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Mauricio Peixoto

Alberto Pinto has asked me to write about Mauricio Peixoto in this book that honors
him as well as David Rand. I am happy to do so. Mauricio is among my oldest
friends in mathematics, having met him more than fifty years ago. Moreover he was
instrumental in my entry into the field of dynamical systems. So important is this
part of my life that my collected works contain four articles that bear on Mauricio
in one way or another. That is fortunate since I wrote that material when events
were fresher in my mind than they are now. Thus I will borrow freely from these
references.

A most important period in my relationship with Mauricio is the summer of 1958
to June of 1960. This is discussed in an article titled “On how I got started in dynam-
ical systems” appearing in the “Mathematics of Time”, based on a talk given at a
Berkeley seminar circa 1976. There I wrote how I met Mauricio in the summer of
1958 through a mutual friend, Elon Lima, who was a student from Brazil finishing
his PhD at Chicago in topology. Through Lefshetz, Peixoto had become interested in
structural stability and he explained to me that subject and described his own work in
that area. I became immediately enthusiastic, and started making some early conjec-
tures on how to pass from two to higher dimension. Shortly thereafter, Peixoto and
Lima invited me and Clara to Rio for a visit to IMPA, or Instituto de Matematica,
Pura e Aplicada.

It was during the next six months (January—June, 1960) that I did some of my
most well known work, firstly the introduction of the horseshoe dynamical system
and its consequences and secondly the proof of Poincare’s conjecture in dimensions
five or more. I sometimes described these works as having been done on the beaches
of Rio; this part of the story is told in two articles in the Mathematics Intelligencer
in the 1980s.

Thus we may see here what a big influence Mauricio had on my career. Another
impact was his “sending” me a student to write a PhD thesis at Berkeley. That stu-
dent in fact finished such a thesis and went on to become a world leader in dynamical
systems. Jacob Palis’ contributions in science go well beyond that. He is a main
figure in developing third world science, and mathematics in Brazil in particular.

In the article “What is Global Analysis”, based on a talk I gave before the Math-
ematical Association of America, 1968, I gave a focus to one result as an excellent
theorem in global analysis. That result was Peixoto’s theorem that structurally stable
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viii Mauricio Peixoto

differential equations on a two dimensional manifold form an open and dense set.
Another example of the influence of Mauricio!

I will end on a final note that reinforces all that I have said here. Over the last fifty
years I have made fifteen visits to IMPA, the institute founded by Mauricio Peixoto
(and Leopoldo Nachbin).

Steve Smale



Alberto Adrego Pinto

I met Alberto a few years ago, in the office of Mauricio Peixoto at IMPA, the
Brazilian Institute of Pure and Applied Mathematics. Alberto was on a summer
visit, and he wanted to discuss results he had obtained with his former student Diogo
Pinheiro on the focal decomposition proposed years earlier by Mauricio.

By sheer accident, I had come across an application of the focal decomposition
in finite temperature quantum mechanics. In fact, semi-classical approximations to
the problem practically forced one to make use of the focal decomposition, although
it was only much later that I became aware of its existence. That was why I was part
of the meeting: my mathematician friends were curious about possible applications,
and we were eager to collaborate.

Alberto immediately impressed me by his enthusiasm, his genuine interest in
science, and by his easy-going style, much appreciated by a “carioca” like myself.
Besides, our discussions were lively, and touched upon various conceptual points
that seemed quite natural to a physicist, and eventually proved very useful from a
mathematical point of view. Our collaboration has been going on ever since, and has
already led to a couple of articles.

Alberto has also offered us all with a wonderful event back in 2008, when he
organized a conference in honor of David Rand and Mauricio Peixoto in the pre-
cious city of Braga. The conference made me appreciate, even more, the versatility
and scientific depth of Alberto, as he and his PhD. students and postdocs presented
seminars that covered a wide variety of subjects.

As a final word about Alberto, it must be said that he is a marvelous host. He
showed us the finest of the region of Minho, using a well balanced combination of
science, art, good food, good wine, and above all, good humor. That is the reason I
always look forward to our next meeting: whether in Brazil or in Portugal, I am sure
we will have a pleasant and productive time.

Carlos Alberto Aragdo de Carvalho

ix






David Rand

David Rand has had a world-leading influence in dynamical systems theory, in
transferring dynamical systems ideas into the sciences, particularly physical and
life sciences but also economics, and in developing relevant new mathematics for
these areas. Highlights are his theories of the two-frequency route to chaos, inva-
sion exponents in evolutionary dynamics, and robustness of circadian rhythms. He
is widely appreciated for his leadership and for his highly pertinent and generous
insights into research projects of others.

He was one of the first to bring ideas on dynamical systems with symmetry
into fluid mechanics, predicting modulated wave states in circular Couette flow,
subsequently confirmed experimentally by Swinney and Gorman.

A major advance was his proposal of a renormalization explanation for obser-
vations of asymptotic self-similarity in the transition from quasiperiodic to chaotic
dynamics for circle maps. He extended the theory to dissipative annulus maps, pro-
viding a complete picture of the breakup of invariant circles in this scenario. Similar
analysis of his has been important in understanding the spectrum of quasiperiodic
Schrodinger operators.

He put the theory of multifractal scaling for chaotic attractors on a firm footing,
including theory for the distribution of Lyapunov exponents.

He contributed significantly to the dynamical theory of evolutionary stability and
co-evolution, including the fundamental concept of invasion exponents. He devel-
oped pair approximations for spatial ecologies and epidemics, which are now widely
used.

With Alberto Pinto, he developed an extensive theory of the smooth conjugacy
classes of hyperbolic dynamics in one and two dimensions, surveyed in a recent
Springer Monograph in Mathematics.

He made one of the earliest analyses of nonlinear dynamics in an economics
context, showing that a duopoly game has chaotic trajectories. Game theory has
been a recurrent interest of his, particularly in the contexts of ecology and evolution.

Much of his recent work falls under “systems biology”. He has proposed a
theory of the immune system, based on large deviation theory. He has developed
theory of the robustness of circadian rhythms, which has generated much interest
with experimental collaborators. The work is part of a larger project to develop
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mathematical tools to aid in the understanding of biological regulatory and signaling
networks.

He has played a leading role in establishing Nonlinear Dynamics in the UK,
co-founding the Nonlinear Systems Laboratory in Warwick and the journal Non-
linearity. He is doing the same now for Systems Biology, creating the Warwick
Systems Biology Centre.

He exudes energy and enthusiasm. So it was a pleasure for me when he attracted
me to Warwick. We had great fun setting up and running the Nonlinear Systems Lab-
oratory, building up the applied side to Warwick’s Mathematics department and its
curriculum, and setting up the Interdisciplinary Mathematics Research Programme
which he rebranded as Mathematical Interdisciplinary Research at Warwick and
of which I took over directorship from David in 2000. He is a great friend and I
have greatly appreciated his insightful comments, suggestions and support for my
own work.

Robert S. MacKay



Preface

A couple of years ago Alberto Pinto informed me that he was planning to orga-
nize an international conference on dynamical systems and game theory in honor of
Mauricio Peixoto and David Rand. I told him that I wholeheartedly support the idea
and will ask the International Society of Difference Equations (ISDE) to support
the proposed conference which it did later. Through my frequent visits to Portugal,
I became aware of the significant contributions in dynamical systems and game the-
ory made by Portuguese mathematicians and have subsequently been involved in
fruitful discussions or joint research with a number of them. The growth of dynam-
ical systems and game theory research in Portugal has placed Portuguese mathe-
maticians at the forefront of these emerging fields, bringing worldwide recognition
to their contributions. Indeed, in addition to DYNA2008, Portuguese researchers
organized two of the last three International conferences on difference equations
and applications (ICDEA), which included important talks on dynamical systems
and game theory.

The work in this area has unveiled beautiful and deep mathematical theories
that capture universal characteristics observed in many apparently unrelated nat-
ural phenomena and complex social behavior. Mauricio Peixoto has made lasting
contributions in classifying and understanding a variety of behaviors of dynamical
systems. Today these problems are the main research focus in diverse yet comple-
mentary areas at distinguished research institutions like IMPA, the institute founded
by Mauricio Peixoto and Leopoldo Nachbin, and University of Warwick. Alberto
Pinto has made notable contributions through his studies on rigidity properties of
infinitely renormalizable dynamical systems. In addition, he discovered stochas-
tic universalities in complex natural and social phenomena, e.g. rivers, sunspots
and stock market indices, and is developing a theory with Peixoto in semi-classics
physics using Peixoto’s focal decomposition. David Rand, a world-leading author-
ity, has contributed deeply and broadly to this area by developing theoretical aspects
of these two fields, and identifying properties of infinitely renormalizable, universal
and chaotic phenomena throughout the sciences — especially in biology, economics
and physics. In collaboration with Alberto Pinto, he constructed a fine classifi-
cation of dynamical systems. Moreover, the research groups led by David Rand
and Alberto Pinto have, independently, developed new schools of inquiry using
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game theoretical and dynamic models applied to biology, economics, finances,
psychology and sociology.

The research and survey papers in these volumes, written by leading researchers
in their scientific areas, focus on these and many other relevant aspects of dynam-
ical systems, game theory and their applications to science and engineering. The
papers in these volumes are based on talks given at the International Conference
DYNA2008, in honor of Mauricio Peixoto and David Rand. This conference, held
at the University of Minho, was organized by Alberto Pinto and his colleagues and
brought together influential researchers from around the world. It is worthwhile to
note the warmth and hospitality of the organizers who made sure we enjoyed the
beautiful region of Minho with its rich culture and fine cuisine.

Saber Elaydi
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Chapter 1
A Brief Survey of Focal Decomposition

Mauricio M. Peixoto

Abstract We present a brief survey of focal decomposition stressing how this
subject relates naturally to some a priori unrelated mathematical and physical
subjects.

1.1 Introduction

The concept of focal decomposition is a formalization of the rough geometric idea
of focalization. Given that we have a number of “trajectories” passing through a
point P will they ever meet again, and how at some subsequent point(s)? The trajec-
tories we will consider will be the trajectories of a second order ordinary differential
equation in Euclidean spaces, or else the geodesics of a Riemannian manifold M.
Focal decomposition was then introduced in [10], in the context of the simplest
instance of focalization namely the 2-point boundary value problem for a second
order ordinary differential equation. The concept of focal decomposition was then
naturally extended to Riemannian manifolds by Kupka and Peixoto in [6]. Origi-
nally and for some time later focal decomposition was called “o-decomposition”,
a misnomer. We present here a brief survey of focal decomposition stressing how
this subject relates naturally to some a priori unrelated mathematical and physical
subjects. As shown by the examples below.

1. The semi-classical quantization of the pendulum equation X + sin x = 0 via the
Feynman path integral method.

2. The arithmetic of binary quadratic forms.

The Brillouin zones of a crystal.

4. The Landau—Ramanujan function associated to binary quadratic forms.
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5. Inspired by the Mostow Rigidity Theorem, F. Kwakkel in his Groningen the-
sis [8] introduced, essentially, the concept of Focal Rigidity opening up what is
likely to be a fruitful field of research.

1.2 Ordinary Differential Equations

Our starting point is the 2-point boundary value problem for a second order ordinary
differential equation

¥=ft,x.x) x() =x1, x(2) =x2, 1,x,x€R. (1.1)

This is the simplest and oldest of all boundary value problems introduced by Euler
in his work on the foundations of the calculus of variations in the eighteenth century.
There is a vast literature on this problem, mostly in the context of applied mathe-
matics and functional analysis. Here we are primarily interested in the number of
solutions of the problem (1.1). Let R*(#y, x1, f2, X2) = R2(t1, x1) x R?(t2, x2) be the
totality of pairs of points of the (¢, x) plane and to each point (¢1,x1,%2, x2) € R*
associate its index i(f1, X1, 2, X2) the number of solutions of the problem (1.1),
a non negative number or co. So the possible values of i are 0, 1,2, ..., 00. When
t1 = tp, the index i is defined to be 0, if x; # x5, and oo, if x; = x,. Call Zl- c R4
the set of points to which the index i has been assigned. Then

RY=3XoUZX U...U % (1.2)

and (1.2) is called Focal Decomposition associated to the 2-point problem (1.1).
Clearly the sets ) _; are disjoint. Fixing the point (#1, x1) and calling

oi = X N {(t1,x1)} x R*(t2, x2)

we get
RZ=0pUoyU...U0s (1.3)

with the o; disjoint sets. Then (1.3) is called the Focal Decomposition relative to
the 2-point boundary value problem (1.1) with base point (1, x1). This is called the
restricted problem with base point (#1, x1). So far there is no indication whatsoever
of what the sets o; and Zl- might be, and how they decompose R2 or R*. Consider
the case of the restricted problem (1.3). The equation

X = f(t,x,x)
can be written
i=1,x=uu= f(t,x,u) (1.4)

the base point being (1, x1). Call . the foliation of R3(z, x,u) defined by the
trajectories of (1.4).
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Definition 1.1. The star of the base point (¢, x1), £2(¢1, x1) is the union of all the
leaves .7 (t1,x1,u), —00 < u < 00.

Now consider the projection
[[:®R—r (1.5)
defined by [ ](¢, x, u) = (¢, x). It is straightforward that

(t2,x2) €0; & card{ (l_[ |.Q)_1 (tz,XZ)} =1

This shows then that the whole focal decomposition (1.3) can be obtained by apply-
ing the projection [] on the star. Thanks to a theorem by Hironaka [5], pp. 40-43,
we have the

Theorem 1.1 (Existence Theorem (Peixoto - Thom)). If fin (1.1) is analytic,

(IT12) @.x)

is proper on R2\§, where § = {(t, x)|t = t,} then there exists an analytical Whitney
stratification of R? \ 8 such that each o; \ § is the locally finite union of strata of this
stratification.

For a proof of the above see [13]. For a more general situation see [12].

1.2.1 Focal Decomposition of the Pendulum Equation

The pendulum equation X + sin x = 0 can be formally integrated by Jacobi elliptic
functions so that we have the equation of the star at the origin, £2(0, 0). To begin
with we determine the focal decomposition restricted to the ¢-axis, which follows
from the very definitions of the Jacobian elliptic functions involved. Local sections
of £2(0,0) by the planes t = +m, £2m, 37, ... give local sections which are then
glued together and projected on the plane u = 0 producing the focal decomposition
below. See [13] for the justification of Fig. 1.1.

1.3 Semiclassical Quantization and the Pendulum Equation

Consider a second order equation (1.6) which is the Euler equation of a certain
action integral

P2 d (dL aL
S /Pl (t,x,x)dt, 7 (ax) o 0 (1.6)
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Fig. 1.1 Focal decomposition of the pendulum

Then there is a well defined mathematical operation called the quantization of (1.6)
which corresponds to find a certain number of eigenfunctions and the corresponding
eigenvalues. One of the more accepted method of quantization is Feynman path
integral method. In this method a crucial step is the calculation of a certain amplitude
(angle, real number) called the propagator K(P;, P,) relative to a pair of points
Py(t1,x1) and P,(,, x3). By Feynman method the calculation of K(P;, P;) is a
complicated thing: you consider all continuous curves joining P; to P,. On each
such curve one does some operation the result which is some kind of “infinitesimal”
dK. Integrating over all continuous curves we get the propagator K. Of course
this may be in some cases a good numerical procedure, without a mathematical
justification, far from it. Suppose now that we are dealing with the semiclassical
quantization. This is the case where the data of the problem such as length, mass,
time, etc are such that the action S in (1.6) makes S \ % very big. Most important,
in the semiclassical case Feynman—Hibbs [4], p. 29, show that in the calculation of
the propagator K (P, P») we need to consider only the curves which are solutions
of the Euler equation. Now given a differential equation of the second order such as
(1.6) and two points P; and P, the problem of knowing the number of solutions of
this equation passing through P; to P, is exactly what the focal decomposition is
about. True the focal decomposition gives just the number of solutions. But this is
just the first step which helps getting the actual solutions through P to P,. All this
points out to the interest of doing the semiclassical quantization of the pendulum
equation. With this and some related problems in mind I joined the physicist C.A.A.
de Carvalho and the mathematicians D. Pinheiro and A. A. Pinto. The first paper of
a projected series has been accepted for publication [3], another was submitted to a
journal.
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1.4 Focal Decomposition on Riemannian Manifolds

Let (M, g) be a complete smooth Riemannian manifold with metric g, p € M
and Tp M the tangent plane at p. Since M is complete the exponential map exp,, :
TpyM — M is defined everywhere on 7, M. Recall that for a vectorv € T, M,
exp,, v is obtained by considering the geodesic passing through p, tangent to v, and
mark on it the length ||v[| obtaining the point exp,, v on that geodesic. Now define
the index /(v) as the cardinality of all vector w € T, M with the same length and
same exponential as v

I(v) = card{w € T, M| ||w|| = ||v|| and exp, w = exp, v}.

To every point p € M we call o; (p) the totality of the vectors v € T, M with index
i = I(v). Since every vector of T, M belongs to one and only one of the o; (p), we
have

Tpy(M) = Joi(p) (1.7)

and (1.7) is called the focal decomposition of T, M. The tangent bundle has a
corresponding focal decomposition

™ = U X (1.8)
where
zi=J o). (1.9)
PEM

All this for the given Riemannian metric g on M. The expression in (1.8) is called
the focal decomposition of the tangent bundle. It is clear that the focal decomposi-
tion of TM depends only on the metric g. It is also a global concept, all geodesics
passing through p have a role in the construction of the sets o; and all geodesics of
M have arole in the construction of the sets D _,.

Theorem 1.2 (Existence Theorem). If M is analytic then there is an analytical
Whitney stratification of TM such that each )_; is the locally finite union of strata
of this stratification.

Similarly for the restricted problem with base point p € M : there is an analytical
Whitney stratification of 7, M such that each o;(p) is the locally finite union of
strata of this stratification. See [6]. In the case of ordinary differential equations
the stratification is a consequence of analyticity plus a properness condition. In the
case of a complete Riemannian manifold M, analyticity is enough to imply the
stratification. As in the case of o.d.e. no ¢; or )_; can be too complicated, say a
Cantor set. In any case the natural place to study focal decomposition is a complete
real analytical Riemannian manifold. Relating to the variation of the metric, we have
in [7] the genericity theorems
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Theorem 1.3 (Pointwise Index Theorem). Given a point p on a manifold M with
dimension m, the generic metric g has no more than m+ 1 geodesics of equal length
Jjoining p to some pointq € M.

Theorem 1.4 (Uniform Index Theorem). The generic metric of a compact mani-
fold M of dimension m has no more than 2m + 2 geodesics of equal length joining
distinct points of M.

A final comment about focal decomposition on a Riemannian manifold is that as
a consequence of the angle lemma in [6] we get that in the focal decomposition of
Tp,M,(1.7), only o1 has non empty interior, i.e. contains some open set of T, M. So
o1 has full measure. This is in complete disagreement with Fig. 1.1 corresponding
to the focal decomposition of the pendulum equation. There o; has positive measure
if and only if 7 is odd. The theories are different.

1.4.1 Focal Decomposition on the Flat Torus

Consider the flat torus 72 = R?/Z? with the usual metric determined by the
quadratic form x2 + y2. The exponential map coincides with the covering map
in which the coordinates (x, y) are reduced mod 1. Take (0, 0) as the base point. To
determine the index /(x, y) of p = (x, y) on the tangent space T, draw a circle
centred at (0, 0) and then /(x, y) equals the cardinality of the pair of integers (m, n)
such that
2 2 _ 2 2
Xty =x+m 4+ (y+n). (1.10)

If (x,y) € Z? then I(x, y) is exactly the number of integer solutions of the equation
X24+Y2=N, N=x*+)% (1.11)

then /(x, y) = R(N) and there is a formula of Gauss expressing R(N) in terms of
the factorization of N in prime factors. If (x, y) & Z? then the determination of the
index I(x, y) becomes more interesting. In fact we invert the problem, assuming
that we know (m, n) and want (x, y). Then (1.10) is

2mx + 2ny +m? +n? = 0. (1.12)

But this is the equation of the perpendicular bisector of the lattice point (—m, —n)
call it L(m,n). Now we have proved the

Proposition 1.1. The index I(x, y) equals 1 plus the number of lines L(m, n) that
pass through the point (x,y). The 1 corresponds to the fact thatm = 0, n = 0
defines no line L(m,n).

The family of lines L(m, n), £, (Fig. 1.2) determines the focal decomposition asso-
ciated to the quadratic form x2 + y2. So for N real and positive, consider the circle
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Fig. 1.2 Lines L(m,n)

x2 4+ y2 = N and let P be one of its points. Then the number of lines L (1, n)
passing through P is exactly the index i for which P € o;. In this sense the focal
decomposition incorporates an extension of all Diophantine equations

x24+y2=N (1.13)

for every N and to the whole plane. And one may well say that the index I(a, b)
defined for every N is an extension to the whole R?(x, y) of the arithmetic function
R defined above only for the natural integers.

1.4.2 The Landau—Ramanujan Function

All that was said above about the positive definite quadratic form x2 4 y2 can be
translated in a straightforward and appropriate way to any other positive definite
quadratic form

ax2+2bxy+cy2, a,b,c e”Z. (1.14)
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Going back to the original form x2 + y2, Figure 1.2 is just the totality of all lines
L(m,n). Now every line L(m, n), by definition, is tangent to the circle centred at the
origin and passing through the point (—m/2,—n/2). So it is natural to “organize”
the lines L(m, n) by the circles to which they are tangent. This is motivation to the
following

Definition 1.2. Consider (1.13), x> + y2 = N, and call R(N) the number of its
integer solutions. The Landau—Ramanujan function associated to it is defined by

L(N) = card{0 <v < N|R(v) # 0}

R(v) # 0 means that v is the sum of 2 squares v = x? + y2. Then
Theorem 1.5. R(N) < 2L(4N)

The proof of this is quite simple. The 4N comes from the fact that if L(m,n) is
tangent to x2 + y2 = N, we have m? + n? = 4N. But the most important fact
is that if instead of x2 + y2 = N we had ax? + 2bxy + cy?> = N, the above
theorem remains true. The above on the Landau—Ramanujan function is contained
on a forthcoming joint work with C. Pugh.

1.5 The Brillouin Zones

The Brillouin zones is a way of organizing the complement of the lines L(m,n)
on the plane. Each connected component C of this complement receives an integer
number as follows. Join the origin to a point of C by a straight line and count the
number i of the lines L(m,n) that this segment meets. All the sets C that have
received the same number i constitute the i th zone of Brillouin. See Fig. 1.3.

1.6 Other Works on Focal Decomposition

In [1,2] and [15] the authors study focal decomposition of linear second order dif-
ferential equations in R”. In [1], to such differential equation one can associate a
sequence of eigenvalues of the linear operator called the resonance sequence. It is
shown that two such differential equations are focally equivalent, in the natural topo-
logical sense, if and only if the two equations generate the same resonance sequence.
In [9] we consider the pair of Diophantine equations

Ax* 4+ Cy* =N (i)
ACx? +y* =N (ii)
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/

Zove 1 2
Fig. 1.3 Brillouin zones

with A, C odd, square free, A = C (mod 4). If R(N) is the number of solutions of
(i), r(N) is the number of primitive solutions of (ii) and A = 4AC, then we have
the convolution formula

R(N)? = % > rd)R (A—N) (1.15)

d
d|AN

In [14] the same formula is obtained with different conditions on A and C.
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Chapter 2
Anosov and Circle Diffeomorphisms

Joao P. Almeida, Albert M. Fisher, Alberto A. Pinto, and David A. Rand

Abstract We present an infinite dimensional space of C!* smooth conjugacy
classes of circle diffeomorphisms that are C!* fixed points of renormalization. We
exhibit a one-to-one correspondence between these C 1T fixed points of renormal-
ization and C'T conjugacy classes of Anosov diffeomorphisms.

2.1 Introduction

The link between Anosov diffeomorphisms and diffeomorphisms of the circle is
due to D. Sullivan and E. Ghys through the observation that the holonomies of
Anosov diffeomorphisms give rise to C1'T circle diffeomorphisms that are C!*
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fixed points of renormalization (see also [2]). A. Pinto and D. Rand [23] proved
that this observation gives one-to-one correspondence between the corresponding
smooth conjugacy classes. After the works of Thurston [41] and Williams [43], a key
object in this link is the smooth horocycle equipped with a hyperbolic Markov map.

2.2 Circle Difeomorphisms

Fix a natural number a € N and let S be a counterclockwise oriented circle home-
omorphic to the circle $' = R/(1 + y)Z, where y = (—a + Va2 +4)/2 =
1/(a@a + 1/(a + ---)). We note that if @ = 1 then y is the inverse of the golden
number (1 4+ +/5)/2. A key feature of y is that it satisfies the relation ay + y2 = 1.

An arc in S is the image of a non trivial interval / in R by a homeomorphism
a1 — $.If I is closed (resp. open) we say that a([/) is a closed (resp. open) arc
in . We denote by (a, b) (resp. [a, b]) the positively oriented open (resp. closed)
arc in § starting at the point a € $ and ending at the point b € $. A C'T atlas &/
of $ is a set of charts such that (i) every small arc of $ is contained in the domain of
some chart in .27, and (ii) the overlap maps are C !*% compatible, for some a > 0.

A C' circle diffeomorphism is a triple (g, %, .</) where g : & — Sisa C!t¢
diffeomorphism, with respect to the C1™* atlas .7, for some o > 0, and g is quasi-
symmetric conjugate to the rigid rotation r, : $' — $!, with rotation number equal
to y/(1 4+ y). We denote by .Z the set of all C' circle diffeomorphisms (g, $, <7),
with respect to a C !t atlas &7 in S.

In order to simplify the notation, we will denote the C'* circle diffeomorphism
(g,%, <) only by g.

2.2.1 The Horocycle and Renormalization

Let us mark a point in $ that we will denote by 0 € $, from now on. Let S¢ =
[0, g(0)] be the oriented closed arc in $, with endpoints 0 and g(0). Fork =0, ... ,a
let S = [gk (0), gkt! (O)] be the oriented closed arc in $, with endpoints g% (0)
and g¥*1(0) and such that Sx N Sk—; = {g¥(0)}. Let Sa+1 = [g971(0), 0] be the
oriented closed arc in $, with endpoints g4*1(0) and 0. We introduce an equiva-
lence relation ~ in & by identifying the @ + 1 points g(0), ..., g*"1(0) and form
the topological space H(%,g) = $/ ~ with the orientation induced by .. We
call this oriented topological space the horocycle (see Fig.2.1) and we denote it by
H = H(S, g). We consider the quotient topology in H. Let g : $ — H be the
natural projection. The point§ = 7, (g(0)) = -+ = 7w, (g*T1(0)) € H is called the
Jjunction of the horocycle H. For every k € {0,...,a}, let S,f’ = S,f (5,9 CH
be the projection by mg of the closed arc S. Let RS = SOH us ﬁrl be the renor-
malized circle. The horocycle H is the union of the renormalized circle RS with
the circles S ,f{ forevery k € {1,...,a}. A parametrization in H is the image of a
non trivial interval / in R by a homeomorphism« : I — H.If I is closed (resp.
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S H
g3|$, 0 g|S, /ﬁg\ RS=STU s

g4(0) &3(0) Rg|S{/=m, 0g3 o m;!

72(0)
g(0) )

‘ Rg|Sy=m, 0g o m5!

2(0)

Fig. 2.1 The horocycle H and the renormalization Rg for the case @ = 2. The junction & of the
horocycle is equal to § = 7, (g(0)) = 7,(g2(0)) = 7,(g>(0))

open) we say that a(7) is a closed (resp. open) arc in H. A chart in H is the inverse
of a parametrization. A fopological atlas 98 on the horocycle H is a set of charts
{(j, J)}, on the horocycle, with the property that every small arc is contained in the
domain of a chart in 4, i.e. for any open arc K in H and any x € K there exists a
chart {(j, J)} € & such that J N K is a non trivial open arcin H and x € J N K.
A C' atlas % in H is a topological atlas 4 such that the overlap maps are C 1%
and have C11¢ uniformly bounded norms, for some o > 0.

Let o/ be a C'T atlas in § for which g is C'*. We are going to constructa C '+
atlas ¥ in the horocycle that is the extended pushforward o™ = (), < of the
atlas o7 in $.

If x € H\{£} then there exists a sufficiently small open arc J in H, containing x,
such that 7 1(J) is contained in the domain of some chart (Z, i) in o7 In this case,
we define (J,i o ngl) asachartin &/H If x = £ and J is a small arc containing &,
then either (i) 7, L(J)isanarcin $ or (ii) Ty 1(J) is a disconnected set that consists
of a union of two connected components. In case (1), 7, 1(J) is connected and we

define (J, io th_l) as a chart in &/ . In case (ii), ng_l (J) is a disconnected set that

is the union of two connected arcs JkL and J lR of the form J IR = [g!(0),d) and
JkL = (c,gk(O)], respectively, for some k,/ € {0,...,a + 1} with k # [ (see
Fig.2.2). Let (/,i) € </ be a chart such that I D (c,d). We define j : J — R as
follows,
: ionl(x), if x € mg(lg'(0),d))
J) =9k : k ‘
iog ™ om, (x),if x € mg((c, g5 (0)])
We call the atlas determined by these charts, the extended pushforward atlas of </
and, by abuse of notation, we will denote itby &/ ¥ = (), o.
Let g = (g.5.47) be a C'" circle diffeomorphism with respect to a C1™
atlas &7 in $. Let R/ be the restriction 7| RS, of the C* atlas o7 to RS. The
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sty s

H

Fig. 2.2 The chart j : J — R in case (ii)

renormalization of g = (g,%, &) is the triple (Rg, RS, R</), where (i) RS has the
reversed orientation of the horocycle H; and (ii) Rg : RS — RS is the continuous
map given by

mgogitlo JTgl(X) if xe S({{\{f}
Rg(x) = Jrgogongl(x) ifxeS(Z_I\{%'} .
g 0 g4 (x) if x €{§}

For simplicity of notation, we will denote the renormalization (Rg, RS, R<7) of
a C'* circle diffeomorphism only by Rg.

We recall that # denotes the set of all C'* circle diffeomorphisms (g, S, .27)
with respect to a C T atlas 7 in S.

Lemma 2.1. The renormalization Rg of a C'F circle diffeomorphism g € F is
a C'7 circle diffeomorphism, i.e. the map R : F — .F given by R(g) = Rg is
well defined. In particular, the renormalization Rry, of the rigid rotation is the rigid
rotation ry.

The proof of Lemma 2.1 is in [23].

The marked point 0 € S determines the marked point 0 in the circle RS. Since
Rg is homeomorphic to a rigid rotation, there exists & : $ — RS, with 2(0) = 0,
such that & conjugates g with Rg.

Definition 2.1. We call g a C'* fixed point of renormalization if h : $ — RS is
C'*. We will denote by Z the set of all C'* circle diffeomorphisms g € .% that
are C!7 fixed points of renormalization.
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Fig. 2.3 The Markov map r_(0)
M, with respect to the atlas 7
o

iso

r2(0)

r3(0)
0

r.(0) T4(0) 0 7T3(0) r2(0) r.(0)

We note that the rigid rotation r,, with respect to the atlas .2%,, whose charts
are isometries with respect to the usual norm in S, is an affine fixed point of
renormalization. Hence r), € Z.

2.2.2 Markov Maps

Letg = (g.5,.97) be a C'™T circle diffeomorphism, with respect to a C ' atlas o7,
and let H = H(S, g) be the horocycle determined by the C!* circle diffeomor-
phism. Let .7 be the atlas in the horocycle H, that is the extended pushforward
of the atlas o Let 7y : $ — H be the natural projection. Let 4 : $ — RS be the
homeomorphism that conjugates g and Rg sending the marked point O of  in the
marked point 0 of RS.

Definition 2.2. The Markov map Mg, associated to the C'*% circle diffeomor-
phism g € F, is the map M, : H — H defined by

M (x) = g o h™1(x) if x € RS .
g JTgoh_loﬂgogkOﬂgl(x)ifXGS{I,fOI’kZl,...,a

We observe that, in particular, the rigid Markov map M, is an affine map with

respect to the atlas <7 . Noting that Mg (g 0 g¥2(0)) = 74 0g2(0), forevery k €

{0,...,a + 1}, we represent M, in Figure 2.3. We observe that the identification in

H of g 0g(0) with 74 0 g%(0) makes the Markov map M, a local homeomorphism.

Lemma 2.2. Let g be a C'* circle diffeomorphism. The Markov map Mg associ-
ated to g is a C'% local diffeomorphism with respect to the atlas «/H = (JTg)* ol
if. and only if. the diffeomorphism g is a C'% fixed point of renormalization.

The proof of Lemma 2.2 is in [23].
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2.3 Anosov Diffeomorphisms

Fix a positive integer a € N and consider the Anosov automorphism G, : T — T
givenby G4 (x,y) = (ax+y, x), where T is equal to R?/(vZ xwZ) with v = (y, 1)
andw = (—1,y). Let 7 : R? — T be the natural projection. Let A¢ and By be
the rectangles [0, 1] x [0, 1] and [—y, O] x [0, y] respectively. A Markov partition
Ma, of G4 is given by A = w(Ap) and B = 7(By) (see Fig.2.4). The unstable
manifolds of G, are the projection by 7 of the vertical lines in the plane, and the
stable manifolds of G, are the projection by 7 of the horizontal lines in the plane.

A C'* Anosov diffeomorphism G : T — T is a C!T* diffeomorphism, with
a > 0, such that (i) G is topologically conjugate to G; (ii) the tangent bundle has a
C ' uniformly hyperbolic splitting into a stable direction and an unstable direction
(see [40]). We denote by ¥ the set of all such C'* Anosov diffeomorphisms with
an invariant measure absolutely continuous with respect to the Lebesgue measure.

If i is the topological conjugacy between G, and G, then a Markov partition
A of G is given by h(A) and h(B). Let d = d, be the distance on the torus T,
determined by a Riemannian metric p. We define the map G, = G if 1 = u, or
G, =G lift =5 Fort e {s,u} and x € T, we denote the local (-manifolds
through x by

W' (x,e) ={y € T :d(G,"(x),G"(y)) <e, foralln > 0}.

By the Stable Manifold Theorem (see [40]), these sets are respectively contained in
the stable and unstable immersed manifolds

Fig. 2.4 The Anosov automorphism G, : T — T
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W'(x) = U G (W' (G (x), £0))

n>0

which are the image of C ' immersions kix : R — T,forsome0 <o <1
and some small g9 > 0. An open (resp. closed) t-leaf segment I is defined as a
subset of W*(x) of the form «, x (/1) where /; is an open (resp. closed) subinterval
(non-empty) in R. An t-leaf segment is either an open or closed ¢-leaf segment. The
endpoints of an (-leaf segment I = k, (1) are the points , x(#) and «, x(v) where
u and v are the endpoints of /1. The interior of an t-leaf segment [ is the complement
of its boundary. A map ¢ : I — R is an t-leaf chart of an (-leaf segment [ if ¢ is a
homeomorphism onto its image.

2.3.1 Spanning Leaf Segments

One can find a small enough g9 > 0, such that for every 0 < & < go there is
8 = 8(¢) > 0 with the property that, for all points w,z € T with d(w,z) < 6,
W (w, e) and W*(z, ¢) intersect in a unique point that we denote by

w,z] = W"(w,e) N W(z, €).

A rectangle R is a subset of T which is (i) closed under the bracket, i.e. x,y €
R = [x,y] € R, and (ii) proper, i.e. it is the closure of its interior in T. If £* and
£* are respectively unstable and stable closed leaf segments intersecting in a single
point then we denote by [£*, £5] the set consisting of all points of the form [w, z]
with w € £* and 7 € £°. We note that [€*, £°] is a rectangle. Conversely, given a
rectangle R, for each x € R there are closed unstable and stable leaf segments of
T, £“(x, R) C W*(x) and £°(x, R) C W¥(x) such that R = [{*(x, R),£*(x, R)].
The leaf segments £"(x, R) and £°(x, R) are called, respectively, unstable and stable
spanning leaf segments.

Fig. 2.5 A basic stable
holonomy
0 :0(x,R) = (z,R)
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2.3.2 Basic Holonomies

Suppose that x and z are two points inside any rectangle R of T. Let £*(x, R) and
€% (z, R) be two stable spanning leaf segments of R containing, respectively, x and z.
We define the map 6 : £°(x, R) — £°(z, R) by 8(w) = [w, 2] (see Fig.2.5). Such
maps are called the basic stable holonomies. They generate the pseudo-group of all
stable holonomies. Similarly, we can define the basic unstable holonomies.

2.3.3 Lamination Atlas

The stable lamination atlas £* = £*(G,p), determined by a Riemannian
metric p, is the set of all maps e : I — R, where e is an isometry between
the induced Riemannian metric on the stable leaf segment / and the Euclidean
metric on the reals. We call the maps e € £ the stable lamination charts. Simi-
larly, we can define the unstable lamination atlas " = £"(G, p). By Theorem
2.1 in [28], the basic unstable and stable holonomies are C !t with respect to the
lamination atlas .#*.

2.3.4 Circle Diffeomorphisms

Let G be a C'T Anosov diffeomorphism topologically conjugate to the Anosov
automorphism G, by the homeomorphism /. For each Markov rectangle R, let 13
be the set of all unstable spanning leaf segments of R. Thus, by the local product
structure, one can identify 73 with any stable spanning leaf segment £*(x, R) of R.
We form the space $¢ by taking the disjoint union tfl( A) L tfl(B), where /n(A) and
h(B) are the Markov rectangles of the Markov partition .#¢, and identifying two
points I € tp and J € t3, if (i) R # R’, (ii) the unstable leaf segments / and J are
unstable boundaries of Markov rectangles, and (iii) int(I N J) # @. Topologically,
the space S¢ is a counterclockwise oriented circle. Let ns; : | ge 4, R — Sc be
the natural projection sending x € R to the point £“(x, R) in $¢.

Let I be an arc of S and [ a leaf segment such that ws; (/) = Is. The chart
i : I > RinZ = £5(G,p) determines a circle chart is : Is — R for Is
given by is o w5, = i. We denote by @z = &/ (G, p) the set of all circle charts ig
determined by charts i in .Z = £°(G, p). Given any circle charts is : /s — R and
Jjs : Js — R, the overlap map js oig' :is(Is N Js) — js(Is N Js) is equal to
jsoigt=jofoi ' wherei =isons;: 1 - Randj = jsons, :J — R
are charts in ., and

0:i Y is(Is N Js)) — j  (js(Is N Js))

is a basic stable holonomy. By Theorem 2.1 in [28], there exists @ > 0 such that, for
all circle charts is and js in %7, the overlap maps jg oig' = jofoi~! are C1+*
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Fig. 2.6 The arc rotation map gg = O : w5, (I) = 75, (J). We note that $ = ng, (1) =
75, (J) and £(x) = mg,; (x) is the unstable spanning leaf segment containing x

diffeomorphisms with a uniform bound in the C 1+@ norm. Hence, @7 = <7 (G, 0)
isa C'T atlas.

Suppose that I and J are stable leaf segments and § : I — J is a holon-
omy map such that, for every x € I, the unstable leaf segments with endpoints
x and 6(x) cross once, and only once, a stable boundary of a Markov rectan-
gle. We define the arc rotation map 0 : ns;(I) — ns;(J), associated to 6,
by g (755 (x)) = ms;(6(x)) (see Fig.2.6). By Theorem 2.1 in [28] there exists
a > 0 such that the holonomy @ : I — J is a C'™® diffeomorphism, with respect
to the C* lamination atlas .S (G, p). Hence, the arc rotation maps 6g are C 1+
diffeomorphisms, with respect to the C 1T atlas 27 (G, p).

Lemma 2.3. There is a well-defined C'* circle diffeomorphism gg, with respect to
the C'%* atlas o/g = </ (G, p), such that gg|ms, (1) = Og, for every arc rotation
map . In particular, if G is the Anosov automorphism, then gg, is the rigid rota-
tion ry,, with respect to the isometric atlas </;so = &/ (Gq, E), where E corresponds
to the Euclidean metric in the plane.

The proof of Lemma 2.3 is in [23].
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2.3.5 Train-Tracks and Markov Maps

Roughly speaking, train-tracks are the optimal leaf-quotient spaces on which the
stable and unstable Markov maps induced by the action of G on leaf segments are
local homeomorphisms.

Let G be a C'* Anosov diffeomorphism topologically conjugate to G, by a
homeomorpishm /. We recall that, for each Markov rectangle R, tISe denotes the set
of all unstable spanning leaf segments of R and, by the local product structure, one
can identify 73 with any stable spanning leaf segment £°(x, R) of R. We form the
space Tg by taking the disjoint union 7, ) L1z ®)’ where h(A) and i (B) are the
Markov rectangles of the Markov partition .#g and identifying two points I € 3
and J € 1y, if (i) the unstable leaf segments / and J are unstable boundaries of
Markov rectangles and (ii) int(1 NJ) = @. This space is called the stable train-track
and it is denoted by Tg.

Let v : |ge sy R — T be the natural projection sending the point x € R
to the point £“(x, R) in Tg. A topologically regular point I in Tg is a point with a
unique preimage under nt; (i.e. the preimage of I is not a union of distinct unstable
boundaries of Markov rectangles). If a point has more than one preimage by 7t ,
then we call it a junction. Hence, there is only one junction.

Acharti : I — Rin % = Z*(G,p) determines a train-track chart it :
It — R for I given by it o nmp, = i. We denote by /76 = 776 (G, p) the
set of all train-track charts iz determined by charts i in . = Z°(G, p). Given
any train-track charts iz : It — R and jr : JT — R in &/7G, the overlap map
jro i;l cir(Ir N Jr) — jr(Ir N Jr)isequalto jr o i;l = jofoi !, where
i =iromrg I — Rand j = jr omp,; : J — Rare charts in ., and

0:i "(ir(Ir N Jr)) — j ' (r(r N JT))

is a basic stable holonomy. By Theorem 2.1 in [28] there exists &« > 0 such that,
for all train-track charts i7 and jr in @76 (G, p), the overlap maps jr o iy 1 =
j o8 oi~! have C 1t diffeomorphic extensions with a uniform bound in the C 1 +¢
norm. Hence, &7 76 (G, p) is a C'7¢ atlas in Tg.

The (stable) Markov map Mg : T¢ — T is the mapping induced by the action
of G on unstable spanning leaf segments, that it is defined as follows: if I € Tg,
Mg (1) = mr; (G(1)) is the unstable spanning leaf segment containing G (/). This
map Mg is a local homeomorphism because G sends short stable leaf segments
homeomorphically onto short stable leaf segments.

A stable leaf primary cylinder of a Markov rectangle R is a stable spanning leaf
segment of R. Forn > 1, a stable leaf n-cylinder of R is a stable leaf segment I such
that (i) G" I is a stable leaf primary cylinder of a Markov rectangle R'(I) € .#;
(ii) G™ (€*(x, R)) C R'(I) for every x € I, where £"(x, R) is an unstable spanning
leaf segment of R. Forn > 1, an n-cylinder is the projection into T of a stable leaf
n-cylinder segment. Thus, each Markov rectangle in T projects in a unique primary
stable leaf segmentin Tg.
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Given a topological chart (e,U) on the train-track Tg and a train-track
segment C C U, we denote by |C|. the length of ¢(C). We say that Mg has
bounded geometry in a C'" atlas 7, if there is k; > 0 such that, for every
n-cylinder C; and n-cylinder C, with a common endpoint with C;, we have
k7' < |Cile/|C2le < k1, where the lengths are measured in any chart (e, U) of
the atlas such that C; U C, C U. We note that Mg has bounded geometry, with
respectto a C I+ atlas 7, if, and only if, there are k; > 0 and 0 < v < 1 such that
|C e < kpv™, for every n-cylinder and every e € 4.

By Sect.4.3 in Pinto-Rand [26], we obtain that Mg is C 1+ and has bounded
geometry in 277G (G, p). In [23] it is proved that Mg corresponds to the Markov
map My, (see Definition 2.2). Hence, gg isa C'* fixed point of renormalization.

Theorem 2.1. The map G — g¢ induces a one-to-one correspondence between
C'F conjugacy classes of Anosov diffeomorphisms, with an invariant measure
absolutely continuous with respect to the Lebesgue measure, and C'T conjugacy
classes of circle diffeomorphisms that are fixed points of renormalization.

The proof of Theorem 2.1 is in [23].

Since the eigenvalues of G are invariants of its smooth conjugacy class, there is
an infinite dimensional space of C !+ conjugacy classes for circle diffeomorphisms
g that are invariant under renormalization. Our result contrasts with the theory of
Arnol’d, Herman and Yoccoz [1, 11, 44] that proves the uniqueness of the smooth
conjugacy class of circle diffeomorphisms with bounded rotation number and with
a degree of smoothness higher than 2.
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Chapter 3

Evolutionarily Stable Strategies and Replicator
Dynamics in Asymmetric Two-Population
Games

Elvio Accinelli and Edgar J. Sanchez Carrera

Abstract We analyze the main dynamical properties of the evolutionarily sta-
ble strategy (&.7.7’) for asymmetric two-population games of finite size and its
corresponding replicator dynamics. We introduce a definition of &.%.% for two-
population asymmetric games and a method of symmetrizing such an asymmetric
game. We show that every strategy profile of the asymmetric game corresponds to a
strategy in the symmetric game, and that every Nash equilibrium (.4 &) of the asym-
metric game corresponds to a (symmetric) 4”& of the symmetric version game. We
study the (standard) replicator dynamics for the asymmetric game and we define the
corresponding (non-standard) dynamics of the symmetric game. We claim that the
relationship between A&, £.. and the stationary states (.¥”.%) of the dynamical
system for the asymmetric game can be studied by analyzing the dynamics of the
symmetric game.

3.1 Introduction

Evolutionary dynamics originally appeared in biology and then started to be used in
economics. Evolutionary stability, introduced by Maynard Smith and Price [10], is a
criterion for the robustness of an incumbent strategy against the entry of individuals
or mutants using a different strategy. The framework considered is a conflict within
a homogenous population. This game is symmetric since all players have the same
strategy set and the payoff for a given strategy depends only on the strategies being
played and not on who is playing them.
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Nevertheless, many economic applications come from multi-population rather
than single-population dynamics on asymmetric environments. So, in most applica-
tions, the game is not symmetric and involves at least two players with different
strategies and each player’s role is represented by a different population. In the
spirit of Nash’s [12] “mass action interpretation”, each type of player is drawn
from his or her “player-role population”. For instance, the players may play the
role of buyers or sellers, incumbents or entrants in oligopolistic markets, workers
or firms, or the social relationships between migrants and residents; all of them
with non-homogeneous behaviors on the state of the economy and different attitudes
towards — and perceptions about — development efforts or environmental quality of
the state of the economy and so forth.

Recall that, from the framework of symmetric games, there is a seminal refine-
ment of the Nash equilibrium (.4 &) concept that is the notion of Evolutionarily Sta-
ble Strategy (6..%) (see Maynard Smith and Price [10] and Maynard Smith [11]).
We known that every ESS is robust against mutant strategies from the postentry pop-
ulation (so-called equilibrium entrants), and asymptotically stable steady state of
the associated replicator dynamics. The relationship between A&, &.%.7 and the
steady states (..%) of the replicator dynamics are well known (see Weibull [18]).

In this paper, we consider the evolution of two populations facing a conflictive
situation modeled by an asymmetric normal form game. The main purpose of this
work is to analyze the evolution and stability of the behaviors of the populations,
involved in asymmetric games. Our approach is to symmetrize the asymmetric game
because it give us the possibility to characterize the &.%.%, using the well known
properties of these strategies for the case of symmetric games. We introduce an
approach to symmetrize a game that differs from the usual ones of symmetrizing a
bimatrix game (see Hofbauer and Sigmund [9] and Cressman [6]).

We extend the concept of &.. for asymmetric two-population games, follow-
ing the definition of Selten [16] and Samuelson [14], but in those papers it was not
analyzed the evolutionary dynamics of such a population. We exhibit connections
between £.., N & and .. for these two dynamics. Close to our argument is
the one by Fishman [8], nevertheless our approach is quite different while we do
not allow for invader’s frequencies — the fundamental approach (invasion dynamics
analysis, IDA) used in that paper is due to Cressman [4,5] — we benefit by gaining
a through familiarity with IDA. In particular, we consider the necessity of requir-
ing independence in the invader’s frequencies that precludes “symmetrization”. By
symmetrizing the game, we get the advantage of generalizing the standard definition
of £ and its relationship with the stability of the dynamical equilibria of the
replicator dynamics and with the strategic stability for asymmetric games. We note
that, much of the topic of this paper can be generalized for cases of finite (n > 2)
asymmetric populations. However, to simplify the notation, we shall consider the
case of two asymmetric populations.

Following this approach it is straightforward to see that a strategic profile is an
&S if and only if it is a strict Nash equilibrium (see Balkenborg and Schlag [1,2];
Cressman [4-6]; Samuelson [14]; Selten [16]; Weibull [18]) and that every &.%.
is an asymptotically stable steady state of the replicator dynamics (see Retchkiman
(2007); Samuelson and Zhang [15]).
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The paper is organized as follows. Section 3.2 draws the notation and basic defi-
nitions to set up the baseline model, namely a two-player asymmetric normal-form
game. Section 3.3 defines the &..% for our model. In Sect. 3.4, we introduce the
symmetric version of an asymmetric two population game. Section 3.5 studies the
dynamics of our model. Section 3.6 states the relationships between &.7.%, A&
and .7.%. Section 3.7 draws some concluding remarks.

3.2 The Model

Consider a normal-form (strategic) game with a player set composed by individuals
that comprise T populations, namely residents R and migrants M i.e. 7 = {R, M }.
Each population splits in different clubs denoted by n with i € {1,...,k.}, i.e.
(nf, . ,n,fR) and (n{” e ,n,i”M). The split depends on the strategy agents play
or the behavior that agents follow. Strategies are in correspondence with the clubs.
Individuals belonging to the n} club are called i-strategists. Thus, the set S* of

pure strategies are SR = IyR  pRUgnd M = IyM nM \ For each
1 kg 1 km

population T € {M, R} we represent the set of mixed strategies by

kt
AT = xeRkT:Zx]—l,xj>0,j_1, N
Jj=1
A profile distribution x = (x1,...,x;,) € AT can bee seen as the individ-

ual behavior of a player spending a part of his time x; in the n}—club. Hence,
the population state represents the vector of individuals’ share belonging to each
clubi € {1,...,k¢}, forall T € {R, M}. The normal form representation of our
described game is given by the next matrix payoff

RNM v [ oy

X1 ar, b || ik, biky,

(3.1

Xkp Clle,kal "'akRkakakM

where a;; denotes the payoff of an i-strategist from population R playing against a
Jj -strategist from population M . Similarly, we define b;; by replacing M by R and
vice-versa.

The matching between individuals from different populations is random. The
i-strategist’s expected payoff, supposing that the i-strategist’s belongs to the n l-R-
club from population R is given by

ky
ER@R1y) = aijy;. Vaf e 5K
j=1

where x is the clubs’ distribution for the other population M .
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Similarly, the expected payoff of the i-strategist belonging to nlM -club from
population M is given by

kr
EM@uM/x) = Zb,-jxj, vnM e sM
j=1

where x is the clubs’ distribution for the other population R. Rational individuals
follow the strategic profile that maximizes their expected payoffs.

3.3 The Asymmetric Game and the Definition of &. .7

Consider the two-population normal form game
GZ{(T:{R’M})’ST’ (A:(alj),B:(bU))} (32)

where each population splits into clubs denoted by n? with i € {1,...,k;} and
t = {R, M}. Hence:

e The population of residents is the set: R = Ufﬁl nR and Vh # j n,’f
nf =40.

e The population of migrants is the set: M = Uf‘i”l nlM ,and V h #
jnM ﬂnﬁ” = 0.

Let p € AR be the profile distribution of individuals’ behavior from popu-
lation R and let ¢ € AM be the profile distribution of individuals’ behavior in
population M is at time #y.

Let us postulate that an invasion occurs like a post-entry population at a post-
period of time #; > ty, by a small number of individuals of both types associated
with an alternative strategy profile (g, p). The profile distribution from population
R after suffering a small mutation is

ge = (1 —€)q + €4,

which is called the fitness of the post-entry population in M. Similarly, the profile
distribution from population R after suffering a small mutation is

Pe=(1—€)p+ep.

Definition 3.1. Let (p*,¢*) € AR x AM be a profile of mixed strategies. We say
that the profile (p*, ¢*) is an &..% for an asymmetric two-population normal form
game G, if for each pair (p,§) # (p*.q*) € AR x AM there exists € such that:
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1) ER(p*/q¥) > ER(p/q})
(3.3)
2) EM(g*/p¥) > EM(q/p}).

foralle, 0 <€ <€, where pf = (1 —€)p* +€pandg} = (1 —€)q* + €g are the
respective post-entry populations.

Hence, individuals’ behavior who adopt an &.%.% brings more offspring (with
higher fitness) than the mutant individuals’ behavior from the post-entry popula-
tion. It has already been noticed by Selten [16] that an evolutionary stable strategy
pair is not only stable when mutants appear in one of the populations but also if
mutants appear in both populations. Definition 3.1 can be extended to the case of
multipopulation models.

A well known result (see Cressman [6] and Weibull [18]) that characterizes the
ESS in terms of NE is:

Proposition 3.1. A profile x is &..% if and only if x is a strict Nash equilibrium.

The evolutive properties of the &.%.% and its relationship with the set of Nash
equilibria and the stationary states (..%) of the replicator dynamics for the case of
symmetric games are well known (see Hofbauer and Sigmund [9]; Weibull [18]).
Then, with the purpose of analyzing the dynamical properties of &.%.%, we intro-
duce the symmetric (one-population) version of the asymmetric two-population
game G.

3.4 The Symmetrized Game

Consider the asymmetric two-population normal form game G (see 3.2), where each
population splits into clubs nf, . ,n,fR and n{” e n%w and the payoff matrixes
are A and B, respectively. Now, instead of pairwise matching, we consider the case
that all players are interacting together, i.e. all players are “playing the field”. Thus,
the payoff of a player is determined by his own strategy and the strategies of all
other players. So, the corresponding symmetrized one-population game is defined
by as follows:

Let G be an asymmetric game defined by (3.2). Let P = R U M be the big pop-
ulation. Let N = {nf, . ,n,’f ,n{”, . ,m,i” } be the set of pure strategy for P.
R M

The matrix payoff for the big population P is given by:

m= [BOT g‘} (3.4)

where we assume that the elements of A(-) and B(-) are “well behaved” in the sense
of being continuously differentiable.
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The symmetrized game version of the asymmetric game G is G* = {P, N, I1}.
For each asymmetric two-population game G, there exists a corresponding sym-
metric version G*. It is worth to note that, these two versions are not equivalent in
several aspects but every Nash equilibrium of the asymmetric game is a Nash equi-
librium of its symmetric version. Our purpose is to characterize the main dynamics
properties of the &...

Let us consider the strategic profile (p, g) € ARxAM and the profile distribution
X = (X1,..., Xkp+k,, ) verifying the following identities:

R i1 <
pim lflflSkR

X; = 3.5)
qi% ifkr <i <krp-+kpm

where || denotes the cardinality on the sets R and M defining the corresponding
mixed strategy for the symmetric version G*.

Proposition 3.2. For each strategic profile (p, q) € AR x AM | there exists a mixed
strategy x € AT of the corresponding one-population game, and vice-versa.

Proof. Let (p,q) € AR x AM be a strategic profile for the asymmetric game.
Consider x € A® given by the expression (3.5), i.e. x = (%p, %q).
Thus, x is a mixed strategy for the symmetric game. To see the reciprocal, suppose

that x € A®. Since x; = %ifl <i <kgandx; = Wifk;q <i <
R|+|M R|+|M
kR +kM,wegetp,-=—| ||R|| |x,-,andq,- — [RI+IM] ||M|| Lx;. |

Let us denote by B.(z) the set of best replies for the population T = {M, R},
where the profile distribution over the clubs in the opposite population t’ # t is
given by z.

The following propositions offer an insight about the relationship between the set
of A& and the set of &.%. for asymmetric games and their respective symmetric
versions.

Proposition 3.3. [f the strategic profile (p*, q*) is a N & of the original asymmet-
ric two-population game, then the corresponding x* defined by the expression (3.5)
is the symmetric A & in the corresponding symmetric version.

Proof. Suppose that the profile (p*, ¢*) is a A & of the asymmetric two-population
game. Let x* = (x],... ,x;M +kg) De the corresponding strategy in the cor-
responding symmetrized one-population game. Then, p* € Bgr(¢*) and ¢* €
By (p*) implies that x* Px* > yPx*, forall y € A because

M[R| .
Px*=—— (gB' p*+ p*A
g <|M|+|R|)2(q )

M[R|

* T * * * * *
_—qu+pAq)=xPx.
(|M|+|R|>2( H
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Proposition 3.4. If the profile (p*, q*) is a strict Nash equilibrium for the asym-
metric two population game, then the corresponding x* is a strict Nash equilibrium
for the symmetric version.

Proof. Let (p*, ¢*) be a strict Nash equilibrium for the asymmetric two population
game and let x* be the corresponding profile for the symmetric version. Assume
that there exist y # x* € A?, such that y[Tx* = x*ITx*. Using Proposition 3.2,
there exist p # p* such that pAg* > p*Aq™* or, there exist ¢ # ¢* such that
p*Bq > p* Bq, which is in contradiction with our assumption. O

Proposition 3.5. If the profile (p*,q*) is an & for the asymmetric two-
population game, then the corresponding x* is an .. for the symmetric version.

Proof. Let (p*,q*) be an &..%. By Proposition 3.1, (p*, ¢*) is a strict Nash
equilibrium. From Proposition 3.4, the corresponding strategy x* is a strict Nash
equilibrium for the symmetric version and it is straightforward to see that the
reciprocal of this Proposition does not hold. O

3.5 The Dynamics of the Model

The symmetric version of the asymmetric game allows us to characterize the main
dynamical properties of the asymmetric game, because these properties are well
known in the symmetric case.

Consider the asymmetric two-population normal form game G (see 3.2).

Let n7(¢) be the number of individuals at time 7 belonging to the i-club in the
population 7. Let p;(¢) be the share of individuals in the i-club from the popu-
lation R and, similarly, let g;(¢) the share of individuals in the i-club from the
population M, at time ¢. Hence,

nR

(t - 1

pi(?) IR]

and v
n:

(1) =

qi (1) M.

The vector (p(t), g(¢)) is the profile distribution (or population state) at time ¢.
Furthermore, p(t) € AR and ¢(t) € AM.

Recall that the members of the i-club from population 7 are called i -strategists
from the population 7 € {R, M }. Rational individuals choose strategies to max-
imize their expected payoffs. Let zo = (po,qo) be the strategic profile at time
t = 0 for the asymmetric two-population game G. According to the rationality
assumption, we define:

pi = (€f ~ P AQpi. i =1..... kg

. _ (3.6)
gi =M —q)BTp)gi, i =1.....knm.
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where el-R is the i-canonical vector in R® and el-M is the canonical i -th vector in the
RM . The differential equation (3.6) represents the clubs’ evolution for each popu-
lation. For the system (3.6), a solution of the form £(¢,z9) = (£1(¢,20), £2(2,20))
represents the evolution of the population states with initial state given by zp.

From system (3.6), each time 7 the club of the i-strategists in each population
increases if and only if the expected payoff of the i-strategy is greater than the
average payoff, and reciprocally.

For each pair (p(t),q(t)) in G, there exists a corresponding mixed strategy x (¢)
in the symmetric version G* given by the expression (3.5).

The dynamical system (3.6) has a corresponding dynamical system, namely the
replicator dynamics, (see Taylor and Jonker [17]) of the symmetric one-population
game given by

Xi = ((ei = x)Px)x; (3.7)

where x = (X1,...,Xkp+k, ) Xi i given by the expression (3.5), and e; is the
i-canonical vector in RKRtkar

We analyse the relationship between A&, &..% and .. of the system (3.6)
of the symmetric version game G°.

If a pair (p, q) is a stationary state of the system (3.6) then the corresponding X
is a stationary state for the dynamical system (3.7). Furthermore, every strictly pos-
itive stationary state of the dynamical system (3.6) is a .4”& for the corresponding
asymmetric two-population game. Every .4/'& of an asymmetric two-population
game is a stationary state for its corresponding dynamical system given by (3.6).
Hence, we can conclude that the set of .4#'& of an asymmetric two-population game
is a subset of the set .. corresponding to the dynamical system (3.6). Every
A & of a two-population game is a stationary state for the corresponding dynamical
system (3.7).

3.6 Evolutionarily Stable Strategies and Liapunov’s Stability

Denote by o7 the set of asymptotically stable steady states. From the well
known relations between &..%, A& and .. for the symmetric cases (see
Weibull [18]), the following relationship holds for every asymmetric two-population
game

ESS C AL, (3.8)

and
NE S S 3.9)

Proposition 3.6. For an asymmetric two-population game, if (p*, q¢*) is an asymp-
totically stable steady state of the dynamical system (3.6), then (p*,q*) is a
NE.

Proof. If (p*,q*) € AS for the dynamical system (3.6) then it is stationary state.
If p* > 0 and ¢g* > 0 then (p*,¢*) is a A & for the asymmetric game. Now
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we consider the case where some strategy is absent in p* or in ¢*. Without loss
of generality we assume that p;‘ = 0. Suppose that (p*, ¢*) is not a A4 &. Then,

there exists some pure strategy j & supp(p*) such that ER(ef/q*) = equ* >

p*Aq* = ER(p*/q*). Assume that a perturbation affects the distribution p* and
that in the population R some j-strategist appears. The post-entry population at
timez,is pe(t) = (1—€(t)) p* + e(t)ef. Substituting in the j -differential equation
of (3.6), we obtain

Pej = € = [(ef — p)Agle. (3.10)

Define F(¢) = (e;'-e —pe)Aq*. Note that F(0) = (e;'-e —p*)Ag* and F'(0) = (p*—
ef)Aq*. The Taylor polynomial is F(¢) = F(0) + F’(0)e + 0(¢?). Considering
the first order approximation equation (3.10) gives

é=[(ef — p*)Aq*le.

In the population R, the members in the n f club increase, contradicting our claim
that (p*, ¢*) is an asymptotically stable steady state with n f =0. O

We now study the connection between &.%.% and the replicator dynamics in
an asymmetric game. We will use the following Proposition (see Taylor and
Jonker [17]).

Proposition 3.7. For symmetric homogeneous population game every 8. . is an
asymptotically stable steady state of the replicator dynamics.

Theorem 3.1. For the asymmetric two-population game, we obtain the following
chain of inclusions:
ESS CAS CNE LS.

Proof. Let (p*,q™*) be an &..% for an asymmetric game and let x* be the cor-
responding strategic profile in its symmetric version. So, from Proposition 3.1, it
follows that (p*, ¢*) is a strict Nash equilibrium. By Proposition 3.4, it follows that
the symmetric strategic profile of every strict Nash equilibrium of an asymmetric
game is an strict .4#'&. Then x* is a strict Nash equilibrium for the symmetric
version, and then x* is a &.%.%. By Proposition 3.7, it follows that x* is an
asymptotically stable steady state of the replicator dynamics. Then, (p*g™*) is an
asymptotically stable steady state for the asymmetric version and is a 4" &. O

Bomze [3] shows that every asymptotically stable steady state in the homogeneous
population replicator dynamics corresponds to a Nash equilibrium that is trembling
hand. However, using the symmetric version of a non-homogeneous asymmetric
n-population the following Proposition holds:

Corollary 3.1. Every &..% of a non-homogeneous asymmetric n-population
game is trembling hand and isolate.
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Proof. Let (p*,q™*) be an &..% for an asymmetric game and let x* be the cor-
responding strategic profile in its symmetric version. By Theorem 3.1, it follows
that every &..7 is asymptotically stable for the symmetric version. Hence, x* is
asymptotically stable steady state for the symmetric version. By Bomze [3], it fol-
lows that x* is trembling hand and isolate equilibrium, and so (p*, ¢*) verifies this
property in the original asymmetric game. O

3.7 Concluding Remarks

We extended the definition of evolutionarily stable strategies (£.%.%’) of symmet-
ric games to asymmetric two-population games. We did it by taking as the strategy
space for the symmetrized game the union of strategies from the two-population
asymmetric game and assigning zero payoffs to all strategy combinations that
belong to the same player position in the asymmetric game. Hence, evolutionary
dynamics in a two-population asymmetric game can be analyzed using the well
known properties of the replicator dynamics corresponding to the symmetric version
of this game. This fact may have interest for economic theory and social analy-
sis, where asymmetric games are useful to analyze the behavior of two populations
engaged in non-cooperative games such as, buyers and suppliers, firms and workers
or residents and migrant populations interacting in a given country or economy.
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Chapter 4
Poverty Traps, Rationality and Evolution

Elvio Accinelli, Silvia London, Lionello F. Punzo,
and Edgar J. Sanchez Carrera

Abstract We study an economy with heterogenous workers and firms as a two
population game, in normal form, and its evolutionary dynamics implied by strategic
complementarities. The population of firms is distributed in two groups, innovative
and non innovative, while workers need to choose between two strategies, acquiring
skills or remaining unskilled. Without having knowledge of the firms’ distribution,
a worker reviews her strategy by asking herself whether it is worth it to change
behavior or not. Rational choice on her part is taken, hereafter, to imply that she
will choose the strategy which she expect to yield the greatest payoff, on the basis
of her beliefs and the current state of the economy. By imitating successful agents, if
the initial shares of innovative firms and skilled agents are “too small”, an economy
eventually lead into a poverty trap. Hence, when an economy is close to a poverty
trap, rationality may act as an actual obstacle to a take-off.
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4.1 Introduction

This paper is based on the model by Accinelli et al. [1] where workers’ decisions are
driven by imitative behavior and firms’ decisions depend on the number of skilled
workers. Such a model analyzes the dynamic complementarities between innovative
firms and skilled workers. When firms invest in R&D to become an innovative firm,
they are successful only in the presence of sufficiently high number of skilled work-
ers (see Redding [4]). At the same time workers are encouraged to increase their
skills when a large number of firms make investments in high-technology. On the
contrary, firms that do not invest in R&D do not look for skilled workers and, so,
make the accumulation of skills unprofitable. We show that there exists a threshold
number of innovative firms above which it becomes advantageous to accumulate
human capital and to become a skilled worker. If the percentage of innovative firms
is under a certain threshold value, the economy will evolve to a poverty trap where
the number of skilled workers decreases to zero. Thus it will be better for firms not
to invest in R&D. On the other hand, if the initial percentage of innovative firms is
higher than the threshold value, then by an imitation behavior workers will push the
economy to evolve to a higher level equilibrium, a steady state characterized by the
coexistence of non innovative firms and innovative firms, and skilled workers and
unskilled workers. This is the mechanism that allows an economy to get out from
the poverty trap.

Our result may account for the experience of many developing countries in which
there is a mismatch between investment in R&D and Human Capital accumulation,
the engine of sustained economic growth.

This paper, therefore, focuses on the relationship between evolution, rational-
ity and poverty traps, in an economy with different firms and workers. We assume
that, in a game theoretic setting, agents follow a rational behavior, in other words,
when faced with the need to choose a behavior or a strategy under uncertainty, they
choose the one with greatest expected value, given their own beliefs. Each agent is
reviewing his strategy choice when in need to choose a strategy for the next period.
Furthermore, we assume that a reviewer imitates the most successful agent. Then,
the evolution of the economy is represented by a particular dynamical system where,
depending on the initial conditions, the economy will approach to local attractors,
one in a set of steady states. Given the structure of the economy, it is the rational-
ity of the agents that will determine the dynamical system and the evolution of the
economy.

Under our hypotheses there exists a steady state that is a Pareto inefficient Nash
equilibrium of the game, and is an evolutionarily stable strategy against the field.
Such inefficient equilibrium is a poverty trap, whereby workers are unskilled and
firms do not innovate. In that case, the rational rule followed by agents makes the
economy to evolve over time along to a low growth trajectory. We also show that
there exist steady state attractors, where a percentage of innovative firms and of
skilled workers live together with a percentage of non innovative ones and unskilled
workers. The relative weight of these percentages are shown to depend on the initial
distribution of firms.
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Implementing an imitative behavior, workers can choose to increase their com-
petence being trained at a school, and trying to attain the knowledge frontier. Hence,
being a skilled worker implies human capital accumulation, and this would be the
driving engine of economic growth (see Lucas [3] and Sen [6]). The way agents
imitate the others follows the well known theory whereby they question their own
performance of their current behavior (or strategy). The way agents imitate the oth-
ers is opting by strategies whose performances are better than the other agents (see
Schlag [5] and Weibull [7]).

The paper is organized as follow. Section 4.2 describes the basic, two-population
normal form game characterizing strategies and payoffs for firms and workers. Sec-
tion 4.3 introduces the dynamic imitation mechanism to analyze the evolution of
worker’s population. In Sect. 4.4, we analyze the evolutive behavior of an economy
as depending upon its initial conditions. In Sect. 4.5, the relationships between Nash
and dynamic equilibria are analyzed and the definition of an evolutionarily stable
strategy is introduced. In Sect. 4.6, we present the market dynamics for firms, while
Sect. 4.8 draws some concluding remarks.

4.2 The Model

Consider that the economy is composed by two population: workers W and
firms, F. Each population splits into two clubs according with the strategy fol-
lowed by individuals. These strategies are denoted by {S, NS} for workers, and
by {I,NI} for firms. By E(i/YF) we represent the conditional expected payoff
associated with the strategy i € {S, NS} given the initial distribution of the pop-
ulation of firms over their clubs Y. By A we denote the set of distributions of
probabilities of the firms, i.e., Yr € AF  Hence, workers and firms are engaged in
a repeated normal form game. To choose their club or strategy each worker look
for the expected payoff E(i/YF) and choose according with the strategy having
associated the maximum expected payoff. Firms look for cost and profit, and choose
workers. Technology is free and each firm can choose without cost to be innovative
or not. The costs of the innovative firms decrease with the possibilities to obtain in
the labor market skilled workers.
This game between workers and firms is characterized by:

1. Asymmetric information. At the beginning of each contractual period, workers
do not know the type of firm that is going to hire them. However, workers have
to certify their skilled levels so that firms know their profile.

2. Gross income. Let B;(j) be the gross-benefit of the i-firm hiring the j-worker,
foralli € {I,NI} and j € {S, NS}. The S-type worker gets a salary s, while the
NS-type gets § < s.

3. Skill premia. Innovative firms I give a plus (or premia) to their workers, while
NI-firms do not do it, at the end of the contractual period. Only at the end of the
period, workers will know the type of the firms that they are engaged. Thus, the
skilled worker S receives a premium p while the unskilled workers NS receives
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a premium p when both are engaged with an innovative firm 7, such that 0 <
p<p.

4. Training cost. To become a skilled worker has a cost C.S. We assume (only for
simplicity) that the firms have no cost to face in order to become innovative.
Thus, CS > &, i.e. there are no incentives to be skilled worker if there are no
prizes.

5. Short run and long run. We assume that innovative firms face a high level of fixed
costs. Non-innovative firms need to do a big investment to become innovative.
Hence, the distribution of the firms in the short run remains constant and only in
the long run this distribution evolves.

We will show, that in the long run, there are strategic complementarities between
types of firms as well as between types of workers. Thus:

o If the firm is innovative, the payoff of the skilled worker is greater than the payoff
of the unskilled one, i.e., 5§ + p — CS > 5 + p.

e If the firm is non-innovative, the payoff of a skilled worker is at least as good as
the payoff of an unskilled one, i.e.,s > 5 — CS.

e For a skilled worker, the payoffs obtained by the innovative firm are greater than
those obtained by the non-innovative firm, i.e., By (S) — p > By;(S).

e For an unskilled worker, the benefits of the non innovative firm are greater than
those obtained by the innovative one, i.e., By (NS) — p < By;(NS).

In summary, for our two population normal form game, the payoff matrix is
represented by,

W\ F I NI
S |s+p—CS, Bi(S)— G+ p)|s—CS, Bu(S)—35 “4.1)
NS s+ p, BI(NS) — (s + p) s, Byi(NS) —s

The expected payoff of the S-type worker, given the chances of being hired either
by the I or NI firm, is:

E(S/YF) = prob(I) [§ + j] + prob(NI)(5) — CS., 4.2)

where prob(/) represents the probability of being hired by the innovative firm and
prob(NI) the probability of being hired by the non innovative firm. Similarly,

E(NS/YF) = prob(I) [s + p] + prob(NI)s. (4.3)

Therefore, workers prefer to be S-type strategists if £(S) > E(NS) and viceversa.
The latter happens if and only if prob(/) is large enough, i.e., when:

prob(1) > CS(%(“EP_)S). (4.4)
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Workers are indifferent between being skilled or unskilled if and only if

prob: (1) = S5 =6 =9 (4.5)
(P—p)
Note that, 0 < (CS — (5 —5))/((p — p)) < 1 holds.
Let us label prob(/) = P, = %, and denote the probability to employ
a skilled worker for an innovative firm by prob(S). Hence, a firm gets innovative
if and only if its expected payoff is greater than the expected payoff of being non
innovative, that is £ (1) > E (NI) or

By (NS) — Bni(NS) — p
B1(NS) — B1(S) + Bni(S) — Byi(NS) + (p — p)

prob(S) > (4.6)

Let us label prob(S) = X;. The threshold level where economic agents, firms and
workers, prefer to be of high-profiles is (X, P,). We find three Nash equilibria, two
of them in pure strategies: A = {S, 1} and B = {NS, NI}, and a mixed strategy
Nash equilibrium given by

NE = (Xs. (1 — Xns); Pu. (1= P,)). 4.7

We conclude that the A equilibrium Pareto-dominates equilibrium B while the latter
is the risk dominant equilibrium.

4.3 Dynamic Imitation by Workers

Assume that in the short run the firms’ distribution remain fixed. This assumption
is natural because innovative firms have high fixed costs associated. In the short run
the number of firms in the market is constant. Let Y; = prob(/) = PI = QI/Q
be the share (percentage) of innovative firms, where Q1 is the number of innovative
firms and Q is the total number of them. Then, Yy; = prob(NI) = PNl = 1 — PI.
Equivalently the firms distribution on the set of pure strategy is given by Yr =
(Y7, Ynp). Let us denote by AW the set of distributions over the possible behaviors
of the workers population.

We call an individual reviewer to whom ask to himself whether she needs or not
to change her current strategy. The rate at which agents in the population review
their strategic choice depends on the current performance of their strategies and on
the current distribution of the population state, denoted here by Z = (Xw, YF),
where Xy = (X5, Xns) € AY and Yr € (Y7, Yar). Let R;(Z) be the probability
that the i-strategist, i € {S, NS} is reviewing. This probability at which agents, in
a given population, review their strategies choice represents the rate of the arrival
time of a Poisson process. Let P;;(Z) be the probability that such reviewing worker
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really switches to the strategy j # i. Then,
P(i — j)(Z) = Ri(Xw) Pij(Z) (4.8)

is the probability that a worker of the i club changes to the j one,i # j € {S, NS}.
In the sequel, es = (1,0) and eys = (0, 1) indicate vectors of pure strategies S
or NS. Considering that all agent’s Poisson process is statistically independent, the
aggregate of reviewing times in the subpopulation of i strategists is itself a Poisson
process with arrival time X; P;; (Z). So, for large populations, we may invoke the
law of large numbers and model these aggregate stochastic processes as determinis-
tic flows, each flow being set equal to the expected rate of the corresponding Poisson
arrival process. Hence, the expected flow share of skilled workers X will be equal
to the percentage of unskilled workers changing to be skilled workers minus the
percentage of skilled workers changing to be unskilled workers.

Rearranging terms, we get the differential equation system characterizing the
dynamic flow of workers:

Xs = Rns(Z)Puss(Z)Xns — Rs(Xw) Psns(Z)Xs

. . (4.9)
Xys = —Xs,
where X s is the fraction of skilled (Xyg of unskilled, respectively) workers.

We assume that reviewers take their decisions under an imitative rule, and this
will be reflected in the characteristics of the probability P;; (Z). To simplify the
model, we will consider only imitative behavior processes, supported by imitative
rules. An imitative rule makes sense if there are at least two distinct behaviors, one
of them currently adopted and the other being a candidate behavior to imitate (in
our model, if one of the two populations disappears the incentive to change vanishes
with it).

Assume that reviewing workers evaluate their current strategy and decide to imi-
tate only the successful one. The problem is how to decide what is a successful
behavior. Let us suppose that each reviewing agent, cannot know the true expected
payoff of each possible behavior. She randomly samples in the neighboring popula-
tion, computing average payoffs and imitating the behavior with the highest sampled
average value. Let E(S) and E (NS) be the estimators of the true payoffs or values
E(S/YF)and E(NS/YF).

Hence, an i-worker changes her current strategy if and only if E(i) < E(j),
i#je{S,US}.

Thus, the probability for an i-type become a j-type strategist depends on the
probability that E(j) — E(i) > 0. Then, (4.9) can be written as:

Xs = RysP[E(S) — E(NS) > 0] Xys — Rs P[E(NS) — E(S) > 0] X, @i
Xys = —Xs. '
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where P[E(j) — E(i) > 0] denotes the conditional probability distribution that an
i reviewer become a j strategist.

We assume that this probability is an increasing (continuously differentiable)
function ¢ : R — [0, 1] of the true difference E(S/Yr)—E(NS/Yr)if E(S/YF)—
E(NS/YF) > 0 and 0 in other case. When we are considering the case E(S/YF) —
E(NS/YF) > 0, the system (4.10) becomes:

Xs = Rys¢(E(S/YF) — E(NS/YF))Xys
—Rs[1 —¢(E(S/YF)— E(NS/YF))|Xs 4.11)

Xys = —Xs.
To simplify, we assume that Rys = Rs = 1. Then (4.11) results in

Xs = ¢(E(S/Yr)— E(NS/YF)) — Xs
. . 4.12)
Xns = — X

Intuitively, this process is supported on the rule: to switch if the other strat-
egy brings a higher payoff. The process depends on the ordinal ranking of the
expected values, but the speed of adjustment depends on the size of expected value
differences.

Let £(,t9, Xs0) be the solution of (4.12) for the initial conditions Xg(ty) =
(Xs0,1 — Xs0). Hence, the solution is on a trajectory converging to

(P(E(S/YF) — E(NS/YF)). 1 —¢(E(S/YF) — E(NS/YF)),)
i.e.

Jim_£(z, 10, Xs0)

= (P(E(S/YF) — E(NS/YF)). 1 = ¢(E(S/YF) — E(NS/YF))).

It follows that the percentage of skilled workers in the steady state increase with the
true difference E(S)— E(NS). In the stationary state, coexist a percentage of skilled
workers with a percentage of unskilled, the percentage difference in favor of first,
will be greater whatever major is the difference between the true expected values
E(S/YFr)— E(NS/YF).

Considering now the case where E(S/Yr) — E(NS/YF) < 0, the system (4.10)

becomes .
Xs =—Xg
. . (4.13)
Xys = —Xs

In this case, the solution is given by:

E(t.10. Xs0) = (Xs0e™", 1 — Xs0e™")



44 E. Accinelli et al.

and then, lim;— (¢, f9, Xs0) = (0,1). Note that the club of skilled workers
disappears with time and all workers become unskilled workers.

4.4 Initial Conditions Matter

Does the initial number of innovative firms contribute to explain the path of the
economy? Consider two countries, 1 and 2 and assume that PI; > PI, when
t = to. From the solution of (4.11), the share of skilled workers in country 1 is
larger than the corresponding share workers in country 2, for each ¢ > tp, i.e.

X15(t) > Xas(2), Yt > 19 4.14)

Hence, the equilibrium state is higher in country 1 than in country 2.
Figure 4.1 shows the evolution of the dynamical system when the initial percent-
age of the innovative firms is above or below such threshold value:

1. If PI > 7 then E(S/Yr) > E(NS/YF):

o If Xs(0) > ¢(E(S/YF) — E(NS/YF)), the percentage of skilled workers
in the total population decrease and its share converge to ¢ (E(S/YF) —

E(NS/YF)).

o If X5(0) < ¢(E(S/YF) — E(NS/YF)), the percentage of skilled workers
increases.

e In both cases the economy converges to the high level and diversified equilib-
rium.

e This high steady state is not a Nash equilibria.
2. If PI <m, then E(S/YF) < E(NS/YF):

e The share of skilled workers is decreasing to zero Xs(0) — 0. In this case,
the economy is in a poverty trap and the rational workers will choose to be
unskilled. This shows that rationality may imply inefficiency. This is the only
asymptotically stable Nash equilibrium for the game above.

x(0)

B/A

x5(0)

x5(0)

E(s)=0

Fig. 4.1 Evolution and
steady states, initial condition
matter 0

s
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e The profile of mixed strategy of inefficient Nash equilibrium for the game
is (ens,er) and the steady state of the dynamical system in this case is
ens = (0, 1). This means that in the inefficient (or low) steady state firms
prefer to be non-innovative.

The next theorem summarizes our results.

Theorem 4.1. Consider the dynamic flow of workers, given by the system (4.9).

There exists a threshold value m = C*S;-’_E such that:

1. If the initial number of innovative firms P is larger than the value, i.e., PI > 1
then the percentage of skilled workers Xs(t) will converge to ¢p(E(S/YF) —
E(NS/YF)).

2. If the initial number of innovative firms verifies PI < m, then, the percentage of
skilled workers X s (t) will converge to 0.

4.5 Dynamic Equilibria, Nash Equilibria
and the Evolutionarily Stable Strategy

Note that there is no possibility of observing the high Nash equilibrium (S, /) =
(1,0;1,0) = (es, er) —in pure strategies— because it is not a dynamic equilibrium.
On the contrary, the low Nash equilibrium (NS,NI) = (0,1;0,1) = (ens, enr) is
asymptotically stable, and no the poverty trap arises as a result of the rational con-
duct of economic agents. On the other hand the only mixed Nash equilibrium is not
observable, because it is an unstable steady state.

NE = (X5, (1 = Xs); m, (1 = m)),

We observe that 1 = (CS — (5§ — 5))/(p — p) and the equality E(S/7) =
E(NS/ ) is satisfied. Furthermore,
X5 verify the equality E(NI/xs) = E(I/Xs), equivalently,

P Bni(S) — Br(NS) + pr’
* 7 B1(S) — Br(NS) + Bni(NS) — Bni(S) + pr + pr’’

After a perturbation on the distribution of firms, the population of skilled workers
either converges to B/ A # X, or converges to 0.

Let us introduce the concept of an evolutionarily stable strategy against the field
given a profile distribution of the firms’ population.

Let A" be the set of distributions on the workers’ population and AF be the set
of distributions on the firms. Let us consider a distribution on the workers’ popu-
lation Xy = (X5, Xns) € AY and an initial distribution Yz € AF. Let Y, be
a perturbed distribution of the initial distribution of the firms with ¢ > 0 small
enough, such that in the Euclidean distance |Yr — Y| < €. Assume that Xy is a
best response against Y.
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Definition 4.1. We say that the distribution on the population of workers Xy is an
evolutionarily stable strategy against the field given by YF if there exist € > 0 such
that Xy is the best response against all distribution Y, in a neighborhood V, of
radium e, centered at Y.

Intuitively, this means that the best response Xy against Yr continues being a
best response against perturbations (in the distributions of the field). Notice that,
when Yr < m, the degenerate distribution eys = (0,1) (i.e. all workers are
unskilled) is an ESS against the field given by Y.

Hence, a rational worker choses to be unskilled even in the case when the initial
conditions were to change as long as such change is not “too large”.

4.6 On the Dynamics of Firms

The following assertion from [2] gives the empirical support to the main results of
this section:“Technological and scientific innovation is the engine of U.S. economic
growth and human talent is the main input that generates this growth.”

In the long period, with changes in demand and with the reduction of costs
the distribution of the firms in each branch of the production can change. Non-
innovative firms can become innovative because the necessary input costs to do
an innovative production decrease. We will see in this section, the relationships
between the evolution of the population of workers and the evolution of the popula-
tion of firms.

Consider an industry producing under a competitive market. To focus on strategic
complementarities, let us suppose that the production function of the innovative
firms is given by

G = f(Z.Xs. Xns) (4.15)

where & is the technology, Xs and Xyg are respectively, the number of skilled and
unskilled workers employed by the firm, and G is the total output. We suppose that
technology is a complementary input to skilled labor.! Hence, the marginal product
of technology is an increasing function of the number of skilled workers.

Suppose that innovative firms face a demand G for its product. Let X5 (¢) be the
percentage of skilled workers existing in the economy in the time . Assume that the
percentage of skilled worker is an increasing function of time, i.e., X5 (f9) < Xs(#1)
if ty < 7.

Using the usual hypothesis on the technology, it follows that

IC(G, X5(t1)) _ IC(G, X5(10))

3G 3G (4.16)

! For instance G = Qf"ngg + Xys where 0 < «, B < 1. See example in Sect. 4.6.1.
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where C(G, X) stands for the short run cost function. Hence, there exists G such
that -
C(G, Xs(to)) > C(G, Xs(11)) ; VG > G.

This means that the short run cost decrease when the upper bound on the supply
of skilled workers increase. The long run cost C(G) is the envelope of the short
run costs curves C(G, Xs(t)), where Xg(¢) is considered as given in each time ¢.
Figure 4.2 offers a graphic representation. Assume that supply of a skilled worker,
att = tg, Xs(tp) is lower than the optimal level required by an innovative firm
facing a demand of G units of its product X s (¢9, G), i.e.

X;s(to) < Xg(to, G).

The rate of convergence of the short run cost C! (G, Xs(t)) of the innovative
firm to the long run cost C?(g) of the innovative firm, when the supply of skilled
workers is increasing with time, is greater than this convergence process for the
non-innovative firms, formally

ICH(G. Xs(1)) = Cl(@)| <e1(t) (A)
4.17)
|ICM(G. Xs5(1)) — CN'(q)| < eni(r) (B)

where the infinitesimal order €7 (¢) is greater than the infinitesimal order of ey, (?),
i.e.,

o(er(1)) > o(eni()).

If the supply of skilled workers is increasing, short run costs for innovative firms
will decrease toward long run cost levels. Innovative firms can obtain positive profits
and fixe a price p’ < p to obtain positive profits. So, there are incentives for non
innovative firms to change their behavior, because the investments in technology can

C(G,X)
C(G,X5(t
C(G.X(ty) (G Xa(t))
C(0.Xx(t)) LONG - RUM
C(0.X4(t))
0 G
Fig. 4.2 Short run costs Vs.

long run costs G
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be recovered in a more convenient time. In this process a share of the non-innovative
firms will leave the market or become innovative if at the 2x:

1. The cost to become innovative C(h, H) is greater than the difference between
the profits of the innovative firms 177 (p’, ¢}, 1) at price p’ and he profits of the
non-innovative firms I7V(p, g7, t) at price p, and

2. The difference between the market demand D(p’) and the aggregate supply
ST(p’) of the innovative firms is positive.

Hence, in the long run period a share of non-innovative firms can co-exist with a
share of innovative firms, even if the share of innovative firms is increasing.

There is a further reason to reinforce the above argument on the evolution of
firms. Innovative firms require skilled workers whereas non innovative firms prefer
unskilled ones.

4.6.1 Example

To illustrate this situation, consider firms characterized by the production function:
f(Z, X5, Xns) = kZXE + X}, (4.18)

H if the firm is innovative

h  if the firm is not innovative,

When H > h > 0 and «, B and A are positive constants, such that « + 8 = 1 and
A < 1. Note that the marginal output of the human capital is greater in the case of
an innovative firm than in a non-innovative firm.

Assuming the technology 2 = % to be a positive constant, (the same for both
kind of firms), the salary of a skilled worker is wg and of an unskilled worker is w;s.
The innovative firms give a skill premia (the bonus for skilled workers) pr and give
the premia (the bonus for non-skilled workers) pr. Hence, for a innovative firm the
short run cost function Cy (-, Xs) : R — R is given by:

e

C1(G, Xs) = (ws + pr)Xs + (wns + pr) [G - Hz«xg] (4.19)

For a non-innovative firm the short run cost Cy;(-, Xs) : R — R is given by

i

Cui(G. Xs) = ws X + Wns [G _ hZ“Xﬁ] (4.20)

It follows that
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9 % S 1 o v B %_l
ECI(G,XS)—(an—I-pr)I [G—HZ XS] ,
2

d — _ 1 1 - B 1_5 - p—1
———C; (G, Xg) = — (wy, ——1)=|Y-HZ*X.|* "HZ*X 0.
9X50G 1(G, Xs) (w s-l-PV)(/1 )A[ 5] s <

So we can conclude that the speed of the adjustment process of the short run cost
to the long run cost, considering as given, for each time ¢ = #y, the skilled workers’
supply Xs(fo), is faster for innovative firms than for non-innovative ones. If, at
t = 1o, the fraction of innovative firms is higher than the threshold value 7z, then
the supply of skilled workers increases with time. If the supply of skilled workers
Xs(tp), att = tg is below the optimal demand X5 (o, G) of a innovative firm facing
a level G of demand. Then, the short run cost of this firm decreases with time.

At the same time, the firms with more intensive utilization of the skilled workers
increase the supply of its product and they can reduce the variable short run costs
more quickly than the non innovative ones. Hence, this firms can obtain positive
profits in the short run.

Assume, that the market price for the final product is given by p. If the mar-
ket is competitive, the optimal supply for each kind of firms are, respectively, for
innovative and non-innovative firms, equal to

Y[ =pHZ*X[s+ X[ns

421
Yy =PhZ*Xy1s + Xyins *:20

where X l.*S and X l.*NS, i € {I,NI} stand for the long run demand for inputs from
innovative and non innovative firms

1

_1 _1
X* = Wns + pr) A1 * — [ Wns pt
INS /\P ’ NINS AP ’

_1 _1
X* — Wi + pr A=l X* — Ws A1
s ApHZ*B ©ONIS AphZ®p ’

Let PI > s be the number of innovative firms at ¢t = t5. By D(p). We denote
the total demand for the product, and by S(p) the total supply. S7(p) is total supply
of innovative firms and Sy;(p) is the total supply of the non-innovative firms. So

4.22)

Si(p) = (PDY[

Swp) = S(p) — S1(p) 425

In equilibrium S(p) = D(p), so the number of non innovative firms, at the same
time, is equal to
D(p) — Si1(p)

,0
Y
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Assume that there is a cost C(h, H ) to become innovative corresponding to trans-
forming the technology / in a technology H. Thus, at time ¢ = f( a non innovative
firm has an incentive to change and become innovative if, and only if, the difference
between the benefits of the innovative firm and the benefits of a non-innovative firm,
verify the following inequality:

I(1,ty) — I[I(NI, ty) > C(h, H).
Then, in the long run, innovative and non-innovative firms may coexist if

im [1(1.19) = [T(NL 10) = T1(I) = TI(N) > C(h, H).

This transformation process depends on the possible size of the reduction of the
short run cost that an innovative firm can obtain, increasing the percentage of skilled
worker engaged, but this size decrease at the same time that the short run cost con-
verges to the long run one. So, even in the long run innovative and non-innovative
firms may coexist.

4.7 Defining a Poverty Trap

In the context of this paper, we now introduce a definition of an economy in a
poverty trap and a definition of poverty trap.

Consider a two populations normal form game I', where populations are workers
and firms. Let AT be the set of the distributions of firms over the set of pure strate-
gies (or behaviors){/, NI} and let AW be the set of the distributions of the workers
population’s over the set of their pure strategies {S, NS}. Suppose this game has a
Pareto inefficient Nash equilibrium.

At the end of any period, workers have to decide their strategic behavior for
the following one. Assume that they choose according to the rule of maximizing
expected payoffs. Let Yr = (Y7, Yn1) € AT be the distribution of the firms during
the current period. Let Y7 stand for the percentage of innovative and Yy; for the
percentage of non innovative firms.

Definition 4.2. (The economy is in a poverty trap) Consider a two populations nor-
mal form game I" of firms an workers. Assume that the initial distribution of the
firms (the field) is given by Yz € AT . We say that the economy is in a poverty trap,
if for every initial distribution (or mixed strategy) over the population of workers
Xw(to) = (Xs(to), Xns(to)) € AW the solution £(z, Xw (t9)) of the dynamical
system (4.9) define a trajectory X () = (Xs(t), Xns(t)) € AW, evolving as time
t — 00, to a steady state Xy of this system. Furthermore, the steady state is an evo-
lutionarily stable strategy against a field Y, and the pair (X, YF) is an inefficient
(in the Pareto sense) Nash equilibrium.
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Definition 4.3. (poverty traps) Let I" be a two population normal form game. We
denote the respective populations by W and F'. We say that a Pareto inefficient Nash
equilibrium Z = (Xw,Yr) € A" x AT is a poverty trap for the economy if

1. Xw is an evolutionary stable strategy against the field Yr, and it is at the same
time,

2. Xw is a local attractor for a dynamical system that represents the evolution of
the economy, as the system (4.9) does.

So, an economy is in a poverty trap, if for any initial distribution of workers,
every solution of the dynamical system representing the evolution of the economy,
define a trajectory converging to a poverty trap. The fact that an economy is or not
in a trap of poverty, depends exclusively of the distribution of the firms.

In our case, Xy = eps is a local attractor and (Xw,YFr) = (ens.en;) =
(0,1;0, 1) represents the poverty trap, where there are neither skilled workers nor
innovative firms. The economy is in a poverty trap, if PI < .

Therefore, the possibility to be in a poverty trap, for an economy of firms and
workers, depends on the field and on such structural characteristics, as costs of edu-
cation and incentives (or prizes) for skilled workers. Rationality alone, on the part of
individual agents, may not only prove insufficient to avoid it, but may actually drive
towards it. Thus, the only possibility for an economy to escape its fate, the poverty
trap where it is heading, and to jump onto a trajectory towards a high equilibrium is
to have its structural characteristics altered by intervention from outside. This can
be the task of a benevolent central planner.

4.8 Conclusion

Our main conclusion is that poverty trap is the result of structural conditions that
render rational for a worker not to acquire any skills. As the economy evolves in
a trajectory leading to the poverty trap, more firms tend, progressively, to be non
innovative and the absence of skilled workers induces to replace them with unskilled
ones, who however perform better when employed in non innovative firms. A proac-
tive policy maker wishing to help a less developed country to exit a poverty trap, can
implement policies to reduce the key threshold value 7 that we identified, in such
a way that the economy’s trajectory falls into the basin of attraction of a high equi-
librium. This policy’s aim may be realized by reducing educational costs, or else by
introducing incentives to innovative firms to increase prizes for skills. The closer a
country gets to that threshold, the more growth-enhancing becomes any investment
in education. On the other hand, policy differences are known to be among the
determinants of the differences in the degrees of development across countries and
over time. To avoid getting into a poverty trap, it is useless to appeal to rationality.
Rational behavior may be a source of high growth if and only if initial conditions
happen to lie outside the “wrong” basin of attraction.
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Chapter 5
Leadership Model

Leandro Almeida, José Cruz, Helena Ferreira, and Alberto A. Pinto

Abstract The Theory of Planned Behavior studies the decision-making mecha-
nisms of individuals. We construct a game theoretical model to understand the role
of leaders in decision-making of individuals or groups. We study the characteristics
of the leaders that can have a positive or negative influence over others’ behavioral
decisions.

5.1 Introduction

The main goal in Planned Behavior or Reasoned Action Theories (see Ajzen [1],
Baker [6]) is to understand and forecast how individuals turn intentions into behav-
iors. Almeida, Cruz, Ferreira and Pinto [5] created a game theoretical model,
inspired by the works of Cownley and Wooders [7,8] where specific individual char-
acteristics of the individuals, defined as taste type and crowding type are considered.
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The taste type determines the inner characteristics of an individual specifying his
welfare function. The crowding type of an individual determines his influence in the
welfare function of the other individuals. Following the works of Driskel, Salas and
Sternberg [9, 10, 13] on leadership, Almeida, Cruz, Ferreira and Pinto [2] presented
a new game theoretical model to study the influence of the leaders. This chapter
examines the theory of Planned Behavior from a game theoretical point of view and
the leaders impact in individual/group decision-making [2, 3, 5]).

5.2 Theory of Planned Behavior or Reasoned Action

The Theory of Planned Behavior or Reasoned Action can be summarized in Fig. 5.1
(see Ajzen [1]), where we can observe that external variables are divided in three
categories: intrapersonal associated to individual actions; interpersonal associated
to the interaction of the individual with others and; sociocultural associated to
social values. These external variables influence, especially, the intermediate vari-
ables which are also subdivided in three major categories: social norms, attitude,
and self-efficacy. The social norms can be the opinions, conceptions and judgments
that others have about a certain behavior attitudes are personal opinions in favor
or against a specific behavior and self-efficacy is the extent of ability to control
a certain behavior. These external and intermediate variables lead to a consequent
intention to adopt a certain behavior.

= Social Norms
* Attitude
« Self-Efficacy

Fig. 5.1 Theory of Planned Behavior
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5.3 Game Theoretical Model

Almeida et al. [5] constructed a game theoretical model, that we will describe. Let
S denote the set of all individuals. For each individual s € S, we distinguish two
types of characteristics: taste type and crowding type.

We associate to each individual s € S one taste type J(s) =t € T that
describes the individual’s inner characteristics, which are not always observable
by the other individuals. We also associate to each individual s € S one crowding
type €(s) = ¢ € C that describes the individual’s characteristics observed by
the others and that can influence the welfare of the others. In accordance with the
Theory of Planned Behavior or Reasoned Action, we associate the intrapersonal
external variables and the attitude and self-efficacy intermediate variables with the
taste type and the interpersonal and sociocultural external variables and the social
norms intermediate variable with the crowding type.

The individuals, with their own characteristics, can define a strategy 4 : S — G,
i.e., each individual s € S chooses the behavior/group to which he would like to
belong ¥ (s) taking into account his taste type and the others crowding type. Each
strategy ¢ corresponds to an intention in the Theory of Planned Behavior. Given a
behavior/group strategy ¢ : S — G, the crowding vector m(¥4) € (N€)? is the
vector whose components mé = mg (4) are the number of individuals in g that
have crowding type ¢ € C, i.e.

mé =H#{se€S:9(s)=gAnC(s)=c}.

We denote by s; . the individual s with taste type ¢ and crowding type c. The level
of welfare, or personal satisfaction, that an individual s; . acquires by belonging to
a group/behavior g € G with crowding vector m(¥), is measured by the utility
function u; » : G % (N€)P — R defined by

_ e gc' g
ut,c(g»m) = Vt,c + § : At,c me
c’'e¥

where (1) Vfc measures the satisfaction level that each individual s;  has in belong-

ing to a group/behavior g € G, (ii) A‘;{ ’Cc/ evaluates the satisfaction that each indi-
vidual s; . has with the presence of an individual with crowding type ¢ in g.

The group/behavior strategy 4* : S — G is a Nash Equilibrium group/behavior,
if given the choice options of all individuals, no individual feels motivated to change
his behavior/group, i.e its utility does not increase by changing his behavior/group
decision (see Pinto [12]).

The dictionary between the Game Theory and the Theory of Planned Behavior is
summarized in Figure 5.2 (see Almeida [4]).

We denote by S,¢) the group of all individuals s; . with the same taste type
t € T and the same crowding type ¢ € C. Let n(¢,c) be the number of indi-
viduals in S ). An interesting way to interpret S ) is to consider that n(z, ¢) is
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Fig. 5.2 Game Theoretical Model/Theory of Planned Behavior

the number of times that a single individual s; . has to take an action. In this case,
Af, ¥ > 0 can be interpreted as the individual positive reward by repeating the same
group/behavior choice ¢ € C, i.e., the individual s; . does not feel a saturation effect
by repeating the same choice. On the other hand, Aﬁ ¥ < 0 can be interpreted as the
individual negative reward by repeating the same group/behavior choice c € C,i.e.,
the individual s; . feels a saturation, boredom or frustration effect by repeating the
same choice.

5.4 Leadership in a Game Theoretical Model

A leader is an individual who can influence the others to choose a certain behav-
ior/group. We consider that the leader makes his behavior/group decision before
the others, and the others already know the leader’s decision before taking their
behavior/group decision. We study how the choice of the leader s, ./ can influence
the followers s, A choose the same behavior/group g as the leader, see [2, 3].

The leaders and the followers are characterized by the parameters («, P, L) and
we distinguish the following types:

e Altruistic and individualist leaders. The leader s, .1 values the behavior/group
g and can donate a part P to the followers. The altruistic leader is the one who
distributes a valuation to the followers of the behavior/group g, i.e. P > 0 and
the individualist leader is the one who gives a devaluation or debt to the followers
of the behavior/group g, i.e. P < 0.
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e Consumption or wealth creation by the followers. We define « as the parameter
of the consumption or wealth creation on the valuation of the good distributed by
the leader to the followers. Therefore, the new valuation of the followers Syf o
to choose the behavior/group g is given by

e _ e oaP

where I7tg, . corresponds to the previous valuation of the followers to choose

behavior/group g. There is wealth creation by the followers when P > 0 and
o > lorwhen P < 0and 0 < «a < 1. There is wealth consumption by the
followers when P > 0and 0 < o < 1 orwhen P <Oand o > 1.

o [Influential and persuasive leaders. The influence or persuasiveness of the leaders
sy 01 on the followers (t/, ¢/) is measured by the parameter L. We consider that

A5, =L

corresponds to the satisfaction that the followers have by choosing the same

1
behavior/group as the leader. Alternatively, we consider that Atg;c + = 0and

7
that the followers have a new valuation Vtg, of = Vtg/ — L when they choose

the behavior/group g’ € G \ {g} under the influence of the leader. If L < 0,
the followers do not like to choose the same behavior/group as the leader, but if
L > 0, the followers like to choose the same behavior/group as the leader.

We define the leader worst neighbors LW Ng (tf , ¢ ) of the individual s, fef in
choosing the behavior/group g by:

f ’ v
8,C g.c I e g.,c
tf,cf+ E Azf,cf n(t',c') if Atf’csz
crec, A%’ <o v'eT
tS S

LWNg(l‘f,Cf)Z g,c’ ’o g.c”

E zf,cf E n(t',c) if Azf,c/' <0
c’eC Ag/C <0 Vel

We define the leader best neighbors LBNg(t/, ¢/) of the individual s, s ./ by:

Z AgCCon(t c) if Aff”fzo

t’'eT
cECA/ >0

g.c g.c’ 1oy se 48c”
A5 c, + > A5Y s > on@. ) if ASE ;<0

c’eC Agf >0 t'eT

LBN,(t/.¢7) =

Let
gw = arg max LWNg(tf,cf)
{geG}
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and

LBN(t/,c’y= max LBNy(t' c/)
{g€G:g#gw}

Lemma 5.1. Let the leader s,i .1 choose the behavior/group g € G. If

o P

- +L>LBNt /Y= LWN,, ', ¢
n(tf,cf) ( ) gW( )

then G*(s,r .r) = gw, for every Nash equilibrium G*.

Inequality above gives a sufficient condition, in the value of the donated part P,
in the influence and persuasiveness L of the leader and, also, in the creation or
consumption of wealth « by the followers, implying that the followers choose the
same behavior/group as the leader.

Lemma 5.1 is proved in [2].

5.5 Conclusion

We defined a dictionary between Game Theory and the Theory of Planned Behav-
ior and we proposed the Nash equilibria as one of many, possible mechanisms of
transforming individual intentions in decisions. In this game theoretical model, we
studied how the characteristics of the leaders, can have a positive or negative influ-
ence over other individual’s behavioral decisions. In particular, we show that an
individualist leader might have to be more persuasive than an altruistic leader to
convince the followers to choose his behavior/group.
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Chapter 6
Lorenz-Like Chaotic Attractors Revised

Vitor Araijo and Maria José Pacifico

Abstract We describe some recent results on the dynamics of singular-hyperbolic
(Lorenz-like) attractors A introduced in [26]: (1) there exists an invariant foliation
whose leaves are forward contracted by the flow; (2) there exists a positive Lyapunov
exponent at every orbit; (3) attractors in this class are expansive and so sensitive
with respect to initial data; (4) they have zero volume if the flow is C 2 or else the
flow is globally hyperbolic; (5) there is a unique physical measure whose support
is the whole attractor and which is the equilibrium state with respect to the center-
unstable Jacobian; (6) the hitting time associated to a geometric Lorenz attractor
satisfies a logarithm law; (7) the rate of large deviations for the physical measure on
the ergodic basin of a geometric Lorenz attractor is exponential.

6.1 Introduction

In this note M is a compact boundaryless 3-manifold and .2"! (M) denotes the set
of C! vector fields on M endowed with the C! topology. Moreover Leb denotes
volume or Lebesgue measure: a normalized volume form given by some Riemannian
metric on M. We also denote by dist the Riemannian distance on M .
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The notion of singular hyperbolicity was introduced in [24, 26] where it was
proved that any C'! robustly transitive set for a 3-flow is either a singular hyperbolic
attractor or repeller.

