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Preface

Systems biology takes a holistic view on biology and aims at elucidating design
principles of whole biological systems rather than characterizing individual
molecules or single events. It is generally believed that systems biology will
transform biology from a descriptive to a predictive science, making it possible
to understand, explain, and eventually engineer complex biological systems. In
the past decades, we witnessed burgeoning development of various fields that
mutually complement each other and together define the scope and methods
of systems biology. This young and rapidly growing consortium of disciplines
defies all attempts at rigid definition of its purpose and boundaries while
continuing to evolve and develop new experimental tools and theoretical paradigms.
Perhaps, the most definitive characteristic feature of systems biology is that
it is a fundamentally interdisciplinary science that became a point of fusion
of the traditional experimental biology with physics, chemistry, mathematics,
computer science, and engineering. Inevitable cross-talk of distinct cultures, often
a tumultuous and never an easy process, brought about the emergence of a new
culture of modern quantitative biology.

The most recent advances and new developments in systems biology were
presented and actively discussed at the 11th International Conference on Systems
Biology which took place on 10–16 October, 2010 in Edinburgh. This meeting
marked the tenth anniversary of the increasingly popular series of conferences
initiated by Hiroaki Kitano in 2000 in Tokyo. The meeting in Edinburgh attracted
the largest yet attendee number, which is sure to continue growing in the years
to come. Reflecting the highly diverse interdisciplinary nature of systems biology,
the scientific programme of the Conference featured eight plenary and 16 parallel
sessions aiming at the fair representation of various contributing fields. As has
become the tradition over the decade of ICSB conferences, particular attention
was given to the developments in genomics, proteomics, metabolomics as well as
mathematical modeling and computational tools. Special sessions were dedicated
to the recent advances in neurobiology, biological rhythms and circadian clocks,
and biological noise and cellular decision making. Strong emphasis was also given
to the practical applications of systems biology in medicine, biotechnology, and
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pharmaceutical industry. Following the trend of the previous meetings, ICSB 2010
witnessed continuously increasing coalescence of experimental and theoretical
approaches that resulted in exciting, truly systems research projects presented at
the Conference.

The present collection of articles has emerged from the contributions provided
by the speakers of ICSB 2010 as well as by other leaders of systems biology who
could not attend the meeting. As the biological systems themselves, this volume
is the result of self-organization. Since each contributor chose the topic of their
chapter independently from the others, the scope of this volume is a faithful and
unbiased replica of the entire breadth and diversity of systems biology. At the same
time, individual contributions naturally grouped together revealing the particularly
exigent research directions that presently attract the most attention. These emergent
clusters defined the sections of the present volume. Thus, traditionally strong interest
remains focused on the identification, analysis, and modeling of networks that
represent causative, correlative, and other relationships between various biological
entities. Contributions by B. Andrews, J. Saez-Rodrigues, D. Armstrong, and
their colleagues consider the use of the proteome-wide datasets as well as the
development of high-throughput techniques for their acquisition. Chapters by
B. Kholodenko and W. Kolch, E. Feliu, S. Schnell and their co-workers are devoted
to the analysis and modeling of intracellular signaling networks. H. Kaltenbach and
J. Stelling discuss in more abstract terms the theoretical aspects of modularity that
is characteristic of biological networks.

Much interest is presently devoted to the understanding of cellular decision
making, such as response and adaption to the environmental perturbations, cel-
lular differentiation, and programmed cell death. Given the importance of these
fundamental biological processes for the treatment of cancer and stem-cell-based
regenerative technologies, to name just a few applications, this interest is well
justified. Section 2 starts with a provocative discussion feature by D. Bray who
posits that biological organisms, as simple as unicellular bacteria, carry acquired
throughout the evolution information on optimal environmental conditions. The
contributions by A. Levchenko, J. Fisher, D. Lutter, and others focus on cellular
differentiation and apoptosis. Together they suggest that systems biology is finally
getting into the position to tackle these exciting and exceptionally complex prob-
lems.

Section 3 considers spatial and temporal aspects of intracellular dynamics.
Thus, D. Vavylonis and colleagues and A. Carlsson discuss systems properties
of actin cytoskeleton, while M. Enculescu and M. Falke review modeling of
morphodynamic phenotypes and dynamic regimes of cellular locomotion. More
technically oriented contributions that present novel computational algorithms,
software tools and theoretical methods are grouped into Sect. 4. Here E. Balsa-
Canto, I. Sbalzarini, and their colleagues discuss global optimization and parameter
identification in stochastic reaction networks. M. Blinov and I. Moraru present
the rule-based modeling approaches that allow building larger models of complex
reaction networks.
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To conclude the volume, Sect. 5 discusses a broad spectrum of systems biology
applications in medicine, biotechnology, and pharmaceutical industry. Discussion
features by R. Phair, L. Kupfer, N. Benson, and their colleagues present the views
from inside the industry on the advantages and pitfalls associated with the use
of systems biology in drug design and development. Other contributors showcase
practical applications of systems methods to the analysis of patient data and typical
problems arising in biotechnology of microorganisms and livestock.

Finally, the Editors would like to express their sincere gratitude to Mrs. Fiona
Clark who provided invaluable administrative support without which the effort of
assembling this volume would be impossible.

Andrew B. Goryachev
Igor I. Goryanin
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Chapter 1
Modular Analysis of Biological Networks

Hans-Michael Kaltenbach and Jörg Stelling

Abstract The analysis of complex biological networks has traditionally relied
on decomposition into smaller, semi-autonomous units such as individual signal-
ing pathways. With the increased scope of systems biology (models), rational
approaches to modularization have become an important topic. With increasing
acceptance of de facto modularity in biology, widely different definitions of
what constitutes a module have sparked controversies. Here, we therefore review
prominent classes of modular approaches based on formal network representa-
tions. Despite some promising research directions, several important theoretical
challenges remain open on the way to formal, function-centered modular decom-
positions for dynamic biological networks.

1 Introduction

With the advent of high-throughput experimental techniques such as micro-arrays
or mass-spectrometry, the complexity of biological networks became increasingly
evident. Concomitantly, the search for “network design principles” became both
feasible and necessary. The necessity stems from our inability to grasp and
to meaningfully analyze networks of even moderate complexity without formal
methods – based on mathematical modeling – and without some sort of “divide-
and-conquer” approach to the analysis [18]. Note that the second aspect holds for
formal and informal network analysis alike. While, despite inherent nonlinearities,
the dynamics of small systems with a few state variables can sometimes still
be successfully characterized, analyzing medium- and large-scale systems with
potentially hundreds of states poses new challenges. As an example, a current model
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Table 1.1 Overview of module definitions according to main characteristics and application areas

Definition Module Function Network
Class of approaches based on overlaps prediction applications

Community detection Structure No Guilt-by-association Protein–protein interaction
Metabolic pathways Function Yes Steady-state Metabolic
Network motifs Structure Yes Dynamics Transcriptional, signaling
Retroactivity Function No Dynamics General
Monotone systems Function No Dynamics General

of the ErbB signaling pathway was taken that already comprises about 500 state
variables [5]. Clearly, classical methods for the analysis of nonlinear systems such
as phase-plane analysis will only work in the rarest of cases for such models.

Conceptual divisions of complex networks in biology are standard practice for
many experimental or theoretical studies. This is consistent with a modular view
on biological systems; they are constituted by semi-autonomous functional units
performing specific functions. Much of the reasoning about biological entities
(e.g., protein complexes) and functions (e.g., distinct signaling pathways) follows
this notion. However, it was only recognized relatively recently that – similar to
engineered systems – modularity could be a key to the quantitative understanding
of large-scale networks [14, 22, 25].

Modularity has several potential implications for the systems analysis of biolog-
ical networks:

• The decomposition of complex networks into manageable units, and their
subsequent assembly, can allow us to comprehend large-scale systems.

• Corresponding modular concepts for mathematical modeling and formal analysis
facilitate theoretical investigations in systems biology, for instance, in terms of
parameter estimation.

• The large repertoire of available engineering methods and insights could lead
to the identification of operating principles that are common to biological and
engineering systems [7, 38].

Over the past years, we have seen the accumulation of general evidence
for modularity in different areas of biology, ranging from molecular interaction
networks inside cells to the structure of evolutionary processes [43]. Many specific
aspects of the existence and implications of modularity in biology, however, are
controversial [1,27,44]. These controversies are often rooted in different operational
definitions of modules.

Here, we therefore review several promising approaches that were proposed to
address the question of how to define and find suitable subsystems (or modules)
that would allow a modular analysis of complex cellular networks. The overview
of main concepts shown in Table 1.1 illustrates that the approaches differ in several
dimensions such as the basis of the definition, and the scope of predictions and
network applications.
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As it is beyond the scope of this review to cover all module concepts that have
been proposed, we focus on those approaches that start from a formal definition
and operate on a formal representation – a mathematical model – of a cellular
network. Moreover, we assume that it is the ultimate goal of modular approaches
to achieve unique network decompositions that are based on function and that
yield predictions on the system’s dynamic behavior. Our discussion of existing
methods will be guided by this principle. After introducing the formal basis for the
types of mathematical models considered, we will present the module identification
methods summarized in Table 1.1, and conclude with selected applications in system
identification and analysis.

2 Models of Biochemical Networks

A biochemical network consists of a set of compounds or species whose connections
and interactions can be captured by graph theory. Each species is then represented
by a vertex or node in a graph, and a (directed or undirected) edge is drawn between
species to denote an interaction.

One such representation is a protein–protein interaction (PPI) network (see [32]
for a brief review of PPI network construction). Here, a representation by an
undirected graph GD .V;E/ with vertex set V and edge set E is fairly straight-
forward. Each vertex v 2 V represents a protein, and an undirected edge e D
fv1; v2g 2 E is drawn between a pair of proteins if experimental data suggests
that these proteins interact. A small example is given in Fig. 1.1a. Several PPI
datasets for the same organism can be combined into ever-larger sets of interactions,
and PPI graphs often contain thousands of protein vertices. PPI graphs provide

a b c

Fig. 1.1 (a) Graphical representation of a PPI network. Vertices in gray and black denote two
potential modules with better intra- then inter-connectivity. (b) Representation of reaction 2A C
B ! C CD as a hypergraph (top) and equivalent bipartite graph (bottom). Circle: species vertex,
diamond: reaction vertex. (c) Signed interaction graph. Pointed arrow edge: positive, t-shaped edge:
negative influence of one vertex on another vertex
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a picture of all protein interactions: edges represent possible interactions, but
dependencies between interactions or dependencies on experimental conditions are
not represented.

Biochemical reaction networks admit a representation by a directed hypergraph
or an equivalent directed bipartite graph. In the former, each vertex represents a
species, and a directed edge is drawn from one set of species to another set of species
if there is a biochemical reaction transforming the first into the latter set. In the
bipartite representation, each reaction is additionally represented by a vertex and
an edge is drawn from a species to a reaction vertex if that species is a substrate
of the reaction. Conversely, an edge is drawn from a reaction to a species if the
species is a product. Typically, edges in both representations are labeled with the
stoichiometries of the species in the corresponding reaction, providing information
in addition to the topology. An example is given in Fig. 1.1b, where the reaction
2AC B ! C CD is given in both representations.

Given a biochemical reaction network, the dynamics can be captured by a system
of nonlinear ordinary differential equations (ODEs). For this, let S1; : : : ; Sn denote
the chemical compounds or species and let r be the number of reactions in the
reaction network. A reaction Rj is given by:

Rj W
nX

iD1
ai;j Si !

nX

iD1
bi;j Si ;

where ai;j is the molecularity of species Si as a substrate in this reaction, bi;j is the
molecularity of Si as a product, and Ni;j D bi;j � ai;j is the stoichiometry of the
species in the reaction. Together, these stoichiometries form the n�r stoichiometric
matrix N , with one row per species and one column per reaction.

Let xi � xi .t/ be the concentration of species Si at time t , called the states of the
system and combined into the vector x D .x1; : : : ; xn/T . Denote further by vj .x; p/
the rate of reaction Rj as a function of the species concentrations and a vector of
parameters p. These rates form the vector v.x; p/ D .v1.x; p/; : : : ; vr .x; p//T and
they are often called the fluxes of the system for a particular .x; p/. The dynamics
of the network is then given by the set of n nonlinear ODEs as follows:

dx

dt
D N � v.x; p/: (1.1)

While the stoichiometry (given by N ) of a system of biochemical reactions is
usually well characterized, crucial details of the rate law governing the change
of a reaction rate as a function of the species concentrations (given by vj .�/) are
often unknown. In particular, parameter values such as kinetic rate constants are
notoriously difficult to get. Also, the algebraic form of the rate laws is often difficult
to establish, especially in metabolic networks where several substrates and enzymes
might simultaneously contribute to a reaction rate.

To take into consideration the (potential) dynamics of a network, the species–
species interaction graph or influence graph can be constructed. This graph is
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directed and signed; it has one vertex per species and a directed positive (negative)
edge is drawn from Si to Sj , if Si has a positive (negative) influence on the
concentration of Sj . The edge signs can either be established experimentally, as for
network motifs (Sect. 5.1) or by the sign structure of the Jacobian matrixN �.@v=@x/,
as for monotone systems (Sect. 5.2). Figure 1.1c exemplifies an influence graph of
six species. Thus, for the same biochemical network, different representations – with
different levels of granularity – are possible, and it is to be expected that the choice
of representation will influence the eventual modularization results.

3 Graphs and Community Detection

Once a graph for a network is constructed, its topology and in particular its
connectivities can be analyzed using graph-based algorithms. This type of analysis
requires only the graph itself. It uses neither the stoichiometric information provided
by a reaction network, nor the dynamic or steady-state information provided by the
ODE system of such a network.

One popular type of analysis aims at describing the overall organization of a
graph in terms of topological statistics, such as the distribution of path lengths
between vertices, and in particular the distribution of vertex degrees. The degree
of a vertex v is the number of vertices w 2 V such that fv;wg 2 E , that is, the
number of its incident edges; vertices with high degree are sometimes called hubs.
Graphs can be categorized by their vertex degree distribution. Of particular interest
are scale-free graphs, in which the degrees follow a power–law distribution such
that the probability of having degree d is proportional to d� [21]. Other approaches
try to derive a more precise picture of the overall graph by extending the concept
of the degree to so-called graphlets, which are essentially subgraphs of a given size.
For each vertex, the number of graphlets it participates in is counted, and a graphlet
distribution is computed. Comparisons between graphs can then be based on these
distributions [29].

Densely connected subgraphs – sets of vertices that have more connection among
each other than to the rest of the graph – are of particular interest in the topology
of a graph. An example is given in Fig. 1.1a, where the shaded vertices belong to
two potential modules. While various ways of defining “more densely connected”
precisely were proposed, many algorithms to find the modules rely on methods from
community detection [11]. Some of these algorithms try to find a minimal set of
edges such that by removing these edges, the graph decomposes into a number of
disjoint components, which are then identified as the modules. Other approaches use
explicit or implicit measures for similarity of vertices and try to optimally cluster
vertices into modules, such that members of a module are more similar to each other
than to nonmodule vertices.

In the case of PPI networks, modules are usually identified with a particular
biological function, with the reasoning that interacting proteins typically either
stem from a protein complex or are otherwise simultaneously involved in the



8 H.-M. Kaltenbach and J. Stelling

same biological process. One way of finding a module’s biological function is
to analyze the gene ontology (GO) [6] terms associated with its proteins. If an
enrichment of GO terms is found for a particular module, it is associated with
the corresponding biological function. This annotation can then be transferred to
proteins in the module that are not yet annotated with a function. While this method
works reliably for detecting protein complexes in terms of modules, assigning a
function to a larger module is often not straight-forward and various extensions
for improving the biological relevance have been suggested [9, 27]. However, co-
expression patterns of proteins and co-memberships are rarely correctly reflected in
modules. In particular, not correcting for known protein complexes can introduce a
severe bias in connectivities and complicates the analysis [44].

Metabolic network models contain additional information about stoichiometries
of reactions and potentially kinetics of reaction rates, and several methods for
topological modularization have also been proposed for these networks. While
more densely connected subgraphs might not admit a straightforward biological
interpretation, some methods rely on similar ideas to identify subgraphs that have
only few connections to the remaining network and can potentially be identified
with pathways of the network [13].

Several methods have also been proposed to decompose a metabolic network into
hierarchies of modules. One attempt uses extensive simulations to cluster trajecto-
ries of (groups of) species by similarity and then iteratively assigns compounds and
modules into other modules, until all modules are hierarchically nested [10].

While metabolic networks are usually described as hyper- or bipartite graphs,
many decomposition methods work on a derived species–species influence graph
instead. This causes particular problems, as different species-reaction schemes can
lead to the same species influence description, which might lead to artifacts [24].
Note that many of the above approaches may suffer from the same problem because
the underlying network model (usually, a simple graph) might not be appropriate to
capture the network structure and its implicit constraints on network function.

4 Stoichiometric Network Analysis and Metabolic Pathways

Stoichiometric network analysis (SNA) operates on the stoichiometric matrixN and
additionally incorporates other physico-chemical constraints on system behavior,
such as reversibilities and capacities of reactions. It is thus based on a more
detailed system model using hypergraphs that accounts for the coupling of educts
and products in each reaction [19]. Moreover, the definition of pathways employs
a functional criterion: each pathway has to define a feasible steady-state flux
distribution in the network. Hence, any modular decomposition in SNA is limited to
steady-state regimes, but it allows for function predictions in those regimes [39].

Extreme pathways (EPs) and elementary flux modes (EMs) are formally defined
pathways that provide a functional decomposition of a network based on its
stoichiometry. Briefly, each such pathway fulfills three criteria: (1) it allows for a
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a

b

Fig. 1.2 (a) Example network with two internal metabolites (A, B) and two external metabolites
(Aext, Bext), respectively, that is captured by the stoichiometric matrix N . Arrows denote reaction
directions. (b) Decomposition of the network into three EMs EM1-3 where black/gray arrows
indicate active/inactive reactions, respectively

steady-state flux distribution, (2) the fluxes are feasible, that is, no reaction direc-
tionality is violated, and (3) the pathways are minimal in the sense that a pathway
cannot be represented by a combination of other pathways [39]. The small example
network shown in Fig. 1.2 illustrates the principles of pathway analysis by EMs.
Note that the EMs define functional regimes, not mutually exclusive subunits of the
network; linear combinations of the EMs describe the entire space of valid steady-
state flux distributions. However, the number of pathways – and their overlaps –
explodes combinatorially with network size [20]. Hence, while incorporating a clear
functional definition, it is a subsequent task to identify nonoverlapping modules
from metabolic pathways. It is still a largely open question how to achieve such a
decomposition and simple approaches such as (bi-)clustering of large pathways sets
for realistic metabolic networks face substantial computational challenges.

Promising stoichiometry-based modularizations, however, have been proposed
using the kernel matrix (an orthonormal basis of the right null-space of N ). The
concept presented by Poolman et al. [28] relies on the computation of reaction
correlation coefficients, from which a distance matrix for reactions can be con-
structed. It is an extension of enzyme sub-sets, that is, fluxes in the network that
are always fixed to a constant ratio, implying that they are 100% correlated [26].
Hierarchical clustering based on thus defined reaction distances is computationally
feasible, and it yielded hierarchically nested modules in genome-scale metabolic
networks. In contrast to those modules obtained from topology alone (Sect. 3),
they incorporate functional criteria – but they are also less accessible to (biological)
interpretation [28].

An alternative approach for module identification in metabolic networks starts
from (predicted or experimentally determined) flux distributions in a network. Top–
down partitioning of the metabolite interaction graph, where reaction edges are
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weighted by their fluxes, yields the desired modules. The link to formal pathways
is made by projecting potential partitions onto EMs to identify the most likely
functional modules [47]. Thus, the approach combines modules in a functional
regime with generally valid pathways. However, these predictions are restricted to
operation of the network in steady-state. Also, theoretically derived criteria for the
partition of functions in metabolic networks beyond pathways are still lacking; both
concepts above rely on a heuristic step in identifying functional modules.

5 Modules in Dynamic Networks: Definition by Behavior

In principle, topological analysis of community structures and hierarchies as well as
stoichiometric analysis of subnetworks leading to steady state can also be performed
on fully dynamic networks given by (1.1). For an analysis of the dynamics of a larger
network, however, it seems mandatory that modules have a prescribed or easily
identified input–output description and therefore a clearly identified dynamics [1].
Two main approaches in this direction exist, namely, those focusing on local features
of subnetworks, and others that attempt a global network decomposition based on
well-defined behavior.

5.1 Local Structure: Network Motifs

One of the earliest attempts to capture dynamics of subnetworks identified several
network motifs in models of transcriptional regulation [2]. A network motif in this
sense is a small subnetwork that performs a particular dynamic function. Larger
networks can then be analyzed by finding all contained network motifs and studying
their relation.

An example of a network motif is the inconsistent feedforward mechanism,
which was recognized as a subsystem able to generate pulses or to accelerate
responses. Other examples include consistent feedforward schemes and densely
overlapping regulons [2]. In [33], network motifs were identified in an E. coli
network and a first attempt was made to use motifs in wiring diagrams to elucidate
the structure of the overall network. Some motifs embedded in a larger context
are given in Fig. 1.1c. Vertices A;B;C form an inconsistent feedforward motif.
However, vertices A;C;D also give a consistent feedforward motif, sharing the
edge A ! C with the A;B;C motif. Both motifs are further embedded in larger
feedforward motifs, ultimately ending in vertex F .

Note that, in principle, most network motifs do not have the same qualitative
dynamics for all possible assignments of parameter values and for all possible
realizations in terms of subgraphs. The bi-fan motif, for example, was found to
exhibit various dynamics depending on its exact configuration [16]. However, in
most cases, motifs found in real biological contexts show a unique dynamic function
that can also be experimentally observed [2].
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Originally developed for networks of transcriptional regulation, network motifs
are also of particular interest for signaling networks, where they might be associated
with clearly defined steps in the processing of an external signal. In contrast
to regulatory motifs, these are often based on feedback rather than feedforward
mechanisms. Important examples of subnetworks are reviewed in [40] and [41].
These include several response mechanisms that determine, for instance, how
rapidly a system responds to a stimulus, as well as several feedback mechanism.
It is long known in control engineering that the existence of certain subsystems is
a necessary condition for particular dynamics: negative feedback, for example, is
needed to generate oscillatory signals and positive feedback can be associated with
an irreversible switch, that is, a bistable system. However, the potential reaction
mechanisms implementing such subsystems are numerous and they are not easy to
identify in a sufficiently complex network.

One unresolved problem associated with network motifs is prompted by their
embedding in a larger context. On the one hand, motifs with specific local function
do not necessarily have this same function when interconnected with a larger
network that systematically feeds the motif’s output back to its input. On the other
hand, motifs in a larger context often overlap, such that sets of vertices and edges
are part of more than one motif; an example of this was already given in Fig. 1.1c.
Similar to the metabolic pathway-based module definitions, therefore, clear-cut
criteria for module demarcation are still missing.

5.2 Global Decomposition: Monotone Systems

While network motifs present a bottom–up approach to finding dynamic modules
in a given network, decomposing a network into modules by a top–down approach
can also yield insight into the network’s dynamics.

One recently proposed way to arrive at a decomposition of (1.1) into modules
exploits the theory of monotone systems [15], extended to systems with inputs and
outputs [34]. Such input–output systems extend (1.1) by a set of input functions u
that allow an influence of the system by external signals, and an output function
y W IRn ! IRm that maps the state of the system to m numbers, which can in turn
be fed into the input of another (sub)system. A system is monotone with respect to
three partial orders (all denoted by �), defined on the inputs u, the outputs y, and
the solutions �.t I x0; u/ of the ODE system (1.1) with initial conditions x0 and input
u.t/, if the following monotonicity condition

u1.t/ � u2.t/; x1 � x2 H) �.t I u1; x1/ � �.t I u2; x2/; y1 � y2
holds for all times t � 0, all inputs uf1;2g.�/, and all initial conditions xf1;2g.

Monotonicity of a system allows statements on existence and stability of steady
states. It guarantees that the system responds “well-behaved” in the presence of
perturbations. Moreover, important special cases of monotonicity (for a certain class
of partial orders) can be established from the topology of the bipartite network
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Fig. 1.3 Example of retroactivity: ProteinX is the output of moduleM1 and also forms a complex
with a promoter in module M2. With Œp� C ŒX � p� D const., this changes the input-output
characteristic of M1. Adapted from [42]

graph alone, under very mild assumptions on the class of admitted reaction rate
laws. Feedback configurations of monotone systems have also been successfully
investigated; see [34] for details on monotone systems.

While most models of biological networks are not monotone, some are near-
monotone in the sense that only a few edges in the graph need to be deleted to
render them monotone. Algorithms for identifying such sets of edges have been
proposed [8, 37] and they open the route to a decomposition of large systems into
modules of monotone subsystems. The fact that these modules are also independent
of particular assumptions on rate laws or kinetic parameters makes this approach
particularly appealing.

5.3 Retroactivity

Another approach for decomposition of a larger network is to minimize the
“retroactivity” between modules. Consider any module M2 that is downstream of
another module M1: there are connections from M1 to M2, but not from M2 back
to M1. Even in such a cascade configuration, with no apparent feedbacks between
the modules, the downstream module might influence the dynamic properties of the
upstream module. An example is given in Fig. 1.3, where an input u.t/ to module
M1 generates a protein species X , whose concentration is the input to module M2.
In M2, the protein acts as a transcription factor that forms a complex X � p with
a promoter p; importantly, the overall promoter concentration Œp�.t/ C ŒX � p�.t/
stays constant. The input–output behavior ofM1 is then changed by the presence of
M2, as the stoichiometric interaction ofX with p also changes the trajectory ŒX�.t/.
To quantitatively describe this influence, the concept of retroactivity was proposed
together with an investigation of potential insulation mechanisms [42].

In terms of modular approaches, this concept can be exploited by using methods
from community detection that simultaneously minimize the retroactivity between
modules [31]. In principle, such modules could then be analyzed separately and only
the respective upstream modules need to be taken into consideration for describing
the dynamics of interconnected modules. By itself, retroactivity, however, does not
provide a definition of modules, but minimization of retroactivity could be part of
the objective in finding modular structures in biological networks.



1 Modular Analysis of Biological Networks 13

5.4 Interfaces

Similar considerations apply to the topic of interfaces. Consider any two modules
M1 and M2. Their interface is given by the quantities that need to be exchanged
between them. For example, a particular reaction might be assigned to module M1

and one of its substrates to moduleM2. Then, the substrate’s concentration needs to
be exchanged between the modules as must the reaction rate (which is a quantity of
M1, but needed by M2 to update the substrate concentration).

The problem of interfaces has some analogies to control and electrical engi-
neering. In electronics, components used to design larger circuits have well-defined
interfaces that prescribe the information carrier (electrons) as well as input/output
impedances and the physical layout of contact wire. Biological networks on the
other hand do not have a common information carrier, so a proper definition of
interfaces is complicated by the fact that a concentration of some species X cannot
be connected to a module that needs a reaction flux as input. While this is not
a problem in analysis, it poses considerable problems designing novel biological
circuits in synthetic biology [23].

The problem of impedances is in fact the starting point for studying the problem
of retroactivity in biological systems. While it can be used to define modules in
the first place, it might also be explicitly taken into account in the definition of the
interfaces. For example, instead of connecting modules directly, the interface can be
defined by pools of the interfacing species, which requires modules to be connected
exclusively via these pools [23]. For signaling networks, this would also allow
tuning the description detail by, for instance, having a pool of ATP and assigning
either a dynamics to it or considering it constant. Modules of the network would
then automatically benefit from either choice.

In control engineering, block-diagrams are an essential tool for describing
larger systems as interconnected smaller systems with prescribed function. Here,
single-input single-output (SISO) systems are well understood, even for nonlinear
dynamics. However, analysis gets more involved the more inputs and outputs
the systems have. Similar arguments hold for analyzing interconnected biological
network modules. Thus, one objective of any top–down decomposition method
should also be to minimize the module interfaces.

6 Applications: Modular Systems Identification and Analysis

Work on modular analysis of biological networks has often concentrated on
identifying and characterizing the (types of) modules found in natural systems.
However, at least in the two areas described below, modular analysis approaches
have shown direct benefits for analyzing the system functions.
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6.1 Control Systems

Decomposition of a given system into blocks with particular function is a standard
practice for designing systems in control engineering. However, translating these
techniques to biological systems is far from easy. For one, engineering systems are
by default designed to provide a certain function irrespective of the system they
are integrated into, for example, by providing insulation to avoid retroactivity. In
addition, many well-established results from engineering such as the internal model
principle [12] are in theory also applicable to biological models, but they require
subtle but nontrivial extensions. Nevertheless, examples of successful application
of control engineering methods exist, the most prominent one probably being the
analysis of the chemotaxis system in E. coli [22, 46]. Starting from fundamental
concepts in engineering, the perfect adaptation observed in the chemotaxis system
could be shown to require an integral feedback loop, which was then identified
in the reaction network. Here, an implicit modularization of the system helped in
understanding the design principles of the whole system.

Other examples include the successful extension of the internal model principle
to biological signaling pathways, in which plant (the controlled system) and
controller cannot reasonably be separated, and a main feature is the detection of
a signal [35]. A first review of attempts to bring control theoretic concepts into
biological systems analysis is given in [36], including the internal model principle,
monotone systems, and retroactivity.

6.2 Modular Response Analysis

Another example of modular analysis using concepts from control engineering
is the development of metabolic control analysis (MCA) and, more recently, its
application to the modular analysis of signaling pathways. MCA was originally
developed to study enzymatic reactions and to analyze the control of fluxes in
metabolic networks [45]. In essence, it is a sensitivity analysis of the reaction
rates with respect to parameters and species concentrations. MCA derives much
of its power from the fact that the underlying network puts additional con-
straints on the sensitivities. Those constraints do not occur for general physical
or engineering systems and they lead to, for example, the celebrated summation
theorems [30].

While originally designed to analyze control of fluxes in steady-state, MCA has
been adapted to be applicable to more transient system behaviors as they occur in
signaling networks. Here, efforts to apply MCA techniques by so-called modular
response analysis [3, 4, 17] are of particular interest. In one application, responses
of modules with respect to perturbations are exploited to identify connections in
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an unknown network. Furthermore, systems of different modules of organization
– combined models of metabolism, regulation, and signaling – can be analyzed
by MCA methods because connections from one module to the next are often not
stoichiometric, that is, by mass flow, but purely at the level of flux regulation. For
example, while the concentration of an enzyme might be changed by a regulatory
network, it only acts as a modifier for metabolic reactions, and the metabolic
network has no direct influence on the enzyme concentration. This would be an
extreme example of insulation where the two systems do not have retroactivity.

7 Conclusions and Perspectives

With constantly increasing size and scope of models for biological networks,
computational systems biology faces new challenges to provide adequate methods
for analysis of such networks. For now, methods based on divide-and-conquer
strategies seem imperative. In this paper, we focused on networks that admit a
formal representation and presented several decomposition approaches that lead to
modules with rationally defined properties.

Methods based on topology alone work reasonably well for PPI networks, but
the input–output dynamics needs to be taken into consideration when modular-
izing metabolic or signaling networks with inherent dynamics. Then, methods
that simultaneously provide modules with specific “well-behaved” input–output
dynamics and minimal interfaces between these modules are of particular interest.
In engineering, modules or subsystems with specific dynamic behavior are manifold
and commonly used. For biological networks, however, the task is mostly analysis
rather than synthesis, which often precludes an unique decomposition into modules.
In particular, small subnetworks with specific properties, such as network motifs or
extreme modes, often overlap, which complicates the analysis.

In order to be able to analyze larger biochemical reaction networks, such as
metabolic or signaling networks, new and improved methods are needed. While
there are several examples of a successful analysis using standard tools from control
engineering, differences between the analysis of engineered and biological systems
are often subtle, yet important. For example, there is no clear cut between the plant
and the controller in a biological system, and parts of a network might be used by
several response mechanisms. Further, both the structure and the specific parameter
values of biochemical reaction network models are often incomplete and uncertain.
Therefore, any modularization method needs to be robust with respect to small
perturbations in the network structure or parameters.

Acknowledgment Financial support by the EU FP7 project UNICELLSYS is gratefully
acknowledged.
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Chapter 2
Modeling Signaling Networks Using
High-throughput Phospho-proteomics

Camille Terfve and Julio Saez-Rodriguez

Abstract Cellular communication and information processing is performed by
complex, dynamic, and context specific signaling networks. Mathematical modeling
is a very useful tool to make sense of this complexity. Building a model relies on two
main ingredients: data and an adequate model formalism. In the case of signaling
networks, we build mainly upon data at the proteome level, in particular about
the phosphorylation of proteins. In this chapter we review recent developments
in both data acquisition and computational analysis. We describe two approaches,
antibody based technologies and mass spectrometry (MS), along with their main
features and limitations. We then go on to describe some model formalisms that have
been applied to such high-throughput phospho-proteomics data sets. We consider a
variety of formalisms from clustering and data mining approaches to differential
equation-based mechanistic models, rule-based, and logic based models, and on
through Bayesian network inference and linear regressions.

1 Introduction

Whatever their nature, identity, and environment, cells are continuously exposed
to signals, whether reflecting their internal state, or emerging from growth factors,
neighboring cells or the extracellular matrix. All these signals need to be received,
interpreted and possibly transmitted or propagated, in an integrated manner so
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as to produce the appropriate response. This information processing is performed
through the use of highly dynamic and context specific networks assembled
from a multitude of signaling molecules [32]. Given their fundamental role in
cellular function and intercellular coordination, deregulation of signaling networks
is often involved in the development of diseases [3, 27]. Furthermore, although
development of resistance to drugs can happen through accumulation of mutations,
it seems that another underlying mechanism can be the rewiring and adaptation
of the signaling network. Combinatorial genetic perturbations in yeast suggest that
signaling networks are extremely adaptive to such perturbations [32]. Studying
signaling networks as a whole, in physiological and disease contexts, is therefore
essential to understand how cells function and respond to their environment and
how this process is deregulated in diseases, to potentially provide new venues for
therapies.

Understanding how the elements that make up signaling systems are organized
and function together to allow the cell to respond to a perturbation is a challenge.
This is only the beginning that is to be investigated [28]. Therefore, it has been
argued that mathematical modeling is necessary to make sense of the sheer amount
of elements that enter into play [1, 13, 28, 32, 40]. A key point when modeling is
to be aware of the assumptions made in building the model (level of detail, scope,
etc.), and to interpret the model outputs correctly [5, 65]. Indeed, there are many
ways to model biochemical and in particular signaling networks, and the choice of
a particular formalism depends on the system under investigation, the data at hand,
and the question to be answered.

Ideally, one builds a model based on good quality data of the system under
study; in the case of signal transduction data is at the proteome level, since proteins
are the ultimate agents of cellular activity. Events occurring at the transcriptional
levels can however also be included in models of signaling systems (see [34]
for a review on cellular regulatory networks encompassing regulation at different
levels). Proteomics is the field of biology that studies the expression, modification,
conformation, and activity of proteins in a system [2, 30]. This is challenging
for many reasons, mainly because screening of the entire proteome (as can be
done for the genome or transcriptome) is impractical with current technology and
because the proteome cannot be defined using a list of proteins. Indeed, the wide
varieties of post-translational modifications (PTMs) and their combinations lead
to a combinatorial explosion of the number of states that need to be assessed. To
add to the complexity of this picture, protein abundance in a single cell population
frequently spans more than 6 orders of magnitude [2], which is broader than
the dynamic range of any routine proteomics technology currently available. In
addition, limited information can be inferred from investigations at the mRNA level
since transcripts levels are poorly correlated with protein abundance [23, 73]. An
ideal technology to probe the proteome of human cells in a signaling framework
would have to be able to measure accurately the concentrations of more than
30,000 different proteins and their splice variants, each possibly subject to a
variety of post-translational modifications (e.g., an estimated 100,000 sites for
phosphorylation alone) and should be able to measure all this in a time-dependent,
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cell and compartment specific manner, under various conditions such as genomic
background and stimulations by drugs [62]. Although no single platform is currently
capable of such an achievement, some progress has been made with regards to
capabilities of medium to high-throughput proteomics technologies, which we will
discuss further in this chapter. In particular, we will discuss advances in antibody
based and mass spectrometry (MS) based proteomics workflow that have allowed
and will allow informative modeling of signaling networks.

Signal propagation involves changes at three levels: regulated PTMs, protein–
protein interactions (often owing to PTMs), and changes in the expression level
of proteins. These three levels are coordinated through dynamic regulation which
is often spatially segregated [10]. Amongst these three levels, we focus on PTMs
because they are the most immediate events, often trigger the other events and can
thus often be used as a proxy for those other events. However, depending on the time
scale of the process studied, it is possible that expression and degradation events
would play an important role in the dynamics of the system. One should therefore
be cautious and, if possible, also be able to measure the abundance of proteins.

Over 200 types of PTMs have been reported and that number is still growing
[23]. In particular, phosphorylation and associated players (kinases, phosphatases,
and phospho-binding domain containing proteins) play a very important role in
signaling since this PTM can control the formation of multiprotein complexes, the
dynamic localization of proteins, as well as their stability and enzymatic activity,
and about 30% of proteins are phosphorylated at any one time [13]. This points to
the importance of phosphorylation in the context of signaling, and combined with
the availability of assays to measure phosphorylation of proteins on a large scale,
this makes phospho-proteomics a common focus when looking at signaling.

The phosphorylation state of a protein reflects the result of the action of
kinase/phosphatase reaction pairs. In some cases, e.g., phosphorylation of the
activation loop of some protein kinases, this is correlated with the activity status
of the protein. However, this is not true in the general case, and care should be taken
when interpreting phosphorylation status [13]. Relatively recent data suggests that
most in vivo phosphorylation sites have not even been detected yet [54]. In addition,
although we can now sequence a full genome, signaling data are necessarily
incomplete [20] because characterizing a “full” signaling network would necessitate
to either characterize the full state of the cell (including contextual information and
state of modification/interactivity of every agent) or to be able to delineate where
the signaling network starts and ends.

PTMs not only have individual roles but can also function in combinations
to precisely regulate molecular interactions, protein activity and stability, in a
context specific manner [29]. Therefore, interpreting phosphorylation in a signaling
context is likely to prove very challenging, and prioritizing functionally important
phosphorylation sites for experimental investigation is going to be crucial [67], as
will be the identification of kinases involved in particular modifications [13].

This chapter is outlined as follows: in the first part, we will discuss available
experimental platforms and explain their particular features and limitations. In the
second section, we will briefly discuss methods for building signaling networks that
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have been applied to high-throughput phospho-proteomics data sets. This section
is not exhaustive neither in terms of application examples nor in terms of specific
methodologies, but it rather aims at describing modeling frameworks that have been
applied to phospho-proteomics data by showing a couple of examples, and discuss
the advantages and disadvantages of each method. Most of the methods presented
have been applied in many other contexts (often prior to signaling networks), in
particular to the much more mature field of modeling of gene regulatory networks
[4, 31, 44].

2 Phospho-proteomics Data Collection

Data collection methods for medium-/high-throughput proteomics can be roughly
divided into two categories: those that do not make any assumption about the
sample composition (e.g., shotgun MS), and those that measure a predetermined
set of proteins (e.g., affinity based approaches) [2, 62]. Affinity based technologies
most commonly make use of antibodies, and those methods will be the subject
of the first part of this section. The second part of this section will examine the
principles of common shotgun MS and will take a closer look at targeted MS as a
potential alternative to antibody based approaches to generate large data sets for the
development of systems biology models. The choice of a method to use ultimately
depends on the material and expertise available, and the number of experiments
that can be performed often results from a balance between the time and cost per
experiment.

2.1 Antibody-based Methods

All antibody based methods build upon the same principle: the interaction of a target
protein with an antibody, an interaction that should happen with both high-affinity
and selectivity. Therefore, all of these methods suffer from the same limitation:
the data is only as good as the antibodies are, and investigators are therefore
limited by the availability of high-quality antibodies [2]. However, new multiplexing
technologies offer the ability to analyze hundreds to thousands of samples a day,
thereby allowing assays on multiple time points, and across multiple conditions
of interest (which is not yet possible with MS due to the labor intensive process
of analyzing more than a few conditions), although the total number of signals
measured rarely exceeds a few dozens [3, 75] (see Fig. 2.1 for an overview of
multiplexing capacities of the methods examined in this chapter). Such data sets
usually need to be normalized and quality controlled (e.g., assessing reproducibility,
detecting outliers, etc.). There are a number of computational tools to do so and to
connect processed data to modeling tools. This is however outside the scope of this
chapter.
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Fig. 2.1 Overview of multiplexing capacities of data collection methods. This figure displays
approximations for the ranges of numbers of samples and proteins that can be interrogated using
various phospho-proteomics platforms. These numbers are not intended as absolute statements on
the capabilities of these methods and in particular they may change slightly depending on the actual
protocol used, experimental setting and proteins targeted. This figure is inspired from [2]

The combination of fluorescently labeled antibody recognition and single cell
measurement capacity of fluorescence activated cell sorting (FACS) [59] seems to be
a promising technology due to its single cell nature. Another promising technology
is the microwestern array developed by Ciaccio et al. [11], which in addition to an-
tibody based recognition provides an extra separation step by electrophoresis. Other
technologies, which we will not discuss in this chapter, such as high-throughput
microscopy [24] associated with immunofluorescence, and mass cytometry [68],
are being developed and could potentially be applied to the generation of high-
throughput phospho-proteomics data sets adapted for modeling. To date, most
commonly used antibody-based technologies are protein arrays, reverse-phase
protein arrays, and the bead based xMAP technology from Luminex [62].

2.1.1 Intracellular Multicolor Flow Cytometry

Intracellular multicolor flow cytometry allows the simultaneous measurement of
multiple phosphorylated proteins and phospholipids in large populations of cells,
on a single cell basis [59]. The principle is simple, the cells are fixed and incubated
with fluorescently labeled antibodies, and then are subjected to FACS which quanti-
tatively measures the targets’ expression or modification level. The main limitation
of this technology is the availability of suitable reagents, i.e., antibodies compatible
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with flow cytometry. Furthermore, this technology only allows a relatively small
number of proteins to be examined simultaneously (up to a dozen). The ability to
barcode cell populations before protein labeling potentially allows this technology
to be applied to the processing of multiple samples/conditions in parallel [38].

2.1.2 Microwestern Arrays

Microwestern arrays build upon the well established western blot technology, which
enables quantitative and sensitive analysis of protein abundance and modification
after electrophoretic separation, while a high-throughput capacity is achieved by
applying the protocol to microarrayed cell lysates. The main advantage of adding
the electrophoretic separation step to the workflow is that it allows for a reduction in
sample complexity, whereas the antibody detection step results in signal amplitude
proportional to the abundance of immobilized protein. The signal localized at a
physical position on the membrane can be related to molecular size standards, so
the antibody cross reactivity problem associated with most other technologies can be
controlled to some extent [11]. This method showed, in the proof of principle study,
a linear relationship between antigen concentration and signal intensity over from
2 to 3 orders of magnitude [11]. The main advantages of this method over classical
protein arrays are an increased specificity owing to the electrophoretic separation
step, low sample requirements (compared to technologies such as xMAP) and the
wide availability of reagents since antibodies developed for the classical western
blot should be applicable to this method.

2.1.3 Array and Bead-based Methods

All other methods described here (reverse phase arrays, protein arrays, and xMAP
technology) rely on the same principles and in particular are composed of three main
ingredients: (1) an identification system which is required for multiplexing (i.e.,
a physical support with unique identity, whether a location on a 2D arrangement
or unique physical properties of beads in suspension), (2) a capture system (to
immobilize the protein(s) of interest, whether directly on the support as in reverse
phase arrays or through interaction with antibodies as in protein arrays), and (3)
a detection system (to produce a signal that is ideally linearly proportional to
the amount of captured target protein, typically fluorescent-labeled detection or
enzymatic-labeled detection such as a biotinylated secondary antibody bound by
a streptavidin-linked peroxydase) [2].

In protein microarrays, the captured antibody is covalently bound to a slide in
an ordered manner, and the slide is incubated with the sample. For detection, either
the sample itself is chemically labeled with a fluorophore, or it is detected by a
labeled secondary antibody (sandwich assay). This technology can measure up to
hundreds of proteins but the number of samples is somewhat limited. Direct labeling
allows for the simultaneous measurement of multiple analytes and only requires one
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high-quality antibody per target protein, but due to uneven labeling of all proteins
and chemical alterations this method can be rich in false positive and display a
high-background. Sandwich assays on the other hand provides a more accurate and
specific detection, but require two high-quality antibodies [75]. This is not a trivial
problem for microarrays as, contrary to antibodies for western blots that detect
denatured proteins, antibodies for such array technologies must be able to recognize
the substrate in native state but immobilized on a slide, which can impose steric
constraints on the interactions.

Reverse phase arrays are similar in principle but in this case the lysate itself is
spotted on the support and therefore multiple lysates (dozens to hundreds) can be
processed on a single slide. One can then either incubate the entire slide with one
antibody or create physical compartments within which distinct primary antibodies
can be used. A labeled secondary antibody then binds the captured antibody. This
technology only requires one specific antibody for detection of each protein but it
is therefore highly dependent on the selectivity of this antibody, and this added to
the presence of all cellular proteins bound to a slide is bringing up issues of cross
reactivity that have been reported to cause substantial noise [2,11,75]. Therefore, the
accuracy of reverse phase arrays tends to be lower than that of protein microarrays,
specifically when sandwich assays are used [58].

