig. 11.12). For very long wave lengths, we have

ε(l)(q) �
(
1 − 1

3πa0kF

)
+ k2s

q2
, (11.227)

where ks =
√

4kF
πa0

is called the Thomas–Fermi screening wave number. At high

density 3πa0kF � 1 so the constant term is usually approximated by unity. εTF(q) =
1 + k2s

q2 is called the Thomas–Fermi dielectric constant. . One can certainly see that
screening eliminates the divergence in perturbation theory that resulted from the
φ0(q) = 4πe

q2 potential. We would write for the self-consistent screened potential by

φ(q) = φ0(q)

εTF(q)
= 4πe

q2 + k2s
. (11.228)

This potential does not diverge as q → 0.

11.8.1 Friedel Oscillations

If F(z) were identically equal to unity, then a point charge would give rise to the
screened potential given by (11.228), which is the Yukawa potential φ(r) = e

r e
−ksr

in coordinate space. However, at z = 1 (or q = 2kF) F(z) drops very abruptly. In
fact, dF

dz has infinite slope at z = 1 (see, for example, Fig. 11.12). The ability of the
electron gas to screen disturbances of wave vector q drops abruptly at q = 2kF. This
is the result of the fact that pair excitations of zero energy can be created if q < 2kF,
but every pair excitation must have finite energy if q > 2kF. This is apparent from a
plot of �ε = εk+q − εk = �

2

m q(kz + q
2 ) versus q for kz = ±kF (see Fig. 11.13). The

hatched area is called the electron–hole continuum. If F(z) were replaced by unity,
the self-consistent potential φ(q) would be written as
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Fig. 11.12 Function F(z) appearing in (11.225)

Fig. 11.13 Electron–hole pair excitation energies as a function of wave number q

φ(q) = 4πe

q2

1

ε(l)(q)
� 4πe

q2 + k2s
.

The Fourier transform φ(r) is given by

φ(r) =
∫

d3q

(2π)3
eiq·rφ(q) (11.229)

and one can show that this is equal to φ(r) = e
r e

−ksr , a Yukawa potential. Because
F(z) is not equal to unity, but decreases rapidly around z = 1, the potential φ(r)
and the induced electron density n1(r) are different from the results of the simple
Thomas–Fermi model. In the equation for φ(r)wemust replace k2s by k

2
s F(z) so that

φ(r) =
∫

d3q

(2π)3
eiq·r 4πe

q2 + k2s F(q/2kF)
. (11.230)

The induced electron density is given by
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n1(q) = k2s
4π

F(z)φ(q). (11.231)

This can be obtained from ∂ρ
∂t + ∇ · j = 0, where j = σ · E = (ε(l) − 1) iω4π (+iqφ)

and ε(l) = 1+ k2s
q2 F(z). After a little algebra one can show that the Fourier transform

of n1(q) is given by

n1(r) = 12n0
πa0kF

∫ ∞

0

sin 2kFr z

2kFr z

F(z)

1 + F(z)/(πa0kFz2)
dz. (11.232)

This can be written in a simpler form using

F(z)

1 + F(z)/(πa0kFz2)
= F(z) − F2(z)

πa0kFz2 + F(z)
. (11.233)

Then, n1(r) becomes

n1(r) = 12n0
πa0kF

[∫ ∞

0

sin 2kFr z

2kFr z
F(z) dz −

∫ ∞

0

sin 2kFr z

2kFr z

F2(z)

πa0kFz2 + F(z)
dz

]
.

(11.234)

In the high density limit πa0kF � 1. Therefore in the region where F(z) deviates
appreciably from unity, i.e. for z ≥ 1, πa0kFz2 � F(z), and we make a small
error by replacing F(z) in the second term of (11.234) by unity. This high density
approximation gives

n1(r) = 12n0
πa0kF

[∫ ∞

0

sin 2kFr z

2kFr z
F(z) dz −

∫ ∞

0

sin 2kFr z

2kFr z

dz

πa0kFz2 + 1

]
.

(11.235)
The first integral can be evaluated exactly in terms of known functions

∫ ∞

0

sin 2kFr z

2kFr z
F(z) dz

= π

2

{
1

2kFr
− 1

4kFr

[
sin 2kFr

2kFr
+ cos 2kFr

]
+ 1

2

[π

2
− Si(2kFr)

]}
≡ π

2
f (2kFr),

(11.236)

where Si(x) = ∫ x
0

sin t
t dt is the sine integral function. For very large values of x , the

function f (x) in (11.236) behaves

f (x) � 1

x
+ cos x

x3
+ O

(
higher orders of

1

x

)
. (11.237)

The second integral in (11.235) becomes
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∫ ∞

0

sin 2kFr z

2kFr z

dz

πa0kFz2 + 1
= π

4kFr

(
1 − e

− r√
πa0kF

)
. (11.238)

Therefore, for high density limit (πa0kF � 1) and large distances from the point
charge impurity, the induced electron density is given by

n1(r) = 6n0
a0kF

cos 2kFr

(2kFr)3
. (11.239)

The oscillating behavior of the induced electron density at a wave vector q = 2kF
is known as a Friedel oscillation.8 Notice that the electron density induced by the
presence of the point charge impurity falls off in amplitude as 1

r3 . For a Yukawa
potential (φ = e

r e
−ksr ), the fall in the induced electron density is exponential.

Exercise

Demonstrate the induced electron density n1(q) given by (11.231) and its Fourier
transform n1(r) shown in (11.232).

11.8.2 Kohn Effect

When we discussed the Sommerfeld model we found a result for sl the velocity of a
longitudinal sound wave that could be written

ω2 = s2l q
2 �

(√
zm

3M
vF

)2

q2. (11.240)

In other words the longitudinal sound velocity was given by

sl =
√

zm

3M
vF (11.241)

where z is the valence (charge on the positive ions), M is the ionic mass, and vF the
Fermi velocity.

This result can easily be obtained by saying that the positive ions have a bare
plasma frequency

Ωp =
√
4πNI(ze)2

M
, (11.242)

where NI is the number of ions per unit volume. However, the electrons will screen
the charge fluctuations in the ion density, so that the actual frequency of a longitudinal
sound wave of wave vector q will be

8J. Friedel, Phil. Mag. 43, 153 (1952).
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ω = Ωp√
ε(q,ω)

, (11.243)

where ε(q,ω) is the dielectric function of the electron gas. Because the acoustic
frequency is much smaller than the electron plasma frequency and ω � slq � qvF,
we can approximate ε(q,ω) by ε(q, 0) in the first approximation

ω2 = Ω2
p

1 + k2s
q2 F(z)

� q2Ω2
p

q2 + k2s F(z)
. (11.244)

Let us assume k2s � q2. If we take F(z) � 1 we obtain

ω2 � q2

k2s
Ω2

p . (11.245)

But recall that Ω2
p = 4π

( n0
z

)
(ze)2

M and k2s = 4kF
πa0

. Substituting into (11.245) gives the
result given by (11.240). However, q need not be small compared to kF, even though
ω � slq will still be small compared to qvF and ωp. Then we must keep F(z) and
write

ω2 � s2l q
2

F(z) + πa0
4kF

q2
. (11.246)

Because F(z) has an infinite first derivative at q = 2kF (or z = 1), the phonon
dispersion relation will show a small anomaly at q = 2kF that is called the Kohn
anomaly.9

Problems

11.1 Let us consider the paramagnetic state of a degenerate electron gas, in which
nkσ = 1 for εkσ < εF and zero otherwise.

(a) Show that the exchange contribution to the energy of wave vector k and spin
σ is

ΣXœ(k) = − 1

Ω

∑

k′
nk′σ

4πe2

|k − k′|2 .

(b) Convert the sum over k′ to an integral and perform the integral to obtain

ΣXœ(k) = −e2kF
π

[
1 + 1 − x2

2x
ln | 1 + x

1 − x
|
]

,

9W. Kohn, Phys. Rev. Lett. 2, 393 (1959).
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where x = k/kF.
(c) Plot ΣXœ(k) as a function of k

kF
.

(d) Show that the total energy (kinetic plus exchange) for the N particle param-
agnetic state in the Hartree–Fock approximation is

EP = ∑
kσ nkσ

[
�
2k2

2m + ΣXœ(k)
]

= N
(
3
5

�
2k2F
2m − 3e2kF

4π

)
.

11.2 Consider the ferromagnetic state of a degenerate electron gas, inwhich nk↑ = 1
for k < kF↑ and nk↓ = 0 for all k.

(a) Determine the Hartree–Fock energy Ekσ = �
2k2

2m + ΣXœ(k).
(b) Determine the value of kF (Fermi wave vector of the nonmagnetic state) for

which the ferromagnetic state is a valid Hartree–Fock solution.
(c) Determine the value of kF for which EF = ∑

k Ek↑ has lower energy than
EP obtained in Problem11.1.

11.3 Evaluate Ixx (q,ω) in the same way as we evaluated Izz(q,ω), which is given
by (11.166).

11.4 The longitudinal dielectric function is written as

ε(l)(q,ω) = 1 − ω2
p

ω2

[
1 + Izz(q,ω)].

Use ln(x + iy) = 1
2 ln(x

2 + y2)+ i arctan y
x to evaluate ε(l)

2 (z, u), the imaginary part
of ε(l)(q,ω), where z = q/2kF and u = ω/qvF.

11.5 Let us consider the static dielectric function written as

ε(l)(q, 0) = 1 + 3ω2
p

q2v2
F

F(z),

where z = q/2kF and F(z) = 1
2 + 1

4

(
1
z − z

)
ln
(
1+z
1−z

)
.

(a) Expand F(z) in power of z for z � 1. Repeat it in power of 1/z for z � 1.
(b) Determine the expressions of the static dielectric function ε(l)(q, 0) in the

corresponding limits.

11.6 In the absence of a d.c. magnetic field, we see that |ν >= |kx , ky, kz >≡ |k >,
the free electron states.

(a) Show that< k′|V q |k >= �

m (k+ q
2 )δk′,k+q,whereV q = 1

2 [v0eiq·r+eiq·rv0].
(b) Derive the Lindhard form of the conductivity tensor given by

σ(q,ω) = ω2
p

4πiω

[
1 + m

N

∑

k

f0(Ek+q) − f0(Ek)

Ek+q − Ek − �ω
(

�

m
)2(k + q

2
)(k + q

2
)

]
.
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(c) Show that the Lindhard form of the dielectric tensor is written as

ε(q,ω) = (1 − ω2
p

ω2
)1 − mω2

p

Nω2

∑

k

f0(Ek+q) − f0(Ek)

Ek+q − Ek − �ω
(

�

m
)2(k + q

2
)(k + q

2
).

11.7 Suppose that a system has a strong and sharp absorption line at a frequency ωA

and that ε2(ω) can be approximated by

ε2(ω) = Aδ(ω − ωA) for ω > 0.

(a) Evaluate ε1(ω) by using the Kronig–Kramers relation.
(b) Sketch ε1(ω) as a function of ω.

11.8 The equation of motion of a charge (−e) of mass m harmonically bound to a
lattice point Rn is given, with x = r − R, by

m(ẍ + γ ẋ + ω2
0x) = −eEeiωt .

Here ω0 is the oscillator frequency and the electric field E = Ex̂ .

(a) Solve the equation of motion for x(t) = X(ω)eiωt .
(b) Let us consider the polarization P(ω) = −en0X (ω), where n0 is the number

of oscillators per unit volume. Write P(ω) = α(ω)E and determine α(ω).
(c) Plot α1(ω) and α2(ω) vs. ω, where α = α1 + α2.
(d) Show that α(ω) satisfies the Kronig-Kramers relation.

11.9 Take H = 1
2m

(
p + e

c A
)2 − eφ and H ′ = 1

2m

(
p + e

c A
′)2 − eφ′ where A′ =

A + ∇χ and φ′ = φ − 1
c χ̇.

(a) Show that H ′ − e
c χ̇ = e− ieχ

�c He
ieχ
�c .

(b) Show that ρ′ = e− ieχ
�c ρe

ieχ
�c satisfies the same equation of motion, viz. ∂ρ′

∂t +
i
�

[
H ′, ρ′]

− = 0 as ρ does.

11.10 Let us take ρ̃0(H, η) =
[
exp( H−η

Θ
) + 1

]−1
as the local thermal equilibrium

distribution function (or local equilibriumdensitymatrix). Here η(r, t) = ζ+ζ1(r, t)
is the local value of the chemical potential at position r and time t , while ζ is the
overall equilibrium chemical potential. Remember that the total Hamiltonian H is
written as H = H0 + H1. Write ρ̃0(H, η) = ρ0(H0, ζ)+ρ2 and show that the matrix
element of ρ2 in the representation where H0 is diagonal is given, to terms linear in
the self-consistent field, by

〈k|ρ2|k′〉 = f0(εk′) − f0(εk)

εk′ − εk
〈k|H1 − ζ1|k′〉.
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11.11 Longitudinal sound waves in a simple metal like Na or K can be represented

by the relation ω2 = Ω2
p

ε(l)(q,ω)
, where ε(l)(q,ω) is the Lindhard dielectric function. We

know that, for finite ω, ε(l)(q,ω) can be written as ε(l)(q,ω) = ε1(q,ω) + iε2(q,ω).
This gives rise to ω = ω1 + iω2, and ω2 is proportional to the attenuation of the
sound wave via excitation of conduction electrons. Estimate ω2(q) for the case ω2

1 �
q2Ω2

p

k2s
� ω2

2.

Summary
In this chapter we briefly introduced method of second quantization and Hartree–
Fock approximation to describe the ferromagnetism of a degenerate electron gas
and spin density wave states in solids. Equation of motion method is considered for
density matrix to describe gauge invariant theory of linear responses in the presence
of the most general electromagnetic disturbance. Behavior of Lindhard dielectric
functions and static screening effects are examined in detail. Oscillatory behavior of
the induced electron density in the presence of point charge impurity and an anomaly
in the phonon dispersion relation are also discussed.

In the second quantization or occupation number representation, the Hamiltonian
of a many particle system with two body interactions can be written as

H =
∑

k

εkc
†
kck + 1

2

∑

kk ′ll ′
〈k ′l ′|V |kl〉c†k ′c

†
l ′clck,

where ck and c
†
k ′ satisfy commutation (anticommutation) relation forBosons (Fermions).

The Hartree–Fock Hamiltonian is given by H = ∑
i Ei c

†
i ci , where

Ei = εi +
∑

j

n j [〈i j |V |i j〉 − 〈i j |V | j i〉] .

The Hartree–Fock ground state energy of a degenerate electron gas in the paramag-

netic phase is given by Eks = �
2k2

2m − e2kF
2π

[
2 + k2F−k2

kkF
ln
(
kF+k
kF−k

)]
. The total energy

of the paramagnetic state is

EP = N

[
3

5

�
2k2F
2m

− 3

4π
e2kF

]
.

If only states of spin ↑ are occupied, we have

Ek↑ = �
2k2

2m
− 21/3e2kF

2π

[
2 + 22/3k2F − k2

21/3kFk
ln

(
21/3kF + k

21/3kF − k

)]
; Ek↓ = �

2k2

2m
.
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The total energy in the ferromagnetic phase is

EF =
∑

Ek↑ = N

[
22/3

3

5

�
2k2F
2m

− 21/3
3

4π
e2kF

]
.

The exchange energy prefers parallel spin orientation, but the cost in kinetic energy is
high for a ferromagnetic spin arrangement. In a spin densitywave state, the (negative)
exchange energy is enhanced with no costing as much in kinetic energy. The Hartree-
Fock ground state of a spiral spin density wave can be written as |φk〉= cos θk |k ↑〉
+ sin θk |k + Q ↓〉.

In the presence of the self-consistent (Hartree) field {φ, A}, the Hamiltonian is
written as H = H0 + H1, where H0 is the Hamiltonian in the absence of the self-
consistent field and H1 = e

2c (v0 · A + A · v0) − eφ, up to terms linear in {φ, A}.
Here v0 = p

m and the equation of motion of ρ is ∂ρ
∂t + i

�
[H, ρ]− = 0.

The current and charge densities at (r0, t) are given, respectively, by

j(r0, t) = Tr

[
−e

(
1

2
vδ(r − r0) + 1

2
δ(r − r0)v

)
ρ̂

]
; n(r0, t) = Tr

[−eδ(r − r0)ρ̂
]
.

Here−e
[
1
2vδ(r − r0) + 1

2δ(r − r0)v
]
is the operator for the current density at posi-

tion r0, while−eδ(r−r0) is the charge density operator. Fourier transformof j(r0, t)
gives

j(q,ω) = σ(q,ω) · E(q,ω)

where the conductivity tensor is given by σ(q,ω) = ω2
p

4πiω

[
1 + I(q,ω)

]
. Here

I(q,ω) = m

N

∑

k,k′

f0(εk ′) − f0(εk)

εk ′ − εk − �ω
〈k ′|V q |k〉〈k ′|V q |k〉∗

and the operator V q is defined by V q = 1
2v0eiq·r + 1

2 e
iq·rv0.

The longitudinal and transverse dielectric functions are written as

ε(l)(q,ω) = 1 − ω2
p

ω2

[
1 + Izz(q,ω)]; ε(Tr)(q,ω) = 1 − ω2

p

ω2
[1 + Ixx (q,ω)].

Real part (ε1) and imaginary part (ε2) of the dielectric function satisfy the relation

ε1(ω) = 1 + 2

π
−
∫ ∞

0

ω′ε2(ω′)
ω′2 − ω2

dω′; ε2(ω) = − 2

π
−
∫ ∞

0

ω[ε1(ω′) − 1]
ω′2 − ω2

dω′.

The power dissipation per unit volume is thenwrittenP(q,ω) = ω
2π ε2(q,ω) | E0 |2 .

Due to collisions of electrons with lattice imperfections, the conductivity of a
normal metal is not infinite at zero frequency. In the presence of collisions, the
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equation ofmotion of the densitymatrix becomes, in a relaxation time approximation,

∂ρ

∂t
+ i

�
[H, ρ]− = −ρ − ρ̃0

τ
.

Here ρ̃0 is a local equilibrium density matrix. Including the effect of collisions, the
induced current density becomes

j(q,ω) = ω2
p

4πiω

{
1 + I − iωτ

1 + iωτ

(K 1 − K 2)(K ′
1 − K ′

2)

L1 + iωτ L2

}
· E.

In the static limit, the dielectric function reduces to

ε(l)(q, 0) = 1 + 3ω2
p

q2v2
F

F(z),

where F(z) = 1
2 + 1

4

(
1
z − z

)
ln
(
1+z
1−z

)
and z = q/2kF. The self-consistent screened

potential is written as

φ(q) = 4πe

q2 + k2s F(q/2kF)
.

where ks =
√

4kF
πa0

. For high density limit (πa0kF � 1) and large distances from the
point charge impurity, the induced electron density is given by

n1(r) = 6n0
a0kF

cos 2kFr

(2kFr)3
.

Electronic screening of the charge fluctuations in the ion density modifies the dis-
persion relation of phonons, for example,

ω2 � s2l q
2

F(z) + πa0
4kF

q2

showing a small anomaly at q = 2kF.



Chapter 12
Many Body Interactions–Green’s Function
Method

12.1 Formulation

Let us assume that there is a complete orthogonal set of single particle states φi (ξ),
where ξ = r,σ. By this we mean that

〈φi | φ j 〉 = δi j and
∑

i

| φi 〉〈φi |= 1. (12.1)

We can define particle field operators ψ and ψ† by

ψ(ξ) =
∑

i

φi (ξ)ai and ψ†(ξ) =
∑

i

φ∗
i (ξ)a

†
i , (12.2)

where ai (a
†
i ) is an annihilation (creation) operator for a particle in state i . From the

commutation relations (or anticommutation relations) satisfied by ai and a
†
j , we can

easily show that [
ψ(ξ),ψ(ξ′)

] = [
ψ†(ξ),ψ†(ξ′)

] = 0,[
ψ(ξ),ψ†(ξ′)

] = δ(ξ − ξ′). (12.3)

The Hamiltonian of a many particle system can be written (Here we set � = 1.)

H = ∫
d3r

{
1
2m∇ψ†

α(r) · ∇ψα(r) +U (1)(r)ψ†
α(r)ψα(r)

}

+ 1
2

∫
d3r d3r ′ψ†

α(r)ψ†
β(r′)U (2)(r, r′)ψβ(r′)ψα(r).

(12.4)

Summation over spin indices α and β is understood in (12.4). For the moment, let
us omit spin to simplify the notation. Then

ψ(r) =
∑

i

φi (r)ai . (12.5)
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We can write the density at a position r0 as

n(r0) =
∫

d3rψ†(r)ψ(r)δ(r − r0) = ψ†(r0)ψ(r0). (12.6)

The total particle number N is simply the integral of the density

N =
∫

d3rn(r) =
∫

d3rψ†(r)ψ(r). (12.7)

If we substitute (12.5) into (12.7) we obtain

N =
∫

d3r

(
∑

i

φ∗
i (r)ai

)⎛

⎝
∑

j

φ j (r)a j

⎞

⎠ =
∑

i j

〈φi | φ j 〉a†i a j . (12.8)

By 〈φi | φ j 〉 = δi j , this reduces to

N =
∑

i

a†i ai , (12.9)

so that n̂i = a†i ai is the number operator for the state i and N̂ = ∑
i n̂i is the total

number operator. It simply counts the number of particles.

12.1.1 Schrödinger Equation

The Schrödinger equation of the many particle wave function Ψ (1, 2, . . . , N ) is

i�
∂

∂t
Ψ = HΨ. (12.10)

We can write the time dependent solution Ψ (t) as (letting � ≡ 1)

Ψ (t) = e−i HtΨH, (12.11)

where ΨH is time independent. If F is some operator whose matrix element between
two states Ψn(t) and Ψm(t) is defined as

Fnm(t) = 〈Ψn(t)|F |Ψm(t)〉, (12.12)

we can write |Ψm(t)〉 = e−i Ht |ΨHm〉 and 〈Ψn(t)| = 〈ΨHn|ei Ht . Then Fnm(t) can be
rewritten

Fnm(t) = 〈ΨHn|F(t)|ΨHm〉, (12.13)
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where FH(t) = ei Ht Fe−i Ht . The process of going from (12.12) to (12.13) is a
transformation from the Schrödinger picture (where the state vector Ψ (t) depends
on time but the operator F does not) to the Heisenberg picture (where ΨH is a time
independent state vector but FH(t) is a time dependent operator). The transformation
from (to) Schrödinger picture to (from) Heisenberg picture can be summarized by

ΨS(t) = e−i HtΨH and FH(t) = ei Ht FSe
−i Ht . (12.14)

From these equations and (12.10) it is clear that

∂FH(t)

∂t
= i [H, FH] . (12.15)

12.1.2 Interaction Representation

Suppose that the Hamiltonian H can be divided into two parts H0 and H ′, where H ′
represents the interparticle interactions. We can define the state vector ΨI(t) in the
interaction representation as

ΨI(t) = ei H0tΨS(t). (12.16)

Operate i∂/∂t on ΨI(t) and make use of the fact that ΨS(t) satisfies the Schrödinger
equation. This gives

i
∂ΨI(t)

∂t
= HI(t)ΨI(t), (12.17)

where
HI(t) = ei H0t H ′e−i H0t . (12.18)

From (12.12) and the fact that ΨS(t) = e−i H0tΨI(t) it is apparent that

FI(t) = ei H0t FSe
−i H0t . (12.19)

By explicit evaluation of ∂FI
∂t from (12.19), it is clear that

∂FI

∂t
= i [H0, FI(t)] . (12.20)

The interaction representation has a number of advantages for interacting systems;
among them are:
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(1) All operators have the formofHeisenberg operators of the noninteracting system,
i.e. (12.19).

(2) Wave functions satisfy the Schrödinger equation with Hamiltonian HI(t), i.e.
(12.17).

Because operators satisfy commutation relations only for equal times, HI(t1) and
HI(t2) do not commute if t1 �= t2. Because of this, we can not simply integrate the
Schrödinger equation, (12.17), to obtain

ΨI(t) ∝ e−i
∫ t HI(t ′)dt ′ . (12.21)

Instead, we do the following:

(1) Assume that Ψ (t) is known at t = t0.
(2) Integrate the differential equation from t0 to t .

This gives that

ΨI(t) − ΨI(t0) = −i
∫ t

t0

dt ′ HI(t
′)ΨI(t

′). (12.22)

This is an integral equation forΨI(t) that we can try to solve by iteration. Let us write

ΨI(t) ≡ Ψ
(0)
I (t) + Ψ

(1)
I (t) + · · · + Ψ

(n)
I (t) + · · · . (12.23)

Here
Ψ

(0)
I (t) = ΨI(t0),

Ψ
(1)
I (t) = −i

∫ t
t0
dt ′ HI(t ′)Ψ (0)

I (t ′),
Ψ

(2)
I (t) = −i

∫ t
t0
dt ′ HI(t ′)Ψ (1)

I (t ′),
...

Ψ
(n)
I (t) = −i

∫ t
t0
dt ′ HI(t ′)Ψ (n−1)

I (t ′).

(12.24)

This result can be expressed as

ΨI(t) = S(t, t0)ΨI(t0), (12.25)

where S(t, t0) is the so-called S matrix is given by

S(t, t0) = 1 − i
∫ t
t0
dt1 HI(t1) + (−i)2

∫ t
t0
dt1

∫ t1
t0
dt2HI(t1)HI(t2) + · · ·

= ∑∞
n=0(−i)n

∫ t
t0
dt1

∫ t1
t0
dt2 · · · ∫ tn−1

t0
dtn

[
HI(t1)HI(t2) · · · HI(tn)

]
.

(12.26)
Let us look at the third term involving integration over t1 and t2

I2 =
∫ t

t0

dt1

∫ t1

t0

dt2HI(t1)HI(t2) = 1

2
I2 + 1

2
I2. (12.27)
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In the second 1
2 I2, let us reverse the order of integration (see Fig. 12.1). We first

integrated over t2 from t0 to t1, then over t1 from t0 to t . Inverting the order gives

∫ t

t0

dt1

∫ t1

t0

dt2 ⇒
∫ t

t0

dt2

∫ t

t2

dt1,

Therefore, we have

1

2
I2 = 1

2

∫ t

t0

dt1

∫ t1

t0

dt2HI(t1)HI(t2) = 1

2

∫ t

t0

dt2

∫ t

t2

dt1HI(t1)HI(t2). (12.28)

But t1 and t2 are dummy integration variables and we can interchange the names to
get

1

2
I2 = 1

2

∫ t

t0

dt1

∫ t

t1

dt2HI(t2)HI(t1). (12.29)

Adding this term to the 1
2 I2 that was left in its original form gives

I2 = 1

2

∫ t

t0

dt1

∫ t1

t0

dt2HI(t1)HI(t2) + 1

2

∫ t

t0

dt1

∫ t

t1

dt2HI(t2)HI(t1). (12.30)

We are integrating over a square of edge �t = t − t0 in the t1t2-plane. The second
term, with t2 > t1, is just an integral on the lower triangle shown in Fig. 12.1. The first
term, where t1 > t2, is an integral on the upper triangle. Therefore, we can combine
the time integrals and write the limits of integration from t0 to t .

I2 = 1

2

∫ t

t0

dt1

∫ t

t0

dt2 [HI(t1)HI(t2)θ(t1 − t2) + HI(t2)HI(t1)θ(t2 − t1)] . (12.31)

Fig. 12.1 Order of integration I2 appearing in (12.27)



378 12 Many Body Interactions–Green’s Function Method

The thing we have to be careful about here, however, is that HI(t1) and HI(t2) do not
necessarily commute. We can get around this difficulty by using the time ordering
operator T. The product of functions HI(t j ) that follows the operator T must have
the largest t values on the left. In the first term of (12.31), t1 > t2, so we can write
the integrand as

HI(t1)HI(t2) = T{HI(t1)HI(t2)}.

In the second term, with t2 > t1, we may write

HI(t2)HI(t1) = T{HI(t1)HI(t2)}.

Equation (12.31) can, thus, be rewritten as

I2 = 1

2

∫ t

t0

dt1

∫ t

t0

dt2T {HI(t1)HI(t2)} . (12.32)

For the general term we have

In = ∫ t
t0
dt1

∫ t1
t0
dt2 · · · ∫ tn−1

t0
dtn HI(t1)HI(t2) · · · HI(tn)

= ∫
dt1dt2 · · · dtn HI(t1)HI(t2) · · · HI(tn) wi th t ≥ t1 ≥ t2 ≥ · · · ≥ tn,

and it is not difficult to see that the same technique can be applied to give

In = 1

n!
∫ t

t0

dt1

∫ t

t0

dt2 · · ·
∫ t

t0

dtnT{HI(t1)HI(t2) · · · HI(tn)}. (12.33)

Now the integrals are written with a common upper time limit t , at the expense of
complicating the integrand a bit. The 1

n! appears because there are n!ways of ordering
the times t1, t2, . . . , tn all giving the same contribution to the integral on the right,
but only one of these orderings is present in the integral on the left hand side. Note
that

T{HI(t1)HI(t2) · · · HI(tn)} = HI(t1)HI(t2) · · · HI(tn) if t1 ≥ t2 ≥ · · · ≥ tn.

Making use of (12.33), the S matrix can be written in the compact form

S(t, t0) = T
{
e−i

∫ t
t0
HI(t ′)dt ′

}
, (12.34)

where it is understood that in the nth term in the expansion of the exponential, (12.33)
holds. We note that, at t = 0, the wave functions ΨS, ΨI coincide,

ΨS(0) = ΨI(0) = S(0, t0)ΨI(t0) = S(0, t0)e
i H0t0ΨS(t0),

where we have used ΨI(t) = ei H0tΨS(t) and ΨI(t) = S(t, t0)ΨI(t0).
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12.2 Adiabatic Approximation

Suppose that wemultiply HI by e−β|t | where β ≥ 0, and treat the resulting interaction
as one that vanishes at t = ±∞. Then, the interaction is slowly turned on from
t = −∞ up to t = 0 and slowly turned off from t = 0 till t = +∞. We can write
H(t = −∞) = H0, the noninteracting Hamiltonian, and

ΨI(t = −∞) = ΨH(t = −∞) = ΦH. (12.35)

Here ΦH is the Heisenberg state vector of the noninteracting system. We know that
eigenstates of the interacting system in the Heisenberg, Schrödinger, and interaction
representation are related by

ΨH(t) = ei HtΨS(t) and ΨI(t) = ei H0tΨS(t). (12.36)

Therefore, at time t = 0,

ΨI(t = 0) = ΨH(t = 0) = ΨH. (12.37)

Henceforth, we will use ΨH to denote the state vector of the fully interacting system
in the Heisenberg representation. We can express ΨH as

ΨH = S(0,−∞)ΦH, (12.38)

where S is the S matrix defined in (12.34). Because ΨI(t = 0) = ΨH we can write

ΨI(t) = S(t, 0)ΨH = S(t,−∞)ΦH. (12.39)

In the last step we have used S(t2,−∞) = S(t2, t1)S(t1,−∞). If we write |ΨI(t)〉 =
S(t, 0)|ΨH〉 and 〈ΨI(t)| = 〈ΨH|S−1(t, 0), then for some operator F

〈ΨI(t)|FI|ΨI(t)〉 = 〈ΨH|S−1(t, 0)FIS(t, 0)|ΨH〉 = 〈ΨH(t)|FH|ΨH(t)〉. (12.40)

But this must equal 〈ΨH|FH|ΨH〉. Therefore, we have

FH = S−1(t, 0)FIS(t, 0). (12.41)

Now look at the expectation value in the exact Heisenberg interacting state ΨH of
the time-ordered product of Heisenberg operators

〈ΨH|T{AH(t1)BH(t2) · · · ZH(tn)}|ΨH〉.

If we assume that the ti ’s have been arranged in the order t1 ≥ t2 ≥ t3 ≥ · · · ≥ tn ,
then we can write
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〈ΨH|T{AH(t1)BH(t2)···ZH(tn)}|ΨH〉
〈ΨH|ΨH〉 =

〈ΦH|S(∞,0)S−1(t1,0)AI(t1)S(t1,0)S−1(t2,0)BI(t2)S(t2,0)S−1(t3,0)···S−1(tn ,0)ZI(tn)S(tn ,0)S(0,−∞)|ΦH〉
〈ΦH|S(∞,0)S(0,−∞)|ΦH〉 .

(12.42)
But from S(t1, 0) = S(t1, t2)S(t2, 0) we can see that

S(t1, 0)S
−1(t2, 0) = S(t1, t2). (12.43)

Using this in (12.42) gives

〈ΨH|T{AH(t1)BH(t2) · · · ZH(tn)}|ΨH〉
〈ΨH|ΨH〉

= 〈ΦH|S(∞, t1)AI(t1)S(t1, t2)BI(t2)S(t2, t3) · · · ZI(tn)S(tn,−∞)|ΦH〉
〈ΦH|S(∞,−∞)|ΦH〉 .

(12.44)

We note that, in (12.44), the operators are in time-ordered form, i.e. tn ≥ −∞,
t1 ≥ t2, ∞ ≥ t1, so the operators

S(∞, t1)AI(t1)S(t1, t2)BI(t2)S(t2, t3) · · · ZI(tn)S(tn,−∞)

are chronologically ordered, and hence we can rewrite (12.44) as

〈ΨH|T{AH(t1)BH(t2) · · · ZH(tn)}|ΨH〉
〈ΨH|ΨH〉

= 〈ΦH|T{S(∞,−∞)AI(t1)BI(t2) · · · ZI(tn)}|ΦH〉
〈ΦH|S(∞,−∞)|ΦH〉 . (12.45)

12.3 Green’s Function

We define the Green’s function Gαβ(x, x ′), where x = {r, t} and α, β are spin
indices, by

Gαβ(x, x ′) = −i
〈ΨH|T{ψH

α (x)ψH†
β (x ′)}|ΨH〉

〈ΨH|ΨH〉 . (12.46)

Here ψH
α (x) is an operator (particle field operator) in the Heisenberg representation.

By using (12.45) in (12.46), we obtain

Gαβ(x, x ′) = −i
〈ΦH|T{S(∞,−∞)ψI

α(x)ψI†
β (x ′)}|ΦH〉

〈ΦH|S(∞,−∞)|ΦH〉 . (12.47)
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The operator ψI
α(x) is now in the interaction representation. If we write out the

expansion for S(∞,−∞) in the numerator and are careful to keep the time ordering,
we obtain

Gαβ(r, t, r′, t ′) = − i
〈S(∞,−∞)〉

∑∞
n=0

(−i)n

n!
∫ ∞
−∞ dt1dt2 · · · dtn

× 〈ΦH|T{ψI
α(r, t)ψI†

β (r′, t ′)HI(t1) · · · HI(tn)}|ΦH〉. (12.48)

12.3.1 Averages of Time-Ordered Products of Operators

If F1(t) and F2(t ′) are Fermion operators, then by T{F1(t)F2(t ′)} we mean

T{F1(t)F2(t ′)} = F1(t)F2(t ′) if t > t ′
= −F2(t ′)F1(t) if t < t ′. (12.49)

In other words, we need a minus sign for every permutation of one Fermion operator
past another. For Bosons no minus sign is needed.

In Gαβ we find the ground state average of products of time ordered operators
like T{ABC . . .}. Here A, B, . . . are field operators (or products of field operators).
In order to simplify the notation, the spin labels are omitted for the moment. When
the entire time-ordered product is expressed as a product of ψ†’s and ψ’s, it is useful
to put the product in what is called normal form, in which all annihilation operators
appear to the right of all creation operators. For example, the normal product of
ψ†(1)ψ(2) can be written

N{ψ†(1)ψ(2)} = ψ†(1)ψ(2) while N{ψ(1)ψ†(2)} = −ψ†(2)ψ(1). (12.50)

The difference between a T product and an N product is called a pairing or a con-
traction. For example, the difference in the T ordered product and the N product of
AB is given by

T(AB) − N(AB) = AcBc. (12.51)

We note that the contraction of a pair of operators is the anticommutator we omit
when we formally reorder a T product of a pair of operators to get an N product. The
contractions are c-numbers for the operators we are interested in.

12.3.2 Wick’s Theorem

The Wick’s theorem states that T product of operators ABC…can be expressed as
the sum of all possible N products with all possible pairings. By this we mean that
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T(ABCD · · · XY Z)

= N(ABCD · · · XY Z)

+N(AcBcCD · · · XY Z) + N(AcBCcD · · · XY Z) + N(AcBCDc · · · XY Z)

+ · · · + N(ABCD · · · XY cZ c)

+N(AcBcCaDa · · · XY Z) + · · · + N(ABCD · · ·W cX cY aZ a)
...

+N(AcBcCaDa · · · Y bZb) + N(AcBaCcDa · · · Y bZb) + all other pairings.
(12.52)

In evaluating the ground state expectation value of (12.52) only the term in which
every operator is paired with some other operator is nonvanishing since the normal
products that contain unpaired operators must vanish (they annihilate excitations
that are not present in the ground state). In the second and third lines on the right,
in each term we bring two operators together by anticommuting, but neglecting the
anticommutators, then replace the pair by its contraction, and finally take the N
product of the remaining n − 2 operators. We do this with all possible pairings so
we obtain n(n−1)

2 terms, each term containing an N product of the n − 2 remaining
operators. In the fourth line on the right, we choose two pairs in all possible ways,
replace them by their contractions, and leave in each term an N products of the n−4
remaining operators. We repeat the same procedure, and in the last line on the right,
every operator is paired with some other operator in all possible ways leaving no
unpaired operators. Only the completely contracted terms (last line on the right of
(12.52)) give finite contributions in the ground state expectation value. That is, we
have

〈T(ABCD · · · XY Z)〉0
= 〈T(AB)〉〈T(CD)〉 · · · 〈T(Y Z)〉 ± 〈T(AC)〉〈T(BD)〉 · · · 〈T(Y Z)〉

± all other pairings.
(12.53)

Here we have used AcBc = T(AB) − N(AB) and noted that 〈N(AB)〉 = 0, so
the ground state expectation value of 〈AcBc〉 = 〈T(AB)〉. Now let us return to the
expansion of the Green’s function. The first term in the sum over n in (12.48) is

G(0)
αβ(r, t, r′, t ′) = − i

〈S(∞,−∞)〉 〈ΦH | T{ψαI(r, t)ψ
†
βI(r

′, t ′)} | ΦH〉0, (12.54)

where, now, the operators ψα(r, t) and ψ†
β(r, t) are in the interaction representation.

G(0)
αβ is the noninteractingGreen’s function (i.e. it is theGreen functionwhen H

′ = 0).
Here we shall take the interaction to be given, in second quantized form (with spin
labels omitted for simplicity), by

H ′ = 1

2

∫
d3r1d

3r2ψ
†(r1)ψ†(r2)U (r1 − r2)ψ(r2)ψ(r1). (12.55)
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Now introduce a function V (x1 − x2) ≡ U (r1 − r2)δ(t1 − t2) to write the first
correction due to the interaction as (let x = r, t)

δG(1)(x, x ′) = − i
2〈S(∞,−∞)〉

∫
d4x1d4x2V (x1 − x2)

×〈T{ψ(x)ψ(x ′)ψ†(x1)ψ†(x2)ψ(x2)ψ(x1)}〉0. (12.56)

The time-ordered product of the six operators (3 ψ’s and 3ψ†’s) can be written out
by using (12.53)

〈T{ψ(x)ψ†(x ′)ψ†(x1)ψ†(x2)ψ(x2)ψ(x1)}〉0
= 〈T(ψ(x)ψ†(x1))〉〈T(ψ†(x2)ψ(x2))〉〈T(ψ(x1)ψ†(x ′))〉

−〈T(ψ(x)ψ†(x1))〉〈T(ψ†(x2)ψ(x1))〉〈T(ψ(x2)ψ†(x ′))〉 ± all other pairings.
(12.57)

But 〈T(ψ(xi )ψ†(x j ))〉 is proportional to G(0)(xi , x j ). Therefore the first term on the
right hand side of (12.57) is proportional to

G(0)(x, x1)G
(0)(x2, x2)G

(0)(x1, x
′). (12.58)

It is simpler to draw Feynman diagram for each of the possible pairings. There
are six of them in δG(1)(x, x ′) because there are six ways to pair one ψ† with one ψ.
The diagrams are shown in Fig. 12.2. Note that x1 and x2 are always connected by
an interaction line V (x1 − x2). An electron propagates in from x and out to x ′. At
each x1 and x2 there must be one G(0) entering and one leaving.

In a standard book on many body theory, such as Fetter–Walecka (1971), Mahan
(1990), and Abrikosov–Gorkov–Dzyaloshinskii (1963), one can find 1. rules for
constructing the Feynman diagrams for the nth order correction and 2. rules for
writing down the analytic expression for δG(n) associated with each diagram. Let
us give one simple example of constructing diagrams. For the nth order corrections,
there are n interaction lines and (2n + 1) directed Green’s functions, G(0)’s. The
rules for the nth order corrections are as follows.

1. Form all connected, topologically nonequivalent diagrams containing 2n vertices
and two external points. Two solid lines and one wavy line meet at each vertex.

2. With each solid line associate a Green’s function G(0)(x, x ′) where x and x ′ are
the coordinates of the initial and final points of the line.

3. With each wavy line associate V (x − x ′) = U (r − r′)δ(t − t ′) for a wavy line
connecting x and x ′.

4. Integrate over the internal variables d4xi = d3ri dti for all vertex coordinates
(and sum over all internal spin variables if spin is included).

5. Multiply by i n(−)F where F is the number of closed Fermion loops.
6. Understand equal time G(0)’s to mean, as δ → 0+,

G(0)(r1t, r2t) → G(0)(r1t, r2t + δ).
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(a)

(b)

(c)

(d)

(e)

(f)

Fig. 12.2 Feynman diagrams in the first order perturbation calculation

The allowed diagrams contributing to the second-order perturbation δG(2)(x, x ′) are
shown in Fig. 12.3.

Exercise

Demonstrate that the first-order correction to the Green’s function δG(1)(x, x ′) due
to the interaction is written as (12.56).

12.3.3 Linked Clusters

In writing down the rules we have only considered linked (or connected) diagrams,
but diagrams (e) and (f) in Fig. 12.2 are unlinked diagrams. By this we mean that
they fall into two separate pieces, one of which contains the coordinates x and x ′ of
G(x, x ′). It can be shown (see a standard many body text like Abrikosov–Gorkov–
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(a) (b) (c) (d)

(e) (f) (g)

(i) (j)

(h)

Fig. 12.3 Feynman diagrams in the second order perturbation calculation

Dzyaloshinskii (1963).) that when the contributions from unlinked diagrams are
included, they simply multiply the contribution from linked diagrams by a factor
〈S(∞,−∞)〉. Since this factor appears in denominator of Gαβ(x, x ′) in (12.48), it
simply cancels out. Furthermore, diagrams (a) and (c) in Fig. 12.2 are identical except
for interchange of the dummy variables x1 and x2, and so too are (b) and (d). The
rules for constructing diagrams for δG(n)(x, x ′) take this into account correctly and
one can find the proof in standard many body texts mentioned above.

12.4 Dyson Equations

If we look at the corrections to G(0)(x, x ′) we notice that for our linked cluster
diagrams the corrections always begin with a G(0)(x, x1), and this is followed by
something called a self energy part. Look, for example, at the figures labeled (a) or
(b) inFig. 12.2 or (j) inFig. 12.3.Thefinal part of the diagramhas anotherG(0)(xn, x ′).
Suppose we represent the general self energy by Σ . Then we can write

G = G(0) + G(0)ΣG. (12.59)

This equation says that G is the sum of G(0) and G(0) followed by Σ which in turn
can be followed by the exact G we are trying to determine. We can express (12.59)
in diagrammatic terms as is shown in Fig. 12.4a. The simplest self energy part that
is of importance in the problem of electron interactions in a degenerate electron gas
is Σ0, where

Σ0 = G(0)W. (12.60)

In diagrammatic terms this is expressed as shown in Fig. 12.4b, where the double
wavy line is a screened interaction and we can write a Dyson equation for it by
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(a)

(b)

(c)

(d)

Fig. 12.4 Diagrammatic expressions of (a) Dyson equation G = G(0) + G(0)ΣG, (b) self energy
Σ0, (c) Dyson equation W = V + VΠW , (d) polarization part Π0 = G(0)G(0)

W = V + VΠW. (12.61)

The Π is called a polarization part; the simplest polarization part is

Π0 = G(0)G(0), (12.62)

the diagrammatic expression ofwhich is given in Fig. 12.4d. Of course, in (12.60) and
(12.62) we could replaceG(0) by the exactG to have a result that includesmany terms
of higher order. Approximating the self energy by the product of aGreen’s functionG
and an effective interactionW is often referred to as theGW approximation to the self
energy. The simplestGW approximation is the random phase approximation (RPA).
In the RPA, the G is replaced by G(0) and W is the solution to (12.61) with (12.62)
used for the polarization part. This RPA approximation forW is exactly equivalent to
V (q)

ε(q,ω)
, where ε(q,ω) is the Lindhard dielectric function. The key role of the electron

self energy in studying electron–electron interactions in a degenerate electron gas
was initially emphasized by Quinn and Ferrell.1 In their paper the simplest GW
approximation to Σ was used. G(0) was used for the Green’s function and V (q)

ε(q,ω)
,

the RPA screened interaction (equivalent to Lindhard screened interaction) was used
for W .

12.5 Green’s Function Approach to the Electron–Phonon
Interaction

In this section we apply the Green’s function formalism to the electron–phonon
interaction. The Hamiltonian H is divided into three parts:

1J.J. Quinn and R.A. Ferrell, Phys. Rev 112, 812 (1958).
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H = He + HN + HI, (12.63)

where

He =
∑

i

[
p2i
2m

+
∑

l

U (ri − R0
l )

]
, (12.64)

HN =
∑

l

[
P2
l

2M
+

∑

l>m

V (Rl − Rm)

]
, (12.65)

and

HI =
∑

i> j

e2

ri j
−

∑

i,l

ul · ∇U (ri − R0
l ). (12.66)

HereU (ri −Rl) and V (Rl −Rm) represent the interaction between an electron at ri
and an ion atRl and the interaction potential of the ions with each other, respectively.
Let us write Rl = R0

l + ul for an ion where R0
l is the equilibrium position of the ion

and ul is its atomic displacement. The electronic Hamiltonian He is simply a sum
of one-electron operators, whose eigenfunctions and eigenvalues are the object of
considerable investigation for energy band theorists. To keep the calculations simple,
we shall assume that the effect of periodic potential can be approximated to sufficient
accuracy for our purpose by the introduction of an effective mass. The nuclear or
ionic Hamiltonian HN has already been analyzed in normalmodes in earlier chapters.
It should be pointed out that the normal modes of (12.65) are not the usual sound
waves. The reason for this is that V (Rl −Rm) is a ‘bare’ ion-ion interaction, for a pair
of ions sitting in a uniform background of negative charge, not the true interaction
which is screened by the conduction electrons. We can express (12.64)–(12.66) in
the usual second quantized notation as

He =
∑

k

�
2k2

2m∗ c
†
kck, (12.67)

HN =
∑

α

�ωα

(
b†αbα + 1

2

)
, (12.68)

and

HI =
∑

k,k ′,q

V (q)c†k+qc
†
k ′−qck ′ck +

∑

k,α,G

γ(α,G)(bα − b†−α)c†k+q+Gck . (12.69)

The ck and bα are the destruction operators for an electron in state |k〉 and a phonon
in state |α〉 ≡ |q,λ〉 of wave vector q and polarization λ, respectively.2 The creation

2We should really be careful to include the spin state in describing the electrons. We will omit the
spin index for simplicity of notation, but the state |k〉 should actually be understood to represent a
given wave vector and spin as |k〉 ≡ |k,σ〉.
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and annihilation operators satisfy the usual commutation (phonon operators) or anti-
commutation (electron operators) rules. The coupling constant V (q) is simply the

Fourier transform of the Coulomb interaction
(
= 4πe2

Ωq2

)
, and γ(α,G) is given by

γ(α,G) = −i(q + G) · ε̂α

(
�N

2Mωα

)1/2

U (q + G) (12.70)

where ε̂α andU (q+G) are the phonon polarization vector and the Fourier transform
ofU (r−R), respectively. For simplicity we shall limit ourselves to normal processes
(i.e., G = 0), and take U (r − R) as the Coulomb interaction − Ze2

|r−R| between an
electron of charge −e and an ion of charge Ze. With these simplifications γ(α,G)

reduces to

γ(q) = i
4πZe2

q

(
�N

2Mωq

)1/2

(12.71)

for the interaction of electrons with a longitudinal phonon wave, and zero for inter-
action with a transverse wave. Furthermore, when we make these assumptions, the
longitudinal modes of the ‘bare’ ions all have the frequency

ωq = Ωp and |γ(q)|2 = �Ωp

2
V (q) (12.72)

where Ωp =
(
4πZ2e2N

M

)1/2
is the plasma frequency of the ions.

Exercise

Demonstrate that the electron–phonon coupling strength γ(α,G) for the normal
process with the longitudinal phonons is given by (12.71).

We want to treat HI as a perturbation. The brute-force application of perturbation
theory is plagued by divergence difficulties. The divergences arise from the long
range of the Coulomb interaction, and are reflected in the behavior of the coupling
constants as q tends to zero. We know that in the solid, the Coulomb field of a given
electron is screened because of the response of all the other electrons in the medium.
This screening can be taken into account by perturbation theory, but it requires
summing certain classes of terms to infinite order. This is not very difficult to do if
one makes use of Green’s functions and Feynman diagrams. Before we discuss these
we would like to give a very qualitative sketch of why a straightforward perturbation
approach must be summed to infinite order.

Suppose we introduce a static positive point charge in a degenerate electron gas.
In vacuum the point charge would set up a potential Φ0. In the electron gas the point
charge attracts electrons, and the electron cloud around it contributes to the potential
set up in the medium. Suppose that we can define a polarizability factor α such that
a potentialΦ acting on the electron gas will distort the electron distribution in such a
way that the potential set up by the distortion isαΦ. We can then apply a perturbation
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approach to the potential Φ0. Φ0 distorts the electron gas: the distortion sets up a
potential Φ1 = αΦ0. But Φ1 further distorts the medium and this further distortion
sets up a potential Φ2 = αΦ1, etc. such that Φn+1 = αΦn . The total potential Φ set
up by the point charge in the electron gas is

Φ = Φ0 + Φ1 + Φ2 + · · · = Φ0(1 + α + α2 + · · · )
= Φ0(1 − α)−1. (12.73)

We see that wemust sum the straightforward perturbation theory to infinite order. It is
usually much simpler to apply ‘self-consistent’ perturbation theory. In this approach
one simply says that Φ0 will ultimately set up some self-consistent field Φ. Now the
field acting on the electron gas and polarizing it is not Φ0 but the full self-consistent
field Φ. Therefore, the polarization contribution to the full potential should be αΦ:
this gives

Φ = Φ0 + αΦ, (12.74)

which is the same result obtained by summing the infinite set of perturbation contri-
butions in (12.73).

Wewant to use some simple Feynman propagation functions orGreen’s functions,
so we will give a very quick definition of what we must know to use them. If we have
the Schrödinger equation

i�
∂Ψ

∂t
= HΨ, (12.75)

and we know Ψ (t1), we can determine Ψ at a later time from the equation

Ψ (x2, t2) =
∫

d3x1G0(x2, t2; x1, t1)Ψ (x1, t1). (12.76)

By substitution one can show that G0 satisfies the differential equation

[
i�

∂

∂t2
− H(x2)

]
G0(2, 1) = i�δ(t2 − t1)δ(x2 − x1), (12.77)

where (2, 1) denotes (x2, t2; x1, t1). One can easily show that G0(2, 1) can be
expressed in terms of the stationary states of H . That is, if

Hun = εnun, (12.78)

then G0(2, 1) can be shown to be

G0(2, 1) =
∑

n

un(x2)u
∗
n(x1)e

−iεn t21/�, if t21 > 0,

= 0 otherwise. (12.79)
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If we are considering a system ofmany Fermions, we can take into account the exclu-
sion principle in a very simple way. We simply subtract from (12.79) the summation
over all states of energy less than the Fermi energy EF.

G0(2, 1) =
∑

εn>EF

un(x2)u
∗
n(x1)e

−iεn t21/�, if t21 > 0,

= −
∑

εn<EF

un(x2)u
∗
n(x1)e

−iεn t21/�, if t21 < 0. (12.80)

We always represent a Fermion propagator by a directed solid line. A negative (rel-
ative to the last filled state EF) energy Fermion propagates backward in time. This
corresponds to the propagation of a hole in a normally filled state. For free electrons
the functions un(x) are plane waves. We are often interested in G0(q,ω), the Fourier
transform of G0(2, 1):

G0(2, 1) =
∫

d3qdω

(2π)4
G0(q,ω)eiq·x21−iωt21 . (12.81)

The single particle propagator G0(q,ω) for a system of free electrons is

G0(q,ω) = 1

ω − ε(q)(1 − iη)
, (12.82)

where ε(q) = �
2

2m (q2 − k2F) is the energy measured relative to the Fermi energy and
takes on both positive and negative values. kF is the Fermi wave number, and δ is a
positive infinitesimal.

In the language of second quantization G0(2, 1) can also be expressed as the
ground state expectation value of the time-ordered product of two electron field
operators

G0(2, 1) = 〈GS | T {Ψ (2)Ψ †(1)} | GS〉. (12.83)

In this expression Ψ (2) = Ψ (x2, t2) is the electron field operator and Ψ †(2) is its
conjugate. These operators satisfy the usual Fermion anticommutation relations. T is
the chronological operator. It should be pointed out that people often define G0(2, 1)
with an additional factor of i on the right hand side of (12.83). This arbitrariness
in defining the propagation functions is compensated for by slight differences in
the rules for calculating the amplitudes of the Feynman diagrams which appear in
perturbation theory.

We can also define a propagation function for the instantaneous Coulomb interac-
tion e2

r21
δ(t21) between electrons at two points in space time. We shall use the Fourier

transform of e2

r21
δ(t21) as the bare Coulomb propagator V (q,ω)

V (q,ω) = 4πe2

Ωq2
. (12.84)



12.5 Green’s Function Approach to the Electron–Phonon Interaction 391

If we define the phonon field operator Φ(x) by the equation

Φ(x) =
∑

q

γ(q)eiq·x(bq + b†−q) (12.85)

with γ(q)(= −γ(−q)) given by (12.71) and bq(t) = bqe−iωq t , then we can define
the space time representation for the phonon propagator in the usual way

P0(2, 1) = −i〈GS | T {ΦI (x2, t2)ΦI (x1, t1)} | GS〉 (12.86)

whereΦI (x2, t2) = e−i H0t2Φ(x2)ei H0t2 . The Fourier transform of (12.86) is P0(q,ω),
the wave vector–frequency space representation of P0. For the phonon system
described by (12.71) and (12.72), P0(q,ω) is given by

P0(q,ω) = 2Ωp|γ(q)|2
ω2 − Ω2

p + iη
, (12.87)

where Ωp is the bare phonon frequency. It is quite convenient to use Feynman dia-
grams to keep track of the various terms in perturbation theory. The rules for con-
structing diagrams are quite simple. Each electron in an excited state is represented
by a solid line directed upward. Each hole in a normally filled state is represented
by a solid line directed downward. The instantaneous Coulomb interaction is repre-
sented by a horizontal dotted line connecting the two-particles undergoing a virtual
scattering, and propagation of a phonon is represented by a wavy line.

Consider the scattering of two electrons. In vacuum they can scatter by the
exchange of one virtual photon (Coulomb line) in only one way, which is shown
in Fig. 12.5. Now consider the Coulomb interaction in the medium. The set of dia-
grams, of which Figs. 12.6a, b are representative, are additional processes which can
not occur in the absence of the polarizablemedium. In Fig. 12.6c, the circle represents
any possible part of a diagram which is connected to the remainder by two Coulomb
interaction lines only. All such parts of a general diagram are called polarization
parts, because they obviously represent the response or screening of the polarizable
medium.