A compact invariant set A of a 3-flow X € .2"1(M) is an attractor if there exists
a neighborhood U of A (its isolating neighborhood) such that

A=(X"U)

t>0

and there exists x € A such that X(x) # 0 and whose positive orbit {X’(x) : ¢ > 0}
is dense in A.

We say that a compact invariant subset is singular hyperbolic if all the sin-
gularities in A are hyperbolic, and the tangent bundle 7A decomposes in two
complementary DX'-invariant bundles E* @ E°“, where: E® is one-dimensional
and uniformly contracted by DX’; E€* is bidimensional, contains the flow direc-
tion, DX’ expands area along E* and DX’ | E* dominates DX’ | E® (i.e., any
eventual contraction in £ is stronger than any possible contraction in E€*), for all
t>0.

We note that the presence of an equilibrium together with regular orbits accu-
mulating on it prevents any invariant set from being uniformly hyperbolic, see
e.g. [13]. Indeed, in our 3-dimensional setting a compact invariant subset A is uni-
formly hyperbolic if the tangent bundle TA decomposes in three complementary
DX!-invariant bundles ES @ EX @ E*, each one-dimensional, EX is the flow direc-
tion, E® is uniformly contracted and E“ uniformly expanded by DX’, ¢ > 0. This
implies the continuity of the splitting and the presence of a non-isolated equilibrium
point in A leads to a discontinuity in the splitting dimensions.

In the study of the asymptotic behavior of orbits of a flow X € 21 (M), a
fundamental problem is to understand how the behavior of the tangent map DX
determines the dynamics of the flow X;. The main achievement along this line is
the uniform hyperbolic theory: we have a complete description of the dynamics
assuming that the tangent map has a uniformly hyperbolic structure since [13].

In the same vein, under the assumption of singular hyperbolicity, one can show
that at each point there exists a strong stable manifold and that the whole set is
foliated by leaves that are contracted by forward iteration. In particular this shows
that any robust transitive attractor with singularities displays similar properties to
those of the geometrical Lorenz model. It is also possible to show the existence
of local central manifolds tangent to the central unstable direction. Although these
central manifolds do not behave as unstable ones, in the sense that points on them
are not necessarily asymptotic in the past, the expansion of volume along the
central unstable two-dimensional direction enables us to deduce some remarkable
properties.

We shall list some of these properties that give us a nice description of the
dynamics of a singular hyperbolic attractor.
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6.2 The Geometric Lorenz Attractor

Here we briefly recall the construction of the geometric Lorenz attractor [1, 16], that
is the more representative example of a singular-hyperbolic attractor.

In 1963 the meteorologist Edward Lorenz published in the Journal of Atmo-
spheric Sciences [27] an example of a parametrized polynomial system of differen-
tial equations

X =a(y —x) a=10
y=rx—y-—xz r =28 6.1)
z=xy—bz b=28/3

as a very simplified model for thermal fluid convection, motivated by an attempt to
understand the foundations of weather forecast.

The origin 0 = (0,0,0) is an equilibrium of saddle type for the vector field
defined by (6.1) with real eigenvalues A;, i < 3 satisfying

Ay < A3 <0< —A3 <Ay (6.2)

(in this case A; ~ 11.83, A, &~ —22.83, A3 = —8/3).

Numerical simulations performed by Lorenz for an open neighborhood of the
chosen parameters suggested that almost all points in phase space tend to a chaotic
attractor, whose well known picture is presented in Fig. 6.1. The chaotic feature is
the fact that trajectories converging to the attractor are sensitive with respect to initial
data: trajectories of any two nearby points are driven apart under time evolution.

Lorenz’s equations proved to be very resistant to rigorous mathematical analysis,
and also presented serious difficulties to rigorous numerical study. Indeed, these two
main difficulties are:

conceptual:  The presence of an equilibrium point at the origin accumulated by
regular orbits of the flow prevents this attractor from being hyperbolic [8].

numerical:  The presence of an equilibrium point at the origin, implying that solu-
tions slow down as they pass near the origin, which means unbounded return
times and, thus, unbounded integration errors.

Moreover the attractor is robust, that is, the features of the limit set persist for all
nearby vector fields. More precisely, if U is an isolating neighborhood of the attrac-
tor A for a vector field X, then A is robustly transitive if, for all vector fields Y
which are C! close to X, the corresponding Y -invariant set

Ay () =Jr'W)

t>0

also admits a dense positive Y -orbit. We remark that the persistence of transitiv-
ity, that is, the fact that, for all nearby vector fields, the corresponding limit set is
transitive, implies a dynamical characterization of the attractor, as we shall see.
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Fig. 6.1 A view of the Lorenz attractor calculated numerically

These difficulties led, in the seventies, to the construction of a geometric flow
presenting a similar behavior as the one generated by (6.1). Nowadays this model
is known as geometric Lorenz flow. Next we briefly describe this construction, see
[1, 16] for full details.

We start by observing that under some non-resonance conditions, by the results
of Sternberg [31], in a neighborhood of the origin, which we assume to contain
the cube [—1,1]*> C R3, the Lorenz equations are equivalent to the linear system
(%,7,2) = (A1x, A2y, A3z2) through smooth conjugation, thus

X" (x0, y0,20) = (x0e*1’, yoet?', zge?3h), (6.3)
where A1 ~ 11.83, 1, ~ —22.83, A3 = —8/3 and (xo. yo.20) € R? is an arbitrary
initial point near (0, 0, 0).

Consider § = {(x,y,1) : [x| <1/2, |y| <1/2} and

ST ={(x.y.1) €S :x <0}, St ={(x,y,1)eS:x>0} and
S*=S"uUSt=5\¢ where €= {(x,y,1) €S :x =0}.

Assume that S is a global transverse section to the flow so that every trajectory
eventually crosses S in the direction of the negative z axis.
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Consider also ¥ = {(x,y,2) : |x| = 1} = ¥~ U ¥+ with ¥* = {(x,y,2) :

x = %1}
For each (xg, yo, 1) € S* the time 7 such that X (xg, yo, 1) € X is given by

1
T(xp) = N log | xol,

which depends on x¢ € S* only and is such that t(xp) — +00 when xo — 0. This
is one of the reasons many standard numerical algorithms were unsuited to tackle
the Lorenz system of equations. Hence we get (where sgn(x) = x/|x| for x # 0)

Ast A -2 -5
X% (x0,0.1) = (sgn(xo), yoe™?*,e*3%) = (sgn(xo). yolxo| *1.|xo| *1).

(6.4)
Since 0 < —A3 < A1 < —Ap, wehave 0 < a = —il <1< B = —%.

Let L : S* — X be such that L(x,y) = (y|x|ﬂ, |x|°‘) with the convention that
L(x,y) € T ifx > 0and L(x,y) € ¥~ if x < 0. Itis easy to see that L(S¥)
has the shape of a triangle without the vertex (%1, 0, 0). In fact the vertex (1,0, 0)
are cusp points at the boundary of each of these sets. The fact that0 <« <1 <
together with (6.4) imply that L(X%) are uniformly compressed in the y-direction.

From now on we denote by X* the closure of L(S¥). Clearly each line segment
S*N{x = xo} is taken to another line segment X’ N{z = zo} as sketched in Fig. 6.2.

The sets X' * should return to the cross section S through a composition of a
translation 7', an expansion E only along the x-direction and a rotation R around
W3 (o1) and W5 (03), where o; are saddle-type singularities of X’ that are outside
the cube [—1, 1]3, see [8]. We assume that this composition takes line segments X N
{z = zo} into line segments S N {x = x;} as sketched in Fig. 6.2. The composition
T o E o R of linear maps describes a vector field V in a region outside [—1, 1]3. The
geometric Lorenz flow X' is then defined in the following way: for each ¢ € R and

S+

x=-1

Fig. 6.2 Behavior near the Ay s
origin
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each point x € S, the orbit X*(x) will start following the linear field until £+ and
then it will follow V coming back to S and so on. Let us write & = {X!(x),x €
S,t € R™} the set where this flow acts. The geometric Lorenz flow is then the pair
(%, X") defined in this way. The set

A= =0 X'(S)

is the geometric Lorenz attractor.

We remark that the existence of a chaotic attractor for the original Lorenz system
was established by Tucker with the help of a computer aided proof (see [32]).

The combined effects of 7 o E o R and the linear flow given by (6.4) on lines
implies that the foliation .7 * of S given by the lines S N {x = x¢} is invariant under
the first return map F : S — S. In another words, we have

(%) for any given leaf y of F*, its image F(y) is contained in a leaf of 5.

The main features of the geometric Lorenz flow and its first return map can be
seen at Figs. 6.3 and 6.4.

The one-dimensional map f is obtained quotienting over the leaves of the stable
foliation .%* defined before (Fig. 6.5).

For a detailed construction of a geometric Lorenz flow see [8, 15].

As mentioned above, a geometric Lorenz attractor is the most representative
example of a singular-hyperbolic attractor [24].

6.3 The Dynamical Results

The study of robust attractors is inspired by the Lorenz flow example. Next we list
the main dynamical properties of a robust attractor.

VACY)

-1 0 1

Fig. 6.3 The global cross-section for the geometric Lorenz flow and the associated 1d quotient
map, the Lorenz transformation
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Fig. 6.4 The image F(S™) -

Fig. 6.5 Projection on / r

6.3.1 Robustness and Singular-Hyperbolicity

Inspired by the Lorenz flow example we define an equilibrium o of a flow X’ to be
Lorenz-like if the eigenvalues A, A5, A3 of DX(0) are real and satisfy the relation
at (6.2):

/\2</\3<0<—/\3</\1.

These are the equilibria contained in robust attractors naturally, since they are
the only kind of equilibria in a 3-flow which cannot be perturbed into saddle-
connections which generate sinks or sources when unfolded.

Theorem 6.1. Let A be a robustly transitive set of X € % Y(M). Then, either for
Y = X orY = —X, every singularity 0 € A is Lorenz-like for Y and satisfies
Wys(o) N A = {o}.

The fact that a robust attractor does not admit sinks or sources for all nearby
vector fields in its isolating neighborhood has several other strong consequences
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(whose study was pioneered by R. Maié in its path to solve the Stability Conjecture
in [21]) which enable us to show the following, see [26].

Theorem 6.2. A robustly transitive set for X € 2 V(M) is a singular-hyperbolic
attractor for X or for —X.

The following shows in particular that the notion of singular hyperbolicity is an
extension of the notion of uniform hyperbolicity.

Theorem 6.3. Let A be a singular hyperbolic compact set of X € 2 (M. Then
any invariant compact set I' C A without singularities is uniformly hyperbolic.

A consequence of Theorem 6.3 is that every periodic orbit of a singular hyper-
bolic set is hyperbolic. The existence of a periodic orbit in every singular-hyperbolic
attractor was proved recently in [12] and also a more general result was obtained
in [10].

Theorem 6.4. Every singular hyperbolic attractor A has a dense subset of periodic
orbits.

In the same work [10] it was announced that every singular hyperbolic attractor
is the homoclinic class associated to one of its periodic orbits. Recall that the homo-
clinic class of a periodic orbit O for X is the closure of the set of transversal inter-
section points of it stable and unstable manifold: H(Q) = Wu(O) th Ws(O). This
result is well known for the elementary dynamical pieces of uniformly hyperbolic
attractors. Moreover, in particular, the geometric Lorenz attractor is a homoclinic
class as proved in [11].

6.3.2 Singular-Hyperbolicity and Chaotic Behavior

Using the area expansion along the bidimensional central direction, which contains
the direction of the flow, one can show

Theorem 6.5. Every orbit in any singular-hyperbolic attractor has a direction of
exponential divergence from nearby orbits (positive Lyapunov exponent).

Denote by S(R) the set of surjective increasing continuous real functions & :
R — R endowed with the C° topology. The flow X; is expansive on an invariant
compact set A if for every € > 0 there is § > 0 such that if for some & € S(R) and
x,yeA
dist(X;(x), Xp)y) <8 forall ¢ eR,

then Xp(10) (V) € X[zg—e,19+¢](X), for some #y € R. A stronger notion of expansive-
ness was introduced by Bowen—Ruelle [13] for uniformly hyperbolic attractors, but
equilibria in expansive sets under this strong notion must be isolated, see e.g. [8].
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Komuro proved in [17] that a geometrical Lorenz attractor A is expansive. In
particular, this implies that this kind of attractor is sensitive with respect to initial
data, i.e., there is § > 0 such that for any pair of distinct points x,y € A, if
dist(X;(x), X;(y)) < é forall t € R, then x is in the orbit of y. In [9] this was fully
extended to the singular-hyperbolic setting.

Theorem 6.6. Let A be a singular hyperbolic attractor of X € 2 V(M). Then A
is expansive.

Corollary 6.1. Singular hyperbolic attractors are sensitive with respect to initial
data.

6.3.3 Singular-Hyperbolicity, Positive Volume and Global
Hyperbolicity

Recently a generalization of the results of Bowen—Ruelle [13] was obtained in [2]
showing that a uniformly hyperbolic transitive subset of saddle-type for a C 1T
flow has zero volume, for any o > 0. We denote the family of all flows whose
differentiability class is at least Holder-C ! by C .

Theorem 6.7. A C'* singular-hyperbolic attractor has zero volume.

This can be extended to the following dichotomy. Recall that a transitive Anosov
vector field X is a vector field without singularities such that the entire manifold M
is a uniformly hyperbolic set of saddle-type.

Theorem 6.8. Let A be a singular hyperbolic attractor for a C'* 3-dimensional
vector field X. Then either A has zero volume or X is a transitive Anosov vector
field.

6.4 The Ergodic Theory of Singular-Hyperbolic Attractors

The ergodic theory of singular-hyperbolic attractors is incomplete. Most results still
are proved only in the particular case of the geometric Lorenz flow, which automat-
ically extends to the original Lorenz flow after the work of Tucker [32], but demand
an extra effort to encompass the full singular-hyperbolic setting.

6.4.1 Existence of a Physical Measure

Another main result obtained in [9] is that typical orbits in the basin of every
singular-hyperbolic attractor, for a C? flow X on a 3-manifold, have well-defined
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statistical behavior, i.e., for Lebesgue almost every point the forward Birkhoff time
average converges, and it is given by a certain physical probability measure. It
was also obtained that this measure admits absolutely continuous conditional mea-
sures along the center-unstable directions on the attractor. As a consequence, it is a
u-Gibbs state and an equilibrium state for the flow.

Theorem 6.9. A C? singular-hyperbolic attractor A admits a unique ergodic phys-
ical hyperbolic invariant probability measure | whose basin covers Lebesgue
almost every point of a full neighborhood of A.

Recall that an invariant probability measure p for a flow X is physical (or SRB) if
its basin

1 T
B(n) = {x eM: Tli_r)nOOT/O V(X (x))dt = /wdu,vw e C'%M, [R)}

has positive volume in M .

Here hyperbolicity means non-uniform hyperbolicity of the probability measure
: the tangent bundle over A splits into asum .M = EY @ E ZX @ F; of three one-
dimensional invariant subspaces defined for y-a.e. z € A and depending measurably
on the base point z, where p is the physical measure in the statement of Theorem 6.9,
EZX is the flow direction (with zero Lyapunov exponent) and F;, is the direction with
positive Lyapunov exponent, that is, for every non-zero vector v € F, we have

1
lim —log||DX;(z) - v|| > 0.
 Jim - log [DX: (z) - vl >

We note that the invariance of the splitting implies that E* = E ZX @ F, whenever
F. is defined.

Theorem 6.9 is another statement of sensitiveness, this time applying to the whole
essentially open set B(A). Indeed, since non-zero Lyapunov exponents express that
the orbits of infinitesimally close-by points tend to move apart from each other, this
theorem means that most orbits in the basin of attraction separate under forward
iteration. See Kifer [18], and Metzger [23], and references therein, for previous
results about invariant measures and stochastic stability of the geometric Lorenz
models.

The u-Gibbs property of p is stated as follows.

Theorem 6.10. Let A be a singular-hyperbolic attractor for a C? three-
dimensional flow. Then the physical measure | supported in A has a disintegration
into absolutely continuous conditional measures [, along center-unstable sur-

duy
faces y such that ; my

is uniformly bounded from above. Moreover supp(u) = A.

Here the existence of unstable manifolds is guaranteed by the hyperbolicity of
the physical measure: the strong-unstable manifolds W*(z) are the “integral mani-
folds” in the direction of the one-dimensional sub-bundle F, tangent to F, at almost
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every z € A. The sets W"(z) are embedded sub-manifolds in a neighborhood of
z which, in general, depend only measurably (including its size) on the base point
z € A. The strong-unstable manifold is defined by

W' (@) ={y e M: lim dist(X:(y), X:(2)) = 0}

and exists for almost every z € A with respect to the physical and hyperbolic mea-
sure obtained in Theorem 6.9. We remark that since A is an attracting set, then
W"(z) C A whenever defined. The central unstable surfaces mentioned in the
statement of Theorem 6.10 are just small strong-unstable manifolds carried by the
flow, which are tangent to the central-unstable direction E°“.

The absolute continuity property along the center-unstable sub-bundle given by
Theorem 6.10 ensures that

hu (XY = /log|det(DX1 | E””)| du,

by the characterization of probability measures satisfying the Entropy Formula,
obtained in [20]. The above integral is the sum of the positive Lyapunov exponents
along the sub-bundle E£¢* by Oseledets Theorem [22,33]. Since in the direction £
there is only one positive Lyapunov exponent along the one-dimensional direction
F,, p-a.e. z, the ergodicity of p then shows that the following is true.

Corollary 6.2. If A is a singular-hyperbolic attractor for a C? three-dimensional
flow X, then the physical measure u supported in A satisfies the Entropy Formula

ha(x") = [ 10g IDX" | Fldu(o.

Again by the characterization of measures satisfying the Entropy Formula, we get
that u has absolutely continuous disintegration along the strong-unstable direction,
along which the Lyapunov exponent is positive, thus p is a u-Gibbs state [29]. This
also shows that p is an equilibrium state for the potential —log |DX' | F.| with
respect to the diffeomorphism X !. We note that the entropy 4, (X ') of X! is the
entropy of the flow X with respect to the measure  [33].

Hence we are able to extend most of the basic results on the ergodic theory of
hyperbolic attractors to the setting of singular-hyperbolic attractors.

6.4.2 Hitting and Recurrence Time Versus Local Dimension
Jor Geometric Lorenz Flows

Given x € M, let B,(x) = {y € M;d(x,y) < r} be the ball centered at x with
radius r. The local dimension of p at x € M is defined by
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1 B
r—>00 log r

if this limit exists. In this case p(By(x)) ~ rdn®),

This notion characterizes the local geometric structure of an invariant measure
with respect to the metric in the phase space of the system, see [35] and [28].

The existence of the local dimension for a Borel probability measure @ on M
implies the crucial fact that virtually all the known characteristics of dimension
type of the measure coincide. The common value is a fundamental characteristic of
the fractal structure of u, see [28].

Let xo € R3 and

X' (x.x0) = inf{r > 0 | X'(x) € Br(x0)}

be the time needed for the X -orbit of a point x to enter for the first time in a ball
B, (x0). The number tX ' (x, xo) is the hitting time associated to the flow X' and
B, (xo). If the orbit X’ starts at xq itself and we consider the second entrance time
in the ball

1/(x0) = inf{r € R : X' (x0) € Br(xo).3i.5.0.X" (x0) ¢ Br(x0)}

we have a quantitative recurrence indicator, and the number 7/ (x¢) is called the
recurrence time associated to the flow X! and B, (xp).
Now let X! be a geometric Lorenz flow, and y its X’-invariant SBR measure.
The main result in [15] establishes the following.

Theorem 6.11. For p-almost every x,

. log T (x, Xg)
111’1’1 _—

=d,(x¢) — 1.
r—0 —logr u(Xo)
Observe that the result above indicates once more the chaoticity of a Lorenz-like
attractor: it shows that asymptotically, such attractors behave as an i.d. system.
We can always define the upper and the lower local dimension at x as

d;(x) = lim sup M

log su(B
. d=(x) = lim inf 28HBD
rooo  logr K’ r

—00 logr

If d T (x) = d~(x) = d almost everywhere the system is called exact dimensional.
In this case many properties of dimension of a measure coincide. In particular, d
is equal to the dimension of the measure y: d = inf{dimg Z; u(Z) = 1}. This
happens in a large class of systems, for example, in C? diffeomorphisms having
non zero Lyapunov exponents almost everywhere, [28].

Using a general result proved in [30] it is also proved in [15] a quantitative
recurrence bound for the Lorenz geometric flow:
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Theorem 6.12. For a geometric Lorenz flow it holds

1 !
fim inf 287 _ -1, lim sup

log 7/ (x) —4t
r—0 —logr roo0  —logr

M -1, pw—ae..

where 1’ is the recurrence time for the flow, as defined above.

The proof of Theorem 6.11 is based on the following results, proved in [15].

Let F : S — S be the first return map to S, a global cross section to X through
W*(p), p the singularity at the origin, as indicated at Fig. 6.3. It follows that F
has a physical measure L F, see e.g. [34]. Recall that we say the system (S, F, ur)
has exponential decay of correlation for Lipschitz observables if there are constants
C > 0 and A > 0, depending only on the system such that for each 7 it holds

SC-B_M’

‘ [ e cnsan- [ e [ s

for any Lipschitz observable g and f with bounded variation,

Theorem 6.13. Let pur an invariant physical measure for F. The system
(S, F,ur) has exponential decay of correlations with respect to Lipschitz
observables.

We remark that a sub-exponential bound for the decay of correlation for a two
dimensional Lorenz like map was given in [14] and [1].

Theorem 6.14. ur is exact, that is, d,, . (x) exist almost every x € S.

Let xo € S and rrS (x, xo) be the time needed to O, enter for the first time in
B,(x0) NS = B, 5.

log 7 (x,X0)

log 7% (x,x0) __ d
—logr -

Theorem 6.15. lim,_,q = lim,_,¢ e wr (X0).

From the fact that the attractor is a suspension of the support of ur we easily
deduce the following.

Theorem 6.16. d, (x) = d, . (x) + 1.

We remark that the results in this section can be extended to a more general class
of flows described in [15]. The interested reader can find the detailed proofs in this
article.

6.4.3 Large Deviations for the Physical Measure on a Geometric
Lorenz Flow

Having shown that physical probability measures exist, it is natural to consider the
rate of convergence of the time averages to the space average, measured by the vol-
ume of the subset of points whose time averages stay away from the space average
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by a prescribed amount up to some evolution time. We extend part of the results on
large deviation rates of Kifer [19] from the uniformly hyperbolic setting to semi-
flows over non-uniformly expanding base dynamics and unbounded roof function.
These special flows model non-uniformly hyperbolic flows like the Lorenz flow,
exhibiting equilibria accumulated by regular orbits.

6.4.3.1 Suspension Semiflows

We first present these flows and then state the main assumptions related to the
modelling of the geometric Lorenz attractor.

Given a Holder-C! local diffeomorphism f : M \ . — M outside a volume
zero non-flat' singular set ., let X! : M, — M, be a semiflow with roof function
r: M\ — Rover the base transformation f, as follows.

Set M, = {(x,y) € M x[0,4+00) : 0 <y < r(x)} and X° the identity on M,,
where M is a compact Riemannian manifold. For x = xo € M denote by x, the
nth iterate " (xg) for n > 0. Denote S,{I(p(xo) = Z?;}) ¢(x;) for n > 1 and for
any given real function ¢. Then for each pair (x¢, s0) € X, and ¢ > 0 there exists a
unique 7 > 1 such that S, 7(x¢) < so + ¢ < Sy+17(x0) and define (see Fig. 6.6)

X" (x0.50) = (Xn. 50 + 1 — Spr(x0)).

The study of suspension (or special) flows is motivated by modeling a flow
admitting a cross-section. Such flow is equivalent to a suspension semiflow over the
Poincaré return map to the cross-section with roof function given by the return time
function on the cross-section. This is a main tool in the ergodic theory of uniformly
hyperbolic flows developed by Bowen and Ruelle [13].

R Yotrt=r(x2) _ )
Tyott—=r(x1) v "~ Yott! i
i N\ i i
| ‘ 4 P
D e e R e — ) i
7 I}
A X! (xo, Y():D
o 1
e I
& ]
X Xo8 i
7
1
i
\ 1
X4 \ iy=r’ (x)
\Y i
X! (x0, y03 i
U ( 0 yo)-'\_‘yzr2 (x) N

Fig. 6.6 The equivalence relation defining the suspension flow of f over the roof function r

! f behaves like a power of the distance to .7: || Df(x)|| ~ dist(x,.”)™# for some g > 0 (see
Alves—Aratijo [3,4] for a precise statement).
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6.4.3.2 Conditions on the Base Dynamics

We assume that the singular set . (containing the points where f is either not
defined, discontinuous or not differentiable) is regular, e.g., a submanifold of M,
and that f is non-uniformly expanding: there exists ¢ > 0 such that for Lebesgue
almost every x €¢ M

lim sup lS,,Ip()c) < —c where ¥ (x)=Ilog ”Df(x)_1 ||

n—>+oo 1

Moreover we assume that f has exponentially slow recurrence to the singular
set . i.e. forall € > O thereis § > 0 s.t.

1 1
lim sup — log Leb xeM:—S,,|logd3(x,,5”)| >e, <0,
n—>+oo 1 n

where dg(x, y) = dist(x, y) if dist(x, y) < § and dg(x, y) = 1 otherwise.

These conditions ensure [5] in particular the existence of finitely many ergodic
absolutely continuous (in particular physical) f-invariant probability measures
U1, ..., Lk wWhose basins cover the manifold Lebesgue almost everywhere.

We say that an f-invariant measure u is an equilibrium state with respect to the
potential log J, where J = |det Df|, if h,(f) = pu(logJ), that is if pu satisfies
the Entropy Formula. Denote by [ the family of all such equilibrium states. It is not
difficult to see that each physical measure in our setting belongs to E.

We assume that [E is formed by a unique absolutely continuous probability
measure.

6.4.3.3 Conditions on the Roof Function

We assume that r : M \ . — R7T has logarithmic growth near . there exists
K = K(¢p) > Osuch that’ r - yp(rs) < K - |10g ds (x,y)| for all small enough
8 > 0. We also assume that r is bounded from below by some r¢ > 0.

Now we can state the result on large deviations.

Theorem 6.17. Let X' be a suspension semiflow over a non-uniformly expanding
transformation f on the base M, with roof function r, satisfying all the previously
stated conditions.

Lety : M, — R be continuous, v = juxLeb! be the induced invariant measure
for the semiflow X' and A = Leb x Leb! be the natural extension of volume to the
space M. Then

3

2 B(., 8) is the §-neighborhood of .&.
3forany A C M, set v(A) = pu(r)™"! [ du(x) j;;mds 1a(x,5).
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N L
hmsup7logl ZE M, : 7/; v (X'(2) dt —v ()

T—oc0

>e} < 0.

6.4.3.4 Consequences for the Lorenz flow

Now consider a Lorenz geometric flow as constructed in Sect. 6.2 and let f be the
one-dimensional map associated, obtained quotienting over the leaves of the stable
foliation, see Fig. 6.3. This map has all the properties stated previously for the base
transformation. The Poincaré return time gives also a roof function with logarithmic
growth near the singularity line.

The uniform contraction along the stable leaves implies that the time averages of
two orbits on the same stable leaf under the first return map are uniformly close for
all big enough iterates. If P : § — [—1, 1] is the projection along stable leaves

Lemma 6.1. For ¢ : U D A — R continuous and bounded, € > 0 and ¢(x) =
for(x) V(x,t)dt, there exists ¢ : [—1,1] \ .¥ — R with logarithmic growth near .
such that {|%S,f(p — H,((p)| > 26} is contained in

p! ({|%S,{§ — (@) > e} U {%S,ﬂ logdists (y, .%)| > e}).

Hence in this setting it is enough to study the quotient map f to get information
about deviations for the Poincaré return map. Coupled with the main result we are
then able to deduce

Corollary 6.3. Let X be a flow on R? exhibiting a Lorenz or a geometric Lorenz
attractor with trapping region U. Denoting by Leb the normalized restriction of the
Lebesgue volume measure to U, W : U — R a bounded continuous function and |
the unique physical measure for the attractor, then for any given € > (0

1
lim sup T logLeb

T—o0

1 T
Zeu:’7/0 ¥ (X)) di — p(y)

>e§ < 0.

Moreover for any compact K C U such that iu(K) < 1 we have

1
limsup—logLeb({x eK:X'(x)eK,0<1t< T}) <o.
T—>+ooT

6.4.3.5 Idea of the Proof

We use properties of non-uniformly expanding transformations, especially a large
deviation bound recently obtained [6], to deduce a large deviation bound for the
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suspension semiflow reducing the estimate of the volume of the deviation set to the
volume of a certain deviation set for the base transformation.

The initial step of the reduction is as follows. For a continuous and bounded
v :M, - R T >0andz = (x,5) withx € Mand 0 < s < r(x) < oo, there
exists the lap number n = n(x,s,T) € N such that Syr(x) < s+ T < Sp417(x),
and we can write

T r(x) T+s—S,r(x)
[w(x’(z)) dt =[ v (X'(x,0)) dz+[ Y(X'(f"(x),0))dt
0 K] 0

r(f7 (x)) )
w3 [0

Jj=1

Setting ¢(x) = r(x) ¥(x,0)dt we can rewrite the last summation above as

Sne(x). We get the followmg expression for the time average

—/wxodr wm—lfwuwmwr
T+s— Snr(x)
—/ v (X (" (). 0)) dt

Writing I = I(x,s,T) for the sum of the last two integral terms above, observe
that forw > 0,0 <s <r(x)andn = n(x,s,T)
> a)}

>2} {(x s)e M, : I(x,s,T)>%}.

{(x,s)eM, ‘; Snp(x) + I(x,s, T)—%

is contained in

_ o)
n(x) )

The left hand side above is a deviation set for the observable ¢ over the base trans-
formation, while the right hand side will be bounded by the geometric conditions on
. and by a deviations bound for the observable r over the base transformation.

Analysing each set using the conditions on f and r and noting that for ©- and
Leb-almost every x € M and every 0 < s < r(x)

{(x,s) € M, :‘

Sar(x) T +s _ Spp1r(x) n(x,s, T) 1
< < SO ,
n — n = n T T—oo p(r)

we are able to obtain the asymptotic bound of the Main Theorem.
Full details of the proof are presented in [7].
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The interested reader can find the proofs of the results mentioned above in the
papers listed below, the references therein, and also in one of IMPA’s texts [8] for
the XXV Brazilian Mathematical Colloquium.
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Chapter 7
A Dynamical Point of View of Quantum
Information: Entropy and Pressure

A.T. Baraviera, C.F. Lardizabal, A.O. Lopes, and M. Terra Cunha

Abstract Quantum Information is a new area of research which has been growing
rapidly since last decade. This topic is very close to potential applications to the
so called Quantum Computer. In our point of view it makes sense to develop a
more “dynamical point of view” of this theory. We want to consider the concepts
of entropy and pressure for “stationary systems” acting on density matrices which
generalize the usual ones in Ergodic Theory (in the sense of the Thermodynamic
Formalism of R. Bowen, Y. Sinai and D. Ruelle). We consider the operator .# acting
on density matrices p € .#y over a finite N-dimensional complex Hilbert space
ZL(p) := Zf-;l tr(W;pW;*)VipV;*, where W; and V;,i = 1,2,...k are operators
in this Hilbert space. . is not a linear operator. In some sense this operator is
a version of an Iterated Function System (IFS). Namely, the V;()V* =: F;(.),
i = 1,2,...,k, play the role of the inverse branches (acting on the configuration
space of density matrices p) and the W; play the role of the weights one can consider
on the IFS. We suppose that for all p we have that Zle tr(W;pW;*) = 1. A family
W = {W;};i=1,. x determines a Quantum Iterated Function System (QIFS) Fw,
Fw ={AMN, Fi,Wi}i=1,..k-

7.1 Introduction

We will present a survey, and also some new results, of certain topics in Quantum
Information from a strictly mathematical point of view. This area is very close to
potential applications to the so called Quantum Computer [26]. In our point of view
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it makes sense to develop a more “dynamical point of view” of this theory. For
instance, Von Neumann entropy is a very nice and useful concept, but, in our point
of view, it is not a dynamical entropy. A nice exposition about this theory from
an Ergodic Theory point of view is presented in [3] (see also [4]). Our setting is
different. Part of our work is to justify why the concepts we present here are natural
generalizations of the usual ones in Thermodynamic Formalism.

We have to analyze first the fundamental concepts in both theories. It is well-
known that the so called Quantum Stochastic Processes have some special features
which present a quite different nature than the usual classical Stochastic Processes.
A main issue on QSP is the possibility of interference (see [1, 2, 8, 28, 31]). We
will analyze carefully Quantum Iterated Function Systems, which were described
previously by [22] and [29].

We refer the reader to [1] for the proofs of the results presented in the first part
of this exposition.

Density matrices play the role of probabilities on Quantum Mechanics. In this
work we investigate a generalization of the classical Thermodynamic Formalism
(in the sense of Bowen, Sinai and Ruelle) for the setting of density matrices.
We consider the operator . acting on density matrices p € .#x over a finite
N -dimensional complex Hilbert space

k
L(p) =Y tr(WipW)VipVi*,

i=1

where W; and V;,i = 1,2,...,k are operators in this Hilbert space. Note that .Z is
not a linear operator.

In some sense this operator is a version of an Iterated Function System (IFS).
Namely, the V; (.) Vl* =: F;(),i =1,2,...,k, play the role of the inverse branches
(acting on the configuration space of density matrices p) and the W; play the role
of the weights one can consider on the IFS. We suppose that for all p we have that
Zf-czl tr(W; pW;*) = 1. This means that £z, is a normalized operator.

A family W := {W;};=,.. r determines a Quantum Iterated Function System
(QIFS) Zw,

.....

Fw ={MN,F;, W;}i=1,. k

We want to consider a new concept of entropy for stationary systems acting on
density matrices which generalizes the usual one in Ergodic Theory. In our setting
the V;,i = 1,2,...,k are fixed (i.e. the dynamics of the inverse branches is fixed
in the beginning) and we consider the different families W;, i = 1,2,...,k, (also
with the attached corresponding eigendensity matrix py ) as possible Jacobians (of
“stationary probabilities”).

It is appropriate to make here a remark about the meaning of ‘“stationarity”
for us. In Ergodic Theory the action of the shift o in the Bernoulli space 2 =
{1,2,...,k}N with k symbols is well understood. The concept of stationarity for a
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Stochastic Process (where the space of states is S = {1, 2, ..., k}) is defined by the
shift-invariance for the associated probability P in the Bernoulli space (the space of
paths). Shannon—Kolmogorov entropy is a concept designed for stationary probabil-
ities. When the probability P is associated to a Markov chain, this entropy is given
by

N
H(P):=— Y pipijlog pij.
ij=1
where P = (p;;) describes the transition matrix, and p; the invariant probabil-
ity vector, i, j = 1,2,...,k. This is the key idea for our definition of stationary

entropy.

Thermodynamic Formalism and the Ruelle operator for a potential 4 : 2 — R
are natural generalizations of the theory associated to the Perron theorem for positive
matrices (see [30]) (this occurs when the potential depends on only the first two
symbols of w = (wy,wz,ws,...) € £2). We will analyze the Pressure problem for
density matrices under this last perspective.

The main point here (and also in [1,2, 18, 20]) is that in order to define Kol-
mogorov entropy one can avoid the use of partitions, etc. We just need to look
the problem at the level of Ruelle operators (which in some sense captures the
underlying dynamics).

Given a normalized family W;, i = 1,2,...,k, a natural definition of entropy,
denoted by hy (W), is given by

(W, Vipw V' W,-*))

(Wi ) ]
erW pw W ; (W,V,pWV W; )10 ( tr(V; pw V¥

tr(Vipw Vi)

where, p denotes the barycenter of the unique invariant, attractive measure for the
Markov operator ¥ associated to %y . We show that this generalizes the entropy of
a Markov System. This will be described later on this work.

A different definition of entropy for density operators is presented in [2, 7].
There are examples where the values one gets from these two concepts are different
(see [2]).

We also want to present here a concept of pressure for stationary systems acting
on density matrices which generalizes the usual one in Ergodic Theory.

In addition to the dynamics obtained by the V;, which are fixed, a family of
potentials H;,i = 1,2,...,k induces a kind of Ruelle operator given by

k

ZLu(p) =Y tr(HipH)VipV;* (7.1)
i=1

We show that such operator admits an eigenvalue 8 and an associated eigenstate
pg, that is, one satisfying Ly (pg) = Bpg.
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The natural generalization of the concept of pressure for a family H;, i =
1,2,...,k is the problem of finding the maximization on the possible normalized
families W;,i = 1,2,...,k, of the expression

k
hy W)+ 3 log (r(H, o H)er(V pra V) ) (W, ow W)
j=1

We show a relation between the eigendensity matrix pgy for the Ruelle operator
and the set of W;, i = 1,2, ..., k, which maximizes pressure. In the case each V;,
i =1,2,...,k,is unitary, then the maximum value is log .

Our work is inspired by the results presented in [22] and [29]. We would like to
thank these authors for supplying us with the corresponding references.

We point out that completely positive mappings (operators) acting on density
matrices are of great importance in Quantum Computing. These operators can be
written in the Stinespring—Kraus form. This motivates the study of operators in the
class we will assume here, which are a generalization of such Stinespring—Kraus
transformations.

The initial part of our work is dedicated to present all the definitions and concepts
that are not well-known (at least for the general audience of people in Dynamical
Systems), in a systematic and well organized way. We present many examples and
all the basic main definitions which are necessary to understand the theory. However,
we do not have the intention to exhaust what is already known. We believe that
the theoretical results presented here can be useful as a general tool to understand
problems in Quantum Computing.

Several examples are presented with all details in the text. We believe that this
will help the reader to understand the main issues of the theory.

In order to simplify the notation we will present most of our results for the case
of two by two matrices.

In Sects.7.2 and 7.3 we present some basic definitions, examples and we show
some preliminary relations of our setting to the classical Thermodynamic For-
malism. In Sect. 7.4 we present an eigenvalue problem for non-normalized Ruelle
operators which will be required later. Some properties and concepts about density
matrices and Ruelle operators are presented in Sects. 7.6 and 7.7. In Sect. 7.10 we
introduce the concept of stationary entropy for measures defined on the set of den-
sity matrices. In Sect. 7.11 we compare this definition with the usual one for Markov
Chains. Section 7.12 aims to motivate the interest on pressure and the capacity-cost
function. The Sects.7.13, 7.14 and 7.15 are dedicated to the presentation of our
main results on pressure, important inequalities, examples and its relation with the
classical theory of Thermodynamic Formalism.

In the paper “A dynamical point of view of Quantum Information: Discrete
Wigner measures”, published in this volume, we consider the discrete Wigner
measure, in which part of the analysis described is related to QIFS.

This work is part of the thesis dissertation of C. F. Lardizabal in Prog. Pos-Grad.
Mat. UFRGS (Brazil) [16].
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7.2 Basic Definitions

Let My (C) the set of complex matrices of order N. If p € My (C) then p* denotes
the transpose conjugate of p. We consider in CV the .#? norm. A state (or vector)
in CV will be denoted by v or |v), and the associated projection will be written

[¥) (] Define

Hy ={p e Mn(C):p*=p}

PAHN ={p e Ay :(py.¥) =0,Vy € CV}

MMy ={pe PN tr(p) =1}

Py ={pety:p=Y)Yl.y eCN (yly) =1}

the space of hermitian, positive, density operators and pure states, respectively. Den-
sity operators are also called mixed states. Any state p, by the spectral theorem, can
be written as

k
p=>_ pilvi)(il. (7.2)
i=1
for some choice of p;, which are positive numbers with ) *; p; = 1, and ¥;, which
have norm one and are orthogonal.
The set Py is the set of extremal points of .#, that is, the set of points which
can not be decomposed as a nontrivial convex combination of elements in .Zx .

Definition 7.1. Let G; : A4y — AN, pi : #N — [0,1],i = 1,...,k and such
that ) ; pi(p) = 1. We call

IN ={lNn,Gi,pi i =1,...,k} (7.3)

a Quantum Iterated Function System (QIFS).

Definition 7.2. A QIFS is homogeneous if p; and G; p; are affine mappings, i =
1,... k.

Suppose that the QIFS considered is such that there are V; and W; linear maps,
i =1,....k with >F_ W*W, = I such that

_ Vv
Gi(p) = W (7.4)
and
pi(p) = tr(W; pW;") (7.5)

Then we have that a QIFS is homogeneousif V; = W;,i = 1,... k.
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Now we can define a Markov operator ¥ : A4 (MN) — M (M),

k
B =Y [G gy PO,

i=1

where .# (.# ) denotes the space of probability measure over .#. We also define
A M — My,

k
A(p) := Zpi (p)Gi(p)

i=1
The operator defined above has no counterpart in the classical Thermodynamic
Formalism. We will also consider the operator acting on density matrices p.

k
L(p) =) qi(p)VipVi".
i=k

If for all p we have ch: « 9i (p) = 1, we say the operator is normalized.

In the normalized case, the different possible choices of ¢;,i = 1,2,...,k,
(which means different choices of W;,i = 1,2,...,k) play here the role of the
different Jacobians of possible invariant probabilities (see [23] II. 1, and [20]) in
Thermodynamic Formalism. In some sense the probabilities can be identified with
the Jacobians (this is true at least for Gibbs probabilities of Holder potentials [25]).
The set of Gibbs probabilities for Holder potentials is dense in the set of invariant
probabilities [19].

We are also interested on the non-normalized case. If the QIFS is homogeneous,
then

Alp) =) VipV)* (7.6)
i
Theorem 7.1. [29] A mixed state pg is A-invariant if and only if

po =[ pdu(p). (1.7)
AN

for some V -invariant measure |Li.

In order to define hyperbolic QIFS, one has to define a distance on the space of
mixed states. For instance, we could choose one of the following:

D(p1.p2) = Vtr[(p1 — p2)?]

D(p1.p2) = try/(p1 — p2)?

Dipr. p2) = /201 = 1r{(0} p201?)1/2]}
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Such metrics generate the same topology on .#. Considering the space of mixed
states with one of those metrics we can make the following definition. We say that a
QIFS is hyperbolic if the quantum maps G; are contractions with respect to one of
the distances on .#y and if the maps p; are Holder-continuous and positive, see for
instance, [22].

Proposition 7.1. If a QIFS (7.3) is homogeneous and hyperbolic the associated
Markov operator admits a unique invariant measure (L. Such invariant measure
determines a unique A-invariant state p € My, given by (7.7).

See [22,29] for the proof.

7.3 Examples of QIFS

Example 7.1. 2 = My, k = 2, p1 = po = 1/2,G1(p) = U1pU;, Ga(p) =
U,pU; . The normalized identity matrix p» = I /N is A-invariant, for any choice
of unitary U; and U,. Note that we can write

P*ZX%JWM@)

where the measure p, uniformly distributed over Zy, is ¥ -invariant. &
In the example described below we use Dirac notation for the projections.

Example 7.2. We are interested in finding the fixed point p for A in an example for
the case N = 2 and k = 3.

Consider the bits |0 >= (0, 1) and |1 >= (1, 0) (the canonical basis). The states
p are generated by |0 >< 0], |0 >< 1|, |1 >< 0| and |1 >< 1]|. Take V; = [ and
V5 such that |0 >— |0 > and |1 >— |0 >. Consider V3 such that |0 >— |1 > and
|l > |1 >.Thatis, V2 = |0 >< 0|+ |0 >< 1|and V3 = |l >< 0| + |1 >< 1].
Therefore, V' = [0 >< 0] 4 |1 >< 0] and VJ* = [0 >< 1| + |1 >< 1|. Suppose
pi = pi,i = 1,2,3, are such that Zi pi = 1 (in this case, each p; is independent
of p). Therefore, we consider the operator . and look for fixed points p. Suppose

P = pool0 >< 0| + po1|0 >< 1| + p1o|l >< 0] + p11]1 >< 1|

Then
(VipVi*)

Alp) = E:m()mypvﬂ

_ ip' |:Vi((POO|0 >< 0] + po1]0 >< 1] + pro|l >< 0] + p11]1 >< 1|))Vi*}
- l

= (Vi pV;*)

Let us compute first the action of the operator V5|0 >< 0|V".
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Note that (V2]0 >< 0]V;5)|0 >= V»|0 >< 0[(|0 > +|1 >) = V3|0 >= |0 >
and (V2|0 >< 0]V;)|1 >= V»(0) = 0. More generally

pVy = (p00|0 >< O] + po1|0 >< 1] + p1o|1 >< O] + p11]1 >< 1)

(0 >< 0]+]1 >< 0]) = poo|0 >< 0]+ 01|0 >< 0]4+p10]1 >< 0]+ p11|1 >< 0.

Therefore,

VapVs = (10 >< 0] + 0 >< 1|)(p00|0 >< 0] 4+ po1]0 >< 0] + p1o|1 >< 0]
+p11]1 >< 0]) = (poo + po1 + P10 + p11)|0 >< 0]
= (1 4+ 2Re(p01))[0 >< 0],

because p has trace 1 = pgo + p11. Note that tr(V2pVy*) = (1 + 2Re(po1)).
A similar result can be obtained for V3. Proceeding in the same way we get that

A(p) = p1(poo]0 >< 0] + po1]0 >< 1] + p1o|l >< 0] + p11]1 >< 1J)
+p2|0 >< 0] + p3|l >< 1].

The equation
Alp) =p = p()()|0 >< 0| +p()1|0 >< 1| +p1()|1 >< 0| +p11|1 >< 1|
means

P1poo + p2 = pPoo,
P1Po1 = po1,
P1p1o = P10,

pip1tL + p3 = P11

If p;1 # 0, then po;y = p1o = 0. Finally, if p; # 1, then pgo = lle and
o1l = lle and the fixed point is
p=-L2 j0s<ol+ L2 j1><1]
1—p1 I —p1
o

We recall that a mapping A is completely positive (CP) if A ® I is positive for
any extension of the Hilbert space considered //y — %y ® ¢E. We know that
every CP mapping which is trace-preserving can be represented (in a nonunique
way) in the Stinespring—Kraus form
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k k
Alp) =) VipVi*, Y ViVi=1,
i=1 i=1

where the V; are linear operators. Moreover if we have ZI;-ZI ViVF = I, then
A(I/N) = I/N.This is the case if each of the V; are normal.

We call a unitary trace-preserving CP map a bistochastic map. An example of

such a mapping is

k
Au(p) = Z piUipU*,
i=1

where the U; are unitary operators and ) ; p; = 1. Note that if we write G;(p) =
UipU/*, then example 7.1 is part of this class of operators. For such operators we
have that p, is an invariant state for Ay and also that §,,, is invariant for the Markov
operator Py induced by this QIFS.

We will present a simple example of the kind of problems we are interested
here, namely eigenvalues and eigendensity matrices. Let 7% be a Hilbert space of
dimension N. As before, let .# be the space of density operators on %% . A natural
problem is to find fixed points for A : AN — #n,

k
Alp) =) VipVi*.
i=1

In order to simplify our reasoning we fix N = 2 and k = 2. Let

V1=(v1 Vz) V2:(W1 Wz) p:(Pl Pz)
v3va ) w3 wy ) P2 pa)
where V7 and V> are invertible and p is a density operator. We would like to find p

such that
VipVi* + VapVs' = p. (7.8)

Below we have an example where the matrices V; are not real.

Example 7.3. Let

e (7 ) - (0 f)

where k,l € R, p € (0,1). Then V*Vi + V,*V, = I. A simple calculation shows
that pp = 0, and then
_(a ©
P= (0 1— 6])

is invariant to A(p) = VipV|* + VapVyr, forg € (0, 1). &
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Now we make a few considerations about the Ruelle operator .Z defined before.
In particular, we show that Perron’s classic eigenvalue problem is a particular case
of the problem for the operator . acting on matrices. Let

00 00
1= (o) = (0 ) 2= (nn)
P10 0 0 p11 03 P4

4
Z(p) =Y _ai(p)VipV;*

i=1

Define

We have that £ (p) = p implies p, = 0 and
apy + bps = p1 (7.9)

cp1 + dps = ps4 (7.10)
where
a = q1pg0:b = q2p41. ¢ = q3pio.d = qapi,
Solving (7.9) and (7.10) in terms of p; gives

b 1—-d
P4, p1 =

p1 = P4

1—a

that is,

b 1—d
= (7.11)
1—a c

which is a restriction over the ¢;. For simplicity we assume here that the g; are
constant. One can show that

223, 0 1-q4p7, 0
— s 5 —— 5
o= 42001 q1P5011 ) — 1 q4p71+43P7o )
1—
11700 P 75 [0 N
0 q1p 0 43P

1—q4p?,+43p3,
(7.12)

q2p3—41 P30 +1

Now let

P:ZI/IZ (P00P01)7
i

P1o P11

be a column-stochastic matrix. Let 7 = (71, 72) such that Pw = m. Then

1—
T = ( Po1 7 Poo ) (7.13)
Po1 — poo + 1 po1 — poo + 1
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Comparing (7.13) and (7.12) suggests that we should fix

1 1 1 1
q1 = —,42 = —,43 = —, 44 = — (7.14)
Poo Po1 Pio P11

Then the nonzero entries of p are equal to the entries of 7 and therefore we associate
the fixed point of P to the fixed point of some . in a natural way. But note that
such a choice of g; is not unique, because

1 —q1p2 1 -
g = —NPo0 . " 43P10Por (7.15)

Po1P1o p%l

for any ¢, g3 also produces p with nonzero coordinates equal to the coordinates
of .
Now we consider the following problem. Let

hoo O 0 hoy 00
Vi = Vo = V3=
! (00)2 (00 >\ 10
00 p1 ,02)
Vy = ,H = Vi,p =
) (Ohu) Xl: P (P3p4
Define
4
ZL(p) =) aiVipVi,
i=1
where g; € R. Assume that /;; € R, so we want to obtain A such that Z(p) = Ap,
A # 0, and A is the largest eigenvalue. With a few calculations we obtain p, =

p3 =0,
q1h30p1 + q2hg pa = Ap

q3hiop1 + qahiipa = Aps

that is,

apy + bps = Apy (7.16)

cp1 + dps = Apa, (7.17)
with

a = qihgo. b = q2hgy.c = qshiy.d = qah3,
Therefore a ,
()= (52)

0  pa 0 pa

and
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Solving for A, we obtain the eigenvalues

PR
A:a—i—dié‘_a—i—di\/(d a)? + 4bc

2 2 2 2
1
= 5(611}130 +qah; £ \/(‘14}1%1 —q1he)* + 4‘12‘13}1%1}1%0)’

where

t=+/(d—-a)?+4bc = \/(q4h%1 —q1h3,)* + 4q2q3h3, h3,

and the associated eigenfunctions

—d+ 2b
p= e £p4 0 _ [ a=azgrs O
0 P4 0 P4

But p; + p4 = 1 so we obtain

( a—d=+¢ 0 )
—_ | a—d*i+2c
b= 0 2c

a—d+i+2c¢
q1 h(z)O—q4h%1 :|:§

0
h2 —qah2 £t+2q3h2
q1hpo—qahi; £E+243h7, o2 (7.18)
0 4317g
q1hgy—qah? £L+2q3h3,
that is,
—2b
_ | a—2b—dTF¢ 0
o= 0 a—dT¢
a—2b—dTF¢
_2‘12}’%1 0
qlh(2)0_2q2h(2)1_q4h%1:|:§
0 a1hgo—gaht, L (7.19)
41h(2)0—242h(2)1—q4h%1:F§
Therefore we obtained that pq, ps, 41, ..., q4, A are implicit solutions for the set

of (7.16)—(7.17). Recall that in this case we obtained p, = p3 = 0.
Now we consider the problem of finding the eigenvector associated to the
dominant eigenvalue of H. The eigenvalues are

1
A= E(hoo +h11 + \/(hoo —]’111)2 + 4'hOlth)
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Then we can find v such that Hv = Av from the set of equations
hoovi + ho1va = Avy (7.20)

hiovi + hi11va = Avy (7.21)

which determine vy, v, A implicitly. Note that if we set

1 1 1 1
ql :_’q2:_’q3 :_7q4:_
Poo Po1 Pio P11

we have that the set of (7.16)—(7.17) and (7.20)—(7.21) are the same. Hence we
conclude that Perron’s classic eigenvalue problem is a particular case of the problem
for . acting on matrices. <

7.4 A Theorem on Eigenvalues for the Ruelle Operator

The following proposition is inspired in [25]. We say that a hermitian operator P :
V — V on a Hilbert space (V, (-)) is positive if (Pv,v) > 0, for all v € V, denoted
P > 0. Consider the positive operator L,y : P ANy — P AN,

k
Lwy(p) =Y r(WipW)VipV;* (7.22)

i=1
We have the following result:

Proposition 7.2. [1] There is p € M and B > 0 such that Lw,v (p) = Bp.

7.5 Vector Integrals and Barycenters

We recall here a few basic definitions. For more details, see [22] and [29]. Let X be
a metric space. Let (V, +, -) be a real vector space, and 7 a topology on V. We say
that (V, +, -; t) is a topologic vector space if it is Hausdorff and if the operations
+ and - are continuous. For instance, in the context of density matrices, we will
consider V' as the Hilbert space % and X will be the space of density matrices
AN .

Definition 7.3. Let (X, X') be a measurable space, let u € M(X), let (V,+,-; 1)
be a locally convex space and let f : X — V. we say that x € V is the integral of

f in X, denoted by
X :=/ fdu
X
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if
U(x) = / Yo fdu,
X
forall ¥ € V*.

It is known that if we have a compact metric space X, V is a locally convex
space and f : X — V is a continuous function such that co f(X) is compact then
the integral of f in X exists and belongs to co f(X). We will also use the following
well-known result, the barycentric formula:

Proposition 7.3. [32] Let V be a locally convex space, let E C V be a complete,
convex and bounded set, and € M ' (E). Then there is a unique x € E such that

l(x) = leu,

foralll € V*.

7.6 Example: Density Matrices

In this section we briefly review how the constructions of the previous section adjust
to the case of density matrices.

Define V := J#y, VT := P # y (note that such space is a convex cone), and
let the partial order < on 5y be p < ¢ ifandonly if v — p > 0, i.e.,if y — p
is positive. Then

V.Vt e) = (Hy, PN, 17),

is a regular state space [29]. Also, the set B of unity trace in VT is, of course, the
space of density matrices. Hence, B = .Z.

Let Z C V* be a nonempty vector subspace of V*. The smallest topology in V/
such that every functional defined in Z is continuous on that topology, denoted
by o(V, Z), turns V into a locally convex space. In particular, o(V, V*) is the
weak topology in V. If (V, || - ||) is a normed space, then o(V*, V) is called a
weak™ topology in V* (we identify V with a subspace of V**). We also have that
(C,t) = (PN, 1), where T is the weak™ topology (and which is equal to the
Euclidean, see [29]) is a metrizable compact structure. In this case we have that
Bc =BNC =.4n.

Definition 7.4. A Markov operator for probability measures is an operator P :
M'(X) — M'(X) such that

PApr + (1 =A)p2) = APy + (1= A) P,

for py, o € MY(X), A € (0,1).
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An example of such an operator is one which we have defined before and we denote
it : MY(X) - M(X),

k
(Vv)(B) = / pidv, (7.23)
,; F'(B) l
and we call it the Markov operator induced by the IFS .%. We will be interested in
fixed points for 7.
Define

mp(X) :={f : X — R :fis bounded, measurable}
and also Z : mp(X) — mp(X),

k
(% [)(x) = pi(x) f(F;(x))

i=1

Proposition 7.4. [29] Let f € mp(X) and p € M (X), then

k
() =@ fh = Y [ pilf o Fod

i=1
where ( f, 1) denotes the integral of [ with respect to .

Definition 7.5. An operator Q : V't — V¥ is submarkovian if

L O(x+y)=0x) +0()
2. Q(ax) = aQ(x)
3MQMI = llxll.

forallx,y € V¥, a > 0.

Every submarkovian operator Q : V™ — VT can be extended in a unique way to a
positive linear contraction on V.

Definition 7.6. Let P : V* — VT aMarkov operatorandlet P; : VT — Vi =
1,..., k be submarkovian operators such that P = Y; P;. We say that (P, { P;}*_,
is a Markov pair.

From [29], we know that there is a 1-1 correspondence between homogeneous IFS
and Markov pairs.

Example 7.4. In this example we want to obtain a probability n such that ¥ (n) = n.
Suppose a QIFS, such that

VipVi¥

J— . * * . — . —
pi(p) = tr(W; pW, ),ZWi Wi =1 F(p) = W

4
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fori = 1,...,k. Denote my(.#x) the space of bounded and measurable functions
in #y.Consider A : Ay — My,

1,0,

A(p) =) pi(p)Fi(p) = Ztr(WpW Vol

Suppose there exists a density matrix p which A-invariant. As we know, such state
is the barycenter of p which is # -invariant. Suppose ' u = u, then we can write

[ ran= [ ravu- 5 | piofEo)aute)

i=1

— VipV, i
Z/p,(p)f e )) 1
VipV*
= tr(W; pW;* -
Z/ Wi 1 (e )
Therefore, for any f € my(.#n), we got the condition

/ fdp = Z / v (WipWi) f ( (’VppVV*)) (7.24)

Let us consider a particular example where N = 2, k = 4, and

- (T ()

Vi = ( 0 0) Vi = (0 0 )
3 5570 4 0 Jpn)
in such way that the p;; are the entries of a column stochastic matrix P. Let 7 =

(71, 1) be a vector such that Pr = 7. A simple calculation shows that for p, the
density matrix such that has entries p;;, we have

0 p22 0
VipV* = [ PP VopV = P12 725
10Vy ( 0o o) V2P 0 0 (7.25)
VapVs = (O 0 ),V4pv4* - (O 0 ) (7.26)
0 p21p11 0 p22p22

and therefore

VipV* (10 VapVs' (10 (7.27)
r(VipV)  \00) tr(VapVsF)  \00 '
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V3,OV3* _ 00 V4IOV4* _ 00 (7.28)
r(VspVy)  \01) r(VapV)  \01 '
that is, the above values do not depend on p.
Define
10 00
= = 2
Px (Oo)uoy (01) (7.29)
and
n=mdp, + mbp, (7.30)

Note that the barycenter of 7 is

10 00y (m 0
Wzmm+mwzm(m0+m(m)=(5m)

For any mensurable set B we have

15 =3 [ 1o nedn =3 [ 15 (vt vty
i=1 i=1
(7.31)

We can now consider the following cases:

1. Suppose first that px, py € B. The using (7.25) and (7.26), one can show that

4
In(B) = puatr(Vips Vi) + paatr(Vipy V)
i=1

= (m1p11 +0) + (0 + map12) + (wy p21 + 0) + (0 + w2 p22)
=(m +m)=1,

because Pt = 7.
2. Suppose now that py € B, p, ¢ B

4
Yn(B) = mitr(VipxVi*) = m(p11 + 0+ pa1 +0) = m
i=1

3. Finally, suppose that p, ¢ B, p, € B

4
Vn(B) =Y mtr(VipyV;*) = m(0 + p1a + 0+ p22) = m2
i=1
4. Itis easy to see that if py, p, ¢ B then ¥ n(B) = 0.

The conclusion is that, ¥ n(B) = n(B) for any measurable set B.
Therefore, ¥ (1) = 1. &
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7.7 Some Lemmas for IFS

We want to understand the structure of A : AN — AN,

VipVi

Alp) = Zp,F, = Ztrmpw v

i=1 i=1

where V;, W; are linear, ) ; W*W; = I. Such operator is associated in a natural
way to a IFS which is not homogeneous. In this section we state a few useful proper-
ties which are relevant for our study. The following lemmas hold for any IFS, except
for lemma 7.3, for which a proof is known for homogeneous IFS only.

Lemma 7.1. Let {X, F;, pi }i=1
U oW =Wo A

r be a IFS, ¥ a linear functional on X. Then

.....

Corollary 7.1. Let . = (X, F;, pi)i=1,..k be a IFS and let py € X. Then
A(po) = po if and only if % (¥ (po)) = ¥ (po), for all ¥ linear functional.
Lemma 7.2. Let # = {X, F;, pi}i=1,..k be a IFS.

1. Let pg € X such that F;(po) = po, i = 1,...,k. Then ¥ 8,5, = 8p,-

2. Let po € X such that V85, = 8p,, then A(po) = po.

Lemma 7.3. Let {X, F;, pi}i=1,. k be a homogeneous IFS, A = ; p; F

.....

1. Let p, be the barycenter of a probability measure v. Then A(py) is the barycenter
of Vv, where V' is the associated Markov operator.

2. Let u be an invariant probability measure for V. Then the barycenter of U,
denoted by p,,, is a fixed point of A.

Example 7.5. Letk = N =2,

o (F1O) o 0 2P
1—01,2— _%50 P

Wi = (1/2)I, W, = (+/3/2)1. Then
VipV, i
tr(VipV;¥)

3 Vz,OV* 1 3 Vz,OV*
VoV Ly 3 e
41tr(VapVy) 4 43+ o)

A(p)

> pi(p)Fi(p) = Ztr(WpW y—PYi

1 *
= ZVIPV1 +

induces a IFS and it is such that pg = %|O) (0] + %|1)(1| is a fixed point, with
Fi(po) = F2(po) = po. We can apply lemma 7.2 and conclude that §,, is an
invariant measure for the Markov operator ¥ associated to the IFS determined by
pi and F;. <&
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The following lemma, a simple variation from results seen in [29], determines
reasonable conditions that we will need in order to obtain a fixed point for .Z from
a certain measure which is invariant for the Markov operator 7.

Lemma 7.4. Let {#n, F;, pi}i=1,..k be an IFS which admits an attractive invari-
ant measure [ for V. Then lim, o0 A" (00) = py, for every po € Mn, where p,,
is the barycenter of L.

7.8 Integral Formulae for the Entropy of IFS

Part of the results we present here in this section are variations of the results pre-
sented in [29]. Let (X, d) be a complete separable metric space. Let (V, VT, ¢e) be a
complete state space, B = {x € V* :e(x) = 1} and F = (X, F;, pi)i=1....k the
homogeneous IFS induced by the Markov pair (A, {A,-}f-‘zl). Let I = {1,...,k}
Letn € N,v€ I}, i € Ix. Define F; := F; o F, and

oy | pi(Fx)pu(x) if p(x) #0
Pix) = { 0 otherwise (7.32)

Proposition 7.5. Letn € N, f € mp(X), x € X. Then

Z" f)(x) =Y pu(x) f(F(x))

n
S

Proposition 7.6. Let x € B, n € N. Then

A" (x) = ) pux) Fy(x).

n
el

Proposition 7.7. Let 7 be a IFS and let g : B — R. Then forn € N,

1. If g is concave (resp. convex, affine) then %4"g < g o A" (resp. #"g > g o A",
wU"g =goA")

2. If X is a fixed point for A then the sequence (%" g)(X))neN is decreasing (resp.
increasing, constant) if g is concave (resp. convex, affine).
Also suppose that F is homogeneous. Then

3. If g is concave (resp. convex, affine), then % g is concave (resp. convex, affine).

Define n: Rt — R as

—xlogx ifx #0

1) =1 ifx =0



100 A.T. Baraviera et al.

Define the Shannon—Boltzmann entropy function as h : X — R,

k

h(x) =Y n(pi(x))

i=1

Let n € N. Define the partial entropy H, : X — RT as

Hy(x) ==Y n(p.(x)),

n
SV 4

forn > 1 and Hy(x) := 0, x € X. Define, for x € X,
J— . 1
HC(x) := limsup — H, (x),
n—oo N
the upper entropy on x, and
|
J(x) := liminf — H,(x),
n—oo n

the lower entropy on x. If such limits are equal, we call its common value the entropy
on x, denoted by 77 (x).

Denote by M 7 (X) the set of # -invariant probability measures on X. Let y €
M7 (X). The partial entropy of the measure i is defined by

Hy(p) = Z n({pue 1)),

n
el

forn > 1 and Hy(u) := 0.

Proposition 7.8. Let @ € M”(X). Then the sequences (%Hn (W))nen and
(Hp+1(n) — Hy())neN are nonnegative, decreasing, and have the same limit.

We denote the common limit of the sequences mentioned in the proposition above
as 7 (u) and we call it the entropy of the measure u, i.e.,

1
H() = nlgréo ;Hn () = nll)ngo(Hn+l(lL) — Hyp (1))

The following result gives us an integral formula for entropy, and also a relation
between the entropies defined before. We write S(u) := M7 (X)NLim(#" i) new,
where Lim(?” u),en is the convex hull of the set of accumulation points of
(V" 1W)neN, and Sg(u) is the set S(u) associated to the Markov operator induced
by the IFS .%. For the definition of compact structure and (C, t)-continuity, see [29].
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Theorem 7.2. [29] (Integral formula for entropy of homogeneous IFS, com-
pact case). Let (C,t) be a metrizable compact structure (V,V™¥, e) such that
(A, {A,-}f-‘zl) is (C, t)-continuous. Assume that pg € Bc := B N C is such that
A(po) = po. Then

Hipw) = #0) = [ v
b'e
foreachv € Sz (8,,), where Fc is the IFS F restricted to (Bc, 7).
The analogous result for hyperbolic IFS is the following.

Theorem 7.3. [29] Let F = (X, F;, pi)i=1....k be a hyperbolic IFS, x € X, i €
MY(X) an invariant attractive measure for 7. Then

H(x) = lim (Hpi1(x) — Hp(x))

and

H(x) = H(n) = /thu.

7.9 Some Calculations on Entropy

Let U be a unitary matrix of order mn acting on /%, ® 5%,. Its Schmidt decompo-
sition is
K
U=>Y JaVi* @ V2. K = min{m> n*}
i=1
The operators VI-A and ViB act on certain Hilbert spaces .74, and .7, respectively.
We also have that Zlel gi =1.Leto = p4g ® p2 = p4 ® I,/n and define

K
Alpa) = trp(UoU*) = Y qi Vi paVi™*
i=1

Recall that
trg(lai){az| ® |b1)(bz2|) := |a1){az|tr(|b1)(b2])

where |a1) and |a;) are vectors on the state space of A and |by) and |b,) are vectors
on the state space of B. The trace on the right side is the usual trace on B. A
calculation shows that if p2d = I,,/m, then A(p2d) = p4 and so A is such that
A(ly,/m) = I,/m and A is trace preserving.

Let .# be the homogeneous IFS associated to the V4, that is, p;(p) =

1

r(qiVAVA*), Filp) = (qiVipViA*)/ir(qi Vi pV,?*) and let po be a fixed



102 A.T. Baraviera et al.

pointof A = )", p; F;. Following [29], we have that py is the barycenter of "8,
n € N. By theorem 7.2, we can calculate the entropy of such IFS. In this case we
have

(po) = H(v) = / hdv, (7.33)
AN
where v e M7 (X) N Lim(¥" 80 )nen. &

Let # = (AN, Fi, pi)i=1...k be an IFS, A(p) = >, pi F;. Let % be the
conjugate of #'. By proposition 7.5,

@"h)(p) = Y p(p)h(F(p))

el (p)

and since h(p) = ZI;-ZI n(p;(p)), we have, fort = (iy,...,i), and every po €
AN,

hd V"8, :/ U"hd$,, (7.34)
AN AN

k
— /j{ S 20 Y pr(Fip) 1og py (Fi(p)dSn (1.35)

N el (p) j=1

k
=— Y plpo) Y pi(F(po))log p; (Fu(po)) (7.36)

eI}l (po) j=1
== D Pi(p0)pis(Fiypo) -+ pin (Fiyy (Fiy 5 -+~ (Fiy p0))))
tel}! (po)
(7.37)
k
x Y pj(Fi,(Fy,_, -+ (Fiy p0))))
j=1
1og p; (Fi, (Fi,_, -+~ (Fiy po)))) = (%" h)(po) (7.38)

Suppose A(pg) = po. We have by proposition 7.7, since h is concave, that
(" h)pen is decreasing, ZZ"h < h o A" and so

[ nd s < han oo = hipo). (739)
AN

for every n.



7 A Dynamical Point of View of Quantum Information 103

7.10 An Expression for a Stationary Entropy

In this section we present a definition of entropy which captures a stationary
behavior.

Let H be a hermitian operator and V;, i = 1,...,k linear operators. We can
define the dynamics F; : AN — M n:

Fi(p) =~ (740)

Let W;,i = 1,...,k be linear and such that Zf-;l W*W; = I. This determines
functions p; : AN — R,
pi(p) = tr(W; pW;*) (7.41)

Then we have Z —1 pi(p) = 1, for every p. Therefore a family W := {W;};_,
determines a QIFS %y,

.....

Fw ={MN, Fi, piti=1,. .k

with F;, p; given by (7.40) and (7.41).

Different choices of W;,i = 1,2...,k, as above, determine different invariant
probabilities.

We introduce the following definition of entropy

Definition 7.7. Suppose that we have a QIFS such that there is a unique attractive
invariant measure for the Markov operator ¥ associated to % . Let py be the
barycenter of such measure. Define

k * * * *

W, Vipw VAW W, Vipw VAW

hy (W) = EtW W§ (—’ ’)1 t(—’ ’)
V= 2 rhew ) rViow V) /S u Wi V)

(7.42)
Remember that by lemma 7.4, we have that py is a fixed point for
Ly (0) =) pi(p)Fi(p) = er(WmW ) (’V v 7 (7.43)
l

i=1 i=1

Lemma 7.5. We have that 0 < hy (W) < logk, for every family W; of linear oper-
ators satisfying Zle W*W; = I. Also, for any given dynamics V the maximum
can be reached.

We also define

k
Loy (p) =Y tr(WipW;)VipV* (7.44)
i=1
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Note that by the construction made on Sect.7.10, we have hy (W) = % h(pow),
where Z h(p) = 3_; pi(p)h(Fi(p)). %

Lemma 7.6. Let % = (My, F;, p;) be a QIFS, with F;, p; in the form (7.40) and
(7.41). Suppose there is py € Mn such that §,, is the unique ¥ -invariant measure.
Then £ (po) = po (7.43) and

[ ndsn, = w"hion) = o).
foralln € N. Besides, %" h(po) = % h(po) and so

hy (W) = %" h(po).

foralln € N.

Lemma 7.7. Let u be a ¥ -invariant attractive measure. Then if p,, is the barycen-
ter of i we have, for any p,

lim Z"h(p) = /@/hdu = [hdu < h(ou) (7.45)
n—>o00

Lemma 7.8. Let % = (N, F;, p;) be a QIFS, with F;, p; in the form (7.40)
and (7.41). Suppose that p is the unique point such that £ z(p) = p. Suppose that
Fi(p)=p,i=1,...,k. Then

U"h(p) = h(p).

n=1,2,..., and therefore hy (W) does not depend on n.

7.11 Entropy and Markov Chains

Let V;, W; be linear operators,i = 1,...,k, Zle Wl*W, = I. Suppose the V; are
fixed and determine a dynamics givenby F; : .4y — My,i = 1,...,k. Define

k
Pi={(pr.....px) i pi My —> RV i =1,k Y pi(p) = 1.Yp € 4N}

i=1
P :=P0{(p1,....px) : IW;i = 1,....k : pi(p) = tr(WipW;),
W; linear,ZWi*Wi =1}

4

Mp = { € M (My) : Ip € P such that ¥ = pu},
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where ¥, : M () — M (),

k
Vp()(B) 1= [ pidp
,-; FL(B)
Note that a family W := {W;};=, . x determines a QIFS Fy,
Fw ={AMN. Fi. piti=1,.k

As done in the previous section we introduce the following definition (which is
in some sense stationary)

k

k * 71/ *

tr(Wi pw W;*) tr(W;Vipw VX W)

hyWY: ==Y — 22 L 2N (W Vipw VW) 1 J
v (W) ; o Vipw V) 2 r( iViewV; j) 0g< o Vopw V) )
(7.46)

where as before, pyr denotes the barycenter of the unique attractive invariant
measure for the Markov operator ¥ associated to Fyy .

Let P = (pij)i,j=1,.,N be a stochastic, irreducible matrix. Let p be the
stationary vector of P. The entropy of P is defined as

N
H(P):=— Y pipijlog pi (7.47)
i,j=1

We consider an example which shows that the usual Markov chain entropy can be
realized as the entropy associated to a certain QIFS.

Example 7.6. (Homogeneous case, 4 matrices). Let N = 2,k = 4 and

V, = /Poo 0 V= 0 /Po1 ’
0 0 0 0

5= (o) %= (0 o)

ZV*V _ ( Poo + P10 0
— 0
l

Po1 + P11

Note that

and so ), V;*V; = I if we suppose that

P = (Poo Pm)
P1o P11

is column-stochastic. We have
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* poop1 0 * po1p4 0
= V- =
VipVy ( 0 0)’ 2PV> ( 0 0)

0 O 0 O
P 0 prop1 4P%a 0 p11pa

tr(VipVy") = poop1, tr(VapVy') = poipa

SO
tr(VapV3') = prop1. tr(VapVy) = p11pa

The fixed point of A(p) = Y_; VipV;* is

Do1 0
— 1—poo+
oy = POB Po1 - 100

1—poo+pro1

Let w = (711, m2) such that P = 7. We know that

1—
T = ( Po1 ’ Poo ) (7.48)
1 — poo + por 1— poo + po1

Then the nonzero entries of py are the entries of 7 and so we associate the fixed
point of P to the fixed point of a certain A in a natural way. Let us calculate iy (W).
Note that A defined above is associated to a homogeneous IFS. Then W; = 1},
i=1,...,kand

hy (W) = hv(V)

tr(Wi pv W;*) N tr(W;Vipy VW)
= W Vipy VEW*) 1
Z tr(V,OVV) Z ( JVipvVi j) og( tr(Vi,OVV,-*) )
tr(V; Vipy V;*VY)
==Y w(ViVipy V*V¥)lo L/ (7.49)
Lr(vvie vy e (S vm )

i,J

A simple calculation yields H(P) = hy(V), where H(P) is the entropy of P,
given by (7.47). This shows that the entropy of Markov chains is a particular case
of the entropy for QIFS defined before. <

In a similar way, we can reach the same conclusion for the nonhomogeneous
case, 4 matrices, and also for 2 matrices [1]. O

Lemma 7.9. Let V;; be matrices of order n,
Vij = J/Pijli){j

fori,j =1,...,n. Let
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Ap(p) == Z VijpVii
i,J
where P = (pij)i,j=1,...n- Then for all n, A, (p) = Apn(p).
Corollary 7.2. Under the lemma hypothesis, we have limy, oo A'p(p) = Az (p),

where w = limy,_,o, P" is the stochastic matrix which has all columns equal to the
stationary vector for P.

7.12 Capacity-Cost Function and Pressure

Recall that every trace preserving, completely positive (CP) mapping can be written
in the Stinespring—Kraus form,

k k
Alp) =) ViVt D ViV =1,

i=1 i=1

for V; linear operators. These mappings are also called quantum channels.

This is one of the main motivations for considering the class of operators (a
generalization of the above ones) described in the present work. These are natural
objets in the study of Quantum Computing.

Definition 7.8. The Holevo capacity for sending classic information via a quantum
channel A is defined as

n n
Cai= max S(Z piAG)) > piS(AG)) (7.50)
pi€MN i=1 i=1
where S(p) = —tr(plog p) is the von Neumann entropy. The maximum is, there-
fore, over all choices of p;,i = 1,...,n and density operators p;, for some n € N.

The Holevo capacity establishes an upper bound on the amount of information that
a quantum system contains [24].

Definition 7.9. Let A be a quantum channel. Define the minimum output entropy as
H™"(A) = r|13/f1§1 SAY){¥D)
Additivity conjecture We have that
Caiea, = Cay +Cyy
Minimum output entropy conjecture For any channels A; and A,

Hmin(Al ® Az) — Hmin(Al) + Hmm(Az)
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In [27], is it shown that the additivity conjecture is equivalent to the minimum
output entropy conjecture, and in [12] we obtain a counterexample for this last
conjecture. <

We will be interested here in a different class of problem which concern maxi-
mization (and not minimization) of entropy plus a given potential (a cost) [9,13, 14].

Definition 7.10. Let Mg be the set of invariant measures defined in the Sect. 7.11
and let H be a hermitian operator. For & € .ZF let p,, be its barycenter. Define the
capacity-cost function C : RT™ — R¥ as

C(a) := max {hw,y(pu) : tr(Hpy) < a} (7.51)
ME.//[F

The following analysis is inspired in [21]. There is a relation between the cost-
capacity function and the variational problem for pressure. In fact, let F : R™ — R™
be the function given by

FQ) = sup thwy(pu) — Atr(Hp,)} (7.52)
HeMF

We have the following fact. There is a unique probability measure vy € .ZF such
that

FA) = hw,y (pv,) — Atr(Hpy,)
Also, we have the following lemma:

Lemma 7.10. Let A <0, and & = tr(Hpy,). Then

C(a) = hW,V(on) (7.53)

7.13 Analysis of the Pressure Problem

Let V;, W; be linear operators, i = 1,...,k, with ), W*W; = I and let

k
Hp:= > HpH} (7.54)
i=1

a hermitian operator. We are interested in obtaining a version of the variational prin-
ciple of pressure for our context. We will see that the pressure will be maximum
whenever we have a certain relation between the potential H and the probability
distribution considered (and represented here by the W;). Initially we consider that
the V; are fixed. From the reasoning described below, it will be natural to consider
as definition of pressure the maximization among the possible stationary W; of the
expression
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k
hy(W) + Y log (tr(Hj ps H)ir(V;pg V;))tr(W,- pwW?)
j=1

Remember that different choices of W;,i = 1,2, ..., k, represent different choices
of invariant probabilities.
Our analysis uses the following important lemma.

Lemma 7.11. If ry,...,rx and q1,...,qx are two probability distributions over
I,...,k, suchthatr; >0, j =1,...,k, then

k k
—Y ajlogq; + ) qjlogr; <0
j=1 j=1

and equality holds if and only ifr; = q;, j = 1,... k.

For the proof, see [25].
The potential given by (7.54) together with the V; induces an operator, given by

k

ZLu(p) =Y tr(HipH)VipV;* (7.55)
i=1

We know that such operator admits an eigenvalue  with its associate eigenstate pg.
Then Ly (0g) = Bpp implies

k
> tr(Hipg H)Vipp Vi = Bpp (7.56)

i=1

In coordinates, (7.56) can be written as

k
> t(Hipg HY)(Vipg Vi) ji = B(pp) i (7.57)

i=1

Remark. Comparing the above calculation with the problem of finding an eigenvalue
A of a matrix A = (a;;), we have that (7.56) can be seen as the analogous of the
expression

IE4 =2l (7.58)

Above, the matrix A plays the role of a potential, £4 denotes the matrix with entries
e%/ and [; denotes the j-th coordinate of the left eigenvector / associated to the
eigenvalue A. In coordinates,

D ket =2l j=1,....k (7.59)
’ >
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From this point we can perform two calculations. First, considering (7.56) we
will take the trace of such equation in order to obtain a scalar equation. In spite
of the fact that taking the trace makes us lose part of the information given by the
eigenvector equation, we are still able to obtain a version of what we will call a basic
inequality, which can be seen as a quantum IFS version of the variational principle
of pressure. However, there is an algebraic drawback to this approach, namely, that
we will not be able to have the classic variational problem as a particular case of such
inequality (such disadvantage is a consequence of taking the trace, clearly). The
second calculation will consider (7.57), the coordinate equations associated to the
matrix equation for the eigenvectors. In this case we also obtain a basic inequality,
but now we will have the classic variational problem of pressure as a particular case.

An important question which is of our interest, regarding both calculations men-
tioned above, is the question of whether it is possible for a given system to attain
its maximum pressure. It is not clear that given any dynamics, we can obtain a mea-
sure reaching such a maximum. With respect to our context, we will state sufficient
conditions on the dynamics which allows us to determine expressions for the mea-
sure which maximizes the pressure. We now perform the calculations mentioned
above.

Based on (7.56), define

1
rp = Etr(Hj P8 H;-k)tr(Vj PB V;) (7.60)
So wehave ), r; = 1. Let

) Wi VipwVW*
i (L) (7.61)

L= 1
= Wiow v

where, as before, py is the fixed point associated to the renormalized operator
Agy,,

k
Azy (0) == pi(p)Fi(p) (7.62)
i=1
induced by the QIFS (A, F;, pi)i=1... k
VipV*
Fi(p) = —L1
tr(VipV;®)

and
pi(p) = r(Wi pW;")
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Note that we have

1

k k
= tr(W*WwW.:V: V*
;q’ tr(VipWV,-*)]Z::l r(WiWiVipwVi')

k
1
= ————t WIW,;VipwV*) =1
ir(Vipw V) r(; ;g Wivibw )

Then we can apply lemma 7.11 for r, q;'-, j =1,...k,with i fixed, to obtain

W, Vipw ViW? W, Vipw ViW?
AL LA
- tr(Vipw V;¥) tr(Vipw V;*)

WiVipw V*Wr 1 . .
n ;tr(W) log (Etr(Hj ps H)r(V;pgV; )) <0 (7.63)

and equality holds if and only if for all i, j,

1
B

(W, Vipw Vi W)

. (7.64)
r(Vipw V;®)

tr(Hjpp H)tr(Vipg V) =

Then
W Vipw VW * W:Vipw VW
—Ztr(—J i l* J )10 tr(—J i l* J)
- tr(Vipw V) tr(Vipw V;¥)
Wi Vipw Vi Wy
+ ) tr|———")log(tr(H;jpg H)tr(V;pgV?)
;(tr(l/ipWVi*)>g< JPB; ]ﬁ1>
. g * *
< Ztr(—WJVlPWVi er )10g,3
7 tr(Vipw V;*)

which is equivalent to

tr(Vipw V;*) tr(Vipw V;*)

tr(W; V; pw Vz* W;‘) . .
+ ; o (Viow V) log (”’(ijﬂHj)fr(VjPﬂ V; )) <logp (7.65)

W;Vipw Vi W} W;Vipw VW
XS ) e (o)
j
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Multiplying by tr(W; pw W,*) and summing over the i index, we have

hy(W) + Y log (tr(Hj ps HN)r(V; pg Vj*))
J

tr(Wi pw W;") N
—————tr(W;iVipw V." W;
2 v "V VW)
< E tr(Wi pw W*) log B = log B (7.66)

1
and equality holds if and only if for all i, j,

(W, Vipw VW)
tr(Vipw V;®)

1
Etr(Hj pp H)r(VipgVy) = (7.67)

Let us rewrite inequality (7.66). First we use the fact that py is a fixed point of
Azy,,

V: V*
W = pw (7.68)

k
(Wi pw W) — W i
Z r( iPw i )tr(I/lIOWI/l*)

i=1

Now we compose both sides of the equality above with the operator

k
Y log (tr(H Jop H)ir(V;pg ij")) WEW; (7.69)
j=1

and then we obtain

k k
Vipw V;*
Ztr(%pw%*)m 1og(zr(H,-pﬂH;)tr(V,-p,gV;))W;W,-
i=1 i/ =1
k
= pw Y _log (tr(Hj ps H)ir(Vipg V;‘))W;‘WJ- (7.70)
j=1

Reordering terms we get

k

. ir(W; pw W)
log (tr(H, pg H*)tr(V; pg V¥ — Vo VIWIW,
gog(r( 508 H)ir(Vipg ,)); vy oWV W)
k
= pw Y_ log (tr(ijﬁ H)ir(V;pg Vj*)) WEW, (7.71)

Jj=1
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Taking the trace on both sides we get

k k

tr(Wi pw W;™)
> log (W(ijﬂ H)ir(Vjpg Vj*)) > W”(Wj View Vi W)
j=1 i=1 ! i
k
= log (tr(Hj ps H)ir(Vipg V;))tr(pW WEW)) (1.72)
j=1

Note that the left hand side of (7.72) is one of the sums appearing in (7.66).
Therefore replacing (7.72) into (7.66) gives us the following inequality:

k

hy (W) + > log (tr(Hj pg H)tr(V;pg Vj*))tr(Wj,OW W) <logh (1.73)
j=1

and equality holds if and only if for all i, j,

(W, Vipw V' W)
tr(Vipw Vi)

1
Etr(ijﬁ H)r(VipgV[) = (7.74)

So we have the following result.

Theorem 7.4. Let Fw be a QIFS such that there is a unique attractive invariant
measure for the associated Markov operator V. Let pw be the barycenter of such
measure and let pg be an eigenstate of L (p) with eigenvalue B. Then

k
hy (W) + Z log (tr(Hj pgH})tr(Vjpp Vj*))tr(Wj pwW) <logB  (1.75)

Jj=1

and equality holds if and only if for all i, j,

1 tr(W;Vipw VX W)
—tr(H;pg H)tr(VipgVF) = / (7.76)
ﬂ jPB J Jpﬂ J l‘l’(Vz,OWV,*)
In Sect.7.15 we make some considerations about certain cases in which we can
reach an equality in (7.75). o
For the calculations regarding expression (7.57), define
1 VipgV)im
Tilm = Etr(ijﬂH;‘)—f (7.77)

(pﬂ)lm

Then we have Zj 7jiim = 1. Let
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W;Vipw VW
0= (7))

(7.78)
tr(Vipw Vi)
A calculation similar to the one we have made for (7.75) gives us
k
hy (W) + > tr(Wjpw W) log tr(H jpg H})
j=1
k *
ViegVin
+ " (W, pw W) log (M) <log B (7.79)
i=1 (pﬂ)lm
and equality holds if and only if for all i, j, [, m,
1 ViegV i tr(W;Vipw Vi*WF)
—or(Hypp ) — Lt T PV (7.80)
B (pﬂ)lm tr(ViPWVi )
&

7.14 Some Classic Inequality Calculations

A natural question is to ask whether the maximum among normalized W;, i =
1,...,k, for the pressure problem associated to a given potential is realized as
the logarithm of the main eigenvalue of a certain Ruelle operator associated to the
potential H;,i = 1,...,k. This problem will be considered in this section and also
in the next one.

We begin by recalling a classic inequality. Consider

k k

—Y aqjlogg; + Y qjlogr; <0 (7.81)
j=1 j=1

given by lemma 7.11. Let A be a matrix. If v denotes the left eigenvector of matrix
EA (such that each entry is %/ ), then vE4 = Bv can be written as

> vie = v,V (7.82)
i
Define
i (7.83)
rij = ——— .
17) ﬂVJ

So >, rij = 1.Letq;; > Osuchthat ) g;; = 1. By (7.81), we have

k k @
e%ijy;
= qijlogqij + ) gijlog—— <0 (7.84)

i=1 i=1 Bvj
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That is,
k k k
— > aijloggqij + ) _qijaij + ) qij(logv; —logv,) < log B (7.85)
i=1 i=1 i=1
Let Q be a matrix with entries g;;, let # = (1, ..., mx) be the stationary vector

associated to Q. Since ) ; ¢;; = 1, Q is column-stochastic so we write Qm = 7.
Multiplying the above inequality by 77; and summing the j index, we get

=Y 7 ) dijlogqi+) 7 ) dijaij+y ;Y gij(logvi—logv;) < log B
J i J i J i

(7.86)
In coordinates, Qm = 7 is Zj gijmj = m;, forall i. Then

- ZJTJ quj loggij + Z T Zq:;au
~|—an un log v; — an Zq,-,- logv; < logf (7.87)
i i
These calculations are well-known and give the following inequality:

=Y 7 ailoggis + Yy diai < logh (7.88)
J i J i

Definition 7.11. We call inequality (7.88) the classic inequality associated to the
matrix A with positive entries, and stochastic matrix Q.

Definition 7.12. For fixed k, and [,m = 1,..., k we call the inequality

k
hy W) + ) tr(W; pw W) logr(H; pg H)
j=1

k *
(Vipp VN
+ Z tr(W;pw W) log (M

1 , 7.89
)3 o ) <logp (7.89)

the basic inequality associated to the potential Hp = ), H;pH* and to the QIFS
determined by V;, W;,i = 1,..., k. Equality holds if for all i, j, I, m,

ViegVin tr(W;Vipw VW)
EPNTTTTY. o Rt L ML i (7.90)
(B )zm tr(Vipw V")

p
o
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As before pg is an eigenstate of £ (p) and py is the barycenter of the unique
attractive, invariant measure for the Markov operator ¥ associated to the QIFS .Zy .
Given the classic inequality (7.88) we want to compare it to the basic inequality
(7.89). More precisely, we would like to obtain operators V; that satisfy the follow-
ing: given a matrix A with positive entries and a stochastic matrix Q, there are H;
and W; such that inequality (7.89) becomes inequality (7.88). We have the following
proposition.

Proposition 7.9. [1] Define

10 01
Vl:(OO)’VZZ(OO) (7.91)

00 00
= (00)v= (20) a0

Let A = (ai;) be a matrix with positive entries and Q = (q;;) a two-dimensional
column-stochastic matrix. Define

Hiy = (MM),HU (W_WO_) (7.93)

Hy = 0 H. 7.94

21 — M\/WT » 1122 = M\/% ( )

and also
(Vql 0),W2 (gvgl ) (7.95)
0 0 0 O
Wi = JWa = 7.96
’ (\/6121 0) ¢ (0«/Q22) (7.96)

Then the basic inequality associated to W;, Vi, H;, i = 1,...,4, 1l = m = 1or
| = m = 2, is equivalent to the classic inequality associated to A and Q.

Example 7.7. Let

2i 2i iN2iv2
Hy = Hy,=1, H;= Hy=1
() e = ().

Then

—2i 0 —iv/20
H* = HY=1 Hf= HY=1
! (—Zi 0)’ 2o (—iﬁo)’ 4

If we suppose the V; are the same as from proposition 7.9, we have that pg is
diagonal, so

tr(HipgH) =4, tr(HapgHy) =1, tr(HspgH3) =2, tr(HappHy) =1
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Then ZH (p) = Bp leads us to
4p11 + p22 = Bp11

2011 + p22 = Bp22

A simples calculation gives

5+ V1T
==

4 3+x/ﬁ0
pﬁ:— 4
74+ 17 0 1

We want to calculate the W; which maximize the basic inequality (7.89). Recall that
from proposition 7.9, the choice of V; we made is such that

B

with eigenstate

VipgVim .
(pﬂ)lm ’
So
k
hy (W) + > tr(Wipw W) logtr(H; pp H}) < log B (7.97)
j=1

and equality holds if and only if, for all i, j, [, m,

1 ViegVin tr(W; Vi pw VW *
—tr(ijﬁH;f)( ippVidim _ 1r(W;Vip - ;) (7.98)
B (08)im r(Vipw Vi)
Choose, for instance, [ = m = 1. Then condition (7.98) becomes
1 tr(W;Vipw VX W)
—tr(HjpgH?) = / (7.99)
g ir(Viow V")
To simplify calculations, write W, = W*W; and W, = (wf ;). Then we get
tr(Hipg H* : :
%zw’uzw’zz,izl,...A (7.100)

So we conclude

_ L (Vu(HipgH) 0 o
Wl—\/ﬁ( 0 \/W),z—l,...A (7.101)
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That is,

2 1 3
W1=—I,W2=—I,W3=%

VBT B

Note that

VB

To solve that, we renormalize the potential. Define

442
Swew =2y
i

Hl' = \/&Hi

where

B
L4+ V2

I, Wy =

A.T. Baraviera et al.

1
—1 (7.102)

VB

(7.103)

(7.104)

Then a calculation shows that £ (p) = ,3 p gives us the same eigenstate as before,
that is Pg = Pp- But note that the associated eigenvalue becomes § = «ff. Now,

note Ehat~it is possible to renormalize the W; in such a way that we obtain W, with
Y i W*W; = I, and that these maximize the basic inequality for the H; initially

fixed. In fact, given the renormalized H i, define
Wi = JaW;,i=1,....4

Note that ) _; WI*WI = ]. Also we obtain

(7.105)

k
hy (W) + > tr(Wipy W) log tr(JaHjpg Ja HY) < logap (7.106)

Jj=1

which is equivalent to

k
hy (W) + > tr(W pyp W) loglatr(Hjpp H})) < loga +log B (7.107)

Jj=1

That is

k
hy (W) + Z tr(W; P Wj*) log a
i=1

k
+ > " tr(Wipy W) logtr(Hjpg HY) < logar + log B, (7.108)

Jj=1



7 A Dynamical Point of View of Quantum Information 119

and cancelling log &, we get the same inequality as for the nonrenormalized H;. As
we have seen before, such W; gives us equality. Hence

k
hy (W) + Y tr(Wjpy W) logtr(H, pp H}) = log B (7.109)
j=1

&

7.15 Remarks on the Problem of Pressure and Quantum
Mechanics

One of the questions we are interested in is to understand how to formulate a vari-
ational principle for pressure in the context of quantum information theory. An
appropriate combination of such theories could have as a starting point a relation
between the inequality for positive numbers

— giloggi + Y _gilog pi <0,
i i

(seen in certain proofs of the variational principle of pressure), and the entropy for
QIFS we defined before. We have carried out such a plan and then we have obtained
the basic inequality, which can be written as

k
hy (W) + Z log (tr(ijﬁ H)tr(Vipp V;‘))tr(WjPW W) <logf (7.110)
j=1
where equality holds if and only if for all i, j,

(W, Vipw VW)
tr(Vipw V;*)

1
Etr(ijﬂH}k)tr(Vjplg V) = (7.111)

As we have discussed before, it is not clear that given any dynamics, we can obtain
a measure such that we can reach the maximum value log 8. Considering particular
cases, we can suppose, for instance, that the V; are unitary. In this way, we combine
in a natural way a problem of classic thermodynamics, with an evolution which
has a quantum character. In this particular setting, we have for each i that V; V;* =
V.*V; = I and then the basic inequality becomes

k
hy (W) + > or(Wipw W) logtr(H;pp H}) < log B (7.112)
j=1
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and equality holds if and only if for all i, j,

1
B

We have the following:

tr(Hjpg HY) = tr(W; Vi pw Vi W) (7.113)

Lemma 7.12. Given a QIFS with a unitary dynamics (i.e., V; is unitary for each i),
there are W; which maximize (7.110), i.e., such that

k
hy (W) + Z tr(ijW I/f/j*)log tr(HjpgH}) = log B (7.114)
j=1

The above lemma also holds for the basic inequality in coordinates, given by
(7.89). Also, it is immediate to obtain a similar version of the above lemma for any
QIFS such that the V; are multiples of the identity, and also for QIFS such that py
fixes each branch of the QIFS, that is, satisfying

Vipw V;*

— L= py
tr(Vipw V;*)
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Chapter 8
Generic Hamiltonian Dynamical Systems:
An Overview

Mario Bessa and Joao Lopes Dias

Abstract We present for a general audience the state of the art on the generic
properties of C? Hamiltonian dynamical systems.

8.1 Introduction and Main Definitions

Hamiltonian systems form a fundamental subclass of dynamical systems. Their
importance follows from the vast range of applications throughout different
branches of science. Generic properties of such systems are thus of great inter-
est since they give us the “typical” behaviour (in some appropriate sense) that one
could expect from the class of models at hand (cf. [38]). There are, of course, con-
siderable limitations to the amount of information one can extract from a specific
system by looking at generic cases. Nevertheless, it is of great utility to learn that a
selected model can be slightly perturbed in order to obtain dynamics we understand
in a reasonable way.
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8.1.1 Residual Sets and Generic Properties

A residual set is a countable intersection of dense open sets. The elements of a
residual set are called generic. A property that holds within a residual set is also
referred as generic.

A Baire space is a topological space with the property that residual sets are dense.
The space of C*, s € N U {0}, functions on a manifold is Baire.

8.1.2 Hamiltonian Dynamics

Let M be a 2d -dimensional smooth manifold endowed with a symplectic structure,
i.e. a closed and nondegenerate 2-form w. The pair (M, w) is called a symplectic
manifold which is also a volume manifold by Liouville’s theorem. Let i be the
so-called Lebesgue measure associated to the volume form w? = w A -+ A w.

A diffeomorphism g: (M, ®) — (N, ®’) between two symplectic manifolds is
called a symplectomorphism if g*w’ = w. The action of a diffeomorphism on a
2-form is given by the pull-back (g*w’)(X,Y) = w'(g«X, g«Y). Here X and Y
are vector fields on M and the push-forward g+ X = Dg X is a vector field on N.
Notice that a symplectomorphism g: M — M preserves the Lebesgue measure
since g*w? = w?.

For any smooth Hamiltonian function H: M — R there is a corresponding
Hamiltonian vector field Xg: M — TM determined by tx,, @ = dH being exact,
where 1,0 = w(v,-) is a 1-form. Notice that H is C* iff X is C*~'. The Hamil-
tonian vector field generates the Hamiltonian flow, a smooth 1-parameter group of
symplectomorphisms ¢, on M satisfying %ga?{ = Xp o ¢l and ¢, = id. Since
dH(Xy) = o(Xyg.Xg) = 0, Xy is tangent to the energy level sets H 1 ({e}), for
some energy value e € H(M).

Ifve ThyH '({e}), ie. dH(v)(x) = o(Xpg.v)(x) = 0, then its push-forward
by ¢, is again tangent to H ' ({e}) on ¢, (x) since

dH(D@ly v) (@ (x)) = o(X g, Dely v) (@ () = ¢y o(X g, v)(x) = 0.

We consider also the tangent flow D¢, : TM — TM that satisfies the linear
variational equation (the linearized differential equation)

d
= Doty = DX (gy) Doy
with DXg: M — TTM.
We say that x is a regular point if dH(x) # 0 (x is not critical). We denote
the set of regular points by Z(H ) and the set of critical points by Crit(H ). We call
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H~1({e}) aregular energy level of H if H~!({e})NCrit(H) = @. A regular energy
surface is a connected component of a regular energy level.

Given any regular energy level or surface &, we induce a volume form wg on the
(2d — 1)-dimensional manifold & in the following way. For each x € &,

we(x) = Lywd(x) on T&

defines a (2d — 1) non-degenerate form if ¥ € Ty M satisfies dH(Y)(x) = 1.
Notice that this definition does not depend on Y (up to normalization) as long as it
is transversal to & at x. Moreover,

dH(Doly Y) (¢ (x)) = d(H o i) (Y)(x) = 1.

Thus, we is @, -invariant, and the measure ¢ induced by we is again invariant. In
order to obtain finite measures, we need to consider compact energy levels.

On the manifold M we also fix any Riemannian structure which induces a
norm || - || on the fibers Ty M. We will use the standard norm of a bounded lin-
ear map A given by ||A| = sup,=; [|Av| and also the co-norm defined by
m(4) = A7~

The symplectic structure guarantees by Darboux theorem the existence of an atlas
{h;:U; — R4} satisfying hwo = o with

d
wo = ) dyi Ndyasi. 8.1)

i=1

On the other hand, when dealing with volume manifolds (N, £2) of dimension p,
Moser’s theorem [30] gives an atlas {/;: U; — R?} such thathjf(dyl A Adyp) =
2.

For more on the general symplectic and Hamiltonian theories, see e.g. [1].

8.1.3 Our Setting

In the following we will always assume that M is a 2d -dimensional compact smooth
symplectic manifold with a smooth boundary dM (including the case IM = @)
and d > 2. Furthermore, C¥ Hamiltonians are real-valued functions on M that are
constant on each connected component of M . We denote by C*(M ) the set of C*
Hamiltonians. This set is endowed with the C2-topology.

Under these conditions, the Hamiltonian flow is globally defined with respect
to time because H is constant on the components of dM or, equivalently, X g is
tangent to OM .
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8.1.4 Transversal Linear Poincaré Flow

Given any regular point x we take the orthogonal splitting 7, M = RX g (x) & Ny,
where Ny = (RXg(x))" is the normal fiber at x. Consider the automorphism of
vector bundles

D(/);II T%M g T%M

8.2
(r.¥) b (@ (). Dy () v). 62

Of course, in general, the subbundle Ng is not D(p},-invariant. So we relate to
the D%, -invariant quotient space N = T M/RX g (%) with an isomorphism
¢1: N — N 4. The unique map

Pi:Ng — Ny

such that ¢y o P}, = D¢’y oy is called the linear Poincaré flow for H . Denoting by
IT,: TxM — N the canonical orthogonal projection, the linear map P}, (x): Nx —
Not (x) 1

Ph(x)v = Myt ()0 D@y (x)v.

We now consider
Ny = Ne N T H ' (e),

where Ty H '(e) = kerdH(x) is the tangent space to the energy level set with
e = H(x). Thus, 4% is invariant under P};. So we define the map

Py Nop — N, Dy = Pyl sa
called the transversal linear Poincaré flow for H such that
Py () M = Mt e Pu()v =TIy () © Dpy(x)v

is a linear symplectomorphism for the symplectic form induced on .47 by w.

8.1.5 Oseledets Theorem

Take H € C?(M). Since the time-1 map of any tangent flow derived from a Hamil-
tonian vector field is measure preserving, we obtain a version of Oseledets theorem
for Hamiltonian systems. Given a point x € M we say that x is Oseledets regular if
there exists a splitting Ty M = E! @ ...EX™) and numbers 11 (x) > --- > Ak (x)
such that for any (non-zero) vector v € E jc we have

1 .
lim ~ log | Dgly () vl] = A/ (x).
t—>toot
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The Oseledets theorem [32] asserts that Oseledets regular points form a n-full
measure set for any ¢’ -invariant probability measure 7).
Moreover,

1
t_l)lrinoo ; logsino; = 0, (8.3)
where «; is the angle at time ¢ between any subspaces of the splitting.

The splitting of the tangent bundle is called Oseledets splitting and the real
numbers A (H, x) are called the Lyapunov exponents. The full measure set of the
Oseledets points is denoted by O(H) = 0.

The vector field direction R X g (x) is trivially an Oseledets’s direction with zero
Lyapunov exponent.

If x € ZN ¢ and A (x) # 0, the Oseledets splitting on Ty M induces a DL (x)-
invariant splitting on .45 where A}/ = I1,(E}).

The next lemma makes explicit that the dynamics of D%, and ®%, are coherent
so that the Lyapunov exponents for both cases are related. The proof uses (8.3).

Lemma 8.1 ([8]). Given x € #Z N O, the Lyapunov exponents of the ®%,-invariant
decomposition are equal to the ones of the D', -invariant decomposition.

We now restate the Oseledets theorem for the dynamic cocycle @4, : For p-a.e.
x € M there exists a splitting of the normal bundle A5 = A,! & --- & %k(x)_ and
numbers A (x) > --- > A¥®)(x) such that for any (non-zero) vector v € N we
have

1 )
lim - log || ®% = Al (x).
,Jim —log @y (x) vl (x)

Observe that there exist at most 2d —?2 different exponents for CD}_I. Moreover, the
Lyapunov exponents of @}, are symmetric (i.e. if A is one the exponents, then —A is
also one of the exponents and their multiplicity is the same). Finally, dim(.# ") =
dim(.4#;") and since dim(.#;") is even we obtain that diim(.4;°) is also even.

8.1.6 Hyperbolicity and Dominated Splitting

Let H € C*(M). Given any compact and ¢’ -invariant set A C H~'(e), we say
that A is a hyperbolic set for @7, if there exist m € N and a D¢?,-invariant splitting
TAH '(e) = E} ® E; ® E 4 such that for all x € A we have:

o | DR (x)|e5 |l < % (uniform contraction).
o D@y (x)| g+ < 3 (uniform expansion).
e E includes the directions of the vector field and of the gradient of H.

Similarly, we can define a hyperbolic structure for the transversal linear Poincaré
flow @%,. We say that A is hyperbolic for @}, on A if 4| 4 is a hyperbolic vector
bundle automorphism. The next lemma relates the hyperbolicity for @%, with the
hyperbolicity for ¢%;. It is an immediate consequence of a result by Doering [22]
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for the linear Poincaré flow extended to our Hamiltonian setting and the transversal
linear Poincaré flow.

Lemma 8.2. Let A be an ¢k -invariant and compact set. Then A is hyperbolic for
@4y iff A is hyperbolic for @Y.

We now consider a weaker form of hyperbolicity. Let A C M be an ¢}, -invariant
set and m € IN. A splitting of the bundle Ay = A} & A} is an m-dominated
splitting for the transversal linear Poincaré flow if it is @}, -invariant and continuous
such that

G

o 1 = 5 forall x € A. (8.4)
m(®y(x)| A1) 2

We call Ay = JVAI <) JVAZ a dominated splitting if it is m-dominated for some
m € N.

If A has a dominated splitting, then we may extend the splitting to its closure,
except to critical points. Moreover, the angle between .#'! and .42 is bounded
away from zero on A. Under the four-dimensional assumption the decomposition is
unique. For more details about dominated splitting see [20].