The xMAP technology is conceptually similar to protein microarrays except that
rather than being localized on particular spots on a support, specific antibodies are
associated with microspheres in suspension that are internally dyed to generate
different spectral signatures. This technique theoretically supports the analysis of
up to 100 analytes per well, since the beads can be multiplexed and incubated
with a single sample. For detection, a mixture of biotinylated antibodies is added,
and a fluorescently labeled molecule binds the detection antibody. Quantification
is obtained by a flow cytometer based instrument capable of reading the beads’
spectral signature and the fluorescence intensity simultaneously. Having beads in
suspension rather than planar microarrays allow for faster reaction kinetics and high-
surface to volume ratio, and consequently better washes and homogeneous chemical
reactions resulting in an increase in the signal to noise ratio [2, 71]. A disadvantage
of this approach compared to protein arrays is that it requires considerably more
cell material and the cost of detection is approximately 30 times higher per protein
detected [11].

2.2 Mass Spectrometry

MS is an analytical technique that determines the mass to charge ratio of charged
analytes, thereby providing a means to identify chemical compounds. Applied to
proteomics, it allows systematic protein identification and quantification (provided
that an appropriate protocol is used) from complex samples using a combination of
liquid chromatography separation of peptides generated by digestion, followed by
their analysis by tandem MS (a protocol called shotgun LC–MS/MS) [23].
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2.2.1 Shotgun MS/MS

A classical shotgun MS workflow proceeds as follows: the protein samples are
digested with trypsin and the lysate is fractionated by reversed-phase liquid
chromatography, which is used to separate the complex mixture of peptides on
the basis of their hydrophobicity. Other types of chromatography such as strong
cation exchange are also commonly used, where the peptides are separated based
on their charge. The peptides in fractions eluting from the chromatography columns
are then vaporized and ionized, typically by subjecting the solution to an electric
potential, which causes the formation of a spray and the desolvation and ionization
of the peptides (a technique called electrospray ionization) [23]. In the MS stage,
the mass to charge ratio of all ions is determined, then the first mass analyzer
selects ions for collison induced dissociation, where neutral gas molecules are used
to fragment the peptide. The resulting fragment ions are measured in the second
mass analyzer of the tandem MS [10,23]. The precursor ion intensities measured at
the MS stage can be used for peptide quantification, and the MS/MS fragment ion
information can be used to identify the peptide through its sequence, by comparing
the experimental MS/MS fragmentation pattern to theoretical counterparts derived
from a database of sequences from in silico digested proteins. Subsequent protein
identification can be obtained through a database search [23]. For a review about
how to obtain and interpret sequence information from tandem MS experiments, we
refer the interested reader to reference [66].

2.2.2 Data Processing Challenges

The problem of assigning sequences to MS spectra is not a trivial one, and each
identification should be carefully assessed for its statistical significance [8]. Most
of the algorithms performing this task report one or more peptide spectrum match
(PSM) scores that reflect the quality of the match between the experimental and
computed theoretical peptide spectrum. Statistics associated with these scores are
typically obtained by searching the data against a target/decoy database, i.e., in
addition to search through real sequences, the search is also performed against a
randomized, shuffled, or reversed database. This gives an approximation of the FDR
(expected proportion of false assignments among a selected set of predictions) by
counting the number of matches in the target (presumably mainly true positives),
and decoy (presumably mainly false positives) databases that satisfy a score criteria.
Some algorithms supplement this information by implementing methods to improve
the discrimination between correct and incorrect PSMs, for example, by building
classifiers that also make use of other features reported by the search algorithm,
such as charge state, difference in score to the second best hit, etc., which are often
used by experts to manually validate the PSMs [8].

After having identified the peptide present in the sample with a certain level of
confidence, another problem arises before the data can be readily interpreted: the
protein assignment problem, i.e., identifying the protein composition of the sample
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from which the peptide sequences result [52]. Indeed, the same peptide sequence
can match multiple different proteins, making both identification and quantification
challenging. This problem can be partially alleviated when the sample complexity
is further reduced prior to digestion and LC–MS/MS using techniques such as 2D
gels, which can provide additional information such as molecular weight and the
isoelectric point of the protein. The issue is particularly challenging in the case
of higher eukaryote organisms since these organisms present a certain degree of
sequence redundancy [52].

Distinguishing between different proteins of similar sequence is of course
increasingly difficult when the sequence coverage decreases (i.e., the fraction of the
protein sequence that is covered by identified peptides). Unfortunately, the sequence
coverage observed in shotgun MS proteomics experiments is typically quite low.
Several factors contribute to this, such as, the size of the proteins to be identified,
enzymatic digestion constraints, and the detection mass range of the instrument.
Furthermore, some unexpected PTMs can lower the chances of a peptide being
observed, and low abundance or poorly ionizing peptides are also less likely to be
selected for MS/MS sequencing [52]. For more information about this topic, we
refer the reader to the following review [52].

2.2.3 Quantitative MS

Regarding the quantification of proteins using MS, two main approaches can
be applied: differential isotope labeling and label free quantification. Differential
isotope labeling builds on the hypothesis that when measuring two analytes of
identical chemical composition but different stable isotope composition, their
relative signal intensity represents their relative abundance in the sample. There
are two main ways to do this: in vitro labeling or in vivo incorporation of isotope-
labeled amino acids through metabolic labeling (stable isotope labeling with amino
acids in cell culture, SILAC). For in vitro labeling, the two samples are prepared
separately and the protein or peptide solutions are individually labeled with heavy
or light version of tagging reagents. The recently introduced iTRAQ technology
allows peptide labeling with isobaric tags, as the name indicates, keeps the mass of
differentially labeled precursors constant, i.e., appearing as a single peak in the MS1
spectrum. Quantification occurs in the MS/MS spectrum by comparing peak areas
of sample-specific reporter ions [23, 58]. Compared to isotope labeling techniques
which only allow up to typically three samples to be compared simultaneously, the
iTRAQ labeling protocol can compare up to eight samples in a single LC–MS/MS
run. A very similar idea is implemented in the Tandem Mass Tags protocol [70].
SILAC is an in vivo labeling method where different populations of cells are grown
in presence of media containing light or heavy isotope versions of lysine or arginine
most commonly [23], although other amino acids have been used (e.g., leucine [55]),
and labeling of living animals such as rats with N15 has also been reported [22].
Since the labeling occurs very early on in the protocol, this method avoids many
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of the errors and biases than can be introduced in the sample processing. However,
this method is limited to cells or organisms that can be metabolically labeled, i.e.,
typically cell cultures and not primary samples [23], and it is quite a complex
and time consuming protocol, which limits its implementation to laboratories with
significant infrastructure [13].

Label free quantification by peptide precursor ion intensities is based on the
alignment of high-mass accuracy MS1 (i.e., precursor ions) spectra obtained from
separate LC–MS/MS experiments. Peptides are identified and aligned based on their
specific retention time and mass to charge ratio. The relative abundance changes
are calculated from the aligned spectra on the basis of the signal intensities of
extracted ion chromatograms. Another label free method, spectral count, relies on
the assumption that the rate at which a precursor ion is selected for fragmentation is
correlated to its abundance. The spectral counts from peptides mapping to the same
protein are then averaged into a protein abundance index. This method depends
on the quality of the MS/MS peptide identification and protein assignment, and
although it works relatively well for abundant proteins, it is often problematic for
small and low abundance proteins [23]. In general, label free techniques provide a
less accurate quantification than stable isotope label methods [58].

2.2.4 MS for PTMs

Because the addition of a PTM to a protein causes a defined mass change,
MS can measure and localize modifications with a single amino acid resolution.
However, PTM analysis poses specific challenges beyond those described above:
modified peptides are often present at low amounts, can lead to more complicated
MS/MS spectra and increase the database search space [10]. Therefore, it is
usually necessary to enrich the sample for the modification of interest in order
to increase the dynamic range and sensitivity. Depending on the PTM, this can
be done by derivatization of the PTMs and chemical solid phase capture, or
more commonly, for phosphorylation using metal affinity chromatography, titanium
dioxide chromatography, or antibodies specific for a modification [23]. Ideally,
one would hope to obtain all modified peptides and only those but in practice all
modified peptides will be enriched to a certain degree with respect to the starting
mixture, with an enrichment factor that can range from only several folds for some
modifications to over a hundred fold for phosphorylations [10].

When looking at PTMs, two different tasks are performed: the identification of
the peptide bearing the PTM, and the unambiguous localization of the PTM-bearing
amino acid on this peptide [10]. Neither of these tasks is trivial, and although in
principle any PTM can be detected provided that it leads to a modification in the
mass of the peptide, in practice a full mapping of the PTMs of a protein requires
full sequence coverage (i.e., detection of all the peptides of the protein). This is not
straightforward as typically only a subset of the peptides generated by proteolytic
digestion of a protein are detected, unless optimization strategies are used.
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2.2.5 Limitations of the Shotgun MS/MS Approach

Although shotgun MS/MS approaches offer a coverage of the proteome that no
other technology can currently approach (i.e., about 7,000 proteins can be quantified
in an experiment) [10], the technology also shows several limitations. A first
limitation is that this depth of analysis typically comes at a high cost in terms
of time of experiment (i.e., experimental time typically in days), which limits the
ability to interrogate multiple conditions/samples. For this reason, classical shotgun
proteomics workflows are better qualified as “high-content” than “high-throughput”
experiments. Other fundamental limitations are extreme redundancy and under
sampling associated with the method, which result in a saturation effect, i.e., the
number of proteins currently identified by shotgun MS is well below the complete
proteome [41, 56]. Indeed, since ions are selected at random for fragmentation and
MS/MS analysis, the most highly expressed proteins are identified multiple times at
the cost of proteins expressed at low level, which dramatically limits the dynamic
range of shotgun MS approaches [41]. A typical shotgun MS experiment offers a
dynamic range of detection of 3–4 orders of magnitude, whereas it is estimated that
the concentration of proteins can vary up to 10 orders of magnitude in human body
fluids [23]. Furthermore, owing to the high-redundancy and extreme complexity of
the sample, the full spectrum of peptides present is largely under sampled, which
in turn means that repeated analyzes of the same or similar biological samples can
show distressingly little overlap of identified proteins [41] since each experiment
will sample only a subset of the proteins and not necessarily the same subset in
each repeat [56]. To some extent, these problems can be overcome by extensive
fractionation and multiple enrichment steps, but this requires an additional non-
negligible amount of both experimental and computational work [56].

2.2.6 Targeted MS/MS

One way around the limitations of shotgun MS is to adopt a strategy where the
mass spectrometer is tuned to analyze specific proteotypic peptides, i.e., peptides
that are observable by MS and uniquely identify a target protein. This approach,
termed target-driven MS, starts from a list of proteins of interest and carefully selects
target peptides for their high propensity to be identified by MS and to uniquely
identify a protein or protein isoform of interest. These proteotypic peptides can be
identified experimentally (by searching through repositories of observed proteins)
or computationally (by predicting them, if the protein has not been previously
observed). This type of workflow is called selected/multiple reaction monitoring
(S/MRM) and is typically carried out in triple quadrupole type mass spectrometers
[41]. The specific proteotypic peptides will be selected in the first quadrupole, then
fragmented by collision induced dissociation in the second quadrupole and a second
mass filter in the third quadrupole allows for the filtering of the corresponding
fragment ions. The identification and quantification of proteotypic peptides is based
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on the mass to charge ratios of the precursor and fragment ions pair, which are
referred to as “transitions” and are highly specific for a particular peptide [41].
Single reaction monitoring refers to the case where one transition is observed
for each peptide, whereas in multiple reaction monitoring, multiple transitions are
monitored [41]. In combination with isotope labeling, this technology allows for
very accurate, sensitive, and reproducible quantification of the proteotypic peptides
that are analyzed. If one can provide the approximate retention time information,
then the time of detection of specific transitions can be restricted, therefore allowing
for detection of multiple peptides per measurement, a technology referred to as
scheduled selected reaction monitoring [41].

Applied to a study of selected proteins in the yeast Saccharomyces cere-
visiae [56], this technology has been shown to be able to detect and accurately
quantify yeast proteins expressed over the full range of cell abundance, from
less than 50 copies per cell to over a million copies per cell, without additional
fractionation or enrichment steps. This study also demonstrated the capacity of
this workflow to comprehensively monitor more than a hundred proteins in a
1 h MS run, which then opens new possibilities for investigating a system under
different conditions and replicates. A bottleneck of this workflow, however, is
the validation of the SRM transitions that constitute the final mass spectrometric
assay in the particular mass spectrometer used for the experiment [56]. Therefore,
although targeted MS offers the most sensitive MS detection capabilities to date
[23], and unprecedented sample multiplexing capabilities, setting up, optimizing,
and validating an assay is relatively time consuming [23, 56]. The accurate mass
tag strategy, which is based on the definition (using tandem MS) of peptides whose
masses are characteristic of a protein and which can then be detected and quantified
by a single MS, can also be used to perform higher throughput targeted MS analyzes
[64]. However, this technique suffers from the same drawbacks in terms of time to
set up the assay.

3 Computational Analysis of Large Scale
Phospho-proteomics Data Sets

Having overcome or mitigated all the challenges mentioned above to collected a
good quality high-throughput data set, one faces the challenge of interpreting it,
which is not a straightforward task and is practically impossible based on inspection
and intuition alone. However, mathematical analysis can provide invaluable help in
extracting information, that is, not readily apparent. Various approaches to do so are
available, and some of them will be described in this section.

We will start by describing applications of methods derived from machine
learning and statistics (such as supervised and unsupervised learning, enrichment
analysis, etc.). These methods are mainly used for hypothesis generation (i.e.,
providing leads for areas of further investigation), and usually generate limited
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explanatory or mechanistic insights, but they are relatively straightforward to apply
to large and noisy data sets. These methods are also generally unbiased (i.e.,
hypothesis free) and in this sense are a good starting point in an analysis because
they provide a good first overview of the data [43], and do not rely on extensive
a priori expert knowledge which might not even be available for the system under
investigation.

Another set of approaches that is frequently applied in the same context as the
above, is the mapping of data (e.g., differential expression/modification, phenotypic
data, etc.) to known or derived “pathway maps.” All of these approaches are very
familiar to the field of functional genomics and in that sense these methods are
quite mature and well known. These types of analyzes have recently been applied
quite extensively to investigate large scale phospho-proteomics MS experiments in
various settings, which is what we will discuss in the first part of this section. We
will refer to these methods as “descriptive” approaches.

Although the methods mentioned above have the potential to generate useful
hypotheses, they do not address a fundamental functional characteristic of signaling
systems, which is the ability to process information (input) and produce a response
(output). To study this process, we need to generate more detailed and hopefully
more realistic models of what happens in the cell when a signal is processed. Such
models include, but are not limited to, partial least square regression, ordinary and
partial differential equations (ODE/PDE), Bayesian networks, rule-based, and logic-
based models. We will refer to these formalisms as “predictive approaches”. These
models are predictive in the sense that given a set of conditions that was not present
in the data used to build the model, they should be able to predict the behavior of the
system. These methods usually generate explanatory and mechanistic hypotheses
(although the actual mechanisms are described with broadly variable levels of
details and therefore so are the insights generated, so care should be taken when
interpreting them). There are many ways to look at and classify different types
of modeling approaches, and all of them are somewhat artificial. The distinction
that we make between “descriptive” and “predictive” models is only made for
organizational purposes and is not intended as an absolute or universal classification
(Fig. 2.2).

3.1 “Descriptive” Approaches

In this section, we will describe some “data-driven” approaches to signaling
networks that have been applied to MS and affinity based large scale phospho-
proteomics data sets, and briefly mention some of the insights that have been
extracted from these analyzes. Whereas affinity-based data sets are now extensively
used to generate complex quantitative models, MS proteomics data sets are mainly
still at the stage where descriptive investigations are a necessary first step to make
sense of the wealth of information that is generated.
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Fig. 2.2 Model formalisms that have been applied to signaling networks. Although there are
many ways to look at and classify these methods, we chose to distinguish between “descriptive”
and “predictive” approaches, on the basis that the latter allow prediction of a system’s response
given a set of conditions and data on predictor variables. Within these categories, we further
distinguish between methods that rely on or produce a network (i.e., a graph composed of nodes
and edges), and methods that do not. In the group of predictive network-based approaches we
can further distinguish between approaches that do not necessarily rely on previous knowledge
about the system’s connectivity (reverse engineering), and methods that rely on some sort of
previous knowledge. The latter group can be further divided into 4 categories depending on
their discrete/continuous nature and on their causal/biochemical character. Causal approaches only
seek to determine relationships between species (such as protein A activates protein B) whereas
biochemical approaches include some degree of mechanistic description of the reactions at play.
PLSR D partial least square regression, MLR D multiple linear regression, PCA D principal
component analysis, SVD D singular value decomposition, MIMO D multiple inputs multiple
outputs models, ODE D ordinary differential equations, PDE D partial differential equations,
cFL D constrained fuzzy logic, PINs D protein interaction networks, and PSNs D protein
signaling networks

3.1.1 Global Investigations of the Phospho-proteome

In view of the highly complex task of making sense of high-throughput phospho-
proteomics data in a signaling context, several tools have been developed specifi-
cally for this type of data, such as PTMscout [50], NetworKIN [40] or the PHOSIDA
[21] database, amongst others. PTMscout is a web-based interface for viewing,
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manipulating, and analyzing high-throughput PTM data. Analysis capabilities focus
on hypothesis generation through subset selection and enrichment analysis based on
annotations (such as GO, Pfam, local sequence features, etc.) or user-defined criteria
on dynamic profiles [50]. This tool also provides help in the assignment of peptides
to proteins by providing orthogonal information such as annotations and mRNA
expression when available.

NetworKIN [40] is an algorithm for prediction of kinases from experimen-
tally determined phosphorylation sites, that integrates sequence specificity with
contextual information extracted from resources such as interaction and pathway
databases, literature mining, mRNA expression studies, etc. The improved accuracy
of this prediction algorithm compared to non-contextual versions indicates that
effects such as subcellular compartmentalization, anchoring proteins, temporal, and
cell specific expression, etc., play a crucial role in determining kinase-substrate
specificity. This in turn points again to the fact that signaling is a highly context
specific concept, and that a network level understanding of kinase activity is likely
to be necessary even when it comes to understanding single molecular events.

PHOSIDA [21] is a phosphorylation site database for large scale and high con-
fidence quantitative phospho-proteomics experiments that allows the retrieval and
analysis of such data, and includes information on evolutionary conservation as well
as a phosphorylation site predictor. Other databases, such as the manually curated
phosphorylation site database PhosphoSite [26], offer additional information such
as association with diseases and sequence logos. The databases mentioned above
include some type of analysis tools, but there are also other data repositories that
can be valuable resources for proteomics investigations, such as the PRIDE [72]
and Phospho.ELM [15] databases.

An interesting perspective on the global function and investigation of phospho-
signaling was recently provided by Bodenmiller [6]. In this study, 97 kinases and
27 phosphatases in yeast were systematically knocked out or inhibited, followed
by phosphopeptide enrichment and label free LC–MS/MS identification of more
than 1,000 phosphopeptides showing a significant change in abundance compared
to a wild type situation. Analysis of the direct versus indirect effects of these
deletions led to the observation that not a single kinase showed exclusively direct
effects. Furthermore, analysis of growth speed and morphological features of each
deletion strain revealed that the phenotype strength was not necessarily reflected in
the magnitude of the effect on the phospho-proteome. Together, these observations
reinforce the view that signaling has to be very flexible and redundant to allow the
cell to respond to a changing environment, and point to the fact that modulating any
branch of a network might not be possible without system-wide adaptations.

3.1.2 Analysis of Pathway Utilization Downstream of Receptors

The study performed by Olsen [54] set the stage for MS analysis of signaling
by pointing both at the complexity of the problem and the sparseness of our
knowledge of the involvement of phosphorylation in signaling. Using a strategy
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combining phosphopeptide enrichment, high-accuracy identification by LC–
MS/MS and SILAC, they were able to quantify dynamic changes in phospho-
peptides levels at 6,600 sites on 2,244 proteins upon stimulation of HeLa cells
with EGF for different times (from 0 to 20 min). In addition to this, this study also
includes some spatial information since nuclear and cytosolic fractions of each
condition were obtained and analyzed. Using a cutoff of a minimal 2-fold change
upon stimulation, the authors determined the sites that were dynamically regulated
and performed fuzzy c-means clustering (where each point belongs to clusters
with a certain degree, depending on its distance to the centroids of the clusters) to
identify groups of sites with similar dynamic profiles. The main conclusions of this
study included the observation that most in vivo occurring phosphorylation sites
had probably not been detected before, and that groups of phosphosites from the
clustering analysis do contain functionally related members.

Another important result of this analysis was obtained by looking at phosphosites
which map to the same protein. Indeed, the authors observed that 77% of proteins
that had a regulated phosphopeptide also had at least one other site whose regulation
profile was different (either unchanging or belonging to a different cluster of the
above analysis). This underscores the fact that when looking at the degree of
phosphorylation of proteins we should always measure site specific events if we
want to obtain accurate and functionally relevant information. This also points to the
complexity of interpreting phosphorylation data since it seems that phosphorylation
can serve different functions at different sites in the same protein. Finally, Olsen
et al. [54] noted that only a subset of the proteins found to be dynamically regulated
by EGF signaling were known to be involved in growth-factor signaling, which
points to potential gaps in our knowledge of even well-studied pathways.

A similar system was investigated by Huang et al. [27] with different goals and
methods, with the objective of determining differences in the signaling downstream
of a truncated extracellular mutant of the EGF receptor (EGFRvIII, frequently found
in glioblastoma multiforme), compared to the wild type EGFR, and depending
on the level of expression of the mutant receptor. The workflow of this analysis
was as follows: transduced U87MG glioblastoma cell lines expressing differential
levels of EGFRvIII were isolated by FACS, peptides from these cell lines were then
isolated, stable isotope labeled and mixed. Next, tyrosine phosphorylated peptides
were immunoprecipitated and further enriched by IMAC, and finally analyzed by
LC–MS/MS. Quantitative phosphorylation profiles were generated for 99 sites on 69
proteins, which were mapped to canonical EGFR signaling cascades. This indicated
that signaling downstream of EGFRvIII and wild type EGFR favour different routes,
and this is also dependent on the level of expression of EGFRvIII, e.g., cells that
highly overexpress EGFRvIII preferentially use the PI3K pathway over the MAPK
and STAT3 pathways. Using a self-organizing map, the authors also identified
phosphotyrosine sites with similar profiles, which led to the identification of a
cluster of sites that significantly increased as a function of EGFRvIII expression.
Examination of the members of this cluster led to the hypothesis that the EGFRvIII
receptor was constitutively activating the cMet pathway. Finally, quantification of
the phosphorylation sites on the receptor itself pointed to differences in regulation
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between wild type and truncated receptors. Altogether these observations indicate
that although phosphorylation of the EGFRvIII might not be qualitatively different
from the wild type situation, quantitative differences at each individual site might
have functional implications reflected in different utilization of downstream path-
ways and therefore different biological responses [27]. This in turn means that a
quantitatively accurate model of this system is likely to prove very useful.

The paper by Krueger et al. [37] aimed at determining the tyrosine phospho-
proteome of the insulin signaling pathway by stimulating SILAC labeled differen-
tiated brown adipocytes with insulin for various times, then immunoprecipitating
phosphotyrosine containing peptides and analyzing them by LC–MS/MS. Thirty
three proteins were identified to be significantly regulated, which was confirmed
by western blot. By looking at the dynamic profiles and fold activation of the
proteins in this candidate list, they were able to generate hypotheses for new
insulin induced candidate effectors and to link them with branches of the insulin
pathway.

Matsuoka et al. [45] also used MS to investigate phosphorylation events down-
stream of a cellular signal, this time concentrating on the landscape of the DNA
damage response (DDR) mediated by the ATM and ATR kinases. Briefly, they
mixed and immunoprecipitated peptides from two SILAC labeled populations of
HEK 293T cells, one having been exposed to ionizing radiations, using antibodies
to phospho-SQ or phospho-TQ (ATM and ATR recognise Ser–Gln and Thr–Gln
motifs). The samples were then subjected to LC–MS/MS and 905 phosphorylation
sites on 700 proteins were shown to display a more than four fold increase following
DNA damage by ionizing radiation. This list of proteins was then examined
manually, and mined for enriched GO annotations and functional modules using
the softwares from Ingenuity. This showed an enrichment for proteins involved in
nucleic acid metabolism, and revealed many clusters of proteins previously known
to be interacting, but not necessarily known to be involved in the DDR. A subset
of the proteins in this list, that were not previously know to be involved in the
DDR, was also examined for functional involvement in this response using siRNAs.
Although the approach applied here cannot formally distinguish between direct
targets of ATM and ATR kinases and targets of kinases with similar specificity, all
identified phospho-sites are likely to be regulated by the DDR, and their belonging
to a large number of interconnected functional modules suggests an impact of the
DDR on cellular physiology that is far broader than expected [45].

More recently, phospho-proteomics was again used to generate qualitative
hypotheses using pathway enrichment, this time with the objective to investigate
signaling events downstream of the mutant protein NPM-ALK, which is common
in positive anaplastic large cell lymphomas [76]. GP293 cells were transfected with
either NPM-ALK or a NPM-ALK mutant with decreased tyrosine kinase activity
(used as a negative control), the phosphopeptides were then purified and subjected
to LC–MS/MS. This led to the identification of 506 phosphoproteins present only
in NPM-ALK expressing cells, from which a pathway enrichment analysis was
performed (using a Fisher exact t-test). The samples were also hybridized to
antibody arrays and differential phosphorylation was used as a basis for pathway
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enrichment. Both methods resulted in a substantially overlapping list of enriched
pathways, from which the authors chose to focus on the TNF/Fas/TRAIL pathway,
performing various validations of the involvement of this pathway (comparison with
a list of previously generated potential binding partners of NPM-ALK, western
blot quantification of three proteins in this pathway, and siRNA knock down of
two of those, combined with a viability assay of the knock down of TRAP1 upon
drug treatments). This study again underlines the ability of MS data to generate
qualitative hypothesis regarding signal transduction.

3.1.3 Analysis of Reciprocal Signaling in Cell–Cell Communication

The approach adopted by Jorgensen et al. [33] is slightly different and addresses a
fundamental biological fact, that is, signaling usually happens within the context
of tissues and often involves multiple populations of cells. This is particularly
important when the signaling is initiated by cell–cell contact, as in the case of
the ephrin–EphR interaction. In such cases, the signaling typically involves the
reciprocal exchange of distinct information between the interacting cells, leading
to mutually coordinated alterations in their respective behaviors. Therefore, stim-
ulating such systems with soluble versions of the ligands is an artificial setting
that might provide only limited understanding (e.g., signaling between EphR
and ephrin expressing cells might be influenced by interactions with adhesion
molecules).

Therefore, in this study, EphB2 and ephrin-B1 expressing populations of
HEK293 cells were SILAC labeled and co-cultured for 10 min, then lysed and mixed
with non-stimulated EphB2 expressing cells as a reference, before phosphotyrosine
peptide isolation and LC–MS analysis. This led to the identification of 442 sites
on 304 proteins that significantly decreased or increased in abundance upon
stimulation, in one or both cell types, revealing common and cell specific modes of
regulation. The authors then turned to a siRNA screen in which monitoring of the
cell sorting response when mixing the two cell populations (when mixed, EphB2,
and ephrin-B1 expressing cell populations form distinct colonies with well defined
boundaries) allowed them to propose a list of proteins involved in this phenotypic
response. Using the NetworKIN [40] and NetPhorest [46] tools, a network was
constructed based on the prediction of kinases, phosphatases, and phospho-binding
modules for each phosphotyrosine that was found to be modulated upon cell–cell
contact. These predictions were then pruned based on criteria from the MS and
siRNA analyses, and other information such as protein interactions. The obtained
network was then represented in a cell-population specific way using the modulation
of phosphotyrosine sites determined by the MS analysis. Finally, the MS experiment
was repeated using a variant of ephrin-B1 that lacked the cytoplasmic tail, thereby
impairing its ability to relay the signal inside the ephrin-B1 expressing cells, but not
its ability to interact with EphB2. A significantly different response was observed
in the EphB2 expressing cells in this case compared to when the full ephrin-B1 was
used, thereby confirming that there is a bidirectional signaling process at play in the
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system. This study not only demonstrates the power of MS to investigate complex
signaling systems, but also points to the limitations of the in vitro systems in which
we commonly conduct our investigations.

3.2 “Predictive” Approaches

In this section, we will describe more detailed and predictive approaches to
modeling of signaling networks that have been applied to proteomics data sets,
mostly acquired using affinity based technologies. By “predictive” we mean that
these models are often capable of computing the expected state or evolution of the
system when under particular conditions (e.g., when applying an inhibitor against
one of the species in the model). We will start with simple (linear) regression
based models that can predict some variables based on linear combinations of other
measurements. We will then briefly touch on other correlation based methods. This
will be followed by the presentation of ordinary differential equations (ODEs) as
a natural way to describe processes where species of interest are changing as a
function of time in a quantifiable manner [5]. Then, in light of the extraordinary
combinatorial complexity that often arises in signaling systems, we will discuss
alternative methods to model detailed signaling networks, such as logic-based
and rule-based approaches. Finally, we will discuss the role of previous expert
knowledge in the inference process and briefly present Bayesian networks as a
strong statistical approach to deal with this.

3.2.1 Input/Output Regression Based Approaches

Two linear regression based approaches will be described here, partial least squares
regression (PLSR) and multiple linear regression (MLR). In PLSR, the data are
separated into a set of inputs and a set of outputs, which are then reduced to their
principal components and a linear solution is identified that relates the inputs to the
outputs. PLSR can be used to determine which inputs display the biggest correlation
with outputs for example, and it can also be used to predict the outputs from inputs
measured in new experiments. MLR is similar to PLSR but the linear solution is
computed directly between the measured variables, without dimensional reduction,
which makes its results easier to interpret [2]. However, both models suffer from
the same limitation: being linear models, they cannot capture coupled effects and
nonlinear phenomena such as saturation, switch like effects, etc. [51].

MLR can and has been used to reconstruct network topology from experimental
data, for example, in the study by Alexopoulos et al. [3]. In this paper, primary
hepatocytes and HepG2 liver cancer cells were exposed to multiple conditions
made of combinations of one of 7 growth factors or cytokines, in the presence or
absence of 7 small molecule kinase inhibitors. The level or state of modification
of 17 intracellular proteins and 50 secreted peptides were measured using a
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sandwich immune assay with the xMAP platform. MLR was then performed to
relate signals to cytokine secretion, and to relate cues and inhibitors to signals.
The regression weights were then used to draw connections between ligands and
readouts which allowed the comparison of immediate-early signaling downstream
of 7 transmembrane receptors in normal and transformed hepatocytes [3]. Edges
selected based on greatest differential regression weights between hepatocytes
and HepG2 cells were selected for further experimental investigation. From this
analysis, the authors were able to conclude that the magnitude of responses to
stimulations (whether reflected in the intracellular signals or in cytokines secretion)
were vastly different between the two cell types and that even when both cell
types are responding to the same ligand, the extent to which specific downstream
pathways are activated is very different.

In the work by Gaudet et al. [20], PLSR was used to extract information from
a vast compendium of data acquired from multiple assays such as kinase activity,
quantitative immunoblotting, and antibody microarrays. Briefly, HT-29 cells were
treated with TNF˛, in combination with EGF or insulin, and 19 protein signals
were measured over 24 h, along with 4 different measurements of apoptotic response
measured by flow cytometry. PLSR is then used to relate signaling data to apoptotic
responses. The authors showed that the model derived from the full compendium
and a set of metrics derived from the time course data performed extremely well
when assessed by leave one out cross validation and independent validation on a new
data set. The authors also showed that models built on single protein measurements
were poorly predictive, and more surprisingly that models built on measurements
of multiple signals from single types of assays were also inferior. Furthermore,
models built from the raw measurements only performed poorly on the validation
data set, whereas models built only from the derived metrics capturing the time
dependent profiles of the signals performed as well as the full model. This points
to the fact that time-dependent information is crucial to the predictive power of the
model. Finally, they showed that models based on data obtained with cells exposed
to multiple combinations of cytokines are less sensitive to experimental noise. In the
related study by Janes et al. [29], the contribution of single proteins to the apoptotic
response was investigated, and the proteins JNK1, MK2, and ERK were found to
provide the most information for prediction of the apoptosis status, based on the
average information contained in their derived metrics. The authors also noted that
prediction efficiency was maximal with 4–5 signals, and that a model derived from
signals measured only in the first 4 h after stimulation (before the onset of apoptosis)
were already sufficient to predict the apoptotic signature.

3.2.2 Network Inference

Many methods to build models of signaling networks rely to some extent on
previous knowledge about the system under investigation (e.g., a fully detailed
mechanistic description of the process at hand in mechanistic models, or a simple
description of the logic interactions involved in logic-based models). Building such
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models involves a literature (or database) search which is not only usually heavy
in terms of workload, but it is also error prone because many molecular events are
context specific and the context of an interaction is not necessarily reported. This
also biases investigations towards well studied systems. Some formalisms however
allow the reconstruction of signaling networks entirely from data, without relying
on any type of mechanistic knowledge.

The regression based methods presented above require only very limited prior
knowledge, i.e., determining which variables are dependent and which ones are
assumed to be explanatory. These methods do not rely on any graph (network)
structure, but only predict some variables based on their statistical dependency
with others. Interestingly, in the context of the DREAM initiative (www.the-dream-
project.org) when confronted with the challenge of predicting unseen measurements
of proteins and/or cytokines for combinations of stimuli and inhibitors of a signaling
pathway (based on measurements of the same players under different combinations
of the same stimuli/inhibitors), methods that performed the best used a statistical
approach that did not rely explicitly on an underlying signaling network [57].
Duvenaud et al. [16] also reported that functional causal models that predict the
effects of actions on the system (as conditional density models) without relying
on any graph tend to perform well or better than methods for learning conditional
density models based on graphs. There are many other correlation based methods
that can be applied to signaling networks, and many of those have been developed
for gene regulatory networks (see the following for reviews [4, 44]). One should
be aware, however, when interpreting such analyzes that a correlation does not
necessarily mean a causal link, and that correlations can encompass both direct and
indirect interactions.

In Ciaccio et al. [11], for example, the algorithm ARACNe [42], which was
originally developed for microarray expression profiles, is applied to the analysis
of a data set on 91 phosphosites on 67 proteins at 6 time points after stimulation
with 5 EGF concentrations, obtained using microwestern arrays. The algorithm
uses information theoric approaches to prune indirect interactions inferred by co-
expression methods. In Santos et al. [63], an approach called modular response
analysis [36] is used to determine the MAPK network architecture in the context
of NGF and EGF stimulation. This method is a sensitivity analysis based process
relying on measuring network responses to successive small perturbations (here
implemented by RNAi), at steady state conditions. Network connections are inferred
by computing local response coefficients, which estimate the sensitivity of one
module of the network to perturbation of another module, in isolation of the total
network [63]. Although in this analysis the system studied is much smaller than
those interrogated using high-throughput proteomics, similar approaches could be
used to study larger systems.

In the work by Nelander et al. [51], a methodology is proposed to derive network
models from time courses of evolution of molecular species upon perturbations.
This works builds upon the type of models called multiple inputs multiple outputs
(MIMO) models where the time dependent evolution of activities of the system’s
components (outputs) are described by differential equations as nonlinear functions

www.the-dream-project.org
www.the-dream-project.org
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(transfer functions) of themselves and a vector of perturbations (inputs). Within
the nonlinear transfer function the dependencies between elements of the system
are described as linear combinations of the components. The coefficients of these
linear dependencies can be interpreted as strength of interactions between the nodes,
assuming that they reflect underlying causal relationships between the components,
thereby making it possible to derive a node–edge representation of the inferred
system (where an edge is present when this strength of interaction is above a certain
level) [51]. This representation (as any purely data-driven) has the disadvantage that
the nodes in the model are the perturbed and observed molecular species only, which
might not be identifiable as single molecular species, and it ignores any unperturbed
and unobserved species that might be involved in the connectivity structure of these
nodes [51].

3.2.3 Bayesian Network Inference

Bayesian networks have the natural ability to accommodate previous knowledge to
a chosen extent. Depending on the level of information that one wants to put in the
prior of the models (see below), one can make the inference process entirely inde-
pendent of any prior knowledge (flat prior) or bias the inference towards models that
are casted “more likely” based on a priori expert knowledge. A Bayesian network
consists of a directed acyclic graph with vertices representing the molecular species
to be modeled as random variables, edges describing conditional independencies
between those variables, and parameters describing the conditional distributions
implied by the graph (e.g., when the states are discrete, this typically takes the
form of a probability for a target node to take each of its possible states given all
possible combinations of states of its parents nodes). The graph structure implies
that each variable is conditionally independent of all non-children nodes given its
immediate parent nodes [49]. Bayesian network inference aims at making inferences
regarding the structure of the graph using Bayes’ theorem, which states that the
posterior probability of a graph (probability of a graph given the data) is given up
to proportionality (i.e., ignoring a normalizing constant when comparing structures
obtained from the same set of data and distributional assumptions) by the product
of the marginal likelihood (probability of the data given the graph) and the prior
distribution over directed acyclic graphs (i.e., how likely is each individual graph
structure) [49]. Using certain distributional assumptions, the posterior probability of
graphs can be computed up to proportionality, which is enough to compare graphs
in a search procedure, in order to find a graph structure that is optimal under the
statistical model at hand.

Given their solid basis in statistics, Bayesian networks are naturally able to
handle stochastic aspects of biological processes and noisy measurements [31].
However, this comes at a high cost in terms of data requirements. Such an
approach is, however, ideal when the data at hand is cell specific and therefore
each measurement includes data about a whole population of cells at the single cell
level, as is the case in the study by Sachs et al. [59] where intracellular multicolor
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flow cytometry is used. In this paper, Bayesian network inference is used to
investigate signaling networks of human primary naive CD4CT cells, downstream
of CD3, CD28, and LFA-1 activation, based on measurements of 11 phosphorylated
proteins and phospholipids [59]. Similarly in [11] Bayesian networks are used to
model the dependencies between 67 proteins (measured by microwestern arrays
at 6 time points) after stimulation with EGF at 5 different concentrations. In this
case, in order to have enough samples for each measurement, each time point
and concentration of the stimulus is used as an independent sample, yielding 20
samples per measurement. One of the strength of Bayesian networks in this context
is that, using carefully chosen prior distributions on graphs, it is possible to include
information on network features such as particular edges, types of edges, degree
distribution, and sparsity. In practice this means that not every possible graph is
considered equally plausible, and that we can bias the search towards graphs that
we consider a priori more likely [49]. This in turn has the advantage of constraining
the space of possible graphs to search, which makes the inference process more
efficient, while maintaining the Bayesian networks’ natural ability to deal with noise
and stochasticity. The expert knowledge involved in specifying those priors can be
as detailed as specifying a particular edge to be very likely or as vague as specifying
that ligands should generally interact with receptors and not effectors [49].

When interpreting Bayesian networks it is important to be aware that many
Bayesian networks can represent the same statements of conditional independence,
i.e., the inference process can be unable to distinguish among a series of graph with
the same undirected graph but in which some edges might have different directions
[44]. However, perturbing the states of measured molecules with molecular inter-
ventions can help resolving this problem by providing information on the causal
relationships between nodes [59]. Furthermore, a limitation of Bayesian networks is
that they are constrained to be acyclic, which means that feedback loops for example
cannot be uncovered. However this limitation can be overcome by using dynamic
Bayesian networks [59].

3.2.4 Reaction-based Models

All of the models described above infer a topology as statistical dependencies
between variables, not mechanistic links. If some mechanistic knowledge about
the topology of the system is available, then other methods can be applied that
incorporate this information. An extreme case compared to network inference
is the application of ODE/PDE models where detailed knowledge about the the
biochemistry (reactions) of the system is written down as a set of differential
equations.

Biochemical (also called physicochemical [1]) models describe the temporal
evolution of individual biomolecular species as functions of their rates of production
and consumption in terms of mass action kinetics, which is an empirical law ex-
pressing the rates of reactions as proportional to the concentrations of their reactants
[1]. In the simplest case one uses ODEs, and spatial heterogeneity (i.e., changes
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in the location of species) is represented by compartmentalization, where each
compartment is assumed to be perfectly well mixed (i.e., instantaneous transport
inside a compartment, leading to homogeneous concentrations of all species across
the whole compartment). Partial differential equations (PDEs) arise when the spatial
dimension is explicitly modeled, i.e., spatial gradients are now included in the
representation. Building an ODE/PDE model involves three main steps, often
applied in an iterative way: model development (write down biological knowledge
in terms of rate of change equations), parameter estimation (determining the values
of unknown parameters), and model validation (comparing model predictions to
independent experimental data) [5].

When designing the models, two critical decisions need to be made: what is
the scope of the model and at which level of detail will the system be described
[9]. Defining the scope involves determining how much of the system needs to be
modeled in order to achieve the goal of the modeling process, and deciding on the
level of detail involves choosing a level of representation of the molecular species
and complexes (i.e., do we want to represent all modifications and interactions
explicitly). The latter point is especially challenging because biological species
are often capable of assembling into multi-component complexes, undergoing
multiple PTMs, and segregating into various sub-cellular compartments and locally
concentrated areas, and we often do not know how to interpret these events in terms
of signals. This latter problem is referred to as “combinatorial complexity” and
is what quickly makes ODE and PDE models untractable [7, 12, 17, 18]. Another
common problem with ODE/PDE models is parameter estimation, which involves
determining the range of parameter values over which the model closely reproduces
the experimental data [1]. Problems arise in this process when the model reproduces
the experimental behavior equally well over a large range of parameter values,
therefore making those parameters unidentifiable.

Some common simplifying assumptions are made to overcome the problem
of combinatorial complexity, such as ignoring intermediate states of assembly
when they are fast, or lumping together biochemical forms that are thought to be
equivalent. However, these remain assumptions, and just as any other assumption
made in building the model (e.g., well mixed compartments, etc.) it is very important
to be aware that the equations obtained are only valid given all of the assumptions
made, and so each assumption and the implications thereof should be discussed, in
light of explicitly stated design goals [1,5]. It is also important to note that ODE and
PDE models are deterministic continuum approximations of what happens in the
system [9]. When limited number of molecules are involved in a process (e.g., small
compartments or slow reactions), then stochastic effects may become important
and a deterministic approximation might not be able to accurately represent the
evolution of the system [1].

Despite these complications, ODE and PDE models can be used to generate
valuable insights into biological questions. In Birtwistle and Kholodenko [5], for
example, the authors describe how simple and more complex ODE and PDE
models can be used to gain insights into the role of endocytosis in signaling. In
the paper by Chen et al. [9], for example, a detailed model of ERK and Akt
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regulation by two ErbB ligands and four ErbB receptors during the immediate-
early phase of ligand stimulated cell signaling is built, parameterized, and analyzed.
This model includes 28 proteins, but accounting for protein–protein interactions,
PTMs, and compartmentalization generated an additional 471 species, requiring 499
differential equations, 201 unique reaction rates, and 28 non-zero initial conditions.
This leads to a complex parameter optimization problem, despite some parameters
being measured or extracted from the literature. Other parameters were estimated
from the data by minimizing the difference between experimental and simulated
data [9].

This model was found to be unidentifiable, with some parameters being quite
constrained across similarly performing models (in terms of fit to data), and some
parameters spanning the entire range of values allowed in the search. However, the
authors were still able to perform a sensitivity analysis of the partially calibrated
models (i.e., an investigation of which parameters have the largest influence over a
chosen observable, when varied), as well as a dose responsiveness analysis, and to
extract useful predictions from those analyzes. For example, they showed that the
calibrated vmax for the PP2A compartment targeting pRAF and pMEK was markedly
different from the compartment targeting pAkt, which led them to hypothesize that
dephosphorylation of Raf, MEK, and Akt occurs at different rates, and that this
presumably involves different PP2A-containing complexes. The sensitivity analysis
also yielded valuable insights, such as which parameters have the biggest influence
on EGF- or HRG-stimulated pERK across multiple partially calibrated models, and
the observation that parameter sensitivity critically depends on the observable that
is chosen [9]. This shows that, provided that care is taken in interpreting the results
of an analysis, and that parameter uncertainty is considered in this process, even
partially calibrated models can provide valuable insights.

3.2.5 Rule-based Models

A formalism that naturally describes the mechanisms of signaling systems despite
their associated combinatorial complexity is the principle of rule-based model.
A rule-based description of a system allows a rich variety of knowledge about this
system to be expressed in a single formalism (see [25] for a review) [31]. Briefly,
the system is described as a set of agents which have labeled sites that can each have
an internal state, typically used to denote PTM status. The agents are acted on by
rules, which provide descriptions on how they interact, with common interactions
consisting of binding/unbinding of agents, modification of the state of a site, and
deletion/creation of an agent. The left hand side of a rule specifies a condition
that applies on a pattern of agents and their site values, whereas the right hand
side specifies actions on agents mentioned on the left. Only the information that is
triggering the accomplishment of the rule needs to be specified on the condition side
of the statement [14].

Simulation of a rule-based model can be performed by the repeated process
of matching the facts (patterns of states of agents) against the condition part of
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the rules and carrying out the action part of the rules where the condition part is
satisfied [31]. A control strategy is used to determine the order in which the rules
are applied, which typically takes the form of a rule-based version of Gillepsie’s
algorithm [14, 31, 65]. Popular languages to write and simulate such models are
Kappa [14], and BioNetGen [17] which is extended in the software NFsim [65].
Differential equations can be also derived from the rules; if all possible species
are described the number of states increases exponentially due to the combinatorial
explosion, but methods exist to simplify them at least to some degree [7, 12, 18].

