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Preface to the Second Edition

Since the publication of the first edition, the author has felt it necessary, on various
occasions of giving lectures and having discussions, to add several arguments
reinforcing the general background of the theory. On writing the revision, the
general scheme is kept unchanged. The addition is made on the following points.

(1) Gauge Invariance of Many-Body Schriodinger Equation (Sect. 2.2.5)

In the first edition, the micro- and macroscopic susceptibilities are given by
explicitly assuming Coulomb gauge. Though this is a commonly used procedure,
the gauge invariance character, which exists at the level of the minimal coupling
Lagrangian for starting the argument, is not manifest in the form of many-body
Schrédinger equation to perform perturbation calculation. This might give a
(wrong) impression that the expressions of the susceptibilities are valid only in
Coulomb gauge. The revised argument shows that the minimal coupling
Lagrangian for an arbitrary gauge can be rewritten, through a variable transfor-
mation of the Lagrangian, into a form where the gauge dependent components of
EM field appear only in a total time-derivative term, which can safely be omitted
according to the least-action principle. The remaining Lagrangian is that of
Coulomb gauge. Since this is the result of more general rule of least-action principle
than choosing a gauge, its use is guaranteed to lead to gauge invariant results.

(2) Consequences of Relativistic Corrections (Sect. 2.2.6)

Typical aspects of theoretical description of EM response are discussed in the
presence of spin degree of freedom with examples from atomic spectroscopy,
impurity spectroscopy in crystals, and excitons in semiconductors. As a special
topic of this category, a brief introduction is given about emergent electromag-
netism, which is a new fundamental approach to the Pauli equation from the
viewpoint of general gauge theory. Its relevance to the present theory of micro- and
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macroscopic EM response has not yet been studied, but, in view of the general
nature of the two formulations, the inclusion of this subject is expected to be a seed
of future studies.

(3) Comparison of Three Single-Susceptibility Theories (Sect. 3.5.2)

In this book, the constitutive equation to couple with Maxwell equation is the
induced current density as a function of source EM field. Since current density
consists of electric polarization and magnetization, one may define other types of
constitutive equations. Landau-Lifshitz proposed to use (i) “generalized polariza-
tion” including M instead of current density. Similarly, (ii) “generalized magneti-
zation” including P is possible. Examining their mutual relationship, we can show
their mutual transformation properties, common dispersion equation, and the
quantum mechanical susceptibility tensor in each case.

(4) Dispersion Relation in Chiral Media (Sect. 3.4 Latter Half and Sect. 4.1.5)

A comparison of chiral constitutive (ChC) equations of this book with the con-
ventional Drude-Born-Fedorov (DBF) constitutive equations is made in terms
of the dispersion curves near a chiral resonance. It shows a qualitative difference in
the analytical form of dispersion equation, and, for a particular model, in the ability
and inability of reproducing linear crossing at k = 0, indicating the superiority of
ChC over DBF equations.

(5) Velocity Gauge Versus Length Gauge (Sect. 5.3.2)

In the EM response theory of matter, there has been a long debate about the right
choice of interaction term, —P - E or (e¢/c)p - A, which are often called length gauge
and velocity gauge, respectively. These forms are known to be mutually trans-
formed via the Power-Zienau-Woolley transformation in the Lagrangian, as dis-
cussed in Sect. 5.3.1 (Sect. 5.3 of original version). The additional argument in
Sect. 5.3.2 is that the generating functional of PZW transformation is similar but not
equal to that of gauge transformation. This means that the naming of length and
velocity gauge is not appropriate.

(6) Static Polarization in the Present Framework (Sect. 5.7.2, Latter Half)

The present scheme relies on the constitutive equation between current density J
and EM field. In the familiar relation J = 9P/t + ¢V x M, the first term vanishes
in static case. This might suggest that static polarization cannot be described by this
theory. But we can show that the @ — O limit of the constitutive equation for J
leads to that of static P correctly.

The remaining parts of the book are essentially same as the first edition, except
for the minor changes related to the revision mentioned above.

Some of the research works of the added contents were supported in part
financially by the Grant-in-Aid (No. 22540338) of the Ministry of Education,
Sports, Culture, Science and Technology of Japan. Also, the supports by Yamada
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Science Foundation (in 2014) and Toyota Physical and Chemical Research Institute
(in 2016) are deeply appreciated for allowing the author to organize two workshops
on themes closely related to fundamental EM responses, which is one of the
motivations for this revision.

Kobe, Japan Kikuo Cho
September 2018



Preface to the First Edition

Throughout my whole career including student time, I have had a feeling that
leaning and teaching electromagnetism, especially macroscopic Maxwell equations
(M-eqs) is difficult. In order to make a good use of these equations, it seemed
necessary to be able to use certain empirical knowledges and model-dependent
concepts, rather than pure logics. Many of my friends, colleagues and the physicists
I met on various occasions have expressed similar impressions. This is not the case
with microscopic M-eqs and quantum mechanics, which do not make us reluctant to
teach because of the clear logical structure.

What makes us hesitate to teach is probably because we have to explain what we
ourselves do not completely understand. Logic is an essential element in physics, as
well as in mathematics, so that it does not matter for physicists to experience
difficulties at the initial phase, as far as the logical structure is clear. As the
well-known principles of physics say, “a good theory should be logically consistent
and explain relevant experiments”. The reason why we feel reluctant to teach
macroscopic M-eqs may be related with some incompleteness of their logical
structure.

There seem to have been explicit and implicit arguments about the problematic
points of macroscopic M-eqs with respect to the uniqueness and consistency.
A most frequent question I heard was how to uniquely separate total current density
into the true and polarization charge densities. A similar problem of non-uniqueness
exists when we divide transverse current density into the contributions of electric
and magnetic polarizations. Also, there has been no answer to the question, “why
do we need two susceptibility tensors in macroscopic M-eqs, while we need only
one in microscopic response?”. Further, it is strange that no general expression of
magnetic permeability, except for the case of spin resonance, is known, while there
are many general descriptions of dielectric function.

The present author has devoted himself to the studies of light-matter interaction
and optical science, where M-eqs play an essential role. The main effort has been
spent for the construction of microscopic nonlocal response theory. The result is
published in a book “Optical Response of Nanostructures: Microscopic Nonlocal
Theory” (Springer Verlag, 2003), where I intended to give a clear description of a

ix
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well-founded microscopic semi-classical theory of light-matter interaction. Through
the construction of this microscopic nonlocal response theory, we have established
a deeper understanding of the hierarchical structure of the electromagnetic response
theories as (i) quantum electrodynamics (QED), (ii) microscopic nonlocal response
theory, and (iii) “macroscopic local response theory” with the descending accuracy
in this order. The main application of this theory has been to the studies of
nanostructures, which have sensitive dependence on the size, shape and internal
structure of matter. An entirely new direction of its application, as the basis of
deriving macroscopic M-eqs in a logically more complete fashion, was born, when I
heard a talk on metamaterials in a research meeting some years ago. More
specifically, I thought it feasible, as a new method of derivation of macroscopic
M-egs, to apply long wavelength approximation to the fundamental equations of the
microscopic nonlocal response theory. The result was expected to be more reliable
than the conventional ones because the microscopic theory is built from the first
principles.

What is the “derivation” of the macroscopic from the microscopic M-eqs? A
reasonable answer would be to extract the relations among the macroscopic (long
wavelength) components of the relevant dynamical variables from the microscopic
motions of charged particles and the microscopic M-eqs. The logically correct way
to do so is to apply the approximation for macroscopic averaging to reliable
microscopic equations. Thereby, it is important not to fix the goal of the argument
beforehand. In many textbooks dealing with the derivation of macroscopic M-eqs, it
is argued how one derives the “known” form of macroscopic M-eqs from the
microscopic equations of matter and electromagnetic (EM) field. To fix the result of
argument from the beginning is logically dangerous, because it may lead to an
insufficient check of the validity condition of each step of the argument. In fact, the
macroscopic M-eqs obtained in this book by a new method of derivation has a more
general form than the conventional ones, and the former reduces to the latter only
under a certain limited condition, which has nothing to do with macroscopic
averaging. The new form of macroscopic M-eqs is free from all the problematic
points of the conventional form with respect to the uniqueness and consistency.
This is a relief of the long standing discomfort.

Although I believe that the logical structure of the new derivation is more
complete than many previous arguments, I would still need to fight with a big pile
of historical facts and arguments before the new result is widely accepted in the
physics communities. Since the initial phase of this study, I have had a plenty of
chances to discuss with experts personally and to give talks in various seminars and
conferences for domestic and international audience. On such occasions, I did not
encounter any embarrassing questions and comments, which require a fundamental
change in my theory. Some gave me very positive comments and advices, but many
others remained silent. This reaction is understandable, if we consider the rebelling
aspect of this work against the well accepted knowledge of physics community.
Some of my friends and colleagues made comments, with the tone of warning, such
as “Isn’t it bold ?”, “You are brave” or “Retired professors tend to be interested in
such a problem”.
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In order to make this theory acceptable to the physics community, the study of
historical aspects would certainly be important because there are long accumulated
results of the very successful conventional macroscopic M-eqs, with which the new
theory must coexist. Since the author’s knowledge on such historical aspects is
limited, I would very much like to have readers collaboration. If a reader knows or
finds a past argument which might be in conflict with the present theory, please
bring it to my attention for further considerations.

In constructing this theory, I have been indebted to Profs. K. Shimoda,
K. Ohtaka, F. Bassani, G. La Rocca, W. Brenig, M. Saitoh, and M.-A. Dupertuis for
useful discussions. Especially, the very positive comment of Prof. Bassani, who
passed away last year to my great regret, was quite encouraging. This work started
almost at the same time when the author moved into Toyota Physical and Chemical
Research Institute (TPCRI) in 2006. Its unique founding policy since 1940,
allowing a very wide range of research works of fundamental and applicational
nature, has been a great spiritual support of this work. Financially, this work was
supported in part by TPCRI, and by the Grant-in-Aid (No.18510092) of the
Ministry of Education, Sports, Culture, Science and Technology of Japan. Finally, I
would like to thank my wife Satsuki for her continual support of my life as a
physicist.

Nagakute Kikuo Cho
December 2009
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Notations

The meaning of the notations of physical quantities is tabulated. The choice is made
for the frequently appearing ones in the text. Those limited only to a particular
section are omitted.

1. Current densities

J: (orbital) current density

Jory: orbital current density

J: current density due to spin magnetization
Jo: A-independent part of current density

I;: total current density, = Jop +Js

I: A-independent part of I,

1"

IEL>: longitudinal component of I

I.g: P component of current density induced by electric field E
I.5: P component of current density induced by magnetic field B
I,5: M component of current density induced by magnetic field B
I,r: M component of current density induced by electric field E

: transverse component of I

2. Polarizations

Pr: electric polarization induced by electric field E

Py: electric polarization induced by magnetic field B
M magnetic polarization induced by electric field E
My: magnetic polarization induced by magnetic field B

Pgr: electric polarization induced by transverse electric field E™

e Py : electric polarization induced by longitudinal electric field EM
e Mgr: magnetic polarization induced by transverse electric field E™
e Mpg;: magnetic polarization induced by longitudinal electric field E®

XiX
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Notations

. Susceptibilities

Yca: Microscopic nonlocal susceptibility

Jem: Macroscopic susceptibility derived from y.q
70 the component of .., producing transverse field
XemoO* O(ko) term of Xem

Xeml: O(kl) term of Xem

Nem2: O(kz) term of Xem

Jeg: electric susceptibility due to E

%en: electric susceptibility due to B

JmE: Magnetic susceptibility due to E

ZmB: Magnetic susceptibility due to B

yeL: susceptibility due to external longitudinal field

Hamiltonians

Hpg): Hamiltonian of vacuum EM field

H\1..,,: Hamiltonian of charged particles in a EM field
H,: matter Hamiltonian without spin part

H: matter Hamiltonian with relativistic corrections
H,,;: matter-EM field interaction, linear part

H,,»: matter-EM field interaction, quadrutic part

H,,: linear matter-EM field interaction including spin
H;: spin Zeeman Hamiltonian

Energies

E,;,: interaction energy of two current densities via EM field
ED: E... via transverse EM field

EY): E,, via longitudinal EM field

e .o/, Tadiative interaction between two current densities

. Green functions

e G, scalar Green function of vacuum EM field, g = w/c
e G, tensor Green function of vacuum EM field, ¢ = w/c
. GEZL): the part of G, producing transverse field

e G, ): the part of G, producing longitudinal field

Others

e g: light wave number in vacuum, g = w/c
e v, group velocity



Chapter 1 ®)
Introduction Check for

Abstract On the basis of traditional form of macroscopic Maxwell equations,
several inherent problems are pointed out. In order to find its logically more com-
plete form, it is argued to derive it from a reliable higher-rank theory through long
wavelength approximation, i.e., to put it in an appropriate position within the single
hierarchy of all the EM response theories interrelated via a series of valid approxi-
mations.

1.1 Purpose of the Book

Maxwell equations (M-eqs) are the essence of electromagnetic theory, consisting of
a set of Gauss laws for electricity and magnetism, Ampere law and Faraday law.
They have played one of the main roles in the tremendous development of physics in
the last century. There are two sets of M-eqs, i.e., microscopic and macroscopic M-
eqs. Historically, the latter appeared first and the former was derived from the latter
according to the particle picture of matter. The former is used as one of the basic set
of equations to construct quantum electrodynamics (QED). The agreement between
the prediction of QED and related experiment is quite high in accuracy, which guar-
antees the reliability of its constituent theories, quantum mechanics, relativity, and
microscopic M-eqs.

The macroscopic M-eqs, an approximate form of the microscopic M-eqs, have
been quite successfully applied to a vast range of macroscopic phenomena including
both fundamental and applicational problems, so that they have been well accepted
by most research people. Still today they are indispensable as an essential tool in
various research fields such as metamaterials, left-handed systems, near field optics,
photonic crystals, etc., and they are also of basic importance as a curriculum in
physics.

Since M-eqs describe the relationship between electromagnetic (EM) field and
the dynamical variables of matter, i.e., charged particles, all the EM phenomena are
governed by, not only M-eqs, but also Schrodinger (or Dirac, Newton) equations.
The diversity of the EM phenomena is endless through that of matter. Since the
proposal of the M-eqs in the latter half of the 19th century, various aspect of matter-
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2 1 Introduction

EM field coupled systems have been studied, but we still find new problems in both
fundamental and applicational phenomena.

The research subjects mentioned above (metamaterials, etc.) are those for macro-
scopic M-eqs. A common central feature of metamaterials, left-handed systems and
multi-ferroic systems is the coexistence of electric and magnetic polarizations of
matter. Though such an aspect existed before as individual problems, its appearance
as a central feature of a group of macroscopic phenomena seems to be a new trend.
This gives a motivation to re-investigate whether the macroscopic M-eqs are good
enough for the study of such problems.

There are a number of attitudes toward the macroscopic M-eqs. The easiest one
is to regard them as a phenomenology, as they were proposed in the 19th century,
when there were neither quantum mechanics, nor relativity theory, and also the
particle picture of matter was not yet well established. From this viewpoint, one
does not pursue the rigorous logic and consistency of the macroscopic scheme,
regarding dielectric constant ¢ and magnetic permeability p just as free material
parameters. The second one is to accept the conventional macroscopic M-eqs as semi-
quantitatively correct scheme, admitting the standard ways of deriving macroscopic
from microscopic M-eqs found in many textbooks. The third one, though seemingly
a minority, finds the standard derivation logically incomplete, and requires a new
one which will give solutions to a number of questionable points in the conventional
macroscopic M-eqgs.

The present author belongs to the third group of mind mentioned above, and
therefore the aim of this book is [a] to discuss the incompleteness in the derivation of
the conventional macroscopic M-eqs from the microscopic ones based on the particle
picture of matter, [b] to show an alternative method of derivation and its result, and
[c] to discuss the conventional form in the light of the new result. The new result
allows us to find out the conditions to derive the conventional scheme, and various
questionable points inherent to the conventional scheme, mentioned in Sect. 1.5, are
answered in the light of the new result.

Another motivation of this work is to stress the importance of using microscopic
description of matter-EM field systems as a basis of arguments from both logical and
practical points of view. This is because such a microscopic theory with a sufficiently
general applicability has been established rather recently (due to the popularity of
nanostructure studies), so that most of the previous derivations of macroscopic M-
egs had no chance to make use of it, neither an intension to do so because all the
measurements in previous time were macroscopic (see, for example, p. 1 (footnote)
of [1]). As will be understood later, the use of such a microscopic theory as the
basis of derivation allows us to establish a better scheme of macroscopic M-eqs in a
mathematically well-defined form without loss of logical generality.

Since Galilei’s time, physics has made a firm and extensive progress on the two
fundamental principles, “logical consistency of theory” and “agreement between
theory and experiment”. In particular, the requirement of logical consistency applies
to every step of any theoretical frameworks from very fundamental to applicational
levels. The existing EM response theories constitute the hierarchy shown in Table 1.1,
where the accuracy of each theory decreases from the top to the bottom. If we have
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Table 1.1 Classification of EM response theories

(A) Main hierarchy

EM field Matter Theory Applied mainly to
Quantized Rel. g-mechanics Rel. QED Elementary particles
Quantized Non-rel. g-mechanics Non-rel. QED Atoms

Classical Non-rel. g-mechanics Semiclassical

rel. = relativistic, g-mechanics = quantum mechanics

(B) Substructure of semi-classical theory
Theory Applied mainly to
Microscopic nonlocal theory | Atoms ~ nanostructures

Macroscopic local theory Macroscopic media

two theoretical frameworks 7] and 25, where 7] is derived from > under an
approximation €, the reliability of .7] depends, not only on that of .7, but also on
a clear knowledge (including the validity condition) of %’. In the case of macro- and
microscopic M-egs, .7 is the conventional macroscopic M-eqs, .7; is the microscopic
M-eqs plus the (classical or quantum) mechanics of charged particles, and %’ is the
“macroscopic averaging”. From the requirement of logical consistency for theories
of physics, any EM response theory should belong to the hierarchy of Table 1.1(A),
(B). Table 1.1(A) gives the main hierarchy and Table 1.1(B) gives the substructure
inside the semiclassical theory.

In the conventional way of derivation, one looks for the arguments which repro-
duce the known form of macroscopic M-eqs without considering the possibility of
finding a more general scheme than the known one. Another frustrating point, which
will be mentioned in more detail in Sect. 1.6, is the lack of generality and unambigu-
ous definition of % and %' In the new derivation in this book, on the other hand, we
take the fundamental equations of microscopic EM response theory [2] for 23, and
LWA for ¢, which are all physically and mathematically well defined concept and
procedure without empirical knowledge and model-dependence. This leads in fact to
a new macroscopic scheme with more general character than the conventional one.
Figure 1.1 shows the historical developments, from the author’s viewpoint, about the
micro- and macroscopic M-eqs including the present one.

The remarkable simplicity and generality of the new derivation arise from the
form of the constitutive equation in the microscopic nonlocal response theory, where
the nonlocal susceptibility is written as a separable integral kernel in general. This
feature has been utilized in the microscopic nonlocal response theory to reduce the
integral equations into simultaneous polynomial (linear in the case of linear response)
equations, but it is also useful in performing LWA in the microscopic constitutive
equation to obtain the macroscopically averaged constitutive equation. It is not an
exaggeration to say that without this separability we could not construct a general
scheme of the new macroscopic M-egs.
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Logical
completeness

microscopic M-eqs

ﬂ New derivation

macroscopic M-eqs
(new form)

Correct guess

Various attempts
of derivation (incomplete)

macroscopic M-egs (historical)

1900 2000 Time (AD)

Fig. 1.1 Historical development of Maxwell equations

In the rest of this book, the author explains all the details of the background, the
motivation of this study, the formulation of a new scheme, the results, the compari-
son with the conventional theories, and the consequences to various researches and
teaching. Mathematical details and subsidiary physical aspects are given in Chap. 5,
where each section is devoted to an independent subject.

As for the units system to be used in this book, we give all the numbered equations
in two forms with cgs Gauss units and SI units. The latter is given in braces [ e ] -
It is often omitted, when it is same as, or easily derived from, those given previously.
Short equations in the text are given in cgs Gauss units only to avoid congestion. The
different dimension of field variables and susceptibilities in ST units, a tedious aspect
of SI units in comparison with cgs Gauss units, is explicitly considered in Sect.5.8
for the new susceptibilities defined in Sect.3.1.

1.2 Macro- and Microscopic Maxwell Equations

The fundamental equations of electromagnetism are a set of equations to determine
the electric field E and magnetic field B from a given set of charge and current
densities. Their macroscopic form, established by Maxwell, Heaviside, and Hertz is
the collection of Ampere law

47 10D oD
VxH=—J.+-—, |VxH=J.+—| , (1.1)
c c ot ot |

Faraday law

1 9B oB
VXE=—-——-—, |VxE=—-——| , (1.2)
c ot ot g
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and Gauss laws of electricity and magnetism

V-D=4np. [V-D=p]. (1.3)

V-B=0, [V-B=0]. (1.4)

respectively, where J. and p; are the conduction current density and true charge
density satisfying the continuity equation

3
VJC+£:O, (1.5)

and the field amplitudes D and H are defined as

D=E+4nP , [D:SOE—}—P]SI, (1.6)
1

H=B—41M , |:H=—B—Mi| , (L.7)
Mo SI

in terms of the electric polarization P and magnetization M. The electric permittivity
(or dielectric constant) of vacuum &, and the magnetic permeability of vacuum g
satisfy the relation ggjuo = 1/c?, where c is the light velocity in vacuum.

Both P and M represent the response of matter to an applied EM field, so that
they have characteristic behavior of each material. For a weak EM perturbation, they
are usually treated as linear functions of EM field as

P = x.E, [P = 80X"E]SI’ (1.8)

M = ynH , [M = XmH]sp (1.9)
where electric and magnetic susceptibilities, x. and xp,, respectively, are considered
to be material parameters. This kind of additional relationships to solve the M-eqs
are called constitutive equations.

On the other hand, the microscopic form of M-eqs is again the collection of
Ampere law

1 0E 1 oE
VxB_—J —VxB=J+¢g—| , (1.10)
cor’ Lo at g
Faraday law
1 9B oB
VXE=—-—-—, |[VXE=—— , (1.11)
c ot ot g
and Gauss laws of electricity and magnetism
1
V-E=4np, |(V-E=—p| , (1.12)
€0 Ist

V-B=0, [V-B=0]. (1.13)
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The charge and current densities, p and J, respectively, are now no more contin-
uous variables, but the summations over discrete variables corresponding to all the
charged particles of matter, i.e.,

pr) =) e dr—ro) (1.14)
£

Jr) = ewe $r—ro), (1.15)
£

where e, r¢, v, are the electric charge, coordinate, and velocity, respectively, of the
£th particle. These expressions can be used as the operator forms of these quantities in
quantum mechanics of charged particles, and as operators, they satisfy the continuity
equation (see Sect.5.1)

ap

VeJ+o-=0. (1.16)

The microscopic M-eqs need also to be supplemented with a constitutive equation,
which relates the induced current density J (r, ) with source EM fields, which in this
book are chosen transverse vector potential A (r, w) and longitudinal external electric
field Ecx (r, ®). The characteristic point in this case is the nonlocal relationship
between J (r) and source fields, through which the microscopic spatial variation is
correctly taken into account reflecting the details of quantum mechanical excited
states of matter. This is the core part of the microscopic nonlocal response theory,
and will be described in Chap. 2.

Historically the microscopic form of M-eqs was obtained, or correctly guessed,
from the macroscopic one [3], but from the hierarchical viewpoint the macroscopic
one is an approximate form of the microscopic one. This recognition makes us try to
derive the latter from the former via an appropriate approximation for macroscopic
average. Thereby we need to consider the macroscopic forms of both the M-eqs and
the constitutive equations as a set for determining EM response correctly. Using an
appropriate procedure for “macroscopic averaging”, we should be able to rewrite the
microscopic forms into the macroscopic ones.

The M-eqs can be simplified by the use of vector and scalar potentials. The Gauss
law for magnetism V - B = 0 describes the transverse (T) nature of the vector field
B, so that we may introduce a vector potential A as

B=V xA, [B=V xAlg (1.17)

which always satisfies V - B = 0. Inserting this into the Faraday law, we have

194 9A
VX|E+-—)=0, |VX|E+—)=0 (1.18)
c dt ot St

Since this relation claims the longitudinal (L) nature of E + (1/c¢)(0A/0dt), we may
introduce a scalar potential ¢ to write E as
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10A 0A

E=-11_gy [E:—E—Vq&LI, (1.19)

by using the identity V x V¢ = 0.

The definition of the T and L character of a vector field C with translational
symmetry is usually made in terms of its Fourier components as k - Cy = 0 for T, and
k x Cy = OforL field. For a general case without translational symmetry, “V - C = 0
for T, and V x C = 0 for L field, at all points” is the generalized condition, which
reduces to the usual one for translational symmetry by taking Fourier transform.

The relation between (E, B) and (A, ¢) is not unique, since the new set (A’, ¢")

A'=A+cVy, [A=A+Vx]. (1.20)
S S PR '§
o =¢ at’[¢_¢ atL (1.21)

in terms of an arbitrary analytic function y (r, ¢) gives the same set of (E, B). This
is called gauge transformation, and each choice of x defines a new gauge.
Among various choices, there are two frequently chosen cases, i.e., Coulomb

gauge

V-A=0, [V-A:O]SI (1.22)
and Lorentz gauge
10 10
voA+ 2 o [viar L2 o] . (1.23)
c ot c? ot SI

The M-eqs in the Coulomb gauge are given as

1
V¢ =4mp [—V% = —p] : (1.24)
€0 dsi
13’4  4rm 19V
VA+—-——="gJ-—-_=
+ c? 012 c J c Ot
1 9%4 1 9Ve
R v 7 1.25
|: t 35 wod oy :|SI (1.25)

and in the Lorentz gauge as

1 3% 1 3% 1
_y2 ——~ —d4np, |-V? — = , 1.26
¢+ c? 9r? P [ o c* or? 8O)OLI (120
1 324 4 1 924
VA =LA Ty LAy = A .27
+ c? 9t? c J |: * c? or? MOJ]SI (127
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The symmetric form in Lorentz gauge is useful for the description of relativistic
regime because of its apparently invariant form for Lorentz transformation.

The M-eqs in the Coulomb gauge can be splitinto T and L components, i.e., (1.24)
is VE® = 47 p for the L field, and the T component of (1.25) is

1 92A™
c? 02

24 (1)
_yam o LA 4”J<T> V24D 4
2 9r?

= ,U«oJ(T’} (1.28)

SI

where the suffix T is deliberately attached to A to stress the T character. The L
component of (1.25) leads, by taking its divergence, to

2
drg 10V

c ot c? 0t

2

=0, [MOV-J(L) _1avie =0} (1.29)
SI

which s equivalent to the continuity equation (1.16) by the use of the Poisson equation

(1.24).

It is noteworthy that the gauge transformation affects only the way to split E®
into —V¢ and —(1/c)8A(L)/8t, while ED | ie., A, remains intact. Thus the T
components of M-eqs, (1.28), is not affected by the gauge transformation. It suggests
the usefulness of the separate consideration of the T and L components of EM
response. An additional support of this viewpoint is obtained from rewriting the
self-energy of L field

Hiy = é / dr {EV))? (1.30)
[: E—O/dr {E(L)}Z] (1.31)
2 SI

produced by all the charged particles. Using the Gauss law V - E¥ = 47p and its
solution

E(L)(r) =—V/dr’ ,O(r’) |: __ 1 Vfdr/ ,0(,-/) ] (132)
r—r| 4 e lr—r|lq

Wwe can rewrite Hg]“v)[ into the well-known form of Coulomb potential as

Y = = /d V/d/ p(’ ED () (1.33)
_ //d 4 POPT) pr)p(r) (1.34)
|r—r'|

D) D
lre —re|

[
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€epéy
|: 47750 Z Z Ire —re| } (13

>t

This rewriting is gauge independent, because we use only the Gauss law and the
charge density in particle picture. As discussed in Sect. 5.2.3, the choice of Coulomb
gauge removes the L field from the kinetic energy term of the Hamiltonian > {p —
(e/c)A}?/2m. In this way, the T field is represented by the vector potential, and the
L field is included in the Coulomb potential. The external L field is described by
an external charge, and the external T field by a solution of (1.28) for J¥ = 0. In
the absence of external L field, all the charges are included in the “matter”, and the
matter-EM field interaction is described by the (T) vector potential alone. This scheme
introduces different forms of interaction term, i.e., — f dr E - P for the L-field, and
(—=1/c¢) [ drJ - A for the T field. The main part of the microscopic response theory is
constructed for the T field response with all the L component of E is incorporated in
the internal field of matter. The M-eqgs in this case are represented only by the single
equation, (1.28), which is gauge independent. The case of excitation by external L
field is described in Sect.5.7.

1.3 Standard Derivation of Macroscopic Maxwell
Equations

The standard argument to derive the macroscopic form from the microscopic one is as
follows. The charge and current densities after macroscopic averaging are considered
to have several components, according to which the charge density p consists of true
and polarization charge densities, o; and pp as

P = p+ Op - (136)

The latter represents the distortion of a neutral charge density perturbed by an electric
field, and the former the remaining part of p in the case with net charges. Since
the distortion of a neutral charge density causes an unbalance of charges, it should
produce an electric polarization P in such a way as

V.-P=—p,. (1.37)

On the other hand, the current density is caused by the motion of the charge density,
which again consists of several components. One is the motion of p; which causes
J. (V-J.+ 0dp /9t = 0), and the other is the motion of P which causes polarization

current density

P
Jo= (1.38)
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Similarly, it is known that magnetization M with rotational structure produces a
current density
Ju=cVxM, [Ju=VxM]. (1.39)

Altogether, J is the sum of the three components as

oP oP
J=J.+—+cVxM, |J=J.+—+V XM . (1.40)
at ot S

This decomposition is consistent with the two continuity equations (1.5) and (1.16),

since

0 d 0
v.sz.JC_ﬁz_Mz__p

1.41
Jt ot at ( )

where we used the T character of the vector field V. x M,ie., V-V x M = 0.
The microscopic Gauss law, (1.12), after substitution of (1.36) and (1.37) becomes

1
V.E =dnp, — 47V -P, [V~E=—(pt—V-P)i| , (1.42)
€0 SI

which is equivalent to the macroscopic Gauss law (1.3), and the microscopic Ampére
law (1.10) inserted with (1.40) is

4 19(E +4nP)
VxB=—Uc+cVXM)+-———T—7—,
c c ot
1 IE+P
|:—VXB:JC+VXM+£0gi| , (1.43)
Ho ot SI

which is equivalent to the macroscopic Ampere law (1.1).

The macroscopic variables J ., P, M represent the conduction current density due
to the motion of true charge density, electric polarization, and magnetization, respec-
tively, of the matter in consideration. They are dependent on the EM field in the matter.
Itis usual to introduce electric and magnetic susceptibilities, x. and xn,, respectively,
dielectric constant £, and magnetic permeability u in the regime of linear response as

P = x.E [P=cox.E]. (1.44)
D =¢E [D =¢E], (1.46)
B=uH [B=puH| (1.47)
with additional relationship as
e=1+4mx. [e=ceol + xo)] (1.48)

po=1447xm [ = po(l + xm)]g - (1.49)
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As macroscopic material constants, they describe the response of individual material
samples. Later we raise a question about the appropriateness of these linear response
coefficients from the viewpoint of the new single susceptibility theory.

1.4 Hierarchy of EM Response Theories

There are several different theoretical schemes to describe the light-matter interac-
tion. They are classified in the hierarchy:

(1) Relativistic QED (quantum electrodynamics)

(2) Non-relativistic QED

(3) microscopic nonlocal response theory (non-relativistic and semi-classical)
(4) macroscopic local response theory (non-relativistic and semi-classical)

The schemes (3) and (4) are semi-classical theories, where EM field is treated as
classical variables. The matter variables are treated quantum mechanically in (3),
and as macroscopically averaged quantities in (4). The conventional macroscopic
M-eqs correspond to (4). Table 1.1 summarizes the relationship of these different
schemes.

The scheme (1) is the fully quantum mechanical treatment of coupled matter-
EM field system in the relativistic regime. The matter part, e.g. electrons, should
be described by Dirac equation. The scheme (2) is the non-relativistic version of
the scheme (1), treating the matter motion in terms of Schrodinger equation. If we
treat the EM field as classical dynamical variables without introducing quantized
photons, the schemes (3) and (4) arise. While the quantum mechanical motions of
charged particles (in the non-relativistic regime) are precisely taken into account in
the scheme (3), all the dynamical variables in the scheme (4) are treated as classical
or macroscopically averaged quantities. From this sketch of the different schemes,
it is obvious that the accuracy decreases according to the order from (1) to (4).

Since there is only one EM theory in physics, these four schemes are, or should
be, logically related. A lower rank scheme is derived from the upper one by a certain
approximation. Namely, we derive (2) from (1) by assuming that the velocity of
matter particles is generally much smaller than the light velocity c. For the step from
(2) to (3), we neglect the commutation relations of photon operators and describe the
state of each mode in terms of a complex c-number, i.e., we replace the statistical
distribution of photon states in amplitude and phase with a complex c-number for
each mode. In these two cases, the logics are clear. One uses a reliable scheme as
a starting point, then applies a well defined approximation to the starting scheme
without presetting the resulting form. As a consequence, we find a less exact but
often simpler form of theory.

As for the derivation of (4) from (3), the treatments in various textbooks of elec-
tromagnetic theory do not seem to be so logical as the cases from (1) to (2), and
from (2) to (3). As we discussed in Sect. 1.3, the past derivations aimed at rewriting
the microscopic M-egs into the already known macroscopic M-eqs which had been
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historically established. This “derivation” was motivated by the belief that the micro-
scopic scheme based on the particle picture and quantum mechanics, established in
the 20th C., is more fundamental than the macroscopic one known since the 19th
C. It is understandable to be lured to set the aim of the derivation to the search of
a reasoning somehow to reproduce the known form of macroscopic M-eqs. From
the logical point of view, however, it is not appropriate to fix the goal of argument
from the beginning. The goal should be the result of an argument, not the aim to be
fixed beforehand. If one fixes the goal at the onset, the arguments in the intermediate
stage tend to be oriented toward the fixed goal. This contains a risk to miss the proper
check of logical steps to be taken, e.g., whether or not the separation of J into the sum
of the contributions from two independent variables P and M can be done without
restrictions.

The attempt of this book to reconstruct the macroscopic Maxwell eqs from the
microscopic ones is motivated by the observation mentioned above. The proposed
logic to derive the scheme (4) from (3) is very simple, i.e., to apply LWA to the
fundamental equations of (3). This will establish the deeper understanding of the
hierarchy.

1.5 “Problems” of the Conventional Maxwell Equations

One of the problems about the standard “derivation” of the macroscopic M-eqs,
mentioned in Sect. 1.3, is the non-uniqueness of splitting o into p; and pp, (1.36),
and J into J., 0P/0t, and ¢V x M, (1.40). It is possible to raise examples how
these split components arise on a given model. For example, a neutral atom affected
by an external electric field gives rise to a dipole moment, which contributes to
P. However, for a given vector field of induced current density J(r, t), there is no
general recipe, to the author’s knowledge, to splititinto J., dP/d¢,and ¢V x M, and
pr, o) {= (—i/w)V - J(r, )} into p; and p,. In order for the standard derivation
of macroscopic M-eqs to be logically acceptable, there should be a general recipe to
make the decomposition uniquely.

The second problem is related to the first one. As a result of the splitting, we
have P and M, which represent the electric and magnetic properties of matter
via susceptibilities x. and xp,, defined in (1.44). These susceptibilities are tensors in
general, and independent of each other. As functions of frequency, x. has poles at
electric excitation energies, and x., at magnetic excitation energies. We need the two
susceptibility tensors to describe the linear response of a matter macroscopically.
However, in the microscopic M-eqs, we need only one susceptibility between J and
E (or B). (The charge density is related with V - J, i.e., the L component J © 5o
that it does not require a new susceptibility.) This susceptibility has poles at all the
excitation energies of matter system, and it is sufficient to have this susceptibility to
describe the microscopic linear response. Thus, a question arises, why the macro-
scopic averaging in deriving macroscopic M-eqs increases the number of necessary
susceptibility tensors? The answer to this question, like the first one, cannot be found
in textbooks.
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This problem is the core part of this book, about which the author claims a single
susceptibility scheme of macroscopic M-eqgs in contrast to the conventional scheme
with two susceptibilities. It will be discussed later if we can reduce the single suscep-
tibility of the new scheme into the two components corresponding to . and xp,. This
requires us to check two points: (i) chiral and non-chiral symmetry condition, and
(ii) the rewriting of interaction Hamiltonian —(1/c) f drJ - A into the form linear in
electric and magnetic fields as a legitimate procedure of analytic mechanics, which
leads to the preference of B to H as source magnetic field.

The third problem is about the form of dispersion equation. In the charge neutral
system (p; = 0, J. = 0), the dispersion equation for a plane wave with frequency
w and wave vector k is given as

22 K2
L [_ - w] (1.50)
SI

This is easily obtained by eliminating E or B from (1.2) and (1.1). The & dependence
of ¢ and u is generally a superposition of single poles, according to the time dependent
perturbation theory, and the poles correspond to the matter excitation energies of the
electric dipole (E1) and magnetic dipole (M 1) characters, respectively.

If the symmetry of matter is high, the E1 and M1 characters of excitations do
not mix with each other from a symmetry ground, i.e., they belong to different irre-
ducible representations of the group of a given symmetry. In this case, the excitation
energies of E1 and M1 transitions are generally different, so that the product e is a
superposition of single poles. On the other hand, if the symmetry of matter mixes the
El and M1 characters of transitions, the excitation energies of the mixed transitions
contribute to both ¢ and p. In this case the product e« would be no more a super-
position of single poles, but contains second order poles. This change of the pole
structure is bizarre in the linear response regime. Any excitation of matter should
contribute to the response function of matter as a single poles in the lowest order time
dependent perturbation theory as shown in Sect.2.2. This is so even in the presence
of an additional term of matter Hamiltonian corresponding to the lower symmetry,
because after diagonalizing the total Hamiltonian we again have a series of eigen-
values which give the poles of the response function. Thus the change in the pole
structure of the dispersion equation depending on the coupling or decoupling of the
El and M1 transitions is physically unacceptable. (Later in Chap.3 we discuss this
problem from two points of view. One is the validity condition and possible extension
of this dispersion equation, and the other is the correct definition of ; when this form
of dispersion equation is allowed.)

One could raise another problem as an example showing the incompleteness of
the conventional treatment of macroscopic M-eqs. The magnetic permeability u
represents the effect of magnetic transitions of matter. There are two well-known
examples of M1 transitions. One is the spin resonances of electron, nucleus, etc.,
and the other is the orbital M1 transitions which induce orbital magnetic moments.
The latter occurs at large variety of transition energies in various systems, such as
atoms, excitons in solids, and nuclei. The famous Méssbauer line at 54.7 keV of ’Fe
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nucleus is M1 transition, and this is why it is so sharp (10~7 eV width). However,
the conventional ways to connect these transitions to w (or to spectral intensity) are
different.

In the case of spin resonance [4], one writes the resonant part of magnetic sus-
ceptibility as

= —Fm (1.51)
wy—w—1iy

where hwwy is the spin flip energy, Sy, the intensity of the magnetic transition and
y is the width of the transition energy. From this expression, p is obtained as a w-
dependent but wave vector (k) independent quantity. Such u together with & of matter
leads to the response spectra, from which we get the resonance energy, intensity, and
width.