We say that a dominated splitting /4 = A, & A & JVA+ over the set A is
partially hyperbolic if the bundle .4, is uniformly contractive and the bundle JVI
is uniformly expanding.

The proof of the next lemma (see [8, Lemma 2.6]) hints to the fact that the
four-dimensional setting is crucial in obtaining hyperbolicity from the dominated
splitting structure.

Lemma 8.3. Let H € C2(M) and a regular energy surface &. If A C & has a
dominated splitting for @, then A is hyperbolic.

Actually, the previous lemma is a version of the following general fact proved in
[18, Theorem 11] which we trivially adapt for Hamiltonians.
Theorem 8.1. Let H € C%2(M) and let N = Q/VAI ® N} be a dominated splitting
over a (p%-invariant set A. Assume that dim </VAI < dim </VAz and let </VA+ = JVAI
Then A} splits invariantly as N & A7 with dim ,/VA“L = N, and the splitting
Na =N @ N D N[ is partially hyperbolic.

8.1.7 Elliptic, Parabolic and Hyperbolic Closed Orbits

Let I" C M be a closed orbit of least period . The characteristic multipliers of I"
are the eigenvalues of @, (p), which are independent of the point p € I". We say
that I' is

e k-elliptic iff 2k characteristic multipliers are simple, non-real and of modulus 1.
e parabolic iff the characteristic multipliers are real and of modulus 1.
e hyperbolic iff the characteristic multipliers have modulus different from 1.



8 Generic Hamiltonian Dynamical Systems: An Overview 129

We call d — 1-elliptic orbits total elliptic. In case d = 2 we have that 1-elliptic
are total.

It is clear that under small perturbations, d-elliptic and hyperbolic orbits are
stable whilst parabolic ones are unstable.

We refer to a point in a closed orbit as periodic. Periodic points are classified in
the same way as the respective closed orbit.

8.1.8 Perturbation Lemmas

We include here several perturbation results in our setting. The first is the celebrated
Pugh’s closing lemma [37, Sect. 9]:

Theorem 8.2 (Pugh’s closing lemma). [f€ > 0 and x € M is a recurrent point for
the flow @'y associated to H € C2(M), then there exists H € C*(M) e-C?-close
to H such that x is a periodic point for (qu.

An important upgrade is the Arnaud’s closing lemma [4]. It states that the orbit
of a non-wandering point can be approximated for a very long time by a closed orbit
of a nearby Hamiltonian.

Theorem 8.3 (Arnaud’s closing lemma). Ler H € C S(]li ), 2 < s < 00, a non-
wandering point x € M and €,r,t > 0. Then, we can find H € C*(M) e-C2-close
to H, a closed orbit I' of H with least period £, p € I" and amap g: [0, t] — [0, {]
close to the identity such that:

o dist ((p}l(x),wz(t)(p)> <r,0<t <1, and
o H=HonM\A where A=Jy_,o, (B(p.r) N B(¢'(p),r)).

The next theorem is a version of Franks’ lemma for Hamiltonians proved by
Vivier [41]. Roughly, it says that we can realize a Hamiltonian corresponding to
a given perturbation of the transversal linear Poincaré flow. It is proved for 2d-
dimensional manifolds with d > 2.

Theorem 8.4 (Vivier’s lemma). Let H € C5(M), 2 < s < 00, €, > 0 and
X € M. There exists § > 0 such that for any flowbox V of an injective arc of orbit
Y = go[o’t](x), t > 1, and a transversal symplectic §-perturbation F of @, (x),

there is H € C™25=UB (M) e-C2-close to H satisfying:
. CD%, (x) =F,
e H=HonXUM\V).
In order to perform local perturbations to our original Hamiltonians, we need an
improved version of a lemma by Robinson [39] that provides us with symplectic

flowbox coordinates. Consider the canonical symplectic form on R24 given by wq
as in (8.1). The Hamiltonian vector field of any smooth H: R24 — R is then
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0 1
Xy = VH,
where [ is the d x d identity matrix. Let the Hamiltonian function Ho: R2¢ — R

be given by y — 441, so that

XHO = E

Theorem 8.5 (Symplectic flowbox coordinates [8]). Let H € C*(M),2 < s <
0o, and x € M. If x & Crit(M), there exists a neighborhood U of x and a local
C*~-symplectomorphism g: (U, w) — (R4, wg) such that H = Hyo g on U.

8.2 Abundance of Zero Lyapunov Exponents
Away from Hyperbolicity

The computation of Lyapunov exponents is one of the main problems in the mod-
ern theory of dynamical systems. They give us fundamental information on the
asymptotic exponential behaviour of the linearized system. It is therefore impor-
tant to understand these objects in order to study the time evolution of orbits. In
particular, Pesin’s theory deals with non-vanishing Lyapunov exponents systems
(non-uniformly hyperbolic). This setting jointly with a C* regularity, @ > 0, of the
tangent map allows us to derive a very complete geometric picture of the dynamics
(stable/unstable invariant manifolds). On the other hand, if we aim at understanding
both local and global dynamics, the presence of zero Lyapunov exponents creates
lots of obstacles. An example is the case of conservative systems: using enough
differentiability, the celebrated KAM theory guarantees persistence of invariant
quasiperiodic motion on tori yielding zero Lyapunov exponents.

In this section we study the dependence of the Lyapunov exponents on the
dynamics of Hamiltonian flows. For a survey of the theory see [18] and references
therein. In Theorem 8.6 we state that zero Lyapunov exponents for four-dimensional
Hamiltonian systems are very common, at least for a C2-residual subset. This
picture changes radically for the C *° topology, the setting of most common Hamil-
tonian systems coming from applications. In this case Markus and Meyer showed
that there exists a residual of C ®° Hamiltonians neither integrable nor ergodic [28].

Theorem 8.6 ([8]). Let d = 2. For a C?-generic Hamiltonian H € C*(M), the
union of the regular energy surfaces & that are either Anosov or have zero Lyapunov
exponents [Lg-a.e. for the Hamiltonian flow, forms an open u-mod 0 and dense
subset of M.

Geodesic flows on negative curvature surfaces are well-known systems yielding
Anosov energy levels. An example of a mechanical system which is Anosov on each
positive energy level was obtained by Hunt and MacKay [25].
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Another dichotomy result for the transversal linear Poincaré flow on the tangent
bundle is the following:

Theorem 8.7 ([8]). Let d = 2. There exists a C?-dense subset ® of C*(M) such
that, if H € ©, there exists an invariant decomposition M = D U Z (mod 0)
satisfying:

e D = U,enDm,, where Dy, is a set with my-dominated splitting for the
transversal linear Poincaré flow of H.
e The Hamiltonian flow of H has zero Lyapunov exponents for x € Z.

The proof of the above theorems is based on a result that allows us to decay the
Lyapunov exponents of points without dominated splitting. This is possible by first
constructing a local perturbation in the coordinates given by Lemma 8.5, that mixes
the transversal directions of non-zero Lyapunov exponents along an orbit segment.
Thus the effects of contraction and expansion average out.

The following problem is the generalization of the recent result by Bochi [15] to
our context.

Open problem 1. Show that Theorem 8.7 holds for d > 2.

8.3 Denseness of Elliptic Points away from Hyperbolicity

In this section we recall a related C2-generic dichotomy by Newhouse [31]: for a
C?2-generic Hamiltonian, an energy surface through any p € M is Anosov or is in
the closure of 1-elliptical periodic orbits.

The Newhouse dichotomy was first proved for C !-generic symplectomorphisms
in [31], and extensions have appeared afterwards [3,24,40]. Those were all done for
discrete-time dynamics.

Theorem 8.8 ([9]). Let d = 2. Given € > 0 and an open subset U C M, if
HeC FZV(M ) has a far from Anosov regular energy surface intersecting U, then
thereis H € C® (M) e-C?-close to H having a closed elliptic orbit through U.

The above theorem is proved in [9] (see [10] for divergence-free 3-flows) by
looking first at the case of hyperbolic closed orbits with a small angle between the
stable and unstable directions. Those are then showed to become elliptic by a small
perturbation. On the other hand, for hyperbolic closed orbits with large angles and
without dominated splitting, an adaptation of Maiié’s perturbation techniques [10]
leads again to elliptic orbits by a perturbation. The remaining case of hyperbolic
closed orbits with dominated splitting and large angle is not true generically (as the
case of parabolic ones).

As an almost direct consequence we arrive at the Newhouse dichotomy for four-
dimensional Hamiltonians. Recall that for a C 2-generic Hamiltonian all but finitely

many points are regular.
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Theorem 8.9 ([9]). Let d = 2. For a C?-generic H € C?(M), the union of the
Anosov regular energy surfaces and the closed elliptic orbits, forms a dense subset
of M.

Open problem 2. Prove the related result for ¢ > 2: For a C2-generic Hamilto-
nian, the union of the partially hyperbolic regular energy surfaces and the closed
elliptic orbits, forms a dense subset of M.

8.4 Star Energy Surfaces

Consider the set . = M x C?(M) endowed with the standard product topology.
Given (p, H) € .#, we denote by &, g the energy surface in H~!(H(p)) contain-
ing p. We say that &p, g is a star energy surface if it is regular and there exists a
neighbourhood % of (p, H) such that all energy surfaces éaﬁ, - Wwith (p, H) € %,
are regular and have all closed orbits hyperbolic.

Denote by ¢ the set of (p, H) € .# such that &, g is star, and by 7 if &, g
is Anosov. If there exists a homeomorphism between &, g and any nearby é’ﬁ’ i
preserving orbits and their orientations, we say that (p, H) is structurally stable,
ie. (p,H) e &.

The next theorem is classical in the theory of dynamical systems, namely Anosov
systems are open and structurally stable (see e.g. [13]).

Theorem 8.10. Let d > 2. of is open and &/ C .

In the d = 2 case, there is already a good characterization of Anosov energy
surfaces.

Theorem 8.11 ([13]). Y = o = . ford = 2.

In rough terms the proof of the previous theorem goes as follows. By Lemma 8.3,
in the four-dimensional context, dominated splitting is tantamount to hyperbolic-
ity. So, we are left to show that in the absence of domination it is possible to
create a non-hyperbolic closed orbit by an arbitrary small C? perturbation of the
Hamiltonian.

Assume that we do not have dominated splitting (cannot be Anosov) and we still
have the star property. We claim that we must be far from systems exhibiting elliptic
closed orbits, and moreover we must have good uniform constants of hyperbolic-
ity over closed orbits. Since we do not have domination, we use the ideas from the
proof of Theorem 8.6 to obtain an Oseledets regular point with (almost) zero expo-
nents. Then, the closing lemma (Theorem 8.3) produce a closed orbit without good
constants of hyperbolicity, contradicting our assumption.

We say that (p, H) is isolated in the boundary of </ if &p, p is not Anosov but
any nearby éaﬁ’ g such that H # H or p & &p g is Anosov. As a consequence of
Theorem 8.11, we obtain the following.
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Corollary 8.1. Let d = 2. The boundary of </ has no isolated points.

Open problem 3. Show that Theorem 8.11 holds for d > 2.

8.5 Robust Transitivity

We say that a dynamical system is transitive if it has a dense orbit. Moreover, it is
C7 -robustly transitive if in addition any arbitrarily C"-close system is transitive.

Theorem 8.12 (Horita—Tahzibi [24]). Any robustly transitive symplectomorphism
defined in a compact symplectic manifold is partially hyperbolic.

Working in the Hamiltonian context, we have that a regular energy surface is
transitive if it has a dense orbit, and it is robustly transitive if the restriction of
any sufficiently C2-close Hamiltonian to a nearby regular energy surface is still
transitive.

Theorem 8.13 (Vivier [41]). Let d = 2. Any Hamiltonian admitting a robustly
transitive regular energy surface is Anosov on that surface.

We observe that the proof of this theorem uses the Hamiltonian version of Franks’
lemma (Lemma 8.4).

It is easy to see that Theorem 8.8 also implies Theorem 8.13. In fact, if a regular
energy surface & of H € C2?(M) is far from Anosov, then by Theorem 8.8 there
exists a C2-close C°-Hamiltonian with an elliptic closed orbit on a nearby regular
energy surface. This invalidates the chance of robust transitivity for H according to
a KAM-type criterium (see [41, Corollary 9]).

Taking into account Theorem 8.1 we get the following question.

Open problem 4. Let d > 2. Show that if a Hamiltonian admits a robustly
transitive regular energy surface, then it is partially hyperbolic there.

8.6 Genericity of Dense Orbits

It follows from Poincaré’s recurrence theorem that, in the volume-preserving con-
text, almost any point is recurrent. However, the points can be restricted to some
region of the manifold both for the past and for the future. The problem of knowing
if a given dynamical system exhibits only one “piece” or, in other words, if there
is any dense orbit, is a central problem in the modern theory of dynamical systems.
A partial answer to this problem was given by Bonatti and Crovisier in [19] for the
volume-preserving discrete-time case and by the same authors and Arnaud in the
symplectomorphism framework [5]. They proved that for some C !-residual subset
any map has a dense orbit.
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In the continuous-time case the first author proved in [7] the corresponding
version for divergence-free flows, and recently Ferreira announced the following
result.

Theorem 8.14 ([23]). For a C?-generic Hamiltonian H and e € H(M), we have
that H='({e}) has a transitive energy surface.

Theorem 8.14 is a central tool in order to obtain important results in the generic
theory of Hamiltonians (e.g. Open Problems 2, 3 and 4).

The main tool to conclude the proof of the previous result is the next theorem, a
version for Hamiltonians of the connecting lemma for pseudo-orbits.

We say that the numbers o1, ..., 0,4 satisfy a trivial resonance relation if

2d i
oi=[]o;. i=1...2d.
j=1

where k; € N such that either k; # 1 or there exists j # i verifying k; # 0.

Theorem 8.15. Let (p, H) € ./ suchthat &, g C H™'({p}) is a regular surface.
Suppose that every closed orbit there has a trivial resonance relation between the
Floquet exponents. Then, for any x,y € &p g connected by a pseudo-orbit, there is
a C2%-nearby H andt > 0 such that gojq (x) = y.

8.7 On Palis’ Conjecture

It is known from Peixoto’s work [35, 36] that structurally stable flows on surfaces
form a dense open set. A few years later Palis formulated the following conjecture
for general dynamical systems defined on a closed manifold (flows, diffeomor-
phisms, or even more general transformations). Any system can always be C!
approximated by another one which is uniformly hyperbolic or else it exhibits either
a homoclinic tangency or a heterodimensional cycle [34].

In the conservative setting a more accurate result holds. In fact, Bessa and
Rocha recently proved that any volume-preserving diffeomorphism of dimension
d > 3 (or symplectomorphism of dimension d > 4) can be C! approximated by a
volume-preserving (symplectic) diffeomorphism which is Anosov or else it exhibits
a heterodimensional cycle [12].

Inrespect to the two-dimensional area-preserving discrete-time case, we have the
following.

Theorem 8.16. Any area-preserving diffeomorphism in a compact surface can
always be C' approximated by another area-preserving diffeomorphism which is
either Anosov or it exhibits a homoclinic tangency.
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Proof. By Newhouse’s dichotomy [31] for a C !-dense subset Z of the Baire space
of area-preserving diffeomorphisms endowed with the C !-topology, we have that:
if f € 2, then f is Anosov or the elliptic points of f are dense in the manifold.
It is sufficient to show that if f is in the C'-interior of the complementary set of
Anosov maps, we can C '-approximate f by an area-preserving diffeomorphism g
displaying a homoclinic tangency.

Now, we choose one elliptic point p for f. Since the C? area-preserving dif-
feomorphisms are C!-dense in the C'! area-preserving diffeomorphisms [42] and
the elliptic points are stable, we can C !-approximate f by f, € C? such that the
analytic continuation pg of p is elliptic. Now, since f; is of class C2, we use the
weak pasting lemma for diffeomorphisms [2] to create an invariant curve for some
area-preserving diffeomorphism f; arbitrarily close to fp. Finally, [29] is used to
obtain persistence of homoclinic tangencies for g arbitrarily close to fj. O

Taking into account the previous result, we believe that the following result
should hold.

Open problem 5. Let d = 2. Given H € C?(M),e € H(M) and € > 0, then
there exists H e-C2-close to H such that some regular energy surface in H~ L({e})
is Anosov or else it contains a homoclinic tangency associated to some hyperbolic
closed orbit.

Open problem 6. Let d > 2. Given H € C%2(M),e € H(M) and € > 0, then
there exists H e-C2-close to H such that some regular energy surface in H~ L({e})
is Anosov or else it contains a heterodimensional cycle.

8.8 Subclasses of Hamiltonian Systems

There are many subclasses of C2(M ) for which it would be very interesting to find
generic properties. We will only briefly mention below two of them, because of their
high importance in many branches of science: mechanical systems and geodesic
flows.

Let Q be a d-dimensional smooth compact manifold and take there the local
coordinates ¢ = (q1,...,qq). We can write any 0 € T7Q as o = p - dq where

p € R? and dg = (dq,....,dqg). Therefore, local coordinates on the cotangent
bundle M = T*Q are given by (¢, p). Notice that ® = dg A dp is a symplectic
form defined locally on M. For these local coordinates a mechanical system is a
Hamiltonian H € C*°(T*M) givenby H = T 4+ V, where T is the kinetic energy
and V:Q — R the potential. The function 7 is chosen to be homogeneous of
degree2,ie. T = %( D. P)q- This is the general setting of most classical mechanics.

The results in the previous sections do not hold if we restrict to mechanical sys-
tems, because we would need to perturb in the same class, i.e. on the Riemannian
metric (-,-) or on the potential V. It is thus an open question whether any sort
of generic property would remain true in this context. In particular, we have the
following question.
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Open problem 7. Can we C?2 approximate any given mechanical system by
another mechanical system which has the dichotomy in Theorem 8.6?

A somewhat first step would be to deal with a simpler situation:

Open problem 8. Let O be a closed surface. Given a C? Hamiltonian on 7*Q of
the form H = T, is there V arbitrarly C? small such that H = T + V has the
above mentioned dichotomy?

Geodesic flows on the unit tangent bundle M = SQ are a particular example of
Hamiltonian mechanical systems, given by H = T'. It would be of great interest to
answer related questions specifically for those systems.
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Chapter 9
Microeconomic Model Based on MAS
Framework: Modeling an Adaptive Producer

Pavel Brazdil and Frederico Teixeira

Abstract In recent years various methods from the field of artificial intelligence
(AI) have been applied to economic problems. The subarea of multiagent systems
(MAS) is particularly useful as it enables to simulate individuals or organizations
and various interactions among them. In this paper we investigate a scenario with a
set of agents, each belonging to a certain sector of activity (e.g. agriculture, clothing,
health sector etc.). The agents produce, consume goods or services in their area of
activity. Besides, our model includes also the resource of free time. The goods and
resources are exchanged on a market governed by auction, which determines the
prices of all goods. We discuss the problem of developing an adaptive producer
that exploits reward-based learning. This facet enables the agent to exploit previous
information gathered and adapt its production to the current conditions. We describe
a set of experiments that show how such information can be gathered and explored
in decision making. Besides, we describe a scheme that we plan to adopt in a full-
fledged experiments in near future.

9.1 Introduction

In recent years various methods from the field of artificial intelligence (AI) [13]
have begun to be applied to economic problems [16]. The subareas of Al that have
turned out to be useful include multiagent systems, machine learning, planning and
optimization among others. The area of multiagent systems (MAS) [15] is useful as
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this framework enables to simulate individuals or companies and various complex
interactions among them. Machine learning (ML) [13, 14] is useful, as the behavior
of the agents does not need to be programmed beforehand. The model is constructed
by exploiting the observations of the effects of past behavior. The capability to learn
permits the agents to optimize certain aspects of their behavior. This is related to the
issue of planning and optimization.

The advantage of models is that it enables us to study certain phenomena that
are difficult to analyze in a real world due to too many complex interactions. This
is particularly evident in the area of economics. Simulation permits us to study the
relationship between the state variables characterizing the individual constituents,
that is, microeconomic relations. However, the model permits us to observe and
analyze certain global trends characterizing a group of agents.

Our aims here are similar to those of Wellman and Hu [6] that provided the
initial stimulus for us to develop this work. The issues that these authors addressed
and which also concern us are:

1. How can we characterize a group of agents that may change their beliefs?

2. How can an agent change it beliefs by learning?

3. Supposing that each agent is trying to optimize its behavior by searching for
optimal actions, can the agent achieve some kind of steady state balance (equi-
librium) as a result, in which he may not want to carry out any further changes?

4. Can the whole economic model achieve a steady state balance equilibrium? Or
is it more common that the system would be continuously evolving?

These are complex questions and it would be too ambitious to try to provide
a general answer to all of them. Our aim here is to provide some answers while
focusing on a specific domain — the domain of microeconomics.

Regards issue (4), we share the belief with others [6, 10], that economy is a
complex evolving system. Although some equilibria can be attained in a restricted
subproblem, in general, the whole system is unlikely to stay in some equilibrium,
particularly if the agents themselves are adaptive.

In this paper we explore the notion of equilibrium and in particular conjectural
equilibrium, which depends on a set of beliefs held by an agent. This notion was
introduced by Hahn [5] in the context of a market model and exploited later by
Wellman and Hu [6]. It enables to determine the best action a; * for each agent a;,
by maximizing a given utility function. As our problem is quite complex, in this
paper we do not consider cooperative schemes and the issue of how these could be
acquired (i.e. some form of co-learning).

As we will see later, the agent’s utility function need not necessarily be the classic
utility function that is often exploited in this context. Any more complex utility
function different from the classic one, will be referred to here as an extended utility
function. Further on we will explain why we need to consider it.

If the agents have an opportunity to act repeatedly in different settings, in game
theory this scenario is referred to as a repeated game. In such settings the agents can
learn from observations of the consequences of past actions. The learning method
adopted here falls under the category of reward-based learning [4] as it requires a
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feedback provided by some kind of critic. Here we do not assume an existence of an
external critic that attributes rewards, but rather the existence of some function that
can characterize states in terms of utilities. The utilities can be compared with the
aim to identify the best action.

In this work we prefer to follow Panait et al. [4], and avoid usage of the term rein-
forcement learning that they attribute to a more specific class of reward-based algo-
rithms (algorithms based on dynamic programming, including Q-learning, Temporal
Difference Learning etc.,) which are not exploited here.

The experimental study that we have carried out includes an exchange market, as
in [6]. Initial conditions are given and the system stabilizes in an equilibrium state.
In addition to the market, we include also production and consumption in our model,
as this turns the model more realistic. In general production and consumption desta-
bilize the market equilibrium and force the agents to act. Here we can distinguish
between a behavior resulting from a fixed set of beliefs and those that results from
changing beliefs acquired by learning (i.e. in our case reward-based learning).

The objective of our research is to reconsider the issues (1), (2) mentioned ear-
lier and provide an answer, backed up by results of an experimental study. More
specifically, the interesting questions that arise are:

1. How can we characterize a group of agents active in a microeconomic system,
which includes an exchange market, production and consumption?

2. How can we construct an adaptive agent, exploiting a reward-based learning
strategy? Which state variables does the agent need to observe? What kind of
utility function should the agent use to judge the success of the agents’ actions?

Although the work of Wellman and Hu [6] has provided an initial impetus to
develop this work, there are many differences that distinguish the two:

e In our model the agents produce, consume and exchange different kinds of goods
and services, including agricultural products, clothing, transportation, health, etc.
To each of these goods we have attributed initial prices that are related to the
current world (as we do not have access to prehistoric data). This has the advan-
tage that we can use common sense to quickly spot errors that may manifest
themselves by nonsensical prices.

e One novelty in our system is the introduction of the resource time. It is assumed
that that each day has a normal duration of 24 h. Part of the day is occupied by
work, another part by sleeping (simulating thus what happens in the real world).
The remaining part is referred to as free time, which is is consumed for leisure
activities and is attributed certain utility by the agents. This resource is important
for modelling satisfactorily the behavior of a producer/consumer.

e We discuss an extension of the classical utility function, which includes both
classical utility and wealth. This extension permits to model satisfactorily the
behavior of an adaptive producer/consumer.

e Reward-based learning is used with the objective of developing an adaptive pro-
ducer agent. This facet enables the agent to exploit previous information gathered
in the past in order to adapt its production to the current conditions (e.g. increase
production of a certain good by a certain amount).
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e We have devised a methodology that can be used to evaluate the performance of
our adaptive agent. Basically, the agent is required to act in new settings and we
evaluate how good its actions are.

The rest of the paper is organized as follows. In Sect. 9.2 we describe the model
of an exchange market and show some typical behavior, including how prices
settle to an equilibrium. We discuss also some aggregate measures that can be
calculated including for instance utility attributed by an agent to given goods and
agent’s wealth among others concepts. The model of consumption and production
is described in Sect.9.3. Here we are particularly concerned with the effects of
changes in consumption/production on the market, including the prices. Section 9.4
describes the model of an adaptive producer and presents the preliminary results of
our experiments.

9.2 Multiagent Model of an Exchange Market

The market is composed by a group of agents that belong to different sectors. Further
on, we assume that each agent belongs to a particular sector of activity, such as
agriculture, producer of clothing, provider of transportation services, etc. As we will
see later, each consumer agent is simultaneously also a producer (in its principal
sector of activity). Here we will assume that we have a set of consumer agents
identified by a particular sector (the sector for which they are producers) and number
within that sector (e.g. AGR1).

Besides agents, the market involves also a set of goods or resources. Our market
includes for instance agricultural goods. Regards resources, our model includes for
instance transportation resources, money and time. All these can be exchanged on a
market. To simplify the following discussion we will use the term good to represent
both goods and resources. The exchange economy can at time ¢ be described as
n-tuple (Q, B, P, K ). Before presenting the details, we just describe the convention
used here. Bold capital letters, such as Q, are used to represent vectors (or matrices).
Lower case letters, such as ¢g; ¢, for instance, represent the individual items of
these vectors (or matrices). The meaning of each item is described below.

e Q represents a matrix of quantities of goods of agents. The term ¢,; ¢ ; represents
the quantity possessed by agent ai of good gj, whereai = 1.nand gj = 1..m.

e Symbol § represents preferences attributed by different agents to different goods.
As we will show later, these preference values are used in the calculation of
utilities. In general, B4; ¢; represents the preference of agent ai for good gj,
where ai = 1..n and gj = l..m.

e P represents a price vector of m goods, that it is either given or established by
the process that will be described later. So pg; represents the price of good g/,
where gj = 1..m. We assume that the same price is accepted by all agents in the
market (and hence here we do not need p,; ¢; that is the price agent ai attributes

to good gj).
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e Symbol K represents so called background knowledge of a specific domain. This
term is used in machine learning literature and especially in Inductive Logic Pro-
gramming (ILP) [12]. Here it may be in the form of equations, rules, constraints
or other suitable representation. In our case here we use Ky to represent our
underlying assumptions concerning the market. For instance, here it includes a
utility function U that takes g4; ¢; as an argument and returns a numeric utility
value, among other concepts of this kind that we will be described later.

It is assumed that the price vector P is available to everyone (i.e. forms part of
common blackboard). Regards the rest, it is assumed that the simulated world is
partially opaque. So, for instance the values g4i¢; and Bgi,¢; are known only by
agent ai (but not some other agent ak etc.).

The initial situation in an exchange market can be represented by (Q', 8, P!, Kyy).
It may be in equilibrium or not. If the market is in equilibrium, then the agents
will not want to exchange any goods. This situation can be described as execut-
ing a null action in the market. If the system is not in equilibrium, the market
will react to achieve equilibrium. This can be represented by (Qf, 8, Pf, Ky). So
the process of transforming the former into the latter can be modelled by a pro-
cedure which is called here exchange.market(Q!, B, P', Ky, Qf, Pf), where the
first four arguments can be regarded as inputs and the last two as outputs. In this
context Q' is often referred to as endowment, P! initial price, P! the price deter-
mined by the market and Qf the demand, representing the quantities that the agents
would ideally like to have considering the final price Pf. The difference between Qf
and Q! is normally referred to as excess demand. The value represents the quan-
tity that the agent wishes to exchange. If it is positive it represents the quantities
to be acquired, while if it is negative it represents the quantities to be offered for
exchange. It is important to note that the demand depends on the current price, that
is, for each price P there will be a specific demand determined by parameters j
and Ky.

The excess demand can be seen as a parameter of action exchange(Aq [{l < j). If
this action is executed by each agent for each good, the equilibrium is reached. One
condition for the equilibrium to exist is that for all goods the excess demand of each
of the agents is 0, i.e.

Vgj.Vai, Aq); . =0 (9.1)

The procedure that obtains the equilibrium can be implemented in various ways.
In the following section we review a description of a method which is based on [6].

9.2.1 Iterative Method for Reaching Equilibrium

Our market model includes, besides the agents, also an auctioneer. The iterative pro-
cess of obtaining the equilibrium is a WALRAS algorithm [7, 8] which is a variant
of tatonnement [9]. This involves the following steps:
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Continue iterative process until the equilibrium condition (1) has been achieved:

1. Calculation of excess demand: At each iteration k, each agent ai calculates the
excess demand Aq[{i, . for each good gj and communicates these values to the
auctioneer.

2. Summing up excess demands: The auctioneer, upon receiving the information
about the excess demand of goods from each agent on the market, sums up the
total excess demand for each good.

3. Adjustment of prices: For each good, the auctioneer adjusts the prices in order to
approximate them to equilibrium prices. That is, if there is an excess (shortage)
of supply of some good, the auctioneer decreases (increases) the price, follow-
ing the basic rules of economics (see e.g. [11]). The new adjusted prices are
communicated to each agent in the market.

As we see the algorithm is an iterative process. At each step, the auctioneer
adjusts the price partially, but not completely, until the process terminates. More
details concerning each step are given in the following sections.

9.2.1.1 Calculation of Excess Demands of Agents

Let us see how each agent ai calculates the excess demand qulzci, gj (the superscript
k identifies the iteration in between i and f'). This step requires that the agent ai
calculates the utility value U,; which is the sum of all contributions Uy; ¢ ;, €ach
representing the utility attributed by the agent to certain quantity of good g . In this
section we adopt the usual scheme which uses the appropriate elements of Q and
to calculate this. More precisely:

m m
Usi =Y Uaigj = Y Baigj X 1n(qaig)) (9.2)

gj=1 gj=1

We assume that the method of calculating the utility forms part of the existing
background knowledge Ky;.

We note that in our model different agents may attribute different utilities to
different types of goods (unlike in [6]). So, in our set-up the preferences By; g ;
and B gk will normally be different. This is useful, as it is more representative of
the real world where these values are normally affected by prices. In Sect.9.2.2 we
discuss how these values can be determined. Regards the agents’ preferences for the
same good, we can provide personalized values, that is, allow that B4; ¢; # Bak,g;-
We have examined such situations and the experimental results are reported later (in
Sect.9.2.3).

The concept of wealth is an important one in the exchange of goods. The agent’s
wealth represents his budget restriction, which needs to be taken into account when
exchanging goods. Each agent cannot “spend” more than the amount allowed by
his budget restriction at each moment of time. This prevents the agents from having
negative wealth. This is obviously an assumption that could be relaxed.
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The agent’s wealth can be calculated from the appropriate elements of Q' and
P'. Here we use P, as it is the price at the beginning of the process. So, wealth w’;i
representing the budget restriction of agent ai can be calculated as:

m
Wai = ) = duig X Py 9.3)
gj=1

Each agent faces the question of how to maximize his utility not exceeding his
initial budget restriction. So, if one agent has an excess of some good that does not
contribute much to its utility, the agent will try to exchange it for another good that
could increase its total utility. The agent’s aim is to maximize its utility subject to
budget constraints. This can be represented as:

m
argmax Ug = Z Baigj X ln(qf“-’gj) such that wk; < wi, (9.4)
dai.gj&J=1l.m gj=1

For this type of maximization problem an analytical solution exist, which is based
on the method of Lagrange Multipliers [11]. The ideal quantities of agent ai of good
gJj representing the agent’s demand at iteration k can be calculated as follows:

k L
Wai X Bai.gj

k n
Pgj X Xgj=1 Paigj

Qg = 9.5)

Then, as has been mentioned earlier, excess demand is Ag¥, gj = qé‘i ¢j ~Yaigj

9.2.1.2 Summing Up the Excess Demand of Goods

As we have mentioned earlier, the auctioneer, upon receiving the information about
the excess demand of goods from each agent on the market, sums up the total excess
demands for each good. This can be represented by the following equation:

Aq{; ;= Z Aq{ji,g ; (9.6)

9.2.1.3 Adjustment of Prices

The auctioneer adjusts the prices in order to approximate them to equilibrium prices.
That is, if there is an excess (shortage) of supply of some good, the auctioneer
decreases (increases) the price, following the basic rules of economics (see e.g.
[11]). Here we use the following method for the adjustment of price of good g;:
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Aqk " "
k k k
pg;rl = Pgj X |:l + 3 = :|,Where dgj = Z dai,gj = Z q;i,gj ©.7)

ai=1 ai=1

Agj

The exact method of adjustment was not given in [6], perhaps as it was regarded
as a simple issue. This turned out not to be as simple as it seems. We have experi-
mented with various alternative ways of carrying out the adjustments. Some of them
lead to rather slow changes, requiring thus rather too many cycles before reaching
the equilibrium. Others suffered from oscillations around the correct equilibrium
value. Method represented by (9.7) has demonstrated advantages in comparison to
the others, as it requires relatively few cycles to reach the equilibrium.

This process of price adjustment is repeated for all goods and the new adjusted
prices are communicated to each agent in the market.

9.2.2 Determining the Preference Values of Agents

A question that is addressed in this section is how to set the initial values for an
exchange market (Qf, B, P!, Kyp). that would enable us to conduct the experiments.
The basic idea that is explored here is the following. First, we set some appropriate
values for Q° and P° using our knowledge of the external world. Then we assume
that the prices and quantities will not change and calculate the value of 7 as follows:

WO- ) m
i __ _angj 0 _ 0 0 0 _ 0 0
aies = T Where Wiro; = daig; X Paig; W = D Gaig) X Paiey
ai gj=1

(9.8)
So the preference 8 ; i,gj Tepresents the proportion of agent’s wealth considering gi
in proportion to the total wealth of his basket of goods. As we assume that the value
ﬂfli remains fixed for any agent afterwards, we will just use f,; in the following.
We note that

Bai = Y Baigj =1 9.9)

gj=1

9.2.3 Some Experimental Results with a Simulated Market

We have carried out various experiments. In one series of experiments we have
used the following types of goods or services belonging to the following sectors of
activity: agriculture, clothing, transportation and health services. Besides, we have
used also the following resources: money and free time. Money was traded as any
other good. The resource free time was also traded.

The methodology adopted was to use the values (Q', 8, P!, Ky;), then alter man-
ually some of them and observe the results. For instance, we have altered some of
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the values in P! and this way obtained a different initial price vector PJ. In all these
cases the procedure found easily the equilibrium. The final price Pf would be equal
to P! This is of course no surprise, as we expected the program to behave this way.

We have observed that some agent would offer the resource free time on the
market for exchange, enabling him to acquire certain goods. The interpretation of
this is quite interesting, as it models an offer of work in exchange of goods. In this
study we have not modeled more lasting relationships which are normally estab-
lished in real life. This would involve, for instance, commitments among two or
more agents to carry out trading in preference to others (adopting the relationship
suppliers/consumers), referred to often as emergent properties [4] or emergence of
social structures [18]. We plan to carry out such studies in future.

In another series of experiments we have altered one of the values in the prefer-
ences for one of the agents. So, for instance, we have increased the value of for a
particular agent ai and some particular good g, while maintaining condition (9.8),
which requires that we decrease some preference values of the other goods. We have
observed that this situation leads to an increase of the corresponding price, due to
an increased demand of that good.

An interesting set of experiments involves altering the preference for free time.
If it is increased, the propensity to work of those agents decreases. As our objective
here is to study the dynamics of consumption and production, we do not report any
more details on this issue here.

9.3 Modeling Consumption and Production and Its Effects
on the Market

As we have mentioned earlier, our goal is to model consumption and production
and study their effects on the market. We are also interested in the issue of how the
behavior of the market can affect the decisions regards consumption and production.
To be able to do this we need to introduce several new concepts. Here, in general
each concept needs to be indexed with respect to time ¢. Here the basic time step
will be one week, so # will refer to a particular week.

Our microeconomic model is represented by (Qt, B, P!, K, Qct, Qp', Kumx),
where the first four concepts are similar to the ones discussed earlier in Sect. 9.2.

We note that P' represents the price vector of m goods at time point ¢ (i.e.
week 7). However, we need to distinguish between the initial prices of goods enter-
ing the market at time point ¢ and the prices determined by the market. For that
reason we use another superscript and so P! represents the former and P4 the lat-
ter. So, for instance, p;’f represents the price of good gj at time point ¢ and market

iteration k. Some values are dependent on others. In particular, p;'j'.rl’i = p;’jf , that

is, the initial price at the next time point # + 1 is equal to the final market price at
previous time point.
Symbol Qc! represents a matrix of consumptions in the time interval beginning

at ¢t (i.e. interval between ¢ and ¢ + 1). So, for instance, qc;l- ¢j fepresents the
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consumption of agent ai of good gj during that time interval. Symbol Qp' rep-
resents a matrix of goods produced in the time interval between ¢ and ¢ 4 1. So for
instance ¢ pflij ¢, represents the production of agent ai of good gj during that time
interval.

Production and consumption affect the quantities that each agent possesses. For
all agents and goods the following relationship holds:

Gaigj = dai.gj + APaigj — ICai.gj (9.10)

For a producer of good g/, the quantity ¢ pf;’;, ; is normally larger than g szi, g 10
enable the agent ai to offer the surplus on the market.

The resources money and free time require a special consideration. As money is
not produced nor consumed, the quantities ¢ p’, i.m and gcl i.m are equal to 0. Regards
free time, we assume that each agent is attributed a certain amount of free time per
week (e.g. certain number of hours per day times the number of days) which is
consumed partly in production and partly in leisure activities. The amount of free
time contributes to the overall agent’s utility.

Symbol Ky represents the background knowledge representing our underlying
assumptions regards the relationship between production and consumption. More
details concerning this are given in the next section.

9.3.1 Modeling the Relationship Between Production
and Consumption

Without lack of generality let us focus on a particular agent ai involved in the pro-
duction of good gj. We assume that the consumption at time interval ¢ consists of
two parts: the first part is fixed and does not depend on production. As in real life,
the person that does not work still needs certain resources to survive. The second
part varies with production. The larger the production, the larger is the consumption
of certain resources. This can be represented by:

qcly = qeli?™ + qcl ©.11)

The first term is a vector of individual fixed consumptions of individual goods. The
second term is a function of consumption of resources. Here we have adopted a
simple model that assumes a linear relationship between the two. That is,

m
gy’ = ) Kaigj X APl g 9.12)
gj=1

where kg; ¢; is an appropriate constant.
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9.3.2 Some Aggregate Measures Characterizing Production
and Consumption

In this section we discuss various aggregate measures that can be used to charac-
terize the microeconomy involving production and consumption. The measures can
be divided into two groups. The first group involves measures that characterize the
production/consumption of a particular good in a particular sector (e.g. agriculture).
The second group involves measures that characterize a particular agent, or a group
of agents pertaining to a particular sector (e.g. agriculture). Both types of measures
are discussed in more detail in the following.

9.3.2.1 Measures Characterizing the Production/Consumption
of Particular Good

Goods surplus ( gsfg ; ): This measure characterizes the relationship between produc-
tion and consumption of particular good (e.g. agricultural goods). This measure is
defined as the ratio of the quantity of goods produced to the quantities consumed:

n t
t Zai=1 9Pai.gj

85¢j = Zn ot
ai=19 ai,gj

9.13)

We distinguish the following situations. Positive (negative) surplus of good gi
occurs if more (less) goods are produced than consumed, that is when gs; ; is larger
(smaller) than 1.

9.3.2.2 Measures Characterizing a Particular Agent (or Group of Agents)

Production share ( ps"g ;): This measure is defined as a proportion of goods g/ pro-
duced by agent ai in a particular sector of activity in relation to total production in
that sector. This term has a similar meaning to the market share used in economics.
We prefer to use the term production share as it has a more precise meaning. Not all
items produced need to be exchanged on the market.

Relative production share (ps ré j ): Tt is useful to compare the agent’s share of pro-
duction to the mean value in a particular sector. It is useful to consider whether this
value is greater (smaller) than one.

Consumption share ( cs; ;): This measure is defined as a proportion of goods g con-
sumed by agent ai in a particular sector of activity in relation to total consumption
in that sector.

Relative consumption share (cs r; ;J): This term describes the agent’s share of con-
sumption to the mean value in a particular sector. It is useful to consider if this value
is greater (smaller) than one.
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Utility ( uz ;): Earlier we have mentioned the concept of utility (see (9.2)) to char-
acterize agent ai. Traditionally this measure is used to characterize the consumer
behavior. However, we ote that our consumer agents are also producers (and vice
versa).

Relative utility share (usr};): It is useful to compare the agent’s utility to the mean
utility value overall or in a particular sector. If this value is greater (smaller) than
one, the agent is in a better (worse) position than the others.

Expected utility change (€ul,;): This measure is defined as ratio of agent’s utility
generated by production and the utility that is consumed at that time point.

Utility change (Au’;): This measure is defined as a ratio of agent’s utilities in
two subsequent time intervals (i.e. t — 1 and 7). Increasing (decreasing) utility is
characterized by value greater (smaller) than 1.

Wealth ( wfl ;) In literature on microeconomics (e.g. [11]) it is often argued that the
behavior of producers should be governed by the goal to acquire more wealth and
therefore we have adopted this measure here too. Wealth of agent ai at time point 7
is defined as follows:

m
Whi = Y Db X Ghig; (9.14)
gj=1

We note that this measure depends on current prices determined by the market.

Relative wealth share (wrs,; ): It is useful to compare the agent’s wealth to the mean
wealth in a particular sector. If this value is greater (smaller) than one, the agent is
richer (poorer) than the others.

Expected wealth change (ew',;): This measure is defined as the ratio agent’s wealth
generated by production to the wealth that is consumed at that time point. If it is
greater (smaller) than 1, the expectation is that wealth will be generated (spent).
This measure describes what some would call expected productivity. The expected
wealth change may be different to the observed wealth change after goods have been
exchanged at the market (see below).

Wealth change ( AWZ:‘ ): This measure is defined as the ratio of agent’s wealth in two
subsequent time intervals (i.e. t — 1 and ¢). This measure will also be referred to as
productivity.

9.3.3 Detailed-Level States and Generalized States

It is useful to distinguish between the detailed-level states and generalized (hence
more abstract) states. The first group involves states described in terms of the basic
entities discussed in Sect.9.3. The second group includes the derived measures
discussed in the previous section. Typically one particular generalized state cor-
responds to many different detailed-level states. For instance, surplus of good gi
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may represent many different situations with different quantities of goods that are
produced and consumed.

The transformation from detailed-level information to generalized levels is well
known in data mining [17]. The data store is referred to as OLAP data cube and the
transformation from more detail to more general as drill-up or roll-up operations
[3]. Generalized states are useful, as they simplify our reasoning. We have much
fewer states to worry about.

In the next section we describe some experiments that were defined in terms of
the generalized states (e.g. we consider goods surplus).

9.3.4 Some Experiments Carried Out with Different Production
and Consumption Conditions

We have carried out a number of experiments using the implemented system on
the lines described above. In one series of experiments we have varied the ratio
between the amount of goods produced and consumed. In other words, we have
varied conditions leading to production surplus.

Experiments with no surplus, i.e. gsg ;=1 for all goods resulted in no surprise, as
all parameters have maintained their values from one week to another.

Experiments with positive surplus, that is situations where gs ;>1 lead to some-
what surprising consequences. In this experiment we have used only 4 agents,
one per sector of activity. The sectors used were agriculture, transportation, cloth-
ing and health. This scenario is characterized by the situation shown in Fig.9.1.
Despite the fact that prices were decreasing (see Fig.9.2), wealth maintained its
value (Aw,; = 0) (see Fig. 9.2). This is due to the fact that increase (decrease) in
quantities of products is compensated by decreasing (increasing) prices. We note
that utility change is positive for each agent, as expected.

This finding has rather dramatic consequences. In microeconomics it is argued
that economic agents should base their decisions concerning production on wealth.
But the results of our simulation have shown that it may not be an ideal measure of
success in some circumstances. This finding was reported in [1,2].

This problem motivated us to design and adaptive producer which would be capa-
ble of learning to adapt its production to particular circumstances. Our lateral aim
was to consider various measures to determine which one provides the agent with
the best basis for his decisions. This work is described in the next section.

9.4 Modeling an Adaptive Producer

The issue of how to model an adaptive producer relevant, as it is necessary to for-
mulate strategies regarding the best action in a particular situation. This in turn is of
relevance to economists and managers in real life.



152 P. Brazdil and F. Teixeira
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The basic idea that has been explored here involves what in game theory can be
referred to as repeated game and fictitious play [19]. It includes the following main
steps:

1. Conceive (generate) different situations of our microeconomic model (e.g.
endow the agents with different quantities etc.) and separating some for training
and leaving the others for testing.

2. Present these situation to an agent to enable him to characterize these situations
using certain aggregate measures.

3. The agent then carries out different actions with the objective of observing the
consequences.

4. The consequences of each action are evaluated using certain performance mea-
sures and the best action for each situation is identified.

5. The cases identified in the previous step are used to generate a model by employ-
ing Machine Learning techniques (e.g. k-nearest-neighbor algorithm, k — N N).
The model can be used to generate predictions, determining which action is to
be executed in which state.

6. The performance of model is evaluated on a given test data. Our aim is to
determine whether the agent is capable of learning to act correctly in new
situations.

7. Finally we investigate the effect of various parameters and determine how these
affect performance.

Each step is described in more detail below.

Step 1: requires that we select one agent for training and conceive different sit-
uations of our microeconomic model. In the first set of experiments, the producer
of agricultural goods was selected for this aim. We have endowed all agents with
certain values of (Q!, 8, P!, Qc', Qp'), and then modified them in various ways.
This way we have generated many different situations. Four of them are shown
in Table 9.1.

A more general approach involves generating different situations using an auto-
matic process. One possibility of doing this is generating some initial situation and
then modify it in various ways. The modifications can performed using a stochas-
tic process, while taking care that some basic constraints do not get violated (e.g.
the sum of production shares should always be equal to 1). So, for instance, we
can generate situations corresponding to a particular value of goods surplus, relative
production/consumption share, productivity, agent’s preference for certain goods or
its preference for the resource free time affecting his willingness to work.

Some of the states generated are used for training the adaptive agent (steps 2
till 5). The remaining states are used for evaluation (step 6).

Step 2: involves presenting each state to an agent to enable him to characterize
the situations using various aggregate measures discussed in Sect. 3.2.2. The mea-
sures can be divided into two subgroups. The first group includes measures that
characterize the conditions of the agent before engaging in fictitious play. Here this
group includes goods surplus, gsg ;, characterizing the situation regards a particular
good. For instance we can have gsg; > 1. The second subgroup includes measures
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that characterize the agent. This group includes, for instance, utility change, Augy
etc. (see Table 9.1).

Step 3: includes executing different actions. Here it involves increasing (or
decreasing) production by X %, or else maintaining it as it was. After the action has
been chosen, it is executed for a period of d weeks. In the initial experiments the
parameter for increasing (or decreasing) production was set to 30% and the period
was set to d = 3 (see Table 9.1).

Step 4: involves observing the effects of the execution of actions by the agent.
We need some measure(s) enabling the agent to estimate its degree of success. Here
we use utility change, Aug;, and/or wealth change, Awy;, in a given time interval
(the last two columns in Table 9.1). As we have defined two measures, we have a
choice as to which measure to use. In each case the aim was to identify the action
that lead to the highest value of this parameter. The best action in each situation is
stored for further use by the agent.

Let us consider, for instance, situation 1 in Table 9.1. Let us assume that the
effects of the agent’s actions measured in terms of utility change. The values indicate
that the best action is to maintain the production at the same level. In situation 4, the
best action is to decrease the production by 30%.

If we were to use wealth change as a criterion of success, we note that it is
difficult to make a decision, as the three possibilities lead to the same result. They
are all represented by “+” in the last column in Table 9.1. There is no observable
difference between increasing production, maintaining the level or decreasing it.

We are planning to extend the utility measure to incorporate also wealth and this
way combine utility and wealth measures and then analyze the advantages from the
point of view of the agent,

Step 5: In this step the best actions identified in the previous step are used to gen-
erate a model. Here we plan to use two different Machine Learning algorithms. The
first one is k-nearest-neighbor algorithm, k-NN, which belongs to the family of lazy
learning methods [14,17]. Besides this, we plan to use decision trees or rules [14,17]
to verify whether the system is capable of generating generalized knowledge.

Step 6: The model generated in the previous step needs to be evaluated. This is
done using the test sample of situations obtained in step (1). The aim is to determine
in how many situations the agent determines the correct (incorrect) action.

Step 7: We plan to investigate the effect of various parameters and determine how
these affect performance. In particular, our aim is to determine how many training
situations are needed for the system to achieve a reasonably good performance. This
is done by varying the number of examples (situations encountered) in the training
set and evaluating the agent’s performance.

9.5 Conclusions

In this paper we have investigated a scenario with a set of agents, each belonging to
a certain sector of activity (e.g. agriculture, clothing, health sector etc.). The agents
produce, consume goods or services in their area of activity. Besides, our model
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includes also the resource of free time. the goods and resources are exchanged on a
market, governed by an auction, which determines the prices of all goods. We have
described an iterative process that enables the market to reach equilibrium.

We have discussed the problem of developing an adaptive producer that exploits
reward-based learning. This facet enables the agent to exploit previous information
gathered and adapt its production to the current conditions.

This aim forced us to develop a set of measures that enable to characterize a
particular agent or a group of agents. Some of the measures provide the agent with
an estimate of its degree of success. We have drawn attention to the fact that wealth
change does not, on its own, provide a satisfactory solution in all situations. We
have suggested that this measure be complemented by utility change.

We have described a set of initial experiments that show how such information
can be gathered and exploited by the agent in decision making. Besides, we have
also outlined a scheme that we plan to adopt in a full-fledged experiments with an
adaptive agent in near future.
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Chapter 10
A Tourist’s Choice Model

J. Brida, M.J. Defesa, M. Faias, and Alberto A. Pinto

Abstract We present a tourism model where the choice of a resort by a tourist
depends not only on the product offered in the resort, but also on the characteris-
tics of the other tourists staying in the resort. In order to explore the effect of the
types of the tourists in the allocation of tourists across resorts, we introduce a game
theoretical model and describe the relevant Nash equilibria.

10.1 Introduction

Activity in the tourism industry and related areas depends on tourists’ preferences
for tourism goods and services, or in economic terms, the utility function that
represents tourists’ tastes. Typically the basic variables incorporated in the utility
function correspond to prices and the tourists’ specific preferences for these goods
and services. Nevertheless, when one makes the decision to travel, there are other
fundamental variables to take into account. One such variable is the “characteris-

J. Brida ()
Free University of Bolzano, Bolzano, Italy
e-mail: JuanGabriel.Brida@unibz.it

M.J. Defesa
Universidad de Alcala, Alcald de Henares, Spain
e-mail: mjesus.such@fct.uah.es

M. Faias
Universidade Nova de Lisboa, Lisbon, Portugal
e-mail: mcm@fct.unl.pt

A.A. Pinto

LIAAD-INESC Porto LA e Departamento de Matematica, Faculdade de Ciéncias, Universidade
do Porto, Rua do Campo Alegre, 687, 4169-007, Porto, Portugal

and

Centro de Matemadtica e Departamento de Matematica e Aplicagdes, Escola de Ciéncias, Universi-
dade do Minho, Campus de Gualtar, 4710-057 Braga, Portugal

e-mail: aapinto@fc.up.pt

M.M. Peixoto et al. (eds.), Dynamics, Games and Science I, Springer Proceedings 159
in Mathematics 1, DOI 10.1007/978-3-642-11456-4_10,
(© Springer-Verlag Berlin Heidelberg 2011


JuanGabriel.Brida@unibz.it
mjesus.such@fct.uah.es
mcm@fct.unl.pt
aapinto@fc.up.pt

160 J. Brida et al.

tics”, or “type” of other tourists staying at the same resort. For example, young
people like to stay together with other young people because of the likelihood of
sharing common interests, or a family traveling together will likely prefer resorts
where they can find other families so they can take advantage of the enhanced oppor-
tunity for their children to socialize with other children through planned activities.
There are many other examples where factors such as social status, ethnicity, rela-
tionship status and other characteristics play a role in the decision making process.
It follows then, in economic terms, that a tourist’s selection of destination based on
the desire to be with similar types is a variable to include in the utility function. This
is valuable information for the tourism industry because it allows for the industry to
better target the goods and services of travelers. However, despite the value of this
information, there is a dearth of comprehensive studies that measure the distribution
of tourist types and how and why these types vary from one destination to another.

Note that the distribution of the different types of tourists reaching a destina-
tion affects both the demand and supply side. From the demand perspective, as we
have described above, the choice of a particular destination will depend greatly on
who the agents believe will be sharing the resort with them. On the supply basis,
a destination is characterized by the most frequent type of tourist because this will
establish the reputation of the resort. While tourists could evolve from one type to
another over time, likewise a resort destination could change it’s profile to attract
a particular type of clientele. There are several examples of this evolving behavior.
Some recent references from the life cycle of a destination perspective are Claver-
Cortés et al. [2] for Benidorm (Spain), Liu et al. [7] for Costa Rica. These examples
demonstrate a connection between the life cycle of a destination and the changing
profile of the traveler from Plog’s [8] categorization of travelers, among others.

Our aim is to obtain insights about how the characteristics of tourists play a deter-
mined role in allocating are determinant to allocate tourists across resorts. Thus, we
consider the model as in [1] where the tourists have a taste type or utility func-
tion, the utility function measures the degree of satisfaction that a tourist gets from
vacationing at a resort, and we assume that the utility function of a tourist depends
not only on the product that is offered in the resort but depends also on certain char-
acteristics of the other tourists staying at the same destination. We refer to these
characteristics as crowding types, with the crowding type being a set of observable
characteristics of a tourist that affect the welfare of the other tourists, for instance,
the example of a family that would prefer to joint a resort with other families in order
that their children could play together. In our framework each tourist is characterized
by a crowding type which is exogenously assigned.

The concept of crowding type was introduced and explored by Conley and Wood-
ers [3-5], in a cooperative framework. More recently, in Faias and Wooders [6] the
crowding type characteristics were exploited in the context of strategic club forma-
tion. The Faias and Wooders [6] work provided important motivation for this work
due to the similarities in the decision process in choosing a club and choosing a
vacation destination. Basically, a resort is comparable to a club where people derive
utility not only from the resort or club itself, but also from the interaction with others
similar to themselves, who also chose the same resort.
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In our model the tourists choose resorts, but since the utility they derive depends
on the crowding profile of the resort, the utility depends on the choices of the other
tourists, therefore we consider a Nash game to model our framework. In the game
each tourist chooses a resort within a set of available resorts which constitute the
strategy set of each tourist and the payoff of each tourist is given by the utility
function of the tourist. The equilibrium in our tourism choice model is an allocation
of tourists to the available resorts such that no single tourist has incentive to move
to another resort.

The paper is organized as follows, first we state the model by describing the Nash
game and then we establish the main theorem which asserts the existence of a Nash
equilibrium for the game. Next, we discuss characteristics of the equilibrium by pro-
viding sufficient conditions that guarantee the prevalence of a certain equilibrium.
These sufficient conditions mainly relate the number of tourists of each crowding
type with the relative evaluation that tourists assign to the resort product and to the
crowding profile of the resort.

The first result states that if for each tourist the company of the other tourists, that
is, their crowding profile, is less important than the resort product then every tourist
chooses the resort with the product they prefer. However, when there exists at the
same time a group of tourists that values the resort product more and a second group
that values the crowding type more our model shows, under certain parameters, that
the tourists who value the crowding profile over the resort product end up follow-
ing the tourists who are choosing their location based on resort product. The final
outcome is that a resort could lose all demand for business. We posit that in order
to avoid this outcome the resort owner should invest in enhancing the resort prod-
uct to the extent necessary to cause the tourist previously making a decision based
on crowding type to now base his decision on resort product. Resort owners would
then avoid losing tourists to alternate locations because they choose these resorts to
benefit from the resorts crowding profile. In this way the resort owners or suppliers
could avoid losing business caused by the herding effect.

10.2 The Model

We consider an economy with 7 tourists indexed by i € {1,..., 1} = .. The focus
of the model is the tourism choice therefore we consider a model with a finite set
of tourism resorts where the tourists behave strategically by choosing the resort that
gives them the best payoff.

In order to emphasize the role of the key variable that we are adding in this
paper, the crowding type, we consider that the tourism supply side consists of four
tourism resorts. Each tourism resort is characterized by two features, the location
and the offered product. Specifically, we consider a location of either the beach or
the mountains, and a hotel with either a disco or a golf course. Thus, the tourists have
four tourism resorts available. We denote by BD the tourism resort which is located
at the beach and offers hotel and disco, by BG the tourism resort that is located at
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the beach and offers hotel and golf, by M D the tourism resort that is located at the
mountain and offers hotel and disco and by M G the tourism resort that is located at
the mountain and offers hotel and golf. Let # = {BD, BG, M D, M G} denotes the
set of tourism resorts.

Each agent or tourist chooses a tourism resort. The payoff or welfare that an
agent attains when he utilizes the tourism resort depends not only on the physical
characteristics of the resort, namely, location and offered product but depends also
on some observable characteristics of the other agents that are utilizing the same
resort, the crowding types. In the context of our model we consider two illustrative
crowding types based on the age of the tourists, namely, let € = {cy,c,} be the
set of crowding types. If a tourist is characterized by the crowding type cy, that
means that the tourist is a young adult, if the tourist is characterized by the crowding
type ¢,, that means that the tourist is an older adult. In fact, these are two ordinary
observable characteristics of the tourists that could influence the welfare of the other
tourists that choose the same resort. Actually, the relevant variable is the number of
agents of each crowding type, thus, given a resort R € #, mg = (mRc,.MRc,)
denotes the crowding profile of the tourists that are in the tourism resort R, mpc, is
the number of tourists with crowding type ¢y in the resort R and m g, is number of
tourists with crowding type ¢, in the resort R.

The tourists have preferences concerning the tourism resorts and the related
crowding profiles and these preferences are described by the taste type. We consider
four taste types in the model, 7 = {{Bpy,!BGo.!MDy. !MGo}- Each taste type is
represented by a utility (payoff) function which assigns the degree of satisfaction
attained by a tourist when he joins a tourism resort. This utility or payoff function
is determined by two variables, the product and the location of the resort, which is
represented by R, and the corresponding crowding profile of the resort, mg.

Let us now describe the payoff of the four taste types considered in the model.

Tourists with taste type /gp, prefer a resort at the beach with a disco and are
indifferent with regard to the other. Furthermore, they prefer the company of young
people as opposed to older adults. The payoff function is

Vgp if R = BD
Utgp,(R,mR) = fpp(R) +mpe, — Mpe, +C,  fep(R) = { 0 if R+BD
Tourists with taste type 7pg, prefer a resort on the beach with golf and are indif-
ferent with regard to the other. Furthermore, they prefer the company of older people
as opposed to yound adults. The payoff function is

Vee if R =BG
Utgs,(R,mR) = fpc(R) — mRe, +Mmpe, +C.  fBG(R) = { 0 if R+BG
Tourists with taste type #yp, prefer a resort in the mountains with a disco and are
indifferent with regard to the other. Furthermore, they prefer the company of young
adults as opposed to older people. The payoff function is
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Vup if R =MD
i (Rom) = i(R) 4 e, = e, + . fun(R) = | 0 11~
Tourists with taste type fyc, prefer a resort in the mountains with golf and are
indifferent with regard to the other. Furthermore, they prefer the company of older
people as opposed to young adults. The payoff function is

iy, (R.1MR) = fu(R) + me, — mre, + C. fu(R) = { 0" iR 20
The constants Vgp, Vss, Vup, Vue in each payoff function are positive constants.
In this tourism model each tourist is characterized by two types, the crowding
type and the taste type. Let n(c, t) denote the total number of tourist in the economy
with crowding type ¢ and taste type 7.
The fundamentals of this tourism model, which are the available resorts and the
population of tourists, are described by

& = (. (1e.0) e o7}

More precisely,

& =%, (n(cy»tBDy);n(cy»tBGo);n(Cy, tmpy), n(Cy . tmco); n(co, tpy);

n(co, tsGo): n(o, tmpy); n(co, fMGo))}-

In order to describe the behavior of tourists we introduce some more notation.
Let 7 : .# — .7 be a function that assigns a taste type to each tourist i € .#, that
is, (i) =t forsome t € 7.

We model the behavior of tourists as a strategic game. The strategy set of each
tourist-player is the set of available resorts, Z. Each player i chooses a tourism
resort, that is, chooses a strategy R;, with R; € Z. These choices give rise to a strat-
egy profile, that is, a vector with the strategy of every agent, (Ry,..., R;,...,Ry) €
R A strategy profile (Ry, ..., R;,..., Ry) defines an allocation of tourists across
the resorts and defines also the crowding profile for each resort, that is, the number
of members of each crowding type in each resort, mg. Therefore given a strat-
egy profile (Ry,..., R;,..., Ry) the payoff of a tourist i is his utility evaluated at
(Ri,mg,), thatis, IT"(Ry,...,Ri,...,Rr) = u.i)(R;,mg,). Observe that mg,
is the number of tourists of each crowding type that have chosen the same resort
chosen by tourist i. Thus, the behavior of the tourists in this tourism model & is
described by the game ¥ = {(#,I1):i € .7}.
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10.3 Equilibrium: Definition and Existence

The goal in this paper is to find an allocation of tourists through the tourism resorts
such that given the choices of resort of every tourist, no tourist has incentive to move
to another resort. Therefore the suitable equilibrium concept for the game ¥ is the
Nash equilibrium as follows.

Definition. A profile (RY,...,R/,...,R]) € ! is a pure strategy Nash Equilib-
rium for the game ¥ = {(Z, I1');i € .} if,

1

(R}, RZ;) = max IT'(R;, R%,)

foralli =1,...,1.

Theorem. There exists an equilibrium in mixed strategies for the Nash game Y =
{(Z2,I1");i € I} associated to the tourism model & .

Proof. For every player i the strategy set # is finite therefore there exists an
equilibrium in mixed strategies. O

In the next section we present some special cases of our model, specifically, we
consider sufficient conditions that guarantee the existence of an equilibrium in pure
strategies. These conditions take into consideration the number of agents of each
taste and crowding type and the parameters that define the taste types. Moreover,
we discuss the characteristics of these pure equilibria.

10.4 Equilibrium Characterization

We assume in the following results that there are no tourists which are of one crowd-
ing type and prefer to join resorts with tourists of the other crowding type, that is,
we suppose that:

n(cy ’ tBGO) = 07 n(cy ’ tMGO) = O’ n(CO, tBDy) = 07 n(CO’ tMDy) = O'
Proposition 10.1. For an economy under the assumptions

(1.a) Vep > n(cy,tspy) + n(cy,tupy)
(1.b) Vup > n(cy,tepy) + n(cy,tupy)
(1.c) Vg > n(co,tvpGo) + n(Costmco)
(1.d) Vi > n(co,1Go) + n(Costmco)

the following distribution of tourists is a Nash equilibrium:
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Resorts
BD BG MD MG

Tourists|n(cy, tppy) |n(Co, tpco) N (Cy , tupy) |1 (Co, thGo)

In this equilibrium all the tourists are separated across the tourism resorts as
follows: at the resort BD we have all the young tourists of taste type tgpy, at the
resort BG we have all the old tourists of taste type fpgo, at the resort M D we have
all the young tourists with taste type faspy and finally at the resort M G we have all
the old tourists with taste type fasGo-

The results in the table are clear and speak for themselves, therefore we will not
explain them in detail. Instead, however, we will discuss the intuitive nature of the
results.

The intuition of the equilibrium in Proposition 10.1 is the following. Under the
assumptions (l.a)—(1.d), for every tourist the corresponding parameter that mea-
sures the level of utility relative to the product of the resort is high enough to imply
that every tourist values the product of the resort more than the crowding profile.
It follows then that in equilibrium every tourist chooses the resort based on their
preference for product value.

Proposition 10.2. For an economy under the assumptions

(6.a) Vgp > n(cy, tBDy) +n(cy,tMDy)
(6b) Vup -H’l(Cy, tMDy) < I’l(Cy,l‘BDy)
(6.c) Vg > n(co,pGo) +n(co,tmco)
(6.d) Vg +n(co, o) < n(Co,8Go)

the following distribution of tourists is a Nash equilibrium:

Resorts
BD BG MD\MG
Tourists\n(cy, tgpy); n(cy, tupy) |1 (Co, t8Go): N(Co, tiGo)

The assumptions in Proposition 10.2 specify that there is no demand for the
mountain destination and the tourists who prefer the beach have strong preference
for the resort product and hence choose the beach destination. The tourists who pre-
fer the mountain over the beach are a smaller group with a weaker preference for the
tourism product compared to the crowding type component of their payoff function.
However this payoff function prevails over the resort product component and as a
result tourists who prefer the mountain also end up also choosing the beach desti-
nation. The next Proposition demonstrates an analogous result but in this situation
there is no demand for the beach destination.

Proposition 10.3. For an economy under the assumptions
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(7.a) Vep +n(cy.tepy) < n(cy.tupy)
(7.b) Vup > n(cy, tgpy) +n(cy. tupy)
(7.¢) Ve +n(co,tco) < n(co,tuco)
(7.d) Vi > n(co, t3Go) +n(Co, tmco)

the following distribution of tourists is a Nash equilibrium:

Resorts
BD|BG MD MG
Tourists n(cy, tgpy); n(Cy, tupy) |1 (Co. 18Go): N (Co, tMGo)

The three Propositions above show to what extent the equilibrium depends on the
parameters that define the model, namely the parameters that define the evaluation of
the product of the resort by the tourists and the number of tourists of each crowding
type and taste type.

The proof of the propositions above, that is, the proof that the exhibited equilibra
are in fact Nash equilibria is straightforward. Indeed, for every equilibrium when
we check if each tourist would became better if he moves to another resort, given
the assumptions, the conclusion is always that no tourist would move.

10.5 Conclusion

We conclude that the crowding type variable, which represents the characteristics
of tourists that affect the welfare of the other tourists, has a significant effect on the
allocation of tourists across resorts. Indeed, the demand for resorts is a result of the
tourists’ valuation of the crowding profile of the other tourists relative to the resort
product. We observe that changes in the number of tourists of each crowding type
and changes in the parameters that define the payoff of tourists could in fact change
the Nash equilibrium.

Based on the results of our model we suggest when designing a resort the industry
should take into account not only the taste type of the tourists but also the crowding
type of the tourists that they would like to attract. The equilibria described in this
paper suggest how the resort industry might want to focus their investments. For
example, the suppliers of the tourism resort MD in the case of Proposition 2, would
be better off investing in his product in order to increase the parameter VMD of the
tourists who prefer the resorts MD. Otherwise they will lose clientele because these
tourists place more value on the crowding profile of the resort than they do on the
product of the resort.
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Chapter 11
Computability and Dynamical Systems

J. Buescu, D.S. Graca, and N. Zhong

Abstract In this paper we explore results that establish a link between dynamical
systems and computability theory (not numerical analysis). In the last few decades,
computers have increasingly been used as simulation tools for gaining insight into
dynamical behavior. However, due to the presence of errors inherent in such numer-
ical simulations, with few exceptions, computers have not been used for the nobler
task of proving mathematical results. Nevertheless, there have been some recent
developments in the latter direction. Here we introduce some of the ideas and tech-
niques used so far, and suggest some lines of research for further work on this
fascinating topic.

11.1 Introduction: From Numerics to Dynamics
to Computation

In the last century significant developments have been made in the fields of dynam-
ical systems and the theory of computation. Actually, the latter only appeared in the
1930s with the groundbreaking work of Turing, Church and others. These two areas
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have mostly evolved separately, with very sporadic interactions throughout most of
the twentieth century. However, with the advent of fast digital computers and their
extensive use as simulation tools, this gap has been narrowing, and some work has
been done to establish bridges across it. This paper focuses on this research.

Dynamical systems theory is of interest to computer scientists for a number of
reasons. We could point out that computers are used to control continuous processes
in everyday life or that silicon is reaching its limits, and new paradigms of compu-
tation are now sought (e.g. quantum computation [19]), many of them involving
dynamical systems.

However, in this paper we are interested in presenting what the theory of
computation has to offer to the dynamical systems community.

The modern theory of dynamical systems began with Poincaré in the late nine-
teenth century, reached a high level of development in the Russian school by the
middle of the twentieth century, and was further developed by western mathe-
maticians and scientists beginning in the 1960s. This development entailed the
convergence of two very strong but quite distinct currents: a modeling (numerical)
approach and an analytical approach.

On the modeling side, the increasing availability of computational power allowed
the numerical study of mathematical models for systems of definite interest in prob-
lems of physics, engineering or mathematical sciences in general, showing that these
low-dimensional deterministic systems apparently exhibited, in a persistent fashion,
a strong form of chaotic behavior. The first and foremost example is of course that
of the Lorenz attractor [36], whose display of sensitive dependence on initial condi-
tions led Lorenz himself to coin the term “butterfly effect” to describe this form of
chaos. It is far from the only one; soon other model systems were shown to exhibit
the same kind of deterministic, low-dimensional chaotic behavior characterized by
sensitive dependence on initial conditions. Thus, for instance, the Duffing equation
[20], the (nonautonomous) van der Pol system [42] or the Rossler system [47] which
arise as (differential) equations of motion for specific physical systems and also dis-
crete time diffeomorphisms or maps, like the Hénon map or the logistic equation,
which may be seen as arising directly or indirectly from a Poincaré section of the
flow of a differential equation.

On the analytical side, hyperbolic dynamical systems theory began in the Rus-
sian school (especially in Anosov’s work) and was further developed from the 1960s
onward by the Smale school, with the purpose of giving a solid mathematical foun-
dation to the fact that deterministic low-dimensional systems may exhibit persistent
chaotic behavior, as evidenced by the wealth of specific examples referred to above.
Thus arose the motivation for the main theoretical thrusts in what is nowadays called
uniformly hyperbolic dynamical systems theory, leading from Anosov diffeomor-
phisms to the general theory of hyperbolic systems, whose invariant sets have the
structure of a uniform invariant splitting into stable and unstable directions (see
Smale [51]). This theory is extremely rich and allowed for the construction and
study of very specific instances: the Arnold cat map, the Smale horseshoe and the
corresponding symbolic dynamics derived from the associated Markov partitions.

Hyperbolic systems were conceived as an attempt to construct a rigorous the-
ory describing persistent chaotic behavior. There were good grounds to believe that
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hyperbolic systems coupled with the dynamical equivalence relation of topological
conjugacy (corresponding to structural stability) were the appropriate setting for a
rigorous theory of chaotic phenomena, since this was the adequate generalization
of what was known for two-dimensional systems, namely Peixoto’s theorem [41],
which states that all planar vector fields have structurally stable perturbations, and
one can thus disregard systems which are structurally unstable.

However, further research progressively revealed a vast gap between chaotic
behavior as computationally observed in “strange attractors” and the dynamics of
hyperbolic systems. Smale himself [50] delivered the first blow when he showed
that, in dimension 3 or higher, structurally stable systems are not dense. Thus, even
though achieving a complete characterization of hyperbolic systems and their prop-
erties was a major accomplishment in dynamical systems, hyperbolicity is too strong
a property to characterize a generic set of differential equations or diffeomorphisms.

In particular, the strange attractors arising from the Lorenz system, the Hénon
map, the Duffing equation and other computationally well-studied systems, alth-
ough persistently chaotic, are not hyperbolic and thus fall outside the scope of
hyperbolic theory. Indeed, it could have been the case that the Lorenz attractor, in
spite of all the numerical studies, did not exist as a (persistent, structurally unstable,
chaotic) strange attractor; hyperbolic dynamics simply does not provide an answer.
The existence of the Lorenz attractor was, in fact, listed by Steven Smale as one of
several challenging problems for the twenty-first century [52].

The way to bridge this gap, within the purely analytical approach, is to extend
hyperbolic theory to more general systems. One way to achieve this goal is to allow
for partially hyperbolic systems, where we require that the flow or map admits
an invariant splitting but, instead of requiring uniform rates of expansion and con-
traction, we allow some directions to have mixed expansive, contractive or neutral
behavior in different parts of the system. This approach originated in the works of
Pugh—Shub and Maé in the 1970s.

Yet another way to extend the theory is to use concepts from ergodic theory,
where we drop the uniform hyperbolicity requirement and replace it by asymptotic
expansion/contraction rates in directions which may depend measurably on the ini-
tial point. Such systems are referred to as non-uniformly hyperbolic, and the focus
of the theory is to construct physical (SRB) invariant measures and more generally
equilibrium states, and to study their ergodic properties. The equivalence relation
corresponding to structural stability is known as stochastic stability.

From the computational point of view much work has also been done in order to
bridge this gap. In this approach we need to construct rigorous theoretical methods
which allow us to transcend conjectures suggested by more or less precise numer-
ical experiments and prove mathematical results in the most rigorous sense of the
term. Paradigmatic in this approach are breakthroughs such as Lanford’s computer-
assisted proof of the Feigenbaum conjectures [34] and, more recently, W. Tucker’s
proof that the Lorenz attractor exists [56].

In both cases rigorous computational methods went for beyond educated numer-
ical experiments; they provided deep theoretical insights into the mathematical
structure underlying the corresponding dynamical phenomena. In the first case,
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it substantiated the renormalization interpretation of universality in C!-unimodal
maps: it proved that there is a fixed point of a renormalization operator in a suitable
map space with a one-dimensional unstable manifold, the corresponding eigenvalue
being the Feigenbaum constant. In the second case, Tucker’s work finally provided
a proof of the long-standing conjecture that the dynamics of the ordinary differ-
ential equations of Lorenz is that of the geometric Lorenz attractor of Williams,
Guckenheimer, and Yorke or, in short, that the Lorenz system does indeed contain a
persistent strange attractor.

To develop such an approach one must in general leave the realm of plain numer-
ical simulation and look for general statements on computability (in the sense of the
theory of computation) of the objects and concepts of dynamical systems theory.
Although this is a fairly recent field of research, some promising results have already
been achieved. The purpose of this paper is to give an overview of the methods used
and results obtained, as well as to point out directions for possible future research.

11.2 Computable Analysis

In the study of differential equations and dynamical systems, scientific computation
is playing an ever larger role because most equations cannot be solved explicitly but
only approximately by numerical methods. Thus it becomes of central importance
to know whether or not the problem being solved is computable. In particular, if
a solution is non-computable, then no numerical algorithm computing the solution
can always provide approximations with arbitrarily desired precision.

Computability over discrete spaces has been well studied since the 1930s.
Although there are several markedly different models which formalize the notion
of computability, such as Turing machines, lambda calculus, recursive functions,
etc., they all generate the same class of computable functions. This formal notion of
computability and the Turing machine model have been accepted by the scientific
community as the standard model of computation. Indeed, as the Church-Turing
thesis asserts, any intuitively and reasonably computable function is computable by
a Turing machine. We refer the reader to [49] for more details on basic results about
the theory of computation.

The Turing machine, however, cannot be directly applied to compute real func-
tions because it can only have as input and output a “finite number of bits”. To
circumvent this, several extensions of the Turing machine model have been pro-
posed. One such extension is the BSS model [4,5]. In the BSS model, a real number
can be directly stored on a single cell, so that exact computations over real numbers
can be carried out in finite time using infinite-precision arithmetic. Even though this
model is algebraically elegant, it has certain weaknesses as a model for scientific
computation. For example, the non-computability results obtained in this model do
not correspond to computing practice in the real number setting (see [9] for more
details), which is undesirable, since identifying non-computable parameters, func-
tions and sets is one of the main objectives in the computability study of continuous
structures [10,44,59].
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Another extension is the Type-2 Turing machine or oracle Turing machine
model, which has been developed since the 1950s by many authors. For recent
developments and more details about this model, the reader is referred to [31,43,58].
In this model, computations for functions f : NN — NN between Baire spaces are
explicitly defined via Type-2 machines. Roughly speaking, this means that for any
input sequence a in N on a read-only input tape, the machine computes (in the dis-
crete sense) and writes the sequence f(a) on a one-way output tape. The idea is
that the machine keeps reading digits from the input and doing computations (as
any computer does) to get partial results written on the output tape. Since the input
tape has an infinite number of digits, the computation may require an infinite num-
ber of steps to describe the exact output. Because it is desirable to get useful results
in finite time, one requires the output tape to be one-way, i.e., the machine cannot
change what it has already written on the tape, thus ensuring that one has partially
correct results at any given moment (the longer one waits, the more accurate the
results are). Computations of real functions f : A — B, A, B C R, can then be
performed by encoding real numbers by sequences of rational numbers and employ-
ing a Type-2 machine to compute rational approximations of f(x) with arbitrary
precision from a suitable rational approximation of x. The Type-2 Turing machine
is used in computable analysis as the model of computation. In this note, we use the
computable analysis approach.

In the following, we present the precise definitions for encoding real numbers as
well as computable real numbers and computable functions.

Definition 11.1. 1. A sequence {r,} of rational numbers is called a p-name of a
real number x if there are three functions a, b and ¢ from N to N such that for
aln e N, r, = (—1)”(")% and

1
[rn — x| < > (11.1)
2. A double sequence {r, k}n ken of rational numbers is called a p-name for a
sequence {x, }nen of real numbers if there are three functions a, b, ¢ from N2 to
N such that, forall k,n € N, r, x = (—1)”("’”)6(1’,((’;—’31 and

1
|rn,k —Xp| = Z_k

3. A real number x (a sequence {x, },eN of real numbers) is called computable if
it has a computable p-name, i.e. there is a Type-2 machine that generates the
p-name without input.

The notion of p-name extends in an obvious way to /-vectors. Thus a sequence
{(rin,r2n, ..., ") nen of rational vectors is called a p-name of (x1, x2,...,x;7) €
R! if {rjn}nen is a p-name of x;, 1 < j < [.Itis easy to see from the definition
that a p-name of a real number x is simply a code of x by rational numbers.
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Next we present a notion of computability for open and closed subsets of R
(cf. [58], Definition 5.1.15). We implicitly use p-names. For instance, to obtain
names of open subsets of R!, we note that the set of rational balls B(a,r) =
{x € R! : |x —a| < r}, where a € Q! and r € @, is a subbase for the stan-
dard topology over R’. Depending on the p-names used, we obtain different notions
of computability. We omit further details for lack of space.

Definition 11.2. 1. An open set £ C R! is called recursively enumerable (r.e.
for short) open if there are computable sequences {a,} and {r,}, a, € E and
rn € Q, such that

E = U2 o B(an,1s).

Without loss of generality one can also assume that for any n € N, the closure
of B(ay, ry), denoted as B(ay, y), is contained in E.

2. A closed subset K € R’ is called r.e. closed if there exist computable sequences
{b,} and {s,}, b, € Q' and s, € Q, such that {B(b,, s»)}nen lists all rational
open balls intersecting K.

3. Anopenset E C R! is called computable (or recursive) if E is r.e. open and
its complement E€ is r.e. closed. Similarly, a closed set K < R’ is called
computable (or recursive) if K is r.e. closed and its complement K€ is r.e. open.

Roughly speaking, an open subset U of R? is r.e. if there is a computer program
that sketches the image of U by plotting rational open balls on a screen, which will
eventually fill up U (but may take infinite time to do so). We may not know how
well these balls are filling up U in any finite time if U is merely r.e. On the other
hand, if U is recursive, then there is a program that plots the balls filling U up to
precision 2k (in terms of Hausdorff distance) on input k [58].

Definition 11.3. Let A, B be sets, where p-names can be defined for elements of A
and B. A function f : A — B is computable if there is a Type-2 machine such that
on any p-name of x € A, the machine computes as output a p-name of f(x) € B.

When dealing with open sets in R?, we identify a special case of computability,
which we call semi-computability. Let @(R') = {O]O C R’ is open in the standard

topology}.
Definition 11.4. A function f : A — O(R?) is called semi-computable if there is a

Type-2 machine such that on any p-name of x € A, the machine computes as output
two sequences {a, } and {r,}, a, € R! and r,, € Q such that

f(x) = Uf,°=03(dn,rn).
Without loss of generality one can also assume that for any n € N, the closure of
B(ap, ry) is contained in f(x).

We call this function semi-computable because we can tell in a finite time if a
point belongs to f(x), but we have to wait an infinite time to know that it does not
belong to f(x).
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11.3 Description of Results

In this section we describe some recent results concerning computability of con-
tinuous dynamical systems. We consider two types of results: (a) computability
of important parameters and sets appearing in dynamical systems, and (2) using
dynamical systems as computing models.

In the line of (a), our first result concerns a very basic question — the computabil-
ity of a single trajectory of a dynamical system defined by a (vector) ODE

y' = f(y). (11.2)

This may seem like a trivial question — just use a standard numerical algorithm.
However, these methods usually require a Lipschitz constant to ensure uniqueness
of solutions, which is essential for computation. Since the behavior of a trajectory
over time is in general unknown beforehand, one may not have a knowledge of a
Lipschitz constant that can be used to compute the entire trajectory (actually it often
happens that no such “global” Lipschitz constant exists).

This problem is studied by several authors. In [22], we show that if f is
computable and effectively locally Lipschitz (meaning that we can locally com-
pute Lipschitz constants), then we can compute the entire trajectory. This result is
extended in [17]. There it is shown that if the solution is unique, then the solution
must be computable over its lifespan (the maximal interval on which the solution
exists), under the classical conditions ensuring existence of a solution to (11.2) for
a given initial point. The idea is to generate all possible “tubes” which cover the
solution, and then check if this cover is valid within the desired accuracy. The proof
is constructive, although terribly inefficient in practice. Nevertheless, it solves the
problem of computing a given trajectory for (11.2).

The result above is not surprising, since the Picard iteration scheme used in the
classical existence proof is constructive. However, the issue remains as to whether
or not one can compute the lifespan. In [22] we provide a negative answer, showing
that even if f is analytic and computable, the lifespan is in general non-computable
(i.e. not recursive). However, if f is computable, the lifespan is r.e. The non-
computability of the lifespan suggests limitations concerning numerical methods
for solving ODE problems, because numerical methods often assume the existence
of some time interval where the solution is defined, and this assumption is crucial
in error analysis. In the case where the lifespan is non-computable, one may have to
settle for a numerical algorithm computing only a local solution.

We have also shown in [22] that the problem of determining whether or not the
lifespan is bounded cannot be decided by a Turing machine, even if f is computable
and analytic. This result is extended in [24] to the case where f is computable and
polynomial. The result is further refined in [46], where it is shown that the set of all
initial data generating solutions with lifespans longer than k, k € N, is in general
not computable. The set is however r.e. if f is computable.

Next we describe some results related to the dynamics of a given system. In
[61], it is shown that the domain of attraction of a computable and asymptotically
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stable hyperbolic equilibrium point of the nonlinear system (11.2) is in general not
recursive, though it is r.e. This tells us that the domain of attraction can be approxi-
mated from the inside on the one hand, but on the other hand there is no algorithm
determining how far such an approximation is from filling up this domain. When
restricted to planar systems, more can be said. For example, in [25], we show that
the operator .% is strictly semi-computable if we consider only structurally stable
systems; on the other hand, .% fails to be semi-computable if all C! systems are per-
mitted, where .% is the operator that takes two inputs, the description of the flow and
a cover of an attractor, and outputs the domain of attraction for the given attractor.
In [25] we also demonstrate how to decide whether or not there are limit cycles, and
furthermore how to compute hyperbolic ones when given a compact set without an
equilibrium point (equilibrium points are computable from f). As a consequence,
all kinds of hyperbolic attractors in the plane can be computed, though their domains
of attraction cannot.

We now turn to the issue (b) of using dynamical systems as computing models.
We have shown in [23] that the evolution of a given Turing machine can be embed-
ded in the dynamics defined by polynomial differential equations, with some degree
of robustness to perturbations. In other words, polynomial differential equations can
simulate Turing machines. In [7] the following variation of the above result is given:
for any given compact set [a,b] € R, a function f : [a,b] — R is computable if
and only if it is computable by the “limit dynamics” of polynomial differential equa-
tions, i.e., there is a (vector) polynomial p such that given an initial point x € [a, b],
the solution to the initial-value problem y’ = p(¢, y), y(0) = (x,¥2,0,---, Yn,0)s
with y5.0,...,¥s,0 € R independent of x, is composed of two components, which
we suppose without loss of generality to be yy, y,, satisfying

[y1(t) = f(X)] = y2(1)

and y,(t) — 0 ast — oo (i.e., y; converges towards f(x) with error bounded
by y2).

There are interesting results by other authors, usually more related to control
theory. Control theory is an interdisciplinary branch of engineering and mathematics
that studies how to manipulate the parameters affecting the behavior of a system to
produce the desired or optimal outcome. Some good introductions to control theory
for mathematicians can be found in [53, 60].

Numerous interesting techniques and results have been obtained over the years
by the control theory community. However they have not found their way into the
dynamical systems community. In our opinion, this has various causes, ranging from
lack of interaction between the two communities and, to some degree, because con-
trol theory is more application-oriented. For instance, many results focus on hybrid
systems (see e.g. [13]), defined as differential equations with discontinuous right
hand sides or having (some) discrete variables.

A topic of interest for control theory is stability [60]. Usually this notion is related
to Lyapunov stability. In [3], the authors consider a particular class of discrete-time
dynamical systems, defined by continuous piecewise affine functions. They show
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that the stability problem (in their version, “Is the system globally asymptotically
stable?”’) is non-computable, which establishes fundamental limitations for the com-
putation of this kind of problem. Other notions of stability can be considered, e.g.
shadowing or robustness, as done in [28]. The author focuses on the reachability
problem: given some initial point in the state space, does the flow reach some region
or point A? In [28] it is shown that the shadowing property is not enough to decide
reachability by a computer, while robustness is sufficient.

The previous results rely on the paper [12]. There Collins shows that, in gen-
eral, the reachable set of some initial region can be semi-computed (technically,
lower-computed), but can only be computed under some special conditions. Another
interesting algorithm to study the reachability problem is given in [15].

The reachability problem has been one of the most studied problems in the liter-
ature, and is interesting for dynamical systems since it has obvious resemblance to
the problem of computing the domain of attraction of a given attractor. As a matter
of fact, our results about computability of domains of attraction presented in [25]
are based on some of these techniques and provide a good example of how control
theory may be of use in dynamical systems.

Most results about the reachability problem give rise to undecidability (i.e., can-
not be solved by an algorithm) as it is usually easy to encode the evolution of a given
Turing machine in the dynamics of the system, e.g. [1, 6, 8,23, 33,40] and to show
that the reachability problem is equivalent to the Halting Problem, the foremost
undecidable problem in the theory of computation, cf. [2].

Despite this undecidability, these results use creative ways to analyze the dynam-
ics of the system. Moreover, they depend critically on the use of exact computations.
If some robustness to errors is allowed (in a weaker form than that required by struc-
tural stability), then usually the reachability problem is decidable as was mentioned
in [28], but previously seen in other classes [23, 38, 39]. This fact was used in [25].
The idea is to cover some region with a grid of points (more precisely, small squares)
and follow the individual evolution of each point to get an estimate of the domain
of attraction. By using a larger grid (in absolute size) and a thinner mesh size, in
the limit one can show rigourously that we compute the domain of attraction, even
though exact computation takes “infinite time.” Nevertheless, at each point of the
computation, we have an estimate of this domain, with the error converging to 0
with time.

Another important area of study in control theory is controllability [60]. In con-
trollability the aim is to investigate the possibility of forcing the system into a
particular state by using an appropriate control signal. This topic has been partially
studied by some members of the dynamical systems community, in control of chaos,
which is based on the fact that any chaotic attractor contains an infinite number of
unstable periodic orbits, and that one can use small perturbations to stabilize the
trajectory into one of these periodic orbits [48].

The literature about computability and controllability focuses essentially on the
computation of classes of “controllers” which allow the control of specific classes of
systems: hybrid systems [16,37,57] and discrete-time semicontinuous systems [14].
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Concerning complex dynamical systems, there is an exciting result by Braverman
and Yampolsky [10]. They show that there is no algorithm which computes the Julia
set J. of the quadratic polynomial f.(z) = z? + c from the parameter c, using
elaborate arguments involving Julia sets with Siegel disks. This shows that there are
limitations when doing accurate computations of those pretty images of Julia sets
usually presented to the public.

Other results of interest are those using shifts. In [40], Moore uses generalized
shifts to show that basins of attraction, chaotic behavior or even periodicity are
non-computable. This kind of result brings to the field of computability questions
traditionally related to dynamical systems [29]. In particular, these include deriving
necessary conditions for universality [18], computability of entropy [26, 27,32, 54,
55], and understanding the “edge of chaos [35].”

Also along this line, some work has been done concerning computability of
dynamical systems seen from a statistical perspective [21,30]. We believe this is
an interesting and promising topic of research.

11.4 Further Work

The computability theory of continuous dynamical systems is still in an early stage
of development, despite notable progress in recent years. Many important funda-
mental problems have not yet been studied. In general, the problems fall into two
categories — computability and computational complexity.

As for computability, one topic of broad scope is to detect non-computable
parameters and invariant sets of classical importance and ask further for the fine
structure via the theory of degree of unsolvability. Examples are attractors/repellors
and their basins in natural families of dynamical systems such as the Hénon attrac-
tor, the Rossler attractor, and the Lorenz attractor. Another interesting problem is to
identify the analytic/geometric properties that are critical to ensure computability of
an object under consideration. For example, in [61] we showed that there exists a
C* and polynomial-time computable function f defined on R? such that the origin
(0,0) is the only sink of dx/dt = f(x(t)), and the domain of attraction of (0, 0)
is not computable. However, the issue remains as to whether or not the domain of
attraction of a computable polynomial system in the plane is computable.

It could also be interesting to investigate the computability of the dynamical sys-
tems used to model the motion of charged particles in modern particle accelerators.
These devices (the LHC at CERN, the Tevatron at Fermilab, and many others)
are among the most complex machines ever constructed, and numerous numeri-
cal codes are used in their design and operation; these numerical algorithms are
correspondingly complex. Yet, the computability theory is still lacking.

When it comes to computational complexity, so far as we know, the only major
problems which have been investigated are local solutions of the initial value prob-
lems for certain ordinary differential equations [31] and Julia sets [10,45]. There
are many processes and sets arising from dynamical systems which have been
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proved to be computable but yet their computational complexity remains unknown.
One such example is the Smale horseshoe. It can be shown that the horseshoes are
computable, uniformly from the horseshoe maps [11]. Nevertheless, the difficulty
of the computation is not yet known.
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Chapter 12
Dynamics and Biological Thresholds

N.J. Burroughs, M. Ferreira, J. Martins, B.M.P.M. Oliveira,
Alberto A. Pinto, and N. Stollenwerk

Abstract Our main interest is to study the relevant biological thresholds that appear
in epidemic and immunological dynamical models. We compute the thresholds of
the SIRI epidemic models that determine the appearance of an epidemic disease.
We compute the thresholds of a Tregs immunological model that determine the
appearance of an immune response.
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12.1 Introduction

The reinfection process in epidemiology and the SIRI model, specifically, have
evoked recent interest as a first description of multi-strain epidemics where after an
initial infection immunity against one strain only gives partial immunity against a
genetically close mutant strain. Models for partial immunization are also of great
interest, however for different reasons. Transitions between no-growth, compact
growth and annular growth have been observed for these models [8, 10]. In the
SIRI model, using pair approximation, we compute analytically the phase transi-
tion lines (thresholds) between no-growth and compact growth, between annular
growth and compact growth and between no-growth and annular growth [34]. In
the other extreme of disease modeling, at the cellular level, we study a model of
immune response by T cells with regulatory T cells (Tregs). During a pathogen
invasion, T cells specific to the antigen proliferate and promote the removal of the
pathogen. However, the immune system can also target self antigens (autoimmunity)
and cause tissue damage. Tregs limit autoimmunity with a delicate balance between
immune activation and immune response suppression being achieved. We compute
the thresholds of a Tregs immunological model, that determine the appearance of an
immune response and we present how such a balance between immune activation
and immune response suppression is established and controlled [3-7,26].

12.2 Thresholds for Epidemiological Models

One of the simplest and best studied epidemiological models is the stochastic SIS
(susceptible, infected and susceptible again) model. Many authors worked on the
SIS model considering only the dynamical evolution of the mean value and the vari-
ance of the infected individuals, however the characterization of the SIS model go
beyond the consideration of these two moments. In [19,27], the dynamic equations
for all the moments are recursively derived and the stable equilibria manifold com-
puted in the moment closure approximation. Surprisingly, the steady states in the
moment closure can be used to obtain good approximations of the quasi-stationary
states of the SIS model [13,22,23]. The stochastic SIS model can be related with the
contact process using creation and annihilation operators [17]. This relation leads to
a better characterization of critical thresholds for this and other more complex epi-
demiological models like reinfection models [33]. One epidemiological model that
describes reinfection and partial immunization is the SIRI (susceptible, infected,
recovered and again infected) model. The characterization of the thresholds for
the spatial stochastic SIRI model can be done in the mean field approximation
or in higher order approximations like the pair approximation. In the mean field
approximation a first threshold between the disease free state and a non-trivial state
with strictly positive endemic equilibrium appear and a second threshold character-
ized by the ratio between first and secondary infection rate, called the reinfection
threshold, also appear [35]. In the pair approximation, we compute analytically



12 Dynamics and Biological Thresholds 185

the phase transition lines (thresholds) between no-growth and compact growth,
between annular growth and compact growth and between no-growth and annu-
lar growth [34]. This last phase transition line could only be calculated via a scaling
argument [18]. The characterization of the SIRI thresholds in pair approximation
improves the mean field results, in which the SIS and the SIR limiting cases have
the same critical values for the transition from no-growth to a nontrivial station-
ary state, and gives a phase transition diagram in better agreement with the phase
transition diagrams for similar time discrete models [8] described using stochastic
simulations. Further details for both SIS and SIRI thresholds characterization can
be found in [25].

For the spatial stochastic SIRI model we consider the following transitions
between host classes for N individuals being either susceptible S, infected / by
a disease or recovered R

s+1- 141
I R
R+l D141
RS

resulting in the master equation [1, 40] for variables S;, I; and R; € {0,1},
i =1,2,...,N, for N individuals eventually on a regular grid, with constraint

S; + I; + R; = 1 [34]. The first infection S + 1 L I + I occurs with infection
rate 8, whereas after recovery with rate y the respective host becomes resistant up to

a possible reinfection R+ 1 L I + I with reinfection rate B . Hence, the recovered
are only partially immunized. For further analysis of possible stationary states we
include a transition from recovered to susceptibles «z, which might be simply due to
demographic effects (or very slow waning immunity for some diseases). The expec-
tation value for the total number of infected hosts at a given time will be denoted by
(I'). Computing the dynamic evolution of the first moments using the SIRI master
equation we obtain an ODE system [18] which includes the pairs like (SI), (RI),
etc.. Hence, either we have to continue to calculate equations for the triples, which
will involve even higher clusters, or we can approximate the higher moments by
lower ones. The simplest scheme is the mean field approximation where the pairs,
like (SI), are approximated using the first moments (SI) = Q/N (S) (I), where
0 denotes the number of neighbours of each individual, assumed to be constant,
and N the population size. In the pair approximation, we go one step further by
approximating the triples into pairs [12,28]. The pair approximation arises as

oo Q=1 (S)-(IR)
(SIR) ~ 0

from the Bayesian formula for conditional probabilities applied to the local expec-
tation values and a spatial homogeneity argument [18]. The full ODE system in the

(12.1)
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pair approximation is given by

a
dt
d

dt

% {51) = alRD) — (y + BY(SI) + B(Q — (S

(I) = B(SI) — y{I) + B(RI)
(R) = y(I) —a(R) — B(RI)

L0 —1QSD + (SR (S 0 —1(SR)(RI)

P TN =)~ (R 0 (R (122
d _ O—1 (SR (SI)
SR =71 = (1) - (@ + 29 + ien + p 22 SO

— 1 (Q(R) — (SR) — 2(RI)) - (RI)
0 (R)
d
5 (SR = v(SI) + a(Q(R) — 2(SR) — (RI))
O—1 (SR) (S}  -Q—1(RI{SR)

o v - "o

The expressions for all the the moments in stationarity cannot be explicitly com-
puted. In [34], using the information that when (/)* tends to zero the quotient

+B

—p

0.8 =

0.6 -

Bs

0.4 - -

p

Fig. 12.1 The phase transition line between no-growth and ring-growth determined from the ana-
lytic solution for the &« = 0 case which is explicitly given in (12.3). In addition, we also present
the phase transition points for the SIS and SIR limiting cases of the SIRI model
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(I)*/(R)* stays finite, the critical curve B(f), in the limit of & — 0, is given by
r’o-vp@-1
y(Q-2)+B(Q—-1

This threshold is shown graphically in Fig. 12.1, for y = 1 and Q = 4 appropriated
for two dimensional square lattices, as the oblique curve linking the critical points
of the SIS limiting case (the case of ﬂ B and SIR limiting case (where ﬂ =0).

B(B) = (12.3)

12.3 Thresholds for Immunological Models

We modeled a population of Tregs (denoted R, R*) and conventional T cells (7',7*)
with processes shown schematically in Fig. 12.2. Both populations require antigenic
stimulation for activation. Levels of antigenic stimulation are denoted a and b for
Tregs and conventional T cells, respectively. On activation conventional T cells both
secrete IL2 and acquire proliferative capacity in the presence of IL2 while Tregs pro-
liferate less efficiently than normal T cells in the presence of IL2, and they do not
secrete IL2. In the model we assumed that T cells activated by exposure to their
specific antigen have a cytokine secreting state (a normal activated state) and a non-
secreting state to which they revert at a constant rate k; thus in absence of antigen
growth halts. Activated Tregs also induce a transition to the (inhibited) nonsecreting
state [38], thereby inhibiting T cell growth. This transition rate is assumed propor-
tional to the Treg population density. We assume that T cells regain secretion status
with antigen re-exposure. Thus in the presence of costimulation and Tregs, the T cell
population is a mixture of partially inhibited, and normal T cells. In [4], we used
a generic mechanism that utilises a cytokine (denoted J). Tregs compete for this

C Inactive Tregs relaxation Active Tregs Q
—_—»
R specific antigen a R
Proliferation - Proliferation
on cytokines ¢ . i on cytokines
,~’secretion
death ji.. imhibition death
C Autoimmune relaxation I producers Q
-
—»
T specific antigen b T
Proliferation Proliferation
on cytokines ¢ ¢ on cytokines
death death

Fig. 12.2 Model schematic showing growth, death and phenotype transitions of the Treg popula-
tions R, R*, and autoimmune T cell T, T™* populations. Cytokine dynamics are not shown: 1L2 is
secreted by activated T cells 7* and adsorbed by all the T cell populations equally. Reproduced
from [3]
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cytokine by adsorption and thus population homeostasis is achieved. Alternatively,
we can consider an inflow R;p,; of Tregs (as in [5]) instead of the J cytokine (both
mechanisms yield similar results). We used a (quadratic) growth limitation mecha-
nism related to Fas-FasL death, that is assumed to act on all T cells equally. Finally,
we included an influx of T cells into the tissue (7}, p,s in cells per milliliter per day).
See [2,9, 11,20, 24,30-32,36-39] for further biological details. A set of ordinary
differential equations is employed to study the dynamics, with a compartment for
each T cell population (inactive Tregs R, active Tregs R*, non secreting T cells T,
secreting activated T cells 7*), interleukine 2 density / and the homeostatic Treg
cytokine J,

% = (ep(I+J)—B(R+ R* + T + T*) —dr)R + k(R* — aR) + Riupu.
R (U41)B(R+ R +T +T%) — dge) R* ~ K(R" — ak).

% =6(S — (@R + R*) +8)J),

sz_f =(pl =BR+ R*+T +T*) —dp)T + k(T* =bT+yR*T") + Tinpur,
d;: = (ol —B(R+ R*+T + T*) —dp+)T* —k(T* —bT+yR*T*),

g =o(T* = (@(R + R*+T + T*) + 8)I). (12.4)

The important aspects of this model are a mechanism to sustain a population of
Tregs, secretion inhibition of T cells with a rate that correlates with Treg pop-
ulation size, and growth and competition for IL2 with a higher growth rate of
T cells relative to Tregs. Parameters are defined in [4]. Tregs function to limit
autoimmune responses determining a delicate balance between appropriate immune
activation and immune response suppression. How such a balance is established

x=T+T
3 3
y=R+R
3 3

2 =T Py e 4R 10
10 o — 0 10 - e 0
10" S~z 10 o~z 10
o, 4 10 o, 4 10

T 10" 10 b T 10" 10 b

input input
Fig. 12.3 The hysteresis of the equilibria manifold for Thymic inputs 7T;,,, € [1,10000], with
the other parameters at their default values. The hysteresis unfolds for high values of the parameter

Tinpur- (@): Low values of y = R + R* are reddish and higher values are yellowish. (b): Low
values of x = T 4+ T* are reddish and higher values are yellowish
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and controlled is the central focus of the papers [4—7]. The motivation is the obser-
vation that T cell proliferation through cytokines has such a control structure (see
Fig. 12.3). The immune response-suppression axis is then a balance between the
local numbers of activated T cells (eg from a pathogen encounter) and activated
Tregs. This balance can be altered by natural slow changes (as in puberty) or by fast
changes (as in infection) [4, 16]. Using the differential equations in (4.4), Burroughs
et al. [3] study the bystander proliferation and Burroughs et al. [4] study the cross
reactivity.
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Chapter 13
Global Convergence in Difference Equations

Elias Camouzis and Gerasimos Ladas

Abstract In this chapter we present some global convergence theorems for dif-
ference equations and systems. We also present specific examples of difference
equations and systems to illustrate how most of these theorems apply.

13.1 Introduction

In this chapter we present some global convergence theorems for difference equa-
tions and systems. We also present specific examples of difference equations and
systems to illustrate how most of these theorems apply.

For historical reasons we mention that about 30 years ago, there were almost no
global convergence results known in the area of difference equations. Also, 15 years
ago, there were only very few such results known. Indeed, R. M. May in [38],
p. 839 states: “The response to large amplitude disturbances requires a nonlinear,
or global analysis, for which no general techniques are available.” Also, Y. Kuang
and J. M. Cushing in [15], p. 32 state: “We would like to mention that global stability
results for general difference-delay equations are rare.”

We believe that the results, which we present in this chapter will have a wide
spectrum of applicability in several areas that use difference equations. For the
most part the examples which we present here to illustrate the global convergence
theorems, are taken from the area of rational difference equations which has moti-
vated these general results during the last 20 years. See [9, 21, 30, 32]. Finally, we
believe that further research in rational difference equations will be a great source
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of motivation for obtaining additional global convergence results. This is because
the methodology needed to understand the global character of rational difference
equations will also be useful in the analysis of mathematical models that involve
difference equations.

In Sect. 13.2 we present the definitions of stability.

In Sect. 13.3 we state the linearized stability result and we state necessary and
sufficient conditions for polynomials of degree two, three, and four to have all their
roots inside the unit disk.

In Sect. 13.4 we present a comparison result and in Sect.5 we present the full
limiting sequences result.

The most important section in this chapter is Sect. 6. Here we present 24 global
convergence theorems and we give several examples to illustrate how most of these
theorems apply.

13.2 Definitions of Stability

Let x be an equilibrium point of the difference equation
Xn+1 = F(xn, Xn—1,...,Xn—k), n=0,1,... (13.1)

that is
F(x,...,x) =X

where F is a function that maps some set J¥+1 into J. The set J is usually an interval
of real numbers, or a union of intervals, or a discrete set, such as the set of integers
Z={..,-1,01,...}

Definition 13.1. 1. An equilibrium point X of (13.1) is called locally stable if, for
every ¢ > 0, there exists § > 0 such that if {x,}>° _, is a solution of (13.1)
with

| Xk = X[+ X1 =X |4+ +[xo— X[ <4,
then

|xp — x| <e, forall n>0.

2. An equilibrium point x of (13.1) is called locally asymptotically stable if, X is
locally stable, and if in addition there exists y > 0 such that if {x,}°°  isa
solution of (13.1) with

| X—k =X |+ [xp1 =X |+ +|x0—X| <y

then

lim x, = X.
n—oo
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3. An equilibrium point X of (13.1) is called a global attractor if, for every solution
{xn ) 4 of (13.1), we have

lim x, = X.
n—oo

4. An equilibrium point x of (13.1) is called globally asymptotically stable if X is
locally stable, and x is also a global attractor of (13.1).
5. An equilibrium point x of (13.1) is called unstable if x is not locally stable.