3.2.6 Logic-based Models

Whether as reactions or rules, building a biochemical model requires a lot of
mechanistic information about the system, and the resulting models are difficult
to simulate. This limits their applicability to relatively small and well studied
systems. However, data generated by high-throughput methods typically provide
wide scope information which leads to the need for formalisms capable of handling
big networks for which only limited mechanistic knowledge is available. A suitable
formalism to model large networks for which some mechanistic knowledge is avail-
able are logic-based models, that include dependencies between components, while
ignoring the molecular details [31, 47, 74]. In logic-based models dependencies
between nodes are specified in terms of gates, which are associated with truth tables
that describe output states for all possible combinations of input states [47]. If two
proteins A and B have a positive effect on the activation of a third one C, the
corresponding gate can be either an OR (either A OR B activates C) or AND (only
A AND B together activate C).

The simplest type of logic model is a Boolean model, in which each state
is either on or off (1 or 0). Following the pioneering work by Kauffman [35],
Boolean logic models have been used extensively to model genetic regulatory and
signaling networks [31, 47, 74]. This formalism allows one to compute the state
of activity of each node of a graph given different inputs or initial states. Cause–
effect relationships in biological pathways can often be found in the literature, and
in databases such as reactome (http://www.reactome.org) or panther (http://www.
pantherdb.org). However, these resources rarely include specific gates, nor cell-type
specific information. This problem can be overcome by using signaling data to train
a Boolean model from a generic prior knowledge network derived from the literature
or databases [61]. By pruning the network, one obtains models with a much higher
predictive power, that are specific to the data (and thus cell-type) they have been
trained to. Thus, by leveraging prior knowledge and dedicated signaling data, one
can model relatively large networks with relatively sparse data, and because one
includes intermediates (not just perturbed or observed variables), the mechanistic
insight is higher than in purely data driven models. Thanks to their simplicity, these
models can easily accommodate�100 nodes and be trained to phospho-proteomics
sets of �1000 data points [61].

http://www.reactome.org
http://www.pantherdb.org
http://www.pantherdb.org
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A main limitation of the boolean logic approach is that all species are considered
either on or off, and the model is therefore not able to account for intermediate
levels of activation. Fortunately, several logic-based extensions provide a means
to do so, such as multi-state discrete models and fuzzy logic [47]. In multi-state
discrete models, additional levels between 0 and 1 are specified, whereas in fuzzy
logic a set of user-defined functions are used to transform discrete logic conditions
into relationships between continuous inputs and outputs. An extension of the
approach from [61] was recently proposed that allows the training to data of a
fuzzy logic model obtained from previous knowledge [48]. The approach is termed
“constrained fuzzy-logic” because the set of relationships between model species
is limited, thereby making it possible to train both the topology of the network and
the particular quantitative relationship involve at each gate, and allows to model
features not captured by Boolean logic [48]. However, this ability comes together
with an increase in complexity that renders the approach more difficult to apply to
large networks (above a few dozen species) [48].

Both of the approaches described above compute a steady state of the logic
model. However, logic-based models can integrate the notion of time, with various
degrees of detail. To compute a trajectory of the system, the status of nodes
are updated (as functions of the sate of their input nodes) at each (time) step
according to two main updating schemes: synchronous, where all nodes are updated
simultaneously with a new state depending on the state of each node’s inputs at the
previous time step, and asynchronous, where nodes are updated in random order
with a new state depending on the state of some input nodes at the previous and
some at the current time step [47]. Mixed asynchronous schemes allow some nodes
to be updated before others, making it possible to model separate time scales. Logic
models can also be converted into ODEs, making both species and time continuous,
albeit at the cost of increased complexity [47].

Finally, logic-models can be extended to incorporate probabilistic interactions,
thereby incorporating uncertainty in biological knowledge and/or stochasticity of
the system [47]. Logic-based models can also be implemented in a Bayesian
framework (see [19] and [39] for more information).

4 Summary

Modeling is an invaluable tool to make sense of large and/or complex systems from
a functional perspective. Signal processing involves regulations on the proteome
at three highly regulated and coordinated levels: regulated post translational mod-
ifications (PTMs), protein–protein interactions, and changes in expression levels.
The PTM level is what we focus on here because it is the most immediate one
and often triggers changes at the other levels, and in particular we concentrate on
phosphorylation as a major regulator of protein function and activity. Many proteins
are modified at many sites in a highly dynamic and context dependent manner, and
combinations of modifications can have various functional consequences that we
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are only beginning to unravel. Therefore, interpreting PTM data from a signaling
perspective is still a significant challenge, and investigations in this area are likely
to benefit from modeling approaches.

A modeling process requires a data set and an appropriate modeling framework.
Tables 2.1 and 2.2 summarize the main features of particular applications of mod-
eling pipelines that have been mentioned throughout this chapter. Antibody based
approaches allow the quantitative measurement of protein or protein modification
levels using technologies such as protein arrays, reverse phase arrays, xMAP,
intracellular multicolor flow cytometry, and microwestern arrays. All of these
platforms have different limitations in terms of samples and targets multiplexing,
signal to noise ratios, and dynamic range. However, they are all based on the
recognition of a target by a specific antibody and therefore all suffer from the same
limitation: the availability and quality of antibodies. The ability of these methods
to be applied to many samples in parallel is a significant asset because it allows
for multiple perturbation experiments that inform the network inference process.
Compared to MS approaches, antibody based technologies offer limited protein
coverage but are more easily scalable to large number of samples [2, 62], and in
general require a smaller amount of sample [11].

In contrast, the classical mass spectrometry workflow (shotgun MS) is a non-
biased approach (i.e., it is not aimed at particular proteins) that allows the detection
of many more proteins in a single experiment. The unit that is identified in
LC–MS/MS workflows is a peptide, and peptide mapping to proteins is a non-
trivial problem, especially in higher eukaryote organisms where a high level of
sequence redundancy can be expected, thus the importance of rigorous statistical
approaches for assessing protein identification. Shotgun MS is inherently biased
towards peptides that are highly abundant and easy to detect, and selection of
peptides for MS/MS is a random process that undermines the reproducibility of
shotgun LC–MS/MS approaches. Shotgun MS is somewhat limited with regards
to the number of samples that can be processed. Targeted MS is likely overcome
some of these limitations, since this technology has the ability to be highly
quantitative and reproducible, with an unprecedented dynamic range and the ability
to investigate many conditions. However, this method requires a long time for
workflow optimization, which means that a significant workload investment has to
be done before being able to collect data. With the advances in instrumentation
and the emergence of targeted proteomics workflows, MS now has the potential to
represent a viable and a more powerful, fully quantitative alternative to antibody
based methods. Therefore we expect MS to play a crucial role in the field of
modeling of signal transduction networks in the future, provided that modeling
frameworks are adapted to the particular features of such data sets.

Whatever the method used, it is important to systematically document and report
the pipeline that is used from the data collection to modeling (e.g., normalization
in the case of antibody based methods, peptide identification, protein inference,
and quantification in the case of MS). Ideally, both the raw and processed data
should be available alongside detailed methods for any reinvestigation or even
reinterpretation of results. This is particularly challenging in the case of MS since
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reporting raw data involves finding an appropriate way to store thousands of spectra
(and accompanying LC retention times, and metadata) for each experiment [53]. The
workflow from experiments to models can encompass multiple steps and a number
of tools are available to develop data processing pipelines while maintaining the
consistency of the workflow and keeping data provenance [60, 62], allowing con-
nection with multiple modeling methods. Equally important is the development of
and compliancy to standards for capturing, representing, annotating, and reporting
the data and models. This should facilitate effective quality assessment, promote
transparency, and enhance accessibility [69].

“Descriptive” modeling approaches mainly rely on methods from statistics and
machine learning, and include for example differential expression analysis usually
followed by clustering or mapping onto known networks. “Predictive” models
are capable of providing estimates of the behavior of a system under a set of
conditions that were not used to build the model. A very simple way to do
so is using regression approaches such as PLSR, which links linearly correlated
variables but do not provide mechanistic information, and can only capture linear
phenomena. More detailed models can be built that include mechanistic and/or
causal relationships between elements of the system that can be represented by a
graph (“wiring diagram”), such as differential equations, logic-based, rule-based, or
Bayesian network models. Models built upon proteomics shotgun MS data sets that
have been reported so far generally belong to the descriptive category. In addition
to context specific knowledge, large scale phospho-proteomics analysis by MS have
generated valuable insights into the dynamics and characteristics of phosphorylation
networks in signaling, which are opening new avenues for investigation.

Affinity based approaches on the other hand have produced data that have
allowed extensive modeling of various (mainly well studied) systems. Although
biochemical descriptions based on differential equations can provide a detailed
and accurate description of signal transduction, they suffer from limitations when
handling large systems, in particular due to the combinatorial complexity arising
from signaling systems. Coarse graining of the system and simplifying assumptions
provide ways around this but ODE/PDE models are still limited to systems of a
couple of dozens of nodes. Rule-based models handle the combinatorial complexity
by defining sets of rules that apply on biomolecular patterns without having to
account for the full context of those patterns. This has the advantage of representing
mechanistic knowledge (and assumptions) in an intuitive and explicit way, and
allowing heterogeneous types of information to be incorporated into the model.
However, rule-based models can only be applied to well studied systems because
they rely entirely on an accumulated knowledge.

Methods that represent the system with lower level of details can provide
alternatives to model bigger, not-so-well-known systems. Logic-based approaches
for example represent only logical relationships between nodes in a network, and
are therefore conceptually simple, computationally cheap, and causally correct
[74]. Boolean logic models are limited to on/off representations of systems, but
extensions such as fuzzy logic overcome this problem, albeit at the cost of
increased complexity and therefore limitations in the size of the system that can be
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interrogated. Finally, Bayesian networks provide a strongly statistically grounded
alternative to infer signaling networks when little information about the system is
available (although various levels of previous knowledge can be incorporated in the
inference process). Bayesian networks can handle noise and stochasticity in the data
in a natural way, but require rich data sets, which has limited their application so far
to relatively small systems.

Whatever the biological question, it is very important to ask oneself the following
questions before building a model: what is the scope and level of detail that I can
and should model in order to (1) account for the limitations of my dataset and (2)
reach the goal of my analysis. An adequate solution relies on choosing a formalism
with the right level of detail to answer our question, and which yields the most
interpretable results for the problem under investigation [47]. When interpreting the
results of a model, it is also very important to be aware that a model is only as true
as its assumptions, and that every methodology has limitations inherent to the way
that they build, represent, and simulate the system.
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Chapter 3
An Integrated Bayesian Framework
for Identifying Phosphorylation Networks
in Stimulated Cells

Tapesh Santra, Boris Kholodenko, and Walter Kolch

Abstract One of the primary mechanisms of signal transduction in cells is protein
phosphorylation. Upon ligand stimulation a series of phosphorylation events take
place which eventually lead to transcription. Different sets of phosphorylation
events take place due to different stimulating ligands in different types of cells.
Knowledge of these phosphorylation events is essential to understand the underlying
signaling mechanisms. We have developed a Bayesian framework to infer phos-
phorylation networks from time series measurements of phosphosite concentrations
upon ligand stimulation. To increase the prediction accuracy we integrated different
types of data, e.g., amino acid sequence data, genomic context data (gene fusion,
gene neighborhood, and phylogentic profiles), primary experimental evidence
(physical protein interactions and gene coexpression), manually curated pathway
databases, and automatic literature mining with time series data in our inference
framework. We compared our results with data available from public databases and
report a high level of prediction accuracy.

1 Introduction

There have been several attempts to reverse engineer the phosphorylation networks
of cellular signaling pathways in recent years. These studies can be categorized
in two main classes. Some of these studies used high throughput quantitative data
such as mass spectrometry data, flow-cytometry data, RNAi screening data, etc.,
to establish causal relationship among kinase-substrate pairs [1–6] and some used
non quantitative data such as protein sequence data and cellular context data to
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determine probable phosphorylation patterns [7–10]. The studies which predict
phosphorylation networks from quantitative data use a range of statistical methods
such as least square regression, Bayesian network, dynamic Bayesian network,
etc. Least square based methods such as [1] are suitable for models of small
number of proteins, usually 20–50. On the other hand, Bayesian models such as
[2, 3, 5, 6] require many repetitions of high throughput experiments under different
experimental conditions. Usually high throughput experiments are repeated 2–5
times which may not be sufficient for a reliable inference when using the Bayes
net methods. Hence, efficient implementations of these powerful tools require
rigorous and often expensive biological experiments. Some other techniques such
as probabilistic boolean networks [11] and clustering methods [12] have been used
for network inference from quantitative data with different levels of success.

The network inference methods that use non quantitative data have some
fundamental differences from the other methods. For example, these methods alone
are not sufficient to determine whether a particular interaction takes place in a cell
under certain experimental condition. Another limitation of these methods is that
they do not differentiate between different phosphorylated states of the kinases
themselves when predicting phosphorylation networks. Such information may be
important for understanding the signaling mechanism under investigation. However,
given the limitations these methods also reported reasonable prediction accuracy [7].

In this study we developed a Bayesian framework which integrates both quan-
titative and non quantitative data to infer phosphorylation network. We integrated
protein sequence data and cellular context data with mass spectrometry data in a
naive Bayes model to infer phosphorylation interactions that take place under certain
experimental conditions. We used our method on the Olsen et al. [13] data in an
effort to understand the phosphorylation interactions which occur when a Hela cell
is stimulated by Epidermal Growth Factor (EGF). We analyzed the performance of
our algorithm by benchmarking our results against curated data.

2 Algorithm

Let us assume that we have a set of kinase phosphopeptides and a set of
substrate phosphopeptides which are denoted by K D fKl W l D 1: : : �g and
S D fSi W i D 1: : : sg, respectively. Phosphopeptides are small phosphorylated
fragments of proteins. Each phosphopeptide represents a phosphorylation state
of the corresponding protein. In this study our objective is to identify which
phosphorylation state of what kinase phosphorylates which substrates at what
sites under certain experimental condition. From here on, we shall call K
and S as kinases and substrates instead of phosphopeptides of kinases and
substrates for convenience. Since, some kinases can phosphorylate each other
K \ S ¤ ;. We denote a phosphorylation event by!, e.g., the phosphorylation
of substrate Si by kinase Kl is denoted by Kl ! Si . Our objective is to find a
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partition ˙ D˙l W l D 1: : : �;˙j 	 S on the set of substrates S such that Kl !
Si8Si 2˙l . We used three different types of data to achieve the above objective, i.e.,
protein sequence data, cellular context data, and temporal measurement data which
represents the concentrations of the phospho-peptides at different instants of time.

Sequence data is used in the form of motifs corresponding to the phosphorylation
sites. Each motif consists of 15 amino acids, the phosphorylation site itself and
seven amino acids to its left and right. The set of motifs is denoted by M D fMi W
i D 1: : : sg, where Mi D h˛ij W j D 1 : : : 15i. Here, ˛ij represents the j th amino
acid of the i th motif.

Contextual data is represented in the form of context network. In a context
network two proteins are connected by an edge if a range of different types of data
such as genomic context data (gene fusion, gene neighborhood, and phylogenetic
profiles), primary experimental evidence (physical protein interactions and gene
coexpression), manual and automatic literature, and database curation data indicate
a probable interaction between them. It should be noted that an edge in a context
based protein interaction network does not mean a physical interaction between two
proteins. Instead, it suggests that the proteins are contextually close to each other.
A probabilistic measure is associated with each edge which reflects confidence of
interaction. This type of network data is available from STRING database [14]
which we shall discuss in detail in the implementation section. The contextual
proximity of a kinase Kl and a substrate Si is denoted by "li.

The temporal measurements of kinase and substrate phospho-peptides are given
by Kl.t/ and Si .t/. We implemented a time lag correlation model in our method.
For each kinase substrate pair Kl and Si a cross correlation Cli.�/ between Kl.t/

and Si .t/ is calculated using the following formula:

Cli.�/ D
PT

tD0 OKl.t � �/ OSi.t/qPT
tD0 OKl.t � �/ OKl.t � �/PT

tD0 OSi .t/ OSi .t/
; (3.1)

� is the time lag at which the cross correlation Cli.�/ is calculated, OKl.t/ D
Kl .t/� NKl.t/

�Kl
and OSi .t/ D Si .t/� NSi .t/

�Si
. Here, NKl.t/ and NSi.t/ are sample means and

�Kl and �Si are the standard deviation of Kl.t/ and Si.t/, respectively. The time
lag at which maximum correlation occurs between Kl.t/ and Si .t/ is denoted by
�max

li , i.e., �max
li D argmax.Cli.�//. The maximum value of Cli.�/ is denoted by

Cmax
li D Cli.�

max
li /. We transform Cli.�/ using Fisher transform [15] as shown

below:

Zli.�/ D
�
1

2

�
1C ln.Cli.�//

1 � ln.Cli.�//
: (3.2)

Hence, Zmax
li D Zli.�

max
li /. We used Zmax

li values instead of Cmax
li in our model

because under certain assumptions Zli.�/ is shown to be normally distributed [15].
This particular feature of Fisher transform is convenient for further calculations.
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The properties of Fisher transform and the assumptions under which the transformed
values are normally distributed will be discussed in the Subsect. 2.3. Based on
the above notations the posterior probability of Kl ! Si given motif Mi ,
contextual proximity "li and time lag correlation data �max

li andZmax
li can be given as

follows:

P
�
Kl ! Si jMi; "li; �

max
li ; Zmax

li

�

D P.Mi ; "li; �
max
li ; Zmax

li jKl ! Si /P.Kl ! Si/P
Kl2K;Si2S P.Mi ; "li; �

max
li ; Zmax

li jKl ! Si/P.Kl ! Si /
: (3.3)

If the prior P.Kl ! Si/ is equal for all Kl 2 K and Si 2 S then (3.3) can be
rewritten as below.

P
�
Kl ! Si jMi; "li; �

max
li ; Zmax

li

� / P.Mi; "li; �
max
li ; Zmax

li jKl ! Si/: (3.4)

The right hand side of (3.4) can be easily calculated under certain assumptions.
We assume that the phosphorylation motifs, the contextual proximity of the
proteins and the temporal measurements of phospho-peptide concentrations are
independent of each other. Due to the strong independence assumption our model
can be classified as a Naive Bayes model. The strong independence assumption
may be over simplification of biological reality. However, earlier studies sug-
gested that Naive Bayes models are quite robust against such oversimplifying
and often erroneous assumptions and oftentimes outperform more sophisticated
models [16]. Under the above independence assumption (3.4) can be rewritten as
follows:

P.Kl ! Si jMi; "li; �
max
li ; Zmax

li / / P.Mi jKl ! Si / � P."lijKl ! Si /

� P.Zmax
li ; �max

li jKl ! Si/: (3.5)

The calculations of the three probability measures on the right hand side of (3.5)
are described in details in the following subsections.

2.1 Calculating P.Mi jKl ! Si /

As stated before, a motif consists of 15 amino acids, Mi D h˛ij W j D 1 : : : 15i,
which represent a small protein fragment surrounding a phosphorylation site. There
are 20 possible amino acids. Let us denote the set of amino acids by A D fAk W
k D 1 : : : 20g. We assume that each ˛ij is an independent random variable the values
of which are drawn from the set of amino acids A with multinomial distributions,
i.e., ˛ij � Multinomial.�!�j /. Here, �!�j D f�jk W k D 1 : : : 20g is the set of
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multinomial parameters. Let us consider that the multinomial parameters �jk have
Dirichlet priors, i.e., �jk � D.	k W k D 0 : : : 20/, where 	k W k D 1 : : : 20 are
hyper parameters and 	0 DP20

kD1 	k . Let us denote the multinomial parameters of
the amino acids found in a set of motifs 
l D f KMi W i D 1 : : : N KMi

g which are

targets of kinase Kl by �jl . The posterior of �!�jl can be given by:

P
��!�jl jKl ! Si

�
D P

��!�jl j
l

�
D D.	1 CNj1l ; 	2 CNj2l : : : 	20

CNj20l ; 	0 CNl/: (3.6)

In (3.6), Njkl is the number of times the kth amino acid is observed at
the j th position in the motifs of 
l . Given the above posterior, the probability
P.Mi jKl ! Si/ can be calculated as follows:

P.Mi jKl ! Si/ DP.˛i1; ˛i2; : : : ˛i15jKl ! Si /

D
15Y

jD1
P.˛ijjKl ! Si /

D
15Y

jD1

Z
P
�
˛ijj�!�jl

�
P
��!�jl jKl ! Si

�
d�!�jl

D
15Y

jD1
E.�jkl jKl ! Si/

D
15Y

jD1

	k CNjkl
	0 CNl : (3.7)

Initially
ls are the training sets for motif data which can be found in publicly avail-
able databases such as HPRD [17], Phosida [18], Phosphosite [19], PhosphoELM
[20], etc. We shall discuss about these databases in the implementation section. As
the algorithm progresses the newly classified motifs are also included in 
l . The
above model can be summarized as follows:

Mi D f˛ij W j D 1 : : : 15g
˛ij � Mult.�!�jl /
�!�j D f�jkl W k D 1 : : : 20g
�!�jl � D.	k W k D 0 : : : 20/ (3.8)

The values of 	k are fixed at 	k D 1I 8k D 1 : : : 20.
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Some of the assumptions of the above model might be over simplistic. For
example, the assumption that ˛ij’s are independent is an oversimplification. More
sophisticated models, such as Hidden Markov Models [21–23] take the interde-
pendencies among consecutive amino acids into account when modeling consensus
phosphorylation motifs. However, we find that our simplistic approach performs
at least as well as the more sophisticated models especially when applied in
conjunction with other features.

2.2 Calculating P."lijKl ! Si /

"li represents the proximity betweenKl and Si in a context based protein interaction
network. A context based protein interaction network is a probabilistic network
where nodes represent proteins and edges represent protein–protein interactions
(here an interaction does not necessarily mean physical interaction). Each edge
has a probability score which represents the confidence of interaction between
corresponding proteins. The probability scores are calculated from a range of data
such as gene neighborhood, gene fusion, co-occurrence, homology, co-expression,
experimental evidence, knowledge base, and text mining [14]. Let us denote a
context based protein interaction network by G D hV;E; P.E/i where V is the set
of vertices,E is the set of undirected edges,P.E/ is a probability measure on the set
of edges, P W E ! f0; 1g. We opt to use this probability measure to determine the
contextual proximity between a kinase and a substrate. Such information have been
used before by Linding et al. [7] in order to infer kinase substrate specificity. In cases
where a phosphorylation site contains consensus motifs which can be recognized by
multiple kinases Linding et al. [7] chose those kinases which are directly connected
to the substrate in the context network. In most cases this approach may suffice
to identify kinase substrate specificity efficiently. However, in general, the method
of preferring directly connected kinase-substrate pairs over indirectly connected
ones have some conceptual ambiguity. The ambiguity of the above method is
demonstrated in the following example.

Consider a probabilistic context network which consists of two kinases KK1; KK2,
a substrate KS1 and a protein Kp which connects KK2 with KS1 as shown in Fig. 3.1. The
edges and their probability scores are defined as Ke1 D . KK1; KS1/; Ke2 D . KK2; Kp/; Ke3 D
. Kp; KS1/, P. Ke1/ D 0:75; P. Ke2/ D 0:9; P. Ke2/ D 0:9. In this network, KK1 is directly
connected to KS1 and KK2 is indirectly connected to KS1. But, the probability of
interaction between KK2 and KS1, P."21/ D P. Ke2/ � P. Ke3/ D 0:81 is higher than
the probability of interaction between KK1 and KS1, P."11/ D 0:75. Hence, in this
particular case, choosing KK1 over KK2 as a potential kinase of KS2 may not be correct.

Due to the above difficulty we define "li using a concept called “two-point
reliability” which is well studied in communication theory [24]. Reliability of
communication between two nodes in a probabilistic network is defined as the
probability of existence of a connecting path between the nodes [24]. Following
this notion, in a probabilistic context network a measure of proximity between
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K1

S1

K2

P

P(e1) = 0.75

P(e2) = 0.9

P(e3) = 0.9

Fig. 3.1 Toy context network consisting of two kinses KK1, KK2, one substrate KS1 and a protein
KP . KK1 interacts with KS1 with probability P. Ke1/ D 0:75, KK2 interacts with KP with probability
P. Ke2/ D 0:9 and KP interacts with KS1 with probability P. Ke3/ D 0:9. Here, P. Ke2/�P. Ke3/ > P. Ke1/

two proteins can be defined as the probability of existence of a connecting path
between them. For example, the proximity "li between the kinase Kl and substrate
Si can be measured as the probability that a path exists between Kl and Si in the
context network G . Calculating the proximity measure is a NP-hard problem and
there are several potential solutions proposed over the years [24–26]. We shall use
some of the concept developed in these earlier studies. Given a context network
G D hV;E;P.E/i and two of its vertices vi ; vj 2 V , let us denote the set of paths
that connects vi ; vj by Pij D fPk

ij W k D 1 : : : Npg where Np D jPijj. Using
inclusion–exclusion theory the probability that a path exists between vi and vj is
given in the following equation [24].

P
�
[NpkD1Pk

ij

�
D

NpX

kD1
P
�
Pk

ij

��
X

k¤l
P
�
Pk

ij P
l
ij

�C� � �C.�1/Np�1P
�
P1

ijP
2
ij : : :P

Np
ij

�
:

(3.9)

In (3.9), P
�
[NpkD1Pk

ij

�
is the probability that a path exists between vi and vj in

the context network G , i.e., P."ij/ D P
�
[NpkD1Pk

ij

�
. The terms of the right hand

side of (3.9) can be calculated as follows:

P
�
Pk

ij

� D
Y

ek2Pk
ij

P.ek/

P
�
Pk

ij P
l
ij

� D
Y

ek2Pk
ij

P.ek/
Y

el2P l
ij

P.el /

� � � D � � �

P
�
P1

ijP
2
ij � � �PNp

ij

�
D

Y

e12P1
ij

P.e1/
Y

e22P2
ij

P.e2/ � � �
Y

eNp2PNp
ij

P.eNp / (3.10)
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In (3.10), ek is an edge, i.e., ek 2 E and P.ek/ is its probability score. However,
the proximity measure shown in (3.9) can also be calculated using a simple recursive
formula. Given a set of paths Pij D fPk

ij W k D 1 : : : Npg, between vi and vj
the probability measure shown in (3.9) can be calculated in the following manner.
The probability that a path exists between vi and vj is the probability of traversing
at least one path in Pij. Hence,

P."ij/ DP
�
P1

ij

�C �1� P �P1
ij

��
P
�
P2

ij

�

C �1 � P �P1
ij

�C �1 � P �P1
ij

��
P
�
P2

ij

��
P.P3

ij/C � � � (3.11)

The right hand side of (3.11) can be interpreted as follows: P.P1
ij/ is the

probability of traversing P1
ij , .1 � P.P1

ij//P.P
2
ij/ is the probability of traversing

P.P2
ij/ and not P.P1

ij/, .1 � P.P1
ij/ C .1 � P.P1

ij//P.P
2
ij//P.P

3
ij/ is the

probability of traversingP.P3
ij/ but not P.P1

ij/ and P.P2
ij/, and so on. A recursive

representation of (3.11) is given below.

KP."ij/
kC1 D KP."ij/

k C .1 � KP ."ij/
k/ 
 P.PkC1

ij / where KP ."0ij/ D 0: (3.12)

P."ij/ is calculated from (3.12) by replacing k C 1 by Np, i.e., P."ij/ D KP ."ij/
Np .

The proximity measure P."li/ between a kinase Kl and substrate Si can be
calculated using (3.12) given a context network which contains both. In this case, the
context network is an undirected graph whose edge probabilities are calculated from
contextual data and are independent of the assumption of direct post translational
modification events, i.e., P."lijKl ! Si/ D P."li/. Hence, P."lijKl ! Si / can
directly be calculated from databases such as STRING [14].

2.3 Calculating P.Z max
li ; �max

li jKl ! Si /

As defined before, Zli.�/ is the Fisher transformation of the correlation coefficient
Cli.�/. Fisher [15] showed that Z�

li is normally distributed if Kl.t/ and Si.t/

are normal independent variables. Using extreme value theory, the cumulative
distribution function of the extremum (in this case maximum) of a set of independent
normal variables can be given as follows [27]:

P.Z � z/ D exp
�
� exp�

� z � �
�

��
: (3.13)

In (3.13), � is the location parameter and � is the scale parameter. Zli.�/ are
normally distributed but not independent. However, Leadbetter et al. [28] (Chapters
4–6) showed that (3.13) holds fairly generally even under many dependency
conditions. Hence, the probability density function ofZmax

li can be given as follows:
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P
�
Zli.�

max
li /j�.�max

li /; �.�max
li /

� D 1

�.�max
li /

exp

 
� z � � ��max

li

�

�
�
�max

li

�
!

� exp

 
� exp

 
� z� � ��max

li

�

�
�
�max

li

�
!!

: (3.14)

In (3.14),�.�max
li / and �.�max

li / are location and scale parameters, and are dependent
on �max

li . The dependence of the distribution parameters on �max
li arises from

the biological mechanism of phosphorylation. If a substrate is phosphorylated
by a kinase then the maximum phosphorylation of the substrate occurs almost
instantaneously (within �5 min) after the maximum phosphorylation of the kinase
(e.g., see [29]). Hence, it can be assumed that the maximum correlation between
Kl.t/ and Si .t/ occurs at a time lag no greater than �5 min if Kl ! Si holds
true, i.e., �max

li � 5 if Kl ! Si . Hence, given �max
li � 5, the location parameter

corresponds to high values of Cli.�/. However we have no prior information about
the distribution of Zmax

li and parameter �.�max
li / when �max

li > 5. In this case,
we assume that the location parameter has a flat distribution. To reflect the above
assumptions we define the conditional density of �.�max

li / as follows:

P.�.�max
li /j�max

li ; Kl ! Si / DN.m�; ��/

where m� D1:5; �� D 1 if �max
li � 5

m� D0; �� D 3 if �max
li > 5 (3.15)

In (3.15), the m� D 1:5j�max
li � 5 since it corresponds to Cmax

li � 0:9. m� D 0;

�� D 3j�max
li represents a flat distribution over all possible values. We fix the scale

parameter at �.�max
li / D 1. Under the above model the conditional density function

of Zmax
li can be calculated and given �max

li as shown in the following equation:

P.Zmax
li j�max
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�
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�
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li

�
!!

exp�
 �
�.�max

li /�m�

�2

2�2�

!
d�.�max

li /:

(3.16)

We have demonstrated the conditional density function P.Zmax
li j�max

li ; Kl ! Si / in
Fig. 3.2.
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Fig. 3.2 The conditional probability density P.Zmax
li j�max

li ; Kl ! Si / is shown for �max
li � 5 and

�max
li > 5 in this figure. P.Zmax

li j�max
li � 5;Kl ! Si / has a sharp peak at Zmax

li D 1:5, whereas
P.Zmax

li j�max
li > 5;Kl ! Si / has a flat distribution over a large range of values

�max
li can only have discrete values since in biological experiments time series

data is measured at discrete time interval. Hence, the conditional density of �max
li

can be given as follows:

�max
li jKl ! Si � Mult.

�!
�l /

�!
�l D f�tl W t D 0 : : : T g
�!
�l � D.�0; �1; : : : �T ; K�/ (3.17)

In (3.17), �t are multinomial parameters, and �t W t D 0; : : : ; T are Dirichlet
parameters where K� D PT

tD0 �t . We fix the values of �t D 18t D 1 : : : T . Though
it is known that given Kl ! Si , �max

li is usually � 5min the little information is
available a priori about the parameter values of the multinomial. Hence we adopt an
online update technique to calculate these parameter values. Given a set of substrates
KS D f KSi W Kl ! KSig, the posterior of

�!
�l can be given by P.

�!
�l j KS/ D D.�t C

N l
�t
W t D 0 : : : T; K� C N l

� /. Here N l
�t

is the number of substrates whose temporal
concentration correlates maximally with that of kinase Kl at � D t , and N l

� is the
total number of substrates which are phosphorylated by Kl . The posterior of �max

li
can now easily be calculated using the following formula.

P
�
�max

li D t j KS
�
D P

�
�max

li D t jKl ! Si
�

D
Z
P.�max

li D t j�tl/P.�tljKl ! Si /d�tl

D
Z
�tlP.�tljKl ! Si/d�tl D

�t CN l
�t

K� CN l
�

(3.18)
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Since, in this case, we do not have a reference database, we start with N l
�t
D 0 and

N l
� D 0, and update the parameters using (3.18) as we sample from the overall distri-

bution. Finally, given (3.18) and (3.16) the conditional density P.Zmax
li ; �max

li jKl !
Si/ can be calculated using the following equation:

P.Zmax
li ; �max

li jKl ! Si/ D P.Zmax
li j�max

li ; Kl ! Si /P.�
max
li jKl ! Si/: (3.19)

2.4 The Log Likelihood Function

Given the posterior of Kl ! Si the log likelihood can be defined by the following
equation:

L D log

0

@
Y

Kl2K;Si2S
P.Kl ! Si jMi; "li; Z

max
li ; �max

li /

1

A

D
X

Kl2K;Si2S
log

�
P.Kl ! Si jMi; "li; Z

max
li ; �max

li /
�

(3.20)

Finally an optimization algorithm can be used to maximize the log likelihood
shown in (3.20). For our implementation we used a MCMC based sampling scheme
to find optimal assignment of Kl , Si pairs.

2.5 Pseudo Code for the Above Algorithm

The mathematical equations described above can be put together in a clustering
algorithm to identify kinase substrate interactions from quantitative data. The
pseudocode of the algorithm we have implemented is shown below.

	k  1I 8k D 0 : : : 20
�t  1I 8t D 1 : : : T
�
�
�max

ij

�
 1

Calculate Njkl from motif databases
N�t  0 for t D 1 : : : T
Calculate P."li/ from STRING database using (3.12)
�jkl  	kCNjkl

	0CNl
L  0

L1  0
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th 10�6
P Œl� 0I 8l D 1 : : : �
LabelsŒi � �1I 81 : : : s fStores the previous cluster labelsg
Label �1
�maxŒi � �1I 8i D 1 : : : s fStores the previous values of �max

li g
while d.L / > th do

L1  L
L  0

for i D 1! s do
for l D 1! � do
P Œl� P.Mi jKl ! Si/ � P."li/ � P.Zmax

li ; �max
li jKl ! Si/

end for
Label Sample.P /
L  L C log.P.Label//
if LabelsŒi � DD �1 then
Njkl  Njkl C 1 for l D Label
Nl  Nl C 1 for l D Label
�jkl  	kCNjkl

	0CNl for l D Label

N l
�t
 N l

�t
C 1 at t D �max

li , l D Label

�tl  �tCNl
�t

K�CNl
�

at t D �max
li , l D Label

LabelsŒi � D Label
�maxŒi � �max

li for l D Label
else

if LabelsŒi � ¤ Label then
fUpdate the parameters of the new clusterg
Njkl  Njkl C 1 for l D Label
Nl  Nl C 1 for l D Label
�jkl  	kCNjkl

	0CNl for l D Label

N l
�t
 N l

�t
C 1 at t D �max

li , l D Label
N l
�  N l

� C 1 for l D Label

�tl  �tCNl
�t

K�CNl
�

at t D �max
li , l D Label

fUpdate the parameters of the old clusterg
Njkl  Njkl � 1 for l D LabelsŒi �
Nl  Nl � 1 for l D LabelsŒi �
�jkl  	kCNjkl

	0CNl for l D LabelsŒi �

N l
�t
 N l

�t
� 1 at t D �max

li , l D LabelsŒi �
N l
�  N l

� � 1 for l D LabelsŒi �

�tl  �tCNl
�t

K�CNl
�

, t D �max
li , l D LabelsŒi �

�maxŒi � �max
li , for l D Label

LabelsŒi � Label
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end if
end if

end for
d.L / jL �L1j

end while

3 Implementation of Our Algorithm to Analyze
Phosphoproteomic Data

We implemented our algorithm on phosphoproteomic data to infer phosphorylation
networks. We used time resolved mass spectrometry data from [13], phosphory-
lation site and sequence motif data from HPRD [17], Phosida [18], Phosphosite
[19], PhosphoELM [20] databases, and probabilistic interaction network data from
STRING database [14]. The main problem in using multitude of data from different
databases is ID conflict among them. For example, [13] uses IPI numbers as
protein IDs, STRING database uses protein names and Swissprot identifiers as
protein IDs, PHOSIDA uses gene names, and IPI numbers as protein IDs, etc.
Although there are some ID mapping services available (e.g., IPI database mapping
tools [30]) these softwares usually do not produce a one to one mapping for any
two ID types. Hence, we used five different types of data to uniquely identify
the proteins among different databases. We used IPI numbers, Swissprot IDs,
gene names, protein aliases, and protein sequences to establish an unique identity
for each protein among different databases. For any two types of IDs we first
established a map by two way validation which was then refined by using protein
sequence similarity. This was carried out for every pair of IDs that we came
across in these databases. Once protein identities were established and all necessary
data were collected, we implemented our algorithm to establish pairwise kinase
substrate specifications from the data. The time resolved mass spectrometry data
[13] consists of relative concentrations of phosphopeptides measured over a period
of 20 min, after EGF stimulation of Hela cells. The phosphopeptides are fragments
of both kinases and substrate proteins. For the set of kinases we used only those
for which mass spectrometry data is available in [13] dataset. Based on motif
and STRING data we filtered out all the non-kinase phosphopeptides which are
likely to be phosphorylated by kinases not observed in [13]’s experiment. This
is done because our algorithm can not deal with hidden variable (unobserved
kinases) at its current stage of development. We implemented both the MCMC
method as shown in Sect. 2.5 and simulated annealing method on the filtered
datasets for sampling plausible networks. For simulated annealing we sampled from�
P.Mi jjKl ! Si / � P."lijjKl ! Si / � P.�max

li ; Zmax
li jKl ! Si /

�1=T
where T is

the temperature parameter. The temperature is reduced after every 200 iterations
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using a geometric annealing function T D T�0:95. We find that the best results can
be obtained by collecting a large number of samples (we took 50 samples for our
study) after convergence of the MCMC algorithm and taking those kinase substrate
pairs which occur in at least, e.g., 10 of the samples.

3.1 Results

In the dataset of [13] the phosphopeptide concentrations were measured after
stimulating Hela cells with EGF. Hence, application of our algorithm on this data
enables us to detect the phosphorylation events that take place immediately after
EGF stimulation to Hela cells. The best way to verify our results is to validate
each phosphorylation event individually in vivo. But such experiment is out of the
context of this study. There are, however, limited data on in-vivo kinase substrate
specification, e.g., Phosphosite [19]. But these datasets cover a small fraction
of human proteome and there are very little overlap between them and [13]’s
dataset. The database that covers the largest set of phosphorylation interactions is
NetworKIN [7]. Only�62% of filtered phosphorylation sites from [13]’s dataset is
documented in [7]. Approximately 72% of the phosphosites in the filtered datasets
are documented in three databases put together, i.e., NetworKIN [7], RegPhos [31],
and Phosphosite [19]. Some of these databases provide online prediction of putative
kinases for new phosphorylation sites, e.g., NetworKIN [7] and NetPhosK [32]. The
phosphosites which are not included in the above databases are fed into the online
prediction services and results are collected. Among these phosphosites we selected
only those for which at least one putative kinase is predicted by the online prediction
services. This covers a total of�88% of the filtered phosphosites.

Due to unavailability of gold standard data sets and low overlap between [13]’s
data and any individual database, we benchmarked our results with those of the
databases and online prediction services mentioned above. For benchmarking we
chose five well studied kinases, e.g. EGFR, MAPK3, MAPK14, GSK3ˇ, and
Rock2. The result of benchmarking is shown in Fig. 3.3.

The results shown in Fig. 3.3 suggest that there is a high level of similarity
among the predictions made by our algorithm and other publicly available prediction
services and databases. This only shows that the performance of our algorithm
is comparable to those of the others. However, how accurate is our algorithm in
detecting in-vivo phosphorylation events can not be determined this way. This is
because there are no experimental proof for a large number of predictions made by
our algorithm or the other publicly available prediction services.

We also tried to construct a signaling pathway from our predicted interactions.
The main difficulty in constructing a pathway using our algorithm on quantitative
data is that most data sets do not contain all phosphosites of a particular pathway.
Additionally, a pathway is made of multiple different types of interactions such as
phosphorylation, complex formation, ubiquitination, etc. Our algorithm can infer
only phosphorylation interactions and this leads to inconsistency in different parts
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Fig. 3.3 Bechmarking our results. The percentages are calculated using the following formula:

P D jSp\Sdj

jSpj
� 100, where Sp is the set of interactions predicted by our algorithm, Sd is the set

of interactions either documented in other databases or predicted by online prediction services as
mentioned in the main text

of a pathway. For example, in EGFR pathway, EGF receptors form complexes
with Shc and Grb2 which then forms complex with Sos1 before phosphorylating
Ras-GDP. This entire series of events can not be inferred using our methodology.
Different types of quantitative datasets are needed to infer all different types of
interactions in a pathway. Hence, in this paper we constructed a partial picture of
the EGFR/MEK/ERK pathway using only those phosphosites present in the dataset
of [13]. A cartoon of the inferred pathway is shown in Fig. 3.4. In Fig. 3.4, the
black arrows indicate interactions which are predicted using our algorithm and are
detected in other studies such as [7, 18, 19, 32]. The red arrows are phosphorylation
interactions which are predicted in only our study. The gray arrows indicate
interactions which are not detected in our study mainly due to absence of the related
phosphosites in the [13]’s database. For example, Raf1 phosphorylates MEK in
Ser218 and Ser222 site but these phosphosites are not measured in [13]’s dataset. We
included these phosphorylations into our diagram in order to maintain consistency
of the pathway. The green arrows in the diagram represent translocation of proteins.
The interactions which are indicated to take place in the cytoplasm are inferred from
the concentration measurements of the cytoplasmic fraction of the corresponding
phosphosites and the interactions which are indicated to take place in the nucleus
are inferred from the concentration measurements of the nuclear fractions of the
corresponding phosphosites. It is not, however, clear whether the phosphorylation
events which are inferred from the nuclear fractions of the phosphosites take place
in the nucleus or they take place in the cytoplasm and then the phosphorylated
proteins are translocated to the nucleus. The same is true for the interactions which
are inferred from the cytoplasmic fractions of the phosphosite concentrations.

Despite the partial nature of the inferred pathway our algorithm has several
advantages over currently available pathway inference techniques. The advantages
and disadvantages of our algorithm over other pathway inference techniques are
discussed in the following section.
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Fig. 3.4 Partial EGFR/MEK/ERK pathway inferred by our algorithm. In this pathway we have
shown interactions between some of the kinases which are present in [13]’s data. We have also
included some well knows proteins such as Shc1, Grb2, and p53. The partial nature of the pathway
arises from inclompleteness of the data

4 Advantages and Disadvantages of Our Algorithm

Many of the currently available algorithms for inferring phosphorylation networks
use non quantitative data, e.g., [7] and [32]. Given a substrate, these algorithms
efficiently predict the probable kinases which phosphorylate its phosphorylation
sites. But if a particular phosphosite has more than one probable kinases, the
above algorithms fall short of determining which of the probable kinases phospho-
rylate it under certain experimental condition. Though [7] developed an efficient
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methodology to discriminate among probable kinases based on contextual data, the
story might be very different in some cases when quantitative data is taken into
account. Another important problem of most network inference techniques is that
they do not differentiate among the different phosphorylation states of the kinases
themselves when inferring probable substrates. Our algorithm can deal with these
problems efficiently. On the other hand some of the algorithms which explicitly
use quantitative data such as static Bayesian network inference [5] rely on directed
acyclic network architecture and are inefficient in detecting feedback loops. Our
algorithm is based on clustering technique and do not have this limitation. Some of
the advantages of our algorithm is discussed below with demonstrating examples.

4.1 Advantages

4.1.1 Inter Kinase Specificity

When a phosphosite has more than one probable kinases, it is often difficult to
detect which kinase phosphorylates it under certain experimental condition. We
call this phenomena inter kinase specificity. An example of inter kinase specificity
we encountered in [13]’s data is as follows. When Hela cells are stimulated by
EGF, Dcp1 protein is found phosphorylated at Ser 315 site. The amino acid
sequence surrounding this phosphosite is PTYTIPLS(p)PVLSPTL which contains
the consensus motifs for both GSK3B (S-X-X-X-S) and ERK (P-X-(S/T)-P). But
which of these kinases phosphorylates Dcp1 at Ser 215 is not clear. Based on
contextual data the NetworKIN algorithm [7] predicts that GSK3B has a higher
probability of phosphorylating Dcp1 at Ser 215 compared to ERK. But our algo-
rithm finds that ERK has a higher probability of phosphorylating Dcp1 compared
to GSK3B mainly due to relatively high correlation between their concentrations
(see Fig. 3.5) under the experimental setup of [13]. It should also be noted that the
high correlation between the concentrations of Dcp1(S315) phosphosite occurs with
that of ERK2(T201) phosphosite and not any other phosphorylated form of ERK.
This reveals another important feature of our algorithm, i.e., intra kinase specificity
detection. A more well known example of intra kinase specificity detected by our
algorithm is as follows.

4.1.2 Intra Kinase Specificity

It is well known that EGFR phosphorylates itself upon EGF stimulation [33].
But the detailed mechanism of this autophosphorylation in not clear, i.e., which
phosphorylated state of EGFR phosphorylates itself at what site is unclear.
From [13]’s data our algorithm predicts that upon EGF stimulation EGFR,
when phosphorylated at Y1110, Y1138, and Y1197 phosphorylates itself at
Y1172. However, when EGFR is phosphorylated at S695 or T693 it can not
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Fig. 3.5 Interkinase specificity. The gray arrows indicate probable interactions. The black arrows
indicate predicted interaction

phosphorylate itself at Y1172. We have demonstrated the temporal profiles of the
phosphorylation sites mentioned above and the predicted interactions in Fig. 3.6.
The intra kinase specificity of EGFR may be important since it is found that EGFR
autophosphorylates itself at different sites when stimulated by different EGF like
growth factors such as EGF and betacellulin [34].