On the other hand, the intensity of (orbital M1 + E2) transitions is calculated by
expanding the matrix element of the light-matter interaction p - A under the LWA
of A = Agexp(ik -r) = Aop(l + ik - r + - - - ). Omitting the first E1-active term, one
gets the (M1 + E2) term as the matrix element of

ip-Ag)k 7). (1.52)

The matrix element of the dyadic pr becomes non-zero for (M1 + E2) transitions [5,
6], while that of p is non-vanishing for E1 transitions. Since the matrix element of
(1.52) is linear in k, the intensity of this transition is O(k?). Thus, u is proportional
to k2 in this case.

In spite of the same M1 character, the above two treatments lead to different k-
dependence, O(k") and O(k?). This difference seems to have been overlooked for a
long time. However, if we consider the popularity of meta-materials or left handed
systems, where the coexistence of E1 and M1 transitions leads to new subjects, we
need to have a general expression of & including both spin and orbital M1 transitions.
In Sects. 3.1 and 3.2, this problem will be solved by rewriting the single susceptibility
tensor of the new scheme.

There is a related question, the historical truth of which the present author has
been asking to many of his friends, colleagues and teachers including experts without
getting a satisfying answer. In the early days, the microscopic magnetic field was
written as, not B, but H. The microscopic Ampere law had the form

Vxh= Tyl L (1.53)
X = — -, = Eo— .
cJ c ot I kEY SI

where the dynamical variables for E, H, J are written in the lower case letters to
stress their microscopic character. In taking a macroscopic average of this equation,
we often see a statement “macroscopic average of microscopic magnetic field & is
usually written as B” in various textbooks [1, 7, 8]. It means that, by the macroscopic
averaging, we should, not only extract the LW component of &, but also rewrite H into
B, a different physical quantity including magnetization. Without rewriting H into B,
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we cannot obtain the macroscopic Ampere law, because of (1.7). This requirement
is understandable as a mean to derive the macroscopic Ampere law, but logically not
acceptable. Macroscopic averaging of a physical quantity should be the elimination
of the short wavelength and the preservation of the LW components of the quantity.
The rewriting of h into B contains an idea outside the macroscopic average.

This is not just a problem of semantic. It is related with the definition of magnetic
susceptibility. Since the microscopic form of magnetic interaction should be

Hpoe = — / drm-h, (1.54)

in the same way of using the lower case letters for microscopic quantities, the lin-
ear response calculation would give an induced magnetization proportional to A. Its
macroscopic average should lead to macroscopic constitutive equation for magne-
tization. In the conventional definition of macroscopic magnetic susceptibility xm,
(1.9), it seems that k is simply replaced by H. If one should rewrite & into B in the
process of macroscopic averaging, the same replacement in the interaction Hamil-
tonian Hy,, and in the calculated result of linear response would give a constitu-
tive equation M = xgB. This definition of magnetic susceptibility leads, by the use
of B=H +4nM, to u = 1/(1 — 4m xg). This means that the magnetic excitation
energies in xg correspond to the zeros of px, while those in xy, correspond to the
poles of ©. One would ask, which is the correct excitation energy of a given matter?
This difference in physical picture needs to be clarified together with the form of
corresponding matter Hamiltonian defining the excitation energies.

Thus, the last question is “When and how was the earlier way of writing vacuum
magnetic field as H changed to the today’s form B, and is it done consistently with
the definition of magnetic susceptibility and @ ?”. If the use of xp instead of x., were
the general understanding today, this problem would not bother us very much. But
Xm seems to be widely used still today in various fields using macroscopic M-egs.
Most textbooks use xm, though a rare case using yg does exist [9].! In view of the
fact that susceptibilities are not just parameters, but the quantities to be calculated
quantum mechanically with their poles at the excitation energies of a well-defined
matter Hamiltonian, this mismatch would lead to an essential error in the resonant
region of EM response. Although the rewriting of field variables is allowed within
the framework of analytical mechanics (Sect.5.3), which leads to various sets of
“matter Hamiltonian and interaction term”, the use of E and H does not fit to the

I'The official documents of IUPAP and IUPAC on this subject go as follows. In the [IUPAC-2007
document [Quantities, Units and Symbols in Physical Chemistry, 3rd edition, [IUPAC-2007 RSC
Publishing], we find x = p; — 1 in the table of Sect.2.3, which is also given in the [IUPAP-1987
document [Table 12 of Physica 146A (1987) 1-67]. This corresponds to xm = 1/ — 1 according
to the notations of this book (in SI units). Since the IUPAP document has not been revised since
1987, it is the valid recommendation today by IUPAP and IUPAC to use the definition of
as M = xp H. In addition to this, there is no description in these documents about the chiral
susceptibility (or admittance). From the viewpoint of the present author, these documents need to
be revised by taking the microscopic consideration of susceptibility into account.
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well-accepted matter Hamiltonian, i.e., the sum of the kinetic and Coulomb potential
energies of charged particles.

All the problems in the conventional macroscopic M-eqs seem to arise from the
lack of simple logical step, i.e., the preparation of the object to be averaged in an
explicit mathematical form. The arguments in Chap. 2 will show how to fill this gap
from the first-principles approach.

1.6 Meaning of Macroscopic Averaging

In order to derive the macroscopic from microscopic M-eqs, we need to take a
macroscopic average of the latter. However, what does a macroscopic average mean
in practice? There should be a clear mathematical definition of what is the object to
be averaged and how it is done. In view of the fact that the microscopic response is
obtained from the solution of “microscopic M-eqs and constitutive eqs”, a straightfor-
ward logic with a clear mathematical meaning would be to extract the LW components
of these fundamental equations of microscopic response.

But the past derivations do not seem to follow this line of argument. The main
point is how to write the constitutive equations for macroscopic variables, and for this
purpose, we need to have the general form of the microscopic constitutive equations
containing all the wavelength components. But it is rather recently that this kind of
microscopic constitutive equations for a general matter-EM field system has become
in practical use. In the former days where most of these derivations were made, one
had rather used empirical or model-dependent treatments. The main stress was, not
on the general nature of a model, but on the technical point of macroscopic averaging.
A typical expression for this procedure was “to take an average over a distance much
larger than atomic scale but smaller than the relevant wavelength of EM field”. From
this statement, we can guess that the coherence of matter excitations were assumed
to be of atomic (or molecular) scale. The use of appropriate models for the matter
excitations leads to the electric and magnetic polarizations, respectively, which can
be used to derive the typical expressions of x. and x,,. Within a given model, this
is an acceptable treatment. What the present author believes to be the origin of the
various incompleteness of the conventional M-eqs is the lack of arguments about
the general, model-independent criterion to split current density into an independent
sum of the components due to P and M.

The microscopic M-eqs are the equations to determine E and B from the given
dynamical variables of matter, p and J, which are determined by the quantum
mechanics of charged particles. Since the motion of p and J is affected by EM
field, we have to determine E, B, p and J selfconsistently. The auxiliary equation
to allow this self-consistent determination is “microscopic constitutive equation”,
which together with the M-eqs gives a unique solution for a given initial condition
of the dynamical variables.

All of the variables E, B, p and J are generally functions of position and time,
and their position dependences contain all the wavelength components if one solves
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the set of M-eqs and constitutive equation selfconsistently. To extract the equations
for the LW components alone, should we apply LWA to all the M-eqs, (1.24) and
(1.25), and the constitutive equations relating {p, J} with {¢, A}?

Though there is a proposal by Nelson [10] to apply LWA to the Hamiltonian of
matter, which corresponds to making LWA of (1.24), we do not take this viewpoint.
Since (1.24) gives the (microscopic) Coulomb potential due to a charge density, it is
directly related with the quantum mechanical energy eigenvalues and eigenfunctions.
Application of LWA to the microscopic Coulomb potential would make a drastic
change in the eigenvalues and eigenfunctions. Then, the poles of the macroscopic
response functions do not represent the quantum mechanical excitation energies.

What we actually want to have is the susceptibilities with poles corresponding to
the quantum mechanically correct eigen energies of matter, and with LWA averaged
spatial structure. In this sense, we apply LWA only to the matrix elements of current
density operator in the constitutive equation relating J and A. The concrete form of
this constitutive equation is given in the next chapter.

In some cases, macroscopic average is meant to contain also a statistical average,
when we consider the statistical distribution of (A) the initial ensemble of mat-
ter states in calculating its susceptibilities and/or (B) randomly located defect or
impurity centers with given transition energies. In carrying out the time dependent
perturbation theory to calculate the susceptibilities of matter, we need to define the
initial states of matter. This can be given as an ensemble of microscopic matter states,
e.g., a canonical ensemble for a given macroscopic temperature 7, which leads to
an expression of susceptibilities with a weighted average via the initial ensemble.
The explicit expression in the next chapter is a special case of T = 0° K, and a gen-
eral case is described in Sect.5.4. It is explicitly shown that this part of weighted
average via the initial ensemble is not affected by LWA, i.e., the same weighting fac-
tor remains in the macroscopic susceptibility. Therefore, the macroscopic average
should not contain this kind of ensemble average.

In the case of the randomly distributed impurities or defects, however, statistical
average has a meaning of macroscopic average. Though the system has no transla-
tional symmetry in a microscopic sense, it can be regarded as homogeneous after
taking its macroscopic average, if the distribution is uniform. Even in this case,
however, one could observe scattered light due to the absence of translational sym-
metry, especially near the resonance, which may be ascribed to the invalid situation
of macroscopic averaging.

When we make LWA to a given microscopic system, we may introduce an inter-
mediate step of LWA in addition to the full LWA regime. An example is the resonant
Bragg scattering of the inner-core excitations of a crystal. The induced current density
due to the excitation of an inner core level of an atom is well-localized in compar-
ison with the wavelength of a resonant X ray, which allows us to use LWA to the
description of the induced current density at each atom site. If we assume the full
LWA regime, the crystal is described as a uniform assembly of the E1, M1, E2 etc.
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multipoles of the resonant inner core transitions, which does not give any Bragg scat-
tering. Bragg scattering becomes possible when we admit that the resonant X ray has
a wavelength A comparable to the lattice constant dy, of the crystal. This corresponds
to describing the crystal as a periodic array of the E1, M1, E2 etc. multipoles, where
we introduce two typical lengths of matter, the size of atom a, and the lattice constant
dy,, where LWA is applicable only for A > aa. This should be called “intermediate
LWA”, in contrast with “full LWA” where the conditions A > a and A >> di do not
allow Bragg scattering. This will be discussed more in detail in Sect. 4.3.

A similar situation arises in metamaterials made, e.g., of an array of split ring
resonators (SRR). Though the conventional treatment of such an array is done in the
full LWA regime, called homogenization, it is conceivable that an intermediate LWA
may bring about a new regime where the interaction among SRR’s due the induced
charge densities on them introduces the nonlocality of coherent excitation made of
the induced current densities. This may lead to a new category of the field, “nonlocal
metamaterials”, an intermediate entity between nano- and macroscopic materials.
More discussion will be given in Sect.4.1.4.
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Chapter 2
New Form of Macroscopic Maxwell oo
Equations

Abstract As a one-step higher EM response theory of macroscopic M-egs, we give
adetailed description of “microscopic nonlocal response theory”, allowing semiclas-
sical treatment of quantum mechanical matter systems from macroscopic to nano (or
atomic) scale. Applying long wavelength approximation to this theory, we derive
first-principles macroscopic M-eqs and constitutive equation, and also the disper-
sion equation for the macroscopically uniform system under LWA. The new feature
of susceptibility is that it contains all the effects of electric, magnetic, and chiral
polarizations in a single 3 x 3 tensor. We newly add (i) an argument to guarantee the
gauge invariance even if one uses the Lagrangian in Coulomb gauge, and (ii) some
new aspects brought about by the consideration of relativistic corrections.

2.1 New Strategy for Derivation

As mentioned in the introduction, a proper derivation of macroscopic M-eqs would
need a new strategy to make the whole processes of the derivation logically and
mathematically well-defined, and to avoid the problems described in Sect. 1.5.

Since a reliable approximate theory can generally be obtained from a higher rank
theory by applying a valid approximation, we need to choose such a theory and
an approximation for the present problem of deriving macroscopic M-egs. In the
conventional derivation, this process is described as “to derive macroscopic M-eqs
from the microscopic M-eqs by applying macroscopic averaging”, but the mathe-
matical procedure to do it was not quite clear in the sense mentioned above. The
main point of derivation was to derive the constitutive equations for macroscopic
variables from appropriate models of matter. In such a derivation, it was admitted
that the induced current density J consists of the contributions of the induced electric
and magnetic polarizations as (0 P /9t) + ¢V x M. A frequently used model to cal-
culate polarizations is an assembly of molecules, which gives a detailed description
of susceptibilities through the quantum mechanical properties of molecules.

This type of argument is acceptable as an example, but may contain a risk to miss
something important about its generality. In fact, when a material system has a low
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symmetry, which does not allow to distinguish axial and polar vectors, we cannot
define electric and magnetic polarizations independently. (The symmetry condition
of matter has nothing to do with the macroscopic averaging. If it affects the final result,
we should consider it separately.) In this case, we have to go back to the microscopic
description and see how it is possible to introduce P and M from the microscopic J.
For this purpose, the microscopic scheme needs to be general enough to enable us
to judge it. Though this kind of general scheme had not been established during the
time where most of the conventional derivations of macroscopic M-eqs were made,
one could have derived it via standard time dependent perturbation theory, as shown
in the next sections. The lack of the motivation to do it was, to the author’s opinion,
the origin of the problems discussed in Sect. 1.5.

As a new strategy, we employ the recently established scheme of microscopic
optical response [1] as the basic theory, to which we apply LWA and derive the new
macroscopic M-eqs and constitutive eqs [2]. The formulation of this microscopic
optical response theory is made in a model independent way, so that one can choose
any cases of symmetry through the choice of eigen functions of quantum mechanical
matter states. The merit of this scheme is that we can start with a very general form
of matter Hamiltonian and matter-EM field interaction within the semi-classical and
non-relativistic regime, which however allows the inclusion of relativistic correction
terms, such as spin Zeeman interaction, spin-orbit interaction and so on. Therefore
this scheme can cover most of the matter Hamiltonians used for materials studies
in non-relativistic regime, including various effective Hamiltonians applicable to a
restricted energy range used for certain selected purposes.

It should be stressed that all we use here are the well-known principles and methods
of physics and mathematics, such as analytic and quantum mechanics, time dependent
perturbation theory, Taylor expansion, Fourier transform, etc. No exotic or fancy
method is employed. The only new aspect is the attempt to make the logics as firmly
consistent as possible.

The fundamental equations of this microscopic nonlocal response theory consist
of the microscopic M-eqs and a microscopic constitutive equation between cur-
rent density and source EM field. All the detailed information about the material is
included in the microscopic nonlocal susceptibility, containing the symmetry related
aspects, which is a sufficiently general basis to answer the problems of Sect. 1.5.
Another practical merit of this theory is the separability of the microscopic nonlocal
susceptibility as an integral kernel, which is quite useful both for the microscopic
calculation and for the application of LWA in deriving the macroscopic M-egs.

2.2 Microscopic Nonlocal Response Theory

In this section, we give a detailed description of microscopic nonlocal response
theory, from which we derive the new form of macroscopic M-eqs later by applying
LWA. Though a similar description is found in [1], we give it here because it is
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the core part of the present theory. We try to present the description as general as
possible, so that the final result can be applied to a broader range of problems. This
is done by choosing the matter Hamiltonian and matter-EM field interaction in a
model independent form, and their explicit spin dependence is taken into account via
relativistic correction terms (spin-orbit interaction, spin Zeeman interaction, etc.). By
preparing the matter Hamiltonian and matter-EM field interaction in such a general
form, we can cover a wide range of problems of EM response of matter. We will
be mostly concerned with linear response, since it is the main field of interest in
comparing the conventional and new schemes of macroscopic M-eqs. Extension to
nonlinear response will be mentioned in Sect.4.5.

The interaction of matter and EM field may be divided into two categories accord-
ing to the T and L characters of the vector fields involved. Though there can be mixing
between two cases, the T-field interaction is essentially related with optical response,
and the L-field interaction with the response of matter to the excitation by external
charges. For this reason, and for an additional one mentioned just below, we split the
formulation into two parts, and give the T-field part in this section, and the L-field
part in Sect.5.7. The second reason to split the description into two parts is that the
interaction Hamiltonians for the T and L fields appear in different forms. In Coulomb
gauge, the L and T components of interaction arise from the Coulomb potential and
the A dependent terms of the kinetic energy, respectively. The former can be rewritten
as — [ P™ . EW dr. The standard form of the latter is —(1/c) [ J™ - A™ dr, and
it is not possible to rewrite it into — | PD . ED dr without distorting the matter
Hamiltonian in an unusual way (see Sect. 5.3 for details).

There is an another aspect of L field to be mentioned at this point. When charged
particles are excited by some external field, they induce L, as well as T, field by
the change induced in their quantum mechanical states. The problem is whether we
treat this L field as an external field or not. Concerning this point, we have two
choices, either (I) consider it as a part of matter Hamiltonian, or (II) regard it as a
component of external EM field. The interaction of this L field with the polarization
of matter is generally written as the interaction energy Hc among the induced charge
densities of matter (p. 8 of [1]). Therefore, the choice (I) or (II) means whether we
keep this interaction energy as a part of matter Hamiltonian or add it to matter-EM
field interaction. Depending on this choice, the energy levels of the states containing
L-mode character change by the amount caused by Hc. Historically, this energy
difference has been called by various names, such as LT splitting, depolarization
shift, or electron-hole exchange energy. Their unified description in terms of the
induced charge densities of the relevant modes has been given rather recently [3].
This scheme, applicable to any type of L field caused by electron or phonon systems,
localized or extended states, etc., is used in Sect.5.7. In the following section, we
consider E® as the internal field of matter, i.e., we take the full Coulomb interaction
energy into the matter Hamiltonian.
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2.2.1 Precise Definition of “Matter, EM Field
and Interaction”

In order to answer the questions raised in Sect. 1.5, we need to define “matter, EM
Field, and their interaction” as precisely as possible, because some of the problems
are related with the definition of the starting Hamiltonian. For that purpose, it will be
most appropriate to take the minimal coupling Lagrangian for interacting matter-EM
field systems

1
L=Y" {Em@v% — e (re) + efve L A(ry) }
14

+i d (1%+v >2—(v A)?
8 d c ot ¢ x
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where A and ¢ are the vector and scalar potentials, respectively, and the integral
part on the r.h.s. is the Lagrangian of vacuum EM field. It is noteworthy that the
interaction part of the Lagrangian can be rewritten in the following integral form
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where charge density p and current density J are defined as (1.14) and (1.15), respec-
tively. This integral expression is useful in carrying out the least action principle for
A and ¢.

As a Lagrangian, this contains three kinds of generalized coordinates, r,;, A(r),
¢ (r) and the corresponding generalized velocities vy, d A /9t (the time derivative of ¢
is not contained). The least action principle of Lagrangian, or Lagrange equation for
each set of generalized coordinate and velocity, gives the Newton equation of motion,
and microscopic M-eqs for ¢ (Poisson eq) and A (wave equation) (see Sect.5.2).
The Newton equation is
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dVg 1
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dt
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where B=V x Aand E = —V¢ — (1/¢)dA/0dt. Ther.h.s. is the Lorentz force due
to the EM field acting on the charged particle. The Poisson equation is the same as
(1.24), and the wave equation for A is (1.25) (see Sect.5.2).

The fact that this Lagrangian gives the well established equations of motion for
charged particles and EM field, as mentioned above, guarantees the soundness of this
Lagrangian as a basis of further developments in various directions. In fact, it is used
for the (non-relativistic) QED, and now we are going to use it for the semiclassical
arguments.

Hamiltonian is obtained by the standard procedure of Lagrangian formalism.
Defining the generalized momentum p, for a generalized coordinate g, via p; =
dL/dqe, where ¢, is the time derivative of gy, we derive Hamiltonian as H =
> ¢ Pege — L. The details of this argument applied to the present Lagrangian are
given in Sect.5.2.3, and the Hamiltonian is given as
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where Uc is the Coulomb potential among the particles
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In this expression, we have rewritten the self-energy of the longitudinal EM field
into the Coulomb potential by using the Gauss law V - E = 4mrp and the definition
of p in the particle picture. This form of Hamiltonian applies to any gauge, i.e., the
vector potential in the first term on the r.h.s. can have the L, as well as T, component.

According to the argument in newly added Sect.2.2.5, any Lagrangian for
EM response of matter in arbitrary gauge can be reduced to that in Coulomb
gauge. This is not through the choice of gauge, but through the use of general
rule of variational principle. In this sense, we may always use the Schrodinger
equation in Coulomb gauge for the calculation of gauge invariant EM response.
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In Coulomb gauge wehave V- A = 0,1i.e., A = AT  AD = 0. Thus the vector
potential appearing in the following arguments has pure T character. We omit the
superscript T from AP = 0 hereafter, unless it is better to stress it. The Hamiltonian
is a sum of two contributions. One is the Hamiltonian of vacuum EM field

1 104 )
HEM=_ dr - +(VXA)
8 c ot

_80 3A 2 2 2
|:_E dr{<5) +c*(V x A) }j|51 2.7

and the other is the Hamiltonian of the charged particles in a given EM field in the
Coulomb gauge
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The matter Hamiltonian H is defined as Hye, for A = 0, i.e.,
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which is the sum of the kinetic energy and potential energy of particles, and the
matter-EM field interaction is the A-dependent terms of Hygem, Which is the sum of
the two terms Hiy + Hino. The A-linear term is
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and the A-quadratic term is

1 N
Hio = 5 [ dr N(r)A(r)?*,

%/dr N(r)A(r)z] , 2.11)

SI

—
I



2.2 Microscopic Nonlocal Response Theory 25

where N is defined as

2
Nu)=§:5isv—rw, (2.12)

14

and J is the A independent part of current density, i.e., (1.15) with v, replaced by
p[ /mf s

T =Y Ze—lj;e[pga(r —r) +5(r—rop,. (2.13)
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The (orbital) current density operator (1.15) is the sum of O0(A% and O(A") terms

1.
Jorn(r) = Jo(r) — ZN(")A(r) ,
[ =Jor) = N@AW®) ] - (2.14)

We write a suffix “orb” to stress its orbital character and to distinguish it from the
current density induced by spin magnetization to be discussed later.

When an external L field exists, it should be ascribed to an external charge density
Pext 1N the Coulomb gauge. This means that the charge density in Uc contains the
internal and external parts, pi; and pex. In this case, there arises a new term of
interaction due to the Coulomb interaction between pj, and pex;. As discussed in
Sect. 5.7, the natural form of the interaction Hamiltonian is — f drJy - A for T field
and — [drP - E® for L field, and it does not seem possible to write them in one
unified form — f dr P - E without distorting the matter Hamiltonian (Sect. 5.3). This
point is often overlooked in the conventional EM response theories, so that it is
appropriate to stress it at this stage of the present formulation. Since the calculation
of the susceptibilities goes similarly in both cases, we describe the case of the T field
in detail in the main text and leave the case of L field in Sect. 5.7. (For the discussion
of T-field response, the relevant p is pi, alone and the suffix “int” will be omitted.)

For the linear response to the T field excitation, we need only Hi,;. As an
operator to be used in quantum mechanical calculation, we have symmetrized the
non-commutative quantities {p,, ¢} in Jo(r). The operator N (r) has contributions
from various charged particles, but, because of the factor eﬁ /my, lighter electrons
make much more contribution than heavier ions. The electron term is written as
(€2/mg) pa(r), where e, mg, pi(r) are the charge, mass, and the density of elec-
tron(s), respectively.

For a given set of matter Hamiltonian and matter-EM field interaction, we can
calculate the induced current density, which gives the microscopic constitutive equa-
tion. The forms of Hy and Hj,; given above are model independent and have a rather
general character. However, in order to increase the range of their applicability, we
would like to include their explicit spin dependence, which is important for the mag-
netic properties of matter. Paramagnetism is typically caused by localized spin states
due to the spin Zeeman interaction with static magnetic field. The resonance transi-
tion between these spin levels can be induced by a microwave with corresponding
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frequency. This transition is caused by the (spin Zeeman) interaction between spin
magnetization and microwave EM field. This interaction is also necessary to analyze
the intra- and interband magneto-optics in semiconductors. In addition, the spin-orbit
interaction gives rise to spin-dependent energy level structure for matter systems con-
taining heavy atoms. These examples show the necessity of introducing the explicit
spin dependence of the matter Hamiltonian and matter-EM field interaction, which
leads to the realistic resonant structure of susceptibilities of spin related systems.
The explicit spin dependence of Hy and Hj,; arises from the relativistic correction
to the non-relativistic Hamiltonian [4]. In the Dirac equation dealing with an electron
in the relativistic regime, there emerges the entity “spin” by the requirement of
relativistic invariance of the equation consisting of the linear terms of time and space
derivatives. The expansion of the positive eigenvalue E = E’ + moc” of the Dirac
equation with respect to (E’ — V)/2moc?, where V is the potential energy of the
electron, gives various correction terms. Among them we have spin-orbit interaction

el [(VV) x p]. (2.15)

Similar expansion for an electron in an EM potential gives the spin-Zeeman term
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as an additional term of the Hamiltonian in the (non-relativistic) Schrodinger equa-
tion. Here, ho is the spin angular momentum of an electron. (The magnetic field
H in [4] is rewritten into B in accordance with our definition of magnetic field in
microscopic M-egs.)

In addition to these spin dependent correction terms, there are spin independent
correction terms, such as mass velocity term (due to the velocity dependent mass
correction) and Darwin term (due to the velocity-induced nonlocality of the potential
V) [5].

From our viewpoint to put L field into matter Hamiltonian, the spin-orbit inter-
action, Hg,, mass velocity term, and Darwin term should be included in the matter
Hamiltonian Hy, and the spin Zeeman term into Hi,. For many electron systems,
we should take a sum over all the electrons for (2.16) and (2.15). Thus, the matter
Hamiltonian is now

H(O) = HO + Hrel—corr (217)

where Hrel—corr - Hso + Hmass—v + HDarwin-
For the new form of Hj,, we can rewrite the spin Zeeman term as
eh

HSZ:— —0’4~B, (218)
7 moc
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— / dr My(r) - (V x A(r)) , (2.19)

— f dr V.x M) - A(r) , (2.20)

where B = V x A and partial integration are used, and the spin magnetic polariza-
tion is
eh
M(r) = Z 0 8(r—ry). (2.21)
7 noc

Defining spin induced current density as

Js(r) = cV x My(r) ,
[=VxMm), ] (2.22)

we can rewrite the last line of the equations for Hy as

Hy = —1fdr Ju(r) - Ar) .
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Adding this term to H;,, we generalize linear matter-EM field interaction as
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where the generalized current density I is the A-independent part of the total current
density (the sum of orbital and spin-induced current densities)

1(r) = Jon(r) + J(r) | (2.25)
=1I(r)— (1/c)1\7(r)A(r) , (2.26)
=[I(r) - N(HAW)], .

i.e.,

I(r) = Jo(r) + J (), (2.27)

where J isdefined in (2.13). In terms of these generalized Hamiltonians with explicit
spin dependence, H© and H,,, we can treat a broader range of problems of matter-
EM field coupled systems.
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It may be worth mentioning that most of the effective Hamiltonians used for
various specialized purposes are in fact derived via certain approximation from the
first-principles Hamiltonian discussed above. A typical example is a spin Hamilto-
nian for the analysis of spin resonance [6], where one looks at a very small energy
range corresponding to the energy levels of the spin system in consideration, and
derives an effective Hamiltonian of spin operators. Thereby, one adds a considera-
tion on symmetry to restrict the possible invariant forms of the combinations of spin
operators. The coefficients of such allowed terms are usually taken as free param-
eters, but one could estimate them by the perturbational calculation using the basis
set of states including the abandoned ones. Besides the effective spin Hamiltonians,
there are many examples of effective Hamiltonians to describe a particular properties
of matter states and various interactions, such as energy band Hamiltonian with an
effective one-particle potential, Heisenberg model of ferro- and antiferromagnetism,
Hubbard Hamiltonian to study the electron correlation, BCS Hamiltonian for super-
conductivity, Frolich Hamiltonian for electron-LO phonon coupling, etc. All of them
should be derivable from the first principles form of Hamiltonians H© and H;,, as
far as one stays in the weakly relativistic regime of charged particle systems.

2.2.2 Calculation of Microscopic Nonlocal Susceptibility

We now calculate the current density I (r) of a system of charged particles induced
by the application of a T field A(r, 7) to the lowest order of A. For this calculation, we
only need the matter Hamiltonian H ©(2.17), and the matter-EM field interaction
Hiy, (2.24). (Atthis stage, A is justa T field interacting with the matter system. Later,
on looking for a selfconsistent solution, it turns out to be the sum of an incident field
and the one induced by the induced current density.) The induced current density is
written in terms of the eigen values and eigen functions of H©. In this sense, our
result is model independent. Model dependence arises when we evaluate the energy
eigen values and the matrix elements of current density operator for a particular
system. The expression of induced current density is given in a general form, so that
it can be applied to any model systems. The necessity of relativistic correction should
also be judged at the stage of such an evaluation.

Let us consider the Schrodinger equation of a system of charged particles in a EM
field A(r, t)

EXY
iﬁE =HY + Hy) V. (2.28)

Using the interaction representation W(r) = exp(—i HPt/h) W(t), we rewrite the
Schrodinger equation as

ow

ih—

o = Hin(®) o (2.29)

where
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Hin (1) = exp(i H Ot /h) Hy exp(—i HOt/h) . (2.30)
Assuming that the matter state was initially in its ground state of H© and the

interaction was switched on adiabatically from the remote past, we can solve this
equation by iteration as

—7 1
U(r) = Wy + Fl/ dt; Hy (1) €7 Yo + - - -, (2.31)
—00

where the wave function W (—00) is written as Wy, the ground state wave function of
H9_(The case of more general initial state described by an ensemble will be treated
in Sect. 5.4.) The factor y = 07 is a positive infinitesimal quantity, representing the
adiabatic switching of the interaction at the remote past.

The induced current density is the expectation value of the total current density
operator I(r) = Jon(r) + Js(r)( = I1(r) — (l/c)I\AJ(r)A(r)) with respect to the
wave function W (¢)(= exp(—i H©t/h)W(1)). Let us expand W (r) as

W) =) a0y (2.32)
where |v) is the eigenstate of H®,i.e., H®|v) = E,|v). Then, for v = 0, we have
ao(t) = exp(—iwot) , (wo = Eo/h) (2.33)
to the lowest order of A, and for v # 0, we have
. t
i
ay(t) =+ (v| / dty exp(—i H'1/h) Hin(11) exp(y 11)[0) . (2.34)
Using the Fourier expansion of A(r, t)
A(r.t) =) A(r.we™" (2.35)

we can calculate the integral over ¢, as

f dty (] Hine (1) exp(y1)]0)

oo

= —%Z/dr(wlt(l‘)lm~A(r,w)/ dry expli(wvo — @ —iy)n]

dr(v|I(r)|0) - A(r, w) , (2.36)

i Z expli (wyo — w — iy)t]
C

Wy —w—1y

= [same expression without 1/ c]SI ,
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where hw,o = E, — Ej is the excitation energy of matter. This leads, for v # 0, to

1 exp[—i(wo + w +iy)t]
() = —— s
(1) hcz Wy —w—1y

fdr<VIll(r)|0) CA(r, o),

= [same expression without 1/c]q; . (2.37)
The A-linear part of the induced current density (W (¢)|I(r)|W(¢)) arises in two
different ways. One is from the first term (Wy| I (r)| W), proportional to |ag|?, through
the A-linear term of J o, (2.14), and the other is from the terms proportional to
{apa}’s or {agja,}’s through the A-linear dependence of a, with the A-independent

part of I,. The sum of these two terms gives the full expression of the A-linear part
of the induced current density of frequency w as

10.0) = [ @' patr.rio)- A 0) 238)
where the microscopic susceptibility x.q is given as

1 A
Xea(r, 1 0) = — — (OIN ()10 8(r — r)

1
+ = 2 [go@Tou o) + hu(@) Lo ()0, (r)]
= [same expression without 1/ c]SI (2.39)
in terms of
I,,(r) = (ulI(r)|v), (2.40)
1
gv(w) = m ) (241)
hy(w) = ! (2.42)

h(a)v() + o+ lV) .

As mentioned in the previous subsection, the first term on the r.h.s. of (2.39) is
mainly contributed from the electron density in the ground state (times e/mc), and
the second term represents the contribution from all the excited states, where the
factor g, (w) and h,(w) give the resonance condition, and the product of two matrix
elements of current density works as position-dependent weighting factors of each
resonance.

The (r, r’) dependence of x.q(r, r’) shows the nonlocal character of the response,
i.e., an EM field applied to the position r’ can induce current density at a different
position r. This nonlocal response occurs within the spatial extension of relevant
wave functions {|v), |0)}. It should be stressed that this nonlocal character arises
from the quantum mechanical extension of the wave functions. The matter-EM field
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interaction itself is local, as explicitly given in (2.10), i.e., they interact only at
the same positions in space. Therefore, we should strictly distinguish between the
“nonlocal response” and “nonlocal interaction”.

The nonlocal response is the characteristic feature of microscopic response. In
the macroscopic response, we generally use a local relationship between polariza-
tion(s) and source EM field, e.g., P(r, ®) = x.(w)E(r, ). Thus, the macroscopic
averaging should contain a recipe to reduce the nonlocal response to a local one. For
this purpose, the expression of x4 given above has a very convenient general form
with respect to the (r, r’) dependence, i.e., it is a sum of the products of a function of
r and that of r’. As an integral kernel, this behavior is called separable, and greatly
serves to simplify the solution of the integral equations, as shown below.

2.2.3 Fundamental Equations to Determine Microscopic
Response

From the arguments of the previous sections, the fundamental equations to determine
the set of microscopic variables {A and I} in the linear response regime are the
microscopic M-eqs

1 9°A  4rx

~ViA+ 5o = 71{“ [ = oI "] (2.43)
and the constitutive equation (2.38). These are the coupled equations to determine
the T components of the two vector fields A and I, for a given initial condition. In
the M-eqs 1 t(T) is the source term of A, and in the constitutive equation A induces
1 [(T) (and also I fL) if symmetry allows), and the solution of the coupled equations
gives us a self-consistent set of A and I t(T). The L component of I, is obtained
from the selfconsistently determined A via the constitutive equation, and A has no
L component in Coulomb gauge. The case of exciting matter via external charge
source, which introduces an L electric field as initial condition, will be treated in
Sect.5.7.

The initial condition of matter is already taken into account in calculating the
induced current density by choosing the ground state of H® as the matter state
at the remote past as mentioned in the previous subsection. (Its extension to the
more generalized case of density matrix description will be given in Sect.5.4.) The
initial condition for the vector potential corresponds to the choice of incident EM
field inducing matter polarization, which is contained in the solution of the M-eqs
(2.43). The solution is a sum of the general solution for the homogeneous equation
for I fT) = 0 and a special solution in the presence of finite 1 l(T). The general solution
contains two free parameters corresponding to the two independent solutions of the
second order differential equation. The values of these parameters are chosen to fit
the asymptotic situation, e.g., in the remote past in accordance with the incident field.
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In order to solve (2.43) and (2.38) in a neat way, we renormalize the (OIN (r)|0)
term of x.q(r, r’; ) into the resonant terms as given in the Sect. 5.5. This approxima-

tion is valid in LWA and in the non-relativistic regime. In this case, the microscopic
susceptibility is written as

’ 1 = / L /
Yealr. 7' 0) = = 3 (3@ L0, () Lo () + (@) Lo ()0, (r)] - (2:44)
= [same expression without 1/ C]SI

where

&v(w) = gv(@) — (2.45)

ha)vo ’

Ev(w) = hy(w) —

. 2.46
o (2.46)

Using this form in the susceptibility x.q, we can rewrite the w-Fourier component of
(2.43) and (2.38) into a set of linear equations for new variables F),, (w) defined as

F(w) = /dr (ulI(r)v) - A(r, o) . (2.47)

In terms of {F),,}, the induced current density I(r, w) is written as

1 _ -
I(r.o) = - Z (20 (@)L, (r) Fuo(@) + hy(@)1,0(r) Fo, ()] (2.48)
= [same expression without 1/c],

The variables {F},,} depend on the quantum numbers p, v and frequency w, but not
on the coordinate r, and as shown just above, they are the expansion coefficients
of the induced current density in terms of the basis set {I,(r), I,0(r)}. Namely,
I(r, w) is a linear combination of {F},, }. Since the basis set {1, (r), I,0(r)} should
be given for any fixed model of matter, we only need to determine the expansion
coefficients { F,g, Fo,}.

Taking the w-Fourier component of the M-eqs (2.43), we obtain its general solution
in the form

1
A(r,w) = Ao(r, w) + — / dr' G, (r,r) IV, w) (2.49)
c

= [same expression with1/c replaced by 1 /471] o1 >
where Ay is the incident field satisfying the homogeneous equation (for 1 t(T) = 0).
The field Ay is a linear combination of two independent solutions of the homoge-
neous equation, with their coefficients to be chosen according to the initial condition,



2.2 Microscopic Nonlocal Response Theory 33

and 1 t(T) (r, w) is given as (2.48) with the vector fields I,,(r) replaced by their T
components I f};) (r). The EM Green function is defined as

— V3G, (r, 1) — ¢*Gy(r, 1) = dns(r — 1), (2.50)

where ¢ = w/c is the wave number in vacuum of the EM field with frequency o,
and a special solution of G, is given as

eiqlr—r’\

Gy(r,r") = (2.51)

r=r1

By applying the operation —V? — g2 from the left to (2.49), we can assure that it is
the general solution of (2.43) for frequency w. The scattered field, the integral part,
of (2.49) is also a T-field, which can be seen by taking its divergence and carrying
out partial integration.

There is an another useful expression of the same quantity, where the T character
is carried by the tensor EM Green function G, (r, r’) as

1
A(r, o) = Ao(r, ) + —/dr/ G(r.r) 10, w), (2.52)
C

= [same expression with 1/c replaced by juo/47 ], .

where

1
G(r.r) =Gy (r—rH1+ ?[Gq (r—r)—=Go(r—rH]V'V'. (2.53)
For details, see Sect.5.7.1.
In terms of {F,o, Fy,}, (2.49) can be rewritten as

1 -
AW, @) = Ao, @) + = D [&Fuodon(r, o) + huFouAw(r, @], (2.54)

v

= [same expression with1/c replaced by jo/47 ], .

where

1
A (r, o) = - / dr' GV (r,r' ) - 1, (', 0) (2.55)
C

= [same expression with1/c replaced by juo/47 ], .
is the vector potential produced by the current density ELTU) ).

If we further insert this result into the definition of {F},,}, (2.47), it gives us a
set of linear equations for {Fg, Fy,}. In doing so, let us note that we can replace
the current density I, (r) in (2.47) with its T component 1 LTV) (r). This is because a
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L-field can be written as the gradient of a scalar function (V f(r)), and because the
integral of the inner product of a L-field and A (T-field) turns out to be zero as

/drVf(r)-A(r)=—fdrf(r)V-A(r)=0. (2.56)
where we have made partial integration and used V - A(r) = 0. This leads to
Fuy(w) = / dr 1) (r) - A(r, ) . (2.57)

Inserting (2.54) into the definitions of Fy and Fy,, (2.57), we obtain

Fo = F$8> - Z (80,00 Fuo + o, 0 Fou ] (2.58)
"
Foo = Fy,) = Y (200,00 Fuo + hyuon wo Fou (2.59)
"
where
Fi = / dr I)(r) - Ao(r, @), (2.60)
and
gz = —— / dr / dr'ID(r) Gy(r.r' ) 1) () (2.61)

= same expression with1/c replaced by g /471]

represents the radiative (radiation mediated) interaction energy between the two
current densities associated with the transitions {v <> o} and {4 <> t}. The real and
imaginary part of the diagonal element .27, ¢, gives the shift and radiative width of
the transition energy E, (see Sect.3 of [1]). As mentioned above in connection with
the tensor Green function (Sect.5.7.1), it is possible to write the radiative correction
in terms of G((]T) (r,r’) as

1
Ao == [ ar [ L) G0 0 ). 26

= [same expression with1/c replaced by 1 /47[] SI

This rewriting is a rather general feature in describing T (L) field propagation, i.e., one
ascribes the T (L) nature either to the source or to the propagator (Green function).