13.3 Linearized Stability Analysis

Assume that the function F is continuously differentiable in an open neighborhood
of an equilibrium point x. Let

JoF
qgi = —((Xx,x,...,x), fori=0,1,...,k
Bu,-
denote the partial derivative of F(ug, uy, ..., u) with respect to u; evaluated at the

equilibrium point x of (13.1). Then the equation

Yn+1 =4qoYn + q1Yn—1+ -+ Gk Yn—k, n=0,1,... (13.2)

is called the linearized equation of (13.1) about the equilibrium point X, and the
equation
AF—godk — o — g A — g =0 (13.3)

is called the characteristic equation of (13.2) about X.

The following result, known as the Linearized Stability Theorem, is useful in
determining the local stability character of the equilibrium point X of (13.1). See
[3,4,18,24,37,43,44].

Theorem 13.1. (The Linearized Stability Theorem)

Assume that the function F is a continuously differentiable function defined on some
open neighborhood of an equilibrium point X. Then the following statements are
true:

1. If all the roots of (13.3) have absolute value less than one, then the equilibrium
point X of (13.1) is locally asymptotically stable.

2. If at least one root of (13.3) has absolute value greater than one, then the
equilibrium point X of (13.1) is unstable.

The equilibrium point x of (13.1) is called hyperbolic if no root of (13.3) has
absolute value equal to one. If there exists a root of (13.3) with absolute value equal
to one, then the equilibrium X is called nonhyperbolic.
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An equilibrium point x of (13.1) is called a saddle point if it is hyperbolic and
if there exists a root of (13.3) with absolute value less than one and another root of
(13.3) with absolute value greater than one.

An equilibrium point x of (13.1) is called a repeller if all roots of (13.3) have
absolute value greater than one.

A solution {x,}°° _ of (13.1) is called periodic with period p if there exists an
integer p > 1 such that

Xpn4p = X, forall n>—k. (13.4)

A solution is called periodic with prime period p if p is the smallest positive integer
for which (13.4) holds.

The next three theorems present necessary and sufficient conditions for all the

roots of a real polynomial of degree two, three, or four, respectively, to have modulus
less than one.

Theorem 13.2. Assume that a; and aqy are real numbers. Then a necessary and
sufficient condition for all roots of the equation

A+ aid+ag=0

to lie inside the unit disk is
|6ll| <l+4ag<?2.

Theorem 13.3. Assume that a,, ay, and agy are real numbers. Then a necessary and
sufficient condition for all roots of the equation

B 4ar>+al+ap=0
to lie inside the unit disk is
laz + a0l <14 a1, |az—3aol <3—a1, and af+a; —apaz < 1.

Theorem 13.4. Assume that as, as, a1, and ag are real numbers. Then a necessary
and sufficient condition for all roots of the equation

A +azd® +axd® +aid +ao =0
to lie inside the unit disk is
a1 +a3| <1+ag+az, |ar—as| <2(1—ag), ar—3ap<3,
and

2 2 2 2 3
ap + az + ag + ay + agaz + apaz < 1+ 2apaz + araz + apayas + ay.
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The following theorem states a sufficient condition for all roots of an equation of
any order to lie inside the unit disk. See [11] or ([30], p. 12).

Theorem 13.5. (C. W. Clark, [11]) Assume that qo,q1, ... ,qx are real numbers
such that
lgol+1qi|+--+lg| <l

Then all roots of (13.3) lie inside the unit disk.

13.4 A Comparison Result

The following comparison result, see ([9], p.7), is a useful tool in establishing
bounds for solutions of nonlinear equations in terms of the solutions of equations
with known behavior, for example, linear or Riccati.

Theorem 13.6. Let I be an interval of real numbers, let k be a positive integer, and
let
F:Jkt g

be a function which is increasing in all of its arguments. Assume that {x,}°2 _,,
{nine g and {zn )02, are sequences of real numbers such that

Xn+1 < F(Xp,...,Xp—k), n=0,1,...
Yn+1 = FOnsooosVn—k), n=0,1,...
Zn+1 > F(zn, oo vzn—k), n=0,1,...
and
Xn < Vn <zn, forall —k<n<o0.
Then
Xn <yn <2zn, forall n>0. (13.5)

13.5 Full Limiting Sequences

The following result about full limiting sequences it is sometimes useful in estab-
lishing that all solutions of a given difference equation converge to the equilibrium
of the equation. See [19,28,42].

Theorem 13.7. Consider the difference equation
Xn+1 = F(xn, Xn—1,...,Xn—k), n=0,1,... (13.6)

where F € C(J¥t' ) for some interval J of real numbers and some non-
negative integer k. Let {x,}° _, be a solution of (13.6). Set I = liminfx, and
n—>oQ
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S = limsup x,, and suppose that I, S € J. Let £y be a limit point of the solution
n—>oo
{xn )02 4. Then the following statements are true:

1. There exists a solution {L,}2 of (13.6), called a full limiting sequence of

n=—00
{Xn}e g, such that Lo = £y, and such that for every N € {...,—1,0,1,.. .},
Ly is a limit point of {xp},> _, . In particular,

I<Ly<S, foral Ne{..—101,..}

2. For every igp € {...,—1,0,1,...}, there exists a subsequence {xr, };’io of
{xXn )52 such that

Ly = lim x,,+n, forevery N >ip.
i—00

13.6 Convergence Theorems

The theorems in this section, for the most part, have been motivated by research in
rational difference equations.

The following global attractivity result from [32]-[34], called the m and M
Theorem, is very useful in establishing convergence results in many situations.

Theorem 13.8. (Kulenovic, Ladas, and Sizer [32] and [34]) Let [a, D] be a closed
and bounded interval of real numbers and let

F e C([a,b]**, [a,b])

satisfy the following conditions:
1. The function F(z1,...,2x+1) is monotonic in each of its arguments.
2. Foreachm, M € [a,b] and for eachi € {1,...,k + 1}, we define

M, if Fis increasing in z;
Mi(m, M) = o o
m, if Fis decreasing in z;

and
mi(m, M) = M;( M, m).

Assume that if (m, M) is a solution of the system:

M = F(M](m,M),...,Mk+1(m,M))
m=Fmim,M),....mgi(m,M)) |’

then M = m.
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Then there exists exactly one equilibrium X € [a, b] of the equation
Xnt1 = F(Xn, Xn—1,..., Xn—k), n=0,1,... (13.7)

and every solution of (13.7) with initial conditions in [a, b] converges to x.
The example which motivated Theorem 13.8 is the following:

Example 13.1. Consider the rational difference equation

ﬂxn + Xn—1
= — =0,1,... 13.8
Xn+1 Bxy + Xy 1 n ( )

with positive parameters 8, B and with arbitrary positive initial conditions x_j, x¢.
We also assume that 8 # B because otherwise the equation is trivial.
Then the following statements are true:

1. The equilibrium X of (13.8) is globally asymptotically stable when
B>B (13.9)

or
B<B and B <3B+pBB+1. (13.10)

2. Every solution of (13.8) converges to the equilibrium X of (13.8) when
B<B and B=38+p8B+1. (13.11)

3. Every solution of (13.8) converges to a (not necessarily prime) period-two
solution when
B<B and B>38+p8B+1. (13.12)

Proof. For the details of the proof see Theorem 5.86.1, p. 252 in [9]. O

The next result applies to difference equations that satisfy the so-called, negative
feedback property.

Theorem 13.9. (Hautus and Bolis [22]) Let J be an open interval of real numbers,
let F € C(J¥1,J), and let X € J be an equilibrium point of (13.7). Assume that
F satisfies the following two conditions:

1. Fisincreasing in each of its arguments.
2. F satisfies the negative feedback property:

(u—xX)F(u,u,...,u)—ul <0, forall uel —{x}.

Then the equilibrium point X is a global attractor of all solutions of (13.1).
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Theorem 13.9 was used by Kuang and Cushing in [31] to establish the global
asymptotic stability of the positive equilibrium of the flour beetle model

Ln+1 — bAne_CeaAn_Cean
Bni1 = (1 — ) Ln Cn=01,... (13.13)
Aps1 = Bne_CpaAn + (1 — pa)As

when
Ce; = 0.

In this case the system reduces to the third-order difference equation
Ap+1 = (1 —p)An +b(1 - /'La)An—ze_chniz_ch", n=0,1,....
The next global convergence result was motivated by Pielou’s equation

Bxn

—, n=0,1,....
1+Xn—1

Xn+1 =

For this equation it was established in [36] that every nonnegative solution converges
to a finite limit. More precisely, when

B=1

every nonnegative solution converges to the zero equilibrium and when

B >1

every positive solution converges to the positive equilibrium x = § — 1.

Theorem 13.10. (Kocic and Ladas [30]) Assume that the following conditions are
satisfied:

1. f € CJ[(0,00) x (0,00), (0, 00)].
2. f(x,y) is decreasing in x and strictly decreasing in y.
3. xf(x,x) is strictly increasing in x.
4. The equation
Xnt+1 = Xn f(Xn, Xn—1), n=0,1,... (13.14)

has a unique positive equilibrium X.

Then X is a global attractor of all positive solutions of (13.14).

The following theorem was motivated by a population model with two age
classes. See [23].
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Theorem 13.11. (Franke, Hoag, and Ladas [23]) Assume that the following condi-
tions are satisfied:

f € CJ0,00) x [0, 00), (0, 00)].
f(x,y) is decreasing in each argument.
xf(x,y) is increasing in x.

S y) < f(y,x) & x>y,

The equation

SR L~

Xnt+1 = Xn—1f(Xn—1,Xn), n=0,1,... (13.15)
has a unique positive equilibrium X.
Then X is a global attractor of all positive solutions of (13.15).

The model that motivated Theorem 13.11 is a discrete model with two age
classes, adults 4, and juveniles J,,, which interact as follows:

An+1 =Ju
Jn+1 — Aner_(An+aJn) ’

n=0,1,... (13.16)
where the two parameters r and « are such that
r,a € (0,1].
Clearly, the variable J,, satisfies the second-order difference equation
Jpi1 = Juqe’"Unrtedn) o — 01 (13.17)
for which Theorem 13.11 applies when

a<l1

and proves that the positive equilibrium

r

J =
1+«

is a global attractor of all positive solutions of (13.17).

The following result of Camouzis and Ladas was motivated by several period-
two convergence results in rational difference equations. See Chaps. 4 and 5 in [9].
Thanks to this result, several open problems and conjectures in the literature have
now been resolved and the character of solutions of many rational equations has now
been established. See Theorems 4.2.2, 4.3.1, 5.74.2, 5.86.1, 5.109.1, and 5.145.2
in [9].
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Theorem 13.12. (Camouzis and Ladas, [2, p. 11] or [8]) Let J be a set of real
numbers and let
F:JxJ—>J

be a function F(u,v), which decreases in u and increases in v. Then for every
solution {x,},2_, of the equation

Xn+1 = F(xp,xp-1), n=0,1,... (13.18)

the subsequences {X2, } 5= and {Xan+1}ow_; of even and odd terms are eventually
monotonic.

Proof. Observe that if for some N the solution {x,}5> _; is such that
XN+1 > xy-1 and Xxy42 < XN

or
XN+1 <xy-1 and Xy42 = XN

then either {xny42,}52, is decreasing and {Xni2n+1}5e( iS increasing or vice
versa.
Otherwise, for all n > 0

Xon+1 > Xop—1  and  Xop42 > Xop

or
Xon4+1 < Xop—1 and  Xop42 < Xop

which implies that the subsequences {x2,}o>, and {x2,-1}52, are either both
increasing or both decreasing. O

The proof of Statement 3 of Example 13.1 is a direct consequence of the
above theorem. Furthermore, the following example provides another illustration
of Theorem 13.12.

Example 13.2. Assume that
y > B+ A
Then every positive and bounded solution of the second-order rational difference
equation
o+ Bxn + yxn—1
A+ xp

converges to the positive equilibrium

, n=0,1,..., (13.19)

Xn+1 =

Bry—A+VB+y—A)+4a
: .

X =

Proof. For the proof see Theorem 4.2.2 in [9]. O
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The next three theorems were motivated by our investigation of the following
rational system in the plane:

o1+
Xn41 = lylr’llJ’n

n=0,1,.... (13.20)

— +Boxntyoyn
Y+l = G5 Byxn+Cayn

The variable y, satisfies the second-order rational difference equation

o+ BynXn—1+ YYn-1
A+ Bynyn—1+ Cyn—1 '

Vg1 = n=0,1,... (13.21)

which contains 49 special cases of equations each with positive parameters. These
special cases were investigated in [1]-[2]. Here we present, as an example, the
difference equation

L S SR (13.22)
1+ XpXp—1

By employing the next three theorems we established in [1] that every nonnegative
solution of (13.22) has a finite limit.

Theorem 13.13. (Amleh, Camouzis, and Ladas [1]) Let J be a set of real numbers
and let
F: JxJ—>J

be a function F(u,v) which increases in both variables. Then for every solution
{xn}02 | of (13.18) the subsequences {X2,} and {x2,41} of even and odd terms
are eventually monotonic.

Theorem 13.14. (Amleh, Camouzis, and Ladas [1]) Assume that the function f €
C([a, 00)?, [a, 00)) increases in both variables and that the difference equation

Xnt+1 = f(xn,xn—1), n=0,1,... (13.23)

has no equilibrium point in (a,o0). Let {x,}5>_, be a solution of (13.23) with
X_1,X0 € (a,00). Then

) oo if f(x,x)>x, forall x> a.
lim x, =

n—>00 aif f(x,x) <x, forall x> a.

Theorem 13.15. (Amleh, Camouzis, and Ladas [1]) Assume that f € C(]0, 00)2,
[0, 00)) increases in both variables and that the difference equation

Xnt+1 = f(xn,Xn—1), n=0,1,... (13.24)
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has two consecutive equilibrium points X1 and X,, with X1 < X».
Also assume that either

f(x,x)>x, for X1 <x <Xz (13.25)

or
f(x,x) <x, for X1 <x<Xs. (13.26)

Then every solution {x, }°_, of (13.24) with initial conditions

n=-—1
X_1,X0 € (X1, X2)

converges to one of the two equilibrium points, and more precisely the following is
true:

. X1, if (13.26) holds,
lim x, =
n—00 X2, if (13.25) holds.

The above two results extend and generalize to difference equations of higher order.
The next theorem unifies Theorems 13.12 and 13.13 and extends the results to
non-autonomous difference equations.

Theorem 13.16. (Camouzis, [5])
Let J be a set of real numbers and let

o I xJ—>J

be a family of functions fy(z1,z2) which increase in 7z and are monotonic in 73
throughout J . Also assume that for alln € {0, 1, ...} and for somem € {1,2,...}

.fn+m(Zl s ZZ) = fn (Zl , ZZ)-

Then for every solution {x, }ne_; of the difference equation
Xn+1 :fn(xn7xn—1), n=20,1,...

the 2m-sequences {Xamn+1}275 " are eventually monotonic.

Note that when m is even, m-sequences { X+ };":_01 are eventually monotonic, and
when m is odd, 2m-sequences {X2,,5++ },2;"0_ ! are eventually monotonic.
The following example provides an illustration of Theorem 13.16.

Example 13.3. (See [5]) Assume that the sequences {A,}n—, {Bn}ye,, and
{Cn}2, positive 2m-periodic sequences. Then every positive solution of the
second-order rational difference equation

Xn—1

X = , n=0,1,..., 13.27
i An + Bpxy + Cpxn—1 ( )

converges to a periodic solution with period-2m.
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The following five results were motivated by our recent investigations on rational
difference equations. See [9].

In order to simplify and unify several convergence results for the difference
equation

Xp = fXn—iysoo o Xnip), n=12..., (13.28)
where k > 2 and the function f(zy,...,zx) is monotonic in each of its arguments,
we introduce some notation and state several hypotheses.

For every pair of numbers (m, M) and for each j € {1,...,k}, we define

M, iff isincreasing in z;
Mj=M;m M) = s gL
m, iff is decreasing in z;

and
m; =mjm,M)=M;(M,m).

(Hy): f € C(]0,00)%,[0,00)) and f(z1,...,zx) is monotonic in each of its
arguments.

(H): € C((0,00)%,(0,00)) and f(z1,...,zx) is monotonic in each of its
arguments.

(H{): f e C([o, o0)k,[0,00)) and f(z1.....zx) is strictly monotonic in each of
its arguments.

(H{): f e C(o, 00)¥,(0,00)) and f(z1,...,z) is strictly monotonic in each of
its arguments.

(H,) : Foreachm € [0,00) and M > m, we assume that

SMy, ... My) > M (13.29)

implies
fmy,...,mg) > m. (13.30)

(H}) : Foreachm € (0,00) and M > m, we assume that

SMy,.... M) =M (13.31)
implies
flmy,...,mg) > m. (13.32)
(H3) : Foreachm € [0,00) and M > m, we assume that
either
or

F(My,....My)—M = f(my.....mg)—m = 0. (13.34)
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For each m € (0, 00) and M > m, we assume that
either

(fMy, ..., M) —M)(f(my,....,mg)—m) >0
or
f(My,...,My)— M = f(my,...,mg)—m = 0.

We also define the following sets:

S ={is e{i1,....ix}: [ strictly increases in x,—;,} = {is,,
and
J ={ij €lir,...,ix}: [ strictly decreases in xp—;;} = {ij,

Clearly when H; or H{ holds,

ST =tir... ik

(13.35)

(13.36)

i)

i)

The set S consists of even indices only and the set J consists of odd indices

only.

Either the set S contains at least one odd index, or the set J contains at least

one even index.

The greatest common divisor of the indices in the union of the sets S and J

is equal to 1.

The next four theorems have been used to establish global attractivity and period-
two convergence results in many special cases of rational equations. See [9].

Theorem 13.17. (Camouzis and Ladas [9]) The following statements are true:

1. Assume that (Hy) and (H3) hold for the function f(z1, ...

,7k) of (13.28). Then

every solution of (13.28) which is bounded from above converges to a finite limit.

2. Assume that (H[') and (H3) hold for the function f(z1,..

.. zk) of (13.28).

Then every solution of (13.28) which is bounded from above and from below
by positive constants converges to a finite limit.

The following rational difference equation

Xn
A+ Bxp + Cxp_t’

Xnt1 = n=20,1,...

was investigated in [30], where it was shown that when

A€ (0,1

(13.37)
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every positive solution converges to the positive equilibrium. We present here a
simpler proof, which is based on Theorem 13.17. Note that the change of variables

1
yn = —),
Xn
transforms (13.37) to
C
Yni1 =B+ Ayp+ 2 n=0,1,.... (13.38)
n—1
Also, c
B
I 2 A+ —, n=0,1,
Yn Yn Yn—1
and so (13.38) becomes
CB c?
Yny1 =B +CA+ Ay, + + , n=>0. (13.39)
Yn—1 Yn—2

By employing Theorem 13.17 it follows that every positive solution of (13.39) con-
verges to the positive equilibrium. Therefore, every positive solution of (13.37) also
converges to its positive equilibrium.

Theorem 13.18. (Camouzis and Ladas [9]) Assume that for any of the following
three equations of order three:

Xn+1 = f(Xn, Xn-1,Xn—2), n=0,1,... (13.40)
Xn+1 = f(xn,Xn—2), n=0,1,... (13.41)

or
Xn+1 = f(xXn—1,Xn—2), n=0,1,... (13.42)

the hypotheses (H{') and (H}) are satisfied for the arguments shown in the equation
and, furthermore, assume that the function f is:

strictly increasing in x, or X,—», or strictly decreasing in x,—1.

Then every solution of this equation bounded from below and from above by positive
constants converges to a finite limit.

As an illustration of Theorem 13.18 we present the rational difference equation

S
L S (13.43)
1+ x,

with positive parameters and
§=8+1
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Then, by employing Theorem 13.18 it follows that every positive solution of (13.43)
converges to a finite limit. For the details of the proof see [9], p. 257.

Theorem 13.19. (Camouzis and Ladas [9]) Assume that for any of the three equa-
tions (13.40), (13.41), or (13.42) the hypotheses (H{') and (H}) are satisfied for the
arguments shown in the equation, and, furthermore, assume that the function f is:

strictly decreasing in x,, for (13.40) and (13.41),
and

strictly increasing in x,—1 for (13.40) and (13.42),

and
strictly decreasing in X,—».

Then every solution of this equation bounded from above and from below by positive
constants converges to a (not necessarily prime) period-two solution.

It is interesting to mention that Theorem 13.19 applies to Pielou’s equation in the
following iterated form

Bxn—1 . B
1+ xp-1 14+ xp-2"

0,1,... (13.44)

Xn+1 =

and simplifies substantially the proof given in [36].

Theorem 13.20. (Camouzis and Ladas [9]) Assume that for any of the three equa-
tions (13.40), (13.41), or (13.42) the Hypotheses (H{) and (H3) are satisfied for the
arguments shown in the equation, and, furthermore, assume that the function f is:

strictly decreasing in x,, for (13.40) and (13.41),
and

strictly increasing in x,—1 for (13.40) and (13.42),

and
strictly decreasing in x,—».

Then every solution of this equation bounded from above converges to a (not
necessarily prime) period-two solution.

An example where Theorem 13.20 applies is the rational difference equation

o+ yYXp—1

———— n=0,1,... 13.45
A+ Bx, +x,-2 ( )

Xn+1 =

with positive parameters and
y = A.
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For this equation Theorem 13.20 implies that every positive solution converges to a
(not necessarily prime) period-two solution. See [9], p. 123.
The following general theorem extends and unifies Theorems 13.18-13.20.

Theorem 13.21. (Camouzis and Ladas [9].) The following statements are true:

1. Assume that (H{), (H3), (Hs), and (He) hold. Then every bounded solution of
(13.28) converges to a (not necessarily prime) period-two solution.

2. Assume that (H{'), (H}), (Hs) and (He) hold. Then every solution of (13.28)
bounded from above and from below by positive constants converges to a (not
necessarily prime) period-two solution.

3. Assume that (H{), (H3), (Hs), and (Hg) hold. Then every bounded solution of
(13.28) converges to a finite limit.

4. Assume that (H{'), (H}), (Hs), and (Hs) hold. Then every solution of (13.28)
bounded from above and from below by positive constants converges to a finite
limit.

The following result has many interesting applications.

Theorem 13.22. (El-Metwalli, Grove, Ladas, and Voulov. See [19] and [20]). Let J
be an interval of real numbers and let F € C(J¥+1, J). Assume that the following
three conditions are satisfied:

1. F isincreasing in each of its arguments.

2. F(z1,...,2k+1) is strictly increasing in each of the arguments z;,, Ziy, . . . , % »
where 1 < iy < i < ... <i; <k + 1, and the arguments iy,i,,...,i; are
relatively prime.

3. Every point c in I is an equilibrium point of
Xn+1 = F(Xn, Xn—1,..., Xn—k), n=0,1,.... (13.46)

Then every solution of (13.46) has a finite limit.
Example 13.4. Consider the rational difference equation

1

=—  n=0,1,..., (13.47)
Zf:] IBixn—li

Xn

where
Bi >0, for i=1,....k

and
li e{l,2,...}.

Assume that dy and d; are the greatest common divisors of the two sets of
positive integers:
{li, o, .. Ik}
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and
{li+lj2i,j ef{l,..., k}},

respectively. Then the following statements are true:

1. The equilibrium X of (13.47) is globally asymptotically stable if and only if
d 1= dz.

2. When
dy # da,

every solution of (13.47) converges to a (not necessarily prime) period-(2 - d;)
solution.

Proof. The proof is a consequence of Theorem 13.22. For the details see [19] or
[21] and [20]. O

We will now state some results about competitive and cooperative systems in the
plane. See [10] and [7].
Let I and J be intervals of real numbers and let

f:IxJ—1and g:1xJ —J.

We say that the system

Xn+1 = f(Xn, Yn)
, n=0,1,... (13.48)

Yn+1 = &(Xn, yn)

is competitive, when the function f(x, y) is increasing in x and decreasing in y and
the function g(x, y) is decreasing in x and increasing in y.

On the other hand, when the function f(x, y) is increasing in x and increasing in
y and the function g(x, y) is increasing in x and increasing in y the System (13.48)
is called cooperative.

The following two results for competitive systems in the plane were first estab-
lished by DeMottoni and Schiaffino. See [39]. For a more general version of these
two theorems see [48]. For their proofs see [7].

Theorem 13.23. Assume that the System (13.48) is competitive and that for every
solution (xy, yn) of the System (13.48) the following two statements are satisfied:

(i) If for some N > 0,

XN+1 < XN and YN+1 < YN, (13.49)

then
XN <XxXnNy—1 and YN < YN-1- (13.50)
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(ii) If for some N > 0,

XN+1 > XN and YN+1 > YN, (13.51)

then
XN > XN—1 and YN > YN-—1. (13.52)

Then both sequences {x,} and {y,} are eventually monotonic.

Theorem 13.24. Assume that the System (13.48) is competitive and that for every
solution (xy, yn) of the System 13.48 the following two statements are satisfied.:

(i) If for some N > 0,

XN+2 <Xy and YN42 < YN, (13.53)
then
XN4+1>XN-1 and YNiy1> YN-1. (13.54)
(ii) If for some N > 0,
XN+2 > XN and YN4+2 > VN, (13.55)
then
XN+1 <Xy-1 and YNy1 < YN-1. (13.56)

Then the four subsequences {X21}, {X2n+1}, {Van}, and {yan+1} are eventually
monotonic.

The next two theorems are extensions of Theorems 13.23 and 13.24 to non-
autonomous systems.

Theorem 13.25. Consider the non-autonomous System

X1 = fuh, b
, n=0,1,... (13.57)

Yn4+1 = gn(X,f, er)

where
ol xJ —>1 and gy,:1xJ—>J, n=0,1,....

Also assume that for all n € {0, 1, ...} and for somem € {1,2,...}

Jotm(z1.22) = fu(z1,22) and  gunim(21.22) = gn(21,22) (13.58)

and that for every solution (xy, yn) of (13.57), the following two statements are
satisfied:

(i) If for some N > 0,

XN+m <XN and YN+m < VN, (13.59)
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then
XN+m—1 < XN-—1 and YN+m < YN-1- (1360)

(ii) If for some N > 0,

XN+m > XN and YN+m > VN, (13.61)

then
XN+m-1> XN-1 and YN+m-1> YN-1. (13.62)
Then the 2m-sequences {Xmn+t "o {Vmn+t}7=¢ are eventually monotonic.

Theorem 13.26. Assume that (13.58) holds and that for every solution (xy, yn) of
(13.57), the following two statements are satisfied:

(i) If for some N > 0,

XN+m <XN and YN+m < VN, (13.63)
then
XN+m—1> XN—-1 and YN+m > YN-1. (13.64)
(ii) If for some N > 0,
XN+m > XN and YN+m > VN, (13.65)
then
XN+m—1 < XN-—1 and YN+m—1 < YN-1- (1366)

Then the 4m-sequences {x2mn+t}t2'="0_ U and { y2mn+t}t2;"0_ L are eventually
monotonic.

The following two theorems are about cooperative systems in the plane.

Theorem 13.27. Assume that the System (13.48) is cooperative and that for every
solution (xy, yn) of the System (13.48) the following two statements are satisfied.:

(i) If for some N > 0,

XN+1 <Xy and YN+1 > YN, (13.67)
then
XN <XN—1 and YN > YN-—1. (13.68)
(ii) If for some N > 0,
XN+1>Xxy and YN+1 < YN, (13.69)
then
XN > xN—1 and YN < YN-—1- (13.70)

Then both sequences {x,} and {y,} are eventually monotonic.
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Theorem 13.28. Assume that the System (13.48) is cooperative and that for every
solution (xy, yn) of the System (13.48) the following two statements are satisfied.:

(i) If for some N > 0

XN+2 <Xy and YN42 > VN, (13.71)
then
XN+1 > XN—1 and YN+1 < YN-1. (13.72)
(ii) If for some N > 0,
XN+42 > XNy and YN+2 > YN, (13.73)
then
XN+1 <XN-1 and YN+41 > YN-1- (13.74)

Then the four subsequences {xan}, {X2n+1}, {V2n}, and {yan+1} are eventually
monotonic.

The following two theorems are extensions of Theorems 13.27 and 13.28 to non-
autonomous systems.

Theorem 13.29. Consider the non-autonomous System

_ (0
Xnt1 = fn(x,%,yr%) . n=0,1,... (13.75)
Yn+1 = &n(Xn, Yn)

where
ol xJ —>1 and gy,:1xJ—J, n=0,1,....

Also assume that for all n € {0, 1, ...} and for somem € {1,2,...}
Jnem(21,22) = fu(z1,22) and  gnim(21,22) = gn(21,22)

and that for every solution (x,, yn) of (13.75), the following two statements are
satisfied:

(i) If for some N > 0,
XN+m < XN and YN+m > VN, (13.76)

then
XN+m-1 < XN-1 and YN+m > YN-1. (13.77)

(ii) If for some N > 0,

XN4m > XN and YNim < YN, (13.78)
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then
XN+m—1 > XN—1 and YN+m—1 < YN-1- (1379)

Then the 2m-sequences {Xmn+t ™o and {ymn+¢}"o are eventually mono-
tonic.

Theorem 13.30. Consider the non-autonomous System

X1 = S, yh)
, n=20,1,... (13.80)

Yntt = gnCoh, v

where
ol xJ —>1 and gy,:1xJ—>J, n=0,1,....

Also assume that for alln € {0, 1, ...} and for some m € {1,2,...}
Joim(z1,22) = fu(z1,22) and  gnim(z1,22) = gn(21,22)

and that for every solution (xy, yn) of (13.75), the following two statements are
satisfied:

(i) If for some N > 0,

XN+m < XN and YN+m > YN, (13.81)
then
XN+m-1> XN-1 and YN+m < YyN-1. (13.82)
(ii) If for some N > 0,
XN+m > XN and YN+m < VN, (13.83)
then
XN+m—1 < XN-—1 and YN+m—1 > YN—-1- (1384)

Then the 4m-sequences {Xamntt}?75 " and {Yomnte}?7y" are eventually
monotonic.

Finally, we present a quite general extension of the m and M Theorem to systems
of difference equations. See ([21], p. 19-21) and [33].

Theorem 13.31. Assume that for each i € {1,...,k}, [a;,b;] is a closed and
bounded interval of real numbers, and the function

Fi: C(lar,b1] x ... x [ag, dk]. [ai, bi])
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satisfies the following conditions:

1. Fi(z1,...,2) is monotonic in each of its arguments.
2. Foreachi,j € {l,... ,k} and for each m;, M; € [a;, b;], we define

M;, if F;isincreasing in z;

s J i

M; j(m;, M;) = oo e
m;, if Fjis decreasing in z;

and
mi j(mi, M;) = M; ;(M;,m;)
and we assume that if my, ... ,myg and My, ..., My is a solution of the system

of 2k equations:

M; = F;(My,;(my, M1), ..., My ;(mg, My))

,iefl,....k
m; = Fi(myi(my, My), ... ,mg;(mg, My)) ¢ J

then
M; =m;, forall ie€{l,... k}.

Then the system of k difference equations

k
xiy = Filxp,....x5)
x2, = Fo(x! xk) -
n+1 2Ky X)) 5o =0,1,... (13.85)
' k
xlfH = Fe(xp,....x5)
with initial condition (xé,...,xg) € lay,b1] X ... X [ag, br], has exactly one
equilibrium point (X', ..., x%) and every solution of System (13.85) converges to

(x,..., %5

We now present a few examples to illustrate how the above convergence theorems
apply to systems of difference equations.

Example 13.5. The following system of rational difference equations

— B1xn
Ant1 = A1+B1xp+Ciyn

., n=01,... (13.86)

— _ Y2Yn
Yn+1 = Ar+Borxn+Coyn

with positive parameters, was investigated in [15]. By using Theorem 13.23, it
follows that every positive solution of System (13.86) converges to a finite limit.
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Example 13.6. The corresponding periodically-forced rational system,

X — B1.nXn
n+l Al.n+Bl,nxn+C1,nJ’n

. n=01,... (13.87)
¥y — Y2.nVn
n+1 A2 n+Bo nXn+C2 nyn

where the parameters are positive and m-periodic sequences, was investigated in
[10]. By employing Theorem 13.25 it was shown that every positive solution
converges to a (not necessarily prime) period-m solution.

Example 13.7. Consider the system of rational difference equations

Xn+
Xni1 = B1 1n+y1;IJ’n
, n=0,1,... (13.88)
_ Boxntyoy
Ynt1 = S

with positive parameters. By employing Theorems 13.23, 13.27,and 13.28 the
following statements were established in [10].

1. When
B1.y2 € (1,00),

System (13.88) is competitive. It also possesses unbounded solutions in some
range of its parameters. However, every bounded component of a solution
converges to a finite limit.

2. When

B1.v2€(0,1),

System (13.88) is cooperative. Furthermore, every solution converges to a finite
limit.
3. When
fr1>1 and y, <1,

the component {y, } of every solution {x,, y,} is bounded. Also, for some initial
conditions, the component {x, } is unbounded.
4. When
1 <1 and y,>1,

the component {x, } of every solution {x,, y,} is bounded. Also, for some initial
conditions, the component {y, } is unbounded.
5. When
B1=1 and y, <y;+1,

the solution {x,, y,} of System (13.88), converges as follows:

/92)/1

lim x, =y; and lim y, = ———.
n—oo n—oo 1+ Y1 — Y2
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6. When
fr=1 and y, =y +1,
the solution {x,, y,} of System (13.88), converges as follows:
lim x, =y; and lim y, = oco.
n—oo n—oo
7. When
y» =1 and ﬂ] <,32—|—1,
the solution {x,, y,} of System (13.88), converges as follows:
Bav1
lim x, = ———— and lim = B,.
n—oo " 14+ B> —p1 n—o00 yn = P2
8. When
y2=1 and B =pr+1,
the solution {x,, y,} of System (13.88), converges as follows:
lim x, =oc0 and lim y, = B,.
n—>oo n—>oo
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Chapter 14
Networks Synchronizability, L.ocal Dynamics
and Some Graph Invariants

Acilina Caneco, Sara Fernandes, Clara Gracio, and J. Leonel Rocha

Abstract The synchronization of a network depends on a number of factors,
including the strength of the coupling, the connection topology and the dynamical
behaviour of the individual units. In the first part of this work, we fix the network
topology and obtain the synchronization interval in terms of the Lyapounov expo-
nents for piecewise linear expanding maps in the nodes. If these piecewise linear
maps have the same slope +s everywhere, we get a relation between synchronizabil-
ity and the topological entropy. In the second part of this paper we fix the dynamics
in the individual nodes and address our work to the study of the effect of clustering
and conductance in the amplitude of the synchronization interval.

14.1 Introduction

A network with a complex topology is mathematically described by a graph [3].
Classical random graphs were studied by Paul Erdés and Alfréd Rényi in the late
1950s. Examples of such networks include communication and transportation net-
works, neural and social interaction networks [1, 13,20]. Although features of these
networks have been studied in the past, it was only recently that massive amount of
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data are available and computer processing is possible to more easily analyze the
behaviour of these networks and verify the applicability of the proposed models.
In 1998 Watts and Strogatz [20] proposed the new small-world model to describe
many of real networks around us and in 1999 Barabdsi and Albert [1] proposed the
new scale-free model based on preferential attachment. These models reflect the
natural and man-made networks more accurately than the classical random graph
model. This preferential attachment characteristic leads to the formation of clusters,
the nodes with more links have a greater probability of getting new ones.

One of the most important subjects under investigation is the network synchro-
nizability [5,10,13,20]. Pecora and Carroll [16] derived the master stability method.
Li and Chen [13] derived synchronization and desynchronization values for the
coupling parameter in terms of the network topology and the maximum Lyapunov
exponent of the individual chaotic nodes.

In this work we address the study of network synchronizability in two approa-
ches. One is fixing the connection topology and vary the local dynamics in the
nodes and the other is consider the local dynamic fixed and vary the structure of
the connections. To the first approach, we study, in Sect. 14.2, the synchronization
interval considering fixed the network connection topology, for different kinds of
local dynamics. Supposing in the nodes, identical piecewise linear expanding maps,
with different slopes in each subinterval, we obtained, in Sect. 14.2.1, the synchro-
nization interval in terms of the Lyapunov exponents of these maps. As a particular
case, we derive, in Sect. 14.2.2, the synchronization interval in terms of the topo-
logical entropy for piecewise linear maps with slope +s everywhere and we proved
that the synchronizability decreases if the local topological entropy increases. Con-
sidering identical chaotic symmetric bimodal maps in the nodes of the network, we
express, in Sect. 14.2.3, the synchronization interval in terms of one single critical
point of the map. In the second part of this work, we study the network synchroniza-
tion as a function of the connection topology, fixing the local dynamics. We try to
understand the relation of some graph invariants with the spectrum of the Laplacian
matrix [2,3]. We can find a great number of formulas relating some graph invariants
with the eigenvalues characterizing the synchronization interval, A, and Ay, but
none, as far as we know, for a relation between these eigenvalues and the clustering
formation, neither for a relation between the conductance and the clustering. So, in
Sect. 14.3, we perform experimental evaluations, that deepens the understanding of
the effect of these quantities on the network synchronizability.

14.2 Network Synchronizability and Local Dynamics

Mathematically, networks are described by graphs and the theory of dynamical net-
works is a combination of graph theory and nonlinear dynamics. From the point of
view of dynamical systems, we have a global dynamical system emerging from the
interactions between the local dynamics of the individual elements and graph theory
then analyzes the coupling structure.
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A graphisaset G = (V(G), E(G)) where V(G) is a nonempty set of N vertices
or nodes and E(G) is the set of m edges or links ¢;; that connect two vertices v;
and v; [3]. If the graph is weighted, for each pair of vertices (v;,v;) we set a non
negative weight a;; such that g;; = 0 if the vertices v; and v; are not connected.

If the graph is not weighted, a;; = 1 if v; and v; are connected and g;; = 0 if
the vertices v; and v; are not connected. If the graph is not directed, which is the
case that we will study, a;; = aj;. The matrix A = A(G) = [a;;], where v;,

v; € V(G), is called the adjacency matrix. The degree of a node v; is the number

i=N
of edges incident on it and is represented by k;, that is, k;, = )_ a;;. The degree
i=1
distribution is the probability P (k) that a randomly selected node has exactly k
edges.

Consider the diagonal matrix D = D(G) = [d,-j], where d;; = k;. We call
Laplacian matrix to L = D — A. The matrix L acts in £? (V') and sometimes is
called Kirchhoff matrix of the graph, due to its role in the Kirchhoff Matrix-Tree
Theorem. The eigenvalues of L are all real and non negatives and are contained
in the interval [0, min{N, 2A}], where A is the maximum degree of the vertices.
The spectrum of L may be ordered, Ay = 0 < A; < --- < An. The second
eigenvalue A, is know as the algebraic connectivity or Fiedler value and plays a
special role in the graph theory. As much larger A, is, more difficult is to separate
the graph in disconnected parts. The graph is connected if and only if A, # 0. In
fact, the multiplicity of the null eigenvalue A, is equal to the number of connected
components of the graph. As we will see later, as bigger is A,, more easily the
network synchronizes.

Consider a network of N identical chaotic dynamical oscillators, described by
a connected, unoriented graph, with no loops and no multiple edges. In each node
the dynamics of the oscillators is defined by X; = f(x;), with f : R* — R” and
x; € R" the state variables of the node i.

The state equations of this network are

N
%= fOi)+e¢Y ayl(xj—x).  withi=12.....N (14.1)
j=1
JF#
where ¢ > 0 is the coupling parameter, A = [a,- j] is the adjacency matrix and

I' =diag(1,1,...1). Equation (14.1) can be rewritten as

N
Y= fo) ey lijx;. with i =1,2,...,N. (14.2)
j=1
where L = (l,-j) = D — A is the Laplacian matrix or coupling configura-

tion of the network. The network (14.2) achieves asymptotical synchronization if
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x1(t) = x2(t) = ... = xn(2t) e e(t), where e(¢) is a solution of an isolate node

(equilibrium point, periodic orbit or chaotic attractor), satisfying é(¢) = f(e(t)).

14.2.1 Synchronization Interval for Piecewise Linear Maps
with Different Slopes

Consider the network (14.2) with identical chaotic nodes. In this work we will
consider the network in the discretized form

N
xik + 1) = f(xi(k) +c Y L f(xj(k)), with i =1,2,....N. (143)

Jj=1

Let0 = A1 < A, < ... < Ay be the eigenvalues of the coupling matrix L and let
hmax be the Lyapunov exponent of each individual n-dimensional node. If ¢ > }IT;I ,
then the synchronized states are exponentially stable [13]. We may fix f, the local
dynamic in each node and vary the connection topology, L, or fix L and vary f.

In a previous work [4] we have considered, in each node of the network, piece-
wise linear maps with slope +s, motivated by the fact that every m-modal map
f: 1 = la,b] C R — I, with growth rate s and positive topological entropy
hiop(f) (logs = hsop(f)) is, by Theorem 7.4 from Milnor and Thurston [15]
and Parry, topologically semi-conjugated to a p + 1 piecewise linear map T,
with p < m, defined on the interval J = [0, 1], with slope +s everywhere and
hiop(T) = hiop(f) = logs. As a generalization, we will consider now a net-
work having in each node a piecewise linear map with different slopes in each
subinterval [19].

Let /I C R beacompactintervaland f : I — I, f = (f1,..., fx), a piecewise
linear expanding map. The set of n laps of f defines a partition £y = {I1,..., I}
of the interval I. Let a;, withi = 1,...,n + 1, be the discontinuity points and
the turning points of the map f. Considering the orbits of these points, we define a
Markov partition &?; of 1. The orbit of each point a; is defined by

of@) = x5’ = f* (@) k € No}.

To simplify the presentation, we consider the points a@; and a,+; as fixed points
of the map f. Let {b1,...,bm+1} = {0(a;) :i =1,...,n 4+ 1} be the set of the
points correspondent to the orbits of the discontinuity points and the turning points,
ordered on the interval /. This set allows us to define a subpartition &7} of 2.
The subpartition &2, = {J1,...,J,} with m > n determines a Markov partition
of the interval /. Note that f determines &7} uniquely, but the converse is not true.
The piecewise linear expanding map f induces a subshift of finite type whose m xm
transition matrix A = [a;;] is defined by
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Lif f (int Jj) DintJ;
0 otherwise.

ajj =

We denote this subshift by (X4, 0), where o is the shift map on E,E,“ defined by
0 (X1x3...) = X2X3..., where X, = {1,...,m} correspondent to the m states of
the subshift. The topological entropy of (X' 4,0) is log A4, where A4 is the spec-
tral radius of the transition matrix A. In [18], using the signal of f”, is defined a
weighted matrix which describes the transitions between the points by, ..., by41.
The relation between the transition matrix and the weighted matrix is established
in [18]. This result allows us to compute the topological entropy of a subshift of
finite type by a different method. See [18] and [19], for the relation between the
kneading data associated to f and the topological entropy. To the subshift (X 4, 0)
and the Markov partition &2/, we associated a Lipschitz function ¢ : I — R, [19],
defined by
¢p=A¢i:Ji>R 1<i=<m}

where

i (x) = =B ¢i (x) and ¢; (x) = log | f{

This function is a weight for the dynamical system associated to (X4, ') depending
on the parameter 8. Let .2 (I) be the set of all Lebesgue integrable functions on
I. The transfer operator Ly : £ (1) — £ (1), associated with f and 2,

, with B € R.

(Lg, g) (x) = Z exp¢; (f - () g (fj_l ) Af(int1;)

where yj; is the characteristic function of /;. In this section we consider a class of
one-dimensional transformations that are piecewise linear Markov transformations.
Consequently, the transfer operator has the following matrix representation. Let €
be the class of all functions that are piecewise constant on the partition &?;. The
transfer operator has the following matrix representation

Lyg = Qpmg

with g € €, where % is the class of all functions that are piecewise constants, on
the partition 9} and g = (mq, ..., JTm)T. If Dg is the diagonal matrix defined by

Dg = (exp¢1,...,expdm)

and A is the transition matrix, then the matrix Qg is the m x m weighted transition
matrix defined by

aij

ik
J

Qﬁ = ADlg = [q,'j] where qgij =
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By the Ruelle-Perron-Frobenius Theorem there exist Ag > 0 and vg € %, with
vg (Ji) > Oforall 1 <i < m, such that vg is the eigenvector of Qg with largest
eigenvalue Ag, i.e., Qg vg = Ag vg. This eigenvector of Qg is used to construct a
transition probability matrix, as follows.

Let 72 be a measure with support in &7}, then we denote the adjoint operator of
Lg by L, which is defined by a bounded linear map on measures, i.e.,

(L7 (@) =H(Lssg).

Note that the adjoint operator L; is represented by the matrix Qg The eigenvalues

of the matrices Qg and QZ; are the same. For the m-dimensional vector space &7,
we consider two bases

PB={e1,....e;} and B = {e’l,...,e;n}.

The set of vectors in & are defined by the column vectore ;= (0,...,0, 1,0, ..., O)T
where 1 is in the jth-position. These vectors correspond to the intervals of the
Markov partition. On the other hand, the set of vectors in %’ are defined by
e;- = (0, ...,0,v;,0,..., O)T, which correspond to the coordinates of the vector
vg. If Mg is the matrix which describes the change from the basis %’ to the basis
2, then we define a new matrix, the m x m matrix

Rg = Mﬂ_l 0p Mg = [r;j] where r;; = q,-j% with r;; > 0.
1

The matrix Rg is the matrix representation of Lg, with respect to the basis B .
As the matrices Qg and Rg are similar, the largest eigenvalue Ag of these matrices
is the same. Define a m x m stochastic matrix Sg = [s;;] where

m
ri:
Sij = ﬁ Withs,'j > 0 and Zsij =1.
Jj=1

The transpose matrix S g corresponds to a modified or normalized transfer operator,
with respect to the basis %4’. Let uig = (u’l, e u;n) be the left eigenvector and
/

V;i = (v’1 .. ,vm) be the strictly positive right eigenvector of the matrix Rg. The
probability vector pg = (p1,..., pm) is defined by

uv " “
L1 such that Zpis,-j = p;j and Zpi =1

’ P P
Z ul. Vi i=1 i=1
i=1

Pi =

This vector defines the unique f-invariant equilibrium state for
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¢ = —Plog|f'(x)].

Note that, if we consider u* = (uyvy, ..., umvm), up to a multiplicative constant,
then u* = pg, see [19] and references therein.

The stochastic matrix Sg and the probability vector pg allow us to define an
invariant probability measure /18 on the repeller, depending on the parameter . Let
X4 and X, be as above. Define j1g on the semi-algebra of measurable intervals by

g ({(x,-)l-eN €Xgixg=a1,...,Xq4k—1 = ag, withag € X and k € IN})

= PaiSajazSazaz---Say_yay-

We call this measure the weighted Markov measure, associated to the weighted one-
sided ( pg,S ﬂ)-Markov shift, supported by the repeller. This invariant measure gives
nonvanishing probabilities only for the trajectories staying in the repeller.

Lemma 14.1. The weighted one-sided ( 7 ﬁ)-Markov shift has Lyapunov expo-
nent x4 (f) with respect to the measure jig, given by

Xug ()= pilog(|f]) (14.4)

i=1
where the derivative f;' is evaluated on the interval J; of the partition ;.

See [19] for the proof. Attending that, there exist a unique invariant probabil-
ity measure w1, (8 = 1) for the map f, generated by the absolutely continuous
conditionally invariant measure [t (see Proposition 2 of [19]), we may express the
network synchronizability interval in terms of the Lyapunov exponent y, (f).

Theorem 14.1. Consider the network (14.3), having a connection topology given
by some coupling matrix L with eigenvalues 0 = A1 < Ay < ... < Ay and in
each node identical piecewise linear expanding maps f with Lyapunov exponent
Xy () given by (14.4). Then, the network synchronizes if the coupling parameter
c verifies
1 _e_Xul(f) 1 +e_Xu1(f)
< .

P <c pye

Proof. By Lemma 14.1, we have for piecewise linear expanding maps that
hmax (f) = xu, (f)- So, the desired result follows from [13]. |

As an immediate consequence, we have:

Corollary 14.1. Consider the network (14.3), having a connection topology given
by some coupling matrix L with eigenvalues 0 = A1 < Ay < ... < Ay and in
each node identical piecewise linear expanding maps f with Lyapunov exponent
X, (f) given by (14.4). Then:
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1. If the local dynamic is fixed, then, the amplitude of the synchronization interval
increases as Ay — Ay decreases, that is, if the network topology is closer to a
fully connected graph.

2. If AN = Ay, then there exist some non empty synchronization interval, for all
X ()

3. If the connection topology, given by some coupling matrix L, is fixed then, the
amplitude of the synchronization interval decreases, as the Lyapunov exponent
X, (f) in each node, grows.

Proof. 1. If the local dynamic is fixed, then y,, (f) is constant. The amplitude of
1 +e—Xu1(f) 1 _e—Xul(f)

py " increasesif Ay —A,

the synchronization interval

decreases.

2. If Ay = A, then the superior bound of the synchronization interval is always
larger than the inferior bound, so the synchronization interval is non empty.

3. If the connection topology is fixed, then A, and Ay are fixed, so the synchro-
nization interval depends only on the local dynamics expressed by y, (f). If
the Lyapunov exponent in each node grows, then, 1 + e~ %#1 (/) decreases and
1 —e %) increases, so the synchronization interval is smaller. O

14.2.2 Synchronization Interval in Terms of the Topological
Entropy

In this section, we consider a particular case, the network described by (14.3), where
the function f, representing the local dynamics, is a piecewise linear expanding map
with slope £s everywhere. Then, the Lyapunov exponent of f is given by

hmax = Yy () = Zp,- log (| f/|) = Zp,- logs = logs Zpi = logs.
i=1 i=1 i=1
(14.5)
Now we are in position to state that the synchronization interval of these networks
may be expressed in terms of the topological entropy /;,,( f) of the piecewise linear
maps, representing the local dynamics in each node.

Corollary 14.2. Consider the network (14.3), having a connection topology given
by some coupling matrix L with eigenvalues 0 = A1 < Ay < ... < Ay and in each
node identical chaotic piecewise linear map with slope £s everywhere. Then, the
network synchronizes if the coupling parameter c verifies

1 _ _hmp(f) 1 _hmp(f)
exz ce< it eAN . (14.6)
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Proof. Attending to (14.5) we have hp,, = logs for piecewise linear maps with
slope +s everywhere. In this case, we have by [15]logs = hp(f), so the desired
result follows from Theorem 14.1. O

Remark 14.1. As a consequence of Corollaries 14.1 and 14.2, the synchronization
interval amplitude decreases as the topological entropy in each node grows, if the
connection topology of the network is fixed.

14.2.3 Monotonicity of the Synchronization Interval Amplitude
Jor Symmetric Bimodal Maps

Symbolic dynamics is an important tool to study piecewise monotone interval maps
and can be applied to study some characteristics of graphs, see [11] and [12].
Consider a compact interval / C R and a m-modal map f : I — I, i.e., the
map f is piecewise monotone, with m critical points and m + 1 subintervals of

monotonicity. Suppose I = [co,cm+1] can be divided by a partition of points
& ={co,C1,---,Cm+1} in a finite number of subintervals
Iy =[co.c1], 2=er,c2]s oo s Imp1 = [em. Cmya],

in such a way that the restriction of f to each interval /; is strictly monotone, either
increasing or decreasing. Assuming that each interval /; is the maximal interval
where the function is strictly monotone, these intervals /; are called laps of f and
the number of distinct laps is called the lap number £, of f. In the interior of the
interval I the points ¢y, ¢2, ..., ¢, are local minimum or local maximum of f* and
are called turning or critical points of the function. The limit of the n-root of the lap
number of /7 (where f” denotes the composition of f with itself n times) is called
the growth number of f, and its logarithm is the topological entropy

s =nll)rr010 VL™ and  hiop(f) = logs.

The kneading matrix associated to a bimodal maps f, 5 is (see [11]),
N(t) = (Nu(l) Nia(2) N13(f))
Na1(t) Naao(t) Nas(t) )

From N(t) we compute the determinants D;(t) = detN (t), where N (1) is

obtained from N(¢) removing the j column (j = 1,2,3), and if the map is

decreasing in the first lap, the kneading determinant D(¢) verifies the relationship
Di(r) _ D(r) _ Ds(r)

D) = = = . 14.7
© 1+t 1—1 I+t ( )

The topological entropy of the map f; p is
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1
hiop(f) = logs, withs = = and t* =min{t €[0,1]: D(t) = 0}.

For a bimodal map, the symbolic sequences corresponding to periodic orbits of
the critical points c1, with period p, and ¢, with period k, may be written as

((AS182...8p—1)7 . (BQ1...0k-1)%).

In that case we have two periodic orbits, but in other cases of bimodal maps we
have a single periodic orbit, of period p + k, that passes through both critical points
(bistable case), for which we write only (AP;...Pp_1BQ1...0k—1)°.

Now, we will study this two cases, with the additional condition that p = k and
the symbols O ; are the symmetric of the symbols P;, in the sense of the following
definition, [6].

Definition 14.1. Let f,, be a symmetric bimodal map for which the periodic
kneading sequence, with period ¢ = 2p, is

S = ((45152..8p-1) . (BS15,...852 1)) (14.8)

or
S = (AS15,...8p-1BS1$5..8,-1)® (14.9)

with 81, 82,...,8p-1 € {L, M, R}, such that

A

S;=R,if S; =1L
S;=Lif S;=R and A< B. (14.10)
Si=Mif S;=M

The bimodal map f, p is called a symmetric bimodal map and (14.10) is called
a mirror transformation for this map.
Lemma 14.2. Ler S = ((AS1S2...S,,_1)°o , (B§1§2...§Ifil)°°) be a symmetric

bimodal kneading sequence satisfying the mirror transformation (14.10). Then, we
have

Di(t) = D3(t) = Ni2(t)(N13(t) — N11(t)) and Da(t) = N5(t) — N2 ().

For the particular case of bistable symmetric bimodal maps we get a similar
result.

Lemma 14.3. Let S = (AS1S2...S,,_133'152...5‘1,_1)"0 be a symmetric bimodal
kneading sequence with period q = 2p, satisfying the mirror transformation
(14.10). Then, we have

Di(t) = D3(t) = Ni2(t)(N13(t) — N11(t)) and Dx(t) = N5(t) — N (1).
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With the above lemmas, we are in position to state the following result, concern-
ing the topological entropy of symmetric bimodal maps.

Theorem 14.2. Let f, p, be a symmetric bimodal map of type (14.8) or (14.9) or in
the sense of Definition 14.1 and D(t) the kneading determinant (14.7). Let s = zl*
be the growth number of f, p, where

* =min{t €[0,1]: Nya(t) — N11(t) = 0}. (14.11)

Then, the topological entropy of the map f, p is logs.

The above results establish that the dynamics of a symmetric bimodal map
is determined by only one of its critical point, so it behaves like a unimodal
map. See the proofs of the above results in [6]. Consider the network described
by (14.3), where the function f, representing the local dynamics, is a piecewise lin-
ear map with slope s everywhere. From [15] we know that the topological entropy
hiop = logs, and attending to Corollary 14.2, the synchronization interval may be
expressed in terms of the topological entropy. From Corollary 14.2 we know that the
network (14.3) synchronizes, if the coupling parameter ¢ verifies (14.6). As particu-
lar cases, one can consider unimodal or bimodal maps in each node of the network.
As a consequence of Corollary 14.2 and Theorem 14.2, we may state the following
result.

Corollary 14.3. Consider the network (14.3), having a connection topology given
by some coupling matrix L with eigenvalues 0 = A1 < Ay < ... < Ay and in each
node identical chaotic symmetric bimodal piecewise linear maps fy p, with slope
+s everywhere. Then, the amplitude of the synchronization interval increases, as t*
(14.11) of the map f, p grows.

We have established the synchronization interval in terms of the topological entropy
of piecewise linear maps with slope +s everywhere. As we know that, every m-
modal map with positive topological entropy /i, ( f) is semiconjugatedto a p + 1
piecewise linear map T, (p < m), with slope £s everywhere and h;op(T) =
htop(f) = logs, we wonder if the above results are valid when in the nodes there
are identical m-modal maps. The maps f: I — [ and T: J — J are semiconju-
gated if there exist a function & continuous, monotone and onto, & : I — J, such
that T o h = h o f.1If, in addition, & is a homeomorphism, then f and T are said
topologically conjugated. We proved in [7] that in the case of topological conjugacy
the synchronization of the two piecewise linear maps 7" implies the synchronization
of the two conjugated m-modal maps f. Furthermore, by a result of [17], if f is
topologically transitive, then the mentioned semiconjugacy is in fact a conjugacy. It
remains an open problem to find weaker conditions for the relation between the syn-
chronization of piecewise linear maps and the synchronization of the respectively
semiconjugated piecewise monotone maps.
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Fig. 14.1 Tree of unimodal admissible trajectories
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Fig. 14.2 The amplitude of the synchronization interval decreases as the entropy grows along a
line in the tree of admissible unimodal maps

14.2.4 Numerical Simulations

Consider a network with a fixed topology and suppose that the nodes are identi-
cal chaotic maps. In [12] and [9] we may see a tree (see Fig. 14.1) of admissible
kneading sequences associated with unimodal functions f', ordered by its topolog-
ical entropy. We have computed the synchronization interval along lines where the
topological entropy grows in this tree of admissible trajectories for the unimodal
piecewise linear map. Our approach consists in determining for each one of the
local discrete dynamical system for what values of the coupling parameter, c, there
is synchronization, for different coupling scenarios.

Following any horizontal line of this tree, as we go from left to right, the ampli-
tude of the interval decreases as the entropy grows. In Fig. 14.2 we display an
example: fixing the graph topology with three nodes and two edges, expressed by
the adjacency matrix A and varying the local dynamics on the nodes, following these
lines on that tree of admissible trajectories associated with unimodal functions until
period 6, we display the variation of the synchronization interval amplitude with
the grows number. We confirm, as established in 3 of Corollary 14.1, that the
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Fig. 14.3 This is a non fully-connected graph with 4 nodes and the synchronization interval does
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Fig. 14.4 This is a fully-connected graph with 5 nodes and the synchronization interval exist for
all s

synchronization interval amplitude decreases when the topological entropy
increases. Fixing some other topologies for the graph, described by the adjacency
matrix A and varying the local map in the nodes, along the referred lines in the
above tree, we display in Figs. 14.3 to 14.5 the amplitude of the synchronization
interval. The blue dots represents the upper limit and the red dots represents the
lower limit of the synchronization interval. So, the amplitude of the synchronization
interval for each value of s is the vertical distance between each pair of one red
point and one blue point. When the red dots are above the blue ones, there exist
not any synchronization interval. Note that in Fig. 14.4 the graph is fully connected,
so A, = An [10] and the synchronization interval is non empty for all s, which
confirms 2 in Corollary 14.1.
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Fig. 14.5 This is a non fully-connected graph with 5 nodes and the synchronization interval does
not exist for all s

14.3 Graph Invariants and Synchronization

Consider the graph G = (V(G), E(G)) associated to a network, as described above.
Among all graph invariants we will pay special attention to the conductance and the
quality of the clustering, [14].

There are several definitions of conductance of a graph, [8]. We will use the
following

®(G) = min — EW.V - V) ,

vcv min{|E{(U)]|,|E:(V = U)|}

where |E(U, V — U)| is the number of edges from U to V' — U and | E; (U )| means
the sum of degrees of vertices in U, [2]. A clustering of the graph G is a partition
of the vertex set C = {C;,C3,...,Ct} and C; C V(G) are called clusters. We
identify a cluster C; with the induced subgraph of G, that is, the graph G(C;) =
{C;i, E(C;)}. The set of intracluster edges is defined by Intra(C) = Uilf E(C))
and the set of intercluster edges by Inter (C) = Intra(C) = E(G)\Inter(C). The
performance of a clustering should measure the quality of each cluster as well as the
cost of the clustering. In [14] this bicriteria is based in a two-parameter definition
of a (o, &)-clustering, where « should measure the quality of the clusters and ¢ the
cost of such partition, that is, the ratio of the intercluster edges to the total of edges
in the graph.

Definition 14.2. We call a partition C = {C;,Cs,...,Ci} of V an («,¢)-
clustering if:

1. The conductance of each cluster is at least o

D(G(C) = a, foralli =1,...,k;
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2. The fraction of intercluster edges to the total of edges is at most &

Inter (C) .
|[EC) —

According to this definition the clustering is good if it maximizes « and
minimizes €. We introduce then a coefficient that accomplish both optimization
problems.

Definition 14.3. For an («, ¢)-clustering C, define the performance of C by the
ratio
R=—.
o
That means that a clustering is better if it has smaller R.
Our study conduces to the following conclusions:

—_

. A bad clustering implies a larger synchronization interval.
2. The conductance of the underlying graph is a good parameter to characterize the
clustering and the synchronization.

We can see that the curve of R follows the curve of the eigenratio which, in turn,
follows the curve of the conductance. Thus the three quantities characterize both
the synchronizability and the quality of the clustering. These quantities vary in the
opposite direction: better clustering implies poorer synchonization. For the network
(14.3) the synchronization interval is (14.6). Fixing the dynamics f in the nodes,
the synchronization interval will be as larger as much the eigenratio r = A,/An
is bigger. Our conclusions are based in the observance of similar behavior of all
three parameters: the conductance @, the eigenratio r and the performance of the
(o, &)-clustering R.

We perform an experimental evaluation to observe, for several clustering forma-
tion, the effect of the graph conductance and the performance of the (e, €)-clustering
on the synchronizability.

First we consider a complete graph with fifteen nodes and we delete edges, sim-
ulating the formation of a certain clustering, until obtain a disconnected graph. In
Fig. 14.6 three steps of the process conducing to the partition

C ={{1,....5}{6,...,9},{10,...,15}}.
In Fig. 14.7 are the results for the three parameters.
Next we have considered the formation of a clustering with four clusters C =
{{1,2,3},{4,5,6,7},{8,9,10},{11,12, 13, 14, 15}} as can be seen in Fig. 14.8. In
Fig. 14.9 are the results for the three parameters in the process of

C ={{1,2,3},{4,5,6,7}.{8,9,10},{11,12, 13,14, 15}}

clustering formation.
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Fig. 14.6 Process of C = {{1,...,5},{6,...,9},{10,..., 15}} clustering formation
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Fig. 14.7 Behavior of the quantities @, R and r for the process of C = {{1,...,5},{6,...,9},
{10, ..., 15}} clustering formation

Fig. 14.8 Process of C = {{1,2,3},{4,5,6,7},{8,9,10},{11, 12,13, 14, 15}} clustering for-
mation

0.6 . o

04f - . L.

— : : : : edges
40 60 80 100

Fig. 14.9 Behavior of the quantities @, R and r for the process of C = {{1,2,3},{4,5.6,7},
{8,9,10},{11,12, 13, 14, 15}} clustering formation
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Fig. 14.10 C = {{1,2,3},{4,5,6},{7,8,9},{10, 11, 12}, {13, 14, 15}} clustering formation
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Fig. 14.11 Behavior of the quantities @, R and r for the process of C = {{1,2,3},{4,5, 6},
{7.8,9},{10, 11, 12}, {13, 14, 15}} clustering formation

Finally we have considered a clustering with 5 clusters C = {{1,2, 3}, {4, 5, 6},
{7,8,9},{10,11,12},{13, 14, 15}}. See Fig. 14.10.

And we can observe in Fig. 14.11 similar results for the process of C = {{1, 2, 3},
{4,5,6},{7,8,9}, {10, 11,12}, {13, 14, 15}} clustering formation.

We can observe that, as the cluster formation is more evident (as the ratio
R increases), worse is the synchronizability. The same can be observed for the
conductance.
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Chapter 15
Continuous Models for Genetic Evolution
in Large Populations

Fabio A.C.C. Chalub and Max O. Souza

Abstract We consider a recently proposed generalisation of the Kimura equation,
a Fokker—Planck type equation describing the evolution of p(x,t), the probabil-
ity of finding a fraction x of mutants at time ¢ in a population evolving according
to standard models in evolutionary biology. We present a detailed description of
the solution, and we show that it naturally divides in two different time scales: the
first determined by the drift (the natural selection), the second by the diffusion (the
genetic drift).

15.1 Introduction

Fokker-Planck equations are ubiquitous in many fields of applied sciences. In this
work, we will review a generalisation (introduced in [1,3]) of the celebrated Kimura
equation [5] in evolutionary biology, and its underlying mathematical analysis. The
results will be presented without proofs. The interested reader is redirected to the
original references [2—4].

Let x € [0, 1] be a fraction of a given gene in a population divided in two types:
the mutant and the wild type. We consider the following drift-diffusion (Fokker—
Planck) equation.

dp = S0 (x(1=0)p) =0 (x(1 =) (¥ ) =¥ @) p). (5.1
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where € > 0 and " : [0, 1] — R are smooth functions, called in the biological

literature the fitness, for the mutant and the wild-type, respectively.
Equation (15.1) is supplemented by the conservation laws

1 1
3,[ p(x)dx =0, 0y [ ¢(x)p(x)dx =0, (15.2)
0 0
where ¢ is the unique solution of

" +y¢' =0, $0)=0. ¢()=1,

where ¥ (x) = ¢ (x) — @ (x) is the relative fitness of the two species.
The main theorem is given by

Theorem 15.1. For a given p® € B.#47 ([0, 1)), there exists a unique solution
p to (15.1), with p € L*® ([O,OO);%///Jr([O, 1])) and such that p satisfies the
conservations laws (15.2). The solution can be written as
p(t.x) =q(t.x) +a(t)do + b(t)é1,
where 8, denotes the singular measure supported at y, and q € C™® (R+; Cc®
((0,1))) is a classical solution to (15.1). We also have that a(t) and b(t), belong to
C([0, 00)) N C®(R™). In particular, we have that
p € CO(RY; B.47([0,1])) N CZ(RT;C((0,1)) .

For large time, we have that limy_, «, q(t, x) = 0, uniformly, and that a(t) and b(t)
are monotonically increasing functions such that:

1
a® = lim a(t) :/ (1 —¢(x))p0(x) dx and
t—>00 0
1
b := lim b(¢) =/ ¢(x)p°(x) dx,
t—>00 0
Moreover, we have that
lim p(z,-) = a®™8g + b™>61,
t—>00

with respect to the Radon metric. Finally, the convergence rate is exponential.

15.2 Early and Intermediate States

The Early and Intermediate states can be well identified, when € < 1.
When € = 0. The solution can be obtained by the characteristic method, and is
given by
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P(x)) | P—(x) (1 — P (x))

v (
1.x) = p’ (P , 153
po(t,x) = p( z(X))‘ ) 0 —%) (15.3)
where @; is the flow map of the Replicator differential equation
X =X(1 - X)y(X). (15.4)

Now, let pe denote the solution to (15.1) for € > 0. Then we have

Theorem 15.2. Let po(t, x) and pe(t, x) be solutions to (15.1) with ¢ = 0, and
€ > 0, respectively. Then there exist positive constants C1 and C, such that for
0 <t < Cq¢, we have

||p0(t7) - pé(t7)||00 = C26-

Thus, in the very beginning the dynamics is essentially given by the Replica-
tor, (15.4).

On the other hand, in certain cases there will be an intermediate dynamic
behaviour as well. Let us suppose that ¥ has a single zero, xg, in (0, 1), and that
¥/ (x9) < 0, so that the corresponding equilibrium is stable for the Replicator
equation (15.4). Let A¢ be as defined in Sect. 15.3, and let ¢ be its associated eigen-
function. Furthermore, let ¢ (0) be the Fourier coefficient of the zeroth order term of
q°. We then have the following:

Theorem 15.3. Assume that y(x) as above. Then, there exist positive constants Cs3,

C4 and Cs such that, for C3 <t < Cae™ L, we have

llge(t. x) — g(0)poe " oo < Cse

15.3 Final States

In order to compute the final state, and the rate of convergence to it, given by
solutions of (15.1) and (15.2), we introduce the following functional space:

s = {¢ € L2([0.1).640)| Y- ¢(NAY g, € La (0. 1],9dx)} . 60) = @.0)).

j=0
with norm given by
o0
I¢13 = 3 60?45
j=0

Representing the fact that, given a mutant gene, it will eventually be fixed or
lost, we conclude that the final state should be a linear combination of Dirac-deltas
supported on the boundaries of the domain. More precisely, we have that
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Theorem 15.4. Let p denote the Radon metric, and let

p* = a8y + b>6;.

Let p be the solution to (15.1) obeying conservation laws (15.2) with an initial

condition with ¢° € B4 ([0,1))i. Let g be the smallest eigenvalue of
"+ ;[29" + ¥2] o = A6(x)g,
9(0) = (1) =0, 0(x) = 75

Then, Ao > 0 and there exists a positive constant C, such that

M p(p, Pos) < C.

lim e
t—>00
In addition, if we assume that
W = x(1—x)e 20 ¥ 0 ¢ 2+ ((0,1)N D5, s> 0,
then there is a constant Cy s such that

P(p. Poo) < 2Co.s[[W°||se 0"

In particular, (15.6) implies convergence in the Wasserstein metric.
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Chapter 16
Forecasting of Yield Curves Using Local State
Space Reconstruction

Eurico O. Covas and Filipe C. Mena

Abstract We examine models of yield curves through chaotic dynamical systems
whose dynamics can be unfolded using non-linear embeddings in higher dimen-
sions. We refine recent techniques used in the state space reconstruction of spatially
extended time series in order to forecast the dynamics of yield curves. We use daily
LIBOR GBP data (January 2007-June 2008) in order to perform forecasts over a
one-month horizon. Our method outperforms random walk and other benchmark
models on the basis of mean square forecast error criteria.

16.1 Introduction

Yield curve modelling and forecasting has an important role to play in the pricing
and risk management of financial instruments. Although a number of past works
have addressed the problem of modelling of yield curves, little attention has been
paid to the actual forecast of yield curves as a function of both time and maturity.

Diebold and Li [5] consider US government bond data of Fama—Bliss at 17 values
of maturity. They use a dynamical Nelson—Siegel model and report better one-year
ahead forecasts than previous approaches including linear, random walk and auto
regression (AR) models. The model of [5] has also been tested and used with other
data (see e.g. [2]).

Stochastic models had been reported to perform well particularly at small fore-
cast horizons, with the random walk models being famously hard to beat (see e.g.
[2,3,5]). In particular [2] models the Nelson—Siegel parameters using martingales
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and finds, in general, lower forecasting errors than the ones using AR(1) estimates
for the same parameters.

Here we propose an approach which is radically different from the previous
models in this context. Our approach is based on the embedding reconstruction of
local states from chaotic dynamical systems theory. The reconstruction preserves the
dynamics under smooth coordinate transformations and the theorems Whitney [14],
Takens—Mafié [9, 13] and Sauer et al. [12] guarantee the existence of the embed-
ding. However, the theorems indicate an embedding dimension which is sufficient
(but not necessary) and is often too high for computational purposes.

In order to find more appropriate dimensions for computations we use a method
that results from a refinement of the method described by Parlitz and Merkwirth [11]
for the reconstruction of spatiotemporal time series (STTS).

Here we shall take data using the LIBOR official fixing for LIBOR GBP as given
by the British Banking Association (BBA). We use daily training sets (with more
than 40 maturities) and compare our results with Diebold-Li, random walk, linear
(see [5] for a summary of those), spline, AR and Hull-White type models.

16.2 The Parlitz—Merkwirth Method

We shall now describe the method of Parlitz—Merkwirth [11] to reconstruct local
state data and the modifications we introduce for our problem.

Letn =1,...,Nandm = 1,..., M. Consider a spatially extended time series
s which can be represented by a N x M matrix with components s}, € R. To these
components we will call states of the STTS.

Consider a number 2/ € N of spatial neighbours of a given s, and a number
J € N of temporal past neighbours to sJ,.

For each s);,, we define the super-state vector x(s,) with components given by
s, its (nearest) 2/ spatial neighbours and its J past temporal neighbours, and with
K and L being the temporal and spatial lags, correspondingly to x(s}*) to be equal

n n n n—K n—K n—K n—JK
{Sm—IL""’Sm“"’ sm+IL7sm—IL7""sm 7""sm+1L7"'Sm—IL""’

nJK ,s;’nﬂ{} (16.1)
So the dimension of each x(s)") is
d=Q2I +1)(J +1)

Parlitz—Merkwirth use only rectangular regions for the spatiotemporal neighbours
of the centre element s;'- in order to reconstruct le We shall follow one of their
suggestions to improve the method by using triangular regions (designated by light-
cones) and extend this suggestion to semi-triangular regions, i.e. left light cones and
right light cones according to their position relative to the central element sj- .
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Now, for each pair (1, m), there is a one-to-one invertible map f !

U R—> R
sno—xn =x(s)
We wish now to approximate f : R — R?.
Take Nyqin time consecutive states s, of s. With those, we form a training set
A of super-states X7 . We shall reconstruct a given super-state X, € A by using its
closest past neighbours on A, separated in time by 7 € N.

We will then approximate f by some unknown function F : RY — R such that
F(xIy = sttt

There are several ways to do this. Parlitz—Merkwirth proposal is the following: Take
a x;;,. Find the nearest neighbour to xJ;, on A, say x’j, in the euclidean norm. Now,

i+t ioh i S Wi i 3 n+t n+t ;
5 which is known a priori, will be an approximation p;,™* for s, 7" i.e.

F(Xj-) = S§-+T ~ srnn+r
where xj is the nearest neighbour of xJ;,.

We shall introduce another modification here with respect to the original method
by considering the nth nearest neighbouring super state to x7;, and then averaging
the n values of s obtained in this way in order to get s”"*. This neighbourhood
averaging shall also carry some weights according to the Euclidean distance to the
central super state xJ,.

Finally, we shall introduce a smoothing method after we get the data from the
above (modified) Parlitz—Merkwirth procedure. For the smoothing we shall use
polynomial least squares method (the polynomial order will depend on the case) and
the Diebold-Li smoothing which is adapted to yield curve profiles. The embedding
theorems do not state how to choose the space and time delays of the embedding.
This can be done using the notion of average mutual information which has been
used widely in the past (see e.g. [7]). This will give us an estimate for the values
of the spatial and temporal delays K and L which can then be used to determining
I and J (by minimizing the error of the forecasting) and therefore the embedding
dimension. Mutual information estimates how measurements of s;'- at time i are
connected to measurements of s}“‘ attimei? + L.

In order to determine the embedding parameters / and J we shall use the method
of false neighbour detection proposed by [8] and described in detail in [1].

16.3 Yield Curves and Forecasting Methods

Let P(¢, ) denote the price of a discount bond of period t and y(¢, ) its corre-
sponding yield to maturity. Then the discount curve is given by

P(t,7) = e~ Ty (@7)



246 E.O. Covas and F.C. Mena
The relationship between the yield and the forward rates f(¢, t) is

P'(t,7)
P(t, 1)

flt.0) =~

so yields and forward rates are related by

y(t, 1) = %[t f(t, u)du

which is usually called the yield curve. So, one can estimate a smooth discount
curve and then use the above formulae to construct the yield curve. We shall use
this procedure to get our daily datasets.

We shall now briefly describe several methods used in the past to forecast yield
curves, namely linear, random walk, Diebold-Li and Hull-White type models.

16.3.1 Linear Models

We shall use two linear models: AR regressions and slope regressions.
On a slope regression the forecasted yield curve results from regressing changes
on the curve slope

y(e+h/t.t) =y, 1) = ao+ai(y(t.7) — y(t. 1))
for some constants ag, a;. This seems a quite naive approach but, surprisingly, gives
good results for short-term predictions.
We consider AR type regression on yield levels or on the yield changes (see e.g.

[5]). Although the results from these models have been reported to be worse than
other models below (see e.g. [5]) we nevertheless test them with our data.

16.3.2 The Diebold-Li Model

Diebold and Li [5] use the well-known Nelson—Siegel [10] model

. | _ o200t 1—e?Or
Y+ 2.1 = Bi(0) + (1) (T) + A0 (W e )

but take its B; parameters as AR(1) processes

h
Bi1(t + ;) =c¢ +yiBi(t), i=1.2,3

. . . - —h
where the coefficients ¢; and y; are obtained from regressing ,32/ (¢) on ﬂ;f (?)

for each time step 4.
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16.3.3 A Hull-White Type Model

We shall use a G2 + + model whose detailed description together with the analogy
to the Hull-White model can be found in Brigo and Mercurio [4].

The Hull-White approach is a single-factor, no-arbitrage yield curve model
in which the short-term interest rate is the random factor or state variable. The
model assumes that the probability distribution of short-term interest rate returns
is normally distributed and subject to reversion to the long term mean.

Let ¢ : [0, T*] — R denote a deterministic function and r a short-rate stochastic
process (under the risk-adjusted measure Q) given by

r(t) =x@) +¢@)., r0)=rp 1>0
where the process x satisfies
x(t) = —ax(@)dt +odW(t), x(0)=0 (16.2)

and W is a Brownian motion and a, o positive constants, defined as the mean rever-
sion and the volatility of the stochastic process. The assumption is that the level
of interest rates reverts to a long term level. Mean reversion is referred as the rate
that the interest rates revert to its asymptotic level. Volatility refers to the standard
deviation of the continuously compounded returns of interest rates within a specific
time horizon, typically over one calendar year.

Being ¢ real time and T maturity time the price of a zero-coupon bond with unit
face value is

PM(0, 1)
P(t,7) = oD A

with PM (0, 7) being the term structure of discount factors currently observed and

_ ,—a(t—t)
A(t,t) = %(V(t, 7) —V(0,7) + V(0,1)) — IT)C([)

2

o 2 1 3
V(t, ‘E) = a_Z ('L’ —t+ Ee_a(r_t) - %E—Za(r—t) - %)

16.3.4 Naive Models

By naive we do not mean that they perform worse than other models. They are sim-
plistic in their mathematical formulation but can be quite efficient particularly in
short-term unstable periods. These include spline methods and random walk mod-
els. The random walk model here will be simply the statement of no change yield
forecast

y(t+h/t,t) =y, 1)
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These models have been one of the most important competitors for forecasting yield
curves.

16.4 Yield Curves Forecasting

This section presents the main results. We perform 30-day forecasts by 1 day con-
catenated steps. We use data from LIBOR GBP currency data from January 2007
to June 2008, as shown in Fig. 16.1. We compare our results with the benchmark
models described in Sect. 16.3.

The random walk models have been hard to beat on the one-year forecast horizon
[5] as well as on the one-month ahead forecast (see e.g. [3]). So, following previous
authors we will show our error results normalized by the corresponding random
walk error. The error measure we shall use is the mean square forecast error.

In order to test the scheme, we shall take a calibration data set and then fore-
cast out-of-sample data which is however known. In this way, we can calculate the
error of the prediction at each step by comparing with the true values, i.e. we shall
compare the values of the approximation p;-” with the exact values s;-”, i <n.

We calibrate our 7, J, K, L parameters in (16.1) using mutual information min-
ima for the K and L lags and the false neighbours method for finding the optimal
embedding space and time dimensions / and J (see [11] and references therein).
Using this calibration approach we get an optimal embedding for a time lag of
L = 7 business days, a spatial lag of K = 9 months in maturity space, I = 1,
i.e. one spatial neighbour on each side of s}, and a total of J = 3 time neighbours

Yield curves

40

30

20

Maturity months

10

o8
Jan/2007 Jul/2007 Dec/2007 Jun/2008

Fig. 16.1 Yield curves from Jan 2007 to June 2008 for LIBOR GBP. We represent here zero
coupon rates calculated from the original market data consisting of cash rates, futures, future con-
vexity, swap rates, and turn of year rates. The conversion is done via forward linear interpolation
using a conjugate gradient method. The brightest yellow—red colour represent high rates and the
blue—green colours represent lower rates. The maximum rate represented here is 6.84% and the
lowest is 4.66%. Notice the weak spatio—temporal interaction, where one has migrations across
space and time
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E(tau) vs method (training set=n—30 time steps)
0.0400%
0.0350% Random walk - constant interpolation
0.0300% - — Nonlinear Embedding
0.0250% A
0.0200%
0.0150% A
0.0100%
0.0050% -
0.0000%
0

Error

5 10 15 20 25 30
1 forecast

Fig. 16.2 Error of forecast comparison for 30 business days (UK business days) between random
walk (i.e. constant forecast) method and our non-linear embedding method. The training set is the
one from Fig. 16.1 minus 7 time steps. The graph shows that the non-linear embedding method is
superior at most forecast horizons, although always closely followed by the random walk method.
Notice that at large time horizons, forecasts become meaningless, since the errors grows close to
the variance of the full set values

E(tau) vs method (training set=n—30 time steps)
0.0450%

0.0400% -
0.0350% A
0.0300% A
0.0250% -
0.0200% -
0.0150% A
0.0100% -
0.0050% -
0.0000%

Hull White Type Model a=4.0%, s=2.5%
— Nonlinear Embedding

Error

0 5 10 15 20 25 30
 forecast

Fig. 16.3 Error of forecast comparison for 30 business days (UK business days) between Brigo—
Mercurio formula and our non-linear embedding method. The training set is the one from Fig. 16.1
minus 7 time steps. The graph shows that the non-linear embedding method is slightly superior
at most forecast horizons, although always very closely followed by the random walk method.
Notice that at large time horizons, forecasts become meaningless, since the errors grow close to
the variance of the full set values

before s;,,. Notice that these 4 parameters are not arbitrary or free parameters since
the mutual information minimal approach and the false neighbours method should
give the optimal embedding.

Our results (see Figs. 16.2 and 16.3) show that the spatiotemporal forecasting is
better than both the random walk and Hull-White models.

Notice that for the Hull White model we have (see Fig. 16.4) also explored chang-
ing the free parameters mean reversion a and volatility o, usually calibrated against
swaption volatility surfaces. The calibration of the mean reversion and volatility
can be arbitrary in the sense it can depend on fine tuning numerical parameters.
Furthermore there are many competing methods for calibration, including the pos-
sibility of using past data as well as forward data, e.g. calibrating to historical
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Error for Spatiotemporal Embedding

0.0150%
0.0140%
0.0130%
0.0120%
0.0110%
0.0100% .
=t 0.0090% ':":"""':""";'\"ii~\
0.0080% | 58222
0.0070%
0.0060%
0.0050%

5.25%

3.50%
X
N Volatility
o\°
oS 8°
) o Q
Mean reversion a ©

Fig. 16.4 Average error of forecast for 30 business days (UK business days) for the Brigo—
Mercurio formula as a function of the short rate’s mean reversion a and volatility o. The training
set is the one from Fig. 16.1 minus 7 time steps. The plot indicates that the results obtained form the
Brigo—Mercurio formula are never better than our non-linear embedding method for this particular
training set at all reasonable possible combinations of the unobservable parameters of the model.
These unobservable parameters are usually calibrated to swaption volatility matrices, representing
the expected future changes of yield curves

time series. To demonstrate that the results are independent of calibration we
calculated the forecasting error for the non-linear spatiotemporal method against
the Hull-White model for a large range of mean reversions and volatilities. The
results in Fig. 16.4 show that the non-linear spatiotemporal forecast is always better
independently of the mean reversion and volatility used.

16.5 Conclusion and Future Research

We have implemented a detailed forecasting of yield curve using a novel method
based on the work of Parlitz and Merkwith [11] for the reconstruction of spatiotem-
poral series. While temporal phase-space embeddings have been used extensively
for one dimensional time series, the extension of the method to spatiotemporal sig-
nals has only recently been attempted. We have applied this deterministic method
to forecasting yield curves and compared our results with stochastic methods which
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are usually employed in the literature. A comparison with the random walk (rep-
resenting the Martingales hypothesis) and Hull-White type models seems to show
that the spatiotemporal reconstruction has some potential for applications.

We intend to improve the method using refinements of the embedding set and
extend our work to larger spatiotemporal series as well as to other sets of currencies.
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Chapter 17
KAM Theory as a Limit of Renormalization

Joao Lopes Dias

Abstract This is a brief survey of recent results on the KAM stability of quasiperi-
odic dynamics using renormalization of vector fields.

17.1 Introduction

For 30 years renormalization ideas have been used in the theory of dynamical sys-
tems. After the pioneering work of Feigenbaum [6] in the late 1970s, there has been
a number of different applications of renormalization techniques. Its core concept is
rescaling. That is, rescaling of space by zooming in a region in phase space; rescal-
ing of time by considering a different time frame, as it takes longer to return to the
region. Complicated dynamical behaviour can then turn out to be simpler in the new
renormalized system. If by iterating the rescaling one gets convergence, it is a clear
hint that the system looks the same in smaller scales. Moreover, if this self similarity
is in some sense trivial, one can then hope to prove conjugacy between the systems.

The connection between KAM and renormalization theories has been realized for
quite some time. Renormalization approach to KAM has several important advan-
tages. First of all, it provides a unified setting which allows to deal with both the
cases of smooth KAM-type invariant tori and non-smooth critical tori. Secondly,
the proofs based on renormalizations are conceptually very simple and give a differ-
ent perspective on the problem of small divisors. For the continuous-time situation,
several KAM results for small-divisor problems in quasiperiodic motion have been
obtained by studying the stability of trivial fixed sets of renormalization opera-
tors (cf. e.g. [7, 16, 19, 22, 23]). There was however a relevant restriction when
dealing with multiple frequencies. Because renormalization methods rely funda-
mentally on the continued fractions expansion of the frequency vector, the lack
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of a multidimensional version of continued fractions was the reason for failing to
replicate KAM in its full generality. This limitation was recently overcome in [12]
by adapting Lagarias’ algorithm [21] and deriving estimates for multidimensional
continued fractions (MCF) expansions of diophantine vectors.

In the case of Hamiltonian systems with two degrees of freedom MacKay pro-
posed in the early 1980s a renormalization scheme for the construction of KAM
invariant tori [27] (see also [29-31]). The scheme was realized for the construc-
tion of invariant curves for two-dimensional conservative maps of the cylinder.
An important feature of MacKay’s approach is the analysis of both smooth KAM
invariant curves and so-called critical curves corresponding to critical values of a
parameter above which invariant curves no longer exist. From the point of view of
renormalization theory the KAM curves correspond to a trivial linear fixed point
for the renormalization transformations, while critical curves give rise to very com-
plicated fixed points with nontrivial critical behavior. MacKay’s renormalization
scheme was carried out only for a small class of Diophantine rotation numbers with
periodic continued fraction expansion (such as the golden mean). Khanin and Sinai
studied a different renormalization scheme for general Diophantine rotation num-
bers [14]. Both of the above early approaches were based on renormalization for
maps or their generating functions. Essentially, the renormalization transformations
are defined in the space of pairs of mappings which, being iterates of the same map,
commute with each other. These commutativity conditions cause difficult technical
problems, and led MacKay [28] to propose the development of alternative renormal-
ization schemes acting directly on vector fields. The same idea was realized by Koch
[16] who proves a KAM type result for analytic perturbations of linear Hamiltonians
H%x,y) = w -y, for frequencies @ which are eigenvectors of hyperbolic matrices
in SL(2,7Z) with only one unstable direction. Notice that the set of such frequen-
cies has zero Lebesgue measure and in the case d = 2 corresponds to vectors with
a quadratic irrational slope. Further improvements and applications of Koch’s tech-
niques appeared in [1,7,17,22,23], emphasizing the connection between KAM and
renormalization theories.

Other renormalization ideas have appeared in the context of the stability of
invariant tori for nearly integrable Hamiltonian systems inspired by quantum field
theory and an analogy with KAM theory (see e.g. [2, 8, 9] where it is used a graph
representation of the invariant tori in terms of Feynman diagrams).

In Sect. 17.2 we describe a multidimensional continued fractions scheme, which
gives estimates to be used in the renormalization. In the remaining sections we
include examples of systems and several KAM-type results obtained by renor-
malization. In particular, in Sect. 17.3 we give a sketch of the proof of almost
reducibility for analytic linear skew-product flows (cf. [5]). In Sect. 17.4 we study
local conjugacy classes for toroidal flows. Finally, in Sect. 17.5 we present the main
ideas for the renormalization proof of the “classical” KAM theorem in the context
of Hamiltonian dynamics.

Throughout this text we denote by Homeo(M ) and Diff" (M), r € N U {oc0, w},
the set of homeomorphisms and C”-diffeomorphisms on M. Moreover, we add
a subscript 0 to distinguish the case of homotopic to the identity maps. Finally,
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Vect” (M) stands for the set of C”-vector fields on M . Recall that the transformation
of an arbitrary vector field X on a manifold M by ¢ € Diff (M) is given by

V*X =Dyoy - Xoy (17.1)

17.2 Multidimensional Continued Fractions

An essential ingredient of the renormalization scheme is a continued fractions
decomposition of vectors, relating the number-theoretical properties of the frequen-
cies and the conjugacy smoothness.

In this section we present the multidimensional continued fractions algorithm
introduced in [12] following ideas of Dani [4], Lagarias [21] and Kleinbock—
Margulis [15]. In addition, we define the class of diophantine vectors from the
properties of the continued fractions expansion.

17.2.1 Flow on Homogeneous Space

Denoteby G = SL(d,R), I’ = SL(d, Z) and take a fundamental domain .# C G
of the homogeneous space I"\G (the space of d-dimensional non-degenerate uni-
modular lattices). On .% consider the flow:

@' F - F, M P(t)ME', (17.2)

where
E' = diag(e™,...,e7", ¥ V) G

and P(¢) is the unique family in I” that keeps @' M in .¥ for every ¢ > 0.
Letw = (o, 1) € RY. We are interested in the orbit under @’ of the matrix

[«
M, = (O 1). (17.3)

17.2.2 Growth of the Flow

Let the function §: I'\G — R™ measuring the shortest vector in the lattice M be

§(M)= inf || kM|, (17.4)
kezZ4\{0}
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where || - || stands for the £;-norm (in the following we will make use of the corre-
sponding matrix norm taken as the usual operator norm). Notice that §(®*M,,) =
S(My,E").

Proposition 17.1 ([12]). There exist C1, Cy > 0 such that forall t > 0

19 Mol < oy and 1@ Mo < g (179)
17.2.3 Stopping Times
Consider a sequence of times, called stopping times,
to=0<t1 <th<-+—> 400 (17.6)
such that the matrices P () in (17.2) satisfy
Py = P(t) # P(ta—1), (17.7)
with n € N. We also set Py = P(t9) = I. The sequence of matrices P, €

SL(d,Z) are the rational approximates of w, called the multidimensional continued
fractions expansion. In addition we define the transfer matrices

T,=P,P L, neN, and Tp=1I. (17.8)

n—1>
The flow of M,, taken at the time sequence is thus the sequence of matrices
M, = ®"M, = P,M,E". (17.9)

Using some properties of the flow, the above can be decomposed (see [12]) into

T ay A, O
(G o

with y,, being the d-th component of the vector e~V P ).
Define w,, = (o, 1), wo = w and, forn € N,

wp = NpThowp-1, (17.11)

where 7, is a normalization factor.

If d = 2 there exists a sequence of stopping times (called Hermitte critical times)
that gives an accelerated version of the standard continued fractions of a number
o [21].
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17.2.4 Resonance Cone

Given resonance widths o, i.e. a sequence o: Ng — R+, define the resonant cones
to be

It =tk €Z% |k -w,| <onlkl} (17.12)
In addition, let
-1k
Ay, =  sup w. (17.13)
kEI;r\{O} ”k”

Proposition 17.2 ([26]). There is ¢ > 0 such that for any n € Ny

déty,
Ay < ce St oneintt 4 1
- §(Mp)4=18(Mp 1)

(17.14)

where 8ty 41 = th41 — tn.

17.2.5 Diophantine Vectors

A vector w € R? is Diophantine with exponent 8 > 0 if there is a constant C > 0
such that

C
lw - k| > —||k||d—1+;3'

It is a well known fact that the sets DC(8) of Diophantine vectors with expo-
nent 8 > 0 are of full Lebesgue measure [3]. On the other hand, the set DC(0)
has zero Lebesgue measure. A vector is said to be diophantine if it belongs to
DC = Ugs9DC(B). The next proposition gives us a complete characterization
of diophantine vectors in terms of the behaviour of the flow @ of M,,.

Proposition 17.3 ([26]). Let 8 > 0. Then, w € DC(B) iff there is C’ > 0 such that
§(@'M,) > C'e™ ¥, >0,

with 0 = B/(d + B).

Proposition 17.4 ([12]). If o € DC(B), B = O, there are constants ¢; > 0 such
that, for any stopping-time sequence t: Ng — R,

[ Myl < c1exp[(d — 1)01n], (17.15)
IM < caexp(Bt). (17.16)
| Tl < csexpl(1 —6)8t, + d 6 ty,], (17.17)
I, < coexpl(d — 1)(1 — 0)8t, + d 0 1,], (17.18)

where 8ty =ty —th—1 and 0 = B/(d + ).
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Proposition 17.5 ([26]). If @ € DC(B), B > 0, then there is ¢ > 0 such that for
any n € N,

A, < Ce—(1—6)8tn+1+d9tn (oned‘gt”""l + 1)_ (17.19)

Possible choices are t, = ¢1(1 + §)" and 0, = e~ 2(+B)" with some ¢; > 0.

Here we have only discussed the case of Diophantine frequency vectors. How-
ever, renormalization can be used for a larger class of vectors, cf. e.g. [10, 11, 18,20,
24-26].

17.3 Almost Reducibility of Linear Skew-Product Flows

In this section we deal with skew-product vector fields, which are linear differential
equations of dimension two, with quasiperiodic coefficients. This is a generaliza-
tion of the classical Floquet theory. Our goal is to present the main ideas behind
renormalization for this kind of dynamics. We present a sketch of a proof on almost
reducibility of these systems.

17.3.1 Skew-Product Vector Fields

Consider the manifold M = T4 x SL(2, R). Let Vect], (M) be the set of C"-vector
fields on M of the form:

X(x,y) = (@, f(x)y). (x.y) €M, (17.20)

where w € R4\ {0} and f € C" (T, SL(2, R)). We will use the following notation

X =(o.f).

Each element of Vect], (M) generates a skew-product flow on M, i.e. a flow of
the type

¢'(x.y) = (x + 01, @' (x) y),

where ®*: T¢ — SL(2,R).
As we want to preserve the space Vect], (M) under coordinate changes, we
consider the set Diff 7.t (M) of

Y(x.y) = (Tx,F(x)y), (x.y)eM, 17.21)

where F € C"t1(T?,SL(2,R)) and T € SL(d,Z) is a linear automorphism of
the torus. For simplicity, we write

v =(T, F).
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A vector field in the new coordinates is then given by the formula

Y*X(x.y) = (T, Lo F(T™'x) - F(T7')™ y + Ad g1 f(T7'x) - ).
(17.22)
where
Lo=0-D=) /i (17.23)

and Ad4b = AbA™L.

17.3.2 Fibered Rotation Number

Consider the natural projection p: R?\ {0} — T! given by the argument of a vector.
The fibered rotation number of the flow generated by X = (w, f) € Vect (M) is

defined to be
o f o¢S<x,y>vds)
t

p(X) = lim p(
t—>+o00

for (x,y) € M andv € R?\{0}. This measures the asymptotic frequency of rotation
of the fiber flow in R2. We will be interested in vector fields for which p exists at
any point and direction v.

17.3.3 Almost Reducibility

In some cases it is possible to find a diffeomorphism that simplifies X, in particu-
lar reducing it to a “constant” vector field. More precisely, we have the following
definition.

1. X € Vect] (M) is C*-conjugatedto Y € Vect], (M) if there is € Diffs, (M)
such that y*X =Y.

2. X is C*-reducible if its C*-conjugacy class contains a vector field Z = (o, u),
withu € SL(2, R).

3. X is C?®-almost reducible if the closure of its C®-conjugacy class contains a
vector field Z = (w, u), withu € SL(2, R).

Theorem 17.1. Let w € R? be Diophantine and C > 0. There is € > 0 such that if
f e Co(T4, SL(2,R)) is e-C?-close to constant and |p(w, f)| < C, then (w, f)
is C®-almost reducible.

Notice that € does not depend on the arithmetical properties of the rotation num-
ber. In the remaining part of this section we present the main steps towards the proof
of the above theorem.
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17.3.4 Non-Homotopic to the Identity Diffeomorphism

Given m € Z%, we will also be interested in the following transformation of
coordinates:

Ym = (I, Rm)
where R,,,: T — SO(2, R) is

__|cos(2am - x) —sin(2wm - x)
Ron(x) = [sin(2nm -x) cos(2mm - x) ] ’

The action on a vector field X = (w, f) is given by

YrX = (a),Zfrm-a) |:(1) _01] +AdRmf).

In particular, the rotation number is changed as

PX) = p(X) — gm0

17.3.5 Lifts and Complexification

Let r > 0 and consider the domain
P, = {x € C4: |Imx| < r/2m} (17.24)
for the norm ||z|| = 3_; |z;| on C¥. Take a real-analytic map
F:9, - SL(2,0),
Z? -periodic, on the form of the Fourier series

F(x)= Y Fe™kx (17.25)
kezd

with F, € SL(2, C). The Banach spaces <7 and 7/ are the subspaces such that the
respective norms

IFl-= ) Fel e, (17.26)
kezd
LIl = " (14 2x||k]) | Fre ]| e (17.27)

kezd



17 KAM Theory as a Limit of Renormalization 261

are finite. Here and in the following we use the matrix norm || A|| = max; ) _; |4; ;|
for any square matrix A with entries A; ;.

Similarly, define the space a, of real-analytic functions 2, — SL(2,C), 74-
periodic and on the form of Fourier series, having the same type of bounded norm
as (17.26). We are interested in vector fields that can be written as

X(x,y) = (o, f(x)y), (x,y)€ 2, xSL22,C). (17.28)

The space of such vector fields is denoted by V- whenever f is in a,. The norm on
this space is defined to be

IX1- = el + 1L/ (17.29)

17.3.6 Uniformization

The theorem below states the existence of a nonlinear change of coordinates isotopic
to the identity that cancels the

I~ ={ke7%k -0 >o|k|}

Fourier modes of a sufficiently close to constant X € V;, with 0 > 0. We are
only eliminating the far from resonance modes, this way avoiding the complications
usually related to small divisors.

Letu € SL(2,C) and

By(u,e) ={f €ar:|f —ul, <e}

where
Co? (17.30)
E= —m—m, .
el + flull

In order to simplify notations, here and in the following C stands for some positive
universal constant, not necessarily the same.

Theorem 17.2. Let |p| < 0/4 andu € SL(2, R) with eigenvalues Lip. There is an
analytic map 3\: B, (u, €) — 7, such that

I7y*(X) =0 where ¥ = (I,4(f))

and

c _
I4Cf) = 1117 = X
ly*X —EX|, =CIIT - E)X].

(17.31)

Moreover, U(f): R — SL(2, R).
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17.3.7 Proof of Theorem 17.2

We now prove Theorem 17.2. O

17.3.7.1 Homotopy Method
The coordinate transformation ¥ will be determined by some U in
Bs ={U el" U -1, <8},

for
§=C¢/o < 1. (17.32)

Define the operator

F . PBs — 1~ o,

17.33
U T (LoU-U"' + Ady f). ¢ )

If U is real-analytic, then .% (U) is also real-analytic. The derivative of .% at U is
the linear map from I~/ to I~ .o given by

DFWU)H =1 (LoH —L,U-U'H —Ady f-H + Hf)U™'. (17.34)
We want to find a solution of
FUy) = (1 —1)FUy), (17.35)

with 0 < ¢ < 1 and initial condition Uy = I. Differentiating the above equation
with respect to ¢, we get

Dﬁz(U,)% =-7(). (17.36)

Proposition 17.6. There is § > 0 such that if U € %Bs, then DF(U) .1~ —
I~ 47 is bounded and
|D.ZW) | < §/e.

From the above proposition (to be proved in Sect. 17.3.7.2) we integrate (17.36)
with respect to ¢, obtaining the integral equation:

t
U =1 —[ DFU) ' F()ds. (17.37)
0
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In order to check that U; € % for any 0 <t < 1, we estimate its norm:

\U: = 11I; < 2 sup |[DF )" F (D]
VERBs

N ~ (17.38)

<tz sup [DFE)N T fllr <817 f, /e

VERBs

so, Uy — I, < §. Therefore, the solution of (17.35) exists in %5 and is given by
(17.37). Moreover, if X is real-analytic, then U; takes real values for real arguments.
In view of

IHAdy f —u) =" (U= DU =D+ U -DF +TUT =D +T].
(17.39)
where 7 = f —u, we get

IUFX —EX|ly < ITLo(U —1)- U™ =D + I (Adyf —w)lr + (1 =T £
<2 Ul U = IIU =11, + 21U (lull + 1 F DIV = 1112
+ A+ 20U1IU = Ir + 1l + A =O)IT7 £

<G=0lflr.
(17.40)
Theorem 17.2 corresponds to the case t = 1.
17.3.7.2 Proof of Proposition 17.6
Lemma 17.1. D.Z (1)~ : 1"« — 1~ <7/ is bounded and
IDZ(H)7Y < > ) (17.41)
o— 10 —-E)fI
Proof. Letg = (I — E) f. From (17.34) one has
DZ#(I)H =1"(Ly +ads)H
@ (Lo +ads) (17.42)

=[1+1 adg (Lo +ad,)""| (Lo +ad,) H,
where adp A = Ab — bA. Thus, the inverse of this operator, if it exists, is given by
DF(I) ™" = (Ly +ad) ™" [1 + 1 ady (Lo +ad) '] (17.43)

By looking at the spectral properties of the operator (2rwik - wl + ad,), with the
spectrum of ad, being {0, £4mip}, it is possible to write
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(Lo +ad)H(x) = Y SAS™' Hpe™** (17.44)
kel —
where
Ar = Qmui)diagk -w, k-0, k- o+ 2p,k-w—2p) (17.45)
and
01-1-1
S = _11 8 i :; (17.46)
011 1

So, we have the linear map from I~ %7 to I~ <7/,

(Lo +ad,) ' F(x) = SAT' ST Fre?rikex, (17.47)
k
kel—

Now, fork € I~,

1+2n||k||
(Lo +ad,)™ " F|, < o E 1| Fy e’ 1K1
s (17.48)
< _”F”r-
o

It is possible to bound from above the norm of adg by 2| g||-. Therefore,

B 10
IT"adg (Lo + ad) ™| < sl <1,
and
1
1= g,

The statement of the lemma is now immediate. O
As r is constant, in the following we drop it from our notations.

H [1+ 1" ady (Lo + ad) ] H <

Lemma 17.2. Given U € 9y, the linear operator D% (U) — D.% (1) mapping
1~ into 1™ o, is bounded and

[DFU)—-DF ()| <2|U]| [Ilwll(l +2(UD + 2011+ U+ ||U||2)] U —1].
(17.49)
Proof. In view of (17.34), we have

[DFU)-DFU) H=1"L,H-(U'=I)-L,U-U'HU!

) _, (17.50)
+Hf(U ' =1)+ fH — Ady f - HU .
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It is possible to estimate the norms of the above terms by

ILoH - (U =D < ol U = IIIH]',
ILoU - U HU | < ol |[UTHPIU = T) | H].
IHf U™ =Dl <I/IU™ = IIH],
IfH —Ady f-HU™'| = |fHU' =)+ fU™' = 1)HU ™!
+ WU '=DfUTTHUTY
<I/1A+ U+ 1= HIw= =1 Hll.
(17.51)

Finally, notice that U™ — I|| < U |U = I|| <2|U || ||U — I |
Proposition 17.6 now follows from ||U|| < 1 + 6 and

-1
D7) = (IDFM)~ 1™ = 1DF W) - DF)])

2 —1
<{o/5—e=281UN [l + 2001 + 20 £ 10+ U+ V13 ]}
<{o/5—e—=Cs(loll + 1Dy ". (17.52)

Therefore, for § and ¢ as in (17.32) and (17.30), respectively,

8
|D.ZWU)™ | < - (17.53)

17.3.8 Rescaling

The rescaling that we are interested comes from the continued fractions expansion
of w. That is, we want to use skew diffeomorphisms of the type (73, I') where T,
are as in Sect. 17.2. Futhermore, we rescale time by 7;,.

Applying the rescaling to a vector field X with no /= Fourier modes has the
effect of improving its analyticity radius and thus C“-approximating X to a constant
by a factor of order e=C/4n

17.3.9 One-Step Renormalization Operator

The renormalization step is briefly summarized below.

. — C
1. Letm = argmin{|k-w+2p|:k € I7}.So, |m|| < I_L’;land|p/| = |p—%m-a)| <
/4.
2. Use v, to obtain a vector field with rotation number p’. The C®-distance
between the vector field and a constant will be increased by a factor ¢€ 171
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3. Eliminate the modesin /™.
4. Use the rescaling introduced in Sect. 17.3.8.