4.1.3 Feedback Interactions

Feedback interactions have important roles in the dynamic behavior of signaling
pathways. Our algorithm is based on a clustering framework and not specifically
designed to detect feedback regulations. However, it detects some of the feedback
interactions as byproducts. For example, the auto phosphorylation of EGFR and
few feedback regulations from ERK to Raf and ERK to EGFR are detected
(see Fig. 3.4).
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Fig. 3.6 Intrakinase specificity. The gray arrows indicate possible interaction and the black arrows
indicate predicted interactions

4.2 Disadvantages

There are, however, several disadvantages of our algorithm. The most important
disadvantage is its inability to deal with hidden variables, in this case, kinases
which are not measured in a particular experimental set up. For example many of
the phosphosites of MEK are not measured in [13]’s dataset which leads to both
incomplete and false predictions. Accommodating such unobserved variables in our
algorithm will provide a more complete picture and enhance the accuracy of the
predictions.

Another problem of our algorithm is its inability to deal with inhibitory phospho-
rylations. For example, the inhibitory phosphorylation site Y527 of SRC is measure
in [13]’s experiment but our algorithm is unable to predict the SRC substrates due
to low correlation between the kinase and the substrate phosphosite concentrations.
Though this problem may appear to be easier to deal with a systematic formulation
for such cases is yet to be incorporated in our algorithm.

Finally, our algorithm is based on a clustering framework and not on any network
inference framework. Many important features of a signaling pathways such as
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feedback interactions, competitive phosphorylation, etc., can only be thought of
as byproducts of our algorithm since it is not specifically designed to detect these
properties and hence might introduces errors in prediction.

5 Conclusion

Recent high throughput proteomic experiments generated a wealth of data. How to
make biologically interpretable inference from these data using mathematical and
statistical techniques is a major challenge. We undertook the problem of network
inference from high throughput proteomic data. Such data usually come in limited
number of repetitions which limits the applicability of most well known statistical
network inference methods such as Bayesian Network inference, etc. Hence, ours
is an effort to make new statistical tools to make useful prediction from such
data. We used a Naive Bayes based clustering framework to determine pairwise
relationship between the kinases and their substrates. Our results suggest that our
method is at the very least comparable to other methodologies developed for the
same purpose. Additionally, it offers some new capabilities such as detection of
inter kinase specificity and intra kinase specificity. These type of information may
reveal more detailed picture of signaling mechanisms than what is already known.
However, the Naive Bayes architecture of our algorithm may be too simplistic and
can be improved by using more sophisticated models which takes into account the
interrelationship between different types of features. Additionally, our algorithm
can deal only with time resolved mass spectrometry data. Recent high throughput
proteomic data comes in many flavors. For example, inhibitory mass spectrometry
data, imaging data, etc. We are currently engaged in developing more accurate
methods for different types of high throughput data and planning to use these
algorithms on data being generated in our lab.

References

1. Janes K, Kelly J, Gaudet S, Albeck J, Sorger P, Lauffenburger D (2004) Cue-signal-response
analysis of tnf-induced apoptosis by partial least squares regression of dynamic multi-variate
signaling network measurements. J Comp Biol (11):544–561

2. Woolf P, Prudhomme W, Daheron L, Daley G, Lauffenburger D (2005) Bayesian analysis of
signaling networks governing embryonic stem cell fate decisions. Bioinformatics (21):741–753

3. Sachs K, Perez O, Peter D, Lauffenburger D, Nolan G (2005) Causal protein signaling networks
derived from multiparameter single-cell data. Science (308):523–529

4. Locasale J, Yadlin A (2009) Maximum entropy reconstructions of dynamic signaling networks
from quantitative proteomics data. PLoS One (4):e6522

5. Wagner J, Lauffenburger D (2009) Bayesian network inference of phosphoproteomic signaling
networks. In: Seventh Annual Workshop on Bayes Applications, Montreal, Canada

6. Sachs K, Itani S, Carlisle J, Nolan G, Peer D, Lauffenburge D (2009) Learning signaling
network structures with sparsely distributed data. J Comput Biol (16):1–12



3 Bayesian Inference of Phosphorylation Network 79

7. Linding R, Jensen LJ, Ostheimer G, Vugt M, Jorgensen C, Miron I, Diella F, Colwill K, Taylor
L, Elder K, Metalnikov P, Nguyen V, Pasculescu A, Jin J, Park J, Samson L, Woodgett J, Russell
RB, Bork P, Yaffe M, Pawson T (2007) Systematic discovery of in vivo phosphorylation
networks. Cell (129):1415–1426

8. Hjerrild M, Stensballe A, Rasmussen T, Kofoed C, Blom N, Sicheritz-Pontén T, Larsen M,
Brunak S, Jensen O, Gammeltoft S (2004) Gammeltoft, identification of phosphorylation
sites in protein kinase a substrates using artificial neural networks and mass spectrometry.
J Proteome Res (3):426–433

9. Obenauer J, Cantley L, Yaffe M (2003) Scansite 2.0: proteome-wide prediction of cell signaling
interactions using short sequence motifs. Nucleic Acids Res (31):3635–3641

10. Puntervoll P, Linding R, Gemnd C, Chabanis-Davidson S, Mattingsdal M, Cameron S,
Martin D, Ausiello G, Brannetti B, Costantini A, et al. (2003) Elm server: a new resource
for investigating short functional sites in modular eukaryotic proteins. Nucleic Acids Res
(31):3625–3630

11. Kaderali L, Dazert E, Zeuge U, Frese M, Bartenschlager R (2009) Reconstructing signaling
pathways from rnai data using probabilistic boolean threshold network. Bioinformatics
(25):2229–2235

12. Froehlich H, Fellmann M, Sueltmann H, Poustka A, Beissbarth T (2007) Large scale statistical
inference of signaling pathways from rnai and microarray data. BMC Bioinformatics (8):1–15

13. Olsen J, Blagoev B, Gnad F, Macek B, Kumar C, Mortensen M, Mann P (2006) Global, in
vivo, and site-specific phosphorylation dynamics in signaling networks. Cell (127):635–648.

14. Szklarczyk D, Franceschini A, Kuhn M, Simonovic M, Roth A, Minguez P, Doerks T, Stark M,
Muller J, Bork P, Jensen L, von Mering, C (2011) The string database in 2011: functional
interaction networks of proteins, globally integrated and scored. Nucleic Acids Res (39):D561–
D568

15. Fisher RA (1921) On the probable error of a coefficient of correlation deduced from a small
sample. Metron (1):03–32

16. Hand DJ, Yu K (2001) Idiot’s bayes: not so stupid after all? Int Stat Rev (69):385–398
17. Prasad T, et al. (2009) Human protein reference database – 2009 update. Nucleic Acids Res

(37):D767–772
18. Gnad F, Ren S, Cox J, Olsen J, Macek B, Oroshi M, Mann M (2007) Phosida (phosphorylation

site database): management, structural and evolutionary investigation, and prediction of
phosphosites. Genome Biol (8):R250

19. Hornbeck P, Chabra I, Kornhauser J, Skrzypek E, Zhang B (2004) Phosphosite: a bioinformat-
ics resource dedicated to physiological protein phosphorylation. Proteomics (4):1551–1561

20. Dinkel H, Chica C, Via A, Gould C, Jensen L, Gibson T, Diella F (2010) Phospho.elm: a
database of phosphorylation sites – update 2011. Nucleic Acids Res (39):D261–D267

21. Huang H, Lee T, Tzeng S, Horng J (2005) Kinasephos: a web tool for identifying protein
kinase-specific phosphorylation sites. Nucleic Acids Res (33):W226–W229

22. Huang H, Lee T, Tzeng S, Wu L, Horng J et al. (2005) Incorporating hidden Markov models
for identifying protein kinase-specific phosphorylation sites. J Comput Chem (26):1032–1041

23. Senawongse P, Dalby A, Yang Z (2005) Predicting the phosphorylation sites using hidden
markov models and machine learning methods. J Chem Inf Model (45):1147–1152

24. Satyanarayana A (1982) A unified formula for analysis of some network reliability problems.
IEEE Trans Reliab (R31):23–31

25. Satyanarayana A, Prabhakar A (1978) New topological formula and rapid algorithm for
reliability analysis of complex networks. IEEE Trans Reliability (R-27):82–100

26. Satyanarayana A, Chan M (1983) Network reliability and the factoring theorem, Networks
(13):107–120

27. Pickands J (1975) Statistical inference using extreme order statistics. Ann Stat (3):119–131
28. Leadbetter MR, Lindgren G, Rootzen H (1983) Extremes and related properties of random

sequences and processes. Springer-Verlag, New York
29. Zhang Y, Wolf-Yadlin A, Ross PL, Pappin D, Rush J, Lauffenburger D, White F (2005) Time-

resolved mass spectrometry of tyrosine phosphorylation sites in the epidermal growth factor
receptor signaling network reveals dynamic modules. Mol Cell Proteom (4):1240–1250



80 T. Santra et al.

30. Kersey PJ, Duarte J, Williams A, Karavidopoulou Y, Birney E, Apweiler R (2004) The
international protein index: an integrated database for proteomics experiments. Proteomics
(4):1985–1988

31. Lee TY, Hsu J, Chang W, Huang H (2010) Regphos: a system to explore the protein kinase-
substrate phosphorylation network in humans. Nucleic Acids Res (39):D777–D787

32. Blom N, Sicheritz-Ponten T, Gupta R, Gammeltoft S, Brunak S (2004) Prediction of post-
translational glycosylation and phosphorylation of proteins from the amino acid sequence.
Proteomics (4):1633–1649

33. Guoa L, Kozloskya C, Ericssona L, Daniela TO, Cerrettia DP, Johnson R (2003) Studies of
ligand-induced site-specific phosphorylation of epidermal growth factor receptor. J Am Soc
Mass Spectrom (14):1022–1031

34. Saito T, Okada S, Ohshima K, Yamada E, Sato M, Uehara Y, Shimizu H, Pessin J, Mori, M
(2004) Differential activation of epidermal growth factor (egf) receptor downstream signaling
pathways by betacellulin and egf. Endocrinology (145): 4232–4243



Chapter 4
Signaling Cascades: Consequences of Varying
Substrate and Phosphatase Levels

Elisenda Feliu, Michael Knudsen, and Carsten Wiuf

Abstract We study signaling cascades with an arbitrary number of layers of
one-site phosphorylation cycles. Such cascades are abundant in nature and inte-
grated parts of many pathways. Based on the Michaelis–Menten model of enzyme
kinetics and the law of mass-action, we derive explicit analytic expressions for
how the steady state concentrations and the total amounts of substrates, kinase,
and phosphatates depend on each other. In particular, we use these to study how
the responses (the activated substrates) vary as a function of the available amounts
of substrates, kinase, and phosphatases. Our results provide insight into how the
cascade response is affected by crosstalk and external regulation.

1 Introduction

Reverse phosphorylation of proteins is one of the principal mechanisms by which
signals are transmitted in living cells. Signaling pathways typically contain a
cascade of phosphorylation cycles involving kinases and phosphatases, where the
activated (in general, the phosphorylated) protein in one layer acts as the kinase
in the next layer. The levels of substrate, phosphatase or stimulus in these cycles
might be regulated externally by other proteins. Many disease-related proteins are
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part of signaling pathways, for example, the tumor suppressor proteins BRCA1 and
p53 exist in many phosphoforms and the PTEN protein is a phosphatase. Cascade
malfunctioning might therefore be a cause of disease (e.g., [1,2]). It is a goal of this
work to understand how a signaling cascade adjusts to changes in the amount of
initial stimulus or the amount of phosphatase and substrate in specific layers.

The biological relevance of this signaling mechanism is well-established theo-
retically [3–7]. Properties of general signaling cascades, such as ultrasensitivity and
signal amplification, might be elucidated from the study of signaling cascades with
an arbitrary number of layers n, where each layer is a one-site phosphorylation
cycle. Such cascades are part of many pathways [8, page 342], [9, 10] and have
been investigated mathematically: nD 1, e.g., [11,12], nD 1; 2, e.g., [5,13,14], and
arbitrary n, e.g., [3, 7, 15, 16]. In much previous work, a cascade is modeled as a
system of independent layers, thereby ignoring the effect of kinase sequestration.
This was pointed out in [7]. This simplification further implies that one cannot
study how activation of one layer effects the concentration levels in the layers of
the upstream. To study this it is crucial to consider connected layers.

Here, we give an analysis of a cascade with n connected layers. We provide ana-
lytic expressions for how species concentrations and total amounts of substrates and
phosphatases are related. Specifically, we use Michaelis–Menten’s classical model
of an enzyme reaction which includes the formation of intermediate complexes (thus
accounting for sequestration). Based on mass-action kinetics we derive a system of
differential equations and compute the steady states using an iterative procedure to
eliminate variables. This approach makes it possible to derive exact relationships
between concentrations and total amounts at steady state and to study aspects of the
system in detail without relying on simulation or numerical evaluations. Our work
is an extension of the work in [17], where we gave a detailed mathematical analysis
of this cascade at steady state.

The outline of the paper is provided in the following manner. In Sect. 2 we
describe the system. In Sect. 3 we give the main mathematical results that we derive
about the system. Non-mathematically inclined readers might skip this section. In
Sect. 4 we study how species concentrations at steady state vary as a function of the
overall substrate and phosphatase levels. We take this further in Sect. 5, where we
study stimulus–response and signal amplification. Finally, in Sect. 6, the question
of how the maximal response relates to the number of layers as well as the levels of
phosphatase or substrate is addressed.

2 One-Site Linear Signaling Cascades

We consider signaling cascades with n layers and a one-site phosphorylation cycle
at each layer (Fig. 4.1). The species in each cycle are the unmodified substrate S0i ,
the modified substrate S1i , the phosphataseFi , the kinase S1i�1, and the intermediate
(enzyme–substrate) complexes Y 0i and Y 1i for i D 1; : : : ; n. That is, in each layer the
kinase is the phosphorylated substrate of the previous layer. The kinase of the first
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Fig. 4.1 One-site cascade of length n. The enzyme mechanism follows the classical Michaelis–
Menten model. In the first layer, the substrate S10 is the kinase E is the first cycle

layer is not a substrate in any other layer and we denote it byE D S10 (corresponding
to a 0th layer). The modified substrate S1i of the i th layer is called the response of
the i th layer; in particular the response of the nth layer is called the final response
or simply the response of the cascade.

The system is specified by the set of chemical reactions (Fig. 4.1). The enzyme
mechanism follows the classical model of Michaelis and Menten, in which an
enzyme–substrate complex is formed reversibly, while its dissociation into product
and enzyme is irreversible. Further, the phosphate donor, typically ATP, is assumed
in abundance and embedded into the rate constants. This reaction set-up has
frequently been used to study signaling cascades, see e.g., [5, 7, 14, 18–20].

2.1 Steady States

Assuming mass-action kinetics, the differential equations describing the dynamical
system over time t are given by:

PS1i D .b0iC1 C c0iC1/Y 0iC1 C c0i Y 0i C b1i Y 1i � .a0iC1S0iC1 C a1i Fi /S1i (4.1)

PS0i D b0i Y 0i C c1i Y 1i � a0i S0i S1i�1 (4.2)

PY 0i D �.b0i C c0i /Y 0i C a0i S0i S1i�1 (4.3)

PE D .b01 C c01/Y 01 � a01S01E (4.4)

PFi D .b1i C c1i /Y 1i � a1i FiS1i (4.5)

PY 1i D a1i FiS1i � .b1i C c1i /Y 1i (4.6)

for i D 1 : : : ; n and where we put Y 0nC1 D S0nC1 D 0. It follows from Equations
(4.5) and (4.6) that PFi C PY 1i D 0. Similarly, from (4.4) and (4.3) for i D 1 we have
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that PEC PY 01 D 0. This implies that the values Fi CY 1i andECY 01 are independent
of time. Similarly, S0i C S1i C Y 0i C Y 1i C Y 0iC1 is also constant. Hence, the system
has the following conservation laws:

F i D Fi C Y 1i ; E D E C Y 01 ; Si D S0i C S1i C Y 0i C Y 1i C Y 0iC1; (4.7)

for i D 1; : : : ; n, and Y 0nC1 D 0. The quantities E , F i , and Si are called the total
amounts of enzymes and substrates, or just the total amounts.

The steady states of the cascade are found by setting the right hand side of
(4.1)–(4.6) to zero. The conservation laws imply that the equations corresponding to
PS0i ; PE; PFi D 0 are redundant. Therefore, given total amounts E;F i ; Si , the steady

states of the system are the concentrations that fulfill the conservation laws (4.7)
(linear equations) together with PS1i ; PY 0i ; PY 1i D 0 (quadratic equations).

These equations provide a system of polynomial equations with 5nC1 equations
and variables which, because of the quadratic equations, may have many solutions.
However, we are only interested in biologically relevant solutions for which all
concentrations at steady state are positive or zero. This suggests the following def-
inition: A Biologically Meaningful Steady State (BMSS) is a steady state for which
all total amounts are positive and all species concentrations are positive or zero.

In [17], we prove that the cascade has precisely one BMSS for any choice of
kinetic rate constants. Further, we show that the BMSS concentrations are in fact
positive (i.e., non-zero) and hence each concentration at steady state is strictly
smaller than a corresponding total amount, e.g., E < E . By abuse of language,
we often say “the steady state”, while meaning the BMSS. Likewise, we say, e.g.,
“the kinase E fulfills...” when in fact we mean “the concentration of the kinase E
fulfills...”.

Having set the notation, we can formalize the scope of this work: we seek to study
how the BMSS (in particular the response S1i ) changes when the total amounts E ,
Si or F i change, and how a change in one layer effects the responses in other layers.

2.2 Concentrations at Steady State

Using (4.1)–(4.6) together with the conservation laws the following relations apply
at steady state,

Fi D F i

1C ıiS1i
; Y 1i D

ıiF iS
1
i

1C ıiS1i
; Y 0i D

�iF iS
1
i

1C ıiS1i
; S0i D

	iF iS
1
i

.1C ıiS1i /S1i�1
(4.8)

for i D 1; : : : ; n, with constants ıi D a1i =.b
1
i C c1i /, �i D .c1i =c

0
i /ıi , and 	i D

�i.b
0
i C c0i /=a0i . The constant ıi is the inverse of the Michaelis–Menten constant for

Fi , �i is the catalytic efficiency c1i ıi of Fi divided by the dissociation constant c0i of
S1i�1, and 	i is the relative catalytic efficiency in layer i , that is, the quotient of the
catalytic efficiency of Fi by that of S1i�1.
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Fig. 4.2 Splitting the cascade at the i th layer

Equation (4.8) is essential: It provides simple relationships between different
concentrations at steady state. The values Y 0i ; Y

1
i , and Fi depend only on the rate

constants in the i th layer and are increasing in F i and S1i . The value S0i , however,
depends on the steady state values of the modified substrates in the i th and .i � 1/th
layers, providing a link between the two layers.

2.3 Splitting the Cascade

Consider the cascade obtained from the first i layers. Its connection to the last n� i
layers is through the intermediate complex Y 0iC1 accounting for the conversion of
S0iC1 to S1iC1 via the kinase S1i . If Y 0iC1 is known, then the steady state concentrations
in the first i layers satisfy the steady state equations of a cascade of length i with
total amounts E, F 1; : : : ; F i , S1; : : : ; S i�1, and Si � Y 0iC1 D S0i C S1i C Y 0i C Y 1i .
Thus, the intermediate complex Y 0iC1 influences the layers upstream of layer i C 1
by reducing the total amount of substrate available at layer i . This effect is known
as sequestration.

Similarly for the cascade consisting of the last n � i layers. If S1i is known
(fixed), then the steady state concentrations in the layers i C 1; : : : ; n satisfy the
steady state equations of a cascade of length n� i with total amounts F iC1; : : : ; F n,
SiC1; : : : ; Sn and total amount of kinase S1i .

This split is illustrated in Fig. 4.2. The results presented in the following sections
rely on splitting the cascade in this way.

3 Relationships Between Response Concentrations

In this section we provide an iterative expression for the i th response S1i in terms
of the final response S1n . Some consequences of this result are discussed in the
forthcoming sections.
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3.1 The Last Layer

If the expressions in (4.8) are substituted for Y 0n ; Y
1
n ; S

0
n in the conservation law

Sn D S0n C S1n C Y 0n C Y 1n we obtain S1n�1 as an (increasing) function of S1n ,

S1n�1 D fn�1.S1n/ D
	nF nS

1
n

dn.S1n; 0/
;

with di.x; y/ D .Si �y/�x�F i.ıiC�i/xCıi .Si �y/x�ıix2; 1 � i � n. If S1n
is positive, then S1n�1 is positive provided dn.S1n; 0/ is positive. This is the case only
if S1n 2 Œ0; ˛n/, where ˛n is the only positive root of dn.x; 0/. Therefore, F n, Sn,
and the rate constants of layer n restrict S1n at steady state, S1n < ˛n, independently
of the parameters in the other layers.

If S1n is close to ˛n, the denominator of fn�1 is close to zero and hence S1n�1 is
large. Since the amount of substrate in layer n� 1 is bounded by Sn�1, S1n�1 cannot
be arbitrarily large. Thus, upstream layers limit the possible values of S1n further.

3.2 Intermediate Layers Response

In (4.8), S1iC1 gives Y 0iC1. This observation allows us iteratively to calculate all
responses S1i as functions of S1n . Specifically, consider the i th layer of the cascade.
For every Y 0iC1 < Si , the steady state values of the species in the first i layers are
found by solving the steady state equations for the cascade consisting of the layers
from 1 to i with the total amount of substrate in layer i being Si � Y 0iC1. Therefore,
we obtain

S1i�1 D gi .S1i ; Y 0iC1/ D
	iF iS

1
i

di .S
1
i ; Y

0
iC1/

; (4.9)

with gn.S1n; Y
0
nC1/ D fn�1.S1n/, since Y 0nC1 D 0. The response S1i�1 can be found

in terms of S1n by repeated application of (4.9). Positivity of S1i�1 imposes an upper
bound ˇi�1 to S1n , which is smaller than the upper bound ˇi imposed by S1i . Indeed,
when S1n is close to ˇi , S1i is large and then di becomes negative.

We have outlined the following result, which is proven in [17, Prop. 2.31].

Result 1 (Response relationships) For i D 0; : : : ; n � 1, the BMSS value of S1i
satisfies S1i D fi .S

1
n/, where fi is an increasing function of S1n defined on an

interval Œ0; ˇi /. Furthermore,

• ˇi < ˇiC1 and ˇi < ˇn�1 D ˛n for i < n� 1. ˇi depends on F j ; Sj , j � i C 1
only.

• Let ˛i be the positive root of di .x; 0/ which depends on F i and Si . Then S1i < ˛i
for any BMSS.
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This result is important and shows how each additional layer further constrains
the maximal value of S1n . Also, the response S1i is bounded by ˛i , which depends
exclusively on the rate constants and total amounts of layer i . This upper bound is
obtained by ignoring sequestration, i.e., assuming Y 0iC1 D 0.

Result 1 provides an iterative procedure for calculating response relationships.
All terms that appear in the function fi are mathematically simple (polynomials) and
hence fi is a rational function. Such functions are easy to manipulate, for example,
using programs like MathematicaTM.

3.3 Total Amount of Kinase E

Using Result 1 we obtain the increasing relations E D S10 D f0.S
1
n/ and Y 01 D

�1F 1f1.S
1
n /

1Cı1f1.S1n/ . The latter we denote Y 01 D f Y
1 .S

1
n ). These functions do not dependent

on the stimulus E and hence

E D r �S1n
� D f0

�
S1n
�C f Y

1

�
S1n
�

givesE as an increasing function of S1n . The function f0 is defined for S1n < ˇ0 and
tends to infinity as S1n tends to ˇ0. The function f Y

1 is defined for S1n < ˇ1. Since
ˇ0 < ˇ1, the function r is increasing and defined for S1n 2 Œ0; ˇ0/. It tends to infinity
when S1n tends to ˇ0.

As a consequence, for positive E , there is a unique value of S1n satisfying the
relation E D r.S1n/. This is the BMSS value of S1n . All other concentrations can be
derived from this using (4.8) and the functions gi . Further, the upper bound ˇ0 of S1n
is only obtained if E is very large. We introduce a distinctive symbol for this upper
bound, or the maximal response of the cascade: �n WD ˇ0. Writing r as a quotient
of polynomials, �n is simply the first positive root of the denominator.

4 Regulation Through Substrate and Phosphatase Variation

In the previous section we found S1i in terms of S1n . This relation provides means
to explore how noise and regulation at intermediate layers (e.g., crosstalk [14])
propagate upstream and downstream in the cascade and effects the responses.

The following result is from [17, Th. 2.32, Th. 2.33] and illustrated in Fig. 4.3a.

Result 2 (Variation in the total amount of substrate) Consider a cascade with n
layers and fix all total amounts but Si for some layer i . Then an increase of Si
causesW
• The BMSS values of the response S1j and the intermediate complexes Y 0j and Y 1j

increase downstream of layer i , that is, for layers j D i; : : : ; n.
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• The BMSS value of the response S1j increases upstream of layer i if
j D 1; : : : ; i � 1 has the same parity as i and decreases otherwise.

Thus an increase in the total amount of substrate in one intermediate layer propa-
gates downstream as an increase in the concentrations of the modified substrates.
This corresponds to increasing the initial kinase or stimulus S1i in the smaller
cascade consisting of the layers below the one undergoing variation. However,
these layers have fixed total amounts and the modified substrates downstream are
therefore bounded by their respective ˛i (Result 1).

Also, an increase in the total amount of substrate in an intermediate layer prop-
agates upstream in an alternating fashion. If S1i is increased, so is the sequestered
substrate Y 0i and hence the total amount at layer i � 1, Si�1 � Y 0i decreases. In
turn, this causes S1i�1 to decrease. In turn, this causes Y 0i�1 to decrease and hence
Si�2 � Y 0i�1 to increase and so S1i�2 increases. This effect is strongly dependent on
the intermediate complexes and cannot be demonstrated in a model without these.

Similarly, Result 1 provides insight into how the response varies when the total
amount of phosphatase is changed (see Appendix A for a proof).

Result 3 (Variation in total amount of phosphatase) Consider a cascade with n
layers and fix all total amounts but F i for some layer i . If the total amount of
phosphatase at layer i , F i , is increased thenW
• The BMSS value of the response S1j decreases downstream of layer i , that is, for
j D i; : : : ; n.

• The BMSS value of the response S1j increases upstream of layer i if
j D 1; : : : ; i � 1 has the same parity as i and decreases otherwise.

Result 3 is illustrated in Fig. 4.3b. As expected, an increase of phosphatase
at layer i causes the amount of phosphorylated substrate at layer i to decrease
and likewise all downstream responses to decrease too. In particular, the final
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response decreases. Thus, controlling the level of phosphatase at any layer serves
as a regulator of the response level. Upstream of layer i � 1 the response
increase/decrease in an alternating way, using the same argument as above.

5 Stimulus–Response Curves

The relationship between stimulus and response has been studied extensively,
e.g., [7,11,14,16,21]. Much attention has been devoted to whether a system exhibits
ultrasensitivity, that is, whether it reacts to input in a switch-like mode [18, 22].

The plot of S1n (the final response) against E (the stimulus) is usually called the
stimulus–response curve. We showed in Sect. 3 that the stimulus and the response
are related by an increasing function

E D r.S1n/

defined on an interval Œ0; �n/. Thus, the inverse of r is the stimulus–response curve.
When the stimulus E is arbitrarily large the final response S1n saturates at its

maximal value �n. The stimulus required to achieve a certain percentage of the
maximal response can be determined from the explicit expression of the inverse
stimulus–response curve. Let EM be the value of E required to obtain M% of the
maximal response, that is, EM D r.M�n=100/. For instance, 90% of the maximal
response is obtained with E90 D r.0:9�n/. This provides means to compute
measures of sensitivity and switch behavior of biological systems: the response
coefficient (also called cooperativity index) R D E90=E10 [5], the switch value
E90 � E10 [18], and the Hill coefficient nH D log.81/= log.E90=E10/ [23].

The maximal response �i of S1i is easily derived from the maximal response �n
using �i D fi .�n/. Now consider the response in any layer normalized with its
maximal response, that is, the normalized, or relative, response is between 0 and 1.
We provide conditions for which the normalized response increases when moving
down the layers in a cascade for a fixed stimulus E , Fig. 4.4a. In other words, the
normalized stimulus–response curves are shifted to the left as we move down the
layers. This is known as signal amplification.

Result 4 (Signal amplification) If 1 > ıiSi � .ıi C �i/F i , then the level of kinase
E required to achieve M% of the maximal response at layer i is always smaller
than the amount of kinase required to achieve M% of maximal response at layer
i � 1.

Thus, if the level of phosphatase is in excess relatively to the substrate in all
layers, then for any given amount of stimulus, the last layer will always have a
higher relative response than the intermediate responses, and the response in the
first layer will always have the lowest relative response.
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6 Maximal Response

The maximal response is restricted by the total amount Sn in the last layer and
further by any additional layer, as described in Result 1. The reduction of the
maximal response is exemplified in Fig. 4.4b for three cascades with one, two, and
three layers. The maximal response of the single-layer cascade is 3.58, but after
adding one (respectively two) additional layer(s) on top of it, the maximal response
drops to 2.23 (respectively 1.83), which is much lower than the upper bound set
by the total amount (fixed to 10). The decline of the maximal response is caused
by substrate sequestration: In layers above the last layer, substrates are trapped in
intermediate complexes and therefore not able to participate as kinases driving the
cascade of modifications that ultimately results in phosphorylation of S0n .

How the maximal response changes with changing total amounts of phosphatase
and substrate can be quantified. It is stated below and illustrated in Fig. 4.5 (a proof
can be found in Appendix A).

Result 5 (Maximal response) Consider a cascade of length n.

• If the total amount of phosphatase at layer i , F i , increases then the maximal
response �n decreases.

• If the total amount of substrate at layer i , Si , increases then the maximal
response �n increases.

Interestingly, an increase in the level of phosphatase at any layer cannot be
compensated fully by an increase in the stimulus. Only locally, for low responses,
such a loss could be overcome.
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7 Discussion

We have provided a theoretical discussion of linear cascades with arbitrary number
of layers of one-site phosphorylation cycles. In particular, we have focused on
intrinsic properties of the cascade, that is, properties that do not rely on specific
reaction rate constants. Such studies may be useful for testing new hypotheses,
since experimental data is difficult to obtain and rate constants are hard to estimate
[24, 25].

Many cascades are regulated externally, but the effect of such regulation is
generally unclear. Our study sheds light on how the steady state changes as a
consequence of changing levels of phosphatases and substrates. If a level increases
at some layer in the cascade, then all responses downstream decrease (phosphatase)
or increase (substrate). Thus, regulation at each layer of the final response is
possible. Further, the maximal response (obtained when stimulus is very large)
follows the same pattern. An increase in the phosphatase level at some layer causes
the maximal response to decrease. This loss cannot be compensated for by an
increase in the stimulus.

Upstream of the modified layer variations in the responses follow an alternating
behavior: If the response at some layer above the modified layer increases, the
response in the next layer decreases, and so forth. This behavior is counterintuitive:
The response of one layer is the kinase of the next layer, and we might expect the
same qualitative change in each layer. However, the result relies strongly on the
formation of intermediate complexes and thus relates to (hidden) sequestration. It
is therefore important, that intermediate complexes are modeled explicitly as in our
approach.

Under some conditions, signal amplification also occurs in the cascade in the
sense that the relative response increases down through the cascade. Thus, in a long
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cascade the final response can come up faster than in a short cascade. However,
this gain in signal amplification has to be contrasted to a reduction of the maximal
response with increasing cascade length. Consequently, the cascade length is a
compromise between when and how high the final response should be.

A deeper study is required to understand to what extend this balance between
gain and lost is beneficial for the cell. It may depend on the specific levels of
phosphatase and substrate as well as on the reaction rate constants. Although the
results presented here are qualitatively independent of the rate constants, their effect
is crucial in determining the magnitude of a change.
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Appendix

Proofs

The proofs follow very closely the proofs for Results 1 and 2 which can be found in
our previous paper [17].

Proof of Result 3. In the sequel, we assume that all total amounts but F i are fixed.
Consider a cascade of length n and fix a value of S1n . Define

Y 0i D gYi .S1i / D
�iF iS

1
i

1C ıiS1i
: (4.10)

Using (4.10) and (4.9), we see that for j � i , S1j ; Y 0jC1 are independent of F i . Then,

by (4.10), Y 0i is an increasing function of F i , and so is S1i�1 by (4.9) (there might be
singularities). For j � i � 2, S1j ; Y

0
j are increasing in S1jC1; Y 0jC2 (with expressions

not involving F i ). We conclude that they are increasing in F i for fixed S1n . It
follows that the steady state value of S1n must decrease if F i is increased. Indeed,
we haveE D ECY 01 with E; Y 01 increasing both in S1n and F i . Since the functions
fi ; : : : ; fn�1 are independent of F i and increasing in S1n , the concentrations S1j for

j D i; : : : ; n decrease in F i .
As shown in [17], the BMSS of a cascade of length n satisfies S1n D  .Sn/, with

 an increasing continuous function defined over the non-negative real numbers.
Hence, if we consider now the split of the cascade at layer i � 1, the steady state
value of S1i�1 is given by a decreasing continuous function of Y 0i , S1i�1 D f .Y 0i / WD
 .Si�1 � Y 0i /, obtained by considering the first i � 1 layers of the cascade with
total amounts E, F 1; : : : ; F i�1, S1; : : : ; S i�2, and Si�1 � Y 0i . The function f is
independent of F i .
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Let now h.F i / denote the value of Y 0iC1 at steady state, corresponding to the total
amount F i . By (4.9), and writing S1i as a function of Y 0i using (4.10), we have that
S1i�1 Degi .Y 0i ; Y 0iC1/ Degi .Y 0i ; h.F i //. If we write

egi .Y 0i ; Y 0iC1/ D
p1.Y

0
i ; Y

0
iC1/

p2.Y
0
i ; Y

0
iC1/

;

then p1.y; z/ D 	iy.
 � y/, and p2.y; z/ D .ıi C �i /y2 � �i.1=ıi C F i C 
 C
.Si � z//y C �i 
.Si � z/ with 
 D �iF i=ıi . Computing the partial derivative of
this function with respect to Y 0iC1 and F i , we see that egi is decreasing in F i and
increasing in Y 0iC1. Since h is decreasing in F i , it follows that egi .Y 0i ; h.F i // is
decreasing in F i for any fixed Y 0i .

The steady state value of the pair .Y 0i ; S
1
i�1/ for a fixed F i , must satisfy both

equalities S1i�1 D f .Y 0i / D egi .Y 0i ; h.F i //. Since f is independent of F i and egi
decreases in F i , we have that Y 0i increases in F i while S1i�1 decreases.

It follows that Y 0i�1 decreases too. If for j � i � 1, Y 0j increases, then the total

amount of layer j�1, Sj�1�Y 0j decreases and thusS1j�1 decreases. On the contrary,
if Y 0j decreases, then the same arguments shows that S1j�1 increases completing the
proof. ut
Proof of Result 5. Let �n.F i / denote the maximal response of S1n corresponding to
the total amount of phosphatase F i . Similarly, denote by ˇj .F i / the upper bounds
of Result 1. Note that dj is decreasing in F j . Since S1n decreases in F i , �n.F i;1/ �
�n.F i;2/ if F i;1 > F i;2. The question is whether they can be equal or not.

Fix S1n D �n WD �n.F i;2/. Let �1.S
1
n/ D �1 ı f Y

2 .S
1
n/ be defined as the positive

root of the polynomial d1.x; f Y
2 .S

1
n//. The maximal response �n D ˇ0 is given by

the positive value of S1n for which f1.S1n/ D �1.S1n/: Thus, we have

f1.�n; F i;2/ D �1.�n; F i;2/; (4.11)

where we add the reference to the total amount of phosphatase. As noted in the
preceding proof, if �n is fixed and F i is increased, then f1 is an increasing function.
Similarly, f Y

2 .�n; F i / is increasing too, and since �1.Y 02 / is decreasing in Y 02 , the
function �1 is decreasing in F i . Note that since d1 decreases in F 1, the argument
applies even if i D 1.

It follows that if F i;2 satisfies equality (4.11), then the equality cannot be satisfied
by F i;1 ¤ F i;2 and the first part of the result follows.

The same reasoning applies to the maximal response following variation on the
total amount Si at some layer i . By Result 2, S1n increases if Si increases, and thus,
using the corresponding notation, we have �n.Si;1/ � �n.Si;2/ if Si;1 < Si;2. It
is easy to see that we can proceed as above to rule out equality. One just have to
observe that if Si increases, then, for fixed S1n D �n, both f1; �1 are decreasing
functions. ut



94 E. Feliu et al.

References

1. Blume-Jensen P, Hunter T (2001) Oncogenic kinase signalling. Nature 411:355–365
2. Sesti G, Federici M, Hribal ML, Lauro D, Sbraccia P, Lauro R (2001) Defects of the insulin

receptor substrate (IRS) system in human metabolic disorders. FASEB J 15:2099–2111
3. Chaves, M, Sontag ED, Dinerstein RJ (2004) Optimal length and signal amplification in weakly

activated signal transduction cascades. J Phys Chem B 108(39):15311–15320
4. Ferrell JE, Xiong W (2001) Bistability in cell signaling: How to make continuous processes

discontinuous, and reversible processes irreversible. Chaos 11:227–236
5. Goldbeter A, Koshland DE (1981) An amplified sensitivity arising from covalent modification

in biological systems. Proc Natl Acad Sci USA 78:6840–6844
6. Qiao L, Nachbar RB, Kevrekidis IG, Shvartsman SY (2007) Bistability and oscillations in the

Huang–Ferrell model of MAPK signaling. PLoS Comput Biol 3:1819–1826
7. Ventura AC, Sepulchre JA, Merajver SD (2008) A hidden feedback in signaling cascades is

revealed. PLoS Comput Biol 4:e1000041
8. Cooper GM, Hausman RE (2009) The cell. 5th edn. ASM Press, Washington
9. MacFarlane RG (1964) An enzyme cascade in the blood clotting mechanism, and its function

as a biochemical amplifier. Nature 202:498–499
10. Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Ann

Rev Cell Dev Biol 21:319–346
11. Bluthgen N, Bruggeman FJ, Legewie S, Herzel H, Westerhoff HV, Kholodenko BN (2006)

Effects of sequestration on signal transduction cascades. FEBS J 273:895–906
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Chapter 5
Heterogeneous Biological Network Visualization
System: Case Study in Context of Medical
Image Data

Erno Lindfors, Jussi Mattila, Peddinti V. Gopalacharyulu, Antti Pesonen,
Jyrki Lötjönen, and Matej Orešič

Abstract We have developed a system called megNet for integrating and
visualizing heterogeneous biological data in order to enable modeling biological
phenomena using a systems approach. Herein we describe megNet, including
a recently developed user interface for visualizing biological networks in three
dimensions and a web user interface for taking input parameters from the user,
and an in-house text mining system that utilizes an existing knowledge base. We
demonstrate the software with a case study in which we integrate lipidomics data
acquired in-house with interaction data from external databases, and then find
novel interactions that could possibly explain our previous associations between
biological data and medical images. The flexibility of megNet assures that the tool
can be applied in diverse applications, from target discovery in medical applications
to metabolic engineering in industrial biotechnology.
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DAG 1,2-Diacyl-sn-glycerol
DIP Database of interacting proteins
EMBL European molecular biology laboratory
EMPath Enriched molecular path detection
GEO Gene expression omnibus
GO Gene ontology
JDBC Java data base connectivity
JVM Java virtual machine
LysoPC Lysophosphocholine
LysoPE Lysophosphatidylethanolamine
MINT Molecular interaction database
MR Magnetic resonance
NML Sammon’s non-linear mapping
OAT Ontology aided text mining
PC Phosphatidylcholine
PE Phosphatidylethanolamine
SIF Simple identifier format
SM Sphingomyelin
SOAP Simple object access protocol
TAG Triacylglycerol
TEAFS Topological enrichment analysis for functional subnetworks
TransFac Database of transcription factors
TransPath Database of signal transduction pathways
UMLS Unified medical language system
XML eXtensible markup language

1 Introduction

We have earlier introduced a software system megNet for integrating and visualizing
heterogeneous biological data, with the aim to address the needs of systems biology,
integrate data from many sources into a single platform, and model it as holistic
biological networks [1, 2]. At the methodological level, this system has addressed
the need of evolving ontologies in biology by allowing the user to define a desired
biological context by assigning weights to the edges, and map the internal distances
of nodes into two dimensions. The prototype of the software is currently installed in
our facility at VTT Technical Research Centre of Finland and it has being used by
VTT’s researchers.

We have recently made several improvements to megNet. Specifically, we have
developed two new interfaces in order to improve the usability: a desktop application
for visualizing networks in three dimensions and a web application for taking input
parameters from the user. This enables several new use cases, for example, text
mining from our databases that can be further included in network construction.
This application is integrated with Cytoscape [3], a popular biological network
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visualization tool. Also, we have developed a text mining system called ontology
aided text (OAT) mining system [4] which creates ontologies for biological entities
by utilizing an existing knowledge base. The content of this system is represented as
an ontological database, and it is integrated as part of our database repository, and
its ontological relationships can be visualized in megNet’s networks. In parallel, we
have recently developed advanced medical image techniques [5] and computational
methods to integrate this data with biological data [6].

Herein we describe a conceptual framework and technical architecture that
reflects the current status of megNet (Sect. 2). Then we show illustrative examples
demonstrating how the biological data from our previous case study [6] can be
visualized in megNet, and how they help us find novel associations with the medical
image data (Sect. 3). In the end, we discuss the significance of megNet and its future
challenges (Sect. 4).

2 Materials and Methods

2.1 Conceptual Framework of megNet

The conceptual framework of megNet is shown in Fig. 5.1. The primary aim of
megNet development has been data integration; there is a huge amount of het-
erogeneous biological data available across diverse databases. This data comprises
mainly publicly available data as well as commercial data repositories. We model
this data as biological networks in which nodes are either low level molecular
entities (e.g., proteins and metabolites) or more complex biological entities and
concepts (e.g., diseases and biological processes), and edges are relationships
between them (e.g., protein–protein interactions, metabolic reactions, signal trans-
ductions, and ontological relationships). We can also extract relationships from
OAT [4] for biological entities based on their occurrences as subjects, predicates,
or objects in sentences extracted from biological articles.

We can enrich contextual information in the network model, for example, by
incorporating gene expression or metabolic profiles that will be manifested as bars
inside nodes or as co-expression edges. In the practical examples of this chapter, the
context is medical images but more broadly the methods are applicable to any other
biological context.

We can access the integrated database repository to construct a complex network
of several interaction types following the network presentation model. We can
restrict the network to a biological context, for example, including only entities that
are involved in a specific biological process. Once the network is constructed, we
can browse it to find novel interactions, for example, between different biological
processes via multiple interaction types. It is becoming increasingly evident that this
kind of cross-talk can lead to new testable hypotheses [7–9].
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Fig. 5.1 Conceptual framework of megNet

In the end, we can map the network into two dimensions to easily visualize
the proximities or similarities among the biological entities in a specific biological
context. Also, we can export the network to other advanced computational tools for
contextual analysis.

2.2 Technical Architecture

megNet is technically implemented as an architecture as shown in Fig. 5.2. Its main
components are database end, middle tier, input client, and network client.

The middle tier includes business logic processing, for example, network
construction and text mining. It is implemented in Java programming level by using
Java virtual machine (JVM) v.1.6.16 (Oracle, Inc.) and we have been running it on
a JBoss application server (JBoss, Inc.), but in general it can be run on any J2EE
application server. It uses Tamino Java application programming interface (API)
and Oracle Java data base connectivity (JDBC) thin drivers to communicate with
the databases, and simple object access protocol (SOAP) messages to communicate
with the network and input clients.

megNet has two main user interfaces: input client and network client. The input
client is implemented as a web application. It takes all input parameters from the
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Fig. 5.2 megNet’s architecture and features

user for business logic. It is implemented by using Google Web Toolkit (http://code.
google.com/intl/fi/webtoolkit/). We have tested that it works in most common web
browsers (e.g., Internet Explorer 8.0.6, Mozilla Firefox 3.5.15).

The network client is a desktop application. Its main task is to visualize networks
and mapping results. It is a stand-alone Windows (Microsoft) application developed
in C# 2.0 by using Microsoft.NET Framework Version 2.0. The three-dimensional
visualization is implemented by using Microsoft’s DirectX 9.0c platform, which al-
lows hardware acceleration of the three-dimensional scenes. In addition, Cytoscape
[3] can be used as an alternative visualization for megNet’s network client.

http://code.google.com/intl/fi/webtoolkit/
http://code.google.com/intl/fi/webtoolkit/
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2.3 Databases

megNet’s database end comprises all databases to be integrated. The content of
these databases is presented in Fig. 5.3. They are physically stored in two databases:
Oracle and Tamino.
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The Oracle database runs on an Oracle 10g database server (Oracle, Inc.) in
which data are stored as relational tables. It comprises the following database:

• Gene expression profiles that are obtained from a public gene expression
repository called gene expression omnibus (GEO) [10].

The Tamino database runs on an eXtensible markup language (XML) data manage-
ment system Tamino XML server (Software AG) in which data are stored in XML
format. It comprises the following databases:

• Metabolic pathway databases: Kyoto encyclopedia of genes and genomes
(KEGG) [11] and genome-scale yeast metabolic models [12, 13].

• Protein–protein interaction databases: Biological general repository for interac-
tion datasets (BioGrid) [14], database of interacting proteins (DIP) [15], MINT
[16], biomolecular interaction network database (BIND) [17].