For a given incident field, {F)'} is a known set of quantities, so that it is straight-
forward to solve the simultaneous linear equations (2.58) and (2.59). The solution
{F\,0, Fo,}, directly determines the response fields, A and I. Originally, this scheme
was developed to describe the microscopic variation correctly, as given in [1] in
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detail. It has been used mainly for the study of nanostructures, but it can be used
also as a starting theory to derive the macroscopic M-eqs, because it describes both
microscopic and macroscopic spatial variations correctly. This is what we are now
going to do in the following.

Before we proceed to derive the new macroscopic M-eqs and the corresponding
constitutive equation, we give some characteristic aspects of the microscopic nonlocal
response theory to show that our derivation of macroscopic M-eqs is based on a
reliable foundation.

2.2.4 Characteristics of Microscopic Nonlocal Response
Theory

Though the contents of this subsection will not be used directly in the derivation of
the new macroscopic M-eqgs, they will show the nature of the higher rank theory from
which we are going to derive the macroscopic theory.

Microscopic Spatial Variation

The response fields A and I are expanded in terms of A, (r, ) and I, (r), respec-
tively. Since the basis for the matrix representation consists of the eigen functions of
H©, they have microscopic spatial variations like atomic wave functions, which is
reflected in the spatial structure of A and I. But, at the same time, they also contain
rather smooth, or macroscopic, spatial variation, as a superposition of the contribu-
tions from infinitely many excited states. The relative weights of the contributions
of individual excitations depend on the frequency range of interest. In the neighbor-
hood of a particular resonance, the spatial structure of the induced current density
of the resonant transition is dominant. The microscopic nonlocal theory is a scheme
enabling us to treat these effects correctly in principle, and also in practice within
the limit of numerical calculation.

Resonant Enhancement of Microscopic Spatial Structure

The selfconsistent solution of response is obtained by solving the equations of the
variables F),, (w), which is the expansion coefficients of I;. Since the solution has
resonance effect at each excitation energy of matter, the response fields A and I,
show corresponding resonant behavior. Each resonance is accompanied by a char-
acteristic spatial structure of the resonance fields, so that this structure is enhanced
at the resonance. The microscopic structures accompanying various resonances are
different from one another.

This feature does not exist in the macroscopic case, because the resonances in
macroscopic response are specified by the resonant frequencies and the correspond-
ing residues given by the (mainly first order) moments of the matrix element of the
induced current density. Thus, at any resonance, the spatial structure is specified only
by a wave number, which becomes infinitely large, in the absence of non-radiative
damping, as w approaches the resonant frequency. This is an unphysical behavior
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introduced by the macroscopic averaging. The spatial structure of the resonance
before carrying out LWA is quite different from the one described by a wave number.
Therefore, unless it is smeared out by a non-radiative damping, we should be aware
of its unphysical nature.

The spatial coherence is closely related with the applicability of LWA. If the
extension of the spatial coherence is comparable to or larger than the wavelength
of interest, LWA is not a good approximation, and we should keep the microscopic
description of the resonance. Bulk excitons are typical examples of this kind. Since
any quantum mechanical excitations has its own coherence, we should judge the
applicability of LWA for each resonance in the frequency region of interest. In the
case of impurity transitions, we can usually neglect the coherence over different
impurities, if the density is low. For a high density case, we need to consider that
a large number of degenerate transitions occur at various positions in a medium.
Generally, there exists a coupling between the excitations at different positions via the
Coulomb interaction among electrons, working even if the overlap of wave functions
is negligible. Its main term is the dipole-dipole interaction, which is proportional to
1/R? (R =distance between two impurities), and its strength reflects the dipole
moments of the transitions. For a small density case, average R is large, so that this
energy is negligible in comparison with the non-radiative width of each excitation or
the fluctuation of site energy. Then, all the excitations can be treated independently,
and the spatial coherence has an extension of a single impurity transition. If, however,
the dipole-dipole interaction is not negligible (due, for example, to the high density
of impurities, or to the large E1 moment of the transition), the eigenstates of the
impurity transitions need to be diagonalized with the inclusion of the dipole-dipole
interaction, which greatly changes the coherence character of the transitions. By this
rearrangement, some of the eigenstates may have a large spatial extension. (If the
impurities are regularly positioned, all the rearranged states are specified by some
wave vector, so that all of them are extended infinitely.) There is a possibility that
metamaterials might have a situation of this kind. Then, we need to describe the
response of such metamaterials microscopically, i.e., with the nonlocal character
kept explicitly (see Sect.4.1.4).

Self-sustaining Modes

The formalism of the microscopic nonlocal response is applicable to a large vari-
ety of matter systems from individual atoms to bulk materials. As discussed in
detail in Sect.2.2.3, its fundamental equations for linear response are the simul-
taneous linear equations SX = F© (in a matrix notation rewritten for variables
X0 = §vFyo, Xov = hyFyy), where the incident field is included in F©, and the
solution X gives the amplitudes of selfconsistently determined current densities. The
response EM field is obtained by solving the M-eqs with this current density as the
source term. The coefficient matrix S of the equations consist of the eigenvalues of
matter Hamiltonian @ and the matrix elements of induced current density with
respect to the eigenfunctions of H©.

The condition for the existence of non-trivial solution in the absence of an incident
field, i.e., the vanishing of the determinant of the coefficient matrix, det|S| = 0 has
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a particular physical meaning. It gives the finite amplitude solution in the absence
of incident field, representing the eigen mode of coupled matter excitation and EM
field, which are sustaining each other without the help of incident field. In this sense,
they may be called the “self-sustaining (SS) modes” of the interacting matter-EM
field system.

The eigen-frequency of a SS mode is generally complex, the difference of which
from the matter excitation energy represents the radiative shift and width of the
relevant matter excitation. Since det|S| occurs in the denominator of the solution,
X =SV F©O the (real) @ dependence of X is resonant at the real part of the SS
mode with a width given by its imaginary part. In this way the SS mode frequencies
describe the resonant behavior of the response spectrum.

In the presence of several resonances, they affect each other, so that the exact
positions of resonances (peaks and/or dips) are shifted from the isolated resonances.
For an isolated resonance, the complex frequency of the self-sustaining mode exactly
gives the peak position and, in the absence of non-radiative damping, its half width.

The realistic picture of the SS modes takes various form. In the case of an isolated
atom, it is the atomic excitation energy with radiative correction. In the case of an
exciton in a non-metallic crystal of infinite size, the condition det|S| = O gives the
dispersion equation of exciton-polariton without radiative width. Similarly, various
surface polaritons, such as surface (exciton, phonon, or plasmon) polaritons, are
also SS modes. More exotic examples are the cavity modes of the dielectrics with a
particular size and shape, and the dynamically scattered X rays in a crystal. See Sect.
3.1 of [1] for more details.

Radiative Correction

It is one of the characteristic points of the microscopic nonlocal response theory that
it contains the interaction among the induced current densities via the T and L compo-
nents of EM field. The L component represents the Coulomb field due to the current
density (or charge density), and its interaction with matter polarization is included in
the matter Hamiltonian as the Coulomb potential among charged particles. The inter-
action among the induced current densities mediated by the T component of induced
EM field plays an important role in this framework as “radiative correction”. This
is the interaction energy of the T field produced by a current density with another
current density (or with itself), as defined in (2.61). Since the EM Green function
connecting the two current densities is generally a complex quantity, the resultant
interaction energy is complex, too. Its physical meaning is that the continuum of the
EM field energy works as a bath for the decay of a matter excitation energy, giving
a finite lifetime to the matter excitation.

This kind of interaction via T field is also taken into account in the macroscopic
Me-egs, if we solve them selfconsistently with the constitutive equation. The main
difference is that the radiative correction is defined quantum mechanically with all
the details of matter excitations in the microscopic theory, so that we can calculate
the radiative correction from the first-principles. In fact, we can study the size and
shape dependence of the radiative correction for a given finite matter system. See
Sect. 4.1 of [1].
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Itis worth mentioning that the radiative width calculated from this general expres-
sion is exact in comparison with the result of QED. For a single atom in vacuum,
the self interaction of an induced current density via emitted EM field of a given
frequency produces radiative shift and width of the current density. The radiative
width (FWHM) is exactly the same as the result of QED, which is usually given in
LWA as

4
=zq'ln? (2.63)

where u is the electric dipole moment of the transition with energy E,and g = E /hc.
(The corresponding radiative shift depends on the details of the wave functions of
the transition, so that it cannot be uniquely fixed by the value of u alone.)

The definition of radiative correction (2.61) is valid also outside LWA. Therefore,
the size dependence mentioned above can be calculated smoothly across the validity
limit of LWA, which allows to discuss the connection of two different regimes, i.e.,
within or beyond LWA. See Sect. 4.5 of [1].

Boundary Conditions

It is the most pronounced aspect of the microscopic nonlocal response theory, that
it does not require the boundary conditions (BC’s) to connect the EM fields in- and
outside a matter system. It is a matter of fact for a microscopic theory not to use
BC'’s, because no boundary can be drawn for a microscopic material distinguishing
the in- and outside the matter, and because the fundamental equations SX = F ©
to determine the response for a given incident field are complete without BC’s. A
given shape of matter in its ground state defines the BC’s for electrons which govern
the EM response of matter. This allows us to calculate the microscopic nonlocal
susceptibility in a position dependent manner. As we described in Sects.2.2.2 and
2.2.3 in detail, this knowledge of nonlocal susceptibility is enough to determine the
selfconsistent response uniquely. The use of BC’s in macroscopic M-eqs is a standard
technique to solve problems, but it is a specialty only in macroscopic M-eqgs. It should
be remembered that no BC is required in the higher rank theories.

The necessity of BC arises when we approximate a part or all of the induced
current density by a macroscopic one, which is the subject of Sect.3.7.

2.2.5 Gauge Invariance of Many-Body Schrodinger Equation

From the viewpoint that all the EM response theories, from relativistic QED to
semiclassical macroscopic Maxwell egs, belong to a single hierarchy, we are going
to present macroscopic constitutive equations to be derived from a one-rank higher
theory, i.e., the non-relativistic quantum theory for the motion of charged particles
of matter in an EM field. Since the quantum mechanical description of such a system
requires the use of scalar and vector potentials for the EM field, there arises a question
of gauge for the explicit calculation of constitutive equations.
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In Sect.2.2.1, we have chosen Coulomb gauge, and it is used throughout the
book. The general expression of the susceptibility relating induced current density
and source EM field is given in terms of the eigenvalues and eigenfunctions of
the many-body Hamiltonian containing the Coulomb potential among the charged
particles of matter. Though it is standard to use the Coulomb gauge, one might ask
whether the result is in any way specific to the use of Coulomb gauge.

From the structure of minimal coupling Lagrangian equation (2.1), the motion
of the system is seen to be independent on the choice of gauge. The change in the
Lagrangian caused by the gauge transformation (1.20) and (1.21) can be written in
a total time derivative form as

I d
L= [d — Y =—|d 2.64
/"[Pat-i-.] W} dt/ rpy (2.64)
where V- J = —9p /3t is used. Since a total time derivative term in Lagrangian

does not contribute to the minimum action principle, this additional term § L does not
change the Lagrange equations of the system. This argument shows that the descrip-
tion of interacting matter-EM field system via the minimal coupling Lagrangian
is gauge invariant. This makes us expect the gauge invariance of the constitutive
equation, i.e., the induced current density as a functional of EM field calculated
from the many-body Schrodinger equation. However, the derivation of the many-
body Schrodinger equation from the minimal coupling Lagrangian is usually made
for a fixed gauge, which obscures the argument of gauge invariance at the level of
Schrddinger equation.

The reason for it is the lack of the velocity term corresponding to scalar potential
in L, which gives zero for the generalized momentum of scalar potential. This is
considered to be a problem on introducing the commutation relation for this set of
variables, when we treat EM field quantum mechanically in the (non-relativistic)
QED. In the semiclassical treatment, EM field is not a quantum mechanical quan-
tity, so that we may put aside the problem of commutation relation for the scalar
potential. In this sense, the Hamiltonian (2.5) is all right for use. However, the many-
body Schrodinger equation ih0W /90t = H1r does not seem to be invariant for the
transformation {A, ¢, ¥} — {A’, ¢/, ¥’} mediated by an arbitrary scalar function
x(r.1)

97

A/:A—i—cV)Z y ¢/=¢_a_)t(’ \y/zexp(i(a)\lj’ (2.65)
ey _ 1 _

0= ;%X(VM) = ;L/dr Pim(r) X (r, 1) . (2.66)

which is the many body version of gauge invariance. Then the next question is “how
is the gauge invariance ensured?”

There is another point of view about the gauge invariance. In this book, we empha-
size that the Hamiltonian (2.5) or its extended form with relativistic correction terms
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is used, not only for semiclassical treatment, but also for weakly-relativistic QED
by just quantizing EM field. This forms the backbone of the single hierarchy nature
of EM response theories mentioned in Table 1.1. To avoid the difficulty in defining
the commutation relation for ¢, we want to find a logically clear way to rewrite the
minimal coupling Lagrangian into many-body Hamiltonian, which can be used for
the gauge invariant calculation of the expectation value of physical quantities.

For this purpose, a key role is played by a transformation of dynamical variables in
Lagrangian, where we eliminate the generalized coordinate having no corresponding
velocity in the Lagrangian. The general scheme for this transformation is described
by Cohen-Tannoudji et al. [7] (p. 84). Since this transformation plays an essential
role in our logical development, we reproduce the relevant part to see its general
nature.

We consider a Lagrangian L, where one of the generalized coordinates, x(, does
not have its corresponding velocity. Denoting the other coordinates as {x,; £ =
1,2,...} and the velocities as {vy; £ = 1,2, ...}, we write Ly = Lo(xg, {x¢, ve}).
In this case, a special type of variable transformation is possible without changing
the set of Lagrange equations. The Lagrange equation derived from the variation of
X0 is

Ly

—0, 2.67
ox0 (2.67)

since vy is missing in L. This equation can be solved for x( as a function of {x,, v},
i.e.,
xo = f({xe,ve}) . (2.68)

Inserting this result in Lj, we obtain a new Lagrangian
Lo(xe. ved) = Lo(f (xe, ved). e, vied) - (2.69)

The two Lagrangians Ly and Lo give the same Lagrange equations for the variables
{x¢; £ =1,2,...}, because

dLo 9Ly 9Ly o aL
%0 _ %o | 90 % _ 9% (2.70)
8)6[ 8)6[ 8)60 a)Cg axg
aLy 9Ly 9Ly aL
ho _ 920 4 %R0 %% _ P20 2.71)
avy avy axg dvy avy

by the use of the Lagrange equation dLy/dxo = 0. This result also shows that the
generalized momenta {dL(/dv,} are not affected by the transformation. This allows
us to introduce Hamiltonian and quantization condition for all the remaining variables
without worrying about the vanishing commutation relation mentioned above. In this
way, we can prepare a logically safe description of such a system in both classical
and quantum mechanical regimes. Below we will see how this general scheme of
variable transformation works in the system of interacting EM field and charged
particles.
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In the minimal coupling Lagrangian, the dynamical variables are the coordinate
and velocity of the charged particles, {r¢, v,}, scalar potential ¢, and vector potential
and its time derivative, {A, d A/dt}. The minimum action principle due to the varia-
tion of r, and ¢ leads to the Newton equation under Lorentz force, (5.34) and Gauss
law, (5.38), respectively. The variation of A leads to the EM wave equation, (5.43),
which consists of the L. component

0EL
—— =4 , 2.72
ar wJL ( )
0EL 1
=——J (2.73)
at 20 SI
and the T component
1 %A 4
——— —V?Ar=—Jr, 2.74
2 32 T= Jr (2.74)
1 9%A
|: 2 2T — VA = podr :| (2.75)
c* 0t SI

Divergence of the L component leads, with the help of Gauss law, to the charge
conservation law V - J + dp/dt = 0. By using Ji = 9 P /dt, it can be rewritten
alsoas (V- PL+ p)/ot =0ord(EL +4n Pr)/ot =0.

The variable ¢ plays the role of x, mentioned above. The Lagrange equation for
¢ is dL/d¢ = 0, which leads to Gauss law. Its solution is

EL(r) = =Vc(r), (2.76)

bo(r) = / 4 P [: ! / 4 L } 2.77)
|r — 7| 4meg lr—r'| I

Using E;, = —(1/¢)(0AL/0t) — V¢, we can express ¢ in terms of the other variables
as

1 8AL 814L
Vp=—-—+Ve¢. =| — —+ Vo (2.78)
¢ dt SI

The variable ¢ appears in two terms of L. One is the L component of EM field
energy, which can be rewritten into Coulomb potential as
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and the other is the interaction term — [ drp ¢. By using V - P;, = —p, this term
takes the form

19A;
—/dr,o¢ =/dr(V-PL)¢ = /dr PL.<ZT —v¢c) . (281

[: /dr PL~(% —v¢c>} . (2.82)
ar .

Noting f drPy - V¢. = 2Uc and J, = 0Py /0t, we obtain the new Lagrangian after
elimination of ¢ as

1 1 1d
L/ZZ—mEVE—Uc+—/drJT~AT———/drPL~AL
; 2 c cdr

1 1047\

+—far I(-ZE) —(vxap?!, (2.83)
8 c ot

L/—Zlmvz—U +/er A —ifdrP A
= ) ) oV C T AT a L AL

e 9AT\"

+2 dr{(—T> —c2(V><AT)2H (2.84)
2 at .

The only gauge dependent quantity Ay appears in the total time derivative term
of L’. This term is the time derivative of a function of general coordinates, as seen
from (5.7) giving P(r) as a function of {r,} alone. Analytical mechanics generally
allows to omit such a term from Lagrangian without affecting the minimum action
principle. Thus, irrespective of any starting gauge, we can use

1 1
Lr=Y_ Emgv,?—Uc—l—Z/er-AT
4

1 dAT\’ )
I:LT:Z%le%_UC_’_/er'AT
14

N BAT 2 > 2
+o | dr {(T) — 3V x Ar) }]51 (2.86)

to determine the dynamical motions of the system. In the interaction term, J can be

written as J because V - At = 0 eliminates the contribution of J in the integral.
This Lagrangian has the same form as that of Coulomb gauge. It should be stressed,

however, that this result does not arise from choosing Coulomb gauge, but from the
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use of higher principle of Lagrange formalism, i.e., the independence of minimum
action principle on the total time derivative term in Lagrangian, which is valid, not
only for electromagnetism, but also for more general cases. This is the logical basis
allowing the use of Lagrangian in Coulomb gauge to calculate gauge invariant
EM response.

The Lagrange equations derived from Lt are the wave equation (2.74) for Ar,
and the Newton equation of motion for the £th particle

d e e
— (meve + _ZAT) = —VyUc + —Vylve - Ar(ro)] (2.87)
dt c c
d
|: E(mzve +epAt) = —VoUc + e, Vilve - Ar(ry)] :| (2.88)
SI

By noting VoUc = V. (r¢) = —eEr(ry) and (5.27), this equation turns out to
be the Newton equation of motion, (5.34). Together with Gauss law and charge
conservation law, the set of Lagrange equations derived from L is exactly the same
as that from L. In order to determine the motions of all the dynamical variables
consistently, we first solve (2.74) and (5.34) for a given initial condition, obtaining
J and A, which are then used to determine p via charge conservation law and E,
via Gauss law.

For quantum mechanical treatment, we derive the generalized momenta of r, and
At as

+ %A, T I 94 (2.89)
=myvy + — , = — .
) e T AT AT =05 o
0AT
Py =meve +eAr(re), Har = 0=~ (2.90)
S
respectively, and the corresponding Hamiltonian as
1 €y 2
Hr=Y o |p. - Sar00] +U
T XZ: 2 P~ (ro)| +Uc
1 19A7)°
+— [dr (-=2) £ (vxAp?) (2.91)
8 c Jt
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2
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Introducing the quantization condition for each pair of coordinate and momentum,
{re, p} and {Ar, Ilar}, we can study the dynamical motion of the system quantum
mechanically. The quantization of At leads to the (transverse) photons characterized
by wave number and polarization, which is the basis of QED.
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In QED, EM fields E, B are operators, and the equations of motion for parti-
cles and EM field are operator equations, whose solution needs to be converted to
ensemble average over initial ensemble of the EM field in order to be compared with
observable quantities. For semiclassical description, however, EM field is a classical
variable without quantization, so that the particle parts in the equations of motion
need to be expressed as expectation values determined by the initial condition of
particle states.

Though the main interest of this book is the coupled system of EM field and
charged particles in non-relativistic regime, we sometimes need to consider the rela-
tivistic correction term, such as spin-orbit interaction, spin Zeeman interaction, mass
velocity term, and Darwin terms. These terms are derived from Dirac equation as
the correction to electron energy next to the rest energy mc?> for weakly relativistic
situation. The addition of these correction terms to Hamiltonian does not change the
argument about gauge invariance, since they are written in terms of E and B [4, 8].
The explicitly spin dependent terms, spin-orbit interaction and spin Zeeman term,
are especially important for material science related with magnetism. As sketched in
Sect.2.2.6, these additional terms could be rewritten into a new invariant form, which
are the combinations of new matter variables (such as spin current) and emergent
EM fields. This rewriting is claimed to leads to the new point of view in the theory
of electromagnetism called “emergent electromagnetism”.

The Hamiltonian Ht does not contain the L component of electric field. One
might wonder how one treat the problems of an isolated charged particles excited
by external charges, such as a matter sample in a condenser or the case of electron
energy loss spectroscopy, etc. Such a problem can be formulated by dividing the
total Coulomb potential into the contributions of internal and external charges and
the interaction between them. This will be discussed in Sect. 5.7.2.

2.2.6 Relativistic Correction Terms

Consideration of relativistic correction in EM response theory adds a new element
“spin” to the description of matter-EM field interaction. It appears through spin
Zeeman and spin-orbit interaction, (2.15), (2.16), which should be added to the
Hamiltonian Hr, (2.91). This is the basic Hamiltonian not only for non-relativistic
QED, but also for both semiclassical microscopic response theory and semiclassical
macroscopic response theory according to the single hierarchy viewpoint.

Spin Zeeman term is the interaction energy between EM field and spin magneti-
zation as shown in (2.19). Similar expression appears from the orbital contribution
(2.10) by taking the orbital magnetization part cV x M of J(. Their sum gives the
interaction energy between the total magnetization and magnetic field B. In the calcu-
lation of constitutive equation, its zero frequency part is often included in unperturbed
Hamiltonian, while its dynamical part is used as perturbation Hamiltonian, This is
the case for spin resonance, cyclotron resonance, various types of magneto-optics,
etc., where spin flip energy in a static magnetic field is regarded as a matter excitation
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energy. This is reflected in the presence of spin flip energy Awy as a pole of magnetic
susceptibility of spin resonance, (1.51). In such a case, the effect of static field is
contained, not perturbationally, but rigorously. Similar consideration is also given in
the problems of cyclotron resonance, where the quantized energies of orbital motion
in a static magnetic field is included in unperturbed energy, so that the susceptibility
of cyclotron resonance has poles at the frequencies corresponding to the transition
energies between Landau levels.

There is no definite rule to separate zero and finite frequency components of Hgy,
into unperturbed and perturbed parts of Hamiltonian for the calculation of suscep-
tibilities, though zero frequency part can be naturally contained in the unperturbed
part due to its time independent character. Only for the calculation of static suscep-
tibility, it should be the perturbation Hamiltonian by definition. Further, in nonlinear
processes, there arise sum and difference components of incident frequencies, among
which there can be a zero frequency component. In such a case, it does not make
much sense to regard the interaction energy with the zero frequency component as a
part of unperturbed Hamiltonian.

The electronic states described by the weakly (or non-) relativistic Hamiltonian
are s = 1/2 spinors with positive energy. The quantum mechanical states of matter
are described by wave functions for orbital motions and spin states. Thus the quantum
number of matter states, i, v, appearing in the expressions of susceptibilities in this
book contains the quantum numbers of all the variables of matter.

Spin orbit interaction contains the slope of potential VV (r). Since the charge
density is stronger around each nucleus, its effect becomes pronounced in materials
containing heavy atomic elements. In the neighborhood of each nucleus we may
expect centrally symmetric charge distribution as

VV(r) =r for)) (2.93)

which leads to the more familiar form of spin-orbit interaction

Hso fo(rDL - o (2.94)

2mic?

where L = r x p is orbital angular momentum vector. This explicitly shows the
mixing of spin and orbital angular momenta. Even in a spherical symmetric situation
as in atoms, these two angular momenta are not separately conserved, but their sum,
total angular momentum, is the conserved quantity. This is one of the important
indices to determine the level scheme of matter.

The description of matter quantum states in the presence of spin-orbit interaction is
diverse corresponding to the variety of matter states, such as nuclei, atoms, molecules,
crystals, impurities and defects in a crystal, etc. For each system appropriate methods
have been developed. We sketch some of them as representative examples, and finally
a new interpretation is mentioned about the relativistic correction appearing in the
studies of transport problems in the matter systems with spontaneous magnetic and/or
electric polarizations, spin current, topological defects, etc. , where a new formulation
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of EM response theory might be useful in terms of “emergent electromagnetic field”

[9].
Atomic Spectroscopy

In this case, one considers a single atom consisting of many electrons (except for
hydrogen atom) around a given nucleus. Due to the Fermion nature of electrons,
the wave functions need to be antisymmetric for the exchange of any two electrons.
The one-electron basis functions are the eigenfunctions of single particle Hamilto-
nian consisting of “kinetic energy + central symmetric attractive potential’, and are
classified according to the principal and angular quantum numbers [10]. The sin-
gle particle potential is due to the Coulomb interaction with nucleus and inner core
electrons and also to spin-orbit interaction. The basis of many electron system is
defined as “configuration”, specified by a set of occupied one-electron states, each
of which contains a spin part. The antisymmetric nature is taken into account by
arranging the one-electron functions in the form of “Slater determinant”, To obtain
the energy eigenvalues to compare measured atomic spectra, we further need to con-
sider the Coulomb interaction for a set of configurations expected to form an atomic
state. In the early days of active atomic spectroscopy, there was no big computers to
diagonalize even a Hamiltonian matrix of reasonable size, and two tractable cases
were considered as good approximations. They are the well-known schemes of “LS
coupling” and “jj coupling”, which correspond, respectively, to the case “spin-orbit
interaction is negligible compared with Coulomb interaction” and “spin-orbit inter-
action is dominant for a certain configuration”. In these limiting cases, the evaluation
of the energy eigenvalues and wave functions were feasible without big computers.

Effective Hamiltonian Method

In spectroscopic studies of matter, we are usually interested in the matter excitations
causing resonant structure in measured spectra. Fine structures in a resonant region
and possibly its dependence on external field (e.g., magnetic field) gives us a detailed
information about the quantum mechanical states in that energy region. In the pres-
ence of spin-orbit interaction which mixes various spin states via orbital motion, the
descriptions of these processes is complicated due to the dependence on the details
of quantum mechanical states. The case of atomic spectroscopy mentioned above is
a rather straightforward treatment of quantum mechanical argument.

For atomic impurities in solids, the corresponding theoretical problem is rather
different, because of the influence from surrounding atoms and/ions. This problem
was an important issue at the initial stage of laser physics, where transition metal
ions in insulating crystals are used as lasing medium, and their accurate level scheme
is important to know their laser frequencies. The quantum mechanical behavior of
the impurity ion is strongly influenced by its surroundings, and the main issue was
how to integrate the effect of the surroundings into the level scheme of the ions.

A general recipe for this problem is to prepare an “effective Hamiltonian” or
“spin Hamiltonian™ for the relevant, functional subspace of transition metal ion,
which describes the perturbation due to its surroundings and the effect of external
magnetic field [11]. This can be viewed as cutting-out procedure of a finite size matrix
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from the Hamiltonian matrix of infinite size. The abandoned subspace contains the
influence of the surroundings, so that its effect needs to be somehow included in
the effective Hamiltonian. The standard way would be to calculate such additional
contributions by lower order perturbation theory, which would be quite complicated
due to the presence of infinitely many degrees of freedom.

An alternative approach is to construct effective Hamiltonian from a symmetry
consideration. Hamiltonian matrix for a finite subspace of a transition metal ion
can be described by a linear combination of effective tensor operators with known
symmetry character. A detailed theoretical framework is constructed on the rigid
basis of group theory [11], which of course consists of a lot of mathematical details.
A simplified version of effective tensor operator can be seen in the case where the
finite subspace in question consists of eigenfunctions of angular momentum operator
L. Then, any element of the Hamiltonian matrix in this subspace can be written as
a linear combination of the operators produced by the products of the components
of L. Due to the finite size of the subspace, the number of the products required
to describe the matrix is finite. This set of products is the effective tensor operators
for this example. Their linear combination with an arbitrary coefficient for each term
becomes the most general form of Hamiltonian for the assumed functional subspace.

The coefficients of the effective tensor operators are regarded as parameters, and
can be determined by appropriate experiments. Since the necessary types and num-
bers of the tensor operators are determined uniquely by the symmetry of the system,
this is a convenient formulation to analyze experiments. A real theoretical thrill
arises when one tries to calculate the coefficients of the tensor operators and com-
pare them with experiments. But the existence of many elements in the perturbation
calculation will hinder an accurate comparison. This would be an unsatisfactory point
of this method, but it offers a very useful tool to analyze experiments. Similar method
of analysis in terms of spin Hamiltonian was developed in the field of spin
resonance [6].

Electrons in a Crystal

Spatial periodicity of crystals allows us a useful concept, band picture, in describing
the quantum mechanics of electrons. It provides, not only a simple criterion distin-
guishing metals and insulators, but also the idea of holes and effective masses, etc.,
which contribute to the detailed understandings of the various properties of crystal
electrons. Especially in semiconductor physics band picture has played an essential
role. The detailed understanding of the materials has lead to the great progress of
semiconductor technologies in the fields of computers, lasers, nanomaterials, etc.

For the arguments of various properties of crystal electrons, one introduces single
electron states for an electron moving in a periodic potential. The eigenstates are
written in the form of Bloch functions as

b (r) = e Ty (r) (2.95)

where k is a wave vector, A band index, and uy; (r) a function with lattice periodicity.
The quantum number k takes continuous values in a Brillouin zone, so that the energy
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eigenvalues form a band structure, i.e., multi-branch dispersion curves as functions
of k. The band index X corresponds to the branch index, but it also contains spin part
o . The spin part for a given k is not pure up or down spin state, but a mixture of them.
Thuso = (4, |) indicates the dominant part of spin direction. The importance of Hgo
arises for crystals containing heavy elements in general, or when we are interested
in the degenerate bands in the absence of Hso.

There is a simple symmetry rule about the form of energy eigenvalues. In terms
of the single particle Schrédinger equation

Hy;. = &,.(K) ks, (2.96)

the behavior of the eigenvalues for space inversion and time reversal is noteworthy.
For space inversion, k changes its sign, while spin does not, and for time reversal,
both k and spin change their signs. Therefore, if the system has space inversion
symmetry, the states with (k, o) and (—k, o) are degenerate, and if the system has
time inversion symmetry, the states with (k, o) and (—k, —o') are degenerate. If the
system has both inversion and time reversal symmetry, all of the states with (£k, o)
are degenerate. If we apply this argument to a doubly degenerate band at k = O in a
system lacking in inversion symmetry, the degeneracy is lifted linearly in k.

The band picture plays an important role in the development of semiconduc-
tor physics, where the detailed band structure near the band edges (highest occupied
states, and lowest unoccupied states) affects many of the essential properties of semi-
conductors, such as effective masses of electron and hole, k-linear terms, donor and
acceptor states, exciton states, etc. The precise understanding of these properties for
various semiconductors has been the basis of the great development of semiconductor
technology.

Semiconductors are the first group of materials providing well controlled nanos-
tructures, i.e., quantum wells, wires and dots, and more complex structures. They
were the materials showing ‘“size, shape, and internal structure”-dependent EM
responses, which opened a new field, “nano physics”, after a long period of macro-
scopic response of condensed matter physics.

The success of the band picture in semiconductors is based on the effective mass
theory. The one-electron eigen functions for a given k form a complete set, so that the
eigen functions for a different k can be expanded in terms of them. A typical example
is the case of the band edge occurring at k = 0. The energy band structure in the
neighboring k(#0) can be calculated by perturbation theory, where the unperturbed
Hamiltonian is the one for k£ = 0, which gives the perturbation term (h/mg)k - p.
This scheme, called “k - p perturbation theory”, was used to calculate the details of
semiconductor band edges (top of valence bands and bottom of conduction bands),
and further extended to the studies of cyclotron resonance, donor and acceptor states,
exciton states, etc. For effective mass theory, see [12].

Here also, effective Hamiltonian formalisms were developed. A most useful, non-
trivial one is the Luttinger Hamiltonian for the top of valence band in typical cubic
semiconductors, which consists mainly of the p-like (¢ = 1) wave functions of the
constituent atoms. The three orbital components coupled with two spin parts split
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into two groups with total angular momentum j = 3/2 and j = 1/2, which consist
of 4 and 2 components, respectively. Many semiconductors have j = 3/2 bands as
the topmost valence bands at k = 0. Because of the four-fold degeneracy the band
structure is quite complicated. There arise heavy and light effective masses, which
depend on the direction of k (warping), and, in the absence of inversion symmetry
as in zincblende type crystals, there appear k-linear terms. Including the magnetic
field dependence, which is necessary to study these details via cyclotron resonance,
we can write the effective Hamiltonian of the j = 3/2 bands as a linear combination
of independent products of the components of j = 3/2 angular momentum vectors

[13]
o — 1 + 5 k2
L= "o Y1 2V2 )

+ya (K22 + K22+ K2 D)

—2y3({kyk iy i} + (hoke iz} + {kxky}{jxjy})]
+2upicj - B+ 2upq(B.j} + By j) + B.j))
—K, [kx{uf — JDid R AGE = D+ kAT — j,%)jz}} :
(2.97)

where y1, 2, V3, K, qL, K are parameters to be determined by measurements, B the
static magnetic field, and a short hand notation {ab} = (ab + ba)/2 is used. This
is the general form of the 4 x 4 Hermitean matrix spanned over the eigenstates of
J = 3/2. The operators in the product forms of j,, j,, j, are the “effective tensor
operators” of this case. This is quite a useful theoretical invention for the study of
semiconductors in the presence of spin-orbit interaction.

The effective mass theory is extended to the study of shallowly bound states of
donors and acceptors, Landau levels, exciton states etc. and the effective Hamiltonian
method are further developed to the study of symmetry breaking effects of exciton
states [14].

Emergent Electromagnetic Field

Recently there is a new trend about the fundamental way of thinking on the elec-
tromagnetism of matter among the researchers working on spin current, spin Hall
effect, multiferroics, topological insulators and defects, etc. [9]. For this purpose, it
is proposed to reformulate EM response theory on a very fundamental level. One
rewrites the weakly relativistic Hamiltonian, derived from Dirac Hamiltonian in a
EM field, into a form consisting of invariant combinations of matter variables and
“emergent EM field components”.

Compared with the spinless case, which is governed by Schrodinger equation for
scalar wave function with usual gauge field {A, ¢}, the weakly relativistic case is
described by Pauli equation for spinor wave function, where the additional terms
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“spin-orbit and spin Zeeman interactions” bring about a new gauge field for the
spinor wave function. The proposed rewriting gives the new form of Pauli equation
as [15]!

. hz 2 1 _tt a éz a a
ihDyy = ——D> — — (2eg—A - A*+ A" - A* | ¥ , (2.98)
2m0 2]’)’[0 2 4

where ¥ is s = 1/2 spinor wave function, t® Pauli matrices (o = t/2), indices (i, a)
represent space components (x, y, z). Constant g is Bohr magneton with relativistic

correction. The operators Dy, D; are covariant derivatives defined as

a
al

.q .e
Do=do—ilarl —i%a,, 2.99
o 0 —izAos —izAo (2.99)
Di=o+ilac™ 1A (2.100)
i =0 it Al FiT A, .
nti Ty

where dy = 9/9t, 0; = 9/0i. (Ag, A;) are the time and space components of conven-
tional gauge field, and those of the new gauge field are (Aj, A?) defined in terms of
electric and magnetic fields E, B and 3-dimensional Levi-Civita tensor as

A} = B*, (2.101)
Ail = SiagE( . (2102)

The case g = 0 corresponds to the case of no relativistic correction, where
Schrodinger equation for scalar field describes the system. In this case, the require-
ment of gauge theory is the invariance of this equation for the multiplication of a
phase factor to the wave function and the corresponding change in the gauge poten-
tials (A, ¢) in (2.65), (2.66), The phase function ® (r, ¢) is areal continuous function
with arbitrary dependence on r and ¢, which means that the quantum mechanical
behavior of matter does not depend on ®(r, 1).

Similar requirement from the gauge theory to the Pauli equation fors = 1/2 spinor
(SU(2)) field is that the wave function have the phase factor, not only of the type for
scalar field, but also of the rotation of spin, exp(i¢?t?/2). The gauge potentials in
this case are (A§, AY). They are coupled to “spin current” (j§, j) defined as [9]

Jjo=voy, (2.103)
i = L[Iﬂ"'cr"Dnﬂ — Diyfoty] (2.104)
2m0

where the indices a and i represent the directions of spin and its flow, respectively.
This scheme is a case of general gauge theory for spin = 1/2 spinor field, sometimes
called “emergent electromagnetism (EE)”, and is used mainly for the analysis of spin
related transport problems [8, 9, 15].

1On this subject we skip the [SI] form of equations, which seems to be rarely used.
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It is not yet well examined how this EE theory (EE) is compared with the main
scheme of this book, i.e., “microscopic nonlocal theory and its macroscopic form
derived through LWA”. In the sense that they are both based on Pauli equation,
they describe the same physics essentially. The aspect of SU(2) gauge theory is
explicitly handled only in EE. Obviously it is a merit of EE to have an explicit
parallelism with the general gauge theory of physics, which could provide a wide
viewpoint in describing individual problems. This, however, would not restrict the
other from handling a certain class of problems. Probably the difference may exist
in how one formulate a problem. The theory of this book has mainly been used for
spectroscopic problems, and transport problems have little been studied. For a better
understanding of these two formulations, it would be useful, not only to discuss their
formal structures, but also to find some concrete problems for testing the merit and
demerit of them.

2.3 Long Wavelength Approximation (LWA)

We now proceed to make the macroscopic average of the fundamental equations of
microscopic nonlocal response, i.e., the microscopic M-eqs (2.43) and the consti-
tutive equation (2.38). As discussed previously, this means mathematically to take
the LWA of these equations. Since it is an approximation, there is a validity condi-
tion which may be fulfilled or not according to the system in consideration. We will
consider this problem later in Sect.3.6. In this section, we just apply LWA, leaving
the first few terms of the expansion. This means that we derive the expected form of
macroscopic equations when LWA is a good approximation.

Application of LWA to a microscopic system does not necessarily lead to a uniform
system in general. It is possible to result in a macroscopically non-uniform system,
as, for example, in the case of an impurity system with macroscopically non-uniform
distribution of density. Such a system would require an additional consideration after
introducing a macroscopic description depending on the details of each problem. In
this book, we omit these macroscopically non-uniform cases from our consideration.
However, to complement this point, the case of resonant X-ray diffraction from a
crystal will be discussed in Sect.4.3.