Fig. 12.5 Diagrammatic expression of the exchange of virtual photon
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(a) (b) (c)

Fig. 12.6 Diagrammatic expressions of representative polarization parts in pair approximation

The effective Coulomb interaction between two-particles should be the sum of all
the possible polarization parts (the bare interaction can be thought of as the zeroth
order polarization part). Actually we can not sum all the possible polarization parts,
but we can sum the class of which Fig. 12.6a, b are representative, that is, the chain
of bubbles. The approximation of replacing the effective interaction by the sum of all
bubble graph is called the pair approximation or ring approximation. Before looking
at the sum we will write down the rules for calculating the amplitude associated with
a given Feynman diagram which appears in perturbation theory. The amplitude for
a given diagram contains a product of

(1) a propagation function G0(k,ω) for each internal electron–hole line of wave
vector k and frequency ω

(2) a propagation function P0(k,ω) for each phonon line of wave vector q and
frequency ω

(3) a propagation function V (q,ω) for each Coulomb line of wave vector q
(4) a factor (−1) for each closed loop
(5) (−i/�)n for the nth order term in perturbation theory
(6) delta functions conserving energy, momentum, and spin at each vertex
(7) Finally we must integrate over the wave vectors and frequencies of all internal

lines

The set of diagrams wewould like to sum in order to obtain the effective Coulomb
propagator W (q,ω) can easily be seen to be the solution of the equation given
pictorially by Fig. 12.7. This equation can be written

W (q,ω) = V (q,ω) + V (q,ω)Π0(q,ω)W (q,ω). (12.88)

Here Π0(q,ω)[= −χ0(q,ω)], where

Π0(q,ω) = −2i�−1
∫

d3k1 dω1

(2π)4
G0(k1,ω1)G0(k1 + q,ω1 + ω) (12.89)

is the propagation function for the electron–hole pair. The factor of two is introduced
to account for the two possible spin orientations and the minus sign comes from the
fact that Π0(q,ω) contains one closed fermion loop. Using the electron propagation
functions defined by (12.82) and integrating gives
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Fig. 12.7 Diagrammatic expression of Dyson equation for the effective Coulomb propagatorW =
V + VΠ0W with Π0 = −χ0

χ0(q,ω) = −�
−1 2

(2π)3

∫
d3k

[
θ(|k+q|−kF|)θ(kF−|k|)

ω−ωk+q+ωk+iη

− θ(kF−|k+q|)θ(|k|−kF)
ω−ωk+q+ωk−iη

]
,

(12.90)

where �ωq = �
2q2

2m . The solution of (12.88) is simply

W (q,ω) = V (q,ω)

1 + V (q,ω)χ0(q,ω)
(12.91)

and using (12.90) one can easily see that 1 + Vχ0 is just the Lindhard dielectric
function ε(q,ω). This dielectric function is discussed at some length in the previous
chapter, and the reader is referred to Lindhard’s paper3 for a complete treatment. For
our purposes we must note two things: first ε(q,ω) is complex, the imaginary part
being proportional to the number of electrons which can be excited to an unoccupied
state by addition of a momentum �qwhose energy change is equal to �ω. The second
point is that for zero frequency ε(q, 0) is given by

ε(q) = 1 + F

(
q

2kF

)
k2s
q2

, (12.92)

where ks is the Fermi–Thomas screening parameter and kF is the Fermi wave number.

The function F
(

q
2kF

)
is the function sketched in Fig. 11.12. F(x) is equal to unity

for x equal to zero, approaches zero as x approaches infinity, and has logarithmic
singularity in slope at x = 1.

Now let us return to a ‘model solid’ containing longitudinal phonons as well as
electrons. Two electrons can scatter via the virtual exchange of phonons. In fact
anywhere a Coulomb interaction line has appeared previously a phonon line may
equally well appear. If we call the sum of V (q,ω) and P0(q,ω)/� as D0(q,ω),
we can just replace V and W by D0 and D in (12.88). D(q,ω) then represents
the renormalized propagator for the total interaction, i.e. the sum of the Coulomb
interaction and the interaction due to virtual exchange of phonons. It is apparent that

3J. Lindhard, Kgl. Danske Videnskab. Selskab, Mat.-Fys. Medd. 28, No. 8 (1954); ibid., 27, No. 15
(1953).

http://dx.doi.org/10.1007/978-3-319-73999-1_11


394 12 Many Body Interactions–Green’s Function Method

D(q,ω) = D0(q,ω)

1 + D0(q,ω)χ0(q,ω)
. (12.93)

By substituting into (12.93) the expressions for the bare propagation functions and
using the fact that 1 + V (q,ω)χ0(q,ω) = ε(q,ω), one can obtain

D(q,ω) = 4πe2

q2
[
ε(q,ω) − Ω2

p/ω
2
] . (12.94)

The propagator D has a pole at

ω2 = Ω2
p

ε(q,ω)
. (12.95)

The solutions of this equation are the frequencies of the ‘renormalized’ phonons.
From the longwavelength, zero frequency dielectric constant we get the approximate
solution

ωq = Ωp

ks
q. (12.96)

For most metals Ωp

ks
is within about 15–20% of the velocity of longitudinal sound

waves. If we look at the derivative of ω2
q with respect to q we see a logarithmic

singularity at q = 2kF. This is responsible for the Kohn effect, which has been
observed by neutron scattering. If we take account of the imaginary as well as the
real part of the dielectric constant, the solution of (12.95) has both real and imaginary
part. If we write ω = ω1 + iω2, then ω2 turns out to be

ω2 ≈ π

4

k2s
k2s + q2

cs
vF

ω1, (12.97)

where cs is the velocity of sound and vF the Fermi velocity. The coefficient of atten-
uation of the sound wave (due to excitation of conduction electrons) is simply ω2

cs
.

This result agrees with the more standard calculations of the attenuation coefficient.
Finally, if we wish to define the effective interaction between electrons due to

virtual exchange of phonons, or the effective phonon propagator, we can simply
subtract from D(q,ω) that part which contains no phonons, namely W (q,ω). If we
call the resultant effective phonon propagator P(q,ω)/�, we obtain

P(q,ω) = 2ωq | γeff(q) |2
ω2 − ω2

q

, (12.98)

where ωq is given by (12.96) and
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| γeff(q) |= 4πZe2

qε(q,ωq)

(
�N

2Mωq

)1/2

or | γeff(q) |= �ωq

2
W (q). (12.99)

Replacing ε(q,ωq) by its long wavelength, zero frequency limit
[
1 + k2s

q2

]
, reduces

(12.99) to the result of Bardeen and Pines4 for the effective electron–electron inter-
action.

Exercise

Work out that the effective electron–phonon coupling strength γeff(q) is written as
(12.99).

12.6 Electron Self Energy

The Dyson equation for the Green’s function can be written

G(k,ω) = G(0)(k,ω) + G(0)(k,ω)Σ(k,ω)G(k,ω). (12.100)

Dividing by GG(0) gives

Σ(k,ω) = [G(0)(k,ω)]−1 − [G(k,ω)]−1. (12.101)

The energy of a quasiparticle can be written

Ep = εp + Σ(p,ω) |ω=Ep . (12.102)

Ep and εp, the kinetic energy, are usually measured relative to EF, the Fermi energy.
Knowing howΣ(p,ω) depends on p, ω, and rs allows one to calculate almost all the
properties of an electron gas that are of interest. Some results of interest are worth
mentioning.

(1) Σ(p, Ep) has both a real and an imaginary part.

Σ(p, Ep) = Σ1(p, Ep) + iΣ2(p, Ep). (12.103)

The imaginary part is related to the lifetime of the quasiparticle excitation.
(2) The spectral function A(p,ω) is defined by

A(p,ω) = −2Σ2(p,ω)
[
ω − εp − Σ1(p,ω)

]2 + [Σ2(p,ω)]2
. (12.104)

4J. Bardeen and D. Pines, Phys. Rev. 99, 1140 (1955).
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For noninteracting electrons A(p,ω) has a δ function singularity at ω = εp, the
energy of the excitation. The δ function is broadened byΣ2(p,ω). If A(p,ω) has
a pole in a region where Σ2(p,ω) is zero, the strength of the pole is decreased
by a renormalization factor Z(p).

A(p,ω) = 2πZ(p)δ
(
ω − εp − Σ1(p,ω)

)
(12.105)

and

Z(p) =
[

1

1 − ∂
∂ω

Σ1(p,ω)

]

ω=Ep

. (12.106)

(3) The quasiparticle excitations at the Fermi surface have an effective mass m∗
given by

m

m∗ =
[
1 + ∂Σ1(k,ω)

∂εk

1 − ∂Σ1(k,ω)

∂ω

]

k = kF
ω = 0

. (12.107)

(4) Properties like the spin susceptibility, the specific heat, the compressibility, and
the ground state energy can be evaluated from a knowledge of Σ(k,ω). But, we
do not have time to go through these in any detail.

(5) The self energy approach leads very naturally to an understanding of the Landau
theory of a Fermi liquid. We will describe a very brief and intuitive explanation
of the theory.

12.7 Quasiparticle Interactions and Fermi Liquid Theory

Instead of describing the interacting ground state and excited states of an electron
gas, we can think of simply describing how many quasiparticles are present in some
excited state. Let us start by noting that if we begin with a filled Fermi sphere of
noninteracting electrons (i.e. the Sommerfeld model) and adiabatically turn on the
electron–electron interaction, we will generate at t = 0 the exact interacting ground
state. Now consider the noninteracting state described by a filled Fermi sphere plus
one electron of momentum p outside the Fermi sphere (or one hole of momentum
p inside the Fermi sphere). When interactions are adiabatically turned on, this is a
single quasiparticle state. The energy of this quasielectron (or quasihole) is written
by

Ep = εp + Σ(p, Ep). (12.108)

If Ep is much larger than Σ2(p, Ep), the imaginary part of Σ(p, Ep), then the qua-
siparticles have long lifetimes. It is much simpler to describe a state by saying how
many quasielectrons and quasiholes are present. Then, the energy of the state can be
written as
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E = E0 +
∑

pσ

δnpσEpσ + 1

2

∑

p, p′
σ, σ′

fσσ′(p,p′)δnnσδnp′σ′ . (12.109)

The first term on the right is the ground state energy, the second is the quasiparticle
energy Epσ multiplied by the quasiparticle distribution function, and the third repre-
sents the interactions of the quasiparticles with one another. Σ(p, Ep) represents the
interaction of a quasiparticle of momentum pwith the ground state of the interacting
electron gas. But if the electron gas is not in its ground state, there are quasielectrons
and quasiholes present that change the energy of the quasiparticle of momentum p.
We can get a simple picture of the Fermi liquid interaction between quasiparticles by
considering the Feynman diagrams that describe the scattering processes that take a
pair of quasiparticles in states (p,σ) and (p′,σ′) from this initial state to an equiva-
lent final state. These processes are represented in diagrammatic terms in Fig. 12.8a,
b. Here the interactionW (denoted by wavy lines) will be taken as the RPA screened
interaction. In the first term (a) W (q,ω) corresponds to zero momentum transfer
since p → p and p′ → p′. This term is exactly zero since the Coulomb interaction is
canceled by the interaction with the uniform background of positive charge at q = 0.
The second term (b) gives the same final state as the initial state only if σ = σ′.
Then W (q,ω) is W (p − p′, 0) since the momentum transfer is p − p′ and there is
no change in energy.

Of course, higher order processes in the effective interaction could be important,
but we will ignore them to get the simplified picture. We take Landau’s fσσ′(p,p′)
to be equal to

fσσ′(p,p′) =
{

4πe2

(p−p′)2ε(p−p′,0) if σ = σ′

0 if σ �= σ′.
(12.110)

Here ε(p − p′, 0) is the static Lindhard dielectric function for q = p − p′. With
this simple approximation a rather good estimate of m∗ (and hence of the electronic
specific heat) can be obtained. Results for the spin susceptibility are not quite as good,
and the estimate of the interaction contribution to the compressibility is poor. One

(a)

(b)

Fig. 12.8 Diagrammatic representation of quasiparticle scattering of (a) zero momentum transfer
and (b) of finite momentum transfer
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important effect that is omitted is the effect of spin fluctuations (in addition to charge
density fluctuations) and another is the local field corrections to the RPA. In order to
get a more thorough understanding of these ideas, one needs to read advanced texts
on many body theory.

Problems

12.1 Show explicitly that

∫ t
t0
dt1

∫ t1
t0
dt2

∫ t3
t0
dt3 HI(t1)HI(t2)HI(t3)

= 1
3!

∫ t
t0
dt1

∫ t
t0
dt2

∫ t
t0
dt3T{HI(t1)HI(t2)HI(t3)}.

12.2 The complete first order contributions to G(x, x ′) are shown in the figure.

(1)

(2)

(3)

(4)

(a) Write each term δG(1)(x, y) out in terms of noninteraction two-particle
Green’s functionG(0)(x, y) and the interaction V (x1−x2) ≡ U (r1−r2)δ(t1−
t2). Here x = (r, t) and one may omit the spin to simplify the notation.

(b) Let us now restore the spin labels (α,β) and introduce the Fourier transform
Gαβ(k) of the Gαβ(x, y) as follows:

Gαβ(x, x ′) = 1

(2π)4

∫
d4k eik·(x−x ′)Gαβ(k)

G(0)
αβ(x, x ′) = 1

(2π)4

∫
d4k eik·(x−x ′)G(0)

αβ(k),

where k = (k,ω), d4k ≡ d3k dω, and k · x ≡ k · x − ωt . In addition, for the
interaction given by V (x1 − x2) ≡ U (r1 − r2)δ(t1 − t2) we can write
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V (x, x ′)αα′,ββ′ = 1
(2π)4

∫
d4k eik·(x−x ′)V (k)αα′,ββ′

= 1
(2π)3

∫
d3k ei ·(x−x′)U (k)αα′,ββ′δ(t − t ′),

whereV (k)αα′,ββ′ = U (k)αα′,ββ′ = 1
(2π)3

∫
d3x e−ik·xU (k)αα′,ββ′ is the spatial

Fourier transform of the interparticle potential. Express each term obtained in
part (a) in terms of G(0)

αβ(k) and V (k) in the momentum space.

12.3 By definition the noninteracting fermion Green’s function is given by

G(0)
αβ(xt, x′t ′) = −i < Φ|T{ψIα(xt)ψ†

Iβ(x′t ′)}Φ >,

the noninteracting ground state vector is taken to be normalized. Show that

G(0)
αβ(k,ω) = δαβ

[
θ(k − kF)

ω − �−1εk + iη
+ θ(kF − k)

ω − �−1εk − iη

]
.

12.4 Let us define the phonon field operator Φ(x) by

Φ(x) =
∑

q

γ(q)eiq·x(bq + b†−q),

where γ(q) = i 4πZe
2

q

(
�N

2Mωq

)1/2
. Then we can define the phonon propagator

by P0(2, 1) = −i〈GS | T {ΦI (x2, t2)ΦI (x1, t1)} | GS〉 where ΦI (x2, t2) =
e−i H0t2Φ(x2)ei H0t2 .

(a) Take the Fourier transform of P0(2, 1) to obtain P0(q,ω), the wave vector–
frequency space representation of P0(2, 1).

(b) Show that P0(q,ω) can be written as

P0(q,ω) = 2Ωp|γ(q)|2
ω2 − Ω2

p + iη
,

where Ωp =
(
4πZ2e2N

M

)1/2
is the bare plasma frequency of the ions.

12.5 Let us consider a Dyson equation given by

W (q,ω) = V (q,ω) − V (q,ω)χ0(q,ω)W (q,ω),

where the polarization function for the electron–hole pair is given by

χ0(q,ω) = 2i�−1
∫

d3k1dω1

(2π)4
G0(k1,ω1)G0(k1 + q,ω1 + ω).

(a) Show that χ0(q,ω) can be written as
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χ0(q,ω) = −�
−1 2

(2π)3

∫
d3k θ(|k + q| − kF)θ(kF − |k|)

×
[

1
ω−(ωk+q−ωk)+iη − 1

ω−(ωk+q−ωk)−iη

]
,

where �ωq = ε(q) = �
2q2

2m . Note that the single particle propagator G0(q,ω)

is written as

G0(q,ω) = 1

ω − ωq,kF(1 − iη)
with ωq,kF = �

2(q2 − k2F)

2m
≷ 0.

(b) Show that the solution of the Dyson equation given above is simply W =
V

1+Vχ0
.

(c) Show that 1 + Vχ0 is the same as the Lindhard dielectric function ε(q,ω).

12.6 Let us consider a model solid containing electrons as well as longitudinal
optical phonons.

(a) Show that effective propagator D(q,ω) is given by

D(q,ω) = 4πe2

q2

1[
ε(q,ω) − Ω2

p/ω
2
] ,

where ε(q,ω) andΩp are the Lindhard dielectric function and the bare plasma
frequency of the ions.

(b) Demonstrate that the effective electron–phonon coupling constant γeff(q) is
given by

| γeff(q) |= V (q)

ε(q,ωq)

�ωq

2
,

where ωq = Ωp
q
ks
, the renormalized plasmon frequency of the lattice in the

long wavelength regime.

Summary
In this chapter we study Green’s function method – a formal theory of many body
interactions. Green’s function is defined in terms of a matrix element of time-ordered
Heisenberg operators in the exact interacting ground state. We then introduce the
interaction representation of the state functions of many particle states and write the
Green’s function in terms of time-ordered products of interaction operators. Wick’s
theorem is introduced to write the exact Green’s function as a perturbation expansion
involving only pairings of field operators in the interaction representation. Dyson
equations for Green’s function and the screened interaction are illustrated and Fermi
liquid picture of quasiparticle interactions is also discussed.

The Hamiltonian H of a many particle system can be divided into two parts H0

and H ′, where H ′ represents the interparticle interactions given, in second quantized
form, by
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H ′ = 1

2

∫
d3r1d

3r2ψ
†(r1)ψ†(r2)U (r1 − r2)ψ(r2)ψ(r1).

Particle density at a position r0 and the total particle number N are written, respec-
tively, as n(r0) = ψ†(r0)ψ(r0); N = ∫

d3rψ†(r)ψ(r).
The Schrödinger equation of the many particle wave function Ψ (1, 2, . . . , N ) is

i� ∂
∂t Ψ = HΨ, where � =≡ 1 and Ψ (t) = e−i HtΨH. Here ΨH is time independent.

The state vectorΨI(t) and operator FI(t) in the interaction representation are written
as

ΨI(t) = ei H0tΨS(t); FI(t) = ei H0t FSe
−i H0t .

The equation of motion for FI(t) is
∂FI
∂t = i [H0, FI(t)] and the solution for FI(t) can

be expressed as ΨI(t) = S(t, t0)ΨI(t0), where S(t, t0) is the S matrix given by

S(t, t0) = T
{
e−i

∫ t
t0
HI(t ′)dt ′

}
.

The eigenstates of the interacting system in the Heisenberg, Schrödinger, and inter-
action representation are related by

ΨH(t) = ei HtΨS(t) and ΨI(t) = ei H0tΨS(t).

At time t = 0, ΨI(t = 0) = ΨH(t = 0) = ΨH. ΨH is the state vector of the fully
interacting system in the Heisenberg representation: ΨH = S(0,−∞)ΦH

The Green’s function Gαβ(x, x ′) is defined, in terms of ψH
α and ψH†

β , by

Gαβ(x, x ′) = −i
〈ΨH|T{ψH

α (x)ψH†
β (x ′)}|ΨH〉

〈ΨH|ΨH〉 ,

where x = {r, t} and α, β are spin indices.
In normal product of operators, all annihilation operators appear to the right of

all creation operators: for example,

N{ψ†(1)ψ(2)} = ψ†(1)ψ(2) while N{ψ(1)ψ†(2)} = −ψ†(2)ψ(1).

Pairing or a contraction is the difference between a T product and an N product:
T(AB) − N(AB) = AcBc. The Wick’s theorem states that T product of operators
ABC · · · can be expressed as the sum of all possible N products with all possible
pairings.

Dyson equations for the interacting Green’s function G and the screened inter-
action W are written as G = G(0) + G(0)ΣG; W = V + VΠW. Here Σ and Π

denote the self energy and polarization part, and the simplest of which are given,
respectively, by Σ0 = G(0)W ; Π0 = G(0)G(0). In the RPA, the G is replaced by
G(0) and W is exactly equivalent to V (q)

ε(q,ω)
, where ε(q,ω) is the Lindhard dielectric

function.
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The Hamiltonian H of a system with the electron–phonon interaction is divided
into three parts: H = He + HN + HI, where

He =
∑

k

�
2k2

2m∗ c
†
kck, HN =

∑

α

�ωα

(
b†αbα + 1

2

)
,

and HI = ∑
k,k ′,q

4πe2

Ωq2 c
†
k+qc

†
k ′−qck ′ck + ∑

k,α,G γ(α,G)(bα − b†−α)c†k+q+Gck . Once

we know Ψ (t1) of the Schrödinger equation, i� ∂Ψ
∂t = HΨ, we have

Ψ (x2, t2) =
∫

d3x1G0(x2, t2; x1, t1)Ψ (x1, t1).

For free electrons, G0(q,ω) is the Fourier transform of G0(2, 1):

G0(q,ω) = 1

ω − ε(q)(1 − iδ)
.

For a ‘model solid’ containing longitudinal phonons as well as electrons, two elec-
trons can scatter via the virtual exchange of phonons and the total interaction, i.e.
the sum of the Coulomb interaction and the interaction due to virtual exchange
of phonons, is given, in terms of bare interaction D0 and polarization χ0, by
D(q,ω) = D0(q,ω)

1+D0(q,ω)χ0(q,ω)
.

The Dyson equation for the Green’s function can be written

G(k,ω) = G(0)(k,ω) + G(0)(k,ω)Σ(k,ω)G(k,ω).

The electron self energy is Σ(k,ω) = [G(0)(k,ω)]−1 − [G(k,ω)]−1 and the energy
of a quasiparticle is written as Ep = εp + Σ(p,ω) |ω=Ep . Σ(p, Ep) represents the
interaction of a quasiparticle of momentum pwith the ground state of the interacting
electron gas. The energy of the state is written as

E = E0 +
∑

pσ

δnpσEpσ + 1

2

∑

p, p′
σ, σ′

fσσ′(p,p′)δnnσδnp′σ′ .

The first term on the right is the ground state energy, the second is the quasiparti-
cle energy Epσ multiplied by the quasiparticle distribution function, and the third
represents the interactions of the quasiparticles with one another.



Chapter 13
Semiclassical Theory of Electrons

13.1 Bloch Electrons in a dc Magnetic Field

In the presence of an electric fieldE and a dcmagnetic fieldB, the equation of motion
of a Bloch electron in k-space takes the form

�k̇ = −eE − e

c
v × B. (13.1)

Here v = 1
�
∇kε(k) is the velocity of the Bloch electron whose energy ε(k) is an

arbitrary function of wave vector k. In deriving (13.1) we noted that no interband
transitions were allowed, and that when k became equal to a value on the boundary
of the Brillouin zone this value of k was identical to the value on the opposite side
of the Brillouin zone separated from it by a reciprocal lattice vector K.

Equation (13.1) can be obtained from an effective Hamiltonian

H = ε
(p

�
+ e

�c
A
)

− eφ, (13.2)

where ε(k) is the energy as a function of k in the absence of the magnetic field and
B = ∇ × A. Hamilton’s equations give, since p = �k − e

cA,

vx = ∂H
∂ px

= 1

�

∂ε

∂kx
, (13.3)

− ṗx = ∂H
∂x

= ∇kε · ∂

∂x

( e

�c
A
)

− e
∂φ

∂x
= e

c

(
v · ∂A

∂x

)
− e

∂φ

∂x
. (13.4)

But we also know that ṗx = �k̇x − e
c Ȧx , or

ṗx = �k̇x − e

c

∂ Ax

∂t
− e

c

(
vx

∂ Ax

∂x
+ vy

∂ Ax

∂y
+ vz

∂ Ax

∂z

)
. (13.5)
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Equating the ṗx from (13.4) with that from (13.5) gives

�k̇x = −eEx − e

c
(v × B)x . (13.6)

Since the equation of motion, (13.1) or (13.6), is derived from Hamilton’s equations,
(13.3) and (13.4) using the effective Hamiltonian (13.2), p and rmust be canonically
conjugate coordinates.

13.1.1 Energy Levels of Bloch Electrons in a Magnetic Field

Onsager determined the energy levels of electrons in a dc magnetic field by noting
that

�k̇ = −e

c
v × B (13.7)

could be written as
k̇⊥ = − e

�c
|v⊥|B. (13.8)

Here v⊥ is the component of v perpendicular to B and k⊥ is perpendicular to both B
and v. Integrating (13.7) gives

k⊥ = eB
�c

× r⊥ + constant. (13.9)

We can choose the origin of k and r space such that the constant vanishes for the
electron of interest. Thus the orbit in real space (by this we mean the periodic part
of the motion in r-space that is perpendicular to B) will be exactly the same shape
as the orbit in k-space except that it is rotated by 90◦ and scaled by a factor eB

�c . This
factor eB

�c is called l−2
0 , where l0 is the magnetic length.

Exercise

Demonstrate (13.9) by combining (13.7) and (13.8).

Let us choose B to define the z-direction. Then k̇z = 0 and kz is a constant of the
motion. Now look at the time rate of change of the energy

dε

dt
= ∇kε · dk

dt
= �v ·

(
− e

�c
v × B

)
. (13.10)

This is clearly zero since v is perpendicular to v × B, meaning that ε is a constant
of the motion also. Thus the orbit of a particle in k-space is the intersection of a
constant energy surface ε(k) = ε and a plane of constant kz (see Fig. 13.1).
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Fig. 13.1 A constant energy surface ε(k) = ε and the orbit of a particle in k-space

Let us look at the different kinds of orbits that are possible by considering the
intersections of a plane kz = 0with a number of different energy surfaces for a simple
model ε(k) (see, for example, Fig. 13.2). The orbits can be classified as

• closed electron orbits like A and B
• closed hole orbits like C
• open orbits like D

Often one simply repeats the Brillouin zone a number of times to show how the
pieces of hole orbits or the open orbits look as illustrated in Fig. 13.3.

Fig. 13.2 Different kinds of orbits of a particle in k-space
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Fig. 13.3 Repeated zone scheme of the orbits in k-space

13.1.2 Quantization of Energy

For closed orbits in k-space, the motion is periodic. The real space orbits in the
direction perpendicular to B will also be periodic. Because p and r are canonically
conjugate coordinates we can apply the Bohr–Sommerfeld quantization condition

∮
p⊥ · dr⊥ = 2π�(n + γ), (13.11)

where γ is a constant satisfying 0 ≤ γ ≤ 1, and n = 0, 1, 2, . . .. We can use
p⊥ = �k⊥ − e

cA⊥ and the fact that k⊥(t) = eB
�c × r⊥(t). Then

∮
p⊥ · dr⊥ = e

c
B ·
∮

r⊥ × dr⊥ − e

c

∮
A · dr⊥.

But
∮
r⊥ × dr⊥ is just twice the area of the orbit as is illustrated in Fig. 13.4. Further-

more
∮
A · dr⊥ = ∫SURFACE ∇ × A · dS = B × (area of orbit). Therefore we obtain

∮
p⊥ · dr⊥ = e

c
B A = 2π�(n + γ), (13.12)

Fig. 13.4 r⊥ × dr⊥ is twice the area of the triangle within the orbit
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where A is the area of the orbit. A depends on energy ε and on kz . We know that
A(ε, kz) is proportional to the area S(ε, kz) of the orbit in k-space, from (13.9), with
S(ε, kz) = ( eB

�c

)2 A(ε, kz). Thus the quantization condition can be written

S(ε, kz) = 2πeB

�c
(n + γ). (13.13)

Example

For free electrons ε = �
2k2

2m . The area S(ε, kz) is equal to πk2
⊥, where k2

⊥ + k2
z = k2.

Therefore

S(ε, kz) = π

(
2mε

�2
− k2

z

)
. (13.14)

Setting this result equal to 2πeB
�c (n + γ) and solving for energy ε gives

ε = �
2k2

z

2m
+ �ωc(n + γ) (13.15)

where ωc = eB
mc is the cyclotron frequency.

13.1.3 Cyclotron Effective Mass

In the absorption of radiation direct transitions between energy levels (Landau levels)
occur. If we make a transition from εn(kz) to εn+1(kz) we can write

S(εn(kz), kz) = 2πeB
�c (n + γ),

S(εn+1(kz), kz) = 2πeB
�c (n + 1 + γ).

(13.16)

We define the energy difference εn+1(kz) − εn(kz) as �ωc, where ωc(ε, kz) is the
cyclotron frequency associated with the orbit {ε, kz}. By subtracting the first equation
of (13.16) from the second we can obtain

[
εn+1(kz) − εn(kz)

] ∂S(ε, kz)

∂ε
= 2πeB

�c

and from this we obtain

ωc(ε, kz) = 2πeB

�2c

[
∂S(ε, kz)

∂ε

]−1

= eB

m∗c
, (13.17)

or

m∗(ε, kz) = �
2

2π

∂S(ε, kz)

∂ε
. (13.18)
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13.1.4 Velocity Parallel to B

Consider two orbits that have different values of kz separated by Δkz . Then, for the
same εn we have

S [εn(kz + Δkz), kz + Δkz
]− S [εn(kz), kz

] = 0 (13.19)

because both orbits have cross-sectional area equal to 2πeB
�c (n + γ). We can write

(13.19) as
∂S
∂ε

∂εn(kz)

∂kz
+ ∂S

∂kz
= 0. (13.20)

But ∂ε
∂kz

= �vz and ∂S
∂ε

= 2πm∗
�2 giving

vz(ε, kz) = − �

2πm∗(ε, kz)

∂S(ε, kz)

∂kz
. (13.21)

Example

For the free electron gasmodel, we haveS = π
(
2m∗ε
�2 − k2

z

)
. Therefore, ∂S

∂kz
= −2πkz

and, hence,

vz(ε, kz) = − �

2πm∗ (−2πkz) = �kz

m∗ .

13.2 Magnetoresistance

The study of the change in resistivity of a metal as a function of the strength of an
applied magnetic field is very useful in understanding certain properties of the Fermi
surface of a metal or semiconductor. The standard geometry for magnetoresistance
measurements is shown in Fig. 13.5. Current flows only in the x direction. Usually
B is in the z direction and the transverse magnetoresistance is defined as

R(Bz) − R(0)

R(0)
= ΔR(Bz). (13.22)

Sometimes people also study the case where B is parallel to E and measure the
longitudinal magnetoresistance.

It might seem surprising that anything of interest arises from studying the
magnetoresistance, because, as we described, for the simple free electron model
ΔR(Bz) = 0. This resulted from the equation

jx = σxx Ex + σxy Ey

jy = −σxy Ex + σxx Ey = 0.
(13.23)
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Fig. 13.5 Standard geometry for magnetoresistance measurements

Combining these gives

jx = σ2
xx + σ2

xy

σxx
Ex . (13.24)

But for free electrons
σxx = σ0

1+ω2
c τ

2 ,

σxy = − ωcτσ0
1+ω2

c τ
2 ,

(13.25)

where σ0 = n0e2τ
m is the dc conductivity. Using (13.25) in (13.24) gives jx = σ0Ex ,

independent of B so that the magnetoresistance vanishes.

Experimental Results

Before discussing other models than the simple one band free electron model, let us
discuss briefly the experimental results. The following types of behavior are common:

(1) The magnetoresistance is nonzero, but it saturates at very high magnetic fields
at a value that is several times larger than the zero field resistance.

(2) The magnetoresistance does not saturate, but continues to increase with increas-
ing B in all directions.

(3) The magnetoresistance saturates in some crystal directions but does not saturate
in other directions.

Simple metals like Na, Li, In and Al belong to the type (1). Semimetals like Bi and
Sb belong to type (2). The noble metals (Cu, Ag, and Au), Mn, Zn, Cd, Ga, Sn, and
Pb belong to type (3). One can obtain some understanding of magnetoresistance by
using a two band model.

13.3 Two-Band Model and Magnetoresistance

Let us consider two simple parabolic bands with mass, cyclotron frequency, charge,
concentration, and collision time given by mi , ωci , ei , ni , and τi , respectively where
i = 1 or 2. Each band has a conductivity σi , and the total current is simply the sum
of j1 and j2

jT = (σ1 + σ2) · E. (13.26)
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But

σi = ni e2i τi/mi

1 + ω2
ciτ

2
i

⎛
⎝

1 ωciτi 0
−ωciτi 1 0

0 0 1 + ω2
ciτ

2
i

⎞
⎠ . (13.27)

Note that we are taking ωci = ei B
mi c

which is negative for an electron; this is why
the σxy has a plus sign. At very high magnetic fields |ωciτi | � 1 for both types of
carriers. Therefore we can drop the 1 in 1 + ω2

ciτ
2
i :

σi � ni ei c

B

⎛
⎝

1
ωci τi

1 0
−1 1

ωci τi
0

0 0 ωciτi

⎞
⎠ , (13.28)

and

σT � c

B

⎛
⎝

n1e1
ωc1τ1

+ n2e2
ωc2τ2

n1e1 + n2e2 0
−(n1e1 + n2e2)

n1e1
ωc1τ1

+ n2e2
ωc2τ2

0
0 0 n1e1ωc1τ1 + n2e2ωc2τ2

⎞
⎠ , (13.29)

Now suppose that n1 = n2 = n and e1 = −e2 = e. This corresponds to a semimetal
with an equal number of electrons and holes. Then (13.29) reduces to

σ � nec

B

⎛
⎝

1
|ωc1τ1| + 1

|ωc2τ2| 0 0
0 1

|ωc1τ1| + 1
|ωc2τ2| 0

0 0 |ωc1τ1| + |ωc2τ2|

⎞
⎠ ,

The Hall field vanishes since σxy = 0 and

jx = σxx Ex = nec

B

[
1

eB
m1c τ1

+ 1
eB
m2c τ2

]
Ex . (13.30)

The resistivity is the ratio of Ex to jx giving

ρ = B2

nec2

( |μ1||μ2|
|μ1| + |μ2|

)
(13.31)

where μi = ei τi
mi

is the mobility of the i th type. Thus we find for equal numbers
of electrons and holes the magnetoresistance does not saturate, but continues to
increase as B2. The arguments can be generalized to two bands described by
energy surfaces εi (k), but we will not bother with that much detail. If ne 	= nh ,

σxy � − (ne−nh)ec
B while σxx =

(
ne

|ωce|τe + nh
|ωch |τh

)
ec
B . For |ωciτi| � 1, σxy � σxx and
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ρ =
[

σ2
xx +σ2

xy

σxx

]−1

�
[

σ2
xy

σxx

]−1

. This saturates to a constant because σxy ∝ B−1 while

σxx ∝ B−2.

Influence of Open Orbits

For the sake of concreteness we will first consider a model which is extremely
simple and has open orbits to see what happens. Suppose there is a section of the
Fermi surface with energy given by

ε(k) = �
2

2m
(k2

x + k2
z ), (13.32)

i.e. ε(k) is independent of ky as is shown in Fig. 13.6. Again take the magnetic field
in the z direction. Then the orbits are all open orbits, and run parallel to the cylinder
axis. Note that

vx = �kx

m
, vy = 0, and vz = �kz

m
. (13.33)

Look at equations of motion in the presence of Bz and E = (Ex , Ey, 0):

�k̇x = −e
(
Ex + 1

c vy Bz
) = −eEx ,

�k̇y = −e
(
Ey − 1

c vx Bz
)
,

�k̇z = 0.
(13.34)

The equation of motion for �k̇x can be written as

v̇x = −eEx

m
. (13.35)

We have completely neglected collisions so far; they can be added by simply writing

Fig. 13.6 A model energy surface with open orbits
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v̇x + vx

τ
= −eEx

m
. (13.36)

Then in the steady state we have

vx = −eExτ

m
. (13.37)

If no is the number of open orbit states per unit volume, then

σOpen = noe2τ

m

(
1 0
0 0

)
. (13.38)

Here we have used σyy = σxy = σyx = 0; this is correct because jx depends only on
Ex and vy must be zero since the mass in the y direction is infinite.

Now suppose there is another piece of Fermi surface that contains nc electrons
per unit volume all in closed orbit states. We can approximate the contribution of
these electrons to the 2 × 2 conductivity matrix by

σClosed = nce2τ

m

⎛
⎜⎝

1
ω2
c τ

2
1

ωcτ

− 1
ωcτ

1
ω2
c τ

2

⎞
⎟⎠ . (13.39)

The total conductivity is simply the sum of σOpen and σClosed:

σT = e2τ

m

⎛
⎝

no + nc
ω2
c τ

2
nc
ωcτ

− nc
ωcτ

nc
ω2
c τ

2

⎞
⎠ . (13.40)

Let no, the concentration of open orbit electrons, be equal to a number S times nc,
the concentration of closed orbit electrons. Then we have

jx = nce2τ
m

[(
S + 1

ω2
c τ

2

)
Ex + 1

ωcτ
Ey

]
,

jy = nce2τ
m

[
− 1

ωcτ
Ex + 1

ω2
c τ

2 Ey

] . (13.41)

Let us consider two different cases:

1. In the standard geometry jx is nonzero but jy is zero.
2. In the standard geometry jy is nonzero but jx is zero.

Case1:

jy = 0 implies that
Ey = ωcτ Ex . (13.42)
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Therefore, jx is given by

jx = nce2τ

m

(
S + 1

ω2
cτ

2
+ 1

)
Ex . (13.43)

The magnetoresistivity is Ex
jx
giving

ρ = m/(nce2τ )

S + 1
ω2
c τ

2 + 1
−→ m/(nce2τ )

S + 1
as B → ∞. (13.44)

Thus, in this geometry the magnetoresistance saturates as B tends to infinity.

Case2:

jx = 0 implies that

Ex = − 1

ωcτ
(
S + 1

ω2
c τ

2

) Ey . (13.45)

This means that

jy = nce2τ

m

[
1

ω2
cτ

2S + 1
+ 1

ω2
cτ

2

]
Ey . (13.46)

But the magnetoresistivity is Ey

jy
and it is given by

ρ = m

nce2τ

ω2
cτ

2(ω2
cτ

2S + 1)

ω2
cτ

2(S + 1) + 1
−→ m

nce2τ

S
S + 1

ω2
cτ

2 as B → ∞. (13.47)

Since ρ is proportional to ω2
c , the magnetoresistance does not saturate but increases

as B2 as long as S is finite.

13.4 Magnetoconductivity of Metals

We consider an electron gas for which the energy is an arbitrary function of k. We
introduce a uniform dc magnetic field B0, and an ac electric field E of the form

E ∝ eiωt−iq·r. (13.48)

The Boltzmann equation is

∂ f

∂t
+ v · ∇ f − e

�

(
E + v

c
× B0

)
· ∇k f = − f − f̄0

τ
. (13.49)
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As we shall see later, some care must be taken in the collision term− f − f̄0
τ

, to choose
f̄0 to be the proper local equilibrium distribution toward which the electrons relax.1

For now we shall just put f̄0 = f0, the actual thermal equilibrium function for the
system. This gives the conduction current correctly, but omits a diffusion current
which is actually present. We put f = f0 + f1 and then the Boltzmann equation
becomes

iω f1 − iq · v f1 − eE · v∂ f0
∂ε

− e

�c
(v × B0) · ∇k f1 + f1

τ
= 0. (13.50)

Here we have used the fact that

∇k f0 = ∂ f0
∂ε

∇kε = �v
∂ f0
∂ε

, (13.51)

and have linearized with respect to the ac field. We can write the Boltzmann equation
as

(1 + iωτ − iq · vτ ) f1 − eτ

�c
(v × B0) · ∇k f1 = eτE · v∂ f0

∂ε
. (13.52)

From the equation of motion, we remember, when the ac fields are E = 0 = B, that

�k̇ = −e

c
v × B0, (13.53)

and we were able to show that

1. The orbit of an electron in k space is along the intersection of a surface of constant
energy and a plane of constant kz .

2. The motion in k space is periodic either because the orbit is closed, or because
an open orbit is actually periodic in k space also.

We introduce a parameter s with the dimension of time which describes the position
of an electron on its orbit of constant energy and constant kz . By this we mean that
if s = 0 is a point on the orbit, s = T corresponds to the same point, where T is the
period. The equation of motion can be written

�
dk
ds

= −e

c
v × B0, (13.54)

and the rate of change of ε is

dε

ds
= ∇kε · dk

ds
= �v · dk

ds
= 0,

because v is perpendicular to v × B0. Now consider ∂ f1
∂s as

1See, for example, M.P. Greene, H.J. Lee, J.J. Quinn, and S. Rodriguez, Phys. Rev. 177, 1019
(1969).
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∂ f1
∂s

= ∇k f1 · dk
ds

= − e

�c
(v × B0) · ∇k f1. (13.55)

This is exactly one of the terms in our Boltzmann equation which can be written as

∂ f1
∂s

+
(
1

τ
+ iω − iq · v

)
f1 = eE · v∂ f0

∂ε
. (13.56)

Closed Orbits:

Let us consider closed orbits first. We can write

�
dk⊥
ds

= −e

c
v⊥ × B0, (13.57)

where v⊥ is the component of v perpendicular to B0. Let kN and kT be the normal
and tangential components of k⊥ as shown in Fig. 13.7. Then

�
dkT
ds

= e

c
v⊥ B0, (13.58)

because v⊥ is in the direction of kN. Solving for ds gives

ds = �c

eB0

dkT
v⊥

. (13.59)

Thus, the period is given by

T (ε, kz) = 2π

ωc(ε, kz)
= �c

eB0

∮
dkT
v⊥

. (13.60)

From now on we shall use the independent variables ε, kz , and s to describe the
location of an electron in k space.

dε = ∇kε · dkN = �v⊥dkN, (13.61)





Fig. 13.7 A closed orbit in k space
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and hence

dkN = dε

�v⊥
. (13.62)

Now, the volume element in k space is given by

d3k = dkz dkN dkT = dkz
dε

�v⊥
ev⊥
�c

B0ds,

hence

d3k = eB0

�2c
dkzdεds. (13.63)

Now let us return to the differential equation given by (13.56)

∂ f1
∂s

+
(
1

τ
+ iω − iq · v

)
f1 = eE · v∂ f0

∂ε
. (13.64)

Multiply by
e
∫ s
0 dt ′[ 1

τ +iω−iq·v(t ′)]. (13.65)

Then we have

e
∫ s
0 dt ′[ 1

τ +iω−iq·v(t ′)]
{

∂ f1(s)
∂s + [ 1

τ
+ iω − iq · v(s)] f1(s)

}

= eE · v(s) ∂ f0
∂ε

e
∫ s
0 dt ′[ 1

τ +iω−iq·v(t ′)] .

(13.66)

Notice that the left hand side can be simplified to write

∂

∂s

[
f1e

∫ s
0 dt ′( 1

τ +iω−iq·v(t ′))
]

= eE · v(s)∂ f0
∂ε

e
∫ s
0 dt ′( 1

τ +iω−iq·v(t ′)). (13.67)

Integrate and get

f1(s)e
∫ s
0 dt ′( 1

τ +iω−iq·v(t ′)) =
∫ s

−∞
dt eE · v(t)∂ f0

∂ε
e
∫ t
0 dt ′( 1

τ +iω−iq·v(t ′)), (13.68)

or

f1(s) =
∫ s

−∞
dt eE · v(t)∂ f0

∂ε
e− ∫ s

t dt ′( 1
τ +iω−iq·v(t ′)). (13.69)

Note that the lower limit t = −∞ is chosen in the integration over t for a very
important reason. f1(kz, ε, s)must be a periodic function of s with period T . Consider
the function f1(s + T ) for an arbitrary lower limit (LL)

f1(s + T ) =
∫ s+T

LL
dt eE · v(t)∂ f0

∂ε
e− ∫ s+T

t dt ′( 1
τ +iω−iq·v(t ′)). (13.70)
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Now let w = t − T , so that t = s + T −→ w = s and t = LL −→ w = LL − T .
We know v(t) is a periodic function of t with period T . Likewise, if we let t ′ =
w′ + T , we can get

f1(s + T ) =
∫ s

LL−T
dw eE · v(w)

∂ f0
∂ε

e− ∫ s
w

dw′[ 1
τ +iω−iq·v(w′)].

It is obvious f1(s + T ) = f1(s) if LL − T = LL. This is valid for LL = −∞ as we
have chosen. Now look at the exponential

∫ s

t
dt ′
(
1

τ
+ iω − iq · v(t ′)

)
=
(
1

τ
+ iω

)
(s − t) − iq · [R(ε, kz, s) − R(ε, kz, t)

]
,

(13.71)
so that

f1(ε, kz, s) =
∫ s

−∞
ds ′ eE · v(s ′)

∂ f0
∂ε

e−( 1
τ +iω)(s−s ′)+iq·[R(ε,kz ,s)−R(ε,kz ,s ′)]. (13.72)

The current density is given by

j(r, t) = 2

(2π)3

∫
(−e)v f1 d3k. (13.73)

Or, substituting the result of (13.63) for d3k, we have

j(r, t) = − 2e

(2π)3

eB0

�2c

∫
dεdkzdsv f1(ε, kz, s). (13.74)

Now substitute the solution f1(ε, kz, s) given by (13.72) to obtain

j(r, t) = − 2e2 B0
(2π)3�2c

∫∞
0 dε

∫∞
−∞ dkz

∫ T (ε,kz)

0 ds v

× ∫ s
−∞ ds ′ eE · v(s ′) ∂ f0

∂ε
e−( 1

τ +iω)(s−s ′)+iq·[R(ε,kz ,s)−R(ε,kz ,s ′)].
(13.75)

We define the conductivity tensor by j = σ · E. Then it is apparent that

σ = 2e3B0
(2π)3�2c

∫∞
0 dε

(
− ∂ f0

∂ε

) ∫∞
−∞ dkz

∫ T (ε,kz)

0 ds v(ε, kz, s)e−( 1
τ +iω)s+iq·R(ε,kz ,s)

× ∫ s
−∞ ds ′ v(ε, kz, s ′)e(

1
τ +iω)s ′−iq·R(ε,kz ,s ′).

(13.76)
We assume that τ depends only on ε. Now look at the function v(ε, kz, s)eiq·R(ε,kz ,s).
The position vector R(ε, kz, s) consists of two parts

1. a periodic part Rp(ε, kz, s):

Rp
[
ε, kz, s + T (ε, kz)

] = Rp (ε, kz, s) . (13.77)
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2. a nonperiodic or secular part Rs(ε, kz, s):

Rs(ε, kz, s) = vs(ε, kz)s. (13.78)

Remember that the variable s is time. The vs is the average value of v(ε, kz, s) over
one period and is written as

vs(ε, kz) = 1

T (ε, kz)

∫ t+T

t
v(ε, kz, t ′) dt ′. (13.79)

Then, we have, since R = Rp + vss,

v(ε, kz, s)eiq·R(ε,kz ,s) = v(ε, kz, s)eiq·vs(ε,kz)seiq·Rp(ε,kz ,s). (13.80)

Thus for σ we can write

σ = 2e3B0
(2π)3�2c

∫∞
0 dε

(
− ∂ f0

∂ε

) ∫∞
−∞ dkz

∫ T (ε,kz)

0 ds v(ε, kz, s)e−[ 1
τ +iω+iq·vs(ε,kz)]s

× eiq·Rp(ε,kz ,s)
∫ s
−∞ ds ′ v(ε, kz, s ′)e[ 1

τ +iω−iq·vs(ε,kz)]s ′
e−iq·Rp(ε,kz ,s ′).

(13.81)
We now expand the periodic function v(ε, kz, s)eiq·Rp(ε,kz ,s) in Fourier series in s. Let
ωc(ε, kz) = 2π

T (ε,kz)
. Then

v(ε, kz, s)eiq·Rp(ε,kz ,s) =
∑∞

n=−∞ vn(ε, kz)e
inωcs . (13.82)

Obviously the Fourier coefficients vn(ε, kz) are given by

vn(ε, kz) = ωc(ε, kz)

2π

∫ 2π/ωc

0
ds v(ε, kz, s)eiq·Rp(ε,kz ,s)−inωcs . (13.83)

We substitute the Fourier expansions, (13.82), into the expression for σ to obtain

σ = 2e3B0
(2π)3�2c

∫∞
0 dε

(
− ∂ f0

∂ε

) ∫∞
−∞ dkz

∫ 2π/ωc

0 ds e−[ 1
τ +iω+iq·vs(ε,kz)]s

×∑∞
n=−∞ vn(ε, kz)einωcs

∫ s
−∞ ds ′ e[ 1

τ +iω−iq·vs(ε,kz)]s ′

×∑∞
n′=−∞ v∗

n′(ε, kz)e−in′ωcs ′
.

(13.84)

First perform the integration over s ′ to obtain

∫ s

−∞
ds ′ e[

1
τ +iω−iq·vs(ε,kz)−iωcn′]s ′ = e[

1
τ +iω−iq·vs−in′ωc]s

1
τ

+ iω − iq · vs − in′ωc
. (13.85)

Thus we have
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σ = 2e3B0
(2π)3�2c

∫∞
0 dε

(
− ∂ f0

∂ε

) ∫∞
−∞ dkz

× ∫
2π
ωc
0 ds

∑∞
n,n′=−∞

vn(ε,kz)v∗
n′ (ε,kz)ei(n−n′)ωcs

1
τ +iω−iq·vs−in′ωc

.

(13.86)

However,
∫ 2π/ωc

0 ds ei(n−n′)ωcs = 2π
ωc

δnn′ . Thus we have

σ = 2e3B0

(2π)3�2c

∫ ∞
0

dε

(
−∂ f0

∂ε

)∫ ∞
−∞

dkz
2π

ωc(ε, kz)

∑∞
n=−∞

vn(ε, kz)v∗
n(ε, kz)

1
τ + iω − iq · vs − inωc

.

(13.87)
This can be rewritten

σ = 2e3B0
(2π)3�2c

∫∞
0 dε

(
− ∂ f0

∂ε

)
τ

× ∫∞
−∞ dkzT (ε, kz)

∑∞
n=−∞

vn(ε,kz)v∗
n(ε,kz)

1+iτ
[
ω−q·vs− 2πn

T (ε,kz )

] .
(13.88)

This expression is valid even for the case of open orbits. For closed orbits it is
customary to define

ωc(ε, kz) = eB0

m∗(ε, kz)c
= 2π

T (ε, kz)

where m∗ is the cyclotron effective mass. Then σ can be written

σ = e2

2π2�2

∫∞
0 dε

(
− ∂ f0

∂ε

)
τ (ε)

× ∫∞
−∞ dkzm∗(ε, kz)

∑∞
n=−∞

vn(ε,kz)v∗
n(ε,kz)

1+iτ (ε)[ω−q·vs−nωc(ε,kz)] .
(13.89)

At very low temperatures the integration over energy just picks out the Fermi energy
because − ∂ f0

∂ε
acts just like a δ function, and we have

σ = e2

2π2�2
τ (εF)

∫

F.S.

dkz m∗(kz)
∑∞

n=−∞
vn(εF, kz)v∗

n(εF, kz)

1 + iτ (εF)[ω − q · vs − nωc(εF, kz)]
(13.90)

where all quantities are evaluated on the Fermi surface.

13.4.1 Free Electron Model

For the free electron model m∗(kz) = m is a constant independent of kz . We
shall assume that τ is also constant. The energy ε(k) and velocity v are, respec-
tively, given by

ε(k) = �
2k2

2m ,

v = �k
m ,

(13.91)
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and hence,
vz = �kz

m ,

v⊥ = |v⊥| = √v2 − v2
z = �

m

(
2mε
�2 − k2

z

)1/2
.

We shall choose s, the time along the orbit, such that

vx = v⊥ cosωcs,
vy = v⊥ sinωcs.

(13.92)

Thus for v(εF, kz, s) we have

v(ε, kz, s) = �

m

(√
2mε

�2
− k2

z cosωcs,

√
2mε

�2
− k2

z sinωcs, kz

)
. (13.93)

The periodic part of the position vector is given by

Rp(ε, kz, s) =
∫

v⊥(ε, kz, s)ds = v⊥
ωc

(sinωcs,− cosωcs, 0) . (13.94)

Thus, we have

iq · Rp(ε, kz, s) = iv⊥(ε, kz)

ωc

(
qx sinωcs − qy cosωcs

)
. (13.95)

There is no loss in generality incurred by choosing the vector q to lie in the y − z
plane, i.e. qx = 0. Thus

iq · Rp(ε, kz, s) = − iv⊥(ε, kz)

ωc
qy cosωcs. (13.96)

Now let us evaluate the Fourier coefficients vn in (13.83)

vn(ε, kz) = ωc(ε, kz)

2π

∫ 2π/ωc

0
ds v(ε, kz, s)e− iv⊥(ε,kz )qy

ωc
cosωcs−inωcs . (13.97)

Let w′ = qyv⊥
ωc

and x = ωcs to have

vn(ε, kz) = 1

2π

∫ 2π

0
dx v(ε, kz, x)e−iw′ cos x−inx . (13.98)

Now, we use the relation

eiw′ sin x =
∑∞

l=−∞ Jl(w
′)eilx . (13.99)
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One can easily see that

e−iw′ cos x = eiw′ sin(x+ 3π
2 ) =∑∞

l=−∞ Jl(w
′)eilxeil 3π

2

=∑∞
l=−∞(−i)l Jl(w

′)eilx .
(13.100)

Thus we have

vn(ε, kz) = 1
2π

∫ 2π
0 dx v(ε, kz, x)e−inx

∑∞
l=−∞(−i)l Jl(w

′)eilx ,

=∑∞
l=−∞(−i)l Jl(w

′) 1
2π

∫ 2π
0 dx v(ε, kz, x)ei(l−n)x .

(13.101)

Now let us investigate the individual components of vn .

vnx (ε, kz) =∑∞
l=−∞(−i)l Jl(w

′) 1
2π v⊥

∫ 2π
0 dx cos x ei(l−n)x ,

=∑∞
l=−∞(−i)l Jl(w

′) v⊥
2

1
2π

∫ 2π
0 dx

[
ei(l−n+1)x + ei(l−n−1)x

]
,

= v⊥
2

∑∞
l=−∞(−i)l Jl(w

′)
[
δl,n−1 + δl,n+1

]
,

= (−i)n−1

2 v⊥
[
Jn−1(w

′) − Jn+1(w
′)
]
.

(13.102)

In an analogous way we can obtain

vny (ε, kz) = (−i)n−1

2i
v⊥
[
Jn−1(w

′) + Jn+1(w
′)
]
, (13.103)

and
vnz (ε, kz) = (−i)nvz Jn(w

′). (13.104)

Here we recall some properties of Bessel functions:

l Jn(z) =
∑∞

m=0
(−1)m

( z

2

)2m+n 1

m!(m + n)! , (13.105)

J−n(z) = (−1)n Jn(z), (13.106)

lim
z→0

Jn(z) = 1

n!
( z

2

)n
, (13.107)

J ′
n(z) = d

dz
Jn(z) = 1

2

[
Jn−1(z) − Jn+1(z)

]
, (13.108)

and
n

z
Jn(z) = 1

2

[
Jn−1(z) + Jn+1(z)

]
. (13.109)

Using some of these equations we can write the vector vn as

vn(ε, kz) = (−i)n

⎛
⎝

iv⊥ J ′
n(w

′)(
nωc/qy

)
Jn(w

′)
vz Jn(w

′)

⎞
⎠ . (13.110)



422 13 Semiclassical Theory of Electrons

If we take the zero temperature limit, we have
(
− ∂ f0

∂ε

)
= δ(ε − ζ) and, hence, we

have

σ = e2τm

2π2�2

∫ kF

−kF

dkz

∑∞
n=−∞

vn(εF, kz)v∗
n(εF, kz)

1 − iτ [nωc(εF, kz) + q · vs − ω] . (13.111)

Exercise

Demonstrate (13.103) and (13.104) from (13.101).

For free electrons, the secular part of the velocity is simply vz , thus

q · vs = qzvz = qzvF cos θ,

dkz = m
�

dvz = mvF
�

d(cos θ),

v⊥ =
√

v2
F − v2

z = vF sin θ,

w′ = qyv⊥
ωc

= qyvF
ωc

sin θ = w sin θ.