• Transcriptional regulatory database: database of transcription factors (Trans-
Fac) [18].

• Signal transduction database: database of signal transduction pathways
(TransPath) [19].

• Compound databases: PubChem [20] and KEGG compounds [11].
• Ontological databases: gene ontology (GO) [21] and OAT [4].
• Sequence databases: universal protein resource (UniProt) [22] and European

molecular biology laboratory (EMBL) [23].

In addition, we have developed a database called “maps” in Tamino. This database
is based on a premise that in each interaction and pathway database proteins are
identified by a unique protein identifier called UniProt identifier [22] and each
experiment in the gene expression database is identified by a unique experiment
identifier. This database comprises XML documents in such a way that in every
document, an experiment or protein identifier is mapped to its metadata (e.g.,
experiment description and protein name). This enables retrieving effectively data
across multiple databases; first we retrieve experiment or protein identifiers for given
metadata, and then we use experiment identifiers to retrieve more specific data on
the experiments (e.g., experiment description, samples taken in the experiment), or
UniProt identifiers [22] to retrieve interactions and reactions in which the proteins
are involved. This database can easily be extended to include similar mappings also
for other types of entity (e.g., for genes and compounds).

Figure 5.3 describes how the “maps” database is populated. The experiment
“maps” are populated by retrieving experiment identifiers and metadata from the
gene expression database. Also, these documents comprise unified medical lan-
guage system (UMLS) annotations [24] that are incorporated by using GENOTEXT
[25], which finds annotations for a part of experiment. We can manually incorporate
UMLS annotations for the rest of experiments. The protein “maps” are populated by
retrieving first UniProt identifiers and most of the metadata from UniProt [22]. Then,
the metadata is augmented by retrieving pathway information from the pathway
databases and GenInfo identifiers from the BIND database [17].
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Fig. 5.4 Overall user interface of input client. It comprises four panels in which the user can give
input parameters: database and species selection panel (top-left), keyword search panel (top-right),
panel for uploading user’s data, and panel for finalizing network construction (downright)

2.4 Features

In this section, we describe the basic features of megNet. Figure 5.2 describes how
megNet’s components interact with each other and with the user when implementing
these features.

2.4.1 Text Mining

The purpose of text mining is to help the user find most relevant data from the
massive amount of data that we have in megNet’s databases; this works like Google
in a biological jungle. In the beginning, the user has some biological concept(s)
in mind (e.g., diabetes). She types this concept in the “keyword search” tab of
megNet’s input client (top-right corner of Fig. 5.4). Then the middle tier accesses
the GEO database [10] to retrieve all gene expression datasets of which description
contains the given keyword, and the “maps” database to retrieve all proteins that are
annotated with the given keyword. After that, the input client displays the retrieved
gene expression datasets and proteins, as illustrated in Fig. 5.4. Then the user can
browse the results in order to assess their relevance.
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The gene expression datasets can be of two types: single channel [26] or dual
channel [27] microarrays. The single channel datasets contain log2 ratios between
case and control intensities (e.g., healthy and disease). The dual channel datasets
contain separate values for case and control intensities, so for these datasets we
calculate the log2 ratios by normalizing the case and control intensities. More
precisely, for each case sample, we calculate the log2 ratio of intensity versus the
average intensity of control samples from the same dataset. This enables the user to
use both single and dual channel datasets in identical fashion. From these datasets
the user can create sample groups for the correlation calculation and network
construction. In case of single channel dataset, she has to separately select case
and control samples.

2.4.2 Correlation Calculation

The purpose of correlation calculation is to find strongly associated genes or other
biological entities in a specific context. As described in the “text mining” section,
the user can create sample groups from text mining results. She can select some
of these groups for correlation calculation. Also, she sets a cut-off for correlation
co-efficient meaning that all correlations of which absolute value is less than this
cut-off value will be ignored. Then the middle tier accesses the GEO database [10]
to retrieve gene expression data for the selected samples. Based on this data, the
middle tier first filters out genes that do not have enough variation between case
and control samples by using student’s t-test [28]. Then it calculates correlations
between the case samples for remaining genes. In the end, a list of the remaining
gene pairs along with their correlations is displayed in megNet’s input client.

2.4.3 Network Construction

The user can choose from which databases she wants to retrieve data in the “choose
databases” tab of megNet’s input client (top-left corner of Fig. 5.4). In this tab, all
megNet’s databases are listed. Also, in this tab the user can choose in which species
the network will be constructed. After that there are four basic use cases that the
user can use to construct networks. Next we will briefly describe each of them.

• The user can construct a network by giving directly a name or identifier of
biological entities (e.g., endothelial lipase) in the “more parameters” tab of
megNet’s input client (down-right corner of Fig. 5.4). In this case, the middle tier
retrieves all interactions in which the given biological entities participate from
the selected databases. Also, in this tab she can select metabolic pathways. In
this case, the middle tier constructs a network that contains the given metabolic
pathways combined with interactions from other selected databases. Also, in this
tab, the user can give a depth for the network construction. This means how many
nearest neighbors will be retrieved for the given biological entities or pathways.
The default depth is one.
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• The user can construct a network from the text mining results. In the same
way as in the correlation calculation, she can select sample groups for network
construction. Then the genes that are in the selected samples will be enriched in
the network based on their expression in the sample groups. In megNet’s network
client, they are visualized as bars inside a gene node so that one bar corresponds
to one sample group. Also the user can restrict the network construction with
proteins from the text mining results. She can select proteins from the text mining
results. After that, the selected proteins are added in the “more parameters” tab
of megNet’s input client (down-right corner of Fig. 5.4).

• The user can construct a network after performing correlation calculation. After
the correlation calculation, the user has a list of most correlated gene pairs. From
this list, she can optionally select which pairs she want to include in the network
construction. Then the middle tier constructs a network creating co-expression
edges for the selected gene pairs and retrieving interactions from other selected
databases.

• The user can upload his or her data to the network construction in the “upload
data” tab of megNet’s input client (down-left corner of Fig. 5.4). This supports
two different types of data: gene expression data for enzymes describing how
strongly their encoding genes are expressed in given conditions and concen-
tration data for lipid molecular species that are mapped to their generic lipid
names on a specific metabolic pathway by using the biochemical knowledge of
the side chain length and saturation, as described in [29]. Enzymes are enriched
with uploaded gene expression data; in megNet’s network client, one bar inside
a protein node corresponds to expression of its encoding genes in a specific
condition. Compounds are enriched with uploaded lipidomics data; in megNet’s
network client, one bar inside a compound node corresponds to a concentration
of one lipid molecular species.

The user can use these use cases in overlapping manner, which is actually quite
common case. For example, she can first make a text mining search and select
sample groups for network construction. Then she can calculate correlations
between some samples and select some of gene pairs for network construction. Then
she can upload his or her data for network construction. Also, she can give more
input parameters, for example, she may want to restrict the network construction to
a specific metabolic pathway.

2.4.4 Network Visualization

The output of network construction is presented in such formats that the network
can be exported to megNet’s network client or to Cytoscape [3] for visualization.
The megNet network is presented in an XML document for which we have defined
an XML schema. Briefly, this schema comprises a node element for each node
containing its unique identifier and metadata, and an edge element for each edge
containing its identifier, metadata, and the identifiers of connected nodes. The
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Fig. 5.5 Bar visualization in
network client. The upper
node is a compound and the
lower node is a protein. One
bar inside the compound node
corresponds to a
concentration of a lipid
molecular species mapped to
the compound. One bar inside
a protein node corresponds to
expression of the encoding
genes in a specific condition.
The up-pointing bar means
that concentration or gene
expression in case is higher
than in control group, and the
down-pointing bar means the
opposite case

Cytoscape network is presented in simple identifier format (SIF). Briefly, this format
is a flat file format in which one row corresponds to one edge; it comprises identifiers
of connected nodes and interaction types. Also, there are separate flat files for edge
and node attributes (e.g., colors and shapes). In megNet’s input client, these outputs
are presented in text boxes, so that the XML document for megNet’s network client
is in one text box, the SIF format for Cytoscape is in another text box, and each
attribute type for Cytoscape is in a separate text box. In order to visualize the
network in Cytoscape or in megNet’s network client, the user should copy-paste
these outputs to text files. And then in megNet’s network client she should import
the XML document. Or in Cytoscape first import the SIF format, and then import
each edge and node type separately.

The idea is that the user can visualize networks in Cytoscape and megNet’s
network client in a complementary manner; in some aspects, megNet’s network
client outweighs Cytoscape and vice versa. Most obviously, in megNet’s network
client, we use third dimension for some features which enables elegant visualization,
whereas Cytoscape is a large open source community effort which enables contin-
uously growing amount of new features augmented with many useful plugins. One
very useful feature that the third dimension brings to the network client is that it is
possible to visualize bars inside nodes. As described in the “Network construction”
section, the user can enrich gene expression data to genes and enzymes, and
lipidomics data to compounds. This data is manifested as bars inside gene, protein,
and compound nodes as illustrated in Fig. 5.5.
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2.4.5 Context-Based Mapping

The purpose of the context based mapping is to enable investigating how the
biological entities are related to each other in a specific biological context. We
have implemented three different mapping methods: Sammon’s non-linear mapping
(NLM) [30], curvilinear component analysis (CCA) [31], and curvilinear distance
analysis (CDA) [32]. We have described these methods in detail in our previous
publication [2]. Briefly, the idea is that we non-linearly map the internal distances of
nodes into two dimensions. All of these methods try to minimize iteratively discrep-
ancy between the original high-dimensional distance space and two-dimensional
mapping space. In NLM, the mapping is calculated based on a steepest gradient
descent, whereas in CCA and CDA it is based on a stochastic gradient descent. In
the network client, the user can assign weights to the edges in an appropriate way.
For example, if she is interested in a specific biological process, she can assign
low weights to edges that are close to the corresponding GO concept node [21].
Then the middle tier initializes the mapping by calculating the internal distances
of nodes based on the assigned weights, and returns an initialized mapping as
two-dimensional coordinates along with the mapping discrepancy to the network
client. The network client visualizes the initialized mapping in the user interface.
After that the user can send an iteration request to the middle tier, and then the
middle tier iterates the mapping, and sends new mapping coordinates along with the
discrepancy to the network client. The user can keep iterating the mapping as long
as she feels that the mapping discrepancy is small enough.

3 Results

In this section, we show how megNet can be used to make novel findings by studying
biological networks in context of medical image data from Lamin A/C mutation
patients. In Sect. 3.1, we describe the biological and medical image data that we
use in this case study. In Sect. 3.2, we show two examples that demonstrate how we
can find associations between biological network and medical images via multilevel
cross-talk. In Sect. 3.3, we perform a context based mapping to show how biological
entities are related to each other in context of medical images.

3.1 Biological and Medical Image Data for Lamin
A/C Case Study

We have previously derived magnetic resonance (MR) image parameters from
Lamin A/C mutation patients [5]. In a follow-up study, we performed lipidomics
analysis in the same patient, and developed a statistical model to find associations
between the lipidomics profiles and medical image parameters [6]. In order to study
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how these associations are manifested in biological networks, in this chapter we use
megNet to construct biological networks in context of the lipidomics profiles.

More specifically, we first mapped lipid molecular species to their generic lipid
names on glycerophospho-, glycero-, and sphingolipid metabolic pathways from
KEGG [11]. Exact mappings are presented in Tables 5.1–5.3. Then we uploaded
this data into megNet’s input client, and chose all other databases in which these
pathways are involved (OAT [4], BioGrid [14], MINT [16], DIP [15], GO [21],
and EMBL [23]) for network construction in human. As a result, we thus obtained
a network in which these pathways are integrated with interactions from these
databases (Fig. 5.6). In this network, there are bars inside compound nodes, so
that one bar represents fold change between concentrations of Lamin A/C mutation
carriers and their non-mutated controls in one lipid molecular species.

3.2 Multilevel Cross-talk Examples

We can see from Fig. 5.6 that interestingly between many metabolic reactions there
is quite dense cross-talk via many interaction levels. An interesting cross-talk exam-
ple is visualized in Fig. 5.7. In this figure, arachidonate 12-lipoxygenase interacts
with two isoforms of phospholipase A2 [33]. One of these isoforms catalyzes a
metabolic reaction in which 1-acyl-sn-glycero-3-phosphocholine is a product, and
the other isoform catalyzes a reaction in which phosphatidylethanolamine (PE)
is a substrate. Many lysophosphocholine lipid molecular species (LysoPCs) are
mapped to the former lipid, and many phosphatidylethanolamine lipid molecular
species (PEs) to the latter one. In our previous case study [6], PEs were correlated
quite strongly with image parameters, whereas there was a LysoPC in which the
correlation was not so obvious. Perhaps the arachidonate 12-lipoxygenase has some
role in these correlations, for example, it may via signaling regulate activities of
the phospholipases. And interestingly there is some evidence that lipoxygenases
have important roles in cardiovascular diseases [34].

Another interesting cross-talk example is visualized in Fig. 5.8. This figure
comprises glycerolipid metabolism in which two isoforms of endothelial lipase
break down 1,2-diacyl-sn-glycerol (DAG) and triacylglycerol (TAG) into free fatty
acids. Both of these lipases are involved in cholesterol transport and homeostasis
biological processes. This is interesting since in our previous case study [6]
triglyceride lipid molecular species (TGs) were associated with increased end-
diastolic wall thickness. This may be a sign that cholesterol metabolism is associated
with the increased end-diastolic wall thickness via the TG. Also, interestingly
according to the OAT text mining system [4], the endothelial lipases are associated
with diabetes prevention [35] and maintenance of cell homoeostasis [36] in type
1 diabetes mouse models. This may be a sign that the end-diastolic wall thickness
prevents type 1 diabetes and it may have an important role in the maintenance of
cell homeostasis in diabetes development.
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Table 5.1 Mapping lipid molecular species (the second column) to generic lipids (the first
column) on glycerophospholipid metabolic pathway

C00157 Phosphatidylcholine PC(34:5), PC(36:6), PC(38:7), PC(36:5),
PC(28:0), PC(40:8),
PC(30:1), PC(36:7), PC(36:7),
PC(42:9), PC(32:2) (sodiated),
PC(32:2), PC(38:6) (sodiated),
PC(38:6), PC(36:5), PC(38:8),
PC(40:7), PC(36:4),
PC(36:4)(sodiated), PC(34:3),
PC(sodiated), PC(38:6)(sodiated),
PC(38:6), PC(40:7),
PC(36:6), PC(40:6), PC(36:4),
PC(38:7), PC(38:5), PC(40:8),
PC(34:3), PC(32:1), PC(32:1)
(sodiated), PC(36:3), PC(40:5),
PC(34:2), PC(34:3), PC(36:5),
PC(38:5), PC(40:8), PC(36:3),
PC(36:3) (sodiated), PC(38:7),
PC(40:6), PC(42:9), PC(40:5),
PC(38:4) (sodiated), PC(38:4),
PC(40:8), PC(30:1), PC(42:8),
PC(32:3), PC(38:3) (sodiated),
PC(38:3), PC(38:4) (sodiated),
PC(38:4), PC(34:3), PC(36:4),
GPCho(32:0), PC(34:1),
PC(36:2), PC(36:2) (sodiated),
PC(38:6), PC(40:5), PC(40:7),
PC(34:3), PC(38:3) (sodiated),
PC(38:3), PC(38:6) (sodiated),
PC(38:6), PC(34:2) (sodiated),
PC(34:2), PC(40:7), PC(32:0),
PC(36:1), PC(34:2), PC(38:2)
(sodiated), PC(38:2), PC(40:4),
PC(32:0), PC(34:2),
PC(34:2)(sodiated), PC(36:0),
PC(38:0), PC(34:0)

C00350 Phosphatidylethanolamine PE(34:1), PE(34:0), PE(34:0),
PE(36:0), PE(36:1), PE(36:2),
PE(36:3), PE(36:3), PE(36:3),
PE(36:4), PE(36:4), PE(38:0),
PE(38:0), PE(38:1), PE(38:2),
PE(38:3), PE(38:3), PE(38:4),
PE(40:1), PE(40:2), PE(40:3),
PE(40:4), PE(40:5), PE(40:6),
PE(42:1), PE(42:8), PE(42:9),
PE(44:10), PE(46:5), PE(44:11),
PE(44:5), PE(44:7), PE(48:10),
PE(48:8), PE(48:9), PE(48:9)

(continued)
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Table 5.1 (continued)

C00641 1,2-Diacylglycerol DAG(34:6), DAG(36:2),
DAG(36:7), DAG(40:8)

C04230 1-Acyl-sn-glycero-3-phosphocholine LysoPC(20:5), LysoPC(16:1),
LysoPC(22:6), LysoPC(16:1),
LysoPC(20:4), LysoPC(18:2),
LysoPC(18:2) (sodiated),
LysoPC(22:6), LysoPC(20:4),
LysoPC(18:2), LysoPC(18:2) (sodiated),

LysoPC(18:3),
LysoPC(16:0), LysoPC(20:3),
LysoPC(16:0), LysoPC(16:0) (sodiated),

LysoPC(18:1),
LysoPC(18:1) (sodiated),
LysoPC(20:3), LysoPC(18:1),
LysoPC(20:4) LysoPC(18:1),
LysoPC(18:0), LysoPC(18:0) (sodiated),

LysoPC(18:0) (sodiated),
LysoPC(18:0), LysoPC(20:1),
LysoPC(18:0)

C04233 2-Acyl-sn-glycero-3-phosphocholine LysoPC(20:5), LysoPC(16:1),
LysoPC(22:6), LysoPC(16:1),
LysoPC(20:4), LysoPC(18:2),
LysoPC(18:2) (sodiated),
LysoPC(22:6), LysoPC(20:4),
LysoPC(18:2), LysoPC(18:2) (sodiated),

LysoPC(18:3),
LysoPC(16:0), LysoPC(20:3),
LysoPC(16:0), LysoPC(16:0) (sodiated),

LysoPC(18:1),
LysoPC(18:1) (sodiated),
LysoPC(20:3), LysoPC(18:1),
LysoPC(20:4) LysoPC(18:1),
LysoPC(18:0), LysoPC(18:0) (sodiated),

LysoPC(18:0) (sodiated),
LysoPC(18:0), LysoPC(20:1),
LysoPC(18:0)

C04438 1-Acyl-sn-glycero-3-phosphoethanolamine LysoPE(18:0), LysoPE(18:2),
LysoPE(20:1), LysoPE(22:0),
LysoPE(22:3), LysoPE(22:3)

C05973 2-Acyl-sn-glycero-3-phosphoethanolamine LysoPE(18:0), LysoPE(18:2),
LysoPE(20:1), LysoPE(22:0),
LysoPE(22:3), LysoPE(22:3)
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Table 5.2 Mapping lipid
molecular species (the second
column) to generic lipids (the
first column) on glycerolipid
metabolic pathway

C00641 1,2-Diacylglycerol DAG(34:6), DAG(36:2),
DAG(36:7), DAG(40:8)

C00422 Triacylglycerol TAG(33:0), TAG(33:0),
TAG(36:0), TAG(38:0),
TAG(40:0), TAG(44:0),
TAG(44:1), TAG(44:2),
TAG(46:0), TAG(46:1),
TAG(46:2), TAG(47:0),
TAG(47:1), TAG(47:2),
TAG(48:0), TAG(48:1),
TAG(48:1), TAG(48:2),
TAG(48:3), TAG(48:4),
TAG(48:4), TAG(48:4),
TAG(48:5), TAG(48:5),
TAG(49:0), TAG(49:1),
TAG(49:2), TAG(49:3),
TAG(49:4), TAG(49:7),
TAG(49:9), TAG(50:0),
TAG(50:1), TAG(50:2)
TAG(50:3), TAG(50:3),
TAG(50:4), TAG(50:5),
TAG(50:9), TAG(51:1),
TAG(51:2), TAG(51:2),
TAG(51:3) TAG(51:4),
TAG(52:0), TAG(52:1),
TAG(52:2), TAG(52:3),
TAG(52:4), TAG(52:5),
TAG(52:5), TAG(52:6),
TAG(52:6), TAG(52:7),
TAG(53:10), TAG(53:2),
TAG(53:3), TAG(53:4),
TAG(53:4), TAG(53:5),
TAG(53:5), TAG(53:6),
TAG(53:6), TAG(53:7),
TAG(53:8), TAG(54:1),
TAG(54:2), TAG(54:3),
TAG(54:3), TAG(54:4),
TAG(54:4), TAG(54:5),
TAG(54:5), TAG(54:5),
TAG(54:6), TAG(54:6),
TAG(54:7), TAG(54:7),
TAG(54:8), TAG(54:8),
TAG(54:8), TAG(55:3),
TAG(55:4), TAG(55:5),
TAG(55:6), TAG(56:10),

(continued)
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Table 5.2 (continued) TAG(56:2), TAG(56:2),
TAG(56:3), TAG(56:3),
TAG(56:4), TAG(56:4),
TAG(56:4), TAG(56:5),
TAG(56:5), TAG(56:5),
TAG(56:6), TAG(56:6),
TAG(56:6), TAG(56:6),
TAG(56:7), TAG(56:7),
TAG(56:8), TAG(56:8),
TAG(56:9), TAG(57:10),
TAG(57:11), TAG(57:8),
TAG(58:10) TAG(58:13),
TAG(58:3), TAG(58:5),
TAG(58:5), TAG(58:5),
TAG(58:6), TAG(58:6),
TAG(58:8), TAG(58:8),
TAG(58:9), TAG(59:12),
TAG(60:10), TAG(60:11)

3.3 Context Based Mapping Example

In the previous section, we made a tentative observation that cholesterol metabolism
may explain why TGs are associated with increased end-diastolic wall thickness. In
order to gain our understanding of the role of cholesterol metabolism in this context,
we performed a mapping in context of cholesterol metabolism. More specifically,
we assigned low weights (D0.01) to the incident edges of the biological processes
in which the phospholipases were involved in the previous section; cholesterol
homeostasis (GO:0042632), reserve cholesterol transport (GO:0043691), positive
regulation of cholesterol transport (GO:0032376), and we assigned one as weight
to the other edges. Then we performed the CDA mapping [32] using 100 iterations.
In the mapping results, we took a zoom from the neighborhood of TG (Fig. 5.9).
We can see that for example an ethanolamine kinase 1 and a receptor signaling
biological process are in this figure. Maybe this is a sign that there are some
receptor signaling cascades that stimulate the TG to participate in cholesterol
metabolism and in turn associate it with the increased end-diastolic wall thickness.
Also, interestingly these entities are close to a neuron differentiation biological
process, so the stimulating signaling could be neurological. Another interesting
observation is that the regulation of macrophage activation is quite close to the TG.
Interestingly there has been discussion that macrophages may play critical role in
the pathogenesis of type 1 diabetes [37]. Maybe this is related to the observation in
the previous section stating that the end-diastolic wall thickness might prevent type
1 diabetes.
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Table 5.3 Mapping lipid
molecular species (the second
column) to generic lipids (the
first column) on sphingolipid
metabolic pathway

C00195 N -Acylsphingosine Cer(d18:1/22:0),
Cer(d18:1/22:1),
Cer(d18:1/23:0),
Cer(d18:1/24:1)

C00550 Sphingomyelin SM(d18:1/14:0),
SM(d18:1/16:1) (sodiated),
SM(d18:1/16:1),
SM(d18:1/16:1),
SM(d18:1/15:0),
SM(d18:1/17:1),
SM(d18:1/16:0),
SM(d18:1/16:0) (sodiated),
SM(d18:1/18:1) (sodiated),
SM(d18:1/18:1),
SM(d18:0/16:0),
SM(d18:1/18:2),
SM(d18:1/16:0),
SM(d18:1/18:0) (sodiated),
SM(d18:1/18:0),
SM(d18:0/22:5),
SM(d18:0/18:0),
SM(d18:1/18:4),
SM(d18:1/18:0),
SM(d18:1/24:4),
SM(d18:1/18:0),
SM(d18:1/22:5).
SM(d18:1/23:1).
SM(d18:1/21:0),
SM(d18:1/21:0) (sodiated),
SM(d18:1/11:0),
SM(d18:1/22:1),
SM(d18:1/23:3),
SM(d18:1/24:1),
SM(d18:1/24:2),
SM(d18:1/22:0),
SM(d18:1/22:0) (sodiated),
SM(d18:1/21:0),
SM(d18:1/23:1),
SM(d18:1/24:0)
SM(d18:1/25:1),
SM(d18:1/23:0),
SM(d18:1/23:1)
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Fig. 5.6 Lipid molecular species metabolic pathway network integrated with other types of
interactions. The dark edges represent metabolic pathways. The light edges represent other types
of interactions that make cross-talk between metabolic reactions

4 Discussion

In this chapter, we described our system for integrating and visualizing heteroge-
neous biological data reflecting to its current status. We showed its practical utility
in the context of medical images. We first integrated lipidomics data from our
laboratory into a biological network constructed from many data sources, including
relationships from our own text mining system. From this network, we showed
two interesting examples in which cross-talk via multi-level interaction types could
explain associations between lipidomics and medical image data. Also, we showed
a context based mapping example in which we studied how biological entities are
related to each other in medical context leading to interesting observations. We
believe these examples show that our system has potentiality for making novel
medical findings in biological network level, though it is good to keep in mind that
the findings made in this chapter are very preliminary and they naturally require
more validation.

In parallel, we have developed a fingerprint analysis tool [5] that finds statistical
differences between two patients groups (e.g., disease versus healthy) in MR image
and biological measurements (i.e., gene expression or metabolic profiles). Currently
this tool is implemented as a separate web application, so it is not directly integrated
with megNet. However, the user can handle data in integrative manner, since some
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Fig. 5.7 Cross-talk between metabolic reactions. The dark lines represent metabolic connection
between metabolites and enzymes. The light lines represent protein–protein interactions. In
brackets there are unique identifiers of biological entities; KEGG compound identifiers [11] for
metabolites, and UniProt identifiers [22] and EC (Enzyme Commission) numbers (http://www.
chem.qmul.ac.uk/iubmb/enzyme/) for proteins

gene expression profiles and images are annotated with common identifiers called
unified medical language system (UMLS) annotations [24]. Also, she can integrate
non-annotated data in a heuristic way by using the keyword search in megNet’s
input client. Also, in the future we may enhance the integration, for example, by
creating hyperlinks between megNet’s input client and the fingerprint analysis tool.

In addition, megNet is scalable and may incorporate new databases. For example,
we have incorporated metabolic profiles from our laboratory into databases, and we
have large clinical phenotype data repositories, for example, from cardiovascular
diseases, diabetes, and nutritional intervention studies. Our plan is to create a model
that enables using this data as part of megNet.

At the moment, megNet is not publicly available, since Tamino’s and Oracle’s
database licenses that we have do not allow unlimited number of users. However,
we are considering making parts of megNet publicly available. For example,
network construction and mapping methods from megNet’s middle tier could be
implemented as an open source Cytoscape plugin, so they would be freely available
for the systems biology community.

http://www.chem.qmul.ac.uk/iubmb/enzyme/
http://www.chem.qmul.ac.uk/iubmb/enzyme/
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Fig. 5.8 Cross-talk between endothelial lipases. The light edges are metabolic reactions that the
endothelial lipases catalyze. The dark edges are OAT text mining associations and GO biological
process relationships. The light edges are GO biological relationships [21] and OAT text mining
associations [4]. In brackets there are unique identifiers of biological entities; GO terms for GO
concepts [21], KEGG compound identifiers [11] for metabolites, and UniProt identifiers [22] and
EC numbers (http://www.chem.qmul.ac.uk/iubmb/enzyme/) for proteins

The researchers have used megNet as part of practical biological applications.
As a drug target discovery example, megNet was used to construct an integrated
metabolic, protein–protein interaction and signal transduction network in non-obese
diabetic mouse [38]. Then, the enriched molecular path detection method (EMPath)
was used to detect type 1 diabetes specific paths in this network. The results were
very interesting in terms of medical biology; ether phospholipid biosynthesis was
down-regulated in pre-state of type 1 diabetes, which was consistent with recent
findings in clinical level. As an industrial biotechnology example, megNet was
applied in a case study in which dynamical topology of modules was studied
in an integrated yeast network [39]. MegNet was first applied to construct an
integrated metabolic, protein–protein interaction and transcriptional regulatory
network in yeast. Then, the topological enrichment analysis of function subnetworks
(TEAFS) method was used to rank modules of the integrated network based on
their topological measures under time course of a gene expression dataset from
oxidative stress. The modules related to the biosynthesis of toxic lipids were found
to be modulated during this time course. These results were further validated by

http://www.chem.qmul.ac.uk/iubmb/enzyme/


116 E. Lindfors et al.

Triacylglycerol
(C00422)

Activation of protein
kinase C activity by
G-protein coupled
receptor protein
signalling pathway
(GO:0007205)

Regulation of
macrophage
activation
(GO:0043030)

Neuron
differentiation
(GO:0030182)

Ethanolamine
kinase 1
(BC006111)

Fig. 5.9 Mapping results in context of cholesterol metabolism. A zoom from the neighborhood of
triacylglycerol

metabolomic analysis by showing that the toxic lipids were accumulated during the
time course. These examples indicate that megNet has potential to be used in diverse
types of biological applications.
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Chapter 6
Evolution of the Cognitive Proteome:
From Static to Dynamic Network Models

J. Douglas Armstrong and Oksana Sorokina

Abstract Integrative analysis of the neuronal synapse proteome has uncovered an
evolutionarily conserved signalling complex that underpins the cognitive capabil-
ities of the brain. Highly dynamic, cell type specific and intricately regulated, the
synaptic proteome presents many challenges to systems biology approaches, yet this
is likely to be the best route to unlock a new generation of neuroscience research and
CNS drug development that society so urgently demands. Most systems biology
approaches today have focussed on exploiting protein–protein interaction data to
their fullest extent within static interaction models. These have revealed structure–
function relationships within the protein network, uncovered new candidate genes
for genetic studies and drug research and development and finally provided a means
to study the evolution of the system. The rapid maturation of medium and high-
throughput biochemical technologies means that dissecting the synapse proteome’s
dynamic complexity is fast becoming a reality. Here we look at these new challenges
and explore rule-based modelling as a basis for a new generation of synaptic models.

1 Introduction

Brains vary widely in their complexity from the simplest of organisms having a
few hundreds or thousands of interconnected cells to the massively complex human
brain with an estimated 1012 neurons with some 1015 connections between them
[30]. Systems analysis of brains requires researchers to consider the biology at
many different levels from molecular signalling complexes through to the networks
of neuronal connections both within the brain and beyond with external sensory
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Fig. 6.1 Multiple levels of complexity in the nervous system. Systems biology has to handle
multiple levels (left) of spatio-temporal complexity in the nervous system from molecular to
behaviour. While we focus on the molecular events at the post-synaptic density, we must always
bear in mind the other molecular signalling events pre-synaptically in the adjoining neurons and
elsewhere in the cell (right). Right panel image: “synaptic junction” is reproduced with kind
permission of Gary Carlson at gcarlson.com

and motor systems. Ultimately, a systems level approach needs to consider the
phenotype, or behaviour, of the animal, which in many cases occurs within a social
context (Fig. 6.1).

Although all these levels of organisation have a major role in brain function, it is
the molecular level at which there is the closest correlation to health. Both genetic
evidence and pharmacological basis of existing treatments provide strong evidence
for a general molecular basis for almost all human neurological disorders (although
environmental factors are also extremely important). However, the vast majority of
human brain disorders are very complex and the genetic association data points to
multiple molecular targets and pathways in most disorders [20]. This is backed up by
evidence that many of the most effective CNS drugs are actually fairly promiscuous
in their target specificity [3]. The scale of this problem cannot be underestimated:
take for example neurodegenerative diseases [54]. These disorders are seriously
disabling, chronic conditions that devastate individuals, their families and have
become an ever increasing burden on all societies. Combined neurological disorders
have accounted for the largest single cost of healthcare budgets in the developed
world for many years. When combined with secondary care costs, the burden to
the EU alone soared to an astronomical e160 billion in 2008 and is estimated in
excess of $600 billion globally per year. For many neurodegenerative diseases, the
molecular complexity is a problem but it is often regarded as manageable with small
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numbers of important, interacting proteins implicated in the disease mechanism
[34]. However for psychiatric disorders, which affect a significant proportion of the
population at some point during their lives, the molecular complexity is much higher
and gaining statistically significant genetic associations has required the largest of
studies [39]. Better understanding of the molecular mechanisms underpinning these
diseases is vital for the development of new treatments that are so urgently needed.

This presents a huge challenge to modern drug discovery, which is aimed at
the identification of validated targets upon which drug screening and design can
be based. How can we resolve disease mechanisms in such complex diseases?
Moreover, the very cell type we often need to target is in itself complex. Neurons
feature many connected compartments, each with their own proteome and often
also with their own translational machinery. Molecular systems biology approaches
provide the route, by which these diverse molecular targets and pathways can be
resolved into complex models [24]. Those models firstly capture the biology and can
then be used to make predictions that can help inform disease research, diagnoses
and onwards to drug discovery. Ultimately, we need to integrate molecular systems
models at neuronal synapses with cellular level models [47], through networks and
into brain function and disorder. Here we discuss progress towards the molecular
models of neuronal synapses with consideration of their evolutionary history, their
link to cognition in healthy individuals and their role in disease. Critically, we
examine where current models and methodologies have taken us, what we have
learned, what their limitations are and finally present a new modelling framework
that may help resolve some of the important issues with current methods.

2 Models of the Synaptic Proteome

Models of the synaptic proteome have largely been developed from proteomic
analysis of neural tissue with a focus on either the pre-synaptic machinery [7, 37]
or the post-synaptic density (PSD) [10, 28]. These studies have used a variety of
fractionation or immunoprecipitation-based approaches to isolate protein complexes
from brain tissue samples that are enriched for either pre- or post-synaptic proteins
or alternatively proteins closely linked with one or more key molecular baits.

Large-scale fractionation experiments are generally based on separating out the
synapses (synaptosomes) using careful centrifugation in a density gradient. This
approach has been particularly useful in obtaining a holistic view of what proteins
are found at the synapse with successful studies in both rodent [10, 28] and human
[2] brain samples. Pleasingly, the total number of proteins reported by these studies
appears to be slowing. Initially there was very little overlap between these studies
(approximately 35% reported by a comparison analysis performed by Collins et al.
[10]). While the number has increased dramatically in recent studies (mostly due
to increased sensitivity in mass spectrometry approaches), the overlap between
parallel studies has started to increase significantly. When combined and taking
into consideration the convergence of overlap, there is already evidence for some
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3,000 proteins at the synapse with a probable total in the vicinity of 4,000 or
so [6, 10, 41, 51, 52]. While these studies are based on mass spectroscopy-based
evidence from peptide fragments, the signatures obtained are mapped onto gene
models and so the numbers found in existing studies do not reflect any additional
complexity that may be provided by alternative transcripts.

While the purification and cell specificity are quite crude and there are clearly
technical issues with trying to identify low abundance proteins, these studies do
provide a useful initial parts list. Connecting these lists together to form the first
networks can be performed using a variety of approaches. In early modelling studies
[43], the quality of the pioneering yeast-2-hybrid interaction studies was felt to be
questionable and so literature-based approaches were adopted that used initial high-
throughput text mining to identify candidate publications that described protein–
protein interaction studies. These initial hits were then manually curated to ensure
the biochemistry evidence was robust and that the gene synonyms did indeed refer to
proteins of interest. In more recent studies [16], on-line protein–protein interaction
databases were more heavily used, but they still retained the manual curation step,
although more as a validation exercise. While the bulk of interactions in on-line
databases are now of high quality, there remain a small number of examples where
the evidence for interactions is very indirect, often based on co-expression of mRNA
that has leaked into the protein–protein interaction datasets.

Increasingly, high-throughput protein–protein interaction screening technologies
are getting more repeatable. Modern approaches feature extra, more accurate
controls to help minimize false-positives [42] and there are now related assays
in place that work much better with proteins that are, for example, membrane
associated [29]. As a result high-throughput screens are rapidly becoming more
comprehensive in their coverage, and use of these data to construct interaction
models is much more routine. An important advance is the improvement in data
provenance where it is now much easier to check exactly which sequence was used
to generate the interaction data point compared to the manual and often frustrating
process of digging through interactions in the literature where the quality of the
materials and methods section varies widely [22].

While synaptosome level proteomics provides us with a useful global framework
for developing synapse-signalling models, the majority of studies focus in on
specific identified complexes, which can be purified in a number of ways. The
most commonly used approach exploits naturally occurring antigens in the complex.
Proteins are carefully extracted from brain tissue samples (it should be recognized
that extracting membrane-associated protein complexes is a very specialist area) and
then complexes are pulled down using antibodies attached to beads or columns. The
samples are then washed and then finally the complex eluted for analysis. Affinity
to synthetic peptides has also been used extensively to purify NMDA/glutamate
receptors [28]. The principle here is that the C-terminal hexapeptide of the NR2B
(Grin2B) subunit of the NMDA receptor is the key part of the protein that interacts
with its major scaffolding protein PSD-95. Thus, the hexapeptide can be used to
pull down PSD-95 and its interactors. Pioneered in the rodent brain, it as now
also been applied to Drosophila brain tissues providing the first direct evolutionary
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comparison of the synaptic proteome [15]. Finally, there is a clear move towards
the use of transgenically inserted antigens that can function as highly effective
affinity tags. These are often combined with expression level markers and can be
inserted as synthetic, over expression constructs or alternatively inserted into the
endogenous gene, thus, retaining (as closely as possibly) the natural spatiotemporal
control of expression. The system (known as tap-tag) in mice has been used to
dissect protein complexes associated with PSD-95 in the brain [16] and provided
a useful counterpoint to the hexapeptide studies [28]. In Drosophila, the approach
taken to date has been (rather typically for the field) more stochastic with the use
of a randomly inserting mobile protein-traps that splice into the mRNA transcript
both expression markers (GFP variants) as well as high-affinity epitope tags (e.g.
STREP and Flag). Many proteins have been tagged this manner with expression
in various tissues covered [27, 44], including a specific screen for brain expression
patterns [32].

As mentioned above, comparable proteomic techniques have now been applied
to brains of multiple species, providing a window on the evolutionary origins of
synapses. There are two basic methods for evolutionary comparison, computational
and proteomic. Both approaches were employed by Emes et al. [15] who used
the rodent (mouse) post-synaptic density as a base for comparative bioinformatics.
This computational approach suggested that all vertebrate genomes had more or
less the full complement of genes to support a similar synaptic proteome whereas
invertebrate genomes could only account for roughly 50% of the molecular diversity.
They hypothesized that the synaptic complexity in the smaller invertebrate brain
was simpler. Further, some 20–25% of the complement of proteins required had
orthologues in unicellular organisms (that have no nervous systems), suggesting
neuronal signalling complexes evolved from cell surface receptors found in primi-
tive unicellular ancestors. Down lineages with nervous systems, gene duplication
would appear to account the increased molecular complexity and this is biased
towards the receptor and scaffold proteins, which show the largest increase in
numbers. The null hypothesis for the invertebrate brain is that their synapses are
actually equally complex but use a different complement of proteins that would,
therefore, be missed by an entirely one-sided bioinformatics approach. Emes et al.
[15] then tested this hypothesis by performing proteomics analysis in an invertebrate
brain (Drosophila) and confirmed that the synaptic complexity was indeed reduced
(by around 50%) in comparison with the mouse studies.

The reduced molecular diversity observed in the smaller invertebrate brain in
comparison with the larger vertebrate brain with increased molecular complexity is
an appealing story. However, as is often the case, it is much more complex when
one examines the evidence in more detail. Core to the complex (at least in rodents)
is the interaction between the NMDA receptor and the four membrane associated
guanylate kinase (MAGUK) proteins. Invertebrates have a single orthologue for
these four proteins and this can be presented a typical example of where gene family
expansion accounts for much of the increased molecular diversity observed in the
rodent synapse relative to the fly (i.e. 4� complexity in the mammal). Yet looking
at the gene models for these proteins, one finds that the single Drosophila gene
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(Dlg) is understood to give rise to at least 15 known polypeptides [25]. Combined,
the four mammalian genes account for up to 26 potential transcripts substantially
reducing the gap in complexity when one converts the gene models into potential
proteins [26]. The potential for next generation sequencing to dissect gene models is
particularly exciting and in a few years we can expect a much clearer picture about
the structure and spatiotemporal expression of splice variants in the brain [21].

Current datasets from proteomics studies do not routinely provide clear in-
dications of exactly which of the potential protein variants are present in any
specific sample. These data will become more readily available as the proteomic
technologies advance. Thus, neither the current models of the PSD nor the wet-
lab approaches capture this issue satisfactorily at present. We need to develop both
to fully understand what the real molecular differences are between these vastly
different brains.

3 Capturing Dynamic Complexity

The brain and its underpinning neuronal and molecular structures are highly
dynamic (plastic) in nature and this feature is vital to its function – the site where
information is processed, dissected and stored away for the purpose of modulating
the behaviour of the animal. Computational neuroscience, which looks at modelling
neuronal processes at the cellular level has a long and distinguished history
and is now well-established as a strong complementary partner to experimental
neuroscience methods [8]. At this level, the dynamics of information flow and
modulation are modelled carefully, compared to physiological recordings and used
to generate new hypotheses and inform experimental studies as well as a framework
for capturing domain understanding [14]. However, little of this has, to date,
extended much below the cellular compartment level with models of receptor
effects on ion conductance, etc. largely dissociated from the underlying molecular
machinery [19].

One thing we certainly do know about molecular complexes at the synapse
is that they are not static. Therefore, an obvious question emerges – what is the
point in producing static models of an inherently dynamic structure? Obviously, it
has actually already proven itself as a useful framework for inferring the function
of less well-annotated genes (guilt by association) and in proposing new targets
for biological analysis [17]. However, it is clear that to gain a more realistic
understanding of how the synapse proteome works and how its dynamics are
involved in cognitive processes (and disorders), at some point one must consider
its dynamics, how it interacts with the rest of the cellular environment and how
information flow (activity) affects its structure and subsequent responses.

What dynamics do we actually have to consider? Perhaps the simplest dynamic
consideration is that most current proteomic methods provide an average peptide
list gathered from many different cell types. In any single cell (or synapse), we
expect that only a subset of the possible molecules is present. It has already been
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shown that the expression of many molecules, typically of more recent evolutionary
origin and most closely related to receptor specificity, shows the highest variability
of expression with brain region [15]. Knowles-Barley et al. [32] also demonstrated
that in certain cases proteins that can be found in synaptic proteomes and are known
to interact biochemically in other tissues are not actually co-expressed in neurons.

Through increasing sensitivity in mass spec machines, the availability of better,
high-resolution co-localized expression data and combined with mRNA expression
information from identified neurons, we are rapidly approaching the time when
we can start to dissect the global protein interaction framework by cell types. The
potential for new insights through integration of proteomics with differential mRNA
expression was demonstrated in mechanistic models of Alzheimer’s that combined
both [40]. Clearly these are important differences and the presence/absence of
molecules in different neurons will have large impacts on the functional pathways
each synapse can support. Binary presence or absence can actually be handled
in the static networks but this does not capture the whole story. The relative
abundance of these proteins is not binary rather on a wide spectrum and with new
quantitative proteomics tools rapidly developing, the first datasets are starting to
emerge. The combined use of several methods, namely, the electron microscopy
with quantitative immunoblotting [5], quantitative MS [6] and green fluorescent
protein (GFP)-based quantitative fluorescence calibration [50] uncovered quanti-
tative information on the stoichiometric ratio of the main proteins that comprise the
PSD [48].

Beyond quantitative proteomics, there are also complex regulatory mechanisms
at play that are currently not well-served by existing protein interaction model
approaches. Important examples include phosphodynamics, which regulates protein
activity, protein binding and potentially cleavage sites within the complex as a
whole. Local translation and RNA binding proteins are located at the synapse
[36,53] and can induce novel protein production at the synapse independently of the
nucleus. Finally, there is of course the pattern of synapse–nucleus communication,
with synapse level events known to regulate nucleus level transcription (and one
would assume splicing) [9].

In the early days of protein interaction modelling in neuroscience, it was fairly
obvious that these limiting factors would emerge but there were simply too few data
to constrain models with too few practical methods to test any model generated in a
realistic timeframe. Some notable exceptions do exist with high-quality dynamic
models of some signalling pathways that are used widely by biological cells
(not neuronal specific) and where extensive data and validation are more feasible
(e.g. MAP kinase pathway models [31, 45]). However, with rapidly maturing
technologies enabling data capture at all these levels (SILAC, Y2H, Y3H, etc.)
[46, 56, 57], in the imminent future, we clearly need to move towards a modelling
framework that is fit for purpose. We need to balance flexibility and descriptive
power with combinatorial complexity, especially since in the first instance many
parameters will need to be estimated or sampled. In fact, given the scale of the
problem, models may be able to highlight the most important parameters for initial
wet-lab measurement or validation.
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4 Rule-based Modelling

With these challenges in mind, we surveyed a range of modelling frameworks
used in system biology. The correct balance of computational tractability with
increased descriptive power for our purposes appears to be well-met by a relatively
recent modelling approach known as rule-based modelling (in this instance the
kappa framework) [11, 12, 23, 33]. This provides a relatively simple syntax to
describe protein interactions and their properties and dependencies. Each model
component can be formalized as an agent, with binding sites (binding domains
and motifs), which in turn are subjected to modifications/states (phosphorylation,
ubiquitination, etc.) [33]. Each protein–protein interaction can be formalized as a
rule, which includes only the information that is relevant for the given interaction
(particular domain in particular state) and omits all the irrelevant information (other
domains and states) (Fig. 6.2). In other words, it can capture not only the binary
interaction logic but also the new parameters we need to include such as binding site
data, affinities, effect of post-translational modification (e.g. phosphorylation state),
competitive binding and protein concentrations. Notably, the design of these rule-
based approaches acknowledges computational complexity and allows for generic
rules to be defined that encompass a class of interactions rather than forcing every
one to be treated (and computationally optimized) independently.