After one step, the vector field will get C®-closer to constant if the norm
improvement by the rescaling overcomes the opposite effect by ;. This indeed
holds for w Diophantine, using the bounds obtained at the end of Sect. 17.2.

Notice that ||m|| only depends on |p| and o. On the other hand, ¢ is chosen at
each step according to the arithmetic properties of w.

By iterating the renormalization step we are able to show convergence to a trivial
limit set, namely a set of constant vector fields. That is, the renormalization con-
tracts a small neighbourhood around that set. We remark that the diameter of that
neighbourhood does not depend on the arithmetical properties of p, but only on |p|.

17.4 Conjugacy Classes of Torus Translations

Consider the d-torus T¢. We want to study flows on this manifold. Define the rota-
tion vector of a flow ¢’ at each x € T? to be the asymptotic direction of the
corresponding orbit of the lift @?(x) to the universal cover:

o)) = lim S H =X (17.54)

t—>+o00 t
if the limit exists. If the rotation vector exists at x for a flow ¢’ generated by a vector

field X on T¥ (i.e. d%d)t = X o ¢?), it is the time average of the vector field along

the orbit: ;

1
rot(¢)(x) = lim — / X o ¢*(x)ds. (17.55)
t—>+oo 1 Jo
When the rotation vector exists for all x € "I]'d, the rotation set of ¢ is
rot(¢) = {rot(¢p)(x):x € T}, (17.56)

Lemma 17.3 ([26]). Let h € Homeoo(T?), A # 0and T € GL(d,Z). If
rot(¢) # @, then

rot(h™ o ¢ o h) = rot(p) and rot(T™'o ¢A' oT) = AT Yrot(¢). (17.57)

Proposition 17.7 ([26]). Let ¢' be the flow generated by X € Vect®(T?) and w €
RY. If rotg = {w), then

IEX — o] <d||X — EX|co. (17.58)

where EX = de X dm and m denotes the Lebesgue measure on T,
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We will be interested in vector fields generating flows that possess the same rota-
tion vector for all orbits. Hence, for a vector field X we will write rot X to mean the
unique rotation vector associated to the flow generated by X.

The C®-conjugacy classes of constant Diophantine vector fields can be
described, at least locally, by the rotation vector.

Theorem 17.3 ([26]). Let w € RY be Diophantine. If X is a real-analytic vec-
tor field on T¢ sufficiently C®-close to constant with unique rotation vector ,
then there exists h € Diffg (T?) such that h*(X) = w. The conjugacy h depends
analytically on X.

A proof of the above theorem is obtained by comparing the renormalization orbits
of X and w. They get close to each other exponentially fast, and from that we are
able to construct an analytic conjugacy.

17.5 Invariant Tori in Phase Space

Let B C R, d > 2, be an open set containing the origin, and let H 0 pe a real-
analytic Hamiltonian function

1
H(x.,y) =a)~y+§TyQy, (x,y) € T? x B, (17.59)

with @ € R? and a real symmetric d x d matrix Q. H? is said to be non-degenerate
if det 0 # 0.

Theorem 17.4 ([13]). Suppose H® is non-degenerate and w is Diophantine. If H
is a real-analytic Hamiltonian on T¢ x B sufficiently close to H, then the Hamil-
tonian flow of H leaves invariant a Lagrangian d -dim torus where it is analytically
conjugated to the linear flow ¢;(x) = x +tw on T%, t > 0. The conjugacy depends
analytically on H.

Hamiltonian vector fields involve more complicated analysis than torus flows
since there is extra dynamics on the action direction and we need to preserve the
symplectic structure. Our goal is to find an analytic embedding T¢ — T¢ x B that
conjugates the Hamiltonian flow to the linear flow on the torus given by w.

We do not work directly with vector fields, instead we renormalize Hamiltonian
functions

H(x,y)=H'(x,p) + F(x.y),  (x.»)eT?xB
where F' is a sufficiently small analytic perturbation. Using a rescaling of time we

may assume that w = («, 1). The perturbation F is decomposed in a Taylor-Fourier
series
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F(x,y) =) Fray' ...yt
k,v

where the sum is taken over k € Z¢ and v; € N U {0}. By the analyticity of F, its
modes decay exponentially as || k|| — +oo for fixed v.

Renormalization is an iterative scheme that at each step produces a new Hamil-
tonian. Suppose that after the (n — 1)-th step the Hamiltonian is of the form

1
Hy—1(x,y) = wp-1-y + > TY0n-1y + Fa1(x,) (17.60)

where Q,—; is a symmetric matrix with non-zero determinant. Moreover, we
assume that F;_; only contains Taylor-Fourier modes in / ,;F_l, i.e. satisfying

|n—1 - k| < G|kl or V]| = Ta-r K]

for some 0,1, t4—1 > 0. So, the n-th step is defined by the following operations:

1. Apply a linear operator corresponding to an affine symplectic transformation
given by
(x,y) > (T 'x, Ty + by)

for some fixed vector b,,.

2. Rescale the action in order to “zoom in” around the invariant torus.

3. Rescale time (energy) to ensure that the frequency vector is of the form w, =
(o, 1).

4. Eliminate the (irrelevant) constant mode of the Hamiltonian.

5. Eliminate all the modes outside the resonant cone /1,1 (thus avoiding dealing with
small divisors) by a close to the identity symplectomorphism.

The first transformation above has a conjugate action
ke 1T, k.

It follows from the hyperbolicity of 7}, that this transformation contracts I,f_ , if
on—1 and 7,1, are small enough. This significantly improves the analyticity domain
in the x direction which implies the decrease of the estimates for the corresponding
modes. As a result, all modes with k£ # 0 become smaller.

Besides the (trivial) case (k,v) = (0,0) which is dealt by operation (4) above,
we control the size of the remaining k& = 0 modes in different ways. The case

SZZZUI‘=1
i

(corresponding to the linear term in the action y) is eliminated by a proper choice of
the affine parameter b,, depending on Q,_; and the perturbation. That is, b, is used
to eliminate an unstable direction related to frequency vectors. The quadratic term
in the action (S = 2) is included in the new symmetric matrix 0, which has again



17 KAM Theory as a Limit of Renormalization 269

non-zero determinant and becomes smaller due to the action rescaling. Finally, we
show that the action rescaling is also responsible for the decrease of the higher terms
S >3.

The overall consequence of the iterative scheme just described is that it converges
to a limit set of Hamiltonians of the type

Yy vy,

That is, the “limit” is a degenerate linear function of the action, and from that we
show the existence of an w-invariant torus for the initial Hamiltonian. To prove
convergence we need to find proper choices of g, and t,, as well as of stopping
times #,, which turns out to be possible for Diophantine w. Roughly, too small values
of 0,—1 and 7,1, make harder to eliminate modes as they are “t0o” resonant. On
the other hand, large values imply that 7, does not contract 1:'_ 1- Similarly, large
t, — tp—1 improve the hyperbolicity of the matrices 7, but worsen the estimates on
their norms and consequently enlarge the perturbation.
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Chapter 18
An Overview of Optimal Life Insurance
Purchase, Consumption and Investment
Problems

Isabel Duarte, Diogo Pinheiro, Alberto A. Pinto, and Stanley R. Pliska

Abstract We provide an extension to Merton’s famous continuous time model of
optimal consumption and investment, in the spirit of previous works by Pliska and
Ye, to allow for a wage earner to have a random lifetime and to use a portion of the
income to purchase life insurance in order to provide for his estate, while investing
his savings in a financial market consisting of one risk-free security and an arbitrary
number of risky securities whose diffusive terms are driven by a multi-dimensional
Brownian motion. The wage earner’s problem is to find the optimal consumption,
investment, and insurance purchase decisions in order to maximize expected utility
of consumption and of the size of the estate in the event of premature death, and of
the size of the estate at the time of retirement. Dynamic programming methods are
used to obtain explicit solutions for the case of constant relative risk aversion utility
functions, and new results are presented together with the corresponding economic
interpretations.
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18.1 Introduction

We consider the problem faced by a wage earner having to make decisions contin-
uously about three strategies: consumption, investment and life insurance purchase
during a given interval of time [0, min{7, t}], where T is a fixed point in the future
that we will consider to be the retirement time of the wage earner and t is a ran-
dom variable representing the wage earner’s time of death. We assume that the
wage earner receives his income at a continuous rate i (¢) and that this income is
terminated when the wage earner dies or retires, whichever happens first. One of
our key assumptions is that the wage earner’s lifetime 7 is a random variable and,
therefore, the wage earner needs to buy life insurance to protect his family for the
eventuality of premature death. The life insurance depends on a premium insurance
rate p(¢) such that if the insured pays p(¢) - 8§t and dies during the ensuing short
time interval of length §¢ then the insurance company will pay one dollar to the
insured’s estate (so this is like term insurance with an infinitesimal term). We also
assume that the wage earner wants to maximize the satisfaction obtained from a
consumption process with rate ¢(¢). In addition to consumption and purchase of a
life insurance policy, we assume that the wage earner invests the full amount of his
savings in a financial market consisting of one risk-free security and a fixed number
N > 1 of risky securities with diffusive terms driven by M -dimensional Brownian
motion.

The wage earner is then faced with the problem of finding strategies that max-
imize the utility of (a) his family consumption for all # < min{7, t}; (b) his
wealth at retirement date 7 if he lives that long; and (c) the value of his estate
in the event of premature death. Various quantitative models have been proposed
to model and analyze this kind of problem, at least problems having at least one
of these three objectives. This literature is highlighted by Yarri [10] who consid-
ered the problem of optimal financial planning decisions for an individual with
an uncertain lifetime, as well as by Merton [4, 5] who emphasized optimal con-
sumption and investment decisions but did not consider life insurance. These two
approaches were combined by Richard [9], who considered a life-cycle life insur-
ance and consumption-investment problem in a continuous time model. Later, Pliska
and Ye [6, 7] introduced a continuous-time model that combined the more realistic
features of all those in the existing literature and extended the model proposed pre-
viously by Richard. While Richard assumed that the lifetime of the wage earner
is limited by some fixed number, the model introduced by Pliska and Ye had the
key feature that the duration of life is a random variable which takes values in the
interval ]0, oo[ and is independent of the stochastic process defining the underlying
financial market. Moreover, Pliska and Ye made the following refinements to the
theory: (a) the planning horizon T is now seen as the moment when the wage earner
retires, contrary to Richard’s interpretation as maximum life size; and (b) the utility
of the wage earner’s wealth at the planning horizon T is taken into account as well
as the utility of lifetime consumption and the utility of the bequest in the event of
premature death.
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Whereas Pliska and Ye’s financial market involved only one security that was
risky, in the present work we study the extension where there is an arbitrary (but
finite) number of risky securities. The existence of these extra risky securities gives
greater freedom for the wage earner to manage the interaction between his life
insurance policies and the portfolio containing his savings invested in the financial
market. Some examples of these interactions are described below.

Following Pliska and Ye, we use the model of uncertain lifespan found in reliabil-
ity theory, commonly used for industrial life-testing and actuarial science, to model
the uncertain time of death for the wage earner. This enables us to replace Richard’s
assumption that lifetimes are bounded with the assumption that lifetimes take values
in the interval ]0, co[. We then set up the wage earner’s objective functional depend-
ing on a random horizon min{7’, t} and transform it to an equivalent problem having
a fixed planning horizon, that is, the wage earner who faces unpredictable death acts
as if he will live until some time 7', but with a subjective rate of time preferences
equal to his “force of mortality” for his consumption and terminal wealth. This
transformation to a fixed planning horizon enables us to state the dynamic program-
ming principle and derive an associated Hamilton—Jacobi—-Bellman (HJB) equation.
We use the HIB equation to derive the optimal feedback control, that is, optimal
insurance, portfolio and consumption strategies. Furthermore, we obtain explicit
solutions for the family of discounted Constant Relative Risk Aversion (CRRA)
utilities and examine the economic implications of such solutions.

In the case of discounted CRRA utilities our results generalize those obtained
previously by Pliska and Ye. For instance, we obtain: (a) an economically reason-
able description for the optimal expenditure for insurance as a decreasing function
of the wage earner’s overall wealth; and (b) a more controversial conclusion that
possibly an optimal solution calls for the wage earner to sell a life insurance policy
on his own life toward the end of his career. Nonetheless, the extra risky securities
in our model introduce novel features to the wage earner’s portfolio and insurance
management interaction such as: (a) a young wage earner with small wealth has an
optimal portfolio with larger values of volatility and higher expected returns, with
the possibility of having short positions in lower yielding securities; and (b) a wage
earner who can buy life insurance policies will choose a more conservative port-
folio than a wage earner who is without the opportunity to buy life insurance, the
distinction being clearer for young wage earners with low wealth. Full details of our
analysis will be provided in a forthcoming paper [1].

This paper is organized as follows. In Sect. 18.2 we describe the problem we
address in [1]. Namely, we introduce the underlying financial and insurance mar-
kets as well as the problem formulation from the point of view of optimal control.
In Sect. 18.3 we see how to use the dynamic programming principle to reduce the
optimal control of Sect. 18.2 to one with a fixed planning horizon and then derive
an associated HIB equation. We devote Sect. 18.4 to the case of discounted CRRA
utilities. We conclude in Sect. 18.5.
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18.2 Problem Formulation

In this section, we define the setting in which the wage earner has to make his deci-
sions regarding consumption, investment and life insurance purchase. Namely, we
introduce the specifications regarding the financial and insurance markets available
to the wage earner. We start with the financial market description, followed by the
insurance market and conclude with the definition of a wealth process for the wage
earner.

18.2.1 The Financial Market Model

We consider a financial market consisting of one risk-free asset and several risky-
assets. Their respective prices (So(?))o<s<7 and (S, (¢))o<t<T forn = 1,...,N
evolve according to the equations:

dSo(t) = r()Se(r)dz , S0(0) = 50,
ASp(t) = pn (O)Sp()Ar + Sy (@) XM 0y (D)AWi (1) . Sp(0) =5, >0,

where W(t) = (Wi(t),..., Wa(¢))T is a standard M -dimensional Brownian
motion on a probability space (§2,.%, P), r(t) is the riskless interest rate, p(t) =
(u1(t), ..., un(t)) € RY is the vector of the risky-assets appreciation rates and
0(t) = (Onm(t))1<n<N,1<m=<m is the matrix of risky-assets volatilities.

We assume that the coefficients r(¢), (¢) and o (¢) are deterministic continuous
functions on the interval [0, T']. We also assume that the interest rate r(¢) is positive
for all ¢ € [0, T] and the matrix o/(¢) is such that 567 is nonsingular for Lebesgue
almost all ¢ € [0, T'] and satisfies the following integrability condition

N M T
2
Z Z [0 O, ()dt < 00,

n=1m=1

Furthermore, we suppose that there exists an (% )o<:<7-progressively measurable
process 7(t) € RM, called the market price of risk, such that for Lebesgue-almost-
every ¢t € [0, T] the risk premium () = (1 (t) — r(t), ..., un(t) — r(t)) € RN
is related to 7 (¢) by the equation

a(t) =o(t)n(t) a.s.

and the following two conditions hold
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T
/ 7> <oo  as.
0

T T
E |:exp (—[0 7 (s)dW(s) —%[0 ||n(s)||2ds):| =1

The existence of such process 7 (¢) ensures the absence of arbitrage opportunities in
the financial market defined above. See [3] for further details on market viability.

Moreover, throughout the paper we will assume that (§2, %, P) is a filtered prob-
ability space and that its filtration F = {%;, ¢ € [0, T']} is the P-augmentation of the
filtration generated by the Brownian motion W(t), a{W(s),s <t} fort > 0. Each
sub-g-algebra .%; represents the information known by the agents in the financial
market at time 7.

18.2.2 The Life Insurance Market Model

We assume that the wage earner is alive at time + = 0 and that his lifetime is a
non-negative random variable t defined on the probability space (£2,.%, P). Fur-
thermore, we assume that the random variable 7 is independent of the filtration F
and has a distribution function F : [0, 00) — [0, 1] with density f : [0,00) — RT
so that

F(t):[o f(s)ds.

We define the survivor function F : [0, 00) — [0, 1] as the probability for the wage
earner to survive at least until time 7, i.e.

F(t)=P(t>t)=1-F(1).

We shall make use of the hazard function, the conditional, instantaneous death rate
for the wage earner surviving to time ¢, that is

)L(t):slim P(t§r<t+8t|rzt)=£(t).
1—0 3t F(1)

Throughout the paper, we will suppose that the hazard function A : [0, 00) — R™ is
a continuous and deterministic function such that

/Oook(t)dt = o0.

These two concepts introduced above are standard in the context of reliability theory
and actuarial science. In our case, such concepts enable us to consider an optimal
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control problem with a stochastic planning horizon and restate it as one with a fixed
horizon.

Due the uncertainty concerning his lifetime, the wage earner buys life insurance
to protect his family for the eventuality of premature death. The life insurance is
available continuously and the wage earner buys it by paying a premium insurance
rate p(t) to the insurance company. The insurance contract is like term insurance,
with an infinitesimally small term. If the wage earner dies at time t < T while buy-
ing insurance at the rate p(t), the insurance company pays an amount p(t)/n(z) to
his estate, where 1 : [0, T] — RT is a continuous and deterministic function which
we call the insurance premium-payout ratio and is regarded as fixed by the insur-
ance company. The contract ends when the wage earner dies or achieves retirement
age, whichever happens first. Therefore, the wage earner’s total legacy to his estate
in the event of a premature death at time 7 < 7 is given by

p(7)
n(r)’

where X(¢) denotes the wage earner’s savings at time .

Z(1) = X(1) +

18.2.3 The Wealth Process

We assume that the wage earner receives an income i (¢) at a continuous rate during
the period [0, min{ 7, t}], i.e. the income will be terminated either by his death or his
retirement, whichever happens first. Furthermore, we assume thati : [0, 7] — RT
is a deterministic Borel-measurable function satisfying the integrability condition

T
/ i(t)dt < oo.
0

The consumption process (c(t))o<t<T 1S a (F)o<t<T-progressively measur-
able nonnegative process satisfying the following integrability condition for the
investment horizon T > 0

T
[ c(t)dt < o0 a.s..
0

We assume also that the premium insurance rate (p(f))o<i<7 18 a (Ft)o<t<T-
predictable process, i.e. p(¢) is measurable with respect to the smallest o-algebra
on R x 2 such that all left-continuous and adapted processes are measurable. In
a intuitive manner, a predictable process can be described as such that its values are
“known” just in advance of time.

Foreachn = 0,1,...,N and ¢t € [0,T], let 6,(¢) denote the fraction of the
wage earner’s wealth allocated to the asset S, at time ¢. The portfolio process is
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then given by @ (1) = (6o(1), 01 (t), ..., 0N (1)) € RN, where

N
Y bu)=1, 0<i<T (18.1)
n=0

We assume that the portfolio process is (:%;)o<:<T-progressively measurable and
that for the fixed investment horizon 7' > 0 we have that

T
/|@@Wm<w as.,
0

where ||-|| denotes the Euclidean norm in RN +1,
The wealth process X(t), t € [0, min{T, t}], is then defined by

t N 6,
Xt)=x+ /(; [i(s) —c(s) — p(s)] ds + Z/(; %d&l(s), (18.2)
n=0 n

where x is the wage earner’s initial wealth. This last equation can be rewritten in the
differential form

N
X (1) = (i (1) =) — p(t) + (eomr(r) +3 0ut) (r))X(r)) di

n=1

N M
+ ) 0. (DX@) Y onm()dWin (1),

n=1 m=1

where 0 < ¢t < min{z, T'}.

Using the relation (18.1), we can always write 6y (¢) in terms of 61 (), ..., Oy (¢).
From now on, we will define the portfolio process in terms of the reduced portfolio
process 0(t) = (01(t), 02(t),....0n(t)) € RV,

18.2.4 The Optimal Control Problem

The wage earner is then faced with the problem of finding strategies that maximize
the utility of:

(a) His family consumption for all # < min{7, t}.
(b) His wealth at retirement date 7 if he lives that long.
(c) The value of his estate in the event of premature death.

This problem can be formulated by means of optimal control theory: the wage
earner goal is to maximize some cost functional subject to (a) the (stochastic)
dynamics of the state variable, i.e. the dynamics of the wealth process X(¢) given
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by (18.2); (b) constraints on the control variables, i.e. the consumption process c(¢),
the premium insurance rate p(¢) and the portfolio process 6(¢); and (c¢) boundary
conditions on the state variables.

Let us denote by <7 (x) the set of all admissible decision strategies, i.e. all admis-
sible choices for the control variables v = (c, p,0) € RN+2 The dependence of
<7 (x) on x denotes the restriction imposed on the wealth process by the boundary
condition X (0) = x.

The wage earner’s problem can then be restated as follows: find a strategy v =
(c, p,0) € o/ (x) which maximizes the expected utility

T AT
V(x) = sup Eox |:/ U(c(s),s) ds + B(Z(1), 1)z <1}
ved (x) 0

+W(X(T) -1} } (18.3)

where T A © = min{T, t}, 14 denotes the indicator function of event A4, Ul(c,-)
is the utility function describing the wage earner’s family preferences regarding
consumption in the time interval [0, min{7, t}], B(Z, ) is the utility function for
the size of the wage earners’s legacy in case 7 < T and W(X) is the utility function
for the terminal wealth at time t = T'.

We suppose that U and B are strictly concave on their first variable and that W
is strictly concave on its sole variable. In Sect. 18.4 we focus our analysis on the
case where the wage earner’s preferences are described by discounted CRRA utility
functions.

18.3 Stochastic Optimal Control

In this section we describe how dynamic programming can be used to restate the
stochastic optimal control problem formulated in the preceding section as one with
a fixed planning horizon and then derive the associated HIB equation.

18.3.1 Dynamic Programming Principle

Let us denote by <7 (¢, x) the set of admissible decision strategies v = (c, p, 6) for
the dynamics of the wealth process with boundary condition X(¢) = x. For any
v € &/ (t, x) we define

T At
J(t,x;v) = Eix [/ Ule(s),s) ds + B(Z(v), ©)z<1}

+W(X(T))I{r>T} ’ T > l,yz:|
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and note that the optimal control problem (18.3) can be restated in dynamic pro-
gramming form as
V(t,x)= sup J(, x;v).
ved (t,x)
The following lemma is the key tool to restating the control problem above as an
equivalent one with a fixed planning horizon. See [11] for a proof.

Lemma 18.1. Suppose that the utility function U is either nonnegative or nonposi-
tive. If the random variable t is independent of the filtration F, then

T
J(t,x;v) = E;« |:[ F(s.0)U(c(s),s) + f(s.t)B(Z(s).s) ds

t

FE(T, ) W(X(T)) ] %},

where F (s, t) is the conditional probability for the wage earner’s death to occur at
time s conditional upon the wage earner being alive at time t < s and f'(s,t) is the
corresponding conditional probability density.

Using the previous lemma, one can state the following dynamic programming
principle, obtaining a recursive relationship for the maximum expected utility as a
function of the wage earner’s age and his wealth at that time. (See [11]) for a proof.

Lemma 18.2 (Dynamic programming principle). For 0 < ¢t < s < T, the
maximum expected utility V (t, x) satisfies the recursive relation below

V(t,x) = sup E|:exp (— [S )k(v)dv) Vs, X(s))

ved(t,x)

+ /Sf(u,t)U(c(u),u) + () B(Z(w), u) du ] 32,}.

The transformation to a fixed planning horizon can then be given the follow-
ing interpretation: a wage earner facing unpredictable death acts as if he will live
until time 7, but with a subjective rate of time preferences equal to his “force of
mortality” for the consumption of his family and his terminal wealth.

18.3.2 Hamilton—Jacobi—-Bellman Equation

The dynamic programming principle enables us to state the HIB equation, a second-
order partial differential equation whose “solution” is the value function of the
optimal control problem under consideration here. The techniques used in the
derivation of the HIB equation and the proof of the next theorem follow closely
there in [2, 11, 12]. A complete proof will be provided in [1].
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Theorem 18.1. Suppose that the maximum expected utility V is of class C2. Then
V satisfies the Hamilton—Jacobi—Bellman equation

Vi(t,x) = A@)V(t,x) + sup H(t,x;v)=0
ved (t,x)

s

V(T, x) = W(x)

where the Hamiltonian function € is given by

n=1

N
A1, x;v) = (i(l) —c—p+ (r(t) + ) Onlun(t) —r(t))) x) Va(t, x)

M
% Z (Zg UnmU)) Vix(t,x)

P
+A(t)B (x + Mt) + Ulc, t).

Moreover, an admissible strategy v* = (c*; p*; 0*) whose corresponding wealth is
X* is optimal if and only if for a.e. s € [t, T] and P-a.s. we have

Vi(s, X¥(5)) = A(s)V (s, X*(9)) + A (s, X" (5):v7) = 0.

The second part of the theorem above provides a means for deriving the opti-
mal insurance, portfolio and consumption strategies. In particular, we obtain the
existence of such optimal strategies under rather weak conditions on the utility
functions.

Corollary 18.1. Suppose that the utility functions U and B are strictly concave on
the first variable. Then the Hamiltonian function 7€ has a regular interior maximum
* = (c*, p*,0%) € H(t,x).

18.4 The Family of Discounted CRRA Utilities

In this section we describe the special case where the wage earner has the same
discounted CRRA utility functions for the consumption of his family, the size of his
legacy and his terminal wealth.

Assume that y < 1,y # 0 and p > 0 and let

y 7V XV
Ue,t)y=e P, BZi)=ePZ_,  wX)=erT2_  (184)
y y y

All details regarding the results in this section and its proofs will be given in a
forthcoming paper [1].
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18.4.1 The Optimal Strategies

Using the optimality criteria provided in Theorem 18.1, we obtain the following
optimal strategies for discounted CRRA utility functions.

Proposition 18.1. Let £ denote the non-singular square matrix given by (ool )~L.
The optimal strategies in the case of discounted constant relative risk aversion utility
functions are given by

¢ (1.x) = ——(x + b(1))

e(t)
pr(t,x) = n(t) (D) — 1) x + D()b(t))
" . 1
0*(t.x) = PR (x +b(1)a(r),
where
T K}
b(t) = [ i(s)exp (—/ r(v) +n() dv) ds
T T K
e(t) = exp (—/ H®) dv) +/ exp (—/ H®) dv) K(s) ds
B~ MOt TO__ y

P (B e GO RRIO)

B 1 A(l) 1/(1—y)

2= 5 (50
()L(t))l/(l—y)

RSS2

20) = o fa(t) - 5 Io" 5|

K(1)

Note that the quantities b(¢) and x + b(¢) are of essential relevance for the def-
inition of the optimal strategies in Proposition 18.1. The quantity b(t), that we will
refer to as human capital, should be seen as representing the fair value at time ¢ of
the wage earner’s future income from time ¢ to time 7', while the quantity x + b(t)
should be thought of as the full wealth (present wealth plus future income) of the
wage earner at time 7. It is then natural that these two quantities play a central role in
the choice of optimal strategies, since they determine the present and future wealth
available for the wage earner and his family.

From the explicit knowledge of the optimal strategies, several economically rele-
vant conclusions can be obtained. See Fig. 18.1 for a graphical representation of the
optimal life-insurance purchase as a function of age and “full wealth” x +b(¢) of the
wage earner. The next result provides a qualitative characterization of the optimal
life insurance purchase strategy.
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P (t.x)

Fig. 18.1 The optimal life-insurance purchase for a wage earner that starts working at age 25
and retires 40 years later. The parameters of the model were taken as N = M = 2, i(t)
50000 exp(0.03t), r = 0.04, p = 0.03, y = —3, A(r) = 0.001 + exp(—9.5 + 0.17), n(z)
105/\({), M1 = 007, Mo = 0.11, o] = 019, o1 = 0.15, o1 = 0.17 and Oy = 0.21

Corollary 18.2. Suppose that forallt € [0, min{T, t}] the following two conditions
are satisfied:

(a) A(t) < n(2).
(b) H(t) < L

Then, the optimal insurance purchase strategy p*(t, x) is

e A decreasing function of the total wealth x.
e An increasing function of the wage earner’s human capital b(t).
e Negative for suitable choices of wealth x and “age” t.

Some comments regarding the assumptions in Corollary 18.2 seem to be nec-
essary. Starting with condition (i), the life insurance company must establish the
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premium-insurance 7(¢) in such a way that A(¢z) < n(¢) in order to make a profit
(the insurance policy being fair whenever A(¢) < n(¢)). Regarding condition (ii),
we note that the parameters r, p, n and A are usually very small in the real world
and, moreover, the relative risk aversion of the wage earner is negative in general.
This is consistent with the assumption that H (¢) is bounded above by some positive
constant.

The extra risky securities in our model introduce novel features to the wage
earner’s portfolio management, as is exemplified in the following result.

Corollary 18.3. Let £ denote the non-singular square matrix given by (60T )~! and
let (Ex(t)), denote the n-th component of the vector Ex(t). Assume that for every
n € {l,...,N} we have (§a(t)), > O forallt € [0,T]. The optimal portfolio
process 0*(t,x) = (91* ey 9;{,) is such that for everyn € {1,...,N}:

e 07 is a decreasing function of the total wealth x.
e 07 is an increasing function of the wage earner’s human capital b(t).

Furthermore, for everyn,m € {1,..., N} the following equalities hold
. Op(t.x) _ (a(®))n
lim 8X(¢,x) = +00 n =
x—0+ (%) x>0t Oy (1, x)  (Ea())m
t T
lim 62(1,x) = S8 lim 03 (1, x) = ST,
x—>00 1—vy t—>T 11—y

The assumption in Corollary 18.3 corresponds to the assumption that, under
some correction term determined by the volatility matrix, risky assets have higher
expected returns than risk-free assets. One interesting consequence of the previous
result is that the optimal strategy for wage earners with small enough wealth is to
short the risk-free security and hold an higher amount of risky assets.

Finally, it should be noted that it is also possible to study the qualitative properties
of the optimal consumption strategy.

Remark 18.1. Regarding the optimal consumption rate ¢* (¢, x), we have that this is
an increasing function of both the wealth x and the human capital b(z).

18.4.2 The Interaction between Life Insurance Purchase
and Portfolio Management

In this section we compare the optimal life-insurance strategies for a wage earner
who faces the following two situations:

(a) In the first case, we assume that the wage earner has access to an insurance
market as described above and that his goal is to maximize the combined utility
of his family consumption for all # < min{7, 7}, his wealth at retirement date
T if he lives that long, and the value of his estate in the event of premature



284 1. Duarte et al.

death. The optimal strategies for the wage earner in this setting are given in
Proposition 18.1.

(b) In the second case, we assume that the wage earner is without the opportunity
of buying life insurance. His goal is then to maximize the combined utility of
his family consumption for all # < min{7’, 7} and his wealth at retirement date
T if he lives that long. Similarly to what we have done previously, we translate
this situation to the language of stochastic optimal control and derive explicit
solutions in the case of discounted CRRA utilities.

We concentrate on the case (b) described above for the moment. Similarly to
what was done in case (a), this problem can be formulated by means of optimal
control theory. The wage earner’s goal is then to maximize a new cost functional
subject to

e The dynamics of the state variable, i.e. the dynamics a wealth process X°(¢)
given by

’ [ 69(5)X°(s)
0 _ . _ 1] n
X°(r) _x+/0 i(s) —c(s) ds+n§)[o 5.0 dS,(s),

where ¢ € [0, min{7, 7}] and x is the wage earner’s initial wealth.

e Constraints on the remaining control variables, i.e. the consumption process
¢°(¢) and the reduced portfolio process 6°(r) = (67(7), ..., 0% (1)) € RV.

e Boundary conditions on the state variables.

Let us denote by .«7°(x) the set of all admissible decision strategies, i.e. all
admissible choices for the control variables 10 = (c®,0°) € RVY*!. The depen-
dence of .7°(x) on x denotes the restriction imposed on the wealth process by the
boundary condition X°(0) = x.

The wage earner’s problem can then be stated as follows: find a strategy 10 =
(c?, 6% € &7°(x) which maximizes the expected utility

TAtT
Vo (x) =  sup Eo.x [ / U(c(s),s) ds + WX (T) z=1y } (18.5)
v0eor0(x) 0

where U(c?, -) is again the utility function describing the wage earner’s family pref-
erences regarding consumption in the time interval [0, min{7’, t}] and W(X?) is the
utility function for the terminal wealth at time t = T'. As before, we restrict our-
selves to the special case where the wage earner has the same discounted CRRA
utility functions for the consumption of his family and his terminal wealth given
in (18.4).

The same methods that were used in the analysis of case a) enable us to obtain
the following result.

Proposition 18.2. Let £ denote the non-singular square matrix given by (oo’ )~L.
The optimal strategies for problem (18.5) in the case where U(c®, ) and W(X°) are
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the discounted constant relative risk aversion utility functions in (18.4) are given by

(1, x) = eol(t) (x + b°(1))
0" (1.2) = s (6 + D)),

where

T s
bo(r) = / i(s)exp (—/ r(v) dv) ds
T T s
e%(t) = exp (—[ H®v) dv) +/ exp (—[ H°®v) dv) ds

/\(t)+p_y X0 o)
l—y 1-y)? 1-y

H(t) =

and X (t) is as given in the statement of Proposition 18.1.

Thus, we now have optimal portfolio processes for the two settings (a) and (b)
described above. These are given, respectively, in Propositions 18.1 and 18.2.

Theorem 18.2. Let £ denote the non-singular square matrix given by (co” )™ and
(Ea(t))y the n-th component of the vector £a(t). For eachn € {1,..., N}, we have
that 09™ (1, x) > 0*(t. x) if and only if (Ea (1)), > 0.

The economic implications of the theorem above are made clear in the following
result.
Corollary 18.4. Let & denote the non-singular square matrix given by (ool )~!
and (§a(t)), the n-th component of the vector £a(t). Assume that for every n €
{1,..., N} we have that (Ex(t)), > 0. Then, the optimal portfolio of a wage earner
with the possibility of buying a life insurance policy is more conservative than the
optimal portfolio of the same wage earner if he does not have the opportunity to buy
life insurance.

18.5 Conclusions

We have introduced a model for optimal insurance purchase, consumption and
investment for a wage earner with an uncertain lifetime with an underlying finan-
cial market consisting of one risk-free security and a fixed number of risky securities
with diffusive terms driven by multidimensional Brownian motion. When we restrict
ourselves to the case where the wage earner has the same discounted CRRA utility
functions for the consumption of his family, the size of his legacy and his terminal
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wealth, we obtain explicit optimal strategies and describe new properties of these
optimal strategies. Namely, we obtain economically relevant conclusions such as:
(a) a young wage earner with smaller wealth has an optimal portfolio with larger
values of volatility and higher expected returns; and (b) a wage earner who can buy
life insurance policies will choose a more conservative portfolio than a similar wage
earner who is without the opportunity to buy life insurance.
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Chapter 19

Towards a Theory of Periodic Difference
Equations and Its Application to Population
Dynamics

Saber N. Elaydi, Rafael Luis, and Henrique Oliveira

Abstract We present a survey of some of the most updated results on the dynamics
of periodic and almost periodic difference equations.

19.1 Introduction

In a series of papers, Elaydi and Sacker [13-15,32] embarked on a systematic study
of periodic difference equations or periodic dynamical systems. The authors also
wrote a survey [16] which has not been readily available to researches. The main
purpose of this survey is to update, extend, and broaden the above-mentioned sur-
vey. Since the appearance [16], there have many exciting and new results by many
authors as reflected by the extensive list of references.

An emphasis is placed here on bifurcation theory of periodic systems, partic-
ularly, those obtained by the authors and their collaborators. In fact, some of the
results reported here appear for the first time. A more detailed account of bifurcation
theory will appear somewhere else.

Two important omissions should be noted. The first is the extension of Sharkovs-
ky’s theorem to periodic difference equations [3]. The second is the study of periodic
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systems with the Allee effect [29]. One reason for not including these topics is our
self-imposed limitations on the size of the survey. A second reason is the limitation
in the expertise of the writers of this survey. We promise the reader to explore these
two topics in a forthcoming work.

In Sect. 19.2, we motivate the need for introducing skew-product techniques in
the study of nonautonomous difference equations. Section 19.3 develops the basic
construction of skew-product dynamical systems.

Subsequently, in Sect. 19.4 our study is focused on periodic difference equa-
tions. This section includes two important results in the theory of periodic systems,
namely, Lemmas 19.1 and 19.2. In Sect. 19.5, we tackle the question of stability in
both the space X and in the skew-product X x Y. The section ends with the funda-
mental result in Theorem 19.2, which states that in a connected topological space,
the period of a globally asymptotically stable periodic orbit must divide the period
of the system.

In Sect. 19.6, we extend Singer’s theorem to periodic systems. In Sect. 19.7, we
develop a bifurcation theory for 2-periodic difference equations. In particular, a uni-
modal map with the Allee effect is thoroughly analyzed. A bifurcation graph of the
parameter space of a 2-periodic system consisting of these maps is developed using
the techniques of resultant in Mathematica software.

In Sect. 19.8, we address the question of whether the solutions of bifurcation
equations are independent of the phase shifts.

In Sect. 19.9, we present an updated account of results pertaining to attenuance
and resonance. The question we tackle here is whether periodic forcing has a dele-
terious effect on the population (attenuance) or it is advantageous to the population
(resonance). In Sect. 19.10, we introduces almost periodicity and contains some of
the results obtained in [10]. This is followed by Sect. 19.11 in which the study of
stochastic difference equations is conducted.

19.2 Preliminaries

Let X be a topological space and Z be the set of integers. A discrete dynamical
system (X, ) is defined as a map 7 : X x Z — X such that 7 is continuous and
satisfies the following two properties

1. m(x,0) = xforall x € X.
2. w(m(x,s),t) =m(x,s +1),s,t € Zand x € X (the group property).

We say (X, ) is a discrete semidynamical system if Z is replaced by Z*, the
set of nonnegative integers, and the group property is replaced by the semigroup
property.

Notice that (X, ) can be generated by a map f defined as 7w (x,n) = f"(x),
where f" denotes the n’” composition of f. We observe that the crucial property
here is the semigroup property.
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A difference equation is called autonomous if it is generated by one map such as
Xnt1 = f(xn),n € ZT, (19.1)

Notice that for any xog € X,x, = f"(xo). Hence, the orbit O(x9) =
{x0,X1,X2,...} in (19.1) is the same as the set &(xp) = {xo, f(X0), % (X0),...}
under the map f.

A difference equation is called nonautonomous if it is governed by the rule

Xny1=F(n,x,),neZ", (19.2)

which may be written in the friendlier form
Xnt1 = fa(xn)n € ZV, (19.3)

where f,(x) = F(n, x). Here the orbit of a point x¢ is generated by the composition
of the sequence of maps { f, }. Explicitly,

O(x0) = {xo0, fo(xo0), f1(fo(x0)), f2(f1(fo(x0))), ...}

= {Xo,xl,XZ, .. }

It should be pointed out here that (19.2) or (19.3) may not generate a discrete
semidynamical system as it may not satisfy the semigroup property. The following
example illustrates this point.

Example 19.1. Consider the nonautonomous difference equation

1
Sntt = (1) (:12) 10 3(0) = xo. (19.4)

The solution of (19.4) is
nn—=1) Xo
= —1 2 .
S

Let 7 (x0,n) = x,. Then

m+1

nn—1) m@m—1) X0
2

R PE T

(7w (xo,m),n) = 7 ((_1)’"(”5_” . n)

(=D

However,

(n+m)(n+m—1) X
ntm)(r-tm 0 # m(n(xg, m), n).

m(xo,m +n) = (—1) e
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19.3 Skew-Product Systems

Consider the nonautonomous difference equation

Xni1=F(n,x,),neZ", (19.5)

where F(n,-) € C(Z* x X, X) = C. The space C is equipped with the topology of
uniform convergence on compact subsets of Z* x X. Let F;(n,-) = F(t +n,-) and
of ={F;(n,") :t € Z*} be the set of translates of F in C. Then G(n, ") € o (%),
the omega limit set of <7, if for eachn € Z T,

|Fr(n,x) —G(n,x)| =0

uniformly for x in compact subsets of X, as t — oo along some subsequence {#,; }.
The closure of .o/ in C is called the hull of F(n,-) and is denoted by ¥ = cl(&) =
FC(F).

On the space Y, we define a discrete semidynamical system o : ¥ x Zt — Y
by o(H(n,-),t) = H;(n,-); thatis o is the shift map.

For convenience, one may write (19.5) in the form

Xn+1 = fn(xn) (19.6)

with f, (x,) = F(n, x,).
Define the composition operator @ as follows

cpriz = fi4n—10...0 fiyr10 fi = Pp(F(i,")),

and the reverse composition operator @ as

@l = fio fix10++0 fiin-1.

When i = 0, we write @0 as @, and @9 as &.
The skew-product system is now defined as

T XxYXxZT > XxY
with
JT((X, G)7n) = ((DH(G(17))’O(G’n))

IfG = fi, then m((x, fi). n) = (P,(x), fitn).
The following commuting diagram illustrates the notion of skew-product systems
where #(a, b) = a is the projection map.
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XxY xZt—>=XxY

id| L”

YXZ+U—>Y

For each G(n,-) = gn € Y, we define the fiber Z, over G as #, = Z71(G).
If g = fi, we write %, as .%;.

Theorem 19.1. [16] & is a discrete semidynamical system.

Example 19.2 (Example (19.1) revisited). Let us reconsider the nonautonomous
difference equation

n+1
= (=1)"
Xn+1 ( ) (n+2

)x,,,x(O) = Xo.

Hence, F(n,x) = (—1)" (%)x = fy(x). Its hull is given by G(n,x) =
(—1)"x, that is, g5, is a periodic sequence given by go = g2n, &1 = Zan+1, for all
n € Z7T, in which go(x) = x, and g1(x) = —x.

It is easy to verify that 7 defined as m((x, f;),n) = (®L(x), fi+n) is a
semidynamical system.

19.4 Periodicity

In this section our focus will be on p-periodic difference equations of the form

Xn+1 = fn(xn), (19.7)

where fy1p = fnforalln € Z+.

The question that we are going to address is this: What are the permissible
periods of the periodic orbits of (19.7)?

We begin by defining an r-periodic cycle (orbit).
Definition 19.1. An ordered set of points C, = {X¢,X1,...,Xr—1} is r-periodic in
X if

f(H—nr) modp(fi) = f(i+1)modr’n € Z+~
In particular,
fixi) =Xi41,0<i <r -2,
and
ft(ftmodr) = f(t—l—l)modr’r -1<t=<p-1

It should be noted that the r-periodic cycle C; in X generates an s-periodic cycle
on the skew-product X x Y of the form Csy = {(X0, fo0), X1, f1)s---» Xs mod r»
fsmod p)}» Where s = [cm]r, p] is the least common multiple of 7 and p.
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R+
N
2/3 [ 4 2/3
2 /5 o
fo fi f fs

Fig. 19.1 A 2-periodic cycle in a 4-periodic difference equation

__ The r-periodic orbit C; is called an r-geometric cycle, and the s-periodic orbit
C, is called an s-complete cycle.

Example 19.3. Consider the nonautonomous periodic Beverton—Holt equation

on K xpn
Ky + (n — Dxy’

Xyl = (19.8)

with ity > 1, Ky > 0, Kpyp = Ky, and pyyp = pin, foralln € Z7.

1. Assume that u, = p > 1 is constant for all n € ZT. Then one may appeal
to Corollary 6.5 in [14] to show that (19.8) has no nontrivial periodic cycles of
period less than p. In fact, (19.8) has a unique globally asymptotically stable
cycle of minimal period p.

2. Assume that pu, is periodic. Let wo = 3, w1 = 4, uo = 2, u3 =5, Ko = 1,
K, = 1%, K>, =2,and K3 = ﬁ. This leads to a 4-periodic difference equation.
There is, however, a 2-geometric cycle, namely, C; = { %, %}(see Fig. 19.1).
This 2-periodic cycle in the space X generates the following 4-complete cycle
on the skew-product X x Y

Ca={(216).31).2 £).GAH).

3 24 4 5
where fo(x) = 1355, /1(X) = g5, 2(¥) = 575, and f3(xX) = 2473

We are going to provide a deeper analysis of the preceding example. Let d =
gcd(r, p) be the greatest common divisor of r and p, s = Icm]r, p] be the least
common multiple of r and p, m = g, and { = %. The following result is one of
two crucial lemmas in this survey.

Lemma 19.1. [/4] Let C, = {X¢,X1,...,Xr—1} be a set of points in a metric space
X. Then the following statements are equivalent.
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~

C; is a periodic cycle of minimal period r.

ForO0<i<r-—1, f(i+nd)modp(fl') = f(l'+1)maolr-
3. For0 <i <r — 1, the graphs of the functions

N

fi, f(i—i—d) mod ps+ -+ f(i+(m—1)d)modp

intersect at the £ points
(Xis X +1) mod r)s (X (i+d) mod rs X (i +1+d) modr)s - - - »

(X G +(t=1)d) mod r» X (i +(t—1)d+1) mod r)

Corollary 19.1. [29] Assume that the one-parameter family F (o, x) is one to one
in a. Let fy(xn) = F(ay,Xn). Then if the p-periodic difference equation, with
minimal period p,

Xn+1 = fu(Xn) (19.9)

has a nontrivial periodic cycle of minimal periodr, thenr = tp, t € Z™.

Proof. Suppose that (19.9) has a periodic cycle C, = {Xy, X1, ..., Xr—1} of period
r < p,and letd = ged(r, p), s = lem|[r,p], m = %, and { = %. Then by

Lemma 19.1, the graphs of the maps fo, fa. ..., fn—1)¢ mustintersect at the points
(X0.%1), (Xg. Xa+1)s - - . Xg—1)a - X(t-1yd +1)-
Since F(w,x) is one to one in «, the maps fo, fy...., fzn—1)a do not inter-

sect, unless they are all equal. Similarly, one may show that f; = fi. g = ... =
Ji+(@m—1)a- This shows that (19.9) is of minimal period d, a contradiction. Hence r
is equal to p or a multiple of p. O

Applying Corollary 19.1 to the periodic Beverton—Holt equation with K, =
Ky, ptn = p, forallnm € ZT, shows that the only possible period of a nontrivial
periodic cycle is p. However, for the case i, and K, are both periodic of common
period p, the situation is murky as was demonstrated by Example 19.3, case 2.

For the values o = 3, w1 = 4, o = 2, u3 = 5, KO =1,K = 6/17
K> =2, and K3 = 4/11, we have fo(x) = lj_zx, filx) = 6+51x falx) = 2+x,
and f3(x) = 1+11x Let .Z = {fo, f1, f2, f3}. Clearly x* = 0 is a fixed point
of the periodic system .%. To have a positive fixed point (period 1) or a periodic
cycle of period 3, we must have the graphs of fy, fi, f2, f3 intersect at points
(*0,x1), (*1,%X2),...,(X¢—1,x¢), where £ = 1 or £ = 3. Simple computation
shows that this is not possible. Moreover, one may show that the graphs of fy and f>
intersect at the points (2/5,2/3) and the graphs of f; and f3 intersect at the points
(2/3,2/5). Hence C, = {2/5,2/3} is a 2-periodic cycle. Moreover, the equation
has the 4-periodic cycle

238 119 238 238
3617298 417 607

Suppose that the p-periodic difference equation

Xn+1 = fn(xn)’fn-i-p = fn»” ez”* (19.10)
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Fig. 19.2 A 6-periodic cycle in a 9-periodic system

has a periodic cycle of minimal period r. Then the associated skew-product system
7 has a periodic cycle of period s = [cm][r, p] (s-complete cycle). There are p
fibers .#; = 27 1(f;). Are the s periodic points equally distributed on the fibers?
i.e. is the number of periodic points on each fiber equal to £ = s/ p?

Before giving the definitive answer to this question, let us examine the diagram

present in Fig. 19.2 in which p = 9, and r = 6.

There are two points (2 = w) on each fiber. Since d = gcd(6,9) = 3,

the graphs fy, f3, and fg intersect at the two points (Xo,X1), (X3,X4); the
graphs f1, fa, and f7 intersect at the two points (X1, X3), (X4, X5); and the graphs
f2, f5, fg intersect at the points (X2, X3), (X5, X0).

Note that the number of periodic points on each fiber is 2, which is £ = W.
The following crucial lemma proves this observation.

Lemma 19.2. [13] Let s = lcm][r, p]. Then the orbit of (X;, f;) in the skew-product
system intersect each fiber F;, j = 0,1,..., p — 1, in exactly { = s/ p points and
each of these points is periodic under the skew-product w with period s.

Proof. Let C, = {X¢,X1,...,Xxr—1} be a periodic cycle of minimal period r. Then
the orbit of (Xg, fo) in the skew-product has a minimal period s = [cm[r, p]. Now
S = 0 ((Xo, fo)) = {m((Xo. fo).n) : n € ZT} C X x Y is minimal, invariant
under & and has s distinct points.

Foreachi,0 <i < p — 1, the maps

fi 1SN F = S 0 FGs1)mod p (19.11)

are surjective. We now show that it is injective.

Let N; be cardinality of . N .%;. Then N; is a non-increasing integer valued
function and thus stabilizes at some fixed value from which it follows that N; is
constant. Thus each . N .%; contains the same number of points, namely £ = s/ p.

O
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19.5 Stability

We begin this section by stating the basic definitions of stability.

Definition 19.2. Let C, = {X¢,X1,...,Xr—1} be an r-periodic cycle in the
p-periodic equation (19.10) in a metric space (X, p) and s = I[cm[r, p] be the
least common multiple of p and r. Then

1. C, is stable if given € > 0, there exists § > 0 such that
P(2 Xi moar) < 8 implies p(@;,(2), Py (Xi moar)) < €

foralln € Zt,and0 <i < p — 1. Otherwise, C, is said unstable.
2. C, is attracting if there exists n > 0 such that

P(Z, Xi mod r) <7 lmphes lim qul;s (Z) = Xi modr-
n—00

3. We say that C, is asymptotically stable if it is both stable and attracting. If in
addition, n = oo, C, is said to be globally asymptotically stable.

Lemma 19.3. [29] An r-periodic cycle C, = {X9,X1,...,Xr—1}in(19.10)is

1. Asymptotically stable if | [} _o S mod pXimoar)l < 1.
2. Unstable if | [T;_, 1 mod pXi moar)l > 1.

where s = lcem|[r, p] is the least common multiple of p and r.

Consider the skew-product system 7 on X x Y with X a metric space with metric
0, Y ={fo, fi..... fp—1} equipped with the discrete metric p, where

o fOifi=

Define a metric D on X x Y as

D ((x. fi). (v. f7)) = p(x.y) +B(fi. f))-

Let 7' (x, f) = n((x, f).1), then 7" (x, ) = n((x, f),n). Thus 7' : X x
Y — X xY is a continuous map which generates an autonomous systemon X x Y.
Consequently, the stability definitions of fixed points and periodic cycles follow the
standard ones that may be found in [9, 11].

Now we give a definition of stability for a complete periodic cycle in the skew-
product system.

Definition 19.3. A complete periodic cycle C s ={(o0, f0). -, Xsmodrs fsmoap)}
is
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1. Stable if given € > 0, there exits § > 0, such that

D((z, f3), (Xo, fo)) < 8 implies D(x" (z, f;), 7" (X0, fo)) <€.Vne Z™.

Otherwise, C s 1S said unstable.
2. Attracting if there exists 7 > 0 such that

D((z, fi), (Xo. fo)) < nimplies nli)ﬁgoﬂ"s (z. fi) = (X0, fo)-

3. Asymptotically stable if it is both stable and attracting. If in addition, n = oo,
C s is said to be globally asymptotically stable.

Since fi4ns = f; for all n, it follows from the above convergence that f; = fp.
Hence, stability can occur only on each fiber X x { f;},0 <i < p— 1.

It should be noted that one may reformulate Lemma 19.3 in the setting of the
skew-product theorem. However, to do so, one needs to develop the notion of
derivative in the space X x Y.

Definition 19.4. Letg = 7% : X xY — X xY definedas g(x, f;) = (®5(x). f).
The generalized derivative of g is defined as g’(x, f;) = j—x (CD;, (x)) = (d?;,)/ (x).

Lemma 19.4. A complete periodic cycle GS = {(X0, f0): -+ Xsmodrs fsmoap)}
of the skew-product system w on X x Y is

1. Asymprotically stable if | [1;—o 1/ poa »Ximod )| <1,
2. Unstable if | TTi—o [ mod p&imod )| > 1,

where s = lcm|[r, p] is the least common multiple of p and r.
We are now ready to state our main result in this survey.

Theorem 19.2. []13] Assume that X is a connected metric space and each f; € Y
is a continuous map on X, with fiy, = fi. Let C; = {Xo,X1,....X,—1} be a
periodic cycle of minimal period r. If C, is globally asymptotically stable, then r
divides p. Moreover, r = p if the sequence { f,} is a one-parameter family of maps
F(un,x) and F is one to one with respect to |i.

Proof. The skew-product system 7w on X X Y has the periodic orbit

{(Y(ﬁ f0)7 (YL fl)’ SRR (YS mod r f:&‘mod p)}

which is globally asymptotically stable. But as we remarked earlier, globally stabil-
ity can occur only on fibers. By Lemma 19.2, there are £ = s/ p points on each fiber.
If £ > 1, we have a globally asymptotically £-periodic cycle in the connected met-
ric space X x { fi} under the map 77. This violates Elaydi—Yakubu Theorem [12].
Hence £ = 1 and consequently r|p.

Note that by Lemma 19.1, the graphs of the maps f;, fita.---, fi+m—1)d>
0 <i < p — 1, must intersect at £ points. However, since { f;} is a one parameter
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family of maps F(u,, x) where F is one to one with respect to the parameter p, it
follows that f; = fi1q4,0 < i < p — 1. This implies that d is the period of our
system and since p is the minimal period of the system, this implies that d = p.
Hence r = p. O

19.6 An Extension of Singer’s Theorem

One of the well known work done by Singer is present in his famous paper [33] and
currently known by Singer’s theorem. It is a useful tool in finding an upper bound
for the number of stable cycles in autonomous difference equations. In this section
we present the natural extension of this theorem to the periodic nonautonomous
difference equations.

Recall that the Schwarzian derivative, Sf, of a map f at x is defined as

Sl 3 (f” (x))Z.

YO=Tw 2\ Tw

Let f : I — I be a C3 map with a negative Schwarzian derivative for all x € 1,
defined on the closed interval 7. If f has m critical points in 7, then f has at most
m —+ 2 attracting period cycles of any given period.

Now consider the p-periodic system .% = { fo. fi. f2,..., fp—1} of continuous
maps defined on a closed interval /.

Assume that there are m; critical points for the map f;,0 <i < p — 1. On the
fiber %y = I x fy, there are mg critical points of fy, at least m critical points
consisting of all the pre-images under fy of the m critical points of fi,... and
at least m,_; critical points that consist of all the pre images, under @,_», of the
mp_ critical points of f,_;. Since each critical point of @, is mapped, under
compositions of our maps, to one of the original critical points of one of the maps
fi, it follows that the number of significant critical points is le =_01 m;.

By Singer’s Theorem, there are at most [Z,-P:_Ol m; + 2] attracting periodic

cycles of any given period. Notice that periodic cycles that appear on fiber .%; are
just phase shifts of periodic cycles that appear on fiber .%(. Hence we conclude that
there are at most ZIP :_01 m; + 2 attracting cycles of any given period (See [2] for
details).

So a consequence of this extension, one may show that if the maps are the logistic
maps

fitx) = pix(1=x),pi >0,0=<i < p—1,

defined on the interval [0, 1], then the p-periodic system { fo, f1...., fp—1} has at

most p-attracting cycles of any given period r. Notice that each map f; has one
critical point, x = 1/2, and the boundary points 0 and 1 are attracted only to 0.
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19.7 Bifurcation

The study of various notions of bifurcation in the setting of discrete nonautonomous
systems is still at its infancy stage. The main contribution in this area are the papers
by Henson [24], Al-Sharawi and Angelos [2], Oliveira and D’Aniello [30], and
recently Lufs, Elaydi and Oliveira [29].

The main objective in this section is to give the pertinent definitions, notions,
terminology and results done in [29]. Though our focus here will be on 2-periodic
systems, the ideas presented can be easily extended to the general periodic case.

Throughout this section we assume that the maps fo and f; arise from a one-
parameter family of maps such that f; = fu, and fo = fy, With ¢p = go for
some real number ¢ > 0. Thus one may write, without loss of generality, our system
as 7 = {fo. f1}-

Moreover, we assume that the one-parameter family of maps is one-to-one with
respect to the parameter. Let C, = {X, X1, ..., Xr—1} be an r-periodic cycle of .7.
Then by Corollary 19.1 the latter assumption implies that r = 2m, m > 1.

With @, = f] o fy, one may write the orbit of X as (see Fig. 19.3)

0(X0) = {Xo. fo(X0). P2(X0). fo © P2(X0). P4(X0). . ... Prgm—1)(Xo).
X fo © Pam—1)(¥0)} = {Xo. P1(X0), P2(X0). ..., Pam—1(X0)} (19.12)

Equivalently, one may write the sequence of points given in (19.12) as

OF)={fio Bom—1)(X1). X1, fi(F1), B2(F1), f1 0 B2(1), .- ., 52(m—1)(71)}
={Pom—1(¥1).X1. @1(X1). Pom (¥1). - ... Pom—2(¥1)} (19.13)

where @ = foo f1. Hence the order of the composition is irrelevant to the dynamics
of the system.

The dynamics of .% depends very much on the parameter as the qualitative struc-
ture of the dynamical system changes as the parameter changes. These qualitative
changes in the dynamics of the system are called bifurcations and the parameter
values at which they occur are called bifurcation points. For autonomous systems or
single maps the bifurcation analysis may be found in Elaydi [11].

In a one-dimensional systems generated by a one-parameter family of maps fy,
a bifurcation at a fixed point x* occurs when % (a*,x*) = 1 or —1 at a bifurcation
point o*. The former case leads to a saddle-node bifurcation, while the latter case
leads to a period-doubling bifurcation.

Now we are going to extend this analysis to 2-periodic difference equations
or #_ = {fo, f1}. To simplify the notation we write @»(a, x) instead of P>(x)
and @, (a, x) instead of @5 (x). Then P2/, (X2i) = X@2iymoar a0d Pop (X2i 1) =
Xi+Dmodrs 1 < 1 =< m. In general, we have @2ym(X2i) = X(2iymoar and
Ponm(X2i+1) = X2i+1)modr> 1 = 1.
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w X1 = fo(P2m-1)(Xo))
Do m-1)(Fo) = Xr—z .

p X3 = fo(Prm—2)(%0))

¢2(m—2) (%) = Xp-a

p s = fo(Py (%0))
D, (Xp) = X4
P = fo(P, (X))

@, (X)) =X,

pxi = fo(Xo)

Dym (%) = X .

fo fi

Fig. 19.3 Sequence of the periodic points {X,X1,..., X,—1} in the 2-periodic system &% =
{ /o, f1} illustrated in the fibers, where @, = fj o fyand r = 2m,m > 1

Assuming aqgi’" (o, Xo) = 1 at a bifurcation point &, by the chain rule, we have
b, b, b, 0Dy _
- (@ Xom—2) = (@ Xom—4) ... —— (@, X2) —— (@.%o) =1
ox dx ox dx

or

S Fam=1) foRam—2) [{ F2m=3) fo F2m—-a) - .. 1{(X3) fo(X2) £ (X1) f5 (Fo) = 1
_ (19.14)
Applying fo on both sides of the identity @, (X, Xo) = Xo, yields 2, (t, X1) =
X 1. Differentiating both sides of this equation yields

0D P
2@ T @x) = 1

x

0P, _ _
(@ Tom-1) = (@ Xam—3) . ..

ox ox x

or equivalently

SoXo) f{ Ram—1) fo Ram—2) f{ Ram—3) ... fo(Xa) f{(X3) fo (X2) f{(Z1) = 1.
(19.15)
Hence (19.14) is equivalent to (19.15). More generally the following relation holds

o 0Py
0x (a’x”) T dx

@.%2j-1).j €{1.2.....m}. (19.16)

Now we are ready to write the two main results of this section.
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Theorem 19.3 (Saddle-node Bifurcation for 2-periodic systems [29]). Let

2
C, = {X0,X1,...,Xr—1} be a periodic r-cycle of %. Suppose that both 3352
2
and 2 afz exist and are continuous in a neighborhood of a periodic orbit such that
Do

22 (@, Xo) = 1 for the periodic point Xo. Assume also that

IDom P Do
= — (@ Xo) £0and B = ——
oo 0x2

A @, Xo) # 0.

Then there exists an interval J around the periodic orbit and a C*-map o = h(x),
where h : J — R such that h(X9) = o, and @rpm(x,h(x)) = x. Moreover, if
AB < 0, the periodic points exists for « > «, and, if AB > 0, the periodic points
exists for o < a.

When aq;i’" (o, xp) = 1 but aq;im (o, X) = 0, two types of bifurcations appear.

2
The first is called transcritical bifurcation which occurs when 2 af%’" (o, Xp) # 0and

the second is called pitchfork bifurcation which appears when 32323’" (o, xp) = 0.
For more details about this two types of bifurcation see Table 2.1 in [11, pp. 90], and
[30]. In the former work the author presents many cases for autonomous maps while
in the latter article the authors study the pitchfork bifurcation for nonautonomous
2-periodic systems in which the maps have negative Schwarzian derivative.

The next result gives the conditions for the period-doubling bifurcation.

Theorem 19.4 (Period-Doubling Bifurcation for 2-periodic systems [29]). Let

C, = {X0,X1,...,Xr—1} be a periodic r-cycle of F. Assume that both 32422 and

dx
L2 Do

Ta exist and are continuous in a neighborhood of a periodic orbit, =52 (a, Xo) =

—1 for the periodic point X¢ and %(&, Xo) # 0. Then, there exists an interval
J around the periodic orbit and a function h : J — R such that @, (x, h(x)) # x
but @a, (x, h(x)) = x.

Now we are going to apply these two results with an interesting example
from [29]. First we need the following definition.

Definition 19.5. A unimodal map is said to have the Allee' effect if it has three
fixed points x{ = 0, x5 = A, and xJ = K, with 0 < A4 < K, in which x{ is
asymptotically stable, xJ is unstable, and x3 may be stable or unstable.

Remark 19.1. Note that if .% is a periodic set formed by unimodal Allee maps,
neither the zero fixed point nor the threshold point can contribute to bifurcation,

' The Allee effect is a phenomenon in population dynamics attributed to the American biologist
Warder Clayde Allee 1885-1955 [1]. Allee proposed that the per capita birth rate declines at low
density or population sizes. In the languages of dynamical systems or difference equations, a map
representing the Allee effect must have tree fixed points, an asymptotically stable zero fixed point,
a small unstable fixed point, called the threshold point, and a bigger positive fixed point, called the
carrying capacity, that is asymptotically stable at least for smaller values of the parameters.
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Fig. 19.4 A unimodal Allee map with three fixed points 0, A and k&

since the former is always asymptotically stable and the latter is always unstable.
Hence bifurcation may only occur at the carrying capacity of .%.

Example 19.4. [29] Consider the 2-periodic system # = { fo, f1}, where
fi(x) =a;x*(1—x),i =0,1

in which x € [0,1] and a¢; > 0,i = 0, 1. For an individual map f;, if a; < 4 we
have a globally asymptotically stable zero fixed point and no other fixed point. At
a; = 4 an unstable fixed point is born after which f; becomes a unimodal map with
an Allee effect (see Fig. 19.4). Henceforth, we will assume that ag, a; > 4.

Since 0 is the only fixed point under the system %, we focus our attention on
2-periodic cycles {X¢o, X1} with fo(X9) = X1, and f1(X1) = Xo.

A Saddle-node bifurcation occurs when % (D, (t))‘t_EO = @)(Xo) = l,and a

period-doubling bifurcation occurs when % (@20))‘ = ®L(Xp) = —1.
t=Xq

For the saddle-node bifurcation we then solve the equations

Xo = f1 (o (X0))

and for the period-doubling bifurcations we solve the equations

Xo = f1 (fo (X0))
{ S (fo (X0)) fy (Xo) = —1 (19.18)
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10},

a; 6

Fig. 19.5 Bifurcations curves for the 2-periodic nonautonomous difference equation with Allee
effects x,4; = anx,f(l — X,), in the (ag, a;)-plane, where a,, 4> = a, and x, 42 = X,

Using the command “resultant”” in Mathematica or Maple Software, we elimi-

nate the variable X¢ in (19.17) and (19.18). Equation (19.17) yields

16777216 + 16384a¢a; — 576000aja; + 84375aga; — 576000aa;
+914agat — 350a3ai + 84375a¢a; — 350aia; + 19827aga;
—2916aga; —2916agat + 432aga; =0

while (19.18) yields

100000000 — 120000aga; — 2998800aja; + 453789aga; — 2998800aga;
—4598a0a1 + 2702a0a1 + 453789apa; + 2702a0a1 + 89765a0a1
—13500aga’ — 13500a3at + 2000agat = 0

For each one of these last two equations we invoke the implicit function theo-
rem to plot, in the (ag, a1)-plane, the bifurcation curves (see Fig. 19.5). The black
curves are the solution of the former equation at which saddle-node bifurcation

2 The command “resultant” is a powerful tool that helps us in finding the implicit solutions for
a polynomial equations with low degree. We are not aware of similar techniques that work for
nonpolynomial equation such the Ricker map R,(x) = xe?™, p,x > 0.
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occurs, while the gray curves are the solution of the latter equation at which period-
doubling bifurcations occurs. The black cusp is the curve of pitchfork bifurcation.
In the regions identified by letters one can conclude the following.

e Ifag,a; € A then the fixed point x* = 0 is globally asymptotically stable.

e If ap,a; € B\D then there are two 2-periodic cycles, one attracting and one
unstable.

e Ifagp,a; € D then there are two attracting 2-periodic cycles (from the pitchfork
bifurcation) and two unstable 2-periodic cycles.

e Ifap,a; € (C1 U Cy)\(D1 U D5) then there is an attracting 4-periodic cycle
(from the period doubling bifurcation) and two unstable 2-periodic cycles.

e If ap,a; € D; U D, then there are two attracting 4-periodic cycles (from
pitchfork bifurcation) and two unstable 2-periodic cycles.

e Ifap,a; € E then there are two attracting 8-periodic cycles (from period dou-
bling bifurcation), two attracting 4-periodic cycles (from pitchfork bifurcation),
and four unstable 2-periodic cycles.

It should be noted here that the bifurcation curves for the system % in Fig. 19.5
are incomplete. If we want to draw more bifurcation curves in the space of the
parameters we must do the same for 4-periodic cycles, 8-periodic cycles, and so
on. Finding the implicit solutions of these two new equations involve horrendous
computations. The command “resultant” does not produce answers after certain
values of the degree of the polynomial. So, for the system %, unfortunately we
are unable to draw these curves for the 4-periodic cycle. However, it should be
noted that AlSharawi and Angelos [2] have used the command “resultant” to inves-
tigate the bifurcations of the periodically forced logistic map, and they were able
to draw these curves for the 4-periodic cycles of the 2-periodic system. Moreover,
these authors drew the bifurcation surfaces for the 3-periodic cycle of the 3-periodic
system in the three dimensional space of the parameters.

Finally, we should mention that Grinfeld et al. [20] have used the command
“resultant” much earlier to study the bifurcation of 2-periodic logistic systems.

19.8 A Note on Bifurcation Equations

In [5] the authors study the symmetry of degenerate bifurcation equations of peri-
odic orbits in a nonautonomous system with respect to the order of the composition.
They proved that the cyclic permutation in the order of the composition do not affect
the solutions of the bifurcations in the parameter space.

In order to see this last observation, let fo, fi,..., fp—1 be a collection of maps

fi:l; xRE — R
(x.A) — fj(x.4)
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where A is a parameter vector, the fiber .#; = I; x {f;} and f; € €™ (I;,RK),
j=01....,p—1

We are concerned with the bifurcations that can occur, in particular with the
bifurcations with higher degeneracy conditions on the derivatives of the iteration
variable x and not on the degeneracy conditions on the parameters.

These below are the bifurcation equations with the most degenerate conditions
that appear with j fixed,0 < j <p—1

o, (x) = x, (19.19)
J
2 (x) =1,

These equations have different solution in terms of x, depending on the j we
choose.

A natural question arises: ‘
Do the solutions in the parameter space depend on the particular choice of @ Ij, ?

This question was posed in [4, 30] and, was positively solved for p = 2, and
degeneracy conditions of order m = 2,3, that is, for pitchfork and swallowtail,
respectively.

We now present the following lemma that is useful for solving general problems
of the symmetry of the bifurcation equations.

Lemma 19.5. Let m > 1 and let ¢ and ¥ be real maps satisfying the conditions:

1. There exists a such that ¥ (a) = a and ¥ is a Lipschitz homeomorphism in some
open interval I > a.

2. @ is a Lipschitz homeomorphism with Lipschitz constant L in a open neighbor-
hood 1, of a point a such that y(a) = a and V is a Lipschitz homeomorphism in
some open interval I > a.a such that ¢ (a) = b. Let ¢! be its inverse in another
open neighborhood of b, ¢~ is also Lipschitz continuous with constant M .

e @ =

x—a |x —a|m

0.
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Then the conjugate ’1/7 of ¥ by the homeomorphism ¢

v =eye!
satisfies
-y
im

lim —————— = 0. 19.20
VT (1920

Using Lemma 19.5 one can prove the following theorem.

Theorem 19.5. [5] Let fo, fi1 ..., fp—1 be p functions with a sufficient number of
derivatives satisfying the conditions:

1. There exists Xo, X1, ..., X p—1, fixed points of Dp, QDII,, ey, @5_1, respectively,
that is

(X)) =%,
2. The first bifurcation condition holds

d®p (x)
dx

xX=X0

p—1
dfj _
=M=t
j=0

3. Higher degeneracy conditions hold for @,

m>2: =0, 2<n=<m.

xX=X0

ard,
T )

Then the composition operator ol , 0 < j < p—1satisfies

d" o,
dxn

(x)

=0, for2 <n <m.

X=X,

In the case of periodic systems with period two the result is a particular case of
the previous theorem.

Corollary 19.2. [5] Let fo and f1 be maps with a sufficient number of derivatives
satisfying the conditions:

1. (f10 fo) (Xo) = Xo and (fo © f1) (X1) = X1.

2. AR ()| = @) 3 o) = L

3. Fixedm > 2: W(x) _ =0for2<n<m.
x=Xq



306 S.N. Elaydi et al.

Then the reverse composition fy o f1 satisfies

W() ~ =0, for2<n <m.

X=X
Example 19.5. [5] We will prove directly that the second and third derivatives of
alternating maps are both zero, regardless of the order of composition. We do this
directly using the higher order chain rule, or Faa di Bruno formula [25] fist proved
in [28].

Let fp and fi be C3 functions satisfying the conditions:

L. (fo o fo) (X0) = Xo and (fo o f1) (X1) = X1 whichis fo (Xo) = X1 and
JS1(X1) = Xo.
9 d(falbocf()) (x)‘x=f0 = f{ (x1) fg Xo) = 1.

3. 2efo) (x)

=0form=2,3.

xX=X0

Let us recall the formula of Faa di Bruno for the derivatives of the composition

mop m m ) bj
d" (o fo) (df‘m fo) (x) = m!Zfl(") (fo (x)) H% (fo—'m> (192D
X n=1 j=1"7" /?

where the sum is over all different solutions b; in nonnegative integers of the

equation
m m
Zjbj =m, andn := ij.
j=1 j=1

To avoid to overload this example with indexes we use the notation

d™(fi0 fo)
d m

d"(foo f1)

x) e

= (flfo)m s

X =f0

(x) =(foSDm -

x=f1

With this notation the Faa di Bruno Formula computed at the conditions of the
problem is

m D~ \ 2
i folm = m'Z e (W) (19.22)
.:1 J- .
and
) T l(j)(fl) &
(fofom =m'Y_ f3" (%o) ]_[b— (19.23)
n=1 j=1

Condition 2 in this notation is now

foFo) fi(x1) = 1. (19.24)
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Let us consider the first cases. Let m = 2, we will use the formula (19.21), so we
have to solve the equation
b1 +2by =2,

for all possible values of the vector (b1, by) with nonnegative integers. The only
solutions are by = 0, b, = 1 which givesn = 1 and b; = 2, b, = 0 withn = 2,
so we have

(X, 0 " (= 1
(fi fo)s = 2! ( fiwod (foi)!c())) ! (.0 2(;@) )

S N CONB WO
+2!( l(xl)z—!( =T ) &( e ) ) =0
= fIE) fe Fo) + f{' &) (fp (%))

_ £~ "~ flﬂ(fl) _
= HE S o)+ s =0

(19.25)

and

) — 0 "= 1
(fg), = 2! (fol(fo)é(flﬁcl)) %( 12(;61)) )

v L AGEDN T (fEDN’
+2!< ) (xo)z—! (11_'1) o (12_'1) )
= fy(Xo) f{'(x1) + fo' Fo)(f{(x1))?

= fll/((;ll)) + fo (Xo)(f{(x1))*. (19.26)

Using Cramer’s rule we solve the system with (19.24) and (19.25) for f|"(x1), we
get

) = — 0G| S %)
' (fo(x0))? |1 f5(xo) (fo(X0))*’
substituting f{(X1) and f{’(X1) in (19.26) we get
_ = fo”(XO) 1" — 1 —
(Jof1)2 = fO(XO)—(fO'(Yo))3 + fo (XO)—(fo'(Yo))z 0

Now we consider the case m = 3
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(f1fo)s = HED L Fo) + 31 (F1) fo(Fo) f5' (Fo) + f{"(F1)(f (o))

1
(19.27)
_ pl= " — 3 lll(xl)f()”(f()) 1”,(Y1) o
=SS GO e T T ey

We use Cramer’s rule to solve the system consisting of (19.24), (19.25) and (19.27)
for f1"(x1)

1 0 3fo/(fo)fo”(zfo) fo' (Xo)
=6 |0 (f5(X0) ) (Xo0)
(fO(XO))6 1 0 0 ]%(YO)

f(;/(fO) " (=
Sy 3 (_(f(;amﬁ) 0 (o)
(fo(X0))* (fo(x0))?
@) S )
(fo(x0))®  (foEo))*

RENE

In the case of the reverse order composition the third derivative (substituting f{ (x1),
//(x1) and f{”(x1) by the solutions obtained previously) is given by

o fi)s = FGEo) S GEr) + 3 (Fo) £ GE1) 1/ GE) + £ (Ro) (1 (E1)?
o (30 F0)? fy"(Ro) )
= Jo%o) ( FiE)® ~ (fio)?

1" (— 1 _ ()”(YO) ) ()”/(YO)
30 (o) ey ( Giwon®) e
=0.

(19.28)

Finally we end this section presenting the extension of Theorem 19.5 to the
periodic case that answers the question posed in the beginning of this section.

Theorem 19.6. [5] Let fo, fi...., fp—1 be maps with a sufficient number of
derivatives satisfying the conditions:

1. There are periodic orbits with period k for the compositions (kp for the iterates)

@, (X)) =T

q)lfp_l (717—1) = Xp-1



19 Towards a Theory of Periodic Difference Equations 309

2. The first bifurcation condition holds

dPy, ) _1
d'x x=fo
3. Higher degeneracy conditions hold.
Fixedm > 2:
n
d& (x) =0, 2<n<m.
dx" X=X0 -

Then <1§]gp, with j = 1,..., p — 1, satisfies

dne;
52 (x)

=0, for2 <n <m.

X=X

Now we give an example for a 2-periodic system where the maps do not arise
from a family of maps, one is unimodal and the other is bimodal.

Example 19.6. [30]
Let us now consider the maps

fo:[-1,1]x[1,4] — R
(x,Ao) — Aox3 4+ (1 = Ag)x

and
f1:[-1,1]x1[0,2] — R
(x,/'\(),ll) — —/'\1)62 — 1421 '

The composition operator @, is now defined @ : [—1, 1] x [1, 4] x [0, 2] — R such
that

Da(x, Ao, A1) = f1(fo(x, o). A1)

= A1(Aox3 + (1 = Ap)x)> =1+ Ay

We consider the pitchfork bifurcation problem. In this case we have m = 2. The
bifurcation equations are

Dok (x, Ao, A1) = x, (19.29)
dd
2K (x, Ao, A1) = 1,
dx
d2dy
N (x,40,41) =0,

where we assume that there are no more degeneracy conditions. This problem has
two solutions, respectively
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Yo = — 0.247674
(Lo, A1) = (2.85032,0.90883)

and

Vo = 0.620345
(Lo, A1) = (2.20004, 1.70216).

Hence there are two pitchfork bifurcation points.

Example 19.7. [30] We can also study 52 = fo o f1, with the same families of
Example 19.6, the composition appearing now in the reverse order. It is possible
to show, with much more cumbersome computations if treated directly, that this
problem has two pitchfork bifurcation points. As in the previous example, exactly
at the same values of the parameters

Yo =0.414971
(0. A1) = (2.85032,0.90883)

and

Il

¥, = —0.219234
(Ao, A1.X) = (2.20004, 1.70216).

19.9 Attenuance and Resonance

In this section we study the attenuance and the resonance of some periodic models,
that is, we compare the average of the carrying capacities with the average of the
periodic cycle.

19.9.1 The Beverton—-Holt Equation

In [8] Cushing and Henson conjectured that a nonautonomous p-periodic Beverton—
Holt equation with periodically varying carrying capacity must be attenuant. This
means that if C, = {Yo,fl, . ,Yp_l} is its p-periodic cycle, and K;, 0 < i <
p — 1 are the carrying capacities, then

Y5 <-Y k.. (19.30)
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Since the periodic cycle C), is globally asymptotically stable on (0, 0o), it follows
that for any initial population density X, the time average of the population density
Xp is eventually less than the average of the carrying capacities, i.e.,

1n—l 1 p—1
nlgr(;;%x,- <. OK,-. (19.31)
i= i=

Equation (19.31) gives a justification for the use of the word “attenuance” to
describe the phenomenon in which a periodically fluctuation carrying capacity of the
Beverton—Holt equation has a deleterious effect on the population. This conjecture
was first proved by Elaydi and Sacker in [13, 14] and independently by Kocic [26]
and Kon [27]. The following theorem summarizes our findings.

Theorem 19.7. [14] Consider the p-periodic Beverton—Holt equation

WKnxp

— =" nezt, (19.32)
Kn + (L — Dxn

Xn+1 =

where i > 1, Ky, = Ky, and K, > 0. Then (19.32) has a globally asymptotically
stable p-periodic cycle. Moreover, (19.32) is attenuant.

Kocic [26], however gave the most elegant proof for the presence of attenuance.
Utilizing effectively the Jensen’s inequality, he was able to give the following more
general result.

Theorem 19.8. [26] Assume that & > 1 and {K,} is a bounded sequence of
positive numbers
O0<a< K, <pB <oo.

Then for every positive solution {x,} of (19.32) we have

1 n—1 1 n—1
lim sup— X; <limsup— K;. (19.33)
n—>oop7’l Z(:) ' n—>oopn ; '

19.9.2 Neither Attenuance nor Resonance

By a simple trick, Sacker [31] showed that neither attenuance nor resonance occurs
when periodically forcing the Ricker maps

R(x) = xe?™*.
So consider the k-periodic system

Xnt1 = Xpe?" ™ pox = paneZt. (19.34)
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If0 < p, < 2,(19.34) has a globally asymptotically stable k-periodic cycle [31].
Let Cy = {X0,X1,...,Xk—1} be this unique k-periodic cycle. Then

Xo = Xg = fk_lepkfl—xkfl

- Co—Xk— 1 —Xp—
= Xj_pePk—2"Xk—2pPk—1"Xk—1

and by iteration we get
k—1 k—1—
YO — f0e2i=o Pi—2i=0Xi .

Hence
k—1

1 =
_Zpi = %Zfi,
i=0

i=0

b

i.e., neither attenuance nor resonance.

19.9.3 An Extension: Monotone Maps

Using an extension to monotone maps, Kon [27] considered a p-periodic difference
equation of the form

Xn+1 = & (Xn/Kn) Xp,n € zt, (19.35)

where Ky4p = Ky, K, > 0, x9 € [0,00) and g : RT — R™ is a continuous
function which satisfies the following properties

e g(1)=1.
e g(x)>1forallx € (0,1).
e g(x) <1forallx € (1,00).

Theorem 19.9. [27] Let C, = {X¢,X1,...,Xr—1} be a positive r-periodic cycle
of (19.35) such that K; # K;11 for some 0 < i < p — 1. Assume that zg(z) is
strictly concave on an interval (a,b), 0 < a < b containing all points Ix(_l, € (a,b),
1 <i < rp. Then the cycle C, is attenuant.

This theorem provides an alternative proof of the attenuance of the periodic
Bevertob—Holt equation (19.32).
Consider the equation [27]

Xn

a—1
Xng1 = (K_n) 0<a<l, (19.36)

where Ky, = K,, n € Z7*, and K; # Ki41 for some i € Z7T. The maps
belong to the class .#  and satisfy the assumption of the preceding theorem. Con-
sequently, (19.36) has a globally asymptotically stable p-periodic cycle that is
attenuant.
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19.9.4 The Loss of Attenuance: Resonance

Consider the periodic Beverton—Holt equation (19.32) in which both parameters
Un and K, are periodic of common period p. This equation may be attenuant or
resonant. In fact, when p = 2, Elaydi and Sacker [14] showed that

Ko — Ky (o — D1 —1)

x=K+o0o —A Ko — K1)? (19.37)

2 2o — 1) 0T KD

where L Kot K
X = o + X1 and K = L,
2
O:u’()S'U' <1,
Hop1 — 1

and

_ po(ui — DKo + p(ug — Ky >0
po(pr — 1)2KE + (o — Dy — Doy + DKo Ky + a1 (o — 1) K7

It follows that attenuance is present if either (w1 — wo)(Ko — K1) < 0 (out of
phase) or the algebraic sum of the last two terms in (19.37) is negative. On the other
hand, resonance is present if the algebraic sum of the last two terms in (19.37) is
positive.

Notice that if ng = w1 = p with p = 2, then we have

-1 -1
B SE A 1(Ko + K1) (K1 = Ko)?
IS - 1vyk ’
Pz P 2[nKZ + (2 + 1)KoKy + uK?|

which gives an exact expression for the difference in the averages.

Remark 19.2. Now for uo = 4, 41 =2, Ko = 11,and K; = 7, we have resonance
as 3 S 0% ~ 9.23 and 3 >, Ki = 9. On the other hand, one can show that
for po = 2, u1 = 4, Ko = 11, and K; = 7, we have attenuance as may be seen
from (19.37).

19.9.5 The Signature Functions of Franke and Yakubu

In [19], the authors gave a criteria to determine attenuance or resonance for the
2-periodic difference equation

Xnt1 = Xng(Kn, fn, Xn),n € Z, (19.38)

where K, = K(1 + a(—=1)"), up = (1 + B(=1)"),and o, B € (—1,1).
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Define the following

, 2
92 ) K252 i) 2 8 302
(kh—§+2a—§)( : ) + (2K + 2k ) + KO DK

2+K 3%
w = . . (19.39)
2K
9 92 —K2 3% 92
- (/’L% + K/’Lf)xégu) (2+K%§) + Kzl’LaKE‘)gu

wy = x , (19.40)

K

ax

and

Rq = sign(a(wra + w2 8)). (19.41)

Theorem 19.10. [/9] If fora = 0,8 = 0, K is hyperbolic fixed point of (19.38),
then for all sufficiently small |a| and |B|, (19.38), with o, B € (—1,1), has an
attenuant 2-periodic cycle if Z; < 0 and a resonant 2-periodic cycle if #4 > 0.

To illustrate the effectiveness of this theorem, let us to consider the logistic

equation

n Xn

For 0 < pu < 2 (19.42) has an asymptotically stable 2-periodic cycle. Using
formulas (19.39) and (19.40), one obtains

—8K d —4K
= ———and wp, = ——.
(n—2)2 2T -2

Assume that @ > 0 and 0 < p < 2. Using (19.41) yields

w1

2
%dzsign( a—i—ﬂ):sign(ﬁ— a).
n—2 2—p
Hence we have attenuance if § < ﬁ(x, i.e., if the relative strength of the fluc-
tuation of the demographic characteristic of the species is weaker than 2% times

the relative strength of the fluctuation of the carrying capacity. On the other hand if
B> ﬁa we obtain resonance.

Notice that if « = 0 (the carrying capacity is fixed), then we have resonance if
B > 0 and we have attenuance if 8 < 0. For the case that § = 0 (the intrinsic
growth rate is fixed), we have attenuance.

Finally, we note that Franke and Yakubu extended their study to periodically
forced Leslie model with density-dependent fecundity functions [18]. The model is

of the form
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5 N
X1 = D _xhgn(xh) =Y fil(xh)
i=1 i=1
2 1
X1 = A1x,

N _ s—1
Xn+1 = AS—l'xn ’

where £,/ is of the Beverton—Holt type. Results similar to the one-dimensional case
where each f,, is under compensatory, i.e.,

f;) (xi) >0 9% £, (xi) -

8xi Bxlz

0’

and lim f7 (x;) exists foralln € Z .
Xj—>00

19.10 Almost Periodic Difference Equations

In this section we extend our study to the almost periodic case. This is particularly
important in applications to biology in which habitat’s fluctuations are not quite
periodic.

But in order to embark on this endeavor, one needs to almost reinvent the wheel.
The problem that we encounter here is that the existing literature deals exclusively
with almost periodic fluctuations (sequences) on the real line R (on the integers Z).
To have meaningful applications to biology, we need to study almost periodic fluc-
tuations or sequence on Z* (the set of nonnegative integers). Such a program has
been successfully implemented in [10]. Our main objective here is to report to the
reader a brief but through exposition of these results.

We start with the following definitions from [17,21].

Definition 19.6. An R¥-valued sequence x = {x, }nez+ is called Bohr almost peri-
odic if for each € > 0, there exists a positive integer To(€) such that among any
To(e) consecutive integers, there exists at least one integer v with the following
property:

| Xntr—xn |[<e,VneZt.

The integer t is then called an e-period of the sequence x = {x,},c7+-
Definition 19.7. An R¥-value sequence x = {x,},cz+ is called Bochner almost

periodic if for every sequence {h(n)},cz+ of positive integers there exists a subse-
quence {hni} such that {Xn+n,- }n-ez+ converges uniformly inn € Z 7.
1

In [10] it was shown that the notions of Bohr almost periodicity and Bochner
almost periodicity are equivalent.
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Now a sequence f : Z+ x R¥ — R¥ is called almost periodic in n € Z*
uniformly in x € RF if for each & > 0, there exists To(¢) € Z* such that among
To(e) consecutive integers there exists at least one integer s with

I f(n+s,x) = fn,x) [I<e

forall x € R¥ ands € Z.
Now consider the almost periodic difference equations

Xnt1 = AnXn (19.43)
Vnt1 = Anyn + f(1, Yn), (19.44)

where A, is a k x k almost periodic matrix on Z%, and f : ZT x R — RF is
almost periodic.

Let @(n,s) = ;’;; A, be the state transition matrix of (19.43). Then (19.43) is
said to posses a regular exponential dichotomy [23] if there exist a k x k projection
matrix P,,n € Z*, and positive constants M and 8 € (0, 1) such that the following
properties hold:

1. APy = n+1An~

2. | X(n,r)Prx |[< MB™ | x |,0<r <n,x € Rk,

3.0 X(ron) (I — P)x |[< MB™ | x |,0<r <n,x Rk,

4. The matrix A, is an isomorphism from R (I — P,) onto R (I — P,+1), where
R(B) denotes the range of the matrix B.

We are now in a position to state the main stability result for almost periodic
systems.

Theorem 19.11. Suppose that (19.43) possesses a regular exponential dichotomy
with constant M and B and f is a Lipschitz with a constant Lipschitz L.
Then (19.44) has a unique globally asymptotically stable almost periodic solution
provided

MBL

< 1.

1-8
Proof. Let AP(Z™) be the space of almost periodic sequences on Z* equipped
with the topology of the supremum norm. Define the operator I" on AP(Z™) by
letting

n—1 /n—1
(Te), =Y (1‘[) As f(r.or).
r=0 \s=r

ThenI” : AP(Z") — AP(Z™)is well defined. Moreover I” is a contraction. Using
the Banach fixed point theorem, we obtain the desired conclusion. ad

The preceding result may be applied to many populations models. However, we
will restrict our treatment here on the almost periodic Beverton—Holt equation with
overlapping generations
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i (1— Vn)/fLKnxn
(1= yn)Kn + (0 — lyn)xn

Xn+1 = VnXn (19.45)

with K;, > 0 and y, € (0, 1) are almost periodic sequences, and i > 1. As before p
and K denote the intrinsic growth rate and the carrying capacity of the population,
respectively, while y is the survival rate of the population from one generation to
the next.

The following result follows from Theorem 19.11

Theorem 19.12. Equation (19.45) has a unique globally asymptotically stable
almost periodic solution provided that

1
I+pu

sup{yn:ne€Zt} <

To this end, we have addressed the question of stability and existence of almost
periodic solution of almost periodic difference equation. We now embark on the task
of the determination of whether a system is attenuant or resonant.

Let {itn},cz+ be an almost periodic sequence on Z*. Then we define its mean

value as
m

.1
M(un) = lim — Zl [ntr (19.46)
r=
It may be shown that M (u,) exists [10].
Let {X, } be the almost periodic solution of a given almost periodic system. Then
we say that the system is

1. Attenuant if M (x,) < M(K,).
2. Resonant if M(x,) > M(K,).

Theorem 19.13. [10] Suppose that { Ky}, cz+ is almost periodic, K,, > 0, u > 1,

andy, =y € (0,1). Then

1. lim sup% an_:lo Xm < lim sup% an_:lo K, for any solution x,, of (19.45).
n—00

n—oo

2. M(x,) < M(Ky) if Xy, is the unique almost periodic solution of (19.45).

19.11 Stochastic Difference Equations

In [22] the authors investigated the stochastic Beverton—Holt equation and intro-
duced new notions of attenuance and resonance in the mean.

Following on the same lines [6] the authors investigated the stochastic Beverton—
Holt equation with overlapping generations.
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In this section, we will consider the latter study and consider the equation

+ (1 - Vn)ﬂKnxn
(I=y)Kn +(pu—1+ Vn)xn.

Xn+1 = VYnXn (19.47)

Let L'(£2,v) be the space of integrable functions on a measurable space
(£2, #,v) equipped with its natural norm given by

I f = /9 FG)dv.

Let
D(E)={f¢€ LI(E,U) : f>0and / fdv}
2

be the space of all densities on 2.

Definition 19.8. Let 2 : L!(£2,v) — L' (£, v) be a Markov operator. Then {.2"}
is said to be asymptotically stable if there exists f* € 2 for which

21" =f*

and forall f € 2,
lim | 2" f - f* |1=0.
n—>oo

We assume that both the carrying capacity K, and the survival rate y, are random
and for all n, (K, y,) is chosen independently of (x¢, Ko, Y0), (x1, K1,%1)s --->»
(Xn—1, Kn—1, Yn—1) from a distribution with density @(K, y).

The joint density of x,, Ky, v, is f,(x)@(K,y), where f, is the density of x.
Furthermore, we assume that

E|K,| < o0, E|xg| < o0

and K2®(K, y) is bounded above independently of y and that @ is supported on
the product interval
[Kmin, OO) X [Vmin» OO),

for some Kpin > 0 and yyin > 0.

Moreover, we assume there exists an interval (K;, K,) C RT on which @ is
positive everywhere for all y.

Let h be an arbitrary bounded and measurable function on R+ and define
b(Ky, Yn, Xn) to be equal to the right-hand side of (19.47). The expected value of &
at time n + 1 is then given by

Elh(xni1)] = fo h(x) for1 (X)dx. (19.48)
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Furthermore, because of (19.47) and the fact that the joint density of x,, and y, is
just fn(x)@(K,y), we also have

Elh(xn1)] = E[h(b(Kn, Yn, xn))]
0o 1 00
= [ [ [ ne& o noiek. pavayay.
Let us define K = K(x, y, y) by the equation

_ (1= y)uKy
(1=K +@u—-1+y)y

+ py. (19.49)

Solving explicitly this equation for K yields

_ =149y —yy)
(1 =Py ==yl

(19.50)

By a change of variables, this can be written as

dk
sl = fff ORI ) g sdvayiy.

A simple calculation yields

1
Bl = i [ [] o s OIS vy

where

A={(.y):0<x—yy <uy} (19.51)

Equating the above equations, and using the fact that 4 was an arbitrary, bounded,
measurable function, we immediately obtain

1 2
fra) = [ o s IR dydy.

Let Z : L'(RT) — L'(R™) be defined by

_ -y 1 2
P10 =n || i G (MR vy, (195

where k = K(x, y, y) is defined by (19.50) and A4 in (19.51).
We can now state the main theorem of this section

Theorem 19.14. [6] The Markov operator &2 : LY(RY) — LY(RY) defined
by (19.52) is asymptotically stable.
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For the case when y, = y is a constant and K, is a random sequence, the
following attenuance result was obtain.
For almost every w € £2 and x € RT

1 n—1 1 n—1
Jim 13 )<l 15K
1= 1=

that is we have attenuance in the mean.
It is still an open problem to determine the attenuance or resonance when both
vn and K, are random sequences on Z T,
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Chapter 20
Thompson’s Group, Teichmiiller Spaces,
and Dual Riemann Surfaces

Edson de Faria

Abstract In this paper we present a brief survey of the role played by Richard
Thompson’s group F in the study of the dynamical classification of certain confor-
mal repellers, as first described in de Faria et al. (Contemp. Math., 355:166—1855,
2004). We exhibit a faithful and discrete action of F in the asymptotic Teichmiiller
spaces of such conformal repellers. An important ingredient to monitor such actions
is the complex scaling function of the repeller, defined on its dual Riemann sur-
face. We ask for generalizations to more general repellers, and formulate some open
questions.

20.1 Introduction

The so-called chameleon groups of Richard Thompson were introduced in 1965,
in a set of unpublished notes. These groups have since appeared in many different
contexts and guises, ranging from logic to algebraic topology and geometry. An
extremely elegant exposition of the basic theory of such groups is given in [2]. In
a special conference held at the American Institute of Mathematics of Palo Alto in
2004, some of the main experts on the subject attempted to take stock of everything
then known about Thompson’s group. The first connection between F, the smallest
of Thompson’s groups, and the Teichmiiller theory of some very simple dynamical
systems was presented in that conference, and published in [5]. In that paper, it was
established that F' acts faithfully and discretely in the asymptotic Teichmiiller space
of a certain complex dynamical system, a Cantor repeller. In the present paper, we
briefly survey the results of [5], and then indicate how they can be adapted to prove
that F acts faithfully and discretely also in the asymptotic Teichmiiller space of the
expanding map z > z2. The geometric action is through piecewise affine motions
of invariant Carleson boxes, as indicated in Sect. 20.5.

E. de Faria
IME-USP, Rua do Matao, 1010 Butanta, 05508-090 — Sao Paulo, SP, Brazil
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in Mathematics 1, DOI 10.1007/978-3-642-11456-4_20,
(© Springer-Verlag Berlin Heidelberg 2011
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20.2 Thompson’s F' Group

There are three Thompson groups, usually denoted F', 7 and V in the literature,
and one has F C T C V. In this paper, we are concerned with F' only. All of
Thompson’s groups have several “incarnations”. We shall describe two such for F'.
Many more equivalent definitions exist. See [2] and the references therein.

20.2.1 First Incarnation

The easiest way to define F is perhaps the least enlightening. Let PL* (/) denote
the group of orientation-preserving, piecewise linear homeomorphisms of the unit
interval I = [0, 1]. We define F to be the subgroup of PL™* (/) consisting of those
@ € PLT(I) which have finitely many break-points, all at dyadic rationals, and
whose slopes on linear pieces are given by powers of 2. Thus, if ¢ € F, and if
J C I is a subinterval such that ¢| s is linear, then

14
p(x) = 2"x + o

for all x € J, for some m, p € Z and some n € N.

Proposition 20.1. For each ¢ € F there exist two finite partitions of I, say 0 =
Xo < X1 <+ <xp,=1and0 =y < y1 < :--yn = 1, with the following
properties.

(a) Both partitions are standard dyadic partitions of I, i.e. each one of the intervals
[xi, Xiv1]. [vi. vis1] is of the form [a27% , (a + 1)27%] for non-negative integers
a, k.

(b) Each restriction ¢|(x; x; ] is affine and ¢([x;, xi+1]) = [vi,yi+1], fori =
0,1...,n—1 (inparticular, p(x;) = y; foralli).

The proof of this basic result can either be worked out as an exercise, or else
looked up in [2].

20.2.2 Second Incarnation

Let us consider now a second way to define F', one which makes the combinatorial
structure of this group more apparent. Let us first look at finite rooted binary trees
in the plane, up to isotopy. We think of each such tree as made up of finitely many
carets (wedges A made of two line segments). The topmost vertex of the topmost
caret is called the root of the tree. The free edges are called leaves. We think of
the leaves as ordered from left to right (relative to the way they are deployed in the
plane). Note that if there are n carets in the tree, then there are n + 1 leaves, which
we label 1,2,...,n from left to right. Let us call & the set of such trees up to
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TSRS

Fig. 20.1 An example of equivalence

isotopy (the isotopy should preserve the roots and the relative order of leaves). Now
let us denote by . C & x & the set of pairs of (isotopy classes of) trees in which
both components have exactly the same number of carets (or leaves). We introduce
in .Z an equivalence relation as follows.

First, define a birth to be the operation of adding a caret to a given tree through
one of its free vertices (free ends of leaves). Given two pairs of trees in .%, say
(R1, Dq) and (R3, D>), we declare them to be equivalent, (R1, D1) ~ (R, D), if
R; can be obtained from R, through a sequence of births (or vice-versa) and D can
be obtained from D, through a sequence of births following the same order as the
first sequence of births (or vice-versa). Here, order means order with respect to the
numbering of the leafs of a tree. An example of equivalence is shown in Fig. 20.1.
This is an equivalence relation, as the reader can easily convince himself. Let F
be the quotient %/ ~. The element of F corresponding to a pair (R, D) will be
denoted [Ry, Dq].

Let us now define the group operation on this set F of equivalence classes. Given
two pairs of trees (R, D1) and (R3, D») representing two elements of F, we look
at D; and R,. These in general will be different trees. By a suitable sequence of
births on D; and a corresponding suitable sequence of births in R,, we can make
both trees look the same (see [2] for details). In order words, we get atree 7' from D,
through a finite sequence of biAr/ths, and Jhe same tree 7' from R, throggh another
finite sequence of births. Let Ry and D> be such that (Ry, D1) ~ (R, T) and
(T, D3) ~ (R2, D3), and define

[R1, D1] o [Rs, D2] = [Ry, Da).

This operation is compatible with the equivalence relation just introduced, and it is
associative. It has an identity element, namely e = [A, A]. If [R, D] € F, then its
inverse is simply [D, R]. Thus, F is a group under this operation. This composition
law is illustrated in Fig. 20.2.

We claim it is the same group of the previous definition, up to isomorphism.
What is the relationship between both definitions? Given ¢ : I — I, an element
in the first incarnation of F, let Pg and Pﬁ be the partitions in the domain and
range of ¢ given by Proposition 20.1. Each such partition being a standard dyadic
partition, they both give rise to binary trees D¥, R? in an obvious way (and with the
same number of leaves). The map ¢ — [D?, R?] is an isomorphism between both
incarnations of F'.
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Fig. 20.2 The composition law

Here is a brief description of the inverse isomorphism to this isomorphism. First,
given a rooted binary tree 7 having n carets and leaves labeled 1,2, ...,n + 1, let
V1, V2, ..., Vn+1 be the free vertices of T', ordered according to the leaves to which
they belong. We define the weight of v; to be w(v;) = 2740)) where L(v;) is the
integer length (number of edges) of the shortest path joining the root of T to the
vertex v;. Note that Z:’: w(v;) = 1. Now define the partition Pr associated to T’
as follows: put xo = 0 and foreach j = 1,2,...,n + 1 let

J
X; = Za)(v,-).

i=1

The resulting partition Pr is a standard dyadic partition of /. Now, if [R, D] is an
element of the second incarnation of F, we consider the associated pair (Pp, PR)
of standard partitions and let ¢[g pj : I — I be the unique orientation-preserving,
piecewise affine homeomorphism that sends each atom of Pp to an atom of Pg.
This map [R, D] — ¢[r,p] is the inverse map of the map we just defined in the
previous paragraph.

20.2.3 Generators and Relations

The group F is finitely generated; in fact, it is generated by just two elements, which
we call here ¢y and ¢;.

Let us, more generally, define for each n > 0 an element ¢, € F as follows. Let
R, be the rooted finite binary tree with n + 2 carets and free vertices vy, ..., V,+3
whose associated weights are given by w(v;) = 27/ forj =1,2,...,n 4+ 2 and
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®(Vpy3) = 27772, Geometrically, this tree is obtained starting from the top caret
and then attaching each successive caret to the right-hand leaf of the previous one.
Likewise, let D, be the tree with n + 2 carets and vertices V},...,V,_ 5 whose
associated weights are given by w(v’j) =27 forj = 1,2,....n, o(vpy1) =
®(Wni2) = 27772, and w(v,13) = 27" 1. Geometrically, this tree looks almost
like R, except that the last caret is attached to the left-hand leaf of the last-but-one.
We define ¢, to be the element of F determined by this pair of trees, in other words

¢n = [Rn,Dp] € F.

Working out from the definition of the composition law, it is not difficult to to prove
that, foralln > 0 and all 0 < k < n, we have

Dk Onr1 9% = Pnta. (20.1)

It can also be shown that these relations form an infinite presentation of F. Note that,
once ¢o and ¢; are given, (20.1) shows that @5, @3, ... are inductively defined from
those two elements. Thus, F' is generated by two elements subject to the infinitely
many relations (20.1). Surprisingly, it turns out that F is finitely presented. Indeed,
two relations involving commutators suffice, and the group F can be described as

F = (po.¢1 : [poer " 05 w190l . lpowr . 05 0105]) .

For a proof of these facts and more, see [2, Theorem 3.1].

20.2.4 More Properties of F

Let us enumerate a few further remarkable properties enjoyed by the group F. They
will not be used here, but are a part of the general culture about Thompson’s group.
For proofs of the first six properties, the reader should consult [2]. The seventh
property is a very nice theorem due to E. Ghys and V. Sergiescu, whose proof can
be found in [7].

1. The group F is almost abelian, in the sense that F/[F, F] =~ Z & Z. In fact,
there is a homomorphism 6 : F — Z & Z given by

0(¢) = (log, ¢'(0).log, ¢'(1)).

One easily checks that the kernel of this homomorphism is precisely the com-
mutator subgroup [F, F].

The commutator subgroup [F, F] is a simple group.

Every proper quotient group of F' is abelian.

The group F has exponential growth.

Every non-abelian subgroup of F contains a free abelian group of infinite rank.

Nk w
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6. As it follows easily from 5, F does not contain a copy of the free group on two
generators.

7. The group F is isomorphic to a discrete subgroup of C 3 diffeomorphisms of the
unit circle (this is proved in [7]).

For more on the geometry of Thompson’s group, see [9].

20.3 Conformal Repellers, and Dual Riemann Surfaces

The concept of conformal repeller is fairly broad. Let us agree to the following
definition.

Definition 20.1. A conformal repeller consists of an open set U C @, a compact
subset K C U and a pseudo-semigroup G of conformal transformations g : U, —

C , where each Ug C U is open, such that

(a) The set K is G-invariant: GK C K.
(b) For each g € G, the restriction g|xny, is expanding, i.e. [g'(x)| > A > 1 for
allx e KNU,.

The constant A is uniform (that is to say, independent of g).

The expression pseudo-semigroup above means that, in general, the maps of
a conformal repeller are non-invertible, and their compositions are only partially
defined (i.e. we compose them wherever we can). This covers several different sit-
uations, ranging from Fuchsian groups to expanding analytic circle maps (see [3]).
In the present paper, we only care about two particularly simple situations: Cantor
repellers and expanding circle maps.

20.3.1 Cantor Repellers

We borrow the following definition from [3] (see also [4]).

Definition 20.2. A Cantor repeller consists of two open sets U,V C C and a
holomorphic map f : U — V satisfying the following conditions:

1. The domain U is the union of Jordan domains Uy, Uy, ..., Uy—1 (for some m >
2) having pairwise disjoint closures.
2. The co-domain V is the union of Jordan domains Vg, V1, ..., Vas—1 (for some

M > 1) having pairwise disjoint closures.