(13.112)

Here the dimensionless parameterw is defined byw = qyvF
ωc

. By substituting (13.112)
into (13.111), we obtain

σ = 3σ0
2

∑∞
n=−∞

∫ 1
−1 d(cos θ)

×

⎛
⎜⎜⎝

i sin θJ ′
n(w sin θ)

n
w

Jn(w sin θ)

cos θJn(w sin θ)

⎞
⎟⎟⎠(−i sin θJ ′

n(w sin θ), n
w

Jn(w sin θ), cos θJn(w sin θ))

1−iτ[nωc(εF,kz)−ω+qzvF cos θ] ,

(13.113)

where J ′
n(x) = d Jn(x)/dx and σ0 is the dc conductivity given by σ0 = n0e2τ

m . In
addition, sin θJ ′

n(w sin θ) = ∂
∂w

Jn(w sin θ). Hence we can rewrite (13.113) as

σ = 3σ0
2

∑∞
n=−∞

∫ 1
−1 d(cos θ)

×

⎛
⎜⎜⎜⎜⎝

i ∂
∂w

Jn(w sin θ)
n
w

Jn(w sin θ)

cos θJn(w sin θ)

⎞
⎟⎟⎟⎟⎠(

−i ∂
∂w

Jn(w sin θ), n
w

Jn(w sin θ),cos θJn(w sin θ))

1−iτ [nωc(εF,kz)−ω+qzvF cos θ] .

(13.114)

This result was first obtained by Cohen, Harrison, and Harrison.2

2M.H. Cohen, M.J. Harrison, and W.A. Harrison, Phys. Rev. 117, 937 (1960).
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13.4.2 Propagation Parallel to B0

To acquaint ourselves with the properties of σ, let us first evaluate it for the case
q ‖ B0, i.e. q = (0, 0, q). In the limit qy → 0, w → 0 and, hence, we have

n
w

Jn(w sin θ) −→ 1
2 sin θ(δn,1 + δn,−1),

i ∂
∂w

Jn(w sin θ) −→ i
2 sin θ(δn,1 − δn,−1),

cos θJn(w sin θ) −→ cos θδn,0.

(13.115)

It is easy to see that σxz = σzx = σyz = σzy = 0 because of the δ functions involved.
The nonvanishing components of σ are σxx = σyy , σxy = −σyx and σzz . They can
easily be evaluated to be written

σzz = 3

2
σ0

∫ 1

−1

d(cos θ) cos2 θ

1 + iωτ − iqzvFτ cos θ
, (13.116)

and

σ± = σxx ∓ iσxy = 3

4
σ0

∫ 1

−1

d(cos θ) sin2 θ

1 + i(ω ∓ ωc)τ − iqzvFτ cos θ
. (13.117)

Notice that when qz → 0 the integral in (13.116) becomes
∫ 1
−1 d(cos θ) cos2 θ = 2

3
so that, in that case, we have

σzz = σ0

1 + iωτ
. (13.118)

The qz → 0 limit of the integral in (13.117) becomes
∫ 1
−1 d(cos θ) sin2 θ = 4

3 so that

σ± = σ0

1 + i(ω ∓ ωc)τ
. (13.119)

13.4.3 Propagation Perpendicular to B0

We consider the case q ⊥ B0, i.e. q = (0, q, 0), resulting w = qvF
ωc

to write (13.114),
as

σ = 3σ0
2

∑∞
n=−∞

∫ 1
−1 d(cos θ)

×

⎛
⎜⎜⎝

i ∂
∂w

Jn(w sin θ)
n
w

Jn(w sin θ)
cos θJn(w sin θ)

⎞
⎟⎟⎠(−i ∂

∂w
Jn(w sin θ), n

w
Jn(w sin θ),cos θJn(w sin θ))

1−iτ [nωc(εF,kz)−ω] .

(13.120)

We define the following functions
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cn(w) = 1
2

∫ 1
−1 d(cos θ) cos2 θJ 2

n (w sin θ),

sn(w) = 1
2

∫ 1
−1 d(cos θ) sin2 θ[J ′

n(w sin θ)]2,
gn(w) = 1

2

∫ 1
−1 d(cos θ) J 2

n (w sin θ).

(13.121)

It is obvious that the angular integrations appearing in σxz , σzx , σyz , and σzy vanish
because the integrands are odd functions of cos θ. For the nonvanishing components
we obtain

σxx = 3σ0

∑∞
n=−∞

sn(w)

1 − iτ (nωc − ω)
, (13.122)

σyy = 3σ0

w2

∑∞
n=−∞

n2gn(w)

1 − iτ (nωc − ω)
, (13.123)

σxy = −σyx = 3σ0i

2w

∑∞
n=−∞

ng′
n(w)

1 − iτ (nωc − ω)
, (13.124)

and

σzz = 3σ0

∑∞
n=−∞

cn(w)

1 − iτ (nωc − ω)
. (13.125)

13.4.4 Local Versus Nonlocal Conduction

What we have been studying is the nonlocal theory of the electrical conductivity of
a solid. It is worth emphasizing once again what is meant by nonlocal conduction,
and in which case the nonlocal theory reduces to a local theory. The result we have
obtained is

j(q,ω) = σ(q,ω) · E(q,ω). (13.126)

It is easy to show that this expression corresponds to the relation

j(r, t) =
∫

K (r − r′, t − t ′) · E(r′, t ′)d3r ′dt ′. (13.127)

Let us take the Fourier transforms of each side by multiplying by eiq·r−iωt and inte-
grating

∫
j(r, t)eiq·r−iωt d3rdt
= ∫ K (r − r′, t − t ′) · E(r′, t ′)eiq·r′−iωt ′

eiq·(r−r′)−iω(t−t ′)d3r ′dt ′d3rdt.

The left hand side is simply j(q,ω). The right hand side can be simplified by letting
r − r′ = x and t − t ′ = s
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j(q,ω) =
∫

K (x, s)eiq·x−iωsd3xds
︸ ︷︷ ︸

·
∫

E(r′, t ′)eiq·r′−iωt ′
d3r ′dt ′

︸ ︷︷ ︸
.

σ(q,ω) E(q,ω)

(13.128)

This is just the relation we gave in (13.126) if

σ(q,ω) =
∫

K (x, s)eiq·x−iωsd3xds

or

K (r − r′, t − t ′) = 1

(2π)4

∫
σ(q,ω)eiω(t−t ′)−iq·(r−r′)d3qdω. (13.129)

Consider for a moment what would happen if σ(q,ω) were independent of q. In that
case we have

K (r − r′,ω) = 1
(2π)3

∫
σ(ω)e−iq·(r−r′)d3q,

= σ(ω) δ(r − r′).
(13.130)

Thus we have
j(r,ω) = σ(ω) · E(r,ω). (13.131)

This is just Ohm’s law in the local theory, in which j(r) depends only on the electric
field at the same point r. Thus, the local theory is the special case of the general
nonlocal theory, in which the q dependence of σ is unimportant. By looking at the
expressions we derived one can see that σ is essentially independent of q becoming
local if

1. ql � 1, in the absence of a magnetic field, where l = vFτ is the electron mean
free path.

2. q⊥rc � 1 or q⊥l0 � 1, and qzl0 � 1, in the presence of a magnetic field. Here
rc is the radius of the cyclotron orbit.

13.5 Quantum Theory of Magnetoconductivity of an
Electron Gas

The evaluation of σ(q,ω, B0) for a quantummechanical system is very similar to our
evaluation of the wave vector and frequency dependent conductivity in the absence
of the field B0. We will give a very brief summary of the technique here.3

The zero order Hamiltonian for an electron in the presence of a vector potential
A0 = (0, x B0, 0) is given by

3For details one is referred to the references by J.J. Quinn and S. Rodriguez, Phys. Rev. 128, 2480
(1962) and M.P. Greene, H.J. Lee, J.J. Quinn, and S. Rodriguez, Phys. Rev. 177, 1019 (1969).
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H0 = 1

2m

[
p2

x +
(

py + e

c
B0x
)2 + p2

z

]
. (13.132)

The eigenfunctions and eigenvalues of H0 can be written as

|ν > = |nkykz >= 1
L e

iky y+ikz zun

(
x + �ky

mωc

)
,

εν = εn,ky ,kz = �
2k2z
2m + �ωc

(
n + 1

2

)
.

(13.133)

Perturbing self consistent electromagnetic fields E(r, t) and B(r, t) are assumed to
be of the form eiωt−iq·r. These fields can be derived from the potentials A(r, t) and
φ(r, t):

E = − 1
c Ȧ − ∇φ = − iω

c A + iqφ,

B = ∇ × A = −iq × A.
(13.134)

As in the Lindhard case, the theory can be shown to be gauge invariant (we will not
prove it here but it is done in the references listed above). Therefore, we can take
a gauge in which the scalar potential φ = 0. Then we write the linearized (in A)
Hamiltonian as

H = H0 + H1, (13.135)

where H0 is given by (13.132) and H1 is the perturbing part

H1 = e

2c
(v0 · A + A · v0) . (13.136)

Here v0 = 1
m

(
p + e

cA0
)
is the velocity operator in the presence of the fieldA0. From

here on, one can simply follow the stepswe carried out in evaluatingσ(q,ω, B0 = 0).
We use

H0|ν > = εν |ν >,

ρ0|ν > = f0(εν)|ν > .
(13.137)

The perturbation is given by (13.136) and use that

A(r, t) = A(q,ω)eiωt−iq·r.

The resulting expression for j(q,ω) can be written (for the collisionless limit where
τ → ∞)

j(q,ω) = − ω2
p

4πc

[
1 + I(q,ω)

] · A(q,ω). (13.138)

Here ω2
p = 4πn0e2

m and n0 = N
V . The symbol 1 stands for the unit tensor and

I(q,ω) = m

N

∑
νν ′

f0(εν ′) − f0(εν)

εν ′ − εν − �ω
< ν ′|V(q)|ν >< ν ′|V(q)|ν >∗ . (13.139)
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The operator V(q) is given by

V(q) = 1

2
v0eiq·r + 1

2
eiq·rv0, (13.140)

and v0 = 1
m

{
p + e

cA0
}
. The matrix elements of V(q) are given by

< ν′|Vz(q)|ν > = δ(k′
y, ky + qy)δ(k′

z, kz + qz)
�
m
(
kz + qz

2

)
fn′n(qy),

< ν′|Vy(q)|ν > = δ(k′
y, ky + qy)δ(k′

z, kz + qz)

{
�qy
2m fn′n(qy) +

(
�ωc
2m

)1/2
X (+)

n′n (qy)

}
,

< ν′|Vx (q)|ν > = δ(k′
y, ky + qy)δ(k′

z, kz + qz)

{
i
(

�ωc
2m

)1/2
X (−)

n′n (qy)

}

(13.141)

In these equations we have taken qx = 0; this can be done without loss of generality.
The function fn′n(qy) is the two-center harmonic oscillator integral:

fn′n(qy) =
∫ ∞

−∞
un′

(
x + �qy

mωc

)
un(x)dx, (13.142)

and
X (±)

n′n (qy) = (n + 1)1/2 fn′,n+1(qy) ± n1/2 fn′,n−1(qy). (13.143)

The function fn′n also appears in another useful matrix element

< ν ′|eiq·r|ν >= δ(k ′
y, ky + qy)δ(k

′
z, kz + qz) fn′n(qy). (13.144)

The function fn′n can be evaluated in terms of associated Laguerre polynomials. For
n′ ≥ n, we have

fn′n(q) =
(

n!
n′!
)1/2

ξ(n′−n)/2e−ξ/2Ln′−n
n (ξ), (13.145)

where ξ = �q2

2mωc
and Lα

n (ξ) is the associated Laguerre polynomial of order n. For

n′ < n we have fn′n(q) = (−1)n−n′
fnn′(q). Some useful facts about the functions

fn′n are
fn′n(q) = i n−n′ ∫∞

−∞ dx eiqx un′(x)un(x),

fn′n(−q) = fnn′(q) = (−1)n′−n fn′n(q),∑∞
n=0 f 2n′n(q) = 1,∑∞
n′=0(n

′ − n) f 2n′n(q) = ξ,

∂ fn′n
∂q =

(
�

2mωc

)1/2
X (−)

n′n (q),

(n′ − n − ξ) fn′n(q) = ξ1/2X (+)
n′n (q).

(13.146)
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Exercise

Demonstrate the various matrix elements shown in (13.141).

Exercise

Demonstrate the useful identities on the two-center harmonic oscillator integral
shown in (13.146).

13.5.1 Propagation Perpendicular to B0

As an illustration, let us consider the case of q = (0, q, 0). We recall that

jx (q,ω) = σxx Ex (q,ω) + σxy Ey(q,ω),

jy(q,ω) = σyx Ex (q,ω) + σyy Ey(q,ω),

jz(q,ω) = σzz Ez(q,ω).

(13.147)

The nonvanishing components of σ(q,ω) can be evaluated and they are written as

σxx (q,ω) = ω2
p

4πiω

[
1 − 2mωc

�

1
N

∑′
nky kzα

f0(εnkz )
(

∂ fn+α,n

∂q

)2
α

α2−(ω/ωc)2

]
,

σyy(q,ω) = imω2
pω

2π�ωc

1
N

∑′
nky kzα

f0(εnkz ) f 2n+α,n
α

α2−(ω/ωc)2
,

σxy(q,ω) = −σyx = iωc
2ωq

∂(q2σyy)

∂q ,

σzz(q,ω) = ω2
p

4πiω

[
1 − 2�

mωc

1
N

∑′
nky kzα

f0(εnkz )k
2
z f 2n+α,n

α
α2−(ω/ωc)2

]
.

(13.148)

In these equations the sum on α is to be performed from−n to∞ (because 0 ≤ n′ =
n + α ≤ ∞). The summations over n, ky, kz extend over all values of the quantum
numbers for which εnkz ≤ ζ, where ζ is the chemical potential of the electron gas in
the field B0. This restriction is indicated by a prime following the summation sign.

The semiclassical limit can be obtained by replacing the sum over n by an integral.
Remember that in general we can write

∑
nky kz

=⇒ 2

(
L

2π

)2∑
n

∫ mωcL
�

0
dky

∫
dkz = mωc

�

Ω

2π2

∫
dkz

∑
n

, (13.149)

where Ω is the volume of the sample, Ω = L3. We define n0 = ρ
�ωc

− 1
2 and let

n = n0 sin2 θ. For zero temperature, we can integrate over θ from θ = 0 to θ = π
2

instead of summing over n. For n0 � 1 it is not hard to see that the main contribution
to the integrals comes from rather large values of n. For large n, we can approximate

fn+α,n � Jα

[
(4n + 2α + 2)1/2ξ1/2

] � Jα(w sin θ), (13.150)
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where w = qvF
ωc

. By substituting into the expressions for the components of σ we
obtain

σxx = 3α

4πiω

∞∑
α=−∞

sα(w)

1 + αωc/ω
, (13.151)

where

sα(w) =
∫ π/2

0
dθ sin3 θ

[
J ′
α(w sin θ)

]2
. (13.152)

Equation (13.151) is the semiclassical expression we already obtained in (13.122) in
the collisionless limit.

The quantum mechanical conductivity tensor can be written as the sum of a
semiclassical term and a quantum oscillatory part

σ(q,ω) = σSC(q,ω) + σQO(q,ω), (13.153)

where the semiclassical partσSC has been given earlier. As an example of the quantum
oscillatory part we give, without derivation, one example

σQO
zz = 3

2
δ2

ω2
p

4πiω

[
1 + 3

ω2

ω2
c

∞∑
α=−∞

1

α2 − (ω/ωc)2

(
1 + w

∂

∂w

)
cα(w)

]
.

(13.154)
Here δ2 is a quantum oscillatory function of the de Haas–van Alphen type and is
given by

δ2 = π

(
kBT

ζ0

)√
�ωc

2ζ0

∞∑
ν=1

(−1)νν−1/2 sin
(
2πνζ0
�ωc

− π
4

)

sinh
(
2π2νkBT

�ωc

) . (13.155)

The function cα(w) was defined by (13.121) in the discussion of the semiclassical
conductivity. If kBT becomes large compared to �ωc, the amplitude of the quantum
oscillations becomes negligibly small and σ reduces to the semiclassical result σSC

given previously. What the quantum mechanical conductivity tensor contains, but
what the semiclassical one does not, is the quantum structure of the energy levels.
This, of course, determines all the quantum effects like

1. de Haas–van Alphen oscillations in the magnetism,
2. Shubnikov–de Haas oscillations in the resistivity,
3. quantum oscillations in acoustic attenuation, etc.
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Problems

13.1 The energy of an electron in a particular band of a solid is given by

ε(kx , ky, kz) = �
2k2

x

2mx
+ �

2k2
y

2my
,

where −π
a < ki < π

a is the first Brillouin zone of a simple cubic lattice.

(a) Determine vi (k) for i = x, y, and z.
(b) Show that �

(
ki (t), k j (t)

) = (√2miε cosωct,
√
2m jε sinωct

)
where (i, j) =

x or y for a d.c. magnetic field B0 in the z-direction.
(c) Determine ωc in terms of mi , B0, etc.

13.2 Consider an electron in a two-dimensional system subject to a dc magnetic
field B perpendicular to the system. The constant energy surface of the particle is
shown in in Fig. 13.8.

(a) Sketch the orbit of the particle in real space.
(b) Sketch the velocity vy(t) as a function of t .

Fig. 13.8 A constant energy surface ε(k) in a two-dimensional system

13.3 Take direction of current flow to make an angle θ with x axis as is shown in
Fig. 13.9. First, transform to x ′ − y′ frame. Then, put jy′ = 0, and check for what
angles θ the magnetoresistance fails to saturate.

Fig. 13.9 A simple geometry of current flow
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13.4 Consider a band for a simple cubic structure with energy ε(k) given by ε(k) =
ε0[cos(kx a) + cos(kya) + cos(kza)], where a is the lattice constant. Let an electron
at rest (k = 0) at t = 0 feel a uniform external electric field E which is constant in
time.

(a) Find the real space trajectory [x(t), y(t), z(t)].
(b) Sketch the trajectory in the k-space for the electric fieldE in a [120] direction.

13.5 Consider an electron in a state with a linear energy dispersion given by ε(k) =
±�vF|k|, where k is a two-dimensional wave vector. (It occurs in the low energy
states in a graphene–a single layer of graphite.)

(a) When a dc magnetic field B is applied perpendicular to the graphene layer,
write down the area S(ε) and sketch S(εn) for various values of n.

(b) Solve for the quantized energies εn and plot the resulting εn for −5�ωc ≤
εn ≤ 5�ωc.

(b) What can you say about the effective mass of the particle in a graphene subject
to the magnetic field B?

13.6 Consider two-dimensional electrons with a linear dispersion given by ε(k) =
�vF|k|, where k is a two-dimensional wave vector. Now apply a dc magnetic field B
perpendicular to the system. We shall assume that τ is constant.

(a) Write down the v(ε, s) and the periodic part of the position vector Rp(ε, s).
(b) Evaluate the Fourier coefficients vn(ε), and discuss the conductivity tensor σ

defined by j = σ · E.

Summary
In this chapter we study behaviors of Bloch electrons in the presence of a dcmagnetic
field. Energy levels and possible trajectories of electrons are discussed, and simple
two band model of magnetoresistance is illustrated including the effect of colli-
sions. General expression of semiclassical magnetoconductivity tensor is derived
by solving the Boltzmann equation of the distribution function, and the results are
applied to the case of free electrons. The relationship between the local and nonlocal
descriptions are discussed. Finally quantum mechanical theory of magnetoconduc-
tivity tensor is described and quantum oscillatory behavior in magnetoconductivity
of Bloch electrons is compared with its semiclassical counterpart.

In the presence of an electric field E and a dc magnetic field B(= ∇ × A), an
effective Hamiltonian is given byH = ε

( p
�

+ e
�cA
)− eφ, where ε(k) is the energy

as a function of k in the absence of B. The equation of motion of a Bloch electron in
k-space takes the form

�k̇ = −eE − e

c
v × B.

Here v = 1
�
∇kε(k) is the velocity of the Bloch electron whose energy ε(k) is an

arbitrary function of wave vector k. The orbit in real space will be exactly the same
shape as the orbit in k-space except that it is rotated by 90◦ and scaled by a factor



432 13 Semiclassical Theory of Electrons

eB
�c : k⊥ = eB

�c × r⊥. The factor eB
�c is l−2

0 , where l0 is the magnetic length. The orbit
of a particle in k-space is the intersection of a constant energy surface ε(k) = ε and
a plane of constant kz :

dε

dt
= ∇kε · dk

dt
= �v ·

(
− e

�c
v × B

)
= 0.

The area of the orbit A(ε, kz) in real space is proportional to the area S(ε, kz) of
the orbit in k-space: S(ε, kz) = ( eB

�c

)2 A(ε, kz). The area S(ε, kz) is quantized by
S(ε, kz) = 2πeB

�c (n + γ) and the cyclotron effective mass is given by m∗(ε, kz) =
�
2

2π
∂S(ε,kz)

∂ε
. The Bloch electron velocity parallel to the magnetic field becomes

vz(ε, kz) = − �

2πm∗(ε, kz)

∂S(ε, kz)

∂kz
.

The transverse magnetoresistance is defined by R(Bz)−R(0)
R(0) = ΔR(Bz). The simple

free electron model gives ΔR(Bz) = 0, which is different from the experimental
results.

The current density is given by j(r, t) = 2
(2π)3

∫
(−e)v f1 d3k. In the presence of a

uniform dc magnetic field B0, the semiclassical magnetoconductivity of an electron
gas is written as

σ = e2

2π2�2
τ (εF)

∫

F.S.

dkz m∗(kz)

∞∑
n=−∞

vn(εF, kz)v∗
n(εF, kz)

1 + iτ (εF)[ω − q · vs − nωc(εF, kz)] ,

where vn(ε, kz) is defined by

vn(ε, kz) = ωc(ε, kz)

2π

∫ 2π/ωc

0
ds v(ε, kz, s)eiq·Rp(ε,kz ,s)−inωcs .

Here Rp(ε, kz, s) denotes the periodic part of the position vector in real space.
For the free electron model m∗(kz) = m is a constant independent of kz and

the periodic part of the position vector is given by Rp(ε, kz, s) = v⊥
ωc

(sinωcs,
− cosωcs, 0) . For the propagation q ⊥ B0, i.e. q = (0, q, 0), the nonvanishing com-
ponents of semiclassical conductivity σ are

σxx = 3σ0

∞∑
n=−∞

sn(w)

1 − iτ (nωc − ω)
; σyy = 3σ0

w2

∞∑
n=−∞

n2gn(w)

1 − iτ (nωc − ω)
;

σxy = −σyx = 3σ0i

2w

∞∑
n=−∞

ng′
n(w)

1 − iτ (nωc − ω)
; σzz = 3σ0

∞∑
n=−∞

cn(w)

1 − iτ (nωc − ω)
.

Here cn(w) = 1
2

∫ 1
−1 d(cos θ) cos2 θJ 2

n (w sin θ), sn(w) = 1
2

∫ 1
−1 d(cos θ) sin2 θ[J ′

n

(w sin θ)]2, and gn(w) = 1
2

∫ 1
−1 d(cos θ) J 2

n (w sin θ).
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In the presence of a vector potential A0 = (0, x B0, 0), the electronic states are

described by H0 = 1
2m

[
p2

x + (py + e
c B0x

)2 + p2
z

]
. The eigenfunctions and eigen-

values of H0 can be written as

|ν > = |nkykz >= 1
L e

iky y+ikz zun

(
x + �ky

mωc

)
,

εν = εn,ky ,kz = �
2k2z
2m + �ωc

(
n + 1

2

)
.

The quantum mechanical version of the nonvanishing components of σ(q,ω) are
given, for the case of q = (0, q, 0), by

σxx (q,ω) = ω2
p

4πiω

[
1 − 2mωc

�

1
N

∑′
nky kzα

f0(εnkz )
(

∂ fn+α,n

∂q

)2
α

α2−(ω/ωc)2

]
,

σyy(q,ω) = imω2
pω

2π�ωc

1
N

∑′
nky kzα

f0(εnkz ) f 2n+α,n
α

α2−(ω/ωc)2
,

σxy(q,ω) = −σyx = iωc
2ωq

∂(q2σyy)

∂q ,

σzz(q,ω) = ω2
p

4πiω

[
1 − 2�

mωc

1
N

∑′
nky kzα

f0(εnkz )k
2
z f 2n+α,n

α
α2−(ω/ωc)2

]
.

where fn′n(qy) is the two-center harmonic oscillator integral:

fn′n(qy) =
∫ ∞

−∞
un′

(
x + �qy

mωc

)
un(x)dx

and
X (±)

n′n (qy) = (n + 1)1/2 fn′,n+1(qy) ± n1/2 fn′,n−1(qy).

The quantum mechanical conductivity tensor is the sum of a semiclassical term and
a quantum oscillatory part:

σ(q,ω) = σSC(q,ω) + σQO(q,ω).



Chapter 14
Electrodynamics of Metals

14.1 Maxwell’s Equations

There are two aspects of the electrodynamics of metals. The first is linear response
theory and the second is the problem of boundary conditions. We have already dis-
cussed linear response theory in some detail in Chap. 11. Its application to waves in
an infinite medium is fairly straightforward. The problem of boundary conditions is
usually much more involved. We shall cover some examples of each type in the rest
of this chapter.

We consider an electromagnetic disturbance with space–time dependence of the
form eiωt−iq·r. Maxwell’s equations can be written, in Gaussian units, as

∇ × E = −1

c

∂B
∂t

(14.1)

and

∇ × B = 1

c

∂E
∂t

+ 4π

c
jT + 4π∇ × Ms. (14.2)

In (14.2) jT is the total current in the system; it includes any external current and the
diamagnetic response current in the medium. The term Ms is the spin magnetization
in the case of a system containing spins. Equation (14.1) can be written as

B = ξ × E, (14.3)

where ξ = cq
ω
. Therefore the magnetic induction B can be eliminated from (14.2) to

have

ξ × (ξ × E) + E = 4πi

ω
jT + 4π

c
ξ × Ms,

or

ξ(ξ · E) − ξ2E + E = 4πi

ω
jT + 4π

c
ξ × Ms. (14.4)
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Normally the total current jT can be written as

jT = j0 + jind (14.5)

where j0 is some external current and jind is the current induced (in the electron gas)
by the self-consistent field. The spin magnetization Ms and the induced current jind
are found in terms of the self-consistent fields E and B from linear response theory.
For example jind might simply be the electron current density

je = σ · E, (14.6)

and the spin magnetization Ms will be some similar function of B

Ms = α · B. (14.7)

For the moment, let us ignore the effect of spin to drop the termMs. Then (14.4)
can be solved for jT.

jT = Γ · E, (14.8)

where

Γ = iω

4π

{
(ξ2 − 1)1 − ξξ

}
. (14.9)

If we choose qx = 0 (as we did in linear response theory), Γ can be written

Γ = ic2

4πω

⎛

⎜
⎜
⎝

q2
y + q2

z − ω2

c2 0 0

0 q2
z − ω2

c2 −qyqz

0 −qyqz q2
y − ω2

c2

⎞

⎟
⎟
⎠ . (14.10)

Notice thatΓ is diagonal for propagation parallel or perpendicular to the dcmagnetic
field (which we take to be in the z-direction).

14.2 Skin Effect in the Absence of a DC Magnetic Field

Consider a semi-infinite metal to fill the space z > 0 and vacuum the space z < 0.
Let us consider the propagation of an electromagnetic wave parallel to the z-axis.
Electromagnetic radiation is a self-sustaining oscillation of any medium in which it
propagates. Therefore, we need no external ‘driving’ current j0, and the total current
is simply the electronic current

je(q,ω) = σ(q,ω) · E(q,ω). (14.11)
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But Maxwell’s equations require that jT = Γ · E, and we have just seen that jT = je.
Therefore, the electromagnetic waves must be solutions of the secular equation

| Γ − σ |= 0, (14.12)

which can be written

∣
∣
∣
∣
∣
∣
∣

− c2q2

ω2 + ε(q,ω) 0 0

0 − c2q2

ω2 + ε(q,ω) 0

0 0 ε(q,ω)

∣
∣
∣
∣
∣
∣
∣
= 0. (14.13)

Here we have introduced the dielectric function

ε(q,ω) = 1 − 4πi

ω
σ(q,ω), (14.14)

and we have assumed that ε is diagonal (this is true for an electron gas in the absence
of a dc magnetic field). The transverse electromagnetic waves which can propagate
in the medium are solutions of the equation

c2q2 = ω2ε(q,ω). (14.15)

In addition there is a longitudinal wave which is the solution of the equation

ε(q,ω) = 0. (14.16)

Normal Skin Effect

In the absence of a dc magnetic field, the local theory of conduction gives

σ = σ0

1 + iωτ
= ω2

pτ/4π

1 + iωτ
. (14.17)

Therefore we have

ε(q,ω) = 1 − iω2
pτ/ω

1 + iωτ
(14.18)

or

ε(q,ω) = 1 + (ω2 − ω2
p)τ

2

1 + ω2τ 2
− i

ω2
pτ

2

ωτ (1 + ω2τ 2)
(14.19)

Usually in a good metal ωp � 1016/s, a frequency in the ultraviolet. Therefore, in
the optical or infrared range ωp � ω. The parameter τ can be as small as 10−14 s or
as large as 10−9 s in very pure metals at very low temperatures. Let us first consider
the case ωτ � 1. Then, since ωp � ω, we have
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ε(q,ω) � −ω2
p

ω2
. (14.20)

Substituting this result into the wave equation c2q2 = ω2ε(q,ω) gives

q = ±i
ωp

c
= ± i

δ
. (14.21)

We choose the well-behaved solution q = − i
δ
so that the field in the metal is of the

form
E(z, t) = E0e

iωt−z/δ. (14.22)

What we find is that electromagnetic waves do not propagate in the metal (for fre-
quencies lower thanωp), and that the electric field in the solid drops off exponentially
with distance from the surface. The distance δ = c

ωp
is called the normal skin depth.

If ωτ � 1, (this is usually true at rf frequencies, even at low temperatures with
pure materials) we have

ε(q,ω) � 1 − i
ω2
pτ

ω
≈ −i

ω2
pωτ

ω2
when ωp � ω. (14.23)

The solution of the wave equation is given by

q = ±ωp

c

(ωτ

2

)1/2
(1 − i), (14.24)

so that the field E is of the form

E(z, t) = E0e
iωte−(i+1)

ωp
c ( ωτ

2 )
1/2

z . (14.25)

Thus the skin depth is given by

δ = c

ωp

(
2

ωτ

)1/2

. (14.26)

If themean free path l ismuch greater than the skin depth, l � δ, then the local theory
is not valid. In good metals at low temperatures, it turns out that l � vFτ � 107 nm
and δ � 10 nm, so that l � δ, and we must use the nonlocal theory.

Anomalous Skin Effect

The normal skin effect was derived under the assumption that the q dependence of
σ was unimportant. Remember that this assumption is valid if ql = qvFτ � 1. We
have found that the electric field varies like e−z/δ . If δ turns out to be smaller than
l = vFτ , our initial assumption was certainly incorrect. The skin depth δ is of the
order of
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δ � c

ωp
. (14.27)

Therefore, if
ωc

ωpvF
< ωτ , (14.28)

the theory is inconsistent because the field E(z) changes appreciably over a mean
free path l contradicting the assumption that the q dependence of σ can be neglected.
The theory for this case in which the q dependence of σ must be included is called
the theory of the anomalous skin effect. In the nonlocal theory, we can write, (here,
we take the y-axis to be perpendicular to the metal’s surface),

je(y) =
∫

dy′σ(y, y′) · E(y′), (14.29)

which is true for an infinitemedium.However,wehave to take into account the surface
of the metal here. We shall do this by using the formalism for the infinite medium,
and imposing appropriate boundary conditions, namely, the method of images.

14.3 Azbel–Kaner Cyclotron Resonance

The theory of the anomalous skin effect in the presence of a dc magnetic field aligned
parallel to the surface is the theory ofAzbel–Kaner cyclotron resonance inmetals.We
shall present a brief treatment of this effect, and leave the problem of the anomalous
skin effect in the absence of a dc magnetic field as an exercise (see Problem14.1).

Let us choose a Cartesian coordinate systemwith the y-axis normal to the surface,
and the z-axis parallel to the dc magnetic field (see Fig. 14.1). For a polarization in

Fig. 14.1 The coordinate system for an electromagnetic wave propagating parallel to the y-axis
with the surface at y = 0. A dc magnetic field B0 is parallel to the z-axis
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which E(r, t) is parallel to the z-axis, the wave equation can be written, since q is
along the y direction,

(
−q2 + ω2

c2

)
E(q,ω) = 4πiω

c2
jT(q,ω). (14.30)

This comes from the Fourier transform of the wave equation. For the case of self-
sustaining oscillations of an infinite medium, we would set jT equal to the induced
electron current given by σzz(q,ω)E(q,ω). For the semi-infinite medium, however,
one must exercise some care to account for the boundary conditions. The electric
field in the metal will decay in amplitude with distance from the surface y = 0.
There is a discontinuity in the first derivative of E(r, t) at y = 0. Actually the term
−q2E in the wave equation came from making the assumption that E(y) was of the
form e−iqy . One can use this ‘infinite medium’ picture by replacing the vacuum by
the mirror image of the metal as shown in Fig. 14.2. The fictitious surface current
j0 ∝ δ(y) must be introduced to properly take account of the boundary conditions.
By putting je(q,ω) = σzz(q,ω)E(q,ω), we can solve thewave equation forE(q,ω).
The fictitious surface current sheet of density j0 is very simply related to themagnetic
field at the surface

j0(y) = c

2π
H(0)δ(y) or j0(q) = cH(0)

2π
. (14.31)

Solving (14.30) for E(q,ω) gives

E(q,ω) = 2iωH(0)/c

−q2 + ω2

c2 − 4πiω
c2 σzz(q,ω)

. (14.32)

Fig. 14.2 A semi-infinite medium in terms of infinite medium picture. An electric field Ez(y) in
the metal is shown near the surface y = 0
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By substituting this result into the Fourier transform

E(y) = 1

2π

∫ ∞

−∞
dq e−iqy E(q,ω), (14.33)

and the surface impedance Z defined by the ratio of the tangential electric field at
surface to the total current per unit area

Z = E(0)
∫∞
0 j (y)dy

= 4π

c

E(0)

H(0)
, (14.34)

we can easily obtain the electric field as a function of position and the surface
impedance of the metal. In (14.34), E(0) and H(0) are the electric field and the
magnetic field at the surface, respectively.

For the case of a transverse wave polarized in the x-direction instead of the z-
direction, σzz is replaced by

σT = σxx + σ2
xy

σyy
. (14.35)

This is equivalent to assuming that electrons are specularly reflected at the boundary
y = 0. Figure14.3 shows the coordinate system for awave propagating perpendicular
to the boundary of the metal with polarization in the x-direction normal to the dc
magnetic field. One can see that although E(y) is continuous, its first derivative is

not:
(

∂E(y)
∂y

)

y=0+
= −

(
∂E(y)

∂y

)

y=0−
. Therefore, in defining the Fourier transform of

∂2E(y)
∂y2 we must add terms to take account of these continuities.

Fig. 14.3 The coordinate system for an electromagnetic wave propagating parallel to the y-axis to
the metal surface (y = 0) for the case of polarization in the x-direction. A dc magnetic field B0 is
parallel to the z-axis
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∫ ∞

−∞
dy eiqy

∂2E(y)

∂y2
= −q2E(q) − iqΔE0 + ΔE′

0, (14.36)

where

ΔE′
0 =

(
∂E(y)

∂y

)

y=0+
−
(

∂E(y)

∂y

)

y=0−
, (14.37)

and
ΔE0 = E(0+) − E(0−). (14.38)

For the case of specular reflection of electrons at the surface we take ΔE0 = 0 and
ΔE′

0 = 2E′(0+). This adds a constant term to the wave equation

(
− q2 + ω2

c2

)
E(q,ω) = −ΔE′

0 + 4πiω

c2
je(q,ω). (14.39)

This added term can equally well be thought of as a fictitious surface current j0(y)
given by

j0(y) = −c2ΔE′
0

4πiω
δ(y), (14.40)

so that the infinite medium result (or infinite medium wave equation) can be used if
we take for jT(q,ω)

jT(q,ω) = je(q,ω) + j0(q). (14.41)

Actually the results just derived are valid in the absence of a magnetic field as well
as in the presence of a dc magnetic field. In the absence of a magnetic field the
conductivity tensor is given by

σ(q,ω) = ω2
p

4πiω

{
1 + I(q,ω)

}
, (14.42)

where

I(q,ω) = m

N

∑

kk′

f0(εk′) − f0(εk)

εk′ − εk − �ω
< k′|Vq |k >< k′|Vq |k >∗ . (14.43)

14.4 Azbel–Kaner Effect

If we use the Cohen–Harrison–Harrison expression for σzz(q,ω), (13.125) we have

σzz = 3σ0

∞∑

n=−∞

cn(w)

1 − iτ (nωc − ω)
, (14.44)

http://dx.doi.org/10.1007/978-3-319-73999-1_13
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where

cn(w) = 1

2

∫ 1

−1
d(cos θ) cos2 θJ 2

n (w sin θ). (14.45)

Since w � 1 (i.e. we assume w ≡ qvF
ωc

� 1 for the values of q of interest in this
problem) we can replace Jn(w sin θ) by its asymptotic value for large argument.

lim
z→∞ Jn(z) ≈

√
2

πz
cos

[
z −

(
n + 1

2

)
π

2

]
. (14.46)

Substituting (14.46) into the expression for cn(w), (14.45) gives

cn(w) ≈ 1

4w
. (14.47)

Therefore, we have, for w � 1,

σzz ≈ 3ω2
p

4πi ω̃

1

4w

∞∑

n=−∞

1

1 + nωc/ω̃
, (14.48)

where ω̃ = ω − i/τ . Making use of the fact that

∞∑

n=−∞

1

1 + nωc/ω
= πω

ωc
cot

πω

ωc
(14.49)

and −i cot x = coth i x , one can easily see that

σzz ≈ 3ω2
p

16qvF
coth

[
π(1 + iωτ )

ωcτ

]
. (14.50)

This can be rewritten

σzz ≈ − 3iω2
p

16qvF
cot

[
π(ω − i/τ )

ωc

]
. (14.51)

In the limit ωτ � 1, this function has sharp peaks at ω � nωc. In the limit ωτ � 1,
σzz shows periodic oscillations as a function of ωc. These oscillations also show up
in the surface impedance. In using the Cohen–Harrison–Harrison expression for σzz ,
we have obviously omitted quantum oscillations. By using the quantum mechanical
expression for σ, for example σQO(q,ω) given by (13.154), one can easily obtain
the quantum oscillations of the surface impedance.

Exercise

Show the asymptotic expression (14.47) by combining (14.45) and (14.46).

http://dx.doi.org/10.1007/978-3-319-73999-1_13
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14.5 Magnetoplasma Waves

We have seen that if we omit spin magnetization, the Maxwell equations for a wave
of the form eiωt−iq·r can be written

jT = Γ (q,ω) · E. (14.52)

The total current is usually the sum of some external current and the induced electron
current. If one is interested in the self-sustaining oscillations of the system, one wants
the external driving current to be equal to zero. Then the electron current is given by
je = σ · E, and this is the only current. Thus, jT = Γ · E = σ · E, so that we have

| Γ − σ |= 0 (14.53)

gives the dispersion relation for the normal modes of the system.
In the absence of a dc magnetic field (14.53) reduces to

(ω2ε − c2q2)2ε = 0. (14.54)

In the local (collisionless) theory, the dielectric function is given by

ε ≈ 1 − ω2
p

ω2
, (14.55)

so the normal modes are two degenerate transverse modes of frequency

ω2 = ω2
p + c2q2, (14.56)

and a longitudinal mode of frequency

ω = ωp. (14.57)

Fig. 14.4 shows the dispersion curves of transverse and longitudinal plasmon modes
in the absence of a dcmagnetic field. There are no propagatingmodes for frequencies
ω smaller than the plasma frequency ωp.

Now consider the normal modes of the system in the presence of a dc magnetic
field. We choose the z-axis parallel to the magnetic field, and let the wave vector q
lie in the y − z plane. The secular equation can be written

∣
∣
∣
∣
∣
∣
∣

εxx − ξ2 εxy 0

−εxy εxx − ξ2z ξyξz

0 ξyξz εzz − ξ2y

∣
∣
∣
∣
∣
∣
∣
= 0. (14.58)
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Fig. 14.4 The dispersion curves of transverse and longitudinal plasmon modes in the absence of a
dc magnetic field

In writing down (14.58) we have introduced ξ = cq
ω
, and now assume a local theory

of conductivity in which the nonvanishing elements of ε are

εxx (ω) = εyy(ω) = 1 − ω2
p

ω2−ω2
c
,

εxy(ω) = −εyx (ω) = −i
ω2
pωc/ω

ω2−ω2
c
,

εzz(ω) = 1 − ω2
p

ω2 .

(14.59)

Because the dielectric constant is independent of q, the secular equation turns out to
be rather simple. It is a quadratic equation in q2

αq4 + βq2 + γ = 0, (14.60)

where

α = εxx (ω) sin2 θ + εzz(ω) cos2 θ,

β = − {
εxx (ω)εzz(ω)(1 + cos2 θ) + [ε2xy(ω) + ε2xx (ω)] sin2 θ

}
ω2/c2,

γ = [
ε2xx (ω) + ε2xy(ω)

]
εzzω

4/c4.

(14.61)

Here θ is the angle between the direction of propagation and the direction of the dc
magnetic field. For θ = 0 (14.60) reduces to

εzz(ω)
{[q2 − εxx (ω)ω2/c2]2 + ε2xy(ω)ω4/c4

} = 0. (14.62)

The roots can easily be plotted; there are four roots as are shown in Fig. 14.5.

The longitudinal plasmon ω = ωp is the solution of εzz(ω) = 0. The two transverse

plasmons start out at q = 0 as ω =
[
ω2
p + (ωc/2)2

]1/2 ± ωc
2 . At very large q they are

just light waves, but there is a difference in the phase velocity for the two different
(circular) polarizations. Their difference in phase velocity is responsible for the
Faraday effect–the rotation of the plane of polarization in a plane polarized wave.
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Fig. 14.5 The dispersion curves of magnetoplasma modes in a metal when the wave propagates in
the z-direction parallel to the dc magnetic field B0

The low frequency mode is the well-known helicon. For small values of q it begins
as

ω = ωcc2q2

ω2
p

, (14.63)

and it asymptotically approaches ω = ωc for large q.

Exercise

Demonstrate (14.60) by simplifying the secular equation (14.58).

For θ = π
2 (14.60) reduces to

[q2 − εzz(ω)ω2/c2] {q2εxx (ω) − [ε2xx (ω) + ε2xy(ω)]ω2/c2
} = 0. (14.64)

The mode corresponding to q2 = εzz(ω)ω2/c2 is a transverse plasmon of frequency

ω =
[
ω2
p + c2q2

]1/2
. The helicon mode appears no longer. The other two modes

have mixed longitudinal and transverse character. They start at

ω± =
[
ω2
p + (

ωc

2
)2
]1/2 ± ωc

2
(14.65)

for q = 0. For very large q one mode is nearly transverse and varies as ω ≈ cq while

the other approaches the finite asymptotic limit ω =
√

ω2
p + ω2

c . The roots of (14.64)

are sketched in Fig. 14.6.
For an arbitrary angle of propagation, the helicon mode has a frequency1 (we

assume ωp � ωc)

ω = ωcc2q2 cos θ

ω2
p + c2q2

(
1 + i

ωcτ cos θ

)
. (14.66)

1M. A. Lampert, J. J. Quinn, and S. Tosima, Phys. Rev. 152, 661 (1966).
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Fig. 14.6 The dispersion curves of magnetoplasma modes in a metal when the wave propagates in
the z-direction normal to the dc magnetic field B0

Here the collisional damping is included with the finite mean collision time τ (see
Problem14.2).

For very large values of cq
ω
, the two finite frequencymodes are sometimes referred

to as the hybrid-magnetoplasma modes. Their frequencies are

ω2
± = 1

2

(
ω2
p + ω2

c

)
±
[
1

4

(
ω2
p + ω2

c

)2 − ω2
pω

2
c cos

2 θ

]1/2
. (14.67)

For propagation at an arbitrary angle we can think of the four modes as coupled
magnetoplasma modes. The ω± modes described above for very large values of q
are obviously the coupled helicon and longitudinal plasmon.

14.6 Discussion of the Nonlocal Theory

By considering the q dependence of the conductivity one can find a number of inter-
esting effects that have been omitted from the local theory (as well as the quantitative
changes in the dispersion relation which are to be expected). Among them are:

1. Landau Damping and Doppler Shifted Cyclotron Resonance
Suppose an electromagnetic wave of frequency ω and wave number q propagates
inside a metal. In order to absorb energy from the electromagnetic wave, the
component of the velocity of an electron along the applied dc magnetic field
B0 must satisfy αωc + qzvz = ω, in the long wave length limit, for some integral
values ofα. Hereα = n′ − n if the electronic initial and final states are denoted by

εi = n�ωc + �
2k2z
2m and εf = n′

�ωc + �
2(kz+qz)2

2m , respectively.Whenαωc − qzvF <

ω < αωc + qzvF, there are electrons capable of direct absorption of energy from
the wave via single particle excitations inside a metal, and we have cyclotron
damping even in the absence of collisions. Here vF is the Fermi velocity of the
metal. For α = 0, this effect is usually known as Landau damping. Then, we
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have −qzvF < ω < qzvF or −vF < vphase < vF. It corresponds to having a phase
velocity vphase of the wave parallel toB0 equal to the velocity of some electrons in
the solid, i.e.,−vF < vz < vF. These electrons will ride the wave and thus absorb
power from it resulting in collisionless damping of the wave. For α 
= 0, the
effect is usually calledDoppler shifted cyclotron resonance, because the effective
frequency seen by themoving electron isωeff = ω − qzvz and it is equal toα times
the cyclotron resonance frequency ωc.

2. Bernstein Modes or Cyclotron Modes
These are the modes of vibration in an electron plasma, which occur only when σ
has a q-dependence. They are important in plasma physics, where they are known
as Bernstein modes. In solid state physics, they are known as nonlocal waves or
cyclotron waves. These modes start out at ω = nωc for q = 0. They propagate
perpendicular to the dc magnetic field, and depend for their existence (even at
very long wavelengths) on the q dependence of σ.

3. Quantum Waves
These are waves which arise from the gigantic quantum oscillations in σ. These
quantum effects depend, of course, on the q dependence of σ.

14.7 Cyclotron Waves

We will give only one example of the new kind of wave that can occur when the
q dependence of σ is taken into account. We consider the magnetic field in the z-
direction and the wave vector q in the y-direction. The secular equation for wave
propagation is the familiar

∣
∣
∣
∣
∣
∣
∣

εxx − ξ2 εxy 0

−εxy εyy 0

0 0 εzz − ξ2

∣
∣
∣
∣
∣
∣
∣
= 0. (14.68)

This secular equation reduces to a 2 × 2 matrix and a 1 × 1 matrix. For the polariza-
tion with E parallel to the z-axis we are interested in the 1 × 1 matrix. The Lorentz
force couples the x-y motions giving the 2 × 2 matrix for the other polarization. For
the simple case of the 1 × 1 matrix we have

c2q2

ω2
= 1 − 4πi

ω
σzz, (14.69)

where, in the collisionless limit (i.e. τ → ∞),

σzz = 3iω2
p

4π

∞∑

n=0

cn(w)

1 + δn0

2ω

(nωc)2 − ω2
(14.70)
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with

cn(w) =
∫ 1

0
d(cos θ) cos2 θJ 2

n (w sin θ). (14.71)

If we let ω
ωc

= a, we can write

4πi

ω
σzz = −6ω2

p

ω2
c

[
c0/2

−a2
+ c1

1 − a2
+ · · · + cn

n2 − a2
+ · · ·

]
. (14.72)

Let us look at the long wavelength limit where w = qvF
ωc

� 1. Remember that for
small x

Jn(x) = 1

n!
( x
2

)n [
1 − (x/2)2

1 · (n + 1)
+ · · ·

]
. (14.73)

We keep terms to order w2. Because cn ∝ J 2
n , cn ∝ w2n . Therefore, if we retain

only terms of order w2, we can drop all terms but the first two. Then we have

J 2
0 (x) ≈ 1 − x2

2
and J 2

1 (x) ≈ x2

4
. (14.74)

Substituting (14.74) into c0 and c1 yields

c0(w) ≈
∫ 1

0
d(cos θ) cos2 θ

[
1 − 1

2
w2 sin2 θ

]
= 1

3
− w2

15
, (14.75)

and for c1 we find

c1(w) ≈
∫ 1

0
d(cos θ) cos2 θ

w2

4
sin2 θ = w2

30
. (14.76)

Substituting these results into the secular equation, (14.69), gives

c2q2

ω2
ca

2
� 1 − ω2

p

ω2
ca

2

[
1 − w2/5

1 − a2

]
. (14.77)

This is a simple quadratic equation in a2, where a = ω
ωc
. The general solution is

ω2 = 1

2

(
ω2
p + ω2

c + c2q2
)

±
√√
√
√1

4

(
ω2
p + ω2

c + c2q2
)2 − ω2

c

(

ω2
p + c2q2 − ω2

pw
2

5

)

.

(14.78)
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For q → 0, the two roots are

ω2 = 1

2

(
ω2
p + ω2

c

)
± 1

2

(
ω2
p − ω2

c

)
=
{

ω2
p,

ω2
c .

(14.79)

If ωp � ωc, the lower root can be obtained quite well by setting

[
1 − w2/5

1 − a2

]
= 0,

which gives (
ω

ωc

)2

= 1 − w2

5
. (14.80)

Actually going back to (14.72)

4πi

ω
σzz = −6ω2

p

ω2
c

[
c0/2

−a2
+ c1

1 − a2
+ · · · + cn

n2 − a2
+ · · ·

]
,

it is not difficult to see that, for ωp � nωc, there must be a solution at ω2 = n2ω2
c +

O(q2n). We do this by setting cn = αnw
2n for n ≥ 1. If ωp � nωc, then the solutions

are given, approximately, by

[−c0/2

a2
+ c1

1 − a2
+ · · · + cn

n2 − a2
+ · · ·

]
� 0.

Let us assume a solution of the form a2 = n2 + Δ, where Δ � n. Then the above
equation can be written

[
− 1

3 (1 − w2

5 )

n2
+ α1w

2

12 − n2
+ · · · + αn−1w

2(n−1)

(n − 1)2 − n2
+ αnw

2n

Δ
+ · · ·

]

� 0.

Solving for Δ gives Δ � 3n2αnw
2n . Thus we have a solution of the form

(
ω

ωc

)2

= n2 + O(q2n). (14.81)

These modes are called cyclotron modes or Bernstein modes.
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14.8 Surface Waves

There are many kinds of surface waves in solids–plasmons, magnetoplasma waves,
magnons, acoustic phonons, optical phonons etc. In fact, we believe that every bulk
wave has associated with it a surface wave. To give some feeling for surface waves,
we shall consider one simple case; surface plasmons in the absence of a dc magnetic
field.

We consider a metal of dielectric function ε1 to fill the space z > 0, and an
insulator of dielectric constant ε0 the space z < 0. Thewave equationwhich describes
propagation in the y − z plane is given by

⎛

⎜
⎝

ε − ξ2 0 0

0 ε − ξ2z ξyξz

0 ξyξz ε − ξ2y

⎞

⎟
⎠

⎛

⎜
⎝

Ex

Ey

Ez

⎞

⎟
⎠ = 0. (14.82)

Here ξ = cq
ω
and ξ2 = ξ2y + ξ2z . For the dielectric ε = ε0, a constant, and we find only

two transverse waves of frequency ω = cq√
ε0
for the bulk modes. For the metal (to be

referred to as medium 1) there are one longitudinal plasmon of frequency ω = ωp

and two transverse plasmons of frequency ω =
√

ω2
p + c2q2 as the bulk modes. Here

we are assuming that ε1 = 1 − ω2
p

ω2 is the dielectric function of the metal.
In order to study the surface waves, we considerω and qy to be given real numbers

and solve the wave equation for qz . For the transverse waves in the metal, we have

q2
z = ω2 − ω2

p

c2
− q2

y . (14.83)

In the insulator, we have

q2
z = ε0

ω2

c2
− q2

y . (14.84)

The qz = 0 lines are indicated in Fig. 14.7 as solid lines. Notice that in region III of
Fig. 14.7, q2

z < 0 in both the metal and the insulator. This is the region of interest
for surface waves excitations, because negative q2

z implies that qz itself is imaginary.
Solving for q(1)

z (value of qz in the metal) and q(2)
z (value of qz in the insulator), when

ω and qy are such that we are considering region III, gives

q(1)
z = ±i(ω2

p + q2
y − ω2)1/2 = ±iα1,

q(0)
z = ±i(q2

y − ε0ω
2)1/2 = ±iα0.

(14.85)

This defines α0 and α1, which are real and positive. The wave in the metal must be of
the form e±α1z and in the insulator of the form e±α0z . In order to have solutions well
behaved at z → +∞ in the metal and z → −∞ in the insulator we must choose the
wave of the proper sign. Doing so gives
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Fig. 14.7 The ω2 − q2y plane for the waves near the interface of a metal and an insulator at z = 0.
The solid lines show the region where qz = 0 in the solid (line separating regions I and II) and in
the dielectric (line separating II and III). In region III q2z < 0 in both media, therefore excitations
in this region are localized at the surface

E(1)(r, t) = E(1)eiωt−iqy y−α1z,

E(0)(r, t) = E(0)eiωt−iqy y+α0z .
(14.86)

The superscripts 1 and 0 refer, respectively, to the metal and dielectric. The boundary
conditions at the plane z = 0 are the standard ones of continuity of the tangential com-
ponents ofE andH, andof the normal components ofD andB. By applying thebound-
ary conditions (remembering that B = i c

ω
∇ × E = c

ω
(qy Ez − qz Ey, qz Ex ,−qy Ex )

we find that

(i) For the independent polarization with Ey = Ez = 0, but Ex 
= 0 there are no
solutions in region III.

(ii) For the polarizationwith Ex = 0, but Ey 
= 0 
= Ez , there is a dispersion relation

ε1

α1
+ ε0

α0
= 0. (14.87)

If we substitute for α0 and α1, (14.87) becomes

c2q2
y = ω2ε0ε1(ω)

ε0 + ε1(ω)
=

ε0ω
2(ω2

p − ω2)
[
ω2(ε0 − 1) + ω2

p

]

(ω2
p − ω2)2 − ω4ε20

. (14.88)

For very large qy the root is approximately given by the zero of the denominator,
viz ω = ωp√

1+ε0
. For small values of qy it goes as ω = c√

ε0
qy . Figure14.8 shows the

dispersion curve of the surface plasmon.
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c

c

Fig. 14.8 Dispersion relation of surface plasmon

14.9 Magnetoplasma Surface Waves

In the presence of a dc magnetic field B0 oriented at an arbitrary angle to the surface,
the problem of surface plasma waves becomes much more complicated.2 We will
discuss here only the nonretarded limit of cq � ω.

Let the metal or semiconductor be described by a dielectric function

εi j (ω) = εLδi j − ω2
p

ω2(ω2 − ω2
c )

[
ω2δi j − ωci ωc j − iωωckεi jk

]
, (14.89)

where εL is the background dielectric constant of metal or semiconductor, ωc = eB0
mc ,

and ωcx = eB0 x
mc . Symbol εi jk = +1(−1) if i jk is an even (odd) permutation of 123,

and zero otherwise. Let the insulator have dielectric constant εo. The wave equation
is given by

⎛

⎜
⎝

εxx − q2/ω2 εxy εxz

εyx εyy − q2
z /ω

2 εyz + qyqz/ω2

εzx εzy + qyqz/ω2 εzz − q2
y/ω

2

⎞

⎟
⎠

⎛

⎜
⎝

Ex

Ey

Ez

⎞

⎟
⎠ = 0. (14.90)

In the nonretarded limit (cq � ω) the off-diagonal elements εxy , εyx , εxz , εzx can be
neglected and (14.90) can be approximated (we put c = 1) by

(q2 − ω2εxx )
[
εzzq

2
z + εyyq

2
y + (εyz + εzy)qyqz

] ≈ 0. (14.91)

2A summary of magnetoplasma surface wave results in semiconductors is reviewed by Quinn and
Chiu in Polaritons, edited by E. Burstein and F. DeMartini, Pergamon, New York (1974), p. 259.
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The surface magneto-plasmon solution arises from the second factor. Solving for qz
in the metal we find

q(1)
z

qy
= −i

√
εyy

εzz
−
(

εyz + εzy

2εzz

)2

− εyz + εzy

2εzz
. (14.92)

The superscript 1 refers to the metal. In the dielectric (superscript 0) q(0)
z = +iqy .