In the past five years, several methodologies for rule-based modelling have
been developed: StochSim, MCell, Smoldyn and ChemCell, BioNetGen (BNGL)
and kappa language [1, 11, 18, 23, 38]. Each language implements its own specific
spectrum of features based on practically the same principles. The rule-based
approach was successfully implemented in the set of receptor signalling models,
each designed with different rule-based techniques. This includes Tar-receptor–
mediated hemotaxis, Fc©RI- and TCR (T-cell receptor)-mediated responses in
immunoreactivity, GPCR (G-protein coupled receptors)-signalling and many others
[4,23,35,55]. The main advantage of all rule-based techniques is that the calculation
efficiency does not depend upon the size of the network implied by the set of
rules. That makes possible simulating the formation of the multi-subunit signalling
complex simultaneously with the receptor-mediated phosphorylation dynamics.

Most previous examples of rule-based models were applied to dynamic mod-
elling of specific signalling cascades. However, kappa formalism was used already
for theoretical analysis of “liquidity” of the protein agglomerate at equilibrium
[13]. Following this approach, we took the first steps towards quantitative model
development by examining the steady states that are reachable by the system rather
than on the detailed dynamics of transition processes. The analysis of the topological
properties of final complex is, therefore, a natural and step-wise extension of the
topology analysis of original PPI network models but which now considers protein
abundance and interaction affinities.

The modelling framework is still inherently graph based (Fig. 6.3) and, therefore,
we can use pre-existing interaction data and visualization methods to jump-start the
activity. With the addition of known or estimated parameters, rule-based systems
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Fig. 6.2 Rule examples with different levels of contextualization. Depending on reaction knowl-
edge and modelling purpose, the binding could be modelled as unconditional (a) or depending
on specific conditions (b and c). Rule A: PSD95(NH2), PSD95(NH2) ! PSD95(NH2!0)PSD95
(NH2!0). This is the most basic type of the rule, used most often in the model. Two molecules
of PSD95 make a dimer irrespective of the states of any other domains of PSD95. Therefore, this
rule covers all the possibilities, including the more specific cases B and C. Rule B: PSD95(NH2,
PDZ1! ), PSD95(NH2, PDZ2! )! PSD95(NH2!0, PDZ! ), PSD95 (NH2!0, PDZ2! ). This rule
adds constrains: PSD95 molecules have to be bound through their PDZ1/PDZ2 domains to bind
each other. ! means that the identity of the binding partner is not specified. Rule C: PSD95(NH2,
PDZ1!0), NR2(c!0), PSD95(NH2, PDZ2!1), NOS(PDZ!1)! PSD95(NH2!2, PDZ!0), NR2(c!0),
PSD95(NH2!2, PDZ2!1), NOS(PDZ!1). This example contains the most specific constrains: only
those molecules of PSD95 can bind each other that are already bound through their PDZ1/PDZ2
domains to C-terminus of NR2 receptor molecule and PDZ domain of NOS

can then be simulated using either deterministic (ODE) or, more often, stochastic
methods. That approach allows us to test parameter ranges and the effects these have
on models that can be supported. We can also extend this and perform sensitivity
analysis on individual parameters to measure how influential each is on the global
network architecture.
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Fig. 6.3 Panel a shows a typical static PPI network model where each molecular species is
represented a single time and is fully connected with its interaction partners. This specific example
is a simplified interaction network containing the core molecules of the NMDA receptor in the post-
synaptic density. Panel b shows the result of a rule-based model simulation of the same network
in Panel a. In this example, the PDZ-domain containing scaffold proteins are black, the receptor
molecules are in white and all other molecule types are in grey
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5 A Kappa Model of the Post-synaptic Density

As a proof of concept, we recently engineered a kappa model of a core set of
proteins from the PSD (Fig. 6.3, for details, see [49]). In summary, we selected
54 key proteins isolated in a range of proteomic studies of the PSD and for
which we have at least a general understanding of the role they are likely to
play in synaptic mechanics. These include key classes of molecule from the cell
membrane receptors through scaffolding proteins, in particular, the MAGUKs,
GTPases, kinases, phosphatases and structural proteins.

The 54 proteins in the model would require �150 reversible rules (e.g. Fig. 6.2)
to describe their interactions with a total of�300 parameters that require definition.
However, taking into account that although functionally different, proteins of PSD
are generally enriched with several classes of domain, which comprise comple-
mentary interaction pairs, the multiple interactions within PSD could be divided
into subclasses according to this feature. Rule decontextualisation, then, allows us
to generalize the interaction logic, so that we can define a single parameter for
entire subclass of domain interactions within the complex, such as the common
interactions between PDZ domains of the MAGUKs and the C-terminal domains
of the NMDA receptor 2b subunit. Therefore, the number of parameters could
be substantially reduced (to 84 rate constants in the case of our model). The
model comprises association and dissociation rules for 54 agents (domain–domain
interactions), drawn from the literature.

‘DLG GKAP0DLG.GK/;GKAP.GKBD/!DLG.GK1Š1/;

GKAP.GKBDŠ1/@k20 (6.1)

‘DLG GKAP diss0DLG.GKŠ1/;GKAP.GKBDŠ1/!DLG.GK/;

GKAP.GKBD/@k 20 (6.2)

The example rule above, in kappa syntax rules, describes the reactions for
association (6.1) and dissociation (6.2) for members of MAGUKS/DLG family of
proteins with their interactor GKAP. Here, the association and dissociation happen
via GK (guanylate kinase) and GKBD (guanylate kinase binding domain) domains,
where the rate of forward reaction is k20 and the rate of backward reaction is
k 20. In accordance with above, the pair of constants k20/k 20 could be substituted
not only for all 4 PSD-95 family members but also for other model agents that
carry GK domain. Therefore, list of rules formulated for specific subclasses of
domain–domain interactions could be easily applied to any other protein–protein
interaction network, which is based on the same principle domain association. The
rule could include more or less context, depending on our knowledge of protein–
protein interaction and type of the model (Fig. 6.3).

Stochastic simulation then gives an indication of the capacity of the model PSD
to generate complexes of different size and composition when system attains the
steady state (Fig. 6.3). The stability of these complexes is directly influenced by
the parameter values, e.g. by dissociation constant .Kd/, and we can examine these
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effects. The numerical analysis of the relative steady state distribution of protein
complexes and their sizes allows comparison of the molecular structure of the PSD
model under different perturbations. Importantly, we can vary protein stoichiometry
and obtain different compositions of protein agglomerations. For example, we can
now easily simulate a knockout phenotype for each model element and look how
this affects the structure and the size of the protein complexes in the equilibrium.
The example of PSD95 mutant presented in [49] shows that changing the initial
concentration of PSD95 from 300 copies to 0 significantly reduces the size of
the average complex (from 300 molecules to 80) in the relative steady state and
decreases the number of protein types in the average complex from 40 to 15. This
kind of analysis gives new insights for future linking of physiological phenomena
to underlying molecular restructuring mechanisms.

For any first model of this sort, we actually have access to very few laboratory
verified parameters. Therefore, we can provide biologically relevant constraints to
the model and use quasi-random sampling methods to pinpoint parameter values
that tend to satisfy these constrains. We can further use sensitivity testing to rank
order the influence each parameter has over the global architecture. For this first
PSD model, we looked for parameter sets that produced diverse complexes with
molecular weight ranges tending towards the known size of the rodent post-synaptic
density [48].

The first (proof of concept) model does not include protein/domain cooperatively
effects and only minimally touches upon the dynamic signalling connected with
post-translational modifications. However, it has enough predictable power for
interrogating the effects of different perturbations, such as change of protein
concentration (mutants) and domain availability and affinity (introducing of splice
variants and drugs), on the structural properties of the system.

6 Conclusions

“Each generation imagines itself to be more intelligent that the one that went before
it, and wiser than the one that comes after it.” George Orwell.

In some respects, this captures the nature of the research we are faced with.
As our understanding of the synaptic proteome grows, we require more complex
methods to faithfully reproduce the biology within. We are clearly entering a
step-change both in terms of biochemical analysis and model complexity for the
synaptic proteome. We do not claim that the rule-based modelling approach we
described here will be the ideal solution, rather that it is an evolutionary step and
allows us to address the next generation of research questions as new technological
developments permit. Specifically it balances the paucity of biochemical detail with
the need to capture some dynamic information in larger, more complex interaction
networks. We have already found it to be useful for simulating the stoichiometry
in the complex in both natural and in mutated states, data that is already starting to
become available from more quantitative proteomic studies. Further, it provides a
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set of tools that allow us to extend into the analysis of interaction logic covering
post-translational modifications including phosphodynamics, ubiquitination and
competitive binding. In other words, as our understanding of the evolution of the
molecular complex that underpins cognition is growing, the modelling frameworks
we need to explore and describe these complexes also have to evolve.
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2. Bayés À, Lagemaat LNvd, Collins MO, Croning MDR, Whittle IR, Choudhary JS, Grant SGN
(2011) Characterization of the proteome, diseases and evolution of the human postsynaptic
density. Nat Neurosci 14:19–21

3. Bianchi MT, Botzolakis EJ (2010) Targeting ligand-gated ion channels in neurology and
psychiatry: is pharmacological promiscuity an obstacle or an opportunity? BMC Pharmacol
10:3

4. Bray D, Bourret RB (1995) Computer analysis of the binding reactions leading to a transmem-
brane receptor-linked multiprotein complex involved in bacterial chemotaxis. Mol Biol Cell
6(10):1367–1380

5. Chen X, Vinade L, Leapman RD, Petersen JD, Nakagawa T, Phillips TM, Sheng M, Reese TS
(2005) Mass of the postsynaptic density and enumeration of three key molecules. Proc Natl
Acad Sci USA 102(32):11551–11556

6. Cheng D, Hoogenraad CC, Rush J, Ramm E, Schlager MA, Duong DM, Xu P, Wijayawardana
SR, Hanfelt J, Nakagawa T, Sheng M, Peng J (2006) Relative and absolute quantification of
postsynaptic density proteome isolated from rat forebrain and cerebellum. Mol Cell Proteom
5:1158–1170

7. Chua JJE, Kindler S, Boyken J, Jahn R (2010) The architecture of an excitatory synapse. J Cell
Sci 123:819–823

8. Churchland PS, Koch C, Sejnowski TJ (1993) What is computational neuroscience? In:
Computational neuroscience. MIT, Cambridge

9. Cohen S, Greenberg ME (2008) Communication between the synapse and the nucleus in
neuronal development, plasticity, and disease. Annu Rev Cell Dev Biol 24:183–209

10. Collins MO, Husi H, Yu L, Brandon JM, Anderson CNG, Blackstock WP, Choudhary JS, Grant
SGN (2006) Molecular characterization and comparison of the components and multiprotein
complexes in the postsynaptic proteome. J Neurochem 97:16–23

11. Danos V, Feret J, Fontana W, Harmer R, Krivine J (2009) Rule-based modelling and model
perturbation. Trans Comput Syst Biol XI, Lecture Notes in Computer Science 5750:116–137

12. Danos V, Feret J, Fontana W, Krivine J (2007) Scalable simulation of cellular signaling
networks. Proceedings of APLAS

13. Danos V, Schumacher LJ (2009) How liquid is biological signalling? Theor Comput Sci
410(11):1003–1012

http://www.ecdf.ed.ac.uk/
http://www.edikt.org.uk


132 J.D. Armstrong and O. Sorokina
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Chapter 7
Molecular Systems Biology of Sic1 in Yeast Cell
Cycle Regulation Through Multiscale Modeling

Matteo Barberis

Abstract Cell cycle control is highly regulated to guarantee the precise timing of
events essential for cell growth, i.e., DNA replication onset and cell division. Failure
of this control plays a role in cancer and molecules called cyclin-dependent kinase
(Cdk) inhibitors (Ckis) exploit a critical function in cell cycle timing. Here we
present a multiscale modeling where experimental and computational studies have
been employed to investigate structure, function and temporal dynamics of the Cki
Sic1 that regulates cell cycle progression in Saccharomyces cerevisiae. Structural
analyses reveal molecular details of the interaction between Sic1 and Cdk/cyclin
complexes, and biochemical investigation reveals Sic1 function in analogy to its
human counterpart p27Kip1, whose deregulation leads to failure in timing of kinase
activation and, therefore, to cancer. Following these findings, a bottom-up systems
biology approach has been developed to characterize modular networks addressing
Sic1 regulatory function. Through complementary experimentation and modeling,
we suggest a mechanism that underlies Sic1 function in controlling temporal waves
of cyclins to ensure correct timing of the phase-specific Cdk activities.
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IDP: Intrinsically disordered protein
FRET: Förster resonance energy transfer
FLIM: Fluorescence lifetime imaging microscopy

1 Timing in Cell Cycle Regulation

Cell cycle regulation is governed by sequential activation of a family of serine–
threonine cyclin-dependent kinases (Cdks), whose activities rise and fall are being
controlled by a complex regulatory network. Since timely regulation of Cdk/cyclin
complexes is critical for proper completion of cell cycle phases, multiple signals
have to be integrated to control their activity. Besides cyclin accumulation, local-
ization, and phosphorylation/dephosphorylation [1, 2], Cdk regulation is mediated
by cyclin-dependent kinase inhibitors (Ckis), which ensure the correct timing of
its activation in different cell cycle phases [3]. Cki inhibitors have been proposed to
define thresholds for Cdk/cyclin activity by setting levels that Cdk/cyclin complexes
must exceed to become active [4]. Accordingly, cell cycle progression or arrest
would depend on relative concentration of inhibitors and cyclins: a decrease
in Cdk/cyclin components or an increase in inhibitor levels would prevent the
accumulation of inhibitor-free Cdk/cyclin complexes, therefore inhibiting cell cycle
progression. The Cki p27Kip1 of the Kip/Cip family is a key protein establishing
the threshold that Cdk/cyclin complexes must overcome in order to progress into
S phase in mammalian cells [4, 5]. The amount of p27Kip1 is rate limiting for cell
cycle progression and alters the balance between proliferation or arrest. In fact, its
misregulation is found in various cancer types [6–11] due to an abnormal activation
of Cdk/cyclin inhibited by p27Kip1. Reduction of p27Kip1 activity increases the
proliferation rate in tumor cells [12], and desensitizes cells to antimitogenic signals,
thus preventing their apoptosis [13]. Yet, the molecular context in which Cki
inhibitors activate and regulate cell cycle progression is not fully understood. More
specifically, it is of relevant interest to investigate the molecular mechanisms that
lead to deregulation of Ckis like p27Kip1 – and therefore to the failure in precise
timing of kinase activation – in several tumors including breast, colon, prostate,
lung, esophageal, and gastric cancers [8, 9, 14].

1.1 Failure of Cki Control and Cancer Development

p27Kip1 functions throughout all cell cycle phases by interacting with different
Cdk/cyclin complexes. It has a crucial role at the G1/S transition by interacting
with and inhibiting Cdk2/cyclin E and Cdk2/cyclin A activities, thus blocking
cell cycle progression. High protein levels lead to cell cycle arrest in G1 phase
[15, 16], whereas cell cycle re-enter requires p27Kip1 downregulation, resulting in
Cdk activation [17]. p27Kip1 binds also to Cdk4,6/cyclin D, being both a Cdk4
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inhibitor and a non-inhibitor depending on the growth state of the cell [18]. In
early G1 phase, p27Kip1 promotes assembly and nuclear import of Cdk4,6/cyclin D,
increasing cyclin D stability, without inhibiting Cdk4 activity [19, 20]. This ternary
complex functions as a reservoir for p27Kip1, which through Cdk4/cyclin D binding
is displaced from its principal target, Cdk2/cyclin E.

p27Kip1 is a dosage-dependent tumor suppressor genes whose functional loss
leads to tumor development, being its reduced dosage contributing to cancer
susceptibility. Mice lacking one copy of CDKN1B the gene encoding for p27Kip1,
display increased tumor frequency [21] and p27Kip1 � =� mice display a further
increase in tumor rate developing tumors in multiple tissues, including adenomas
and adenocarcinomas of the intestine and the lung, granulosa cell tumors of the
ovary and uterine tumors [21]. The dosage effect might be functioning in human
tumors as well, where loss or decrease of p27Kip1 expression is frequently observed
in human cancer and correlates with poor patient survival. The first human cases
reported to have abnormally low amounts of nuclear p27Kip1 were associated with
increased tumor aggressiveness and a relatively poor clinical outcome for breast and
colon cancer [22]. Moreover, the correlation of cytoplasmic localization of p27Kip1

with high tumor grade and poor prognosis has been reported [23, 24]. It has been
now recognized that p27Kip1 deregulation can be a prognostic indicator for a variety
of tumors [7–9, 14].

1.2 Sic1, the Cki Regulating Cell Cycle Timing
in Budding Yeast

The budding yeast cell cycle is driven by periodic changes in kinase activities,
regulated by different cyclin subunits that associate with the Cdk1 kinase in
successive waves: Cln1, Cln2, and Cln3 in G1 phase; Clb5 and Clb6 in S phase;
Clb1, Clb2, Clb3, and Clb4 in G2/M phase [25, 26]. Despite their redundancy,
cyclins are expressed at a different timing and appear sequentially in specific cell
cycle phases, resulting in a significant divergence of function [27–29]. Besides
accumulation and degradation, specific Ckis contribute to the regulation of cyclins:
Far1 inhibits Cdk1/Cln complexes [30, 31] and Sic1 inhibits Cdk1/Clb complexes
[32, 33]. The logic of a Cki/cyclin threshold that drives phase-specific events has
been proposed in basic models of cell cycle progression in budding yeast, for the
entrance into S phase by activating waves of cyclins that set the timing for mitosis
onset and cell division [34, 35].

Sic1 and Cdk1/Clb complexes that drive S and M phases are locked in mortal
combat over control of the cell cycle: Sic1 inactivates Cdk1/Clb complexes and
promotes Clb degradation, whereas Cdk1/Clbs antagonize Sic1 transcription and
promote Sic1 degradation [36, 37]. Sic1 is synthesized at the end of mitosis
[38–40] and persists throughout G1 phase preventing the precocious DNA synthesis
by inhibiting Cdk1/Clb5,6 activity [33, 41]. Sic1 is largely degraded at the onset
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of S phase [33, 42, 43] with a switch-like mechanism via multisite phosphorylation
[44] mediated by Cdk1/Cln1,2 [45–48], thus relieving Cdk1/Clb5,6 inhibition and
allowing cells to enter into S phase. Moreover, all Cdk1/Clb complexes can maintain
Sic1 proteolysis during S and G2 phases until anaphase [26]. As cells exit mitosis,
Cdk1/Clb2 activity declines and Sic1 is produced. Similarly to p27Kip1, which
stably associate with Cdk4/cyclin D1 to assemble them into active complexes, Sic1
has been shown to promote nuclear import of Cdk1/Clb5, since cytoplasmic Clb5
accumulation is observed upon inactivation of SIC1 gene [49].

Sic1 is not an essential gene but it plays an essential role in setting the correct
timing of DNA replication onset by maintaining a temporal window free from
Cdk1/Clb activity, critical requirement for origin licensing. In a sic1
 mutant,
DNA replication initiates prematurely from fewer origins, S phase is extended
and sister chromatids are inefficiently separated during anaphase [50]. In addition,
chromosome combing showed that the distance between replicons is 1.5 times
longer in sic1
 cells compared to wild type [51]. As a consequence, chromosomes
break and rearrange at a high frequency, and cells exhibit a 100-fold increase in
minichromosome loss and gross chromosomal rearrangements compared to wild
type [50, 52]. The precocious Cdk1/Clb5,6 activation causes severe genome insta-
bility through its inhibitory effect on pre-RC formation in late G1 phase Similarly,
p27Kip1-deficient cells activate the G2/M checkpoint and show an increased number
of chromatid breaks, leading to chromosomal instability, a hallmark of cancers with
poor prognosis [53]. Thus, by inhibiting any residual Cdk1/Clb activity in G1 phase,
Sic1 promotes efficient origin licensing, probably also activating dormant origins
[54]. As it has been underlined for p27Kip1, the molecular mechanism by which
Sic1 regulates the Cdk1/Clb activities is not fully understood.

2 Cell Cycle Regulation and Computational Modeling

To understand biological processes, biomolecules are generally investigated in
the framework of molecular networks [55] and molecular systems biology is the
integrative discipline that aims to explain properties of biological systems in terms
of their molecular components and interactions [56, 57]. The structure of these
networks can vary over time and space generating network dynamics [58] and
modularity permits to dissect complex biological networks in small modules and
provides functional and mechanistic insights [59]. Molecules contributing to a
particular phenotype are usually connected to each other to form functional modules
[60, 61] and have similar biological functions, as suggested from the dynamically
organized modularity in the budding yeast interactome network [62, 63]. Although
some modules, such as stable protein complexes, are constantly present in various
cellular conditions, other modules are dynamically assembled and disassembled.

Cell cycle-dependent protein complexes undergo this temporal dynamics during
different phases of the cell cycle [64]. In mammalian cells, their formation has been
addressed by non-linear differential equations [65], qualitative modeling [66], or
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hybrid approaches that combine continuous differential equations and discrete
Boolean networks [67]. Detailed models focused on the G1/S transition have been
reported, with particular focus on Ckis regulating timing of cell cycle progression
[68–74]. Cell cycle regulators are conserved between eukaryotes and mathematical
models have also been developed for budding yeast by using systems of ordinary
differential equations (ODEs) [65, 75–78], logical [79–81], stochastic [78, 82–84],
or numerical [85] modeling. Networks focused on the exit from mitosis are available
[86–90] and detailed analyses of the G1/S transition highlight the specific role of the
Cki Sic1 in regulating the timing of DNA replication onset [91, 92].

These models capture essential molecular events occurring during temporal
dynamics of cell cycle progression. In this way, components of modular cell cycle
networks and their interactions can be identified following an iterative process, in
which molecular investigation and mathematical modeling account for the system
behavior. This approach has been pursued in our laboratories following a bottom-
up systems biology, starting from constitutive parts of a network by formulating
their interactions, the kinetic equations, and then predicting the system behavior
[93]. Multiscale modeling integrating structural analyses, biochemical investigation,
and protein dynamics into non-linear and stochastic modeling has been employed
to address regulatory functional modules centered around the Cki Sic1. Models
have been tested for internal consistency by computational analyses and external
consistency by experimental validation [84,92,94–97]. Despite the well-recognized
role of Sic1 in regulating cell cycle progression, there is a controversy about the
specific phases where this Cki functions. Sic1 is largely degraded at the G1/S
transition to permit DNA synthesis [33,42,43]; however, SIC1 transcription [38,40]
and Sic1 levels [98,99] are observed throughout the entire cell cycle, and recent data
claim that Sic1 contributes to cell cycle robustness [100]. Here we summarize how
literature evidence are reconciled through a molecular systems biology approach
suggesting a role of Sic1 in regulating the timing of cyclin waves.

3 Structural Modeling of the Sic1-Cdk1/Clb Interaction

Comprehension of the interactions between molecules involved in biological sys-
tems is crucial to predict their behavior by a systems biology approach. A full
understanding of how molecules interact comes only from three-dimensional (3D)
structures, as they provide atomic details about binding. Although a huge number
of interactions is known, precise molecular details are available for few of them due
to limitations in studying large protein complexes, for which obtaining sufficient
purified material for X-ray studies can be difficult. In fact, assembly of two or
more macromolecules in complex requires precise control and timing in the cell,
and this is not easy to reproduce in a laboratory setting [101]. For both human
and budding yeast, there is a large gap between the number of complexes detected
in yeast two-hybrid [102–106] or affinity purification [107, 108] assays and the
number for which experimental 3D structures are available. Therefore, methods to
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Fig. 7.1 (overleaf) (a) Sequence alignment and secondary structure predictions for p27Kip1

and Sic1 KIDs. Predictions computed by PHD, PSIPRED, and JPRED programs for p27Kip1-KID
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predict atomic details for interacting proteins have been developed. The structures
of interacting proteins can be modeled computationally if structures have been
previously determined for homologous proteins. There are many interactions for
which structural data are available [109, 110] and homology modeling is used to
test whether interactions between homologous proteins can be modeled on the basis
of an interaction of known structure [111–114]. The accuracy of models built by
homology depends on the degree of sequence identity between target and template
sequences. When sequence similarity is high, i.e., greater than 25–30% of sequence
identity, proteins are likely to interact in the same way [110].

Despite efforts from different groups, attempts to crystallize Sic1 have failed.
To investigate molecular interactions between the Cki Sic1 and Cdk1/Clb com-
plex, we therefore employed a protein–protein complex for which coordinate
data are available to model interactions between their analogous in budding
yeast. We assessed whether potential homologous sequences fit onto a previ-
ously determined structure of a complex. Sic1 is a functional homologue of
the Cki Rum1 in fission yeast [115] and a potential functional homologue of
mammalian Ckis of the Kip/Cip family [116], thus local properties at the in-
teraction surface with Cdk/cyclin could be conserved. Conventional homology
modeling is not applicable to Sic1 due to its very low sequence similarity to
p27Kip1; however, secondary structure predictions of kinase inhibitory domains
(KIDs) of Sic1 (C-terminal, amino acids 215–284) [117] and p27Kip1 (N-terminal,
amino acids 25–93) [118] suggest a similarity in this region as compared with
the secondary structure deduced from the X-ray structure of p27Kip1-KID [118]
(Fig. 7.1a). Sequence alignment of p27Kip1 and Sic1 KIDs highlighted a long
’-helix predicted in Sic1 (amino acids 226–248) which shares a similar am-
phiphilic profile with the corresponding ’-helix of p27Kip1 (amino acids 38–60)
[94]. Besides the conserved ’-helix, other common secondary structure elements
were not catch. However, prediction of Sic1-KID secondary structure with PHD,
which provides about 70% accuracy [121–123], reveals two “-sheets and a short
’-helix in addition to the long amphiphilic ’-helix (Fig. 7.1b) [119]. These elements
are indeed present in p27Kip1-KID structure, suggesting that KIDs of p27Kip1 and
Sic1 might fold in a similar manner.

On this basis, Sic1-KID was built by homology modeling by using p27Kip1-
KID as a template, abridged from X-ray structure of the p27Kip1/Cdk2/cyclin

 �������������������������������������������������������������������
Fig. 7.1 (continued) (amino acids 25–93) and Sic1-KID (amino acids 215–284) are shown (H, ’-
helix; E, “-sheet; c, coil). Residues involved in binding to either Cdk2 or cyclin A are underlined.
Residues predicted to be in an ’-helix within the Cdk2/cyclin A-interacting region are shown
as white-on-black characters. Secondary structures deduced from X-ray structure of p27Kip1-
KID and expected for Sic1-KID are shown below the alignments. Reproduced with permission
from Barberis et al. (2005) Biochem J 387(Pt 3):639–647. c� the Biochemical Society [94]. (b)
Secondary structure predictions of p27Kip1 and Sic1 computed by PHD [119]. ’-Helix, “-sheet,
and coil are shown in black, gray, and light gray, respectively. The criteria for determining the
secondary structure is the reliability index reported in the Y -axis (range 0–9): amino acids with a
value � 5 are predicted with a confidence of 82% [123]. KIDs of p27Kip1 and Sic1 are indicated
with a double arrow
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A ternary complex (PDB entry 1JSU), and the amphiphilic ’-helix of p27Kip1

was mutated in silico to generate the predicted ’-helix of Sic1. The Sic1-KID
model was then docked onto Cdk2/cyclin A, refined by steps of conjugate gradients
energy minimization [94] by using the GROMOS force field [120], and molecular
interactions have been analyzed. Five amino acids within the amphiphilic ’-helix
of p27Kip1-KID and Sic1-KID establish hydrophobic contacts with Cdk2/cyclin A
[94, 118]. Interestingly, amino acid Leu41 of p27Kip1-KID, part of the LF motif
that recognizes cyclin A [118], is conserved in Sic1 (Ile229), suggesting that both
Ckis share structural elements in the Cdk/cyclin-interacting region [94]. To build
a yeast Sic1/Cdk/Clb complex by homology, Cdk1 kinase and Clb5 cyclin have
been considered due to their functional homology to Cdk2 and cyclin A in driving
entrance into S phase. The high sequence similarity of yeast and mammalian
Cdks (77%) and cyclins (51%) allowed us to build a model of Cdk1/Clb5 by
using Cdk2/cyclin A as a template and then to dock the Sic1-KID model. The
Sic1/Cdk1/Clb5 complex was geometrically optimized by conjugate gradients
energy minimization and molecular dynamics by using the consistent valence force
field [124]. The interface between Sic1-KID, Cdk1, and Clb5 is characterized by
steric and electronic contacts that allow the formation of a stable complex, as
judged from hydrophobic contact analysis. The contacts between the LF domain
of p27Kip1-KID and cyclin A are conserved between an LV domain of Sic1-KID
and Clb5 (Fig. 7.2 Table 7.1) [95, 119], in agreement with the fact that p27Kip1 and
Clb5 interact in vivo [125]. The interactions between the amphiphilic ’-helix of
p27Kip1-KID and Cdk2/cyclin A are also observed between the Sic1-KID ’-helix
and Cdk1/Clb5 (Fig. 7.3) [95, 118, 119]. Here, amino acid Arg233 of Sic1-KID,
although not hydrophobic, is threaded within Clb5 structure, making use of the
alkyl moiety to effect specific hydrophobic interactions. Finally, amino acid Leu276
of Sic1-KID is located in a hydrophobic pocket of Cdk1 and have steric features to
displace the ATP molecule bound and inhibit the kinase activity as it has been shown
for the amino acid Tyr88 of p27Kip1-KID on Cdk2 (Fig. 7.2 Table 7.1) [95,119]. The
analyses indicate that, despite a low sequence similarity, KIDs of Sic1 and p27Kip1

are structurally related and suggest that recruitment of a Cki on a hydrophobic
pocket of a cyclin might be a conserved mechanism to realize Cdk/cyclin inhibition
[125, 126].

4 Sic1 is a Functional Homologue to the Cki p27Kip1

The structural findings underlie the role of kinase inhibitory domains (KIDs) in
the regulation of Cdk/cyclin activity. The 3D structure of p27Kip1-KID revealed
that it is extended over the surface of Cdk2/cyclin A by forming hydrophobic
contacts with regions on both cyclin and kinase [118, 127]. Moreover, isothermal
titration calorimetry (ITC) [128] to determine thermodynamic parameters of p27Kip1

binding to Cdk2/cyclin A and surface plasmon resonance (SPR) [129] to analyze
kinetics of p27Kip1 association/dissociation with/from Cdk2/cyclin A indicated that
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Fig. 7.2 (a) Interface contacts between the amino acid Leu of the p27Kip1-KID LFG domain
or Sic1-KID and the corresponding Cdk/cyclin complexes. (b) Interface contacts between the
amino acid Phe of the p27Kip1-KID LFG domain or Sic1-KID and the corresponding Cdk/cyclin
complexes. (c) Interface contacts between Tyr88 of p27Kip1-KID or Leu62 of Sic1-KID and
the corresponding Cdk/cyclin complexes. Structural analysis was carried out using the InsightII
software package (Biosym) and interactions evaluated within a range of 5 Å are shown (p27Kip1-
KID, red; Cdk2/cyclin A, green; Sic1-KID, blue; Cdk1/Clb5, yellow) [119]
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Table 7.1 Summary of the interface contacts between (1) p27Kip1-KID and Cdk2/cyclin A and (2)
Sic1-KID and Cdk1/Clb5. Interactions between LF domain of p27Kip1-KID (Leu32, Phe33) or LV
domain of Sic1-KID (Leu224, Val225) and the cyclins and as well as interactions between Ckis and
Cdks have been evaluated within a range of 5 Å (top) or 7 Å (bottom) [119]. A high conservation
in amino acid type is observed between Ckis, cyclins, and Cdks: bold, essential contacts; italic,
stabilizing interactions; other amino acids, other interactions

p27Kip1-KID/cyclin A Sic1-KID/Clb5 p27Kip1-KID/Cdk2 Sic1-KID/Cdk1

Leu32 Phe33 Leu224 Val225 Tyr88 Leu276

Met210 Met210 Met197 Lys33 Lys40
Ile213 Ile213 Leu200 Ile200 Ala31 Ala38
Leu214 Leu214 Ile201 Ile201 Phe80 Phe88
Trp217 Trp204 Leu204 Glu81 Glu89
Arg250 Arg250 Leu240 Phe82 Phe90
Leu253 Leu253 Gln241 Gln241 Leu83 Leu91
Gln254 Gln254 Leu134 Leu143
Leu218 Gly251 Leu205 Asn238
Thr282 Lys252 Thr269 Lys239
Asp283 Asp270
Thr285 Thr285 Ala272 Ala272

p27Kip1 tightly binds Cdk2/cyclin A (nanomolar) via a sequential mechanism. In
fact, it occupies a conserved hydrophobic pocket for substrate recruitment on cyclin
A [119, 130], then it binds to the N-terminal lobe of Cdk2 flattening it out and
disrupting the active site, finally inserting itself into the ATP binding pocket and
blocking ATP binding to Cdk2 [131]. The relevance of KID is highlighted by
analysis of knock-in mice with a p27Kip1 variant that lacks the Cdk inhibitory
function, p27Kip1 .CK�/, which revealed that p27Kip1 .CK�=CK�/ displayed tumor
development as the p27Kip1 null .�=�/ mice and a range of hyperplasia and neo-
plasia suggesting that p27Kip1 .CK�/, which localizes in the cytoplasm, functions
as an oncogenic protein [132]. Therefore, addressing the molecular mechanism that
Cki develops to inhibit Cdk/cyclin activity is undoubtedly challenging to understand
how the timing of cell cycle regulation is accomplished.

To test the hypothesis that Sic1-KID is able to interact productively with
Cdk/cyclin complexes, as predicted by structural analysis [94, 119], interactions
of Sic1 with mammalian Cdk2 and cyclin A (alone or in complex) purified from
baculovirus have been tested by SPR. Sic1 protein was covalently coupled to a
carboxymethylated dextran surface by using amine-coupling chemistry [133] and
association/dissociation of Sic1 was determined by fluxing several concentrations
of Cdk2, cyclin A, and Cdk2/cyclin A. The analysis indicated that the affinity of
Sic1 for Cdk2 was very low (dissociation equilibrium constant, KD D 10�5), while
binding of Sic1 to cyclin A and to Cdk2/cyclin A was favorable [95]. In particular,
a strong interaction was observed between Sic1 and Cdk2/cyclin A .KD D 10�7/
compared to Sic1 and cyclin A .KD D 10�6/. These findings suggest that Sic1
realize its inhibitory function by interacting first with the cyclin and then extending
on the surface of the Cdk/cyclin complex to reach and inhibit the binding site on
the kinase [95]. Consistently, Sic1 was shown to strongly inhibit both yeast and
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Fig. 7.3 (a) Interface contacts between the amphiphilic ’-helix of p27Kip1-KID (amino acids 38–
60) and Cdk2/cyclin A. (b) Interface contacts between the amphiphilic ’-helix of Sic1-KID (amino
acids 226–248) and Cdk1/Clb5. Structural analysis was carried out using the InsightII software
package (Biosym) and interactions within a range of 7 Å (a and b) or 5 Å (c) are shown (p27Kip1-
KID, red; Cdk2/cyclin A, green; Sic1-KID, blue; Cdk1/Clb5, yellow) [119]

mammalian Cdk/cyclin activities by a similar double-step inhibitory mechanism
[95,96]. The physiological relevance of these results has been addressed by showing
that both Sic1 and the mammalian Cki p27Kip1 rescued the phenotype of a sic1

strain [95]. Altogether, these findings indicate that Sic1 is functionally related to
p27Kip1, employing a conserved mechanism of inhibition on Cdk/cyclin activity.
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Fig. 7.3 (continued)

5 Cki Phosphorylation: Hallmark of Cell Cycle Timing

Despite p27Kip1-KID reveals secondary structure elements that tightly insinuate
within Cdk2/cyclin A architecture, in particular the nascent amphiphilic ’-helix
[131, 134], secondary structure and disorder prediction indicate that the Cki is
mainly disordered [135]. Heat-resistant assay, hydrodynamic analysis, proteolysis,
ITC, circular dichroism (CD) and NMR spectroscopy showed that p27Kip1 is
largely disordered [135–139]. In particular, the latter revealed that portions of
the isolated p27Kip1 sequence show secondary structure in solution [138]. Thus,
p27Kip1 belongs to the intrinsically disordered proteins (IDPs). Many proteins that
play important cellular functions, i.e., regulation of cell division, transcription and
translation, phosphorylation, signal transduction [140, 141], are characterized by
sequence domains lacking secondary or tertiary structure and, thus, classified as
IDPs. Furthermore, 79% of human cancer-associated proteins have been classified
as IDPs [142]. Considering that IDP sequences are generally exposed to the
solvent, a large number of sites are accessible for post-translational modification,
which regulate function, localization, and stability. p27Kip1 is mainly regulated by
phosphorylation directed by various signal transduction pathways, which controls
timing of Cdk/cyclin activity by weakening the Cki inhibitory activity [143–
145]. Moreover, tumorigenesis associated to p27Kip1 has been described due to
its phosphorylationinduced cytoplasmic localization [146–150]. Therefore, disorder
and flexibility of p27Kip1 enable structural fluctuations and phosphorylation events
that regulate its turnover at the G1/S transition during cell cycle control.
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5.1 Regulation of Sic1 Activity by Phosphorylation

As aforementioned, despite efforts from different groups, attempts to crystallize
Sic1 have failed. However, Sic1 has been shown to be a disordered protein both in
its free state and when bound to Cdc4 [151], which acts as ubiquitin–protein ligase
directing ubiquitination of the phosphorylated Sic1 [45, 46]. The complex showed
a mixture of different conformations shifting around in a dynamic equilibrium,
and each of the six phosphate groups on Sic1 needed for its recognition from
the proteasome have been found to occupy the single Cdc4 pocket, one after
the other [151]. Further analyses highlighted that although Sic1 is disordered
when bound to Cdc4, it maintains a compact structure that keeps the phosphate
groups close together to form an electrostatic field that glues Sic1 to Cdc4
[152]. Complementary biophysical methods have also been applied to the study
the isolated Sic1 in solution. Sequence analysis, gel filtration, CD, electrospray-
ionization mass spectrometry (ESI-MS), and limited proteolysis showed that Sic1
is mainly disordered with an intrinsic propensity for ordered structure in its
C-terminal region in correspondence of the kinase inhibitory domain (KID) [153].
Sic1 can, therefore, be classified as an IDP like p27Kip1. Recently, studies of
limited proteolysis, CD, NMR, and nano-ESI-MS analysis showed a modular
organization for Sic1 being its C-terminal region is relatively more compact than the
N-terminal one, with the boundary of the C-terminal lying close to the amino acid
Trp186, suggesting that it is possible to recognize structural domains in an IDP
[154, 155]. Moreover, Fourier-transform infrared (FT-IR) spectroscopy and ion-
mobility (IM) measurements revealed that the isolated Sic1-KID retains dynamic
helical structure and populates collapsed states of different compactness [156].

As shown for p27Kip1, post-translational modification via phosphorylation can
play a role modulating Sic1 conformational transitions [157]. Several signaling
pathways promote Sic1 phosphorylation regulating its stability, thus timing of the
G1/S transition. Activation of the Hog1 pathway due to high osmolarity results in a
cell cycle arrest in G1 by phosphorylation and, thus, stabilization of Sic1 [158,159].
Moreover, inhibition of the TOR pathway by rapamycin leads to phosphorylation
and stabilization of Sic1, as shown for p27Kip1 [160], which accumulates into
the nucleus both in glucose and ethanol-grown cells [161]. In addition, other
kinases are involved in Sic1 phosphorylation: Pho85 is required for the prompt
degradation of Sic1 [162] and Ime2 is necessary but not sufficient to promote
Sic1 destruction during sporulation [163]. An important regulator of cell cycle
progression is CK2, a ubiquitous, highly pleiotropic and constitutively active serine–
threonine kinase conserved in all eukaryotes [164], which phosphorylates both Sic1
and p27Kip1 [99,165,166]. Moreover, Sic1 accumulation is observed following CK2
inactivation, inhibiting the Cdk1/Clb5 complex, therefore effectively blocking the
G1/S transition [167].
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Fig. 7.4 Schematic representation of Cdk1/Clb5 activation regulating the G1/S transition in
budding yeast. Sic1 binds to Cdk1/Clb5,6 (32) and triggers the complex into the nucleus (47),
where it is degraded after Cdk1/Cln1,2-mediated phosphorylation (38, 41). Modified from Barberis
et al. (2007) PLoS Comput Biol 3(4):e:64 [92]

5.2 Sic1 Phosphorylation by CK2: Mechanism
of S Phase Timing

Ckis carry out the inhibitory function by formation of ternary complexes with
their target cyclin and kinase. The temporal dynamic of assembly and disassembly
of these complexes during cell cycle progression determines at which time and
in which cellular compartment regulatory phosphorylation events take place. As
aforementioned, subcellular localization of Cki and other cell cycle proteins is
recognized to be a major factor that regulates cell cycle transitions, since altered
localization of Ckis is linked to cancer aggressiveness. Nevertheless, for reasons of
simplicity, models of cell cycle regulation do not generally consider this aspect. The
need to incorporate this fundamental regulatory feature stimulated us to generate a
computational model considering the localization of p27Kip1 and kinase complexes
involved in the regulation of the G1/S transition in mouse fibroblasts [74], following
the mechanism of Cdk/cyclin inhibition by p27Kip1 and phosphorylated p27Kip1

[168]. The model recapitulates events from growth factor stimulation to S phase
onset following phosphorylation states associated to activation or deactivation of
p27Kip1 and kinase complexes in nucleus or cytoplasm [74].

In parallel to the mammalian network, we developed a detailed mathematical
model of the G1/S transition in budding yeast [92], taking into account the
nucleo/cytoplasmic localization of key players and the carbon source regulation
of Sic1 to promote nuclear import of the Cdk1/Clb5 complex [49]. As for the
G1/S network in mouse fibroblasts, the model was implemented by a set of 34
ODEs, 32 species and 67 kinetic parameters [169] describing the temporal change
in concentration of key players and as well as phosphorylation states of Sic1 and
kinase complexes regulating entrance into S phase (Fig. 7.4) [49]. CK2-mediated
phosphorylation on amino acid Ser201 of Sic1 has been recognized to alter timing
of the G1/S transition by affecting Sic1 affinity for Cdk1/Clb5 [95, 99, 166, 167],
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and mutations that impair (Ser201/Ala) or mimic (Ser201/Glu) phosphorylation
by CK2 affect the coordination between cell growth and cell cycle progression
in vivo [99, 119]. However, analyses of the mutants did not reveal appreciable
effects on the conformation of isolated Sic1 [153], as observed instead for p27Kip1

[165]. These contradictory data motivated to investigate the physiological role
of Sic1 phosphorylation by CK2 not in the isolated form but when bound to
Cdk1/Clb5,6. Many proteins lack rigid 3D structure, existing as dynamic ensem-
bles of inter-converting conformations and acquiring an ordered structure when
binding to specific intracellular partners [170] or by functional regulation via post-
translational modifications, as shown for p27Kip1 [135]. Therefore, more detailed
structural information is needed to interpret the effect of this phosphorylation on
the interaction between Sic1 and Cdk1/Clb5,6. In addition, difficulty to estimate in
vivo phosphorylation kinetics encouraged us to estimate realistic values to include
as kinetic constants in the mathematical model of the G1/S transition. Real-time
measurement by SPR using immobilized Sic1 showed that it interacts with catalytic
.’/ and regulatory .“/ subunits of CK2, being the strength of the binding in the same
range as compared to the CK2“=p27Kip1 interaction [95, 165].

Moreover, Sic1 was phosphorylated by the CK2 with an apparent KM D
460 nM, value comparable to the KM for the CK2-mediated phosphorylation of
p27Kip1 (467 nM) [165]. In order to test the hypothesis that Ser201 phosphorylation
on Sic1 could be relevant for interaction with Cdk/cyclin complexes, a model
peptide encompassing amino acids 192–216 of Sic1 was synthesized either as
such or with Ser201 replaced by phosphoserine. Both peptides were covalently
coupled to carboxymethylated dextran surfaces by using amine-coupling chemistry
and binding with mammalian Cdk2/cyclin A was examined. Interestingly, Sic1
peptide encompassing Ser201 was bound more strongly to Cdk2/cyclin A in its
phosphorylated than in its nonphosphorylated form [95]. Consistently, Sic1 fully
phosphorylated on Ser201 by CK2 was shown a stronger inhibitor of both yeast
and mammalian Cdk/cyclin activities than the unphosphorylated protein, suggesting
a possible regulatory role of CK2 phosphorylation on Sic1 activity. The very
high negative charge density of the Sic1 phosphor-acceptor site prompted us to
investigate whether basic patches might be present on the surface of Cdk1/Clb5
in positions compatible with a direct interaction. Homology modeling techniques
assume that proteins interact using two relatively large interfaces, however, it is
well-established that many interactions, particularly those of lower affinity, are
mediated by one domain binding to a small stretch of polypeptide in another
protein, i.e., small sequences characteristic of a consensus phosphorylation site.
These interaction are difficult to detect and study computationally or experimentally
because they often involve unstructured parts of the polypeptide chain that become
ordered only on binding [170]. Therefore, restrained molecular dynamics have
been carried out to dock a 23-amino acid-long Sic1 region comprising the CK2
consensus sequence QES201EDEED (amino acids 192–214) of the modeled Sic1-
KID on Cdk1/Clb5 (Fig. 7.5a), and interactions with Cdk1/Clb5 were investigated
by energy minimization [95, 119]. Analysis of the surface electrostatic potential of
Cdk1/Clb5 allowed localization of clusters of highly positively charged residues
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Fig. 7.5 (a) Sic1-KID 3D model was docked on Cdk1/Clb5 by using the p27Kip1/Cdk2/cyclin A
X-ray structure as a template and optimized using energy minimization (Sic1-KID, red; Cdk1,
green; Clb5, blue). (b) Interface contacts between the CK2 consensus site on Sic1 and Cdk1.
Structural analysis was carried out using the InsightII software package (Biosym) and interactions
within a range of 5 Å are shown (Sic1-KID: backbone – yellow, amino acidic lateral chains – red;
Cdk1: backbone – green, amino acidic lateral chains – blue). Reproduced with permission from
Barberis et al. (2005) Biochem Biophys Res Commun 336(4):1040–1048 [95, 119]

on Cdk1, which have proper electrostatic characteristics to interact productively
with the negatively charged CK2 consensus sequence centered on Sic1 (Fig. 7.5b)
[95, 119].