3. Foreachi € {0,1,...,m — 1} there exists j(i) € {0,1,..., M — 1} such that
flu; maps U; conformally onto V).

4. Wehave U C V.

5. The limit set Ay = Np»of (V) has the locally eventually onto property
(meaning that every open set intersecting A , no matter how small, is eventually
mapped by iteration onto an open set containing A r).
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Fig. 20.3 The standard triadic repeller

Note that the invariant set A ¢ is a compact, perfect set without isolated points,
i.e. a Cantor set (hence the name).

The Cantor repeller that will matter the most for us is the standard triadic
repeller, in whichm = 2 and M = 1, and the limit set is the standard triadic Cantor
set on the real line. See Fig. 20.3. This terminology may seem a little idiosyncratic,
for clearly the Riemann surface of a triadic repeller has the structure of a binary
tree.

20.3.2 Jordan Repellers

A Jordan repeller is a conformal repeller f : U — V where U,V C C are annuli
with U C V, no component of C \ U is contained in V, and the map f is a proper
covering map of degree d > 2 onto V. In this case, the limit set is

A=) S0,

n>0

Topologically, A  is a Jordan curve, hence the name. But it is in general quite wild,
typically a non-rectifiable, nowhere differentiable curve. A simpler situation is the
case when we have a symmetry, say when Ay is a circle, and U, V and f are
all symmetric about this circle. This is the case, for example, of the map f(z) = z?
restricted to the annulus U = {z: 27! < |z| < 2}, which is mapped onto the annulus
V = {z: 47! <[] < 4} with degree 2. Here the invariant curve is Ay = T, the
unit circle.
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Fig. 20.4 The triadic repeller’s chopped up tree

20.3.3 Dual Riemann Surfaces

In [5], we constructed a dynamical action of Thompson’s group F' in the asymptotic
Teichmiiller space of the standard triadic Cantor repeller, as outlined in Sect. 20.5.
A crucial ingredient was the construction of a dual repeller, defined on a dual Rie-
mann surface. This dual Riemann surface was constructed using the decomposition
of the original Riemann surface into dynamically defined “pairs of pants”. The idea
was to chop the original surface along such pairs of pants, and re-glue them together
using the dynamics itself. The waist curves of all pairs of pants are dynamically
related: any waist curve an be mapped to any other waist curve by a suitable com-
position of iterates of f with (suitably chosen) inverse branches. See [5] for the
exact construction. Thus, dynamical relationships between two pairs of pants (say
in consecutive levels of the hierarchy) are transformed into spatial relationships (say
adjacent pairs of pants). This is indicated in Fig.20.4. This dual operation turns
out to be involutive (up to conformal equivalence). In other words, if one performs
the dual construction on the dual system, one gets back the original system up to
conformal conjugacy.

This works fine for the standard triadic repeller, as shown in detail in [5], but
doesn’t work for all Cantor repellers, as the example in the following section shows.

20.3.4 The Fibonacci Repeller

Let us consider the situation depicted in Fig. 20.5. We have a Cantor repeller whose
domain consists of three disks D¢, D1, D, with pairwise disjoint closures, and they
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Fig. 20.6 The Fibonacci chopped up tree

map out to two larger disjoint disks Vp and Vi, with Do U Dy C Vy, D, C V7,
f(Do) = Vo = f(D3) and f(D1) = Vi. This repeller is called the Fibonacci
repeller, for reasons that will be clear in a moment. The (disconnected) Riemann
surface of this Cantor repeller has the hierarchical structure shown in Fig. 20.6. The
dynamics of f yields, just as in the case of the standard triadic repeller, a decompo-
sition of the Riemann surface into connectors, which in this case are of two types:
either cylinders or pairs of pants. At each level, the number of connectors making
up the hierarchical structure at that level is a Fibonacci number, hence the name.
Now, if one tries to apply to this repeller the dual Riemann surface construction
outlined for the standard triadic repeller, one quickly runs into trouble. For instance,
the connectors labeled “001” and “101” should both be connected to the connector
labeled “01” along their waist curves. Since the connector “01” is a cylinder, we
are thus required to glue two curves (the waists of “001” and “101”) onto the same
boundary curve of “01”. The situation gets even worse if we look at lower levels
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of the tree. The conclusion is that the dual to the Fibonacci Riemann surface is no
longer a Riemann surface. It is rather a non-Hausdorff space, a branched Riemann
surface.

What is the difference between this situation and that of the standard triadic
repeller? Why can we form the dual surface in that situation but not in this one?
Note that the dynamics in the limit set in the Fibonacci repeller is encoded by a
subshift of finite type with matrix

110
001],
110

whereas in the standard triadic case the matrix is that of a full 2-shift. Motivated by
this, we formulate the following problem.

20.1. Find a necessary and sufficient condition on the subshift of finite type asso-
ciated to a Cantor repeller for the existence of a dual Riemann surface for the
repeller.

20.4 Asymptotic Teichmiiller Spaces

We can define various Teichmiiller spaces in a given geometric or dynamical situ-
ation.

20.4.1 Teichmiiller Spaces without Dynamics

We recall that, if X is a Riemann surface with ideal boundary 0 X, its Teichmiiller
space T (X) is the space of equivalence classes of pairs (k,Y), where h : X — Y is
a quasiconformal homeomorphism, the equivalence between two such pairs (h¢, Yo)
and (hy, Y1) being that there exists a conformal map ¢ : Yy — Y; such that
¢ o hg is homotopic to h; relative to doo X (in other words, there exists an isotopy
¢ : X — Yy suchthat g = c o hg, p1 = hy and ¢ (p) = h1(p) forall p € 0o X,
for all 0 < ¢t < 1. The co-asymptotic Teichmiiller space AT (X) is defined in the
same way, replacing the word “conformal” by “asymptotically conformal”. By an
asymptotically conformal map between Riemann surfaces we mean a quasiconfor-
mal map which is closer and closer to being conformal outside large compact sets
in the domain.

We also define To(X) C T(X) to be the subspace of asymptotically conformal
classes (by which we mean classes represented by a pair (h,Y) where h : X — Y
is an asymptotically conformal homeomorphism). The Teichmiiller space T'(X) has
a natural metric on it, the so-called Teichmiiller metric, making it into a complete
metric space. The space Ty(X) is easily seen to be a closed subspace under this
metric. The same holds for AT (X).

We can also incorporate symmetries into these spaces. The most relevant for us is
the case of an anti-conformal involution j : X — X, i.e. an anti-conformal map j
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with j o j = idy. One can then define 7(X, j), AT (X, j) and To(X, j) in the
obvious way, making all the appropriate equivalences respect this involution.

The case we are most interested here is when X = C \ A, where A is a Cantor
set (which will turn out to be the limit set of a Cantor repeller) lying on the real line
in the complex plane. Here, of course, there is a natural identification between A
and 0o X, and the involution j is the standard complex conjugation.

20.4.2 Teichmiiller Space with Dynamics

Let us now suppose that we are given a dynamical system in the plane which, for
definiteness, we assume to be a Cantor repeller (27, f). Here 2y = UD; is a
union of topological disks with pairwise disjoint closures, and f; = f|p, (i =
1,...,N, N > 2)is a quasiconformal homeomorphism onto a topological disk V%,
and UV; D Q_f If we look at the inverse maps fl-_l : Vk; — D; and iterate them,
we get an invariant Cantor set

o0
Ar =) U fiteofi' (D)

n=1(iy,..., in)

where in the right-hand side the union, for each n, is over all admissible n-tuples
(i1,...,in) (i.e. those for which the indicated composition of inverse maps makes
sense). This is the limit set of the repeller.

We make two extra hypotheses about this repeller. The first hypothesis is that
(827, f) is uniformly asymptotically conformal (abbreviated UAC), meaning that
foreach € > 0 there exists a neighborhood U D A s such that, forallz € U\ A r and
all words w in the alphabet { f1,..., fv: f',.... fy'} with w(z) € U, we have
K, (z) <1+ € (here K,,(z) denotes the quasiconformal distortion of w at z). The
second hypothesis is that (27, f) is symmetric with respect to an anti-conformal
involution js : £y — £2¢. This front-to-back symmetry of our repeller avoids
topological considerations having to do with the braid group, cf. [5].

We can consider the waist curves of our repeller: these are the curves obtained
as inverse images of the Jordan curves dD; under the various inverse branches
of f. These curves deploy themselves according to a hierarchy (following the
combinatorics of the repeller).

Now, we wish to define the asymptotic Teichmiiller space of a UAC repeller. Let
us consider the class of all repellers as above which are quasiconformally conjugate
to a given one, say (27, f). Given two repellers (£2¢,, g1) and (£2¢,, g>) in this
class, we declare them to be equivalent, (§2¢,,81) ~ (§24,. 82), if there exists an
asymptotically conformal map ¢ : 2y — £2, such that

l.cogy=gro0c.
2. c¢ preserves the hierarchical structure of waist curves of both repellers.

3. cojg = jgoc.
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This is an equivalence relation, and the quotient space is called the asymptotic
Teichmiiller space of the given repeller, and it is denoted AT (£2y, f). This
Teichmiiller space (like all others deserving the name) has a natural metric, the
Teichmiiller metric, defined as follows:

1
dT((levgl)’ (le’gl)) = lgf ElogH((p) s

where the infimum is taken over all quasiconformal homeomorphisms ¢ : 24, —
§24, satisfying

l. gog1=g209.
2. ¢pojg = jg, 00 (rel. Ag)).
3. ¢ preserves the hierarchical structure of waist curves.

Here, H(¢) denotes the boundary dilatation of ¢, namely,
H(¢) = infsupiKy(2): z €2 \ E},

the infimum ranging over all compact subsets £ C £2g,.
One has the following standard result.

Theorem 20.1. The space AT ($2y, f) with the metric defined above is a complete
metric space.

Once again, we refer to [5] for a proof. Similar definitions and results can be
stated for other repellers, such as Jordan repellers. The appropriate notion of UAC
system, and the corresponding asymptotic Teichmiiller space, can be defined as
above, mutatis mutandis. For more on the Teichmiiller theory of UAC systems,
see [6].

20.5 Actions of F

In this section we indicate how F acts on certain Teichmiiller spaces, with and with-
out dynamics. In both contexts, the Riemann surfaces involved have an underlying
binary tree structure.

20.5.1 Geometric Actions

There is a natural action of F on To(§2, j) when £2 is the binary Riemann surface
arising as the complement of the standard triadic Cantor set (viewed as a subset of
the plane), and j is the obvious involution (complex conjugation). This action is
given geometrically by a faithful representation w : F — M CG(82) of F into the
mapping class group of §2. The effect of the generators ¢y and ¢; of Thompson’s
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group in this situation can be seen in Fig.20.7. It is achieved through a suitable
squeezing of geodesics into waist curves. The quasiconformal distortion of each map
in 7w (F) is compactly supported by construction. The details of this representation,
and the proof that it is faithful, are given in [5]. For a similar result for Thompson’s
T group (and much more on the representation theory of T), see [8].

Fig. 20.7 The basic
Thompson moves

20.5.2 Dynamical Actions

Let us now take the dynamics of repellers into account. We can define interesting
dynamical actions of Thompson’s group F as follows.

First, let us consider the case of the standard triadic repeller (£2, f). The action of
F on AT (2, f)) is defined via the geometric action previously introduced, but on
the dual system instead of the system itself —i.e. on 7o (£2*) instead of T (§2). More
precisely, we know that there is a faithful representation 7 : F — MCG(£2%).
Hence we define an action

a: FxAT(2, f) > AT(£2, f)
in the following way (see [5, p. 182]):if [g] € AT (82, f), then
a(e,[g]) = [(g* o m(p™"))"].

In [5], we prove the following result.
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Fig. 20.8 Invariant Carleson boxes

Theorem 20.2. The action of F defined above is faithful and discrete.

In order to monitor this group action, we have used the so-called scaling function
of the repeller. See [5, pp. 182—184] for details. The concept of scaling function for
real repellers is due to D. Sullivan [10] (generalizing an idea due to M. Feigenbaum
for quadratic maps).

Something completely analogous can be done in the case of the Jordan repeller
given by the expanding map z — z? on the circle. Here the connectors (making
up the Riemann surface §2 of the previous situation) are replaced by the Carleson
boxes of Fig. 20.8. The duality construction works in the same way: one glues Car-
leson boxes along their edges using the dynamics and then applies the measurable
Riemann mapping theorem, in order to get the dual system. The only non-trivial
thing one must check in the construction is that one can still realize Thompson
moves in this setting. That this can be done is shown in Fig. 20.9. There we are look-
ing at three consecutive generations of Carleson boxes. The map realizing the basic
move is piecewise affine. The inverted L-shaped region (the union of a Carleson
box with one of its children) in the domain is mapped to the L-shaped region on the
right. Each of the six triangles labeled 1-6 making up the inverted L-shaped region
in the domain is mapped by an affine map onto the corresponding triangle making
up the L-shaped region in the range. This forces the dashed L-shaped region in the
domain to be mapped onto the dashed inverted L-shaped region in the range, also
in piecewise affine fashion. This allows each of the remaining Carleson boxes in
the domain (not shown) to be mapped exactly onto a corresponding Carleson box in
the range (also not shown). Moreover, the only quasiconformal distortion happens
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Fig. 20.9 Thompson moves on Carleson boxes

at the 3 levels where the L-shaped regions involved in the process live. At all other
levels, Carleson boxes are mapped conformally onto other Carleson boxes. Thus,
our basic Thompson moves are realized as asymptotically conformal maps, as they
should.

General Thompson moves arise as compositions of such basic Thompson moves,
happening at various levels of the tree structure provided by the invariant system of
Carleson boxes. Thus, it is not difficult to guess that a result similar to Theorem 20.2
holds true here. Indeed, we have the following.

Theorem 20.3. Thompson’s group acts faithfully and discretely in the asymptotic
Teichmiiller space of the expanding map z — z* on the unit circle.

We hope that the brief sketch of the main idea given above, leading to a proof
of Theorem 20.3, has been convincing enough. The actual details will appear else-
where. Note that we are not claiming, by any means, that F' comprises the entire
automorphism group of the asymptotic Teichmiiller space in question.

What about other repellers, and other Thompson-like groups, such as general
F P groups in the sense of Brown and Geoghegan in [1]?

20).2. Describe similar actions of such Thompson-like groups on other Cantor and
Jordan repellers. Are these actions faithful and discrete?
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Chapter 21
Bargaining Skills in an Edgeworthian Economy

M. Ferreira, B. Finkenstadt, B.M.P.M. Oliveira, Alberto A. Pinto,
and A.N. Yannacopoulos

Abstract We present a model of an Edgeworthian exchange economy where two
goods are traded in a market place. For a specific class of random matching Edge-
worthian economies, the expectation of the limiting equilibrium price coincides with
that of related Walrasian economies. The novelty of our model is that we assign a
bargaining skill factor to each participant which introduces a game, similar to the
prisoner’s dilemma, into the usual Edgeworth exchange economy. We analyze the
effect of the bargaining skill factor on the amount of goods acquired and the overall
increase in the utility of the consumer. Finally, we let the bargaining skills of the
participants evolve with subsequent trades and study the impact of this change over
time.
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21.1 Introduction

In most economies three basic activities occur: production, exchange, and con-
sumption. In this paper we focus on the case of a pure exchange economy where
individuals trade their goods in the market place for mutual advantage. There are
two different approaches for modelling the nature of these economic activities: (1)
The Walrasian general equilibrium model which assumes that consumers are pas-
sive price takers. They regard a given set of prices as parameters in determining
their optimal net demands and supplies. The equilibrium price is set such that the
market clears. Then the consumers change their endowments by the allocations
determined by the equilibrium price. A mechanism that leads to the equilibrium
price can be achieved, for instance, through an auctioneer who collects all the offers
and demands for each good and adjusts the price vector to clear the market; and (2)
The Edgeworthian concept considers consumers as active market participants trad-
ing with each other in an attempt to reach a higher level of utility. According to this
model, an equilibrium is achieved when no person participating in the market can
become better off without another person becoming worse off. We will look at the
models in this perspective. An accepted and effective approach to pursuing this line
of research is through the use of dynamic matching games, in which agents meet
randomly, and exchange rationally, according to local rules. This general approach
started with the seminal work Mathematical Pshycics of Francis Ysidro Edgeworth
in 1881, [6, 8], and were further advanced by a number of researchers, including
Aliprantis et al. [1], Aumann and Shapley [3,4], Binmore and Herrero [5], Gale [11],
McLennan and Schonnenschein [13], Mas-Colell [ 14] and Rubinstein and Wolinsky
[16]. The random matching game consists of agents paired at random who exchange
goods at the bilateral Walras equilibrium price, which is the price at the core, such
that the market locally clears. The choice for this scenario, is inspired by the work of
Binmore and Herrero [5]. Under certain symmetry conditions on the initial endow-
ments and the agents preferences, Ferreira et al. [9] show that the expectation of the
logarithm of the equilibrium price, obtained as a limit for the repeated game as the
number of trades tends to infinity, is equal to the expectation of the logarithm of the
Walrasian equilibrium price.

Here, we assign to each participant a bargaining skill factor in the trade devi-
ating from bilateral equilibrium model. The bargaining skill affects the trade, for
instance two less skilled participants will split the benefits by choosing the bilateral
competitive equilibrium, a more skilled participant and a less skilled participant will
split the benefits with an advantage for the more skilled participant, and two more
skilled participants are penalized by not trading. Hence, the participants are playing
a game in the core alike the prisoner’s dilemma, where the bargaining skill factor
determines their strategy. The more skilled participants correspond to the non coop-
erative players and the less skilled ones correspond to the cooperative players in
the prisoner’s dilemma. We analyze the effect of the bargaining skill factor in the
variation between the limit allocation and the initial endowment of each individ-
ual. We also examine the impact of the bargaining skill factor on the utility value
obtained by the participants. For some parameter values, we find that it is better to
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be in the minority. When the more skilled participants are in minority the increase
in the value of their utility is larger than the increase of the less skilled participants.
However, When the less skilled participants are in the minority, the increase in the
value of the utility for each less skilled participant is larger than the increase in the
value of the utilities of the more skilled participants (the majority).

We study the evolution of the bargaining skill factor, inspired by the works of
Durlauf [7]. We allow the bargaining skill of each participant to evolve over time.
In each iteration we choose a pair of participants to trade and, after the trade, the
bargaining skill can evolve following one of two possible rules: (a) the bargaining
skills of the participants decrease if they were able to trade and increases if they were
unable to trade; or (b) the bargaining skills of the participants increases if they were
able to trade and decreases if they were unable to trade. We observe convergence
of the bargaining skills to one of the two extreme limit values in model (a) and
convergence of the bargaining skills to the middle point value in model (b).

The paper is organized as follows: in Sect.21.2, we describe the Edgeworth
model. In Sect.21.3 we present our main result that relates the Walrasian Equilib-
rium price with the limiting bilateral equilibrium price. In Sect. 21.4, we incorporate
the trade deviating from bilateral equilibrium model and we observe the relation-
ship between the increase in the utilities and the bargaining skills. In Sect. 21.5 we
present the evolutionary rules for the bargaining skills.

21.2 Edgeworth Model

We look at a pure exchange economy (3, X;, >;,w;) where J is the population
of agents, each of them characterized by a consumption set X; € Ri and >; the
individual preferences are given accordingly to the Cobb—Douglas utility function.
So, an exchange economy in which some given amounts of goods X and Y are
distributed among » individuals (individual i owns an initial endowment X;, y; of
good X and Y respectively) is considered. Note that the initial endowments (X;,
Vi) € int(X;).

The Cobb-Douglas utility function is a model which is so well known in
economic theory and thus requires almost no explanation. As stated in the com-
prehensive review paper of Lloyd [12] the Cobb—Douglas function was proposed
long before it was formally tested by Cobb and Douglas, and influenced signifi-
cantly the work of Mill, Pareto, Wicksell, Von Thiinen for various reasons serves as
the standard test bed for a great number of studies in mathematical economics. One
of these reasons is that it is mathematically simple, yet captures important theoret-
ical issues such as constant marginal rate of substitution. However, this is not the
sole reason for its generalized use. Recent results of Voorneveld [18] show that the
utility function being of the Cobb—Douglas form is equivalent to the preferences of
the agents having the property of strict monotonicity, homotheticity in each coor-
dinate and upper semicontinuity. These properties are rather generic properties for
preferences, and are very reasonable assumptions. Furthermore, there is empirical
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evidence [15], demonstrating that with very large and increasing per capita income
the utility function becomes asymptotically indistinguishable from Cobb-Douglas.
These very interesting results shed new light on the Cobb—Douglas utility function
and provide further justification for its use as a standard model, in addition to its
apparent analytical simplicity.

We assume individual i obtains utility from the quantities x; and y; according to
the Cobb—Douglas utility function

Ui(xi i) = Xy, 7,0 <y <1 @L1)

which represents strictly convex, continuous and nondecreasing preferences where
a; defines the preferences of the goods X and Y for participant i. The bilateral
equilibrium price of a pair of participants (7, j) is the Walrasian equilibrium price
of the economy consisting only of this pair of participants (i, j ), and so, not taking
into account the other participants of the economy. Considering the good X to be
the numeraire, it is well known that the bilateral equilibrium price p is given by

_ Qiyi +0jy;
(1 —oc,-)x,- + (1 —ozj)xj

p (21.2)

where p is the price of the good Y. The bilateral trade is the well known scenario
analyzed in the Edgeworth box diagram (see Fig.21.1). The horizontal axis repre-
sents the amount of good X and the vertical represents the amount of good Y of
participant i . The point (x; 4+ x;, y; + y;) is the vertex opposite to the origin. The
horizontal and vertical lines starting at the opposite vertex are the axes represent-
ing the amounts of good X and Y, respectively, of participant j. We represent in
the Edgeworth box the indifference curves for both participants passing through the

O X

Fig. 21.1 Edgeworth Box with the indifference curves for participant i (blue convex curve) and
J (green concave curve). The red curve is the core and the red dots represent the contract curve.
The slope of the pink segment line is the bilateral equilibrium price. The interception point (A) of
the core with the pink segment line determines the new allocations and the square (E) marks the
initial endowments
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point corresponding to the initial endowments of both participants. The core is the
curve where the indifference curves of both participants are tangent and such that
the utilities of both participants are greater or equal to the initial ones. The bilateral
price determines a segment of allocations that pass through the point corresponding
to the initial endowments. The interception of this segment with the core determines
the new allocations of the two participants.

In the random matching Edgeworthian economies, agents start with a set of ini-
tial endowments (x; (0), y;(0)). Then, these agents trade in random pairs, chosen
with the same probability, and after the ¢ trade end up with a consumption bundle
(x; (?), yi (t)) which is traded in the bilateral equilibrium price p(¢) given by the for-
mula (21.2) with x;, x;, y;, y; substituted by x; (¢ —1), x; (¢ —=1), y; (¢t —1), y; (z—1).
On each trade only two randomly chosen agents i, j exchange goods and the con-
sumption bundles of the other agents remain unchanged. The demand of the agents
on the two goods is a stochastic process and that turns the price p () into a stochastic
process as well.

This raises an interesting question in this context:

Does there exist a limiting price poo = lim;— o p(¢) and if so how would that compare
to the Walrasian equilibrium price, where all agents meet simultaneously and trade at that
time?

An answer to the first question has been given by a number of authors, see for
example [11] and references therein. According to this previous work, pe, exists
almost surely, and it is a random variable. However, it depends on the actual game
of the play, which is dependent on the exact order of the random pairing of the
agents.

The aim of the present work is to provide some results on the expectation of this
random variable p,, and see how it compares to the Walrasian price p,,. In par-
ticular, under some rather general symmetry conditions on the initial endowments
of the agents and distribution of initial preferences, Ferreira et al. [9] show that the
expectation of the logarithm of po, equals the logarithm of the Walrasian price for
the same initial endowments of the agents (in Fig. 21.2). This is an interesting result,
in the sense that even though the agents meet and trade myopically in random pairs,
they somehow “self-organize” and the expected limiting price equals that of a mar-
ket where a central planner announces prices and all the agents conform to them
through utility maximization, as happens in the Walrasian model. When this asym-
metry is broken, the discrepancy E (log poo) — log p,, deviates from zero (compare
Figs.21.2c with d).

The main reason why organizing behaviour is observed is the symmetry in the
endowments and preferences of the agents that, as will become clear from our
analysis in the next section, imposes global constraints in the market, in the sense
that it enforces each agent to have a mirror, or a dual agent.
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Fig. 21.2 (a) Variation in time of the bilateral equilibrium price. The limiting bilateral equilibrium
price poo is a value near the Walrasian price of the initial endowments p,,. The green dots represent
the bilateral equilibrium price at each iteration. (b) Dependency of the E (log poo) — log p,, with
the preferences of the agents. We consider a market with two types of agents with the preferences
« of half agents in the x axis and the preferences of the other half in the y axis. The green surface
represents the mean of 100 simulations and the blue surface is the 95% confidence interval. (c)
Histogram for the E (log poo) — log p,, for 10,000 simulations of a market with 4 participants with
preferences oy = ap = 0.1 and initial endowments x; = y; = 1/4,i = 1,2, 3, 4. (d) Histogram
for the E (log poo)—log p,, for 10,000 simulations of a market with 3 participants with preferences
o =ay =03and oz = 0.9

21.3 Statistical duality

We introduce the concept of duality in the market. We assume that the collection
of agents is completely characterized by their preferences «, and their endow-
ments (x, y) in the 2 goods. We can define a probability distribution function on
(o, x, y) space, f(o, x, y) which determines the probability that a chosen agent has
preferences in (o, o + dae) X (x,x 4+ dx) x (y, y + dy). We assume that the prob-
ability distribution has compact support, and the support in (x, y) is bounded away
from zero.
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Definition 21.1. We say that a market satisfies the p - statistical duality condition
if the probability function has the symmetry property

f(Ol,X,y) = f(l—a,%,px)

where p € R™T.

The p-statistical duality property means that each agent with characteristics
(o, x, y) has a mirror agent with characteristics (1 —«, y/ p, p x) with the same pro-
bability under f. The class of probability functions f(«, x, y) of the form fi(«)
f2(x,y) with the property that fi(@)= f1(1 — «) and fo(x,y)= f2(y/p, px)
satisfies the p-statistical duality. A common probability function f5, satisfying the
above condition, is the uniform distribution. Another common example of a prob-
ability function satisfying the p-statistical duality is used in Corollary 21.1, below,
and determines the most well known matching technology used in random matching
games with N agents.

Statistical duality guarantees that the prices observed in the random matching
Edgeworthian economy coincide in expectation with those of the Walrasian econ-
omy. For each collection of agents, let p,, denote the Walrasian equilibrium price of
the initial market.

Theorem 21.1. Assume a market consisting of a finite number N of agents, such
that p-statistical duality holds for the initial endowments, then

E[ln(p(t)] = E[In(py)] = In(p), forall t € {1,2,...,+o0}.

Furthermore,

E[In(poo)] = In(p)

where E is the expectation over the distribution of agents and E is expectation over
the distribution of agents and over all possible runs of the game.

See proof of Theorem 21.1 in [9]. The advantage of using the logarithm of the price
is that if we consider the other good to be the enumeraire, the absolute value of
the logarithm of the price remains the same and just the sign of the value of the
logarithm of the price changes.

An example of an economy with the p-statistical duality property is an economy
where with probability 1 we start with a sample of N = 2 M agents where M agents
have characteristics (a;, x;, yi),i = 1,..., M, and the remaining M agents have
characteristics (aj+p, Xi+pm,Vi+m) = (1 —ai,yi/p,pxi),i = 1,....,M. In
other words, in this economy, each agent has a dual agent, i.e. agent i is dual to
agenti + M wherei =1,..., M.
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Corollary 21.1. Assume a market consisting of a finite number N = 2M of agents,
such that M agents have characteristics (a;, Xi, yi),i = 1,..., M, and the remain-
ing M agents have characteristics (aj+m,Xi+m,Yi+m) = (1 —a;, yi/p, pxi),
i=1,...,M, then

Eln(p(t)] = In(py) = In(p), forall t € {1,2,..., 400}
Furthermore,

E[In(poo)] = In(p)

where E is the expectation over all possible runs of the game.

The theorem can also be shown to hold for a generalized random matching econ-
omy in which agents do not only meet in pairs. In this game, we initially pick
N agents and then for each trading date we pick randomly M < N agents, that
decide to trade on the competitive price for the local market consisting only of these
M agents. The number M may change with 7. Then, under our statistical duality
condition, it may be shown that the stated result holds.

Remark 21.1. Theorem 21.1, in its specific form is limited to the particular form of
the Cobb—Douglas utility function, which was assumed to model the preferences of
the agents in the market game. However, this does not reduce the interest and the
importance of this result for the following three reasons.

(a) The Cobb-Douglas utility is a very important choice for the utility function
for the reasons stated in Sect.21.2. Therefore, the complete understanding of
the effect of symmetry for the asymptotic results of the market game, for this
choice of utility function, offered by Theorem 21.1, is interesting in its own right
as it provides a “realistic” scenario under which Edgeworthian and Walrasian
considerations asymptotically coincide.

(b) The important assumption for Theorem 21.1 to hold true seems to be the con-
stancy of the marginal rates of substitution, a fact that is guaranteed by the
special choice of the Cobb-Douglas utility function. However, one may try
and modify Theorem 21.1, for the case where the marginal rates of substitu-
tion that are close to having this property, e.g. it is slowly varying. Then, by
proper assumptions that allow us to control such deviations, one could obtain
approximate symmetry with results similar to Theorem 21.1. However, such
considerations are beyond the scope of the present work.

(c) Theorem 21.1 may be modified to hold for more general situations. Such sit-
uations will involve the use of different types of utility functions than the
Cobb-Douglas. The modifications could be in the type and rate of convergence.
For instance the convergence of In(p) to the Walrasian value in the mean, is
special for the choice of the Cobb—Douglas function, and the choice of the log-
arithmic function is dictated by the specific dynamics and symmetries of this
utility function. The same holds true for the definition of p-statistical duality.
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It is conceivable that different choices of the utility function for the agents will
require the choice of different symmetry conditions and different functions than
the logarithmic for the quantification of the convergence of the Edgeworthian to
the Walrasian price. However, what is important is that symmetries in the dis-
tribution of preferences and initial endowments will still dictate the asymptotic
coincidence of the prices predicted by the Edgeworth and the Walras scenario.
The full treatment of this point is beyond the scope of the present paper and will
be treated elsewhere.

21.4 Deviating from the Bilateral Equilibrium

The model with trade deviating from bilateral equilibrium is similar to the Edge-
worth model. The difference is that, in this model, we introduce a new parameter g;
representing the bargaining skill of each participant. If two less skilled g; = g; = 0
participants meet they will trade in the point of the core determined by their bilateral
equilibrium price, as in the Edgeworth model. However, if a more skilled partic-
ipant g; = 1 meets a less skilled g; = O participant, they will trade in a point
of the core between the point determined by their bilateral equilibrium price and
the interception of the core with the indifference curve of the less skilled partici-
pant (see Fig. 21.3), traducing an advantage to the more skilled participant. Finally,
if both participants are highly skilled g; = g; = 1 they are penalized by not
being able to trade. This is similar to the “prisoner’s dilemma”, where two non-
cooperative players are penalized, a non-cooperative player has a better payoff than
a cooperative player, and two cooperative players have a better payoff than when

Oi X

Fig. 21.3 Edgeworth Box with the indifference curves for the more skilled participant i (blue
convex curve) and less skilled participant j (green concave curve). The red curve is the core and the
red dots represent the contract curve. The slope of the pink line (that intercepts the core in point A)
is the bilateral equilibrium price. The slope of the black line (that intercepts the core in point D) is
the price that gives the greatest advantage to the more skilled participant. The final allocation will
be a point in the core inside the curve AD and the square marks the initial endowments (E)
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they meet a non-cooperative player but still worse than the payoff of the non-
cooperative player. We consider that the bargaining skill g is a continuous variable,
where higher values mean better bargaining skills. Without loss of generality we
can consider that g; > g;. We impose that trade only occurs if g; + g; < 1
and g; — g; € [0, 1]. The pair trades to the point in the core determined by the
price log pg = nlog p + (1 — n) logm; where p is the bilateral equilibrium price,
n = gi—g; and m is the maximum price at which the participant j accepts to trade
determined by the interception of the core with the indifference curve of participant
Jj (equal to the slope of the line [ED] in Fig. 21.3).

We study the effect of the bargaining skills on the increase of the value of the
utility of the participants. Let the variation of the utility function of a participant
uy — ug be the difference between the limit value of the utility function and the
initial value of the utility function. We present, in Fig.21.4, two cumulative distri-
bution functions of the variation of the utility functions, one corresponding to the
less skilled participants (g; = 0.25) and the other corresponding to the more skilled
participants (g; = 0.75). This function indicates the proportion of participants who
have variations of the utility function less than or equal to its argument. In Fig. 21.4a
there are 20% of more skilled participants. We observe that the median of the vari-
ation of the utility function is higher for the more skilled participants. On the other
hand, in Fig. 21.4b, there are 80% of more skilled participants, and we observe that
the median of the variation of the utility function is lower for the more skilled partic-
ipants. We notice that the strategy followed by the minority is the one that provides
a higher median variation in the utility function.

When we compare different values assigned to the bargaining skills of the partic-
ipants, we observe distinct behaviors. When g; = 0, for the less skilled participants
and g; = 1 for the more skilled participants, the trade gives the most advantage pos-
sible to the more skilled participants (the final allocation is represented by point D
in Fig. 21.3). We see that the more skilled participants have a larger median increase

a b
1 1
0.8 0.8
’:5 0.6 ’g: 0.6
| —_ I e .
3 0.4 Au less skilled B 04 Au more skilled
o Y P T O — .
Au more skilled Au less skilled
0.2 0.2
0 g 0
0 0.005 0.01 0.015 0.02 0.025 0 0.005 0.01 0.015 0.02 0.025
Uf - Uo Us — Ug

Fig. 21.4 Cumulative distribution function of the variation of the utility (defined as u y —uy) for the
less skilled participants (black) and for the more skilled participants (red), with g; € {0.25;0.75}.
(a) Simulation with 20 more skilled participants and 80 less skilled participants; (b) Simulation
with 80 more skilled participants and 20 less skilled participants



21 Bargaining Skills in an Edgeworthian Economy 349

06 05 06
osl@ 04stb 0s c
’ 0.4 ’
0.4 0.35 0.4
03 03
025 03
02 02
0.1 \ 045 02
_ ,—/// 0.1
005
/

-0.1 0 0
01 02 03 04 05 06 07 08 09 01 02 03 04 05 06 07 08 09 01 02 03 04 05 06 07 08 09

Fig. 21.5 Variation of the utility (u s — uo) for the less skilled participants (blue/cyan) and for the
more skilled participants (green / yellow). Data from 100 simulations with 100 participants when
the fraction of more skilled participants is 0.1, 0.2, . .., 0.9. Each set of participants has lines for the
minimum percentile, 5%, median (thick line), percentile 95% and maximum. (a) Advantage to the
more skilled participants when g; € {0; 1}; (b) Advantage to the minority when g; € {0.25;0.75};
(¢) Advantage to the less skilled participants when g; € {0.499; 0.501}

in the utility (Fig. 21.5a) for all fractions between 0.1 and 0.9 of more skilled partic-
ipants. In the opposite case, when g; = 0.499, for the less skilled participants and
gi = 0.501 for the more skilled participants, the trade gives a very small advantage
to the more skilled participants (the final allocation is near point A in Fig.21.3). In
this case, the more skilled participants have a smaller median increase in the utility
(Fig. 21.5c) for all fractions between 0.1 and 0.9 of more skilled participants, due to
the impact of the penalization of no trade between them. If we consider g; = 0.25,
for the less skilled participants and g; = 0.75 for the more skilled participants,
the trade gives an intermediate advantage to the more skilled participants (the final
allocation is a point in the core roughly midway between A and D in Fig.21.3).
We observe that the group in minority has the advantage. Namely, for fractions of
more skilled participants between 0.1 and 0.4, these have a higher median increase
in the utility and for fractions of more skilled participants between 0.6 and 0.9, these
have a lower median increase in the utility. For fractions of more skilled participants
near 0.5, the median increase in the utility of the more skilled participants is similar
to the less skilled participants (Fig. 21.5b).

21.5 Evolution of the Bargaining Skills

In this section, at each iteration, a random pair of participants (i, j) is chosen with
trade occurring deviating from the bilateral equilibrium price (as in the previous
section). We consider that the bargaining skill g is a continuous variable, where
higher values mean better bargaining skills. After the trade we allow evolution on
the bargaining skills of the participants of the form g; (t +1) = g; (t) +¢;; 8 () (1 —
gi(t)) according to two distinct rules: (a) the bargaining skills of the participants
increase if they were not able to trade and decrease if they were able to trade; (b)
the bargaining skills of the participants decreases if they were not able to trade and
increase otherwise.
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Fig. 21.6 Variation of the bargaining skills with time. (a) The bargaining skills decrease when
trade is allowed and increase otherwise; (b) The bargaining skills increase when trade is allowed
and decrease otherwise

In case (a) if the sum of their bargaining skills is above the cut point, the partici-
pants are not allowed to trade and both participants’ bargaining skills are increased
(we choose €;; = € > 0). Otherwise, if the sum of their bargaining skills is below
the cut point, the participants will be allowed to trade with advantage to the more
skilled participant. After the trade, the bargaining skills of both participants decrease
(ejj = —e). In this case we observe (see Fig. 21.6a) that the participants’ bargaining
skills converge to one of the two extreme limit values O or 1.

In case (b) if the sum of their bargaining skills is above the cut point, the partic-
ipants are not allowed to trade and their bargaining skills are decreased. Otherwise,
if the sum of their bargaining skills is below the cut point, the participants will
be allowed to trade with advantage to the more skilled participant. After the trade,
the bargaining skills of both participants increase. In this case (see Fig.21.6b) we
observe that the bargaining skills converge to one limit value 1/2.

21.6 Conclusion

We presented a model of an Edgeworthian exchange economy where two goods
are traded in a market place. Under symmetry conditions, prices in a random
exchange economy with two goods, where the agents preferences are character-
ized by the Cobb—Douglas utility function, converge to the Walrasian price. Under
proper symmetry conditions, we conjecture that this result holds for the case of n
goods.

The novelty of our model is that we associated a bargaining skill factor to each
participant which invokes a game similar to the prisoner’s dilemma into the usual
Edgeworth exchange economy. We analyzed the effect of the bargaining skill factor
in the variations of the individual’s amount of goods and in the increase of the value
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of their utilities. For the scenarios presented in this work, it is better to be in the
minority. For instance, if there are a greater number of more skilled participants,
the increase in the value of their utilities is smaller then the increase in the value of
the utilities of the less skilled participants who are in the minority.

The two evolutionary rules presented result in different behaviors. If the bargain-
ing skill decreases when trade is allowed (and increases otherwise), the bargaining
skills of the participants converge over time to one of two extreme limit values,
however, if the bargaining skill increases when trade is allowed (and decreases
otherwise), we observe that the bargaining skill converges over time to the middle
value.
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Chapter 22
Fractional Analysis of Traffic Dynamics

Lino Figueiredo and J.A. Tenreiro Machado

Abstract This article presents a dynamical analysis of several traffic phenom-
ena, applying a new modelling formalism based on the embedding of statistics
and Laplace transform. The new dynamic description integrates the concepts of
fractional calculus leading to a more natural treatment of the continuum of the
Transfer Function parameters intrinsic in this system. The results using system the-
ory tools point out that it is possible to study traffic systems, taking advantage of the
knowledge gathered with automatic control algorithms.

22.1 Dynamical Analysis

In the dynamical analysis of Traffic can be applied the tools of systems theory. In this
line of thought, a set of simulation experiments are developed in order to estimate
the influence of the vehicle speed v(¢;x), the road length [ and the number of lanes
n; in the traffic flow ¢(¢;x) at time ¢ and road coordinate x. For a road with n; lanes
the Transfer Function (TF) between the flow measured by two sensors is calculated
by the expression:

Gri(sixj,x;) = Qr(s:x;)/Pr(s; x;) (22.1)

where k, r = 1,2,...,n; define the lane number and, x; and x; represent the road
coordinates (0 < x; < x; < [). The Fourier Transform for each traffic flow is:

D (s:x7) = Fipr(t:x;)}
Dr (53 x;1) = Figp(t:xi)} (22.2)
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It should be noted that the traffic flow is a time variant system but, in the sequel,
it is shown that the Fourier transform can be used to analyse the system dynamics.

The first group of experiments considers a one-lane road (i.e., k =r = 1) with
length / = 1,000 m. Across the road are placed n; sensors equally spaced. The first
sensor is placed at the beginning of the road (i.e., at x; = 0) and the last sensor at
the end (i.e., at x; =/). Therefore, we calculate the TF between two traffic flows
at the beginning and the end of the road such that, ¢ (¢;0) € [0.12, 1] vehicles s~!
for vehicle speed v (¢;0) € [30, 70]kmh™! that is, for v;(¢;0) € [va, — AV, va, +
Av], where v,, =50kmh™! is the average vehicle speed and Av=20kmh™! is
the maximum speed variation. These values are generated according to a uniform
probability distribution function.

The polar plot result for the TF between the traffic flow at the beginning and end
of the one-lane road G1,1(s; 1000, 0) = &; (s; 1000)/P(s; 0) is distinct from those
usual in systems theory revealing a large variability, as revealed by Fig. 22.1. More-
over, due to the stochastic nature of the phenomena involved different experiments
using the same input range parameters result in different 7Fs.

In fact traffic flow is a complex system but it was shown [1] that, by embed-
ding statistics and Fourier transform (leading to the concept of Statistical Transfer
Function (STF)) [3], we could analyse the system dynamics in the perspective
of systems theory. To illustrate the proposed modelling concept (STF), the sim-
ulation was repeated for a sample of n = 2,000 vehicles and it was observed
the existence of a convergence of the STF, T1,1(s; 1,000, 0), as show in Fig.22.2,
for a one-lane road with length / =1,000m ¢;(¢;0) € [0.12, 1] vehicles s~' and
v1(¢;0) €[30,70] kmh~".

The chart has characteristics similar to those of a low-pass filter with time delay,
common in systems involving transport phenomena. Nevertheless, in our case we

Fig. 22.1 Polar diagram of TF for n = 1 experiment, with ¢;(¢;0) € [0.12, 1] vehicles s~ and
vi(t;0) € [30,70] kmh~!(v,, = 50kmh™!, Ay = 20kmh~!,/ = 1,000m and n; = 1)
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Fig. 22.2 Polar diagram of STF for n = 2,000 experiments, with ¢;(z;0) € [0.12, 1] vehicles
s~land v, (t;0) € [30,70] kmh~!(v,, = 50kmh™!, Ay = 20kmh~!,/ = 1,000m and n; = 2)

need to include the capability of adjusting the description to the continuous variation
of the system working conditions. This requirement precludes the adoption of the
usual integer-order low-pass filter and points out the need for the adoption of a
fractional-order TF. Therefore, in this case we adopt a fractional low pass system
[2] with time delay:

kB e—TS

With this description we get not only a superior adjustment of the numerical
data, impossible with the discrete steps in the case of integer-order TF, but also a
mathematical tool more adapted to the dynamical phenomena involved. For fitting
expression (22.3) with the numerical data it is adopted a two-step method based on
the minimization of the quadratic error. In the first phase (kp, p, o) are obtained
through error amplitude minimization of the Bode diagram. Once established (kp,
P, @), in a second phase, 7 is estimated through the error minimization in the Polar
diagram. For the numerical parameters of Fig.22.2 we get kg = 1.0, T = 96.0s,
p = 0.07 and ¢ = 1.5. The parameters (z, p, «) vary with the average speed vg,
and its range of variation Av, the road length [ and the input vehicle flow ¢;. For
example, Fig. 22.3 shows (t, p, ) versus Av (with vz, = 50kmh™1).

It is interesting to note that (z, p) — (00,0), when Av — vg,, and (7, p) —
(Iv;}, 00), when Av — 0. These results are consistent with our experience that
suggests a pure transport delay 7'(s) ~ ¢~ (v = Iv,}), Av — 0 and T(s) ~ 0,
when Av — v, (because of the existence of a blocking cars, with zero speed, on
the road).

T1,1(s;1000,0) = (22.3)
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Fig. 22.4 Bode diagram of T, (s; 1,000, 0) for (a) v, = 50kmh™! and (b) v,, = 90kmh™!,
n; = 2,1 =1,000m, ¢ (t;0) € [0.12, 1] vehicles s~!, Av = 20kmh™1, k = 1,2

In a second group of experiments are analyzed the characteristics of the STF
matrix for roads with two lanes considering identical traffic conditions (i.e.,
¢r(t;0) € [0.12,1] vehicles s™', k = 1,2, = 1,000, Ay = 20kmh™!).
Figure 22.4a depicts the amplitude Bode diagram of 77 (s;1,000,0) and
T1.2(s;1,000,0) for vg, = 50kmh™! (i.e., v (¢;0) € [30,70] kmh™!).

Figure 22.4a shows that Tj,(s;1,000,0) =~ T»2(s;1,000,0) and Tip
(5;1,000,0) ~ T3,1(s;1,000,0). This property occurs because SITS uses a lane
change logic where, after the overtaking, the vehicle tries to return to the previous
lane. Therefore, lanes 1 and 2 have the same characteristics leading to identical STF.

The Fig.22.4b presents the amplitude Bode diagram of Tj ;(s; 1,000,0) and
T1,2(s; 1,000, 0) for v, = 90kmh~! (i.e., vi(t;0) € [70,110] kmh™1).

Comparing Fig.22.4a and these results, we conclude that the transfer matrix
elements vary significantly with v,,. Moreover, the STF parameter dependence is
similar to the one-lane case represented previously.
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22.2 Conclusions

In this paper several experiments were carried out in order to analyse the dynamics
of the traffic systems. Bearing these ideas in mind it was adopted a formalism based
on the tools of systems theory. Moreover, the new dynamic description integrated the
concepts of fractional calculus lead to a more natural treatment of the continuum of
the TF parameters intrinsic in this system. The results pointed out that it is possible
to study traffic systems.
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Chapter 23
The Set of Planar Orbits of Second Species
in the RTBP

Joaquim Font, Ana Nunes, and Carles Simo

Abstract We present a brief summary of the conclusions of our work on the set of
orbits of the planar circular restricted three body problem which undergo consec-
utive close encounters with the small primary, or orbits of second species. In this
study, the value of the Jacobi constant is fixed, and we consider consecutive close
encounters which occur within a maximal time interval. With these restrictions, the
full set of orbits of second species is found numerically from the intersections of the
stable and unstable manifolds of the collision singularity on the surface of section
that corresponds to passage through the pericentre. A “skeleton” of this set of curves
can be computed from the solutions of the two-body problem. The set of intersection
points found in this limit corresponds to the S-arcs and T-arcs of Hénon’s classifi-
cation which verify the energy and time constraints, and can be used to construct
an alphabet to describe the orbits of second species. We find periodic orbits that
combine S-type and T-type quasi-homoclinic arcs and we determine the symbolic
dynamics of the full set of orbits of second species.

23.1 A Summary of Results about the Problem

In his study of the three body problem, Poincaré conjectured the existence of peri-
odic orbits that for small values of two of the masses are close to sequences of arcs
of Keplerian ellipses, glued together at singularities that correspond to collisions of
the two zero mass bodies [1]. In the perturbed problem, these singularities would be
replaced by close encounters that would shift the orbital elements of the approximate
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Keplerian orbits. Poincaré named these periodic orbits “of second species”, to distin-
guish them from the periodic orbits “of first species”, which do not involve passages
close to singularities.

The challenge of providing rigorous proof of the existence, and a characteriza-
tion, of the periodic orbits of second species has been taken in the simpler setting
of the planar circular restricted three body problem (PCRTBP) in several analytic
and numerical studies during the past 40 years, starting with Hénon’s paper on the
description of the families of limit orbits with consecutive collisions [2, 3]. These
limit orbits are formed by arcs, which are pieces of Keplerian ellipses that begin and
end in a collision, and an arc is called of type S (resp. T) if it begins and ends at
different points (resp. at the same point) on the ellipse. In the rotating frame of ref-
erence of the restricted three body problem orbits formed by S arcs are symmetric
with respect to the line joining the two primaries, while orbits that contain T arcs
are in general not symmetric.

The existence of a large set of periodic and chaotic orbits of second species that
are close to sequences of arcs of type T was proved in [4] for the circular prob-
lem, and a similar result was later reported in [5], where a numerical study of these
in general asymmetric periodic orbits was also presented. The results of [5] were
extended in [6] to include the orbits that converge to sequences that combine arcs
of type S and arcs of type T, and the symbolic dynamics for the whole set of pla-
nar orbits of second species, that is, orbits either periodic or chaotic with infinitely
many close encounters with the small primary, was obtained: every infinite periodic
sequence of S- and T-arcs which does not contain two identical T-arcs in succession
is the limit when the mass parameter © — 0 of a family of periodic orbits of the
planar restricted three body problem. The symbolic dynamics on this large subshift
of the full shift implies, in particular, the existence for p small enough of periodic
orbits that combine arcs of types S and T. Here we present a brief summary of the
approach followed in [6], and a numerical example of this type of periodic orbits.

Consider the PCRTBP, choosing as usual appropriate mass, length and time units
so that the masses of the two primaries are m; = 1 — pu for the large primary,
and m, = p for the small primary M, the angular velocity of their motion around
the fixed centre of mass is 1 and their positions in the plane are given in synodic
coordinates by (u,0) and (i — 1, 0), respectively. We have studied the intersection
of the stable and unstable invariant manifolds of collision at M with the passage
through the pericentre surface of section, as a means to characterize the set of
all the orbits that, for a given value of the Jacobi constant C; and of the mass
parameter 1, undergo consecutive close encounters with the small primary M . This
intersection can be obtained numerically using the regularized equations of motion
and the symmetry of the system. The first intersection of the stable and unstable
manifolds of collision with the passage through the pericentre surface of section is
shown in Fig. 23.1, where we have imposed a bound of 87 on the integration time.
The fifteen homoclinic points where these curves intersect each other correspond to
ejection-collision orbits with exactly one intermediate passage through the pericen-
tre. Eleven out of these fifteen orbits take less than 8z time units from ejection to
collision.
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Fig. 23.1 The first 1
intersection of the stable
(dashed line) and unstable
(full line) manifold of
collision with the passage
through the pericentre surface
of section for C; = 2.8 and
w=10"*

-1 -0.5 0 0.5 1

We restrict the study to orbits such that consecutive encounters occur within time
intervals smaller than a multiple g of 2w, and such that the number of passages
through the pericentre in between close encounters does not exceed p. For C;y = 2.8
and within the imposed cut-off of ¢ = p = 4, the homoclinic points are organized
in 41 families, each of which corresponds to a basic homoclinic orbit, that is, a
homoclinic orbit that involves no intermediate close encounters. In the limit when
n — 0, these basic homoclinic orbits tend to the orbits of the two-body problem
associated with the S-arcs and T-arcs of Hénon’s classification that are compatible
with the constraints on the value of Cy, and with the bounds imposed on time and
on the number of passages through the pericentre. For C; = 2.8, and p = ¢ =
4 the 41 basic homoclinic orbits of the rotating two-body problem are 18 T-arcs
(T, p,q,s), where p and g are the integers that denote the number of full turns of
the massless body and of the reference frame, respectively, that take place along the
orbit and s = +1 (resp. s = —1) for the ingoing (resp. outgoing) orbits; and 23
S-arcs (S, p, g, $).

Let the set of initial conditions exiting the circle € of radius u® around the
small primary M be parameterized by the angles ¢ and . To each one of the
admissible 41 basic homoclinic orbits for C; = 2.8 and p = g = 4 corresponds a
(X, p,q,s)-homoclinic strip, X € {T,S} and s = %1 in the (¢, ) torus of initial
conditions of orbits that leave % and return to ¢ and are in the meantime close to the
basic homoclinic orbit (X, p, g, s) of the unperturbed problem. The return map on
the homoclinic strips can be approximated analytically by taking the composition
of two different approximate integrable problems in and out of the circle ¥ and
tuning the parameter « to 2/5. It is a horseshoe map on a subset of the set of all the
homoclinic strips. The symbolic dynamics in the small x limit can be obtained from
this approximation of the return map. It differs from the full shift on the alphabet of
41 symbols that corresponds to the admissible two-body problem homoclinic arcs
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Fig. 23.2 A periodic orbits which combines a T-arc with an S-arc. On the right, and from top to
bottom, we display successive magnifications of the passages close to collision

only in that every transition (7, p,q,s) — (T, p,q,s) is forbidden. In general the
following holds:

Theorem 23.1. For a given upper bound N on p and q, |1 can be chosen small
enough so that, for Cj outside a finite union of small intervals, the set of all the
orbits of the second species is described by a subshift on the alphabet of all the
admissible S- and T-arcs of the two body problem, for which the only forbidden
transition is the one that concatenates two identical resonant homoclinic arcs.

For the selected value of C; = 2.8 and for u = 1074, the shift that describes
the dynamics of the planar orbits of second species built with arcs that verify the
constraints imposed on time and number of intermediate pericentre passages is still a
large subshift of the full shift, although a few other transitions besides (7, p, ¢, s) —
(T, p,q, s) have to be excluded. In particular, there are periodic orbits that combine
T-arcs and S-arcs, such as the one shown in Fig. 23.2.
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Chapter 24
Statistical Properties of the Maximum
for Non-Uniformly Hyperbolic Dynamics

Ana Cristina Moreira Freitas, Jorge Milhazes Freitas, and Mike Todd

Abstract We study the asymptotic distribution of the partial maximum of observ-
able random variables evaluated along the orbits of some particular dynamical
systems. Moreover, we show the link between Extreme Value Theory and Hit-
ting Time Statistics for discrete time non-uniformly hyperbolic dynamical systems.
This relation allows to study Hitting Time Statistics with tools from Extreme Value
Theory, and vice versa.

24.1 Introduction

Consider a discrete time dynamical system (2, %, u, f), where 2 is a
d-dimensional Riemannian manifold, 4 is the Borel o-algebra, f : 2" — 2 isa
measurable map and p an f-invariant probability measure, absolutely continuous
with respect to Lebesgue measure (acip), with density denoted by p = %.

Given an observable ¢ : 2" — R U {£o00} achieving a global maximum at { €
Z (we allow ¢(¢) = +00), consider the stationary stochastic process Xg, X1, ...
defined by

Xn =¢o f", foreachn € N. (24.1)

Here, we are particularly interested on the statistical properties of the partial

maximum
M, := max{Xo,..., Xn-1},

when properly normalised.
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The study of distributional properties of the higher order statistics of a sample,
like the maximum of the sample, is the purpose of Extreme Value Theory (EVT).

24.2 Extreme Value Laws

We are interested in knowing if there are normalising sequences {a, }nen C R and
{bn}nen C R such that

p@x an(Mp —bp) < y}) = p({x : My < unj) — H(y), (24.2)

for some non-degenerate distribution function (d.f.) H, as n — oo. Here u, :=
un(y) = y/an + by is such that

nu(Xo > up) > t, asn — 0o, (24.3)

for some © = t(y) > 0 and in fact H(y) = H(z(y)). When this happens we say
that we have an Extreme Value Law (EVL) for M,,. Note that, clearly, we must have
up, — ¢(¢),asn — oo.

Classical Extreme Value Theory asserts that there are only three types of non-
degenerate asymptotic distributions for the maximum of an independent and identi-
cally distributed (i.i.d.) sample under linear normalisation. They will be referred to
as classical EVLs and we denote them by:

Type 1: EVi(y) = e~ ", y € R; this is also known as the Gumbel extreme value
distribution (e.v.d.)

y>0
y=<0
functions is known as the Fréchet e.v.d.

_y—ﬂt
Type 2: EVa(y) = {Z ’ (¢ > 0); this family of distribution

e~ y <0

Type 3: EVi(y) = {1 0 (¢ > 0); this family of distribution
) y >

functions is known as the Weibull e.v.d.

It is also known that the limiting behaviour for maxima of a stationary process
can be reduced, under adequate conditions on the dependence structure, to the Clas-
sical Extreme Value Theory for sequences of i.i.d. random variables (r.v.). Hence, to
the stationary process Xy, X1, ... defined in (24.1) we associate an i.i.d. sequence
Zo,Z1, ..., whose distribution function (d.f.) is the same of Xy and whose partial
maximum we define as

A~

M, ;= max{Zy,...,Zp—1}. (24.4)

Let us focus on the conditions that allow us to relate the asymptotic distri-
bution of M, with that of M,. Following [14] we refer to these conditions as
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D(uy,) and D’(uy), where u, is a suitable sequence of thresholds converging to
max,e[—1,1] Xo(x), as n goes to co. D(u,) imposes a certain type of distributional
mixing property. Essentially, it says that the dependence between some special type
of events fades away as they become more and more apart in the time line. D’ (uy)
restricts the appearance of clusters, that is, it makes the occurrence of consecutive
‘exceedances’ of the level u,, an unlikely event.

Let the d.f. F be given by

Fu) = n(Xo < u).

We say that an exceedance of the level u, occurs at time i if X; > u,. The prob-
ability of such an exceedance is 1 — F (i) and so the mean value of the number
of exceedances occurring up to n is n(1 — F(uy)). The sequences of levels u, we
consider are such that

n(l — F(up)) — 1, asn — 00,

for some T > 0, which means that, in a time period of length 7, the expected number
of exceedances is approximately t.

The original condition D(uy,) from [14], which we will denote by D1 (uy), is
a type of uniform mixing requirement specially adapted to Extreme Value Theory.
In this context, the events of interest are those of the form {X; < u} and their

intersections. Observe that {M,, < u} is just {Xo < u,..., Xp—1 < u}. A natural
mixing condition in this context is the following. Let F;, . ;, (x1,...,Xx,) denote
the jointd.f. of X;,,..., X;,,and set F;,, _;, () = Fi,,. i, (u, ... u).

Condition D1 (u,). We say that D1 (u,) holds for the sequence Xy, X1, ... if for
any integers iy < ... <1ipand j; < ... < ji for which j; —i, > m, and any large
neN,

|Fi1,...,ip,j1,...,jk (tn) = Fiy,oip ) Fjy .k (u,,)| <y(n,m),

where y(n,m,) — 0, as n — oo, for some sequence m, = o(n).

In [8], we verify that condition D1 (u,) can be stated in a weaker form and the
result still prevails. The advantage of having this weaker requirement is that, in
the context of Dynamical Systems, the new condition should follow from decay
of correlations. Motivated by the work of [6], we proposed, in [8], the following
weaker version of condition D1(uy,), that we denote by D5 (uy,):

Condition D;(u,). We say that D, (uy,) holds for the sequence Xo, X1, X2, ...
if for any integers £, ¢t and n

w({Xo > upy N {max{X;, ..., X;pj—1} < un})
— 1 Xo > un (Mg < un}) < y(n,t),

where y(n,t) is nonincreasing in ¢ for each n and ny(n,t,) — 0 as n — oo for
some sequence t, = o(n).
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The sequence u, is such that the average number of exceedances in the time
interval {0, ..., [n/k]} is approximately t/k, which goes to zero as k — oco. How-
ever, the exceedances may have a tendency to be concentrated in the time period
following the first exceedance at time 0. To avoid this we introduce

Condition D’(u;). We say that D’(u,) holds for the sequence Xo, X1, X5, ... if

[n/k]
lim limsup n E w({Xo > un} N{X; > un}) =0.
oo

k—o00 n—

Jj=1

This guarantees that the exceedances should appear scattered through the time
period {0, ...,n — 1}.

In [8] we have shown that M,, and Mn, conveniently normalised, have the same
asymptotic distribution under D5 (u,,) and D’ (uy).

Theorem 24.1. [8, Theorem 1] Let (un)nenN be such that npu(X > u,) = n(l —
F(up)) — t, as n — oo, for some t > 0. Assume that conditions D,(u,) and
D’ (uy) hold. Then

lim u(M, <u,)= lim M(M,, < uy).
n—-oo n—oo

24.3 Extreme Value Laws for Benedicks-Carleson
Quadratic Maps

In [7], we consider the quadratic maps f,(x) = 1 —ax? on I = [—1,1], with
a € BC, where AC is the Benedicks-Carleson parameter set introduced in [1].
The set ZC has positive Lebesgue measure and is built in such a way that, for
every a € AC, the Collet-Eckmann condition holds: there is exponential growth of
the derivative of f,; along the critical orbit, i.e., there is ¢ > 0 such that

(ARTAONES

for all n € N. This property guarantees not only the non-existence of an attracting
periodic orbit but also the existence of an ergodic f,-invariant probability measure
g that is absolutely continuous with respect to Lebesgue measure on [—1, 1].
In [7], we consider the particular stationary stochastic process Xo, X7, ...
defined by
Xn = fa(Xn—1) = fJ'(Xo), foreachn € N. (24.5)

This way, we obtain a stationary stochastic process Xo, X1, ... with common
marginal d.f. given by G,(x) = puga{Xo < x}.

The main result of [7] states that the limiting law of M, is the same as if
Xo, X1,... were independent with the same d.f. G,. In fact we verify that,
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under appropriate normalisation, the asymptotic distribution of M, is of Type
I (Weibull). As usual, we denote by G, ! the generalised inverse of the d.f. G,
which is to say that G, 1 (y) := inf{x : G,(x) > y}.

Theorem 24.2. [8, Theorem A] For each a € ABC and every stationary stochastic
process X, X1, ... given by (24.5), we have:

—(—x)1/? <0

e , ox <
Hatan(My — 1) < x} — H(x) = )
1, x>0

where a, = (1 — Ga_1 (1 — %))_1.
Based on Theorem 24.1, our strategy to prove Theorem 24.2 was the following:

e Compute the limiting distribution of M,, defined as in (24.4) and the associated
normalisAing sequences a, and by, that is, the sequences a, and b, such that
Walan (M, — by) < x} — H(x) for some non-degenerate d.f. H.

e Show that conditions D(u,) and D’(uy,) are valid for the stochastic process
Xo, X1, ... defined in (24.5), where u, := u,(x) = x/a, + b, is such that
nig(X > uy) — t,as n — oo, for some 7 > 0.

24.4 General Characterisation of the Observables

We next turn again to the general case where 2 is a d-dimensional Riemannian
manifold, f : 2~ — % is a measurable map and

X, =¢o f", foreachn € N,

for an observable ¢ : 2~ — R U {£o0} achieving a global maximum at ¢ € 2.
We assume that the observable ¢ is of the form

p(x) = g(dist(x, 7)), (24.6)

where ‘dist’ denotes the usual Euclidean distance, the function g : [0, +00) —
R U {400} has a global maximum at 0, is a strictly decreasing bijectiong : V. — W
in a neighbourhood V' of 0 and has one of the following three types of behaviour:

Type 1: there exists some strictly positive function p : W — R such that for all
yeR

gi (s +yp(s)) =

s—g1(0) gl_l(s) B ’
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Type 2: g2(0) = 400 and there exists § > 0 such that for all y > 0

&'y 4

’

lim T =
s—>+oo g (s)

Type 3: g3(0) = D < +o0 and there exists y > 0 such that forall y > 0

&' (D=sy)
im =——— =
s—>0 g3 (D —)

Examples of each one of the three types are as follows: g1(x) = —logux,
g2(x) = x Y for some & > 0 and g3(x) = D — x/* for some D € R and
a>0.

Observe that if at time j € N we have an exceedance of the level u (sufficiently
large), i.e., X;(x) > u, then we have an entrance of the orbit of x into the ball of
radius g~ ! (u) around ¢, Bg—1(,y(0), attime j.

Based on this fact, we recently demonstrated in [9] the link between Extreme
Value Theory and Hitting Time Statistics (HTS).

24.5 Hitting Time Statistics

Foraset A C Z we let r4(y) denote the first hitting time to A of the point y,
that is,

ra(y) =min{j € N: f/(y) € 4},

We are interested in the fluctuations of this functions as the set A shrinks. Firstly

we consider the Return Time Statistics (RTS) of this system. Let 4 denote the

conditional measure on A4, i.e., (Lg := ;fb(lﬁ)' By Kac’s Lemma, the expected value

of r4 with respect to u is fA radiug = 1/u(A). So in studying the fluctuations of
r4 on A, the relevant normalising factor is 1/ (A).

Given a sequence of sets {Uy},en so that u(U,) — 0, the system has Return
Time Statistics G(t) for {Uy,}nen if for all ¢ > 0 the following limit exists and
equals G (t):

t
li > . 24.7
i (0= ) D

We say that (%, f, u) has Return Time Statistics G(t) to balls at ¢ if for any
sequence {8, nen C RT such that §, — 0 as n — oo we have RTS G(t) for
Uy = Bs, (0).

If we study r4 defined on the whole of 2, i.e., not simply restricted to A4, we
are studying the Hitting Time Statistics. Note that we will use the same normalising
factor 1/14(A) in this case.
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Analogously to the above, given a sequence of sets {Uy, }nen so that u(U,) — 0,
the system has Hitting Time Statistics G(t) for {U, }nen if for all # > 0 the following
limit is defined and equals G(¢):

. t
nll)n;ou (rUn > M(Un)) . (24.8)

HTS to balls at a point ¢ is defined analogously to RTS to balls.

In [10], it was shown that the limit for the HTS defined in (24.8) exists if and only
if the limit for the analogous RTS defined in (24.7) exists. Moreover, they show that
the HTS distribution exists and is exponential ( i.e., G(¢) = e~") if and only if the
RTS distribution exists and is exponential.

For many mixing systems it is known that the HTS are exponential around almost
every point. For example, this was shown for Axiom A diffeomorphisms in [11],
transitive Markov chains in [15] and uniformly expanding maps of the interval in [5].

For non-uniformly hyperbolic systems less is known. A major breakthrough in
the study of HTS/RTS for non-uniformly hyperbolic maps was made in [12], where
they gave a set of conditions which, when satisfied, imply exponential RT'S to cylin-
ders and/or balls. Their principal application was to maps of the interval with an
indifferent fixed point.

Another important paper was [2], in which they showed that the RTS for a map
are the same as the RTS for the first return map. (The first return map to a set
U C Z isthemap F = f'U.) Since it is often the case that the first return maps
for non-uniformly hyperbolic dynamical systems are much better behaved (possibly
hyperbolic) than the original system, this provided an extremely useful tool in this
theory. For example, they proved thatif f : I — [ is a unimodal map for which the
critical point is nowhere dense, and for which an acip u exists, then the relevant first
return systems (U, F, py) have a ‘Rychlik’ property. They then showed that such
systems, studied in [16], must have exponential RTS, and hence the original system
(1, f, ;t) also has exponential RTS (to balls around p-a.e. point).

The presence of a recurrent critical point means that the first return map itself will
not satisfy this Rychlik property. To overcome this problem in [4] special induced
maps, (U, F), were used, where for x € U we have F(x) = f™®(x) for some
inducing time ind(x) € N that is not necessarily the first return time of x to U.
The fact that these particular maps can be seen as first return maps in the canonical
Markov extension, the ‘Hofbauer tower’, meant that they were still able to exploit
the main result of [2] to get exponential RTS around p-a.e. point for unimodal maps
f I — I with an acip u as long as f satisfies a polynomial growth condition
along the critical orbit. In [3] this result was improved to include any multimodal
map with an acip, irrespective of the growth along the critical orbits, and of the
speed of mixing.
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24.6 The Link between Hitting Time Statistics and Extreme
Value Theory

In [9] we establish two main results. In the first one, we obtain EVLs from HTS.

Theorem 24.3. [9, Theorem 1] Let (%, B, i, f) be a dynamical system where
W is an acip, and consider ¢ € X for which Lebesgue’s Differentiation Theorem
holds.

o Ifwe have HTS to balls centred on { € 2, then we have an EVL for M,, which
applies to the observables (24.6) achieving a maximum at C.

o If we have exponential HTS (G(t) = e¢7?) to balls at { € X, then we have an
EVL for M, which coincides with that oan. In particular, this EVL must be one
of the 3 classical types. Moreover, if g is of type g;, for some i € {1,2,3}, then
we have an EVL for My, of type EV;.

We next define a class of multimodal interval maps f : I — I. We denote the
finite set of critical points by Crit. We say that ¢ € Crit is non-flat if there exists a
diffeomorphism ¥, : R — R with ¥.(0) = Oand 1 < £, < oo such that for x close
toc, f(x) = f(c) £ [¥e(x — c)|. The value of £, is known as the critical order
of c. Let

NFk .= {f 1 — I: fis CK, eachc e Critis non-flat and

inf |Df" > 17 .
Lint_ D" (p)

The following is a simple corollary of Theorem 24.3 and [3, Theorem 3]. It gen-
eralises the result of Collet in [6] from unimodal maps with exponential growth on
the critical point to multimodal maps where we only need to know that there is an
acip.

Corollary 24.1. Suppose that f € NF? and f has an acip j. Then (I, f. 1) has
an EVL for M,, which coincides with that oan, and this holds for p-a.e. { € &
fixed at the choice of the observable in (24.6). Moreover, the EVL is of type EV;
when the observables are of type g;, for eachi € {1,2,3}.

In the next result, we show how to get HTS from EVLs.

Theorem 24.4. [9, Theorem 2] Let (27, B, |1, [) be a dynamical system where |
is an acip and consider ¢ € 2 for which Lebesgue’s Differentiation Theorem holds.

e Ifwe have an EVL for M, which applies to the observables (24.6) achieving a
maximum at { € 2 then we have HTS to balls at {.

e If we have an EVL for M, which coincides with that of M, then we have
exponential HTS (G(t) = e™!) to balls at ¢.

The following is immediate by the above and Theorem 24.1.
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Corollary 24.2. Let (2, B, i, ) be a dynamical system where | is an acip and
consider ¢ € X for which Lebesgue’s Differentiation Theorem holds. If D, (uy) (or
D1(un)) and D' (uy) hold for a stochastic process Xg, X1, . .. defined by (24.1) and
(24.6), where uy, is a sequence of levels satisfying (24.3), then we have exponential
HTS to balls at €.

The following is an immediate corollary of Theorems 24.4 and 24.2.

Corollary 24.3. For every Benedicks-Carleson quadratic map f, (with a € #C)
we have exponential HTS to balls around the critical point or the critical value.

The next result is a byproduct of Theorems 24.3, 24.4 and the fact that under
D1 (uy) the only possible limit laws for partial maximums are the classical EV; for
i €{1,2,3}.

Corollary 24.4. Let (27, B, i, ) be a dynamical system, | is an acip and con-
sider ¢ € X for which Lebesgue’s Differentiation Theorem holds. If D1(uy,) holds
for a stochastic process Xo, X1, ... defined by (24.1) and (24.6), where uy is a
sequence of levels satisfying (24.3), then the only possible HTS to balls around ¢
are of exponential type, meaning that, there is @ > 0 such that G(t) = e~ ?".

As we have seen, the relation established in Theorems 24.3 and 24.4 allows to
study Hitting Time Statistics with tools from Extreme Value Theory, and vice-versa.
In [9], we also give applications of this theory to higher dimensional examples,
for which we also obtain classical extreme value laws and exponential hitting time
statistics (for balls). In the same work, we extend these ideas to the subsequent
returns to asymptotically small sets, linking the Poisson statistics of both processes.
More precisely, we show that the point process of hitting times has a Poisson limit
if and only if the point process of exceedances has a Poisson limit.

Extreme Value Laws have also recently been proved in [13] for continuous time
dynamical systems (flows) with acips, as well as for potentials like those presented
here, but with multiple maxima.

Acknowledgements MT is supported by FCT grant SFRH/BPD/26521/2006. All three authors
are supported by FCT through CMUP.
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Chapter 25
Adaptive Learning and Central Bank
Inattentiveness in Optimal Monetary Policy

Orlando Gomes, Vivaldo M. Mendes, and Diana A. Mendes

Abstract This paper analyzes the dynamic properties of a standard New Keyne-
sian monetary policy model in which private agents expectations are formed under
a learning mechanism while the central bank believes they follow the hypothesis of
rational expectations. By assuming a gain sequence that is asymptotically constant,
explicit local and global stability conditions are derived. The main results are that
stability is guaranteed even in cases in which full convergence to the rational expec-
tations equilibrium is not attainable; furthermore, endogenous business cycles are
likely to arise.

25.1 Introduction

A large amount of literature on the formation of macroeconomic expectations
through learning has been produced over the last few years. The motivation for
this literature can be found in the seminal paper by Marcet and Sargent [7], who
questioned the plausibility of the notion of rational expectations as developed and
applied by Muth [8] and Lucas [6].

Under learning, instead of knowing the true process underlying the evolution
of economic aggregates, the agents will choose a rule that is used to predict future
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outcomes based on past information. As new information arrives and becomes avail-
able, the learning skills improve and the rule is updated. A continuing process of
improved learning will then probably lead to an asymptotic long run fixed point that
may coincide with the rational expectations equilibrium (REE). This hypothetical
convergence to the REE is one of the most relevant properties of learning schemes,
as initially remarked by Marcet and Sargent [7], or by Beeby et al. [2, pp. 5] who
pointed out that “the attraction of learning then is that it allows agents to make
mistakes in the short-run, but not in the long-run”.

There are several ways in which learning can be modeled in the field of macroe-
conomics. The one that has received more attention in the literature is adaptive
learning, and it is in this learning mechanism that we will focus our attention.'

Results other than the fixed point associated with full rationality are obtainable
in adaptive learning settings. Such results may include, as in this paper, periodic and
aperiodic long run cycles. The eventual presence of cycles is dependent on the spe-
cific form of the gain sequence measuring the sensitivity of estimates to new data.
As new information adds to the existing one, the gain should be decreasing, shrink-
ing asymptotically towards zero. Nevertheless, model misspecification or some kind
of imperfect knowledge assumption lead us to accept that the gain sequence may not
effectively fall to zero. The idea of constant gain learning — i.e., of persistent learn-
ing dynamics — does not seem an unreasonable assumption, and in many settings it
can be more appropriate than a simple complete learning scheme with convergence
to the REE. Constant gain forms the crucial element upon which the basic results of
the paper are derived.’

The remainder of the paper is organized as follows. Section 25.2 briefly presents
the benchmark optimal monetary policy model. Section 25.3 studies the dynamic
behavior of the model under learning, assuming that the monetary authority over-
looks such learning process by private agents. Section 25.4 concludes.

25.2 The Optimal Monetary Policy Model

The benchmark model is a fully deterministic version of the New Keynesian mon-
etary policy problem (see Woodford [9]). The state of the economy is given by two
dynamic equations. First, an IS equation, which establishes a relation of opposite
sign between the output gap, x;, and the expected real interest rate, iy — E;m;41.
The output gap is defined as the difference in logs between effective output and
some measure of potential output; the inflation rate, m;, is simply the variation rate
of the price level, while in the real interest rate expression, i; represents the nominal

! An extensive survey on macroeconomic issues where adaptive learning is involved is presented
in Evans and Honkapohja [4].

2 See Cellarier [3], for the development of a model (in the case, a growth model) where cycles arise
as a direct consequence of constant gain. For a thorough and rigorous discussion of the implications
of adaptive learning over long-run dynamics in general equilibrium settings, see Grandmont [5].
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interest rate and E; is the expectations operator. The complete IS relation is given by,
Xy = —@(ir — E¢mti41) + Erxet1, Xo given. (25.1)

where ¢ > 0 is an elasticity parameter.

On the supply side, we assume a New Keynesian Phillips curve, according to
which there is a positive relation between the contemporaneous values of inflation
and the output gap. The current value of inflation also suffers the influence of the
expected value of inflation for the next period. The equation is

7w = Axy + BEs 41, o given. (25.2)

In (25.2), parameter A € (0, 1) is a measure of price flexibility. The closer
this value is to zero, the stronger is the degree of price stickiness or sluggishness.
Constant 8 € (0, 1) is the intertemporal discount factor.

The monetary authority is supposed to control the value of the nominal interest
rate in order to attain some policy goals. We consider that the central bank aims
at an inflation rate level 7* and at an output gap x™ (the current practice of mon-
etary authorities points to low but positive inflation and output gap targets). The
central bank also attributes different degrees of relevance to the two policy goals.
The objective function is

Vo =Ep

1-‘roo
=52 B [ = 7" +atx —x*)?] (25.3)
t=0

where parameter a > 0 represents the weight of the output gap objective, relatively
to the inflation goal, in the monetary authority objective function.

By maximizing Vj subject to (25.1) and (25.2), the central bank chooses the opti-
mal path for the nominal interest rate. Computing first-order optimality conditions,
one obtains the dynamic relation

A2 A Ao,
E,x,.H =14+ — Xt ——T; +—71 (254)
ap ap a

The dynamics of the monetary policy problem are addressable with the informa-
tion given by the Phillips curve in (25.2) and by (25.4). Defining the steady state as
the point (X, 7) such thatx = x; = E;x;4+1 and w = 7y = E;ms41, one encounters
the result (X, ﬁ):(%n*; 7{*).

The system can be presented in matricial form by

— 22 A —
EtxH'l_%jT* _| "t~ . x,—%n* (25.5)
Eimipq —* —% % - | '
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Let J be the Jacobian matrix in system (25.5). This possesses two eigenvalues,
0 < &1 < 1and ey > 1, such that

£1,& = (256)

a(l 4 p) + A2 al+p)+ 127 1
]
Under the case in which the central bank assumes that private expectations about
inflation follow the hypothesis of rational expectations, the system is character-
ized by a saddle-path stable equilibrium: in the two-dimensional space that defines
the system, one direction is stable while the other is unstable. By computing the
eigenvectors associated with each of the eigenvalues, the following expressions are
derived for the stable and unstable trajectories, respectively,

_BU—e) . 1-pe

y i (25.7)

Xt

Blea—1) ,  Pea—1
P
Replacing the output gap expressions in (25.7) and (25.8) into the Phillips curve
(25.2), one finds, respectively,

X = (25.8)

Emiyr=e1m+ (1 —g)n* (25.9)

Eimtiq1 = eamy — (e — D)™ (25.10)

where (25.9) is stable (it corresponds to the inflation dynamics when the stable path
is followed) and (25.10) is unstable (it corresponds to the inflation dynamics when
the unstable path is followed).

25.3 Inattentive Central Bank

The central bank intertemporal optimization problem may be solved by assuming
that private agents have rational expectations, as in the previous section. However,
although the central bank may stick to this belief, private agents might act differently
and use some kind of learning rule to form expectations concerning inflation. Here,
we follow the mechanism of expectations formation used in Adam et al. [1].

Expectations concerning next period inflation are formed using present and past
information. We specify expectations under learning as E;m;41 = by 7y, where by
is an estimator of inflation based on past information. The mechanism of learning
obeys to the rule

TTr—1

by =b;_1 + 0y ( - bt_l) , bo given. (25.11)

TTt—2
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Variable o; € [0, 1] is attached to the notion of gain sequence. Convergence to
the REE implies 0y — 0; if 6, — o € (0, 1), constant gain holds. The value & may
be interpreted as a measure of the quality of the learning process; the closer it is to
zero, the more efficient is learning (or, in other words, less relevant is the loss of
memory).

25.3.1 Local Stability

Under our setting, the monetary authority sets the interest rate in an optimal tra-
jectory, which has two arms, one stable, (25.9), and the other unstable, (25.10).
Although these equations arise from the assumption that the central bank follows
perfect foresight, the private economy effectively learns over time, and therefore the
estimator b; may be presented as b; = E”;—i“ =g+ 0- 81)% (if the stable tra-

jectory is followed) and b; = @ =& — (82— 1)’;—? (if the unstable trajectory

is followed). Replacing these expressions in (25.11), one arrives to the following
system,

(I—gj)m*
o1 (Z—ei )+ (-0 DA—NEr | = 1 2 (25.12)
+1 = T

Tt+1 =

Variable z; is defined as the inflation rate in period ¢ — 1. To synthesize, we must
stress that system (25.12) characterizes the admissible inflation rate paths when (a)
the central bank adopts an optimal interest rate rule, assuming that private agents are
fully rational regarding their expectations; (b) agents predict inflation rates under a
learning scheme.

Both cases in (25.12) have a unique steady state point (77,z) = (z7*, 7*). In the
vicinity of this steady state we can study the stability of the system by considering
the following linearization:

|:7n+1 —n*} _ [(1—5)— e T } . [”t _”*] i=12 (25.13)

Zz+1—71'* 1 0 Zt—fl'*

A first relevant result is straightforward to obtain from (25.13),

Proposition 25.1. In the optimal monetary policy problem in which the mone-
tary authority overlooks the evidence that the private economy forms expectations
through learning, the following local stability results are obtained:

Case 1. Under (25.9),
o IfT < 2(31_—_;1‘) the system is stable.
e Ifo = 2(31_—_;1‘), the system undergoes a flip bifurcation.

o IfT > 2(31__:1‘), the system is saddle-path stable.
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Case 2. Under (25.10),

e If 0 < &y — 1, the system is stable.
e If 0 = gy — 1, the system undergoes a Neimark—Sacker bifurcation.
e If 0 > gy — 1, the system is unstable.

Proof. Trace and determinant of the J acobian matrix in system (25 13) are Tr(J )
(1—-0)— 2= and Det(J) =
crete time systems are the followmg 1 —Tr(J)+Det(J) > 0,1 +Tr(J) +Det(J) >
0 and 1 — Det(J) > 0. These expressions correspond, in the present case, respec-
tively to o > 0,2—5—2% > 0and 1 + —Z- > 0. Fori = 1, the first and
2(1 81)

g
1—¢;
the third inequalities are satisfied; the second requires o < , as specified in
the proposition. If the opposite condition holds, then the system 1s saddle -path sta-
ble [because condition 1 4+ Tr(J) 4+ Det(J) > 0 is violated]. In the point in which
1 4+ Tr(J) + Det(J) = 0, the system undergoes a flip bifurcation.

For i = 2, the first and the second stability conditions are satisfied, while the
third requires o < g5 — 1. If 0 > &5 — 1, then Det(J) > 1, and therefore the system
falls in the instability region. When o = ¢, — 1 (i.e., Det(J) = 1), the eigenvalues
of the Jacobian matrix turn into two complex conjugate values with modulus equal
to 1, and the system undergoes a Neimark—Sacker bifurcation. O

If we combine the trace and the determinant expressions of the Jacobian matrix
in (25.13), the equation Det(J) = Tr(J) — (1 — 0) is obtained. This relation is
depicted graphically in Fig. 25.1.

The three lines that form the inverted triangle, in Fig. 25.1, are bifurcation lines.
The area inside the triangle corresponds to the region of stability (two eigenvalues
inside the unit circle). The bold line relates to the location of system (25.13) in terms
of the trace-determinant relation.

Especially relevant is the fact that, in both cases in Proposition 25.1, stability
holds for low values of & (near zero). This means that the learning process does not

Det(J)

Fig. 25.1 Local inflation dynamics under learning
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need to be fully efficient (i.e. to converge to the REE) to lead to the stable outcome
of rational expectations. If some memory loss is considered, it does not imply a
departure from the benchmark result where convergence to the target value of the
inflation rate is achieved. When learning inefficiency passes a given threshold (those
referred to in the proposition), then inflation stability is lost, and inflation does no
longer converge to its target value. This result seems to be economically relevant: it
says that agents do not need to be completely efficient when learning, but they need
to be almost efficient in order to be possible to attain the desired policy result.

25.3.2 Global Dynamics

Local dynamics indicate that we are in the presence of points of bifurcation. When
considering any of (25.9) and (25.10), the introduction of the learning mechanism
induces the presence of a change in the qualitative nature of the dynamics as one
varies the long run value of the gain variable. Given the nonlinear nature of the
first equation in system (25.12), one might expect such shifts in the topological
properties of the model to produce endogenous fluctuations. In this section, we take
some reasonable parameter values to explore the global properties of the system. It
is found that as one passes from a local area of stability to an area of instability or
saddle-path stability, this is translated, in terms of global dynamics, as the transition
from a fixed-point steady state into areas of periodic and aperiodic cycles that exist
in a given region before instability eventually sets in.

To address global dynamics, we take the steady state gain value o as the
bifurcation parameter. The other parameters assume reasonable quarterly values:
7* = 0.005,a = 0.25, 1 = 0.024, B = 0.99. Recall that the eigenvalues ¢; and
&, are the ones in (25.6); hence, for the assumed parameter specifications, one has
€1 = 0.9576 and ¢, = 1.0549. In the graphical presentation that follows we assume
the initial values 9 = zo = 0.004 (the initial value of oy is irrelevant as long as
o:r € (0, 1)).

The graphical analysis consists in presenting bifurcation diagrams for the infla-
tion rate and considering both values of ¢; (Fig. 25.2). We observe that for low values
of the long term gain variable, a stable fixed point is obtained. This confirms that
if we are near the REE long term outcome, then the system is stable. As we depart
from such outcome, a period-two cycle becomes dominant and regions of aperiodic
motion will also arise. These, however, are relatively small. Chaotic motion may
eventually exist.

The diagrams in Fig.25.2 can be analyzed together with the local dynamics
results in Proposition 1. For ¢1 = 0.9576, the system is stable if & is lower than
0.0415. A bifurcation occurs at 6 = 0.0415, and this can be confirmed by observ-
ing the upper panel of Fig.25.2. To the right of this point, local dynamics led to
a result of saddle-path stability, that we verify to be a region of cyclical motion.
In what concerns the second case, e, = 1.0549, the Neimark—Sacker bifurcation
occurs when o = 0.0549. To the left of this point we have stability, and to the right
instability prevails (locally) and cycles are evidenced (globally).
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Fig. 25.2 Bifurcation diagram (7, 0) ; ¢ = 0.9576 (first panel); ¢ = 1.0549 (second panel)

25.4 Conclusion

In this paper, we have analyzed an environment where private agents learn but the
central bank does not take this into account. The dynamic analysis of the monetary
policy model found, locally, bifurcation points separating regions of stability from
saddle-path stability/instability. A global approach allowed us to realize that the
bifurcations separate regions of fixed point stability from areas where endogenous
fluctuations are observed. Dynamics with period 2 cycles is a predominant result but
higher periodicity cycles and complete a-periodicity are also revealed. Particularly
important is that stability is found solely for low values of the gain variable (i.e.,
near the REE), meaning that a stable fixed point outcome is directly associated with
a high quality learning. The obtained results seem to corroborate the idea, which is
pervasive in the literature, that endogenous cycles in adaptive learning settings arise
under constant gain.
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Chapter 26
Discrete Time, Finite State Space Mean Field
Games

Diogo A. Gomes, Joana Mohr, and Rafael Rigiao Souza

Abstract In this paper we report on some recent results for mean field models in
discrete time with a finite number of states. These models arise in situations that
involve a very large number of agents moving from state to state according to cer-
tain optimality criteria. The mean field approach for optimal control and differential
games (continuous state and time) was introduced by Lasry and Lions (C. R. Math.
Acad. Sci. Paris, 343(9):619-625, 2006; 343(10):679-684, 2006; Jpn. J. Math.,
2(1):229-260, 2007). The discrete time, finite state space setting is motivated both
by its independent interest as well as by numerical analysis questions which appear
in the discretization of the problems introduced by Lasry and Lions. We address
existence, uniqueness and exponential convergence to equilibrium results.

26.1 Introduction

In this paper we report on our recent results on mean field model for discrete time
with a finite number of states, dynamic games. The mean field approach for optimal
control and differential games (continuous state and time) was introduced by Lasry
and Lions [1-3]. In the continuous state and time setting, mean field problems gives
rise to Hamilton—Jacobi equations coupled with transport equations. The discrete
time, finite state space setting is motivated both by its independent interest as well as
by numerical analysis questions which appear in the discretization of the problems
introduced by Lasry and Lions. The discretization of these models has been studied
by I. Capuzzo—Dolcetta and Y. Achdou.

Letd > 1 and N > 1 be natural numbers, representing, respectively, the number
of possible states in which certain agents can be at any given time, and the total
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duration of the process. Let 7% and V¥ be given d -dimensional vectors. We suppose
that 70 is a probability vector, the initial probability distribution of agents among
states, and that V¥, the terminal cost, is an arbitrary vector. A solution to the mean
field game is a sequence of pairs of d-dimensional vectors

{=x",V"); 0<n <N},

where 7" is the probability distribution of agents among states at time n and Vj” is
the expected minimum total cost for an agent at state j, at time n. These pairs must
satisfy certain optimality conditions that we describe in what follows: at every time
step, the agents in state i choose a transition probability, P;;, from state i to state j.
Given the transition probabilities Pl-’} attime 0 < n < N, the distribution of agents

at time n + 1 is simply
n+1 __ n pn
aptt =) Al P
i

Associated to this choice there is a transition cost ¢;; (s, P). In the special case in
which ¢;; only depends on 7 and on the i th line of P we use the simplified notation
cij(m, P;.). This last case arises when the choices of players in states j # i do
not influence the transition cost to an agent in state i . Let e; (7, P, V') be the average
cost that agents which are in state 7 incur when matrix P is chosen, given the current
distribution ;v and the cost vector V' at the subsequent instant. We assume that

ei(m, P, V)= Zcij(”,P)Pij + Vi Pij.
J

Define the probability simplex $ = {(q1,...,q4) ; q¢; = 0V}, Z‘j-:lqj = 1}.
The set of d x d stochastic matrices is identified with $¢. Given a stochastic matrix
P € $¢ and a probability vector ¢ € S, we define (P, q,i) to be the d x d
stochastic matrix obtained from P by replacing the ith row by ¢, and leaving all
others unchanged.

Definition 26.1. Fix a probability vector 7 € $ and a cost vector V € R4.
A stochastic matrix P € $¢ is a Nash minimizer of e(rx,-, V) if for each i €
{lI,...,d}andany g € $

€i(JT, P’ V) =< €i(7'[, ’@(P7q’l)’ V)

Under the uniqueness of a Nash minimizer for e, we can define the (backwards)
evolution operator for the value function

G, (V) =e(m,P,V), (26.1)
as well as the (forward) evolution operator for

Hy () =nP. (26.2)
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Since the operator ¢, commutes with addition with constants, it can be regarded as
a map from R¢ /R to R? /R. Here R¢ /R is the set of equivalence classes of vectors
in R4 whose components differ by the same constant. In R4 /R we define the norm

[¥l4 := inf ||y + A, (26.3)
A€R

We will be interested in this paper both in stationary solutions and in the terminal
initial value problem, as we define next,

Definition 26.2. A pair of vectors (7, V) is a stationary solution to the mean field
game if there exists a constant A, called critical value, such that
V=%0)+A
(26.4)
7 = Ay (7).
Definition 26.3. A sequence of pairs of d-dimensional vectors
{(z", V") ;0<n <N}

is a solution of the mean field game if forevery0 <n < N — 1

Vvr = gn" (Vn-H)
(26.5)
7Tn+1 = %Vnle(Nn).

26.2 Main Assumptions

In this section, for the convenience of the reader, we list the main assumptions that
will be used for the statement of the main results.

Assumption 1. Foreachm €S,V € RY, P €S9, and each index 1 <i < d, the
mapping ¢ +— ej(w, Z(P,q,i),V), defined for q € S, and taking values on R, is
convex.

Assumption 2. The map P +—> e; (7, P, V) is continuous for all i.

Theorem 26.1. Suppose that assumptions | and 2 hold. Then, for any pair of
vectors w and V there exists a Nash minimizer P of e(w,-, V).

Definition 26.4. A function g : R?*¢ — R?*9 js diagonally convex if for all
Pl P2cRY, P! %+ P2, we have

> (P — P})(gij(P') — gij(P?) > 0.
ij
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Assumption 3. Let
dej(m, P, V)

gij(P) = 3P,

Then g is diagonally convex.

Theorem 26.2. Suppose assumptions 1-3 hold. Then there exists a unique transi-
tion matrix P which is a Nash minimizer of e(m,-, V).

Assumption 4. For eachindex1 <i <d,e; : $ % 4 x RY — R is a continuous
function.

Denote by p; ;-(P) the matrix we obtain from P by replacing its i’th row by its
ith row, and leaving all other rows (including the i th) unchanged.

Assumption 5. There exists C > 0 such that for all i and i’, and any 7 € S,
P e %
Z|Cij(n’, P)—C,'/j(n’,p,",'/(P))|P,'j < C. (26.6)
J

Assumption 6. The cost c;;(, P;.) depends on w and, for each i, only on the ith
line of P.

Assumption 7. There exists a constant y > 0 such that
7 Gz (V) =G (V) + 70 (G (V) = 42(V)) = y|m — 7|%,
foranyV, V € R? and all T, T €Y.
Assumption 8. Forallw € S andall V', V? € R? we have
T (Gn(V?) =G (VD) + A1 () (V! = V) = =pa|[V! = V23
Assumption 9. There exists K > 0 such that for all w, 7w € S, and for any matrix
Pes?
| cij(m. P) —¢ij (7. P)| < K. (26.7)

Note that the previous assumption holds if ¢;; is bounded, for instance.

26.3 Main Results

We finally describe our main results for these models. The first two theorems con-
cern the existence and uniqueness of, respectively, stationary solutions and the
initial-terminal value problems. The uniqueness proofs follow the monotonicity
methods introduced by Lasry and Lions, see [1-3].
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Theorem 26.3. Suppose that assumptions 1, 2, 3, 4, and 5 hold. Then there exists a
pair of vectors (7, V'), a constant A and a transition matrix P such that for all i,

G (V)i =Y cij(@. P)Pij + V; Py = Vi + A,
J

and 7 = w P.
Assume further that 6, 7 and 8 hold then there is a unique stationary solution, up
to addition of a constant in V.

Theorem 26.4. Suppose assumptions 1, 2, 3, and 4 hold. Then for any initial
probability vector & € S and terminal cost V there exists a solution

{(x",V");0<n <N}

to the initial-terminal value problem for the mean field game with 7° = 7 and
VN =V.

Assume further that 6 and 7 hold. Then the solution to the initial-terminal value
problem is unique.

One of our main contributions is the exponential convergence to equilibrium for
the initial-terminal value problem. Our setting is the following: consider a initial-
terminal value problem with initial data 7= and terminal data V. We will now
study conditions under which 7 — 7 and V° — V where (77, V) are stationary
solutions, as N — oo.

Theorem 26.5. Suppose assumptions 1,2, 3, and 6, 7, 8 and 9 hold. Fix V., 7. Given

N > 0, denote by (7{2,, VIS) the solution of the mean field game at time 0 that has

N

initial distribution 1=N = 7 and terminal cost VN = V.

Then, as N — oo
VY =V (inRY/R), =% -7
where V and 7 is the unique stationary solution.
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Chapter 27
Simple Exclusion Process: From Randomness
to Determinism

Patricia Gongalves

Abstract In this work I introduce a classical example of an Interacting Parti-
cle System: the Simple Exclusion Process. I present the notion of hydrodynamic
limit, which is a Law of Large Numbers for the empirical measure and an heuris-
tic argument to derive from the microscopic dynamics between particles a partial
differential equation describing the evolution of the density profile. For the Simple
Exclusion Process, in the Symmetric case (p = 1/2) we will get to the heat equation
while in the Asymmetric case (p # 1/2) to the inviscid Burgers equation. Finally,
I introduce the Central Limit Theorem for the empirical measure and the limiting
process turns out to be a solution of a stochastic partial differential equation.

27.1 Introduction

In this work I am presenting some well known results and some of the latest develop-
ments on a classical interacting particle system: the simple exclusion process (SEP).
Interacting particle systems were introduced by Spitzer in the late 1970s and since
then, their study has attracted the attention of researchers of several fields of Math-
ematics. The problems that initially appeared, have arisen from the physicists and
the goal was to give precise answers to conjectures and experiments done by the
physics community. Now I describe the idea behind the problems that we usually
deal with. Suppose that one is interested in analyzing the evolution of some phys-
ical system, constituted by a large number of components, for example, a fluid or
a gas. Due to the large number of molecules it becomes hard to analyze the micro-
scopic evolution of the system, and as a consequence it is more relevant to analyze
the macroscopic evolution of the structure of that system. Following the approach
proposed by Boltzmann from the Statistical Mechanics, first one finds the equilib-
rium states of this physical system and characterizes them through macroscopic
quantities, called thermodynamical quantities that one is interested in analyzing
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such as the pressure, temperature, density. . . The natural question that follows is to
analyze the behavior of that physical system out of equilibrium. The characteriza-
tion and study of phenomena out of equilibrium is one of the biggest challenge of the
Statistical Physics and despite its long history, nowadays, it still has not been found
a satisfactory answer to this kind of problems. From this approach some differen-
tial equations arise that provide some information about the macroscopic evolution
of the thermodynamical quantities of the system. Usually, and at least heuristically,
these equations can be deduced from the scaling limit of a system and this deduc-
tion gives validity to this equation. When approaching these problems, due to the
huge complexity of its analysis, some simplifications need to be introduced. With
that purpose, usually one assumes that the underlying microscopic dynamics, i.e. the
dynamics between molecules, is stochastic, in such a way that a probabilistic analy-
sis of the system can be done. Assuming that the particles (or molecules) behave as
interacting random walks subjected to random local restrictions, arise the so called
Interacting Particle Systems [6]. Nowadays, there exists a well developed theory
to deal with this kind of problems, that consists on the microscopic analysis of a
particle system — a continuous time Markov process, whose macroscopic evolution
of the density profile is governed by one (or system) partial differential equation,
denominated by Hydrodynamic Limit [5]. This research field, deals and answers to
the discretization of several partial differential equations, which have solutions with
different qualitative behavior and whose microscopic dynamics has originated the
study of different particle systems with hydrodynamic behavior.

Usually, for all the studied systems, the behavior of the associated partial dif-
ferential equation, gives information about the behavior of the particle system.
Nevertheless, there are several hard phenomena, that are very difficult to analyze
in the analytical point of view of the solutions of the partial differential equation
which can be analyzed through the study of the underlying microscopic system,
as for example the partial differential equations that exhibit shocks, as the Burgers
equation [2] (see [3] and references therein). The development of this theory has
also provided some answers to questions related to the behavior of physical systems
out of equilibrium, see [10].

Here is an outline of these notes. On the second section I introduce the simple
exclusion process, generator and the invariant measures. On the third section I give
the notion of hydrodynamic limit and an heuristic argument to get to the hydrody-
namic equation for two cases, symmetric and asymmetric jumps. Then I give the
notion of equilibrium and non-equilibrium fluctuations. Finally at section five by
superposing both dynamics one obtains the WASEP and the results above are also
stated for this process.

27.2 The Simple Exclusion Process

In this section I introduce the one-dimensional Exclusion Process. In this process,
particles evolve on Z according to interacting random walks with an exclusion rule
which prevents more than one particle per site. The dynamics can be informally
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described as follows. Fix a probability p(-) on Z. Each particle, independently from
the others, waits a mean one exponential time, at the end of which being at the site
X it jumps to x + y at rate p(y). If the site is occupied the jump is suppressed to
respect the exclusion rule. In both cases, the particle waits a new exponential time.
The space state of the Markov process 7; is {0, 1}Z and we denote the configurations
by the Greek letter 7, so that n(x) = 0 if the site x is vacant and n(x) = 1 otherwise.
The case in which p(y) = 0 V|y| > 1 is referred as the Simple Exclusion process
(SEP) and for the Asymmetric Simple Exclusion process (ASEP) the probability
p() is such that p(1) = p, p(—1) = 1 — p with p # 1/2 while in the Symmetric
Simple Exclusion process (SSEP) p = 1/2. The case in which p = 1 is denoted by
TASEP and means totally asymmetric simple exclusion process, since particles can
perform jumps only to the right.

The dynamics of the SEP can be translated by means of a generator given on
local functions by

Lfm=>Y_ Y cy.nlfn™) - fml.

xeZ y=x=+1
where ¢(x, y,n) = p(x, y)n(x)(1 —n(y)) and

n(z),ifz #x,y
(@) = ¢ n(y). ifz=x
nx),ifz=y

To keep notation simple we denote by Zs (£4) the generator of the SSEP (ASEP).

Before proceeding we give the definition of an equilibrium state of the system.
Let . denote a Markov Process with generator 2 and semigroup (S(¢)):>0. Let
2 denote the set of probability measures on {0, 1}Z. A probability measure 1 € &
is said to be an invariant measure for the Markov process if uS(t) = p for all
t > 0, which is the same as saying that the distribution of (7;); does not depend on
the time ¢. There is a nice criterium to find equilibrium states for a Markov Process
and we recall it from [6]:

Proposition 27.1. Let .7 denote the set of probability measures in {0,1}% and 1.
be a Markov Process with generator §2. Then

S ={un: /.i”f(n)u(dn) =0,V f local}. (27.1)

For 0 < o < 1, denote by v, the Bernoulli product measure on {0, 1}Z with
density «. This means that the random variables (1(x))xez are independent with
Bernoulli distribution:

ve(n(x) =1) =a (27.2)
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It is known that v,, is an invariant measure for the SEP and in fact, that all invariant
and translation invariant measures are convex combinations of vy if p(.) is such that
pe(x, )+ p:(y,x) >0,Vx,y € Z% and Y. px,y)=1Vye 74,

27.3 Hydrodynamic Limit

27.3.1 From Microscopic to Macroscopic

In order to investigate the hydrodynamic limit, we need to settle some notation.
We are going to consider the physical system evolving in a continuum space — the
macroscopic space. The idea is to discretize this set by relating it to another one, but
this last being a discrete set — the microscopic space. In the discrete space we define
a particle system and since we want to study the temporal evolution of the density
profile we have two different scales for time as well: a macroscopic time denoted
by ¢ and a microscopic time denoted by #6(N). This function (N ) depends on the
subjacent microscopic dynamics and as we will see, for the SSEP we need 0(N) =
N2 while for the ASEP §(N) = N is enough. In order to simplify the exposition
we suppose that we take the macroscopic space to be the one-dimensional torus T.
Then, we fix an integer N and split it in small interval of size % The relation
between this two sets is that if u € T it corresponds to [uN] in the microscopic
space while if x € Ty it corresponds to x/N in the macroscopic space T.

Suppose now that the simple exclusion process is evolving on Ty . For a given
configuration 1 we define the the empirical measure 7V as the positive measure
on T which gives to each particle a mass 1/ N, namely

7N (. du) =% > n(x)8 5 (du), (27.3)

xeTy

where §, denotes the Dirac measure at u. Then we consider the time evolution of
this measure defined by

T ) = 5 3 w8y @ @14

xeTy

where as usual 7, is the process at time ¢ which is generated by . when the
configuration at time zero is 7.

Fix now, an initial profile pp : T — [0, 1] and denote by (1n)n>1 a sequence of
probability measures on {0, 1} T~ . Depending on the model itself the initial profile
po needs to satisfy certain conditions that we shall impose later.

Assume that at time 0, the system starts from a initial measure u that is asso-
ciated to the initial profile pg, ie the empirical measure at time O satisfies a law of
large numbers:
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Definition 27.1. A sequence (u) N>1 1s associated to pp, if for every continuous
function H : T — R and for every § > 0

Jlim MN[n : ]%;;N H(%)n(x) — /Td H(u),oo(u)du‘ > 5] —0. (27.5)

Note that the first term corresponds to the integral of H with respect to 7%, thus
the above definition corresponds to asking that the sequence 7w (1, du) converges
in [y -probability to po (u)d u.

The goal in hydrodynamic limit consists in showing that, if at time ¢ = 0 the
empirical measures are associated to some initial profile pg, at the macroscopic
time ¢ (i.e. the microscopic time t8(N)) they are associated to a profile p; which is
the solution of the some partial differential equation. In other words the aim is to
prove that the random measures thjg () converge in probability to the deterministic
measure p(t, u)du, which is absolutely continuous with respect to the Lebesgue
measure whose density evolves according to some partial differential equation -
called hydrodynamic equation.

For the SSEP it was shown that starting from a sequence of measures (Uy)nN
associated to a profile pg(-), under the parabolic time scale tN?,

o T o(t, u)du (27.6)

in uv ij, (t)-probability, where p(z, 1) is a weak solution of the parabolic equation

1
drp(t,u) = EA,o(t, u) (27.7)

and S 1\9, is the semigroup associated to the generator L.

For a proof of last result one can see for example Chap. 4 of [5] where the entropy
method is applied.

On the other hand, for the ASEP starting from a sequence of measures (uy)ny
associated to a profile po(.) and some additional hypotheses (see [8]) under the
hyperbolic time scale t N

N

t’ d b 27.8
TN Ny oras PU-du (27.8)

in uV S 1‘3 (t)-probability, where p(t,u) is the entropy solution of the hyperbolic
equation
dep(t,u) + (p—q)(1 —2p(t,u)Vp(t,u) =0 (27.9)

known as the inviscid Burgers equation and S j\‘} () is the semigroup associated to
the generator .Z4.
For a proof of last result we refer the interested reader to [8].
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27.3.2 Hydrodynamic Equation

As we have seen above, for the simple exclusion process we obtain the heat equation
when considering symmetric jump rates while in the asymmetric jumps one gets
to the inviscid Burgers equation. So one can ask, why defining similar microscopic
jump rates can we get to completely different macroscopic behaviors. Here I present
an heuristic argument relying on the microscopic dynamics to get the hydrodynamic
equation for the two different processes, see [5].