The omission of macroscopically non-uniform systems after LWA allows us to
work only in a uniform system, where wave vector k is a good quantum number. We
use a space Fourier transform of a field B(r) as

1% ~ ~ 1
B(r) = F/dk B(k)exp(ik -r), B(k)= V/dr B(r)exp(—ik -r) .
T
(2.105)
where V is a volume to define discrete k via periodic boundary condition, leading to
the uniform density V/87° of k in the continuum limit V — oo. The (k, w) Fourier
component of microscopic M-eqs is (¢ = w/c)
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® —)Ak.w) =TIk, ) = [0l k. )], (2.106)
C

This equation is not affected by LWA, except that both A and I™ are appreciable
only for small k. (If LWA is a good approximation, all the physical quantities should
mainly consist of their LW components.)

The Fourier component of the constitutive equation (2.48) is

- 1 - S
Ii(k, w) = . Z [g0(@) L0, (k) Fyo(@) + hy (@) Lo (k) Fo, ((@)] , (2.107)

= [same expression without 1/c]g,

and the factor F},, is written in terms of the Fourier components as
v? . .
Fuo(w)=—-—=|[ dk I,,(=k)-A(k) . (2.108)

83

Substituting (2.108) into (2.107), we have

~ V2 ~ -
Lk = o [ a3 [ @lo 0Ta(—K)

8m3c

+hy ()10 (k) Ioy(—K))] - A(K) (2.109)
= [same expression without 1/c]q; .

In evaluating the matrix element of the current density in LWA, we begin with the
operator form of the current density

1(k)

% f dr e ™7 {Jo(r) + ¢V x M(r)} (2.110)

1 A .
V/dr e KT Jo(r) + i%k x /dr T M), @111)

[same expression without c]SI ,
where J is the A independent part of orbital current density, (2.13), and M is the
spin magnetization, (2.21), and the second equation is derived via partial integration.
The (uv) matrix element of this operator is given by the same expression with J(r)
and M(r) replaced by the matrix elements (u|Jo(r)|v) and (u|M(r)|v).

If LWA is a good approximation, we can expand exp(ik - r) in Taylor series, and
keep the first few terms. These terms are the various moments of (u|Jo(r)|v) and
(| Mg(r)|v). Since the values of the moments depend on the center about which
they are defined, we need to specify the center. In the situation where LWA is a good
approximation, the transition u <> v is usually localized, so that we can choose
a “center” in the region where the wave functions ¥, and W, have appreciable
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amplitudes. Let us denote the center as r. Then, the matrix element of the current
density in LWA is given as

~ exp(—ik -r) - — (s
1,.(k) = %[]M — ik Qu +ick x My +---] (2.112)

= [same expression without c],

up to the O (k') terms, where

Juw = /dr (mlJo(r)|v), (2.113)
Qu = /dr (r —r){ulJo@|v), (2.114)
1‘_’1,(2 :/dr (| M spin (r)| V) (2.115)

From the form of the one particle operators included in J((r), the matrix element
J uv 1s nonzero when the transition 4 <> v contains electric dipole (E1) character, and
Q,w is nonzero for the transition with magnetic dipole (M1) and electric quadrupole
(E2) characters. We can explicitly separate Q,w into the M1 and E2 components as
shown in Sect. 5.6. This allows us to rewrite (2.112) as

exp(—ik - r)
\%4
= [same expression without c]

I,,(k)= [T — ik - Q2 +ick x My, +---], (2.116)

SI°
where M wv 18 the sum of spin and orbital magnetizations

M, =M + M0 (2.117)

The explicit form of the orbital magnetization M gb) is givenin Sect. 5.6. Substituting
this expression into (2.109), we can express the induced current density in terms of
the separate contributions of E1, E2, and M1 transitions. Because of the assumption,
at the beginning of this section, of neglecting the non-uniformity in the LWA averaged
system, we should choose the k' = k term in the integral over k" in (2.109). Supplying
873/ V)8(k — k') (which corresponds to 8y - in discrete case) in the k'-integral, we
obtain

- 1% - - S . -
I(k, ) = = > [av@) o) T o(—k) + hy (@) o (k)To, (—k)] - A(k) ,

= [same expression without 1/c] (2.118)

N

i.e., the susceptibility is
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1% - - S -
Xem(k, w) = = > [8u@)Toy (T o(—k) + hy(@) Lo (k)T o, (=K)]

[same expression without c]| (2.119)

SI
Note that the explicit 7-dependence in (2.116) cancels out in this expression because
of k = k’. When a same transition occurs at various positions with number density
no, the factor (1/V) " is replaced by ng Z;, where the prime on the summation
sign means that a same transition (at different positions) is counted only once.

The T component of the induced current density, required in the M-eqs (2.106),
is

IV =xMaA (2.120)
where . .
Xem (k, @) = (1= kk) - xem(k, @), (k = k/Ik]) . (2.121)

The inner product k- (k- Q) appearing in this quantity is defined as
k-(k-Q) = DX keky Qe - (2.122)
& n ot

This allows us to calculate the dispersion equation of the coupled waves of A and

~(T) .
1 t( "ina general form.

2.4 New Macroscopic Susceptibility

We have derived the LWA average of microscopic susceptibility to be used in the
macroscopic constitutive equation. Combining this susceptibility with the M-eqs
(2.106), we can selfconsistently determine the T components of vector potential and
induced current density. Since a vector potential contains both electric and magnetic
fields, and a current density is written in terms of the matrix elements of “E1, E2, M1
...” characters, this selfconsistent solution describes the complete (linear) response
of a coupled matter-EM field system for T field excitation. (The L components of E
and I, if they are allowed by symmetry, can be determined from the selfconsistent
solution of the T components. See the last argument of this sub-section.)

The new macroscopic susceptibility relating I with A can be classified into O (k°),
0", O(k?) terms as

Xem (K, ©) = Xem0(@) + & Xem1 (k. @) + & Yem (K, ) + -+ - (2.123)
Each matrix element of current density consists of a sum of E1, E2, and M1 com-

ponents, as seen from (2.112). Since the products of two matrix elements of current
density are contained in the susceptibility X, in a dyadic form, the first one (on
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the 1.h.s.) indicates the character (E1, E2, or M1) of the induced current density,
and the second one represents the character of the interaction contributing to the
term. In this sense, we can specify the contributions of (E1, E2, or M1) transitions
in {Xemj(w); j=123}

The term yemo(w) has contribution only from the (E1, E1) transitions as

1 L
Yemo(©) = — Z [2@)Tov Juo + (@) T oo Tou] s (2.124)
= [same expression without 1/c]g; .

In a favorable symmetry condition, this term is related with the conventional electric
susceptibility x., as shown in Sect. 3.1

The term emz(w) consists of the M1 + E2, M1 + E2) transitions, i.e., the (M1,
M1), (E2, E2) terms and their cross terms (M1, E2) and (E2, M1). The (M1, M1 +
E2) terms contribute to the current density due to the induced magnetizations, and
(E2, M1 + E2) terms contribute to the current density due to the induced electric
quadrupole (E2) polarizations. The M1 and E2 characters can be distinguished, not
by space inversion, but by time reversal. It will be shown in Sect. 3.1 that the (M1, M1)
term can be used to derive the magnetic susceptibility xg, and . = 1/(1 — 47 xp)
in the case of non-chiral symmetry.

In contrast, the ey, term consists of the mixed transitions of (M1 + E2, El)
and (E1, M1 + E2) types. In order for this term to be non-vanishing, there must be
the quantum mechanical excited states {|v)}, which are active to both E1 and M1
(or E1 and E2) transitions. This is possible only when the system has no inversion
symmetry, i.e., the case of chiral symmetry, or a system with optical activity. In this
case, common poles appear among { yemj(®); j = 1,2, 3}.

If the system has inversion symmetry, all the excited states are classified accord-
ing to the parity, so that the states contributing to E1 transitions and (M1 and E2)
transitions belong to different irreducible representations. No excited state is active
to both E1 and (M1 and E2) transitions, so that x.n; is zero in this case. Then, the
summation over the index v can be divided into two groups, each of which contributes
to either E1 or M1 (E2), i.e., the excitations contributing to x.mo are different from
those contributing to Xemo.

Though the induced current density is given as a power series expansion about k, it
would be more physical to decompose it into the current densities due to electric field-
induced electric polarization I .z, magnetic field-induced magnetic polarization I 3,
magnetic field-induced electric polarization I .g, and electric field-induced magnetic
polarization I . Their explicit forms are obtained by the substitution of (2.116) into
(2.118):

1 _ = . ~ (€ 7 : NH(e
o = o 2 e ik Q5o + k- Q)

(T — ik - Q) (T + ik - Q)] - Ak, (2.125)

= [same expression without 1/ c] o1 >
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& _ - — - - — ~
Inp = o x Y [ Moy (ke x M)+ h Mook x Mo)] - Ak,
v
(2.126)
= [same expression without c]SI ,
—i o 3
Loy = = Y [8(Jou — ik - Q) x #.0)
+hy (T — ik - Q) (k x Mo)]- Ay, (2.127)
i S
ImE = V k x Z [guM()v(JvO +ik - Ql(;eE)Z))
iMoo (Tou + ik - QS?)] - Ack) . (2.128)

In Sect. 3.1, this result is used to rewrite the constitutive equations in terms of electric
and magnetic polarizations. This is an attempt to reproduce the conventional form
of macroscopic M-eqs, but the result shows the difference in an essential way.

When the symmetry allows the mixing of the T and L components of response,
there are non-zero elements in x.n,, describing the L component of current density
induced by the T field A. In this case,

1k, ) = kk - yom (k. ©) - Ak, o) (2.129)

is a non-zero vector. The magnitude of this vector is determined, by substituting A
of the selfconsistent solution (A and I ™) into the r.h.s. of this equation. If; in this
case, there exists also an external L-field, it induces the T, as well as L, components
of current density. This case is treated in Sect. 5.7 and the result is shown to be neatly
combined with that of the T field excitation in Sect. 3.2.

Thus, the single susceptibility tensor x.m(k, @) describes all the possible situa-
tions, including electric and magnetic polarizations, and their mutual interference
effect due to chiral symmetry. It should be stressed that this result is not a phe-
nomenology, but a first-principles theory with explicit quantum mechanical expres-
sions in a model-independent form, which allows both symmetry arguments, as given
above, and numerical analysis of model systems.

2.5 Dispersion Equation

The coupled equations for A(k, w) and I\ (k, ), (2.106) and (2.120), have a solu-
tion when a particular relation between k and w, i.e., dispersion relation, is satisfied.
Such an equation is obtained by substituting (2.120) into the M-eqs (2.106) as
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k> — ¢>H Ak, w) = 47” 1Dk, w) Ak, ®) , (2.130)

= [same expression with 47 /c replacedby jo],
(¢ = w/c). This is the homogeneous linear equations for the two T components of
A, and the condition for the existence of non-trivial solution is the vanishing of the
determinant of the (2 x 2) coefficient matrix, i.e.,

2k2 4
det| -1 - {1+chxé,?(k,w)}|=o (2.131)
w w

[same expression with 47 ¢ replacedby 1/¢] .
In the conventional case, the dispersion equation is obtained from the M-eqs V x
V x E = (0?/c*)enE, rewritten by eliminating magnetic field. The condition for
the existence of non-trivial solution of T-character leads to

i T
det|—1 — {(1+ 47 xe) A + 47 1)}V = 0, (2.132)
@
k2
[deﬂ;l = eotto{(1+ Xe) (1 + xm)} V| = 0} : (2.133)
SI

As mentioned in Sect. 1.5, it looks that the contributions of electric and magnetic
transitions occur as a product in (2.132), while all the transitions in the new dispersion
equation (2.131) occur as a sum of single poles of .. Since the E1 and (M1 and
E2) transitions are mutually mixed in chiral symmetry, y. and x,, will have common
poles, which will lead to the occurrence of second order poles in the e part of
(2.132). This is a clear distinction from the new result, and requires explanation.
This apparent contradiction can be solved, in the case of non-chiral symmetry, by
using the magnetic susceptibility defined as M = xp B, as shown in Sect. 3.3.

In the case of chiral symmetry, the dispersion equation of the conventional scheme
needs a modification from (2.132). For this purpose, a phenomenology has been used
with the name of Drude-Born-Fedorov constitutive equations, which generalize
the relations D = ¢E, B = pH so as to include the effect of “magnetic field
induced electric polarization” and “electric field induced magnetic polarization”. The
dispersion equation in this case is also different from the new one (2.131), which
will be discussed in Sect.3.4. Though the form (2.130) is valid in both chiral and
non-chiral symmetries, one could rewrite it in terms of the susceptibilities defined
with respect to the electric and magnetic fields E and B (not E and H), which leads
to a set of constitutive equations somewhat similar to, but essentially different from,
the DBF eqs, as shown in Sects. 3.1 and 3.4.

If the symmetry of matter is low, the excited states contributing to the poles
of the susceptibilities xem, Xe and xm, may have LT-mixed character. This aspect is
automatically taken care of by these susceptibilities through the pole positions and the



58

2 New Form of Macroscopic Maxwell Equations

residues of each term of the summands, though the T parts of the susceptibilities are
selected in these dispersion equations. The contribution of pure L modes is excluded
because of the vanishing interaction with A (T-field).
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Chapter 3 ®)
Discussions of the New Results Geda

Abstract New results are discussed from various angles. A reversible rewriting of
the single susceptibility constitutive equation leads to a first-principles definition
of P and M induced by both E and B. This contains the microscopic definition of
constitutive equations in chiral medium, more reliable than the phenomenological
DBF eqgs, and their comparison is made in details. A comparison with other types
of single susceptibility theories of EM response, including that of Landau-Lifshitz,
is made, which shows the advanced nature of the present theory. A short discussion
about LWA is given, indicating its positive and negative meanings depending on
the problem in consideration. As a special example of the application of this the-
ory, dispersion curve and transmission window in a left-handed chiral medium are
discussed. The aspects of L electric field is described.

3.1 Rewriting of the New Constitutive Equation

In Sect. 2.4, we have decomposed the new constitutive equation into the terms due to
the electric field-induced electric polarization I.g, magnetic field-induced magnetic
polarization I,,5, magnetic field-induced electric polarization I.g, and electric field-
induced magnetic polarization I, as in (2.125)—(2.128). In this form, there are two
points of worth noting. The two terms due to induced magnetizations, I3 and I g,
have the factor k x M, in front of their expressions. This means that these induced
current densities correspond to the form “V x magnetization”.

The second noteworthy point is that I.g and I, contain the factor (k x M,,) -
A(k) at the end of their expressions. If we use the manipulation

(k x My,) -A(k) = —(k x A(k)) - Mo, = iB(k) - M, , 3.1)

we understand that these components of the induced current density are the linear

response of the system to the applied magnetic field B. On the other hand, the
induced electric polarization terms, I g and I g, contain the factor (]o], — ik - Q(()evz)) .

A(k, w) attheend. Rewriting;l (k, ) into —i (c/w)EP (k, ), we see that these terms
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are caused by the interaction with (transverse) electric field. By using these relations,

we can rewrite the I.g, I g, Ig, and I g terms, i.e., (2.125)—(2.128), as

Ip=— Z gov — ik - Q4o + ik - Q)
+hy (o — ik - Q) Jow + ik - Q)] - EV (k)
Inp = ivck X XU: [g.Mo,M 0 + h,M ,0Mo,] - B(k)
= [same expression without c| -
Ig=— Z 2vJow — ik - Q5HM g
+hy (o — ik - Q5 Mo,] - Bk ,

ImE = —kx Z guMOV(JVO + ik - Q(eZ))
oV

« e
+h, Mooy + ik - Q)] - E™ )
= [same expression without c] .
If we put

ImB:iCkXMB, ImE:iCkXME,

[ImB =ik x MB 5 ImE =ik x ME]SI s

the B-induced and E-induced magnetizations, Mg and Mg, are given as
1 - - - -
Mgk, ») = V > [8Mo.M o + h,M Mo, ] - B(k) ,

Mgk, ©) = — Z 2Mo,(J oo + ik - Q)

~=(T)
+h, Moo, + ik - Q)] - E () -
Similarly, by using the definition of E- and B-induced electric polarizations
Ig = —iwPg, I =—ioPy,

we have

1 I €. €.
Pe = —2 > [&Uo — ik Q)T + ik - Qi)

v

3.2)

(3.3)

(3.4)

(3.5)

(3.6)

3.7)

(3.8)

(3.9)
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+hy (o — ik - Q) Tow + ik - Q)] ET ), (3.10)
i

Py = [gv (JOV ik - Q(eZ))MVO
oV

+huw—M(f%Mm]B®. (3.11)

In this way, we can redefine the induced magnetizations Mg and Mg, and the induced
electric polarizations Py and Py for general symmetry conditions. This allows the
new definitions of the “electric, magnetic, and chiral” susceptibilities as

Py = xegE, Py = xB, Mg = xmgE. Mp = xmpB. (3.12)

(Though we should write E as E™ more exactly, we may leave it as it is, because
the argument in the next section allows the same form of y.n, as the susceptibility to
relate induced current density and L source field E. .) The precise expressions of
these susceptibilities are

1

ek = m;[éudm — ik QE) U + ik - Q)

+hyTvo — ik - Q) Jow + ik - QE] (3.13)
XeB = C()l_V Xv: [gv(j()v - lk Q(e2))Ml)0

+hy (T o — ik - Q)Mo , (3.14)

Yo = é 5 (@t + ot (3.15)
Xkt = —— Z gMo,(J o + ik - Q)

+h, Mooy + ik - Q5] (3.16)

In terms of these new, quantum mechanical definitions of P and M, the micro-
scopic Ampere law, (1.10) can be rewritten as

MXQ—MM:—€@+MD, (3.17)
[MX<LB—M>=—m@w+Pq , (3.18)
Mo SI

i.e., the same form as the conventional macroscopic one by writing B —4nM = H
and E + 47 P = D. Combining this result with the usual definition D = ¢E and
B = uH, we have
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¢E = (14 47 xep)E + 47 xesB [ = (g0 + xee)E + XeBB]y; - (3.19)

1 1
;B = (1 — 47 Xmp)B — 47 xmeE | = (M— — xme)B — xmeE]y; -
0

(3.20)

This is the constitutive equations in terms of E and B in the general case including
chiral symmetry. Though this looks like two vector equations, it is actually one,
because it was derived from the single one I = xemA, or I = xem[A + (¢/iw)Eexi],
including the content of the next section. Equations (3.19) and (3.20) are those to be
compared with DBF constitutive equations, which is done in Sect.3.4.

In the case of non-chiral symmetry, these equations reduce to

6E = (1 + 47 xp)E [ = (80 + xe)E], (3.21)
B=pu(l —4nxup)B [ = %(1 — toxms)B]; - (3.22)

ie,e =1+ 4nXE and p = 1/(1— 47TXmB)’ O YXeE = Xe = (C/a)z)XemOa w=1+
47 Xm = 1/(1 — 47 xmB), i.€., Xm = XmB/(1 — 47 XmB)-

The new scheme in terms of the single susceptibility x.,, can deal with the general
situation including the chiral symmetry. But the popular trend in the study of meta-
materials, near-field optics, photonic crystals etc. is to use ¢ and p as independent
free parameters. The criterion to allow this is the non-chiral symmetry of the system
in consideration, as discussed above. This is particularly important in the resonant
region of ¢ and . If this condition is not fulfilled, the description via “e and ©u”
has no justification. Even when the use of independent ¢ and u is allowed in the
non-chiral case, one should use, not xy,, but xp, since the matter excitation energies
to describe the resonance are correctly included as the poles of, not the former, but
the latter.

The problem about the statement “the macroscopic average of microscopic mag-
netic field h is usually written as B” described in Sect. 1.5, does not exist in the
present scheme, because the magnetic field is always written as B both in the inter-
action Hamiltonian H,, and in the vacuum EM field Hamiltonian HS} without any
change before and after the application of LWA. The macroscopic average defined
in this scheme does not logically allow such a change.

The expressions of the formulas in ST units system, especially in this section, will
need a check from the dimensional point of view, which is done in Sect. 5.8.

3.2 Unified Susceptibility for T and L Source Fields

In the previous subsection, we have rewritten the new constitutive equation in a
form similar to the conventional ones. However, this is limited to the response to the
transverse field A. The response to the longitudinal field is treated in Sect. 5.7, where
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the source field is an external L electric field Eex . In order to consider the general
cases of EM response, we have only to combine these two formulations. In doing
so, however, we find it awkward to have constitutive equations for T and L fields
defined with respect to different kinds of field, A for T and Eq for L field. In this
subsection we will show how to unify them, i.e., how to rewrite the susceptibility xjgr
in Sect. 5.7.2 in terms of y.n,. The result is quite simple, i.e., the whole macroscopic
constitutive equation is given in the form

Ik, w) = Xem(k, w) - [A(k, w) + %Eele(kv w)], (3.23)

= [same expression without c] -
where the sum of A and (¢/iw)E.xy represents the general form of source EM field
with T- and L-components.

In order to rewrite the result of Sect. 5.7.2, let us take the (&, n, ¢) axes, as
the Cartesian coordinate system to express L and T components, where ¢ axis is
parallel to k. The induced current density by E.x contains the matrix elements of the
(L-component of) polarization operator P, as shown in Sect. 5.7.2. The operator
equationJ = dP/dt + ¢V x M discussed in Sect. 5.1 leads us to J& = PV /3t =
(i /h)(HP® — PV H), where the last equality is the Heisenberg equation of motion.
Since we need the matrix elements of P and J with respect to the eigenstates of
matter Hamiltonian @, we use J¥' = (i /h)(HO PV — PO H©) Then, we have

i
(W OV 1v) = > (Ey = E)(uIP@)®|v) (3.24)
which allows us to rewrite the (t, ) components (t = &, n, ¢) of xjgL as

xféf)——lﬁZ[gv(w)J(”(r)J“)(r) +hy (w)ﬂ”(r)J“)(r’);—l] (3.25)
v0

where E,o = E, — Ej. In this way we can rewrite the (7, ¢) components of xjg, in
terms of the matrix elements of J alone.
The manipulation

[ ! } ! :E{ b1 } (z = ho +i0") (3.26)

EwwFz] Ew Z |EwFz E,o

allows us to rewrite xjgr as

K = —f; > [ {gv(w) - —}J(”(r)J(“(r)

+ {hv(m - Elo } J )J“)(r’)] (3.27)
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The r.h.s. of this expression is exactly same as the susceptibility x.q (times c¢/iw)
derived in Sect. 2.2.2, except for the difference in the assignment of tensor compo-
nents. Thus, we may write

T c T 1 T
i = axc(d,{) |: = ie Xc(d’{)iLI . (3.28)
(The (¢, &) and (¢, n) components, describing the L current density induced by the
T field, are already included in the susceptibility x.q of Sect. 2.2.2.) Altogether, we
have shown that the 3 x 3 matrix x.q describes the linear response of matter generally
for both the T field A and the L field (¢/iw)Eex.

To derive the macroscopic susceptibility for the E¢xq -induced components, we
can repeat the same calculation as that for the A-induced components, which leads
to the same form of x.n, except for the assignment of the tensor components (z, ¢).
Hence, we obtain (3.23).

In Sect. 2.4, we decomposed the induced current density into a sum of the current
densities I.g, I, Imp, Img, and they are rewritten as the sum of —iw (Pg + Pg) and
ick x (Mg + Mg) in Sect.3.1 Since this part of the current densities is caused by
the transverse field A, we rewrite them as —iw (Pgt + Pg) and ick x (Mg + Mgr)
to distinguish T and L electric fields. In the presence of external L field, we add the
induced current densities, I g, and I g1, due to the L electric field. These terms are
defined by the same expression as (3.2) and (3.5) simply by replacing E (k) with
E‘extL (k), and can be rewritten as (—iwPg; + ick x Mg; ), where P and Mg are
defined by (3.10) and (3.8), respectively, by replacing E (k) with Eey (k).

Thus, the general LWA form of the induced current density in the presence of
E., . can be written as

Ik, w) = —iwPk,w) +ick x Mk, w) , (3.29)
= [same expression without ¢]q; .
where
Pk, w) = Pgr(k, w) + P (k, 0) + Pg(k, ®) , (3.30)
Mk, w) = Mgr(k, ) + Mgy (k, ) + My (k, o) . (3.31)

Using this extended definition of P and M to define

D =E+47P [ =&k +P], (3.32)
. 1
H=B-41M |:=—B—Mi| , (3.33)
Ho SI

we can write the macroscopic Gauss law for electricity and Ampere law in the
conventional form. It should be stressed that all this reformulation arises from the
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single susceptibility xem as a full 3 x 3 matrix for the constitutive equation relating I
and [A + (c¢/iw)Exq ]. Since the T part of the source field A contains both electric and
magnetic fields, this susceptibility describes both electric and magnetic responses. It
should be stressed that this rewriting does not affect the polariton dispersion equation,
(2.131).

3.3 New and Conventional Dispersion Equations

The new dispersion equation is (ck/w)?> = 1 + (4mc/w*) xem (k, @), While the con-
ventional one is (ck/a))2 = egu (more rigorously, (2.131) and (2.132)). Though it
is usually not explicitly mentioned, the conventional form applies only to the case
of non-chiral symmetry. In the case of chiral symmetry, where one cannot distin-
guish polar and axial vectors by their transformation properties with respect to mirror
reflection and/or space inversion, electric field induces M, as well as P, and mag-
netic field induces P, as well as M. In order to describe such an extended situation,
a phenomenology called Drude-Born-Fedorov (DBF) constitutive equations [1] has
been used. As will be shown in Sect. 3.4, DBF eqs lead to a dispersion equation
different from the new one. Thus, the new dispersion equation is different from the
conventional one in the both cases of chiral and non-chiral symmetries.

The apparent difference between the two dispersion equations in non-chiral sym-
metry is in the pole structure of x., and eu on the r.h.s. of the equations. In xem,
the contribution of all the quantum mechanical transitions appears as a sum of single
poles, which is a general result of the perturbation calculation given in Sect. 2.2.2.
On the other hand, the poles of the product ¢ appear differently. Since ¢ is a sum of
single poles of E1 (+ E2) character and u that of M1 character, the contributions of
El (4+ E2) and M1 transitions appear as a product in . This apparent controversy
can be solved by using the magnetic susceptibility xg(= xms for cgs Gauss units, =
o xmp for SI units) rather than x,, where M = xgB = x,H. This leads, together
with B=uH,to u = 144wy, = 1/(1 — 4m xg), which allows us to rewrite the
conventional equation (ck/w)? = gy into

(ck>2_ & [_ 1+Xe}
w _1—477.')(]3 _I_XB SI’

ck\? ck\?
=e+4n|— ) xs | =1+xe+|—) x8| - (3.34)
w w SI

In this form, the r.h.s. is the sum of the single poles due to E1 (+ E2) and M1
transitions, and the magnetic contribution appears with a multiplication factor of
O (k?). This fact coincides with the derivation, in Sect. 2.4, of induced magnetization
from the O (k) term of the induced current density.

This solves also one of the problems of Sect. 1.5, i.e., the k-dependence of . The
apparent difference in the k-dependence of u between the two typical cases of M1
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transition, spin resonance and optical (orbital) M1 transitions, is due to the different
stages of theoretical description. In both types of experiment, a proper analysis would
require the comparison of spectral peak position and intensity with those of theoretical
prediction. For that purpose, we need to calculate the EM response of the medium
based on the dispersion relation. The frequently used expression p = 1 4 47 x
for spin resonance should be rewritten as u = 1/(1 — 4 xg), and the dispersion
equation takes the form of (3.34). The argument for the intensity of orbital M1
transition given in Sect. 1.5 is made in accordance with (3.34). Thus, the apparent
difference in the k-dependence of u is actually the problem of correct definition of
magnetic susceptibility.

It should be stressed that the discussions given above are meaningful only in
non-chiral symmetry. The argument in the case of chiral symmetry will be given in
Sect. 3.4.

3.4 Case of Chiral Symmetry: Comparison
with DBF-Equations

For materials with chiral symmetry, where polar and axial vectors are indistinguish-
able, the conventional scheme of macroscopic M-eqs with ¢ and  is not sufficient.
As a symmetry argument within macroscopic regime, it was thought appropriate to
add to the constitutive equations those terms which allow the electric field induced
magnetization and magnetic field induced electric polarization. The generalized con-
stitutive equations are called Drude-Born-Fedorov equations (DBF-eqs) [1]. In a
homogeneous isotropic case, they are written in the form [2]

D =¢E+ BV xE), (3.35)
B=uH+ BV xH) . (3.36)

The parameter S is called chiral admittance, which leads to the different phase veloc-
ities for left and right circularly polarized light in this medium, as shown below.

In Sect. 3.1.3 we have rewritten the new constitutive equation I = xemA intol =
—iwP + ik x M, from which we “defined” electric polarization P and magnetization
M. The source fields of these induced polarizations are T electric field (iw/ ©)A and
magnetic field ik x A. In the presence of an external L electric field, we add the

. . ~(L) . .
contributions of E o induced terms, which leads to

~ ~(T) ~ (L) ~

P = xeerE ~ + xeeLE  + xeBB, (3.37)
- - () = (L) .
M = xnetE  + xwerlE T + xmBB . (3.38)

In terms of these P and M , we obtain the Ampere law in the conventional form,
V x H = (1/c)0D/0dt, whereby we use
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D = (1447 xep)E + 4 xesB [ = (0 + xe£)E + XeBB]y - (3.39)

1
H = (1 — 47 xnp)B — 47 xmeE [ = <— - xmB> B - meE] . (3.40)
Mo SI

Here, we have used a short-hand notation

xetE = xeerE™® + xeeLEY (3.41)
xmeE = XumerE® + xmp L E® (3.42)

Equations (3.35) and (3.39) are equivalent, if we note B = —(ic/w)k x E.However,
(3.36) and (3.40) cannot be equivalent. (If E on the r.h.s. of (3.40) were D, they
would be equivalent.) Therefore, the conventional DBF eqs are different from the
similar expressions (3.39) and (3.40). The essential difference is that the apparently
two vector equations (3.39) and (3.40) are originally a single vector equation, I =
xemA, while (3.35) and (3.36) are not. This difference manifests itself in that of the
dispersion equation as shown below.

The dispersion equation obtained from I= XemA is given as (2.131), where
x{D(k, ) consists of a superposition of single poles corresponding to matter exci-
tation energies. However, the dispersion equation derived from DBF eqs has a
different behavior, as shown below. Substituting M-eqs, V x H = —(iw/c)D and
V x E = (iw/c)B into the DBF eqs, we have

¢E + ¢V X E = (ic/o)V x H =[(i/o)V xH|, (3.43)
pH + upV x H = —(ic/w)V x E = [(—=i/w)V x E], . (3.44)

These equations can be solved for X =V x Eand Y =V x H as

A X = euBE +iu(c/w)H , (3.45)
AyY = —ie(c/w)E + eupH (3.46)

= [same expression without c] -

where Ay = (c/a))2 — eupB?. From (3.43), we have ¢V - E = 0, i.e., E is transverse.
Taking the curl of equations (3.43) and (3.44), we have

eX+eBf(VXxVXE)=i(c/w)VxV xH, (3.47)
=[(i{/w)V x V x H], .

—i(c/w)V x V x E, (3.48)

=[—-(/w)VxV xE|.

wY +uB(V xV x H)

Since both E and H are transverse, the V x V x parts of these equations can be sim-
plifiedasV x V x E = k’?E and V x V x H = k*H (for plane waves). Substituting
(3.45) and (3.46) into these equations, we get
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e{leuBE + in(c/w)H} + eBk*AoE = i(c/w)k>AoH | (3.49)
= [(i/o)k* AoH]; .
w{epBH — ie(c/w)E} + upk*AcH = —i(c/w)k*AE , (3.50)

= [(—i/w)k* AE] .
which are the homogeneous linear equations for E and H. The condition for the
existence of nontrivial solution is the vanishing of the determinant of the coefficient
2 x 2 matrix, which gives

(& () -[(sitma)], o
w) \l1xBow/o)ex) | \1+£(Bw)/n SI' '

For finite 8, the refractive index (= ck/w) takes two different values, which corre-
spond to different polarizations of the eigen modes in this medium, i.e., two different
circular polarizations of this isotropic medium. In this sense, DBF eqs. give a quali-
tative description of an optical active medium. However, the dispersion equation is
different from the first principles result. The r.h.s. of the dispersion equation given
above has poles through the w-dependence of ¢ and . From the form of the expres-
sion, all the poles of the r.h.s. are second order (or higher). This is in sharp contrast to
the result (2.131) in Sect. 2.5, where the corresponding part of the equation consists
of a superposition of single poles.

This result indicates that the difference between DBF eqs and the present micro-
scopic susceptibility lies on a fundamental level, so that the former cannot be justified
microscopically. In contrast, the present first-principles theory can provide a general
expression of macroscopic susceptibility xem (k, @), (2.119) in a quantum mechani-
cal form, applicable to both chiral and non-chiral symmetry. Its O (k') term, k e,
vanishes in non-chiral symmetry, so that it plays a central role in chiral symmetry.
The O (k%) and O (k?) terms are also affected by the chirality induced mixing of the
eigenfunctions, but the effect is secondary. Since each element of the 2 x 2 matrix in
the dispersion equation det|(c*k?/w*)1 — {1 + (4c/0*) x Dk, w)}| = 0, (2.131)
is at most second order in k, this dispersion equation leads to a quartic equation of k
for a given w. Further, this would become a quadratic equation of k> with solutions
k = £k (®), £k, (w) in the absence of k xem1, 1.€., in the case of non-chiral symmetry.
The presence of the odd power terms of k in the quartic equation breaks this mirror
symmetry (for +k <> —k). In Sect. 3.8.1, we show an example of this kind. In the
neighborhood of & = 0, dispersion curves show a k-linear behavior. The dispersion
curves and the boundary conditions of EM field allow us to determine the response
spectrum of the system. Thereby, the knowledge of the microscopic character of the
resonance according to this scheme will be a good help for our physical interpretation
of the result.

The rest of this subsection and Sect. 4.1.5 are based on the studies of chiral medium
as a member of metamaterials research group, of which activity report is going to be
published soon [3]. Because of its close relationship with the contents of this book,
the new development is reproduced in several parts.
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If one prefers to use a simpler parameterized form of constitutive equations, rather
than the complicated first-principles expression, (2.125)—(2.128), we can propose an
alternative of DBF eqs. Since the fundamental variables of EM field are E and B,
rather than E and H, in the first-principles theory, we generalize the conventional
constitutive eqs D = ¢E and B = H by adding B-induced electric polarization and
E-induced magnetic polarization as

D =:E +iéB, (3.52)
H = (1/)B+inkE , (3.53)

Here, ¢ and u for chiral media are denoted as & and [, and the prefactor i for é and
7 is multiplied by comparing with (2.127) and (2.128).

This set of phenomenological constitutive equations are different from DBF egs,
and hereafter we call them ““chiral constitutive” (ChC) eqgs. The parameters of ChC eqs
have correspondence to the microscopic susceptibilities Xeg, XeBs XmB> XmE, (2.125)—
(2.128), as

~

1+47TX6E Né? XeB Né ’ (354)
/(1 =4 xmp) ~ L, XmE ~ 1. (3.55)

It should be noted that the the diagonal and off-diagonal elements of x.p, xmg are
interchanged from those of corresponding components of x.n,. This is because the
tensors xem are the coefficients of A on writing induced current density, while x.p
is the coefficient of B on writing the B-induced electric polarization (corresponding
to —iwP part of current density), and yng is the coefficient of E on writing the
E-induced magnetization (corresponding to the ick x M part of current density).
Since B = ik x A and A are perpendicular to each other, the diagonal (off-diagonal)
elements of x.p, xme are the off-diagonal (diagonal) elements with appropriate sign
change of the corresponding tensor component of xep,.

For the Cartesian framework (x, y, z) with the z-axis along k, the chiral compo-
nents giving rise to the different phase velocities of left- and right-circularly polarized
EM waves appear on the off-diagonal, xy, yx, positions of x.n in k-linear forms,
while on the diagonal, xx, yy, positions of x.g and xyg in k-independent forms, for
the reason mentioned above. In this way, it is possible to use scalar parameters é, ,
as well as &, [i, for the tensor quantities shown in (3.54), (3.55) when the system is
isotropic in the xy plane.

The dispersion equation arising from Maxwelleqs V x H = (1/c)oD/dt, V x
E = (—1/c)aB/dt and ChC eqs can be obtained in a similar manner as for DBF egs.
But we show here another way to the same goal. If we rewrite ChC eqs by substituting
Maxwell eqgs, we have a set of linear equations for E, H, V x E, V x H, which can
be solved for V x E, V x H as

VxH=fH+gE, (3.56)
V xE =hH + jE (3.57)
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where
f=/oén, (3.58)
g =—i(w/c)E+ pén), (3.59)
h=i(w/o), (3.60)
Jj= (/o). (3.61)

FromV x H = (1/c)oD/dt,D is transverse, i.e., V - D = 0, which together with
(3.52)and V-B =0, leads to V - E = 0, and further V - H = 0 via (3.53). Thus,
for ChC eqs too, we have V x V x E = k®E and V x V x H = k*H. Then, the
application of V x to (3.56), (3.57) gives a set of linear equations of H, E. In order
for the linear equations to have non-trivial solution, we request the vanishing of the
determinant of the coefficient matrix

det|k’1 — &% =0, (3.62)
where &7 is a 2 x 2 matrix as
%:[{ﬂ : (3.63)
We can rewrite the dispersion equation into
detlk1+ 27| =0 or detlkl —.o/| =0, (3.64)

the solution of which is

ck LE+H) 1 [ . .
= - iw + 5\/;3(5 A2 4480, (3.65)

where all the four combinations of + are allowed. This can be rewritten as
ck 2¢0L

R e , (3.66)
A + i) & 22 E + )2 + 4

which facilitates the comparison with the dispersion relation for DBF eqs (3.51).
Both of the dispersion equations for DBF and ChC eqs reduce to (ck/w)* = eu(=
£[1) in the absence of chirality, as expected. However, the condition for the existence
of real solution is different, i.e.,
en >0 (3.67)

for DBF egs, and

A N2
B+ 2 <‘§+”> >0 (3.68)
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for ChC egs, i.e., the condition for DBF eqs is not affected by the chirality, while
the one for ChC eqs is. The latter is more relaxed in the sense that the product
£/ can be negative. This leads to a qualitative difference between DBF and ChC
egs, especially in the dispersion curves in the left-handed situation, as we show in
Sect. 4.1.5.

In view of the fact that there exists a first-principles theory, not for DBF eqs, but
for ChC egs, ChC eqs are more reliable. However, in the field of metamaterials, DBF
and ChC eqs are often regarded to be equivalent. One might think that, by adjusting
the w-dependent parameters, DBF eqs could describe the same physical situations
as ChC eqs. If this were true, there must be the following relations between the
parameters of DBF and ChC eqs

E=¢, E=N=(0/c)ep, (1/f1)=(1/n)— (wB/c) e, (3.69)

derived from the comparison of (3.35), (3.36) and (3.52), (3.53). This relation enables
us to ascribe appropriate w-dependence to the DBF parameters, which turns out to
lead to a contradiction to the assumed equivalence of the two in the behavior of the
dispersion curve for a left-handed chiral medium at resonance, i.e., the linear crossing
behavior of the dispersion curve of the first-principles formula is reproducible by ChC
egs, but not by DBF egs, as discussed in Sect. 4.1.5.