Biochemical and structural analyses suggest that CK2 may play a role in
the regulation of Sic1 activity by phosphorylation of amino acid Ser201. The
phosphorylation could induce long-term rear-rangements of the 3D structure of
Sic1-KID, as reported in the literature [171, 172], remodeling Cdk1 surface and
altering the interaction with Cdk1/Clb5, ultimately affecting the G1/S transition
and, thus, entrance into S phase. To investigate dynamic consequences of change
in the affinity of Sic1 for Cdk1/Clb5 for the timing of S phase onset, different
kinetic constant values for this binding have been tested in the mathematical model
of the G1/S transition in different nutritional setups. Considering that binding
between two proteins can be affected by cellular growth conditions and that protein
phosphorylation alters binding to another protein [171], we assumed that a poor
carbon source (i.e., ethanol) is associated with a low level of phosphorylation,
whereas a rich carbon source (i.e., glucose) to a high level of phosphorylation,
and kinetic parameters have been chosen to obtain simulated dynamics close to
the one measured experimentally [92]. To assess the effect of changing growth
conditions from glucose to ethanol media, input parameters such as growth rate
and initial levels of network key players have been altered. However, to obtain
a good fitting between experimental and computational dynamics, the affinity
observed for unphosphorylated Sic1 to Cdk1/Clb5 has been introduced in the
simulated ethanol condition (i.e., reduction by two orders of magnitude compared to
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Fig. 7.6 Model of DNA replication onset. Increased Sic1 affinity to Cdk1/Clb5, which mimics
CK2-mediated phosphorylation on Ser201 of Sic1, leads to a delay in the entrance into S phase
due to abolishment of the kinase activity and to a larger accumulation of Cdk1/Clb5. When Sic1 is
degraded, a huge amount of Cdk1/Clb5 is promptly available to activate DNA synthesis

the simulated glucose dynamics) [92, 95]. Taken together, biochemical, structural,
and computational analyses generated the prediction, to be tested experimentally,
that Sic1 might have a lower binding affinity for Cdk1-Clb5,6 in ethanol-grown
cells compared with the one in glucose-grown ones, and that phosphorylation in
rich medium is dependent on CK2. Interestingly, evidence that this can be true
can be surmised from a recent study on the ck1
ck2
 temperature-sensitive (ts)
double mutant [167]. This mutant grows normally at 25ıC (functional CK2), Sic1
level is low, and Cdk1-Clb5 activity is high (due to low Sic1). Contrarily, at 37ıC
the mutant, and thus CK2, is inactive, Sic1 level is high, and Cdk1-Clb5 activity
is abolished (due to high Sic1), even if comparable levels of Clb5 are observed.
This situation suggests that the condition at 37ıC could be comparable to growth
in ethanol medium, where high Sic1 levels observed experimentally [49] might
be due to decrease in CK2 kinase activity on Sic1. This scenario implies that the
phosphorylated state of Sic1 could influence its localization and, therefore, timing
in which the S phase onset is accomplished, ensuring that no premature origin
licensing takes place by strongly inhibiting Cdk1/Clb5. Licensed origins could be
then activated on schedule by providing higher Cdk activity to start DNA replication
after Sic1 proteolysis (Fig. 7.6).



152 M. Barberis

6 Sic1 Regulates Timing of Cdk1/Clb Activities

Both in budding yeast and in higher eukaryotes, genomic instability occurs when
the G1/S transition is deregulated and cells enter into S phase prematurely. This
acquired mutability is critical since a majority of genes mutated in human cancers
influence the G1/S transition [173]. The initiation of DNA replication in budding
yeast is regulated by an irreversible switch in which Sic1 is degraded at the S
phase onset [33]. The activation on schedule of Cdk1/Clb5,6 and of other waves of
Cdk1/Clb activity, i.e., Cdk1/Clb3,4 and Cdk1/Clb1,2, from S to M phases is strictly
related on disappearance of Sic1 [34,35]. The precocious activation of Cdk1/Clb5,6
observed in a sic1
 mutant initiates prematurely DNA replication from fewer
origins, phenomena called sparse origin firing [50], and severe genome instability
and chromosome rearrangements occurs [50, 52]. However, the mechanism by
which control of cell cycle timing is lost is not clear.

To investigate genomic instability in budding yeast, we studied balance between
Sic1 and Cdk1/Clb5,6 in activating replication origins at the entrance into S phase
[92,96], and considered Sic1 both a stoichiometric inhibitor of Cdk1/Clb complexes
[33,94] and a promoter of Cdk1/Clb5,6 entry into the nucleus [92], as shown exper-
imentally [49]. We described origins activation with a stochastic model considering
the rate of firing dependent on nuclear Cdk1/Clb5,6 availability and observed an
early firing of replication origins in a sic1
 mutant compared to the wild type
due to a precocious activation of Cdk1/Clb5 [92, 96], as experimentally observed
[50]. This suggests that appearance and disappearance of Sic1 regulates replication
origins by controlling the timing of Cdk1/Clb5,6 activity. Whether the role of Sic1 as
a timer of cell cycle transitions is realized mainly through inhibition of Cdk1/Clb5,6
activity or via direct binding to or regulating other kinase activities or components
of the DNA replication machinery is still not fully understood. Thus, to investigate
whether Sic1 may function as a timer in coordinating the staggering behavior
of phase-specific Cdk1/Clb complexes during cell cycle progression, a combined
computational and experimental approach has again been employed. Interactions of
Sic1 with one or more Cdk1/Clb complexes have been drown with CellDesigner
[174] and implemented by a set of 11 ODEs describing the dynamic behavior of
Cdk1/Clb complexes in time (Fig. 7.7) [97], and the characteristic pattern know as
waves of cyclins [25, 175, 176] investigated. This modular network is small enough
for an accurate mathematical modeling. In fact, when a sufficient small network is
considered and kinetic parameters are available, or when parameters are unknown
but components ad reactions are known, kinetic models have been successfully
used to predict signaling properties [177]. Computational analysis revealed that
temporal coordination of Clb cyclins appearance, and their oscillation-like behavior,
is observed only when Sic1 binds to all Cdk1/Clb complexes [97]. Accordingly,
associations of Sic1 with all Clb cyclins have been detected in high throughput
genome-wide screenings for complexes [47,125,178–184]. Therefore, models have
been tested for internal consistency by computational analyses, i.e., sensitivity
analysis, and for external consistency by experimental validation via protein–protein
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Fig. 7.7 Schematic model of Cdk1/Clb regulation. After production of Cdk1/Clb5,6 (re1), Sic1
binds forming the Cdk1/Clb5,6/Sic1 complex (re2). Sic1 is degraded primarily by Cdk1/Cln1,2
(not shown) and by Cdk1/Clb activities (re4) and Clb5,6 is degraded in both Cdk1/Clb5,6 (re3)
and Cdk1/Clb5,6/Sic1 (re5) complexes. Cdk1/Clb5,6 activates Cdk1/Clb3,4, in addition to its
basal production (re6), and Sic1 binds to Cdk1/Clb3,4 forming the Cdk1/Clb3,4/Sic1 complex
(re7). Sic1 is degraded by Cdk1/Clb activities (re10) and Clb3,4 is degraded in both Cdk1/Clb3,4
(re8) and Cdk1/Clb3,4/Sic1 (re9) complexes. Cdk1/Clb3,4 activates Cdk1/Clb1,2 together with
Cdk1/Clb5,6, in addition to its basal production (re11). Sic1 binds to Cdk1/Clb1,2 forming the
Cdk1/Clb1,2/Sic1 complex (re12). Sic1 is degraded by Cdk1/Clb activities (re14) and Clb1,2
is degraded in both Cdk1/Clb1,2 (re13) and Cdk1/Clb1,2/Sic1 (re15) complexes. Cdk1/Clb1,2
activates itself by a positive feedback loop (re11) [97]

interaction techniques. Global sensitivity analysis with a Monte Carlo approach has
been employed to investigate whether kinetic parameter values influence time delay
between Clb cyclins. Random sampling with 10,000 kinetic parameter sets has been
carried out by varying them between 0.1 and 10-fold of their initial values. By
comparing networks where Sic1 binds to one or more Cdk1/Clb complexes, any
change of parameters affects the delay of Clb appearance only when Sic1 binds to
all kinase complexes [97].
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Considering that regulation of time delays between Clb cyclins is apparently
triggered by interaction of Sic1 with all Cdk1/Clb complexes, binding of Sic1
with all Clb cyclins has been, therefore, investigated experimentally. Interactions
with Clb2 and Clb5 are well-established, but association to Clb3 (180–182) and
Clb4 (183) has been shown only in high throughput genome-wide screenings
for complexes and never validated independently. In vitro analyses, yeast two-
hybrid and GST pull-down, revealed interactions between Sic1 and all Clb cyclins
[97]. Moreover, Förster resonance energy transfer (FRET) via fluorescence lifetime
imaging microscopy (FLIM) has been employed to investigate Sic1/Clb interactions
in living yeast cells. By using this powerful technique that detects close co-
localization of fluorescent proteins and provides high spatial and temporal resolution
(nanoseconds), occurrence of FRET was measured by monitoring the change in
Sic1 lifetime in the presence and absence of Clb cyclins [185, 186]. Association of
Sic1 to each Clb cyclins subtype has been observed and different FRET efficiencies
were measured [187]. These findings, together with the fact that Sic1 is a substrate
of Clb3-associated kinase activity, as shown for both Clb5 and Clb2 [45, 46, 188],
support the hypothesis that Sic1 interacts with all Cdk1/Clb complexes throughout
cell cycle progression. However, despite their homology [189, 190], distinct Clb
cyclins might target Sic1 preferentially to enable its function [187].

The above results and the fact that Sic1 levels are observed throughout the cell
cycle [98, 99] inspired to follow Sic1 and Clb cyclins levels in G1-synchronized
yeast cells by elutriation, to demonstrate that Sic1 does not interact only with Clb5,6
at the G1/S transition and with Clb1,2 regulating mitotic exit [33, 39, 191] but
also with Clb3,4 during the temporal window in which its levels should decrease.
Temporal dynamics of wild type cells showed the characteristic periodicity of Clb
cyclins levels, with their on schedule appearance and disappearance one after the
other, and the coexistence of Sic1 and all Clb cyclins including Clb3,4 overall cell
cycle progression [97]. However, an interesting result has been shown perturbing the
structure of the mathematical model by testing Cdk1/Clb regulation in the absence
of Sic1, mimicking a sic1
 mutant. In this scenario, computational simulations
predicted an abolishment of Clb cyclins waves with their levels reaching a different
plateau over the simulation time. Strikingly, the prediction finds its validation in
elutriated sic1
 cells, which completely loose timing and regulated periodicity of
Clb cyclins appearance although proceeding into the replicative state, revealing
that both Clb3 and Clb2 arise at the beginning of G1 phase as observed for
Clb5 with levels that progressively increase to reach a different plateau [97].
This result agrees with the fact that a sic1
 strain accumulates Clb5 in early G1
phase generating high Cdk1/Clb5,6 activity, therefore promoting precocious DNA
replication [50]. Consequently, an uncontrolled temporal pattern of Clb cyclins
may lead to cells that segregate not completely replicated chromosomes, resulting
in extensive chromosome loss [52]. Altogether, these findings suggest that Sic1,
through a feed-forward regulation, triggers waves of Clb cyclins and timing of their
appearance, therefore controlling Clb-associated kinase activities. Moreover, the
hypothesis that heterodimer formation of various Sic1/Clb pairs can differ according
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to the abundance of a certain Clb cyclin [192, 193] is likely to be relevant for their
localization and temporal window of activity.

Further computational and experimental analyses that we performed have shown
that waves of Clb2, Clb3, and Clb5 levels can be still observed, although temporally
delayed, after constitutive expression of a non-degradable form of Sic1 (SIC1-
OP) [92, 97], as recently envisioned [100]. These data suggest that stable Sic1
transiently blocks Cdk1/Clb activation, but that ultimately the total level of these
complexes increases above the Sic1 level. This is due to the fact that oscillations in
Sic1 level are enough to trigger the feed-forward loop necessary for the switching
of Cdk1/Clb complexes between states of high and low concentrations [194].
Computational simulations abolishing virtually the degradation of Sic1 by any of the
Cdk1/Clbs (Fig. 7.7, reaction rates 4, 10, and 14) reproduce the scenarios in which
cells carrying SIC1-OP are lethal in the absence of either CLB2, CLB3, or CLB5
genes [100], showing a lethal phenotype of Sic1 over-expression in backgrounds
with single deleted Clb cyclins – compared to the viable phenotype associated to
strains with the sole deletion of each Clb subtype – due to a not proper timing
of accumulation of the remaining ones (Fig. 7.8). This results clearly reflects the
specific activity that Clb cyclins play at various cell cycle stages [192, 195] and
indeed indicates that our computational predictions are valid, supporting a role of
Sic1 in the regulation of Cdk1/Clb complexes.

7 Conclusions and Outlook

The aim of systems biology is to obtain a quantitative description of cellular func-
tions to elucidate complex human diseases such as cancer. Due to the complexity
of human cells, model systems, e.g., budding yeast, are used for medical research.
In this organism, complete understanding of cell cycle regulation is not trivial and
many detailed molecular mechanism are still unknown.

The observation that cells replicating their chromosomes from a sub-optimal
number of origins are karyotypically unstable is important to understand tumori-
genesis, in agreement with the fact that G1/S regulators are mutated in cancer
[173]. The modular bottom-up systems biology approach here presented has been
useful to investigate the role of cell cycle players whose deregulation leads to
abnormal replication dynamics. We have employed a multiscale modeling to
elucidate a mechanism by which the Cki Sic1 controls Cdk1/Clb activities in
budding yeast by integrating results derived from structural, biochemical, cell
biological, and computational studies. Biochemical studies and molecular dynamics
simulations helped us to decipher the role of Sic1 intrinsic structure in molecular
recognition, and computational modeling predicted physiological properties related
to Sic1 function, which have been successfully validated experimentally. Thus, our
approach can be valuable for determining the specific mechanism of Cdk1/Clb
regulation. A more complete description of Sic1 role at the G1/S transition will
not only require to resolve the molecular details of Sic1/Clb interactions in living



156 M. Barberis

Fig. 7.8 Over-expression of SIC1-OP leads to lethality in backgrounds with deletion of each Clb
cyclins subtype. Simulations of Clb cyclins wave formation in a wild type background without (a)
or with SIC1-OP (b) are shown at different timing (wild type, 60 min; SIC1-OP, 500 min). Single
deletions in each Clb cyclins subtype without (clb5; 6
, C; clb3; 4
, E; clb1; 2
, G) or with SIC1-
OP (clb5; 6
, D; clb3; 4
, F; clb1; 2
, H) are also shown. Protein levels are marked in different
colors (Clb5,6, black; Clb3,4, dotted black; Clb1,2, gray)



7 Molecular Systems Biology of Sic1 in Yeast Cell Cycle Regulation 157

cells but also the extension to the transcriptional regulation of the phase-specific Clb
cyclins, currently under investigation. Moreover, a stochastic model that addresses
Sic1 transcription and the resulting noise on Sic1/Clb5 balance at the G1/S transition
has been developed [84]. Computational simulation revealed that an increased
amount of SIC1 mRNA leads to an amplified dispersion of Sic1 protein levels,
suggesting that both Sic1 protein and mRNA levels are critical to set the timing
of Sic1 downregulation and, therefore, S phase onset [84].

At the molecular level, considering that Clb cyclins have a high sequence
similarity, structural studies could be pursued to investigate whether stabilizing
residues predicted are conserved in all Sic1/Clb interactions. However, interaction
details have to be necessarily considered within the cellular context, where Clb
cyclins are expressed at different times during cell cycle progression, at variable
protein levels and in different cellular compartments [192, 193]. Computational
and experimental results have to take into account that an in vitro interaction
might have no in vivo meaning. Therefore, strength in the affinity of protein–
protein interactions is functionally relevant for a physiological cellular response. For
example, FLIM–FRET technique provides insights into binding affinities, however
accurate values are difficult to obtain experimentally and to be predicted theoreti-
cally. The development of systems to measure kinetic parameters for protein–protein
interactions is certainly a critical challenge in systems biology, to combine structural
details, affinity data, and computational network analyses. Structures can also give
information on the order of events in a network, by indicating for example which
interactions cannot occur simultaneously due to a common binding interface, e.g.,
the binding of Sic1 to the phase-specific Clb cyclins. As soon as more structural
details become available, cell cycle networks centered around the regulation of Clb
cyclins by Sic1 will be more realistic. However, small modular networks such as
the one we have described that satisfy inherent properties or explain physiological
behaviors can predict biochemical activities and new functional interactions, e.g.,
the binding of Sic1 to Clb3,4, before carrying out an experimental validation.
Identification of the molecular structure of a functional module requires hypothesis-
driven experiments and computational modeling to elucidate design principles and
to describe its temporal dynamics, therefore being a powerful strategy to improve
understanding of cell cycle regulation.
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153. Brocca S, Samalı́ková M, Uversky VN, Lotti M, Vanoni M, Alberghina L, Grandori R (2009)
Order propensity of an intrinsically disordered protein, the cyclin-dependent-kinase inhibitor
Sic1. Proteins 76(3):731–746

154. Brocca S, Testa L, Samalikova M, Grandori R, Lotti M (2011) Defining structural domains
of an intrinsically disordered protein: Sic1, the cyclin-dependent kinase inhibitor of Saccha-
romyces cerevisiae. Mol Biotechnol 47(1):34–42

155. Testa L, Brocca S, Samalikova M, Santambrogio C, Alberghina L, Grandori R (2011)
Electrospray ionization-mass spectrometry conformational analysis of isolated domains of
an intrinsically disordered protein. Biotechnol J 6(1):96–100
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Chapter 8
Proteome-Wide Screens in Saccharomyces
cerevisiae Using the Yeast GFP Collection

Yolanda T. Chong�, Michael J. Cox�, and Brenda Andrews

Abstract The budding yeast is a simple and genetically tractable eukaryotic
organism. It remains a leading system for functional genomic work and has been
the focus of many pioneering efforts, including the systematic construction and
analysis of gene deletion mutants. Over the past decade, many large-scale studies
have made use of the deletion and other mutant collections to assay genetic interac-
tions, chemical sensitivities, and other phenotypes, contributing enormously to our
understanding of gene function. The deletion mutant collection has also been used in
cell biological surveys to identify genes that control cell and organelle morphology.
One valuable approach for systematic definition of gene function and biological
pathways involves global assessment of the localization patterns of the proteins
they encode and how these patterns are altered in response to environmental or
genetic perturbation. However, proteome-wide, cell biological screens are extremely
challenging, from both a technical and computational perspective. The yeast GFP
collection, an elegant and unique strain set, is ideal for studying both protein
localization and abundance across the proteome (http://yeastgfp.yeastgenome.org/).
In this chapter, we outline how the yeast GFP collection has been used to date and
discuss approaches for conducting future surveys of the proteome.

1 The Yeast GFP Collection

The first effort to comprehensively determine the subcellular localization of every
protein in a eukaryotic cell exploited the Saccharomyces cerevisiae model system
(Fig. 8.1a) [1]. Huh et al. created a collection of haploid budding yeast strains
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Fig. 8.1 Yeast array for systematic analysis of the proteome. (a) Construction of the yeast GFP
collection. The GFP cassette was integrated at the 30 end, directly upstream of the stop codon,
for every open reading frame in the yeast genome. (b) Subcellular compartments in the yeast cell.
Schematic modified from yeastgfp.yeastgenome.org. Proteins that fall into the punctate composite
category did not co-localize with any of the compartment-specific markers tested in this study

in which 97% of annotated yeast open reading frames were tagged at their
chromosomal loci with a cassette encoding the green fluorescent protein (GFP) and
a selectable marker. Each strain in this collection produces a different full-length
protein tagged with GFP at its C-terminus under the control of its endogenous
promoter. After analysis using wide-field fluorescence microscopy, 4,156 strains,
covering approximately 70% of the proteome, were annotated as having a visible
GFP signal. Two individuals classified the collection into 11 localization categories
using manual scoring and then later conducted co-localization experiments to assign
proteins to another 11 subcellular patterns, defining 22 distinct locations within the
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cell (Fig. 8.1b). This project assigned 70% of the previously unannotated proteome
to a subcellular location and showed 80% agreement with low throughput findings.
Proteins whose functions are affected by the GFP tag may account for some of the
proteins whose localization patterns could not be determined. However, the GFP-
tagging project revealed that 87% of essential genes can tolerate a C-terminal GFP
tag suggesting that, for most proteins, the tag does not significantly impair protein
function, consistent with other studies [2].

2 Measuring Protein Abundance

The yeast GFP collection can be combined with fluorescence microscopy or flow
cytometry to measure protein abundances across the proteome. Both techniques are
based on the principle that fluorescence of a GFP-tagged protein is proportional
to its abundance [3] and measure protein abundance at single cell resolution in
living cells. While GFP-tagging can potentially alter protein stability, the majority
of proteins in the GFP collection are not likely to be affected [3]; however,
abundance changes identified through high-throughput techniques should be ver-
ified using complementary approaches. Below, we describe innovative projects
that made use of the yeast GFP collection to systematically survey changes
in the abundance of the proteome in response to genetic and environmental
perturbations.

3 Monitoring Protein Turnover

High-throughput fluorescence microscopy and the GFP collection were used to find
new targets of the F-box protein Grr1, a specificity component of the conserved SCF
E3-ubiquitin ligase complex [4]. For this screen, high-content imaging and a two-
color reporter system were used to simultaneously visualize wild-type and mutant
cells to avoid illumination discrepancies. A strain carrying a disruption of the GRR1
locus was marked with RFP and crossed into the GFP collection. Wild-type and
mutant (RFP-expressing) cells were mixed and imaged in the same well. To mark
and identify the entire cell population, a blue fluorescent dye was used. Median GFP
intensities of the wild-type population were compared to median GFP intensities of
the mutant population and strains expressing greater than two-fold changes were
further analyzed as potential substrates of Grr1. Subsequent experiments showed
that the abundance changes identified in this screen resulted from both changes in
gene expression and protein stability and revealed new targets of Grr1, illustrating
the value of this approach.
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4 Changes in Protein Levels in Response to Environmental
Perturbations

Flow cytometry can be used as another approach to monitor fluorescence produced
by GFP-fusion proteins in living cells. While this technique is not as sensitive as
fluorescence microscopy and cannot be used to monitor protein localization, high-
throughput flow cytometers can measure protein abundance for tens of thousands of
cells in seconds [3]. Newman et al. found that �2;500 strains in the GFP collection
produced a GFP signal of sufficient strength to be reliably distinguished from
cellular autofluorescence using flow cytometry. Approximately 40% of the tagged
proteins in these strains showed changes in abundance when cells were grown
in different media. Comparison with DNA microarrays showed that most of the
changes in fluorescence could be explained by changes in mRNA levels; however,
for at least 6% of the strains tested, alterations in protein abundance appeared to
result from post-transcriptional mechanisms.

5 Detecting Gene Dosage Effects on Protein Abundance

Flow cytometry and the GFP collection have also been used to explore the rela-
tionship between gene copy number and protein expression levels. The abundance
of a GFP-tagged protein encoded by a single copy of a gene was measured
in diploid strains which contained either a wild-type copy or a deletion of this
gene at the homologous chromosomal locus [5]. To minimize discrepancies in the
measurement of GFP fluorescence due to experimental variation, wild-type strains
that constitutively expressed mCherry were co-cultured with the heterozygous GFP-
ORF deletion strains that were not marked with mCherry; thus the genotype of
each cell in the sample could be determined by the presence or absence of red
fluorescence. The analysis of 730 different GFP-tagged proteins showed that, in the
vast majority of cases, GFP-fusion protein levels did not change in the heterozygous
deletion strains to compensate for reduced gene dosage. Furthermore, while many
strains showed changes in GFP-tagged protein abundance in response to different
growth conditions, the set of genes exhibiting dosage compensation was unchanged
under these conditions. These results suggest that if compensatory mechanisms
do exist they are rarely triggered when protein dosage drops to only 50% of that
normally found in the cell.

Similar experiments were used to ask whether functional compensation occurred
between paralogous gene pairs in haploid cells. More than 200 strains were analyzed
in which one member of a paralogous pair was deleted while the other was
tagged with GFP. When grown in rich medium, 11% of these strains showed an
increase in the abundance of a GFP-tagged protein when the gene encoding its
paralog was deleted [6]. In most cases, the increased protein abundance reflected
increased transcription of the GFP-tagged gene. However, for some genes, changes
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in mRNA levels did not correlate with protein abundance, suggesting that post-
transcriptional regulatory mechanisms may also be involved. Interestingly, the
gene pairs that exhibited paralog responsiveness were also more likely to display
synthetic lethal interactions than non-responsive pairs. This result suggests that
paralog responsiveness occurs between gene pairs that share a common function
required for cell growth. This hypothesis is supported by the observation that
additional examples of paralog responsiveness were uncovered when cells were
grown under different environmental conditions and, under these conditions, the
responsive gene pairs were required for optimal cell viability.

6 Defining Protein Movement Within the Cell

Several studies have been conducted using all or part of the yeast GFP collection
to identify proteins that change localization in response to perturbations. This
collection is particularly useful for dynamic localization studies because the tagged
genes are under the control of their endogenous promoters; therefore, the proteins
they encode are likely to be produced at physiological levels, minimally disrupting
intracellular transport mechanisms.

Shin and colleagues sought to identify novel targets of the TORC1 kinase
signaling pathway [7]. The entire GFP collection was treated with rapamycin,
a TORC1 inhibitor that induces a starvation response in yeast, and pre- and
post-treated cells were manually examined for differences in protein localization.
When rapamycin was applied to cells for 2 hours, 98 localization changes were
observed out of the 4,156 strains tested. Further analysis of one of these potential
targets revealed a previously unappreciated connection between TORC1 and Stp1,
a transcription factor involved in amino acid sensing.

In a more focused survey, 1,632 strains from the collection that had been
manually annotated as having only a cytoplasmic pattern were screened for new
intracellular structures that may not have been identified when the collection was
first examined [2]. In this study, manual scorers visually identified nine proteins
capable of forming filamentous subcellular structures in the yeast cytoplasm. To
exclude the possibility of filament formation resulting from the presence of the
GFP tag, HA tags were substituted and filament formation was still observed
for these proteins. Co-localization experiments with these proteins revealed that
they assembled into four different types of novel filaments. Interestingly, different
environmental conditions had varying effects on the formation of different classes of
filaments. Based on their findings, the authors speculate that the formation of these
structures is a potential mechanism for regulating the activity of these proteins in the
cell. These observations suggest that screening the GFP collection under different
conditions may enable identification of previously undefined subcellular structures.

Another study was conducted to identify condition-specific changes in the
proteome on a subset of strains from the GFP collection. To observe the presence of
“macro-molecular depots” in cells transitioning in and out of the stationary phase,
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approximately 800 strains, all of which expressed GFP-tagged proteins annotated
to be cytosolic under standard growth conditions, were screened for protein local-
ization pattern differences between quiescent and actively proliferating cells [8].
In this study, the researchers used a unique cell array approach, where chemically
fixed cells were adhered to a microscope slide, forming a cell chip [9]. In this survey,
two scorers manually found 180 proteins that formed obvious foci when cells were
grown to stationary phase. Most proteins associated with foci had annotated roles
in stress response and metabolism, consistent with their response to the growth
conditions. Formation of some foci was nutrient-specific and reversible when cells
were placed in fresh media, suggesting that foci may serve as intermediary storage
mechanisms during cellular stasis. The same cell chip technology was used in a
systematic characterization of the yeast proteome in response to treatment with
mating pheromone [10]. Two annotators visually screened the GFP collection for
proteins that relocalize to the shmoo tip, a cell projection that forms in response to
pheromone to facilitate mating. Up to 16,000 micrographs per chip were analyzed,
a significant advancement in throughput and sample handling. However, fixation of
the GFP-tagged strains increased autofluorescence, resulting in a high false negative
rate, suggesting that live cell imaging may facilitate more reliable screening of the
yeast GFP collection.

7 Applying a High-content Screening Approach to the Yeast
GFP Collection

Although the GFP collection is a unique resource for systematic analysis of the
dynamic proteome, it has been arguably underutilized, largely due to the challenges
associated with analysis of large sets of cell biological data. Visually analyzing
thousands of micrographs is a daunting and time consuming task, and localization
assignments made by different human scorers often show poor agreement [9, 11].
These problems can be avoided by adopting a high-content screening approach,
which combines high-throughput microscopy with automated image analysis.

Methods are available for automated manipulation of yeast arrays, and these
methods can be readily adapted to the GFP collection. In particular, synthetic
genetic array (SGA) technology allows the introduction of a marked allele of
any query gene of interest, such as a fluorescent marker for a cell compartment
of interest, into an arrayed yeast collection through a series of replica pinning
steps [12] (Fig. 8.2a). For example, SGA has been used to introduce a fluorescent
tubulin protein into the yeast deletion collection to identify mutants with defects in
spindle morphology [13]. The major challenge lies not in creating cell arrays and
assays compatible with automated image analysis, but rather in the computational
assessment of changes in the localization of the proteome in response to genetic or
environmental perturbations.
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Fig. 8.2 Scheme for automated analysis of changes in nuclear protein localization. (a) Generation
of strains for imaging. A query strain carrying an RFP-tagged nuclear marker is mated to an array
of strains from the GFP collection. The synthetic genetic array or SGA method is used to create an
array of haploid strains that express both of the GFP- and RFP-tagged proteins. (b) Segmentation
of images. The RFP-tagged nuclear landmark is used to identify the location of nuclei, generating
a nuclear mask (1). A ring is expanded around the nuclear mask into the cytoplasm (Cyto.Ring)
(2). Intensity measurements are extracted from the GFP image using either the nuclear masks (3)
or cytoplasmic rings (4). (c) Quantification of nuclear translocation. For each cell in an image,
the nuclear localization ratio is calculated by dividing the average nuclear GFP intensity by the
average cytoplasmic GFP intensity. (Left) Images of cells expressing a GFP-tagged derivative of
Crz1, a calcium-responsive transcription factor. Untreated Crz1-GFP cells and cells treated with
0.2 M CaCl2 are shown. (Right) Histogram showing the nuclear localization ratios for untreated
(squares) or CaCl2-treated (circles) Crz1-GFP samples [>190 nuclei per sample]
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To use computational image analysis successfully, regions of interest (ROIs) in
an image, such as cells or organelles, must first be defined using a process known
as segmentation. ROIs can be identified using fluorescently-tagged proteins or
commercially available dyes as landmarks for cellular compartments. For example,
the GFP collection might be surveyed for proteins that shuttle in and out of the
nucleus in response to a perturbation by introducing a fluorescent landmark that
defines the nucleus. Images for both the GFP marker and the nuclear landmark for
each strain can be acquired using an automated imaging system (available systems
are reviewed in Vizeacoumar et al. [14]) (Fig. 8.2b). Image analysis software such
as CellProfiler or ImageJ can then be used to segment the ROIs in the image
using the nuclear landmark [11, 15]. Following segmentation, the nuclear region
can be expanded by a defined distance into the surrounding cytoplasm (Fig. 8.2b).
By subtracting the nuclear region from this expanded region, a ring that overlaps
a portion of the cytoplasm is created. Average intensity measurements can then
be extracted from the GFP image in the areas that correspond to nucleus and
cytoplasmic ring, and a ratio of these numbers can be used as a measure of
the relative distribution of the fusion protein between these two compartments
(Fig. 8.2c). We have used this relatively simple segmentation approach to survey the
movement of yeast transcription factors in response to environmental and genetic
perturbations (MC and BA, unpublished).

To screen the entire GFP collection for protein localization changes under
genetic or chemical perturbations, the co-localization approach described above
could be feasibly applied; however, this would require the introduction of at
least 22 different compartmental landmarks into the collection. Alternatively, a
computational approach can be used to determine the subcellular localization of
each GFP-tagged protein, based solely upon the distribution of the GFP-signal
within the cell. To survey the collection in this fashion, the entire cell must be
segmented using a cytoplasmic fluorescent marker or dye. Alternatively, light
microscope images can be used to define the cell [16, 17], although often with
less success than fluorescent images. Once the cell has been identified, numerous
texture measurements, which describe the distribution of the GFP signal within
these ROIs, can be used in a machine learning approach to define a set of rules (i.e.,
a classifier) that reliably discriminate each unique subcellular localization pattern
[18]. For example, a support vector machine multi-class classification method was
used to define patterns in published images for�2;600 strains in the GFP collection
with 81% accuracy when compared to the manual annotations [18]. In this study,
only images for which the GFP-tagged protein had been assigned to a single
localization category were assessed. So far, this approach has not been used to
systematically identify changes in protein localization in response to genetic or
other perturbations in budding yeast. However, several open source software tools
have been developed to aid biologists in designing classifiers for defining patterns
or shapes of interest [19, 20]. These computational tools ought to stimulate more
researchers to incorporate automated image and data analyses in future surveys of
the GFP collection.
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8 Conclusions

The budding yeast GFP collection is a unique tool for systematic analysis of
protein function. Clever studies have been undertaken to detect changes in protein
abundance in an automated fashion using flow cytometry and high-throughput
microscopy. The GFP collection has also been surveyed for protein localization
changes using manual inspection of cell images. Advances in high-throughput
microscopy and automated image analysis mean that the GFP collection can now
be used to rapidly acquire quantitative information about proteome dynamics in
response to genetic and environmental perturbations. The non-invasive nature of
these techniques allows for the monitoring of the proteome at single cell resolution
over time. Being able to resolve information for individuals in a population allows us
to detect changes that only occur in a subpopulation of cells; these changes would
otherwise be missed in techniques that only analyze whole-population data (e.g.,
Western blot). The ability to follow protein localization and levels on a large scale
and in an automated fashion is an essential step towards a quantitative description
of biological pathways and processes.
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Chapter 9
Unraveling the Complex Regulatory
Relationships Between Metabolism
and Signal Transduction in Cancer

Michelle L. Wynn, Sofia D. Merajver, and Santiago Schnell

Abstract Cancer cells exhibit an altered metabolic phenotype, known as the
Warburg effect, which is characterized by high rates of glucose uptake and glycoly-
sis, even under aerobic conditions. The Warburg effect appears to be an intrinsic
component of most cancers and there is evidence linking cancer progression to
mutations, translocations, and alternative splicing of genes that directly code for
or have downstream effects on key metabolic enzymes. Many of the same signaling
pathways are routinely dysregulated in cancer and a number of important oncogenic
signaling pathways play important regulatory roles in central carbon metabolism.
Unraveling the complex regulatory relationship between cancer metabolism and
signaling requires the application of systems biology approaches. Here we discuss
computational approaches for modeling protein signal transduction and metabolism
as well as how the regulatory relationship between these two important cellular
processes can be combined into hybrid models.
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1 Background

1.1 Cancer Systems Biology

Systems biology is the integration of theoretical and experimental methods to
build a predictive model of a complex biological system. Tumor environments
are extremely complex and encompass a large number of cells interacting with
a changing microenvironment across a variety of spatial and temporal scales.
Cancer systems biology, then, aims to understand the interactions that occur across
microscopic and macroscopic scales in a tumor and, importantly, aims to exploit
these interactions in a predictive way. Ideally, cancer models built using systems
biology methods will have translational significance and can, for example, be used
to predict rational therapeutic targets.

1.2 Cancer Signaling and Metabolism

Cancer cells exhibit an altered metabolic phenotype characterized by high rates
of glucose uptake and glycolysis, even under aerobic conditions. This altered
metabolism, first described by Warburg [1], is referred to as the Warburg effect
and is so pervasive among cancers that it is routinely leveraged in the clinic with
fluorodeoxyglucose-positron emission tomography (FDG-PET). In general, high
tumor glucose uptake observed in FDG-PET scans correlates with poor prognostic
outcome [2,3]. There is evidence to suggest that reliance on non-oxidative glycolytic
metabolism sustains the biosynthetic requirements of rapid proliferation [2].

While the Warburg effect appears to be an intrinsic component of most cancer
progressions, a precise etiology remains elusive. Both oncogenic signaling [4, 5]
and interactions with the tumor microenvironment [6] play important roles in the
induction of the malignant metabolic phenotype. For example, the activity of the
M2 isoform of pyruvate kinase (PKM2), an important glycolytic enzyme, has been
linked to the induction of the Warburg effect via tyrosine kinase signaling [7, 8].

Despite the enormous amount of genetic diversity found within a single tumor
and across different cancers, many of the same signaling pathways are routinely dys-
regulated in cancer cells [9]. Importantly, many of these pathways have important
downstream effects on metabolic behavior. For example, the phosphatidylinositol 3-
kinase AKT pathway is commonly dysregulated in many human cancers [10]. AKT,
a key component of this pathway, is known to play a critical role in stimulating
glycolysis [11, 12]. In addition, there is evidence linking cancer progression to
mutations, translocations, and alternative splicing of genes that directly code for
or have downstream effects on key metabolic enzymes [13, 14].

It should be noted that there is some debate about whether increased glucose
uptake translates into increased glycolytic flux and net glycolytic ATP gain in
cancer cells [15]. It is possible that a significant amount of the glucose uptake
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in cancer cells is shunted to pathways other than glycolysis (e.g., to the pentose
phosphate pathway). Metabolic transformation, however, is increasingly recognized
as an important hallmark of cancer [2, 16].

2 Modeling Intracellular Biochemical Processes

Because it is not practical to create models that are exact replicas of a complex
system, trade-offs must be made between the scope and level of detail included in
a model [17]. Complex cellular processes are commonly modeled with systems of
continuous ordinary (ODE) or partial (PDE) differential equations. ODE and PDE
models are built from underlying biophysical principles and, as a consequence, are
inherently predictive. The use of continuous ODE-based approximations is justified
when the system is assumed to be well mixed and the number of molecules of a
given reactant ranges from 100 to 1,000 [18].

ODE-based systems, which are commonly applied to models of protein signal
transduction and metabolism, are generally based on mass action and Michaelis–
Menten (MM) kinetics [17, 19–21]. MM kinetics depends on the quasi-steady-state
approximation, which assumes that the formation of the complex occurs on a
much faster timescale than that of the other reactants. It is important, therefore,
to recognize when these assumptions are invalid [22, 23].

An alternative to ODE-based kinetic models are stoichiometric models where
the known structure of a chemical pathway is used to understand the state of the
system under a set of specific conditions. Stoichiometric models have demonstrated
predictive power using data from prokaryotes. The methods assume an optimization
function (e.g., the goal of bacteria is continual production of biomass). Because
these methods do not include any regulatory or kinetic information in the model
formulation [24], they lack predictive power for multifunctional mammalian cells
[25]. In our view, it would be extremely difficult to define an optimization function
that adequately captures the complexity of a mammalian cell. Kinetic ODE models
will, therefore, tend to be more predictive than stoichiometric methods because
they can describe temporal dynamics. Kinetic ODE models require more knowledge
a priori [24] than stoichiometric models, however, and this information is not always
readily available.

At the other extreme are discrete logic-based Boolean models which provide
a good approximation of the qualitative behavior of a biochemical system [26].
The motivation behind these models comes from the sigmoidal or hyperbolic
dependence between regulatory molecules and the compounds they affect that can
be thought of as having two states: saturated (“on”) and non-saturated (“off”),
approximating a Boolean switch. In their simplest form, Boolean models are
interaction networks where each biochemical species is represented as a node in
one of two possible states: expressed (“on” or 1) or non-expressed (“off” or 0).
Transfer functions between states are derived from biochemical interactions using
logical operators (e.g., AND, OR, and NOT). In the transfer functions, there is
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no notion of reaction rate and, hence, no need to estimate kinetic parameters.
Despite this advantage, Boolean models have a major limitation: time is unrelated
to physiological time and can provide only a qualitative chronology of molecular
activations [27]. None the less, Boolean models can be important predictive tools in
the absence of reliable kinetic data.

2.1 Modeling Metabolism

Many ODE-based models of glucose metabolism exist in the literature [28–31]. In
general, metabolism is considered to be the set of chemical reactions catalyzed by
enzymes operating in a living cell that are involved in catabolism or anabolism [19].
Enzymes regulate metabolism by catalyzing reactions [32]. Specifically, an enzyme
reacts selectively with a substrate and transforms it into a product. In experimental
studies of metabolism, enzyme concentrations are generally assumed to be constant
during the catalyzed transformation of substrates into products [33, 34]. The
majority of ODE-based metabolic models have focused on the dynamical behavior
of subsets of central carbon metabolism (e.g., glycolysis or the pentose phosphate
pathway). In our view, predictive models (especially in the context of cancer) should
also consider the nature of the control mechanisms that regulate metabolism.

The most widely used theories of metabolic regulation are biochemical systems
theory [35–37], metabolic control theory [38–40], and flux-oriented theory [41–43].
All three of these theories are in essence a form of sensitivity analysis applied to
biochemical reaction models. The models consist of coupled ODEs based on the law
of mass action. Sensitivity analysis is used to investigate the effects of parameter
value changes on model behavior [44]. It is not surprising, then, that the primary
difference between these theories is the choice of which parameters to vary when
evaluating model sensitivity [44, 45].

In biochemical systems theory, the rate constants for the synthesis and degrada-
tion of metabolites are usually the parameters chosen for the sensitivity analysis. The
metabolites are decomposed into dependent (substrate concentrations) and indepen-
dent (enzyme concentration) variables where enzyme concentrations generally take
constant values [46]. In metabolic control theory, the parameters for the sensitivity
analysis are the enzyme activities. The sensitivity analysis gives rise to control
coefficients, which are global pathway properties quantifying the control of overall
metabolic flux by a single enzyme [45]. Enzyme concentrations are assumed to
be constant and reaction rates are treated as constant parameters. Finally, in flux-
oriented theory, sensitivities are calculated as the ratio of the relative change of the
reaction rate (or flux) in response to a small internal or external stimulus. Enzyme
concentrations are generally treated as constants in flux-oriented theory.

The assumption of constant enzyme concentration has been questioned for some
time, however [47]. Enzymes are not indefinitely stable; they are metabolites like
their substrates and products [19]. The synthesis of enzymes is an essential part
of metabolism and is catalyzed by other enzymes. This phenomenon is known
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as metabolic closure [48]: all catalysts essential for the survival of an organism
must be synthesized internally. While the theory of metabolism-replacement has
presented an abstract model of metabolic closure [49–51], it has limited practical
applicability for the investigation of metabolic regulation [48] in the biomedical
sciences. A theory to investigate metabolic regulation in cancer cells that takes into
account enzyme production and depletion is critically needed in medicine.

2.2 Modeling Signal Transduction

A number of ODE-based models of signal transduction can be found in the literature
[20, 21, 52–54]. In contrast to central carbon metabolism, however, significant
information about the structure of signal transduction networks is often not known
a priori. Alternative methods for modeling signal transduction include Bayesian
network analysis, Markov models, and Boolean logic-based models [55].

As previously mentioned, a number of Boolean network models of gene reg-
ulation and signal transduction have generated experimentally valid predictions
[26, 55–58]. In its simplest form, a Boolean model updates all nodes in a network
at the same time, forcing all processes in the network to operate on identical
timescales. This assumption results in a deterministic outcome similar to that of
cellular automata. Boolean networks can be extended to utilize more biologically
realistic variable timescales by performing asynchronous updates where nodes are
selected at random and updated instantaneously [26]. Any given Boolean model
will have one or more attractors or steady states each associated with a unique set
of initial conditions (called its basin of attraction) that converge into that attractor
[26, 57]. It is, therefore, possible to study the qualitative dynamical behavior of
Boolean networks.

We would like to note that it is essential to carefully characterize the interactions
included in any logic-based model. This is because the signaling dynamics of a
network can be very different if an OR is used when an AND is needed. A detailed
survey of the literature is required to build a reliable and robust logic-based model.
For an example of the level of detail needed to justify each rule in a Boolean model,
refer to the appendix in Albert and Othmer [56].

2.3 Linking Metabolic and Signal Transduction
Models of Cancer

Metabolism and protein signaling do not operate in isolation. Gene expression
and protein signal transduction have important downstream effects on metabolism,
especially on metabolic enzyme synthesis. It is also likely that metabolite levels play
a role in the regulation of gene transcription and protein translation.
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How can we investigate and analyze the complex regulatory relationships
between metabolic pathways and protein signaling in cancer? One possibility is to
use large ODE-based models of protein signaling and metabolism without any of
the simplifying assumptions made in the standard theories of metabolic regulation
discussed above. Although this is theoretically possible, it would be a task for
Laplace’s Demon1 because it would require a detailed knowledge of every chemical
species, every interaction, and all associated rate constants involved in the reactions
included in the model.