The eigenvectors are

E(1)(r, t) �
(
0, E (1)

y ,− E (1)
y q(1)

z

qy

)
eiωt−iqy y−iq(1)

z z,

B(1)(r, t) � c
ω

(
qy E (1)

z − q(1)
z E (1)

y , 0, 0
)
eiωt−iqy y−iq(1)

z z ≈ 0,

E(0)(r, t) �
(
0, E (0)

y ,− E (0)
y q(0)

z

qy

)
eiωt−iqy y−iq(0)

z z,

B(0)(r, t) � c
ω

(
qy E (0)

z − q(0)
z E (0)

y , 0, 0
)
eiωt−iqy y−iq(0)

z z ≈ 0.

(14.93)

The dispersion relation obtained from the standard boundary conditions is

+ iεo = q(1)
z

qy
εzz + εzy . (14.94)

With εL = εo, (14.94) simplifies to

ω2 − ω2
c + (ω ± ωcx )

2 − ω2
p

εL
= 0, (14.95)

where the ± signs correspond to propagation in the ±y-directions, respectively. For
the case B0 = 0, this gives ω = ωp√

2εL
. For B0 ⊥ x, we have

ω =
√

ω2
c + ω2

p/εL

2
,

and with B0 ‖ x we obtain

ω = 1

2

√

ω2
c + 2ω2

p

εL
∓ ωc

2
,

where the two roots correspond to propagations in the ±y-directions, respectively.

Exercise

Demonstrate the dispersion relation (14.94) by imposing the standard boundary con-
ditions on the fields given by (14.93).
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14.10 Propagation of Acoustic Waves

Now we will try to give a very brief summary of propagation of acoustic waves in
metals. Our discussionwill be based on a very simplemodel introduced byQuinn and
Rodriguez.3 Themodel treats the ions completely classically. Themetal is considered
to consist of

1. a lattice (Bravais crystal for simplicity) of positive ions of mass M and charge ze.
2. an electron gas with n0 electrons per unit volume.

In addition to electromagnetic forces, there are short range forces between the ions
which we represent by two ‘unrenormalized’ elastic constants C� and Ct . The elec-
trons encounter impurities and defects and have a collision time τ associated with
their motion.First, let us investigate the classical equation of motion of the lattice.
Let ξ(r, t) be the displacement field of the ions. Then we have

M
∂2ξ

∂t2
= C�∇(∇ · ξ) − Ct∇ × (∇ × ξ) + zeE + ze

c
ξ̇ × (B0 + B) + F.

(14.96)

The forces appearing on the right hand side of (14.96) are

1. the short range ‘elastic’ forces (the first two terms)
2. the Coulomb interaction of the charge ze with the self-consistent electric field

produced by the ionic motion (the third term)
3. the Lorentz force on themoving ion in the presence of the dcmagnetic fieldB0 and

the self-consistent ac field B. The term ze
c ξ̇ × B is always very small compared

to zeE, and we shall neglect it (the fourth term).
4. the collision drag force F exerted by the electrons on the ions (the last term).

The force F results from the fact that in a collision with the lattice, the electron
motion is randomized, not in the laboratory frame of reference, but in a frame of
reference moving with the local ionic velocity. Picture the collisions as shown in
Fig. 14.9. Here 〈v〉 is the average electron velocity (at point r where the impurity is
located) just before collision. Just after collision 〈v〉final ≈ 0 in the moving system,
or 〈v〉final ≈ ξ̇ in the laboratory. Thus the momentum imparted to the positive ion
must be Δp = m(〈v〉 − ξ̇). This momentum is imparted to the lattice per electron
collision; since there are z electrons per atom and 1

τ
collisions per second for each

electron, it is apparent that

F = z

τ
m
(〈v〉 − ξ̇

)
. (14.97)

We can use the fact that the electronic current je(r) = −n0e〈v(r)〉 to write

F = − zm

n0eτ
( je + n0eξ̇). (14.98)

3J.J. Quinn and S. Rodriguez, Phys. Rev. 128, 2487 (1962).
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Fig. 14.9 Schematic of electron–impurity collision in the laboratory frame and in the coordinate
system moving with the local ionic velocity. Here an impurity is indicated by a circle. In the latter
system a typical electron has velocity < v > −ξ̇ before collision and zero afterwards. In the lab
system the corresponding velocities are < v > before collision and ξ̇ afterwards

But the ionic current density is jI = n0eξ̇ so that the collision drag force on the ions
is

F = − zm

n0eτ
(je + jI). (14.99)

The self-consistent electric field E appearing in the equation of motion, (14.96),
is determined from the Maxwell equations, which can be written

jT = Γ (q,ω) · E. (14.100)

Let us consider jT. It consists of the ionic current jI, the electronic current je, and
any external driving current j0. For considering the normal modes of the system (and
the acoustic waves are normal modes) we set the external driving current j0 equal to
zero and look for self-sustaining modes. Perhaps, if we have time, we can discuss
the theory of direct electromagnetic generation of acoustic waves; in that case j0
is a “fictitious surface current” introduced to satisfy the boundary conditions in a
finite solid (quite similar to the discussion given in our treatment of the Azbel–Kaner
effect). For the present we consider the normal modes of an infinite medium. In that
case j0 = 0 so that jT = jI + je. The electronic current would be simply je = σ · E
except for the effect of “collision drag” and diffusion. These two currents arise from
the fact that the correct collision term in the Boltzmann equation must be

(
∂ f

∂t

)

c

= − f − f̄0
τ

, (14.101)

where f̄0 differs from the overall equilibrium distribution function f0 in two respects:

1. f̄0(r, t) is the local equilibriumdistribution at (r, t), and it depends on the electron
kinetic energy measured in the coordinates system of the moving lattice.
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2. The chemical potential ζ appearing in f̄0 is not ζ0, the actual chemical potential
of the solid, but a local chemical potential ζ(r, t) which is determined by the
condition ∫

d3k
[
f − f̄0

] = 0, (14.102)

i.e. the local equilibrium density at point rmust be the same as the nonequilibrium
density. Therefore, collisions can not change the carrier density but can change
current density.

We can expand f̄0 as follows:

f̄0(k, r, t) = f0(k) + ∂ f0
∂ε

{−mvk · ξ̇ + ζ1(r, t)
}
, (14.103)

where ζ1(r, t) = ζ(r, t) − ζ0. Because of these two changes, instead of je = σ · E,
we have

je(q,ω) = σ(q,ω) ·
[

E − mξ̇

eτ

]

+ eD · ∇n, (14.104)

where
D = σ

e2g(ζ0)(1 + iωτ )
(14.105)

is the diffusion tensor. In (14.105), g(ζ0) is the density of states at the Fermi surface
and n(r, t) = n0 + n1(r, t) is the electron density at point (r, t). The electron density
is determined from the distribution function f , whichmust be solved for. However, at
all but the very highest ultrasonic frequencies, n(r, t) can be determined accurately
from the condition of charge neutrality.

ρe(r, t) + ρI(r, t) = 0, (14.106)

whereρe(r, t) = −en1(r, t) andρI can be determined from the equation of continuity
iωρI − iq · jI = 0. Using these results, we find

je(q,ω) = σ(q,ω) ·
[
E − iωm

eτ
ξ + n0

eg(ζ0)(1 + iωτ )
q(q · ξ)

]
. (14.107)

If we define a tensor Δ by

Δ = n0eiω

σ0

{
1 − 1

3

q2l2

iωτ (1 + iωτ )
q̂q̂
}

, (14.108)

where q̂ = q
|q| , we can write

je(q,ω) = σ(q,ω) · E(q,ω) − σ(q,ω) · Δ(q,ω) · ξ(q,ω). (14.109)
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We can substitute (14.109) into the relation je + jI = Γ · E, and solve for the self-
consistent field E to obtain

E(q,ω) = [
Γ − σ

]−1 (
iωne 1 − σ · Δ

) · ξ. (14.110)

Knowing E, we also know je and hence F, (14.98) in terms of the ionic displacement
ξ. Thus every term on the right hand side of (14.96), the equation of motion of the
ions can be expressed in terms of ξ. The equation of motion is thus of the form

T(q,ω) · ξ(q,ω) = 0, (14.111)

where T is a very complicated tensor. The nontrivial solutions are determined from
the secular equation

det | T(q,ω) |= 0. (14.112)

The roots of this secular equation give the frequencies of the sound waves (2 trans-
verse and 1 longitudinal modes) as a function of q, B0, τ , etc. Actually the solutions
ω(q) have both a real and imaginary parts; the real part determines the velocity of
sound and the imaginary part the attenuation of the wave.

Here we do not go through the details of the calculation outlined above. We will
discuss special cases and attempt to give a qualitative feeling for the kinds of effects
one can observe.

14.10.1 Propagation Parallel to B0

For propagation parallel to the dc magnetic field, it is convenient to introduce circu-
larly polarized transverse waves with

ξ± = ξx ± iξy,

σ± = σxx ∓ iσxy .
(14.113)

We also introduce the parameter β = c2q2

4πωσ0
= c2q2

ω2
pωτ

. Then the nonvanishing compo-

nents of Γ are Γxx = Γyy = iβσ0 and Γzz = − iω
4π . Define the resistivity tensor ρ

by
ρ = σ−1. (14.114)

Then ρ± = σ−1
± and ρzz = σ−1

zz . The secular equation | T |= 0 reduces to two simple
equations:

ω2
± = s2t q

2 ∓ zeωB0

Mc
+ zmiω

Mτ

(1 − iβ)(σ0ρ± − 1)

1 − iβσ0ρ±
(14.115)
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for the circularly polarized transverse waves, and

ω2 = s2l q
2 + zmiω

Mτ

(
σ0ρxx − 1 − q2l2/3

1 + ω2τ 2

)
. (14.116)

for the longitudinal waves. In (14.115) and (14.116), st and sl are the speeds of
transverse and longitudinal acoustic waves given, respectively, by

st =
√
Ct

M
and sl =

√
zm

3M

v2
F

1 + ω2τ 2
+ C�

M
. (14.117)

From these results, we observe that

1. ω has both real and imaginary parts. The real part gives the frequency and hence
velocity as a function of B0. The imaginary part gives the acoustic attenuation as
a function of ql, ωcτ , B0 etc.

2. For longitudinal waves, if we use the semiclassical result for σzz , ω is completely
independent of B0.

3. In the case where the quantum mechanical result for σzz is used, both the velocity
and attenuation display quantum oscillations of the de Haas–van Alphen type.

4. For shear waves, the right and left circular polarizations have slightly different
velocity and attenuation. This leads to a rotation of the plane of polarization of a
linearly polarized wave. This is the acoustic analogue of the Faraday effect.

5. ρ± does depend on the magnetic field, and the acoustic wave shows a fairly
abrupt increase in attenuation as the magnetic field is lowered below ωc = qvF.
This effect is called Doppler shifted cyclotron resonances (DSCRs).

6. The helicon wave solution actually appears in (14.115), so that the equation for
ω± actually describes helicon–phonon coupling.

Exercise

Derive the dispersion relations (14.115) and (14.116) for the transverse and longitu-
dinal acoustic waves, respectively.

14.10.2 Helicon–Phonon Interaction

Look at (14.115), the dispersion relation of the circularly polarized shear waves
propagating parallel to B0:

ω2
± = s2t q

2 ∓ zeωB0

Mc
+ zmiω

Mτ

(1 − iβ)(σ0ρ± − 1)

1 − iβσ0ρ±
. (14.118)
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In the local limit, where σ is shown in (13.116) and (13.117), we have

σ0ρ± � 1 + iωτ ∓ iωcτ . (14.119)

Remember that β � c2q2

ωτω2
p
. Therefore, 1 − iβσ0ρ± can be written

1 − iβσ0ρ± � 1 − i
c2q2

ωτω2
p

[1 + iωτ ∓ iωcτ ]. (14.120)

Let us assume ωcτ � 1, ωc � ω, and β � 1. Then we can write that

1 − iβσ0ρ± ≈ 1 ∓ ωH

ω
, (14.121)

whereωH = ωcc2q2

ω2
p

(
1 − i

ωcτ

)
is the helicon frequency. Substituting this into (14.118)

gives

ω2
± − s2t q

2 � ∓ωΩc ± Ωcω
2

ω ∓ ωH
, (14.122)

whereΩc = zeB0
Mc is the ionic cyclotron frequency. Equation (14.122) can be rewritten

as
(ω − stq)(ω + stq)(ω ∓ ωH) � ωωHΩc. (14.123)

The dispersion curves are illustrated in Fig. 14.10. The helicon and transverse sound
wave of the same polarization are strongly coupled by the term on the right hand
side of (14.123), when their phase velocities are almost equal. The solid lines depict
the coupled helicon–phonon modes.



Fig. 14.10 Schematic of the roots of (14.123). The region of strongly coupled helicon–phonon
modes for circularly polarized acoustic shear waves

http://dx.doi.org/10.1007/978-3-319-73999-1_13
http://dx.doi.org/10.1007/978-3-319-73999-1_13
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14.10.3 Propagation Perpendicular to B0

For propagation to the dc magnetic field, the resistivity tensor has the following
nonvanishing elements:

ρxx = σyy

σxxσyy+σ2
xy

, ρyy = σxx
σxxσyy+σ2

xy
,

ρxy = −Ryx = σxy

σxxσyy+σ2
xy

, ρzz = σ−1
zz .

(14.124)

The secular equation |T| = 0 again reduces to a 2 × 2 matrix and a 1 × 1 matrix,
which can be written

(
ω2 − Axx −Axy

−Ayx ω2 − Ayy

)(
ξx

ξy

)

= 0 (14.125)

and (
ω2 − Azz

)
ξz = 0, (14.126)

where

Axx = Ct
M q2 + zmiω

Mτ
(1−iβ)(σ0ρxx−1)

1−iβσ0ρxx
,

Ayy = C�

M q2 + zmq2v2F
3M(1+ω2τ 2)

+ zmiω
Mτ

{
σ0ρyy − 1 − iβσ2

0ρ
2
xy

1−iβσ0ρxx
− q2l2

3(1+ω2τ 2)

}
,

Axy = −Ayx = zmiω
Mτ

{
(1−iβ)σ0ρxy

1−iβσ0ρxx
− ωcτ

}
,

Azz = Ct
M q2 + zmiω

Mτ
(1−iβ)(σ0ρzz−1)

1−iβσ0ρzz
.

(14.127)

The velocity and attenuation of sound can display several different types of oscil-
latory behavior as a function of applied magnetic field. Here we mention very briefly
each of them.

1. Cyclotron resonances
When ω = nωc, for propagation perpendicular to B0, the components of the con-
ductivity tensor become very large. This gives rise to absorption peaks.

2. de Haas–van Alphen type oscillations
Because the conductivity involves sums

∑
n,kz ,s

over quantummechanical energy
levels, as is shown in (13.82), the components of the conductivity tensor display
de Haas–van Alphen type oscillations exactly as the magnetization, free energy
etc. One small difference is that instead of being associated with extremal orbits
vz = 0, these oscillations in acoustic attenuation are associated with orbits for
which v̄z = s.

3. Geometric resonances
Due to the matrix elements 〈ν ′|eiq·r|ν〉 which behave like Bessel function in
the semiclassical limit, we find oscillations associated with Jn′−n(q⊥vF/ωc) for
propagation perpendicular to B0. The physical origin is associated with matching

http://dx.doi.org/10.1007/978-3-319-73999-1_13
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Fig. 14.11 Schematic of the origin of the geometric resonances in ultrasonic attenuation

the cyclotron orbit diameter to multiples of the acoustic wavelength. Figure14.11
shows the schematic of geometric resonances.

4. Giant quantum oscillations
These result from the quantum nature of the energy levels together with ‘reso-
nance’ due to vanishing of the energy denominator in σ. The physical picture
and feeling for the ‘giant’ nature of the oscillations can easily be obtained from
consideration of

(1) Energy conservation andmomentum conservation in the transition En(kz) +
�ωq −→ En′(kz + qz).

(2) The Pauli exclusion principle.

Suppose that we had a uniform fieldB0 parallel to the z-axis. Then, with usual choice
of gauge, our states are |nkykz〉, with energies given by

En(kz) = �ωc(n + 1

2
) + �

2k2z
2m

. (14.128)

Now, we can do spectroscopy with these electrons, and have them absorb phonons.
Thus, suppose that an electron absorbs a phonon of energy �ω and momentum �qz .
Then, energy conservation gives

En′(kz + qz) − En(kz) = �ωqz . (14.129)

The conservations of energy and momentum require that an electron making a tran-
sition (n, kz) → (n′, kz + qz) has a value of kz given by

kz = m

�qz
(ω ∓ αωc) + qz

2
≡ Kα, (14.130)



14.10 Propagation of Acoustic Waves 463

Fig. 14.12 Schematic of the transitions giving rise to giant quantum oscillations. Only electrons
with kz = Kα can make the transition (n, kz) −→ (n + α, kz + qz) and absorb energy �ωqz

where α = n′ − n. Figure14.12 shows a schematic picture of the transitions giving
rise to giant quantum oscillations.

The exclusion principle requires that En(kz) < ζ and En+α(kz + qz) = En(kz) +
�ω > ζ. For ωc � ω this occurs only when the initial and final states are right at the
Fermi surface. Then the absorption is ‘gigantic’; otherwise it is zero. The velocity
as well as the attenuation displays these quantum oscillations. The oscillations, in
principle, are infinitely sharp, but actually they are broadened out due to the fact
that the Landau levels themselves are not perfectly sharp, and various other things.
However, the oscillations are actually quite sharp, and so the amplitudes are much
larger than the widths of absorption peaks.

Problems

14.1 Consider a semi-infinite metal with the surface at y = 0, in the absence of a
dc magnetic field, subject to an electromagnetic wave propagating parallel to the
y-axis, which is normal to the surface for the case of polarization in the x-direction
(see Fig. 14.13).

(a) The quantum mechanical conductivity tensor is written, in the absence of a
dc magnetic field, as

σ(q,ω) = ω2
p

4πiω

{
1 + I(q,ω)

}
,

where

I(q,ω) = m

N

∑

kk′

f0(εk′) − f0(εk)

εk′ − εk − �ω
< k′|Vq |k >< k′|Vq |k >∗ .

Evaluate σxx (q,ω) at zero temperature.
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Fig. 14.13 The coordinate system for a semi-infinite metallic medium for y > 0 subject to an
electromagnetic wave propagating parallel to the y-axis to the metal surface (y = 0) for the case of
polarization in the x-direction

(b) Determine the electric field inside themetalwith the specular reflection bound-
ary condition. This is the problem of the anomalous skin effect in the absence
of a dc magnetic field.

(c) Show that the surface impedance is written as Z = 4πiω
c2

E(0)
∂E/∂y|y=0+ , and eval-

uate Z .

14.2 Consider a helicon wave in a metal propagating at an angle θ to the direction
of a dc magnetic field applied along the z-axis. One may include the effect of the col-
lisional damping by the finite mean collision time τ . Demonstrate that the frequency
of the helicon mode is given by

ω = ωcc2q2 cos θ

ω2
p + c2q2

(
1 + i

ωcτ cos θ

)
.

14.3 Investigate the coupling of helicons and plasmons propagating at an arbitrary
angle θwith respect to the applied dcmagnetic field B0 in a degenerate semiconductor
in which ωp and ωc are of the same order of magnitude. Take ωcτ � 1 but let ωt be
arbitrary in the local theory, and study the frequency ω of the mode as a function of
B0.

14.4 Evaluate σxx , σxy , and σyy from the Cohen–Harrison–Harrison result for prop-
agating perpendicular toB0 in the limit thatw = qvF/ωc � 1. Calculate to orderw2.

See if anymodes exist (at cyclotron harmonics) for the wave equation ξ2 = εxx + ε2xy
εyy

where ξ = cq/ω.
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z

y



Fig. 14.14 The coordinate system of a semi-infinite metallic medium for z > 0 subject to an
electromagnetic wave propagating onto the metal surface (z = 0)

14.5 Consider an electromagnetic wave of q = (0, qy, qz) propagating onto a semi-
infinite metal of dielectric function ε1 to fill the space z > 0, and an insulator of
dielectric constant ε0 in the space z < 0 (see Fig. 14.14).

(a) Show that the dispersion relation of the surface plasmon for the polarization
with Ex = 0 and Ey 
= 0 
= Ez is written by ε1

α1
+ ε0

α0
= 0, where α0 and α1

are the decay constants in the insulator and metal, respectively.
(b) Sketch ω

ωp
as a function of cqy

ωp
for the surface plasmon excitation.

Summary
In this chapter we study electromagnetic behavior of waves in metals. The linear
response theory and Maxwell’s equations are combined to obtain the condition
of self-sustaining oscillations in metals. Both normal skin effect and Azbel–Kaner
cyclotron resonance are discussed, and dispersion relations of plasmon modes and
magnetoplasma modes are illustrated. Nonlocal effects in the wave dispersions are
also pointed out, and behavior of cyclotron waves is considered as an example of the
nonlocal behavior of the modes. General dispersion relation of the surface waves in
the metal–insulator interface is derived by imposing standard boundary conditions,
and the magnetoplasma surface waves are illustrated. Finally we briefly discussed
propagation of acoustic waves in metals.

The wave equation in metals, in the present of the total current jT(= j0 + jind), is
written as

jT = Γ · E,

where Γ = iω
4π

{
(ξ2 − 1)1 − ξξ

}
. Here the spin magnetization is neglected and ξ =

cq
ω
. The j0 and jind denote, respectively, some external current and the induced current

je = σ · E by the self-consistent field E.
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For a system consisting of a semi-infinite metal filling the space z > 0 and vac-
uum in the space z < 0 and in the absence of j0, the wave equation reduces to
[σ(q,ω) − Γ (q,ω)] · E = 0, and the electromagnetic waves are solutions of the
secular equation | Γ − σ |= 0. The dispersion relations of the transverse and lon-
gitudinal electromagnetic waves propagating in the medium are given, respectively,
by

c2q2 = ω2ε(q,ω) and ε(q,ω) = 0.

In the range ωp � ω and for ωτ � 1, the local theory of conduction (ql � 1)
gives a well-behaved field, inside the metal, of the form

E(z, t) = E0e
iωt−z/δ,

whereq = −i ωp

c = − i
δ
.Thedistance δ = c

ωp
is called thenormal skin depth. If l � δ,

the local theory is not valid. The theory for this case, in which the q dependence of
σ must be included, explains the anomalous skin effect.

In the absence of a dcmagnetic field, the condition of the collectivemodes reduces
to

(ω2ε − c2q2)2ε = 0.

Using the local (collisionless) theory of the dielectric function ε ≈ 1 − ω2
p

ω2 , we have
two degenerate transverse modes of frequency ω2 = ω2

p + c2q2, and a longitudinal
mode of frequency ω = ωp.

In the presence of a dc magnetic field along the z-axis and q in the y-direction,
the secular equation for wave propagation is given by

∣
∣
∣
∣
∣
∣
∣

εxx − ξ2 εxy 0

−εxy εyy 0

0 0 εzz − ξ2

∣
∣
∣
∣
∣
∣
∣
= 0.

For the polarization with E parallel to the z-axis we have

c2q2

ω2
= 1 − 4πi

ω
σzz(q,ω),

where σzz(q,ω) is the nonlocal conductivity. For ωp � nωc and in the limit q →
0, we obtain the cyclotron waves given by ω2 = n2ω2

c + O(q2n). They propagate
perpendicular to the dc magnetic field, and depend for their existence on the q
dependence of σ.

For a system consisting of a metal of dielectric function ε1 filling the space z > 0
and an insulator of dielectric constant ε0 in the space z < 0, the waves localized near
the interface (z = 0) are written as

E(1)(r, t) = E(1)eiωt−iqy y−α1z,

E(0)(r, t) = E(0)eiωt−iqy y+α0z .
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The superscripts 1 and 0 refer, respectively, to the metal and dielectric. The boundary
conditions at the plane z = 0 are the standard ones of continuity of the tangential
components of E andH, and of the normal components ofD and B. For the polariza-
tion with Ex = 0, but Ey 
= 0 
= Ez , the dispersion relation of the surface plasmon
is written as ε1

α1
+ ε0

α0
= 0,

where α1 = (ω2
p + q2

y − ω2)1/2 and α0 = (q2
y − ε0ω

2)1/2.

The classical equation of motion of the ionic displacement field ξ(r, t) in a metal
is written as

M
∂2ξ

∂t2
= C�∇(∇ · ξ) − Ct∇ × (∇ × ξ) + zeE + ze

c
ξ̇ × (B0 + B) + F.

HereC� andCt are elastic constants, and the collision drag forceF isF = − zm
n0eτ

(je +
jI), where the ionic current density is jI = n0eξ̇. The self-consistent electric field E
is determined from the Maxwell equations jT = Γ (q,ω) · E:

E(q,ω) = [
Γ − σ

]−1 (
iωne 1 − σ · Δ

) · ξ.

Here a tensor Δ is defined by Δ = n0eiω
σ0

{
1 − 1

3
q2l2

iωτ (1+iωτ )
q̂q̂
}

, where q̂ = q
|q| . The

equation of motion is thus of the form T(q,ω) · ξ(q,ω) = 0, where T is a very
complicated tensor. The normal modes of an infinite medium are determined from
the secular equation

det | T(q,ω) |= 0.

The solutions ω(q) have both a real and imaginary parts; the real part determines the
velocity of sound and the imaginary part the attenuation of the wave.



Chapter 15
Superconductivity

15.1 Some Phenomenological Observations
of Superconductors

Superconductors are materials that behave as normal metals at high temperatures
(T > Tc; however, below Tc they have the following properties:

(i) the dc resistivity vanishes.
(ii) they are perfect diamagnets; by this we mean that any magnetic field that is

present in the bulk of the sample when T > Tc is expelled when T is lowered
through the transition temperature. This is called theMeissner effect.

(iii) the electronic properties can be understood by assuming that an energy gap 2Δ
exists in the electronic spectrum at the Fermi energy.

Some common superconducting elements and their transition temperatures are given
in Table15.1.

Resistivity

A plot of ρ(T ), the resistivity versus temperature T , looks like the diagram shown in
Fig. 15.1. Current flows in superconductor without dissipation. Persistent currents in
superconducting rings have been observed to circulate without decaying for years.
There is a critical current density jc which, if exceeded, will cause the superconductor
to go into the normal state. The ac current response is also dissipationless if the
frequency ω satisfies ω < Δ

�
, where Δ is an energy of the order of kBTc.

Thermoelectric Properties

Superconducting materials are usually poor thermal conductors. In normal metals an
electric current is accompanied by a thermal current that is associatedwith thePeltier
effect. No Peltier effect occurs in superconductors; the current carrying electrons
appear to carry no entropy.

© Springer International Publishing AG, part of Springer Nature 2018
J. J. Quinn and K.-S. Yi, Solid State Physics, UNITEXT for Physics,
https://doi.org/10.1007/978-3-319-73999-1_15

469



470 15 Superconductivity

Table 15.1 Transition temperatures of some selected superconducting elements

Elements Al Sn Hg In fcc La hcp La Nb Pb

Tc (K) 1.2 3.7 4.2 3.4 6.6 4.9 9.3 7.2

Fig. 15.1 Temperature dependence of the resistivity of typical superconducting metals

Magnetic Properties

There is a critical magnetic field Hc(T ), which depends on temperature. When H is
above Hc(T ), thematerial is in the normal state;when H < Hc(T ) it is superconduct-
ing. A plot of Hc(T ) versus T is sketched in Fig. 15.2. In a type I superconductor, the
magnetic induction B must vanish in the bulk of the superconductor for H < Hc(T ).
But we have

B = H + 4πM = 0 for H < Hc(T ), (15.1)

which implies that

M = − H

4π
for H < Hc(T ). (15.2)

This behavior is illustrated in Fig. 15.3.
In a type II superconductor, the magnetic field starts to penetrate the sample at an

applied field Hc1 lower than the Hc. The Meissner effect is incomplete yet until at
Hc2. The B approaches H only at an upper critical field Hc2. Figure15.4 shows the

SUERCONDUCTING
             STATE

NORMAL STATE

Fig. 15.2 Temperature dependence of the critical magnetic field of a typical superconducting
material
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(a) (b)

Fig. 15.3 Magnetic field dependence of the magnetization M and magnetic induction B of a type
I superconducting material

(a) (b)

Fig. 15.4 Magnetic field dependence of the magnetization M and magnetic induction B of a type
II superconducting material

magnetic field dependence of the magnetization,−4πM , and the magnetic induction
B in a type II superconducting material. Between Hc2 and Hc1 flux penetrates the
superconductor giving a mixed state consisting of superconductor penetrated by
threads of the material in its normal state or flux lines. Abrikosov showed that the
mixed state consists of vortices each carrying a single flux Φ = hc

2e . These vortices
are arranged in a regular two-dimensional array.

Specific Heat

The specific heat shows a jump at Tc and decays exponentiallywith an energyΔ of the
order of kBTc as e−Δ/kBTc below Tc, as is shown in Fig. 15.5. There is a second order
phase transition (constant entropy, constant volume, no latent heat)with discontinuity
in the specific heat.

Fig. 15.5 Temperature dependence of the specific heat of a typical superconducting material
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(a)

(b)

Fig. 15.6 Tunneling current behavior for (a) a normal metal–oxide–normal metal structure and (b)
a superconductor–oxide–normal metal structure

Tunneling Behavior

If one investigates tunneling through a thin oxide, in the case of two normal metals,
one obtains a linear current–potential difference curve, as is sketched in Fig. 15.6a.
For a superconductor–oxide–normal metal structure, a very different behavior of
the tunneling current versus potential difference is obtained. Figure15.6b shows
the tunneling current–potential difference curve of a superconductor–oxide–normal
metal structure.

Acoustic Attenuation

For T < Tc andω < 2Δ, there is no attenuation of sound due to electron excitation. In
Fig. 15.7, the damping constant α of low frequency sound waves in a superconductor
is sketched as a function of temperature.

α

Fig. 15.7 Temperature dependence of the damping constant of low frequency sound waves in a
superconducting material
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15.2 London Theory

Knowing the experimental properties of superconductors, London introduced a phe-
nomenological theory that can be described as follows:

1. The superconducting material contains two fluids below Tc.
nS(T )

n is the fraction

of the electron fluid that is in the super fluid state. nN(T )

n =
[
1 − nS(T )

n

]
is the

fraction in the normal state. The total density of electrons in the superconducting
material is n = nN + nS.

2. Both the normal fluid and super fluid respond to external fields, but the super-
fluid is dissipationless while the normal fluid is not. We can write the electrical
conductivities for the normal and super fluids as follows:

σN = nNe2τN
m ,

σS = nSe2τS
m ,

(15.3)

but τS → ∞ giving σS → ∞.
3.

nS(T ) → n as T → 0,
nS(T ) → 0 as T → Tc.

4. In order to explain the Meissner effect, London proposed the London equation

∇ × j + nSe2

mc
B = 0. (15.4)

How does the London equation arise? Let us consider the equation of motion of a
super fluid electron, which is dissipationless, in an electric fieldE that is momentarily
present in the superconductor:

m
dvS

dt
= −eE

where vS is the mean velocity of the super fluid electron caused by the field E. But
the current density j is simply

j = −nSevS. (15.5)

Notice that this gives the relation

dj
dt

= −nSe
dvS

dt
= nSe2

m
E. (15.6)

Equation (15.6) describes the dynamics of collisionless electrons in a perfect con-
ductor, which cannot sustain an electric field in stationary conditions. Now, from
Faraday’s induction law, we have
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∇ × E = −1

c
Ḃ. (15.7)

Combining this with (15.6) gives us

d

dt

[
∇ × j + nSe2

mc
B

]
= 0. (15.8)

The solution of (15.8) is that

∇ × j + nSe2

mc
B = constant.

Because in the bulk of a superconductor the magnetic induction B must be zero,
London proposed that for superconductors, the ‘constant’ had to be zero and j =
− nse2

mc A [called theLondongauge] giving (15.4). TheLondon equation implies that, in
stationary conditions, a superconductor cannot sustain a magnetic field in its interior,
but only within a narrow surface layer. If we use the relation

∇ × B = 4π

c
j, (15.9)

(This is the Maxwell equation for ∇ × B in stationary conditions without the dis-
placement current 1

c Ė.), we can obtain

∇ × (∇ × B) = 4π

c
∇ × j = −4π

c

nSe2

mc
B. (15.10)

But, ∇ × (∇ × B) = ∇(∇ · B) − ∇2B giving

∇2B = 4πnSe2

mc2
B ≡ 1

Λ2
L

B. (15.11)

The solutions of (15.11) show a magnetic field decaying exponentially with a char-
acteristic length Λ. One can also obtain the relation ∇2 j̇ = 4πnSe2

mc2 j. The quantity

ΛL =
√

mc2
4πnSe2

is called the London penetration depth. For typical semiconducting

materials, ΛL ∼ 10 − 102 nm. If we have a thin superconducting film filling the
space −a < z < 0 as shown in Fig. 15.8a, then the magnetic field B parallel to the
superconductor surface has to fall off inside the superconductor from B0, the value
outside, as

B(z) = B0e
−|z|/ΛL near the surface z = 0

and
B(z) = B0e

−|z+a|/ΛL near the surface z = −a.
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(a)

(b)

Fig. 15.8 A superconducting thin film (a) and the magnetic field penetration (b)

Fig. 15.8b shows the schematic of the flux penetration in the superconducting film.
The flux penetrates only a distance ΛL ≤ 102nm. One can show that it is impossible
to have a magnetic field B normal to the superconductor surface but homogeneous
in the x − y plane.

15.3 Microscopic Theory–An Introduction

In the early 1950’s Frölich suggested that the attractive part of the electron–phonon
interaction was responsible for superconductivity predicting the isotopic effect. The
isotope effect, the dependence of Tc on the mass of the elements making up the
lattice was discovered experimentally independent of Frölich’s work, but it was in
complete agreement with it. Both Frölich, and later Bardeen, attempted to describe
superconductivity in termsof an electron self-energy associatedwith virtual exchange
of phonons. Both attempts failed. In 1957, Bardeen, Cooper, and Schrieffer (BCS)
produced the first correct microscopic theory of superconductivity.1 The critical idea
turned out to be the pair correlations that became manifest in a simple little paper
by L. N. Cooper.2

1J. Bardeen, L. N. Cooper, and J. R. Schrieffer, Phys. Rev. 108, 1175 (1957).
2Leon. N. Cooper, Phys. Rev. 104, 1189 (1956).
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Let us consider electrons in a simple metal described by the Hamiltonian H =
H0 + Hep, where H0 and Hep are, respectively the unperturbed Hamiltonian for a
Bravais lattice and the interaction Hamiltonian of the electrons with the screened
ions. Here we neglect the effect of the periodic part of the stationary lattice to write
H0 by

H0 =
∑
k,σ

εkc
†
kσckσ +

∑
q,s

�ωq,sa
†
q,saq,s,

where σ and s denote, respectively, the spin of the electrons and the three dimensional
polarization vector of the phonons, and aq,s annihilates a phonon of wave vector q
and polarization s, and ckσ annihilates an electron of wave vector k and spin σ. We
will show the basic ideas leading to the microscopic theory of superconductivity.

15.3.1 Electron–Phonon Interaction

The electron–phonon interaction can be expressed as

Hep =
∑
k,q,σ

Mq

(
a†−q + aq

)
c†k+qσckσ, (15.12)

whereMq is the electron–phononmatrix element defined, in a simplemodel discussed
earlier, by

Mq = i

√
N�

2Mωq
| q | Vq.

Here Vq is the Fourier transform of the potential due to a single ion at the origin,
and the phonon spectrum is assumed isotropic for simplicity. (In this case only
the longitudinal modes of s parallel to q give finite contribution to Hep.) This Hep

can give rise to an effective electron–electron interaction associated with virtual
exchange of phonons as denoted in Fig. 15.9a. The figure shows that an electron
polarizes the lattice and another electron interacts with the polarized lattice.There
are two possible intermediate states in this process as shown in Fig. 15.9b and c.
In Fig. 15.9b the initial energy is Ei = εk + εk′ and the intermediate state energy
is Em = εk + εk′−q + �ωq. In Fig. 15.9c the initial energy is the same, but the
intermediate state energy is Em = εk+q + εk′ + �ωq. We can write this interaction
in the second order as

∑
m

〈 f | Hep | m〉〈m | Hep | i〉
Ei − Em

. (15.13)
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(a)

(b)

(c)

Fig. 15.9 Electron–phonon interaction (a) Effective electron–electron interaction through virtual
exchange of phonons (b) and (c): Two possible intermediate states in the effective electron–electron
interaction

This gives us the interaction part of the Hamiltonian as follows:

H ′ = ∑
kk′q
σσ′

| Mq |2
{

〈 f |c†k+qσckσaq|m〉〈m|c†k′−qσ′ ck′σ′a†q|i〉
εk′ −[εk′−q+�ωq]

+ 〈 f |c†k′−qσ′ ck′σ′a−q|m〉〈m|c†k+qσckσa
†
−q|i〉

εk−[εk+q+�ωq]

}
.

(15.14)

One can take the Hamiltonian

H = H0 + H ′

= ∑
kσ εkσc

†
kσckσ + ∑

q �ωqa†qaq + ∑
k,q,σ Mq

(
a†−q + aq

)
c†k+qσckσ

(15.15)

and make a canonical transformation

HS = e−SHeS (15.16)

where the operator S is defined by

S =
∑
kqσ

Mq

(
αa†−q + βaq

)
c†k+qσckσ (15.17)
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in order to eliminate the aq and a†−q operators to lowest order. To do so, α and β in
(15.17) must be chosen, respectively, as

α = [
εk − εk+q − �ωq

]−1

β = [
εk − εk+q + �ωq

]−1
.

(15.18)

Then, the transformed Hamiltonian is

HS =
∑
kσ

εkσc
†
kσckσ +

∑
kσ,k′σ′,q

W (k, q)c†k+qσc
†
k′−qσ′ck′σ′ckσ, (15.19)

where Wkq is defined by

Wkq = | Mq |2 �ωq[
εk+q − εk

]2 − (
�ωq

)2 . (15.20)

Note that when ΔE = εk+q − εk is smaller than �ωq, Wkq is negative. This results
in an effective electron–electron attraction.

15.3.2 Cooper Pair

Leon Cooper investigated the simple problem of a pair of electrons interacting in
the presence of a Fermi sea of ‘spectator electrons’. He took the pair to have total
momentum P = 0 and spin S = 0. The Hamiltonian is written as

H =
∑
�,σ

ε�c
†
�σc�σ − 1

2
V

∑
��′σ

c†�′σc
†
−�′σ̄c−�σ̄c�σ, (15.21)

where ε� = �
2�2

2m , {c�σ, c
†
�′σ′ } = δ��′δσσ′ , and the strength of the interaction, V , is

taken as a constant for a small region of k-space close to the Fermi surface. The
interaction term allows for pair scattering from (�σ,−�σ̄) to (�′σ,−�′σ̄). Cooper
took a variational trial function

Ψ =
∑

k

akc
†
kσc

†
−kσ̄ | G >, (15.22)

where | G〉 is the Fermi sea of spectator electrons, | G〉 = ∏k<kF
|k|σ c†kσc

†
−kσ̄ | 0〉. If we

evaluate
< Ψ | H | Ψ >= E, (15.23)

we get
E = 2

∑
�

ε�a
∗
�a� − V

∑
��′

a∗
�′a�. (15.24)
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The coefficient a� is determined by requiring E{a�} to be minimum subject to the
constraint

∑
� a

∗
�a� = 1. This can be carried out using a Lagrange multiplier λ as

follows:
∂

∂a∗
k

[
2

∑
�

ε�a
∗
�a� − V

∑
��′

a∗
�′a� − λ

∑
�

a∗
�a�

]
= 0. (15.25)

This gives
2εkak − V

∑
�

a� − λak = 0. (15.26)

This can be written

ak = V
∑

� a�

2εk − λ
. (15.27)

Define a constant C = ∑
� a�. Then we have

ak = VC

2εk − λ
. (15.28)

Summing over k and using the fact C = ∑
� a� we have

C = VC
∑

k

1

2εk − λ
, (15.29)

or

f (λ) =
∑

k

1

2εk − λ
= 1

V
. (15.30)

The values of εk form a closely spaced quasi continuum extending from the energy
EF to roughly EF +�ωD where ωD is the Debye frequency. In Fig. 15.10 the function
f (λ) is displayed as a function of λ, and it shows the graphical solution of (15.30).
Note that f (λ) goes from −∞ to ∞ every time λ crosses a value of 2εk in the quasi
continuum.

If we take (15.26)
(2εk − λ) ak − V

∑
�

a� = 0, (15.31)

multiply by a∗
k and sum over k, we obtain

∑
k

(2εk − λ) a∗
kak − V

∑
k�

a∗
ka� = 0. (15.32)

This is exactly the same equation we obtained from writing

< Ψ | H − E | Ψ >= 0, (15.33)
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Fig. 15.10 Graphical solution of (15.30)

if we take λ = E , the energy of the variational state Ψ . Thus, our equation for
f (λ) = 1

V could be rewritten

1

V
=

∑
k

1

2εk − E
. (15.34)

Approximate the sum in (15.34) by an integral over the energy ε and write

1

V
=

∫ EF+�ωD

EF

g(ε)

2ε − E
dε. (15.35)

Now let us take g(ε) � g(EF) ≡ g in the region of integration in order to obtain

1

V
= g

2

∫ EF+�ωD

EF

dx

x − E/2
. (15.36)

Integrating (15.36) out gives

2

gV
= ln

(
EF + �ωD − E

2

EF − E
2

)
, (15.37)

or
EF + �ωD − E

2

EF − E
2

= e2/gV .

For the case of weak coupling regime 2
gV 
 1 and e−2/gV � 1. This gives

E � 2EF − 2�ωDe
−2/gV . (15.38)
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The quantity 2�ωDe−2/gV is the binding energy of the Cooper pair. Notice that

1. One can get a bound state no matter how weakly attractive V is. The free electron
gas is unstable with respect to the paired bound state.

2. This variational result, which predicts the binding energy proportional to e−2/gV ,
could not be obtained in perturbation theory.

3. The material with higher value of V would likely show higher Tc.

TheBCS theory uses the idea of pairing to account of themost important correlations.

15.4 The BCS Ground State

Let us write the model Hamiltonian, (15.21) by

H = H0 + H1, (15.39)

where
H0 =

∑
k

εk

(
c†k↑ck↑ + c†−k↓c−k↓

)
(15.40)

and

H1 = −V
′∑

kk′
c†k′↑c

†
−k′↓c−k↓ck↑. (15.41)

Note that we have included in the interaction only the interaction of k ↑ with −k ↓.
In our discussion of the totally noninteracting electron gas, we found it convenient
to use a description in terms of quasielectrons and quasiholes, where a quasielectron
was an electron with |k| > kF and a quasihole was the absence of an electron with
|k| < kF. We could define

d†
kσ = ckσ for k < kF,

dkσ = c†kσ for k < kF.
(15.42)

Then d†
kσ creates a ‘hole’ and dkσ annihilates a ‘hole’. If we measure all energies εk

relative to the Fermi energy, then H0 can be written as

H0 = ∑
k,σ εkc

†
kσckσ

= E0 + ∑
|k|>kF,σ

ε̃knkσ + ∑
|k|<kF,σ

| ε̃k | (1 − nkσ),
(15.43)

where nkσ = c†kσckσ , ε̃k = εk − EF, and E0

(
= ∑

|k|<kF,σ
εk

)
is the energy of the

filled Fermi sphere. Because c†kσ adds a momentum k and spin σ to the system while
d†

kσ subtract k and σ (or adds −k and σ̄), it is useful to introduce
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α†
kσ = ukc

†
kσ + v−kc−kσ̄ (15.44)

and its Hermitian conjugate

αkσ = ukckσ + v−kc
†
−kσ̄. (15.45)

Here we take uk and vk to be real. The operator α†
kσ adds momentum k and spin σ

to the system. If (uk, vk) = (1, 0) for |k| > kF and (uk, vk) = (0, 1) for |k| < kF,
we have simply the noninteracting electron gas described in terms of αkσ and α†

kσ .
We must have uk = u−k and vk = −v−k. Also u2k + v2

k = 1 in order to satisfy
the anticommutation relations [αk,α

†
k′ ]+ = δkk′ . Then, from (15.44) and (15.45) we

have that

c†kσckσ = u2kα
†
kσαkσ + v2

kα−kσ̄α†
−kσ̄ + ukvk

(
α†

kσα†
−kσ̄ + α−kσ̄αkσ

)
.

Hence, for the noninteracting electron gas, we have

∑
k,σ εkc

†
kσckσ

= ∑
k εk

[
u2kα

†
k↑αk↑ + v2

k(1 − α†
−k↓α−k↓)

]
= ∑

|k|<kF
εk + ∑

k,σ | ε̃k | α†
kσαkσ.

Therefore, in terms of the αk and α†
k, the noninteracting Hamiltonian is written as

H0 = E0 +
∑
k,σ

| ε̃k | α†
kσαkσ. (15.46)

The ground state of the noninteracting electron gas (filled Fermi sphere) can be
constructed by annihilating quasiholes in all states with | k |< kF and is given by

| GS〉 =
∏
kσ

αkσα−kσ̄ | VAC〉, (15.47)

where | VAC〉 is the true vacuum state. Using (15.44) and (15.45) gives

| GS〉 =
∏
kσ

v2
kc

†
kσc

†
−kσ̄ | VAC〉. (15.48)

But, for the noninteracting system vk = 1 if |k| < kF and zero otherwise so that

| GS〉 =
∏

|k|<kF,σ

c†kσc
†
−kσ̄ | VAC〉. (15.49)

For the interacting system we will use a slight generalization of the notation used
above.
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15.4.1 Bogoliubov–Valatin Transformation

For theHamiltonian given in (15.40) and (15.41), wemake the transformation (called
Bogoliubov–Valatin transformation) defined by

αk = ukck↑ − vkc
†
−k↓

β†
k = ukc

†
−k↓ + vkck↑,

(15.50)

with real c-number coefficients uk and vk to haveHermitian conjugatesα†
k = ukc

†
k↑−

vkc−k↓ and βk = ukc−k↓ + vkc
†
k↑.

Note that the up spin ↑ is associated with the index k and the down spin ↓ is
associated with the index −k. The operators α†

k and αk create or destroy an excited
state of the system, which is a correlated electron–hole pair. We take uk = u−k

and vk = −v−k; in addition u2k + v2
k must be equal unity in order to satisfy the

anticommutation relations:
[
αk,α

†
k′

]
+

=
[
βk,β

†
k′

]
+

= δkk′ ; [αk,αk′ ]+ = [βk,βk′ ]+ = 0.

We can solve (15.50) for ck↑ and c−k↓ and their Hermitian conjugates

ck↑ = ukαk + vkβ
†
k; c†k↑ = ukα

†
k + vkβk

c†−k↓ = ukβ
†
k − vkαk; c−k↓ = ukβk − vkα

†
k.

(15.51)

Exercise

Invert the Bogoliubov–Valatin transformation (15.50) and demonstrate (15.51).
Note that u2k is the probability that a pair of states with opposite k and σ is

unoccupied and v2
k is the probability that it is occupied. Substituting (15.51) into

(15.40) gives

H0 = ∑
k ε̃k

[
u2kα

†
kαk + v2

kβkβ
†
k + ukvk(α

†
kβ

†
k + βkαk)

+u2kβ
†
kβk + v2

kαkα
†
k − ukvk(β

†
kα

†
k + αkβk)

]
.

(15.52)

Let us put the operators in normal form using βkβ
†
k = 1 − β†

kβk. This gives

H0 =
∑

k

ε̃k

[
2v2

k + (u2k − v2
k)(α

†
kαk + β†

kβk) + 2ukvk(α
†
kβ

†
k + βkαk)

]
. (15.53)

If we do the same thing for the interaction part H1 given by (15.41)

H1 = −V
′∑

kk′
c†k′↑c

†
−k′↓c−k↓ck↑, (15.54)
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we obtain

H1 = −V
∑

kk′(uk′α†
k′ + vk′βk′)(uk′β†

k′ − vk′αk′)(ukβk − vkα
†
k)(ukαk + vkβ

†
k)

= −V
∑

kk′
[
uk′vk′ukvk(1 − α†

k′αk′ − β†
k′βk′)(1 − α†

kαk − β†
kβk)

+uk′vk′(1 − α†
k′αk′ − β†

k′βk′)(u2k − v2
k)(α

†
kβ

†
k + βkαk)

+4th order off-diagonal terms
]
.

(15.55)
When this expression is multiplied out and then put in normal form (with all annihi-
lation operators on the right of all creation operators), the result can be written

H = H(0) + H(2) + H(4). (15.56)

Here H(2n) contains terms involving products of 2n Fermion operators (α,α†,β,
and β†). It is simple to evaluate H(0):

H(0) = 2
∑

k

ε̃kv
2
k − V

∑
kk′

ukvkuk′vk′ . (15.57)

The terms in H(2) can be written

H(2) = ∑
k

[
ε̃k(u2k − v2

k) + V (
∑

k′ 2uk′vk′)ukvk
]
(α†

kαk + β†
kβk)

+∑
k

[
2ukvkε̃k − (u2k − v2

k)V
∑

k′ uk′vk′
]
(α†

kβ
†
k + βkαk).

(15.58)

We will neglect the terms in H(4); they contain interactions between the elementary
excitations. H(0) + H(2) is not exactly in the form we desire because of the term
proportional to (α†

kβ
†
k + βkαk). We are still at liberty to choose uk and vk; we do

this by requiring the coefficient of (α†
kβ

†
k + βkαk) to vanish. This gives us

2ukvkε̃k = (u2k − v2
k)V

∑
k′

uk′vk′ . (15.59)

Let us define Δ by
Δ = V

∑
k′

uk′vk′ (15.60)

and use it in (15.59) after squaring both sides. This gives

4u2kv
2
kε̃

2
k = Δ2(u2k − v2

k)
2. (15.61)

We can eliminate u2k since we already know that u2k + v2
k = 1. Doing so gives the

quadratic equation in v2
k.

v4
k[ε̃2k + Δ2] − v2

k[ε̃2k + Δ2] + Δ2

4
= 0. (15.62)
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We choose the solution of the form

v2
k = 1

2
(1 − ξk). (15.63)

Here ξk = ε̃k√
ε̃2k+Δ2

. Furthermore since u2k = 1 − v2
k, we find that

u2k = 1

2
(1 + ξk). (15.64)

But (15.60), the definition of Δ, can now be written

Δ = 1

2
V

∑
k

√
1 − ξ2k. (15.65)

With a little algebra equation (15.65) becomes

Δ = V

2

∑
k

Δ√
ε̃2k + Δ2

. (15.66)

Thus the equation for the energy gap Δ is given by

1 = V

2

∑
k

1√
ε̃2k + Δ2

. (15.67)

Now, replace the sum by an integral taking for the density of states 1
2g(EF) of the pair.

The 1
2 results from the fact that only k ↑ and −k ↓ are coupled by the interaction.

Then (15.67) becomes

1 = V

2

g(EF)

2

∫
�ωq

−�ωq

dε√
ε2 + Δ2

. (15.68)

Using
∫

dx√
x2+Δ2 = ln(x + √

x2 + Δ2) = sinh−1 (x/Δ), the result for Δ becomes

Δ = 2�ωqe
− 2

g(EF )V . (15.69)

If the interaction V is zero, the one-particle states of the system would be occupied
up to |k| = kF, and Δ agrees with the binding energy of a Cooper pair.
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15.4.2 Condensation Energy

The condensation energy ΔE(≡ E0
S − E0

N) defined by the difference between the
ground state energy in the normal state and the state with finite Δ is approximately
given by

ΔE � −g(EF)
Δ

2
× Δ

2
= −g(EF)

Δ2

4
. (15.70)

Theground statewave functionΨ0 of the superconducting system is the eigenfunction
of the diagonalized BCS Hamiltonian, so that

αk | Ψ0〉 = βk | Ψ0〉 = 0. (15.71)

One can obtain Ψ0 by writing

| Ψ0〉 =
∏

k

αkβk | VAC〉. (15.72)

This gives the normalized wave function

| Ψ0〉 =
∏

k

(uk + vkc
†
k↑c

†
−k↓) | VAC〉, (15.73)

which is the BCS variational wave function normalized so that 〈Ψ0|Ψ0〉 = 1.

15.5 Excited States

From (15.58) we can see that

H(2) =
∑

k

Ek(α
†
kαk + β†

kβk), (15.74)

where
Ek = ε̃k(u

2
k − v2

k) + 2Δukvk. (15.75)

Knowing that uk = 1√
2

√
1 + ξk and vk = 1√

2

√
1 − ξk allows us to obtain the energy

of an individual quasiparticle

Ek =
√

ε̃2k + Δ2, (15.76)

where ε̃k = �
2k2

2m − EF, i.e., the energy is measured relative to the Fermi energy EF.

Thus, there is a gapΔ for the creation of elementary excitations α†
k | Ψ0〉 or β†

k | Ψ0〉.
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Fig. 15.11 Elementary excitations in a normal metal and in a superconductor

The stateα†
k | Ψ0〉 is a quasiparticle state of wave vector k, involving a superposition

of an electron of wave vector k and a hole of wave vector −k. In Fig. 15.11 quasi-
particle energy spectra for a normal metal and for a superconductor are illustrated.
The excitation spectrum has a gap Δ, which is known as the gap parameter. We
notice that, since α†

k and β†
k are linear combinations of single Fermion operators and

always appear in pairs in the interaction Hamiltonian. Therefore, quasiparticles can
be excited in pairs with the minimum excitation energy of 2Δ. The experimental gap
should be 2Δ in experiments on absorption of electromagnetic radiation.

The density of quasiparticle states in the superconductor can be obtained using
the quasiparticle dispersion relation Ek.

gS(E) = 1

�

dN

dE
= 2

(2π)3

d

dk

(
4πk3

3

)
dk

dE
= k2

π2

1

dE/dk
, (15.77)

where dE
dk is written, from (15.76), by

dE

dk
= dE

d ε̃

d ε̃

dk
=

√
E2 − Δ2

E

�
2k

m
. (15.78)

Substituting (15.78) into (15.79) gives

gS(E) = mkF
π2�2

E√
E2 − Δ2

= gN(EF)
E√

E2 − Δ2
, (15.79)

where gN(E) = mk
π2�2 is the density of states of the normal metal. Since we consider

the quasiparticle energies close to the Fermi surface,we replaced gN(E) by its value at
the Fermi energy EF. Notice that the density of quasiparticles in the superconducting
states shows a singularity at the energies E = ±Δmeasuredwith respect to the Fermi
energy.

Essentially all the other properties of a BCS superconductor can be evaluated
knowing that

1. The ground state energy given by H(0), (15.57), is lower than the normal state
energy (E0

N = ∑
|k|<kF

ε̃k) by −Δ2

4 g(EF), (15.70).
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2. The energy of elementary excitations is given by Ek =
√

ε̃2k + Δ2, (15.76).
3. The Fermi distribution function nk is given by

f (Ek) = nk = 1

eEk/Θ + 1
.

Here, of course, ε̃k appearing in Ek is measured relative to EF.
4. The BCS wave function is given by (15.73)

| Ψ0〉 =
∏

k

(uk + vkc
†
k↑c

†
−k↓) | VAC〉,

where uk denotes the amplitude for a pair of orbitals to be empty and vk, the amplitude
for them to be occupied.