From the arguments given above and in Sect. 4.1.5, there is a serious doubt about
the validity of DBF eqs especially in a resonant region. They are frequently used
for metamaterials research, but it seems to be little recognized that their use should
be restricted to nonresonant phenomena. In fact there are examples of the use for
resonant phenomena [4, 5]. The constitutive equations in these papers are D = ¢E —
i¢H , B = uH + i§E. They are not quite DBF eqs but of the same type, in the sense
that they lead to the dispersion equation (ck/w) = +(, /e & &), where the condition
for real solution does not depend on chirality. Also, it gives the type of dispersion
curve which is unable to reproduce the linear crossing at k = 0 for resonant chiral
LHM. See Sect. 4.1.5 for more details.

3.5 Other Unconventional Theories

3.5.1 Single Susceptibility Theories

There are attempts by Agranovich and Ginzburg (AG) [6], and II’inskii and Keldysh
(IK) [7] to describe the macroscopic EM response of matter in terms of a single
susceptibility, i.e., by using only one of the two polarization vectors P and M, which
had been indicated by Landau and Lifshitz (Sect. 83 of [8]). They renormalize the
whole current density into displacement vector D, or P via
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P(r,t) = / dr' J(r,t") (3.70)

oo

and treat it as the single dynamical variable of matter. This P(r, ¢t) contains both
electric and magnetic polarizations, so that the generalized susceptibility defined by

P = x&VE (3.71)

describes all the effect of electric and magnetic polarizations. The vector field for
magnetic field is B(= H).

Though we all share the motivation to give a more general formulation of macro-
scopic M-eqs than the conventional one, there is an essential difference between the
two groups and the present author with respect to the very concept of macroscopic
average. AG and IK reject LWA as a meaningful physical procedure, but the present
author regards LWA, as far as its clear definition is given, as the essential step toward
macroscopic description. AG and IK claim to use a statistical average in terms of
Gibbs ensemble instead of LWA. There is an explicit statement about this point in
Sect. 2.1 of AG to supplement their own form of macroscopic M-egs, i.e., “The fields
E, D, B may vary in anyway in space and time without requiring any kind of averag-
ing (apart from quantum mechanical and statistical kinds) of the fields with respect
to r. Such averaging is not only unnecessary, but, generally speaking, is unfeasible
in the electrodynamics of media if spatial dispersion is properly taken into account.”

The present author also uses ensemble average in the case of finite temperature,
but this has nothing to do with macroscopic averaging, as discussed in Sect. 1.6. In
fact, an ensemble average does not erase the microscopic spatial variation of induced
current density. For example, the ensemble average (for T # 0) of the current density
due to a discrete level of excitation will keep it discrete (apart from the increased
width due to lattice vibrations), with a change only in its spectral weight. If this
transition is localized, LWA is a good approximation, and it can be treated by a
macroscopic theory. If, on the other hand, it has a long spatial coherence, as in
the case of an exciton, the induced current density keeps its long coherence, which
invalidates LWA and a macroscopic description.

If one uses only ensemble average and drop LWA for a macroscopic description,
as in the comment of AG, how does one distinguish the micro- and macroscopic
responses? The scheme of the present author starts from the recognition of the hier-
archy of various theoretical frameworks of EM response (Sect. 1.4). The micro- and
macroscopic M-eqs with the corresponding constitutive equations are those belong-
ing to the semiclassical regime, and the approximation separating them is the LWA
applied to the fundamental equations of microscopic response theory. The calcula-
tions of microscopic susceptibility in Sects.2.2 and 5.7 is essentially same as those
of AG and IK. The refusal of using LWA by AG and IK as the next step to derive
macroscopic susceptibility may indicate that they do not share the understanding
about the hierarchy of the micro- and macroscopic M-eqs with the present author.

As for the use of LWA, our concept is as follows. Depending on the matter sys-
tem of interest and also on the quantity to be observed, LWA can be a good or bad
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approximation. When LWA is a good approximation, its use is the simple and logi-
cally acceptable way of macroscopic averaging, and only in this case the macroscopic
description is meaningful. Whenever the quantum mechanical transitions of interests
have larger coherence length than the wavelength of EM field, we cannot apply LWA.
This kind of situation is frequently encountered in resonant responses, and it is the
case to be handled by the microscopic nonlocal theory in Sect. 2.2. Typical cases
appropriate for a macroscopic description would be the non-resonant phenomena
where no particular transition make a significant contribution. The resonant phe-
nomena for localized transitions can also be a subject for macroscopic description,
if we do not want to see the precise dependence on the positions of localized states.
(The resonant X-ray diffraction in Sect. 4.3 is an example of the position-sensitive
case, which should be treated as a nonuniform system.)

The k dependence of susceptibility is generally called spatial dispersion effect. It
will make sense to divide the k dependence into two cases, [a] the k dependence only
in the numerators of susceptibility, and [b] the k dependence also in the denominators.
The case [b] leads to a qualitatively new situation of multi-branch polaritons, which
has been studied as ABC (additional boundary condition) problem for nearly half
a century [9—11]. However, it is a problem to be treated as a microscopic response,
because the k dependence of denominator arises from that of the transition energy,
which means a coherently extended excited state specified by k (and material bound-
aries), an inappropriate situation for LWA. Thus, only the case [a] is suitable for the
macroscopic description. As explicitly discussed in Sects. 2.3 and 2.4, susceptibil-
ity is expressed as a power series expansion with respect to k, reflecting the Taylor
expansion of current density matrix elements. Since LW means a small |k|, it is quite
reasonable to express LWA as a power series expansion with respect to k. The merit
of this expansion is that one can see the meaning of the expanded terms (moments of
El, E2, Ml transitions etc.) from the quantum mechanical expression of the matrix
elements, which gives us the symmetry condition by which we keep or abandon a
certain class of them.

In order to calculate a microscopic susceptibility, one uses a time dependent per-
turbation theory of Schrodinger or Liouville equation with appropriately defined
unperturbed Hamiltonian and perturbation Hamiltonian. In this sense, all of AG, IK
and the present author get similar expressions. However, IK use the “unperturbed
Hamiltonian” (7 in their notation) different from others. IK split vector and scalar
potentials into external and induced ones, and keep the induced ones in the unper-
turbed Hamiltonian. It means that this unperturbed Hamiltonian does not represent a
pure matter system, but a coupled one of matter and EM field. In the case of crystals,
the excited states of this unperturbed Hamiltonian are polaritons, rather than excitons
and/or LO phonons. This is different from the usual definition of susceptibility with
respect to the total (incident plus induced) EM field, the poles of which represent, not
the polariton energies, but the excitation energies of matter. Knowing this difference,
IK discuss the explicit relationship between the two susceptibilities (Sect. 1.6 of [7]),
and show the occurrence of polariton poles in the susceptibility defined for .74). This
argument establishes the relationship between the two susceptibilities, so that it may
seem unnecessary to worry about which susceptibility should be used.
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However, there is a technical detail which becomes significant for nanostructures
having strong interaction with EM field. Generally, the interaction between matter
and EM field leads to the radiative correction (width and shift of excitation ener-
gies), dependent on the “size and shape” of matter and on the “state” of excitation.
For appropriately designed matter systems, there can occur radiative width exceed-
ing non-radiative one [12]. This problem can be handled straightforwardly by our
formulation in Chap.2, where the matrix elements of radiative correction appear
directly in the equations to determine the selfconsistent solution. In the case of 1K,
this effect is formally included in the unperturbed Hamiltonian .73, but the recipe
is missing to calculate the radiative correction for each excited level in a “size and
shape” dependent way.

Though AG and IK are keen in presenting a single susceptibility scheme of macro-
scopic M-eqs, they do not put their result in conflict with the conventional macro-
scopic M-eqs. Rather than that, Agranovich et al. try to reconcile their result with the
conventional one, by proposing one-to-one correspondence between the two schemes
[13]. In contrast, we claim the explicit differences between our new result and the
conventional M-eqs. Especially, the explicit derivation of the chirality induced com-
ponents of susceptibility, x.p and xmg in Sect. 3.2, is a new result exceeding the
phenomenology of DBF constitutive equations.

3.5.2 Comparison of Single Susceptibility Theories

There is a recent discussion by Chipouline et al. [14] about the possible forms of
constitutive equations for macroscopic Maxwell equations in three versions, (A)
Casimir form, (B) Landau-Lifshitz form, and (C) Anapole form, and their mutual
relationship. This subsection deals with the comparison of these forms of M-eqs with
that of this book [15].

The argument of Chipouline et al. starts by noting the arbitrariness to determine
P and I from p by the equations

p=-V-P, dp/dt=—V-I, (3.72)

i.e., both P and I may contain a term of the form V x F, where F is an arbitrary
vector function. This allows various choices of dynamical variables to describe the
change in matter state due to the external perturbations. Following this idea, they
introduce the following three forms of “material equations” to describe charge and
current densities in terms of the new variables:

(A) Casimir form

,OZ—V-Pc, I:—iwpc+CVXMc, (373)

[I=—iwPc+V xMc] . (3.74)

(B) Landau-Lifshitz form
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p=-V-P, I=—ioPy , (3.75)

(C) Anapole form
p=0, I=cVxMy =[VxM,l]. (3.76)

The new variables Pc and M are the conventional electric and magnetic polariza-
tions, respectively, while Pr; (M) contains, not only electric (magnetic)
polarization, but also the contribution of magnetic (electric) polarization. In cases
of Landau-Lifshitz and Anapole forms, only one (vector) variable is used, while we
employ two in Casimir case. The two cases (B) and (C) may be called single sus-
ceptibility theory, since there is only one susceptibility needed between the matter
variable Py (M 4) and source EM field.

The single susceptibility theory of this book employs, as the dynamical variable
of matter, current density I itself in contrast to the cases (A)—(C), and the constitutive
equation, especially the one in Sect. 3.1 rewritten in terms of Pg g and Mg g looks like
the one expected from the Casimir form. However, this rewritten form is still a single
susceptibility theory because the rewriting can be reversed without approximation to
the original constitutive equation with a single susceptibility x.m (k, w). In view of the
fact that the conventional Casimir form is not supported by any single susceptibility
scheme, we should treat these two cases as different schemes, and let us call the the
one in Sect. 3.1 as (D) “natural” form.

At this stage there arises a question “how are the three single susceptibility theories
(B), (C), and (D) related?” More detailed questions will be “Are there any general
expressions of single susceptibility for (B) and (C) as in the case of (D)?”, or “Are
the dispersion equations for (B) or (C) different from that of (D)?” The effort to
find the way of rewriting among (A), (B), and (C) in [14] is not quite successful.
In particular, it is not possible to rewrite (C) into (A) and (B), because the variable
M 5 takes care of only the transverse component of I, while {Pc, M} and {Pyr}
contain the longitudinal component of I, which does not allow to rewrite the relation
of the two sets of variables in a reversible way. Chipouline et al. do not intend to
give the microscopic expression of the susceptibility corresponding to each form of
the matter variables. Landau and Lifshitz give a symmetry argument of the response
function including the contribution from the first space derivative of electric field,
corresponding to the effect of E2 and M1 transitions, but the microscopic expression
of linear susceptibility including all the E1, E2, and M1 transitions, like that in
Sect. 3.1, is not given by them [8], neither by AG or IK [6, 7].

In order to find the way to interrelate the different forms (B), (C), and (D), we
should be aware of the fact that the arbitrariness included in (3.72) is only about
the T component of the vectors P and I. The L components are not affected by this
arbitrariness. Therefore, the choice of matter variables in each case should be

B) P and IV,
(©) MY and 1V,
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(D) IV and I'V.

One could use P™ (= —iwIV) instead of I'™ in each case, and also we may employ
(PP, P MDY My, (3.12), instead of I™.

Noting the transversality of the variables distinguishing the three cases, we write
the defining equations of the variables for (B) and (C), in terms of I” for (D), as

P jar =1, (3.77)
eV xMP =1D, (3.78)
[VxM{ =17]. (3.79)

These equations can be reversed, in (k, w) Fourier components, as

P = (i /ai)I™ (3.80)
m = (i JckDk x IV, (3.81)
[M(T) (/K x 1T ], . (3.82)

This result shows how the three variables P}, M\’ and I™ are rewritable into each
other. Thus, the knowledge of the ﬁrst—principles constitutive equation in case (D),
(3.23), leads to the corresponding equations for other cases, i.e.,

P{Y = (/o) xen k. 0) - (A + —Eea N7 | (3.83)
= [ same expression with c replaced by 1 ] o1 (3.84)
MY = G /ke x ek, @) - (A + —Eea )17 (3.85)
= [ same expression with ¢ replaced by 1 |, . (3.86)

The susceptibility tensor xem (k, w) is derived by the LWA of its microscopic expres-
sion, and is given as (2.119) including the L component. Thus the constitutive equa-
tions given above are also the first-principles ones.

For a given medium there is a convenient orthogonal coordinate system (x, y, z) to
calculate the susceptibility tensor y.n, according to the symmetry of the system, which
is independent of the choice of the k direction. In order to solve the Maxwell and
constitutive equations in (k, w) space, it is better to rewrite y.n, in another coordinate
system suitable to discuss the T and L characters of the vector variables.

Let us take the Descartes coordinate system (&, n, ¢), where ¢ axis is in the k
direction, and write the components of xem as Xzz, Xey, Xezo - - - €tc. The rewriting
from (x, y, z) to (€, n, ¢) systems is a simple orthogonal transformation. Remember-
ing the T character of A and the L character of E ., we may write their components
as
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A= (A, A, 0) (3.87)
Eext = (Ov Os EL) . (388)

In terms of these components, the constitutive equation, (2.118), is written as

Iy = Xee Ag + XenAy + (c/iw) xec Ev (3.89)
Iy = xyeAg + XAy + (c/io) xy EL , (3.90)
Iy = XeeAg + XenAy + (c/io) xe EL (3.91)
[ same expressions with ¢ replaced by 1 ], (3.92)

and the T components of P and M 4 are given as

P = (i/w)lz, Py = (i/o)l,, (3.93)
Mpg = —=(i/ck)I; . May = —=(i/ck) I (3.94)
[ Mae = =G/0) Ly, May=—G/R) ] - (3.95)

Dispersion relation is the condition between “w and k” of the eigenmode of
coupled EM field - matter excitations. Mathematically, it is obtained by requiring
the existence of the non-trivial solution of the coupled Maxwell and constitutive
equations in the absence of the external EM field, i.e., for E;. = 0. In the case of (D)
natural form, this process is given in Sect. 2.5. In terms of the tensor components
defined above, the coupled equation after elimination of current density turns out to

K — (w/c)? 0 } [As}_“_ﬂ[xés xﬂ [Aé}
|: 0 kz—(a)/c)z Ay T oc Xng Xun Ay’ (3.56)

and [the expression with the factor 47 /c replaced by o] in SI units system. The
condition for the existence of non-trivial solution is the vanishing of the determinant
of the coefficient matrix, i.e., (2.131). The dispersion relation for the other forms
(B) or (C) can be obtained from the Maxwell and constitutive equations written in
terms of Py or M 5. After eliminating these matter variables, we get the same set of
equations to be satisfied by A¢ and A, which leads to the same dispersion equation
for (B) and (C). This is a due expectation, since the eigen modes of matter - EM
field system should not depend on the matter variables to be used,as far as they are
consistently defined.

It should be stressed that the tensor components xg¢ etc. are the functions of @ and
k, as explicitly given in Sects. 2.3 and 2.4. Especially in the case of chiral symmetry,
the existence of k-linear terms plays an essential role. Such terms in y.n, arise from
the existence of the excited states with mixed E1-M1 and/or E1-E2 characters due
to the absence of certain mirror symmetry in a chiral medium, and can contribute to
new terms in the generalized dielectric function definedbyD = E + 47 Py = ¢ L E.
Landau and Lifshitz give some symmetry arguments about the form of this e . Since
the new variable Py is introduced in the section about “Optical Activity” of their
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textbook [8], its usefulness would have been expected for the description of both
single susceptibility theory and chiral response of matter. However, it is not obvious
why the introduction of a new unfamiliar variable was necessary in view of the fact
that the same argument can be done even more clearly in terms of the familiar variable
I and the susceptibility tensor x.m, as shown above.

In the argument given above, xg, and x,, might seem to have no contribution to
the dispersion relation, in spite of the fact that they lead to a finite induced current
density or charge density. Actually, the effect of induced I'™ appears in the matter
excitation energies in the poles of x ’s as the additional interaction energies among the
induced charge densities corresponding to I, In the present formulation of theory
(including the gauge invariant character in Sect. 2.2.5), the variables of EM field in
the starting Hamiltonian are A and Ee(;), where AP is the sum of incident and
induced components and ELx. is the incident field itself. The induced component of
E® is expressed as induced charge density, which can then be rewritten into El(nLd) .
In this way, the effect of induced charge (or L current) density is correctly taken into
account in the dispersion equation through matter excitation energies.

In this argument, we take a standpoint that the whole effect of Coulomb interaction
among internal charges is treated as a part of matter energy. However, there is another
viewpoint where one considers this energy as the interaction energy between the
Maxwell field (sum of incident and induced fields) and induced charge density. The
definition of the source field inducing current density is then different, so that one
needs a new susceptibility. These two schemes can be made consistent by treating the
self interaction energy of induced current density as matter energy or matter-EM field
interaction, as mentioned in the last paragraph of Sect. 2.2. For detailed argument,
see [18].

3.5.3 Use of LWA on a Different Stage

LWA plays an essential role in the present derivation of macroscopic M-eqs from
microscopic ground. Though it has been used also in the conventional ways of deriva-
tion, the one adopted here has a logically and mathematically clearer definition, and
we believe it to be the most appropriate way of using LWA to derive macroscopic
M-eqs in a general form. However, there is a proposal by Nelson [16] to use LWA in
quite a different manner to derive a new scheme of macroscopic M-eqs. His intension
was to build a consistent theory of dynamical response of crystalline medium from the
first-principles in a unified manner, to avoid “the patchwork of phenomenologically
assumed constitutive relations of so many treatments” (Preface of [16]).

As a systematic method to describe macroscopic dynamical response (including
EM response) of matter, Nelson applies LWA to the Lagrangian for matter (both
electronic and lattice vibrational) and EM field. In terms of the averaged Lagrangian,
he discusses linear and nonlinear “optics, acoustics, and acousto-optics” of dielectric
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crystals. This may well be a meaningful approach to the phenomena related with these
LW modes, though it has a rather unusual form.

However, if it is meant to be a general unified theory of EM response, it contains a
serious drawback, i.e., it abandons the dynamical variables contributing to localized
excitations of matter. By the application of LWA to Lagrangian, the dynamics of
matter is described solely by the LW components of acoustic and optical phonons,
excitons etc. Thus the only contribution to susceptibility is made from these LW
modes of matter, i.e. the susceptibility has poles only at the frequencies of these
LW modes. Since all the dynamical variables of short wavelength components are
eliminated by the LWA of Lagrangian, there is no chance for localized excitations to
contribute to susceptibility.

When we consider a problem, for example, of changing the refractive index of a
material by adding impurities, we need to consider the macroscopic average of the
contributions from localized transitions due to impurities. According to the scheme
of Chap. 2 of this book, we obtain a finite contribution reflecting the density of impu-
rities and the oscillator strength (or the magnitude of E1 transition moment) of the
transition. If we use the Nelson’s scheme to this problem, however, all the dynamical
variables to build the localized excitations are erased out on the level of Lagrangian
(and then, Hamiltonian), from which we cannot expect a finite contribution to the
macroscopic susceptibility.

Optical phenomena are not always caused by the matter excitations with the
wavelength comparable to the observed light. In fact, the absorption, emission and
scattering of visible lights by atoms, molecules, defects and impurities are the well-
known examples which built the basis of our fundamental knowledge of optical
phenomena. The birth of quantum mechanics was motivated by the interpretation
of the atomic spectra of hydrogen, and the earliest solid state spectroscopy was the
study of color centers in alkali halides, which is a good example of macroscopic
optical problems of dielectrics. These examples are all related with the interaction
of localized electrons and long wavelength lights. If this group of phenomena is not
covered by a theory, one would not call it a “unified” theory.

3.6 Validity Condition of LWA

The LWA in this book is a process of approximation to extract a new set of equa-
tions for the LW components of the variables of EM field (A) and matter (I) from
the more fundamental equations containing all the wavelength components, i.e.,
from the microscopic M-eqs and microscopic constitutive equations. The new set of
equations contains only the LW components of the dynamical variables, and hence,
it is macroscopic. The description in Chap. 2 clarifies the logical and mathematical
aspects of this procedure. Mathematically, we apply Taylor expansion to (the Fourier
component of) the matrix element of current density for each transition (around each
center coordinate), keeping a few lower order terms. These lower order terms are
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described by the lower order (E1, E2, M1, etc.) moments of the matrix element of
current density.

As an approximation, LWA can be good or bad, depending on the case of interests.
The criterion to judge it is the relative size of the wavelength (A) of the EM field
in consideration compared with the coherence length of induced current densities.
This corresponds to whether or not we can neglect the higher order terms of Taylor
expansion. Since the induced current density consists of a sum of the contributions of
all the excited states of matter, we cannot always assume that “all”” the excitations have
shorter coherence length than a given A. If we need the response of these modes,
we should treat them, not in LWA, but microscopically. The LWA formulation in
Sect. 2.3 assumes that the contribution of these modes is negligible in amplitude
compared with that of remaining modes.

At this point the argument may have a subjective aspect, i.e., which physical
process we want to observe or discuss. For example, an incident field may induce
several different physical processes, each one of which can have different criterion
for the use of LWA. An example is the inner core level excitation of a crystal, which
leads to absorption and emission of light and also a resonant (X-ray) scatterings, as
will be discussed in Sect. 4.3. Though the scattering intensity will be much smaller
than the absorption signal, one can observe it in the specific directions of diffraction,
and this requires a treatment beyond LWA. This example shows that there are cases
where a subjective choice of a physical process may require a microscopic treatment
of particular modes together with the macroscopic treatment of the remaining modes.
The standard criterion for the use of LWA is the smallness of the signal intensity due
to the LW modes, which need to be treated microscopically, in comparison with the
signal due to the macroscopically averaged short wavelength modes.

The choice of A is connected with the physical quantity and the frequency range
to be measured or discussed, and it should be noticed that this is not the wavelength
in vacuum, but the one in the medium determined by the background polarization in
the frequency range of interest. (If there is a resonance in this range, the contribution
of this resonance should be omitted in estimating the background polarization.) Once
the choice of A is made, one can compare it with all the candidates of excitation
modes which will make the main contribution to the EM response of this system.

A reliable test of the validity of LWA for a given model would be to calculate the
microscopic nonlocal response, and see whether the LW components are dominant in
the response spectra. This theory gives us response spectra properly containing all the
short and LW components of excitations of the matter of interest. If the amplitudes
of the LW components are dominant in the response spectra, LWA is valid, and
otherwise, LWA is not a good approximation. Though this kind of calculation would
generally require a large scale numerical treatment, i.e., a sufficiently large size of the
simultaneous linear equations of {F),,} in Sect. 2.2.3, we can obtain explicit results
for simple systems (e.g., Sect. 4 of [17]), and, for larger realistic systems, we know
at least the equations to solve. With this kind check of LWA, we can safely proceed
to use the macroscopic M-eqs and the corresponding constitutive equation.

The derivation of a macroscopic scheme is justified when the validity condition
of LWA is checked properly. Though an accurate check is generally difficult, one
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could develop a feeling of valid and invalid cases. In fact, the situations which allow
the description in terms of the macroscopic susceptibilities are rather limited. As a
macroscopic description, the w-dependence of susceptibility may be included with
poles at the energies of material excitations. As to the k-dependence, on the other
hand, its appearance in the excitation energies (in the pole positions of macroscopic
susceptibility) is not allowed. Such a k-dependence would mean that the eigenstates
are coherently extended, an invalid condition for the use of LWA. Only when the band
width (due to the k-dispersion) is negligible in comparison with the level width (due
to phonon scattering or inhomogeneity, etc.), the coherence length can be regarded as
negligibly small, and the use of LWA will be allowed for the macroscopic description.
In contrast, the k-dependence of the numerator of susceptibility is acceptable, since
the Taylor expansion, the mathematical representation of LWA, is a power series
expansion of susceptibility with respect to k, as shown in Chap. 2.

When we consider the case containing non-negligible LW modes, we need an
intermediate scheme between the microscopic nonlocal and fully macroscopic ones.
In such a scheme, we ascribe microscopic current densities to the modes with long
coherence lengths, and LWA averaged current density to the short wavelength modes.
The selfconsistent motions of the long coherence modes is determined by a new
scheme derived from the microscopic nonlocal one. As the examples of this case,
we discuss (i) resonant X ray scattering from the inner core transitions of a crystal
in Sect. 4.3, and (ii) metamaterials with long coherence modes of excitations in
Sect. 4.1.3.

3.7 Boundary Conditions for EM Fields

When we determine the EM response of matter from the macroscopic M-eqs, we
usually proceed as follows. First, we solve the M-eqs in- and outside the matter
separately, select the incident and the response fields according to the geometry in
consideration, and connect the fields across the matter boundary according to the EM
boundary conditions (BC’s). The physical origin of the BC’s must be in the matter
with a given size and shape, but the BC’s are requested to the EM field. This is a
peculiar aspect of the macroscopic response theory.

In the microscopic response, no BC is required to the EM field, because the
microscopic nonlocal susceptibility contains all the necessary information of BC’s,
requested to the charged particles in matter [17]. The problem of response calculation
is formulated as a scattering problem, where the response field is obtained as a
convolution of incident field, the position dependent susceptibility, and the EM Green
function describing the propagation of the scattered field. The information about the
material boundary is included in the susceptibility in a complete form, so that the
introduction of the BC for EM field is no more necessary. Based on this understanding
at a fundamental level, we can connect the argument about BC’s between microscopic
and macroscopic response as follows.
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Fig. 3.1 The closed line s (Medium 1)
and the surface S enclosed surface §
by s for the application of
Stokes theorem

D Cc

'4
Boundary
A line s B
(Medium 2)

The introduction of the BC’s for EM field becomes necessary, when we replace
the position dependent nonlocal susceptibility with the position-independent macro-
scopic susceptibility via the LWA of the former. Since LWA erases out the posi-
tion dependence of the susceptibility, the macroscopic description mentioned above
would not contain the information about the size, shape, and geometrical configura-
tion. In order to obtain the meaningful solution for the response from such a position
independent susceptibility, the BC’s for EM field are introduced. This was done in a
very smart way. The BC’s are provided, not from an independent source, but from the
macroscopic M-eqs themselves via Gauss and Stokes laws. Though the arguments
are found in many textbooks, we reproduce the relevant ones here, because we use
them for the new macroscopic M-eqs, i.e., the LW parts of the microscopic M-egs.

The Faraday law is known to lead to the continuity of the tangential component
of E. Integrating the Faraday law (in differential form) over a closed surface S as
shown in Fig. 3.1, and using the Stokes theorem to convert [V x E into a line
integral (along the line s enclosing the surface §), we have

11 1
ds-E=——— | dS-B, =[—-— | dS-B,].. , 3.97
/Ss cdt/s [ dt/s Js G0

where B, is the component of B normal to the surface S.

Let us choose S as the square ABCD across the surface of matter (at a certain
point on the surface), and s as its periphery ABCD, as shown in Fig. 3.1. By taking
the limit AD, BC — 0, the surface integral on the r.h.s. becomes zero, because B is
finite while the integration area becomes vanishing. This means that the line integral
on the Lh.s. vanishes, leading to

E-SAB+E-SCD:0. (398)

Sincesp = —Sc¢p, this proves the continuity of the tangential component of E across
the surface.

Gauss law V - D = 47 p, is known to lead to another type of BC. In this case, we
take a volume integral of the equation for a rectangular parallelepiped in Fig. 3.2,
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Fig. 3.2 Rectangular
parallelepiped to relate the
volume and surface integrals
for the application of Gauss
theorem

Medium 1 (z > 0)

Medium 2 (z < 0)

which contains the boundary surface at z = 0 between the two basal planes. When
the hight 4 of this parallelepiped goes to zero, the Gauss law

/ dS-D, = 4rpSh = [&Sh} (3.99)
s € g
leads to
DY —D? =dxph|,  =dnp, = [&} , (3.100)
€0 g

because the contribution of the side surface of the parallelepiped becomes zero. The
superfix 1, 2 denote the two media divided by the surface at z = 0. The quantity
pth (h — 0) represent the surface charge density ps in the macroscopic sense. If
ps = 0, the r.h.s. becomes zero, which means the continuity of the normal component
of D across the surface. If, on the other hand, there is a finite surface charge density
ps, the normal components of D have a finite difference across the boundary by the
amount 47 pg.

In Sect. 3.2 we showed that the new macroscopic constitutive equation (for
k, w Fourier component) I = xemA + (¢/iw)xemEex. can be rewritten as I =
—iw(Pgr + Pgr. + Pg) + ik x (Mg + Mgr + Mg;), which allows us to rewrite
the microscopic Ampere law into the well-known conventional form ik x H =
(@r/e)I'D — i(w/c)D via the definition H = B — 4w (Mg + Mgt + Mg) and D =
E + 47 (Pgt 4 PgL + Pg). Since this manipulation gives us a formally same set of
macroscopic M-eqs as the conventional one, we may also expect the same set of
BC’s in terms of the newly defined {E, D, B, H}. However, in view of the fact that
the direct form of the selfconsistent response is obtained in terms of A (and I), we
provide the BC’s in a form easily rewritable into those for A and E . For this pur-
pose, it is useful to write the macroscopic M-eqs for T and L components separately
in the following form.
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The L components arise from the Gauss’s law of electric charges, and also from
the Ampere law as

V.ED —4np — [&] , (3.101)
€0 dgp
4 1 9E® IE®
_T[I(L) + = =0 = [I(L) + &o i| . (3.102)
¢ c ot g

As easily seen by taking the divergence of the second equation, this relation holds
identically in the presence of continuity equation and the first equation. Therefore,
we need to consider only the first one as a macroscopic equation of L component.
The charge density p is not the one in the microscopic M-eqs, which determines
the quantum mechanical details of the matter eigen states. Rather, it is the charge
density to be calculated from the macroscopically averaged current densityi via the
continuity equation

Pm(r, ®) = —év A, ) . (3.103)

(For the static case, i.e., w = 0, py, is calculated from the induced electric polarization
P®, explicitly given in Sect. 5.7.2.)
The T components arise from the Ampere law and Faraday law as

™ ™
VxH= Ty 17w 0D ,
c c Ot ot s

vxgD__10B _[ 9B (3.104)
- ar ar |- '
¢ s

Applying the Gauss theorem to (3.101), we obtain
n-(E® —EW) = 47p, = [—} , (3.105)

where n is a surface normal unit vector at the point to consider BC, and p; is the
surface density of the total charge, defined in a similar way as in (3.100). Thus the
BC for the L-field is given as the difference of the surface normal components by
the surface charge density (times 47). Using the same manipulation as in (5.164) of
Sect. 5.7.2, we have

i Arr - -
oA L =[—, 1(”] . (3.106)
iw iweg st

. ~L). .
Since 1 ® is given as
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i ZX(“)A X B (3.107)

= [same expression without ¢| -
the boundary condition (3.105) can be written in terms of A and EextL.

The application of the Stokes theorem to (3.104) leads to the boundary conditions
for the surface tangential components as

nxHY-H?) = 1<T> [=1"] . (3.108)
- :
nx (EY -—E?) =0, (3.109)
where the surface current density (of T character) I'" is defined as
IO =1, (h—0). (3.110)

To rewrite these BC’s in terms of A and E’extL, we make use of EV = (iw/c)A and

H=B—47TMB—47TMET—47ZMEL, (3111)
iw
= (1 —4mxmp)V x A — 47TXmET?A — 47 XmELE extL (3.112)

1 iw
=[|——xmB )V XA — Xuer—A — XmELEexe
Ho ¢ SI

In this way we can write all the BC’s in terms of A and EextL. The general case
described by these BC’s become simplified when the symmetry of the system does
not mix T and L modes (x{{” =0, xmeL = 0:; T = &, n). Further, if the system
is non-chiral, y,gr = 0, so that the conventional relation H = (1 — 47w x,,g)B (in
terms of the magnetic susceptibility defined with respect to B) is recovered.

3.8 Some Examples of Application

In this section, we show how to use the new macroscopic M-eqs, taking simple
examples. The general procedure to calculate the response of a given macroscopic
medium is quite similar to the conventional case. The whole space is occupied by
materials with different susceptibility tensors and/or vacuum. First we solve the
dispersion equation in each region, which generally give plural number of solutions.
In order to obtain the response of the system for a given incident EM field, we need
to make linear combinations of these solutions in all the regions plus the incident
and response field, which satisfy the boundary condition at each interface of the
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different regions. From the solution of these simultaneous equations, we can express
the response field as a function of the incident field.

The difference from the conventional procedure is that the susceptibility of matter
and the dispersion equation are different from the usual one, and that the field variable
to be used are J, A and Eqy..

3.8.1 Dispersion Relation in Chiral and Non-chiral Cases

The dispersion relation of the EM waves in the macroscopic medium averaged via
LWA is determined by

2k2 4
det |51 — {1 + — x Dk, a))H (3.113)

w?

[same expression with 47 ¢ replaced by 1/¢]

of Sect. 2.5 giving the condition for the existence of finite amplitude solution of A
and induced current density I'” in the absence of incident field Ay, i.e., the eigen
modes of coupled EM wave and T current density. The susceptibility x L) is given as
a power series expansion with respect to k, i.e., the sum of O (k°), O (kl) and O (k?)

.. terms, which consist of (E1, E1), {(E1l, M1 + E2), (M1 + E2, E1)}, (M1 + E2,
M1 + E2), ... transitions, respectively, as discussed in Sect. 2.4.

In view of the fact that the new susceptibility is obtained by LWA, we may gener-
ally expect that the O (%), O(k"), and O (k?) terms have decreasing magnitudes in
this order. This will be true except for the resonant region of xem; and xem2, Where a
particular term of them can become resonantly large. Unless we concentrate on the
resonances of the weaker components, we may generally expect that the principal
contribution is made by Xemo-

Let us use the Cartesian coordinate system (&, n, ), where ¢ axis is parallel to
k. Then, x{D is the 2 x 2 matrix in the (&, 1) space. If we keep only the leading
order term O (k°), x D is a k-independent 2 x 2 matrix. Choosing a new coordinate
system (¢', ') in the (£, ) space, which diagonalize the 2 x 2 matrix x (), we can
decompose the dispersion equation into two components

k 4

(c—) =14 — &), (3.114)
1)
[same expression with 47 ¢ replaced by 1/ 80]SI
K\ 4 .

(C—> =14 =2 () . (3.115)
1) 1)

[same expression with 47 ¢ replaced by 1/¢o]
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The (&', ') axes constitute an oblique coordinate system in general. Since the r.h.s.
of these equations does not contain k, it is easy to solve them in the form k = +k;: ()
and k = £k, (w).

In using these dispersion equations, where we neglect magnetization, we should

also neglect the magnetization induced current density (cV x M) in considering the

boundary conditions, i.e., the boundary condition n x (ﬁ o _ H (2)) = (4m/c) 1 s

is simplified as n x (B — B”) = (4n/c) I.. The Lh.s. of this equation can be
expressed in terms of E’s by using the Faraday law B = (c¢/w)k x E . This allows
us to write all the BC’s in the form of simultaneous linear equations of E’s or A’s,
which can easily be solved. These processes are applicable to both resonant and
non-resonant case of xemo(®).

As discussed in Sects. 2.4 and 2.5, O (k') terms are non-zero in the case of chiral
symmetry. Let us consider the case of Ty symmetry for k in one of the cubic axis
(z-axis), i.e., &€ = x,n =y, { = z. Typical transitions contributing to El transition
are those between an s-like state and (py, py, p;)-like states (in the usual notation for
a hydrogen-like atom). In the T4 symmetry, an s-like state has a mixed component of
xyz-like state, and p,-like state has a mixing with yz-like state. This means that the
transition between the s- and p,-like states has non-zero matrix element, not only for
the operator p,, but also for Z p,. Namely, this transition is active both as E1 and (M1
+ E2) transitions. Therefore, the current density produced by an y-polarized light
propagating along z-axis (for which k - rp - A is kZp,A,) can have an x-component
as

Xem - A ~ (s +xyz|pelx + yz) (x + yzlkZp,Ayls + xyz) (3.116)

This corresponds to the element Xe(ﬁqy ) (k;, w), i.e., the O (k") term, of Xem- Thus,

if we consider up to O (k') term, the components of x{) are given as
KD A&ED) = (a. ibk) | (3.117)
Otons X&) = (=ibk, a) (3.118)

where a, b are the w-dependent factors representing the diagonal and non-diagonal
components of the susceptibility x ) with the contributions from the (E1, E1) and
(E1, M1 + E2) transitions, respectively.

The dispersion equation reduces to

ck\? dmce
— ) =1+ —2(a + |blk) , (3.119)
w w

[same expression with 4 ¢ replaced by 1/ 50] S

which can be solved in the form k = £k, , +k_ where

C"f = %{iﬁ + (B +48)'7, (3.120)
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given in terms of simplified notations B = 4x|b| /o [= |bl/cwepls; and € =1 4+
(47'rca/a)2) [=1+ (a/a)zao)]SI. From the form of the matrix x.g, (3.14), the eigen
vectors of these solutions are ~A, £iA,, i.e., right and left circularly polarized
waves. The difference in k. and k_ leads to the optical activity of the medium, i.e.,
the phase velocity is different for the two circularly polarized lights, which is a well-
known properties of chiral medium (of cubic symmetry). This effect appears already
in non-resonant spectral region, and in a resonant region it will be enhanced through
the resonant behavior of . As mentioned already in Sect. 3.3, the present result
and that from the DBF-eqs show a qualitative difference in the dispersion curve in a
resonant region (because of the different order of pole).

3.8.2 Transmission Window in Left-Handed Materials: A
Test of New and Conventional Schemes

Let us consider a simple case of non-chiral symmetry. This corresponds to the sus-
ceptibility without O (k') term, i.e.,

Xem K, ©) = Yemo(@) + k2 xem2 (k, @) . (3.121)

Let us also assume that y.n, is a diagonal tensor giving two orthogonal directions of
polarization. The dispersion equation split into two independent components for two
polarizations, each of which has the form

ck\? 4mc 2
=1+ > [XemO(w) +k XemZ(a))] P (3122)
w w

= [same expression with 4 ¢ replaced by 1/ 50] S1

with { xemo(®), Xem2 (@)} dependent on each polarization. As discussed in Sect. 2.4,

Xemo and xemo represent the E1 and {E2, M1} transitions, respectively, so that 1 +

(4mc/w?) xemo is essentially ¢ in the conventional M-eqgs. If a M1 type resonance of

Xem2 Occurs in the frequency range where 1 + (4mc/ ®%) xemo < 0, a LHM feature is

expected to emerge. In the following, we neglect the E2 component for simplicity.
The dispersion equation can be rearranged in the form

(%)2 _ 1 + (4 c/w?) Yemo (@) (3.123)
o 1 — 4r/¢) xem2 (@) |

= [same expression with 47 ¢ replaced by 1/go],

In order for the real k solution to exist, the r.h.s. must be positive. For the resonance
of xem2 €xpressed as
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Fig. 3.3 Dispersion curves 1.002

of non-chiral LHM for (A)

the conventional x, and (B) w /@y
the new xem. The frequency

and wave number are 1.001 }

normalized by wp and wy/c,
respectively. The parameter

values are: ¢ = —1.0, X
§ =4nB/wy = 4nB'/wy =
0.001

0.999 |

0.998 | ke/ @

-4 2 0 2 4
cp
Xem2(w) = P (/3 > 0) (3.124)
wy— w — 10

in the frequency range where 1 4+ (4mc/w?) xemo < O, the real k solution appears
for w satisfying wy — (4mB) < w < wy. This is in contrast with the situation in
the conventional scheme based on (ck/w)? = eu, which gives the real k solution
in the frequency range higher than w,. Assuming the magnetic susceptibility xp,
in the form (@) = B'/(wy — w — i0™), one can rewrite the condition p = 1 +
47 xm < O for the appearance of LHM behavior as wy < w < wg + 47 B’. Figure 3.3
shows the two dispersion curves mentioned above. Though their forms are very
similar, their positions with respect to the resonance at w, are just opposite. This is
a very fundamental problem, which requires experimental tests or some theoretical
explanation.