In a general setting let n, denote a Markov process whose generator is denoted
by £2 and suppose it is evolving on the microscopic time scale z6(N). It is known
from the classical theory of Markov processes that, for a test function H : T — R

MM =< 2N H>—<al H>- /Q<nS,H>ds (27.10)

is a martingale with respect to the natural filtration .%; = o(ns,s < t), whose
quadratic variation is given by

/.Q(<ns,H>)2 2<alN H >)2 <7 H > ds. (27.11)

Here < 7N, H > denotes the integral of H with respect to 7)Y . Using the explicit
definition of the empirical measure, the integral part of the martingale is written as

/Oz % x;:N H(%)Qns(x)ds. (27.12)

Consider now the SEP with generator .. It is easy to see that

L(x)) = We1,x(n) — Wr x+1(n), (27.13)

where for a site x and a configuration 1, Wy x+1(n) is the instantaneous current
between the sites x and x + 1, namely

Wy x+101) = p(x, x + Dn(x)(1 = n(x + 1)) — p(x + Lx)n(x + DA = n(x)).
(27.14)
Since the generator applied to 15 (x) is written as gradient, this allows us to perform
a summation by parts in the integral part of the martingale:

MM —< 2N H>— <zl H>- / Z vNH ( )Wxx+1(7ls)ds
xETN

(27.15)
where VY H denotes the discrete derivative of H.
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Now we restrict ourselves to the SSEP. In this case the instantaneous current
between the sites x and x + 1, denoted by WxS,x 41 is given by a gradient:

1
Woeir(n) = S(1(x) = nx + 1).
This allows us to perform another summation by parts and write the martingale as

t
MtN,H —< ntN,H >—< NéV,H > —/(; % Z ANH(%)ns(x)ds,
xeTy
(27.16)

where Ay H denotes the discrete laplacian of H.

Since we want to close the integral part of the martingale in terms of the empirical
measure we have to rescale time by ¢N 2. This together with a change of variables
gives us that

MY = 5 () (0 = mo(0)

xe€Ty

_fot% ) nsNz(x)%ANH(%)ds. (27.17)

xe€Ty

Since this martingale vanishes at time 0 its expectation is equal to zero uniformly in
time.

Now we recall the notion of conservation of local equilibrium which means,
loosely speaking, that for a macroscopic time ¢, the expectation of 7,2 with respect
to the distribution of the system at the microscopic time t6(N) is close to the
expectation of 7(0) with respect to v, x/n)-

Then applying expectation to the equality above, we obtain:

% Z H(%)(p(t,x/N)—p(O,x/N)) =/t% Z p(s,x/N)%ANH<%)ds
x€Tn 0 xeTy 18
(27.

Taking the limit as N — +oo if follows that p(¢, u) is a weak solution of the heat
equation:

drp(t,u) = %A,o(t,u)
p(0,-) = po(-)

On the other hand for the ASEP, the instantaneous current between x and x + 1,
here denoted by fo}x +1(n) is given by

(27.19)

W 1) = pn()(1 —n(x + 1)) — gn(x + D(1 = n(x)). (27.20)
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This allows just one summation by parts which together with the re-scaling of time
by ¢ N and the convergence to local equilibrium gives us

5 2 H(E) (/N = pl0.x/ W)

xeTy

- LY Rt/ M)V H (S )ds =0

xeTy

where F(p) = (p — q)p(1 — p)). Taking the limit as N — +oo it follows that
p(t, u) is a weak solution of the inviscid Burgers equation:

g dip(t,u) + VF(p(t,u)) =0 (27.21)

p(0,) = po(")

27.4 Central Limit Theorem for the Empirical Measure

27.4.1 Equilibrium Case

Fix @ € (0,1) and take the SEP starting from the invariant state vy. Let k € N
and denote by % the Hilbert space induced by S(R) and < f, g >r=< f.(x* —
A)fg >, where < -,- > denotes the inner product of L2(R) and by % the dual
of 7, relatively to this inner product. For a Markov process 7. define the density
fluctuation field acting on functions H € S(R) as

YN (H) = ﬁ > H(5) ) —a). (27.22)
x€Z

Consider the function below
D(R4, {0, 1}%) —> D(R4, %)

n.— YN)

and let IP\fZ[ the probability measure on D(R4, {0, 1}%) induced by v, and by
the Markov process 1. speeded up by 10(N); Qn be the probability measure on
D(Ry, #1) induced by the density fluctuation ¥V and vg.

Theorem 27.1. (Ravishankar [7]) Fix an integer k > 3. Let 1. be the SSEP evolving
on the parabolic time scale tN? starting from vy and let QN be the probability
measure on D(R4, 7 1) induced by the density fluctuation Y.N and vy. Let Q be
the probability measure on C(R™, J.1) corresponding to a stationary mean zero
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generalized Ornstein—Uhlenbeck process with characteristics A = 1/2A and B =
vV x(@). Then (QN)N converges weakly to Q.

Theorem 27.2. (G. [4]) Fix an integer k > 2. Let 1. be the ASEP evolving on the
hyperbolic time scale t N starting from vy and let Q n be the probability measure on
D(Ry, H ) induced by the density fluctuation YN and vy. Let Q be the probabil-
ity measure on C(R™, %) corresponding to a stationary Gaussian process with
mean 0 and covariance given by

EolY:(H)Y(G)] = x(@) /[; H(u+ v(t —5))G(u)du (27.23)

forevery0 <s <tand H, G in 5. Here y(o) = Var(vy, n(0)) = (1 — @) and
v=(p—q)(1 —2«x). Then, (QN)N converges weakly to Q.

In order to complete the exposition I just give a short presentation of the proof.
The idea is to verify that (Q )y is tight and to characterize the limit field. The
proof of tightness is technical and details can be found in [5]. So we proceed by
characterizing the limit field.

We start by the symmetric case. Fix H € S(R) and note that

ro X
NH _ N _yN _
MmN = yNH) —vY (H) [0 ZﬁxEEZANH<N>ns(x)ds (27.24)

t 1 2
= [ )
0
xeZ
X [cs(x,x +1,n5) + cS(x + 1, x, ns)]ds, (27.25)
are martingales with respect to the filtration .%; = o (7,5 < 1).

Here ¢ (x, x 4 1, ) denotes the jump rate from x to x + 1 in 7. It is easy to show
that

Jlim [Eva[/ot % 3 H(%)(cs(x,x F1,)— %a(l —a))]2 — 0. (27.26)

xeZ
Then, the limit of the martingale NtN H denoted by N,H equals to
(M)? —|BH|3t, (27.27)

where M denotes the limit of the martingale M,N’H and B = /x(«¢)V, with
(@) = a(1 — a). Note that

t
MH =Y, (H)-Yo(H) - / Y, (AH)ds (27.28)
0
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where 2 = %A. Foreach H € S(R), BH = ||BH||;'MH is a martingale whose
quadratic variation is equal to ¢ which implies that B,H is a Brownian motion. Then

t
Y, (H) = YO(H)—/ Ys(AH)ds + || BH|,BY, (27.29)
0

which means that Y; satisfies:

1
dY; = 5 AY,di + /x(@)VdB, (27.30)

Then, one identifies Y; as a generalized Ornstein—Uhlenbeck process with charac-
teristics A = %A and B = /x(a)V.
For the asymmetric case fix as well a function H € S(R). Then

| X
MM — YNy —YNH —/ — N VVE(Z)\wA ds (27.31
; N (H) = Yg¥ (H) om; () Wierimds @7.31)

is a martingale with respect to j} = o(ns,s < t), whose quadratic variation is
given by

[ 55 X (9H(5)) Tonra=nt-+ 0)-+ante-+ D1 =n(olds. 2732

xeZ

Since Y .. VN H( %) = 0, the integral part of the martingale can be written as:

| X
/0 \/_ﬁ Z VNH(N) [W;}x+1(flg) - E,, (Wx‘?x+1(r]s))]ds. (27.33)
xX€Z

As we need to write the expression inside last integral in terms of the fluctuation
field YSN, we are able to replace Wx/,lx+1 (ns)—Ey, (Wx“}x_|r1 (ms)) by (p—q) ¥ (@)[ns
(x) — «], with the use of the:

Theorem 27.3. (G. [4])(Boltzmann—Gibbs Principle) For every local function g,
for every H € S(R) and every t > 0,

Jim E[ ﬁ > H (5 ) s nn) - @) — F@lns () —al}as] =0
x<r (27.34)
where g(a) = Ey, [g(n)].

Since limy 400 Ey, (M,N’H)2 = 0 and by the Boltzmann—Gibbs Principle, the
limit density field satisfies
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t

Y,(H) = Yo(H) — [0 Y, (CH)ds, (27.35)

where € = vV withv = (p — ¢)(1 — 2«), which in turn means that Y; satisfies:
dY, =vVY,dt. (27.36)

In this case we obtain a simple expression for Y; given by Y;(H) = Yo(T; H) with
T; H(u) = H(u + vt), which is the semigroup associated to €.
For ¢t > 0, let .%; be the o-algebra on D([0, T'], 77 ) generated by Y(H) for
s < t and H in S(R). Restricted to %y, Q is a Gaussian field with covariance
given by
Eo(Yo(G)Yo(H)) = y(a) < G.H > . (27.37)

I remark here that if one takes « = 1/2 then v = 0 and as a consequence
Y:(H) = Yy(H), which means that there is no temporal evolution of the density
fluctuation field, so in order to have some non trivial temporal evolution we have
to speed up the process in a longer time scale. It is shown in [4] that until the time
scale N */3 the same behavior is observed. Nevertheless it is conjectured by Spohn
in [10] that this same behavior is expected until the time scale t N 3/2,

27.4.2 Non-Equilibrium Case

Here I start by stating the Central limit theorem for the empirical measure starting
from a Bernoulli product measure of varying parameter for the SSEP. Fix a profile
po : R — [0, 1] and denote by v, the product measure on {0, 132 such that for a
site x € Z:

Voo (1(¥) = 1) = po(x/N). (27.38)

Let k € N and define J#; as above. Let p;(x) = [Eva(_) [1: ()]
Define the density fluctuation field acting on functions H € ¢ as

YN (H) = ﬁ > H(5) @) = pro). (27.39)
X€Z

Let O n be the probability measure on D(R, 577 ) induced by the density fluctu-
ation Y. N and Vpo()- It was shown by Galves, Kipnis and Spohn the following:

Theorem 27.4. Fix k > 4. Let n(-) be the SSEP evolving on the time scale
tN? and starting from Vpo()- Let Q be the probability measure concentrated on
C(R*, 2#) corresponding to the Ornstein—Uhlenbeck process Y; with mean zero
and covariance given by
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EQ[Y,(H)YS(G)] - /[R(Tt_sH)G)(sdu—/OS/[R(T,_,H)(TS_rG){BrXr — Ay ddudr

(27.40)

for 0 < s < t and G, H ini,. In this expression (Ty); denotes the semigroup
associated to the Laplacian and ys for the function x(s,u) = p(s,u)(1 — p(s, u)).
Then, the sequence (Q N)N converges to Q.

On the other hand the Central Limit Theorem for the empirical measure for the
TASEP was shown by Rezakhanlou in [9]. The idea of the proof is to consider
the TASEP as a growth model, ie the configuration space consists of functions /:
0 <h(i+1)—h(i) <1foralli € Z. With rate one, each /(i) increases by one
unit provided that the resulting configuration does not leave the configuration space;
otherwise the growth is suppressed. The Central Limit Theorem is established for
pn(x,t) = %h([xN, tN]). Assuming initially that the probability law of py (x, 0)
is the same as g(x) + +/1/N B(x) + o(4/1/N) for a continuous function g (piece-
wise convex) and a continuous random process B(-), then at later times py (x, )
can be stochastically represented as p(x,t) + +/1/NZ(x,t) + o(y/1/N) where p
is the unique solution of the corresponding Hamilton—Jacobi equation and Z (x, t) is
a random process that is given by a variational expression involving B(-). For more
general initial conditions the problem is still open.

27.5 Superposition of Both Dynamics

In this section I consider a superposition of both dynamics defined above. This pro-
cess is called Weakly Asymmetric Simple Exclusion (WASEP) and its generator,
denoted by %, is given by:

1
Ly = Ls + Za. (27.41)

with .Zs and %24 defined as above.

Suppose that the asymmetric part of the generator is given with totally asymmet-
ric jumps to the right. Starting this process from a sequence of measures (uy )y
associated to a profile pg(-), under the parabolic time scale tN?,

N — o(t, uydu (27.42)

in uVS }(}/ (t)-probability, where p(z, u) is a weak solution of the Burgers equation
with viscosity

drp(t,u) + VF(p(t,u) = %Ap(t, u) (27.43)

Here S}G/ is the semigroup associated to the generator £y and F(p) = p(1 — p).
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On the other hand for the equilibrium Central Limit theorem for the empirical
measure for the process speeded up by tN?2 it follows that the density fluctuation
field defined as above, converges to a generalized Ornstein—Uhlenbeck process, ie
the limit density fluctuation field is the solution of

1
dY; = (1= 20)VYydt + 5 AYdt + o (T = ) VaW,, (27.44)

where W; is a Brownian motion.
For more general initial conditions I refer the interested reader to [1].
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Universality in PSI20 fluctuations

Rui Gongalves, Helena Ferreira, and Alberto A. Pinto

Abstract We consider the « re-scaled PSI20 daily index positive returns r(z)%*
and negative returns (—r(¢))* called, after normalization, the « positive and neg-
ative fluctuations, respectively. We use the Kolmogorov—Smirnov statistical test as
a method to find the values of « that optimize the data collapse of the histogram of
the o fluctuations with the truncated Bramwell-Holdsworth—Pinton (BHP) proba-
bility density function (pdf) fzgp and the truncated generalized log-normal pdf f1x
that best approximates the truncated BHP pdf. The optimal parameters we found are
Apyp = 0.48, agyp = 0.46, )y = 0.50 and a7, = 0.49. Using the optimal o/’s
we compute the analytical approximations of the pdf of the normalized positive and
negative PSI20 index daily returns r (¢). Since the BHP probability density function
appears in several other dissimilar phenomena, our result reveals a universal feature
of the stock exchange markets.
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28.1 Introduction

The modeling of the time series of stock prices is a main issue in economics and
finance and it is of vital importance in the management of large portfolios of stocks
[5-7,9,17,20-22,24,26,32,33]. Here we study the PSI20 index (see also [11,12,28]).
The PSI20, an acronym of Portuguese Stock Index, is a benchmark stock market
index of companies that trade on Euronext Lisbon, the main stock exchange of
Portugal. The index tracks the prices of the twenty listings with the largest mar-
ket capitalization and share turnover in the PSI Geral, the general stock market of
the Lisbon exchange. It is one of the main national indices of the pan-European
stock exchange group Euronext alongside Brussels (BEL20), Paris (CAC 40) and
Amsterdam (AEX). Let Y(¢) be the PSI20 index adjusted close value at day t. We
define the PSI20 index daily return on day ¢ by

Y@ -Y@-1)
="y

We define the « re-scaled PSI20 daily index positive returns r(t)*, for r(¢) > 0, that
we call, after normalization, the « positive fluctuations. We define the « re-scaled
PSI20 daily index negative returns (—r(t))%, for r(t) < 0, that we call, after nor-
malization, the « negative fluctuations. We analyze separately the « positive and «
negative daily fluctuations that can have different statistical and economic natures
due, for instance, to the leverage effects (see, for example, [1,2, 18, 19, 23]). Our
aim is to find the values of « that optimize the data collapse of the histogram of
the o positive and negative fluctuations to the Bramwell-Holdsworth—Pinton (trun-
cated BHP) probability density function (pdf) fzgp truncated to the support range
of the data (see Appendix A and Bramwell et al. [4]). Our approach is to apply
the Kolmogorov—Smirnov (K-S) statistic test as a method to find the values of «
that optimize the data collapse. We observe that the P values of the Kolmogorov—
Smirnov test vary continuously with . The highest P values Py, = 0.95... and
Pgup = 0.77... of the Kolmogorov—Smirnov test for the positive and negative
fluctuations are attained for the o values o, = 0.48... and agyp = 0.46.. .,
respectively. Using this data collapse we do a change of variable that allows us to
compute the analytical approximations

fonp.psizo,+(x) = 5.71x7%%2 fpp(24.3x%4% — 2.04)
Sanp.psro.—(x) = 4.80x™%* f5,p(21.0x°4¢ — 2.01)

of the pdf of the normalized positive and negative PSI20 index daily returns in terms
of the BHP pdf fprp. We also find, using the K-S statistic test, the generalized log-
normal pdf f7 n that best approaches the BHP pdf fpgp in the support range [—3, 9]
(see Appendix B and Bramwell et al. [4]). As before, our aim is to find the values
of o that optimize the data collapse of the histogram of the « positive and negative
fluctuations to the generalized log-normal (truncated LN) pdf f7n truncated to the
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support range of the data (see Appendix B and Bramwell et al. [4]). Again, we apply
the K-S statistic test as a method to find the values of « that optimize the data col-
lapse. We observe that the P values of the K-S statistic test vary continuously with
a. The highest P values PZLN = 0.88...and P, = 0.85... of the Kolmogorov—
Smirnov test for the positive and negative fluctuations are attained for the values
azN = 0.50...and @y, = 0.49..., respectively. Using this data collapse, we do
a change of variable that allows us to compute the analytical approximations

Sin.pspo.+(x) = 5.56x7%50 £;3(25.73x%5° — 1.96)
finpsizo.—(x) = 5.93x7051 £,,(22.88x%4° — 1.89)

of the probability density functions of the normalized positive and negative PSI20
index daily returns in terms of the LN pdf f7 5. We observe that

+ + — —
Py < Pgyp and Pry > Pyyp.

Similar results have been observed for some stock indices, exchange rates, com-
modity prices and energy sources (see [11-13, 16, 28]). Since the BHP probability
density function appears in several other dissimilar phenomena (see, for example,
[8, 10, 14-16,31]), our result reveals a universal feature of the stock exchange mar-
kets. Furthermore, these results lead to the construction of a new qualitative and
quantitative econophysics model for the stock market based on the two-dimensional
spin model (2dXY) at criticality (see [30]). We also obtain similar results for dif-
ferent indices and different time scales and for other time series like comodity
prices, exchange rates and bio-energy prices (see [13,28]). Our results lead to a new
stochastic differential equation model for the stock exchange market indices (see
[27]) that, in particular, gives a better understanding of the stock exchange crises
(see [29)).

28.2 Positive PSI20 Index Daily Returns

Let T be the set of all days ¢ with positive returns, i.e.
TH ={t:r@t) > 0}

Letnt = 1218 be the cardinal of the set T *. The « re-scaled PSI20 daily index pos-
itive returns are the returns r(¢)% with t € T™. Since the total number of observed
days is n = 2481, we obtain that n* /n = 0.49. The mean p} of the a re-scaled
PSI20 daily index positive returns is given by

1 o
ng =-—= 2,1 (28.1)

teT+



408 R. Gongalves et al.

The standard deviation o} of the o re-scaled PSI20 daily index positive returns is
given by

1
o = | 20— (ud). (28.2)
teT+

We define the « positive fluctuations by

o _ ,,+
r(0) = A —— (28.3)

o

forevery t € T™T. Hence, the « positive fluctuations are the normalized o re-scaled
PS120 daily index positive returns. Let L} be the smallest o positive fluctuation,
ie.
LY = min{r})}.
&= min{rf (1))

Let R; be the largest o positive fluctuation, i.e.

R;‘ = max{r;(t)}.
teT+

28.2.1 Data Collapse to a Truncated BHP

We denote by Fy,+ the probability distribution of the a positive fluctuations. Let the
truncated BHP probability distribution Fpgp «,+ be given by

Fgrp(x)
Fpup(RS) — Fpup(LY)

Ferpo,+(x) =

where Fpyp is the BHP probability distribution (see Appendix A and Bramwell
et al. [4]). We apply the K-S statistic test to the null hypothesis claiming that the
probability distributions Fy 4+ and Fpypo + are equal. The Kolmogorov—Smirnov
P value P} is plotted in Fig.28.1. We observe that o, = 0.48... is the point
where the P value P++ = 0.95... attains its maximum. We note that

%pHp
+ + + +
n =0.084...,0 =0.041...,L =—1.972...andR =6.071...
O‘EZP “;?LIP O‘EZP “;?LIP

It is well-known that the Kolmogorov—Smirnov P value P decreases with the
distance

Do+ = || Fa,+ — Fprp,a,+|

between Fy + and Fpyp o +. In Fig. 28.1, we plot

Da;;”,,+(x) = FaE;,P,+(x) o FBHP,O(;;_,P,'F(X)
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Fig. 28.1 Left: The Kolmogorov—Smirnov P value P,j' for values of « in the range [0.3, 0.6];
Right: The map Doz +(x) = |Foas +(X) — Farp .48+ (¥)]
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Fig. 28.2 Left: The histogram of the al};”, positive fluctuations with the truncated BHP pdf

JfBHP0.48.+ On top, in the semi-log scale; Right: The histogram of the a;;ﬂ; positive fluctuations
with the truncated BHP pdf fpyp o434+ on top

and we observe that D+ Jr(x) attains its maximum value 0.0151 for the o™ pos-
BHP>

itive fluctuations below the mean of the probability distribution. In Fig.28.2, we
show the data collapse of the histogram f,+  of the e positive fluctuations to
BHP>

the truncated BHP pdf fBHP,ag; o
Given that the probability distribution of the &, positive fluctuations r:+ (@)
BHP

is approximated by Fp ., + the pdf of the PSI20 daily index positive returns

HP,agyp,+’°
r(t) is approximated by (see [11])

+ +
+ oyl a + +
pypX®8HP " fpup ((X BHP — Ma+p) /Ua+ )

BHi BHP

Jrup,PSI20,+(X) =
i [ () o (12)
BHP BHP BHP
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Fig. 28.3 Left: The histogram of the fluctuations of the positive returns with the pdf fzup psno +

on top, in the semi-log scale; Right: The histogram of the fluctuations of the positive returns with
the pdf fprp psio,+ on top

Hence, we get

feup.Ps120.+(X) = 5.71x7%52 f3,,(24.3x%48 —2.04).

In Fig.28.3, we show the data collapse of the histogram of the positive returns to
our proposed theoretical pdf fzup, ps120,+-

28.2.2 Data Collapse to a Truncated log-normal

We denote by Fy,+ the probability distribution of the a positive fluctuations. Let the
truncated log-normal probability distribution Fiy 4 + be given by

Fin(x)
Fin(Ry) — Fin(La)

Fiyg+(x) =

where Fpy is the log-normal probability distribution (see Appendix B and Bramwell
et al. [4]). We apply the K-S statistic test to the null hypothesis claiming that the
probability distributions Fy + and Fry 4, + are equal. The Kolmogorov—Smirnov P
value Pt is plotted in Fig. 28.4. We observe that ozer = 0.50... is the point where

the P value P++ = (.88 ... attains its maximum. We note that
LN
ut, =0076...,07, =0039..., L7, =-1905...andRT, =6.258...
LN LN LN N

It is well-known that the Kolmogorov—Smirnov P value P decreases with the
distance
Do+ = |Fat — FLN .o+ |
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Fig. 28.4 Left: The Kolmogorov—Smirnov P value P for values of & in the range [0.4,0.6];
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Fig. 28.5 Left: The histogram of the otZLN positive fluctuations with the truncated log-normal pdf

fLN.0.50.4+ on top, in the semi-log scale; Right: The histogram of the a?‘N positive fluctuations with
the truncated log-normal pdf f; n¢.504 on top

between Fy 4 and Frn o, +. In Fig. 28.4, we plot
Dyt ) =1F+ ()= Fpyo+ ()

and we observe that Daer’ +(x) attains its maximum value 0.0168 for the a;fN
positive fluctuations below the mean of the probability distribution. In Fig. 28.5, we
show the data collapse of the histogram faer’ 4 of the atN positive fluctuations to
the truncated LN pdf f7 y o+ -

Given that the probability distribution of the aZN positive fluctuations r:tN (?)

is approximated by F, the pdf of the PSI20 daily index positive returns

Nafy.+
r(t) is approximated by (see [11])
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Fig. 28.6 Left: The histogram of the fluctuations of the positive returns with the pdf f1n psi20.+
on top, in the semi-log scale; Right: The histogram of the fluctuations of the positive returns with

the pdf f1n psiz0.+ on top

+ Lafy—1 af + +
ay yXYIN T LN ((X LN =+ )/Ua+ )
LN LN

fLN,PS120,+(X) =
+ + +
“IJ‘FN ( “IJ‘FN “IJ‘FN

Hence, we get

fLn.pspo.+(x) = 6.56x7%%0 f7 5 (25.73x9°0 — 1.96).

In Fig. 28.6, we show the data collapse of the histogram of the positive returns to
our proposed theoretical pdf f7n,psr20,+-

28.3 Negative PSI20 Index Daily Returns

Let T~ be the set of all days ¢ with negative returns, i.e.
T ={t:r() <0}

Let n~ = 1158 be the cardinal of the set 7. Since the total number of observed
days is n = 2481, we obtain that n~/n = 0.47. The « re-scaled PSI20 daily
index negative returns are the returns (—r(z))* with t € T—. We note that —r ()
is positive. The mean i, of the a re-scaled PSI20 daily index negative returns is
given by

My = ni_ > (=r @) (28.4)

teT—
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The standard deviation o of the o re-scaled PSI20 daily index negative returns is
given by

_ 1
0, = \/n—_ > Cr) = (). (28.5)
teT—
We define the o negative fluctuations by
—r(tN® — u-
ro@y = IO e (28.6)
o

o

for every t € T~ . Hence, the o negative fluctuations are the normalized o re-scaled
PSI20 daily index negative returns. Let L, be the smallest o negative fluctuation,
ie.
L, = min{r, (¢)}.
2 = min{rg (0}

Let R}, be the largest a negative fluctuation, i.e.

R, = tnelgﬁr;(t)}.

28.3.1 Data Collapse to a Truncated BHP

We denote by Fy — the probability distribution of the o negative fluctuations. Let
the truncated BHP probability distribution Fggp o — be given by

Fgup(x)
Feup(Ry) — Fpup(Ly)

Ferpo,—(x) =

where Fpyp is the BHP probability distribution. We apply the K-S statistic test to
the null hypothesis claiming that the probability distributions Fy,— and Fpup,q,—
are equal. The Kolmogorov—Smirnov P value P, is plotted in Fig.28.7. Hence,
we observe that oz, = 0.46. .. is the point where the P value P, = 0.77...
attains its maximum. We note that

=0.095...0,- =0048... L, =—1930... and R, =5232...
BHP BHP BHP

K Apyp

It is well-known that the Kolmogorov—Smirnov P value P, decreases with the
distance
Da,— = | Fa,— = Fanp.a.||

between Fy — and Fppp,o,—. In Fig. 28.7, we plot

D, —(x) = |Fa;,ﬂ,,—(x) - FBHP,a;HP,—(X)|
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Fig. 28.7 Left: The Kolmogorov—Smirnov P value P, for values of « in the range [0.3,0.6];
Right: The map D46 —(x) = [Fo.46—(x) — Fpap.46—(x)|
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Fig. 28.8 Left: The histogram of the gy, negative fluctuations with the truncated BHP pdf
JfBHP0.46.— oOn top, in the semi-log scale; Right: The histogram of the agy,, negative fluctuations
with the truncated BHP pdf fzgp .46 — On top

and we observe that Dy, —(x) attains its maximum value 0.0202 for the opyp
negative fluctuations below the mean of the probability distribution. In Fig. 28.8, we
show the data collapse of the histogram fq.  — of the oy, negative fluctuations to
the truncated BHP pdf fzup.ay,,,—

Given that the probability distribution of the oz, negative fluctuations ro,_ (¢) is
approximated by Fgup,az;,,—, the pdf of the PSI20 daily index (symmetric) negative
returns —r(¢), with T € T, is approximated by (see [11])

— opypl gy - -
A nrp X YBHP x%HP — o —
BHP Jonp (( M"‘BHP)/ “BHP)

i (For (Ra,) = For (L))

Ji BHP,PSI20,— (x) =

Hence, we get

fonp.psizo.—(x) = 4.80x™%%* fpyp(21.0x%4¢ —2.0)
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Fig. 28.9 Left: The histogram of the negative returns with the pdf fggp psi20— on top, in the
semi-log scale; Right: The histogram of the negative returns with the pdf fpyp_psr20.— on top

In Fig. 28.9, we show the data collapse of the histogram of the negative returns to
our proposed theoretical pdf fzup psio,—-

28.3.2 Data Collapse to a Truncated log-normal

We denote by Fy,— the probability distribution of the o negative fluctuations. Let
the truncated log-normal probability distribution F n o — be given by

Frn(x)
FLn(Ry) — FLn(Ly)

Fine—(x) =

where F y is the log-normal probability distribution. We apply the K-S statistic test
to the null hypothesis claiming that the probability distributions Fy,— and Fry o —
are equal. The Kolmogorov—Smirnov P value P, is plotted in Fig. 28.10. Hence,
we observe that a7,y = 0.49... is the point where the P value PO‘_ZN = 0.85...

attains its maximum. We note that
/,L;ZN = 0.083... OOI_ZN =0.044 ... LO_‘ZN = —1.833... and R‘;ZN =5462...

It is well-known that the Kolmogorov—Smirnov P value P, decreases with the
distance
Do~ = | Fa,- = FLNa-|

between Fy — and Frn,o,—. In Fig. 28.10, we plot
Doy ~(x) = |Fay,,~(%) = FLNap, ~(¥)]

and we observe that D, —(x) attains its maximum value 0.0179 for the o™ neg-
ative fluctuations below the mean of the probability distribution. In Fig.28.11, we
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Fig. 28.10 Left: The Kolmogorov—Smirnov P value P, for values of « in the range [0.4, 0.6];
Right: The map D49 —(x) = [Fo49—(x) = FLn0.49— (%)
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Fig. 28.11 Left: The histogram of the o}, negative fluctuations with the truncated log-normal pdf
Jf1N,0.49,— on top, in the semi-log scale; Right: The histogram of the o}, negative fluctuations with
the truncated log-normal pdf f; y0.49.— On top

show the data collapse of the histogram fo, ,— of the o 5 negative fluctuations to
the truncated BHP pdf f7, Najy.—

Given that the probability distribution of the o} 5, negative fluctuations Tty (t)is
approximated by Fn a7, ,—, the pdf of the PSI20 daily index (symmetric) negative
returns —r(¢), with T € T, is approximated by (see [11])

apnx® ' fiw ((X“ZN - “;ZN> /Ua_ZN)

JLN,psro,—(X) =

Hence, we get

Oary (FLN (R‘;ZN> —Fin (LgZN))

SfLN.ps0.—(x) = 5.93x7%1 1 v (22.88x047 — 1.89)
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Fig. 28.12 Left: The histogram of the fluctuations of the positive returns with the pdf f; v psr20—
on top, in the semi-log scale; Right: The histogram of the fluctuations of the positive returns with
the pdf f1n. psi20,— on top

In Fig. 28.12, we show the data collapse of the histogram of the negative returns to
our proposed theoretical pdf f7n,psi20,—-

28.4 Conclusions

We computed the analytical approximations of the pdf of the normalized PSI20
index daily positive and negative returns in terms of the truncated BHP pdf and of
the truncated LN pdf. We showed the data collapse of the histogram of the positive
and negative returns to our proposed theoretical pdfs.

28.5 Appendix A: The BHP Pdf

The universal nonparametric BHP pdf was discovered by Bramwell, Holdsworth
and Pinton [3]. The BHP probability density function (pdf) is given by

[e.o]

Seup(p) = /

—0o0

N—1[ix 1 _i
o~ Xk=1 [%Tk—’jarctan(

(28.7)

where the {)&k}llgzl are the eigenvalues, as determined in [4], of the adjacency
matrix. It follows, from the formula of the BHP pdf, that the asymptotic val-
ues for large deviations, below and above the mean, are exponential and double
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exponential, respectively (in this article, we use the approximation of the BHP pdf
obtained by taking L = 10 and N = L? in (28.7)). As we can see, the BHP distri-
bution does not have any parameter, except the mean that is normalize to O and the
standard deviation that is normalized to 1.

28.6 Appendix B: The Log-Normal Pdf

Let f(x;0, i, 0) be the generalized log-normal pdf

S(x:0,pn,0) = %(In(x—@)—u)2

|
I r A

normalized by

2
E(6.11.0) = exp( + =) =6 = 0
Var(9, i, o) = exp(c? — 1) expu + 0%) = 1.

Our aim is to find the values (6*, u*, 0*) that optimize the data collapse of the pdf
f(x;6, u, o) with the BHP pdf fpgp (x) in the support range [—3, 9]. We found the
optimal values

0* = =3.6737, p* =1.2620 and o™ = 0.2682

that maximize the P value P* = 0.99999 of the Kolmogorov—Smirnov (K-S)
statistic test. Hence, we define

Jin(x) = f(x;0%, u*,0%).

Bramwell et al. [4], using a different optimizing method, also present a generalized
log-normal pdf very close to the BHP pdf fpmyp and to the pdf frn(x) in the
support range [—3, 9].
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Chapter 29
Dynamical Systems with Nontrivially
Recurrent Invariant Manifolds

Viacheslav Grines and Evgeny Zhuzhoma

Abstract The goal of this article to give exposition of results demonstrating deep
interrelation between topological classification of Dynamical Systems with nontriv-
ially recurrent invariant manifolds and topological classification of standard objects
existing on ambient manifold. One can see how the purely topological constructions,
very pathological at first glance, appear naturally in Dynamical Systems.

29.1 Topological Classification Flows, Foliations
and Two-Webs by Means Geodesic Laminations
on Hyperbolic Surfaces

29.1.1 Introduction to the Method

Historical remarks. The idea to study two-dimensional dynamical systems and sur-
face foliations applying nonlocal asymptotic properties of orbits and leaves is due
to A. Weil and D.V. Anosov (see also the historical comments in [6]-[13,24,114]).
In the 1960s, D.V. Anosov put forth the concept that the key to the classifica-
tion of dynamical systems and foliations on M? is a study of arrangement of
“infinite” simple curves on M? and of the asymptotic behavior of lifts of these
curves to the universal covering plane A with the use of the absolute Seo. Espe-
cially this approaching turned up effective for dynamical systems with nontrivially
recurrent motions and nontrivially recurrent invariant manifolds (the most known
of such dynamical systems are pseudo-Anosov homeomorphisms, Anosov and
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DA diffeomorphisms), and foliations with nontrivially recurrent leaves, see [16]-
[23, 63, 64]. Such approach sometimes is called the Anosov—Weil Theory which
generally considers asymptotic properties of simple curves lifted to an universal
covering, and their “deviation” from the lines of constant geodesic curvature that
have the same asymptotic direction.

Aranson and Grines [19] and Markley [99] was first who fruitfully applied
properties of the hyperbolic (Lobachevsky) geometry to prove that a nontrivially
recurrent trajectory of any flow on M2 has a co-asymptotic geodesic. As a conse-
quence, given any quasiminimal set that contains such a trajectory, one can construct
a special geodesic lamination, a geodesic framework. This geodesic framework con-
tains all information about a global topological structure of the quasiminimal set.
Levitt [94] used similar geodesic laminations to get the Whitehead classification of
surface foliations.

The main concepts. Definitions of dynamical systems, foliations and 2-webs
require only the existence of differential structures on supporting manifolds. These
differential structures are usually enough, if we consider just local properties of
orbits or leaves. But if we study nonlocal properties, we often apply additional
structures (for example, algebraical, geometrical, etc.). Here, we use geometrical
structures to construct special geodesic laminations, so-called geodesic frameworks.

Recall that geodesic laminations were introduced by Thurston [132, 133] to pro-
vide a completion for the space of simple closed curves on M . Ever after, they occur
in various problems in low-dimensional topology and geometry as a successful tool
to attack these problems. But mainly one considers geodesic laminations endowed
with the additional structure of a transverse measure (measured laminations). Here,
we apply geodesic laminations without a preferred transverse measure just to obtain
a significant topological and dynamical information about surface dynamical sys-
tems (with nontrivially recurrent orbits and invariant manifolds), and foliations (with
nontrivially recurrent leaves).

To consider a nonlocal asymptotic behavior of orbits, invariant manifolds or
leaves, one has to lift these objects to a universal covering space to look a limit
set “at infinity”. Let us give the more precise definitions. To simplify matters, we
restrict ourselves by closed orientable hyperbolic surfaces. Recall that a hyper-
bolic surface M? = M is a Riemannian 2-manifold whose universal covering
space is the hyperbolic (Lobachevsky) plane, which we’ll consider as the unit disk
A = {z € C : |z < 1} endowed with the Poincare metric of the constant cur-
vature -1. The circle Soo = dA = (|Jz] = 1) is called a circle at infinity or
absolute. It is known that a given closed orientable hyperbolic surface M2, there
exists a Fuchsian group I' of orientation-preserving isometries acting freely on A
such that A/I" = M?. The natural projection w : A — A/I is a universal cov-
ering map which induces a Riemannian structure on M 2. Geodesics of A are the
circular arcs orthogonal to S, (We suppose that any geodesic is complete with the
ideal endpoints in Seo).

To explain how geodesics and geodesic laminations appear, let us give a formal
definition of asymptotic direction for a simple curve. A curve [/ is semi-infinite, if
it is an image of [0; oo) under continuous injective map [0; o) — M that is called
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a parametrization of the curve. Thus, any semi-infinite curve is endowed with an
injective parametrization [0;00) — [, t — [(t). A curve is simple, is it has no
self-intersections.

Let/ = {I(t),t > 0} be a semi-infinite simple curve on M , and let [ be its lifting
to A. Suppose that / tends to precisely one pointo € So, asf — oo in the Euclidean
metric on the closed disk A U Se. In this case, we shall say that the curve [ has an
asymptotic direction determined by the point o (we also shall sometimes say that
[ has an asymptotic direction, and the point o is reached by the curve /).

Now let I = {I(t),t € R} be an infinite simple curve on M, and let [ be its
lifting to A. Here we assume that [ is endowed with an injective parametrization
(—00; +00) — . Suppose that [ has the asymptotic directions determined by the
points o and o~ as t — +ooand t — —oo respectively. If ot # o7, there
exists the geodesic g(/) with the ideal endpoints 6, 0~ oriented from 6~ to o,
This geodesic g(I) is said to be co-asymptotic for . The geodesic 7(g(1)) = g(I)
is said to be co-asymptotic for [. It can be shown that g(/) has no (transversal) self-
intersections. Hence the topological closure of g (/) is a geodesic lamination [50].

Here, we represent many old and some new results on surface dynamical systems
and foliations from a “geodesic” point of view. The most results we revisit here are
reformulated in a form different from original one. We suggest that this representa-
tion based on a purely geometrical object opens new investigations in the theory of
surface dynamical systems and foliations. Now we give main definitions.

Rational and irrational points. Let A/’ =~ M be a hyperbolic orientable
surface. The group I' consists of linear-fractional maps that homeomorphically
transform the closed disk A U S onto itself. Since M is closed, every isome-
try y € I' is a hyperbolic transformation having two fixed points y¥, y~ € Seo.
A point o € S is called rational if 0 = y* forsome y € I', y # id. Any point
of the set IR = Soo — UyEF{y+v y~} is called irrational.

Local laminations. The motivation for the definition of local lamination is the
theorem of Ordinary Differential Equations that says that trajectories of smooth
differential equation locally looks like parallel straight lines beyond of singulari-
ties. For simplicity, we give the definition of a local lamination for a surface M2
without boundary, dM 2 = @. As usual, one assume that the Euclidean plane RZ is
equipped with Cartesian coordinates (x, y). By a C° diffeomorphism we mean a
homeomorphism. Fix integers number 0 </ < r < oo.

Let .##/ C M? be a subset of M? (which may coincide with M?) that con-
tains some closed subset S C .#. Suppose .# is a union S|J, L., Where
L, are pairwise disjoint C”-smooth simple curves (« runs through some set of
indices). We say that the family {Lo} forms a C™! local lamination if, for any point
P € .# — S, there exist a neighborhood U(P) of P, and a C! diffeomorphism
¥ : U(P) — R%, ¥(P) = (0,0), such that any connected component of the inter-
section U(P) N Ly (provided that this intersection is nonempty) is mapped by
onto the line y = const and the restriction ¥|y(p)nL, is @ C” diffeomorphism
onto its image, Fig. 29.1. Roughly speaking, { L} is a family pairwise disjoint sim-
ple curves locally homeomorphic to a family of parallel straight lines. We call the

family {Lq} = 2 a C™! local lamination with the set of singularities S &t Sing (2).
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y

Fig. 29.1

The set . # = (U, L«)US is called a support of the local lamination 9. The curves
L, are called leaves. Each point of the set Sing (2) is called a singularity. A point
that is not a singularity is called regular.

The neighborhoods U(P) where P € .# — Sing (2) are called neighborhoods
with the structure of a linear local lamination, and the diffeomorphisms i are called
rectifying diffeomorphisms. The pre-image ¥ ~!([—1; +1] x [=1; +1]) is called a
closed trivially foliated box. The interior of this box is an open trivially foliated
box. Actually, foliated boxes are neighborhoods with the structure of a linear local
lamination, but they are bounded in part by transversal segments. Given any leaf
L, a connected component of the intersection of L, with an open trivially foliated
box is called a local leaf. Local leaves form a base of topology on each L,. We call
this topology the intrinsic (or interior) topology of the leaf L. Taking in mind this
topology, we speak on compactness of a leaf or that a leaf is homeomorphic to some
1-dimensional manifold, for example, R, S I and so on.

Let X be a segment (the image of the unit interval [0; 1] under an embedding
of [0; 1] into M ?) through the regular point P. If there is the rectifying diffeomor-
phisms ¥ : U(P) — R? such that ¥ C U(P) and ¥ maps ¥ into the line x = 0,
then X' is called locally transversal segment at P. The segment X is called transver-
sal if it is locally transversal at each point of .#Z N X. A closed simple curve C is
called a closed transversal if every arc-wise part of C is a transversal segment.
A local lamination is of Cantor type if .# N X' is a Cantor set on X.

The concept of a local lamination generalizes the classical concepts of lamination
and foliation. If .# is closed and Sing (2) = @, then 2 is called a C" lamination.
An important example of a lamination is a geodesic lamination. Note that a local
C"! lamination without singularities is not always a lamination. If .# = M?2, then
2 is called a C™! foliation. One may say that a local lamination with singularities
is a “foliation” (with singularities) on a some subset. If this subset is closed and
there are no singularities, then we obtain a lamination. If this subset coincides with
a manifold (and there may be some singularities), then the local lamination is a
foliation. It follows from the aforesaid that the concept of a local lamination is a
quite general concept, which includes, as particular cases, the concepts of lamination
and foliation.

Geodesic laminations. A geodesic lamination is a nonempty collection of mutu-
ally disjoint simple (i.e. with no transversal self-intersections) geodesics whose
union is a closed subset of M. Denote by £ (M) = £ the set of geodesic
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laminations on M. A simplest geodesic lamination is any union of simple pairwise
disjoint closed geodesics. A few complicated example of a geodesic lamination one
gets by adding to a simplest geodesic lamination a finite collection of non-closed
geodesics that spirally tend (in both directions) to closed geodesics. Such a lami-
nation is called a trivial geodesic lamination. Note that the non-closed geodesics
belonging to trivial geodesic laminations are isolated i.e., any point on such a
geodesic has a neighborhood that intersects with the geodesic lamination only along
a unique arc of the geodesic containing this point. Let us denote the family of triv-
ial geodesic laminations by A,,;,. Obviously every lift of a geodesic from any trivial
geodesic lamination has rational ideal endpoints. Thus, it is natural to call a geodesic
lamination nontrivial if it contains a non-closed geodesic that is non-isolated in the
geodesic lamination. Any nontrivial geodesic lamination contains a continual set
of non-closed geodesics each of which is nontrivially recurrent (self-limiting) i.e.,
the intrinsic topology on the geodesic does not coincide with the topology induced
by the topology of surface (see, for example, [18, 50] which contain a proof). To
construct an example of a nontrivial geodesic lamination one can take a simple
nontrivially recurrent geodesic g then the topological closure c/os (g) will be a non-
trivial geodesic lamination. However by definition, a nontrivial geodesic lamination
can contain, in general, closed and, as well as, isolated geodesics. A lamination is
said to be strongly nontrivial if it consists of non-isolated geodesics. Every geodesic
of such lamination is nontrivially recurrent. Nontrivially recurrent geodesic has an
irrational asymptotic direction i.e., every lift of a geodesic from a strongly nontriv-
ial geodesic lamination has irrational ideal endpoints (see for, example, [12,18,50]).
A lamination is minimal if it contains no proper sub-laminations.

Denote by A set of all strongly nontrivial and minimal geodesic lamination
and for G € A apply abbreviation sntm geodesic lamination. By definition each
leaf of any sntm geodesic lamination G is non closed recurrent and dense in G.
A lamination G on M is said to be irreducible if any closed geodesic on M
intersects G.

If G € A is irreducible then we call it irrational and denote by A" C A set of
all irrational lamination. It is easy to understand that for any irrational lamination
G € A" the compliment M \ G consists of finite many domains such that each of
them is an immersion of open disk.

For G € A choose and fix some orientation on every geodesic from G. This
orientations are said to be compatible if, for any geodesic [ € G and any point
m € [, there exists a transversal segment X through m endowed with a normal
orientation such that the intersection indices of all geodesics from G (intersecting
Y) with ¥ are equal. A geodesic lamination is called orientable (non-orientable if
its geodesics admit (do not admit) compatible orientations. Denote by Ay, (Ajon)
the set of orientable (respectively, non-orientable) sntm geodesic laminations from
Athen A = Ay U Ay,

Let G be a geodesic lamination on M. Clearly, the pre-image 7~ '(G) = G
is a local geodesic lamination on A. Denote by G(co) C S the set of points
reached by the lamination G. In other words, G(o0) is the set of ideal endpoints of
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all geodesics from G. If .Z is a family of all geodesic laminations on M, .Z(c0)
denotes the union of all sets G(o0) where G € .Z.

Generalized mapping class group GM 1is the quotient Homeo (M )/ Homeoy (M),
where Homeo (M) is the group of homeomorphisms of M and Homeog (M) is the
subgroup of homeomorphisms homotopic to the identity. Given f € Homeo (M),
denote by [ f] € GM the image of f under the natural projection Homeo (M) —
Homeo (M)/Homeog (M). It is known that any homeomorphism f : M — M
induces a one-to-one map fx : . — £, and any g € [f] induced the same map
g+ = f+ [36,50]. Given A € &, the family GM (L) = { fx (1), f« € GM } is called
an orbit of the geodesic lamination A.

Surface foliations and flows. By a foliation .% with a set of singularities Sing (%)
on a surface M we mean a decomposition of M — Sing (%) into pairwise disjoint
simple curves I, locally homeomorphic to a family of parallel straight lines. Any
curve I, is called a leaf. Any point of Sing (%) is called a singularity. Let [ be a
nonclosed leaf of a foliation .%. Any point x € [ divides / into two semileaves,
say It and ™. A semileaf [©) is called nontrivially recurrent if its intrinsic topol-
ogy does not coincide with the topology of /) as a subset of M. A leaf [ is said
to be nontrivially recurrent if both its semileaves are nontrivially recurrent. The
topological closure of a nontrivially recurrent semileaf is called a quasiminimal set.
A foliation is (topologically) transitive if it has a leaf that is dense in M. Every
isolated singularity of transitive foliation has at least one separatrix [37].

Following [59], we’ll call % highly transitive if the set Sing (%) is finite and
every leaf of % is dense in M . The definition of highly transitive foliation admits the
existence of so-called fake saddles, i.e. saddles with only two saddle sectors. Clearly
that the existence and number of fake saddles does not connect with the topology of
the surface M and any fake saddle is an artificial thing. A highly transitive foliation
is called weakly irrational if it has no fake saddles. A highly transitive foliation .%
is said to be irrational if Z has no fake saddle and thorns.

Let f* be a flow on M meaning that f* : M x R — M is a one-parameter
group of homeomorphisms f? of M. Denote by /(m) = [ a trajectory through
apoint m € M and by fix (f') a set of all fixed points of f?, where m is a
fixed point if l[(m) = m. Due to the local structure of a flow in a neighborhood
of regular (i.e., non-fixed) point, the trajectories of f’ form the foliation .% with
Sing (F) = fix (f1). If a given foliation, there is such a flow, the foliation is called
orientable. In this context, a flow can be considered as an orientable foliation.

Existence of co-asymptotic geodesics. Let | be a nontrivially recurrent trajectory
of a flow f’. Aranson and Grines [19] proved that there exists the co-asymptotic
geodesic g(/) showing that the both positive and negative semitrajectories of / have
asymptotic directions and this directions are different (i.e. @(l) # w(l)). We give
a schematic proof of this fundamental result to demonstrate methods of Hyperbolic
Geometry. Since / is a nontrivially recurrent trajectory, there exists a simple closed
transversal C such that / intersects C at set of parameter values which is unbounded
both above and below. Then [ intersects transversally the sequence of curves 61 e
C,,...€ 17 Y(C) ast — +oo0. Since the group I” is discontinuous, the properties
of the hyperbolic plane A imply that the topological limit of the sequence C, is a
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unique point, say 0 € Seo. Hence, o(l) = o. Similarly, a(]) € Se. Since C is a
transversal, a(l) # w(l).

This Aranson—Grines’s result can be generalized as follows. Let [ be an infi-
nite simple curve on M that intersects transversally some closed simple curve C
infinitely many times. Suppose that there is no loop that is homotopic to zero and
formed by an arc of [ and arc of C. Then [ has the co-asymptotic geodesic g(/)
[12]. In particular, any leaf that is not a separatrix of an irrational foliation has a
co-asymptotic geodesic. Anosov [6] obtained the following sufficient condition for
the existence of asymptotic direction of a semitrajectory, which is the most general
condition up now. Let [ be a lift on M of a semitrajectory [ of a flow £ on a closed
surface of non-positive Euler characteristic M . Suppose that the set fix ( f*) of fixed
points is contractible (i.e. there is a continuous map ¢ : M x [0, 1] — M such that
¢(-,0) = id and ¢(fix (f*),1) = my, where mg is some point of M). Then [ is
either bounded or has an asymptotic direction. Anosov [6] proved the last assertion
even for an arbitrary set fix (f?) provided that /! is analytic.

Geodesic frameworks of quasiminimal sets. First, we give the definition of a
geodesic framework for a quasiminimal set of a flow. Let Q be a quasiminimal
set of a flow f!. According to [51] the set Q contains continuum of nontrivially
recurrent trajectories. Let [ be a nontrivially recurrent trajectory from Q. As proved
above, there is the co-asymptotic geodesic g(/). One can prove that g(/) has no
self-intersections. Therefore, the topological closure clos [g(l)] of g(/) is a geodesic
lamination (see [18, 50]). This geodesic lamination is independent of the choice of
[ since, due to the classical Maier’s paper [96], any nontrivially recurrent trajectory
in the quasiminimal set Q is dense in Q (see the modern proof in [15] and some
generalizations in [31]). So the following definition is well defined. The geodesic
lamination clos [g(I)] = G(Q) is called a geodesic framework of Q. One can
prove that G(Q) € A°" that is G(Q) is strongly nontrivial minimal and oriented
geodesic lamination. If f7 is transitive, then Q = M . In this case, G(M) = G(f")
is called a geodesic framework of the flow f*.

A similar definition of geodesic framework holds for a quasiminimal set Q of a
foliation provided that some nontrivially recurrent leaf from Q has a co-asymptotic
geodesic and every nontrivially recurrent leaf from Q is dense in Q. Sufficient con-
ditions of this are in [16, 29, 30]. One can prove that an irrational foliation has a
nonempty geodesic framework G, which is an irrational (not necessary oriented)
geodesic lamination, G € A",

29.1.2 Foliations and Two-Webs on Hyperbolic Surfaces

Here, we represent some results on topological classification of irrational foliations,
nontrivial minimal sets of flows and irrational 2-webs on a hyperbolic orientable
closed surface.
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29.1.2.1 Irrational Foliations

Recall that two foliations %1, .%, on a surface M are topologically equivalent if
there exists a homeomorphism 2 : M — M such that h(Sing (%)) = Sing (%>)
and & sends the leaves of .%; into the leaves of .%,. It is impossible to classify all
surface foliations. But if we restrict ourselves to special classes, this problem could
be manageable. In general, the classification assumes the following (independent)
steps.

1. Find a constructive topological invariant which takes the same values for topo-
logically equivalent foliations.

2. Describe all topological invariants which are admissible, i.e. may be realized in
the chosen class of foliations.

3. Find a standard representative in each equivalence class, i.e. given any admissible
invariant, one constructs a foliation whose invariant is the admissible one.

An invariant is called complete if it takes the same value if and only if two foliations
are topologically equivalent. The ‘if” part only gives a relative invariant.

Invariants fall into three major classes: homology (or cohomology), homotopy,
and combinatorial. Poincaré rotation number is most familiar, which carries an inter-
esting arithmetic information, being at the same time homology and homotopy
invariant. Combinatorial invariants (exm., Peixoto and Conley-Lyapunov graphs)
are good for description of flows without nontrivially recurrent trajectories. Homol-
ogy and homotopy invariants (exm., fundamental class of Katok [90] and homotopy
rotation class of Aranson—Grines [19] respectively) are convenient for description
of flows with nontrivially recurrent trajectories. A homotopy invariant that is most
related to the Riemannian structure of surface is a geodesic framework. In terms of
the geodesic frameworks we can reformulate the Aranson—Grines [19] classification
of irrational flows as follows.

Theorem 29.1. Let f|, f} be two irrational flows on a closed orientable hyper-
bolic surface M. Then f{, f} are topologically equivalent via a homeomorphism
M — M homotopic to identity if and only if their geodesic frameworks coincide,

G(f)) =G(f3).

Theorem 29.2. Let f! be an irrational flow on a closed orientable hyperbolic sur-
face M. Then its geodesic framework G(f') is an orientable irrational geodesic
lamination, G(f') € Aoy N AT,

Theorem 29.3. Given any orientable irrational geodesic lamination G on a closed
orientable hyperbolic surface M, there is an irrational flow f' on M such that

G(fH) =0G.

Due to Nielsen [110, 111], we see that an irrational orientable geodesic frame-
work is a complete invariant up to the action of the generalized mapping class group
GM forirrational flows. Thus an irrational orientable geodesic framework is similar
to the Poincare irrational rotation number which is a complete invariant (up to the
recalculation with the unimodular integer matrices) for minimal torus flows. Below,
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we’ll see that this similarity keeps for the continuity of irrational rotation number
under a perturbations of a flow.

Remark that the same results is true for closed non-orientable surfaces of genus
>4 [26]. The similar theorems take place for irrational foliations but one omits the
orientability of geodesic framework.

Theorem 29.4. Let %1, %, be two irrational foliations on a closed orientable
hyperbolic surface M. Then Fy, %, are topologically equivalent via a homeo-
morphism M — M homotopic to identity if and only if their geodesic frameworks
coincide, G(F1) = G(%,).

Theorem 29.5. Let % be a irrational foliation on a closed orientable hyperbolic
surface M. Then its geodesic framework G(.F) is irrational, G(F) € A",

Theorem 29.6. Given any irrational geodesic lamination G on a closed ori-

entable hyperbolic surface M, there is an irrational foliation % on M such that
G(Z)=0G.

Thus, an orbit of irrational geodesic framework is a complete invariant for the
class of irrational foliations.

29.1.2.2 Nontrivial Minimal Sets

Let us consider the Aranson—Grines [20] classification of minimal nontrivial sets.
Recall that a minimal set of a flow is called nontrivial (exceptional) if it is nei-
ther a fixed point, nor a closed trajectory, nor the whole surface M. An exceptional
minimal set is nowhere dense and consists of continuum nontrivially recurrent tra-
jectories, each being dense in the minimal set. Moreover, an exceptional minimal set
is locally homeomorphic to the product of the Cantor set and a segment. The most
familiar flow with an exceptional minimal set is the Denjoy flow (first constructed
by Poincare [124]) on the torus T2.

Two minimal sets Ny, N, of the flows f, f) respectively are topologically
equivalent if there exists a homeomorphism ¢ : M — M such that p(N1) = N>
and ¢ maps the trajectories of N onto the trajectories of No.

Let N be an exceptional minimal set. A pair of trajectories /1, [ C N is called
special if there exists a simply connected component §2 of M \ N such that the
accessible boundary of §2 equals /1 U I,. It is natural to call £2 a cell of Denjoy.

Any flow on T2 with an exceptional minimal set must have special pairs. Con-
versely, the existence of special pairs on a hyperbolic surface M is artificial. Any
flow f' having an exceptional minimal set with special pairs on M can be mapped
by a blow-down operation onto the flow with an exceptional minimal set that has no
special pairs. So the first step is a classification of exceptional minimal sets with no
special pairs.

Theorem 29.7. Let N1, N2 be exceptional minimal sets with no special pairs of
flows fI, f¥ respectively on a closed orientable hyperbolic surface M. Then Ny, N»



430 V. Grines and E. Zhuzhoma

are topologically equivalent via a homeomorphism M — M homotopic to identity
if and only if their geodesic frameworks coincide, G(N1) = G(Nz). Furthermore,
the geodesic framework G(N) of any exceptional minimal set N (possibly, with spe-
cial pairs) belongs to A,r that is an G(N) is orientable sntm geodesic lamination,
and vise versa, given any geodesic lamination G € A,y, there is a flow f! with
exceptional minimal set N with no special pairs such that G(N) = G. Moreover,
let N be an exceptional minimal set of flow f' on M which has no special pairs.
Then there is a flow f{ on M with the following properties:

1. The geodesic lamination G(N) is an exceptional minimal set of the flow f{.
2. Minimal sets N and G(N) are topologically equivalent via a homeomorphism
homotopic to the identity.

We see that the orbit of orientable irrational geodesic lamination is a complete
invariant for exceptional minimal sets with no special pairs. In the general case when
an exceptional minimal set can have special pairs, we need the notation of marked
geodesics as follows. It is easy to see that a cell of Denjoy corresponds to a geodesic
which is called marked. Such geodesics form a marked subset G, (N ) in a geodesic
framework G () of an exceptional minimal set N .

Theorem 29.8. Let Ny, N> be exceptional minimal sets of flows f{, f} respec-
tively on a closed orientable hyperbolic surface M. Then N1, N, are topologically
equivalent via a homeomorphism M — M homotopic to identity if and only if
their geodesic frameworks and corresponding marked subsets coincide, G(N1) =
G(N2), Gm(N1) = Gm(N2).

To solve the part of realization in the classification problem, let us introduce
the notion of an interior geodesic in a geodesic framework. Roughly speaking, an
interior geodesic is self-limiting from the both sides. More precisely, let g be a
geodesic from a geodesic framework G € A (it means that G is sntm geodesic
lamination) and let X' be a transversal geodesic segment through some point of g.
Then the intersection G N X' is a Cantor set and thus any open component of X~ —
G N X is an open interval. If g does not pass through endpoints of open components
of ¥ —GN X, then! is called interior. This definition does not depend on the choice
of X.

Theorem 29.9. Let N be an exceptional minimal set of a flow f! on a closed ori-
entable hyperbolic surface M. Then the geodesic framework G(N) of N is an
orientable sntm geodesic lamination, G(N) € Aoy, with a countable (possibly,
finite) marked subset G, (N) that consists of interior geodesics. The cardinality of
G (N) equals the cardinality of the set of Denjoy cells. Vise versa, given any sntm
geodesic lamination G € A,, with a marked subset G, C G consisting of count-
able set of interior geodesics, there is a flow f' with exceptional minimal set N
such that G(N) = G and G, (N) = Gy,.

Thus the orbit of orientable sntm geodesic lamination with marked subset con-
sisting of countable set of interior geodesics is a complete invariant for exceptional
minimal sets.
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As to exceptional minimal sets for foliations, let us remark that there are such
sets with empty geodesic frameworks (exp., the stable or unstable manifolds of gen-
eralized pseudo-Anosov homeomorphism). Therefore we must restrict ourselves by
some classes of foliations or special exceptional minimal sets. For example, one
can consider foliations with finitely many singularities such that all of them are
saddles of negative index, or one can consider so-called widely disposed excep-
tional minimal sets. In the both cases the similar classification holds just omitting
the orientability condition of geodesic frameworks.

Let us introduce the notion of a Denjoy foliation on a hyperbolic surface, which
in sense generalizes the notion of Denjoy flow on the torus. A foliation .# whose
singular set Sing (%) consists of saddles with negative indices is called a Denjoy
foliation on M if it has a unique exceptional minimal set N satisfying the following
conditions: (1) Every component w of M — N is simply connected; (2) every Den-
joy cell does not contain singularities; (3) every component w of M — N which is
not a Denjoy cell contains a unique saddle of the index that equals the index of w
(i.e. a number of separatrices equals a number of leaves which form the accessible
boundary of w).

One can show that a geodesic framework of Denjoy foliation is an irrational
geodesic lamination with marked subset consisting of countable set of interior
geodesics. The classification of Denjoy foliations is word in word the same as for
the irrational foliations: the orbit of an irrational geodesic framework with marked
subset consisting of countable set of interior geodesics is a complete invariant.

29.1.2.3 Irrational 2-Webs

The web theory is a classical area of geometry and is mainly devoted to solving
local problems. However, 2-webs also naturally appear in the theory of dynamical
systems on surfaces as pairs of stable and unstable foliations of Smale horseshoes,
Anosov diffeomorphisms, pseudo-Anosov homeomorphisms, and diffeomorphisms
with Plykin attractors. The topological equivalence of these webs is clearly a neces-
sary condition for the classification up to conjugacy of these diffeomorphisms and
homeomorphisms.

2-web on a surface is a pair of foliations such that they have a common singular
set and are topologically transversal at all non-singular points. Let us show how a
“web” of geodesic frameworks helps to classify so-called irrational 2-webs [25].

2-web is irrational if it consists of a pair of irrational foliations. Two 2-webs
(F1, F>) and (F{, F3) on M are topologically equivalent if there is a homeomor-
phism f : M — M which maps the foliations F;, i = 1,2, to the corresponding
foliations F;.

Theorem 29.10. Two irrational 2-webs (F1, F>) and (F{, F,) on a closed ori-
entable hyperbolic surface M are topologically equivalent via a homeomorphism

M — M homotopic to identity if and only if their geodesic frameworks coincide,
G(F1) = G(F)), G(F2) = G(F).
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Let (F, F») be an irrational 2-web. Recall that every geodesic framework G (F;),
i = 1,2, is an irrational geodesic lamination and hence, the set M \ G(F;) con-
sists of finitely sided convex polygons whose sides are (complete) geodesics with
ideal vertices. Moreover, the pair of geodesic frameworks (G(F7), G(F3)) has the
following properties:

1. The sets M \ G(F;),i = 1,2, have the same number of connected components
which equal to the number of (common) singularities of the foliations F;.

2. For each connected component D1 C M \ G(Fy) there is exactly one connected
component D, C M \ G(F>) such that one can lift D; and D, to geodesic
polygons dy, d» C A respectively with alternating vertices on Seo.

Two transversal geodesic frameworks (G(F), G(F>)) are called compatible if
conditions (1) and (2) above are satisfied.

Theorem 29.11. For any irrational 2-web (Fy, F2) on M, the geodesic frame-
works (G(F1), G(F3)) are transversal and form a compatible pair of irrational
geodesic laminations. Conversely, any such pair uniquely (up to a homeomorphism
homotopic to identity) determines an irrational 2-web on M.

29.1.3 Properties of Geodesic Frameworks

We see that a geodesic frameworks is often a complete invariant or an essential
part of complete invariant for important classes of surface foliations and dynam-
ical systems. Therefore, it is natural to study carefully properties of geodesic
frameworks.

29.1.3.1 Deviations

One of the important aspect of the Anosov—Weil theory is a deviation of a foliation
from its geodesic framework. This aspect is especially nutty for irrational foliations
(including flows) and exceptional minimal sets because its geodesic frameworks are
complete invariants. Let us give definitions.

Suppose a semi-infinite continuous curve [ = {I(r),¢ > 0} has the asymptotic
direction 0 € So. Take one of the oriented geodesics, say g, with the same positive
direction o (i.e. o is one of the ideal endpoints of g). Such geodesic g is called a
representative of o. Let d(t) = d(I(t),g) be the Poincare distance between [(¢)
and g. If there is a constant k > 0 such that d(t) < k for all t > 0, we’ll say that [
has a bounded deviation property. The following theorems was proved in [24].

Theorem 29.12. Let f' be a flow with finitely many fixed points on a closed hyper-

bolic surface M. Let [ be a semitrajectory of the covering flow 7t on A. Suppose
that | has an asymptotic direction. Then | has the bounded deviation property.
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Theorem 29.13. Let F be a foliation on a closed hyperbolic surface M. Suppose
that all singularities of F are topological saddles. Let L be either a generalized or
ordinary leaf of the covering foliation F. Then L has an asymptotic direction and
the bounded deviation property.

After Theorems 29.12, 29.13, it is natural to study the “width” of surface flows
and foliations with respect to its geodesic frameworks. Put by definition,

T = Supgerd (. g(L)).

Theorem 29.14. Let F be a foliation on a closed hyperbolic surface M. Suppose
that all singularities of F are topological saddles; then

sup{gz} < 00,

where L ranges over the set of all generalized and ordinary leaves of the covering
foliation F.

This theorem means the uniformity of deviations of leaves from a geodesic frame-
work of foliation. The supremum above is called a deviation of foliation from its
geodesic framework. As a consequence, we see that the deviation of irrational foli-
ation from its geodesic framework is finite. It is the interesting problem to study the
influence of this deviation on dynamical properties of foliation. One can prove that
a deviation of exceptional minimal set from its geodesic framework is also finite.
Note that an analytic flow can have a continuum set of fixed points. Nevertheless
the strong smoothness allows to prove the following result [32].

Theorem 29.15. If f! is an analytic flow on a closed hyperbolic orientable surface
M, then any semitrajectory of f' with an asymptotic direction has the bounded
deviation property.

For flat closed surfaces (torus and Klein bottle), a similar theorem was proved by
Anosov [7,9].

29.1.3.2 Dynamics and Absolute

In this section we show how some properties of points of S, influence on dynam-
ical properties of flows and foliations. In particular, the first theorem says that if a
foliation (or flows) with a finite set of singularities reaches an irrational point, then
the foliation has a quasiminimal set.

Recall that A(00) C Seo (A7"(00) C A(00)) is a set of points reached by pre-
images of geodesics from all sntm geodesic laminations belonging to A (from all
irrational geodesic laminations belonging to A”"). Denote by Ay, (00) C Soo the
set of points reached by pre-images of geodesics from all orientable sntm geodesic
laminations (belonging to A).
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Theorem 29.16. Let % be a foliation with finitely many singularities on a closed
orientable hyperbolic surface M. If % has a semi-leaf with an irrational direction
determined by a point 6 € Seo, then 6 € A(00). Moreover, ¥ has a quasiminimal
set (in particular, F has nontrivially recurrent leaves). If F is orientable and has
a quasiminimal set, then F has a non-empty geodesic framework which reaches a
point from Agy(00).

Theorem 29.17. Let % be an orientable foliation with a finitely many singularities
on M. Ifits geodesic framework G(F) reaches a point from A(oo) — A (c0), then
F is not highly transitive and there is a homotopically nontrivial closed curve that
is not intersected by any nontrivially recurrent leaf. If G(%) reaches a point from
A" (00), then F has an irreducible quasiminimal set (i.e. any nontrivially homo-
topic closed curve on M intersects this quasiminimal set). Moreover, % is either
highly transitive or can be obtained from a highly transitive foliation by a blow-
up operation of at least countable set of leaves and by the Whitehead operation.
In the last case, when F is not highly transitive, % has a unique nowhere dense
quasiminimal set.

Take a geodesic framework G € A (that is G is sntm geodesic lamination).
Then 7~1(G) = G is a local geodesic lamination on the hyperbolic plane A.
A point 0 € G(o0) is a point of first kind if there is only one geodesic of G with
the endpoint o. Otherwise, o is called a point of second kind. One can prove that
this definition does not depend on the choosing of G € A", The following theorem
shows that the type of asymptotic direction reflects certain “dynamical” properties
of foliation [31].

Theorem 29.18. Let . be an irrational foliation on M and let [T be a positive

—+
semi-leaf of F such that its lifting | to A has the asymptotical direction o € Seo.
Then o € A" (00). Moreover,

1. If o is a point of first kind then It belongs to a nontrivially recurrent leaf.
2. Ifo is a point of second kind then | ™ belongs to an a-separatrix of some saddle
singularity of 7.

“One can reformulate above theorem for flows replacing A(00) by Ay (c0) and
A" (00) by AT (00) = A" (00) N Ay

Put by definition, A" (00) N Auon(00) = A" (00). The set A" (c0) is dense
and has zero Lebesgue measure on S. One holds the following sufficient condition

of the existence of continuum fixed points set for flows.

Theorem 29.19. Suppose a flow f' on M reaches a point from A" (00). Then

f! has a continual set of fixed points. Furthermore, f' has neither nontrivially
recurrent semitrajectories nor closed transversals nonhomotopic to zero.

29.1.3.3 Absolute and Smoothness

In this section we show that some points of Se attained by C*° flows prevent to
be analytic for this flows. Recall that 0 € So is called a point achieved by f*
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if there is a positive (or negative) semitrajectory /* of f? such that some covering

semitrajectory Ti for /™ has the asymptotic direction defined by 0. Sometimes we’ll
say that f! reaches o.

Denote by A 77, Ao, Aan C Soo the sets of points achieved by all topological,
C®°, and analytic flows respectively. Due to the remarkable result of Anosov [7],
Af; = Aco. Obviously, Ay, C Aco. It follows from the following theorem that
Aoo — Agn # B [17,32]-[34].

Theorem 29.20. There exists a continual set U(M) C Ao such that given any C*°
flow f! that reaches a point from U(M), is not analytic. The set U(M) is dense and
has zero Lebesgue measure on Seo.

One can present explicitly a set that belongs to U(M ). Namely, one can prove that
the points attained by geodesics of non-orientable irrational geodesic laminations
arein U(M),

Anon(oo) C AOO - Aan-

Starting with Theorem 29.20, one can deduce that the set of points attained by
analytic flows contains the points attained by the simple closed geodesics and
all irrational points of A,, attained by geodesics of orientable weakly irrational
geodesic laminations,

Azriv(oo) C Au C Azriv(oo) U Aor(oo)~

29.1.3.4 On Continuity and Collapse of Geodesic Frameworks

There is a deep theory on the dependence of Poincare rotation number for circle dif-
feomorphisms [10,80]. For the class of transitive circle diffeomorphisms, a Poincare
rotation number is a complete invariant of conjugacy. Well known that a transitive
circle diffeomorphism has an irrational rotation number that depends continuously
on perturbations of the diffeomorphismin C! topology (even C° topology). Similar
results hold for rotation numbers of minimal flows on the torus.

A complete topological invariant of strongly irrational foliations (in particular,
flows) is a strongly irrational geodesic framework. Since the set of geodesic lamina-
tions can be endowed with a structure of Hausdorff topological space [41, 50, 133],
it is natural to study the dependence of geodesic frameworks on perturbations of
foliations on M .

Recall that a geodesic lamination is called rational if it does not contain non-
trivially recurrent geodesics. Note that a rational geodesic lamination necessary
contains closed geodesics. Moreover, any geodesic of such a lamination has a
rational asymptotic direction. A rational geodesic lamination is called strongly ratio-
nal if it consists of only closed geodesics. Actually, a strongly rational geodesic
lamination is a simplest one.

A geodesic framework of an irrational flow is irrational and orientable. This
geodesic framework is an analog of irrational rotation number of minimal torus
flows. The following results generalize ones of [27].
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Theorem 29.21. Let f* be an irrational C'-flow induced by a vector field v €
XY (M) on a closed orientable hyperbolic surface M. Suppose that all fixed points
of f! are hyperbolic saddles. Let U be a neighborhood of the geodesic framework
G(f") of f*. Then there is a neighborhood O (v) of v in the space X' (M) of all
C-vector fields such that any flow g' generated by w € O'(v) has a non-empty
geodesic framework G(g") that belongs to U.

Theorem 29.21 is similar to the assertion that an irrational rotation number of a
minimal torus flow depends continuously on perturbations of the flow in the space
of C!-flows.

According to Pugh’s C! Closing lemma [125], given a vector field v with non-
trivially recurrent trajectories, there is a vector field w arbitrary close to v in the
space X ! (M) such that w has a periodic trajectory that is nonhomotopic to zero.
As a consequence we get a so-called “instability” of irrational geodesic framework,
which is similar to the instability of an irrational rotation number (given a torus vec-
tor field with irrational Poincaré rotation number, there is an arbitrary close vector
field with rational rotation number).

Theorem 29.22. Let f! be an irrational C'-flow induced by a vector field v €
XY (M) on a closed orientable hyperbolic surface M. Suppose that all fixed points
of f! are hyperbolic saddles. Then for any neighborhood U of the geodesic frame-
work G(f*') and any neighborhood O'(v) of v in the space X' (M) of C'-vector
fields there is a flow g' generated by w € O (v) such that the geodesic framework
G(g?) is strongly rational and belongs to U .

As far as rational geodesic frameworks is concerned, then there are examples
both of continuous and discontinuous dependence on parameters of a flow. A sim-
plest example for continuous dependence of a rational geodesic framework gives a
Morse—Smale flow, which obviously has a rational geodesic framework. Its geodesic
framework does not vary under small perturbations of the flow because any Morse—
Smale flow is structurally stable. Two theorems below describe virtual scenario of
the destruction of a rational geodesic framework.

Theorem 29.23. On a closed hyperbolic orientable surface M there is a one-
parameter family of C*° flows fli which depends continuously on the parameter
W € [0; 1] and such that the following conditions are satisfied:

1. Forall p € [0; 1) the flow f‘ﬁ has an irrational geodesic framework G(f;) £0
which does not depend on the parameter y, G(f§) = G(f}).

2. The flow f{ has a rational geodesic framework G (f).

3. There is a neighborhood U of G(f{) such that G(f,;) ¢ U as ju € [0; 1).

Theorem 29.24. On a closed hyperbolic orientable surface M there is a one-
parameter family of C*°-flows f;i which depends continuously on the parameter
W € [0; 1] such that the following conditions are satisfied:

1. For all u € [0; 1] the flow f‘ﬁ has a rational geodesic framework G(_fli) <0
which does not depend on the parameter |1 as ju € [0;1).
2. There is a neighborhood U of G(f{) such that G(f,}) ¢ U as ju € [0; 1).
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Discontinuity of a rational geodesic framework is not surprising, since there are
flows on torus (and the Klein bottle) with rational rotation number which varies in
a “jump-like” fashion under arbitrarily small perturbations [100, 101].

We now formulate a theorem on the existence of one bifurcation of a geodesic
framework which is similar to the ‘blue-sky catastrophe’ bifurcation of flow and
corresponds to a certain family of flows.

Theorem 29.25. On a closed hyperbolic orientable surface M there is a one-
parameter family of C* flows fli which depends continuously on the parameter
W € [0; 1) such that the following conditions are satisfied:

1. For all p € [0;1) the flow f; has a strongly rational geodesic framework
G(fy) # 9.

2. The lengths of closed geodesics in G(flf) tend uniformly to infinity as i — 1.

3. G(fH=0.

A bifurcation described in Theorem 29.25 we will call a collapse of geodesic
framework.

The following theorem gives some information on a set of fixed points of a flow
under which a collapse of the geodesic framework takes place.

Theorem 29.26. Let fli be a one-parameter family of C*°-flows which depends
continuously on the parameter . € [0; 1] on a closed hyperbolic orientable surface
M. Assume that:

1. For all p € [0;1) the flow f; has a strongly rational geodesic framework
G(f}) # 0.

2. The lengths of closed geodesics in G(flf) tend uniformly to infinity as i — 1.

3. G(fH=40.

Then the flow f{ has infinitely many fixed points.

29.2 Nontrivial Basic Sets with Recurrent Invariant Manifolds

Introduction. For applications, the most important invariant sets (including basic
sets) of dynamical system are attractors which at a first step can be divided into the
following three groups:

1. Trivial attractors (periodic attracting isolated orbits, sinks).

2. Nontrivial attractors which are sub-manifolds topologically embedded in M.

3. Attractors which do not belong to the above two groups (sometimes such attrac-
tors are called strange).

Lorentz attractors and expanding attractors belong to the third and obviously the
most complicated (but the most interesting) group. Among attractors with a uniform
hyperbolic structure, the most attention was paid to expanding attractors introduced
by Williams [136, 139]. The reason is a natural connection of an expanding attractor
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with quasi 2-webs consisting of laminations and transversal foliations (see below the
precise statements). In 1975, Newhouse [109] introduced wildly embedded zero-
dimensional basic sets that are locally homeomorphic to the product of standard
Cantor set and Antoine necklace. After that, Robinson and Williams [128], Bothe
[44], Isaenkova and Zhuzhoma [85] constructed different types wildly embedded
basic sets. We briefly describe these examples below. Using geodesic frameworks
introducing in the previous section, we exhibit some classification results.

29.2.1 Examples of Expanding Attractors and Wild Basic Sets

First, let us give some definitions. An invariant set A is called attracting if a neigh-
borhood U of A such that clos f(U) C U. The neighborhood U is attracting one.
A closed invariant set A is called attractor if there is an attracting neighborhood U
of A such that N;o f(U) = A and the restriction f| 4 is transitive. Recall briefly
the notion of topological dimension of a set. This definition is given inductively.
A set A has topological dimension zero provided for each point p € A, there is an
arbitrarily small neighborhood U of p such that d(U) N A = @. (It is not always
possible to take U as a ball, as the example of Antoine’s necklace shows.) Then,
inductively, a set A is said to have dimension n > 1 provided for each point p € A,
there is an arbitrarily small neighborhood U of p such that d(U) N A has dimension
n—1. See [53] for a more complete discussion of topological dimension. A nontriv-
ial hyperbolic attractor A is expanding if the topological dimension of A equals the
dimension of a fiber EY, dim £} = dim A (x € A).

Note that for any attractor A (not necessary expanding), the inclusion
W*(x) C A holds for any point x € A [118, 139]. Therefore, dimA > dim E}.
It follows that if one assumes the topological dimension of A equals zero, then
dim E% = 0. Hence, A must be an isolated periodic attracting orbit, i.e. a trivial
attractor. Thus a topological dimension of an expanding attractor more or equals
one. Obviously, dim A < dim M, otherwise A have to coincide with M. So,

1 <dimA <dimM —1.

The most familiar expanding attractors are: (1) Smale solenoid; (2) DA-attractor
(a nontrivial attractor of a DA-diffeomorphism); (3) Plykin attractor. We describe
schematically these examples (with others) below. Later on for simplicity, we’ll sup-
pose that an expanding attractor is connected (otherwise, one can take a connected
component and some iteration f* under whose this component is invariant).

29.2.1.1 Smale-Bothe Solenoids

A solenoid was first independently introduced by Vietoris [135] in 1927 and by
Van Danzig in 1930. They considered solenoids from different points of view (see
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Introduction in [134]). One of the definition of solenoid is the intersection of a

nested sequence of solid tori 77 D 71 D,...,T; D ..., where T;4; is wrapped
around inside 7; longitudinally p; times in a smooth fashion without folding back
[1], Fig.29.2.

In Topology, the solenoid N;>¢7; gives the example of 1-dimensional connected
set that is circular chainable but can not be embedded into a surface [38,39]. Recall
that a chain is a finite collection of open sets dj, ..., di such that d; intersects d;
ifand only if |i — j| = 1. If all d; are of diameter less that ¢, the chain is called an
e-chain. A set is circular chainable, if for each positive number ¢ it can be covered
by a circular e-chain.

In Topological Dynamics, solenoids was first introduced in [107] as the exam-
ple of a locally disconnected minimal set consisting of almost periodic trajectories
of a flow. Special flows with solenoidal invariant sets was considered in [86]. In
Hyperbolic Dynamics, solenoids were introduced by Smale in his celebrated paper
[130] as hyperbolic attractors by the following way. Let N = D? x S! be a solid
torus, where the circle S! and disk D? are endowed with the usual coordinates,
St = [0;1]/(0 ~ 1), D? = {(x;y)|x> +y?> < 1Llet f : N - Nbea
D2-level preserving embedding, thatis f(D?x{t}) C D?2x{pt}forVt € S! = Rr!
(mod 1)) and p > 2, such that f({-} x S!) is a p-string braid and the radius of
f(D? x {) is p—lz. Geometrically, f can be described as an expanding map of
degree p in the S! direction and a strong contraction in the D? direction. The image
is thinner across in the D? direction by a factor p—lz, see Fig.29.3b for p = 2. By

construction,

A= ()5

k>0

Fig. 29.3
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is a one-dimensional expanding attractor which is called Smale solenoid. The care-
ful description of Smale’s construction can be found in many books on Dynamical
Systems, see exm. [91, 127].

Gibbons [60] proved that there is an extension of f to a diffeomorphism of the
3-sphere S3 such that the non-wandering set of f : S — S3 consists of A and
one-dimensional contracting repeller that is a solenoid for f~! (actually in [60],
the construction of such diffeomorphisms S — §3 is presented in more general
assumptions). Moreover, by construction, there is a loop of tangencies of stable and
unstable manifolds such that this loop is C! stable.

We represent the more general construction of a so-called pure solenoid due to
Bothe [43]. For the 2-torus T2 that is a boundary of the solid torus N = D% x St
one can choose the representatives of generates of 771 (T2): the meridian . which is
homotopy to zero in N but non-homotopy to zero in 72 and the longitude A which
has the index of intersection +1 with u. Let § be a monotone knot in int N and
N; C int N asolid torus corresponding to B (“fat” knot). In the similar way, one
can define the meridian p; and longitude A; for the torus le = ON;i. There is a
diffeomorphism f : N — N; such that

f(D? x{t}) Cc D* x{ept}, VieS'=r' (mod1),
(flr2)e W) = A ul (flr2), (0) = pf

for some ¢ = +1,8 = +1, j > 2, and m € Z. The classical Smale example
correspondstoe = 1,8 = 1, and m = 0. Then

def

m fl(N) = Aﬂ,m,e,&

i>0

is a one-dimensional expanding attractor.

29.2.1.2 DA-Attractor

A diffeomorphism with a DA-attractor is obtained by a so-called Smale surgery
performed on a codimension one Anosov automorphism of the n-torus 7”. For this
reason, it is called the Derived from Anosov diffeomorphism or DA-diffeomorphism.
It was first introduced by Smale [130].

Take a codimension one Anosov automorphism A : 7" — T" with one-
dimensional stable splitting and codimension one unstable splitting. Let po be a
fixed point of A. One can carefully insert instead of point pg a tiny ball with a
source Py and two saddle type fixed points, see Fig. 29.4, in such a way that we get
a diffeomorphism, say f : 7" — T", with a codimension one expanding attractor

A=T"—W*“Py)
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Smale’s
Surgery

\/

Fig. 29.4

which is called a DA-attractor. Smale surgery is similar to a Poincare—Denjoy blow-
ing up operation producing a Denjoy foliation from a minimal foliation on the
2-torus.

29.2.1.3 Plykin Attractor and Lakes of Wada

The construction of Lakes of Wada was first published in 1917 by the Japanese
mathematician Kunizo Yoneyama [141], who credited the discovery to his teacher
Takeo Wada. The Lakes of Wada are formed by starting with an open unit square
of dry land (homeomorphic to the plane), and then digging 3 lakes according to
the following rule: on day n = 1,2, 3,... extend consequently each lake so that
it passes within r, distance an of all remaining dry land, where ry,...,7,,... is
some sequence of positive real numbers tending to 0, see in Fig. 29.5 the digging at
first day. This should be done so that after a finitely many days the remaining dry
land has connected interior, and each lake is open. After an infinite number of days,
the three lakes are still disjoint connected open sets, and the remaining dry land is
the boundary of each of the 3 lakes. Obviously, this construction can start with any
k > 3 lakes. Moreover, identifying the boundary of the unit square, one can thought
of the Wada construction on a 2-sphere.

Wada lakes naturally appear in the example of one-dimensional expanding attrac-
tor on the two-sphere S2? by Plykin [119]. Note that Smale-Bothe solenoids and
DA-attractors are orientable expanding attractors while the Plykin attractor is non-
orientable. Starting with this example, one can construct a diffeomorphism of any
closed surface with a codimension one non-orientable expanding attractor. Bear-
ing in mind these examples, we call a codimension one non-orientable expanding
attractor a Plykin attractor.

Let us give the sketch of modern construction of Plykin attractor. We start with
an arbitrary dimension n > 2. Denote by J : 7" — T" the involution x — —x
(mod 1) which has 2" fixed points vy, ..., von. Take the DA-diffeomorphism g :
T" — T" with the codimension one orientable expanding attractor §2¢ such that g
commutes with J and has the fixed points vy, ..., vpn. Denote by g : T" — T"/J
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OO
O

Fig. 29.5

the natural projection which is a double branched covering with the branch points
V1,...,von. Itisnothard to see that for n = 2 the quotient space 72/ J is a 2-sphere.
Since g(—x) = —g(x), g induces the diffeomorphism f : S — S$2 with the one-
dimensional expanding attractor ¢(§2). If n > 3, the quotient space 7"/J is not
a manifold. Therefore the branch points must be removed to get a codimension one
expanding attractor on the open manifold M = g(T" — Ul.zil Vi).

Note that Plykin’s diffeomorphism f : S? — S? is structurally stable and
contains necessarily so-called 1-bunches. Roughly speaking, a 1-bunch corresponds
to a component of S2 — A whose accessible boundary consists of a unique (one-
dimensional) unstable manifold of a periodic point.

In [28], the exact upper estimate for numbers of codimension one expanding
attractors of surface diffeomorphisms was obtained. This estimate depends on a
genus of a surface and a number of 1-bunches.

Fokkink and Oversteegen [56] proved that any lamination of Cantor type in R?
and S? can be obtained by a lake Wada construction. Moreover, they proved that
such a lamination has at least four complementary domain. This corresponds to the
estimation by Plykin [119] for the number of complementary domains of expanding
attractor on S2.

29.2.1.4 Newhouse Basic Sets of Antoine Necklace Type

Newhouse [109] introduced Antoine necklace in Hyperbolic Dynamical Systems.
Let us recall the construction by Antoine [14] who presented the first example of
so-called wild embedding. In the interior of the solid torus 77, form a set 7, which
is the union of a finite collection of solid tori linked in cyclic order as indicated
in Fig. 29.6a. The components C; of T, are indicated schematically by circles. The
number of components of 73 is k > 4. Figure 29.6b shows what any three successive
components of T, looks like. Inductively, given a set T,, which is the union of k" !
disjoint solid tori, for each component C; of T}, let ¢; be a similarity 77 — C;, that
is, a contraction, and let 7,41 = U¢;(7T1). This gives a descending sequence 77,

T, .... We define
% =()Tn
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€6))

Fig. 29.6 The finite collection 7, of solid tori linked in cyclic order (a); three successive
components of 7, (b)

The set ¢ is called Antoine necklace.

In Topology, the main property of the Antoine necklace is that the complement
R3—% to the Antoine necklace is not simply connected while % is zero-dimensional.
Moreover, if K is any standard “middle-third” Cantor set on a line in R3, there are
no homeomorphisms R3 — R3 that takes K onto .

Newhouse [109] constructed the structurally stable diffeomorphism S* — S4
with the basic set (transitive closed and hyperbolic) locally homeomorphic to the
product of classical Cantor set and Antoine necklace. Thus, the basic set is zero-
dimensional and locally the product of Cantor-type sets. We omit the precise
description because below one give the generalization of Newhouse’s construction.

29.2.1.5 Robinson-Williams Attractors

In [128], there was constructed two homeomorphic expanding attractors of codi-
mension three with the same dynamics but embedded in different way in manifolds.

The first construction is similar to Smale’s construction of a solenoid. Let A :
T? — T? be given by the matrix

31 1
A_(lz), det A =5, A1,2_§(5:i:«/§).

Define g : 7% x D3 — T2 x D? as follows
11 .
(x,y.r) = (A(x,y), vl Eexp2mx)

where (x,y) € T2, r € D3, and exp2mix is thought of as a vector lying in R? x
{0} C R3. Any 3-ball (x¢, yo) x D? intersects g(T? x D?) in five disjoint 3-balls
of radius %. We see that Ag = Np>0g™ (T2 x D3) is an expanding attractor which
intersects (X9, yo) x D3 in a Cantor set.
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The second construction. Let R; : S' x D? — S x D? be given by R;(6,w) =
(6 + t,w). This is a rotation of solid torus around S! direction. Let ¢ : S x D2 —
S! x D? be an embedding into such that the solid toruses R%ga(Sl x D?),i =
0,1,2, 3,4, are disjoint and link, i.e. form an Antoine’s necklace configuration. At
last, define f : T2xS!'xD? — T?xS'xD? by f(x,y,2) = (A(x,y), Ryop(z))
where (x,y) € T2,z € S x D2. Any solid torus (xg, yo) x S! x D? intersects
f(T?x S'x D?) in a chain of solid tori with two succeeding tori linked. Therefore,
Afr = Np>of™(T?x S x D?) is an expanding attractor which intersects (xo, yo) X
S! x D? in a zero-dimensional but wildly embedded Antoine’s necklace.

Since both f|4, : Ay — Ay and g|a, : Ag — Ag are modelled on 4 : T2 —
T2, they are conjugate. However there is no ahomeomorphism from a neighborhood
of A s to aneighborhood of A, taking A 7 to Ag.

29.2.1.6 NRW-Attractors'

Using Newhouse’s and Robinson—Williams’s technics, Isaenkova and Zhuzhoma
[85] constructed the diffeomorphism

f:D*xT? > D*xT?

with 1-dimensional expanding attractor locally homeomorphic to the product of R
and Antoine’s necklace. Let R be the rotation of N along its axis such that 7}, is
invariant under R for any n, see Fig.29.3a. Embed the solid torus N = D? x S!
in R3, and represent 4-dimensional manifold D? x T2 as N x [0;1] C R* with
N x {0}, N x {1} identified by R. The next Fig.29.7 depicts N x {0} as a subset
of R3. The vertical direction is to be thought of as R* while the horizontal direction
may be thought of as R. Note that N x [0; 1]/R is diffeomorphic to D? x T2, since
R is a homotopy trivial mapping. Let Gy, . .., G be solid tori that form the Antoine
configuration 75, where each G; is linked with neighbors G;_;, G;+;. Let y; N —
G; be a contraction, | Dv;| < A < 1. Take the k-fold covering space N x[0; k]/(N x
{0} ~ N x {k}) for N x S, where the group of deck transformations generated by
the mapping (z, ) —> (R™1(z), ¢+ 1). Define the diffeomorphism f; : N x[0, 1] —
G; x [0;k] by fi(z,t) = (¥;(2),kt — k — ki). This diffeomorphism is a covering
for the diffeomorphism f : N x §1 —: N x S that has a 1-dimensional expanding
attractor locally homeomorphic to the product of a line and Antoine necklace.

29.2.2 Williams Construction

Let A be an expanding attractor. Since dim A = dim W*(x) for any x € A,
dim(ANW?*(x)) = 0. Moreover, one can prove that the intersection AN W*(x) is a
Cantor set [118,136,139]. It follows from the theorem on the continuous dependence

! Abbreviation NRW is Formed by First Letters of the Names Newhouse, Robinson and Williams.
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Fig. 29.7

of stable and unstable manifolds on initial conditions (see [82, 127, 130]) that an
n-dimensional expanding attractor is locally homeomorphic to the product of an

n-ball and a Cantor set, A IO:C D" x C. As a matter of principle, the product D" x C
can be widely embedded in an ambient manifold M . However Bothe [42] has shown
that this is not a case. He has proved the following basic observation:

Given any expanding attractor A and any point x € A, there is a neighborhood
V of x and a homeomorphism

Q: DcodimA x DdimA >V

such that '
¢ 1 (V N A) = (Cantor set) x DUm4,

Moreover, every ¢( D% ™4 x {.}) belongs to a stable manifold passing through some
point of the attractor A.

Roughly speaking, an expanding attractor is a Cantor type lamination formed
by the unstable manifolds (as leaves) passing through the points of the expanding
attractor, and this lamination has a transversal foliation in some neighborhood.

Let N be a compact neighborhood of an expanding attractor A. Following
Williams, put x ~ y iff the points x, y € N belong to the same component of
N N W5 (z) for some point z € A. Williams proved that the neighborhood can be
chosen so that:

e The quotient space N/~ &' K is a branched manifold
e The following commutative diagram holds
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FN) <L
J C
N lq
lq
K <k

where ¢ : N — N/~ is a quotient map and g : K — K is the expansion induced
by f. Branched manifolds are smooth manifolds with certain singularities which in
the 1-dimensional case are branch points as shown in Fig. 29.8.

Let X be an inverse limit of

KEgE L EKE

i.e. X is the set of sequences (xp,...,X;,...) with x; = g(x;j4+1) where K is a
branched n-manifold, g is an expansion, and & : ¥ — X is a shift defined as
follows:
h(xo, x1,...) = (g(x0), X0, X1,.-..).
Suppose now that (1) NW(g) = K; (2) givenany z € K, there is a neighborhood

U of zand j € Nsuchthat g/ (U) is an n-cell. In this case, X is called an n-solenoid.
Williams [139] proved the following theorem.

Theorem 29.27. Let A be an n-dimensional expanding attractor of a diffeomor-
phism f. Then the restriction | of f on A is conjugate to the shift map h of an
n-solenoid. Vise versa, given a shift map h : ¥ — X of the n-solenoid X, there
is a manifold M and a diffeomorphism f of M such that f has an n-dimensional
expanding attractor A and f| 4 is conjugate to h.

Idea of the proof. The diagram above induces the diagram

L c lc Lc
£2N) <L favy LN

lC I C
Ny LN

J C

N Vg lq
g

kK & kK S x&

Each vertical inverse limit is the intersection A = Ngso f k(N). The horizontal
inverse limit yields X with the shift /4. Therefore this diagram induces a map R :
A — X such that the following commutative diagram holds:
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Fig. 29.8

ala g

IR R
h
Y «— X

where R is defined by R(x) = (¢(x).qf ' (x).qf 2(x)....). One can prove that
R is a homeomorphism.

The converse statement means that given a shift map 2 : ¥ — X of the
n-solenoid X, there is a manifold M and a diffeomorphism f of M such that f has
an n-dimensional expanding attractor A and f'| 4 is conjugate to /. For simplicity,
we sketchily represent here Williams’s construction for 1-solenoids [136].

Let K be a 1-dimensional branched manifold and g : K — K an expansion
that determines a 1-solenoid X' with shift map /4, see Fig. 29.9 where the branched
manifold K = AUBUC has two branch points and empty boundary. The expanding
immersion g is defined by

A—--B+A+B, B—-C-B+A4, C—-B+C-B,

where +(—) denotes composition with the (reverse) path. One can check that all
points of K are nonwandering and each point of K has a neighborhood whose image
under g is an arc (this example is from [136]).

Certainly that K can be smoothly embedded in the sphere S3 (we identify K
with this embedding). Then K has a neighborhood M, that is a fiber bundle over
K with a fiber disk. The mapping g : K — K C My can be approximated by a
smooth embedding ¢ so that ¢(x) and g(x) lie in the same fiber. We may suppose
that ¢ sends fibers into fibers, ¢ is a contraction on each fibers, and ¢ maps various
fibers apart, Fig.29.10.

We can assume S C S*. Using arguments of [61] where one proved that two
locally flat embedding of S' in S* are isotopic, one can prove that ¢ is isotopic
to the identity on S*. Hence there is a diffeomorphism f : S* — S* such that
flmM, = ¢. Define M; = ¢'(Mp), A = Ni>oM;. Then A is an 1-dimensional
expanding attractor such that f'| 4 is conjugate to g.

Theorem 29.27 give rises to the natural questions: (1) what interrelation exists
between two n-solenoids corresponding to the same A?; (2) when two n-solenoids
corresponding to different expanding attractors are conjugate? Such type questions
were considered in [138, 139].
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Fig. 29.9
¢
Fig. 29.10

Anderson and Putnam [2] proved that the dynamics of wide class of the sub-
stitutions on the space of tilings are conjugated to shifts of n-solenoids, see also
[140].

Let us mention some results concerning homology and cohomology groups.
A Riemannian metric on an ambient manifold makes each unstable manifold
W*(x) C A into a complete Riemannian manifold. Denote by B(x,r) the r-ball
in W*(x) with the center x. If x is a periodic point, W*(x) admits a uniformly
expanding self-diffeomorphism. Hence, the growth of volume B(x, r) is dominated
by a polynomial. This result was used by Plante [117] to prove that an orientable
codimension one expanding attractor defines a nontrivial element of the homology
group Hq1(M). Hence, H; (M) # 0. Sullivan and Williams [131] proved that the
real Cé&ch homology of orientable expanding attractor A in its top dimension is non-
trivial and finite-dimensional, Hgim A(A,R) # 0. Farrell and Jones [54] constructed
the orientable 2-dimensional expanding attractor A with H, (A,R) = O such that A
is not the total space of a fiber bundle with a manifold for a base space and a Cantor
set for fiber. Other interesting examples can be found in [87].
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29.2.3 Dimension One Expanding Attractors

The problem of classification of the dynamics formed by iterations of maps reduces
to the problem of (topological) conjugacy for maps itself that generate correspond-
ing dynamical systems. Solving this problem, it is natural to study the conjugacy
for restrictions of maps under consideration to their invariant sets. If a class of
diffeomorphisms under consideration has nontrivial basic sets (exm., expanding
attractors), there are two ways to do that. The first way is to ask, when the restriction
of two maps to their basic sets conjugate? Following [45], we shall call such basic
sets intrinsically conjugate or intrinsically equivalent. The corresponding classifi-
cation is called an intrinsical classification. This type of classification was obtained
by Williams [139] for expanding attractors. The second way is to ask, when two dif-
feomorphisms are conjugate in some neighborhoods of their basic sets. Such basic
sets are called neighbor conjugate. If the neighborhoods are whole manifolds, the
basic sets are called (simply) conjugate. Obviously, if basic sets are neighbor conju-
gate, they are intrinsically conjugate. One can say that the intrinsical classification
describes dynamics on basic sets thyself, while the classification under a neighbor
conjugacy takes in mind additionally an embedding of basic sets into manifolds.
Therefore, the second type of classification is stronger than the first one. Robinson
and Williams [128] constructed two diffeomorphisms f and g of 5-dimensional
manifolds with 2-dimensional expanding attractors A r and Ag respectively such
that f|a, : Ay — Ay is conjugate to gla, : Ag — Ag but there is not
even a homeomorphism from a neighborhood of A ¢ to a neighborhood of Ag tak-
ing Ay to Ag (see Robinson-Williams examples above). Taking into account the
NRWe-attractors considered above, N. Isaenkova and E. Zhuzhoma [85] proved that
given any d > 3, there are compact d-manifolds M?, N¢ and diffeomorphisms
f:M? - M g: N - N7 with 1-dimensional expanding attractors A f
and A, respectively such that /|4 ,, g, are intrinsically conjugate but are not
neighbor conjugate. Below we consider topological classifications under a neighbor
conjugacy or conjugacy.

29.2.3.1 Bothe’s Classification of Pure Solenoids

Let f : M3 — M3 be a diffeomorphism of compact 3-manifold M3 with a
one-dimensional expanding attractor A. Following Bothe [43], we call A a pure
solenoid, if the basin B(A) of A contains a (closed) solid torus N such that A C N,
f(N) C int N, and f maps the central circle of N to a monotone nontrivial
knot in N. In 1983, Bothe [43] proved the following theorem (here a 3-sphere is
considered as a particular case of a lens space, S> = L ).

Theorem 29.28. Let f : M3 — M3 be a diffeomorphism of a closed 3-
manifolds M 3. Suppose that f has a pure solenoid A. Then M3 can be represented
as a connected sum M3 = Ly q#Mq, p > 0, with a lens space summand P C M3
(this means that the boundary 0P is a 2-sphere and there is an open 3-ball B
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in Lp 4 such that P is homeomorphic to L, 4 — B) such that A is contained in
int P. Moreover, given any lens space L, 4, p > 0, there is a diffeomorphism
f i Lpg — Lpg with a pure solenoid.

Idea of the proof. Recall that if M ? be a connected compact 2-sided surface properly
embedded in M3, then M2 is said to be compressible if either M 2 pounds a 3-ball,
or there is an essential, simple closed curve on M 2 which bounds a disk in M3.
Otherwise, M2 is said to be incompressible.

By definition of a pure solenoid, there is a solid torus N such that A C N,
f(N) C int N. Note that since f is a global homeomorphism, M3 — int N and

M3 — int f(N) are homeomorphic. Suppose that the 2-torus N & 72 45 an
incompressible in M > — int N. Since the central axis of N is mapped by f to a
nontrivial knot which is a central axis of f(N), T? and f~!(T?) are not parallel in
M3 — int N. Tt follows that there is the infinite sequence

T2, FUT?),..., f7(T?),...C M>—imt N

of disjoint non-parallel incompressible 2-tori. This contradicts to Haken Finiteness
Theorem (see, exm., [79]). Hence, T2 is compressible in M3 — int N. This means
that there is a properly embedded disc (D, D) C (M3 —int N, T?) such that D is
an essential circle in T'2. It follows that M3 —int N = (solid torus)#M; and M3 is
obtained as a conglutination of N and solid torus)#M; along the boundaries of the
solid toruses.

The idea of second part of the theorem on the existence of a diffeomorphism
f 1 Lpg — Lpg with a pure solenoid, for simplicity, we demonstrate for the
3-sphere S = Lj o, which can be obtained by identifying two solid tori N1 and N,
along their common boundary dN; = dN, that is a torus, Fig. 29.11.

Consider two links (Cy, B2), (C2, 1) in S3, where C1, f1 € Ny and C3, B €
N. Let us show schematically that there is a diffeotopy ¢; : S — §3 such that
01(C1) = B1, v1(B2) = Ca, 9o = id. Since the identification IN; — IN, takes

Fig. 29.11
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Ny

Fig. 29.12

a longitude to a meridian and vice versa, C; can be transform to a curve in N;, see
left part of Fig. 29.12. Then one can pull C; — C| — C{ as indicated in Fig. 29.12.
At the same time, one can pull 8, — 5. Finally, deform C{" — B, B5 — Ca.

Denote by T'(k) a tubular neighborhood of a simple closed curve k. The dif-
feotopy ¢, induces a diffeotopy of the tubular neighborhoods T(Cy) — T(B1),
T (B2) — C». One can assume that ¢; preserves disk structure. Taking in mind that
there are diffeomorphisms Ny <> T(Cy), No < T(C,) preserving disk structure,
we see that ¢; induces a Smale diffeomorphism N; — T'(f8;) that can be extended
to a diffeomorphism of S3. O

Theorem 29.28 means that in sense all pure solenoids can be obtained, up to
conjugacy, from diffeomorphisms of lens spaces. Theorem 29.28 was rediscovered
in [88].

Recall that Bothe [43] introduced a model diffeomorphism fg ,ne5 : N — N
with a one-dimensional expanding attractor Ag , .5, where f(D? x {t}) C D? x
{ept}, (flr2) Q) = Mut, (flr2)s (W) = . By Theorem 29.28, fp m.c.s
can be extended to a diffeomorphism of some lens space L,y — L,s. Denote
by Bg m,e,s the basin of Ag p o5, Bgm,es = B(A,g,m,g,g).

Let us consider the classification of pure solenoids by Bothe [43].

Theorem 29.29. Let f : M3 — M?3 be a diffeomorphism of a closed 3-manifolds
M3. Suppose that f has a pure solenoid A with the basin B(A). Then the restriction
SfB(ay of f on B(A) is conjugate to the restriction fg mes|Bg.,, .5 Of some model
diffeomorphism fg m ¢s on the basin Bg ;s = B(Agme.8) of Agm.es-

Let A; be an attractors of a diffeomorphism f;, i = 1, 2. Following [45]
(see also [46]) we say that the attractors Ay, A, are basin equivalent if there is
a homeomorphism ¢ : B(A1) — B(A3) such that

f200lBA) = @ o filBay)-

Theorem 29.29 says that a pure solenoid in a 3-manifold is basin equivalent to a
model pure solenoid reducing the problem of classification to the classification of
model pure solenoids. This classification done in [43].
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29.2.3.2 Bunches of Expanding Attractors

Dimension one expanding attractors on a surface are codimension one attractors.
Let us give some definitions for such attractors for any dimension > 1. Let A be
a codimension one expanding attractor on closed n-manifold M", n > 2. Then A
consists of (n — 1)-dimensional unstable manifolds W}, x € A (thus, dim E, = 1)
and locally homeomorphic to the product of (n — 1)-dimensional Euclidean space
and a Cantor set of an interval [118,139]. Recall that any Cantor set may be obtained
after deleting from the interval the countable set of disjoint open intervals, called
adjacent intervals. Each endpoint of an adjacent interval is called a boundary point
of the Cantor set. An unstable manifold W} passing through a boundary point of
the Cantor set is called boundary. Union of all boundary unstable manifolds form
so-called accessible boundary of A from M" — A. One can prove that there are
only finitely many boundary unstable manifolds each from which passes through a
periodic point [62,63,78, 119].