One final example shows how to calculate the energy gap Δ as a function of
temperature. We note that states k ↑ and −k ↓ are occupied statistically at finite
temperatures. TheΔ given in (15.69) was obtained under the assumption that nk = 0
at T = 0. But, at finite temperatures the Fermi distribution function should be
understood as the occupation probability, and we expect nk �= 0 and Δ = Δ(T ). In
order to evaluate Δ(T ) we need to extend (15.59) by writing

2ukvkε̃k = (u2k − v2
k)V

∑
k′

uk′vk′ (1 − 2 f (Ek′)) . (15.80)

The correction factor on the right hand side comes from keeping a term −(α†
k′αk′ +

β†
k′βk′) averaged at T �= 0 in

〈1 − (α†
k′αk′ + β†

k′βk′)〉 = 1 − nk′ − nk′ = 1 − 2 f (Ek′),

instead of just unity as was done in writing (15.58). Now we define

Δ(T ) = V
∑

k

ukvk [1 − 2 f (Ek)] . (15.81)

Substituting (15.64) and (15.63) for uk and vk gives 1 = V
2

∑
k

1−2 f (Ek)√
ε̃2k+Δ2(T )

, which

reduces to

1 = V

2

g(EF)

2

∫
�ωD

−�ωD

dε√
ε2 + Δ2(T )

[
1 − 2 f (

√
ε2 + Δ2(T ))

]
. (15.82)

At T = 0 this is the T = 0 gap equation, (15.68). As T increases from T = 0, Δ(T )

would decreases from Δ0, the zero temperature value. Δ(T ) vanishes for T ≥ Tc
where Δ = 0 is the only stable solution. The superconductivity disappears above Tc.
Now, (15.82) can be written
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4

g(EF)V
=

∫
�ωD

−�ωD

dε√
ε2 + Δ2(T )

− 2
∫

�ωD

−�ωD

dε√
ε2 + Δ2(T )

f (
√

ε2 + Δ2(T )).

(15.83)
Since Δ becomes zero at T = Tc, we can determine Tc by setting Δ = 0 in (15.83).
This gives

2

g(EF)V
=

∫
�ωD

0

dε

ε
tanh

ε

2Θc
, (15.84)

where Θc = kBTc. Introducing the dimensionless variable x = ε
2Θc

we have

2
g(EF)V

= ∫
�ωD/2Θc

0
dx
x tanh x

= ln �ωD
2Θc

tanh �ωD
2Θc

− ∫
�ωD/2Θc

0 ln x sech2x dx .
(15.85)

Since η ≡ �ωD/2Θc 
 1, in general for weak coupling superconductors, we may
extend the upper limit of the integral to ∞ to have

2

g(EF)V
= ln

�ωD

2Θc
tanh

�ωD

2Θc
+ lnC, (15.86)

where the constant lnC is given, in terms of Euler’s constant γ:

lnC = −
∫ ∞

0
ln x sech2x dx = γ + ln

4

π
≈ 0.81876.

Then, one can write
Θc � 1.13�ωDe

− 2
gV ≈ 0.57Δ(0), (15.87)

where ω is replaced by the Debye frequency ωD. The Debye temperatureΘD is much
larger than the superconducting transition temperature Θc. Figure15.12 sketches the
Δ(T ) obtained by numerical integration of (15.82).

Fig. 15.12 Temperature dependence of the superconducting energy gap parameter Δ(T ) in the
weak coupling limit
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15.6 Type I and Type II Superconductors

Correlations in superconductors involve electrons in a very limited range of values in
momentum space. The range δ p about the Fermi momentum pF must be restricted to

p2F
2m

− Δ ≤ (pF + δ p)2

2m
≤ p2F

2m
+ Δ. (15.88)

This gives | δ p |≤ Δ
vF
. The spread of momentum δ p leads to a coherence length

in coordinate space ξ0 = �

δ p ∼ �vF
Δ
. ξ0 indicates the spatial range of the pair wave

function. We distinguish type I and type II superconductors by whether the ratio of
�vF
πΔ

(� ξ0) to ΛL =
√

mc2
4πnSe2

, the London penetration depth, is large or small com-

pared to unity. For example, we have vF � 108 cm/s and Tc ≈ 0.57Δ0 � 1.2 K
for Al, and thus ξ0 � 3.4 × 103 nm and ΛL � 30 nm resulting ξ0

ΛL
∼ 100. But,

for the case of Nb3Sn we have vF � 106 cm/s and Tc ≈ 0.57Δ0 � 20 K, and thus
ξ0 � 2 nm and ΛL � 200 nm resulting ξ0

ΛL
∼ 10−2.

Exercise

Demonstrate the magnitudes of the coherence length ξ0, the London penetration
depth ΛL, and the corresponding ξ0

ΛL
for Al and Nb3Sn, respectively.

Let us consider the London equation given by (15.4)

∇ × j + nSe2

mc
B = 0. (15.89)

Using B = ∇ × A allows us to write

j(r) = −nSe2

mc
A(r). (15.90)

This local relation between j and A is valid only for type II materials where ΛL is
much larger than ξ0 and A(r) varies slowly on the scale of ξ0. For type I materials,
Pippard suggested a nonlocal relation between j andA. The Pippard relation iswritten
as

j(r) = C
∫

A(r′) · R
R4

Re−|R|/ξ0d3r ′, (15.91)

where R = r − r′ and C is determined by requiring that slowly varying A(r) yields
the London equation. Then A(r) comes outside the integral (and taking A ‖ ẑ) and
(15.91) reduces to

jz(r) = CA(r)
∫ ∞

0

∫ 1

−1

R cos θ

R4
R cos θe−R/ξ02πd(cos θ)R2dR = C

4π

3
ξ0A(r).

(15.92)
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We note that, by comparing (15.90) and (15.92), C = − nSe2

mc
3

4πξ0
, and picking ξ0 =

�vF
πΔ0

(at T = 0) gives excellent agreement with the microscopic theory. For the case
Λeff � ξ0, the vector potential A(r) is finite only in a surface layer and we can write

j(r) = −nSe2

mc

Λeff

ξ0
A(r) (15.93)

leading us to Λeff ≈ ΛL

(
ξ0
ΛL

)1/3
.

Flux Penetration

When a disc shaped type I superconductor is aligned perpendicular to an appliedmag-
netic field H0, the magnetic field at the boundary of the sample (where the applied
field is partially excluded) would become much greater than the magnitude of H0

(see Fig. 15.13). Then the sample starts to loose superconductivity at an applied field
much below the critical field Hc forming a large number of normal and superconduct-
ing regions side by side, and the magnetic field energy gain is reduced significantly.
The specimen is known to be in the intermediate state. It is a mixture of normal
and superconducting regions due to geometric factors. The intermediate state has a
domain structure that depends on competition among (1) superconducting conden-
sation energy 1

4g(Ef)Δ
2, (2) magnetic field energy H 2

8π , and (3) surface energy of N-S
boundary (positive for type I material). In type II materials the surface energy of the

(a) (b)

(c)

Fig. 15.13 Schematics of the intermediate state in a planar type I superconductor. It occurs when a
planar sample is held perpendicular to an appliedmagnetic field as indicated in (a). Domain structure
of normal and superconducting regions is formed as sketched in (b) and (c) by the magnified
magnetic field due to geometric factors
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Fig. 15.14 Schematic representation of flux and field penetration in a type II superconductor

superconducting – normal boundary turns out to be negative, and flux penetrates in
individual vortices each carrying one flux quantum (see Fig. 15.14). In alloys, impu-
rity scattering leads mean free path l. Then in the Pippard relation, e−R/ξ0 is replaced

by e
−R

(
1
ξ0

+ 1
l

)
. In the extreme dirty limit of ξ0 
 l, relation between j(r) and A(r)

becomes

j(r) = −nSe2

mc

l

ξ0
A(r),

and the corresponding penetration depth Λeff = ΛL
√

ξ0/ l is increased greatly.

Problems

15.1 Demonstrate that the electronic contribution to the specific heat of common
intrinsic semiconductors shows the exponential temperature behavior at low temper-
atures.

15.2 Let’s consider the equation ofmotion of a super fluid electron, which is dissipa-
tionless, in an electric field E that is momentarily present in the superconductor. That
is, m dvS

dt = −eE , where vS is the mean velocity of the super fluid electron caused
by the field E. In order to explain the Meissner effect, London proposed the London

equation written as ∇ × j + nSe2

mc B = 0. Show that ∇2 j̇ = 1
Λ2

L
j where ΛL =

√
mc2

4πnSe2

is the so-called the London penetration depth.
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15.3 Assume ckσ and c†k′σ′ satisfy standard Fermion anticommutation relations.

Show that
[
αk,α

†
k′

]
+
and

[
βk,β

†
k′

]
+
each equal δkk′ for αk and β′

k defined by the

Bogoliubov–Valatin transformation

αk = ukck↑ − vkc
†
−k↓

β†
k = ukc

†
−k↓ + vkck↑

with real c-number coefficients uk and vk.

15.4 Let us consider the interaction Hamiltonian H1 given by

H1 = −V
′∑

kk′
c†k′↑c

†
−k′↓c−k↓ck↑.

Use the Bogoliubov–Valatin transformation to show that H1 can be written as

H1 = −V
∑

kk′(uk′α†
k′ + vk′βk′)(uk′β†

k′ − vk′αk′)(ukβk − vkα
†
k)(ukαk + vkβ

†
k)

= −V
∑

kk′
[
uk′vk′ukvk(1 − α†

k′αk′ − β†
k′βk′)(1 − α†

kαk − β†
kβk)

+uk′vk′(1 − α†
k′αk′ − β†

k′βk′)(u2k − v2
k)(α

†
kβ

†
k + βkαk)

+4th order off-diagonal terms
]
.

15.5 Consider the condition given by

2ukvkε̃k = (u2k − v2
k)V

∑
k′

uk′vk′ .

(a) Determine uk and vk satisfying the condition given above. Note that u2k +v2
k =

1.
(b) Obtain the expression Δ defined by Δ = V

∑
k′ uk′vk′ .

Summary
In this chapter we first briefly review some phenomenological observations of super-
conductivity and discuss a phenomenological theory by London. Then we introduce
ideas of electron–phonon interaction and Cooper pairing to discuss microscopic the-
ory by Bardeen, Cooper, and Schrieffer. The BCS ground state and excited states are
discussed through Bogoliubov–Valatin transformation, and condensation energy and
thermodynamic behavior of the superconducting energy gap are analyzed. Finally
type I and type II superconductors are compared in terms of coherence length and
London penetration depth.



494 15 Superconductivity

The Meissner effect indicates that any magnetic field that is present in a bulk
superconductor when T > Tc is expelled when T is lowered through the transition
temperature Tc. In a type I superconductor, the magnetic induction B vanishes in
the bulk of the superconductor for H < Hc(T ). In a type II superconductor, the
magnetic field starts to penetrate the sample at an applied field Hc1 lower than the
Hc. Between Hc2 and Hc1 flux penetrates the superconductor giving a mixed state
consisting of superconductor penetrated by threads of the material in its normal state
or flux lines. The mixed state consists of vortices each carrying a single fluxΦ = hc

2e .

The London equation is written as ∇ × j + nSe2

mc B = 0, which implies that, in
stationary conditions, a superconductor cannot sustain a magnetic field in its interior,
but only within a narrow surface layer: ∇2B = 4πnSe2

mc2 B ≡ 1
Λ2

L
B. Here the quantity

ΛL =
√

mc2
4πnSe2

is called the London penetration depth.
The Hamiltonian of the electrons in a metal is written as

H =
∑
kσ

εkσc
†
kσckσ +

∑
kσ,k′σ′,q

W (k, q)c†k+qσc
†
k′−qσ′ck′σ′ckσ,

where Wkq is defined by Wkq = |Mq|2�ωq

[εk+q−εk]2−(�ωq)
2 . Here Mq is the electron–phonon

matrix element.
A pair of electrons interacting in the presence of a Fermi sea of ‘spectator elec-

trons’ is described by H = ∑
�,σ ε�c

†
�σc�σ − 1

2V
∑

��′σ c
†
�′σc

†
−�′σ̄c−�σ̄c�σ, where

ε� = �
2�2

2m and the strength of the interaction, V , is taken as a constant for a
small region of k-space close to the Fermi surface. A variational trial function
Ψ = ∑

k akc
†
kσc

†
−kσ̄ | G > gives us 1

V = ∑
k

1
2εk−E . Here | G〉 is the Fermi

sea of spectator electrons, | G〉 = ∏k<kF
|k|,σ c†kσc

†
−kσ̄ | 0〉. Approximating the sum

by an integral over the energy ε, we have E � 2EF − 2�ωDe−2/gV . The quantity
2�ωDe−2/gV is the binding energy of the Cooper pair.

In the BCS theory, H is rewritten as H = H0 + H1, where

H0 =
∑

k

εk

(
c†k↑ck↑ + c†−k↓c−k↓

)
and H1 = −V

′∑
kk′

c†k′↑c
†
−k′↓c−k↓ck↑.

Introducing α†
kσ = ukc

†
kσ +v−kc−kσ̄ and αkσ = ukckσ +v−kc

†
−kσ̄ the noninteracting

Hamiltonian becomes H0 = E0 + ∑
k,σ | ε̃k | α†

kσαkσ. The ground state of the
noninteracting electron gas (filled Fermi sphere) is given by | GS〉 = ∏

kσ αkσα−kσ̄

| VAC〉, where | VAC〉 is the true vacuum state.
The Bogoliubov–Valatin transformation defined by

αk = ukck↑ − vkc
†
−k↓ ; β†

k = ukc
†
−k↓ + vkck↑

α†
k = ukc

†
k↑ − vkc−k↓ ; βk = ukc−k↓ + vkc

†
k↑
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gives
H = H(0) + H(2) + H(4),

where

H(0) = 2
∑

k

ε̃kv
2
k − V

∑
kk′

ukvkuk′vk′ ; H(2) =
∑

k

Ek(α
†
kαk + β†

kβk).

Here Ek = ε̃k(u2k − v2
k) + 2Δukvk and H(4) contains interactions between the

elementary excitations. The equation for the energy gap Δ is given by

1 = V

2

∑
k

1√
ε̃2k + Δ2

and Δ = 2�ωqe
− 2

g(EF )V .

The ground state wave function Ψ0 of the superconducting system is

| Ψ0〉 =
∏

k

(uk + vkc
†
k↑c

†
−k↓) | VAC〉.

The energy of a quasiparticle is Ek =
√

ε̃2k + Δ2,where ε̃k = �
2k2

2m −EF. The density
of quasiparticle states in the superconductor is given by

gS(E) = mkF
π2�2

E√
E2 − Δ2

.

The type I and type II superconductors are distinguished by whether the ratio
of the coherence length ξ0 to the London penetration depth ΛL is large or small
compared to unity. The local relation j(r) = − nSe2

mc A(r) is valid only for type II
materials where ΛL 
 ξ0 and A(r) varies slowly on the scale of ξ0. For the case
Λeff � ξ0, the vector potential A(r) is finite only in a surface layer and we have

j(r) = −nSe2

mc

Λeff

ξ0
A(r)

leading to Λeff ≈ ΛL

(
ξ0
ΛL

)1/3
. The intermediate state is a mixture of normal and

superconducting regions due to geometric factors and it has a domain structure. In
the extreme dirty limit of ξ0 
 l, we have

j(r) = −nSe2

mc

l

ξ0
A(r),

and the effective penetration depth Λeff = ΛL
√

ξ0/ l is increased greatly.



Chapter 16
The Fractional Quantum Hall Effect:
The Paradigm for Strongly Interacting
Systems

16.1 Electrons Confined to a Two Dimensional Surface
in a Perpendicular Magnetic Field

The study of the electronic properties of quasi two dimensional systems has been a
very exciting area of condensed matter physics during the last quarter of the 20th
century. Among the most interesting discoveries in this area are the incompressible
states showing integral and fractional quantum Hall effects. Incompressible quan-
tum liquid states of the integral quantum Hall effect result from an energy gap in
the single particle spectrum. The incompressibility of the fractional quantum Hall
effect is completely the result of electron–electron interactions in a highly degener-
ate fractionally filled Landau level. Since the quantum Hall effect involves electrons
moving on a two dimensional surface in the presence of a perpendicular magnetic
field, we begin with a description of this problem.

The application of a large dc magnetic field perpendicular to the two dimensional
layer results in some notable novel physics. The Hamiltonian describing the motion
of a single electron (of mass μ) confined to the x-y plane, in the presence of a dc
magnetic field B = Bẑ, is simply

H = (2μ)−1
[
p + e

c
A(r)

]2
. (16.1)

The vector potential A(r) is given by A(r) = 1
2 B(−yx̂ + x ŷ) in a symmetric gauge.

We use x̂ , ŷ, and ẑ as unit vectors along the Cartesian axes. The Schrödinger equation
(H − E)Ψ (r) = 0 has eigenstates1

Ψnm(r,φ) = eimφunm(r), (16.2)

1See, for example, L.D. Landau and E.M. Lifshitz, QuantumMechanics (Pergamon, Oxford, 1977)
p. 458; S. Gasiorowicz Quantum Mechanics (Wiley, New York, 1996) chap. 13.

© Springer International Publishing AG, part of Springer Nature 2018
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Enm = 1

2
�ωc(2n + 1 + m + |m|), (16.3)

where n and m are principal and angular momentum quantum numbers, respectively,
and ωc(= eB/μc) is the cyclotron angular frequency. The radial function u(r) in
(16.2) satisfies the differential equation

d2u

dη2
+ η−1 du

dη
− (m2η−1 + η2 − ε)u = 0, (16.4)

where η and ε are, respectively, defined by η = √
eB/2�cr = r√

2l0
and ε =

4E/�ωc − 2m. Here l0 = √
�c/eB is the magnetic length. The radial wavefunc-

tion unm(r) can be expressed in terms of associated Laguerre polynomials Lm
n as

unm(η) = η|m|e−η2/2L |m|
n (η2). (16.5)

Here L |m|
0 (η2) is independent of η and L |m|

1 (η2) ∝ (|m|+1−η2). The lowest energy
level has n = 0 and m = 0,−1,−2, . . .. The first excited level has n = 1 and
m = 0,−1,−2, . . ., or n = 0 and m = 1. These highly degenerate levels are
separated from neighboring levels by �ωc. These quantized energy levels are called
Landau levels; the lowest Landau level wavefunction can be written as

Ψ0m = Nm z|m|e−|z|2/4l02 (16.6)

where Nm is the normalization constant and z stands for z(= x − iy) = re−iφ. The
maximum value of |Ψ0m(z)|2 occurs at rm ∝ m1/2.

For a finite size sample of area S = πR2, the number of allowed values of m in
the lowest Landau level is given by Nφ = BS/φ0, where φ0 = hc/e is the quantum
of magnetic flux. The filling factor ν of a given Landau level is defined by N/Nφ,
so that ν−1 is simply equal to the number of flux quanta of the dc magnetic field
per electron. For the lowest Landau level, degeneracy of the level is Nφ because the
allowed values of |m| are given by |m| = 0, 1, 2, . . . , Nφ − 1.

Exercise

Work out the eigenvalue problem of the Hamiltonian (16.1) and demonstrate the
eigenfunctions and eigenvalues given by (16.2) and (16.3).

16.2 Integral Quantum Hall Effect

The integral quantum Hall effect occurs when N electrons exactly fill an integral
number of Landau levels resulting in an integral value of the filling factor ν. When ν
is equal to an integer, there is an energy gap (equal to �ωc) between the filled states
and the empty states. This makes the noninteracting electron system incompressible,
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because an infinitesimal decrease in the area S, which decreases Nφ, requires a finite
energy �ωc to promote an electron across the energy gap into the first unoccupied
Landau level. This incompressibility is responsible for the integral quantum Hall
effect.2 To understand the minima in the diagonal resistivity ρxx and the plateaus in
the Hall resistivity ρxy , it is necessary to notice that each Landau level, broadened by
collisions with defects and phonons, must contain both extended states and localized
states. The extended states lie in the central portion of the broadened Landau level,
and the localized states in the wings. As the chemical potential ζ sweeps through
the Landau level (by varying either B or the particle number N ), zeros of ρxx (at
T = 0K) and flat plateaus of ρxy occur when ζ lies within the localized states.

A many particle wavefunction of N electrons at filling factor ν = 1 can be con-
structed by antisymmetrizing the product function which places one electron in each
of the N states with 0 ≤ |m| ≤ Nφ − 1. Here, the product function should be anti-
symmetric under exchange of any two electrons, and the many particle wavefunction
is written, for ν = 1, as

Ψ1(z1, . . . , zN ) = A{u0(z1)u1(z2) . . . uN−1(zN )} (16.7)

where A denotes the antisymmetrizing operator. Since u |m|(z) ∝ z|m|e−|z2|/4l20 , as
given by (16.6) and (16.7) can be written out as follows:

Ψ1(z1, . . . , zN ) ∝

∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
z1 z2 · · · zN

z21 z22 · · · z2N
...

... · · · ...

zN−1
1 zN−1

2 · · · zN−1
N

∣∣∣∣∣∣∣∣∣∣∣

e
− 1

4l20

∑
i=1,N

|zi |2
. (16.8)

The determinant in (16.8) is the well-known Van der Monde determinant written,
simply, as

∏
N≥i> j≥1

(zi − z j ). This is easily demonstrated by subtracting column j
from column i and noting zi j = zi − z j is a common factor. Since it is true for every
i �= j , the result is apparent. Then the N -particle wavefunction corresponding to a
filled Landau level becomes

Ψ1(z1, . . . , zN ) ∝
∏

N≥i> j≥1

zi je
− 1

4l20

∑
k=1,N |zk |2

. (16.9)

In (16.9), the highest power of z j is N − 1. This means that the allowed values of
|m| are equal to 0, 1, 2, . . . , N − 1 or that the Landau level degeneracy Nφ is equal
to N giving ν = N/Nφ = 1. We obtain (16.9) by the requirement of antisymmetry
imposed on the product of single particle eigenfunctions.

2K. von Klitzing, G. Dorda, and M. Pepper, Phys. Rev. Lett. 45, 494 (1980).
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Exercise

Demonstrate that the N -particle wavefunction corresponding to a filled Landau level
is written as (16.9).

16.3 Fractional Quantum Hall Effect

When the filling factor ν is smaller than unity, the standard approach of placing
N particles in the lowest energy single particle states is not applicable, because
more degenerate states than the number of particles are present in the lowest Landau
level. For example, for the case of ν = 1/3, it is not apparent how to construct
antisymmetric product function for N electrons in 3N states to describe fractional
quantum Hall states. In this case, no gap occurs in the absence of electron-electron
interaction, and it is not easy to understand why fractional quantum Hall states are
incompressible. At very high values of the applied magnetic field, there is only
one relevant energy scale in the problem, the Coulomb scale e2/�0, where �0 is
the magnetic length. In that case standard many body perturbation theory is not
applicable. Laughlin used remarkable physical insight to propose a ground state
wavefunction, for filling factor ν = 1/n,3

Ψ1/n(1, 2, . . . , N ) =
∏
i> j

zn
i j e

− ∑
l |zl |2/4l20 , (16.10)

where n is an odd integer. We note that the product
∏

i< j zn
i j contains terms with zi

to different powers. The largest possible power of any zi is n(N − 1), resulting from
taking zn

i out of the (N − 1) factors of (zi − z j )
n for j �= i .

The Laughlin wavefunction has the properties that (1) it is antisymmetric under
interchange of any pair of particles as long as n is odd, (2) particles stay farther apart
and have lower Coulomb repulsion for n > 1, and (3) the largest value of m in the
Landau level, Nφ − 1, is equal to n(N − 1) giving ν = N/Nφ −→ 1/n for large
systems in agreement with experiment.4

16.4 Numerical Studies

Remarkable confirmation of Laughlin’s hypothesis was obtained by exact diagonal-
ization carried out for relatively small systems. Exact diagonalization of the inter-
action Hamiltonian within the Hilbert subspace of the lowest Landau level is a very
good approximation at large values of B, where �ωc � e2/ l0. Although real exper-
iments are performed on a two dimensional plane, it is more convenient to use a

3R.B. Laughlin, Phys. Rev. Lett. 50, 1395 (1983).
4D.C. Tsui, H.L. Stormer, and A.C. Gossard, Phys. Rev. Lett. 48, 1559 (1982).
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Fig. 16.1 Haldane sphere of radius R withmagneticmonopoles of strength 2Q located at the center
of the sphere

spherical two dimensional surface for numerical diagonalization studies.5 Haldane
introduced the idea of the spherical geometry putting a small number of electrons
on a spherical surface at the center of which is located a magnetic monopole. We
consider the case that the N electrons are confined to a Haldane surface of radius R.
At the center of the sphere, a magnetic monopole of strength 2Qφ0, where 2Q is an
integer, is located, as illustrated in Fig. 16.1. The radial magnetic field is written as

B = 2Qφ0

4πR2
R̂, (16.11)

where R̂ is a unit vector in the radial direction. The single particle Hamiltonian can
be expressed as

H0 = 1

2m R2

(
l − �Q R̂

)2
. (16.12)

Here, l is the orbital angular momentum operator. The components of l satisfy the
usual commutation rules [lα, lβ] = i�εαβγlγ, where the eigenvalues of l2 and lz are,
respectively, �

2l(l + 1) and �m.6 The single particle eigenstates of (16.12) denoted
by |Q, l, m〉 are called monopole harmonics. The states |Q, l, m〉 are eigenfunctions
of l2 and lz as well as of H0, the single particle Hamiltonian, with eigenvalues

ε(Q, l, m) = �ωc

2Q
[l(l + 1) − Q2]. (16.13)

5F.D.M. Haldane, Phys. Rev. Lett. 51, 605 (1983).
6We note that, in the presence of the magnetic field, the total angular momentum is given by
� = r × [−i�∇ + eA(r)] and that the eigenvalues of Λ2 are not equal to l(l + 1)�2. Here A is the
vector potential and [Λi , R̂ j ] = i�εi jk R̂k .



502 16 The Fractional Quantum Hall Effect: The Paradigm …

In writing (16.13), we noted that � · R̂ = R̂ · � = 0 and, hence, l · R̂ = R̂ · l = �Q.
Because this energymust be positive, the allowed values of l are given by ln = Q+n,
where n = 0, 1, 2, . . .. The lowest Landau level (or angular momentum shell) occurs
for l0 = Q and has the energy ε0 = �ωc/2, which is independent of m as long as
m is a non-positive integer. Therefore, the lowest Landau level has (2Q + 1)-fold
degeneracy. The nth excited Landau level occurs for ln = Q + n with energy

εn = �ωc

2Q
[(Q + n)(Q + n + 1) − Q2]. (16.14)

An N -particle eigenfunction of the lowest Landau level can be written, in general,
as

|m1, m2, . . . , m N 〉 = c†m N
· · · c†m2

c†m1
|0〉. (16.15)

Here |mi | ≤ Q and c†mi
creates an electron in state |l0, mi 〉. Sincewe are concentrating

on apartiallyfilled lowestLandau levelwehaveonly2Q+1degenerate single particle
states. The number of possible ways of constructing N -electron antisymmetric states
from 2Q+1 single particle states or choosing N distinct values ofm out of the 2Q+1
allowed values is given by

G N Q =
(
2Q + 1

N

)
= (2Q + 1)!

N !(2Q + 1 − N )! . (16.16)

Then, there are G N Q N -electron states in the Hilbert subspace of the lowest Landau
level. For the Laughlin ν = 1/m state, we have 2Qν=1/m = m(N −1). For example,
for the case of 2Q = 9 and N = 4 (ν = 1/3 state for 4 electrons in the lowest
Landau level of degeneracy 2Q + 1 = 10), we have l = 4.5 and there are G N Q =
10!/[4!(10−4)!] = 210 of 4-electron states in the Hilbert space of the lowest Landau
level.

Table16.1 lists the values of the electron angular momentum le, 2Q + 1 (the
Landau level degeneracy), G N Q (the number of antisymmetric N -electron states),
LMAX (the largest possible angular momentum of the system), and the allowed values
of L (the total angular momentum) with a superscript indicating how many times
they appear. The number in parenthesis in the allowed L-value column is the total
number of different L-multiplets that appear. For three electrons there are five such
states, all with different L values. For four electrons there are 18 states; L = 12, 10,
9, 7, 5, and 3 each appearing once, L = 8, 2, and 0 each appearing twice, and L = 6
and 4 each three times. For N = 10 and Q = 13.5 (ν = 1/3 state of 10 electrons)
G N Q = 13, 123, 110 and there are 246,448 distinct L multiplets with 0 ≤ L ≤ 90.

The numerical problem is to diagonalize the interaction Hamiltonian

Hint =
∑
i< j

V (|ri − r j |) (16.17)
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Table 16.1 The angular momentum le of an electron in the lowest Landau level; 2Q+1 the Landau
level degeneracy; G N Q the dimension of N -electron Hilbert space; LMAX the maximum value of
the total angular momentum L; the allowed L-values for a system consisting of N electrons on the
surface of a Haldane sphere. The exponent of the allowed L-values indicates the number of times
the L-multiplet appears, and the number in parenthesis denotes the total number of L-multiplets

N le 2Q + 1 G N Q LMAX Allowed L-values

3 3.0 7 35 6 6 ⊕ 4 ⊕ 3 ⊕ 2 ⊕ 0 (5)

4 4.5 10 210 12

12 ⊕ 10 ⊕ 9 ⊕ 82 ⊕ 7 ⊕ 63⊕
5 ⊕ 43 ⊕ 3 ⊕ 22 ⊕ 02

(18)

5 6.0 13 1, 287 20

20 ⊕ 18 ⊕ 17 ⊕ 162 ⊕ 152 ⊕ 143⊕
133 ⊕ 125 ⊕ 114 ⊕ 106 ⊕ 95⊕

87 ⊕ 67 ⊕ 55 ⊕ 46 ⊕ 33⊕
24 ⊕ 1 ⊕ 02

(73)

6 7.5 16 8, 008 30
30 ⊕ 28 ⊕ · · ·

(338)

7 9.0 19 50, 382 42
42 ⊕ 40 ⊕ · · ·

(1, 656)

8 10.5 22 319, 770 56
56 ⊕ 54 ⊕ · · ·

(8, 512)

9 12.0 25 2, 042, 975 72
72 ⊕ 70 ⊕ · · ·

(45, 207)

10 13.5 28 13, 123, 110 90
90 ⊕ 88 ⊕ · · ·

(246, 448)

in the G N Q dimensional space. The problem is facilitated by first determining the
eigenfunctions |L Mα〉 of the total angular momentum L . Here L̂ = ∑

i l̂i , M =∑
i mi , and α is an additional label that accounts for distinct multiplets with the

same total angular momentum L (for example, for the five electron system the seven
L = 6 states correspond to seven different values of α). The 210 four-electron states
of four electrons give us an 18 × 18 matrix that is block diagonal with two 3 × 3
blocks, three 2×2 blocks, and six 1×1 blocks. For small numbers of electrons these
finite matrices can easily be diagonalized to obtain the many-body eigenvalues and
eigenfunctions.7

7Because Hint is a scalar, the Wigner–Eckart theorem

〈L ′M ′α′|Hint|L Mα〉 = δL L ′δM M ′ 〈L ′α′|Hint|Lα〉
tells us that matrix elements of Hint are independent of M and vanish unless L ′ = L . This reduces
the size of the matrix to be diagonalized enormously. For example, for N = 10 and Q = 27/2
(ν = 1/3 state of ten electrons) G N Q = 13, 123, 110 and there are 246,448 distinct L multiplets
with 0 ≤ L ≤ 90. However, the largest matrix diagonalized is only 7069 by 7069.
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2Q = 27

E

Laughlin
ν=1/3 state

1QE+1QH

0 2 4 6 8 10 12
L

Fig. 16.2 The energy spectrum of 10 electrons in the lowest Landau level calculated on a Haldane
sphere with 2Q = 27. The open circle denotes the L = 0 ground state

In a planar geometry, the allowed values ofm, the z-component of the single parti-
cle angularmomentum, are 0, 1, . . . , Nφ−1. M = ∑

i mi is the total z−component of
angular momentum, where the sum is over all occupied states. It can be divided into
the center-of-mass (CM) and relative (R) contributions MCM + MR. The connection
between the planar and spherical geometries is as follows.

M = Nl + Lz, MR = Nl − L , MCM = L + Lz (16.18)

The interactions depend only on MR, so |MR, MCM〉 acts just like |L , Lz〉. The
absence of boundary conditions and the complete rotational symmetry make the
spherical geometry attractive to theorists. Many experimentalists prefer using the
|MR, MCM〉 states of the planar geometry. The calculations give the eigenenergies E
as a function of the total angular momentum L . The numerical results for the lowest
Landau level always show one or more L multiplets forming a low energy band. As
an example, the numerical results (E vs L) are shown in Figs. 16.2 and 16.3 for a
system of 10 electrons with values of 2Q between 25 and 29.8 It is clear that the
states fall into a well defined low energy sector and slightly less well defined excited
sectors. The Laughlin ν = 1/3 state occurs at 2Q = 3(N − 1) = 27 and the low
energy sector consists of a singlet L = 0 state as illustrated in Fig. 16.2. States with
larger values of Q contain one, two, or three quasiholes (2Q = 28, 29, 30), and
states with smaller values of Q, such as 2Q = 25 or 26, contain quasielectrons in the
ground states. For 2Q = 26 the system is one single particle state shy of having the
Laughlin ν = 1/3 filling. In this case the low energy sector corresponds to having a
single Laughlin quasielectron of angular momentum L = 5.

8J.J. Quinn and A. Wojs, J. Phys.: Condens. Matter 12, R265 (2000).
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E

(c) 2Q=261Q E(a) 2Q=281QH

E

0 2 4 6 8 10 12

L

(d) 2Q=25

2Q E

0 2 4 6 8 10 12

L

(b) 2Q=29

2QH

Fig. 16.3 The energy spectra of 10 electrons in the lowest Landau level calculated on a Haldane
sphere with 2Q = 28, 29, 26, 25. The open circles and solid lines mark the lowest energy bands
with the fewest composite fermion quasiparticles of nQH = 1 for 2Q = 28 in a, nQH = 2 for
2Q = 29 in b, nQE = 1 for 2Q = 26 in c, and nQE = 2 for 2Q = 25 in d

Exercise

Demonstrate the allowed values of the total angular momentum L and the maximum
allowed values LMAX of the cases N = 3 with l = 3.0 and N = 4 with l = 4.5,
respectively, as indicated in Table16.1.

16.5 Statistics of Identical Particles in Two Dimensions

Let us consider a system consisting of two particles each of charge −e and mass
μ, confined to a plane, in the presence of a perpendicular dc magnetic field B =
(0, 0, B) = ∇×A(r). SinceA(r) is linear in the coordinate r = (x, y), (for example,
A(r) = 1

2 B(−y, x) in a symmetric gauge), the Hamiltonian separates into the pieces
corresponding to the center-of-mass R = 1

2 (r1 + r2) and relative coordinates (r =
r2 − r1), respectively. The energy spectra for the center-of-mass and relative motion
of the particles are identical to that of a single particle of mass μ and charge −e. We
have seen that, as given by (16.6), for the lowest Landau level, the single particle
wavefunction is

Ψ0m(r1) = Nmrm
1 e

−imφe−r21 /4l02 .
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For the relative motion φ is equal to φ1 −φ2, and the interchange of the pair, denoted
by PΨ (r1, r2) = Ψ (r2, r1), is accomplished by replacing φ by φ + π.

For two identical particles initially at positions r1 and r2 in a three dimensional
space, the amplitude for the path that takes the system from the initial state (r1, r2)
to the same final state (r1, r2) depends on the angle of rotation φ of the vector
r12(= r1 − r2). The end points represented by φ = π or 0 correspond to exchange
or non-exchange processes, and the angle φ is only defined modulo 2π. The angle of
rotation φ is not a well-defined quantity in three dimensions, but the statistics can not
be arbitrary. Under the exchange of two particles, the wavefunction picks up either
a plus sign named bosonic statistics or a minus sign named fermionic statistics with
no other possibilities. Since two consecutive interchanges must result in the original
wavefunction, eimπ must be equal to either +1 (m is even; bosons) or −1 (m is odd;
fermions).

In two dimensions the angle φ is perfectly well-defined for a given trajectory. It is
possible to keep track of how many times the angle φ winds around the origin. Any
two trajectories can not be deformed continuously into one another since any two
particles can not go through each other. The space of particle trajectories falls into
disconnected pieces that cannot be deformed into one another if |ri j | is not allowed
to vanish. Each piece has a definite winding number. Therefore, it is not enough to
specify the initial and final configurations to characterize a given system completely.
In constructing path integrals, the weighting of trajectories can depend on a new
parameter θ (defined modulo 2π) through a factor eiθφ/π . For θ = 0 or θ = π we
have the conventional boson or fermion statistics. For the most general case we have

P12Ψ (1, 2) = eiθΨ (1, 2). (16.19)

For arbitrary values of θ the particles are called anyons and satisfy a new form of
quantum statistics.9

Let us consider a simple Lagrangian describing the relative motion of two inter-
acting particles, the relative position and reduced mass of which are denoted by
r[= (r,φ)] and μ, respectively. A simple way to realize anyon statistics is to add a
term�βφ̇ called aChern–Simons term to theLagrangian,whereβ(≡ θ/π) = qΦ/hc
is the anyon parameter with 0 ≤ β ≤ 1. While q and Φ are a fictitious charge and
flux, θ is the numerical parameter of 0 ≤ θ ≤ 1. For example, if

L = 1

2
μ(ṙ2 + r2φ̇2) − V (r) + �βφ̇ (16.20)

the added Chern–Simons term does not affect the classical equations of motions
because q and Φ are time independent. However, the canonical angular momentum
is given by pφ(= ∂L

∂φ̇
) = μr2φ̇ + �β. Because e2πi pφ/� generates rotations of 2π,

9A. Lerda, Anyons: Quantum Mechanics of Particles with Fractional Statistics, Lecture Notes in
Physics (Springer-Verlag, Berlin, 1992) and F. Wilczek, Fractional Statistics and Anyon Supercon-
ductivity (World Scientific, Singapore, 1990).
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�
−1 pφ must have integral eigenvalues l. However, the gauge invariant kinetic angular

momentum, given by pφ − �β, can take on fractional values, which will result in
fractional quantum statistics for the particles.

16.6 Chern–Simons Gauge Field

Let us consider a two dimensional system of particles satisfying some particular
statistics and described by a Hamiltonian

H = 1

2μ

∑
i

[
pi + e

c
A(ri )

]2 +
∑
i> j

V (ri j ). (16.21)

Then we can change the statistics by attaching to each particle a fictitious charge q
and flux tube carrying magnetic flux Φ. The fictitious vector potential a(ri ) at the
position of the i th particle caused by flux tubes, each carrying flux of Φ, on all the
other particles at r j ( �= ri ) is written as

a(ri ) = Φ
∑

j �=i

ẑ × ri j

r2i j

. (16.22)

The Chern–Simons gauge field due to the gauge potential a(ri ) becomes

b(r) = Φ
∑

i

δ(r − ri )ẑ, (16.23)

where ri is the position of the i th particle carrying gauge potential a(ri ). Because
two electrons can not occupy the same position, a given electron can never sense the
δ-function magnetic field attached to other electrons. Therefore, b(r) has no effect
on the classical equations of motion.

In a quantum mechanical system, we rewrite the vector potential a(r) as follows:

a(ri ) = Φ

∫
d2r1

ẑ × (r − r1)
|r − r1|2 ψ†(r1)ψ(r1). (16.24)

Here ψ†(r1)ψ(r1) denotes the density operator ρ(r1) for the electron liquid and
the gauge potential a(r) introduces a phase factor into the quantum mechanical
wavefunction.

Chern–Simons transformation is a singular gauge transformation which trans-
forms an electron creation operator ψ†

e (r) into a composite particle creation operator
ψ†(r) as follows:

ψ†(r) = ψ†
e (r)e

iα
∫

d2r ′arg(r−r ′)ψ†
e (r′)ψe(r′). (16.25)
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Here arg(r − r′) denotes the angle that the vector r − r′ makes with the x-axis
and α is a gauge parameter. Then, the kinetic energy operator Ke of an electron is
transformed into

KCS = 1

2μ

∫
d2rψ†(r)

[
−i�∇ + e

c
A(r) + e

c
a(r)

]2
ψ(r), (16.26)

where a(r) is the total gauge potential formed at the position r due to the Chern–
Simons flux attached to other particles.

a(r) = αφ0

∫
d2r ′ ẑ × (r − r′)

|r − r′|2 ψ†(r′)ψ(r′).

Hence, the Chern–Simons transformation corresponds to a transformation attaching
to each particle a flux tube of fictitiousmagnetic fluxΦ(= αφ0) and afictitious charge
−e so that the particle could couple to the flux tube attached to other particles.

The new Hamiltonian, through Chern–Simons gauge transformation, is obtained
by simply replacing e

cA(ri ) in (16.21) by e
cA(ri ) + e

ca(ri ).

HCS = 1

2μ

∫
d2rψ†(r)

[
p + e

c
A(r) + e

c
a(r)

]2
ψ(r) +

∑
i> j

V (ri j ). (16.27)

The composite fermions obtained in this way carry both electric charge and magnetic
flux. The Chern–Simons transformation is a gauge transformation and hence the
composite fermion energy spectrum is identical with the original electron spectrum.
Since attached fluxes are localized on electrons and the magnetic field acting on each
electron is unchanged, the classical Hamiltonian of the system is also unchanged.
However, the quantummechanical Hamiltonian includes additional terms describing
an additional charge–flux interaction, which arises from the Aharanov–Bohm phase
attained when one electron’s path encircles the flux tube attached to another electron.

The net effect of the additional Chern–Simons term is to replace the statistics
parameter θ describing the particle statistics in (16.19) with θ + πΦ

q
hc . If Φ = p hc

e
when p is an integer, then θ → θ + π pq/e. For the case of q = e and p = 1,
θ = 0 → θ = π converting bosons to fermions and θ = π → θ = 2π converting
fermions to bosons. For p = 2, the statistics would be unchanged by the Chern–
Simons terms.

The Hamiltonian HCS contains terms proportional to an(r) (n = 0, 1, 2). The
a1(r) term gives rise to a standard two-body interaction. The a2(r) term gives three-
body interactions containing the operator

Ψ †(r)Ψ (r)Ψ †(r1)Ψ (r1)Ψ †(r2)Ψ (r2).

The three-body terms are complicated, and they are frequently neglected. TheChern–
Simons Hamiltonian introduced via a gauge transformation is considerably more
complicated than the original Hamiltonian given by (16.21). Simplification results
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only when the mean-field approximation is made. This is accomplished by replacing
the density operator ρ(r) in the Chern-Simons vector potential (16.24) by its mean-
field value nS , the uniform equilibrium electron density. The resulting mean-field
Hamiltonian is a sum of single particle Hamiltonians in which, instead of the external
field B, an effective magnetic field B∗ = B + αφ0nS appears.

16.7 Composite Fermion Picture

The difficulty in trying to understand the fractionally filled Landau level in two
dimensional systems comes from the enormous degeneracy that is present in the
noninteracting many body states. The lowest Landau level contains Nφ states and
Nφ = BS/φ0, the number of flux quanta threading the sample of area S. Therefore,
Nφ/N = ν−1 is equal to the number of flux quanta per electron. Let us think of the
ν = 1/3 state as an example; it has three flux quanta per electron. If we attach to each
electron a fictitious charge q(= −e, the electron charge) and a fictitious flux tube
(carrying fluxΦ = 2pφ0 directed opposite to B, where p is an integer and φ0 the flux
quantum), the net effect is to give us the Hamiltonian described by (16.21), (16.22)
and to leave the statistical parameter θ unchanged. The electrons are converted into
composite fermions which interact through the gauge field term as well as through
the Coulomb interaction.

Why does one want to make this transformation, which results in a much more
complicated Hamiltonian? The answer is simple if the gauge field a(ri ) is replaced
by its mean value, which simply introduces an effectivemagnetic field B∗ = B+〈b〉.
Here, 〈b〉 is the average magnetic field associated with the fictitious flux. In the mean
field approach, the magnetic field due to attached flux tubes is evenly spread over
the occupied area S. The mean field composite fermions obtained in this way move
in an effective magnetic field B∗. Since, for ν = 1/3 state, B corresponds to three
flux quanta per electron and 〈b〉 corresponds to two flux quanta per electron directed
opposite to the original magnetic field B, we see that B∗ = 1

3 B. The effective mag-
netic field B∗ acting on the composite fermions gives a composite fermion Landau
level containing 1

3 Nφ states, or exactly enough states to accommodate our N particles.
Therefore, the ν = 1/3 electron Landau level is converted, by the composite fermion
transformation, to a ν∗ = 1 composite fermion Landau level. Now, the ground state
is the antisymmetric product of single particle states containing N composite fermi-
ons in exactly N states. The properties of a filled (composite fermion) Landau level
is well investigated in two dimensions. The fluctuations about the mean field can be
treated by standard many body perturbation theory. The vector potential associated
with fluctuation beyond the mean field level is given by δa(r) = a(r) − 〈a(r)〉. The
perturbation to the mean field Hamiltonian contains both linear and quadratic terms
in δa(r), resulting in both two body and three body interaction terms.

The idea of a composite fermion was introduced initially to represent an electron
with an attached flux tube which carries an even number α (= 2p) of flux quanta.
In the mean field approximation the composite fermion filling factor ν∗ is given by
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the number of flux quanta per electron of the dc field less the composite fermion flux
per electron, i.e.

ν∗−1 = ν−1 − α. (16.28)

We remember that ν−1 is equal to the number of flux quanta of the applied mag-
netic field B per electron, and α is the (even) number of Chern–Simons flux quanta
(oriented oppositely to the applied magnetic field B) attached to each electron in the
Chern–Simons transformation. Negative ν∗ means the effective magnetic field B∗
seen by the composite fermions is oriented opposite to the original magnetic field
B. Equation (16.28) implies that when ν∗ = ±1,±2, . . . and a nondegenerate mean
field composite fermion ground state occurs, then

ν = ν∗

1 + αν∗ (16.29)

generates, for α = 2, condensed states at ν = 1/3, 2/5, 3/7, . . . and ν =
1, 2/3, 3/5, . . .. These are the most pronounced fractional quantum Hall states
observed in experiment. The ν∗ = 1 states correspond to Laughlin ν = 1

1+α
states. If

ν∗ is not an integer, the low lying states contain a number of quasiparticles (NQP ≤ N )
in the neighboring incompressible state with integral ν∗. Themean field Hamiltonian
of noninteracting composite fermions is known to give a good description of the low
lying states of interacting electrons in the lowest Landau level.

It is quite remarkable to note that the mean field picture predicts not only the Jain
sequence of incompressible ground states, given by ν = ν∗

1+2pν∗ (with integer p), but
also the correct band of low energy states for any value of the applied magnetic field.
This is illustrated very nicely for the case of N electrons on a Haldane sphere. In
the spherical geometry one can introduce an effective monopole strength 2Q∗ seen
by one composite fermion. When the monopole strength seen by an electron has the
value 2Q, 2Q∗ is given, since the α flux quanta attached to every other composite
fermion must be subtracted from the original monopole strength 2Q, by

2Q∗ = 2Q − α(N − 1). (16.30)

This equation reflects the fact that a given composite fermion senses the vector
potential produced by the Chern–Simons flux on all other particles, but not its own
Chern–Simons flux.

Now |Q∗| = l∗0 plays the role of the angular momentum of the lowest composite
fermion shell just as Q = l0 was the angularmomentumof the lowest electron shell.10

When 2Q is equal to an odd integer (1 + α) times (N − 1), the composite fermion
shell l∗0 is completely filled (ν∗ = 1), and an L = 0 incompressible Laughlin state at
filling factor ν = (1+α)−1 results.When 2|Q∗|+1 is smaller than N , quasielectrons
appear in the shell lQE = l∗0+1. Similarly, when 2|Q∗|+1 is larger than N , quasiholes
appear in the shell lQH = l∗0 . The low energy sector of the energy spectrum consists

10X.M. Chen, J.J. Quinn, Solid St. Commun. 92, 865 (1994).
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Table 16.2 The effective CF monopole strength 2Q∗, the number of CF quasiparticles (quasiholes
nQH and quasielectrons nQE), the quasiparticle angularmomenta lQE and lQH, the composite fermion
and electronfilling factorsν∗ andν, and the angularmomenta L of the lowest lyingbandofmultiplets
for a ten electron system at 2Q between 29 and 15

2Q 29 28 27 26 25 24 23 22 21 15

2Q∗ 11 10 9 8 7 6 5 4 3 -3

nQH 2 1 0 0 0 0 0 0 0 0

nQE 0 0 0 1 2 3 4 5 6 6

lQH 5.5 5 4.5 4 3.5 3 2.5 2 1.5 1.5

lQE 6.5 6 5.5 5 4.5 4 3.5 3 2.5 2.5

ν∗ 1 2 -2

ν 1/3 2/5 2/3

L 10, 8,
6, 4, 2,
0

5 0 5 8, 6, 4,
2, 0

9, 7, 6,
5, 4,
32, 1

8, 6, 5,
42, 22,
0

5, 3, 1 0 0

of the states with the minimum number of quasiparticle excitations required by the
values of 2Q∗ and N . The first excited band of states will contain one additional
quasielectron–quasihole pair. The total angular momentum of these states in the
lowest energy sector can be predicted by addition of the angular momenta (lQH or
lQE) of the nQH or nQE quasiparticles treated as identical fermions. In Table16.2 we
demonstrate how these allowed L values are found for a 10 electron system with
2Q in the range 29 ≥ 2Q ≥ 15. By comparing with numerical results presented
in Fig. 16.1, one can readily observe that the total angular momentum multiplets
appearing in the lowest energy sector are correctly predicted by this simple mean
field Chern–Simons picture.

For example, the Laughlin L = 0 ground state at ν = 1/3 occurs when 2l∗0 =
N −1, so that the N composite fermions fill the lowest shell with angular momentum
l∗0 (= N−1

2 ). The composite fermion quasielectron and quasihole states occur at 2l∗0 =
N − 1± 1 and have one too many (for quasielectron) or one too few (for quasihole)
quasiparticles to give integral filling. The single quasiparticle states (nQP = 1) occur
at angular momentum N/2, for example, at lQE = 5 with 2Q∗ = 8 and lQH = 5
with 2Q∗ = 10 for N = 10 as indicated in Table16.2. The two quasielectron or two
quasihole states (nQP = 2) occur at 2l∗0 = N −1∓2, and they have 2lQE = N −1 and
2lQH = N + 1. For example, we expect that, for N = 10, lQE = 4.5 with 2Q∗ = 7
and lQH = 5.5with 2Q∗ = 11 as indicated in Table16.2, leading to low energy bands
with L = 0⊕ 2⊕ 4⊕ 6⊕ 8 for 2 quasielectrons and L = 0⊕ 2⊕ 4⊕ 6⊕ 8⊕ 10 for
2 quasiholes. In the mean field picture, which neglects quasiparticle-quasiparticle
interactions, these bands are degenerate.

We emphasize that the low lying excitations can be described in terms of the
number of quasiparticles nQE and nQH. The total angular momentum can be obtained
by addition of the individual quasiparticle angular momenta, being careful to treat
the quasielectron excitations as a set of fermions and quasihole excitations as a set
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of fermions distinguishable from the quasielectron excitations. The energy of the
excited state would simply be the sum of the individual quasiparticle energies if
interactions between quasiparticles were neglected. However, interactions partially
remove the degeneracy of different states having the same values of nQE and nQH.
Numerical results in Fig. 16.3b, d illustrate that two quasiparticles with different L
values have different energies. From this numerical data one can obtain the residual
interaction VQP(L ′) of a quasiparticle pair as a function of the pair angularmomentum
L ′.11 In Fig. 16.2, in addition to the lowest energy band of multiplets, the first excited
band containing one additional quasielectron-quasihole pair can be observed. The
‘magnetoroton’ band can be observed lying between the L = 0 Laughlin ground state
of incompressible quantum liquid and a continuum of higher energy states. The band
contains one quasihole with lQH = 9/2 and one quasielectron with lQE = 11/2. By
adding the angularmomenta of these twodistinguishable particles, a band comprising
L of 1(= lQE − lQH) ≤ L ≤ 10(= lQE + lQH) would be predicted. But, from
Fig. 16.2 we conjecture that the state with L = 1 is either forbidden or pushed
up by interactions into the higher energy continuum above the magnetoroton band.
Furthermore, the states in the band are not degenerate indicating residual interactions
that depend on the angular momentum of the pair L ′. Other bands that are not quite
so clearly defined can also be observed in Fig. 16.3.

Although fluctuations beyond the mean field interact via both Coulomb and
Chern–Simons gauge interactions, the mean field composite fermion picture is
remarkably successful in predicting the low energy multiplets in the spectrum of
N electrons on a Haldane sphere. It was suggested originally that this success of
the mean field picture results from the cancellation of the Coulomb and Chern–
Simons gauge interactions among fluctuations beyond the mean field level. It was
conjectured that the composite fermion transformation converts a system of strongly
interaction electrons into one of weakly interacting composite fermions. The mean
field Chern–Simons picture introduces a new energy scale �ω∗

c proportional to the
effective magnetic field B∗, in addition to the energy scale e2/ l0 (∝ √

B) associated
with the electron–electron Coulomb interaction. The Chern–Simons gauge interac-
tions convert the electron system to the composite fermion system. The Coulomb
interaction lifts the degeneracy of the noninteracting electron bands. The low lying
multiplets of interacting electronswill be contained in a band ofwidth e2/ l0 about the
lowest electron Landau level. The noninteracting composite fermion spectrum con-
tains a number of bands separated by �ω∗

c . However, for large values of the applied
magnetic field B, the Coulomb energy can be made arbitrarily small compared to the
Chern–Simons energy �ω∗

c , resulting in the former being too small to reproduce the
separation of levels present in the mean field composite fermion spectrum. The new
energy scale is very large comparedwith theCoulomb scale, and it is totally irrelevant
to the determination of the low energy spectrum. Despite the satisfactory description
of the allowed angular momentum multiplets, the magnitude of the mean field com-
posite fermion energies is completely wrong. The structure of the low energy states is
quite similar to that of the fully interacting electron system but completely different

11See, for example, J.J. Quinn, A. Wojs, K.S. Yi, G. Simion, Phys. Rep. 481, 29 (2009).
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from that of the noninteracting system. The magnetoroton energy does not occur at
the effective cyclotron energy �ω∗

c . What is clear is that the success of the composite
fermion picture does not result from a cancellation between Chern–Simons gauge
interactions and Coulomb interactions.12

16.8 Fermi Liquid Picture

The numerical result of the type displayed in Fig. 16.2 could be understood in a
very simple way within the composite fermion picture. For the 10 particle system,
the Laughlin ν = 1/3 incompressible ground state at L = 0 occurs for 2Q =
3(N −1) = 27. The low lying excited states consist of a single quasiparticle pair with
the quasielectron and quasihole having angular momentum lQE = 11/2 and lQH =
9/2. The mean field composite fermion picture does not account for quasiparticle
interactions and would give a magnetoroton band of degenerate states with 1 ≤
L ≤ 10 at 2Q = 27. It also predicts the degeneracies of the bands of two identical
quasielectron states at 2Q = 25 and of two identical quasihole states at 2Q = 29.

The energy spectra of states containing more than one composite fermion qua-
siparticle can be described in the following phenomenological Fermi liquid model.
The creation of an elementary excitation, quasielectron or quasihole, in a Laugh-
lin incompressible ground state requires a finite energy, εQE or εQH, respectively.
In a state containing more than one Laughlin quasiparticle, quasiparticles interact
with one another through appropriate quasiparticle-quasiparticle pseudopotentials,
VQP−QP′ . Here VQP−QP′(L ′) is defined as the interaction energy of a pair of electrons
as a function of the total angular momentum L ′ of the pair.