As a simple experimental test, it would be appropriate to measure the spectrum of
transmission window due to the propagating mode of Fig. 3.3 for normal incidence of
light on a slab. Measuring the resonant frequency (wg) of the magnetic susceptibility
of the same sample independently, we can compare the relative positions of the
transmission window and the pole wy. This will be a simple, but definitive check
from the experimental side.

The spectrum of the transmission window according to the new scheme can be
calculated as follows. The slab occupies the region 0 < z < d in vacuum, and the
incident field is polarized along x-axis. For x., with a diagonal form with respect
to (x, y) axes, all the E fields are x-polarized. The field amplitudes of incident (Ej),
reflected (E;), transmitted (E;), and the two waves in the medium (£, E;) are defined
asin Fig. 3.4. The reference point (z-coordinate) of each field is marked by a solid dot
in the figure. The arrows for E; and E; indicate the direction of the group velocity
(or that of the decay of their amplitudes).



90 3 Discussions of the New Results

Fig. 3.4 Configuration of E,
relevant wave components. y —————
The reference point E;
(z-coordinate) of each wave —e
is marked by a solid dot in . E,
the figure 4 E
E, i
[} d z
The solution of the dispersion equation is given as
o |1+ (drc/w?
kz — 42 ( / )XemO (3125)
c 1 — (47/C) Xem2

= [same expression with 47 replaced by 1/ceo],

where £ = 1 and £ = 2 corresponds to the roots with the positive and negative imagi-
nary parts, respectively. As discussed in Sect. 4.1.1, the solution with positive (nega-
tive) real part has negative (positive) group velocity, and negative (positive) imaginary
part, which is the peculiar point of LHM.

As the boundary conditions, we require the continuity of E and H across z = 0 and
z = d,asdiscussedin Sect. 3.7. The continuity of H(= B — 4w M) can be rewritten as
thatof [1 — (47 /¢) Xem21By, which s further rewritten as (ck /w)[1 — (47 /¢) Xem2 1 Ex
by using Faraday law k x E = (w/c)B. The boundary conditions at z = 0 are

Ei+E.=E + HLE, (3.126)
Ei—E =nE +mhE; (3.127)
where
k 4
Jfa =exp(—ikyd) , n,= Cw_e<1 - %XemZ) , (t=1,2) (3.128)

Similarly the boundary conditions at z = d are

E = fik\ + E, (3.129)
E.=n fiE) + ks (3.130)

where f| = exp(ik,d). The factors f; and f, are defined in such a way that they go
to zero for d — o0.
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Fig. 3.5 Reflectivity 1
spectrum with a transmission
window due to the
left-handed mode of Fig. 3.3 R
calculated by (A) the
conventional xp,, and (B) the
new Xem

0.5

w/wy

0.999 1 1.001 1.002

From the four equations of boundary conditions, we obtain the reflection ampli-
tude of the form E,/E; = a(—1 + fi f2)/(b + cf1 f>), where

a=m —Dmny,—1), b=m+1)(n,—1), c=m —Hn,+1). (3.131)

In the limit of d — o0, E;/E; = —a/b = —(n; — 1)/(n; + 1), which is the reflec-
tion amplitude for a semi-infinite medium. It should be noted that, though Re[k] is
negative, Re[n] is positive in the frequency region of the dispersion branch, so that
|E,/E;|*> = |(n; — 1)/(n; + 1)|* < 1. Namely, it is guaranteed that the reflectivity
never exceeds unity. It is also worth noting that, for d = oo, the incident wave is con-
nected with, not the k,, but the k; branch which has negative real part and positive
imaginary part, i.e., positive group velocity, corroborating the LHM nature of this
system. Figure 3.5 shows the transmission window due to this propagating mode. For
comparison, the result of the conventional method is also given. Corresponding to
the curves in Fig. 3.3, the transmission window opens in the lower (higher) frequency
region of wy by the new (conventional) method. The calculation by the conventional
method is very similar to the one given above, except for the replacement of n; and

n, with
/ L ke o1 (3.132)
ng—>np=——, =1, .
¢ T Ay

The experiment proposed above would be a crucial test of the two definitions, M =
xmH or M = xpB with the interpretation of the poles of the susceptibility as magnetic
excitation energies. The arguments about the definition of matter Hamiltonian (Sect.
2.2) and the rewriting of y.q (Sects. 2.4, 3.1) obviously prefer the latter definition.
Since, however, the use of the former definition is still the main trend today, and
since a correct theory should have an experimental support, it is desirable for the
proposed experiment to be performed.
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Chapter 4 ®)
Further Considerations Check for

Abstract More detailed discussions are given about the problems of metamaterials
from both formal and specific points of view. The latter is the dispersion curves
in left-handed chiral medium in resonant region, which critically distinguishes DBF
equations from the present (ChC) equations. As a peculiar example of problems with
invalid LWA, resonant Bragg scattering is discussed, which enables us to distinguish
left- from right-handed quartz crystals. How to treat the interaction energy of induced
charge densities is shown to lead to different standpoints on choosing pure external
field or full Maxwell field as the source of induced current density. This may cause a
problem in homogenizing metamaterials as to the validity of LWA. A brief discussion
is given about the extension to nonlinear processes.

4.1 Consequences to the Metamaterials Studies

4.1.1 Definition of Left-Handed Materials (LHM)

For the conventional definition of LHM, “e < 0, u < 07, one needs two indepen-
dent susceptibilities. If we describe the same physical situation in terms of a single
susceptibility, we obviously need a different definition. The common language for
this purpose is, not the susceptibility, but dispersion curve, as explained below. We
give a conventional description of LHM in the first half of this subsection, and in
the latter half, we rephrase the same (but inequivalent) physics by the new single
susceptibility scheme.

The first proposal of LHM by Veselago was made as amedium withe < 0, © < 0
[1]. The dispersion equation (ck Jw)? = ey for a plane wave ~exp(ik - r —iwt) in
the conventional macroscopic M-eqs has real solutions k = +(w/c),/ei in this
case. Both ¢ and u are functions of w, and can take positive and negative values. If
ep < Oinafrequency region, the medium is totally reflecting, because the dispersion
equation allows only evanescent waves. In a frequency region where ¢ < 0, u < 0,
the medium becomes transmissive due to the existence of propagating modes with
real wave number.
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The w dependence of ¢ and  is generally written as sums of single poles accord-
ing to the lowest order time-dependent perturbation calculation of quantum mechan-
ics. Except for the very neighborhood of the poles (corresponding to the excitation
energies of matter), both € (w) and 1 (w) are increasing functions of w between neigh-
boring poles. (This is due to the positiveness of the residue of each pole, which is
generally the case for materials in equilibrium.)

If we increase w starting from a certain frequency where ¢ < 0, u < 0, both ¢
and p increase toward zero. This means that the product ¢ is a positive, decreasing
function of w, eventually crosses zero and becomes negative. The propagating modes
are allowed only while the product is positive. If we combine this fact with the dis-
persion relation k = +(w/c) /e, the frequency w; for which e = 0 corresponds
to k = 0 is a local maximum of the dispersion curve, i.e., as w decreases from wy,
the corresponding |k| increases. Altogether, the dispersion curve is convex toward
higher w, and the lower bound of this branch corresponds to the closest resonance
frequency of ¢ or u on the lower w side (see an example in Fig. 3.3a, which shows a
LHM branch for a resonance of i in the broad range of negative ¢). For the positive
k side, the group velocity v, = dw/dk is negative. This is a typical example of the
dispersion curves representing the LHM character.

If we send an incident light in the frequency range of this branch, we can excite
this mode. To determine the amplitude of this mode, we need to apply boundary
conditions to the relevant waves in- and outside the boundary. For normal incidence
of light on a semi-infinite slab, we have a plane wave with one of the wave vectors
k = x(w/c)./ep. For normal (right handed) system, we know that the choice of
positive sign leads to correct answer. What is the underlying reason for it and what
is the correct choice in the case of LHM?

The right answer is obtained from the consideration of the spatial and tempo-
ral decay of this wave. The (non-radiative) decay occurs through the excitation of
phonons and other electronic transitions. Since the heat bath system consists of
infinitely many degrees of freedom, the direction of energy flow must be from the
EM field to the medium (heat bath). Therefore, the amplitude of the induced (mat-
ter - EM field coupled) mode should be decreasing from the incident surface to the
interior. The change in the phase (and amplitude) of the wave after a distance d is
exp(ikd), so that we need Im[k] > O in order for this change to be a spatial decay,
i.e., a decreasing function of d. Therefore the correct choice is the k with positive
imaginary part when we allow damping effect.

The damping effect in the time region is expressed by considering a positive
imaginary part to w. This is understood by a simple example of damped oscillator
to calculate polarizability (Lorentz oscillator model). Suppose we have an electric
oscillators with mass m, charge g, resonant frequency wy exposed in an electric
field E((¢). The Newton equation of motion of this oscillator is

d2x dx
— =qoEy(t) — Kx — — 4.1
mo a2 qoEo(1) X —moy dr (4.1)
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where —K x is the restoring force (Hook’s law, K = moa)g), and the last term on
the r.h.s. is the damping force proportional to velocity (y > 0). The solution of this
equation is obtained by Fourier expansion, which leads, for frequency w, to the
induced polarization as

Eo(w) 4.2)

where N is the number density of the oscillators. If Ey(¢) is a delta functionat ¢ = 0,
ie., Eo(t) = E f dw exp(—iwt), the induced polarization as a function of ¢

P(1) = % / dwP (») exp(—iwt) (4.3)

is evaluated by the residue at the pole of P (w), which leads to the time dependence
~exp(—iwg — yt/2). This shows that y > 0 leads to the damping of P(t) in the
positive ¢ direction, which of course leads to the same damping behavior of the
induced field by this P(¢).

The general expressions of induced current density, (2.38) and (2.107), have also
the similar pole structure with the imaginary part 0%, so that its temporal response
to 8(¢) like incident field is the (very slow) time decay with 0" /2. Thus, the analytic
continuation of real (k, w) dispersion to the complex w with positive imaginary part
gives a correct behavior of temporal damping in general.

For the calculation of the spectral response (for real w), we need to choose the
appropriate wave number(s) satisfying the dispersion equation, and to set up the
boundary conditions on each relevant surface/interface. If we consider a semi-infinite
slab and a normally incident light propagating in the positive z direction, for sim-
plicity, we need to consider which of the two solutions k = +k(w) should be chosen
as the wave inside the slab induced by the incident light. From the argument given
above, we should choose the branch with positive Im[k]. This corresponds to the
branch with positive group velocity v, [2]. The reason is as follows. From the rela-
tion dk/dw = 1/v,, or Aw = v,Ak, where Aw and Ak are the small increments
from the real (w, k) solution, the relative sign of Aw and Ak is the same as the sign
of v,. For the correct temporal decay, it is required that Aw represents a positive
imaginary part. Then, v, Ak must also give a positive imaginary part. In order for
both Aw and Ak to give positive imaginary part, v, = Aw/Ak must be positive.

The dispersion curves k = £(w/c),/e consist of positive and negative k
branches. As seen from Fig. 3.3, the positive v, occurs on the negative k branch.
If the medium of this LHM behavior occupies the semi-infinite space z = 0 ~ oo,
the right mode to be connected to the incident field in the positive direction (exp[ikz])
is this mode on the negative k branch with positive v,. This choice gives us the occur-
rence of a transmission window in the total reflection range, which is a general feature
of LHM. Since the convex dispersion curve toward higher o and the occurrence of
transmission window arise also in the new macroscopic scheme without using ¢ and
W, we can use this feature as a new definition of LHM.
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In the non-chiral case, the maximum of the dispersion curve occurs at k = 0, and
the dispersion curve is symmetric for the & directions of k. When such a dispersion
curve is degenerate for two polarizations, the introduction of chiral symmetry leads
to the k-linear splitting. This gives rise to the lifting of the degeneracy, and in the
neighborhood of k = 0 two branches cross linearly with positive and negative group
velocities. Nevertheless, the convex character toward higher w is kept for these dis-
persion curves. An example of this kind will be discussed in Sect. 4.1.5, by modifying
the model of Fig. 3.3.

Thus the alternative definition of LHM without depending on the use of € and p, or
Xe and xpm, would be “a medium with dispersion curves of convex form toward higher
”. Though this feature is common to both conventional and the new macroscopic
schemes of M-eqs, the relative position of the resonance frequency and the dispersion
curve is different in these two schemes, as described in Sect. 3.8.2, which can be a
simple test to decide the consistency of the schemes.

4.1.2 Use of (¢, 1) and Homogenization

Today’s popularity of metamaterials study seems to be driven by the idea of free
designing of ¢ and p beyond the hitherto accepted range of these parameter values.
Typical examples are the case of LHM [3], where one needs an exotic situation
“e <0, u <07, and the case of cloaking [4], where the spatially varying values of
¢ according to the form of a body makes the body invisible.

Since these are all man-made substances consisting of an array of the unit struc-
tures, each one of which can be made smaller than the wavelength of EM field. In
order to make theoretical analysis simpler, the response of such a system is replaced
by a uniformly homogenized material obtained from the original one. Usually, the
homogenization (or LWA) is justified by claiming the smallness of the unit struc-
ture in comparison with the wavelength of EM field. As explained in Sect. 3.6, this
justification is not always correct, since the interaction among the induced charge
densities on the unit structures may produce excitations with long spatial coherence.
If we are interested in the resonant behavior of such an artificial structure, we need to
take account of this possibility, because it may well invalidate the homogenization,
unless the non-radiative scattering mechanism is strong enough.

In the narrow definition of metamaterials, it is said or is taken for granted that
they are uniform materials obtained by homogenization. If one takes this definition, a
rather large group of material systems will be omitted from “metamaterials, because,
among the possible man-made substances, the condition for the homogenization
will not be generally satisfied. There is, on the other hand, a broader definition of
metamaterials. In fact, the metamaterials made of circuit elements (L, C, R) are
interested in their dispersion behavior [5], i.e., the eigen frequencies of an extended
circuit array depending on the phase difference between neighboring circuit elements
(which is equivalent to the wave number). For this group of researchers, the existence
of large spatial coherence in metamaterials is an important subject for metamaterials,
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which for example may make an antenna emitting microswaves in a wide angle
by changing frequency [6]. In view of this type of activity, and also of the fact
that “the metamaterials with non-homogenized components” is also theoretically
tractable, as will be mentioned in Sects.4.1.4 and 4.3, it is not necessary to include
homogenization as the necessary condition for metamaterials.

4.1.3 “Microscopic”, ‘“Semi-macroscopic’ and “Electric
Circuit” Approaches

Within the semiclassical framework of EM response theory, macroscopic M-eqs are
derived from the microscopic M-eqs by assuming the validity of LWA. This requires
a comparison of the coherent extension of induced current densities and a relevant
wavelength of EM field. Since the former depends on each quantum transition of
matter, it is not rare that the condition for LWA is not satisfied. If such a transi-
tion is off-resonant with the incident frequency, one may rather safely neglect its
microscopic contribution. If, on the contrary, it is resonant, LWA is certainly a bad
approximation to handle the contribution of such a transition. There will be rather
many cases of this kind in both natural and artificial materials. From the viewpoint
of microscopic nonlocal theory, it is usual to treat some group of resonant transitions
microscopically and the rest as a background medium with uniform dielectric con-
stant [7]. This is a mixed use of micro- and macroscopic responses. Both of these
examples show the existence of the matter systems to be theoretically treated by a
mixed use of micro- and macroscopic responses.

Since the mixed use is rather undeveloped from the side of macroscopic response,
we describe two examples in this book. One is the nonlocal response of metamate-
rials in the next subsection, which may be a new concept in a system consisting of
semi-macroscopic unit structures such as SRR. The other is the resonant Bragg scat-
tering due to inner core excitations in Sect. 4.3, which turns out to lead to a general
expression of refraction including chiral systems. It will theoretically be more rea-
sonable to leave a room for the definition of metamaterials so as to allow a partially
microscopic character.

The macroscopic response is described in terms of susceptibility x.n in this book.
In the low frequency regime of EM response, there is a well established way of
describing the response in terms of electric circuit elements, such as capacity C,
inductance L, and resistivity R. In principle, these constants of circuit elements can
be calculated from the knowledge of the material constants of a bulk matter. The
resistance is a bulk material constant (reciprocal of conductivity) times the length
divided by the cross section, of a wire. The capacity C is the coefficients of the electric
potential as functions of accumulated charge on a sample, and the inductance L the
coefficient of magnetic potential as a flowing current through the element. For a
simple geometry, this type of calculation will not be too difficult. For a realistic
structure, however, this would require a large scale numerical calculations.
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4.1.4 Nonlocal Response of Metamaterials

Taking a broader definition of metamaterials, we consider arrays of unit structures,
which are electronically separated but are interacting with one another through the
induced charge densities. This interaction may cause a long coherence length in the
excitations of matter, which does not justify the use of LWA or homogenization
procedure.

The unit structure can be anything, a quantum dot, a fine particle, or a man-made
piece of matter with particular shape and size. Each one of them will have its own
excited levels contributing to some resonant response to EM field. If the interaction
among unit structures is not important, one could treat the response of the whole
system in terms of homogenized macroscopic susceptibilities. It is essentially the
response of a single unit structure multiplied by the number density. If the interaction
is strong, however, some of the excited states may have long spatial coherence, which
should be treated microscopically.

Because of the large microscopic degrees of freedom of quantum dots, fine par-
ticles, and SRR’s, a complete description of the quantum mechanical motions of
matter will be quite difficult. But a fair description will be possible by concentrating
on special modes of excitation, which have strong interaction with EM field. In the
case of a quantum dot, confined excitons are such modes. In the case of a SRR speci-
fied by a conductivity, shape and size, numerical simulations (such as FDTD or else)
give us resonant frequencies and the corresponding current densities [8], from which
we make use of the knowledge of the eigen energy of excited states (with damping),
E, (—iT,), and the corresponding current densities, J,(r), where n =1,2,3, ...
represents the mode number of the excited levels. Putting the unit structures of this
kind in a regular lattice, we look for the EM response of this system. The induced
current density of this array is written as a linear combination of J,(r), and the
selfconsistent equations for the expansion coefficients { F;,o} can be built in terms of
the eigen energies E, — iI", and the matrix elements of Coulomb interaction and
radiative correction ((2.86) and (2.87) of [7]).

The interaction between the induced current densities on a different unit cells
takes place via the T and L components of EM field. An induced current density,
generally consisting of T and L vector fields, produces T and L EM fields around it
according to the microscopic M-eqs, and they interact with the T and L components,
respectively, of the current density on the other cell. This interaction can be calculated
in the following way.

The interaction between two current densities I (r, w) and I,(r, w) is mediated
by both T and L components of EM field. Using the EM Green function described
in detail in Sect. 5.7.1, we can write the electric field produced by I as

i® s / i
E(r,w):z dr' G (r,r', o) - I(r', w), “4.4)
= [same expression with 1/c? replaced by po/47]; .
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This Green function is the sum of T and L components, G;T) and G;L) defined in
Sect. 5.7.1, which produce T and L fields, respectively, by taking a convolution with
I,(r,w).

Letus divide the induced electric field and current density into T and L components
as

Er,0)=EPr, o)+ EVr v, Ir,0)=I7F o) +IVr w). 4.5)
The T component of E and the L component of I can be rewritten as
ED(r o) =igA(r, o) =iwA]y, I 0)=-ioPV(r v), (4.6)

because of the Coulomb gauge and the T character of magnetization induced current
density. The (time averaged) interaction energy between the EM field (E™ + E®))
due to I;(r, t) and a current density I,(r, t) is written as

lnt___/ dwfdr

[A(r, —w) - 1", 0) + cEP (r, —0) - P (r, )], (47)
= [same expression without 1/0] SI°
which can be rewritten in terms of E and I, as

—2mi

Ep = / do /dr [ET(r, —0) - I}"(r,0) + EP(r, —w) - 17 (r, 0)].
—00

(4.8)
Thus, by substituting the second term of (4.4), the interaction energies mediated by
T and L fields are expressed as

D _ _

nt

dr

21 q? ~
i A I, @) - G (r =10 IV, —w)
(4.9)

where Y = T or L. This expression is valid for arbitrary I, and I, including I| =
I>. The term E~ is the Coulomb interaction energy between the induced charge

nt
densities accompanying I and I, as

ED —271/ do /dr/d AN Sl (4.10)

nt r_r|

o0
dw
—0oQ

which can be easily seen by rewriting the current density via continuity equation
V - I + 9p/dt = 0and the explicit formofé( inSect. 5.7.1. On the other hand, E_

nt
is the radiative correction, and plays an important role in the equations to determine
the expansion coefficients F),, (w), (2.48), of current density. This interaction energy
is complex even for the diagonal element, i.e., for I} = I, giving the shift and width

to the resonant energies of matter [7].
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The simultaneous linear equations of {F), Fy,} mentioned at the end of
Sect. 2.2.3 has a clear physical meaning. If we rewrite the set of equations in terms
of a new set of variables {X,o = g, (w)F,o} and {Xo, = h,(w)Fy,}, the coefficient
matrix is the sum of material excitation energies (plus or minus w) and the radiative
correction. Since the basis of the matrix is chosen as the eigen functions of matter
excitation, the material excitation energies are diagonalized, while the radiative cor-
rection contains both diagonal and off-diagonal elements. The essential point is that
the solution of the coupled linear equations of {X o} and {X,} have resonances at
the matter excitation energies with radiative shifts and widths. If we keep only the
resonant part for simplicity, the set of the linear equations to determine {X 0} is

F = (B — ho)8 + Soyi0} Xoo0 @.11)
v

where 7 is the matrix element of the radiative correction, and the current density
(resonant part) is

1
I, 0) = - > Xoo Tou(r) (4.12)

This scheme can be combined with the problem of regular arrays of unit structures
(metamaterials), in the following way. On each unit cell, we have a set of local current
densities. Their eigen frequencies (with damping) and the corresponding spatial
structures can be prepared by a numerical calculation for a single unit structure,
i.e., a single SRR for example. The effect of Ei(nT[) and Ei(nLt) for a single cell will be

contained, but the inter-cell components are not included in a single cell calculation.
The linear equations to determine {X 0} is given in a matrix form as

FO =STER + EX + (B, —iT)1 — hollu X - (4.13)

nt nt
v

The suffices p, v of the matrix elements contain both lattice site index and the sub
level index (n) of a unit structure. The matrix elements of £ 1(nTt) and E 1(111;) are calcu-
lated from (4.9), where I, I, represent the current densities in each unit structure,
distinguished by the cell number ¢ and the internal quantum number n of each unit
structure. Therefore, the input information is {E,, I, I,,(r)}. (Since we assume a
same unit structure in each cell, {E,, I',} do not depend on £.) If the eigen energy is
calculated with the effects of the interaction energies Ei(nTt) and E 1(nLt)’ then we should
omit the corresponding contributions in the matrix elements of (4.13). Once we have
prepared the coefficient matrix and initial condition F*), we just invert the matrix to
obtain

FO (4.14)

no

Xo =Y [Ey + EG + (E, —il,)1— hol

"

1
Lou

which gives the induced current density via (4.12). From this result, we can further
calculate the induced EM field via the M-eqs.
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When the interaction Eig) and Ei(nLt) are large for the inter-cell components, it will
lead to the spatial dispersion effect in the resonance energy. Then, the response will
be delicately dependent on the geometry to calculate the response spectra, which is an
aspect missing in homogenized metamaterials systems. Since the above-mentioned
scheme does not have an essential difficulty to prevent the procedure, we may claim
that the nonlocal response of metamaterials can also be treated in this fashion.

Of course, there are some additional aspects to be discussed about how one takes
the effects of non-resonant components into account. A standard way to treat the effect
is to ascribe a background dielectric constant to the resonant part of susceptibility. If
we further assume that this background dielectric is extended to the infinity, we could
renormalize the effect into the EM Green function rather easily. This will change the
estimate of EI(IP and Ei(nL[) . If, however, we want to treat this background dielectric as
a finite confined object, which may cause a cavity effect, we need to prepare a more
complex renormalized EM Green function [9]. The preparation of this renormalized
EM Green function is feasible for simple geometries, such as a multilayer slab or
a multi-layer sphere [10]. For such a case, the procedure mentioned above can be
carried out just by replacing ¢ with the renormalized EM Green function.

4.1.5 Dispersion Curves in Chiral LHM: Difference Between
DBF and ChC eqs

In Sect. 3.4 we have compared the dispersion equations corresponding to the first-
principles constitutive eq. (2.118) and phenomenological DBF eqs. (3.35), (3.36)
in the case of chiral symmetry. Because of the low symmetry, P (M) is induced
by, not only electric (magnetic) field, but also magnetic (electric) field. We have
also considered another parameterized (phenomenological) chiral constitutive (ChC)
equations (3.52)—(3.53) corresponding to the first-principles ones. The dispersion eqs
to be compared are (2.131), (3.52) and (3.65).

In this subsection, we discuss how DBF and ChC eqs are different in reproducing
the dispersion curves of the first-principles result. For this demonstration, we choose a
special situation, where a resonance with mixed characters of E1 and M1 transitions
lies in the frequency region of negative background dielectric function e. If the
resonance is purely M1 character, this is a typical example of left-handed materials
(LHM), where a transmission window opens up in the frequency range of total
reflection, as discussed in Sect. 3.8.2 with respect to Figs. 3.3, and 3.5.

For this model of chiral LHM, we choose the transverse part of the first-principles
macroscopic susceptibility xI) appearing in the dispersion equation(2.131) in the
following form

4mce
1+ Fxér? = (sp+d + k)1 +[ (4.15)

0 bk
—ib'k 0 |’
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where ¢, assumed to be negative, is the background dielectric constant due to all
the other resonances, and a’, b’, ¢’ represent the contributions of a resonant level of
mixed (E1, M1) character at frequency wy. Namely,

, L a” b’ ¢
(a,b,c):( ) (4.16)

wo—w wy—w wy—o

where a”, b” and ¢” are the strengths of E1, mixed E1-M1, and M1 components,

respectively.
In terms of
B=wb/c, 4.17)
E=¢,+d, (4.18)
i=1/[1—(w/c)*cT, (4.19)

the dispersion equation (2.131) can be put in the form

K\ __ck
(c—) = ek i, (4.20)
w w

ko1 - -
CZ :iz[im+,/ﬂ2ﬂ2+4éﬁ], 4.21)

This is the same type of dispersion relation as (3.65) for ChC eqs, as seen from the
appearance of chiral parameters 8 and é‘ + 71 in the same position of the equations.
In contrast, the dispersion relation (3.51) of DBF egs is a qualitatively different type,
since the chiral parameter 8 does not appear in the square root. This means that
does not affect the condition for the existence of real dispersion curves, while B of
ChC eqs does. The consequence of this difference manifests itself in the presence
or absence of linear crossing in the dispersion curves of DBF and ChC eqgs, as we
discuss below.

Figure4.1 shows an example of dispersion curve based on this model of ChC
eqs. The four combinations of & give two branches of dispersion curves with linear
crossing atk = Ofor &, < 0. The frequency of the linear crossing is the one satisfying
¢ = 0, which is understood in the following manner. The r.h.s. of (4.21) is a function
of w alone, so that the linear crossing at k = 0 means that the r.h.s. is a linear function
of w in the neighborhood of the crossing. To see this, we need to examine the w-
dependence of the two factors B/ and &1 when the r.h.s. is approaching zero. The
only condition for the r.h.s. to become zero is € = 0. Since i = (wy — w)/[wy —
w — (w?/c*)c"], its zero point at @ = wy is canceled in the product . Thus, the
only condition for realizing e = 0 is

and its solution is

F=g +a =0, (4.22)
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Fig. 4.1 Dispersion curves
of a chiral left-handed
medium for the model in the
text. Both ordinate and
abscissa are normalized by
the frequency of the pole as
w/wo and ck/wgy. Two
horizontal lines show the

frequncies of ¢ = 0 and N\

/,LIO =0
p=0 —
. e

ie., ® = wg + a”/e, = wy, which is less than wq for &, < 0. At this frequency the
factor Bji is a finite analytic function, so that &/ is proportional to @ — @, in this
neighborhood. This leads to the linear crossing of dispersion curves at (k = 0, w =
(,()1).

The frequency for diverging k (— =£00) arises from & = 00, i.e. at @ = w; satis-
fying wy — w — (w?/c?)c” = 0. (The root in the close neighborhood of the resonance
is Wy ~ wy — (w3/c?)c”.) The r.h.s. of (4.21) has two sets of values (—oo, Ak) and
(400, —Ak) for 1 = oo, where Ak is a positive finite number. The finite values are
understood by rewriting (4.21) as

ck " 281
© P+ +4iL

For ji — oo the main factor in the square root becomes 42i2. Then the factors ji on
the denominator and numerator are canceled out, and for one of the & combination
the quotient becomes a finite value.

As for the reproducibility of the linear crossing by the dispersion curves based on
ChC eqgs, nearly the same argument holds by noting the correspondence among the
parameters in dispersion equations (3.65) and (4.21)

(4.23)

Ewé, o, BoE+n). (4.24)

Ascribing the appropriate w-dependence to the ChC parameters based on the single
pole nature of all the components of linear susceptibility, we can expect the same
behavior of the dispersion equation (3.65) as the microscopic model.

In order to carry out a similar argument about DBF eqs, we need to consider how
to ascribe the w-dependence to the DBF parameters, which does not exist in the
literature to the author’s knowledge. Apart from the details, a single pole character
should be ascribed to each ¢, u, B¢, Bu, since they are linear susceptibilities. For
the chiral components, the single pole character should be assigned, not to 8 and
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€, u separately, but to each of the products Be, Su. In this sense, we write the DBF
dispersion equation as

ck JEW
— =4 4.25
L+ (w/c)v(Be)(B1) *22)

Generally, the r.h.s. vanishes at the zero of e or at the poles of B¢ and Bu. Since
the zeros of the former do not generally coincide with the zeros and poles of the latter,
we may discuss the two cases independently. Since ¢ and u do not simultaneously
become zero in general, and since their zero points are not singular point, they
are linear functions of w near the zero points ,, which leads to k ~ /[o — w.].
Therefore, no linear crossing occurs.

The pole of B¢ and B arises from the chiral nature of the resonance, which has
the mixed character of E1 and M1 transitions in the case of the microscopic model
considered above, This means that the same resonance contributes to ¢ and , too.
If all of the four parameters have the same pole, its effect is canceled in the quotient,
leading to the finite value of the r.h.s. of (4.25).

In (3.55) we showed the relation ft ~ 1/(1 — 47 xmp), which means that the pole
of /1 is shifted from that of xmp. If one extend this argument to the relation between
w and xmp, the canceling of the chiral pole position is expected between € and e k.
Then, there remains the square root of the inverse of the pole, /@y — w, on the r.h.s.
of (4.25). This again fails to show the linear crossing.

We also showed the relations (3.69) between the parameters of DBF and ChC eqs
based on the assumption of the equivalence of DBF and ChC eqs. We also want to
check the consequence of this assumption, whether or not this relation applied to the
DBEF dispersion relation can reproduce the linear crossing. From these relations, we
can derive

1 1 &2
11,z (4.26)
n g
and 5
L pepn=1-1. (4.27)
c fi

For the pole structure of the ChC parameters £, [, £, 7} corresponding to the micro-
scopic model discussed above, the first equation shows that the pole of 1/u occurs
at the same position as that of 1/, i.e., at @ = wy. Then, the r.h.s. of the second
equation loses the same pole because of the cancellation. Since the Lh.s. of the second
equation appears in the denominator of the DBF dispersion equation (4.25), we can
rule out the possibility of the divergence of the denominator at @ = wy. Then, the
only possibility for the r.h.s. of this dispersion equation to approach zero is the van-
ishing of its numerator ,/¢ . In this case, the behavior of the dispersion curves near
k=0isk ~ {/|o — w,| as discussed above, which is different from linear crossing.
Thus, the equivalence of DBF and ChC eqs is an invalid assumption. From all the
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arguments given above, we can conclude that DBF dispersion curves do not repro-
duce the linear crossing for the left-handed chiral resonance.

For all the reasons mentioned above, including the different conditions for real
solution of the dispersion equation (3.67) versus (3.68), it is strongly recommended
to use ChC eqs rather than DBF eqs for the discussion of resonant chiral LHM, if
one prefers to stay in phenomenology.

4.2 Spatial Dispersion in Macro- Versus Microscopic
Schemes

The wave vector (k) dependence of ¢ and u in the conventional scheme, or xep, in
the present one, is generally called spatial dispersion effect. The k-dependence may
occur both in the denominators and in the numerators, but, from the viewpoint of
the physics involved, we should distinguish the k-dependence (a) in the denomi-
nators (and numerators) and (b) only in the numerators. The underlying physics is
as follows. If the k-dependence appears in the microscopic susceptibility, it reflects
the translational symmetry of the microscopic system in consideration. Unless the
k-dependence, especially of the denominator, is negligible, LWA is not a good approx-
imation, so that we need to stay in the regime of microscopic (nonlocal) response
as described in Sect. 2.2. On the other hand, if the microscopic system has no trans-
lational symmetry and if LWA is a good approximation, the macroscopic average
of this susceptibility can be expressed as a macroscopic susceptibility e, with a
k-dependence only in the numerator. Therefore, this is the only k-dependence
allowed in the macroscopic description.

If we consider the Taylor expansion of each component of the microscopic sus-
ceptibility up to the O (k?) terms, as we explicitly show for y.m(k, w) in Sect. 2.3,
the dispersion equation of the coupled waves of matter and EM field, (2.131), is
the quartic equation of k for a given frequency w. Since the four waves correspond
to the forward and backward propagating waves for two polarizations, there arises
no problem of “additional waves” as in the next case of resonant spatial dispersion
described below. In this case, the standard treatment of macroscopic boundary con-
ditions, given in Sect. 3.7, is enough to determine the response uniquely. The k-linear
term in the dispersion equation may lead to a complex situation involving the mixing
of polarizations, but the number of the boundary conditions does not increase in
comparison with the conventional case of non-spatially dispersive media.

An essentially new situation arises, when the k-dependence appears in the denom-
inator of microscopic susceptibility. Though this is the case outside the macroscopic
response, we give an outline of the physics involved in this situation. The essential
point here is that the microscopic eigenstates of the medium are the coherent waves
specified by k, which does not allow the use of LWA. The coherence effect appears
not only in the denominator of susceptibility via excitation energies, but also in the
numerators through the corresponding eigenfunctions. Because of the k-dependence



106 4 Further Considerations

in the denominator, the dispersion equation becomes a polynomial equation higher
than the quartic equation of k. In the first example of this category discussed by
Hopfield in early days [11], the k-dependence in the denominator was considered
as the O(k?) dependence of exciton energy, which leads to the quadratic equation
of k? as the dispersion equation for a given polarization. This equation gives four
solution for k (for a given polarization), i.e., two waves in a given direction (forward
or backward). Therefore, there is an additional wave in each direction of propaga-
tion in this medium, which gives rise to a famous problem of additional boundary
condition, ABC problem, to determine the relative amplitude of the waves and, then,
the response of the matter uniquely.

How to determine the form ABC for a given medium with such a spatial disper-
sion effect has been a long debated problem in the physics of excitons [12]. There
have been both phenomenological and first-principles approaches to this problem.
An essential progress has been made by the latter through considering the suscepti-
bility of the medium as that in the presence of surface, which breaks the translational
symmetry of the medium. The solution of M-eqs in terms of such a susceptibility can
determine the form of ABC, which (in principle) reflects the details of the surface
contribution to the susceptibility. Also, it was noticed that the same M-eqs can be
solved without referring to ABC [13], which was an essential seed of the micro-
scopic nonlocal response theory given in Sect. 2.2. The details of this development
is described in Sect. 3.8 of [7].

Since the spatial dispersion effect in the denominator of susceptibility has a much
more profound meaning than that in the numerator, we should specify which case is
meant on mentioning spatial dispersion effect. To summarize this section, it should be
noted that the only spatial dispersion effect compatible with LWA is the k-dependence
in the numerator.

4.3 Resonant Bragg Scattering from Inner-Core
Excitations

The arguments in the main formulation in Sect. 2.3 are all based on the assumption
that all the excited states of matter can be treated in LWA. As discussed in Sect. 3.6,
there are various cases where this assumption is not valid, which, however, does not
mean our incapability of handling such cases. In this section, we show an example
of this kind, for which we can present a useful framework to analyze some relevant
experimental results.

If we irradiate a crystal with an X ray which can excite the inner shell of its
constituent atoms, we can expect a resonant diffraction of X ray, which is mediated
by the inner shell excitations. The scattering process reflects how the resonant atoms
are arranged in the crystal lattice. The clearest signal of X ray scattering is that the
change in the wave vector k is equal to one of the reciprocal lattice vectors {G}. It
is a linear process in the sense that the signal amplitude is linear in the incident field
amplitude. Since an inner shell excitation is localized on each atom, which has much
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smaller spatial extension than the X ray, it seems to be all right to apply LWA to the
microscopic susceptibility of this process. However, the LWA averaged susceptibility
Xem (K, @) obviously does not describe the diffraction process, because xem(k, @) is
the susceptibility for a given wave vector without any change before and after the
interaction with matter.

The key to solve this discomfort is (2.109) of Sect. 2.3, which shows that the LWA
averaged induced current density can have a different wave vector k from that of the
incident EM field k’. It should be reminded that we picked up only the scattered fields
with k = k' by assuming the spatial uniformity of the LWA averaged macroscopic
medium. At this point, we should realize the possibility that the LWA average of a
localized inner shell excitation does not necessarily mean the smeared out distribution
of the similar excitations. In other words, we keep the meaning of (2.109) as it is,
and note that the summation index v contains the positions of inner shell atomic
excitation in a regular lattice, which leads us to the selection rule k — k" = G. The
explicit formulation goes as follows.

The linear susceptibility describing the diffraction process can be obtained in
the following manner. Since we are interested in the resonant excitation of inner
shell transition, we keep only the resonant terms in the microscopic susceptibility.
Dividing the summation index v into the atomic position R and the quantum number
v for the resonant transition of a particular species of atoms in the crystal, we obtain
the resonant terms

1
,r, = - s(@)os(r — R)I;0(r' — R) . 4.28
Xea(r, 1, ) C;;g(m 0o(r — R)I5o(r' — R) (4.28)
= [same expression without 1/c],

Though the final state of the transition is affected by the surrounding atoms or the
band structure in the corresponding energy range, the induced current density of the
transition is well-localized because of the strong localization of the core state wave
function. When the crystal consists of sublattices, we may write R = 7 + 7, where
7 is the vector defining the position of sublattices in a unit cell, and 7 is the vector of
Bravais lattice, for which reciprocal lattice vectors {G} are defined as 7 - G = 27 X
integer.
The (k, w) Fourier component of the current density induced by this yq is

. V2 N . . ,
I o) = o530 e g5(@) Tone (k) Y Tro (k) - AWK @),
v R kK

= [same expression without 1/c]gs; 4.29)

where the k Fourier component of the matrix element at the site R = r + 7 is defined
as

_ 1 . 1 _
Io;.. (k) = v / dre *"Ip; .(r — R) = Ve*l“‘ / dr' e * o5 . (r)) (4.30)
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to extract the position dependent phase factor from 1 0v.7 (k). We attach the t-
dependence explicitly to the matrix element of current density, since a same atomic
transition 0 — ¥ can give different results for different sublattices because of the
difference in the surroundings.