The boundary unstable manifolds of A split into a finite number of so-
called bunches as follows, Fig.29.13. The pairwise disjoint unstable manifolds
W*(p1),..., W"(pg) is said to be a k-bunch if there are points x; € W"(p;) and
arcs

[(xi,yi)y. Yyi € W'(pit1), 1=i <k, where px11 = p1,yr € W*(p1).

and there are no (k + 1)-bunches containing the given one. The boundary periodic
points pq, ..., px are called associated.

The main difference between n = 2 and n > 3 is that an expanding attractor
on M? can have k-bunches for any k € N (k is even if the expanding attractor is
orientable) while for n > 3, an expanding attractor on M" can have only 1- and
2-bunches (only 2-bunches if the expanding attractor is orientable). It is a reason
to consider codimension one expanding attractors on surfaces and codimension one
expanding attractors on manifolds of higher dimension (> 3) separately.

Fig. 29.13 (a) 1-bunch, (b) 2-bunch, (¢) 3-bunch
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29.2.3.3 Grines-Plykin-Zhirov Classification of Surface Attractors

Let f : M — M be a diffeomorphism with uniformly hyperbolic non-wandering
set NW(f) = clos Per(f), where M is a closed orientable surface of genus g > 0.
Let £2 be a one-dimensional basic set of f. Then §2 is either an attractor or a repeller
[118]. If £2 is an attractor, the unstable manifold of §2 belongs to §2. Thus any one-
dimensional attractor of f is nontrivial expanding attractor. Here we consider a little
more general case considering one-dimensional expanding attractors, which are not
necessary connected set.

The problem of the topological classification requires to find necessary and suf-
ficient conditions for the existence the homeomorphism that conjugates restrictions
of diffeomorphisms to their expanding attractors. To be precise, let £2 and 2’ be
expanding attractors of diffeomorphisms f and f’, respectively. When there is a
homeomorphism g: M — M such that

g@2)=2" fle=gfg "a.

The first results in solving this problem were obtained by the Grines [62]-[64]
for orientable attractors. Recall that a nontrivial basic set 2 is called orientable
if for any point x € £2 and fixed positive numbers «, 8 the intersection index
of manifolds W (x) and Wf’;(x) is the same at all points of intersection, where
We(x) = {y € W 0)|l(x,y) < a}and Wg(x) = {y € W'(X)[l(x,y) < B}
(I is a metric on W*(x) and W*"(x)). The generalization of the orientability of basic
set is a widely disposition which is defined as follows. A nontrivial basic set §2 is
called widely disposed if there is no null-homotopic loop formed by arcs (segments)
of stable and unstable manifolds of a point from 2. The results above by Grines
were generalized by Plykin [119, 122] to the cases of widely disposed expanding
attractors on a orintable surface of genus > 1 and expanding attractors with bunches
of degree no greater than two on a orientable surface of genus > 0. Then Grines and
Plykin [74] obtained the topological classification of widely disposed expanding
attractors on non-orientable surfaces.

For arbitrary one-dimensional expanding attractors on an orientable surface M
of genus > 0, the above stated problem was completely solved by the Grines and
Kalai [68, 70, 71] (see also reviews [21,22]) reducing the topological classification
to the algebraic classification of the generalized hyperbolic automorphisms of fun-
damental groups for canonical supports of expanding attractors. Here our exposition
follows to [65] and [68].

Let us recall that a periodic point p € §2 is called boundary if one of the con-
nected components of W*(p)\ p does not intersect §2. According to [63] and [119],
there are finitely many of boundary periodic points. For a boundary periodic point
P, denote by W (p) a component of W¥(p) \ p that does not intersect £2. If g is
a saddle periodic point and x,y € W9(q), o € {s,u}, then we denote by [x, y]°,
[x, )7, (x, ], and (x, y)? connected arcs in the manifold W (q) with the end-
points x, y. We recall that any nontrivial basic set £2 can be represented as a finite
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union £21 U- - -U £2,, of connected closed subsets (2 > 1), which are called C-dense
components of 2, where f™(§2;) = £2;, f(£2;) = 2i+1, (2m+1 = £21), and for
each point x € £2;,i € {1,...,m}, the set W%(x) N £2; is dense in £2;, 0 € {s, u}
[3,47]). It follows from [62]-[64], [119]-[122], that the accessible boundary from
inside of the set M \ £2; uniquely falls into a finite number R(£2) of bunches. Each
bunch C is a union of r¢ unstable manifolds W*(p1) U...U W*(p,.) of boundary
periodic points py, ..., pr. with the following property: there exists a sequence of
points x1, ..., X2y such that

(1) x2i—1 and x,; belong to distinct connected components of the set W*(p;) \ p;.

(2) x2i41 € W¥(x2i) (We set Xorc+1 = X1).

(3) (x2i,x2i41)° N2 =0,i =1,rc.

(4) The curve L5; U (x2,X2i+1)° U L3, is the accessible from inside bound-
ary of the domain D; that is an immersion of the open disk into the surface
M, where L%;, (L5; ) is a connected component of the set W"(x2;) \ x2;
(W*(x2i+1)\X2i+1) that does not contain the point p; (p;+1), we set Llérc—kl =
L, Fig.29.13.

Lemma 29.1. Let 2 be an attractor of an A-diffeomorphism [ consisting of m
C -dense components 21, ..., 2y each of which contains a collection é,- consist-
ing of R(82) bunches of degree r¢ for C € Ci. Then there exist a neighborhood
V of the set §2 that is the union of m neighborhoods V; of components §2;, a com-
pact submanifold Ng,; that is the union of m compact two-dimensional submanifolds
N1, ..., Ny with the boundary, and a diffeomorphism fq of the submanifold Ng

such that

(1) 2, C V; C N;.

2) felv = flv.

(3) Every submanifold N; has R(§2) boundary components, is of genus g > 0 and
of a negative Euler characteristic x(N;) = 2 —2q — R(82) (the numbers q and
R(82) are uniquely determined by $2).

(4) The set No \ (£2 U ONg) consists of wandering points of the diffeomorphism
f and is the union of mR(S2) disjoint domains that are immersions of the open
annulus into the manifold M. The accessible from inside boundary of each of
such domains consists exactly of one bunch C of the set §2 and of one bound-
ary component dNg of the manifold Ng containing exactly rc saddle periodic
points and exactly rc¢ source periodic points of the diffeomorphism fg.

The submanifold Ng; is called the canonical support, and the pair (Ng, fo) is
called the canonical form of the attractor §2, Fig.29.14.

Fix a number i € {1,...,m}. Since the Euler characteristic of the submanifold
N; is negative, it follows from the Nielsen theory [113] that there is a discrete group
F of hyperbolic isometries of the hyperbolic plane A and a subset Hr C A such
that F is isomorphic to the fundamental group of N; and the quotient set Hp / F is
homeomorphic to N;. We denote by m; the natural projection Hr = N;. By [113],
every element y € F (different from the identity) has exactly two fixed points lying
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Fig. 29.14

on S, = dA. Such points are said to be rational. By [113], the closure Ef of all
rational points is a Cantor set on Soo, EF = Soo \ Ullgz‘l’o(ak, Br), where (o, Br)
are adjacent intervals of E . Moreover, a geodesic [ C A whose ideal endpoints
are ay and By belongs to Hp, and its image under 7; is one of the boundary com-
ponents of N;. Let E = Ep U (U °lk). The set E is homeomorphic to a circle
and is the boundary of the set U = znt HF which, is homeomorphic to the open
disk and is a universal covering for int N;. B

Denote by f; the restriction of the diffeomorphism fQ to N;. Let f; : HfF —
HF be the covering diffeomorphism for fi Then m; fi = fim;. The mapping f,
induces the automorphism f;. of the group F onto itself by the formula f;.(y) =
f_yf .y € F. According [113] (Sect.2, p. 9), fi« induces a unique homeomor-
phism f * of the set E F onto itself, and the diffeomorphism f, is umquely extended

to the set Er and coincides with the homeomorphism fl* on Ep.If f; is a map-
ping of HF onto itself covering the diffeomorphism fi and different from fi, then

there exists an element & € F such that fi = af;. The mapping f; induces the
automorphism Ay fi«, where A, is the inner automorphism of the group F given
by the formula A,(B8) = afa!, B € F. Thus, to each C-dense component £2; of
£2, we get an automorphism of F', which is defined up to an inner automorphism.
The pair consisting of the group F and the automorphism t; = fi« is denoted
by (F,1i)e; and called algebraic representation of §2;. An automorphism t; is
called a generalized hyperbolic automorphism if, for any n # 0 and B,y € F
such that y # gid and m; (I,,) is not a boundary component of the submanifold N;,
the condition Bt"(y)B~! # y holds.

Let f, f’ be diffeomorphisms whose non-wandering sets contain expanding
attractors §2, £2 consisting of C-dense components 21, ..., 2, and £27,..., 2/,
respectively. The algebraic representations (F, 7;) o, and (F', /) o are said to be
algebraically adjoint if there exists an isomorphism ¢ : F — F’ such that
T =yuy!

The following theorems was proved in [68, 70, 71].

Theorem 29.30. The automorphism f;* is a generalized hyperbolic automorphism.
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Theorem 29.31. For the existence of a homeomorphism g : No — N, b, such that
2(2) = Q' and f'|q = gfg | q, it is necessary and sufficiently that there exist
algebraically adjoint algebraic representations (F, t;) o, and (F', 1)) Q! for some
coding of C -dense components of the sets 2 and 2" and for somei € {1,...,m}.

Thus the problem of topological classification of expanding attractors is reduced
to the algebraic classification of the generalized hyperbolic automorphisms of fun-
damental groups of supports of attractors. In the paper [67] was obtained the
problem of realization of one-dimenional attractors of A-diffeomorphisms of sur-
faces by means construction of hyperbolic homeomorphisms possessed by pair
strongly nontrivial transversal geodesic laminations and in the paper [66] was con-
sidered the deviation property for invariant manifolds of points belonging to widely
disposition attractors from appropriate geodesics (see also [69] for more detailed
information).

In a combinatorial language, the classification problem of such automorphisms
was obtained by Zhirov [142]-[147]. The classification problem itself is supple-
mented by the enumeration problem. The latter is posed as follows. It is required
to find a representative for each class of topological conjugacy of attractors with
a bounded complexity. Here the complexity is understood both in topological and
dynamical senses. The topological complexity of an expanding attractor is char-
acterized by the structure of the accessible boundary of the complement of the
attractor. The dynamical complexity is characterized by the topological entropy of
the restriction of diffeomorphism on the attractor which is assumed to by bounded.
Zhirov proved that under these assumptions there exists only a finite number of
topological conjugacy classes which means that the enumeration problem is well
posed. The main innovation of the approach developed in [142]-[147] is the solving
all considered problems by means of finite algorithms.

The solution of the conjugacy and enumeration problems is based on the com-
binatorial method. It consists in assigning to expanding attractor a finite set of
parameters, which is called a code. The definition of the code is formulated on
the basis of the geometric construction of so-called fundamental manifold /7 of
this attractor. The latter is a concept related to the concept of support in the sense
of Grines—Kalai. IT is a surface with boundary and with a partition into a finite
number of so-called bands (a band partition, whereby [T is called a band surface)
that behave in a certain way under the action of f. The situation is similar to the
Markov partitions for the Anosov diffeomorphisms of a 2-torus: I7 is an analogue
of the torus with cuts along some intervals of unstable manifolds of fixed point and
the bands are analogues of the elements of the Markov partition. The code describes
the partition of IT into bands (and characterizes their disposition) and the action of
f on the latter. The basic property of the code is its absolute invariance with respect
to the conjugacy of diffeomorphisms on neighborhoods of attractors, which means
that the diffeomorphisms are conjugate if and only if some of their codes coincide.
The enumeration problem is also solved by means of codes.
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29.2.3.4 Structural Stable Diffeomorphisms with Expanding Attractors

The pattern of an expanding attractor A on M ? is organized by a few of the unstable
curves it contains: the boundary unstable curves. These are the unstable curves of
boundary periodic points. Let p € A be a boundary periodic point where A is an
expanding attractor of a structurally stable diffeomorphism f : M? — M?2. Then
one can prove that the set W (p) \ (W (p) U p) consists of exactly one periodic
point which is a source [65]. An important corollary of this fact is the following
theorem [65, 66].

Theorem 29.32. If a structurally stable diffeomorphism f : M? — M? has an
expanding attractor, then f has also a periodic source (isolated repelling periodic
orbit).

Let us now define a class S(M?) for which it is possible to obtain a complete
topological invariants similar to Peixoto’s distinguished graphs. We say that an
A-diffeomorphism f is in S(M?) if:

e The non-wandering set of f is a union of expanding attractors, contracting
repellers and isolated periodic orbits.

e There are only a finite set of heteroclinic orbits belonging to the intersection
of stable and unstable manifolds (separatrices) of isolated periodic saddle type
points.

A graph is defined as follows. The vertices of this graph correspond to iso-
lated periodic points, C-dense components of expanding attractors and contracting
repellers, and heteroclinic domains. The edges of this graph correspond to separatri-
ces of isolated periodic points and boundary periodic points of the one-dimensional
basic sets. The graph is endowed with some additional structures. Among them there
are automorphisms of the fundamental groups of supports of C-dense components
of attractors and repellers, and heteroclinic permutations, describing the topology
of the intersection of stable and unstable manifolds of isolated saddle type peri-
odic points. One can prove that the graph is a complete invariant of conjugacy for
diffeomorphisms of the class S(M?).

29.2.4 Codimension One Expanding Attractors

Let f : T" — T" be a diffeomorphism of the n-torus 7", n > 3, and A a codimen-
sion one orientable expanding attractor of f. Following ideas of Newhouse [108],
Grines and Zhuzhoma [75] (see also [76]) proved that there is a neighborhood U(A)
of A such that (1) U(A) C W*(A); (2) T" — U(A) consists of a finitely many
n-balls By, ..., Bym; 3) f~/(B;) C B; forsome j € Nandany 1 < i < m.
It means that f looks like a DA-diffeomorphism up to dynamics in the balls B;
where it globally remains the dynamics of a periodic repelling point. This implies
the following crucial statement.
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Theorem 29.33. Suppose f : T" — T" is a diffeomorphism with a codimension
one orientable expanding attractor A. Then the automorphism

f* : Hl(Tn,Rn) — H](Tn,Rn)

of the first homology group H1(T",R") ~ R" has no eigenvalues of absolute
value 1 (i.e., f« is hyperbolic). Moreover, there is a codimension one Anosov diffeo-
morphism A - A(f) : T" — T" and a continuous map h : T" — T" homotopic
to identity such that

1. h(A)=T".

2. Aohlpa =ho f|a.

3. T" — A is a union of finitely many n-cells w; such that given any w;, h(w;) =
Wi (pi) where p; is a periodic point of A.

Idea of the proof is based on the following remarkable result of Franks [57]. Recall
that a diffeomorphism C : M" — M" a mq-diffeomorphism if, given any homeo-
morphism g : K — K of a compact CW complex and any map i : K — M" such
that Cyhs = h.gx, there is a unique base-point-preserving map ' : K — M",
homotopic to %, such that C o &/ = h’ o g. Due to Theorem 29.33, f, is hyperbolic.
Take an algebraic automorphism A(f) : T" — T" such that fx = A(f)«. By
Proposition 2.1 in [57], A(f)« is a my-diffeomorphism. Then there exists a map
h:T" — T", homotopic to the identity, such that h o f = A(f) o h. qed
By definition, put

P(f.h) = {x € T"| h~(x) contains at least two points}.

The following theorem was proved in [75,76] and it follows from Theorem 29.33
and Arov’s Theorem 2 [35] which states that an ergodic automorphism of 77" is
linear.

Theorem 29.34. Suppose f1, f» : T" — T" are diffeomorphisms having ori-
entable expanding attractors of codimension one Ay and A, respectively. Then
there exists a homeomorphism ¢: T" — T" such that

9(A1) = Az and fola, = 0f19” 4,

if and only if there is a linear map W : T" — T" such that

VY ohy = hy o and Yy (P(f1,h1)) = P(f1,h1),

where h; : T" — T" (i = 1, 2) are continuous maps homotopic to the identity and
such that hj o fi = A;j o hi, (fi)« = (Ai)x-

Note that for n = 2 Theorems 29.33, 29.34 was proved in [64]. It immediately
follows from theorem 29.34 that f1|p(4,) is conjugate to fi|p(4,) by a homotopy
trivial homeomorphism iff f; and f, are obtained from the same, up to conjugacy,
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codimension one Anosov diffeomorphism A : 7" — T" (n > 2) by the Smale
surgery in the same set of finitely many periodic points (in the complements of
expanding attractors, f1 and f, can have different dynamics). Formally, a conjugacy
invariant of f'|p(a) is 4, fx = A«, with a finite set of periodic points of 4. In 1980,
Plykin [120] (see also [122]) extended the result by Grines and Zhuzhoma [75, 149]
and got the following description of a basin of codimension one expanding attractor
(orientable and non-orientable) in any manifold.

Theorem 29.35. Let A be a codimension one expanding attractor of [ €
Diff (M™), n > 3. Then

For orientable expanding attractor, the basin B(A) is homeomorphic to T"
minus a finitely many points {pi,..., pr}. Moreover, there is an exten-
sion of flpa) to a homeomorphism T" — T" which conjugates to a
DA-diffeomorphism.

For non-orientable expanding attractor,  the basin B(A) is double covered by T"
minus a finitely many points.

Idea of the proof. Take a compact neighborhood U(A) of the orientable A such that
U(A) belongs to B(A) and the boundary of U(A) is a union of a finitely many
(n — 1)-spheres. Gluing this spheres by balls By, we get a closed manifold M.
Since A is orientable, the lamination formed by W*(x), x € A, can be extended to
a codimension one foliation by planes to M{'. Novikov [116] and Hsiang—Wall [84]
theorems imply that " homeomorphic to 7" for n > 5. For the cases n = 3 and
n = 4, one needs some dynamical reasons according to [57]. For the non-orientable
A, one can prove the existence of a 1-bunch to construct the corresponding involu-
tion (see details in [122]). O

This theorem implies that various diffeomorphisms with an orientable expand-
ing attractors of codimension one are constructed from DA-diffeomorphisms of
T". Due to Theorem 29.35, manifolds admitting such diffeomorphisms have a
decomposition into a special connected sum (that is similar to the decomposition
in Theorem 29.28 for diffeomorphisms with solenoids).

Theorem 29.36. Suppose f : M" — M" is a diffeomorphism having an ori-
entable expanding attractor A of codimension one (n > 3). Then M" can be
represented as a connected sum M" = T"#M; with a torus summand T C M"
(this means that the boundary 0T is an (n — 1)-sphere and there is an open n-ball
B in T" such that T is homeomorphic to T" — B) such that A is contained in int T .

Similar statements hold for non-orientable codimension one expanding attrac-
tors. It follows from Seifert-van Kampen theorem that if M” admits a codimension
one expanding attractor (orientable or non-orientable), then the fundamental group
1 (M™) contains a subgroup isomorphic to the integer lattice z” [121, 149]. This
generalizes [93], where one proved that if a closed n-manifold M", n > 3, admits a
codimension one expanding attractor (orientable or non-orientable), then M™ has a
nontrivial fundamental group.

Taking into account Theorems 29.34 and 29.35 allows Plykin [120, 122] to get
a complete invariant of conjugacy for codimension one expanding attractors. For
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an orientable expanding attractor A, the complete invariant the same with the case
A C T". For the non-orientable A, we have to add the involution 6 : T" — T"
with a finitely many fixed points Fix 6 such that Ao 6 = 6 o A and Fix 0 C P,
0(P) = P,where P = {p1,..., pr}

Let us consider the additional restriction for f being structurally stable. The
authors [77,78] proved that f must be almost DA-diffeomorphism of the r-torus.

Theorem 29.37. Suppose [ is a structurally stable diffeomorphism of a closed
n-manifold M™ (n > 3) and A is a codimension one orientable expanding attractor
of f. Then:

1. M™ is homotopy equivalent to the n-torus T". If n # 4, then M is homeomor-
phic to T".

2. The spectral decomposition of f consists of A, and a finite nonzero number of
repelling periodic orbits of index n, and a finite number (maybe zero) of periodic
saddle orbits of unstable index n — 1.

Plykin informed us (personal communication) that from Theorem 29.35 one can
deduce that M*# is also homeomorphic to T*. The crucial step to prove Theo-
rem 29.37 is the following statement.

Theorem 29.38. Let f be an A-diffeomorphism of a closed n-manifold M"
(n > 3), and A an orientable expanding attractor of codimension one. Suppose
2 # A is a nontrivial basic set of f such that W*(2) N W3(A) # 0. Then f is
not structurally stable.

Idea of the proof. Taking into account the Maiié-Robinson theorem [98, 126],
it is sufficient to prove that f does not satisfy the strong transversality condi-
tion. Therefore we can assume that Morse’s index of every basic set ® with
wW*(©®) N W5(A) # @ is not less than n — 1. Suppose the theorem is not cor-
rect; then any stable manifold W¥*(x), x € A, intersects transversally any unstable
manifold W*(y), y € NW(f). By the condition of the theorem and the paper [83],
W5 (z) N W*(Z') # @ for some points z € A, 7 € §2. Hence the unstable manifold
W(Z') is either (n — 1)-dimensional or n-dimensional. If W*(Z') is n-dimensional,
then 7’ is a periodic point, and so £2 is trivial. Thus, W*(Z') is (n — 1)-dimensional.
Since £2 is nontrivial, W"(z') “must return” providing a tangency, see Fig.29.15.
This contradiction with [98, 126] concludes the proof. O

Theorem 29.37 allows to classify, up to conjugacy, structurally stable diffeomor-
phisms with orientable expanding attractors of codimension one on the torus 7.
For these diffeomorphisms we introduce the complete invariant of conjugacy, a data
set, as follows. Given any pair (p, g) of associated boundary periodic points, we
assign the number n(p, q) € N of repelling periodic points that are inside the char-
acteristic sphere S, corresponding to the 2-bunch B = W"(p) U W*(q). This
number is well defined, because it does not depend on the choice of a characteristic
sphere. Obviously, n(p,q) = n(f™(p), f™(q)) for any m € z. Therefore we can

assign the number n(p, q) o« n(O(p, q)) to the pair of orbits O(p), O(q) of the
points p, q.
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\g—/

Fig. 29.15

Let {O(p,-,q,-)}f-‘=1 be the pairs of orbits of associated boundary points, and
let {n(O(pi, q,-))}f-‘=1 be the set of corresponding natural numbers defined above.
To each periodic orbit #(O(p;)) = h(O0(g;)) of A(f), we assign the number
n(O(pi,qi)). The collection {h(O(p,-)),n(O(p,-,q,-))}f-‘zl, denoted by Z(f, h), is
called the data set of f, 2(f,h) = {h(O(p;)),n(O(p;, qi))}f-czl.

Let A be an arbitrary codimension one hyperbolic automorphism of 7", and
let {O;}",_, be any finite family of periodic orbits of A. To any orbit O}, let us
assign an arbitrary natural number n; € N. The collection {O;,n; }5':1 is called an
admissible data set of the automorphism A. Note that by Theorem 29.37, a data
set of f is admissible whenever f is structurally stable. Suppose {O},n}} ",
and {02, n?}r?:l are admissible data sets of codimension one hyperbolic automor-

J
. . . . def
phisms A; and A, respectively. These data sets are called equivalentif ry = rp =r

and there is an affine transformation ¢ : T" — T7" (i.e., the composition of an
automorphism and translation, ¥ = Ax + ) such that

Yodi = Aoy, y||JOj|=1J0} nw;)=n0). 1<j=<r
j=1

j=1

Theorem 29.39. Suppose fi, f» : T" — T" are structurally stable diffeomor-
phisms having orientable expanding attractors of codimension one §21 and $2;
respectively. Then f1 and f, are conjugate if and only if the data sets 2( f1,h1)
and P(f>,hy) are equivalent, where h; : T" — T" (i = 1,2) are continuous
maps homotopic to the identity and such that hj o fi = A; o hi, (fi)« = (Ai)x-

Theorem 29.40. Let A be a codimension one hyperbolic automorphism of T" such
that the stable manifolds of A are one-dimensional. Given an admissible data set
{0, nj};-zl of A, there is a structurally stable diffeomorphism f : T" — T" hav-
ing an orientable expanding attractor of codimension one and such that 2( f, h) =
{0, nj};-zl, where h : T" — T" is a continuous map homotopic to the identity
withho f = Aohand fi = Ax.
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The proof of Theorem 29.39 follows the proving of Theorem 29.34 (see details in
[78]). As to Theorem 29.40, f is constructed by the ‘surgery operation’ described
by Smale [130] and Williams [137] for the 2-torus (the neat construction is in [127]),
and [58] for the 3-torus, and [122] for any n-torus, n > 2.

Let us consider the question on the existence of structurally stable diffeo-
morphisms with Plykin attractors i.e., codimension one non-orientable expanding
attractors. Due to [119], such diffeomorphisms exist on any closed surfaces. As to
odd-dimensional closed manifolds, the answer is negative. The following theorem
was proved in [102] for dim M = 3 and arbitrary dim M = 2m + 1 in [104].

Theorem 29.41. Let f : M — M be a structurally stable diffeomorphism of a
closed(2m + 1)-manifold M, m > 1. Then f does not contain Plykin attractors.

Idea of the proof. The crucial step is the following lemma.

Lemma 29.2. Let f : M — M be an A-diffeomorphism of a closed 2m + 1)-
manifold M, m > 1. If the spectral decomposition of f contains a Plykin attractor,
then M is non-orientable.

This lemma is not true for even-dimensional manifold (see remark after theo-
rem 29.40). After Lemma 29.2, one use Theorem 29.37 and properties of double
coverings. ged

After Theorem 29.41, it is natural to consider the existence of Plykin attrac-
tors on closed d-manifolds, d > 3, including d = 2m + 1. Recall that an
A-diffeomorphism f is £2-stable if all diffeomorphisms C!-close to f preserve
the structure of N W( f). One can prove the following theorem [104].

Theorem 29.42. Given any d > 3, there is an S2-stable A-diffeomorphism f of
closed d-manifold M such that f has a codimension one non-orientable expanding
attractor.

By construction, the manifolds M 2m pg2m+1 g Theorem 29.40 are orientable and
non-orientable respectively. The question on existence of Plykin attractors for struc-
turally stable diffeomorphisms of even-dimensional manifolds (except dim M = 2)
is still open.

Note that Plykin [123] considered the question when two codimension one
expanding attractors are topologically homeomorphic thyself (with no a commu-
tative diagram) and have got the topological classification of such attractors. The
more general case (Denjoy minimal sets of codimension one foliations) but in more
abstract formulations was considered in [148].

29.2.5 Surface Basic Sets and Hirsch Problem

In 1969, Hirsch [81], posed the following question. Let f : N — N be a diffeo-
morphism of a manifold N and M C N a hyperbolic invariant set. Whether the
restriction f|ps of f to M is Anosov if M is a closed manifold? Following Mané
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[97], this restriction f|p : M — M we call a quasi-Anosov diffeomorphism. In
his doctoral thesis, Mane [97] proved that f : M — M is quasi-Anosov if and
only if any of the following conditions hold: (1) the set {||Df"(x)v||} : n € Z is
unbounded for all non-zero vectors v € Ty M (actually, || Df"(x)v|| — oo either
forn — 4ooorforn — —o0); 2) TxWS(x) N T,y W*(x) = {0} forall x € M,
(3) W*(x) has the same dimension for all periodic points x € M. Maiié proved that
a quasi-Anosov diffeomorphism f is Anosov if and only if f is structurally stable.
Now, the Hirsch problem means the description of the topology of M and dynamics
of f.

In 1976, Franks and Robinson [58] constructed the example of a quasi-Anosov
diffeomorphism f : M3 — M3 that is not Anosov as essentially follows. They con-
sider a diffeomorphism F : T3 — T3 with a codimension one DA-attractor, where
T3 is a 3-torus. The converse F ~! has a codimension one contracting repeller. Then
one cuts suitable neighborhoods of fixed points (F has an isolated source, and F~!
has an isolated sink), and carefully glues together along their boundaries so that the
stable and unstable manifolds intersect quasi-transversally. The diffeomorphisms
F, F~! form the quasi-Anosov f of M3, where M3 is a connected sum T3{73.
Note that the non-wandering set of f consists of orientable expanding attractor and
contracting repeller. Medvedev and Zhuzhoma [103] constructed the similar exam-
ple of a quasi-Anosov diffeomorphism the non-wandering set of whose consists
of non-orientable expanding attractor and contracting repeller. Before the gluing
together two copies of T3, one can perform a quotient of T3 by the involution
0 : x - —x mod 1. The complete decision of Hirsch problem for 3-manifolds was
obtained by Fisher and Rodriguez Hertz [55].

Theorem 29.43. Let f : M3 — M?3 be a quasi-Anosov diffeomorphism of a closed
3-manifold M3. If M3 is orientable, then

M3 = Ty ATe g+ £ H,

is the connected sum of k > 1 tori T; = T3 and r > 0 handles H; = S2x Sl If
M3 is non-orientable, then

M? =T 4Tl Hr - £ Hy

is the connected sum of k > 1 tori quotiented by involutions T = T3/0 and r > 0
handles H; = S* x S'.

Theorem 29.44. Let f : M3 — M?3 be a quasi-Anosov diffeomorphism of a closed
3-manifold M 3. Then

1. The non-wandering set NW(f) consists of finitely many codimension one
expanding attractors, codimension one contracting repellers, and isolated
periodic hyperbolic points.

2. For each attractor Ay C NW(f), there exists a DA-diffeomorphism g : T3 —
T3 with a codimension one expanding attractor Ag and a finite set Q of isolated
periodic sources such that the restriction of f to its basin of attraction W*(A y)
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is conjugate to the restriction of g to the punctured torus T3\ Q quotiented by
amap ¥ : T3 — T3.If M3 is orientable, ¥ is the identity map. If M3 is non-
orientable, ¥ is the involution 6. An analogous result holds for the repellers of

NW(f).

In [129], one proved that a quasi-Anosov diffeomorphism of 3-torus is Anosov. If
a quasi-Anosov diffeomorphism f : M* — M* of 4-manifold M* is not Anosov,
then the fundamental group 771 (M #) contains a subgroup isomorphic to z°.

The generalization of Hirsch problem was proposed by V. Grines who suggested
consider nontrivial basic sets that belong to topologically embedded invariant sub-
manifolds. The first natural step is to study basic sets that belong to embedded
surfaces in a 3-manifold. Following [72, 73], we call a basic set # of diffeomor-
phism f : M3 — M3 a surface basic set if 2 belongs to an f -invariant closed
surface M 526 topologically embedded in the 3-manifold M 3. The f-invariant surface
M 52£ is called a supporting surface for 8. By definition, a supporting surface is not
necessary connected. But it is obviously that there is some power of diffeomorphism
f for which every surface basic set has connected supporting surface.

Let us recall some notation on topological embedding. For 1 < m < n, we
presume Euclidean space R™ to be included naturally in R” as the subset whose
final (n — m) coordinates each equals 0. Let e : M™ — N be an embedding of
closed m-manifold M™ in the interior of n-manifold N". One says that e(M™) is
locally flat at e(x), x € M™, if there exists a neighborhood U(e(x)) = U and a
homeomorphism % : U — R” such that

h(U Ne(M™)) =R™ C R".

Otherwise, e(M™) is wild at e(x). When manifolds M™, N" are triangulable the
notion of flatness is closely related to the notion of tameness. Let M be a triangu-
lable set in R”. If there is a homeomorphism # : R” — R” such that h(M) is a
polygon, then M is timely embedded. Otherwise, M is wild.

Obviously, that the topological dimension of surface basic set is no more than
two. Grines, Medvedev and Zhuzhoma [72, 73] described completely dynamics of
2-dimensional surface basic sets.

Theorem 29.45. Let f : M3 — M3 be an A-diffeomorphism with the surface two-
dimensional basic set # and M 526 is a supporting surface for 8. Then B = M 526
and there is a number k > 1 such that Mgzg is a union M12 U-.--u Mk2 of disjoint
tamely embedded surfaces such that every M l_z is homeomorphic to the 2-torus T?.
Moreover, there is k > 1 such that the restriction f* to MI-2 (i ef{l,....k})is
conjugate to Anosov automorphism of T>.

Note that the supporting 2-torus can be essentially non-smoothly embedded in
a 3-manifold [89]. Medvedev and Zhuzhoma [106] proved the following theorem
that says in sense that a surface diffeomorphism can be embedded in 3-dimensional
diffeomorphism such that the embedding surface becomes a wildly embedded
attracting invariant surface.
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Theorem 29.46. Let g be a homotopy trivial §2-stable diffeomorphism of closed
orientable surface M?. Suppose g has an isolated sink. Then given any closed
3-manifold M3, there is the 2-stable diffeomorphism f : M3 — M3 such that:

1. There is a wildly embedded surface M C M3 homeomorphic to M? such that
M is an invariant and attracting set of f.
2. The restriction f|p conjugates g.

If g is homotopy nontrivial, the above assertion holds for M3 = M? x S

As a consequence, in contrast with 2-dimensional basic sets, there are one-dimensio
nal and zero-dimensional nontrivial surface basic sets with wild supporting surfaces.
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Chapter 30
Some Recent Results on the Stability
of Endomorphisms

J. Iglesias, A. Portela, and A. Rovella

Abstract This work aims to provide a short description of some old and new results
on the theory of stability and related concepts for discrete dynamical systems. The
emphasis is posed on noninvertible maps.

30.1 General Definition

The problem of describing the structural stability is central in the theory of dynam-
ical systems, not only by its theoretical interest but also to validate dynamical
models appearing in other diverse contexts. Roughly speaking, stability of a system
means that small changes in the model will not modify some determined features
of the initial model in a qualitative sense. This obviously requires formal defini-
tions of the words small, features and qualitative, so different scenarios will supply
corresponding applications.

We give a general definition of stability as follows. Let be given a topology t on
a space X, an equivalence relation = on a space Y and an operator @ : X — Y.
In the above discussion, X will be the space of models, t gives sense to proximity
between models, the space Y will be the feature of the model we are interested in,
and @ associates to each model a determined feature. With this correspondances in
mind, we give a general definition of what may be understood as stability.

Definition 30.1. A point f € X is said (z, =, ®@)-stable if there exists a neighbor-
hood U of f suchthat @(f) = &(g) forevery g € U.
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This simple definition includes most global concepts known, as C” stability, §2
stability, inverse limit stability and ergodic stability, for discrete and continuous
dynamical systems, as well as local concepts, as Lyapounov stability and stability of
solutions of partial differential equations. For example, if M is a smooth manifold,
X is the space of class C” maps of M endowed with its usual C” topology, Y = X,
@ is the identity, and = is conjugacy or topological equivalence (i.e, f = g if and
only if there exists a homeomorphism % such that f'h = hg), then we find the more
traditional concept named C” structural stability. Throughout this work we will be
mostly interested in this one and some other closely related kind of stabilities, and
not on the wide scopes of the general definition. The study of the structural stability
of maps was perhaps a little bit left aside by the dynamicists since 1987, when
R. Maiié published the proof of the long standing conjecture of C! stability for
diffeomorphisms [17]. However, for noninvertible maps, C ! structural stability was
not characterized yet, and there exist examples of maps that for some r > 1, are C”
but not C! structurally stable. The theory for continuous time system ran parallel
with the discrete one, but we will mainly restrict to discrete dynamics. We also
focus on topological and not on metric aspects, so stable ergodicity, a concept that
involves very diverse tools, will not be mentioned.

In Sect.30.2 we present the more usual definitions and those results that seem
fundamental for the theory. Sections 30.3-30.5 are devoted to the classical results:
diffeomorphisms, Anosov endomorphisms, expanding maps. The remaining sec-
tions are reserved to recent results and open problems.

30.2 Notations

In this section we fix notations and explain the basic theory of hyperbolicity and
its relation with stability. The whole section may be dropped by those acquainted
with the notions of hyperbolicity and invariant manifolds and with the differences
between the definitions for invertible and for noninvertible maps.

When M and N are smooth manifolds, the space of C” maps from M to N
equipped with the standard topology will be denoted by C"(M,N); if M = N,
then C"(M) = C"(M, N). The set of C”" diffeomorphisms of M is denoted by
D" (M).

When dealing with a noninvertible map f in M, the inverse limit of the pair
(M, f) is defined as the set

My ={z= () € M* : f(zn-1) = 2}
M 7 1is always compact and shift-invariant. If mo is the projection onto the

O:Coordinate, then mo F = fmp, where F denotes the restriction of the shift to
M ¢. Consider the space H of homeomorphisms of subspaces of M z,



30 Some Recent Results on the Stability of Endomorphisms 473

Definition 30.2. Let = be the relation of conjugacy on H and define @:C" (M) —
H by &(f) = F. Then f is said C" inverse stable if it is (C",=, @) stable,
according to Definition 30.1.

In other words, a map f is inverse stable if the set of full orbits is preserved under
small perturbations.

The hyperbolicity is one of the fundamental concepts in the characterizations of
different types of stabilities of maps. A compact, invariant set K is said hyperbolic
for f if there exists a continuous invariant bundle £ defined on K and constants
C > 0and 0 < A < 1, such that the following conditions hold:

1. For any n > 0 it holds that | Ty " (v)| < CA"|v| for every v € E¥.
2. If [Tf] denotes the map induced by T'f on the quotient TM |gs, then the norm
of [Tf]" is greater than 1/(CA").

It can be proved that if K is hyperbolic for f then, for every z € K =1z €
M f : zn € K Vn € Z}, there exists a subspace EY of T (M) such that E! &
E; = T,,M, where zo = mo(2).

The set K is expanding for f if it is hyperbolic with E = {0}.

The nonwandering set of f is denoted by §2 ¢ as usual. For noninvertible maps,
there are two definitions for Axiom A.

Definition 30.3. A map f € C”" (M) satisfies the weak Axiom A if the nonwander-
ing set of f is hyperbolic and equal to the closure of periodic points of f. It is well
known that for an Axiom A map there exists a decomposition of £2 ¢ into disjoint,
closed, forward invariant transitive sets, called basic pieces.

The map f is Axiom A if it is weak Axiom A and every basic piece A is
expanding or injective (i.e. the restriction of f to A is one to one).

A map f € C"(M) is Anosov if M is a hyperbolic set for f. For example, the

linear map
nl
A=
(1)

induces a weak Axiom A map f on the two torus if n > 2, and an Axiom A
diffeomorphismif n = 2.
The following example is due to Przytycki [25]:

Example 30.1. A weak Axiom A map f of the two torus none of whose perturba-
tions is Axiom A, and whose attracting basic piece is not injective.

Consider f;(z) = z? defined on S, f, a diffeomorphism of the circle with a fixed
attractor a and a fixed repeller . Then f = (f1, f2) is a weak Axiom A map of the
two torus with an attracting basic piece S x {a}. The restriction of f to it is not
injective. Any perturbation of it has an attracting basic piece which is not injective.

The definition of Axiom A was first given for diffeomorphisms by S.Smale. Weak
Axiom A is defined for noninvertible maps and was introduced by F. Przytycki [24].
From these results it follows that the nonwandering set of a weak Axiom A map
can be decomposed in a finite union of transitive sets, called basic pieces. Say that
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Ay >> A, for basic pieces A and A, when there exists an orbit {x,} such that
X_p — A1 and x,;, — A,. The Axiom A is said to satisfy the no cycles condition if
the relation defined above has no cycles.

The theory of invariant manifolds for Axiom A maps was developed by several
authors, mainly Palis, Hirsch, Pugh and Schub [8,9]. We introduce the notations of
invariant manifolds. There are some differences when the map is not invertible. If
J is an Axiom A map, then there exists € > 0 such that for every x € £2, the set

Wex: f)=4yeM: d(f"(x), f"(») e 0
and d(f"(x), f*(y)) <e Vn >0}

is an embedded manifold (called local stable manifold) having the same dimension
as E°(x) and tangent to E*(x) at the point x. Here d denotes the distance in the
manifold M. On the other hand, local unstable sets are defined in M, as

Wi (x; F) ={y e Mf 2 d(Xn, yn) v 0 and d(xp,yn) <€ Vn <0}.

It holds that 7y projects the unstable set of x to an embedded manifold in M that is
tangent to E*(x) at xq.

The Strong Transversality is a necessary condition for C” structural stability. It
says that stable and unstable sets may intersect transversally. It is restricted to Axiom
A maps. To explain this condition, we must also take care of the fact that a point
X € M may have different preorbits converging to the nonwandering set. On the
other hand, for every x € M there exists a unique y € §2 s such that d(x,, y,) — 0
as n — -+o0. Note that for every x = (x)nez} € M it holds that there exists a
unique basic piece A such that x, — A when n — —oo. Moreover, there exists a
unique y € £2(F) such that d(x,, y,) — 0 as n — —oo. The following invariance
holds: F(W!(y; F)) D WX(F(y); F). This implies that for every x € Mf there
exists a subspa_ce E*(x) C Tx, M, defined as

TfE  (Ta_ (ro(WEF ™ (): F))),
where k is such that x_; € nO(W;‘(F_k (»): F)). Define
E'(x)= () E'W.
75t (x)

Definition 30.4. An Axiom A map f satisfies the Strong Transversality condition if

1. For every x € M, the subspaces E*(x) are in general position as x varies in
7yt (x).
2. Foreveryx € M,n > 0and y € 27 such that f*(x) € W(y) it holds that

T"(E"(x) @ Trney (W (¥) = Tyn(xy(M).
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The first condition says that there exists a finite number of different E“(x) as
X varies in 7y ! (x), and that the sum of the codimensions of the E*(x) equals the
codimension of E*(x). The Strong Transversality condition implies that whenever
the unstable set of a basic piece A intersects another basic piece A,, then A; must
be an expanding piece. This property has been stated by Przytycki as a necessary
condition for C'! stability.

One of the fundamental tools concerning stability is the C! closing lemma.

Theorem 30.1. Let f be a C' endomorphism of a manifold M . Given a point x €
27 and a C' neighborhood % of f, there exists a map § € % such that x is a
periodic point of g. Moreover, there exists a residual subset Z of C'(M) such that
the set of periodic points of f is dense in §2 y for every [ € %.

The first version of this theorem, valid for diffeomorphisms, was proved by C. Pugh
[26]. Two further versions, that hold for endomorphisms without critical points the
first, and with a finite number of critical points the second, were obtained by L. Wen
in [34] and [35]. The general version stated is recent, [31]. The question if a similar
result holds in topologies C” with r > 1 remains open, and is a central problem in
the theory.

Definition 30.5. A map f is C"-£2 stable if it is (X, =, ®@)-stable, where X =
C" M), Y = {fig,:f € C"(M)}, @ is the restriction operator and = is
conjugacy.

The comprehension of the nexus between §2 stability and hyperbolicity has been
one of the main goals in the theory. Roughly speaking, that hyperbolicity implies
§2 stability was solved for diffeomorphisms in the middle seventies. Smale proved
the §2 stability of Axiom A diffeomorphisms with the no cycles property [33]. This
theorem was the extended to noninvertible maps by Przytycki [25]:

Theorem 30.2. If f is a weak Axiom A map without critical points, then

1. fis C'inverse 2 stable if and only there are no cycles.
2. fis C'-82 stable if and only if f is Axiom A and there are no cycles.

From theorem above and the example 1 it follows the no density of the omega
stability.

The other direction was and still is very hard. Adapting the proof given by Mainé
of the stability conjecture to noninvertible maps, the last result in this direction was
obtained by Aoki, Moriyasu and Sumi (see [1]):

Theorem 30.3. Let f € C'(M) be an interior point of the set of maps all of
whose periodic points are hyperbolic. Assume that f has no critical points in the
nonwandering set.

Then the nonwandering set of | has a hyperbolic structure.

This implies that if f is C!-£2 stable (and critical points are wandering) then
§2y is a hyperbolic set and the closing lemma implies that the set of periodic points
of f is dense in the nonwandering set. Moreover, the Theorem of Przytycki implies
that f is Axiom A.

Problem 30.1. Prove the same result without any assumption on the singular set.
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30.3 Diffeomorphisms

This is a very brief history concerning the stability of C! diffeomorphisms, a prob-
lem satisfactory solved. When beginning the sixties, Morse and Smale proposed
a model of simple dynamics: a Morse Smale map has finitely many nonwandering
hyperbolic points and uniformly transverse intersections of stable and unstable man-
ifolds. J. Palis [21] proved the structural stability of Morse Smale systems, while
M. Peixoto [23] showed that the class of Morse Smale vectorfields are dense in
compact manifolds of dimension two. It was thought that these classes of maps
would characterize C! structural stability. Afterwards, beautiful examples given
by Anosov and Smale showed that maps with an infinite number of nonwander-
ing points can also be structurally stable. The theory of dynamical systems had a
great impulse since these examples appear, and after the definition of hyperbolicity
and Axiom A maps were given by Smale, and the theory of invariant manifolds was
developed, it was conjectured by Palis and Smale [22] that the C! structurally sta-
ble maps are those satisfying the Axiom A and the Strong Transversality condition
(Definition 30.4). It was first proved that the conditions were sufficient for C! sta-
bility: This part of the problem was solved by Robbin ([29], 1974) for C? topology
and then by Robinson ([30], 1976) in C! topology. In the meanwhile a great step
towards the proof of the necessity was the C! closing lemma of Pugh. Joining this
with the theorems of Kupka and Smale about the genericity of maps whose periodic
points are hyperbolic and its invariant manifolds satisfy the transversality condition,
and the proof of Franks [6] of the necessity of hyperbolicity of the periodic points,
the problem left was to prove the necessity of the hyperbolicity of the nonwandering
set. This was finally solved by R. Maiié in [17], 1987, after more than 10 years of
big efforts and progresses had been obtained by several mathematicians. The main
problem remaining is:

Problem 30.2. For r > 1, characterize C” structural stability for diffeomorphisms.

Concerning this problem, E. Pujals has recently written an interesting survey [27].

30.4 Expanding Maps and Anosov Endomorphisms

A smooth map f of a manifold M is called expanding if M is an expanding set
for f. Clearly such map cannot be a diffeomorphism unless the manifold is non-
compact. M. Shub [32] showed the stability of expanding maps in 1969. An Anosov
endomorphism is a map for which the whole manifold is a hyperbolic set. It was
proved by F. Przytycki [25] and independently by R. Maiié and C. Pugh [18] that
an Anosov endomorphism is C! stable if and only if it is an expanding map or a
diffeomorphism. It is also due to Przytycki [24] the proof that every Anosov endo-
morphism without singularities is inverse limit stable. Further extensions of this
result were obtained by Ikeda [10], who showed the inverse stability of Anosov
maps with critical points, and by J. Quandt [28], who has considered also maps
defined in Banach manifolds.
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30.5 Geometric Stability

We make a digression here to consider some geometric aspects of maps with sin-
gularities and a non dynamical concept of stability, that involves maps between
different manifolds. This is intended to describe some of the geometrical features of
maps, in a sense that as will be seen below, is closely related to the dynamics when
the map is an endomorphism exhibiting critical points.

Definition 30.6. Say that a map f between smooth manifolds M and N is C"-
geometrically stable if it is (C"(M,N),=, ®) stable where @ is the identity
operator and = is geometric equivalence: f = g if and only if there exist maps
¢ € DY(M)and ¢ € D'(N) such that fo = ¥g.

This concept was introduced by R. Thom; as the maps ¢ and i involved in the
equivalence relation are diffeomorphisms, the set of critical values of f and g are
diffeomorphic, as well as the set of critical values. It was conjectured by R. Thom,
and proved by J. Mather in the middle sixties, that this concept is equivalent to the
so called infinitesimal stability, that we proceed to define.

Let f : M — N and Z be a C* vectorfield along f, thatis, Z : M — TN
satisfies Z(x) € Tr(x)N. The map f is infinitesimally stable if there exist C*° vec-
torfields X € X(M)and Y € X(N) suchthat Z = Tf o X — Y o f. Thisis not a
concept of stability since is given as a property of a map, and does not mention any
behavior of its perturbations. The following is a beautiful characterization of geo-
metric stability: A map f is geometrically stable if and only if it is infinitesimally
stable.

This was conjectured by R. Thom; the proof was obtained some years later by
J. Mather. The concept of geometric stability has a local version: a map f is locally
geometrically stable at a point p if there exists a neighborhood U of p such that
the restriction of f to U is geometrically stable. Of course that the interest appears
when p is a critical point of /. When f is locally geometrically stable at p we say
that p is a nondegenerate critical point. It is well known that for an open and dense
set of C°°(M, N) maps every critical point is nondegenerate. Actually, more than
this can be said:

Theorem 30.4. Given manifolds M and N, there exists an integer r depending
Jjust on the dimensions of M and N and an open and dense subset 9.(M, N) of
C" (M, N) such that every critical point of any map in 4,(M, N ) is nondegenerate.

However, geometrically stable maps are not dense in general (see [7]). Assume that a
map f € C° (M) has no degenerate critical points. Then the set of points z € S(f)
such that the kernel of the tangent map of f at z has dimension one is either empty
or a codimension one submanifold, denoted S; (/). The set of points in S1( f) such
that the kernel of Tf; is tangent to S;( f) is either empty or a submanifold of codi-
mension two, and is denoted by S11(f) or S;2(f). If S;2(f) is not empty, then the
set S13(f) of points in z € S;2(f) such that the kernel of Tf; is tangent to Sy2( f)
is either empty or a submanifold of codimension three. By recurrence one can define
S1n (f) for every positive n. These are called Morin singularities.
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Assume that f has nonempty Sy ( f). Then f is C"*! butnot C" geometrically
stable.

Returning to dynamics, fix a C” endomorphism f of a manifold M ; there is
another concept, also called infinitesimal stability, introduced by Robbin [29], (who
was inspired in Moser [20]) in his proof of the C? structural stability of diffeomor-
phisms: a map f is infinitesimally stable if given a vectorfield Z along f, there
exists a vectorfield X on M such that Z = Tf(X) — X(f). It was proved by
R.Maiié that for C! topology this is equivalent to structural stability when f is a
diffeomorphism [16]. The problem if this generalizes to C” diffeomorphisms or to
general endomorphisms is still open.

30.6 Maps with Nonempty Critical Set

To understand the stability of maps with nonempty critical set we introduce the
following fact:

Claim. For generic maps, topological equivalence implies geometric equiva-
lence.

To explain this fact, note that the maps f(x) = x> and g(x) = x/2 are locally
topologically equivalent, but not locally geometrically equivalent at 0.

Let 4. (M) = %.(M, M), as defined in Theorem 30.4 of the previous section.
Assume that maps f and g in %, (M) are topologically conjugate. Then there exist
C! diffeomorphisms ¢ and ¥ such that f¥ = @g, which means geometrical
equivalence. We do not have a reference for the proof of this assertion.

This implies a fundamental fact:

Claim. Structural stability implies geometric stability.

This can be precisely stated as follows: if f € C*¥(M) is C* structurally stable,
then it is C* geometrically stable.

Indeed, if f is not C*¥ geometrically stable, then one can find two perturbations
that are generic and not geometrically equivalent.

For example, the above fact implies that if f is C! structurally stable, then the
critical set of f must be empty. In general, a C¥ structurally stable map cannot have
Morin singularities of type S« .

It may be rather easy to construct Morin singularities S;x in any manifold of
dimension k.

Problem 30.3. In any manifold of dimension k there exists a C*¥*! structurally
stable map that is not C* structurally stable.

Example 30.2. A map of the circle with singularities satisfying the Axiom A is C?
structurally stable if there are no critical relations (meaning that no critical point is
periodic and the orbit of a critical point does not meet another critical point), but it
cannot be C'! stable.
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Example 30.3. A C? structurally stable map in the k-sphere.

Let ¢ : I — I be a generic C? map defined in the interval / = [I,2] such that
o(1) = 1, p(2) = 2, and ¢ has exactly two critical points ¢ < b. It can also
be assumed that ¢ can be extended as a C2 map in [0, +00) taking ¢(x) = x
whenever x ¢ I. The genericity assumption implies ¢(a) > ¢(b). Let ¥ denote
the k-dimensional sphere, identify R* with S¥~1 x [0, +00) and define the auxiliary
map ¥ : S¥71 x [0, 400) — SK71 x [0, +00) by ¥(x,y) = (x,@(y)). If B is an
arbitrary open ball in R¥ and « is a diffeomorphism from R¥ to B, then define
V¥ = aya!. Note that ¢ can be extended as the identity in S¥ \ B. To construct
the example, let F be a diffeomorphism: the north pole-south pole in S, and let B
be a ball in S¥ such that F”(B) N B = @ for every n > 0. Then the map f defined
as f = F is a generic C? map whose critical set consists in the union of two
S*=1 spheres. Moreover, it is clear that f is C2 structurally stable.

Example 30.4. A C'-Omega stable map f that satisfies the Strong Transversality
condition and no perturbation of f is structurally stable.

Let f be an Axiom A diffeomorphism of S? whose basic pieces are fixed repellers
and a Plykin attractor. Again, let B be a wandering ball and define f = Fyp (VB
as in the above example). Then f is an Axiom A map and is C'-£2 stable. The
stable manifolds of points in the attractor are one dimensional, and cover the com-
plement of the repellers. Then there exists at least four points of tangency between
stable manifolds and the two circles of critical points (see Fig.30.1). On one hand,
standard arguments allow us to prove that for generic C” perturbations of f the sta-
ble manifold of every periodic is transverse to S ¢. On the other hand, it is possible
to construct a perturbation for which a periodic point of the attractor has a tangency
with § 7 : these two maps cannot be topologically equivalent.

Observe that until now the examples of structurally stable maps belong to one of
these classes: diffeomorphisms, expanding, one dimensional, finite nonwandering

5

W(a)

Fig. 30.1 The tangencies between stable manifolds and the two circles of critical points
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set. In 2008, another class of examples were given in [12], showing that certain
maps of the Riemann sphere are C 3 but not C? structurally stable:

Theorem 30.5. If R is a hyperbolic rational map of the Riemann sphere, then
there exist arbitrary small C® perturbations of R that are C3 structurally stable.
Moreover, no perturbation of R is C? structurally stable.

When the perturbations are restricted to the set of holomorphic maps, then we
have the following theorem of Maiié et al. [19]:

Theorem 30.6. If R is a hyperbolic rational map of the sphere without critical
relations, then R is H structurally stable, meaning (t, =, ®)-stable, where T is the
topology of uniform convergence in the space of meromorphic maps of the Riemann
sphere, = is conjugacy, and @ the identity operator.

Moreover, H structurally stable maps are dense in the space of rational maps.

Problem 30.4. Does H structural stability imply hyperbolicity of the Julia set?

Theorem 30.5 is intended to show examples of structurally stable maps having
nonempty critical set and nontrivial nonwandering set, in dimension greater than
one. A set of sufficient conditions for C*° stability that complements the previous
examples was recently found by P. Berger [3], in the following statement:

Theorem 30.7. Let f be a C*° weak Axiom A endomorphism of a compact man-
ifold M such that every basic piece is expanding or an attractor. Denote by R the
union of the expanding sets, by A the union of the attractors, and by 2 the union of
the preimages of §2. Assume, in addition, that the following conditions hold:

1. There are no singularities in {AZ

2. The restriction of f to M \ $2 is C™ infinitesimally stable.

3. Themap f is transverse to the stable foliation, that is: for any y € A, for every z
in a local stable manifold Wi, (y), foranyn > 0 and every point x € ™" ({z}),
we have:

Tfn (TxM) + Tz(vvlsoc(y)) =TM

Then f is C* structurally stable.

Example 30.4 above satisfies the first and second but not the third hypothesis. The
proof of the theorem relies on two very different branches: on one hand, it uses some
of the techniques introduced by J. Mather in his proof of the equivalence between
geometric stability and infinitesimal stability, and on the other the generalization of
the theory of invariant manifolds to the case of endomorphisms, that was obtained by
P. Berger [2]. The introduction of item 2 is a major contribution of this result. Note
that this hypothesis is imposed on the set of wandering orbits, so it has no dynamical
meaning, it is intended to control the geometrical aspects of critical sets; on the other
side, the hyperbolicity controls the nonwandering orbits. This result motivates some
interesting questions, pointing to a characterization of the C” structural stability.

Problem 30.5. Does a similar statement hold for Axiom A maps with saddle type
basic pieces?
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Problem 30.6. Try to give a characterization of C” structural stability for Axiom A
maps whose basic pieces are attracting or expanding and there are no critical points
in £2.

The following was posed in [18]:

Problem 30.7. Does C” structural stability imply that the set of critical points has
its future orbit disjoint to the nonwandering set?

If a diffeomorphism f is C! structurally stable, then any iterate f* is also C!
structurally stable, because one can use the characterization by Axiom A plus Strong
Transversality. However, the geometry of the singular sets may produce unexpected
results. We will use below that for generic maps in dimension two, the critical set is
a one dimensional manifold.

Example 30.5. A C ™ structurally stable map f such that 2 is not C* structurally
stable.

Begin with p(z) = A(2z> — 3z%) 4+ 1 where A is a real negative small parameter.
Considering its restriction to the real axis, one can see that p(0) = 1, that p’(0) =
p’(1) = 0 and that there is an attracting fixed pointa > 1. Moreover, the Julia set of
the polynomial p is hyperbolic, because both critical points are attracted to a. The
map p itself is not stable because the critical points are degenerate and one of them
belongs to the orbit of the other. Using the genericity of maps with nondegenerate
critical points, one can produce a C* perturbation f of p such that the following
conditions hold:

1. The critical set of f consists of two small circles Cy and Cy, the first close to 0
and the other close to 1.

2. The image f(Cy) intersects C transversally (see Fig. 30.2).

3. The forward iterates of f(Co) U C; are pairwise disjoint and converge to the
fixed attractor a.

4. f and p are £2 equivalent.

It follows that f satisfies the hypothesis of Theorem 30.7, so it is C*° structurally
stable. The critical set of f2 contains Co U f~!(Cy): this cannot be a one dimen-
sional manifold, hence f?2 cannot be geometrically stable, and by the claim at the
beginning of the section follows that it is not structurally stable.

CO :

F(Gy)

Fig. 30.2 The image f(Cy) intersects C; transversally
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In the spirit of the fundamental fact stated at the beginning of this section, there
exists another approach to the problem of dealing with stability of maps with critical
points. In [13], another concept of stability was defined: A map f is said C” stable
modulo singular sets if there exists a C” neighborhood % of f such that, if two
maps g; and g, in % are geometrically conjugate, then they are also topologically
conjugate. The following result was proved:

Theorem 30.8. If a map f is C' stable modulo singular sets, then f satisfies
the (strong) Axiom A, has no critical points in the nonwandering set and each
component of S y must be contained in the basin of a periodic attractor.

On the other hand, it can be proved as in [14] that an Axiom A endomorphism whose
basic pieces are expanding or attracting, has no critical points in £2 and satisfies the
non critical relations property, is C! stable modulo singular sets.

This concept is intended to understand when a map is stable regardless of
the obstructions introduced by the presence of wandering singularities. Examples
of maps satisfying these hypothesis are certain hyperbolic rational maps in the
Riemann sphere. Indeed, a hyperbolic rational map is Axiom A and its basic pieces
are expanding or attracting; if moreover, there are no critical relations, then the map
is C! stable modulo singular sets.

There exist some other results involving stability in restricted contexts. For exam-
ple, Franke has shown that generic contracting maps are structurally stable in a
topology that depends on the dimension of the ambient manifold, [5]. Tkegami
considered deformed horseshoes to give examples of the nondensity of Axiom A
endomorphisms, see [11].

The characterization of §2 stability is another interesting problem still open. It
was shown by Przytycki that a weak Axiom A map without singularities is C !-£2
stable (Definition 30.5) if and only if it is strong Axiom A without cycles. Under the
hypothesis of weak Axiom A, he also showed the inverse stability of the nonwan-
dering set. By Theorem 30.3 it follows that a C ! map without critical nonwandering
points, C -2 stability is equivalent to Axiom A plus the no cycles condition. Maiié
and Pugh gave an example of a C!-£2 stable map whose critical set persistently
intersects the nonwandering set. Then some conditions were found sufficient for
a map having nonwandering critical points to be C!-£2 stable, [4]. It was also
proved that these were necessary conditions for C!-£2 stability in manifolds of
dimension two.

Problem 30.8. Find necessary and sufficient conditions for a map f to be C'-2
stable.

We finish this section with a brief comment on inverse stability (Definition 30.2).
It was shown by Przytycki that Anosov endomorphisms without critical points are
always C 1 inverse stable [25]. When the critical set does not intersect the non-
wandering set, Theorem 30.3 implies that weak Axiom A is a necessary condition
for C! inverse stability. The problem of completely characterize inverse stability
seems difficult when there exist saddle type basic pieces intersecting the critical
sets. However, if Problem 30.1 is solved by the affirmative, then weak Axiom A
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will be necessary for C! inverse stability, and it seems plausible that the following
problem has a solution.

Problem 30.9. Weak Axiom A plus Strong Transversality is equivalent to C'!
inverse stability for maps without saddle type basic pieces.

30.7 Maps Without Singularities

In this section we consider stability for maps without critical points. As was stated
above, the C!-£2 stability was already characterized. It was also explained that C'!
stability implies the absence of critical points. By virtue of the Theorems 30.3 and
[25] already stated, C! structural stability implies strong Axiom A. Moreover, the
Strong Transversality condition is also necessary for C! structural stability [15]. To
characterize C! structural stability of arbitrary C! maps it remains:

Problem 30.10. Prove that the above conditions are sufficient for C'! stability.

This was solved in manifolds of dimension two [15].

It is not easy to find examples of structurally stable maps.

Claim: If a product F is structurally stable, then F is a diffeomorphism or an
expanding map.

Let F = (f, g). Then f and g are structurally stable and one can assume that f
is not a diffeomorphism and g is not expanding. If f is a noninvertible structurally
stable map, then there exists a basic piece A that is backward invariant ( f ~1(A) =
A): this follows from the Strong Transversality condition. As g is not expanding,
then at least one basic piece of g is an attractor. But then the product of f and g has
a basic piece that is not expanding nor injective, thus contradicting the Axiom A.

Example 30.6. The first example of a C! structurally stable noninvertible nonex-
panding map is in dimension one, and was found by M. Shub [32].

Let f(z) = z? be defined in the unit circle, and define a new map g equal to
f outside a neighborhood of 1, and such that the fixed point 1 is modified to
be an attractor. This should be named a derived from expanding map. The result-
ing endomorphism has degree equal to two, its nonwandering set consists of an
attracting fixed point and a Cantor expanding set (see Fig. 30.3). Examples in higher
dimensions are harder to find.

Example 30.7. A class of examples were obtained in [14]; Let f be the endomor-
phism of S x §2 defined by the formula:

flzw) = (2.2/2 +w/3),

where S? was identified with the extended complex plane.
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Fig. 30.3 A derived from
expanding map
endomorphism

The nonwandering set is the union of two basic pieces: One of them is an attracting
solenoid A obtained as the intersection of the forward images of S1x D, where D is
the unit disc. The other is the expanding basic piece R := S! x {oco}. The basin of
attraction of A is equal to the complement of R. This simple formula hides an inter-
esting particularity of the map. Note that the map has degree equal to two, and that
the restriction of f to A is injective, so the set A’ := f~!(A4)\ A must be nonempty
and contained in the (connected) basin of A4, but f has no singularities. Further
preimages of A’ are disjoint, contained in the basin of 4, and convergent to R.

Example 30.8. The last example is due to Przytycki [25]. It is an Axiom A map
satisfying the Strong Transversality condition.

Let f be the map of Example 30.6, and consider the product F = f x g, where
g is a diffeomorphism of the circle with an attractor ¢ and a repeller b. This map,
as was explained above, is not Axiom A because it has a basic piece that is neither
expanding nor injective. The map is modified to make the saddle type basic piece
injective (see [25], page 76).
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Chapter 31
Differential Rigidity and Applications
in One-Dimensional Dynamics

Yunping Jiang

Abstract In this survey, I summarize some work towards understanding of differ-
ential rigidity and smooth conjugacy in one-dimensional dynamics. In particular, I
focus on those dynamical systems that have critical points and on those dynamical
systems that have only C I+e 0 < ¢ < 1, smoothness.

31.1 Introduction

Mostow’s rigidity theorem says that two closed hyperbolic 3-manifolds are isomet-
rically equivalent if and only if they are homeomorphically equivalent [13]. A closed
hyperbolic 3-manifold can be viewed as the quotient space of a Kleinian group act-
ing on the upper-half 3-space. So a homeomorphic equivalence between two closed
hyperbolic 3-manifolds can be lifted to a homeomorphism of the upper-half 3-space
preserving group actions. It has a continuous extension to the boundary of upper-
half 3-space and this boundary can be viewed as the extended complex plane C.
This continuous extension is quasiconformal on the boundary, which we view as
the extended complex plane C. Since a quasiconformal homeomorphism of the
complex plane is absolutely continuous and since ¢ is equivariant in the sense that
¢ oy o¢~!is a Mobius transformation for every transformation y in the Kleinian
group that covers the 3-manifold, it is not possible for ¢ to have an invariant line
field, and one concludes that ¢ must be a Mobius transformation.

The parallel situation for a closed hyperbolic Riemann surface is more compli-
cated. Such a surface can be viewed as upper half plane H factored by a finitely
generated Fuchsian group whose limit set is the extended real axis, R = R U {oo}.
Just as for 3-manifolds, a homeomorphic equivalence between two such surfaces can
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be also lifted to a homeomorphism of the upper half plane preserving group actions,
and this homeomorphism extends to the boundary, which in this case is R. The
induced boundary homeomorphism ¢ defined on R is quasisymmetric. But there is
a new complication that arises because quasisymmetric homeomorphisms are not
necessarily absolutely continuous. One can view this complication as what makes
possible the theory of deformations of such groups, that is, Teichmiiller theory.
Nonetheless a version of Mostow’s rigidity theorem is still available.

Theorem 31.1. (Mostow [13]). Suppose X = H/I'x andY = H/Iy are two
closed hyperbolic Riemann surfaces covered by finitely generated Fuchsian groups
Iy and I'y of finite analytic type. Suppose ¢ from R to R induces the isomorphism
byy v ¢oyoy~l. Then ¢ is a Mobius transformation if and only if it is absolutely
continuous.

A stronger version of Mostow’s rigidity theorem is proved by Tukia in [19].

Theorem 31.2. (Tukia [19]). Suppose X = D/I'x and Y = D/I'y are two closed
hyperbolic Riemann surfaces with the same hypotheses as in the previous theorem.
Then ¢ is a Mobius transformation if and only if it is differentiable at one radial
limit point with non-zero derivative.

For a proof of this theorem from the dynamical systems point of view, we refer
the reader to [3].

In the 1980s Sullivan set up a dictionary between Kleinian groups and one-
dimensional dynamical systems. In his classes at the CUNY Graduate Center
between 1986 and 1989 the following theorems were presented, [17].

Theorem 31.3. (Shub [14]). Suppose f and g are two C orientation preserving
circle expanding endomorphisms of the same degree. Then [ and g are topologi-
cally conjugate by an orientation preserving homeomorphism ¢.

Moreover,

Theorem 31.4. (Shub—Sullivan [15]). Suppose f and g are two analytic orientation
preserving circle expanding endomorphisms of the same degree. Then the conjugacy
¢ is analytic if and only if it is absolutely continuous.

This theorem can be generalized to the C'™* case for any 0 < o < 1. We say
f is C'T® if it is differentiable and its derivative f’ is a Holder continuous with
Holder exponent «. That is, there is a number K > 0 such that

Lf'(x)— f'D < Klx—y[*, Vx, y.

In particular, for @ = 1, we say f is C'*1, or equivalently C 1 TLiPschitz if £/ ig
Lipschitz, that is if there is a number K > 0 such that

/') — "W < Klx—yl, Vx, y
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Theorem 31.5. Suppose f and g are C'*% orientation preserving circle expand-
ing endomorphisms of the same degree for any 0 < a < 1 (see Sect. 31.2.4). Then
the conjugacy ¢ is C1T% if and only if it is absolutely continuous.

Moreover,

Theorem 31.6. Suppose f and g are two C'T% orientation preserving circle
expanding endomorphisms of the same degree for any 0 < o < 1 (see Sect. 31.2.4).
Then the conjugacy ¢ is C'* if and only if all of the eigenvalues of f and g at
corresponding periodic points are identical.

See for example [2,5-9, 11] for proofs of Theorems 5 and 6. Theorem 6 is a
consequence of Theorem 5 because if eigenvalues of f and g are equal at all cor-
responding periodic points, then one can use Markov partitions for f and g to
prove the conjugating map ¢ is bi-Lipschitz. A bi-Lipschitz homeomorphism is
absolutely continuous. The following analogue to Tukia’s theorem was presented
by Sullivan [17].

Theorem 31.7. (Sullivan [17]). Suppose f and g are two analytic orientation pre-
serving circle expanding endomorphisms of the same degree. Then the conjugacy ¢
is analytic if and only if it is differentiable at one point with non-zero derivative.

The argument in the outline of the proof given by Sullivan in [17] can easily be
generalized to the C ! +LiPschitz cage.

Theorem 31.8. Suppose f and g are two C'FLiPSChitz oriontation preserving
circle expanding endomorphisms of the same degree. Then the conjugacy ¢ is
C'tLipschitz if and only if it is differentiable at one point with nonzero derivative.

However, the argument cannot be used for the C 1% case for 0 < o < 1. Let me
first give the outline of the proof of Theorem 31.8 and show why it cannot be used
in the C'1¢ case.

Outline of the proof of Theorem 31.8. Suppose h is differentiable at a point xo on
the circle. Then

h(x) = h(xo) + h'(x0)(x — x0) + o(|x — xo|)
for x close to xo and suppose
goh=hof

Consider {x, = f"(x0)}52,-Let0 < a < 1be areal number. Consider the interval
I, = (xn, xn + a). Let J, = (x9, z4) be an interval such that

"oy — I

is a C'*T1 diffeomorphism. Let f™" : I, — J, denote its inverse. Since f is
expanding, the length |J,| — 0 as n — oco. Similarly, we have
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gn : h(Jn) = h(In)
is a C!'*! diffeomorphism. Let g~ : h(I,) — h(J,) be its inverse. Then
h(x) =g"oho f(x), xe€l,.

Let

an(x) = = (0.)
and h(xo)
_ X — X0 . N
Bn0) = s ey U = @D,
Then

h(x) = (gn © ﬂ;l) o(Buohoa,)o(ano fT)(X),x € In.
The key estimate comes from the following distortion lemma (refer to, for exam-
ple, [11]).

Lemma 31.1. (The Lipschitz case). There is a constant C > 0 independent of n
and any inverse branches of f" and g" such that

‘Mﬂ% |‘ < C|x —y|, forall x and y in I,
and Cy
‘log |M || < Clx —y|, forall x and y in h(l,).
(g7’ »)

From this distortion property, one can conclude that g” o 8, ! and ay o f ™"
are sequences of bi-Lipschitz homeomorphisms with a uniform Lipschitz constant.
Therefore, they have convergent subsequences. Without loss of generality, let us
assume that these two sequences themselves are convergent. The map B, o h o ;!
converges to a linear map.

Since the unit circle is compact and all I,, have fixed length a, there is a sub-
sequence I, of intervals such that N7, I, contains an interval I of positive
length. Without loss of generality, let us assume that N3, 7, contains an inter-
val I of positive length. Thus /4 is a bi-Lipschitz homeomorphism on /. Since f
and g are expanding, this implies / is bi-Lipschitz on the whole unit circle, and so
Theorem 31.8 follows from Theorem 5. This completes the proof.

This argument cannot be used if we assume only that f and g are C ! *¢ for some
0 < o < 1. The reason is that in this situation we only have the following distortion
estimate (refer to, for example, [11]).

Lemma 31.2. (The Holder case). Suppose f and g are C'** for 0 < o < 1. Then
there is a constant C > 0 independent of n and any inverse branches of f" and g"

such that
‘1 )

0g —— <Clx—yl|% forallxand y € I
S| "
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and

< Cl|x —yl|% forall x and y € h(l,).

’k)g (g™ ()
e 0]

Therefore, g" o B! and a, o f~" are only sequences of a-Holder home-
omorphisms with a uniform Holder constant. Since we cannot conclude that 4
is bi-Lipschitz, for this case the assumption must be slightly modified. We will
mention a related result in the next section (see Theorem 15).

31.2 Quasi-Hyperbolic One-Dimensional Maps

I have studied the differential rigidity problem and the smooth conjugacy problem in
one-dimensional dynamics with critical points and in the C ! *¢ case since 1986. The
first work for one-dimensional maps with critical points is for generalized Ulam-von
Neumann transformations in my PhD dissertation [4]. Soon this work was extended
to geometrically finite one-dimensional maps in [5]. And later, it is extended to
quasi-hyperbolic one-dimensional maps in [6]. In this section, I would like to give a
brief description of this work. All results mentioned below are distributed in several
papers. I will not indicate them one by one. The reader who is interested in more
details can go to papers [2,4—10] and the book [11].

31.2.1 Quasi-Hyperbolicity

Let M be the interval [0, 1] or the unit circle R/Z. Let f : M — M be a piecewise
C! map. A point ¢ € M is said to be singular if either f/(c) does not exist or f(c)
exists but f/(¢) = 0. A singular point c is said to be power law if there is an interval
(c—1¢,c+1c), Tc > 0, such that the restrictions of f to (c —1,,¢) and to (¢, ¢+ t¢)
are C! and such that there is a real number y = y(c) > 1 such that the limits

: '(x : '(x
lim A = B_ and lim L = By
x—c— |x —c[r1 x—>c+ |x — |71
exist and are non-zero. The number y is called the exponent at c.

For a power law singular point ¢, let

')

X —cp T x e€(c—r1c,c0)

re—(x) =
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and
S (x)

X —cp T x € (c,c+ o).

Feq+(x) =

A singular point c is called critical if y > 1.
Let SP denote the set of all singular points and let CP denote the set of all
critical points. Let PSO = U2, f*(SP) be the set of post-singular orbits.

i=1

Remark 31.1. The exponent is C !-invariant meaning that if f and g are C' conju-
gated maps (i.e., there is a C! diffeomorphism 4 such that h o f = g o h), then the
exponents of f and g are the same at corresponding power law critical points.

In the rest of this survey, I always assume that f satisfies the following two
conditions:

(1) SP is finite (could be empty).
(2) Every singular point in SP is power law type.

Let T > 0 be a real number. For every critical point ¢ € CP, let U, = [c — 1,
¢ + t]. Suppose 7 is small enough so that different U, are disjoint. Define

U =U(t) = UeecpUe and V =V(r) =M\ U(%).

Denote
U—=UN(c—1,c) and U,y =U:N(c,c + 7).

Definition 31.1 (Holder Continuity). We call the map f C !+ for some O<a <1
if there is T > 0 such that

(i) f on every component of M \ SP is C! and the derivative f’ is a-Holder
continuous.
(ii) Every r¢,+|Uc,+ is a-Holder continuous.

Definition 31.2 (Chain of intervals). A sequence of intervals {/;}7_ is called a
chain (with respect to f) if

(@ ; c M\ SPforall0 <i <n

() f:I; > [i41isa Cl—diffeomorphism forevery0) <i <n—1

(¢) Either I; € V() forall0 < i < n — 1 or the last interval [, C U(t) (but in
later case, some /;, 0 <i < n — 1, may not be contained in U(t) or V(7))

A chain . = {I;}7_ is said to be regulated if either /; € V or I; C U for all
0<i <n.

Definition 31.3. [Quasi-Hyperbolicity] The map f is said to be quasi-hyperbolic if

(1) fisC'* forsome0 < o < 1.

(2) PSO N U(z) = O for some number t > 0; and

(3) there are two constants C > 0 and 0 < u < 1 such that for any chain {/;}7_,
[lo] = Cp[1n].
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Let 7 > 0 be a fixed small number in the rest of this survey. Suppose f and g
are two quasi-hyperbolic maps. We say f and g are topologically conjugate if there
is a homeomorphism % from M onto itself such that

foh=hog.

31.2.2 Geometrical Finiteness

In this section we define a subspace of quasi-hyperbolic one-dimensional maps
which we call geometrically finite.

Let SO = U2, f"(SP) be the union of singular orbits of f. If SO is non-
empty and finite, let n; = {lo,---, I[x—1} be the set of the closures of intervals in
M \ SO, then ( f, n1) has Markovian property. This means that

(a) Iy, ..., Ix—1 have pairwise disjoint interiors.

(b) The union Uf-‘;é I; of all intervals in ny is M.

(¢) The restriction f : I — f(I) for every interval [ in 1; is homeomorphic.
(d) The image f (/) of every interval  in 7 is the union of some intervals in 7.

We call n1 a Markov partition.

Let gi = (f|I;)"! be the inverse of f : I; — f(I;) for each I; € n;. A
sequence w, = ig---in—1 of 0’s, ---, (k — 1)’s is called admissible if the domain
f(;;) of g;, contains Iiz+1 for all 0 < I < n — 1. For an admissible sequence
Wp =lg--+ip—1 0f0’s,---, (k—1)’s, we can define g, = gi,°""-g&i,_, and I,,, =
8w, (f(1i,_,))- Let n, be the set of the intervals /,,, for all admissible sequences of
length 7. It is also a Markov partition of M respect to f. We call it the n*”-partition
of M induced from ( £, n1). Let k,, be the maximum of the lengths of intervals in 7;,.

Definition 31.4 (Geometrical Finiteness). We call f* geometrically finite if

(i) The set of singular orbits SO is non-empty and finite.
(i1) No critical point is periodic.
(iii) There are constants C > 0 and 0 < i < 1 such thatk, < Cu’ foralln > 0.

A point p € M is called periodic of period k if f7(p) # p forall0 <i < k but
f*(p) = p. When k = 1, we also call it fixed. For a periodic point p of period k,
e, = (f kY (p) is called the eigenvalue of f at p. Then p is called attractive if
lep| < 1; parabolic if |e,| = 1; expanding if |e,| > 1. A critical point ¢ of a C?
map is called non-degenerate if f/(c) = 0and f”(c) # 0.

We now give two examples of geometrically finite maps. The first example is a
consequence of Theorem 6.3, pp. 261-262 in [12].

Example 31.1. A C? map f with only non-degenerate critical points such that
PSO and SP are both finite and PSO N SP = @ and all periodic points are
expanding.
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The Schwarzian derivative of a C3 map £ is defined as

s =435

ho2

We say that & has negative Schwarzian derivative if S(%)(x) < 0 for all x. Singer
(see [16]) proved that if f is C3 and has negative Schwarzian derivative, then the
immediate basin of every attractive or parabolic periodic orbit contains at least one
critical orbit. Therefore, if f has negative Schwarzian derivative and if PSO N
SP = @ and if PSO contains neither attractive nor parabolic periodic points, then
all periodic points of f are expanding. The map f is said to be preperiodic if for
every singular point ¢, ™ (c) is an expanding periodic point for some integer m>1.
Then PSO = PSO contains neither attractive nor parabolic periodic points. A
special case of Example 31.1 is that

Example 31.2. A preperiodic C3 map f having negative Schwarzian derivative.

If two geometrically finite one-dimensional maps f and g is topologically con-
jugate by a homeomorphism /, then the conjugacy / is quasisymmetric (see [10]
or [11, pp88-91, Sect. 3.5] for a proof). This implies that / is a Holder continuous
function.

31.2.3 Generalized Ulam-von Neumann Transformations

A special subspace of geometrically finite maps is generalized Ulam-von Neumann
transformation, which is the first class I have studied in this direction.

Definition 31.5 (Generalized Ulam-von-Neumann Transformations). Suppose
M = [—1,1]. We call f a generalized Ulam-von Neumann transformation if

(1) f is geometrically finite with only one singular point 0

(2) f(=1)= f(1) =—land f(0) =1
(3) f|[-1,0] is increasing and f'|[0, 1] is decreasing

One example of a generalized Ulam-von Neumann transformation is f(x) =
1—2|x]|¥ for y > 1. Anotheroneis f(x) = —1+2cos(wx/2).If f is a generalized
Ulam-von Neumann transformation, let /o = [—1,0] and /; = [0, 1]. We then
have that f(lo) = f([1) = M. Thus no = {lo, [} is a Markov partition. The
post-singular orbit PSO = U;?il_fi(O) is{—1,1}.

Any two generalized Ulam-von Neumann transformations f and g are topo-
logically conjugate, the conjugacy & is quasisymmetric (see [4] or [11, pp. 88-91,
Sect. 3.5] for a proof). This implies that / is a Holder continuous function.

31.2.4 C'** Circle Endomorphisms

Another class of quasi-hyperbolic one-dimensional maps is orientation-preserving
circle coverings.
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Let M = R/Z be the unit circle. Suppose f is an orientation-preserving circle
covering. Suppose f is C!. Then f is called a circle expanding endomorphism if
there are constants C > 0 and p > 1 such that

(f"Y(x)=Cu", xeM, n=>1.

An example of an expanding circle endomorphism is x +— dx (mod 1), where
d > 1 is an integer. If the topological degree of f is d, then f is topologically
conjugate to x > dx (mod 1). Thus any two C! circle expanding endomorphisms
f and g of the same degree are topologically conjugate.

An expanding circle endomorphism f is called C'™* for some 0 < a < 1 if
fis C! and its derivative f” is a-Holder continuous. If both f and g are C!1+¢
circle expanding endomorphisms of the same degree, then the conjugacy 4 is qua-
sisymmetric (see [11, pp. 88-91, Sect. 3.5] or [2] for a proof). This implies that 4 is
a Holder continuous function.

A C ' circle expanding endomorphism for 0 < o < 1 is quasi-hyperbolic and
has no singular points.

31.3 Differential Rigidity and Applications

We use Leb to mean the Lebesgue measure on M. Our map f (or g) in this section
satisfies three more techniqical conditions:

(1) PSO has measure zero, i.e., Leb(m) =0.

(2) The set PSO is not an attractor. More precisely, there is an open neighborhood
PSO C W # M such that for any point p € M either f" falls into PSO
eventually (i.e., { f"(p)};2y S 'PSO forsome N > 0)orit leaves W infinitely
often (i.e., there is a subsequence { /" (p)}2, € M \ W).

(3) The map f is mixing, that is, for any intervals /,J C M, there is an integer
n > 0 such that f"(J) 2 I.

The last two conditions are invariant under topological conjugacy. The condition (3)
implies that the dynamical system { f"}% , cannot be decomposed.

Denote My = M \ PSO. For any point p € M, define the backward orbit of p
to be the countable set

BO(p) = UyZof ™" (p)
Suppose that f and g are two quasi-hyperbolic maps conjugate by £, that is,

hof =goh.

Then from the equation, if / is differentiable at p € M, it is necessarily differen-
tiable at all points in BO(p).
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Definition 31.6. We call & differentiable at p € M, with uniform bound if there
are a small neighborhood Z of p and a constant C > 0 such that

C'<|h@|=<C, qeBO(p)NZ.

We have the following theorem in one-dimensional dynamics (see [6]).

Theorem 31.9. Suppose that | and g are quasi-hyperbolic maps conjugate by h.
Then h restricted to My is C' if and only if h is differentiable at one point p € M
with uniform bound.

The key distortion estimation in the proof of Theorem 31.9 is the following dis-
tortion result. The reader can refer to [6, pp. 369—371] for a complete proof of this
lemma. He can also find a complete proof of this lemma in the geometrically finite
case in [11, pp. 82-97, Sect. 3.4]. The estimation of the distortion for a dynamical
system is always important in the study of dynamical systems. Chapters 1, 2, and 3
of [11] contain a general discussion of distortion properties.

We use d(-, -) to mean the distance between two points or two sets.

Lemma 31.3 (C !*"“_Denjoy-Koebe Type Distortion Lemma). Suppose f is
a quasi-hyperbolic map. Then there are constants C, D > 0 such that for any
regulated chain . = {1;}}_ and for all x and y in I,

|Xn — Ynl
d({xn, yn}, PSO) 7

[CANES] a
log —)‘ <Clxp—ynl¥ + D
’ (l(f”)’(y)I S
where x, = f"(x) and y, = f"(y) and where 0 < a < 1 is the Hilder exponent
and y > 1 is the maximum of all the exponents of power law critical points.

Consider the conjugacy h(x) = %arcsin(x) between f(x) = 1 — 2x? and

g(x) =1 —2|x| on [~1,1]. The maps  and h~! are both C! on (—1,1). But 4’ is
not uniformly continuous because the exponents of f and g at 0 are different. Note
that the exponent at a singular point is invariant under C! conjugacy. Furthermore,
we have the following improvement of Theorem 31.9 (see [6]).

Theorem 31.10. Suppose f and g and h are the same as those in Theorem 31.9.
Suppose all the exponents of [ and g at the corresponding singular points are the
same. Then h restricted to the closure of every interval of My is a C'*P diffeomor-
phism for some 0 < B < 1 if and only if h is differentiable at one point in My with
uniform bound.

We can use the equality of eigenvalues of f and g at corresponding periodic
points to verify the condition, differentiable at one point with uniform bound, in
Theorems 31.9 and 31.10 (see [6]).

Lemma 31.4. Suppose [ and g and h are those in Theorem 31.9. If h is differen-
tiable at a point p in My with non-zero derivative and if there is an open interval
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Y about p such that the absolute values of the eigenvalues of [ and g at periodic
points in Y and at corresponding periodic points in h(Y') are the same, then h is
differentiable at p with uniform bound.

The above lemma combining with Theorems 31.9 and 31.10 give us the following
results (see [6]).

Corollary 31.1. Suppose f and g and h are those in Theorem 31.9. Then h| M is
C' if and only if h is differentiable at one point p in Mo with non-zero derivative
and the absolute values of the eigenvalues of f and g at periodic points in a small
neighborhood Y of p and at corresponding periodic points in h(Y') are the same.

Corollary 31.2. Suppose f and g and h are those in Theorem 31.9. Suppose all the
exponents of f and g at the corresponding singular points are also the same. Then h
restricted on the closure of every interval of My is a C '8 diffeomorphism for some
fixed 0 < B < 1 if and only if h is differentiable at one point p in My with non-zero
derivative and the absolute values of the eigenvalues of f and g at periodic points
in a small neighborhood Y of p and at corresponding periodic points in h(Y) are
the same.

The following rigidity result is now can be obtained from Theorems 31.9 and
31.10 and Corollaries 31.1 and 31.2 (see [6]).

Corollary 31.3. Suppose f and g and h are those in Theorem 31.9. Then h| M is
C' if and only if there is a small interval Y of M such that h|Y is absolutely con-
tinuous. Furthermore, if all the exponents of f and g at the corresponding singular
points are also the same, then h restricted on the closure of every interval of My is
C'*P for some fixed 0 < B < 1 if and only if there is a small interval Y of M such
that h|Y is absolutely continuous.

The reader can find the detailed proofs of Theorems 31.9 and 31.10 and Corol-
laries 31.1, 31.2, and 31.3 in [6]. We give an outline of the proof of Theorem 31.9
in the next section.

Previously, we have proved Theorem 31.9 for geometrically finite one-dimen-
sional maps. In [18], Sullivan defined scaling functions for Cantor sets on the line
and used them in the study of differentiable structures on Cantor sets. Furthermore,
in [4,5,7,11], we defined the scaling function S s for every geometrically finite one-
dimensional map f by using Markov partitions. We have proved that the scaling
function Sy exists for any geometrically finite one-dimensional map f and is a
function defined on the dual symbolic space. Moreover, if f* has no critical point,
then the scaling function Sz is Holder continuous; and if f has critical points,
then the scaling function S ¢ is discontinuous with certain jump discontinuity. Using
scaling functions and Theorem 31.9, we studied the smooth conjugacy between two
geometrically finite one-dimensional maps in [7, 8] as follows.

Theorem 31.11. Suppose [ and g and h are two geometrically finite one-
dimensional maps. Then h|My is C if and only if Sy = Sg. Furthermore, if
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all the exponents of [ and g at the corresponding singular points are also the same,
then h restricted on the closure of every interval of My is C'*B for some fixed
0<B <lifandonlyif Sy = S,.

The space of generalized Ulam-von Neumann transformations is the first class of
one-dimensional maps with critical points which we studied in this direction (refer
to [2,4,6,9,11]).

Theorem 31.12. Suppose that [ and g are two generalized Ulam-von Neumann
transformations on [—1, 1]. Suppose h is the conjugacy from f to g. Then h|(—1, 1)
is C' if and only if h is differentiable at one point p € (—1, 1) with uniform bound.
If the exponents of f and g at the singular point O are also the same, denoted as
y = land both f and g are C'** for some 0 < a < 1, then h is C'+/7 if and
only if h is differentiable at one point p € (—1, 1) with uniform bound.

Theorem 31.13. Suppose that f and g and h are the same as in Theorem 31.12.
Then h|(—1,1) is C' if and only if h is absolutely continuous. If the exponents of f
and g at the singular point 0 are also the same, denoted as y > 1 and both f and
g are C'2 for some 0 < o < 1, then h is C'*/Y if and only if h is absolutely
continuous.

Theorem 31.14. Suppose that f and g and h are the same as in Theorem 31.12.
Then h|(—1, 1) is C ifand only if eigenvalues of f and g at corresponding periodic
points in (—1, 1) are the same. If the exponents of f and g at the singular point 0 are
also the same, denoted as y > 1 and both [ and g are Clte for some 0 < a < 1,
then h is C'T/Y if and only if eigenvalues of f and g at corresponding periodic
points in [—1, 1] are the same.

For the C '+ circle expanding endomorphisms case for 0 < o < 1, we have that

Theorem 31.15. Suppose f and g are C'T% circle expanding maps of the same
degree for some 0 < a < 1. Suppose h is the topological conjugacy from f to g,
thatis, f oh = hog. Then h is C'*% if and only if h is differentiable at one point
p on the circle with uniform bound.

31.4 Outline of the Proof of Theorem 31.9

The “only if ” part of Theorem 31.9 is obvious. We outline the proof of the “if part”
of Theorem 31.9 in [6] (see also [7, 8]) by the following steps, in which we use
Lemma 31.3 repeatedly.

Suppose f and g are C'™* for 0 < o < 1. Suppose the conjugacy 4 is differen-
tiable with uniform bound at p. Let Z be an open interval about p in Definition 31.6.
Let A = U2, f™"(PSO). Then Leb(A) = 0. Let £2 be the set of all self-recurrent
points in M \ A of f.

Step 1: The set §2 has full Lebesgue measure in M.

Step 2: /| Z is bi-Lipschitz.
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This step is important in the proof. As we pointed out in the introduction, we
need to develop a new technique to prove this step as follows. Let ¥ be the set of
intervals of f~1(Z) contained in Z. Inductively, let ¥, be the set of intervals of
f™™(Z) contained in Z \ ( Urew,_, 1 ) Because f is mixing, there are infinitely
many integers n such that ¥, is non-empty.

Suppose ¥, is non-empty. Then for any interval I € ¥,, f* : I — Z and

" h(I) — h(Z) are C'T-diffeomorphisms. Moreover we have that

(A(DI _ 1O [h(2)]
1] (g™ (hY)I |Z]

for some x,y € I. Without loss of generality, we assume that { f k(] )= and

{gk (h(J))}}—, are regulated chains.
Letg € I C Z be the preimage of p under f" : I — Z. Then

(/"9 _ ()
(") (h(q)) K (p)
So we have that a constant C; > 0 such that

= ey =

Therefore,

21U L E) (@) )] _ |h(D)]
LU @l ol 121 T |
zl(f”) I 1(g") (h(@)] |h(2)]
U @l @y o)l 1Z]

Applying Lemma 31.3, there is a constant C; > 0 such that

_ UM _ @' h@)l
C, <C, and C, —_—
= ) = © 2 = GO
So we have a constant C3 > 0 such that
h(l
<! |(1|)| e

Suppose x < y are in Z. Let ¥ (x, y) be the set of intervals of f~1(Z) con-
tained in [x, y]. Inductively, let ¥, (x, y) be the set of intervals of f~"(Z) contained
in [x, y]\ (Uleq/n I). Then

UZo=1 Urew, (x,») I
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is the union of pairwise disjoint intervals and its closure is [x, y]. Let

A =[x, y]\ (U2 Urew, e 1)

Since every point z # X,y in A is not self-recurrent, we have that Leb(A4) = 0.
Hence

o0
Leb(US2, Urew,end) =Y. Y. =[xyl
n=1JeW¥,(x,y)

Similarly,

Leb(US2) Urew,eph (D) =Y Y |h(D)] = h([x. y]).

n=1Jew¥,(x,y)

The additive formula implies that

() =h)] _

cil<
> x—yl

Cs.

Therefore, h|Z is bi-Lipschitz.

The next step is to promote from the bi-Lipschitz property to the uniformly
continuity property for the derivative &’ on a subset of Z with full Lebesgue
measure.

Since h|Z is bi-Lipschitz, i’ exists a.e. in Z and is integrable. Since (h|Z)'(x)
is measurable, /#|Z is a homeomorphism, and Leb(A) = 0, we can find a point pg
in Z \ A and a subset Eq containing pg such that

(1) h|Z is differentiable at every point in E
(2) po is a density point of Eg
(3) W'(po) #0

(4) The derivative h'| Ey is continuous at pg.

We know there is a subsequence { /"% (po)}jz>, S M \ W converging to a point
qo in M \ W. Let Iy, = (a,b) be an open interval about go such that C4 =
d(Iy, PSO) > 0. There is a sequence of interval {/j e, such that po € I € Z
and f™ : I — Iy is a C1T* diffeomorphism. Without loss of generality, we may
assume that {/; = 1! (Ik)};'io is a regulated chain for every k > 1. Then Leb(/)
goes to zero as k tends to infinity.

For any positive integer s, there is an integer Ny > 0 such that

Leb(I) o S

Leb(EoNlx) _ . |

forall k > Ns.Let Ex = f" (Eo N It). Then £ is differentiable at every point in
E} and there is a constant C5 > 0 such that
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Leb(EgNlo) _ | Cs
Leb(lo) - S

for all k > N because { f"* |1} }22 | have uniformly bounded distortion. Let £ =
NS, Uk, Ek. Then E has full measure in /o and 4 is differentiable at every point
in E with non-zero derivative.

Step 3: /'| E is uniformly continuous.
For any x and y in E, let zx and wi be the preimages of x and y under the
diffeomorphism f"% : I} — Iy. Then zz and wy are in Eg. Fromho f = goh,

we have that
(") (h(zx)) ,,

O = Gy
and . h(w N
So
W) (") (h(z1)) (£ (wi) W ()
18 (5753)| = |02 {gmeyaomon |+ |08 [Ty |+ 1108 Gy )|

Applying Lemma 31.3 to both f and g, we can find a constant C¢ > 0 such that

(f") (W)

Py | = Cobr =1

llog‘

and

g [(£74) (120
g

iy || = Celh) = h0)I

for all k > 1. Therefore,

' (zx) )‘

1og (r00)]| = ol =1+ ) = I + 10 (5722

h'(y)

for all k > 1. Since i’| Ey is continuous at py, the last term in the last inequality
tends to zero as k goes to infinity. Hence

1og (702)| = Gl =i+ 1) = h )

This means that 4’| E is uniformly continuous.

The step 3 implies that i|lq is actually C!. Then the last step is easy to get by
using the mixing condition.

Step 4: 1| My is C.
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Chapter 32
Minimum Regret Pricing of Contingent Claims
in Incomplete Markets

C. Kountzakis, S.Z. Xanthopoulos, and A.N. Yannacopoulos

Abstract In this paper we propose a contingent claim pricing scheme between two
counterparties in an incomplete one period market. According to our approach the
two counterparties of a non-marketed contingent claim select a pair of pricing ker-
nels, in order to agree on a common price, by minimizing their joint regret function,
which quantifies the departure from their initial beliefs. The joint regret function is
a convex combination of entropy-like or norm-dependent functionals. The relevant
optimization problem is posed in terms of a partially finite convex programming
problem in the space of pricing kernels.

32.1 Introduction

A main strand of the existing literature on incomplete markets has been devoted to
the problem of pricing contingent claims, provided that the basic market structure
is given (see for example [1] and references within). The main findings of this lit-
erature is that in an incomplete market the price map (pricing kernel) is not unique,
therefore leading to a whole range of arbitrage free prices for a contingent claim.
By now there are well established methods to find this range of prices, however,
it is still unclear how one of these prices is eventually selected. Clearly, additional
criteria are needed in order to select a particular price out of the range of all possible
prices.
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One such criterion that has been proposed in the literature, is the minimization
of an entropy- like measure. Typically, a pricing kernel may be interpreted as a
probability measure -usually called an “Arrow—Debreu measure”- under which the
price of any European claim is the expectation of its discounted payoff. According
to this criterion, the pricing kernel that is selected is the one corresponding to the
Arrow-Debreu measure Q that is closer to the “true” statistical measure P on the
states of the world, that is the one that minimizes a Kuhlback-Leibner like entropy
measure 2 (Q, P). This suggestion has been supported by utility pricing argu-
ments, which are related with the entropy minimization problem via duality (see for
example in [2-4] and references within etc.).

The aim of the paper is to contribute towards this strand of literature by propos-
ing alternative criteria for the pricing of the claim. While one may consider the
entropy minimization approach as a game of the economic agent against nature, we
introduce an approach that involves the interaction of agents among themselves, so
that they are led to the adoption of a single price. Our approach, without refuting
the entropy minimization approach, complements it with alternative scenarios, that
widen the scope of the theory. Our criteria are based on the concept of update of
beliefs of the two counterparties involved in the buying and selling of a contingent
claim, as introduced in [5].

We choose to work within the framework of a one period economy with finitely
many primary assets and infinitely many states of the world. Two agents are willing
to enter as counterparties into a new contract representing a European type contin-
gent claim. If the claim is not replicable by the primary assets then a multitude of
arbitrage free prices exists. Only one of these arbitrage free prices will eventually
be realised, provided that the two agents are willing to conclude the transaction. We
will present a scenario on the mechanism that leads to the realization of this single
price. In brief it goes as follows: We suppose that each counterparty has an initial
belief about the probability distribution of the future states of the world and based
on this belief chooses a reference pricing kernel that prices the contract in a way that
is consistent to the underlying market of primary assets. We further assume however
that this belief is not rigid, in the sense that each counterparty is “willing” to review
her beliefs by observing the other. As they review their beliefs, the two counterpar-
ties employ new pricing kernels for their pricing, thus departing from their initial
reference kernels. This departure from the initial pricing kernels depends on the rel-
ative bargaining power of the interacting agents and is done with some reluctance
which may cause regret. We suggest that the two counterparties will reach a unique
commonly accepted price by minimizing their joint regret.

The rest of the paper is organized as follows: In the next section we fix ideas and
notation of the general mathematical framework that we will need. In Sect. 32.3 we
introduce our model and set up the corresponding primal optimization problem. In
Sect. 32.4 we prove theorems on the existence of solution to the primal optimization
problem. In Sect.32.5 we formulate the dual problem and show its equivalence to
the primal optimization problem. This allows us to offer an economic interpretation
of our approach within a portfolio optimization framework. These ideas are further
discussed through the more concrete examples of quadratic and entropic regret
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functions. Finally, in Sect.32.6 we offer an interpretation of the price volatility of
the contingent claim, by allowing for randomness to the relative bargaining power
of the interacting agents. The Appendix gives a summary of standard notions and
results from the theory of partially ordered linear spaces which are used in the paper.

32.2 Basic Concepts and Notation

In this section we present the general mathematical framework that is needed for
our pricing model. The material here is heavily based on [6, 7] where one can look
for more details.

We consider a one-period financial markets model. There is one time period
defined by two points 7y and #;. At time fy there is no uncertainty about the pre-
vailing state of the world but there is uncertainty concerning the state of the world
that will prevail at time ¢#;. This uncertainty is represented by a probability space
(82, #, u) where §2 denotes the set of the possible states of the world at time #; and
1 denotes the relevant statistical measure. Uncertainty is resolved at time ;.

All conceivable #;-consumptions constitute a payoff space E, considered as a
partially ordered Banach subspace of R¥?. We denote by E . the positive cone of E.
In general E will be some reflexive L?($2,.%#, u), endowed with the usual partial
ordering: x > y if and only if the set {w € 2 : x(w) > y(w)} is a set lying in &
of p-probability 1. (£2, %, u) is considered a o-finite probability space.

The market consists of finitely many primitive contracts, indexed 1, ..., J, with
xj denoting the payoff of the j-th primitive contract. Without loss of generality,
the payoffs of the primitive contracts are assumed to be linearly independent and
positive (i.e. elements of E).

Itis assumed that investing in the primitive contracts can take place in real quanti-
ties and that short sales are unlimited. Thus, the portfolio space ©, is some subspace
of the function space R” and it is considered to be a normed linear space.

The payoff operatorR : ® — E, is defined as a linear, bounded and one -to -one
operator. Its range R(®), is called the asset span.

According to the one-period model, the markets open at #y, investors choose
portfolios 6 € O at 1y, while at #; they enjoy the payoff R(0).

Let M denote the closure of R(®). If E = M, the market of the primitive
contracts is called complete, otherwise it is called incomplete.

The cone C = {0 € O|R(0) € E} is called the portfolio dominance cone.

The primitive contracts have initial prices given by a contract price vector g
which can be considered as an element of @*, the dual of ®. For a portfolio 6§ € ®
and a price vector ¢ € @*, the price of the portfolio at time #y is ¢(0) = (0, q)o*,
where ( ©, ®*) denotes the portfolio-price duality.

A contract price ¢ is an arbitrage-free price if it is a strictly positive functional
of the portfolio dominance cone C, that is if ¢(6) > 0, for any 0 such that R(0) €
C \ {0}.

A pricing kernel is an element p € E*, which is a strictly positive functional of
E . such that ¢(0) = p(R(0)), where g is an arbitrage-free price.
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The set of pricing kernels of the market is denoted by 2 and it is non-empty
when ¢ is arbitrage-free.

32.3 Update of Beliefs and the Pricing Optimization Problem

We consider an incomplete market, the structure of which is known to all participat-
ing agents. Two agents A; and A, are willing to enter as counterparties into a new
(indivisible) contract that represents a non-replicable European contingent claim.
Since the market is incomplete, there is a whole range of non-arbitrage prices for
this claim, so they face the problem of agreeing on just one of them.

The initial beliefs (together with the risk preferences) of each agent about the
distribution characteristics of the future states of the world, influence the choices of
the non arbitrage prices at which they would be willing to trade the claim. Thus,
suppose that agent A;, (i = 1,2) chooses a pricing kernel & € 2 according to
which she performs her pricing. We will treat the §; as “beliefs” of the agents con-
cerning the future states of nature. Because of the incompleteness of the market, it
is generally unlikely that the two agents with initial beliefs &; and &, will quote a
commonly agreed price for the claim.

Suppose now that the agents want to reach an agreement, as they feel that it is
mutually beneficial to exchange this contingent claim. Assume furthermore, that
the two agents are not rigid about their beliefs, that is they are willing to adopt a
different & € 2 which may lead to price agreement. However, their initial beliefs
& f and 55 respectively, serve as reference beliefs. Eventhough an agent may change
her mind from her initial belief, this happens with some reluctance. The deviation
from the reference beliefs may be quantified by regret functions R; : 2x 2 — R,
i = 1,2, which have the property that $R; increases as the “deviation” of &; from
the reference SiR increases.

Thus, we suggest that the agents will choose &1,&; respectively so that they agree
on a common price for the claim, but at the minimum possible common regret. In
other words they share the regret between them so as to agree on a common price.
The sharing rule is given by a convex combination of the individual regret functions.

Therefore the commonly accepted price for the contingent claim with payoff ¢, is
obtained as the solution of an optimization problem in the space of pricing kernels,
of the form

nsling MR (E1L ED) + AP0 (62, E5)

§1,62€

subject to (32.1)
(C7él ) = (cvg:Z)’

where 2 denotes the set of the pricing kernels of the market given an arbitrage-free
price ¢ for the primitive assets, A; € (0,1) fori = 1,2and A1 + A, = 1.

The finally agreed price -if the problem has a solution- depends on (A1, ;). An
interesting question is what A1, A, represent in the model and how their values can
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be chosen. In general we may say that A;