An estimate of the quasiparticle energies can be obtained by comparing the energy
of a single quasielectron (for example, for the 10 electron system, the energy of the
ground state at L = N/2 = 5 for 2Q = 27 − 1 = 26) or a single quasihole (the
L = N/2 = 5 ground state at 2Q = 27+1 = 28 for the 10 electron system) with the
Laughlin L = 0 ground state at 2Q = 27. There can be finite size effects, because
the quasiparticle states occur at different values of 2Q from that of the ground state.
But estimation of reliable εQE and εQH should be possible for a macroscopic system
by using the correct magnetic length l0 = R/

√
Q (R is the radius of the Haldane

sphere) in units of energy e2/ l0 at each value of 2Q and by extrapolating the results
as a function of N−1 to an infinite system.13

The quasiparticle pseudopotentials VQP−QP′ can be obtained from the energies
of the two quasiparticle states evaluated numerically (at 2Q = 25 (2QE state),
2Q = 27 (1QE − 1QH state), and 2Q = 29 (2QH state)) by subtracting the energy
of the Laughlin ground state (at 2Q = 27) and 2εQP, twice of the energy εQP of

12J.J. Quinn, A. Wojs, Physica E 6, 1 (2000).
13P. Sitko, S.-N. Yi, K.-S. Yi, J. J. Quinn, Phys. Rev. Lett. 76, 3396 (1996).
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appropriate noninteracting quasiparticles. As for the single quasiparticle, the energies
calculated at different value of 2Q must be taken in correct units of e2/ l0 = √

Qe2/R
to avoid finite size effects.

16.9 Pseudopotentials

Electron pair states in the spherical geometry are characterized by a pair angular
momentum L ′(= L12). The Wigner–Eckart theorem tells us that the interaction
energy Vn(L ′) depends only on L ′ and the Landau level index n. The reason for
the success of the mean field Chern–Simons picture can be seen by examining the
behavior of the pseudopotential VQP−QP′(L ′) of a pair of particles. In the mean field
approximation the energy necessary to create a quasielectron–quasihole pair is �ω∗

c .
However, the quasiparticles will interact with the Laughlin condensed state through
the fluctuation Hamiltonian. The renormalized quasiparticle energy will include this
self-energy, which is difficult to calculate. We can determine the quasiparticle ener-
gies phenomenologically using exact numerical results as input data. The picture we
are using is very reminiscent of Fermi liquid theory. The ground state is the Laughlin
condensed state; it plays the role of a vacuum state. The elementary excitations are
quasielectrons and quasiholes. The total energy can be expressed as

E = E0 +
∑
QP

εQPnQP + 1

2

∑
QP,QP′

VQP−QP′(L)nQPnQP′ . (16.31)

The last term represents the interactions between a pair of quasiparticles in a state
of angular momentum L . One can take the energy spectra of finite systems, and
compare the two quasiparticle states, such as |2QE〉, |2QH〉, or |1QE + 1QH〉, with
the composite fermion picture. The values of VQP−QP′(L) are obtained by subtract-
ing the energies of the noninteracting quasiparticles from the numerical values of
E(L) for the |1QP + 1QP′〉 states after the appropriate positive background energy
correction. It is worth noting that the interaction energy for unlike quasiparticles
depends on the total angular momentum L , while for like quasiparticles it depends
on the relative angular momentumR, which is defined byR = LMAX − L . One can
understand it by considering the motions in the two dimensional plane. Oppositely
charged quasiparticles form bound states, in which both charges drift in the direction
perpendicular to the line connecting them, and their spatial separation is related to
the total angular momentum L . Like charges repel one another orbiting around one
another due to the effect of the dc magnetic field. Their separation is related to their
relative angular momentum R.14

14The angular momentum L12 of a pair of identical fermions in an angular momentum shell or a
Landau level is quantized, and the convenient quantum number to label the pair states is the relative
angular momentum R = 2lQP − L12 (on a sphere) or relative angular momentum m (on a plane).
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If VQP−QP′(L ′) is a “harmonic” pseudopotential of the form written as

VH(L ′) = A + BL ′(L ′ + 1), (16.32)

every angular momentum multiplet having the same value of the total angular
momentum L has the same energy. Here A and B are constants and it will be seen
below that the harmonic interactions do not remove the degeneracy of different states
with the same value of the total angular momentum, that is, they introduce no correla-
tions. Any linear combination of eigenstates with the same total angular momentum
has the same energy. We define VQP−QP′(L ′) to be ‘superharmonic’ (‘subharmonic’)
at L ′ = 2l − R if it increases approaching this value more quickly (slowly) than
the harmonic pseudopotential appropriate at L ′ − 2. For harmonic and subharmonic
pseudopotentials, Laughlin correlations do not occur. In Fig. 16.3b, d, it is clear that
residual quasiparticle–quasiparticle interactions are present. If they were not present,
then all of the 2QH states in frame (b) would be degenerate, as would all of the 2QE
states in frame (d). In fact, these frames give us the pseudopotentials VQH(R) and
VQE(R), up to an overall constant, describing the interaction energy of pairs with
angular momentum L ′ = 2l − R.

Figure16.4 gives a plot of quasipotentials Vn(L ′) vs L ′(L ′ + 1) for electrons in
the n = 0 and n = 1 Landau levels at different values of 2l.15 For electrons in the
lowest Landau level (n = 0), V0(L ′) is superharmonic at every value of L ′. For
excited Landau levels (n ≥ 1), Vn(L ′) is not superharmonic at all allowed values
of L ′. The allowed values of L ′ for a pair of fermions each of angular momentum
l are given by L ′ = 2l − R, where the relative angular momentum R is usually an
odd integer. We often write the pseudopotential as V (R) since L ′ = 2l − R. For
the lowest Landau level V0(R) is superharmonic everywhere. This is apparent for
the largest values of L ′ in Fig. 16.4. For the first excited Landau level V1 increases
between L ′ = 2l − 3 and L ′ = 2l − 1, but it increases either harmonically or more
slowly, and hence V1(R) is superharmonic only for R > 1. Generally, for higher
Landau levels (for example, n = 2, 3, 4, . . .) Vn(L ′) increases more slowly or even
decreases at the largest values of L ′. The reason for this is that the wavefunctions
of higher Landau levels have one or more nodes giving structure to the electron
charge density. When the separation between the particles becomes comparable to
the scale of the structure, the repulsion is weaker than for structureless particles.16

When plotted as a function of R, the pseudopotentials calculated for small systems
containing different number of electrons (hence for different values of quasiparticle
angular momenta lQP) behave similarly and, for N → ∞, i.e., 2Q → ∞, they seem
to converge to the limiting pseudopotentials VQP−QP′(R = m) describing an infinite
planar system.

15J.J. Quinn, A.Wojs, K. S. Yi, and J. J. Quinn, The Electron Liquid Paradigm in Condensed Matter
Physics, pp. 469–497 (IOS Press, Amsterdam, 2004).
16As for a conduction electron and a valence hole pair in a semiconductor, the motion of a
quasielectron–quasihole pair, which does not carry a net electric charge is not quantized in a
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Fig. 16.4 Pseudopotential Vn(L ′) of the Coulomb interaction in the lowest (a) and the first excited
Landau level (b) as a function of the eigenvalue of the squared pair angular momentum L ′(L ′ + 1).
Here n indicates the Landau level index. Squares (l = 5), triangles (l = 15/2), diamonds (l = 10),
and circles (l = 25/2) indicate data for different values of Q = l + n

The number of electrons required to have a system of quasiparticle pairs of reason-
able size is, in general, too large for exact diagonalization in terms of electron states
and the Coulomb pseudopotential. However, by restricting our consideration to the
quasiparticles in the partially field composite fermion shell and by using VQP−QP′(R)

obtained from numerical studies of small systems of electrons, the numerical diago-
nalization can be reduced to manageable size.17 Furthermore, because the important
correlations and the nature of the ground state are primarily determined by the short
range part of the pseudopotential, such as at small values ofR or small quasiparticle–
quasiparticle separations, the numerical results for small systems should describe the
essential correlations quite well for systems of any size.

Figure16.5 displays VQE−QE′(R) and VQH−QH′(R) as a function ofR = 2l − L ′,
where L ′ is the angular momentum of the pair. It is appropriate to N electron systems
containing two quasiparticles in the ν = 1/3 and ν = 1/5 Laughlin incompressible
quantum liquid states.18 We note that the behavior of quasielectrons is similar for
ν = 1/3 and ν = 1/5 states, and the same is true for quasiholes of the ν = 1/3
and ν = 1/5 Laughlin states. Because VQE−QE′(R = 1) < VQE−QE′(R = 3) and
VQE−QE′(R = 5) < VQE−QE′(R = 7), we can readily ascertain that VQE−QE′(R)

is subharmonic at R = 1 and R = 5. Similarly, VQH−QH′(R) is subharmonic at
R = 3 and possibly atR = 7. There are clearly finite size effects since VQP−QP′(R)

is different for different values of the electron number N . However, VQP−QP′(R)

magnetic field. The appropriate quantum number to label the states is the continuous wavevec-
tor k, which is given by k = L/R = L/ l0

√
Q on a sphere.

17The quasiparticle pseudopotentials determined in this way are quite accurate up to an overall
constant which has no effect on the correlations.
18A. Wojs and J.J. Quinn, Phys. Rev. B 61, 2846 (2000).
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Fig. 16.5 Pseudopotentials VQP−QP′ (R) of a pair of quasielectrons and quasiholes in Laughlin
ν = 1/3 and ν = 1/5 states, as a function of relative pair angular momentumR(= 2l −L ′). Here L ′
is the angular momentum of the pair. Different symbols denote data obtained in the diagonalization
of between six and eleven electrons

converges to a rather well defined limit when plotted as a function of N−1. The results
are quite accurate up to an overall constant, which is of no significance when one is
interested only in the behavior of VQP−QP′ as a function ofR. Once the quasiparticle–
quasiparticle pseudopotentials and the bare quasiparticle energies are known, one can
evaluate the energies of states containing three or more quasiparticles.

Problems

16.1 The many particle wavefunction is written, for ν = 1, by

Ψ1(z1, . . . , zN ) = A{u0(z1)u1(z2) · · · uN−1(zN )}

where A denotes the antisymmetrizing operator. Demonstrate explicitly that
Ψ1(z1, . . . , zN ) can be written as follows:
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Ψ1(z1, . . . , zN ) ∝

∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
z1 z2 · · · zN

z21 z22 · · · z2N
...

... · · · ...

zN−1
1 zN−1

2 · · · zN−1
N

∣∣∣∣∣∣∣∣∣∣∣

e
− 1

4l20

∑
i=1,N

|zi |2
.

16.2 Consider a system of N electrons confined to a Haldane surface of radius R.
There is a magnetic monopole of strength 2Qφ0 at the center of the sphere.

(a) Demonstrate that, in the presence of a radial magnetic field B = 2Qφ0

4πR2 R̂, the
single particle Hamiltonian is given by

H0 = 1

2m R2

(
l − �Q R̂

)2
.

Here R̂ and l are, respectively, a unit vector in the radial direction and the
angular momentum operator.

(b) Show that the single particle eigenvalues of H0 are written as

ε(Q, l, m) = �ωc

2Q
[l(l + 1) − Q2].

16.3 Figure16.5 displays VQE(R) and VQH(R) obtained from numerical diagonal-
ization of N (6 ≤ N ≤ 11) electron systems appropriate to quasiparticles of the
ν = 1/3 and ν = 1/5 Laughlin incompressible quantum liquid states. Demonstrate
that VQP(R) converges to a rather well defined limit by plotting VQP(R) as a function
of N−1 at R = 1, 3, and 5.

Summary
In this chapter we introduce basic concepts commonly used to interpret experimental
data on the quantum Hall effect. We begin with a description of two dimensional
electrons in the presence of a perpendicular magnetic field. The occurrence of incom-
pressible quantum fluid states of a two-dimensional system is reviewed as a result
of electron–electron interactions in a highly degenerate fractionally filled Landau
level. The idea of harmonic pseudopotential is introduced and residual interactions
among the quasiparticles are analyzed. For electrons in the lowest Landau level the
interaction energy of a pair of particles is shown to be superharmonic at every value
of pair angular momenta.

The Hamiltonian of an electron (of mass μ) confined to the x-y plane, in the
presence of a dcmagnetic fieldB = Bẑ, is simply H = (2μ)−1

[
p + e

cA(r)
]2

,where
A(r) is given by A(r) = 1

2 B(−yx̂ + x ŷ) in a symmetric gauge. The Schrödinger
equation (H − E)Ψ (r) = 0 has eigenstates described by

Ψnm(r,φ) = eimφunm(r) and Enm = 1

2
�ωc(2n + 1 + m + |m|),
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where n and m are principal and angular momentum quantum numbers, respectively,
and ωc(= eB/μc) is the cyclotron angular frequency. The lowest Landau level wave-
function can be written as Ψ0m = Nm z|m|e−|z|2/4l02 where Nm is the normalization
constant and z stands for z(= x − iy) = re−iφ. The filling factor ν of a given Landau
level is defined by N/Nφ, so that ν−1 is simply equal to the number of flux quanta
of the dc magnetic field per electron. The integral quantum Hall effect occurs when
N electrons exactly fill an integral number of Landau levels resulting in an integral
value of the filling factor ν. The energy gap (equal to �ωc) between the filled states
and the empty states makes the noninteracting electron system incompressible. A
many particle wavefunction of N electrons at filling factor ν = 1 becomes

Ψ1(z1, . . . , zN ) ∝
∏

N≥i> j≥1

zi je
− 1

4l20

∑
k=1,N |zk |2

.

For filling factor ν = 1/n, Laughlin ground state wavefunction is written as

Ψ1/n(1, 2, . . . , N ) =
∏
i> j

zn
i j e

− ∑
l |zl |2/4l20 ,

where n is an odd integer.
It is convenient to introduce a Haldane sphere at the center of which is located

a magnetic monopole and a small number of electrons are confined on its sur-
face. The numerical problem is to diagonalize the interaction Hamiltonian Hint =∑

i< j V (|ri − r j |). The calculations give the eigenenergies E as a function of the
total angular momentum L .

Considering a two dimensional system of particles described by a Hamiltonian

H = 1

2μ

∑
i

[
pi + e

c
A(ri )

]2 +
∑
i> j

V (ri j ),

we can change the statistics by attaching to each particle a fictitious charge q and flux
tube carrying magnetic flux Φ. The fictitious vector potential a(ri ) at the position
of the i th particle caused by flux tubes, each carrying flux of Φ, on all the other
particles at r j ( �= ri ) is written as a(ri ) = Φ

∑
j �=i

ẑ×ri j

r2i j
. The Chern–Simons gauge

field due to the gauge potential a(ri ) becomes b(r) = Φ
∑

i δ(r − ri )ẑ, where ri is
the position of the i th particle carrying gauge potential a(ri ). The new Hamiltonian,
through Chern–Simons gauge transformation, is

HCS = 1

2μ

∫
d2rψ†(r)

[
p + e

c
A(r) + e

c
a(r)

]2
ψ(r) +

∑
i> j

V (ri j ).

The net effect of the additional Chern–Simons term is to replace the statistics para-
meter θ with θ + πΦ

q
hc . If Φ = p hc

e when p is an integer, then θ → θ + π pq/e.
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For the case of q = e and p = 2, the statistics would be unchanged by the Chern–
Simons terms, and the gauge interactions convert the electrons system to the com-
posite fermions which interact through the gauge field term as well as through the
Coulomb interaction. In the mean field approach, the composite fermions move in
an effective magnetic field B∗. The composite fermion filling factor ν∗ is given by
ν∗−1 = ν−1 − α. The mean field picture predicts not only the sequence of incom-
pressible ground states, given by ν = ν∗

1+2pν∗ (with integer p), but also the correct
band of low energy states for any value of the applied magnetic field. The low lying
excitations can be described in terms of the number of quasiparticles nQE and nQH.

In a state containingmore than one Laughlin quasiparticles, quasiparticles interact
with one another through appropriate quasiparticle-quasiparticle pseudopotentials,
VQP−QP′ . The total energy can be expressed as

E = E0 +
∑
QP

εQPnQP + 1

2

∑
QP,QP′

VQP−QP′(L)nQPnQP′ .

IfVQP−QP′(L ′) is a “harmonic”pseudopotential of the formVH(L ′) = A+BL ′(L ′+1)
every angular momentum multiplet having the same value of the total angular
momentum L has the same energy. We define VQP−QP′(L ′) to be ‘superharmonic’
(‘subharmonic’) at L ′ = 2l − R if it increases approaching this value more quickly
(slowly) than the harmonic pseudopotential appropriate at L ′ − 2. For harmonic and
subharmonic pseudopotentials, Laughlin correlations do not occur. Since the har-
monic pseudopotential introduces no correlations, only the anharmonic part of the
pseudopotential ΔV (R) = V (R) − VH (R) lifts the degeneracy of the multiplets
with a given L .



Chapter 17
Correlation Diagrams: An Intuitive
Approach to Interactions in Quantum Hall
Systems

17.1 Introduction

In this chapter, we study correlations resulting from Coulomb interactions in frac-
tional quantum Hall systems. Our objective is to use correlation diagrams to gain
new insights into correlations in strongly interacting many-body systems. We intro-
duce correlation diagrams to guide in the selection of the correlation function caused
by interactions. Electrons are represented by points located at positions zi in the com-
plex plane, and there are correlation lines connecting pairs of electrons. A correlation
line connecting particles i and j represents a correlation factor (cf) zi j = zi − z j .
Although our correlation diagrams appear to resemble chemical bonds, they are just
the opposite. A factor zmi j forbids the pair (i, j) from having a separation smaller than
m1/2λ, where λ = (�c/eB0)

1/2 is the magnetic length. Here B0 is the applied dc
magnetic field. An N electron system can be partitioned into subsets (A, B,C, . . .);
one example is (N ) → (N/2, N/2). There can be different numbers of cfs between
pairs belonging to different subsets, and still different numbers between particles in
different subsets. The number of cf lines associated with a particular partition can be
determined. The subgroup of the full symmetric group which is associated with the
conjugacy class of the partition is used to obtain the full symmetric correlation func-
tion. New electronic correlation functions are obtained for states containing a few
quasielectrons (QEs) in a partially filled QE shell, as well as for the incompressible
quantum liquid states containing integrally filled QE shells.

For weakly interacting many-body systems, the interaction Hamiltonian HI can
be treated as a perturbation acting on energy eigenfunctions of a non-interacting
Hamiltonian H0. For strongly interacting systems, this standard many-body pertur-
bation approach1 is not applicable because the interaction energy is much larger than
the single particle energy scale. The fractional quantum Hall (FQH) effect2 is the

1A. A. Abrikosov, L. P. Gorkov, and I. E. Dzyaloshinski, Method of Quantum Field Theory in
Statistical Physics, (Prentice-Hall, Englewood Cliffs, N.J., 1963).
2D. C. Tsui, H. L. Stormer, and A. C. Gossard, Phys. Rev. Lett. 48, 1559 (1982).

© Springer International Publishing AG, part of Springer Nature 2018
J. J. Quinn and K.-S. Yi, Solid State Physics, UNITEXT for Physics,
https://doi.org/10.1007/978-3-319-73999-1_17
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ultimate example of strongly interacting many-body systems. In determining the low
energy spectrum of the interacting system at the very large values of the appliedmag-
netic field B0, there is only one relevant energy scale, the Coulomb scale Vc = e2/λ.
The non-interacting single particle states3 for an electron confined to the x-y plane
have eigenvalues εnm = �ωc[n + 1

2 (1 + m + |m|)], where ωc = eB0/μc is the
electron cyclotron frequency, m = 0,±1,±2, . . ., and n is a non-negative integer.
The lowest energy level (Landau level LL0) has n = 0, and m equal to a negative
integer or zero. For a disk of finite area A, the allowed values of m for the LLO are
{0,−1,−2, . . . ,−Nφ}, where Nφ = AB0(�c/e)−1 is the number of flux quanta of
the applied magnetic field B0 passing through the sample. Each of the Nφ + 1 single
particle states has the same energy 1

2�ωc. The non-interacting eigenfunction can be
expressed in terms of a complex coordinate z = x − iy of the electron as φ(z) ∝ zm .
Then, for LL0, m ∈ g0 ≡ {0,+1, . . . ,+Nφ}. Antisymmetrized products of N func-
tions φm(z) selected from the set g0 form the function space (2l, N ) of the LL0. Here
we use 2l in place of Nφ for convenience. Because the particles are fermions, an N
electron trial wave function can be written as a ubiquitous Gaussian weighting factor
e− ∑

k |zk |2/(4λ2), (which is often not explicitly written but is understood), multiplied
by the product of an antisymmetric fermion factor F{zi j } = ∏

i< j zi j caused by
the Pauli exclusion principle, and a symmetric correlation function G{zi j } caused by
Coulomb interactions. Here zi j = zi − z j and we often refer to it as a correlation
factor, evenwhen it is caused by the Pauli principle and not by Coulomb correlations.

17.2 Electron Correlations

Laughlin4 realized that if the interacting electrons could avoid the most strongly
repulsive pair states, an incompressible quantum liquid (IQL) state could result. He
suggested a trial wave function for a filling factor ν (defined as N

2l+1 ) equal to the
reciprocal of an odd integer n, in which the correlation function Gn(zi j ) was given
by

∏
i< j z

n−1
i j . This function is symmetric and avoids all pair states with relative

pair angular momentum smaller than n (or all pair separations smaller than rn =
n1/2λ). One can represent this Laughlin correlation function diagrammatically by
distributing N dots, representing N electrons on the circumference of a circle, and
drawingdouble lines, representing two correlation factors connecting each pair. Thus,
there are 2(N−1) cf factors inG{zi j } emanating from each particle i . Adding (N−1)
cf factors emanating from each particle due to the fermion factor F{zi j } gives a total
of 3(N − 1) cfs emanating from each particle in the trial wave function �. This
number cannot exceed Nφ = 2l defining the function space (2l, N ) of the LL0. The
other well-known trial wave function is theMoore–Read paired function5 describing

3See, for example, S. Gasiorowicz, Quantum Physics, Third ed. (John Wiley & Sons, Hoboken,
N.J., 2003).
4R. B.Laughlin, Phys. Rev. Lett. 50, 1395 (1983).
5G. Moore and N. Read, Nucl. Phys. B 360, 362 (1991).
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the IQL state of a half-filled, spin polarized first excited Landau level (LL1). This
wave function � can be written in the form � = F · GMR, where the correlation
function is taken as GMR = F{zi j }P f (z−1

i j ). The second factor is called the Pfaffian

of z−1
i j . It can be expressed as6

P f (z−1
i j ) = Â

N/2∏

i=1

(z2i−1 − z2i )
−1 , (17.1)

where Â is an antisymmetrizing operator and the product is over pairs of electrons.
There has been considerable interest in the Moore–Read paired state and its gen-
eralizations7 based on rather formidable conformal field theory. Let us introduce a
simple intuitive picture of Moore–Read correlations with the hope that it might lead
to new insight into correlations in strongly interacting many-body systems.

For the simple case of an N = 4 particle system, the Pfaffian can be written as

P f (z−1
i j ) = Â{(z12z34)−1} = [

(z12z34)
−1 − (z13z24)

−1 + (z14z24)
−1] . (17.2)

The product of F{zi j } and P f (z−1
i j ) gives for the Moore–Read correlation function

GMR{zi j } = z13z14z23z24 − z12z14z23z34 + z12z13z24z34 . (17.3)

The correlation diagram forGMR{zi j } contains four pointswith a pair of cfs emanating
from each particle i going to different particles j and k. There are three distinct
diagrams shown in Fig. 17.1. Note that GMR is symmetric under permutation, as it
must be, since it is a product of two antisymmetric functions F{zi j } and P f {z−1

i j }.
A simpler, but seemingly different, correlation is the quadratic function given

by GQ ≡ Ŝ(z212z
2
34), where Ŝ is a symmetrizing operator. The correlation diagram

for GQ{zi j } is shown in Fig. 17.2. GMR and GQ are clearly different. However, when
they are expressed as homogeneous polynomials in the independent variables z1 to
z4, the two polynomials are the same up to a normalization constant. The same is
true for the N = 6 particle system, leading to the conjecture that GMR{zi j } was
equivalent to GQ{zi j } for all N . There are several advantages to the use of GQ. First,
it is simpler to partition N into two subsets of N/2, e.g., {1, 2, . . . , N/2} = A and
{N/2 + 1, . . . , N } = B, and define gAB = gAgB = ∏

i< j∈A z
2
i j

∏
k<l∈B z

2
kl . Then

the full correlation function can be written as ŜN {gAB}, where ŜN symmetrizes gAB

over all N particles. This symmetrization is equivalent to summing gAB over all
possible partitions of N into two equal size subsets A and B. Figure17.3 shows the
contribution to GQ for N = 8 particles for one partition in which A = {1, 3, 5, 7}

6M. Greiter, X.-G. Wen, and F. Wilczek, Phys. Rev. Lett. 66, 3205 (1991); Nucl. Phys. B 374, 507
(1992).
7A. Cappelli, L. S. Georgiev, and I. T. Todorov Proc. of Supersymmetries and Quantum Symmetries
(SQS’99, July 1999, Dubna) Ed. by E. Ivanov, S. Krivonos, and A. Pashev (JINR) p. 235 (2000).
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Fig. 17.1 Moore–Read correlation diagrams for N = 4. Dots represent particles, and solid lines
represent cfs zi j . GMR is the symmetric sum given by (17.3)

Fig. 17.2 Quadratic correlation functions. A double line represents z2i j , the square of a cf. GQ is
the sum of the contributions from the three diagrams

and B = {2, 4, 6, 8}. In Fig. 17.2 we show the three terms which are summed to give
the symmetric GQ{zi j } in place of the Moore–Read (Pfaffian) correlation function. In
Fig. 17.3 we display the GQ{zi j } (Laughlin correlation function) for an eight electron
system. It is much simpler than the GMR{zi j } of Moore–Read.

Fig. 17.3 Correlation diagram for GQzi j in an eight electron system due to the partition A =
{1, 3, 5, 7} and B = {2, 4, 6, 8}. The full correlation function is the sum over all distinct par-
titions into subsets A and B, each containing N/2 = 4 particles. The trial wave function is
�Q(1, 2, . . . , 8) = F{zi j }GQ{zi j }. This is the correlation diagram for (N , 2l) = (8, 13), giving a
ν = 2 + 1/2 filled IQL state
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17.3 Composite Fermion Approach (Revisited)

In Chap.16, we introduced a composite fermion (CF) picture by attaching to each
electron (via a gauge transformation) a flux tube which carried an even number
2p of magnetic flux quanta.8 This Chern–Simons (CS) flux has no effect on the
classical equations of motion since the CSmagnetic field b(r) = 2pφ0

∑
i δ(r−ri )ẑ

vanishes at the position of each electron (it is assumed that no electron senses its
own CS flux). Here φ0 = hc/e is the quantum of flux, and the sum is over all
electron coordinates ri . The classical Lorentz force on the i th electron due to the
CS magnetic field is (−e/c)vi × b(ri ) and b(ri ) caused by the CS flux on every
j (not equal to i) vanishes at the position ri . The CF model results in a much
more complicated interaction Hamiltonian, but simplification results from making
a mean field (MF) approximation in which the CS flux and the electron charge are
uniformly distributed over the entire sample. The average electronic charge −eN/A
is canceled by the fixed background of positive charge introduced to make the total
charge vanish. This MF CF approximation results in a system of N non-interacting
CFs (CF = electron plus attached flux tube) moving in an effective magnetic field
b∗ = νb. An effective CF filling factor ν∗ was introduced satisfying the equation

ν∗−1 = ν−1 − 2p . (17.4)

This resulted in a filled CF level when ν∗ was equal to an integer (ν∗ = n =
±1,±2, . . .) and an IQL daughter state at ν = n(1+ 2pn)−1. This Jain sequence of
states was the most robust set of fractional quantum Hall states observed in experi-
ments.

Making use of Haldane’s spherical geometry9,10,11 Chen and Quinn12 introduced
an effective CF angular momentum l∗ satisfying the relation l∗0 = l − p(N − 1),

8J. K. Jain, Phys. Rev. Lett. 63, 199 (1989).
9F. D. M. Haldane, Phys. Rev. Lett. 51, 605 (1983); F. D. M. Haldane and E. H. Rezayi, Phys. Rev.
Lett. 54, 237 (1985).
10G. Fano, F. Ortolani, and E. Colombo, Phys. Rev. B 34, 2670 (1986).
11There is a one to one correspondence between N electrons on a plane described by coordinates
(r,φ) and N electrons on a sphere described by (l, lz). For the plane, the z-component of angular
momentum takes on the valuesm = 0, 1, . . . , Nφ and the total z component of angularmomentum is
M = ∑N

i=1 mi wheremi is the z-component of angular momentum of a particle (i = 1, 2, . . . , N ).
M is the sum of the relative angular momentum MR and the center of mass angular momentum
MCM. On a sphere, the z-component of the single particle angular momentum is written as lz ,
and |lz | ≤ l, where l is the angular momentum in the shell (or Landau level). The total angular
momentum L is determined by addition of the angular momenta of N Fermions, each with angular
momentum l. N electron states are designated by |L , Lz,α〉, where α is used to label different
multiplets with the same value of L . It is apparent that M = Nl + Lz , and one can show that
MR = Nl − L and MCM = L + Lz . Therefore, for a state of angular momentum L = 0, MR must
be equal to Nl. In general the value of L for a given correlation function is given by the equation
L = Nl − KF − KG , where KF = N (N − 1)/2 is the number of cf lines appearing in the Fermi
function F and KG is the number of cf lines in the correlation function G.
12X. M. Chen and J. J. Quinn, Solid State Commun. 92, 865 (1994).

http://dx.doi.org/10.1007/978-3-319-73999-1_16


526 17 Correlation Diagrams: An Intuitive Approach …

Table 17.1 Values of l for an N = 4 electron system and the values of l∗0 , nQE, lQE, kM , and L
which result

l l∗0 nQE lQE kM L

4.5 1.5 0 2.5 6 0

4 1 1 2 5 2

3.5 0.5 2 1.5 4 0 ⊕ 2

3 0 3 1 3 0

where 2p is the number of CS flux quanta per electron. The lowest CF Landau level
(CF LL0) could hold (2l∗ + 1) CFs. There were nQE = N − (2l∗ + 1) composite
fermion QEs of angular momentum lQE = l∗ + 1 or nQH = (2l∗ + 1) − N CF QHs
of angular momentum lQH = l∗ if 2l∗ + 1 was not equal to N . This resulted in a
lowest band of quasiparticle (QP) states separated by a gap from the higher energy
quasi continuum. This allowed the total angular momentum states in this band to be
determined by addition of angular momentum of nQP quasiparticles each of angular
momentum lQP using the rules for addition of fermion angular momenta.

In Table17.1 we summarize the results of Jain’s MF CF picture of the low energy
states of an N = 4 electron system for values of 2l equal to 9, 8, 7, and 6. These
correspond to the ν = 1/3 filled IQL states and its excited states containing one, two,
and three QEs. The table shows the values of the single electron angular momentum
l, the resulting values of the CF angular momentum l∗0 = l − (N − 1), the number
of QEs nQE = N − (2l∗0 + 1), the QE angular momentum lQE, the maximum number
of correlation factor (cf) lines kM = 2l − (N − 1) that can emanate from an electron
in the correlation function G, and the allowed values of the total angular momentum
L which result.

It might seem surprising that Jain’s very simple CF picture correctly predicts the
angular momenta in the lowest band of states for any value of (2l, N ) which defines
the function space of themany-body system. The initial guess that the Chern–Simons
gauge interaction and theCoulomb interaction between fluctuations beyond themean
field canceled is certainly not correct. The gauge field interactions are proportional to
�ωc, which varies linearlywith B0, the appliedmagnetic field.However, theCoulomb
interactions are proportional to e2/λ (where λ is the magnetic length) and vary as
B1/2
0 . The two energy scales cannot possibly cancel for all values of B0. For very large

values of B0, only the Coulomb scale is relevant in determining the low energy band
of states. One can demonstrate that theMF CF picture gives a valid description of the
lowest band of states if the pair interaction energy V (L12) increases with increasing
L12 faster than the eigenvalue of L̂2

12, the square of the pair angular momentum.13

Knowing this and the occupancies of CF LLs from Jain’s MF CF picture makes it
interesting to explore the correlations among the original electrons. We do this using
correlation diagrams for small systems in the following section.

13J. J. Quinn, R. E. Wooten, and J. H. Macek, Proc. of the 21st Int. Conf. on High Magnetic Fields
in Semiconductor Physics (Panama City, Florida, 2014) p. 44.
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17.4 Correlation Diagrams

We have already stated that Laughlin correlation can be described by drawing two
cf lines between each pair 〈i, j〉. A cf line between i and j represents a correlation
factor zi j . The wave function �(1, 2, . . . , N ) = F{zi j }G{zi j } describing the IQL
state at ν = 1/3 will contain 3(N − 1) cf lines emanating from each particle i .
(N − 1) cf lines are associated with F{zi j }, leaving 2(N − 1) cf lines associated
with G{zi j }. The correlation diagram for a Laughlin ν = m−1 filling factor is simple
because every pair has exactly the same correlations. For other states, like a state
with nQE quasielectrons, the correlations are more complicated.14

For simplicity, let’s use as an example the N = 4 particle system with values of
2l in the range 6 ≤ 2l ≤ 9. The values of l∗0 , nQE, lQE, kM , and the total angular
momentum L of the lowest energy bands for these states are given in Table17.1.
We define KF = N (N − 1)/2 as the number of cf lines appearing in the Fermi
function F{zi j }, and KG as the number appearing in the correlation function G{zi j }.
Knowing Nl, KF , and, from Jain’sMFCF picture, the allowed values of total angular
momentum L , we can determine KG for each of the states listed in Table17.1. For
l = 4.5, 4, and 3 the corresponding values of KG are 12, 8, and 6. For l = 3.5, there
are two multiplets, L = 0 (KG = 8) and L = 2 (KG = 6). We also know kM from
the table. With this information, we can construct correlation functions which have
to be symmetric under permutation of a pair of particles. We show one correlation
diagram for each of the values of 2l. If it is not symmetric, we must apply Ŝ4 on the
function to symmetrize over all four particles.

For (2l, N ) = (9, 4) there is only a single diagram for each choice of the partition
of N = 4 into (n, n) = (2, 2). It has two cfs connecting each pair of particles in
subset A = {1, 3, 5, 7} and two cfs connecting each pair in subset B = {2, 4, 6, 8}
as illustrated in Fig. 17.3. For a one QE state, we must partition (4) into (3,1). The
single particle i belongs to subset A and the other three, j , k, and l, belong to subset
B. The latter subset has Laughlin correlations (z2jk) between each pair belonging
to B. Particle i (in subset A) is the QE, and has single cf lines connecting it with
two of the three particles in subset B. Figure17.4 shows one diagram. The diagram
corresponds to z12z13z223z

2
24z

2
34, and this function must be symmetrized by summing

over all partitions of (4) into (3,1), i.e., including diagrams in which A can be 1, 2,
3, or 4. Here we notice that kM = 5, Nl = 16, and KG = 8, giving an L = 2 state
for the single QE. For the two QE state with (2l, N ) = (7, 4), we partition (4) into
(2,2). For example, let one partition be A = (1, 2) and B = (3, 4). One term in the
correlation diagram is shown in Fig. 17.5. This diagram corresponds to z212z

2
14z

2
23,

and it must be symmetrized over all four particles. Notice that kM = 4, Nl = 14,
and KG = 6, giving an L = 2. To obtain the L = 0 multiplet, we must add two more
cfs. Figure17.6 shows one diagram for this case. It corresponds to a contribution
(z12z23z34z41)2, and it must be symmetrized. Now KG = 8 and L = 0 results.

14See, for example, S. B. Mulay, J. J. Quinn, andM. A. Shattuck, Proceedings of 18th International
Conference on Recent Progress in Many-Body Theories (MBT18) IOP Publishing; J. of Physics:
Conference Series 702, 012007 (2016).
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Fig. 17.4 One contribution to G for (2l, N ) = (8, 4)

Fig. 17.5 One contribution to G for (2l, N ) = (7, 4) that gives L = 2

Fig. 17.6 One contribution to G for (2l, N ) = (7, 4) that gives L = 0

Fig. 17.7 One contribution to G for (2l, N ) = (6, 4)

For (2l, N ) = (6, 4), we must have three QEs with kM = 3, and we can construct
the diagram shown in Fig. 17.7. When symmetrized, it can be factored to obtain the
expression
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G{zi j } = (z12z34 + z13z24)(z13z42 + z14z32)(z14z23 + z23z34) . (17.5)

There is only one state of angular momentum L = 0, and the wave function � =
FG obtained using (17.5) agrees exactly with that obtained by standard angular
momentum addition.

It is worthmentioning that there are three diagramswhen Fig. 17.6 is symmetrized
giving three terms (z12z23z34z41)2, (z12z13z24z34)2, and (z13z14z23z24)2. Their sum
gives a symmetric G{zi j }. For Fig. 17.7, there are six diagrams giving (z12z34)2z13z24,
(z12z34)2z14z23, (z13z24)2z12z34, (z13z24)2z14z23, (z14z23)2z12z34, and (z14z23)2z13z24.
Plus or minus signs must be chosen for each term so that the resulting correlation
function G{zi j } is symmetric.

In Chap.16, we presented numerical diagonalization results for a system of ten
electrons residing in the lowest Landau level (LL0). Frames (b) and (d) in Fig. 16.3
contain two QHs and two QEs, respectively. From the numerical results one can
easily extract VQE-QE’(L12) and VQH-QH’(L12), the interaction energies of a pair of QEs
(QHs) as a function of the QP pair angular momentum. These interaction energies
(or pseudopotentials) are obtained up to an overall constant which has no effect on
correlations. In frame (d) of Fig. 16.3 there are two QEs each with lQE = 9/2, and
in frame (b) there are two QHs each with lQH = 11/2. The lowest energy bands,
separated from a quasi-continuum of higher states by a gap, gives us VQE-QE’(L12)

for L = 0 ⊕ 2 ⊕ 4 ⊕ 6 ⊕ 8, and VQH-QH’(L12) for L = 0 ⊕ 2 ⊕ 4 ⊕ 6 ⊕ 8 ⊕ 10.
VQE-QE’(L12) has a maximum at L12 = 6 and minima at L12 = 8 and L12 = 4.
VQH-QH’(L12) has maxima at L12 = 10 and L12 = 6 and minima at L12 = 8 and
L12 = 4. This behavior is quite different from the electron pseudopotential in the
LL0 which increases monotonically with increasing L12.

For large systems (e.g. N > 14) numerical diagonalizationof the electron-electron
interactions becomes difficult, so we have investigated the low lying energy states
by determining the number of QEs or QHs (nQE or nQH), their angular momenta
lQE and lQH, and their interaction energies VQE-QE’(L12) and VQH-QH’(L12). Since
nQE (or nQH) is much smaller than N , and lQE (and lQH) much smaller than l, the
electron angular momentum, we can easily diagonalize these smaller systems. One
example is shown in Fig. 17.8 for the case (2l, N ) = (29, 12), which corresponds to
(2lQE, nQE) = (9, 4).15 The low lying states of the (2l, N ) = (29, 12) are obtained by
numerical diagonalization of twelve electrons interacting through standard Coulomb
interactions.16 The spectrum of four QEs {2l∗0 = 2l − 2(N − 1) = 29 − 22 = 7,
l∗0 = 7/2; nQE = N − (2l∗0 + 1) = 12 − 8 = 4; lQE = l∗0 + 1 = 9/2; and
(2lQE, nQE) = (9, 4)} eachwith lQE = 9/2 is obtained by diagonalizing VQE-QE’(L12)

in the function space (2lQE, nQE) = (9, 4). From Fig. 17.8 it is clear that the two
spectra, though not identical, are remarkably similar, suggesting that the description
of QP excitations interacting via VQP-QP’(L12) is reasonable.

The relation between the electron filling factor ν0 and the effectiveCFfilling factor
ν∗
0 is given by the equation ν−1

0 = (ν∗
0 )

−1 +2p0, where 2p0 is the number of Chern–

15J. J. Quinn, A. Wojs, and K. S. Yi, J. Korean Phys. Soc. 45, S491–S495 (2004).
16J. J. Quinn, A. Wojs, K. S. Yi, and G. Simion, Physics Reports 481, 29 (2009).

http://dx.doi.org/10.1007/978-3-319-73999-1_16
http://dx.doi.org/10.1007/978-3-319-73999-1_16
http://dx.doi.org/10.1007/978-3-319-73999-1_16
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Fig. 17.8 Energy spectra for N = 12 electrons in LL0 with 2l = 29, and for N = 4 QEs in
CF LL1 with 2l = 9. The energy scales are the same, but the QE spectrum was determined using
VQE−QE ′ (R) as the pair pseudopotential (up to an arbitrary constant)16

Simons flux quanta attached to each electron in the CF transformation. This gave rise
to the Jain sequence8 of IQL states when ν∗

0 was equal to an integer n. What happens
when ν∗

0 is not an integer? It was suggested
17 that then one could write ν∗

0 = n1 +ν1,
where n1 was an integer and ν1 represented the filling factor of the partially filled CF
QP shell. If Haldane’s assumption that the pair interaction energy VQP-QP’(L12), as
a function of the angular momentum L12 of the QP pair, was sufficiently similar to
V0(L12), the interaction energy of the electrons in the LL0, then one could reapply the
CF transformation to the CF QPs by writing (ν∗

1 )
−1 = ν−1

1 − 2p1. Here ν1 is the CF
QPfilling factor and 2p1 is the number of CSflux quanta added to the original CFQPs
to produce a second generation of CFs. For ν∗

1 = n2, an integer, this results in ν1 =
n2(2p1n2±1)−1, and a daughter IQL state at ν−1

0 = 2p1+[n1+n2(2p1n2+1)−1]−1.
This new odd denominator fraction does not belong to the Jain sequence. If ν∗

1 is not
an integer, then set ν∗

1 = 2pl + (nl+1 + νl+1)
−1. When νl+1 = 0, there is a filled CF

shell at the lth generation of the CF hierarchy. This procedure generates Haldane’s
continued fraction leading to IQL states at all odd denominator fractional electron
fillings. The Jain sequence is a special case in which ν∗

0 = n gives an integral filling
of the first CF QP shell, and the gap is the separation between the last filled and first
empty CF levels.

The CF hierarchy picture was tested by Sitko et al.17 for the simple case of
(2l, N ) = (18, 8) inLL0bycomparing its prediction to the result of ’exact’ numerical
diagonalization. For this case 2l∗0 = 2l − 2(N − 1) = 18 − 2(7) = 4. Therefore,
CF LL0 can accommodate 2l∗0 + 1 = 5 CFs. The three remaining CFs must go into
CF LL1 as CF QEs of angular momentum lQE = l∗0 + 1 = 3. This generates a band
of states with L = 0 ⊕ 2 ⊕ 3 ⊕ 4 ⊕ 6. This is exactly what is found for the lowest
energy band of states obtained by numerical diagonalization shown in Fig. 16.3.

17P. Sitko, K. S. Yi, and J. J. Quinn, Phys. Rev. B 56, 12417 (1997); P. Sitko, S. N. Yi, K. S. Yi, and
J. J. Quinn, Phys. Rev. Lett. 76, 3396 (1996).

http://dx.doi.org/10.1007/978-3-319-73999-1_16
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Reapplying the CF transformation to the first generation of CF QEs would generate
2l∗1 = 2l∗0 − 2(NQE − 1) = 4− 2(2) = 0, giving an L = 0 daughter IQL state if the
CF hierarchy were correct. Clearly, the lowest energy state obtained in the numerical
diagonalization does not have angular momentum L = 0 as predicted by the CF
hierarchy. The L = 0 and L = 3 multiplets clearly have higher energies than the
other threemultiplets. Sitko et al. conjectured that thismust have resulted because the
pseudopotential VQE-QE’(L12) was not sufficiently similar to that of electrons in LL0
to support Laughlin correlations. Laughlin correlations are essential for forming a
next generation of CFs.

The QEs and QHs have residual interactions that are more complicated than the
simple Coulomb interaction in LL0. We have already seen from Fig. 16.3b and d that
one can obtain VQP-QP’(L12) up to an overall constant from numerical diagonaliza-
tion of the N -electron systems in LL0. More careful estimates of VQE-QE’(R) and
VQH-QH’(R) (whereR = 2l−L12, and L12 is the pair angular momentum) are shown
in Figs. 16.4 and 16.5. We define a pseudopotential to be harmonic if it increases
with L12 as VH(L12) = A + BL12(L12 + 1), where A and B are constants. For
LL0, the electron pseudopotential V (L12) always increases with L12 more rapidly
than VH(L12). For QEs in CF LL1, the pseudopotential VQE-QE’(L12) has minima
L12 = 2l − 1 and at L12 = 2l − 5, and a maximum at L12 = 2l − 3. This oscillatory
behavior of the interaction energy of a QE pair must be responsible for the failure of
the CF hierarchy prediction of an L = 0 IQL state.

In Fig. 17.9 we display the energy spectrum of N = 8 electrons in a Landau
level of single particle angular momentum l0 satisfying the relation 2l0 = 18. If we

Fig. 17.9 Low energy spectrum of 8 electrons at 2l = 18. The lowest band contains 3 QEs each
with lQE = 3. Reapplying the CS mean-field approximation to these QEs would predict an L = 0
daughter state corresponding to ν = 4/11. The data makes clear that this is not valid15

http://dx.doi.org/10.1007/978-3-319-73999-1_16
http://dx.doi.org/10.1007/978-3-319-73999-1_16
http://dx.doi.org/10.1007/978-3-319-73999-1_16
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attach two flux quanta to each of eight electrons, Jain’s MF CF picture gives a CF
angular momentum l∗0 satisfying 2l∗0 = 2l0 − 2(N − 1). Since 2l0 = 18, we obtain
2l∗0 = 18 − 14 = 4. The lowest CF Landau level has l∗0 = 2 and can accommodate
only 2l∗0 +1 = 5 CFs. The remaining three CFsmust go into the first excited CF level
with angular momentum l∗1 = l∗0 + 1 = 3. Three fermions of angular momentum
l∗1 = 3 produce a band of CF quasielectrons each with l∗1 = 3, and a total QE
angular momentum L = 0⊕ 2⊕ 3⊕ 4⊕ 6. This is exactly what we see in Fig. 17.9.
However, if the CF hierarchy were valid, we could make a second CF transformation
on the three CF QEs in the shell of angular momentum lQE1 (2lQE1 = 6). This yields
2lQE2 = 2lQE1 − 2(NQE2 − 1) = 6 − 2(3 − 1) = 2. This angular momentum shell
can accommodate 2lQE2 + 1 = 3 second generation CF QEs, exactly the number
we have, so a daughter state with L = 0 should be the IQL ground state. Clearly,
the L = 0 state is not the ground state. The multiplets L = 2 ⊕ 3 ⊕ 4 are clearly
of lower energy than those with L ∈ 0 ⊕ 6. Sitko et al.16 suggested that the FQH
hierarchy did not predict the observed result (by giving an L = 0 IQL ground state)
because the QE-QE interaction was not sufficiently similar to the electron-electron
interaction for electrons residing in LL0.

It has been demonstrated that Laughlin correlations can occur only if the inter-
action energy of a pair of fermions in a partially filled Landau level increases with
increasing pair angular momentum L12 more quickly than L12(L12 + 1). This does
not happen for QEs in the lowest CF Landau level, so no second generation of CFs
is expected.

Exercise

Demonstrate the three fermions of angular momentum l∗1 = 3 produce a band of CF
QEs of total QE angular momentum L = 0 ⊕ 2 ⊕ 3 ⊕ 4 ⊕ 6. The band is seen in
Fig. 17.9.

17.5 Thoughts on Larger Systems

Up to now we have used the N = 4 particle system as a simple example, and it is
not difficult to generalize to the case in which N is an arbitrary even integer. First, let
us consider the Moore–Read (M-R) state.5 For the Moore–Read state, 2l = 2N − 3,
and we let N = 2n, where n is an integer. Then we have

(i) 2l = 4n − 3
(ii) kM = 2n − 2
(iii) Take a partition such as A = (1, 2, . . . , N/2), B = (N/2 + 1, . . . , N ).

Take Laughlin correlations within subsets and write gA = ∏
i< j∈A z

2
i j , gB =

∏
k<l∈B z

2
kl , and
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G =
∑

all partitions

gAgB . (17.6)

Note that Nl = n(4n−3), KF = n(2n−1), and KG = n(2n−2), giving L = 0.There
are Laughlin correlations among the n particles in A and among the n particles in B,
but no correlations between particles in different subsets. This is a simple, intuitive
way of fitting N particles into the function space (2l, N ) with maximum avoidance
of the most repulsive pair states (ones with pair angular momentum L12 < 2l − 3).
For the Jain state at ν = 2/5, we can apply the same technique. In that case, we have

(i) 2l = 5n − 4
(ii) kM = 3n − 3
(iii) Partition into two subsets (A, B), as with the Moore–Read case. Take gA and

gB exactly as in that case.
(iv) Add a factor due to intersubset correlations to increase KG so that an L = 0

state is produced despite the increase in the value of 2l. For a partition such
as A = (1, 2, . . . , n), B = (n + 1, . . . , 2n), define the intersubset correlation
function

gAB =
⎛

⎝
∏

i∈A

∏

j∈B
zi j

⎞

⎠
∑

σ∈Sn

n∏

i=1

z−1
σ(i),n+i . (17.7)

In (17.7), the first factor gives a product of n2 correlation factors zi j . The second
factor is a sum of products of n factors of z−1

i j . Define GAB = gAgBgAB for a given
partition (A, B). Then the full correlation function G in this case is the sum of the
GAB taken over all possible partitions.

TheM-R correlation function has been discussed before,7,15 but the wave function
given above for the Jain ν = 2/5 state is not well-known.14 The Moore–Read wave
function can be written as � = F{zi j }GMR{zi j }, where GMR is a product of a second
fermion factorF{zi j } and the Pfaffian. One can demonstrate that GMR gives the same
correlations as the quadratic correlation function GQ = Ŝ{z212z234}. For a system of
four electrons, both correlation functions produce wave functions which have very
large overlap with the one determined by ‘exact’ numerical diagonalization. For
N ≥ 4, the overlap falls to a slightly lower value. We believe that the reason for
this is that GMR, like GQ, limits the powers of the correlation factors in G{zi j } to
(zi j )2. For N ≥ 4, higher powers of cfs are needed, and the overlap with numerical
diagonalization decreases. As N is increased to values larger than six, the number
of correlation diagrams satisfying all of the necessary conditions to give a state with
a particular total angular momentum L increases very rapidly. Some of the terms
in gAB cannot be symmetrized, and therefore cannot contribute to the correlation
function. All of the additional diagrams must be investigated for symmetrization.
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17.6 Residual Interactions

The QEs and QHs have residual interactions that are more complicated than simple
Coulomb interactions.18 They are difficult to calculate analytically, but if we look at
an N electron system at a value of 2l = 3(N − 1)± 2, we know that the lowest band
of states in the spectrum will correspond to 2 QEs or 2 QHs of the Laughlin ν = 1/3
FQH state (for the minus and plus signs respectively).

The spectra for N = 10 electrons at 2l = 25 (2 QE case) and 2l = 29 (2 QH
case) are shown in Figs. 16.2 and 16.3. It is clear that the low energy bands are
not degenerate, but that the energy E depends on L , which (as we have seen) can
be understood as the total angular momentum of the QP pair. For QEs, E(L) has a
maximum at L = 2lQE−3 andminima at L = 2lQH−1 and 2lQH−5. For QHs, E(L)
has a maximum at L = 2lQH −1 and L = 2lQH −5 and a minimum at L = 2lQH −3.
This is quite different from the pseudopotentials for electrons, and it is undoubtedly
the reason why the CF picture fails when it is reapplied to QEs. In Fig. 17.10 we
display the pseudopotentials for electrons in LL0 and LL1 with that for QEs of the
Laughlin ν = 1/3 IQL state in CF LL1. The electron pseudopotentials are the same
ones presented in Fig. 16.4 but are presented here as a function of R = 2l − L ′,
the relative angular momentum of a pair. The QE pseudopotentials in frame (c)
were taken from the calculations of Lee et al.19 and from the diagonalization of

Fig. 17.10 Pair interaction pseudopotentials as a function of relative angular momentum R for
electrons in LL0 (a), LL1 (b) and for the QEs of the Laughlin ν = 1/3 state calculated by Lee
et al.19 (squares) and by Wojs et al.20 (triangles), displaced from each other for clarity15(c)

18The final sections of this chapter followed very closely the review Electron Correlations in
Strongly Interacting Systems by J. J. Quinn and G. E. Simion in New Trends in Statistical Physics,
edited by A. Macias and L. Dagdug (World Scientific Publishing Co., Singapore, 2010). The inter-
ested reader should read this work for a more complete discussion.
19S.-Y. Lee, V. W. Scarola, and J. K. Jain, Phys. Rev. Lett. 87, 256803 (2001);S.-Y. Lee, V. W.
Scarola, and J. Jain, Phys. Rev. B. 66, 085336 (2002).

http://dx.doi.org/10.1007/978-3-319-73999-1_16
http://dx.doi.org/10.1007/978-3-319-73999-1_16
http://dx.doi.org/10.1007/978-3-319-73999-1_16
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small electron systems done by Wojs et al.20 and are known up to a constant. The
magnitude of interaction of CF QEs is much smaller than the interaction between
electrons, and has a sharp maximum at R = 3 and minima at R = 1 and 5.

These pseudopotentials have been obtained for 2D electron layers of zero width. It
is well known that the finite extent of the subband wavefunction in the direction per-
pendicular to the layer introduces a correction to the electron pseudopotentials.21 The
QP pseudopotentials are also sensitive to the layer width since they are obtained from
the energy of the two QP band obtained by exact diagonalization of the appropriate
electron system including the specific form of the (lowest) subband wavefunction.

Laughlin correlated states belonging to the Laughlin–Jain sequence ν =
n(2pn ± 1)−1 occur for LL0 for p = 1 and 2, and for n = 1, 2, 3, . . .. For elec-
trons in LL1, robust FQH states occur ν = 5/2, 7/3, and 11/5 (corresponding to
ν1 = ν −2 = 1/2, 1/3, and 1/5), and their e−h conjugate at ν ′

1 = 1−ν1. However,
the Jain states at ν1 = 2/5, 3/7, . . ., and their e−h conjugates are either not observed
at all, or appear as very weak minima in ρxx . FQH daughter states arising from inter-
acting QPs in CFLL1 occur at νQE or νQH = 1/3 (corresponding to ν = 4/11 and
4/13) and νQE = 1/2 (ν = 3/8). These states are thought to be fully spin polarized,
but that is not absolutely certain. Numerical studies of the interactions between CF
QPs suggest that the spin polarized states are not Laughlin correlated.

Because electrons in LL0 and LL1, and QPs in CFLL1, are interacting fermions
in a degenerate Landau level, the differences in their properties can only be attributed
to the differences in the pseudopotentials describing their interactions. For QPs in
CFLL1, VQE-QE’(L2) and VQH-QH’(L2) are clearly not monotonic functions. They
have maxima and minima at values of R ≤ 7. It seems that Jain’s picture is valid
for LL0, but not for LL1 when 2/3 > ν1 > 1/3 or for CF QPs of Laughlin ν = 1/3
state.

In the following sections we explore the conditions for which the CF picture is
valid. We give examples of situations in which it is not valid, and we suggest new
kinds of correlations that might occur in such cases.