The microscopic current density given above could be used as the source term
of the M-eqs for vector potential. However, in view of the short localization length
of the induced current density at each site, we can apply LWA to the microscopic
current density. Using the result (2.116), we have

~ 1 ) - _ _
Tonc (k) = se " *(Jone = ik - Qo +ick x Mosc) . (431)
= [same expression without c]g; .

In terms of this LWA expression of 1 0v.z (k), we obtain the current density as a
function of A(k’, w) as

Ik, w) = %ZZ e kKR o5 ()
7 R

X{,__I()f)’r — lk . Q(()e‘—)zl. + le X M()\‘,’T}
3 3 (Tsow +ik - Q5or —ick! x Mio.} - A(K, w), (4.32)
k

= [same expression without 1/ c]SI

The Bravais lattice part of phase factor exp[i(k — k') - ] becomes unity for the
wave vector transfer by a reciprocal lattice vector k — k' = G. Thus, (4.29) gives
the induced current density satisfying the Bragg condition for an arbitrary incident
X ray with wave vector k. The amplitude of scattered X ray is calculated from the
Maxwell equation with this current density as a source term, which is rewritten as a set
of linear equations for the variables I (k' + G, w) and A(k' + G, w), containing the
incident field Ag(k’, @) as a parameter. The number of G’s to be considered depends
on the strength of interaction. Since X-ray scattering is usually a weak process, even
at a resonance, it will be a reasonable approximation to treat it kinematically, i.e.,
to consider single scattering processes alone. This approximation corresponds to
the use of (4.32) with the A(k’, w) replaced with the incident wave Ag(k’, ). The
scattered wave is polarized perpendicular to k, and the amplitudes of each polarized
component is determined by the projection of I(k, ) on the (unit) polarization
vector e(k) (L k).
The scattering amplitude for a given incident field Ay (k') is

4
Al w) = —— 33 expl—itk— k) - R} g5(@)
v R

x {Jopc — ik - Q(()?)T +ick x Mo )
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x Y T + ik - Qo —ick' x My} - Aok @), (433)
-

= [same expression with 47 replaced by ¢’ 1]

where k = k' + G.

The uniqueness of this result is that it contains the case of chirality-induced Bragg
scattering in a general form applicable to any inner shell transition and any symmetry
of crystal. Usually X ray scattering is said to be unable to distinguish left (L-) and right
(R-) handed chirality, which is a conjecture derived from the intensity of the allowed
beams. Recently, there has appeared a paper reporting the successful distinction of
L- and R-handed quartzes by means of the forbidden beams enhanced by the reso-
nance with inner shell transitions [14]. The expression obtained above is suitable to
such a description, as shown below.

At low temperatures, quartz crystals show L- and R-handed distortion around
its trigonal (c-) axis. Both of them consist of triangular sublattices stacked along
the trigonal axis with three layers as a unit. The lattice points of the three lay-
ers are arranged in a three fold rotation symmetry with a non-primitive trans-
lation by c/3, so that the lattice vector characterizing the three sublattices are
T, = (a1, 01,0), T2 = (az, b2, c/3), T3 = (a3, b3, 2c¢/3), where the 2 dimensional
vectors (ay, by), (az, ba), (as, b3) are related with one another by the three fold rota-
tion around the c-axis. The reciprocal lattice vector in the c-direction is written as
G. = (2m/c)(0, 0, £) for an arbitrary integer £. For any lattice point R =7 + 7,
we have

. 2wl .
R - G, =27 x integer + T(J -1, (4.34)

which will be used below.

In a simple theory of X-ray diffraction, we assume a regular array of spherical
scatterers. To calculate the amplitude of scattered waves, we sum up the contributions
from all the scatterers, which is the product of “atomic scattering factor” times the
sum of phase difference of all the scatterers. The latter is

> exp(iR-G) . (4.35)
R

which in the case of (4.34) is zero except for £ = multiples of 3. This means that the
diffraction with G, = (27 /¢)(0, 0, £) is forbidden except for £ = multiples of 3.
The result given just above is due to the T independence of the “atomic scattering
factor”. The forbidden character of the scattering is generally relaxed, when we use
aresonance condition, since it picks up a detailed electronic structure of the resonant
state, which can be dependent on the sublattices. More specifically, this relaxation
occurs through the lowering of the symmetry of the induced current densities con-
tributing the resonant scattering. In the case of an isolated atom, there always exist
a set of degenerate excited states belonging to a irreducible representation of elec-
tric dipole (E1) character. Because of the degeneracy, we can choose any Cartesian
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framework to express the dipole moments, so that this set of states act to the EM field
as a spherical scatterer. This argument can be checked by (4.33). If we can assume
spherical symmetry at each site R, we can choose the basis for { |v)’s } indepen-
dent of t. Then, the summation over T acts only on the phase factor exp(iG - 1),
leading to zero. Thus, non-zero scattering amplitude is due to the deviation of the
site symmetry from a spherical one. This deviation is obvious, since lattice struc-
tures have always lower symmetry than spherical. Even in cubic symmetry, £ = 2
(or higher) angular momentum states are no more completely degenerate, so that
the contribution from these states will give non-spherical effect. If the symmetry is
lower, even El transitions (£ = 1 angular momentum states) will split into several
levels in a different way for each sublattice . The eigenfunctions are also affected
by this splitting, giving a T-dependence to the matrix elements. All these effects will

preserve the T-dependence of the matrix elements Jos, Qf;z), Mo; in (4.33), leading
to the relaxation of the forbidden character of the scattered beams with G..

4.4 Renormalization of L. Current Density into Ey,

4.4.1 Use of Ey, as External Field

As mentioned in Sect. 2.2, the main part of this new formulation is made according
to the scheme where matter Hamiltonian contains the complete Coulomb interaction.
This means that the interaction between the induced L electric field and matter polar-
ization, which can be rewritten as the Coulomb interaction energy among the induced
charge densities (see below), is, not a part of interaction Hamiltonian, but a part of
matter Hamiltonian. This energy appears as a part of matter excitation energies defin-
ing the poles of susceptibility, and has been called LT splitting energy, electron-hole
exchange interaction, or depolarization energy. Thus the EM field inducing matter
polarization is E1 alone, while E| is an internal quantity. For a T-field incidence,
the physical variables to be determined selfconsistently are A and I, i.e., the T-
components of EM field and induced current density. In this process there is no need
of considering E and Py, as long as the Coulomb potential is properly handled in
the quantum mechanical calculation. If one dare to know Ep and Py, they can be
calculated by using the selfconsistently determined values of A and the T-L. mix-
ing components of x.n,. The case of L-field incidence caused by an external charge
density is described in Sect. 5.7.2.

There is an alternative scheme to treat the induced Ej as, not an internal, but
an “external” field even in the absence of external charge density. In this case,
— f P - E dr is the interaction between “external” field Ey and matter. This point
of view requires a change in the definition of matter Hamiltonian and matter-EM
field interaction, as discussed below. The interaction energy — [ P - Erdr can be
rewritten, in terms of the induced charge density p, as
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—/F&W:/W/MPVpW) (4.36)
=
_ ./dr/drV P()p32| (4.37)
:/ /d / /0('),0(" (4.38)
r—r
— H. (4.39)

which is the Coulomb (self-) interaction energy of induced charge density H,.. Since
this energy appears in the presence of induced polarization or induced charge density,
i.e., in the excited states of matter, it is a part of the Coulomb interaction among the
charged particles of matter. If we treat this energy as the interaction between matter
and EM field, we have to subtract this part of Coulomb interaction from the (original)
matter Hamiltonian in order to keep the consistency within the total Hamiltonian.

Since this affects the eigenvalues and eigen functions of matter, this new choice
requires a certain modification of EM response theory, which we describe in this
subsection with a stress on the difference compared with the scheme used in the
description of Chaps. 2 and 3. If we use them properly, the two schemes should pro-
duce the same response. However, there can arise a difference in judging the validity
of LWA to derive macroscopic M-eqs, which is discussed in the next subsection.

In the scheme of Chap. 2, the matter Hamiltonian H®, (2.17), is the sum of kinetic
energy and full Coulomb potential (and relativistic corrections), and the interaction
Hint, (2.24), contains only T-field A. In the new scheme of EM response, the matter
Hamiltonian is

HY =HO _ g (4.40)

and the matter - EM field interaction is
Flg = Hing / dr Py - Ey (4.41)

where E7 is the sum of incident and induced L-fields as

B == [ 2O B (4.42)

In the interaction Hamiltonian, the first part Hi, takes care of the response of the
T-components, and the second part — f dr Py - Ey that of the L-components. In
chiral symmetry, A can induce Py, (or Ji), as well as Jt, and E.xq, can induce J,
as well as Py..

The calculation of microscopic susceptibilities and the application of LWA go in
a very similar way as in Chap.2 (for T-response) and Sect. 5.7.2 (for L-response).
What we need anew is to use the eigenvalues and eigenfunctions of the new matter
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Hamiltonian H®, which changes the positions of poles and their intensities. The
constitutive equations in this case are

I(k’ (1)) = Xem(kv C()) A(kv (1)) + XJEL(ki Cl)) EL(kv (1)) ) (443)

where x.m and yjgL are defined in the same way as x.n and yjgp in terms of the
energy eigen values and eigen functions of HO.

In terms of the new susceptibilities and the source fields { Xem, XjeL, A, EL}, we
can make a similar selfconsistent scheme as that in terms of {xem, XL, A, Eext}-
For high symmetry cases where L and T modes do not mix, the first and second terms
on the r.h.s. describes the T and L response, respectively. When LT mixing occurs,
we pick up the T and L components of the response as follows. The T-component of
I(k, w), needed for the M-eq of A, is obtained by applying the projection operator
a- I}l}) - I (k, w), and the L-component of P, to be used in (4.42) viaV - P = —p,
is PL(k, w) = (i Jo)k - I (k, ).

The change in the pole positions due to the change in the matter Hamiltonian
is reflected in the conditions for the eigen modes of L character. In the case of
Xem and xjgr, the poles represent the transition energies of HO containing H, so
that the T and L modes energies are directly included in the pole position. In fact,
I = yjpL Ey indicates the presence of finite amplitude L-mode current density
I for vanishing E. when g goes to infinity, i.e. at the excitation frequency of
a L-mode. On the other hand, the poles of ;g do not have the contribution of H,,
but the equation

EL = —4r PL + EextL s (444)

which is an extension of (5.164) by including the incident L field, indicates that the
condition for the existence of finite amplitude solution of Ey in the absence of E cx,
is

14+4mxE. =0. (4.45)

This means that, though the susceptibility xjg. does not have the poles at L mode
excitations, it provides the eigen mode condition for them. It should be noted that
this is the same condition as & = 0 in the conventional macroscopic M-eqs, which
is the direct consequence of the conventional definition of x. as P = y.E and ¢ =
1 + 4m x., where E contains E| . In this sense, the conventionally defined x. should
be calculated from the matter Hamiltonian H©.

4.4.2 Difference in the Criterion for LWA

The validity condition of LWA is that, among various quantum mechanical exci-
tations of a matter system, we can neglect the contribution of those with long
range coherence in the spectral range of interest. A simple example allowing the
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use of LWA is an assembly of impurities (of a single species, for simplicity). The
supporting argument is that the spatial extension of the wave functions of the transi-
tion is well localized in comparison with the wavelength of the EM field correspond-
ing to the transition energy. In this argument, we usually neglect the dipole-dipole
interaction between different impurities, which is the leading term of H.. If we con-
sider this interaction among the impurities, it will cause reorganized energy levels
with a certain distribution, or, if the impurities are in a regular lattice, a band struc-
ture. In any case, it will lead to a band of new energy eigen values. If this band width
is larger than the (non-radiative) width of the impurity levels, we cannot neglect
the LW coherence of matter excitations, so that LWA is not a good approximation.
The validity condition of LWA is therefore the larger (non-radiative) width of the
impurity levels than the band width due to dipole-dipole interaction.

However, if we replace such impurities with split-ring resonators (SRR’s) to make
metamaterials of desired resonant frequency, we need to reconsider the validity of
LWA in homogenizing the contributions of SRR’s to obtain an effective macroscopic
susceptibility. Especially, if we want to get a high resonant frequency, one uses small
structures containing coherent motions of electrons, or plasmons, which produce
large amplitude charge densities on each SRR.

The various resonances of a SRR are accompanied by different modes of such
charge densities. A high resonant frequency is caused by a strong restoring force,
which means that the mode is accompanied by a large amplitude of charge density.
This contributes, not only to the high resonant frequency, but also to the large inter-
SRR interaction through the long range nature of the Coulomb interaction between
charge densities. (The overlap of wave functions is not needed for this interaction.)
This inter-SRR interaction leads to the formation of the coherent excited states among
the SRR’s. Then, each of the coherent state has different eigen frequency with a fully
extended wave function over the positions of all the SRR’s. These new eigenstates
have a band of eigen frequencies. (If SRR’s are arranged in a periodic lattice, there
arises a energy band structure for the excited states.) If the band width is larger than
the width of each level, one cannot neglect the coherence. In other words, LWA or
homogenization is not applicable to this system.

Now, if we take the scheme with “H©, H;,,”, the eigenstates of matter are con-
structed without He., so that the coherence of induced polarization due to the inter-
action of charge densities is not brought in the eigenstates. Therefore, if we judge
the validity of LWA for these eigenstates, an important factor will be missing. Thus,
there is a possibility in this scheme to make a mistake in judging the validity of LWA.

In contrast, the scheme with “H©®, H;,” contains H,. in H®, so that the long
range coherence of induced polarization is determined solely by H©. Since all the
elements contributing to the coherence of eigenstates are considered in H?, we can
make a correct decision about the validity of LWA, in contrast to the scheme with
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4.5 Extension to Nonlinear Response

The higher rank theory which we use for the derivation of macroscopic M-eqs is the
microscopic nonlocal response theory consisting of the microscopic M-eqs and the
microscopic constitutive equation. The latter is given as a power series expansion
with respect to A(r, w) in the form of integrals containing various susceptibilities as
integral kernels. Since these kernels are separable, the Nth order nonlinear induced
current density is an Nth order polynomial of the factor

Fu(w) = /dr ([ I(r)lv) - A(r, o) (4.46)

for various combinations of , v and w’s, including the linear case N = 1. (see Sect.
2.6 of [7].)

For example, one of the eight components of the third order nonlinear current
density is given, for the field components with frequencies w;, w2, w3, as ((2.119) of

(7D

-1 Fop (@) Fyu @2) Fog 1) (@ 1(1)]0)
3) _ i “
A 10 30 30 Dl rmpay - ot oK ety

(4.47)

Whel’ng, = w3+ i0+, Qz = w3+ wy + i0+, Q] = w3+ wy + w; + iO*,anda)/w =
(E, — E,)/Ih. The EM field components included in the F),,(w)’s have various fre-

quencies and polarizations, and the solution of such (microscopic, nonlinear) consti-

tutive equations and M-eqs turn out to be the solution of simultaneous cubic equations

of F,,(w)’s. In general, it is possible to rearrange the integral equations for the Nth

order nonlinear problem into a set of Nth order polynomial equations of F,, (w)’s [7].

By including enough number of the transitions in the calculation, the microscopic

spatial structure of the EM response is reproduced by such a calculation.

For the macroscopic description, we need LWA averaged microscopic constitutive
equation. Since the coordinates included in various factors F},, (w)’s are independent,
LWA can be done for each F),,(w)’s separately. Thus, the process of LWA is equiva-
lent to the Taylor expansion of each factor F),, (w) where we retain only a few leading
terms representing the moments of I, (r) with E1, M1, E2, ... characters.

In the case of linear response, we have the factors F,, (w) appear as a product
of the form I, (w) F,o(w) or I,o(w)Fy,(w) in the susceptibility, which contains a
single intermediate step |v) between the initial and final states. On the other hand, the
Nth order nonlinear susceptibility contains N different intermediate steps. For N =
3, we have |u), |v), |o) as shown in the example given above. Via Taylor expansion,
each factor F),, (w) is expressed as a linear combination of the moments of 1 ,,,(r).
Generally, the lowest moment (E1 transition) is the main contribution, so that a large
contribution will occur for the process connecting the initial and final states (|0)) via
the E1 transitions alone. If the frequency of the EM field inducing each E1 transition is
resonant to the corresponding transition, the intensity of the whole nonlinear process
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will become large. If some of the transitions are E1 forbidden, then M1 and/or E2
components will contribute to the finite amplitude of the whole process. This mixture
of E1 and (M1, E2) characters can occur for any system including non-chiral case.
This feature is different from the linear response, where the mixture of E1 and (M1,
E2) transitions is expected only in chiral symmetry.

The merit of the present approach to the macroscopic description of nonlinear
response may not be so obvious because of the complexity of the macroscopic non-
linear susceptibilities in terms of the quantum mechanical eigenvalues and eigen
functions. For non-resonant processes such a representation does not have much
meaning. If one focuses on a particular resonant nonlinear process containing E1
forbidden transitions, there will be a chance for this kind of scheme to show its
merit, because it allows the precise description of the resonant nonlinear process
with explicit evaluation of E1, E2, and M1 components.
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Chapter 5 ®)
Mathematical Details and Additional Geda
Physics

Abstract In the previous sections, some mathematical details and additional physics
are omitted for the purpose of showing the central line of description straightfor-
wardly. In this chapter, the omitted subjects are given in detail. Each section is
independent, and the related subjects are given in subsections. Some of the problems
can be found in other books or papers, but they are reproduced here for the sake of
self-containing description.

5.1 Continuity Equation and Operator Forms of P and M
in Particle Picture

The continuity equation (1.5) or (1.16) represents the charge conservation during the
motion of charges. Therefore, unless we consider those phenomena such as electron-
positron pair production by photon in the relativistic regime, it is expected to be valid
for usual EM phenomena in non-relativistic regime, both in the continuum and the
particle picture of matter. But it will be of some interests to see its validity in particle
picture by explicit mathematics. This is shown by the Fourier representation of the
properly defined forms of p(r) and J (r) [1]. In the same manner, the operator forms
of P and M satisfying the relations expected in macroscopic M-eqs are given.
The expressions of p(r) and J(r) in particle picture

pir) =) e dr—ry (5.1)
4

J(r) =" ewi 8(r—ry), (5.2)
¢
are Fourier decomposed as

p(r) = L/dk prexp(ik-ry, J@r) = L/dk Jrexp(ik-r), (5.3)
83 83
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where V is the volume for periodic boundary condition to define discrete k’s and is
supposed to take the limiting value oo, i.e., Xy — (V/87%) J dk in the continuum
limit. Their Fourier components are

Pk = Zee exp(—ik-ry), Ji= Zezve exp(—ik -ry) . (5.4)
¢

14

The time evolution of p occurs through that of each particle, so that we have

ap ap
o= ZZ: Ve g = 8713 Z/dk ec(vy - k) explik- (r —rp)l,  (5.5)

and v 5
VoT=Y [ ak e k) explik-r) = a[;'

e (5.6)

In this way, the continuity equation is explicitly shown to be valid in particle picture.
The microscopic definition of electric and (orbital) magnetic polarizations, P and
M, respectively, is given as (Sect.IV.C of [1])

1
P(r) =/ du Z eery 8(r —ury) , (5.7)
0 ¢

1 1
M(r):;/ u du Z ere X v 8(r — ury)
0 ¢

1
= d S(r — . 5.8
|: /(; u du X[: ey X vy 8(r urg)i| (5.8)

SI

This definition satisfies the expected relations

V.P=—p, (5.9)

oP oP
J=—+4+cVXM |=—+VxM (5.10)
ot at sI

for charge neutral systems.
The Fourier component of V - P(r) is

1
(V- P =/ du Y ec(ik - re)exp(—iuk - ry) (5.11)
4

0

= —Zegexp(—ik-rg)—i—Zeg , (5.12)
¢

= (o + Y e (5.13)
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which shows the validity of V - P = —p for charge neutral systems (}_ e; = 0).
The Fourier component of d Py /0t is

oPy a

1
= = 5 A du; eeroexp(—iuk - ry)

1
=/ duy " eq {ve — iury(k - vy)}yexp(—iuk - ry) (5.14)
0 ¢
The Fourier component of ¢V x M is

1
(cVx M), = i/ udu Zegk X (ry X vo)exp(—iuk - ry) ,
0 ¢
[= (Vo< Ml (5.15)
The vector triple product is rewritten as

kX(I'g XV()=(k'Vg) rg—(k~r[)Vg (516)

The contribution of the first term on the r.h.s. cancels the second term in the braces
of d Py /0t, and the remaining contribution is rewritten as

1 1
d

—i/ udu E eo(k -ro)veexp(—iuk - ry) = E E(Vg/ udud—exp(—iuk-rg)
0 7 7 0 u

(5.17)
which, via partial integration, leads to

1
Zegvl {exp(—ik ) —/ du exp(—iuk - rg)} . (5.18)
7 0

The second term on the r.h.s. cancels the remaining first term on the r.h.s. of (5.14),
and the final result is

oP . .
a_tk +ick x My = ;egl)g exp(—ik -ry) = Ji,
P
|::—k+ikka:Jk] (5.19)
ot ST

which is the Fourier representation of (5.10).
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5.2 Equations of Motion Obtained from Lagrangian L

The Lagrangian for interacting EM field and charged particles in general is

1 e
L=Y" {Emevz — e (ro) + v A("z)} + Ly
£

1
[ = Z {—mevg — e p(re) + eevy - A(r@)} + LEMi| (5.20)

Vi 2 SI

where

Lem

/d—L Gﬁé+v){%me2

Tex |\ear TV ’
-l/W{e(ié+V02—l%Vfo”
2 *\or o .

is the Lagrangian for vacuum EM field. In such a system, each charged particle

feels the Lorentz force acting at its position, and the EM field should be determined

by the charge and current densities of matter. The explicit forms of the equations to

describe such situations are derived from the least action principle for the Lagrangian,

or the Lagrange equations. The generalized coordinates for this derivation are the

coordinates of the particles {r,}, vector potential A(r) and scalar potential ¢ (r).
The action for a Lagrangian is defined as

| —
I

(5.21)

s:/mL (5.22)

which is a functional of the generalized coordinates. To consider a change in the
action for a generalized coordinate g (), we allow a small variation of ¢ (#) between
a certain time interval, but fix the values of g(¢) at the both ends of the interval.
Denoting the physically allowed path as g (¢) and the deviation from it as g (¢), we
request that the difference S[g 4+ §q] — S[g] should vanish in the first order of 4.
This requirement leads to an equation fulfilled by ¢, which is the Lagrange equation
for the generalized coordinate ¢.

5.2.1 Newton Equation for a Charged Particle Under Lorentz
Force

First of all, let us take x; as g, i.e., the x coordinate of the ith particle. Then, the
difference S[g + 5q] — S[q] consists of three terms, those due to the kinetic energy
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term J Sy, scalar potential §Sgp, and vector potential 8Syp,. The first two are easily
calculated, to the first order in §x;, as

5S /dtmi d (x: -+ 8x2) 2 dx; 2 fdt dx; déx;
in — - — X Xi — | — = i— - ,
K 2 | a di dr di
/ ar Ci g (5.23)
= —m; 2 %X, .
dt?

ISy = —e; /df [¢(xi +6x;) — Pp(x1)] = —e; /dt 274’ 8x; . (5.24)

The last equation for § Sy, is obtained via partial integration. (Since x; (¢) is zero for
the both ends of integration, no term appears from the boundaries of integral.) The
third one §S,, is a little complicated. The increment of > ((e¢/c)ve - A, when only
one coordinate component is changed from x; to x; + dx;, is

L s} A + 8w + A+ 85 + AL + 8w0)
- dr Xi Xi x X Xi dar Xi Xi dr Xi Xi
dx; dy; dz;
_{d Ay(x )+ A( i)+ A(x)”
e; déx; dx; 0A, dy; 0A dzvaA
— L77Q ! Ay I TR 8xi ,
c dt x (i) + {dt ax; + dt 0x; + dt Bxi}

d(Sx,-A ( )+ dx[ an + dy, 8AV + dZ,' 8AZ s (5 25)
=ei——Ax\X) Téy—— AL T o (9% .
dt dt ox; dt ox; dt 0x; S

where, the arguments of A without variation are not explicitly written, i.e., A, (x; +
ox;) = Ax(x; + x4, yi, 2iy 1), Ay(xi + 6x;) = Ax(x; + 6x;, yi, 2i, t), etc., and the
derivatives are evaluated at (x;, y;, z;, ). The time integral of the first term on the
r.h.s. in calculating 8., gives

dsx; dA,
/ Tl S / - (5.26)
di i

where we made partial integration with the fixed values of x;(¢) at the lower and
upper ends of the integration. Note that the time evolution of A, (x;, y;, z;, ) occurs
through the explicit t-dependence of A, and that of x;, y;, z;, i.e.,

dA, A, [(dxi 9A, dy 9A, dz DA,
_ (i Y z > (5.27)

dr ot dt dx; | dt dy; | dt 9z
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Using these preliminary results, we can calculate

9A
58Sy = — /dri * 5x;
C

at

e; dx; 0A dy; 0A dz; 0A
r sy, | |95 0Ax  dyi 04y | dzi DA,
+/ ¢ Hdt ox, | dr o | dr Bxi}

dx,» an dyl 8Ax dZ,' an
- — — — (5.28)
dt 0x; dt ay; dt 0z;
e, 0A,
= — /dt— Ox;
c ot
i dy; (0A, 0A, dz; (0A, 0A
+/dte—8xi D (28 & = 22231 (529
c dt 0x; dy; dt 0Z; 0x;
i 0A,
S /dte— 5x;
ot
€; dy; dz;
dt— 8x; | —(Vx A), — —(V x A), 5.30
+/CX[dt(><)z dt(X)y:| (5.30)
[ an [
= — /dt— Sx; +fdt— v; x B), 6x; (5.31)
c 0t c
0A,
Sy =¢ | dt Sx; +e¢ | dr (v; x B), éx; (5.32)
ot s
Denoting the sum 8 Syin + 885, + 8Syp as 6.1, we have
55, /dt8 i 0 134N 4, o g
= Xi|—Mmj—— 1€ | —7~ — — i x| o
at de? ox; c ot c
dle' Vi
— [ dr x| —m S 4o (E+— x B) ,
dt? c X
dle'
88San = dr 5x; —miﬁ +e;(E+v; x B), (5.33)
SI

In order for this increment to vanish for arbitrary §x;, the [- - - ] part of the integrand
should be zero, i.e.,

dzx,' Vi
miﬁze,(E—i-?xB)

X

[ =e(E+vi x B),] (5.34)

which is the Newton equation of motion for a charged particle under Lorentz force.
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5.2.2 Equations of Motion for ¢ and A

To calculate the variations for field variables ¢ and A, we rewrite the interaction
terms as

1
Lin =Y |—edro+ Sy Ao = [ dr {-pmp@) + ~J @) - A)
7 C C

[ =Y {—ewp(ro) +eve - A(ro)} = /dr {=pMe) + ) A(r)}}
14

SI
(5.35)

where the charge and current densities, p and J are defined as (1.14) and (1.15). The
action for the “¢p, A” related part of the Lagrangian is a double integral over ¢ and r.
The small variation §q is an arbitrary function of ¢ and r except that they are fixed
to zero at the upper and lower limits of the integrations.

Let us first consider the variation of scalar potential from ¢ to ¢ + §¢. The incre-
ment of the action §S, due to this variation is given from the action for L;y + Lgm
as

SS¢=/dtfdr|: p8¢—|—— Ve - —+—v¢ v&p} (5.36)
dr [ d Lg.oa va 8
_/ /r['o+4nc ot T an ¢]¢
[5s¢

9A ,
—/dl/dl‘ p—l—eov-g—i-eon) 8¢ (5.37)
SI

The condition for this increment to vanish for arbitrary §¢ is the vanishing of [- - - ]
in the integrand

. V3¢ + o4y

PTax dre ot ’
0A

p+eo Vi + V- -0 (5.38)
ot ST

which is V - E = 4mp, (1.3). For the Coulomb gauge, V - A = 0, it is the Poisson
equation
1
Vip = —4mp [: ——pi| (5.39)
€0 lsi

and for the Lorentz gauge, V - A + (1/c)d¢/dt = 0, it is the wave equation for ¢

— T _ V2¢ =4dnp |:: ipi| . (5.40)
SI
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The variation of vector potential leads to the change in action

1 1 Jd6A
c

drce Jat
L] IA+84)\* [0A\?
8mc? ot ot
1
—8—{(v X A+ V x84)? — (V x A)2}} , (5.41)
T
1 1 Ve
= [dr [dr|-J 84— ——"5A
c dmc ot
1 9A 38A 1
— . = _ _VxA-(VxJA
Yamdor o am <A )}

1 1 ave 1 34 1
=fdt|dr |- J-——————————VXVXxA| -4
c 4mc Ot 4mc? 912 4w

EAY) P24 1
SSAzfdt dr |J —eo—— —e0—5 — —V xVxA| SA (5.42)
ot > o s1

where we have used partial integration for ¢ and r variables to rewrite the terms
containing dV¢/dt, 3§A/0t, and V x §A. The condition for §Sa to be zero for
arbitrary § A is the vanishing of the [- - - ] part of the integrand

1 924 19\ 4m
— Tl VA4V (V-A+- )=, 5.43
c? 9r? + ( + c 8t> c I (543)
1 924 1 3¢
—— VA4V |V A+ -—| = 5.44
|:c2 ar? * ( +c2 8t> Ho J:|51 (>44)

where we have used V x V x A = VV - A — V2A. For the Coulomb gauge, it is

1 3%A 10¢ 4w
L VAL = 545
2 + o " J [ =wmo J]SI (5.45)

and for the Lorentz gauge it is a simple wave equation for A

4
___VZAzTJ [ =m0 J]g (5.46)
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5.2.3 Generalized Momenta and Hamiltonian

The generalized momentum p conjugate to the generalized coordinate ¢ is defined
by p = dL/dq, where ¢ = dg/dt, and the Hamiltonian is defined as

H = Zp— - L, (5.47)

where we omitted the suffices of the generalized coordinates and momenta to distin-
guish the particle number and Cartesian components, and the summation is meant
for these suffices. According to this rule of analytic mechanics, the momenta p,, Py,
P, conjugate to the variables (generalized coordinates) ry, ¢, and A, respectively,
are

+ %Ak, =0 M= (124 v,
=mv; + —A(ry), = =
Pe et c t ¢ 4me \c ot

0A
[Pe =myye+eA(ry), Py =0, II=g¢g <¥ + V¢>:| (5.48)
SI

and the Hamiltonian is

194 IA
H = Zl’e Vz+—/ (_8_ V¢>E—L,
ot g [ o) :
_; 5 +8n dr {(Cat+v¢> +(VxA)}
Syt L a4 ) i 1]
[_Z ot s dr{e()(at—i-V(ﬁ +M0(V><A) i (5.49)

14

The manipulation from the first to the second line is made by rewriting the second
term of the first line as

1 10A 10A
€L dr<——+V¢> ——/ (-—+v¢)-v¢ (5.50)

4 ot

= L/dr[Ez + E -V§] (5.51)
4

_ L / dr[E2—V - E ¢] (5.52)
4
! drE? — / drp¢ (5.53)
47[

The second term on the r.h.s. cancels the corresponding term in L, and a half of the
first term cancels the vacuum E field energy. The first term on the r.h.s. of (5.49) is



126 5 Mathematical Details and Additional Physics

Sopeve=Y {moi+ Saco ) (5.54)
14

14

The second term and a half of the first term cancel the corresponding terms of L, and
the remaining terms gives the second line of (5.49).
The last integral of (5.49) is the energy of EM field. Its T and L components are

1
HY) = g/dr {ArcI™)? + (v x AT)?)

1 1 1
[: —/dr {—[Hm]2 +— (V x A<T>)2H (5.55)
2 €0 Ho ST
1 194D 1
Hiyi=— [ d =—/d EV)?
EM T g r<ca +¢> sz ) T ET)

2
) 8A(L) >N
=214 Vo | == | dr (EV)? 5.56
I:Zr(at+¢ 2/r{}sI (5.56)

Using the Gauss law V - E® = 47, we can show that the L component Héll(,} is the
Coulomb potential among the particles (Sect. 1.2), i.e.,

R M e P b Die ] LY

lre — |re —rel

Then, we have the total Hamiltonian in the following form
1 €y €epéy
H = — [ ——A }
Zz: 2my Pe c (re) Z Z |re —re|
1
+8—/dr [{dme TP () +{V x AP @),
T

1 €epély
I::Zz—m[{pz—eeA(U)}z ZZ lre —rel

14

+1/dr {l[r[“)]2 +— (Vx A<T>)2” (5.58)
2 €0 Mo

SI

which is valid for any gauge. The L field is contained in both A of the first term and
the Coulomb potential, and the remaining part of EM field is written by the conjugate
variables of the T components, AT and 1D,

It should be noted that a gauge transformation determines the way to divide the L
field into the contributions of A and ¢ without affecting the T field. This allows us
to make a gauge independent definition of the Hamiltonians of matter and (T) EM
field in a usual way, i.e., the sum of kinetic energy and Coulomb potential for matter,
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and ng,f for the (T) EM field. This definition is very common to most studies in
non-relativistic regime. The choice of gauge is made to facilitate the treatment of the
interaction between matter and L field. The Coulomb gauge is simple in the sense
that T and L field is cleanly separated as A and ¢, respectively, and, if an incident L
field does not exist, the L field is considered automatically by the proper treatment
of Coulomb potential. In this sense, we adopted the Coulomb gauge in most part of
this book. The case of L field incidence is treated in Sect.5.7.

The Coulomb potential in (1.33) contains the summation over £ = ¢’, too. It is the
self-interaction energy of each charged particle. For a point charge, it is an infinitely
large quantity, and it is finite if a particle size is finite. In the non-relativistic treatment,
we just neglect these terms, since it is a (large) quantity attached to each particle
separately, independent of the inter-particle behavior. In this way, we arrive at the
usual form of Coulomb potential term for a charged particle system

6@6@/ ey
ZZ lre —rel [ Snsozz lre —rol ]SI' (5.59)

b UL t U#L

5.3 Form of Interaction Term

5.3.1 Another Set of Lagrangian and Hamiltonian

In the main text, we used the Hamiltonians for matter, radiation, and their mutual
interaction in the Coulomb gauge, as given in Sect.5.2. It is assumed that there is
no external charge density, so that the treatment applies only the external excitation
by T field. (The case of the external excitation by L field is given in Sect.5.7.) The
interaction is described by the current density and vector potential, so that any linear
response due to this interaction gives an induced change linear in A. In order to
calculate the conventional electric and magnetic susceptibilities, xe, Xm, via P =
xeE, M = x.H, we obviously need a new set of Lagrangian and Hamiltonian,
where the interaction term is linear in E and H explicitly. (In the case of L field
excitation, the interaction between the internal charge density and E is already
written as — f E® . pWdr as shown in Sect. 5.7, so that the consideration of this
case is omitted from the argument given below.)

Knowing that the Lagrangian in Sect. 2.2 is the sound basis for general systems of
interacting matter-EM field, we would need a unitary transformation which rewrites
the interaction term J - A into the types like P - E and/or M - H. However, no
such a transformation is known as a rigorous theory. It is known that the interaction
Hamiltonian —E - [ dr P is obtained via a unitary transformation based on the
electric dipole approximation, or LWA, (see e.g., p. 304 of [1]). Because of the LWA
assuming the uniformity of A (i.e., V x A = 0) one cannot extend this argument to
determine the magnetic counter part —H - [ dr M.
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A hint to proceed is obtained by the following argument. If we use the operator
identity J = 9P /3t + ¢V x M, the interaction term [ dr J - A is rewritten as

1 1 oP
—/er-A:—/d m A—i—/dr(VxM)-A
c

c

[/dr]-A:/dr%-A+/dr(VxM)-A] (5.60)
SI

The first and second terms on the r.h.s. are written as the invariants from the inner
products of polar and axial vectors, respectively, which are distinguishable for sys-
tems with inversion symmetry. The second term on the r.h.s. is rewritten, by partial
integration, into f dr M - B. Therefore, the magnetic interaction term is f drM - B,
rather than [ dr M - H. Though the first term is not ['dr P - E, it is the same type
of invariant made from polar vectors. In this sense, the interaction (1/c) f drJ-A
is divided into two independent terms in inversion symmetric systems, and one of
them is the magnetic interaction linear in B.

In order to study this point more in detail, we consider the Power-Zienau-Woolley
(PZW) transformation [1]. In analytical mechanics, it is well known that the addition
of a total time derivative of an arbitrary function F (of generalized coordinates and
time) to a Lagrangian L does not change the condition for least action. In PZW
transformation we use

F = —%/dr P(r)-A(r,1) [ = —fdr P(r)- A(r, t)] 5.61)

SI

where the operator form of P (r) is explicitly given in Sect.5.1. Then,

dr 1 aP(r) 0A(r, 1)
E——;/‘d" {T A( t)~|—P(r) s },

~ IP(r) 2A(r, 1)
|:— —/dr { ” “A(r,t)+ P(r) - o7 }:|51 (5.62)

where 9P /3t =), v,(dP/dr;) corresponds to the current density due to P in
(5.10). The second term in the integral is P - E‘D.
The old Lagrangian can be written as

2
L=y " vet s [arg@-aw
4

Lo {2 ey
+8n/r th) —(Vx4)

2
[: Zmév‘f —Uc+/dr J(r) - A(r)
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+1/dr P <%>2—i (V x A)? } (5.63)
2 O\ or o . '

where the terms related with the L field (or scalar potential) are written in terms
of the inter-particle Coulomb potential Uc, (1.33). The EM field described by A is
purely T field. The conjugate momenta for r, and A(r) are m,v, 4+ (e¢/c)A(r¢) and
(1/4nc¢®)A(= —E™® /47 ¢), respectively, which should be compared with those for
the new Lagrangian, (5.68) and (5.69).

We can rewrite the sum of d F/d¢ and the interaction as

1 dF ™
—/er(")'A(r)-I-E=fdr{M-B+P-E },
C

[/dr J(r) - A(r) + i—f = /dr {(M-B+P. E(T)}] (5.64)

SI

by the use of (5.10), partial integration, and

10A
B=VxA, E(T)z——a, I:BZVXA’ ED — _
c

0A

o7 :|SI. (5.65)

The (orbital) magnetization M (r) is defined by (5.8), so that its product with B can
be written as

1 1
/drM~B:—/uduZe@{B(urg)xrg}we
c Jo 7

1
[ - / wduy " e (Bury) xre)- v(} (5.66)
0

t SI

The new Lagrangian is

2
mpy
L'=Y" n —UC+/dr{M-B+P-E<T>}
14
1
—i——/dr {E™? _ B?)
8w

2
[:me—Uc+fdr{M-B+P.E<T>}

2
1 1
+—/dr {80E<T>2— —32” . (5.67)
2 Ho SI

Since P appears as an inner product with E® only its T component PP contributes
to the integral.
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In order to derive the corresponding Hamiltonian, we calculate the conjugate
momenta dL’/dv, for ro and 9L'/0 A for A, where A = 9A/dt. These generalized
momenta p, and I, respectively, are given as

1 1
Dy = myvy + —/ udu e; B(ury) x ry
¢ Jo

1
[ = MyVy +/ udu €y B(Mrg) X rgi| (568)
0 ST
= (E(T) 4 4nP(T)) — _LD(T)
4mc
[ —(goEP + PV = D(T):| (5.69)
SI

The new Hamiltonian H;- is obtained according to the standard rule as

H; = Zpé - +/dr ) -Ar)— L', (5.70)

4

= Howy + Hrwy + Hing
=2

Howr =Y 2% +Uc+27 / arP™(r)?, (5.71)

4
P gy L [ arpogy 572
= o + 4+ — 200 rPY’(r) , (5.72)

my SI

Hray = o f dr((D"T + B,

[z 1/dr <i[D<T)]2 + iw)} , (5.73)
2 €0 o oI

2

~2

Hinry = /dr {M'-B+PT.DD} +Z o czAlz
¢

1 ~
—/dr {M’-B+—P(T)~D(T)}+ZE—ZA§:| (5.74)
&0 T 2my SI
where M’ in Hin(1) 1s the B-independent part of the orbital magnetization operator

(5.8), i.e., the one with v, replaced by p,/m,, and

1
A, :/ udu B(ury) x r . (5.75)
0

In this form, the matter Hamiltonian is Hy;y, the vacuum EM field Hamiltonian is
Hpg (1), and the linear and quadratic interaction terms H;n(zy. In particular, we should
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note that the linear interaction term is — f dr[M - B+ P™ . D], and that the
matter Hamiltonian Hy ;) contains an additional term o f dr PO (r)2in comparison
with H()( L)

If we dare to write the interaction terms as — [ dr[M - H + PV . DD}, we have
to add the difference —4m f dr M (r)? to the matter Hamiltonian Hyry. Similarly,
if we dare to write the interaction terms as — [ dr[M - B + PP . E™], we have
to add the difference —4mw f dr PV (r)? to the matter Hamiltonian Ho(y- Thus, the
attempts to rewrite the interaction Hamiltonian as —M - H or — PV . E must
always face to the corresponding change in the matter Hamiltonian. This means that
the poles of the susceptibilities calculated by such a matter Hamiltonian are different
from those of x.q4, (2.39) because of the difference in the matter Hamiltonians. In
the conventional definition of x. and x,, such a change in matter Hamiltonian is
not included. Moreover, the rearranged interaction is no more written in terms of the
conjugate variables {A, l:I}, i.e.,itis no more a linear combination of photon creation
and annihilation operators (when quantized). This will bring about a new complex
situation.

The argument in this section shows the difficulty to derive a linear interaction term
proportional to (the T components of) E and H as an exact theory. The principle
of analytical mechanics allows us to use different sets of dynamical variables to
describe a given system, leading to another sets of “matter, interaction, and EM-field
Hamiltonians”. On the other hand, there is a natural choice of matter Hamiltonian,
i.e., the sum of the kinetic energy and Coulomb potential of the charged particles,
written in terms of the masses and charges of the particles in a very simple way. The
argument of PZW transformation shows an example of a different set of “matter,
interaction, and EM-field Hamiltonians”, which however does not look a very useful
tool. From this consideration, the only reasonable choice as an exact treatment is
the scheme based on the Lagrangian L, with the matter Hamiltonian Hy;) and the
linear interaction Hin(r). The use of the susceptibilities x. and xm, rather than yem of
Sect.2.4, in the conventional macroscopic M-eqs does not have a sound foundation
in the sense mentioned above. (Note, however, that the interaction with L-field is
well described by x.. See Sect.5.7.)

Even if we admit the use of interaction Hamiltonian proportional to electric and
magnetic fields, their mutual interference in the case of chiral symmetry does not
allow the simple use of x. and xn,. In this case, there has been a phenomenological
treatment called Drude-Born-Fedorov constitutive equations [2], which requires
additional “chiral admittances”. However, as the discussion in Sect. 3.4 shows, this
kind of phenomenology cannot be supported from the first-principles theory.

5.3.2 Velocity Gauge Versus Length Gauge

In the long history of quantum mechanical description of matter-EM field interaction,
there has been a lot of arguments since early days [3] as to the form of interaction
between charged particle and EM field, either —eE - r or (—e/mc)p - A, which
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are usually called length gauge and velocity gauge, respectively. As this naming
indicates, the main point of the arguments is why these two forms, which are (sup-
posed to be) related via gauge transformation, do not lead to the same observable
result in various systems from a hydrogen atom to crystals. In this subsection, a
comment is given to this problem from a different point of view.

As we have discussed in the previous subsection, these two forms of interaction
are related by Power-Zienau-Woolley (PZW) transformation in the Lagrangian [1],
which is specified by the addition, to the Lagrangian in the Coulomb gauge Lc, of
the total time derivative of a function of general coordinates

F = —%/dr P(r) A(r) = [—/dr P(r)~A(r)} . (5.76)

SI

Because of the independence of minimum action principle on the total time derivative
term in Lagrangian, the new Lagrangian L' = L¢ + dF/dt equally serves to the
quantum mechanical description of the system. Adding dF/dr to the interaction
term of L¢

Lin = / dr J(r)-A(r), (5.77)
we obtain the new interaction term

L :/dr{P<T>(r).E<T>(r)+M(r)-B(r)}, (5.78)

int

where we have used the identity J = (0 P/d¢) + V x M.From this new Lagrangian,
we can derive the Hamiltonian whose (linear) interaction term is M - B+ P - D
type as shown in (5.74). This can further be rewritten into M - B + P - E type or
M - H + P - E type. Theinteractionterm J - A of L leads to the Hamiltonian written
in “velocity gauge”, while L]  allows the Hamiltonian in “length gauge”. Thus, the
general principle of analytical mechanics allows the both forms for the description
of the interacting charged particles and EM field. However, it should be noted that
the “matter” Hamiltonian is also changed by the PZW transformation, as mentioned
in the paragraphs below (5.75). Therefore, for the consistent description, we should
consider, not only the form of interaction term, but also that of matter Hamiltonian.
Proper consideration of this change in the matter Hamiltonian will lead to the result
independent of the “length gauge” and “velocity gauge”.

There is another point to be mentioned about the naming of this subject. For this
purpose, it is instructive to compare the total time derivative term dF/dt with the
change in the Lagrangian § L caused by the gauge transformation defined by (1.20),
(1.21). The change caused in the minimal coupling Lagrangian is

5L=i drp)zzi/drpm-vz (5.79)
dr dr ' ’
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This looks very similar to dF/d¢. However, they cannot be same for any choice
of %, because the T component P exists in F but not in the latter. This arises
from the fact that the non-uniqueness of a Lagrangian with respect to the addition
of an arbitrary total time derivative term is a broader concept than the one due to
gauge transformation. In other words, the general framework of analytical mechanics
should work also in systems which have nothing to do with electromagnetism. For
this reason, “—E - r or (—e/m)p - A” is not a problem of gauge, and the naming of
velocity gauge and length gauge is misleading.

5.4 Derivation of Constitutive Equation from Density
Matrix

In Chap. 2, we have calculated the induced current density from the matter Hamil-
tonian H®, (2.17), and the matter-EM field interaction Hiy, (2.24). Thereby, it is
necessary to fix the initial condition of matter state, and we assumed that the matter
state was in its ground state in the remote past (f — o0). The result is therefore
dependent on the initial condition of matter. Though the one we used in Chap.?2 is
a standard one, one could use different conditions, too. A typical one is the use of
ensemble for the description of matter states, where the matter states are quantum
statistical ensemble. The time evolution of such an ensemble is described by density
matrix 6™, which obeys the equation of motion (Liouville equation)

d ., N
ih " = H + Hy. p™] (5.80)

where [a, b] = ab — ba represents acommutator of two operators. Once we know the
solution of this equation 5™ (¢), we can calculate the statistical average of arbitrary
physical quantity b at time ¢ as a diagonal sum (Trace) of the following form

(by = Te{p"™ (1) b}y = D (vIp"™ (1) blv) . (5.81)

v

In the case of our interest, b is the current density I(r), (2.27), or (1.15).

The solution of (5.80) contains a density matrix corresponding to the initial con-
dition of the matter state. A typical case of such an initial condition is the canonical
ensemble at temperature 7', which assumes the initial state of matter as a superposi-
tion of various (ground and excited) states with the weight of the Boltzmann factor
exp(—E,/kgT). This initial ensemble allows the EM excitations among the excited
levels, as well as between the ground and excited levels, with the probability of the
Boltzmann factor for the initial quantum level, which is not included in the calcula-
tion of Chap. 2. In this section, we show how this element is incorporated in the final
result.
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To solve the equation for the density matrix (5.80) in the lowest order of Hi,, we
first rewrite it in the interaction representation

2™ (1) = exp(—i HOt/h) p™ (1) expi HOt/h) . (5.82)

Substituting this form into (5.80), we obtain the equation for 5" as
) / A(int)
ih = [H, (1), I, (5.83)

where
H, ,(t) = exp(i HOt /1)) Hyp exp(—i HOt/h) . (5.84)

One can solve (5.83) by iteration, assuming an initial condition
Pt — 00) = py . (5.85)
The first order solution satisfies

d A
ih 6™ = [Hy (D). ol (5.86)

where the 50" on the r.h.s. is replaced by the initial condition gy. Since gy is a
known quantity, we immediately have the solution

t

» L , R
p(mt)([) = p() — ﬁ\/\ dt] [Hint(tl)’ ,0()] eXP(th) (587)

—00

satisfying the initial condition. Here also we assume the adiabatic switching of matter-
EM field interaction as in (2.31), described by the infinitesimal positive constant
y(=0%).

The initial density matrix g, represents the matter state (as a statistical ensemble)
in the absence of Hiy, it should be a stationary solution of (5.80) for Hi,, = 0. Thus,
0o should satisfy the condition of stationarity

[HO, pol=H py—po H® =0. (5.88)

This commutability of H© and gy will be used to write the statistical average in a
compact form later. As a typical model of 0y, we take the canonical ensemble

A 1 HO
fo = — exp (—,{B—T> = Z [v) W, (v] (5.89)

where
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W ! Ev (5.90)
y = — exp| — s .
Zo TP\ Tt

and Z; is the normalization factor (partition function)

E,
Zy = Zexp (—kBT>. (5.91)

Thus, the matrix element of g is generally

(mlboli) = Wy 8,0 (5.92)

where §,, v (= 1 for u = p/, and = 0 for u # p’) is the Kronecker’s delta,

The A-linear terms of the statistical average Trace {I(r) p" (¢)} arise from the
two sources, as already discussed in relation with (2.38). One (1) is the contribution
of 0o in (5.87) combined with the A-linear term, (—l/c)N(r)A(r), of I(r), (2.14),
and the other (I) is the contribution of the H;, induced term of (5.87). In this term,
the linear A dependence is already included in Hj, so that we use the A independent
part of the operator I (r). Their explicit forms are

I, = ! Tr{N(r) exp(—i HOt/h) po exp(i Ht/)}A(r)
C

1 A
— Z Wi (N (r)|w) A(r) (5.93)
n

i t
I, = ——/ dy exp(yt)
hiJ

> (wlexp(—i HOt/h) [Hpy (1), polexp(i HOt/h) 1(r)| v)

v

—% / dny exp(yny) Z (v expl—i HO( — 1) /h]

—00

{Hinefo — PoHine} expli HO(t — 1) /R 1(r) ) ,

_%/ dy exp(yt) Y expl—i(E, — E,)(t —t))/h]

“w
(VI{Hinepo — poHindH ) (I (r) [v) (5.94)

For the last transformation, we have used the commutability of H© and p,. Assuming
that the vector potential inducing current density has frequency w, i.e.,

Hy = —% / dr'I(r') - A(r', o) exp(—iwt) (5.95)

we further rewrite I, as
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I, = cl_h XV:XM:/_OO dty exp[—i(E, — E,)(t — t;)/R] fdr’exp(ytl)
(W = W) (ulL(r) [v) (W I(r)|p) - A(r', w) exp(—iwt). (5.96)

Carrying out the time integration over f; and changing the summation induces w, v
in one of the summands with the factor W,, or W,, we finally obtain

1
I> = — exp(—ior +y1) Z ; W, f dr'[guu(@) (I I () V) W ()|

Fhy @)W (P)|) (I () )] - AC, @), (5.97)

where | |
v =— h, = 5.98
gu(w) CL)VM—CO—I.)/ ,U.(w) wuu+w+ij/ ( )

and w,, = (E, — E,)/h.

The sum of I and I, gives the total induced current density. Writing the sum in
the form of I (r, w), we have

I(r,w)= /dr’ Xean(r, 1, @) - A(r', ) (5.99)
where

/ __1 O g
Kean (7,7, 0) = —— Xuj W (N ()| ) 8(r — r')

1 /
+- XM: W, Xv: [guu (@) (T (r)|v) (vIT(')|w)

Fhu (@)W ()| ) (I (F)v)] . (5.100)

If we take the limit of T=0°K,i.e., W, = 8,0, Xcan (F, 7, ) reduces to xq(r, r’, w),
(2.39) of Chap. 2. The result obtained in this section is a simple extension of x.q by
allowing the initial states of excitation at all the excited, as well as the ground, states
of H®, with the probability W,, (Boltzmann factor).

5.5 Rewriting the (0| N (r)|0) Term

In the induced microscopic current density, (2.38), the term proportional to (0| N (r)]0)
has a peculiar form, i.e., it represents a local response in contrast to the remaining
terms. However, there is a useful way of rewriting this term in the following manner,
which facilitates the formulation of microscopic nonlocal response theory. We will
show that the following relation
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A 1
OIN(1)I0) A(r) = —

v0

[L0v(r) Fyo(@) + Lo(r) Fo, ()] (5.101)

v

holds as a good approximation, when [a] the relativistic correction in H©® is negligi-
ble in comparison with the main term, and [b] LWA is valid. This expression allows
us to rewrite the microscopic susceptibility x.q into a compact form (2.44). Though
an essentially same argument is given in [4], we reproduce it here with some more
details.

The relevant term appears as a part of induced current density arising from the A
dependent term of the current density operator

% N@r) A®r), (5.102)
where A P
N@r) = Z m—i S(r—ry) . (5.103)
4

The operator I (r) is the A-independent part of the current density operator,

1) = Z;—n‘;[pﬁ(r — )+ —rop]. (5.104)
4

The spin dependent terms are neglected, since the relativistic correction is assumed

to be small.
We introduce one more operator

f((r) = ZemS(r —ry, (5.105)

4
=r Z e 8(r —ry) . (5.106)
L

Now we evaluate the commutators [Iég, H®7]and [Iz’g ), fn (r")], where &, n are
Cartesian coordinates. We begin with

[Re(r), HO1=re Y ;—n‘;e[(S(r —ro). pA (5.107)
14

where the relativistic correction terms are neglected in H©. For the evaluation of
the commutators we use the relation

ped(r—rg)=—pdr—ry), (5.108)

which allows us to move p to the outside of the summation over £.
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The commutator in (5.107) is expanded as

[8(r — 1), p1=8(0 —r)p,> — p 8(r —ry)

=8(r—ro)p” — po (P8 —ro)}— p, 8(r—ry) - p,

=8(r—rop, +p, (pSr—r)}—{p,8(r—rp)}-p,—8(r—ry) p,’
=p-{pS(r—ry+80r—ry p,} (5.109)

where (5.108) is used twice. Substituting this result into (5.107), we obtain
[Re(r), HOl=rep - I(r). (5.110)

Another commutator [ég (r), f,, (r")] is evaluated as

2
[Re(r), [, =re Y %[a(r — 1), Py 3 — 1) + 3 — ) puy]
4

2
€ /
=re ) —2”‘;[ {8(r —1¢) pey 84" —r¢) — pey 8(r' — 1) 8(r — 1)
4

+8(r —rg) 8(r' —r¢) poy — 8(r' —ry) pey S(r —ry)}

2

= 1e 3 5 (80 =70 (puy 807 = PO 3 =) 507 =) pry
4

—{pey 8(r' —r)} 8(r —ry) —8(r' — ro){pey; $(r —ry)}
=8(r' —ry) 8(r —ry) puy +8(r —ry) 8(r' —ry) py,
—8(r' — r){pen 8(r — 1)) = 8(r' — 1) 8(r —1¢) puy)

2
=1 ; s = Py =P 807 — £ + i ) 8 — )
+py8(r' —r) 8(r —re) 4+ pyd(r' —ry) 8(r —ro)]
2
6[ ,
= LS80 — 1) 8(r — 5.111
re Py ; S = 8 —ry) (5.111)
= re{pyd(r — )N () (5.112)
Let us define two operators

O(w) = /dr R(r) - A@r, o) (5.113)

F(w) = /dr Ir)-A(r, o), (5.114)

in terms of which (5.110) and (5.112) are rewritten as
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[O(w), H"] = 1h/drr A(r,w)V - 1(r) (5.115)

[O(w), I,(r)] = —ih /drr-A(r,a)) [aia(r—r/)] N . (5.116)

Iy
These two integrals can be rewritten via partial integration into
[O(w), H?] =ih/dr Vir-A(r,w)} - 1(r) (5.117)
[O(w), I,(r)] = ih / dr a%{r CA(r, 0)}8(r — NG . (5.118)
Both of them contain the following factor in the integrand

—{r A(r, o)} = A, +Z (5.119)

r b
S ar,,

which can be approximated as A, (r, @) when LWA is a good approximation. In this
case, these two commutators can be written as

[O(w), H?] = ihfdr A(r,w) - 1(r) (5.120)
[O(), 1] = ih A, ) N(r') . (5.121)
Equation (5.101) is the (O] - - - |0) matrix element of (5.121), i.e.,

(OIN (r)[0) A(r, w) = - Z[<0|[Q(w)|v><v|i(r)|0>— OILL (1) |v) (v Q()]0)] .

v
R (5.122)
To evaluate (v|Q(w)|u), we take the (v| - - - | ) matrix element of (5.120) as

(Ey — Ey) (v|Qlp) = ihF,, (5.123)

Thus, we obtain the desired result

A 1
(OIN(r)[0) A(r, w) = Z 7 [Fou(@)Lo(r) + Fuo(@)Io,(r)],  (5.124)

v v0

with E,g = E, — Ej.
The corresponding expression for the case of canonical ensemble is obtained as

[Fun(@) L (r) 4 Fup(@) 1 (r)] -

(5.125)

D Wi (N @)w) At o) =
"

v
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where E,, = E, — E,, and this allows us to rewrite the susceptibility (5.100) into
1 _
Xean (7', @) = = 3 Wi D [Zun@) (I (r)v) T () )
i v

(@) W ()| ) (I (r)|v)] , (5.126)

where
gup(@) = gyu(w) — £’ (5.127)
i
= 1
E,,.

5.6 Division of Q v into E2 and M1 Components

The Taylor expansion of the current density matrix element 1 wv leads to the sum of
various moments, as in (2.112). The second term Q v 18 the first order moment of the
orbital current density. As discussed in Sect. 5.1, the orbital current density operator is
the sum of the contributions of electric polarization and orbital magnetization, which
induce E2 and M1 transitions, respectively. From this viewpoint, it is interesting to
divide the matrix element Q v i0to E2 and M1 components.

For this purpose, we write k - Q ,, as

Hv
A~ - e
k- Q/J-U = Z 2—’:;6 dr
£
k- {(ul(re =F)pg 8(re =) +8(re = 1) (re = F)peIv)} -
(5.129)

Since r plays no important role in this discussion, we put 7 = 0 for the moment. We
consider a particular £ and omit £ from r, and p,. Rewriting k - r p as

(I} rp)= ngxl?x + ]gyypx + lgzsz

= x(lgxpx + lgypy + lgzpz) + i%y()’px - xpy) + iéz(sz —xp),
(5.130)

we find R R R
k-rp=rk-p)—kx(xp). (5.131)

Since r x p is the orbital angular momentum L (of each particle), this one-particle
operator induces M1 transition, while the remaining term r(k - p) has the electric
quadrupole character contributing to E2 transition. The factor k- r p - A, which
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appears in the variable F),,(w), can be rewritten as
k-rp-A=(k-p)r-A)+L-(kxA). (5.132)

Since the factor k x A is the k Fourier component of —iV x A (= —i B), this term
is proportional to the orbital Zeeman energy.

Thus, we have the desired division of k - Q v INOK - Q;fv — ck x M, where

w2
— (e2)
Q' = ng /

{(M|("e — Pk p S(re—r)+8(ri—r) (re — Pk - pv)},
(5.133)

and

(orb)

Z /dr {ulLe(@) 8(re —r) +8(re —r) Le(P)[v)} . (5.134)

The angular momentum of the £th particle is defined as L,(r) = (r¢ — r) X p,,i.e.,
around the center position 7.

5.7 Problems of Longitudinal (L) Field

5.7.1 T and L Character of Induced Field

In terms of vector and scalar potentials, the microscopic M-eqs are

Vi = —dup, (5.135)
13’4 1d¢ 4
—— = VA4V =7, 5.136
c? 0t? + c Ot c J ( )
in the Coulomb gauge, and
1%,
27 — V¢ =4np, (5.137)
LA VA = J (5.138)
c? ar? '

in the Lorentz gauge. This J represents the orbital contribution, J o, and, in both
cases, we could add the relativistic correction term (spin induced current density) J
to the r.h.s., as discussed in deriving (2.27), and this does not change the following
arguments.
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The equation for A in the Coulomb gauge can be rewritten as

1 3%A 4

—— VA= —J7, 5.139

c? 3r? c I ( )
indicating that this is the equation only for T components. This rewriting is done by
substituting the solution of the Poisson equation

¢(r) = / dr' -2 " (5.140)

lr—r|
into (5.136), and replacing the dp/d¢ with —V - J (continuity equation). This gives

1 0%A

4 1 VI
— VA = _”J(r) + —v/dr/ﬂ ) (5.141)
c? 912 c c

Ir —r'|

The r.h.s. of this equation is (47 /c)J ™, because, if we apply divergence from the
left, it becomes zero by using VZ(1/|r — r'|) = —478(r — r’). Namely, the quantity

1 V/ . /
- — Vv/dr’ﬂ (5.142)
4 r —r'|

for a general vector field C is its L component.
The solutions of the M-eqgs for A in the Coulomb and Lorentz gauges are given
in terms of the scalar EM Green function defined by, for ¢ = w/c,

(=V*—gH G,(r—r)=dn 8(r —1'), (5.143)

where its special solution is G, (r) = exp(ig|r|)/|r|. The solution of the M-eqs for
A in the Coulomb gauge is the T field as

1
Alr,w) = - f dr' G,(r —r') JO@r, w), (5.144)
c
and the solution in the Lorentz gauge is
1 ’ ! !
A(r,w):—/dr Gyr—r) J(r' o), (5.145)
c

containing both T and L components. Obviously, the T component of the latter agrees
with the solution in the Coulomb gauge. The solution for ¢ in the Lorentz gauge has
a similar form

o(r,w) = /dr/ G,(r—rpr', w). (5.146)

If we rewrite the Lorentz condition in terms of these solutions as
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V-A+ 1% = l/dr/ G, (r — )V - J(r') —iwp} =0, (5.147)
C

its validity is guaranteed by the continuity equation.

The form of the induced L-field is the one due to J)(r) propagated via the scalar
Green function G, but there is an alternative way of description, i.e., the one due
to the “whole” current density J(r) propagated via the L component of the tensor
Green function. For this purpose, we rewrite the induced L-field as

1/dr Gy(r — )y JD ) ——/dr /dr”G (r—r)v|v, ‘:/ET)
C
(5.148)

where partial integration is made to convert V' to V”. From the equation (—V? —
q¢*)G, = 478(r — r’) and that for Go, we get G, = (—1/¢*)V?*[G, — Go]. Substi-
tuting this expression into (5.148), and performing the partial integration about V2,
we can rewrite the r.h.s. of (5.148) as

1 1
— / dr’ fdr” [G,(r — 1) — Go(r —r)]V? ——— V'V J(r").
47Tq2C |r/ _ r//l
(5.149)
which reduces, via V2(1/|r' — r"|) = —4n8(r’' —r"), to

1 1 ~
—- / dr' Gy (r =) IV ) = —— / ar' G r =) J() . (5.150)
c c
The tensor Green function describing the L part of the induced field is
~ 1
G —r)=—= Gyr—r)VV (5.151)
q

which produces a L field by operating on a full current density (with T and L com-
ponents). The counterpart, i.e., the tensor Green function describing the T part of the
induced field is obtained by subtracting this L part from the total one G41 as

- 1
GV —r)=G,r —r+ = [G,(r — 1) = Go(r —r)1 V'V (5.152)
q

which produces a T field by operating on a full current density. Thus the T field
induced by J can be expressed in the following two ways, i.e.,

Ar(r, w) = fdr’ G,r —r) JV ', ) = /dr’ G e —r) Ju. o).
(5.153)
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5.7.2 Excitation by an External L Field

When matter is excited by an external EM field, there arises an induced current
density which may also be described as charge density, electric polarization, or
magnetization. The eigenmodes of these induced polarizations correspond to the
quantum mechanical excited states of the matter, and can be classified into the L,
T, and LT-mixed modes according to their symmetry properties. The external EM
field inducing matter excitations as an incident field has also T and L characters.
Typically, light is a T field, and the field due to external charged particles is regarded
as a L field. (However, a moving charge produces T field as well as L field, which is
known as Cerenkov radiation [5] and Smith—Purcell radiation (SPR) [6]. Cerenkov
radiation is the propagating T waves produced by a moving charge when the particle
velocity exceed the light velocity in a dielectric medium. Below the critical velocity,
there arise evanescent waves of T character, which, together with the (evanescent)
L components, interact with the periodic crystals, producing scattered (propagating)
light modes of T character i.e., SPR.)

The incident T field can excite “T and LT mixed” modes of matter, and the incident
L field with “L and LT mixed” modes of matter excitations. If the matter excitations
are purely T and purely L modes in a given geometry, they can be detected by the
spectroscopy using incident field of T- (light) and L- (charged particles) characters,
respectively. As a propagating wave, T mode is polarized perpendicular to the wave
vector of the mode, so that there are two independent directions of polarization, while
L mode, polarized along the wave vector, has only one direction of the polarization.
Therefore, we need two different polarizations to detect both types of the T modes.

When the symmetry of matter is low, there arises a mixing between the T and L
modes. These LT mixed modes can generally be detected by either L or T incident
field. When this mixing occurs, there is no purely L. modes from symmetry ground,
while there can still be another, purely T modes, which do not mix with L. modes.
Depending on the symmetry, we can classify all the modes into (a) LT-mixed modes
alone, (b) LT-mixed modes and purely T-modes, (c) L-modes and two types of T
modes. The treatment in the main text restricting the incident EM field to the T
character can cover the most cases except for the matter excitations of purely L-
character in case (c).

The interaction Hamiltonians for the T and L modes derived from the standard
Hamiltonian of the coupled matter-EM field system in the Coulomb gauge are dif-
ferent, i.e.,

Hia, = —/dr P.E, (5.154)

1
Hinr = ——/dr Jo-A, (5.155)
Cc

where Jp is defined in (2.13) and O (A?) term is omitted in Hi,r. The second term
Hiyr is Hiy defined in (2.24). The difference is due to their different sources, i.e.,
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Hiy 1s derived from the Coulomb potential Uc (as shown below) and Hjyer from the
kinetic energy term Y _(1/2m){p — (e/c) A}>. As discussed in detail in Sect. 5.3, there
is no exact way to rewrite Hj,r in terms of E and P without changing the matter
Hamiltonian consisting of the sum of the kinetic energy and Coulomb potential
(plus relativistic correction). In the conventional theory of macroscopic M-eqs, this
distinction is not severely recognized, and very often the form — [ dr P - E is used
as the interaction Hamiltonian for both T and L modes. However, as the careful
consideration in this book shows, we should distinguish the form of interaction
Hamiltonian for T and L modes.

As a missing part of the main text, we give a description here about the matter
excitation by an EM field of L character. This contains the cases of electron energy
loss spectroscopy and the application of static electric field. Another example would
be the use of a “probe” to measure the response of a “sample”, as in the case of
scanning near-field optical microscopy (SNOM), where both probe and sample con-
sist of charged particles interacting via the EM field of L, as well as T, character.
More generally, if one separates matter into two parts, i.e., sample part and the rest,
these two parts can generally interact via the Coulomb interaction, even if they are
electronically separated. In these cases, the interaction between Ep and P serves,
on the one hand, to detect the L response of matter (or sample), and contributes, on
the other, to the resonance energy of the response spectrum.

In the presence of the external potential ¢ey (7, t) due to an external charge density
Pext(r, 1), 1.€., ,

e (. 1) = /dr’ Peu(r, 1) (5.156)

r=ri

we need to consider the interaction between ¢y (1, t) and the internal charge density,
i.e., “matter” charge density p(r)

Hin, = / dr p(F) b (. 1) . (5.157)

=/dr/d P Pt 1) 5158
r—r|

= —/dr P(r) Ego(r,t), (5.159)

where we have used E o (r, 1) = —Vex (1, 1), V - P(r) = —p(r), partial integra-
tion, and the assumption that the matter system is charge neutral, i.e., Y cee=0.

Generally speaking, an external field may contain both L and T components. In
that case, we need to add the interaction Hamiltonian Hj, also to Hjy . This will
lead to the complete expression of linear response of a given matter system. However,
we just give only the contribution of Hj,q below, since the consequence of Hiyr is
discussed in detail in Chap. 2.
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The current density induced by E.x is calculated in a similar manner as in
Sect.2.2 by the time dependent perturbation theory for the matter Hamiltonian H©
and the matter-EM field interaction Hj, . The expectation value of current density
is

I(r,0) = Z/dr/[gv(w)l()v(r)l)vo(r/) + hv(w)IUO(r)POu(r,)] cEexL(r', o)
(5.160)
— [ar o) Bt o). (5.161)

where we introduce the susceptibility for the induced current density due to the
external L field. Since we do not consider the presence of vector potential A in this
calculation, the term due to the A-dependent term in particle velocity

- é(OlN(r)|0) A(r,w) (5.162)
does not exist in the expectation value. The products of the matrix elements of I and
P can be rewritten by those of two I’s, as shown in Sect. 3.2, which allows us to
unify the expressions of induced current densities by T and L fields.

The induced current density contains the components of both electric polarization
—iw(P) and magnetization ¢V x (M). Since the former is zero for = 0, one may
prefer (P) to (I) as an induced change of matter which is non-zero for w = 0. This
is calculated in the same manner as

P(r,o) = Zfdr'[gv(w)POV(r)Puo(r’) + hy (@) Poo(r) Poy(r')] - Eexa. (', w) .

(5.163)
The L electric field produced by this polarization is
A\ P(L) ’ V'V . P(L) ’
EV(r. w) = V/ VP / VIV P
r=r r=r
= —47PVY(r, w), (5.164)

where we used partial integration, VV- = V2 4V x Vx,V x P =0,and V2(1/|r
—r'|) = —4xé[r —r'].

Though the argument given above may seem to be necessary to calculate induced
polarization, especially for @ = 0, within the framework of the macroscopic M-eqgs,
we can show that the expression of the induced current density contains the static
component of P correctly in the limit of v — 0.

Now we consider the induced current density as a response to external electric
field as a function of w, and examine whether its limiting value for  — 0 agrees
with the one calculated in static regime. The current density induced by the external
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electric field Ex (r, w) is given in (5.160). If we rewrite the matrix element of
P{)(r) by the help of —if(u|JV(r)v) = (E, — Ev) (n|PT(r)|v), (3.25), the
susceptibility xjgp is given as

(@) Jou () TR (') = hy (@) J oo (r) T3 ()]

(5.165)
where E g = E, — Ey. This is the result for microscopic response. For macroscopic
use, we apply LWA. In the lowest order of LWA, we only need to replace the current
density matrix element with the first order moment, i.e., electric dipole moment
defined by (2.113). This leads us to the L component of the susceptibility as

r,r'.w) = —ih
XIEL( ) i ;E

X (@) = —zhz (@) I, TS — ho(@) TS JE)] (5.166)

where ¢ -axis is parallel t0 Eoy.

The matrix element J 1s a vector representing the E1 transition dipole moment.
Denoting its magnitude as IvO and the angle between its direction and the ¢ -axis as
0,, we can write

T =19 cosb, . (5.167)
Using this result, we have
|I 2cos? 6,
Xy (@) = ’hz {gv(@) — hy(0)}, (5.168)
|1<°>|2cos29
= —2il? 5.169
e Z — (hw +i0+)2] (5.169)

Multiplying E™ () to this susceptibility, we have the ¢ component of induced
current density, which is also written as —iw P. Thus, the L component of the induced
static electric polarization is, in the limit of w — 0, given as

|12 cos? 6,
21 Z o Fea0=0), (5.170)
v0
|PP12 cos? 6,
_2ZV0E—O Eex(@ = 0) , (5.171)

which is a finite value. The last expression is in good coincidence with the static limit
of (5.163).

If we write the T components of the vector J ov in terms of its polar and azimuthal
angles (6,, ¢,), as
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Jo, = 1% sin6, cos ¢, , Jo, = I sin6, sin g, , (5.172)

we have the T components of the static induced polarizations as

_ p(O)z 6, sin 6, y
pe =y P Peosthsinboeosdn o), (5.173)

EUO

p(0)2 . .
P — ZZ | P,y |* cos 6, sin 6, sin ¢,

Eeg(w=0). (5.174)
EVO

v

The angles (6, ¢, ) are determined by the symmetry and quantum transition (v < 0).
In a high symmetry situation, where all the transitions are classified into T and L
modes with respect to the external electric field, these T components of P vanish.

As a conclusion, the current density in terms of ., describes the static limit of
induced electric polarization correctly, so that it is not necessary to derive an extra
expression for the induced electric polarization.

5.7.3 L and T Field Produced by a Moving Charge

An external charge density has been treated as a source of L electric field in the
previous subsections. When the charge density is moving, however, it can induce T-,
as well as L-field. Such a component is related with Cerenkov radiation and Smith—
Purcell effect, as mentioned in Sect. 5.7.2. In this subsection, we calculate the T- and
L-field produced by a charged particle moving with a constant velocity.

Let us consider a particle with a charge Q moving in the x-direction with a velocity
v. Following Yamaguti et al. [6], we write the associated charge density as

pr,t) =Q8(x —vt)d(y) ), (5.175)
and the current density due to this moving particle as
Jr, 1) =0vidx—vt)d(y) ). (5.176)
Here we use the definition of Fourier and its reverse transforms as
f@) = %/dw e flw), flw)= /dt e f(1) (5.177)

g(x) = %/dk et gky, glk) = /dx e g(x) . (5.178)

Then, the @ Fourier components of p and J are
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Q ikex
pr,w) = S 3(») ), (5.179)

J(r,w) = 0% ™% §(y) 8(2) , (5.180)

where the wave number in the x-direction is defined as k, = w/v. Obviously these
definitions of p and J satisfy the continuity equation as seen from

 _ .
& = —iop (5.181)
V.7 =i22 ik 5(y)52) . (5.182)
v

The L field Ey is the solution of V - E| = 4mp. In the form of potential defined
by E1L = —V¢, the solution is

O(r @) = /dr’ pr, ») (5.183)

lr—r|’

By the Fourier expansion of 1/|r — r’|, we obtain

o(r,w) = L / dq/dr/ 4—7[ o(r', w)expliq - (r — r")] (5.184)
8773 PE

0 expliq - r]

== [ g T D5, — k) (5.185)
v lg|
0 exp(ikex + i +ig,2)

= —/dqy/dqz e (5.186)
baY k2 +4q;5 +4q;
0 1 : .

= d‘lv% exp(ikyx +igyy — yolzl) . (5.187)

where v = k2 + qg. In evaluating the third equation, we used Cauchy theorem.
Thus we obtain

w 1
EL(r,w)ziQ—/dqy— L 40 explikox +igyy — wlzl]. (5.188)
V2 Y0 kx kx

The + signs for the z-component mean that (—) sign for z > 0, and (+) for z < 0.
This is the plane wave expansion in the (X, y) plane, which leads to the evanescent
L-field in the |z|-direction with the decay constant dependent on (ky, g,).

The T field E1 can be calculated as E — Ey . The total electric field E is easily
obtained from the equation for the vector potential A in Lorentz gauge

2
(vz + 2 )A(r, w) = —47”J(r, w) (5.189)

c2
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together with the relation between A and E
ic [w?
E(r,ov)=— [—2 + VV} A(r,w) . (5.190)
w|c

The solution of (5.189) is obtained via Fourier expansion as

exp(ikyx +iqyy +1iq;2)

(5.191)
T wjor =12 - a5 — 47

A, w) = —gfquyd
cm
Performing the g,-integration via Cauchy theorem, we obtain

r kex +igyy — T
B =122 [ag, (1o g, 8 afr) SRR DY ZED
1%

' kx ' kx l_‘0
(5.192)
where
B=v/c. (5.193)
The decay constant of the total E in the z-direction is
Fo = /(@/? — @/c)? +q2, (5.194)

which is smaller than that of Et

o= Jormi e 5199

This leads to the expression of Et as

. , r j - I
Er(r,0) = ige’k”quv [(—ﬂz +1,% ii—°> expligyy — LolzD
. )

ky ky Iy
(1L w2 expligyy = yolzD) |
kx kx Yo
(5.196)

For v — 0, Et is smaller than E} by the factor B2

5.8 Dimension of the Susceptibilities in SI and cgs Gauss
Units

One of the tedious aspects of SI units system is the different dimensions of E,
B, D, H, and hence, various susceptibilities. In writing the SI expressions of the
formulas, especially in Sect.3.1, we need to pay particular attention to this point.
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In this subsection, we present some consideration on this problem. We denote the
dimension of a physical quantity U as [U], and those of length, time, electric charge,
and energy as L, T, [e], and &, respectively.

From the Faraday law in SI units, we have L~'[E] = T~'[B], so that

[E1= LT '[B]. (5.197)
Similarly, from the decomposition of current density as I = 0P /dt +V x M, we
have

[M]=LT~'[P]. (5.198)

The dimension of the matrix elements in the expressions of Xcg, XeB> XmB> XmE 1N
Sect. 3.1 are

ol = [elLT™", O =[elL’T™", [My] =[e]lL’T". (5.199)
From the form of Coulomb potential, the square of electric charge has the dimension

[€?] = &L[eo). Using these results, we can evaluate the dimension of the suscepti-
bilities. For example,

[xeel = [1/0*VI[g, ][] = T>L3 &1L T2
=TL3&'E&L[eo)L*T ™% = [&0] . (5.200)

In the similar way, we obtain

[xe] = [1/wV1E ' ELg|L* T2 = [g0]LT ", (5.201)
[Xmel = [1/0V1E ' E Lol L’ T = [0l LT, (5.202)
Dl = [1/ V1€ EL[eg]L* T2 = [g0]L*T 2. (5.203)
This leads to
[XeeE] = [Xes B] = [0l[E] , (5.204)
[0 Xme] = [10g0) LT = L7'T , (5.205)
[oxme] = [mogol L°T > =1, (5.206)

which can be used to judge the correct combinations of different quantities from
the dimensional viewpoint. For example, let us consider the case of rewriting
the microscopic Ampere law into macroscopic form in SI units. Substituting I =
oP/ot +V xM (P = xegE + xesB, M = xmgE + xmp B) into the microscopic
Ampere law, we have
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1 ad
—V x (B — uoM) = —(&oE + P) (5.207)
Ho ot

where the dimension of
moM = poxmeE + o Xmp B (5.208)
is same as that of B, and the dimension of
P = xgE + x.sB (5.209)

is [eo][E], so that the combinations B — uoM and gy E + P are seen to be dimen-
sionally correct.

Contrary to the SI units system, we have much simpler relationship among the
fields E, B, D, H in the cgs Gauss units system. From the Faraday law, we have
[E] = [B] and from Ampere law [P] = [M], so that all the fields have the same
dimension, i.e., [E] = [B] = [D] = [H] = [P] = [M], and all the linear suscepti-
bilities xeE, XeB> XmB, XmE and (&, p) are non-dimensional.
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