17.7 Validity of the CF Hierarchy Picture

From the experimental results of Pan et al.22 it is clear that there are IQL states which
do not belong to the Jain sequence of integrally filled CF levels (e.g. the totally spin
polarized ν = 4/11 state). This state should occur in the CF (or equivalent Haldane)
hierarchy if the interaction between CFQEs results in Laughlin correlations among
them. Numerical diagonalization (See, for example, the reference in footnote 17)

20A. Wojs, D. Wodzinski, and J. J. Quinn, Phys. Rev. B. 74, 035315 (2006).
21See, for example, A. Wojs and J. J. Quinn, Phys. Rev. B. 75, 085318 (2007); S. He, F. C. Zhang,
X. C. Xie, and S. Das Sarma, Phys. Rev. B. 42, 11376 (1990).
22W. Pan, H. L. Stormer, D. C. Tsui, L. N. Pfeier, K. W. Baldwin, and K. W. West, Phys. Rev. Lett.
90, 016801 (2003).
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of small systems did not find a Laughlin correlated L = 0 ground state of the
CFQEs at νQE = 1/3. Furthermore, Pan et al. observed strong minima in ρxx at even
denominator filling factors (ν = 3/8 and ν = 3/10), suggesting IQL states which do
not belong to the CF hierarchy. It has been proved rigorously23 that Jain’s elegant CF
picture is applicable under restricted condition. Because there is no small parameter
to guarantee the convergence of many body perturbation theory, the proof does not
involve treating the interactions between fluctuations by a perturbative expansion.
It involves proving several rigorous mathematical theorems24 and applying them,
together with well-known concepts used frequently in atomic and nuclear physics.25

For a system of N fermions of the total angular momentum operator L̂ , there is a
very simple identity

L̂2 + N (N − 2)l̂2 −
∑

〈i, j〉
L̂2
i j = 0, (17.8)

where the sum is over all pairs. We have already seen that a spin polarized shell con-
taining N fermions each with angular momentum l can be described by eigenfunc-
tions of the total angular momentum L̂ = ∑

i l̂i and its z-component M = ∑
i mi .

We define fL(N , l) as the number of multiplets of total angular momentum L that
can be formed from N fermions each with angular momentum l. Let us label these
multiplets as |l N ; Lα〉 where it is understood that each multiplet contains 2L + 1
states having −L ≤ M ≤ L , and α is the label that distinguishes different multiplets
with the same value of L . We define L̂ i j = l̂i + l̂ j , the angular momentum of the pair
i, j each with angular momentum l. Below we outline useful theorems, referring to
earlier publications for proofs:

Theorem 1 Since |l N ; Lα〉 is theαth multiplet of total angularmomentum L formed
from N fermions in a shell of angular momentum l, taking the expectation value of
this identity (17.8) in the state |l N ; Lα〉 gives

〈

l N ; Lα

∣
∣
∣
∣
∣
∣

∑

〈i, j〉
L̂2
i j

∣
∣
∣
∣
∣
∣
l N ; Lα

〉

= L(L + 1) + N (N − 2)l(l + 1) . (17.9)

Here L̂2
i j is the square of the angular momentum operator l̂i + l̂ j for electrons i and

j , and the sum is over all pairs 〈i, j〉.
It is interesting to note that the expectation value of square of the pair angularmomen-
tum summed over all pairs is totally independent of the multiple index α. It depends
only on the total angular momentum L .

23A. Wojs and J. J. Quinn, Solid State Commun. 108, 493 (1998).
24We make use of an operator identities, which states that for N fermions in a shell of angular
momentum l, L̂2 + N (N − 2)l̂2 = ∑

〈i, j〉(l̂i + l̂ j )2. Here L̂2 and l̂2 are the squares of the angular
momentum operators, and the sum is over all pairs 〈i, j〉.
25A. de Shalit and I. Talmi, Nuclear Shell Theory (Academic Press, New York, 1963).
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Theorem 2 It is well known in atomic and nuclear shell model studies that |l N ; Lα〉
can be written as a sum of product functions.23,25

∣
∣l N ; Lα

〉 =
∑

L ′α′

∑

L12

GLα,L ′α′(L12)
∣
∣l2, L12; l N−2, L ′α′; L〉

. (17.10)

Here GL ′α′,Lα(L12) is called a coefficient of fractional parentage and |l N−2, L ′α′〉
is the α′ multiplet of total angular momentum L ′ of N − 2 fermions each with
angular momentum l. The ket vector |l2L12; l N−2, L ′α′; L〉 is a product of |l2, L12〉
and |l N−2; L ′α′〉 selected to give a state of total angular momentum L.

This states that the GLα,L ′α′(L12) produces a totally antisymmetric eigenfunction
|l N ; Lα〉, even though |l2, L12; l N−2, L ′α′; L〉 is not antisymmetric under exchange
of particle 1 or 2 with any of the other particles.

Theorem 3 Because |l N ; Lα〉 is totally antisymmetric
〈

l N ; Lα

∣
∣
∣
∣
∣
∣

∑

〈i, j〉
L̂2
i j

∣
∣
∣
∣
∣
∣
l N ; Lα

〉

= 1

2
N (N − 1)

∑

L12

L12(L12 + 1)PLα(L12) . (17.11)

This is simply a statement that the sum over all pairs can be replaced by a sum over
all allowed values of the pair angular momentum L2 of one pair, multiplied by the
total number of pairs N (N − 1)/2. PLα(L12) is defined by

PLα(L12) =
∑

L ′α′

∣
∣GLα;L ′α′(L12)

∣
∣2 , (17.12)

where the summation is over all intermediate state. Because the eigenfunctions
|l N ; Lα〉 are orthonormal, one can show that

∑

L12

∑

L ′α′
GLα,L ′α′(L12)GLβ,L ′α′(L12) = δαβ . (17.13)

From the (17.10)–(17.13) one can have a useful sum rule involving PLα(L12) (see
Problem17.3). ∑

L12

PLα(L12) = 1 (17.14)

The energy of the multiplet |l N ; Lα〉 is given by

Eα(L) = 1

2
N (N − 1)

∑

L12

PLα(L12)V (L12), (17.15)
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where V (L12) is the pseudopotential describing the interaction energy of a pair of
fermions with pair angular momentum L12.

Exercise

Demonstrate the identity on the coefficients of fractional parentage given by (17.13)
and the energy of the multiplet |l N ; Lα〉 as given by (17.15).

Theorem 4 If the pseudopotential is harmonic, by which we mean V (L12) =
VH (L12) = A + BL12(L12 + 1), where A and B are constants, then every mul-
tiplet α with the same total angular momentum L has the same energy given by

Eα(L) = 1

2
N (N − 1)A + B [N (N − 2)l(l + 1) + L(L + 1)] . (17.16)

This means that the degeneracy of the angular momentum multiplets of non-
interacting fermions is not removed by a harmonic pseudopotential for differ-
ent multiplets having the same L . Any linear combination of the eigenstates of
the total angular momentum having the same eigenvalue L is an eigenstate of
the harmonic pseudopotential. Only the anharmonic part of the pseudopotential
ΔV (L12) = V (L12) − VH(R) causes correlations.

Theorem 5 If GNl(L) is the number of independent multiplets of total angular
momentum L that can be formed from N fermions in a shell of angular momentum
l, then GNl∗(L) ≤ GNl(L) for every L, if l∗ = l − (N − 1).26

Theorem 6 The subset GNl∗(L) of angular momentum multiplets of the set GNl(L)

avoids the largest allowed pair angular momentum L12 = 2l − 1, which for LL0,
corresponds to the largest pair repulsion.

This is obvious for N = 2, where LMAX
12 = 2l − 1 and L∗MAX

12 = 2l∗ − 1 = 2l − 3,
but it is true for arbitrary N . This theorem means that the set of states selected by
Jain’s mean field CF picture (where l∗ plays the role of the effective CF angular
momentum) is subset of GNl(L). This subset avoids pair states with L12 = 2l − 1
and contains multiplets with low angular momentum and low energy.

Theorem 7 Byadding an integral number,α, ofChern–Simons flux quanta (oriented
opposite to the applied magnetic field) to the Hamiltonian for N electrons, not via a
gauge transformation but adiabatically, the pair eigenstate (in the planar geometry)
�nm = eimφunm(r), where unm(r) is the radial wave function, transforms to ˜�nm =
eimφun,m+α(r).27

26A. T. Benjamin, J. J. Quinn, J. J. Quinn, and A. Wojs J. of Combinatorial Theory A 95(2) 390
(2001).
27John J. Quinn and Jennifer J. Quinn, Phys. Rev. B 68, 153310 (2003).
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These theorems justify Jain’s CF picture when applied to LL0. Is this important?
In our opinion, Jain’s mean field CF picture has been a brilliant success. It is used
very often to interpret experimental data. However, because Coulomb and CS gauge
interactions beyond themeanfield involve twoentirely different energy scales (�ω∗

c =
νB and e2/λ ∝ √

B), these two interactions between fluctuations beyond the mean
field cannot possibly cancel for all values of B.

Because correlations (i.e. the lifting of the degeneracy of the angular momentum
multiplets

∣
∣l N ; Lα〉 of non-interacting electrons in partially filled LL0) depend on the

deviation of the actual pseudopotential from harmonic behavior (i.e. on ΔV (L12) =
V (L12) − VH (L12)), it is interesting to explore the simplest possible anharmonicity.
If we assume that ΔV (L12) = kδ(L12, 2l − 1) with k > 0, then it is obvious that the
lowest energy multiplet |Lα〉 for every value of L is the one that has the smallest
value of PLα(L12 = 2l − 1). This is exactly what is meant by Laughlin correlations
and is the reason why the Laughlin wavefunction is the exact solution to the short
range pseudopotential V (L12) = δ(L12, 2l − 1). It should be noted that if k < 0,
the opposite is true. For this case, the lowest multiplet for each value of L has a
maximum value of PLα(L12 = 2l − 1), and the particles have a tendency to form
pairs with L12 = 2l − 1. Laughlin correlations at a given value of L12 occur only if
the pseudopotential is superharmonic at that value of L12.

17.8 Spin Polarized Quasiparticles in a Partially Filled
Composite Fermion Shell

17.8.1 Heuristic Picture

We have demonstrated that the simplest repulsive anharmonic pseudopotential
V (R2) = VH (R2) + kδ(R2, 1) caused the lowest energy state for each value of
the total angular momentum L to be Laughlin correlated. For a spin polarized LL0
with 1/3 < ν < 2/3 such a potential (superharmonic at R = 1) gives rise to
the Laughlin–Jain sequence of integrally filled CF levels with ν± = n(2n ± 1)−1,
where n is an integer. Haldane suggested that if the highest occupied CF level is
only partially filled, a gap could result from the residual interactions between the
QPs in the same way that the original gap resulted from the electron interactions.9

However, this would require VQP-QP’(R) to be “superharmonic” atR = 1 to give rise
to Laughlin correlations. We have already shown that in a Laughlin ν = 1/3 or 1/5
state VQE-QE’(R) was not superharmonic at R = 1 and R = 5, and that VQH-QH’

was not atR = 3. This means that many of the novel IQL states observed by Pan et
al.22 have to result from correlations among the QPs that are quite different from the
Laughlin correlations.

Just as electrons in LL1 tend to form clusters,28 we expect QPs in CF LL1 to tend
to form pairs or larger clusters. The major differences between electrons in LL1 and

28G. E. Simion and J. J. Quinn, Physica E 41, 1 (2008).
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Fig. 17.11 VQE-QE’(R) and VQH-QH’(R) for (a) QEs of ν = 1/3 state (b) QHs of ν = 1/3 state,
and (c) QHs of ν = 2/5 state15

QPs in CF LL1 are: (i) the pseudopotential V1(L ′) for electrons in LL1 (shown in
Fig. 17.10) is an increasing function L ′, but it is not superharmonic atR = 1, while
VQE-QE’(L ′) is strongly subharmonic, having a maximum at R = 2l − L ′ = 3 and
minima atR = 1 and 5 and (ii) the e-h symmetry of LL1 is not applicable to QEs and
QHs in CF LL1.29 The QEs are quasiparticles of the Laughlin ν = 1/3 IQL state,
while QHs in CF LL1 are actually quasiholes of the Jain ν = 2/5 state. The QE and
QH pseudopotentials in frames (a) and (c) are similar, but not identical, as shown in
Fig. 17.11.15 The QHs of the ν = 1/3 state reside in CF LL0 and have a different
pseudopotential [frame (b)]. The experimental results of Pan et al. suggest that the
novel ν = 4/11 IQL ground state is fully spin polarized. Because VQE-QE’(L ′) is
not superharmonic at R′ ≡ 2l − L ′ = 1, the CF picture could not be reapplied to
interacting QEs in the partially filled CF shell.30 This leads to the suggestion31 that
the QEs forming the daughter state had to be spin reversed and reside in CF LL0 as
quasielectrons with reverse spin (QERs). Szlufarska et al.32 evaluated VQER(L ′), the
pseudopotential of QERs. They showed that VQER(L ′)was superharmonic atR = 1,
so that unlike majority spin QEs, they could support Laughlin correlations atR = 1.

This leaves at least two possible explanations of the ν = 4/11 IQL state. It could
be a Laughlin correlated daughter state of spin reversed QEs (i.e. QERs), or it could
be a spin polarized state in which the QEs form pairs or large clusters. Here we
investigate only the completely polarized case. The simplest idea is exactly that used
for electrons in LL1, namely the formation of pairs with lP = 2l − 1, where l is
the angular momentum of the shell occupied by the QEs.28 If one assumes that the
QEs form pairs and treat them as fermions,30 the effective angular momentum of
Laughlin correlated fermion pairs (FPs) is given by 2l∗ = 2lFP −2p(NP −1), where

29A. Wojs, Phys. Rev. B 63, 235322 (2001).
30A. Wojs and J. J. Quinn, Phys. Rev. B 61, 2846 (2000).
31K. Park and J. K. Jain, Phys. Rev. B 62, R13274 (2000).
32I. Szlufarska, A. Wojs, and J. J. Quinn, Phys. Rev. B 64, 165318 (2001).
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Table 17.2 Values of νFP = m−1, the resulting values of νQE, νQH, and the electron filing factors
they generate (only for the observed FQH states)

QEs in CFLL1 QHs in CFLL0

ν−1
FP 5 9 ν−1

FP 9 13

νQE 1/2 1/3 νQH 1/4 1/5

ν 3/8 4/11 ν 3/10 4/13

2lFP = 2(2l − 1) − 3(NP − 1). The term −3(NP − 1) keeps the CF pair separation
large enough to avoid violation of the Pauli principle. The FP filling factor satisfies
ν−1
FP = 4ν−1 − 3. The factor of four results from the uncorrelated pairs NP having
charge −2e, and the number of pairs NP being equal to N/2. Correlations between
FPs are introduced in the standard way by attaching 2p CS flux quanta to each FP to
obtain the effective angularmomentum2l∗FP for correlatedFPs. ForνFP = m−1,where
m is an odd integer, we can obtain the value of νQE corresponding to the Laughlin
correlated state of FPs (pairs of quasielectrons with lP = 2l − 1). Exactly the same
procedure can be applied to QHs in CF LL1 since VQE-QE’(R) and VQH-QH’(R) are
dominated by their short range behavior R ≤ 5. The QH pseudopotential is not as
well determined for R > 5 because it requires larger N electron systems that we
can treat numerically. The electron filling factor is given by ν−1 = 2 + (1+ νQE)

−1

or by ν−1 = 2 + (2 − νQH)−1. For QHs in CF LL0 lP = 2l − 3, and the term that
prevents violation of the Pauli principle is −7(NP − 1).

The value of ν−1
FP , νQE for CFLL1 and νQH for CFLL0, together with the resulting

values of the electron filling factor ν for novel IQL states observed experimentally by
Pan et al., are given in Table17.2. QHs in CFLL1 with νQH = 2/3 and 1/2 produce
the same ν = 4/11 and ν = 3/8 states as the QEs if we assume QE-QH symmetry.
IQL states at ν−1

FP = 7 in CFLL1, and ν−1
FP = 11 in CFLL0 could possible occur, but

they have not been observed.

17.8.2 Numerical Studies of Spin Polarized QP States

Standard numerical calculations for Ne electrons are not useful for studying such new
states as ν = 4/11 because convincing results require large values of Ne. Therefore
we take advantage of the knowledge of the dominant features of the pseudopotential
VQE-QE’(R) of the QE-QE interaction17,19,30 and diagonalize the (much smaller)
interaction Hamiltonian of NQE-QE’ systems. This procedure was shown to reproduce
accurately the low energy Ne-electron spectra at filling factors ν between 1/3 and
2/5.17

One might question whether using the pair pseudopotential for QPs obtained by
diagonalization of a finite system of N electrons (containing two QEs or two QHs)
gives a reasonably accurate description of systems containing more than a few QPs.
One can account for finite size effects20,29,30,32 by plotting the values of VQP-QP’(R)

for each value of R as a function of N−1, where N is the number of electrons in
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Fig. 17.12 Energy spectra for N = 12 electrons in the lowest LL with 2l = 29 and for N = 4 QEs
in the CF LL1 with 2l = 9. The energy scales are the same, but the QE spectrum obtained using
VQE(R) is determined only up to an arbitrary constant16

the system that produced the two CF QPs.33 We then extrapolate VQP-QP’(R) to the
macroscopic limit. In addition, the low energy spectra of an N electron system that
contains NQP quasiparticles is obtained using VQP-QP’(R) as the interaction energy
of a QP pair. The results for the system with (N , 2l) = (12, 19) and the one obtained
after applying a CF transformation, (NQE, 2lQE) = (4.9), are shown in Fig. 17.12.
In Fig. 17.13 probability functions of pair states P(R) are displayed for the L = 0
ground states of the 12 electron system and the 4 quasielectron system illustrated in
Fig. 17.12. The electrons are clearly Laughlin correlated avoidingR = 1 pair states,

1 3 5 7 9
0.0

0.5

1 9 17 25
0.0

0.2
(a) electrons, N=12, 2l=29 (b) QE's, N=4, 2l=9

Fig. 17.13 Pair probability functions P(R) for the L = 0 ground states of the 12 electron system
(a) and the 4 quasielectron system (b) shown in Fig. 17.1216

33X. C. Xie, S. Das Sarma, and S. He, Phys. Rev. B. 47, 15942 (1993).
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but the quasielectrons are not Laughlin correlated because they avoid R = 3 and
R = 7 pair states but not R = 1 state.

We realize that using the values of VQE-QE’(L ′) obtained by extrapolation to the
macroscopic limit (Ne → ∞) for systems containing NQE ≤ 16 QEs is an inconsis-
tency.Webelieve it introduces only small errors since NQE systems result fromamuch
larger N electron system. However, this assumption should be checked carefully. The
fact that the (NQE, 2lQE) system has an L = 0 ground state at 2lQE = 3NQE − 3
led a number of researchers34 to suggest that it represented a second generation of
CFs giving rise to a daughter state and resulting ν = 4/11 spin polarized IQL state
observed by Pan et al.22 This idea cannot be correct because VQE-QE’(L ′) is not super-
harmonic atR = 1 and cannot cause a Laughlin correlated CF daughter state of spin
polarized QEs.

The fact that the magnitude of VQE-QE’(R) is only about one fifth as large as
the energy necessary to create an additional QE-QH pair in a Laughlin correlated
state permits diagonalization in the subspace of the partially filled QE Landau level
with reasonably accurate results (see, for example, Figs. 16.2 and 16.3). For cases in
which the width of the band of two QP states is closer to the energy needed to create
a QE-QH pair, higher bands (or higher QP LL) cannot be neglected.

The value of 2l at which the IQL state at filling factor ν occurs in the spherical
geometry is given by 2l = ν−1N + γ(ν), where N is the number of particles and
γ(ν) is a finite size effect shift.9 For Laughlin correlated electrons in LL0 at filling
factor ν equal to the inverse of an odd integer, γ(ν) = −ν−1, so that the ν = 1/3
IQL states occur at 2l = 3N − 3. For quasielectrons of the Laughlin ν = 1/3
state, an IQL state occurs at (N , 2l) = (4, 9). Since QEs will not support Laughlin
correlations at ν = 1/3, it is understood to be an “aliased” state35 at 2l = 2N + 1
(conjugate to 2l = 2N −3) that supports pairing correlations. By “aliased” states we
mean two states with the same values of N and 2l that belong to different sequences
2l = ν−1N + γ(ν). Different values of γ(ν) for IQL states of electrons in LL0
and QEs in CFLL1 suggest that the QE correlations are different from the Laughlin
correlations for electrons in LL0. It also gives emphasis to how important it is to
select a value of N and then diagonalize the N particle system for many different
values of 2l. One cannot assume that γ(ν) is known. For example, when ν = 1/3, we
assume 2l = 3N − j , where j is an integer, and we diagonalize for many different
values of j . L = 0 IQL ground states with a substantial gap separating them from
the lowest excited states are found to fall into families with the values of j (or of
γ(ν)) depending on the kind of correlations. Elaborate calculations for N -particle
systems only at 2lQE = 3NQE − 3 totally miss most of the IQL states.

34See, for example, J. H. Smet, Nature 422, 391 (2003); M. Goerbig, P. Lederer, and C. M. Smith,
Physica E. 34, 57 (2006); M. O. Goerbig, P. Lederer, and C. M. Smith, Phys. Rev. B. 69, 155324,
(2004); A. Lopez and E. Fradkin, Phys. Rev. B. 69, 155322 (2004); C.-C. Chang and J. K. Jain,
Phys. Rev. Lett. 92, 196806 (2004).
35R. H. Morf, Phys. Rev. Lett. 80, 1505 (1998); R. H. Morf, N. d’Ambrumenil, and S. Das Sarma,
Phys. Rev. B. 66, 075408 (2002).

http://dx.doi.org/10.1007/978-3-319-73999-1_16
http://dx.doi.org/10.1007/978-3-319-73999-1_16
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Fig. 17.14 (a) Energy spectra as a function of total angular momentum L of 10 QEs at 2l =
2N − 3 = 17 corresponding to νQE = 1/2 and ν = 3/8. It is obtained by exact diagonalization
in terms of individual QEs interacting through the pseudopotential of Fig. 17.10c (triangles). (b)
Coefficient of P(R), the probability associated with pair states of relative angular momentum R,
for the lowest L = 0 state. The solid dots are for 10 QEs of the νQE = 1/2 state in a shell of angular
momentum l = 17/2. The open circles are for 10 electrons in LL0 at l0 = 17/236

Figure17.14a shows the energy spectrum of a system of ten QEs in a shell of
angular momentum l = 17/2.36 It is obtained by numerical diagonalization of the
QP interaction presented in Fig. 17.10c.37 The spectrum contains an L = 0 ground
state separated from the lowest excited state by a substantial gap. Frame (b) shows
the probability P(R) that the ground state contains pairs with total pair angular
momentum L ′ = 2l−R = 1, 3, 5, . . .. The solid dots represent the results for the 10
QE system; open circles show P(R) for 10 Laughlin correlated electrons in LL0 for
contrast. The maxima in P(R) at R = 1 and 5 and the minimum at R = 3 for the
QE system are in sharp contrast to the Laughlin correlated P(R) of the 10 electron
system in LL0. The QE maximum at R = 1 and minimum at R = 3 suggests the
formation of QE pairs with lP = 2l − 1 and the avoidance of pairs with R = 3, the
pair state with the largest repulsion. This IQL ground state occurs at 2l = 2N − 3
and corresponds to νQE = 1/2 and ν = 3/8. The νQP = 1/2 state should occur at the
conjugate values of 2l given by 2l = 2N − 3 and 2N + 1. Therefore, Fig. 17.14 can
be thought of as NQP = 10 or NQP = 8, the former corresponding to 2l = 2N − 3
and the latter to 2l = 2N + 1. We have already mentioned that QEs in the CFLL1
are Laughlin QEs of the ν = 1/3 IQL, while QHs in the CFLL1 are QHs of the Jain
ν = 2/5 state. It seems reasonable to diagonalize VQP-QP’(R) for QHs when CFLL1
is more than half-filled and for QEs when it is less than half-filled. If only VQP-QP’(R)

36J. J. Quinn, A. Wojs, and K.-S. Yi, Physics Letters A 318, 152 (2003).
37J. J. Quinn, A. Wojs, K.-S. Yi, and J. J. Quinn in The electron liquid paradigm in condensed
matter physics, pp. 469-497, (IOS Press, Amsterdam, 2004).
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for R < 5 is important, VQE-QE’(R) and VQH-QH’(R) are qualitatively similar (but
not identical). We should then expect the same correlations independent of which
VQP-QP’(R) is used in the numerical diagonalization. This suggests that the result in
Fig. 17.14 be interpreted as of the case containing NQH = 8 and 2l = 2NQH+1 = 17
instead of as NQE = 10 and 2l = 2N − 3 = 17.

Energy spectra are evaluated for many values of (2l, N ), and the FQH states
with the largest gaps are found to fall into families. The νQP = 1/2 state occurs
at 2l = 2N − 3 (and its conjugate 2N + 1). The νQE = 1/3 state is found at
2l = 3N − 7. In the numerical studies the νQP = 1/2 state occurs only when the
number of QPs is even, suggesting that QP pairs are formed. However, IQL states
are formed only when the number of minority QPs in CFLL1 is 8 or 12, but not
when it is 10 or 14. This could indicate that the CF pairs form quartets (i.e. pairs of
CF pairs) in the IQL state. This is completely speculative since we have very little
knowledge of the pseudopotential describing the interaction between CF pairs. The
“shift” describing the 2l = 3N − 7 sequence identified here (γ = 7) is different not
only from γ = 3 describing a Laughlin state, but also from γ = 5 that results for
a Laughlin correlated state of fermion pairs (FPs). This precludes the interpretation
of these finite-size νQE = 1/3 ground states found numerically (and also of the
experimentally observed ν = 4/11 FQH state) as a state of Laughlin correlated
pairs of QEs (i.e., particles in the partially filled CF LL1). However, it is far more
surprising that a paired state of QEs turns out as an invalid description for these
states, as well. Clearly, the correlations between the pairs of QEs at νQE = 1/3 must
be of a different, non-Laughlin type, and we do not have a simple model to describe
this state.

While the correlations between QEs at νQE = 1/3 are not completely understood,
it may be noteworthy that the value of γ = 7 appropriate for the series of incompress-
ible states found here can be obtained for the Laughlin state of QE triplets (QE3s),
each with the maximum allowed angular momentum, lT = 3l − 3, or of quartets
(made up of pairs of pairs) with maximum allowed angular momentum of the quartet
lQ = 4l − 10. The quartet state can be thought of as consisting of four filled states
(l, l − 1, l − 4, l − 5) separated by two empty states (l − 2, l − 3). Both of these
heuristic pictures give 2l = 3N − 7 for the ν = 1/3 state.

17.9 Useful Observations and Summary

1. It is established that a harmonic pseudopotential VH(L12) = A+ BL12(L12 +1),
where L12 is the angular momentum of a fermion pair, does not cause correlations
(i.e. it does not lift the degeneracy of different multiplets with the same value of
the total angular momentum L).

2. The pseudopotential Vn(L12) for electrons in a partially filled nth Landau level
(LLn) is evaluated and the interaction energies of quasielectrons and of quasiholes
are determined.

3. The use of partitions and permutation symmetry is introduced to construct corre-
lation diagrams and correlation functions causing themost important correlations.
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4. Comparison of the energy spectra of an (N , 2l) electron system with the corre-
sponding (NQE, 2lQE) quasielectron system shows that the latter system, which
is much smaller, gives a very reasonable approximation to the low energy states
of the former.

5. Because of the form V1(L12) for the LL0 there can be no Laughlin correlated
states for 2/5 > ν > 1/3, and that states like ν = 4/11 must involve pairing of
the electrons and a much weaker interaction between these pairs.

6. The trial wavefunction for the ν = 2/5 state of four electrons is known to be
exact, and the trial wavefunction for six electrons is very close to thewavefunction
obtained by ‘exact’ numerical diagonalization, and we discussed why this is true.

7. Conditions on the correlation function G{zi j } are imposed in terms of n j , the
number of pairs in the correlation diagram containing j correlation factors, which
greatly limit the allowed choices of KG , the total number of correlation factors in
G{zi j }.

8. ‘Exact’ numerical diagonalization is considered to have the states of numeri-
cal experiments. In the numerical diagonalizations illustrated above, the intuitive
model wave function is in reasonable qualitative agreement with numerical exper-
iment. This demonstrates that the novel intuitive approach to fermion correlations
does give new insight into understanding many fermion interactions.

9. Rigorousmathematical proofs have not been presented for every conjecture based
on physical intuition. Such proofs do exist.38

Problems

17.1 Consider a system of N fermions and prove an identity given by

L̂2 + N (N − 2)l̂2 −
∑

〈i, j〉
L̂2
i j = 0.

Here L̂ is the total angular momentum operator, L̂ i j = l̂i + l̂ j , and the sum is over
all pairs. Hint: One can write out the definitions of L̂2 and

∑
〈i, j〉 L̂

2
i j and eliminate

l̂i · l̂ j from the pair of equations.

17.2 Demonstrate that the expectation value of square of the pair angularmomentum
Li j summed over all pairs is totally independent of the multiplicity α and depends
only on the total angular momentum L .

38See the Springer’s series of monographsMathematical Physics and Applications. These rigorous
proofs would be of more interest to mathematicians than to the physicists for whom this book
in intended. An extended review by Mulay, Shattuck, and Quinn on ‘An intuitive approach to
correlations in many-Fermion systems’ is expected to appear in 2018 in Springer’s Monograph
Series.
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17.3 Derive the two sum rules involving PLα(L12), i.e., the probability that the
multiplet |l N ; Nα〉 contains pairs having pair angular momentum L12:

1

2
N (N − 1)

∑

L12

L12(L12 + 1)PLα(L12) = L(L + 1) + N (N − 2)l(l + 1)

and ∑

L12

PLα(L12) = 1.

17.4 Show that the energy of themultiplet |l N ; Lα〉 is given, for harmonic pseudopo-
tential VH(L12), by

Eα(L) = N

[
1

2
(N − 1)A + B(N − 2)l(l + 1)

]

+ BL(L + 1).

Summary
Here we study correlations resulting from Coulomb interactions in fractional quan-
tum Hall systems, and correlation diagrams are introduced to guide in the selection
of the correlation functions caused by interactions.

It is established that a harmonic pseudopotential does not cause correlations (i.e.
it does not lift the degeneracy of different multiplets with the same value of the total
angular momentum L). The pseudopotential Vn(L12) for electrons in a partially filled
nth Landau level (LLn) is evaluated and the interaction energies of quasielectrons
and of quasiholes are determined. The use of partitions and permutation symmetry
is introduced to construct correlation diagrams and correlation functions causing the
most important correlations. Comparison of the energy spectra of an (N , 2l) electron
systemwith the corresponding (NQE, 2lQE) quasielectron system shows that the latter
system gives a very reasonable approximation to the low energy states of the former.
Because of the form V1(L12) for the LL0 there can be no Laughlin correlated states
for 2/5 > ν > 1/3, and that states like ν = 4/11 must involve pairing of the
electrons and a much weaker interaction between these pairs.

Conditions on the correlation function G{zi j } are imposed in terms of the number
of pairs n j in the correlation diagram containing j correlation factors, which greatly
limit the allowed choices of the total number KG of correlation factors in G{zi j }. In
the numerical diagonalizations, the intuitive model wave function is in reasonable
qualitative agreement with numerical experiment. This demonstrates that the novel
intuitive approach to fermion correlations does give new insight into understanding
many fermion interactions in fractional quantum Hall effect – the paradigm for
strongly interacting systems.



Appendix A
Operator Method for the Harmonic
Oscillator Problem

Hamiltonian

The Hamiltonian of a particle of mass m moving in a one-dimensional harmonic
potential is

H = p2

2m
+ 1

2
mω2x2. (A.1)

The quantum mechanical operators p and x satisfy the commutation relation
[p, x]− = −i� where i = √−1. The Hamiltonian can be written

H = 1

2m
(mωx − i p) (mω + i p) + 1

2
�ω. (A.2)

To see the equivalence of (A.1) and (A.2) one need only multiply out the product
in (A.2) remembering that p and x are operators which do not commute. Equation
(A.2) can be rewritten by

H = �ω

{
(mωx − i p)√

2m�ω

(mωx + i p)√
2m�ω

+ 1

2

}
. (A.3)

We now define the operator a and its adjoint a† by the relations

a = mωx + i p√
2m�ω

(A.4)

a† = mωx − i p√
2m�ω

. (A.5)

These two equations can be solved for the operators x and p to give

x = (
�

2mω

)1/2 (
a† + a

)
, (A.6)

p = i
(

m�ω
2

)1/2 (
a† − a

)
. (A.7)
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It follows from the commutation relation satisfied by x and p that

[
a, a†

]
− = 1, (A.8)

[a, a]− = [
a†, a†]

− = 0. (A.9)

By using the relation

[A, BC]− = B [A, C]− + [A, B]− C, (A.10)

it is not difficult to prove that

[
a, a†2

]
−

= 2a†,[
a, a†3

]
−

= 3a†2
, (A.11)

...[
a, a†n

]
−

= na†n−1
.

Here a† and a are called as raising and lowering operators, respectively.
From (A.3)–(A.5) it can be seen that

H = �ω

(
a†a + 1

2

)
. (A.12)

Now assume that |n〉 is an eigenvector of H with an eigenvalue εn . Operate on |n〉
with a†, and consider the energy of the resulting state. We can certainly write

H
(
a†|n〉) = a† H |n〉 + [

H, a†
] |n〉. (A.13)

But we have assumed that H |n〉 = εn|n〉, and we can evaluate the commutator
[H, a†].

[
H, a†] = �ω

[
a†a, a†] = �ωa† [a, a†]

= �ωa†. (A.14)

Therefore (A.13) gives
Ha†|n〉 = (εn + �ω) a†|n〉. (A.15)

Equation (A.15) tells us that if |n〉 is an eigenvector of H with eigenvalue εn , then
a†|n〉 is also an eigenvector of H with eigenvalue εn+�ω. Exactly the same technique
can be used to show that

Ha|n〉 = (εn − �ω) a|n〉. (A.16)
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Thus, a† and a act like raising and lowering operators, raising the energy by �ω or
lowering it by �ω.

Ground State

Since V (x) ≥ 0 everywhere, the energy must be greater than or equal to zero.
Suppose the ground state of the system is denoted by |0〉. Then, by applying the
operator a to |0〉 we generate a state whose energy is lower by �ω, i.e.,

Ha|0〉 = (ε0 − �ω) a|0〉. (A.17)

The only possible way for (A.17) to be consistent with the assumption that |0〉 was
the ground state is to have a|0〉 give zero. Thus we have

a|0〉 = 0. (A.18)

If we use the position representation where Ψ0(x) is the ground state wavefunction
and p can be represented by p = −i�∂/∂x , (A.18) becomes a simple first order
differential equation (

∂

∂x
+ mω

�
x

)
Ψ0(x) = 0. (A.19)

One can see immediately see that the solution of (A.19) is

Ψ0(x) = N0e− 1
2 α2x2

, (A.20)

where N0 is a normalization constant, and α2 = mω
�

. The normalization constant is
given by N0 = α1/2π−1/4. The energy is given by ε0 = �ω

2 , since a†a|0〉 = 0.

Excited States

We can generate all the excited states by using the operator a† to raise the system to
the next higher energy level, i.e., if we label the nth excited state by |n〉,

|1〉 ∝ a†|0〉, ε1 = �ω

(
1 + 1

2

)
,

|2〉 ∝ a†2|0〉, ε2 = �ω

(
2 + 1

2

)
, (A.21)

...

|n〉 ∝ a†n|0〉, εn = �ω

(
n + 1

2

)
.

Because a† creates one quantum of excitation and a annihilates one, a† and a are
often called creation and annihilation operators, respectively.
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If we wish to normalize the eigenfunctions |n〉 we can write

|n〉 = Cna†n|0〉. (A.22)

Assume that |0〉 is normalized [see (A.20)]. Then we can write

〈n|n〉 = |Cn|2
〈
0
∣∣∣ana†n

∣∣∣ 0〉 . (A.23)

Using the relations given by (A.12) allows one to show that

ana†n|0〉 = n!|0〉. (A.24)

So that

|n〉 = 1√
n!a

†n|0〉 (A.25)

is the normalized eigenfunction for the nth excited state.
One can use Ψ0(x) = α1/2π−1/4e− 1

2 α2x2
and express a†n in terms of p and x to

obtain

Ψn(x) = 1√
n!
[−i (−i�∂/∂x) + mωx√

2m�ω

]n α1/2

π1/4
e− α2 x2

2 , (A.26)

This can be simplified a little to the form

Ψn(x) =
(
α/

√
π
)1/2

(−)n

αn (2nn!)1/2

(
∂

∂x
− α2x

)n

e− α2 x2

2 . (A.27)

Summary

The Hamiltonian of the simple harmonic oscillator can be written

H = �ω

(
a†a + 1

2

)
. (A.28)

and H |n〉 = �ω(n + 1
2 )|n〉. The excited eigenkets can be written

|n〉 = 1√
n!a

†n|0〉. (A.29)

The eigenfunctions (A.29) form a complete orthonormal set, i.e.,

〈n|m〉 = δnm, (A.30)
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and ∑
n

|n〉 〈n| = 1. (A.31)

The creation and annihilation operators satisfy the commutation relation

[a, a†] = 1.

Problems

A.1 Prove that [ Â, B̂Ĉ]− = B̂[ Â, Ĉ]−+[ Â, B̂]−Ĉ , where Â, B̂, and Ĉ are quantum
mechanical operators.

A.2 Prove that [â, (â†)n]− = n(â†)n−1.



Appendix B
Neutron Scattering

A beam of neutrons interacts with a crystal through a potential

V (r) =
∑
Ri

v(r − Ri ), (B.1)

where r is the position operator of the neutron, and Ri is the position operator of
the i th atom in the crystal. It is common to write v(r − Ri ) in terms of its Fourier
transform v(r) = ∑

k vkeik·r. Then (B.1) can be rewritten

V (r) =
∑
k,Ri

vkeik·(r−Ri ). (B.2)

The potential v(r) is very short-range, and vk is almost independent of k. The
k-independent coefficient vk is usually expressed as v = 2π�

2a
Mn

, where a is defined
as the scattering length and Mn is the mass of the neutron.

The initial state of the system can be expressed as

Ψi (R1,R2, . . . , r) = V −1/2ei p
�

·r |n1, n2, . . . , nN 〉 . (B.3)

Here V −1/2ei p
�

·r is the initial state of a neutron of momentump. The ket |n1, n2, . . . , nN 〉
represents the initial state of the crystal, with ni phonons in mode i . The final state,
after the neutron is scattered, is

Ψ f (R1,R2, . . . , r) = V −1/2ei p′
�

·r |m1, m2, . . . , m N 〉 . (B.4)

The transition rate for going from Ψi to Ψ f can be calculated from Fermi’s golden
rule.

R|i〉→| f 〉 = 2π

�

∣∣〈Ψ f |V | Ψi
〉∣∣2 δ

(
E f − Ei

)
. (B.5)
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Here Ei and E f are the initial and final energies of the entire system. Let us write

εi = Ei − p2

2Mn
and ε f = E f − p′2

2Mn
. The total rate of scattering out of initial state Ψi

is given by

Rout of |i〉 = 2π

�

∑
f

δ
(
ε f − εi − �ω

) ∣∣〈Ψ f |V | Ψi
〉∣∣2 , (B.6)

where �ω = p′2−p2

2Mn
is the change in energy of the neutron. If we write p′ = p+ �k,

where �k is the momentum transfer, the matrix element becomes

∑
i,k

〈
m1, m2, . . . , m N

∣∣vke−ik·Ri
∣∣ n1, n2, . . . , nN

〉
. (B.7)

But we can take vk(= v) outside the sum since it is a constant. In addition, we can
write R j = R0

j + u j and

u j =
∑
qλ

(
�

2M Nωqλ

)1/2

eiq·R0
j ε̂qλ

(
aqλ − a†

−qλ

)
. (B.8)

The matrix element of eiq·u j between harmonic oscillator states |n1, n2, . . . , nN 〉 and
|m1, m2, . . . , m N 〉 is exactly what we evaluated earlier in studying the Mössbauer
effect. By using our earlier results and then summing over the atoms in the crystal,
one can obtain the transition rate. The cross-section is related to the transition rate
divided by the incident flux.

One can find the following result for the cross-section:

dσ

dΩdω
= p′

p
N

a2

�
S(q,ω), (B.9)

where dΩ is solid angle, dω is energy transfer, N is the number of atoms in the
crystal, a is the scattering length, and S(q,ω) is called the dynamic structure factor.
It is given by

S(q,ω) = N−1
∑

f

∣∣∣∣∣∣
∑

j

〈
m1, . . . , m N

∣∣eiq·u j
∣∣ n1, . . . , nN

〉
∣∣∣∣∣∣
2

δ
(
ε f − εi − �ω

)
.

(B.10)
Again, there is an elastic scattering part of S(q,ω), corresponding to no-phonon

emission or absorption in the scattering process. For that case S(q,ω) is given by

S0(q,ω) = e−2W δ(ω)N
∑

K

δq,K . (B.11)
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Here e−2W is the Debye–Waller factor. W is proportional to

[〈
n1, . . . , nN

∣∣∣[q · u0
]2∣∣∣ n1, . . . , nN

〉]
.

From (B.11) we see that there are Bragg peaks. In the harmonic approximation the
peaks are δ-functions [because of δ(ω)] due to energy conservation. The peaks occur
at momentum transfer p′ − p = �K, a reciprocal lattice vector.

In the early days of X-ray scattering there was some concern over whether the
motion of the atoms (both zero point and thermal motion) would broaden the δ-
function peaks and make X-ray diffraction unobservable. The result, in the harmonic
approximation, is that the δ-function peaks are still there, but their amplitude is
reduced by the Debye–Waller factor e−2W .

For the one-phonon contribution to the cross-section, we obtain

dσ

dΩdω
= Ne−2W p′

p
a2
∑

λ

(
q · ε̂qλ

)2

2Mωqλ

{(
1 + nqλ

)
δ
(
ω + ωqλ

)+ nqλδ
(
ω − ωqλ

)}
.

(B.12)

There are still unbroadened δ-function peaks at ε f ± �ωqλ = εi , corresponding
to the emission or absorption of a phonon. The peaks occur at a scattering angle
determined from p′ − p = �(q + K) where K is a reciprocal lattice vector. The
amplitude again contains the Debye–Waller factor e−2W . Inelastic neutron scattering
allows a experimentalist to determine the phonon frequencies ωqλ as a function of
q and of λ. The broadening of the δ-function peaks occurs only when anharmonic
terms are included in the calculation. Anharmonic forces lead to phonon–phonon
scattering and to finite phonon lifetimes.



Appendix C
Hints and Solutions

Chapter 1 Crystal Structures
1.1 (a) b1 = 2π a2×a3

a1·(a2×a3)
= 2π

a î, b2 = 2π a3×a1
a1·(a2×a3)

= 2π
a ĵ, b3 = 2π a1×a2

a1·(a2×a3)
=

2π
a k̂, Hence |b1| = |b2| = |b3| and b1 ⊥ b2 ⊥ b3. (b) b1 = 2π a2×a3

a1·(a2×a3)
=

2π
a (ĵ + k̂), b2 = 2π a3×a1

a1·(a2×a3)
= 2π

a (k̂ + î), b3 = 2π a1×a2
a1·(a2×a3)

= 2π
a (î + ĵ). (c)

a1 = a î, a2 = a
2 (î + √

3 ĵ), a3 = cẑ. b1 = 2π a2×a3
a1·(a2×a3)

= 2π√
3a

(
√

3î − ĵ), b2 =
2π a3×a1

a1·(a2×a3)
= 2π√

3a
· 2ĵ,b3 = 2π a1×a2

a1·(a2×a3)
= 2π

c k̂.

1.2 (a) p ≈ 0.524, (b) p ≈ 0.740, (c) p ≈ 0.680, (d) p ≈ 0.340, (e) p ≈ 0.740.
1.3 Hint: Sketch a simple cubic lattice, a BCC lattice, and an FCC lattice, and then
identify the NNs, NNNs, . . . down to the 5th nearest neighbors (Table C.1).
1.4 Hint: Point group operations of an equilateral triangle are as follows:
{E, R120, R240, m1, m2, m3}. Here E is no operation at all or a rotation about the axis
perpendicular to the center of the triangle through 2π. R120 is the counterclockwise
rotation by 2π/3. R240 is the counterclockwise rotation by 4π/3. m1, m2, m3 stand for
three individual reflections with respect to the three axes of symmetry perpendicular
to the sides. Now work out the multiplication table following the steps described in
the text (see Table 1.1).
1.5 Hints: (a) Review the definition of the glide planes illustrated in Fig. 1.8, sketch
the crystal structure of diamond, and then apply the steps given in the question to the
diamond structure to confirm the glide-plane operation for the diamond structure.

Table C.1 Table for Problem 1.3

nthN N Simple cubic BCC FCC

1 a
√

3
2 a

√
2

2 a

2
√

2a a a

3
√

3a
√

2a
√

3/2a

4 2a
√

11/2a
√

2a

5
√

5a
√

3a
√

5/2a
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(b) Review the definition of the screw axis illustrated in Fig. 1.9, sketch the crystal
structure of diamond, and then apply the steps given in the question to confirm the
screw operation for the diamond structure.
1.6 (b) One should get a hexagonal shape of the first Brillouin zone. (c) k =
k0 + (h1b1 + h2b2), where h1 and h2 are integers. (d) p ≈ 0.605. (e) F =
f
[
1 + e

2π
3 i(h1+2h2)

]
.

1.7 (a) F(h1, h2, h3) = f+ + f− if (h1 + h2 + h3) = even and F(h1, h2, h3) =
f+ − f− if (h1 + h2 + h3) = odd. (b) Review the Ewald construction described
in Sect. 1.4.3, and sketch a reciprocal simple cubic lattice in the plane of b1-b2. (c)
With f+ = f−, the diffraction maxima corresponding to (h1 + h2 + h3) = odd
disappear.
1.8 (a) A non-Bravais lattice with four atoms per unit cell with a1 = a2 = a and c =
4a along with α = β = γ = π/4. (b) b1 = 2π

V a2 ×a3 = π
2a î, b2 = 2π

V a3 ×a1 = 2π
a ĵ,

b3 = 2π
V a1 × a2 = 2π

a k̂. (c) F(h1, h2, h3) = f A + f Aei π
2 h1 + fBeiπh1 + fBei 3π

2 h1 =
(1 + i h1)[ f A + (−1)h1 fB].
1.9 (a) The sample A is of FCC, B is BCC, and C is of diamond structure. (b)
aA � 3.151Å, aB � 3.794Å, aC � 3.151Å.

1.10 C(6):1s22S22p2, O(8):1s22S22p4, Al(13):1s22S22p63s23p1,
Si(14):1s22S22p63s23p2, Sb(51):1s22S22p63s23p63d104s24p64d105s25s3,
Zn(30):1s22S22p63s23p63d104s2, Ga(31):1s22S22p63s23p63d104s24p1.
1.11 Hint: Sketch the linear crystal consisting of 2N ions, and count each pair
of interaction only once. The internal energy is written as U (R) = N ( A

Rn − αe2

R ).
(a) At the equilibrium separation R0, dU (R)

d R |R=R0= 0, and the internal energy is

U (R) = 2 ln 2 Ne2

R

[
1
n

( R0
R

)n−1 − 1
]
. (b) C = 2 ln 2 Ne2

R3
0
(n − 1). For a crystal of a

unit length, C = e2 ln 2
R4

0
(n − 1).

Chapter 2 Lattice Vibrations
2.1 For a 3D crystal of volume V consisting of N primitive unit cells with p atoms

per primitive unit cell: (a) G(ω) = 3N p
V θ(ω − ω0), where θ(ω − ω0)

{
1, ω ≥ ω0

0, ω ≥ ω0.

(b) g(ω) = 3N p
V δ(ω − ω0).

2.2 (a) s = ω0a
2 , (b) kD = π

L N = π
a , (c) g(ω) = 1

2π
· 2

|�kω| = 2
πa · 1√

ω2
0−ω2

k

. In Debye

model, g(ω) = 1
2π

· 2
|�kω| = 2

πω0a for ω < ωD .

2.3 At k = 0, an optical mode of ω2
op = 2c (1/M1 + 1/M2) with uq/vq = −M2/M1,

and an acoustical mode of ω2
ac = 0 with uq/vq = 1. At k = π/(2a), ω2

op = 2c
M1

with vq = 0 and uq = {can be any values}, and ω2
ac = 2c

M2
with uq = 0 and vq =

{can be any values}.
2.4 At q = 0, ω+(q = 0) =

√
2(c1+c2)

M and ω−(q = 0) =
√

c1c2a2

2M(c1+c2)
q. At q = π

2a ,

ω+(q = π
2a ) =

√
2c1
M and ω−(q = π

2a ) =
√

2c2
M .

http://dx.doi.org/10.1007/978-3-319-73999-1_1
http://dx.doi.org/10.1007/978-3-319-73999-1_1
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2.5 cv ∝ T
∫ xD

0 dx xd−1T d−1 x2ex

(ex −1)2 = T d
∫ xD

0 dx xd+1ex

(ex −1)2 ∝ T d .

(i) When T � TD(= �ωD/kB), cv = d NkB, where

N =
∑
q

1 =
(

L

2π

)d ∫
|q|<qD

ddq = πd/2

d
2 Γ ( d

2 )
qd

D =
(

L

2π

)d πd/2

d
2 Γ ( d

2 )
qd

D.

(ii) When T 
 TD(= �ωD/kB),

cv ≈
(

L

2π

)d 2kBπd/2

Γ ( d
2 )

(
kBT

�

)d ∑
λ

(
1

vλ

)d ∫ ∞

0
dz

zd+1

(ez − 1)(1 − e−z)
∝ T d .

2.6 g(ω)dω = 2
πa

∫ ω+dω

ω d
[
sin−1

(
ω
ω0

)]
and g(ω) = 2

πa
1√

ω2
0−ω2

.

2.7 (a) 1) ω(k, 0, 0) = ω0| sin ka
2 |. In the Debye approximation, ω(kx , 0, 0) ≈

ω0
ka
2 = vk for ω < ωD , where v = ω0a/2 and ωD = vkD ≈ 1.95ω0; kD ≈ 1.24 π

a .

2) ω(kx , ky, 0) = √
2ω0| sin

(
ka

2
√

2

)
|. In the Debye approximation, ω(kx , ky, 0) ≈

ω0
ka
2 = vk for ω < ωD . 3) ω(kx , ky, kz) = √

3ω0| sin
(

ka
2
√

3

)
|. In the Debye

approximation, ω(kx , ky, kz) ≈ ω0
ka
2 = vk for ω < ωD .

(c) The critical points occur at |∇kω(k)| = 0 with [∇kω(k)]i = ω2
0 a

4ω
sin (ki a): (i)

the six face centers (3 sets of two equivalent points separated by reciprocal lattice
vectors) of the Brillouin zone: (±π, 0, 0), (0,±π, 0), (0, 0,±π) of ωc = ω0, (ii) 12
edge centers (3 sets of four equivalent points) of the zone: (±π,±π, 0), (±π, 0,±π),
(0,±π,±π) of ωc = √

2ω0, and (iii) 8 corners (all equivalent points) of the zone:
(±π,±π,±π) of ωc = √

3ω0. Note that |∇kω(k)| �= 0 at the zone center of (0, 0, 0)

because ω(k) also vanishes there. There are 7 non-equivalent critical points. (d)
There are singularities in ∂g

ω
at ω = ω0,

√
2ω0, and at

√
3ω0 dropping to zero.

2.8 (a) qD = 2
√

π
(

N
L2

)1/2
and ωD = 2

√
π
(

N
L2

)1/2
s.

(b) g(ω) = ω
2π

[
θ(s�qD−ω)

s2
�

+ θ(st qD−ω)

s2
t

]
.

(c) U = L2

2π

∑
sλ

(
1
sλ

)2 ∫ ωd

0 dω �ω2
(

1
e�ω/kBT −1

+ 1
2

)
.

(d) cv = �
2

2πkBT 2

∑
sλ

s−2
λ

∫ ωD

0 dω ω3

(e�ω/kBT −1)(1−e−�ω/kB T )
.

(e) For kBT 
 �ωD = �sqD,

cv ≈ �
2

2πkBT 2

∑
sλ

s−2
λ

∫ ∞

0
dω

ω3

e�ω/kBT − 1
= π3k3

BT 2

30�2
(

1

s2
�

+ 1

s2
t
).

For the isotropic case of s� = st = s, cv ≈ 4π4kB
15

N
L2

(
T
TD

)2
, where kBTD = �ωD =

�sqD .
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Chapter 3 Free Electron Theory of Metals
3.1 (a) E(kx , ky) = �

2

2m

(
2π
L

)2
(n2

x + n2
y), where nx , ny = 0,±1,±2, . . .. (b) kF =√

2πn0. (c) G(ε) = 1
L2

∑
k<kF ,σ;εk,σ≤ε 1 = m

π�2 ε. g(ε) = m
π�2 . (d) G(μ0) =

G(μ0) + g(μ0)(μ − μ0)] + π2

6 (kT )2 × 0. Therefore, g(μ0)(μ − μ0) = 0 → μ =
μ0 : independent of T in 2D. (e) cv = ∂U

∂T ≈ π2

3
m

π�2 k2
B T .

3.2 (a) Enx ,ny (kz) = ε(nx , ny) + �
2k2

z

2m , where nx and ny are the quantum numbers.

(b) g(E) = 2 · 2 dk
d E = 2

√
2m

�

Θ(E−εnx ,ny )√
E−εnx ,ny

.

3.3 (a) For an electron gas, g(E) ∝ kd−1 E−1/2 ∝ Ed/2−1. (b) For a phonon gas,
g(ω) ∝ kd−1 ∝ ωd−1 in the Debye model.

3.4 (a) E± =
(

Ex î ± i Ey ĵ
)

eiωt−ikz z ; Ex = E0x eiωt−ikz z , Ey = E0yeiωt−ikz z , and

B± ∝ eiωt−ikz z . Maxwell equations gives ∇ × (∇ × E±) = − 1
c

∂
∂t (∇ × B±), where

the right hand side becomes ω2

c2 ε±E±. j± = σ±E. Hence ω2ε± = c2k2, where ε =
1− 4πi

ω
σ(ω). (b) For a circular polarization Ex = −i Ey = E0eiωt with E0 = Ae−ikz ,

v = − eτ/m
1+i(ω−ωc)τ

E. Hence j = e2n0τ/m
1+i(ω−ωc)τ

E = σE, where σ(ω) = e2n0τ/m
1+i(ω−ωc)τ

and

ε(ω) = 1 − iτ
ω

ω2
p

1+i(ω−ωc)τ
. In the limit of ωcτ � 1 and ωc � ω, ε+(ω) ≈ ω2

p

ωωc
. Then,

ω = c2ωc
ω2

p
k2.

3.5 ω2 = ω2
p+c2q2(1+1/εD)

2 ±
{[

ω2
p+c2q2(1+1/εD)

2

]2 − c2q2ω2
p/εD

}1/2

.

3.6 (a) σe(ω) =
⎡
⎢⎣

σ0e(1+iωτe)

(1+iωτe)2+(ωceτe)2
−σ0eωceτe

(1+iωτe)2+(ωceτe)2 0
σ0eωceτe

(1+iωτe)2+(ωceτe)2
σ0e(1+iωτe)

(1+iωτe)2+(ωceτe)2 0
0 0 σ0e

1+iωτe

⎤
⎥⎦ and

σh(ω) =
⎡
⎢⎣

σ0h(1+iωτh)

(1+iωτh)2+(ωchτh)2
σ0hωchτh

(1+iωτh)2+(ωchτh)2 0
−σ0hωchτh

(1+iωτh)2+(ωchτh)2
σ0h(1+iωτh)

(1+iωτh)2+(ωchτh)2 0
0 0 σ0h

1+iωτh

⎤
⎥⎦ .

(b) R = σT xy(0)

σ2
T xx (0)+σ2

T xy(0)

1
B ≈ 1

ec(nh−ne)
. (c) ρ(B) ≈ neme/τe+nh mh/τh

e2(nh−ne)2 .

Chapter 4 Elements of Band Theory
4.1 (a) Bandgap= 2ε at k = ± π

2R . (b) Zero-gap 1D material for ε = 0 and flat band
with vanishing β.
4.2 6.04 × 10−22 eV.
4.3 Ek = Ea − α − 8γ cos kx a

2 cos kya
2 cos kza

2 .

4.4 (a) E(k) = ε±|h|
√

1 + 4 cos 3a
2 kx cos

√
3a
2 ky + 4 cos2

(√
3a
2 ky

)
. (c) (kx , ky) =

( 2π
3a , 2π

3
√

3a
).

4.5 (b) ψ0(z) =
√

mλ
�

e− mλ

�2 |z|.
4.6 (a) ε0(kz) = −mλ2

2�2 − α(1 + 2 cosh mλ
�2 a) cos kza. (b) Ψ0(kz, z) = eikz z u(kz, z),

where u(kz, z) = 1√
N

√
mλ
�

∑
n eikz(na−z)e− mλ

�2 |z−na|.
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4.7 (a) For V1 = 0, E+(k) = εk+G and E−(k) = εk . For V1 = 0.2�
2G2/2m =

0.2εG , E±(k) = 1
2 (εk + εk+G) ± 1

2

[
(εk+G − εk)

2 + 0.16εG
]1/2

. The crystal shows
an indirect band gap of Egap ≈ 0.052εG for V1 = 0.2εG . (b) Zero-gap material for
V1 = 0. (c) The crystal shows a metallic behavior.

Chapter 5 Use of Elementary Group Theory in Calculating Band Structure
5.1 At E(X) = 0.25 h2

2ma2 , two degenerate wave functions are ψ0,0(X) = e
πi
a x and

ψ−1,0(X) = e− πi
a x . Two linear combinations of ψ0,0(X) and ψ−1,0(X) give wave

functions each belonging to the IR’s X1 and X3, respectively:

Ψ (X1) = cos
π

a
x ∝ ψ0,0(X)+ψ−1,0(X);Ψ (X3) = sin

π

a
x ∝ ψ0,0(X)−ψ−1,0(X).

At E(X) = 1.25 h2

2ma2 , Four wave functions each belonging to IR’s X1, X2, X3, and
X4 are, respectively,

Ψ (X1) = cos π
a x cos 2π

a y ∝ ψ0,1(X) + ψ0,−1(X) + ψ−1,1(X) + ψ−1,−1(X),

Ψ (X2) = sin π
a x sin 2π

a y ∝ ψ0,1(X) − ψ0,−1(X) − ψ−1,1(X) + ψ−1,−1(X),

Ψ (X3) = sin π
a x cos 2π

a y ∝ ψ0,1(X) + ψ0,−1(X) − ψ−1,1(X) − ψ−1,−1(X),

Ψ (X4) = cos π
a x sin 2π

a y ∝ ψ0,1(X) − ψ0,−1(X) + ψ−1,1(X) − ψ−1,−1(X).

At E(Γ ) = h2

2ma2 , four wave functions each belonging to IR’s Γ1, Γ3, and Γ5 are,
respectively,

Ψ (Γ1) = cos 2π
a x + cos 2π

a y ∝ ψ1,0(Γ ) + ψ0,1(Γ ) + ψ−1,0(Γ ) + ψ0,−1(Γ ),

Ψ (Γ3) = cos 2 π
a x − cos 2π

a y ∝ ψ1,0(Γ ) − ψ0,1(Γ ) + ψ−1,0(Γ ) − ψ0,−1(Γ ),

Ψ (Γ5) =
(

sin 2π
a x

sin 2π
a y

)
∝
(

ψ1,0(Γ ) − ψ−1,0(Γ )

ψ0,1(Γ ) − ψ0,−1(Γ )

)
.

At E(Γ ) = 2 × h2

2ma2 , four degenerate wave functions each belonging to IR’s Γ1, Γ4,
and Γ5 are, respectively,

Ψ (Γ1) = cos 2π
a x cos 2π

a y ∝ ψ1,1(Γ ) + ψ1,−1(Γ ) + ψ−1,1(Γ ) + ψ−1,−1(Γ ),

Ψ (Γ4) = sin 2π
a x sin 2π

a y ∝ ψ1,1(Γ ) − ψ1,−1(Γ ) − ψ−1,1(Γ ) + ψ−1,−1(Γ ),

Ψ (Γ5) =
(

sin 2π
a x cos 2π

a y

cos 2π
a x sin 2π

a y

)
∝
(

ψ1,1(Γ ) + ψ1,−1(Γ ) − ψ−1,1(Γ ) − ψ−1,−1(Γ )

ψ1,1(Γ ) − ψ1,−1(Γ ) + ψ−1,1(Γ ) − ψ−1,−1(Γ )

)
.

5.2 Character tables of the IR’s of GΓ , GX , and GΔ are shown in the tables below.
The compatibility relations are as below: {Γ1, Γ3, Γ5} ←→ Δ1 ←→ {X1, X3} and
{Γ2, Γ4, Γ5} ←→ Δ2 ←→ {X2, X4} (Fig. C.1 and Table C.2).
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Fig. C.1 The band structure of the empty square lattice along Γ − Δ − X of Problem 5.2

Table C.2 Character tables of GΓ , GX , and GΔ of Problem 5.2

Γ1 Γ2 Γ3 Γ4 Γ5

E 1 1 1 1 2
R2

R1, R3

mx, my

m+, m−

X1 X2 X3 X4

E 1 1 1 1
R2

mx

my

Δ1 Δ2

E 1 1
mx

1 1 1 1 –2
1 1 –1 –1 0
1 –1 1 –1 0
1 –1 –1 1 0

1 1 –1 –1
1 –1 1 –1
1 –1 –1 1

1 –1

5.3
E(Γ ) = h2

2ma2

[
(h1 − h2)

2 + (h2 − h3)
2 + (h3 + h1)

2
]
,

E(H) = h2

2ma2

[
(h1 − h2 + 1)2 + (h2 − h3)

2 + (h3 + h1)
2
]
,

E(P) = h2

2ma2

[
(h1 − h2 + 1

2 )2 + (h2 − h3 + 1
2 )2 + (h3 + h1 + 1

2 )2
]
.

See the figure below for the empty lattice bands (Fig. C.2).
5.4
E(Γ ) = h2

2ma2

[
�2

1 + �2
2 + �2

3

]
, E(X) = h2

2ma2

[
(�1 + 1

2 )2 + �2
2 + �2

3

]
,

E(R) = h2

2ma2

[
(�1 + 1

2 )2 + (�2 + 1
2 )2 + (�3 + 1

2 )2
]
.

See the figure below for the empty lattice bands (Fig. C.3).

5.5 (b) The band gap is 2|VK| = 2|V1,0|.
5.6 (a) GΓ = {E, R2, mx , my}. (b) GX = {E, R2, mx , my} and GΔ = {E, mx }.
(c) El(k) = h2

2ma

[
(ξ + l1)

2 + 1
2 (η + l2)

2
]
, El(Γ ) = h2

2ma

[
l2
1 + 1

2 l2
2

]
, El(X) =

h2

2ma

[
( 1

2 + l1)
2 + 1

2 l2
2

]
.

(d) See the figure below for the empty lattice bands (Fig. C.4).
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Fig. C.2 The band structure along Δ(Γ → H) and along Λ(Γ → P) of Problem 5.3

Fig. C.3 The band structure along Γ → X and along Γ → R of Problem 5.4
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Fig. C.4 The band structure along Γ → X of Problem 5.6(d)

Fig. C.5 The low-lying energy bands of graphene lattice along the line going from Γ to K in
Problem 5.7(e)

(e) ψ0,1(Δ) = e
2πi
a

[
ξx+ 1√

2
y
]

and ψ0,−1(Δ) = e
2πi
a

[
ξx− 1√

2
y
]
. (f) Ψ (Δ1) = ψ0,1(Δ) +

ψ0,−1(Δ) ∝ cos 2π
a ξx cos 2π√

2a
y + i sin 2π

a ξx cos 2π√
2a

y. Ψ (Δ2) = ψ0,1(Δ) − ψ0,−1

(Δ) ∝ cos 2π
a ξx sin 2π√

2a
y + i sin 2π

a ξx sin 2π√
2a

y (Fig. C.5).
5.7 (a) GΓ = {E, R6, R3, R2, R−3, R−6, mx , my, m+√

3, m−√
3, m+ 1√

3
, m− 1√

3
}.

(b) GK = {E, R3, R−3, mx , m+√
3, m−√

3}; GM = {E, R2, m−√
3, m+ 1√

3
}.

(c) At Γ = 2π
a (0, 0), Ψl−1l2(Γ ) = eiKl1l2 ·r = e

i 2π
a

[
l1x+ 1√

3
(−l1+2l2)y

]
and El1l2(Γ ) =

h2

2ma2

[
l2
1 + 1

3 (l1 − 2l2)
2
]
.
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Table C.3 E(Γ ), E(H), E(P) for all bands with E ≤ 4[ h2

2ma2 ] of Problem 5.3

(h1, h2, h3) E(Γ ) [ h2

2ma2 ] E(H) [ h2

2ma2 ] E(P) [ h2

2ma2 ]
(0, 0, 0) 0 1 0.75

(–1, 0, 0) 2 1 0.25

(–1, 0, 1) 2 1 0.75

(0, 1, 0) 2 1 2.75

(0, –1, –1) 2 5 2.75

(0, 1, 1) 2 1 2.75

(1, 0, –1) 2 5 4.75

(0, 0, 1) 2 3 2.75

(0, 0, –1) 2 3 2.75

(1, 1, 0) 2 3 4.75

(–1, –1, 0) 2 3 0.75

(0, –1, 0) 2 5 2.75

(1, 0, 0) 2 5 4.75

(–1, 1, 1) 4 1 2.75

(–1, –1, 1) 4 5 2.75

(–1, –1, –1) 4 5 2.75

(1, 1, 1) 4 5 6.75

(1, 1, –1) 4 5 6.75

(1, –1, –1) 4 9 6.75

At K = 2π
a ( 2

3 , 0), Ψl−1l2(K) = ei(kK+Kl1l2 )·r = e
i 2π

a

[
(l1+ 2

3 )x+ 1√
3
(−l1+2l2)y

]
and

El1l2(K) = h2

2ma2

[
(l1 + 2

3 )2 + 1
3 (l1 − 2l2)

2
]
.

(d) See the table below for the empty lattice energies (Table C.5).
(e) See the figure below for the empty lattice bands (Fig. C.5).

(f) ψ0,0(K) = e
2πi
a ( 2

3 x); ψ−1,0(K) = e− 2πi
a ( 1

3 x− 1√
3

y); ψ−1,−1(K) = e− 2πi
a ( 1

3 x+ 1√
3

y).
5.8 Hint: See the wave functions Ψ1 ≈ Ψ15 listed in the text of Sect. 5.7, and write
out, and then simplify the right hand side of each Ψi for i = 1, 2, . . . , 15.

http://dx.doi.org/10.1007/978-3-319-73999-1_5
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Table C.4 E(Γ ), E(X), E(R) for all bands with E ≤ 4[ h2

2ma2 ] of Problem 5.4

(�1, �2, �3) E(Γ ) E(X) E(R) (�1, �2, �3) E(Γ ) E(X) E(R)

(0, 0, 0) 0 0.25 0.75 (–1, –1, –1) 3 2.25 0.75

(–1, 0, 0) 1 0.25 0.75 (–1, –1, 1) 3 2.25 2.75

(0, –1, 0) 1 1.25 0.75 (–1, 1, –1) 3 2.25 2.75

(0, 0, –1) 1 1.25 0.75 (–1, 1, 1) 3 2.25 4.75

(0, 1, 0) 1 1.25 2.75 (1, –1, –1) 3 4.25 4.75

(0, 0, 1) 1 1.25 2.75 (1, –1, 1) 3 4.25 4.75

(1, 0, 0) 1 2.25 2.75 (1, 1, –1) 3 4.25 4.75

(–1, –1, 0) 2 1.25 0.75 (1, 1, 1) 3 4.25 6.75

(–1, 0, –1) 2 1.25 0.75 (–2, 0, 0) 4 2.25 2.75

(–1, 1, 0) 2 1.25 2.75 (0, –2, 0) 4 4.25 2.75

(–1, 0, 1) 2 1.25 2.75 (0, 0, –2) 4 4.25 2.75

(0, –1, –1) 2 2.25 0.75 (0, 2, 0) 4 4.25 6.75

(0, –1, 1) 2 2.25 2.75 (0, 0, 2) 4 4.25 6.75

(0, 1, –1) 2 2.25 2.75 (2, 0, 0) 4 6.25 6.75

(0, 1, 1) 2 2.25 4.75

(1, –1, 0) 2 3.25 2.75

(1, 0, –1) 2 3.25 2.75

(1, 1, 0) 2 3.25 4.75

(1, 0, 1) 2 3.25 4.75

Table C.5 E(Γ ) and E(X) for an empty lattice of graphene lattice in Problem 5.7(d)

(�1, �2)
2ma
h2 E(Γ ) 2ma

h2 E(X)

(0,0) 0 4
9

(–1, –1) 16
9

4
9

(–1, 0) 16
9

4
9

(0.1) 16
9

16
9

(0, –1) 16
9

16
9

(1, 0) 16
9

28
9

(–1, 1) 16
9

34
9
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Chapter 6 More Band Theory and Semiclassical Approximation
6.1 (a) 〈an(z − l ′a)|an(z − l ′a)〉 = 1

N

∑
k ei(l ′−l)ka = δl,l ′ . (b) a0(z) = √

κe−κ|z|.
6.2 (a) At the zone boundary, for example, G

2 , the electron reappears at the equivalent
point in the opposite side of the zone boundary at −G

2 . (b) r(t) − r(0) = − �c
eB ẑ ×

[k(t) − k(0)] , resulting in r(t) − r(0) perpendicular to B = Bẑ. Now, v(t) =
− �c

eB ẑ×k̇(t), while δε = ε(k+δk)−ε(k) = �v(k)·k̇δt = �
[− �c

eB ẑ × k̇(t)
]·k̇δt = 0

(Table C.3).

6.3 (a)
x(t) = 2γ

e

[
1−cos ea

2�
(Ex +Ey+Ez)t

Ex +Ey+Ez
+ 1−cos ea

2�
(Ex −Ey+Ez)t

Ex −Ey+Ez

+ 1−cos ea
2�

(Ex +Ey−Ez)t
Ex +Ey−Ez

+ 1−cos ea
2�

(Ex −Ey−Ez)t
Ex −Ey−Ez

]
.

y(t) = 2γ
e

[
1−cos ea

2�
(Ex +Ey+Ez)t

Ex +Ey+Ez
− 1−cos ea

2�
(Ex −Ey−Ez)t

Ex −Ey−Ez

+ 1−cos ea
2�

(Ex +Ey−Ez)t
Ex +Ey−Ez

− 1−cos ea
2�

(Ex −Ey+Ez)t
Ex −Ey+Ez

]
.

z(t) = 2γ
e

[
1−cos ea

2�
(Ex +Ey+Ez)t

Ex +Ey+Ez
+ 1−cos ea

2�
(Ex −Ey+Ez)t

Ex −Ey+Ez

− 1−cos ea
2�

(Ex −Ey−Ez)t
Ex −Ey−Ez

− 1−cos ea
2�

(Ex +Ey−Ez)t
Ex +Ey−Ez

]
.

(b) 16γ
eE = 16 cm.

6.4 Hints: Definition of the effective mass tensor:
(
m∗−1)

i j = 1
�2

∂2εn(k)

∂ki ∂k j
,

ε(k) = ε ± |h|
{

1 + 4 cos
3a

2
kx cos

√
3a

2
ky + 4 cos2

(√
3a

2
ky

)}1/2

(a) One needs to apply the definition of the effective mass tensor to the π-electron
energy band ε(k) and then expand the resulting expression about kΓ = (0, 0)

to examine the effective mass near the zone center.
(b) One can repeat the same as above except near kK = ( 2π

3a , 2π
3
√

3a
) and examine the

result to find the zero effective mass at K and the massless behavior of the low
energy carriers at the special point K (Tables C.4 and C.5).

6.5 (a) (m∗)i j = �
2

2a2

⎡
⎣

1
c1

0 0
0 1

c2
0

0 0 1
c3

⎤
⎦ . (b) In the Bloch representation, [ε0 + ca2k2 −

α∇2
k]φ(k) = Eφ(k). In the Wannier representation, [ε0 − ca2∇2

r + αr2]φ(r) =
Eφ(r). (c) E1 = ε0 + 3a

√
αc, E2 = ε0 + 5a

√
αc, and E3 = ε0 + 7a

√
αc.

Chapter 7 Semiconductors
7.1 The figure below illustrates the intrinsic carrier density in a GaAs as a function
of temperature (Fig. C.6).
7.2 The chemical potential is given by ζi (T ) = εv + 1

2 Egap + 3
4 kBT ln mv

mc
. See the

figure below (Fig. C.7).
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Fig. C.6 Temperature dependence of the intrinsic carrier density in a GaAs in Problem 7.1
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Fig. C.7 Temperature dependence of the intrinsic chemical potential measured from the top of the
valence band edge in Problem 7.2

7.3 (a) EB ≈ 0.659 meV. (b) a∗
B ≈ 64.3 nm. (c) nc = 1

vBohr
≈ 8.97 × 1014 cm−3.

(d) nc(T ) �

√
Nc Nd

2 e−β(εc−εd )/2. (e) E = EB/e
2a∗

B
≈ 5.12 × 103 V/m.

7.4 Ns ≈ 1.1 × 108 cm−2.
7.5 (a) g2D

c (ε) = mc
π�2 Θ(ε − ε̃c), g2D

v (ε) = mv

π�2 Θ(ε̃v − ε). (b) Nc(T ) = mc
π�2 kBT ,

Pv(T ) = mv

π�2 kBT . (c) nc(T ) =
√

mcmv

π�2 kBT e− Ẽgap
2kBT = pv(T ), where Ẽgap = ε̃c − ε̃v =

Egap + εc
0 + εv

0. (d) ζi = εc + εc
0−εv

0
2 − Egap

2 + 1
2 kBT ln(mv/mc).

7.6 (a) See the figure for the band alignment in equilibrium (Fig. C.8).
(b) See the figure for the profile of the charge distribution across the oxide layer
(Fig. C.9). (c) Vd(z) = − 2πe2

εs
NAz2 + c1z + c2 for 0 < z < d, where c1 and

c2 are the integration constants to be fixed with boundary conditions. (d) Vgate =
ΔVox + ΔVd = 4πe2 NAd

(
a
εo

+ d
εs

)
. (e) Vthreshold = Egap

[
1 + 2 εs a

εod

]
. (f) Ẽ(α) =

E0 − 1
2 〈VH〉 + 1

2 (EF − E0) .
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Fig. C.8 The band alignment in equilibrium of Problem 7.6(a)

Fig. C.9 The charge distribution across the oxide layer of Problem 7.6(b)

Chapter 8 Dielectric Properties of Solids
8.1 α = pind

E = 3πε0a3
0 ≈ 1.2 × 10−41[C2m/N] in SI.

8.2 For ψ2,1,0 = 1
4
√

2π
a−3/2

0 (r/a0)e−r/2a0 cos θ, 〈210|z|100〉 ≈ 0.744a0 and ε0−εn =
h2

2ma2
0

(
1
n2 − 1

)
. → α210 ≈ 2.8 [Å3] in cgs.

8.3 (a) ω2± = (ω2
L +ω̃2

p)±
√

(ω2
L+ω̃2

p)
2−4ω2

T ω̃2
p

2 . (b) See the figure below (Fig. C.10).

(c) ω2± = (ω2
L +ω̃2

p)±
√

(ω2
L +ω̃2

p)
2−4ω2

T ω̃2
p

2 for the longitudinal modes.

ω2 = 1
2

(
ω2

L + ω̃2
p + c2q2

ε∞

)
± 1

2

[(
ω2

L + ω̃2
p + c2q2

ε∞

)2 − 4ω2
T

(
ω̃2

p + c2q2

ε∞

)]1/2

for

transverse modes. For frequencies of ω < ω− and ωT < ω < ω+, ε(ω) < 0
and thus q2 < 0 prohibiting the transverse waves to propagate.

Fig. C.10 The figure below for the dielectric function of Problem 8.3(b)
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Fig. C.11 The figure below for the dispersion of the modes of Problem 8.5(a)

Fig. C.12 The figure below for the dispersion of the modes of Problem 8.5(b)

8.4 R =
∣∣∣ Er

Ei

∣∣∣2 =
∣∣∣ cos θ−√

ε(ω) cos θ′
cos θ+√

ε(ω) cos θ′

∣∣∣2 for S-polarization. R =
∣∣∣ Er

Ei

∣∣∣2 =
∣∣∣√ε(ω) cos θ−cos θ′√

ε(ω) cos θ+cos θ′

∣∣∣2
for P-polarization.

8.5 (a) c2q2
y =

(
ε∞

1+ε∞

)
ω2(ω2−ω2+)(ω2−ω2−)

ω4−
(

ω2
T +ε∞ω2

L +ω2
p

1+ε∞

)
ω2+ ω2

T ω2
p

1+ε∞
. The figure below shows c2q2

y versus

ω2 for the case of GaAs with n = 2 × 1018 cm−3. The dashed line denotes the slop
of the curve at zero frequency (Fig. C.11).
(b) See the figure for the dispersion of the surface modes (Fig. C.12).

Chapter 9 Magnetism in Solids
9.2 See the table below (Table C.6).
9.3 (b) gσ(ε) = B

hc/e

∑nmax
n=0 δ(ε − εnσz ). (c) Gσ(ε) = B

hc/e

∑nmax
n=0 Θ(ε − εnσz ).

9.4 (a) H = ∑
i

1
2m

(
p2

x + (py + i eB
�c x)2 + p2

z

)+ 1
2m ω2

0 x2 + 2μB BSz, where Sz =∑
i si z . (b) εn(ky, kz,σ) = �(ω2

c + ω2
0)

1/2(n + 1
2 ) + �

2k2
z

2m + �
2k2

y

2m
ω2

0

ω2
c +ω2

0
+ μB Bσz,
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Table C.6 Table for Problem 9.2

Z Element Configuration Spectroscopic
notation

S L J gL

39 Y [Kr](4d)1(5s)2 2 D3/2
1
2 2 3

2
4
5

41 Nb [Kr](4d)4(5s)1 6 D1/2
5
2 2 1

2
10
3

43 Tc [Kr](4d)5(5s)2 6S5/2
5
2 0 5

2 2

57 La [Xe](5d)1(6s)2 2 D3/2
1
2 2 3

2
4
5

66 Dy [Xe(4 f )10(5d)5 5 I8 2 6 8 5
4

74 W [Xe(4 f )14(5d)4(6s)2 5 D0 2 2 0 –

95 Am [Rn](5 f )7(6d)0(7s)2 8S7/2
7
2 0 7

2 2

where n = 0, 1, 2, . . ., and σz = ±1. Ψ (r) = ei(ky y+kz z)ψn(x + �kyωc

m(ω2
c +ω2

0)
)ησ. (c) (i)

ω0 → 0 : εn(ky, kz,σ) = �ωc(n + 1
2 )+ �

2k2
z

2m +μB Bσz . (ii) ω0 � ωc : εn(ky, kz,σ) =√
2�ωc(n + 1

2 ) + �
2k2

z

2m + �
2k2

y

4m + μB Bσz .

Chapter 10 Magnetic Ordering and Spin Waves
10.1 [Ŝ+, Ŝ−] = 2Ŝz , [Ŝ±, Ŝz] = ∓Ŝ±, Ŝ+|S, Sz〉 = √

(S − Sz)(S + 1 + Sz)|S,

Sz + 1〉, Ŝ−|S, Sz〉 = √
(S + Sz)(S + 1 − Sz)|S, Sz − 1〉.

10.4 �ωk = gμB B0 + 2J Sa2k2.

Chapter 11 Many Body Interactions – Introduction
11.1 (c) ΣXœ(k) = − 2e2kF

π
F(x), where F(x) = 1

2 + 1−x2

4x ln | 1+x
1−x | with x = k/kF.

11.2 (a) Ek↑ = �
2k2

2m − 21/3e2kF
2π

(
2 + 22/3k2

F−k2

21/3kFk ln | 21/3kF+k
21/3kF−k |

)
, Ek↓ = �

2k2

2m . (b) kF < 22/3

πa0
.

(c) a0kF < 5
2π

1
21/3+1 .

11.4 For z + u < 1, ε(l)
2 = 3πu3

2
ω2

p

ω2 for z + u < 1. For |z − u| < 1 < z + u,

ε(l)
2 = 3πu2

8z

ω2
p

ω2

[
1 − (z − u)2

]
. For |z − u| > 1, ε(l)

2 = 0.
11.5 (a) F(z) ≈ 1

3
1
z2 . (b)

ε(l)(q, 0) = 1 + 3ω2
p

q2v2
F

F(z) ≈
⎧⎨
⎩

1 + 3ω2
p

q2v2
F
(1 − z2

3 ) at low frequency

1 + 3ω2
p

q2v2
F

1
3z2 at high frequency.

11.7 (a) ε1(ω) = 1 + 2
π

−
∫∞

0
ω′ Aδ(ω′−ωA)

ω′2−ω2 dω′ = 1 + 2ωA A
π(ω2

A−ω2)
. (b) Figure below

illustrates ε1(ω) of the case ωA = 3 and A = 1 (Fig. C.13).

11.8 (a) X (ω) = − eE
m(ω2

0−ω2+iγω)
= − e

m
ω2

0−ω2

(ω2
0−ω2)2+γ2ω2 E + i e

m
γω

(ω2
0−ω2)2+γ2ω2 E . (b)

α(ω) = e2n0
m

[
ω2

0−ω2

(ω2
0−ω2)2+γ2ω2 − i γω

(ω2
0−ω2)2+γ2ω2

]
.

(c) Figure below illustrates α1(ω) and α2(ω) in units of e2n0
m of the case ω0 = 3 and

γ = 1.5 (Fig. C.14).
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Fig. C.13 ε1(ω) for Problem 11.7(b)
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Fig. C.14 α1(ω) and α2(ω) in units of e2n0
m for Problem 11.8(c)

Chapter 12 Many Body interactions – Green’s Function Method
12.1 Hints: One can follow exactly the same steps done for I2 defined by (12.27)
and shown explicitly in the text to show (12.32), which is written with a common
upper time limit t in each integral, at the expense of complicating the integrand a
bit. For I3, one would divide the volume in the t1, t2, t3 space into 3! parts for the
permutations of t1, t2, t3 in HI (t1)HI (t2)HI (t3). The 1

3! occurs because there are 3!
ways of ordering the times t1, t2, t3 all giving the same contribution to the integral
on the right, but only one of these orderings is present in the integral on the left.

http://dx.doi.org/10.1007/978-3-319-73999-1_12
http://dx.doi.org/10.1007/978-3-319-73999-1_12
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12.2 (a)
(1) δG̃(1)(x, x ′) = − i

2

∫
d4x1d4x2V (x1 − x2)G(0)(x, x1)G(0)(x2, x2)G(0)(x1, x ′)

(2) δG̃(1)(x, x ′) = i
2

∫
d4x1d4x2V (x1 − x2)G(0)(x, x1)G(0)(x1, x2)G(0)(x2, x ′)

(3) δG̃(1)(x, x ′) = i
2 G(0)(x, x ′)

∫
d4x1d4x2V (x1 − x2)G(0)(x1, x1)G(0)(x2, x2)

(4) δG̃(1)(x, x ′) = − i
2 G(0)(x, x ′)

∫
d4x1d4x2V (x1 − x2)G(0)(x1, x2)G(0)(x2, x1)

(b) (1) δG̃(1)(p,ω) = − i
2 G(0)(p,ω) U (0)

(2π)4

∫
d3 p′ dω′ eiω′ηG(0)(p′,ω′)G(0)(p,ω).

(2) δG̃(1)(p,ω) = i
2 G(0)(p,ω) 1

(2π)4

∫
d3 p′ dω′ U (p−p′)eiω′ηG(0)(p′,ω′)G(0)(p,ω).

(3) δG̃(1)(p,ω) = − i
2 G(0)(p,ω) U (0)

(2π)3

∫
dt1
∫

d3 p1np1

∫
d3 p2np2 ,

where
∫∞
−∞ dω eiωηG(0)(p,ω) = 2πinp with np denoting the number of particles in

state p.

(4) δG̃(1)(p,ω) = i
2 G(0)(p,ω) 1

(2π)3

∫
dt1
∫

d3 p1np1

∫
d3 p2np2U (p2 − p1).

12.4 (a) P0(2, 1) = (2π)−4
∫

d3qdω|γ(q)|2eiq·(x2−x1)e−iΩq (t2−t1) 2Ωq

ω−(Ωq−iη)2 , where

P0(q,ω) = |γ(q)|2 2Ωq

ω−(Ωq−iη)2 .

12.5 (c) ε(q,ω) = 1 + V (q)χ0(q,ω).

Chapter 13 Semiclassical Theory of Electrons
13.1 (a) vz(k) == 0, vx (k) = �

mx
kx , and vy(k) = �

my
ky . (c) ωc = eB0√

mx my c .
13.2 (a) and (b) (Fig. C.15)

13.3 θ = tan−1
(

1
ωcτ

)
= tan−1

(
mc

eB0τ

)
.

Fig. C.15 A constant energy surface (red curve) ε(k) and the real space trajectory (dark curve) of
the particle in a 2D system of Problem 13.2
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Fig. C.16 Plot of quantized energies for −5�ωx ≤ εn ≤ 5�ωc in Problem 13.5(b)

13.4 (a) z = z0 = constant ≡ 0, x(t) = ε0
eEx

(cos eEx a
�

t − 1), y(t) = ε0
eEy

(cos eEy a
�

t − 1).

13.5 (a) S(ε) = πk2
⊥ = π( ε

�vF
)2 = π

�2v2
F
ε2 = eB

�c 2πn. (b) εn = ±vF

√
2�eB

c n. See

the figure below for the quantized energies of −5�ωx ≤ εn ≤ 5�ωc (Fig. C.16).

(c) m∗
n = εn

v2
F

=
√

2�eB
c

1
vF

√
n : m∗

0 = 0, m∗
1 =

√
2�eB

c
1
vF

, m∗
2 =

√
2�eB

c
1
vF

√
2,

m∗
3 =

√
2�eB

c
1
vF

√
3, . . ..

13.6 (a) vx (ε, s) = vF cos ωcs, vy(ε, s) = vF sin ωcs, Rp(ε, s) = ∫
v⊥(ε, s)ds =

vF
ωc

(sin ωcs,− cos ωcs, 0). (b) vn(ε) = (−i)n

[
ivF J ′

n(w)(
nωc/qy

)
Jn(w)

]
.

σ = e2τm
π�2

∑∞
n=−∞

vn(εF)v∗
n(εF)

1−iτ (εF)[nωc(εF)+q·vs−ω] . For free electrons in 2D, σ(q,ω) =

2σ0
m∗2v4

F

ε2
F

∑∞
n=−∞

(
i J ′

n(w)
n
w

Jn(w)

)
(−i J ′

n(w), n
w

Jn(w))

1−iτ (εF)[nωc(εF)−ω] , where J ′
n(x) = d Jn(x)/dx and σ0 =

n0e2τ
m∗ with n0 = k2

F
2π

= ε2

2π�2v2
F
.

Chapter 14 Electrodynamics of Metals
14.1 (a)

σxx (z, u) = 3ω2
p

32πiω

[
z2 + 3u2 + 1 − 1

4z

{[
1 − (z − u)2

]
ln
(

z−u+1
z−u−1

)
+ [

1 − (z + u)2
]

ln
(

z+u+1
z+u−1

)}]
.

(b) E(y) = −2 ∂E
∂y |0+ 1

2π

∫ +∞
−∞ dq e−iqy

−q2+ ω2

c2 − 4πiω
c2 σxx (q,ω)

. (c) Z = 4πiω
c2

E(0)
∂E
∂y |y=0+

=
4iω
c2

∫ +∞
−∞ dq 1

q2− ω2

c2 + 4πiω
c2 σxx (q,ω)

.

14.2 In terms of the dimensionless variables σ̃i j = 4πiω
ω2

p
σi j = − ω2

ω2
p
(εi j − δi j ), the

secular equation becomes
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0 = Q2[σ̃xx (ω) sin2 θ + σ̃zz(ω) cos2 θ]
+Q

{
σ̃xx (ω)σ̃zz(ω)(1 + cos2 θ) + [σ̃2

xy(ω) + σ̃2
xx (ω)] sin2 θ

}
+σ̃zz(ω)

[
σ̃2

xx (ω) + σ̃2
xy(ω)

]
,

where Q = c2q2

ω2
p

. ω = c2q2ωc cos θ
ω2

p+c2q2

(
1 + i

ωcτ cos θ

)
.

14.3 For the case of B0 = (0, 0, B0) and q = (0, qy, qz) = (0, q sin θ, q cos θ),

ω ≈ ωc Q cos θ√
1+2Q+Q2 sin2 θ

[1 − 1
2ω2

c τ 2(1+2Q+Q2 sin2 θ)
] + i 1

τ
Q(1+Q sin2 θ)

1+2Q+Q2 sin2 θ

≈ c2q2

ω2
p

(ωc cos θ + i/τ ) if ωp ≈ ωc � q2c2.

14.4 For the case of q ⊥ B0 with B0 = (0, 0, B0), i.e. q = (0, q, 0), w =
qvF

ωc
, σxx ≈ 3iω2

p

4π

∑∞
n=0

2ωsn(w)

(1+δn0)[(nωc)2−ω2] , σyy ≈ 3iω2
p

4πw2

∑∞
n=0

2ωn2gn(w)

(nωc)2−ω2 , and σxy ≈
− 3ω2

pωc

4πw

∑∞
n=0

n2g′
n(w)

(nωc)2−ω2 in the collisionless limit, where

sn(w) = 1
2

∫ 1
−1 d(cos θ) sin2 θ[J ′

n(w sin θ)]2 and gn(w) = 1
2

∫ 1
−1 d(cos θ) J 2

n
(w sin θ).

In the long wavelength and high field limit of w = qvF

ωc

 1,

σxx = i
ω2

p

70πω2
c

(
− 6ωcw

2

a + 14ω
1−a2 − 9ωw2

1−a2 + 3ωw2

4−a2

)
,

σyy = i
ω2

p

20πω2
c

(
5ω

1−a2 − ωw2

1−a2 + ωw2

4−a2

)
, and

σxy = − ω2
p

20πωc

(
5

1−a2 − 2w2

1−a2 + 2w2

4−a2

)
.

14.5 (b) For the case of ε0 = 1, the figure below illustrates the sketch of ω
ωp

as a

function of cqy

ωp
for the surface plasmon excitation (Fig. C.17).

1 2 3 4

2

4

6

8

( )p
2

(cq   )y
2

p

 =1

Fig. C.17 The dispersion of the surface plasmons of Problem 14.5(b)
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Chapter 15 Superconductivity

15.1 Cel = ΔU1+ΔU2
ΔT = kB

[
1
2

(
Egap

kB T

)2 + 1

]√
Nc Nve−Egap/2kB T .

15.5 (a) v2
k = 1

2 (1−ξk), where ξk = ε̃k√
ε̃2
k+Δ2

. u2
k = 1

2 (1+ξk). (b) Δ = 2�ωqe− 2
g(EF )V .

Chapter 16 The Fractional Quantum Hall Effect: The Paradigm for Strongly
Interacting Systems
16.1 u|m|(z) = Nm z|m|e−|z|2/4l0

2
, where z stands for z(= x − iy) = re−iφ.

Ψ1(z1, . . . , zN ) = 1√
N !

∣∣∣∣∣∣∣∣∣∣∣

u0(z1) u0(z2) · · · u0(zN )

u1(z1) u1(z2) · · · u1(zN )

u2(z1) u2(z2) · · · u2(zN )
...

... · · · ...

uN−1(z1) uN−1(z2) · · · uN−1(zN )

∣∣∣∣∣∣∣∣∣∣∣
reduces to

Ψ1(z1, . . . , zN ) ∝

∣∣∣∣∣∣∣∣∣∣∣

1 1 · · · 1
z1 z2 · · · zN

z2
1 z2

2 · · · z2
N

...
... · · · ...

zN−1
1 zN−1

2 · · · zN−1
N

∣∣∣∣∣∣∣∣∣∣∣
e
− 1

4l20

∑
i=1,N

|zi |2
.

16.2 (a) In the Haldane configuration, = r×[−i�∇ + e
cA(r)] = l−�Q R̂ with r =

R R̂ and A(r) = 2Qφ0(1−cos θ)
4πR sin θ

φ̂. In the spherical coordinates, ∇ × A = B = 2Qφ0

4πR2 R̂;
θ �= π. The single particle Hamiltonian is H0 = 1

2m R2

(
l − �Q R̂

)2
.

(b) Note that [lα, lβ] = i�lγεαβγ and [, R̂] = 0 to have l · R̂ = R̂ · l = �Q. The

eigenvalues of 2 are �ωcm R2

Q [l(l + 1) − Q2]. ε(Q, l, m) = �ωc
2Q [l(l + 1) − Q2].

Fig. C.18 The Quasielectron pseudopotential VQE(R) as a function of N−1, the inverse of the
particle number for the values of relative angular momenta R = 1, 3, and 5 in Problem 16.3
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16.3 See the figure below. See, for example, J.J. Quinn, A. Wojs, and K.S. Yi, Physics
Letters A 318, 152 (2003) for further reading (Fig. C.18).

Chapter 17 Correlation Diagrams: An Intuitive Approach to Interactions in
Quantum Hall Systems
17.2 Hint: Note the identity L̂2 + N (N − 2)l̂2 −∑〈i, j〉 L̂2

i j = 0, where L̂ is the total

angular momentum operator, L̂ i j = l̂i + l̂ j , and the sum is over all pairs. The angular
momentum multiplet state |l N ; Lα〉 of N fermions each with angular momentum l
is written as

|l N ; Lα〉 =
∑
L ′α′

∑
L12

GLα,L ′α′(L12)|l2, L12; l N−2, L ′α′; L〉,

where |l N−2, L ′α′〉 and |l2, L12〉 are the α′ multiplet of total angular momentum
L ′ of N − 2 fermions each with angular momentum l and a pair wavefunction,
respectively. Then the expectation value of the identity in the state |l N ; Lα〉 becomes
〈l N ; Lα|∑〈i, j〉 L̂2

i j |l N ; Lα〉 = L(L + 1) + N (N − 2)l(l + 1).
17.4 Hint: For the harmonic pseudopotential VH(L12) = A + BL12(L12 + 1), the
energy Eα(L) = 1

2 N (N − 1)
∑

L12
PLα(L12)V (L12) of the multiplet state becomes

Eα(L) = N
[

1
2 (N − 1)A + B(N − 2)l(l + 1)

] + BL(L + 1), where the two sum
rules shown in the previous problem are used in the last stage.
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A
Acceptor, 189
Acoustic attenuation, 429
Acoustic wave, 455

electromagnetic generation of, 456
Adiabatic approximation, 379
Adiabatic demagnetization, 272
Aharanov–Bohm phase, 508
Amorphous semiconductor, 211
Anderson localization, 209
Anderson model, 212
Anharmonic effect, 74
Anisotropy constant, 288
Anisotropy energy, 287
Antiferromagnet, 289

ground state energy, 307
Antiferromagnetism, 289
Anyon, 506

parameter, 506
statistics, 506

Atomic form factor, 21
Atomic polarizability, 221
Atomic scattering factor, 21
Attenuation coefficient, 394
Azbel–Kaner effect, 442, 456

B
BCS theory, 475

ground state, 481
Bernstein mode, 448, 450
Binding energy, 28
Bloch electron

in a dc magnetic field, 403
semiclassical approximation for, 172

Bloch’s theorem, 116
Bogoliubov–Valatin transformation, 482

Bohr magneton, 256
effective number of, 264

Boltzmann equation, 87
linearized, 101

Bose–Einstein distribution, 61
Bragg reflection, 17
Bragg’s law, 17
Bravais lattice

three-dimensional, 9
two-dimensional, 9

Brillouin function, 263
Bulk mode

for an infinite homogeneous medium,
235

longitudinal mode, 235
of coupled plasmon–LO phonon, 237
transverse mode, 235, 237

C
Carrier concentration, 186

extrinsic case, 191
intrinsic case, 188

Cauchy’s theorem, 357
Charge density, 346

external, 221
polarization, 221

Chemical potential, 91
actual overall, 361
local, 359

Chern–Simons
flux, 508, 525
flux quanta, 538
gauge field, 507
gauge interaction, 512
magnetic field, 509, 525
picture, 511
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term, 506
transformation, 507

Clausius–Mossotti relation, 225
Collision

effect of, 359
Collision drag, 455
Collision time, 83
Compatibility relation, 151
Composite fermion, 508, 525

effective angular momentum, 525
filling factor, 509, 525
hierarchy picture, 530
picture, 509, 525
transformation, 509

Compressibility, 30, 100
isothermal, 30

Conductivity
local, 425
nonlocal, 424

Connected diagram, 383
Contraction, 381
Cooper pair, 478

binding energy, 481
Core repulsion, 28
Correlation

diagram, 521, 527
factor, 521, 522

Correlation effect, 328, 337
Correlation function

Laughlin, 524
Moore–Read, 523

Critical point
in phonon spectrum, 70

Crystal binding, 25
Crystal structure, 3

body centered cubic, 11
calcium fluoride, 13
cesium chloride, 13
diamond, 13
face centered cubic, 11
graphite, 13
hexagonal close packed, 12
simple cubic, 10
simple hexagonal, 12
sodium chloride, 13
wurtzite, 13
zincblende structure, 13

Curie’s law, 263
Curie temperature, 274
Current

conduction, 414
diffusion, 414

Current density, 346

including the effect of collisions, 361
Cyclotron damping, 447
Cyclotron frequency, 208, 407, 522
Cyclotron mode, 448, 450
Cyclotron orbit

radius of, 425
Cyclotron resonance

Azbel–Kaner, 439
Doppler shifted, 447

Cyclotron wave, 448

D
Debye, 227
Debye model, 64
Debye temperature, 65
Debye–Waller factor, 557
2DEG, 202
de Haas–van Alphen effect, 269
de Haas–van Alphen oscillation, 429, 461
Density matrix, 340

equation of motion of, 344
equilibrium, 359
single particle, 344

Density of states, 63, 92, 109
Depletion layer, 215

approximation, 216
surface, 201

Depletion length, 195
Depletion region, 195
Depolarization factor, 222
Depolarization field, 222
Diamagnetic susceptibility, 261

Landau, 268
of metals, 266

Diamagnetism, 259
classical, 266
origin of, 261
quantum mechanical, 267

Dielectric constant
longitudinal, 353

Dielectric function, 107
Lindhard, 351
longitudinal, 351
of a metal, 229
of a polar crystal, 229
transverse, 351

Dielectric tensor, 221
Diffraction

electron wave, 16
neutron wave, 17
X-ray, 16

Diffusion tensor, 457
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Dipole moment, 219
Direct gap, 185
Direct term, 282
Disorder

compositional, 211
positional, 211
topological, 211
types of, 211

Disordered solid, 211
Distribution function

Boltzmann, 87
Fermi–Dirac, 91
Maxwell–Boltzmann, 88

Divalent metal, 128
Domain structure, 285

emergence energy, 285
Domain wall, 286
Donor, 189
Doppler shifted cyclotron resonances, 459
Drift mobility, 84
Drude model, 83

criticisms of, 86
Dyson equation, 385, 393, 395, 401

E
Easy direction, 287
Effective electron–electron interaction, 476
Effective Hamiltonian, 177
Effective mass, 126

cyclotron, 407, 419
Effective mass approximation, 126
Effective mass tensor, 171, 175
Effective phonon propagator, 394
Effective potential, 167
Einstein function, 61
Einstein model, 60
Einstein temperature, 61
Electrical conductivity, 84, 103

intrinsic, 184
Electrical susceptibility, 226
Electrical susceptibility tensor, 221
Electric breakdown, 174
Electric polarization, 220
Electrodynamics

of metal, 435
Electron–electron interaction, 337, 386
Electron–hole continuum, 364
Electron–phonon interaction, 386, 402, 476
Elementary excitation, 47
Empty lattice band, 142
Ensemble

canonical, 90

grand canonical, 90
Enthalpy, 94
Entropy, 94
Envelope function, 177
Envelope wave function, 203
Equation of states

Fermi gas, 99
Euler relation, 94
Evjen method, 31
Ewald construction, 19
Exchange field, 281
Exchange–correlation potential, 203
Exchange interaction, 312, 323

direct exchange, 312
double exchange, 312
indirect exchange, 312
superexchange, 312

Exchange term, 282
Exclusion principle, 88
Extended states, 209

F
Faraday effect, 459
Fermi–Dirac statistics, 88
Fermi energy, 89
Fermi liquid, 96, 397
Fermi liquid picture, 513
Fermi liquid theory, 396
Fermi temperature, 90
Fermi–Thomas screening parameter, 393
Fermi velocity, 90
Ferrimagnet, 289
Ferromagnetism, 274
Feynman diagram, 383, 390, 397
Field effect transistor, 203
Finite size effect, 516
First Brillouin zone, 57
Floquet’s theorem, 116
Flux penetration, 491
Fractional grandparentage

coefficient of, 537
Free electron model, 122
Free energy

Gibbs, 94
Helmholtz , 94

Friedel oscillation, 364

G
Gap parameter, 487
Gauge field interaction, 526
Gauge invariance, 347



590 Index

Gaussian weighting factor, 522
Generation current, 198
Geometric resonance, 461
Geometric structure amplitude, 22
Giant quantum oscillation, 448, 462
Glide plane, 8
Grand partition function, 90
Graphene, 36, 129, 163, 179, 431
Green’s function, 373, 380
Group, 3

Abelian, 4
class, 134
cyclic, 134
generator, 134
2mm, 6
4mm, 5
multiplication, 3
multiplication table, 5
of matrices, 135
of wave vector, 143
order of, 134
point, 4
representation, 136
space, 7
translation, 4

Group representation, 136
character of, 140
faithful, 137
irreducible, 139
reducible, 139
regular, 138
unfaithful, 137

GW approximation, 386

H
Haldane sphere, 501, 525
Hall coefficient, 107
Hard direction, 287
Harmonic approximation, 40
Hartree–Fock approximation, 325

ferromagnetism of a degenerate electron
gas in, 326

Hartree potential, 203, 216
Heat capacity

Debye model, 64
due to antiferromagnetic magnons, 311
Dulong–Petit law, 59
Einstein model, 60

Heisenberg antiferromagnet
zero-temperature, 293

Heisenberg exchange interaction, 281
Heisenberg ferromagnet

zero-temperature, 290
Heisenberg picture, 375
Helicon, 446
Helicon frequency, 460
Helicon–phonon coupling, 459
Hole, 176
Holstein–Primakoff transformation, 294
Hopping term, 212
Hund’s rules, 258
Hybrid-magnetoplasma modes, 447

I
Improper rotation, 153
Impurity band, 199, 213
Incompressible quantum liquid, 522
Indirect gap, 185
Insulator, 128
Interaction

direct, 338
exchange, 338

Interaction representation, 375
Intermediate state, 491
Internal energy, 29, 94
Inversion layer, 216
Itinerant electrons, 313
Itinerant ferromagnetism, 313

J
Jain sequence, 510, 525

K
Kohn anomaly, 367
Kohn effect, 366, 394
k · p method, 169
Kramers–Kronig relation, 356

L
Landau damping, 447
Landau gauge, 207
Landau level, 497, 498, 522

filling factor, 209
Landau’s interaction parameter, 397
Landé g-factor, 258
Langevin function, 227, 263
Lattice, 3

Bravais, 10
hexagonal, 9
monoclinic, 10
oblique, 9
orthorhombic, 9
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reciprocal, 15
rectangular, 6, 9
square, 4, 6, 9
tetragonal, 9
translation vector, 3
triclinic, 10
trigonal, 10
with a basis, 10

Lattice vibration, 39
acoustic mode, 53
anharmonic effect, 74
dispersion relation, 55
equation of motion, 40
in three-dimension, 55
longitudinal waves, 65
long wave length limit, 43
monatomic linear chain, 39
nearest neighbor force, 43
normal coordinates, 44
normal modes, 44
optical mode, 53
phonon, 47
polarization, 56
quantization, 46
transverse waves, 65

Laudau diamagnetism, 267
Laue equation, 17
Laue method, 23
Laughlin correlation, 515, 531
Lindemann melting formula, 69
Lindhard dielectric function, 351, 393
Linear response theory, 340, 344

gauge invariance of, 347
Linear spin density wave, 337
Linked diagram, 384
Local field

in a solid, 222
Localized states, 209
London equation, 473, 490
London gauge, 474
London penetration depth, 474
Long range order, 211
Lorentz field, 224
Lorentz relation, 225
Lorentz sphere, 222, 224
Lorentz theory, 86
Lorenz number, 86

M
Mössbauer effect, 48, 68
Macroscopic electric field, 222
Madelung constant, 29

CsCl, 34
evaluation of, 31
Evjen method, 31
NaCl, 34
wurtzite, 34
zincblende, 34

Magnetic breakdown, 174
Magnetic flux, 209

quantum of, 209
Magnetic length, 209, 404, 521
Magnetic moment

of an atom, 256
orbital, 256
spin, 256

Magnetic monopole, 501
Magnetization

spontaneous, 301
Magnetoconductivity, 105, 413

free electron model, 419
quantum theory, 425

Magnetoplasma surface wave, 453
Magnetoplasma wave, 444
Magnetoresistance, 107, 408, 409

influence of open orbit, 411
longitudinal, 408
transverse, 408

Magnetoroton, 512
Magnon, 297

acoustic, 299
dispersion relation, 298
heat capacity, 299, 311
optical, 299
specific heat, 317
stability, 302
thermal conductivity, 317
two-dimensional, 317

Magnon-magnon interaction, 299
Mean Field (MF) approximation, 525
Mean field theory, 316
Mean squared displacement

of an atom, 59
Meissner effect, 469
Metal–oxide–semiconductor structure, 199,

215
Miller index, 14
Miniband structure, 206
Mobility edge, 213
Molecular beam epitaxy, 204
Monopole harmonics, 501
Monovalent metal, 127
Moore–Read

paired function, 522
state, 532
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wave function, 533
MOSFET, 203

N
Nanowire, 109
Nearest neighbor distance, 11
Nearly free electron model, 123
Néel temperature, 289
Negative resistance, 199
Neutron scattering, 555

cross section, 556
dynamic structure factor, 556
scattering length, 555

Nonlocal theory
discussion of, 447

Non-retarded limit, 244
Normal form, 381
Normal product, 381
N-process, 78

O
Occupation number representation, 322
Open orbit, 405, 411
Operator

annihilation, 551
creation, 551
lowering, 550
raising, 550

Optical constant, 241
OPW, 165
Orbit

electron, 405
hole, 405
open, 405

Orthogonality theorem, 140
Orthogonalized plane waves, 165

P
P–n junction, 193

semiclassical model, 194
Pair approximation, 392
Pairing, 381
Pairing correlation, 543
Paramagnetic state, 326
Paramagnetism, 259

classical, 264
of atoms, 262
Pauli spin, 264

Partition function, 90
Pauli principle, 89
Pauli spin paramagnetism

of metals, 264
Pauli spin susceptibility, 266
Periodic boundary condition, 39
Perturbation theory

divergence of, 337
Pfaffian, 523
Phase transition

magnetic, 315
Phonon, 47

collision rate, 77
density of states, 63
emission, 49
field operator, 399
phonon–phonon scattering, 77
propagator, 399
renormalized, 394

Phonon collision
N-process, 78
U-process, 78

Phonon gas, 79
Phonon scattering

Feynman diagram, 75
Pippard relation, 490
Plasma frequency, 108, 388

bare, 366
Plasmon, 245

bulk, 245
surface, 245

Plasmon–polariton mode, 246
Point group

of cubic structure, 153
Polariton mode, 239
Polarizability

dipolar, 226
electronic, 226
ionic, 226
of bound electrons, 228

Polarizability factor, 388
Polarization part, 386, 391
Population

donor level, 190
Powder method, 23
Primitive translation vector, 3
Projection operator, 166
Proper rotation, 153
Pseudopotential, 167, 513, 529

anharmonic, 538
harmonic, 515, 520, 531, 538, 547
subharmonic, 515, 520, 540
superharmonic, 515, 520, 539

Pseudopotential method, 166
Pseudo-wavefunction, 167, 177
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Q
Quantization condition

Bohr–Sommerfeld, 406
Quantum Hall effect

fractional, 209, 497, 500, 521
integral, 209, 499
planar geometry, 504
spherical geometry, 501

Quantum limit, 272
Quantum oscillation, 443
Quantum wave, 448
Quantum well

semiconductor, 205
two-dimensional, 109

Quasicrystal, 7
Quasielectron, 396
Quasihole, 396
Quasiparticle, 47

interaction, 396
Quasiparticle excitation

effective mass of, 396
lifetime, 395

R
Random Phase Approximation (RPA), 386
Rearrangement theorem, 134
Reciprocal lattice, 15
Recombination current, 198
Rectification, 198
Reflectivity, 241

of a solid, 240
Refractive index, 237
Relaxation time, 83
Relaxation time approximation, 87
Renormalization factor, 396
Renormalization group theory, 316
Repopulation energy, 336
Representation

change of, 341
interaction, 375

Residual interaction, 531, 534
Reststrahlen region, 239
Ring approximation, 392
Rotating crystal method, 23
Ruderman–Kittel–Kasuya–Yosida (RKKY)

interaction, 312

S
Saddle point

the first kind, 71
the second kind, 71

Schrödinger picture, 375

Screened interaction
Lindhard, 386
RPA, 386

Screening, 362
dynamic, 362
static, 362

Screw axis, 8
Second quantization, 321

interacting terms, 324
single particle energy, 322

Self-consistent field, 340
Self energy

electron, 395
Self energy part, 385
Semiconductor, 128
Semimetal, 128
Short range order, 211
Shubnikov–de Haas oscillation, 272, 429
Sine integral function, 365
Singlet spin state, 282
Skin depth, 242

normal, 438
Skin effect

anomalous, 242, 438, 439, 464
normal, 242, 437

S matrix, 376, 401
Sommerfeld model, 88

critique of, 104
Sound waves

first sound, 79
second sound, 79

Spectral function, 395
Spin density waves, 328

linear, 330
spiral, 329

Spin deviation operator, 294
Spin wave, 281, 297

in antiferromagnet, 303
in ferromagnet, 293

Spontaneous magnetization, 274, 283
Star of k, 143
Stoner excitation, 314
Stoner model, 313
Structure amplitude, 22
Subband structure, 202
Sublattice, 289
Sublattice magnetization

finite temperature, 309
zero-Point, 308

Sum rule, 537
Supercell, 205
Superconductivity, 469

BCS theory, 475
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ground state, 481
Cooper pair, 478
excited states, 486
London theory, 473
magnetic properties, 470
microscopic theory, 475
phenomenological observation, 469

Superconductor
acoustic attenuation, 472
coherence length, 490
condensation energy, 485
elementary excitation, 487
flux penetration, 491
gap parameter, 487
isotope effect, 475
London equation, 473, 490
London penetration depth, 474
pair correlations, 475
Peltier effect, 469
quasiparticle density of states, 487
resistivity, 469
specific heat, 472
thermal current, 469
thermoelectric properties, 469
transition temperature, 469, 489
tunneling behavior, 472
type I, 470, 490
type II, 470, 490

Superlattice, 129
semiconductor, 205

Surface impedance, 441, 443
Surface inversion layer

semiconductor, 202
Surface polariton, 244
Surface space charge layer, 199
Surface wave, 242, 451
Symmetric gauge, 207, 497

T
Thermal conductivity, 77, 84, 103

in an insulator, 76
Thermal expansion, 72
Thermodynamic potential, 93
Thomas–Fermi dielectric constant, 363

Thomas–Fermi screening wave number, 363
Tight binding method, 116, 129

in second quantization representation,
119

Time-ordered product, 379, 390, 400
Time ordering operator, 378
Translational invariance, 6
Translation group, 3
Translation operator, 114
Triplet spin state, 282
Tunnel diode, 198
Two-center harmonic oscillator, 427
Two-dimensional electron gas, 109, 202, 431

U
Uniform mode

of antiferromagnetic resonance, 310
Unit cell, 7

primitive, 7
Wigner–Seitz, 7

U-process, 78

V
Vacuum state, 324
Valley, 185
Van der Monde determinant, 499
Van der Waals coupling, 28

W
Wannier function, 178
Wave equation

in a material, 234
Weiss field, 274
Weiss internal field

source of the, 283
Wick’s theorem, 381
Wiedemann–Franz law, 83, 86
Wigner–Eckart theorem, 514

Z
Zero point vibration, 23
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