In practical terms, if the interactions are known, the law of mass action can
be applied to derive an ODE system describing the pathways under consideration.
Biochemical reaction dynamics are strongly dependent of parameter values. Central
carbon metabolism, which is an essential part of tumor metabolism, has fortunately
been well studied and characterized in mammalian cells. As a result, while
experimentally and/or computationally intensive, methodologies exist for estimating
kinetic parameters for metabolic networks [45]. This is less true of protein signaling
networks largely due to their extreme complexity. While a tremendous amount of
experimental work has identified a large number of protein interactions involved in
both normal and malignant protein signaling, the kinetic details of these interactions
are generally not known nor easily obtained. How, then, can we build predictive
models that link cancer metabolism and protein signaling? One possibility is the
use of hybrid models.

2.4 Hybrid Models

Hybrid models link discrete and continuous models across timescales and are
widely used in the engineering and computational sciences. In models of tumor
growth, cells can be modeled as discrete entities that respond to intracellular and
extracellular signals which are modeled continuously [59–63]. For example, Ribba
et al. [61] developed a multiscale model that linked a set of discrete models
with continuous models of colorectal cancer growth. The model accounted for
the cellular, genetic, and environmental factors regulating tumor growth. Key
oncogenes involved in colorectal cancer evolution were integrated into a Boolean
gene network regulated by a discrete cell cycle model. The response to signals from
the intracellular gene network determined whether each cell proliferated or died and,
therefore, directly influenced the cellular and the extracellular tissue scales. The
spatial distribution of cells was computed using a continuous macroscopic tissue

1The idea of a Laplace Demon came from a thought experiment proposed by Pierre-Simon Laplace
of a perfect entity who would know the precise location of each atom and of all forces in nature
at any given moment. This entity (or demon, as it later came to be called) would have incredible
predictive power because it could infer the past and determine the future from any set of initial
conditions.
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model based on Darcy’s law. Finally, the number and spatial configuration of cells
were used to activate antigrowth signals, which in turn were input into the Boolean
model. This combination of discrete and continuous modeling was used to predict
the qualitative effect of therapeutic protocols on colorectal cancer and demonstrated
that the efficacy of irradiation protocols depends on the type of anti-growth signals
to which tumors are exposed. Thus, a primary conclusion of this work was that
the efficacy of irradiation therapy could be improved (without increasing radiation
doses) by devising therapeutic schedules that take into account features of tumor
growth through cell cycle regulation.

In a recent paper by Singhania et al. [64], a continuous model of the cell cycle was
linked to a Boolean gene network model that regulated critical substrates involved
in the progression of the cell cycle. By combining a continuous ODE model with
a discrete Boolean model, the authors effectively obtained a piecewise ODE model
system. In the model, each state was composed of a set of ODEs where specific
species or parameters were null (or effectively “off”) based on node values in the
Boolean network.

In a similar manner, we propose that it is possible to combine ODE-based models
of metabolism with discrete signaling models. While discrete and continuous hybrid
models have been used in cancer research for more than 10 years, we are not aware
of any that have directly linked metabolism and signal transduction. To successfully
implement a hybrid model of this type, timescale separation will need to be carefully
considered.

Comparing average protein half-life with average turnover in the number of
enzyme molecules can provide insight into the separation of timescales needed in
such a model. An assay of 100 proteins in living human cancer cells showed protein
half-life range between 45 minutes and 22.5 hours [65]. The turnover numbers of
most enzymes with their physiological substrates range from 1 to 1 � 105 substrate
molecules converted into product molecules per second [66]. Using these numbers,
we estimate that enzymes convert between 3:9 � 103 and 1:1 � 1010 substrate
molecules into product molecules during their mean lifetime. Thus, due to the large
difference in timescales, metabolic enzyme catalyzed reactions can be assumed
to effectively operate under steady-state kinetics. If an enzyme concentration
decreases, the steady state kinetics will change from a state of high enzyme steady-
state kinetics to a low enzyme steady-state kinetics. Changes between these kinetic
states will be driven by signal transduction pathways approximated in the discrete
Boolean model.

3 Conclusion

Over the last 30 years much of cancer research has shifted to focus on molecular
features of cancer and away from cancer metabolism and the Warburg effect. As
a result, a wealth of experimental data now exists related to the role of gene
and protein expression in cancer. Glucose uptake and metabolism are essential
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features of cancer that, in our view, should be included in system level models
of intracellular regulation (and dysregulation) in cancer. Developing theories that
integrate this wealth of molecular information with experimental evidence related
to cancer metabolism is the domain of cancer systems biology.

Of course, it is not practical to create models that exactly replicate the complexity
of a tumor cell. Trade-offs, therefore, must be made between the scope and level
of detail included in any model of cancer. Continuous ODE models are useful
when kinetic information is available. When kinetic information is not available,
logic-based Boolean models can be used to understand regulatory dynamics of
known interactions from any set of initial conditions. A large number of regulatory
interactions have been characterized in human cancers but the kinetic parameters
governing the interactions are typically not known. As a result, Boolean models are
useful tools for understanding the dynamics of these regulatory networks.

A theory to investigate the regulation of the malignant metabolic phenotype is
critically needed. We suggest that hybrid models can be leveraged to integrate dis-
crete Boolean signaling models with continuous metabolic models of cancer. Ideally
this theory will also include aspects of existing control theories of metabolism.
The ultimate goal of models built based on this theory will be to predict rational
therapeutic targets that can be further experimentally validated.
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51. Letelier JC, Soto-Andrade J, Guı́ñez Abarzúa F, Cornish-Bowden A, Luz Cárdenas M (2006)
Organizational invariance and metabolic closure: analysis in terms of (M, R) systems. J Theor
Biol 238(4):949–961

52. Huang CY, Ferrell JE Jr (1996) Ultrasensitivity in the mitogen-activated protein kinase cascade.
Proc Natl Acad Sci USA 93(19):10078–10083

53. Ventura AC, Jiang P, Van Wassenhove L, Del Vecchio D, Merajver SD, Ninfa AJ (2010)
Signaling properties of a covalent modification cycle are altered by a downstream target. Proc
Natl Acad Sci USA 107(22):10032–10037

54. Ventura AC, Sepulchre JA, Merajver SD (2008) A hidden feedback in signaling cascades is
revealed. PLoS Comput Biol 4(3):e1000041

55. Aldridge BB, Saez-Rodriguez J, Muhlich JL, Sorger PK, Lauffenburger DA (2009) Fuzzy logic
analysis of kinase pathway crosstalk in TNF/EGF/insulin-induced signaling. PLoS Comput
Biol 5(4):e1000340

56. Albert R, Othmer HG (2003) The topology of the regulatory interactions predicts the
expression pattern of the segment polarity genes in Drosophila melanogaster. J Theor Biol
223(1):1–18

57. Li S, Assmann SM, Albert R (2006) Predicting essential components of signal transduction
networks: a dynamic model of guard cell abscisic acid signaling. PLoS Biol 4(10):e312

58. Zhang R, Shah MV, Yang J, Nyland SB, Liu X, Yun JK, Albert R, Loughran TP Jr (2008)
Network model of survival signaling in large granular lymphocyte leukemia. Proc Natl Acad
Sci USA 105(42):16308–16313



9 Metabolism and Signaling in Cancer Systems Biology 189

59. Anderson AR, Quaranta V (2008) Integrative mathematical oncology. Nat Rev Cancer
8(3):227–234

60. Alarcon T, Byrne HM, Maini PK (2004) A multiple scale model for tumor growth. Multiscale
Model Sim 3(2):440–467

61. Ribba B, Colin T, Schnell S (2006) A multiscale mathematical model of cancer, and its use in
analyzing irradiation therapies. Theor Biol Med Model 3:7

62. Ribba B, Saut O, Colin T, Bresch D, Grenier E, Boissel JP (2006) A multiscale mathematical
model of avascular tumor growth to investigate the therapeutic benefit of anti-invasive agents.
J Theor Biol 243(4):532–541

63. Frieboes HB, Chaplain MA, Thompson AM, Bearer EL, Lowengrub JS, Cristini V (2011)
Physical oncology: a bench-to-bedside quantitative and predictive approach. Cancer Res
71(2):298–302

64. Singhania R, Sramkoski RM, Jacobberger JW, Tyson JJ (2011) A hybrid model of mammalian
cell cycle regulation. PLoS Comput Biol 7(2):e1001077

65. Eden E, Geva-Zatorsky N, Issaeva I, Cohen A, Dekel E, Danon T, Cohen L, Mayo A, Alon U
(2011) Proteome half-life dynamics in living human cells. Science 331(6018):764–768

66. Berg JM, Tymoczko JL, Stryer L (2002) Biochemistry. 5th edn. WH Freeman, New York



Part II
Cellular Decision Making: Adaptation,

Differentiation and Death



Chapter 10
The Cell as a Thermostat: How Much
does it Know?

Dennis Bray

Abstract How does bacterial thermotaxis compare to a simple wall thermostat?
Elements with similar function can be found in the two, including a temperature-
sensing element, an output switch, and an external control. But they differ in
their origins. A thermostat is designed and made by humans and embodies their
understanding of seasonal fluctuations in temperature and how these affect room
comfort. By contrast, the bacterial system is self-contained and assembles according
to information in its genome acquired by evolution. This information is far richer
than anything carried by a thermostat and closer to the ‘knowledge’ that higher
animals have about the world.

When cells of the common gut bacterium Escherichia coli are taken from a growing
culture with density less than about 2 � 108 cells per ml and placed in a chamber
with temperature ranging from 18ıC at one end to 30ıC at the other, they swim to
the warm end [1,2]. This response, termed thermotaxis, is a specific adaptation quite
distinct from the universal effects of temperature on the rates of enzyme reactions
and other processes. It is advantageous to the bacteria since it allows them to avoid
extremes of hot or cold and seek an optimal temperature for growth. Evidently,
these simple cells have the capacity to sense a change in temperature and produce a
response – in this case a change in motility.

A physicist friend observing this behaviour might then say that the cell is just
behaving like a thermostat on a wall. It is a dumb device that blindly changes state
with temperature and thereby turns on or off some other process in the cell: : :
end of story. There is no reason to suppose, he or she might declare, that the
cell “knows” about temperature, or that particular temperature states are “better”
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Fig. 10.1 Conventional room
thermostat

or “more desirable” than another, or that the cell “expects” certain temperatures
to be more likely than others. Indeed, the very use of these terms is egregiously
anthropomorphic. They impute to a simple bacterium capacities such as knowledge
of the world and of individual requirements that are truly only present in humans.

In this short essay I argue, by contrast, that what the cells are doing in the above
experiment is far from dumb. Indeed I believe their behaviour reveals the presence of
a large body of specific information relating to the natural variations in temperatures
in the world and their potential significance for bacterial survival. This information
is far richer and more sophisticated than anything carried by a thermostat and much
closer to the “knowledge” that higher animals and humans have about the world,
although without the conscious component.

Let me start by considering a typical household thermostat such as might be used
to control a gas-fired boiler. The temperature-sensing element of this device is a
bimetallic strip wound into a coil, anchored at one end and free to move at the other.
Because the two metals making up the coil have different thermal expansions, a
change in temperature causes the coil to tighten or loosen and its free end to move.
In the configuration shown in Fig. 10.1, a falling temperature drives the free end
clockwise until it encounters a contact point at the end of a screw; an electric circuit
is thereby completed causing the boiler to operate. The temperature at which the
switch operates is regulated by the position of the grub screw set by the manu-
facturer, and by a control lever operated from the room by the occupier. A typical
thermostat also includes a magnet (not shown in the figure) close to the point of
contact to ensure good contact and to avoid hunting oscillations of a few degrees.

The device portrayed in Fig. 10.1 is indeed no more than a collection of inert
metal parts. It has a function, but surely no one would claim that by itself it
knows anything about temperature or the boiler or the room. However the situation
changes when we remember where the thermostat came from. For it was made and
used by humans and for that reason embodies their understanding of the world.
Whoever designed the thermostat knew the range of temperatures over which it
would need to operate. He or she would have chosen the materials, the dimensions
and other specifications needed to switch on and off at the right temperature and
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Fig. 10.2 Thermosensitive response of Escherichia coli. The cell membrane is represented by a
closed grey line into which chemoreceptors are inserted like thin probes. A typical cell has several
thousand copies of five subtypes, which detect nutrients and poisons in the environment. Depending
on the type of receptor and its level of methylation, it can also serve either as heat-avoiding (“hot”)
or cold-avoiding (“cold”). The layer termed “kinase” contains not only the kinase CheA but also the
proteins CheW, CheZ, CheR and CheB. Two arrows indicate diffusion of the small protein CheY
through the cytoplasm. In its phosphorylated form, CheY binds to the inner face of the flagellar
motor causing it to turn clockwise and initiate a tumble. For details of the signal cascade, see [4,5]

with appropriate dynamics for the downstream output device. The designer would
know what settings would be likely to be useful in different climates and seasons and
allowing for personal preferences, to be adjusted by the manufacturer (grub screw)
and the room user (sliding lever). In other words, if we were to wrap together the
physical device with the humans that designed, made and used it, then we would
indeed have something that carries a form of knowledge about room temperature
and its effect on human inhabitants.

Now consider the temperature-sensing system of the bacterium. Despite the
fact that it is a million times smaller than the thermostat and made of proteins
rather than metal, we can identify parts with similar function (Fig. 10.2). The
temperature-sensitive element itself – equivalent to the coiled bimetallic strip – is a
cluster of proteins, chemoreceptors, inserted in the bacterial membrane. In common
with most protein molecules, these receptors can exist in different shapes, or
conformations, each with a distinctive arrangement of atoms. Transitions between
protein conformations typically occur in response to changes in the environment
such as changes in acidity or the concentrations of small molecules. In the present
case, the receptors also change with temperature, in a manner that can be tuned by
the environment. Depending on which out of five possible kinds the receptor belongs
to and how much it has been modified in the cell by the addition of methyl groups,
it can be activated by heat, activated by cold, or be insensitive to temperature.
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The effect of these changes – the response of the “device” – is a change in
swimming. Swimming entails rotation of flagella on the cell surface and may be
either counterclockwise, in which case the cell progresses smoothly in the current
direction, or clockwise when it undergoes random changes in direction (termed a
tumble) [3]. Tumbles are triggered when the chemoreceptors become active and
send a diffusible signal to the motors. Thus, if an individual bacterium moves by
chance into a region of excessive temperature, the “heat avoiding” receptors become
active and the cell initiates a tumble and changes path. Similarly, if the bacterium
wanders into an excessively cold region, “cold avoiding” receptors kick in and the
cell will again stall. Only at an optimal intermediate temperature where all receptors
are inactive will the cell progress smoothly in a forward direction. For the cells
described in the above experiment this range is close to body heat, which is why
they swim toward 30ıC in the test chamber.

The “switch” of the bacterial device – equivalent to the contact between the
coil and grub screw – is the point at which the receptors interface with the
downstream signalling proteins. This is provided by a layer of proteins attached
to the cytoplasmic tails of the receptors that includes molecules of a kinase – an
enzyme that transfers phosphoryl groups from ATP to other proteins. The kinase
is turned on whenever its associated receptors are active and then sends a signal
to the flagellar motors telling them to turn clockwise and hence generate a tumble.
(The signal is carried by another protein, CheY, which receives an active phosphoryl
group from the kinase and diffuses through the cytoplasm to the inner face of the
motors – see [4, 5]). Thus, if the bacterium experiences a very high or very low
temperature, one or other set of receptors will become active and the bacterium will
tumble, or stall.

There is even something analogous to the thermostat’s control lever. If the
experiment mentioned in the first paragraph is performed with cells taken from
a dense rather than a sparse culture, then bacteria reverse their preference and
swim to the cooler end, set at 18ıC [1]. The reason for this curious behaviour
is thought to be that in a crowded environment it is actually advantageous for
cells to grow more slowly – when food is running short, they are best advised to
congregate into stress-resistant colonies and wait until better conditions arrive. The
mechanism of inversion depends on modifications in the amounts and efficiency
of the receptors mentioned above. As the culture grows more crowded, cells start
to make more hot-avoiding receptors. The remaining cold-avoiding receptors also
become less effective due to a form of adaptation, caused by the accumulation of
the amino acid glycine in the medium. As a consequence of these two changes, the
optimum temperature at which the cells swim most efficiently falls and in the above
experiment they accumulate at the 18ıC end of the chamber.

So like the thermostat, the bacterial cell has (1) a temperature-sensing element;
(2) an output switch that is activated only at certain temperatures; and (3) a control
by which the critical temperatures can be altered. (There is nothing equivalent to the
magnet, so far as I know, but perhaps this is not necessary at the molecular level.)
Considered as a simple on–off device, therefore, the cell is indeed comparable to a
thermostat on the wall. But when we inquire into its, origins the situation is entirely
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different, for the cell was not created by a designer either human or divine, nor is
its response continually adjusted by some outside user according to requirements.
These functions are supplied not by humans as in the case of the wall thermostat but
by the cell itself.

Where does the cell acquire its information? It can only be from the parental
cell through the process of cell division. And where did the parental cell and
antecedent generations acquire their information? Why, by evolution. Over un-
counted millennia the ancestors of present day E. coli struggled to survive in a
cruel and capricious world. Temperature was a persistent and ever-changing feature
of their environment – one that, if correctly interpreted, could provide life-saving
clues about how to respond. An increase in ambient temperature, for example,
might indicate the presence nearby of a mammal and a source of food; a low
temperature might be associated with flowing water and a risk of being swept away.
Or, as we have seen, it could signal a desirable place to cool down under crowded
conditions. Any bacterium that learned (in an evolutionary sense) to read these
signs, especially in conjunction with other indicators, would have an advantage. The
first step might have been mutations that by chance installed a sequence of amino
acids that produced a particularly large change in structure of a particular protein
with temperature. Changes in other proteins would then have followed allowing
them to interact and respond to the temperature-sensitive protein. Eventually, a
complicated chain of biochemical causation could have been built up by which
ambient temperature influenced processes such as motility or metabolism [6].

The nucleotide sequences in E. coli DNA that encode the chemoreceptors and
downstream proteins, therefore, perform a similar function to the designer and
manufacturer of a thermostat. They determine the range of temperatures over which
the temperature-sensor needs to operate; they specify the dimensions and other
parameters needed for the sensor to switch on and off at the right temperature and
with appropriate dynamics for the downstream output device. The DNA carries
information relating to the settings a future (bacterial) user will likely need in
different climates and seasons and perhaps even allow for individual preferences
arising, say, from the nutritional state of the cell or its stage of division. The
machinery of protein synthesis and assembly – all of it intrinsic to the cell – uses
this information to produce actual functioning molecular parts. No need here for
plans produced in an office to be sent to a manufacturing facility for assembly and
distribution. It all happens in the same minute volume of cytoplasm, unceasingly
and without outside intervention.

A bacterium is, therefore, much more sophisticated than a thermostat. Not only
does it possess physical parts that detect and relay changes in temperature but it also
carries the information needed to specify and build the device, closely resembling
in this respect the role of a human designer. Indeed, since the bug and the human are
both products of evolution, one could say they acquired their understanding from
the same source, albeit by a very different path.

But what words can we use to describe this cellular information? Contemporary
biology embraces reductionism and eschews vitalism. It has been inordinately
successful in revealing the structures and functions of biological molecules, often at
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an atomic scale. But it has left us with an extreme, almost puritanical rejection of
any account of biological processes that goes beyond physics or chemistry. This is
why a term such as “knowledge” arouses antipathy when applied to cells or simple
organisms – because it is freighted with human connections. Human knowledge
is consciously accessible and can be expressed in language and there is no exact
equivalent in a bacterium or other biological system. Our physics friend might,
therefore, be driven to employ phrases such as “the bacterium has competence to
respond to temperature”.

But please consider that the dictionary definition of “knowledge” includes the
more generic meaning of “specific information about a subject”. A library can be
said to contain a body of knowledge. The multiple databases accessed by IBM’s
Watson computer in its recent successful performance in the quiz show Jeopardy!
were a source of knowledge. Even human knowledge is not always conscious – the
complex sequence of muscle actions a child learns to use when riding a bicycle, for
example. Living organisms, from bacteria to humans, carry an enormous legacy of
information acquired through evolution. They draw on this information as they grow
and interact with the world and it enables them to act in a manner that is beneficial to
their eventual survival. A physicist or chemist examining this or that process or set
of molecules in isolation usually has little comprehension of its complete function in
a living organism. Who does? But considered in context, every protein is enmeshed
in a dense thicket of interactions, actual or potential, that have supported survival
under the myriad of situations encountered by the organism and its predecessors.
When it is challenged, the cell or organism accesses this information and produces
an appropriate movement or other response. To me, the most natural way to describe
this behaviour is simply to say: yes, the bacterium knows about temperature and
what it means for its survival.

Acknowledgement I would like to thank Matthew Levin, Ralph Linsker, Jim Shapiro, Kate Storey
and Yuhai Tu for insightful comments.
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Chapter 11
Stem Cell Differentiation as a Renewal-Reward
Process: Predictions and Validation
in the Colonic Crypt

Kiran Gireesan Vanaja, Andrew P. Feinberg, and Andre Levchenko

Abstract Stem cells serve as persistent reservoirs for replenishment of rapidly
renewing tissues, frequently also ensuring that the correct tissue morphology
is maintained. This process is inherently stochastic due to the small number
and stochastic division patterns within the stem cell compartments, as well as
the essentially stochastic differentiation events that follow the initial stem cell
expansion. Here we propose a new formalism to describe this process, by em-
ploying the approach known in statistics as the renewal-reward process. Using
this approximation allows application of the mathematical apparatus developed for
renewal-reward processes to the stochastic stem cell biology. We show in the context
of colonic crypts that the resulting predictions match the experimental results, while
also providing a convenient tool for analysis of normal and abnormal differentiation
processes.

1 Introduction

Tissue renewal is one of the most important aspects of systemic homeostasis.
Organs like the intestine, blood, skin, etc. undergo various stages of massive renewal
throughout the day in a living multicellular organism, such that the cycle of losing
cells that perform the function of the organ to various environmental challenges is
intricately balanced by the renewal of the organ such that the organ maintains its
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size and functional organization throughout its life [1]. A considerable majority
of the organs employ the classic stem—transit amplifying—differentiated cells
renewal program wherein a small pool of relatively slowly proliferating stem cells
[2–4] ensure genomic integrity and form an indefatigable, replenishable source of
more functional differentiated cells. As dictated by the architecture of the organ
and the needs of the organ, dividing stem cells can, with defined probabilities,
either self-renew or differentiate into transit-amplifying cells, which no longer
have the stem cell property. These transit-amplifying cells then rapidly proliferate,
make up the core of the structure of the organ and after a certain number of
cycles, fully differentiate into the functional cells of the organ. Needless to say,
the stem cells, by virtue of their unlimited capacity for cell division, dictate the
dynamics of the cell numbers in the crypt. In summary, given the need to maintain
genomic integrity and geometrically defined structure of self-renewing organs, stem
cells divide infrequently and also employ both symmetric and asymmetric cell
divisions to perform the dual nature of maintenance of the stem cell pool and the
required number of progeny to differentiate and perform the functional roles of the
organ [5, 6].

The crypts in the colon are perhaps the most well-characterized and studied
examples of epithelial tissue renewal system. Colonic crypts are minute finger like
invaginations in the colonic epithelium that are composed of a single layer of cells
and are shaped in the form of a test tube [7]. The crypts provide a continuous stream
of cells mainly enterocytes and goblet cells to the colonic epithelium and are respon-
sible for replenishing the same as they slough off into the lumen of the colon. The
crypt is organized into a small pool of stem cells at the bottom [8,9], a large pool of
rapidly proliferating cells along the length of the crypt which constitute the transit-
amplifying pool, and a pool of fully differentiated nonproliferating cells along the
upper third of the length of the crypt. As the self-renewing stem cells divide, the
newly formed daughter cells advance up along the length of the crypt and partially
differentiate into the cells of the transit-amplifying compartment. These partially
differentiated cells in the transit-amplifying compartment proliferate rapidly and
are responsible for supplying differentiated cells to the colonic epithelium at the
rate at which they are lost into the lumen of the colon. As the cells in the transit-
amplifying compartment rise up the length of the colon, they stop proliferating,
acquire very differentiated phenotypes, and become the functional cells of the
colonic epithelium [7].

Noise is inherent in all biological systems, most often manifesting itself as
stochasticity in measured responses and observed values of system variables. The
stochasticity can be a function of many known and unknown processes and serves
to impart useful properties to the system like robustness, variability, ability to
recover from crippling errors, and such [10]. In terms of the colonic crypt, there
is inbuilt stochasticity in almost every aspect of the dynamics and organization of
the crypt, i.e., in the density of the number of crypts per unit area of the colonic
epithelium, in the number of levels of the cylindrical organization of the crypt, in
the total number of cells in each crypt, in the number of stem cells, number of
transit-amplifying cells, in the cell cycle time of cells in the different compartments,
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effectively from the tissue level organization to the cellular details of cell cycling
and proliferation [11].

Many attempts have been made to develop mathematical models to understand
the homeostasis and aberrant behavior, in the case of cancer, of the colonic crypts
[12–14]. Most of the models that have been recently developed are deterministic in
nature in that cell cycle analysis, number of stem cells, etc. are defined by ordinary
differential equations [11]. Although they have been used in other population based
systems truly stochastic models have not really been used to describe the behavior
of tissue renewal or in this case crypt organization and homeostasis. Stochastic
models have the advantage of being able to model the colonic crypt in its true form
and account for the noise, randomness, and inherent variability that are evident
when repeated measurements are made of the crypt parameters. They also have
the added advantage that the average behavior of system parameters predicted by
the stochastic models will correspond to the values predicted by the deterministic
models.

Renewal process is a stochastic random process that is a generalization of the
Poisson process [15]. It is a counting process on the space of integers and is defined
by the time intervals between the occurrence of events and the probabilities of the
counting at each such event occurrence. A renewal-reward process can be defined
on the same renewal process with the incremental changes in the renewal process
constituting the counting process [15]. As the main events that occur in the stem
cell pool are the spontaneous mitosis of the cells into two daughter cells and the
probabilistic event of those cells choosing to either stay as stem cells or differentiate
[16], it is quite easy to note the similarity between the events in the stem cell pool
and the renewal process. Furthermore, the main function of the process, formation
of appropriate numbers of differentiated functional cells, can be seen as a reward.
We can then attempt to model the number of cells in the stem cell pool as a renewal
process and the process of differentiation whereby these cells lose their stem cell
properties and become the transit-amplifying cells as a renewal-reward process.

In addition to the simplicity of representation and the inherent stochasticity
associated with it, both features being very useful when dealing with stem cell
differentiation process, the use of renewal theory enables us to take advantage of
the vast number of results and theorems developed independently of description
of biological processes. As shown below, by using the fundamental theorem of
renewal-reward process, for example, we can quite easily derive an equation for the
average rate of cells differentiating and exiting the stem cell pool in terms of other
parameters that define the stem cell pool. We then use this result to test the validity
of a prediction on the cell division time of the stem cells which to date remains not
conclusively proven.

2 Model Description

The model follows the stem-transit amplifying-terminally differentiated program
of the crypt as shown in Fig. 11.1. The stem cell pool has no input and is self-
contained. Stem cells can divide into two daughter cells and hence generate an
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Fig. 11.2 The three forms of cell division in the stem cell pool

event, the dividing cells can either remain as stem cells or differentiate and become
transit-amplifying cells. The transit-amplifying cells proliferate rapidly and stay as
transit-amplifying cells for integral number of cell cycles and then differentiate into
the terminally differentiated cells.

2.1 Stem Cell Compartment

The stem cell pool is composed of cells that proliferate slowly, renew indefinitely
and are responsible for the maintenance of the crypt. The stem cells reside at
the bottom of the crypt and are relatively few in number. Owing to the inherent
stochasticity and the probabilistic nature of cell division and differentiation, the
number of stem cells in a crypt at any given time instant of is a random variable
with a mean value and variance. Consequently, as a function of time the number of
stem cells in a crypt can be described as a random process. LetNS.t/ be that random
process. Events in this compartment are generated when a stem cell undergoes
mitosis, say at t D ta, and at each cell division one of three things can happen
as shown in Fig. 11.2,
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1. NS.ta/ decreases by 1 to NS.ta/ D NS.t/ � 1, where t < ta, a case of
symmetric division and when both the daughter cells differentiate and leave the
compartment,

2. NS.ta/ remains the same, NS.ta/ D NS.t/, where t < ta, a case of asymmetric
division and when one of the daughter cell stays in the compartment while the
other daughter cell differentiates and leaves the compartment and,

3. NS.ta/ increases by 1 to NS.ta/ D NS.t/C 1, where t < ta, a case of symmetric
division where both the daughter cells remain as stem cells and stay in the
compartment.

If the time sampling is sufficiently fine, we can avoid the situation of two cells
dividing at the same time and thus simplify the system specification.

Let ft0; t1; t2; : : : tn; tnC1; : : :g be the time instants at which events occur in the
stem cell compartment and let fS1; S2; S3 : : :; Sn; SnC1; : : :g be the corresponding
time intervals between successive cell divisions such that S1 D t1 � t0 is the time
to the first division and S2 is the time interval between the second and the first
cell division and so on. We can safely assume that S1; S2, etc. are a sequence of
independent, identically distributed random variables such that 0 < EŒSi � < 1 be
true 8 i , where EŒ:� is the expectation operator.

Let I.t/ be the indicator function that gives the jump in NS.t/ at each time
instant, such that NS.ti C �/ � NS.ti � �/ D I.ti / be the height of the jump
at t D ti for any arbitrarily small �: I.t/ is the amount by which NS changes,
i.e., by 0;C1, or �1 corresponding to the three outcomes of cell division. Also,
let JI be such that JI D PI

nD0 Sn, the sum of all time intervals between cell
divisions (also called the holding times in random processes parlance). NS.t/

defined as NS.t/ D P1
nD1 I.Jn � t/ is a renewal process. Assuming wide-sense

stationarity/time invariance NNS.t/ D EŒNS.t/� D NNS is the average number of stem
cells expected to be found in a crypt.

Let us define fW1; W2; W3; : : : Wn; WnC1; : : :g as the events that lead
to stem cells differentiating and leaving the compartment. This happens when
(1) when both the daughter stem cells after division differentiate and leave the
compartment corresponding to a jump of �1 in NS.t/ and (2) when one daughter
stem cell differentiates and leaves the compartment corresponding to a jump of
0 in NS.t/. Since its reasonable to assume that the probabilities of symmetric
and asymmetric differentiation in crypt stem cells do not change with time,
fW1; W2; W3; : : :: Wn; WnC1; : : :g is a set of independent and identically
distributed random variables. So W1 and its sample space can be defined as

W1 D
8
<

:

C2
C1
0

both daughter stem cells leave compartment
one daughter stem cell leaves the compartment

none of the daughter cells leave the compartment

9
=

;
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Fig. 11.3 The renewal process and renewal-reward process: every time a stem cell divides,
based on either of the three cell division outcomes highlighted in the text NS.t / changes by the
corresponding l.t / which then forms the basis of the renewal-reward process

and the associated probabilities can be written as,

pW1 D
8
<

:

p for W1 D C2
q for W1 D C1
r for W1 D 0

9
=

; I where p C q C r D 1

Also let EŒW1� D P
W W1pw1 be such that 0 < EŒW1� < 1, then the random

variable Yt D Pt
iD1 Wi defined over fW1; W2; W3; : : :: Wn; WnC1; : : :g and

fS1; S2; S3; : : :: Sn; SnC1; : : :g is a renewal-reward process (Fig. 11.3). The con-
venience of formulating the cells differentiating and exiting the stem cells compart-
ment as a renewal-reward process is in being able to relate fundamental biological
quantities of the crypt dynamics using fundamental renewal-reward theorems.

The important parameters that define the stem cell compartment are the number
of stem cells at any point in time, the average cycling time of stem cells, and
the probabilities of symmetric and asymmetric division. Directly from the model
definition, the number of stem cells in the compartment is given directly by NSC.t/,
the probabilities of division are given by p; q, and r and as shown below the average
cycling time can be expressed in terms of these parameters.

From the fundamental theorem of elementary renewal-reward processes, we have

lim
t!1

EŒY.t/�

t
D EŒW1�

EŒS1�
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The equation basically relates the time average or rate of exit of stem cells (the
left hand side) from the stem cell compartment to the probabilities of the various
mitosis outcomes and the average cell cycle time (right hand side of the equation)
in the stem cell compartment.EŒW1� can be enumerated as,

EŒW1� D p � 2C q � 1C r � 0:

Assuming that all stem cells in the crypt have an equal chance of dividing, we can
approximateEŒS1� as,

EŒS1� D C

NNSC
;

where C is the cell cycle time and NNSC is the average number of stem cells.
Use of the above equation makes intuitive sense because if there were N stem

cells with a cell cycle time of C hours, we would expect a cell to divide every C=N
hours on an average. Thus, we have

Rout
SC D

NNSC.2p C q/
C

as the equation for the rate of exit of stem cells from the compartment.

2.2 The Transit-Amplifying Compartment

The cells that comprise the transit-amplifying compartment proliferate prodigiously
to make up for the high rate of loss of cells from the terminally differentiated
compartment and the very low proliferation rate of the cells in the stem cells
compartment. The stem cells exiting from the stem cell compartment enter the
transit-amplifying compartment, go through cycles of mitosis, and then leave the
compartment. Given the enter, proliferate, and exit nature of this compartment, it
can be analyzed purely as a rate amplifier. Assume an epoch of time CTA equal
to the average cell cycle time of the transit-amplifying cells. The number of cells
that enter during CTA is determined by the rate of exit of stem cells Rout

SC such that
K D Rout

SC�CTA is the number of cells that enter the transit-amplifying compartment
during a time CTA. Every CTA that elapses the K cells double and another K cells
enter the compartment. If the first set of K cells that enter stay for L D l � CTA

hours where l is any integer, then rate of exit of cells from the compartment can be
easily given as

Rout
TA D 2l � Rout

SC :

The number of cells found in the TA compartment can also be easily expressed as,

NTA D K � .20 C 21 C 22 C � � � C 2l/ D K � .2lC1 � 1/ cells:
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3 Prediction of Stem Cell Division Time in Homeostasis

A typical human colonic crypt contains on an average about 82 levels of cells from
the bottom to the top of the crypt. The bottom most level contains one cell and levels
2 to 7 contain 6, 12, 18, 24, 30, and 36 cells, respectively. The straight portion of
the crypt from levels 8 to 82 contain 42 cells per each level adding to about 3,193
cells per crypt [11]. From stem cell markers staining data, Musashi-1 and Lgr5, it
is evident that the stem cells predominantly populate the bottom 3 to 4 levels of
the crypt. There are about 19 cells in the bottom 3 levels while there are 37 cells
in the bottom 4 levels. For the purposes of an illustrative example, we can take
the average of these two numbers, 30 as the number of stem cells in a crypt. Data
from S-phase labeling and Ki-56 labeling indicate that levels 4 to 45 which have
more than or about the average level of S-phase staining can be considered to be
the transit-amplifying compartment comprising of rapidly proliferating cells. From
the distribution of the number of cells/level, levels 4 to 45 contain 1,686 cells. The
remainder 3;193 � .1;686C 30/ D 1;477 is the number of cells in the terminally
differentiated compartment/crypt. NSC D 30; NTA D 1;686, and NTD D 1;477,
respectively.

The crypt turnover rate is about 5 days and it is expected that 95% of the cells
in a crypt are turned over in a 5 day period, thus the rate of loss of cells from
the crypt or the terminally differentiated compartment is ROut D 0:95�3193

120
D

25:27 cells per hour. Since there is almost no proliferation in the terminally
differentiated compartment, the average rate of cells exiting out of the transit-
amplifying compartment is the same, Rout

TA D ROut. From the previous section,
we have

Rout
TA D 2l �Rout

SC ;

and so we have Rout
SC D 2�1 � Rout

TA D 2�1 � 25:27 cells per hour.
Previous work in estimating critical parameters of the crypt dynamics have

resulted in many estimates of parameters. Here we use some of the parameters
available in the literature and test the predictions of the model and hence its validity.
The number of stem cells in a crypt is put at about 30 per crypt, so NNSC D 30

cells per crypt. Given the very unlikely chance of symmetric division and the more
common occurrence of an asymmetric division with the stem cells, we can use
p D 0:05; q D 0:9, and r D 0:05. Since the stem cells proliferate a lot slower
than the cells of the transit-amplifying compartment, we test a prediction for the
stem cell cycling time C D 90 h. With these values

Rout
SC D

NNSC � .2p C q/
C

D 30 � .0:1C 0:9/
9:0

D 0:333 cells per hour

Rout
TA D 2l �Rout

SC

l D log2

�
25:27

0:33

�
D 6:26:
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Thus a value of l D 6:26 indicates that cells in the transit-amplifying compartment
cycle about 6.26 times or undergo about 6.26 successive divisions before they
become terminally differentiated. Also from literature, we have the cell cycle times
in the transit-amplifying compartment as CTA D 29:9 to 39.9 h. Thus NTA is
bound by,

NTA D K � .1 � 2lC1/
.1 � 2/ D .35˙ 4:9/ � 0:33 � .1 � 27:29/

�1 D 1800˙ 266 cells;

where CTA D 35 h is the mean value. This average value of NTA D 1;800

cells approximately matches 1,686, the number of cells in the transit-amplifying
compartment obtained by s-phase labeling of the crypt.

4 Discussion

We have presented here a stochastic random process based model for the home-
ostasis and organization of the colonic crypt. The pool of stem cells is modeled as
a renewal process with every cell division creating the event and the subsequent
decision to either remain a stem cell or differentiate creating the counting process.
The differentiation and exit of cells from the stem cell pool is modeled as a renewal-
reward process and by using the fundamental theorem of the reward process we have
been able to quantify the rate of exit of cells from the stem cell pool.

The stem cells have been the most elusive and secretive of all the cells in the
colonic epithelium and it is only in the last few years that a definitive marker, Lgr5,
has been found that can reliably mark the stem cell pool. Much less is known either
about the nature of the symmetric or asymmetric division in the stem cell pool and
the probabilities with which they occur. The very infrequent if not dormant cell
cycling times of the stem cells have also been a question that has not been resolved
adequately due to the extreme difficulty in marking these cells for proliferation
markers. Using the equation for the rate of differentiation of the stem cells and
numbers obtained from the general knowledge of the crypt dynamics, we tested a
value for the cell cycling time of the stem cells. Using this value, we were able
to verify, within bounds, the approximate number of cells expected to be found in
the transit-amplifying compartment and thus validating the value for the stem cells
cycling time.

The advantage of using the renewal and the renewal-reward process is that
some of the simple yet powerful theorems and results derived for these stochastic
processes can be used to describe the processes and dynamics of the crypt evolution
and organization. The stem cell pool and the rate of differentiation of the stem
cells determine the existence of the crypt and its size respectively. Apart from
the mean rate, the variance of the rate of differentiation of stem cells, which
can also be analytically expressed, gives a wealth of information regarding the
stochasticity in crypt length and numbers observed. Renewal-reward theory enables
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us to analytically express the variance as well and this in turn can lead to the
development of other aspects of crypt dynamics, namely feedback regulation, that
is not explicitly discussed here.

It can also be easily seen that this model can, in principle, be used to analyze the
effects of mutations in the stem cell compartment that can lead to colon associated
cancers. For example, the APC mutation leads to an increase in the probability of
symmetric cell division where both the daughter cells remain stem cells thereby
increasing the number of stem cells. This can then easily lead to a decrease in
the differentiation rate and thus to a reduced pool of transit-amplifying cells. Thus
the corresponding stochastic models not only enable a more faithful representation
of the inherent randomness in crypt biology but allows derivation of expected or
average results that are observed in experiments and provide a handle to discuss
dynamical variability that might lead to cancer and other abnormalities.
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Chapter 12
A Dynamic Physical Model of Cell Migration,
Differentiation and Apoptosis in Caenorhabditis
elegans

Antje Beyer, Ralf Eberhard, Nir Piterman, Michael O. Hengartner,
Alex Hajnal, and Jasmin Fisher

Abstract The germ line of the nematode C. elegans provides a paradigm to study
essential developmental concepts like stem cell differentiation and apoptosis. Here,
we have created a computational model encompassing these developmental land-
marks and the resulting movement of germ cells along the gonadal tube. We have
used a technique based on molecular dynamics (MD) to model the physical move-
ment of cells solely based on the force that arises from dividing cells. This novel way
of using MD to drive the model enables calibration of simulation and experimental
time. Based on this calibration, the analysis of our model shows that it is in
accordance with experimental observations. In addition, the model provides insights
into kinetics of molecular pathways within individual cells as well as into physical
aspects like the cell density along the germ line and in local neighbourhoods of indi-
vidual germ cells. In the future, the presented model can be used to test hypotheses
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about diverse aspects of development like stem cell division or programmed cell
death. An iterative process of evolving this model and experimental testing in the
model system C. elegans will provide new insights into key developmental aspects.

1 Introduction

Since the early 1970s [1], the nematode C. elegans has been a widely studied model
in biomedical research (reviewed in e.g. [2–5]). Through the worm’s transparent
body it is possible to trace any cell by light microscopy or to study gene expression
and cellular development in situ [6]. The fixed number of cells of the somatic cell
lineages have been meticulously described (cf. [7]) and are invaluable for the genetic
analysis of regulatory pathways in development (cf. [8]) or in neurobiology. The
germ line of C. elegans allows for the observation of several essential developmental
processes like stem cell proliferation, gametogenesis and programmed cell death,
also termed apoptosis. Importantly, these biological processes are spatially well-
resolved in this system, where germ cells mature in sequential steps along a tube-
shaped gonad. It has, therefore, been extensively used in basic research (reviewed in
[9–12]). Other than the highly predictable development of somatic tissues, cellular
events in the germ line seem to be very stochastic; consequently the underlying
general mechanisms are little understood for some of these processes. This is
particularly true for physiological germ cell apoptosis. Programmed cell death is
a crucial developmental process that is found in many different species; aberrations
in this program have important implications in complex diseases like human cancers
[13] or neurodegenerative disorders [14]. It is, therefore, key to gain fundamental
understanding of its mechanisms. In this work, we propose a computational model
of the germ line that is mainly based on physical properties and which aims to
provide more insights into the previously mentioned developmental processes. With
our model, we are able to test hypotheses about the causes and mechanisms of
programmed cell death, among other developmental processes, and to highlight
promising theories to be validated experimentally.

1.1 The C. elegans Germ Line

The reproductive system of C. elegans has a symmetric structure with two U-shaped
gonads extending from a single vulva, one anteriorly and one posteriorly. Our
model considers the development from stem cells to mature oocytes within one
gonad (see Fig. 12.1). Although the nuclei and their cytoplasm within the germ
line are not completely encapsulated cells and thus are part of a syncytium, they are
usually referred to as germ “cells”. As the differential interference contrast (DIC)
picture and the electron microscopy imaging in Fig. 12.1 indicate, the cytoplasmic
membranes are not fully delimiting, leaving a connection of all cells to a common
shared cytoplasm in the centre of the gonad tube, called rachis.
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Fig. 12.1 The germ line of Caenorhabditis elegans by DIC (top), as a schematic (bottom), and in a
cross-section (transmission electron microscopy, middle). The head of the worm is to the right, the
posterior gonad to the left of the picture. Differential interference contrast (DIC) microscopy allows
us to observe live animals in any focal plane; here, an adult hermaphrodite is virtually dissected
along a plane through the centre of the gonad tube. The germ cells in the meiotic pachytene region
form a monolayer around a concentric inner tube, seen as a nuclei-free area in the longitudinal
and cross-sections (rachis). The limits of the transition zone and of the late pachytene stage within
the meiotic pachytene region are not strictly defined by DIC. The oocytes in the loop have exited
pachytene and begin the diakinetic stage of meiosis

The mature hermaphroditic germ line can be divided into functionally different
zones with specific developmental properties [15–18]. At the distal most end of
the gonadal tube, the mitotic zone is located (“distal” here meaning farthest from
the uterus), containing dividing stem cells and representing a stem cell niche. The
potential of the mitotic cell pool to divide is maintained by molecular signals –
directly via activation of proliferation or, more likely, indirectly via inhibition of
differentiation. Delta ligand from extrinsic sources (the distal tip cell) activates the
Notch pathway, promoting a high Notch within the germ cells of this region. In
the transition zone, where no external Delta ligand is presented, the Notch level
gradually decays. When the germ cells are left without Notch, they complete the
mitotic cell cycle, enter meiosis and start their differentiation into oocytes [16].
A small transition zone in which mitotic and first meiotic cells are interspersed links
to a seemingly well-orchestrated meiotic pachytene region, where chromosomes
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Fig. 12.2 Schematic representation of a dividing cell. The big circle represents the parent cell,
the two diametrically positioned circles are the daughter cells, the centres of the three cells are
represented by theC signs. The straight line signifies the division axis and the dotted circle is the
imaginary circle with one basic radius around the centre of the parent cell on which the centres of
the daughter cells are placed

undergo homologous recombination. At some point within the meiotic zone, the
germ cells start growing at a low rate so that they have visibly increased their
size by the time they reach the bend of the gonad and exit the pachytene stage
of meiosis. In this loop region, the rachis is thinned to an eccentric tube, but still
connecting the growing oocytes before they become proper cells with a fully closed
membrane. Distal to the loop with the young oocytes, programmed cell death can
be observed as part of normal oogenesis [19]. Physiological apoptosis, the fate of
about half of all germ cells, is considered to be restricted to this area of the gonad
[11]. Ras/MAPK activity is required for pachytene exit [20] and oocyte maturation;
its absence also disables apoptosis [19]. For our model, we premise that germ cells
start accumulating Ras activity towards the end of the meiotic pachytene region,
induced by an external Ras signal. If the Ras level surpasses a certain threshold in
a germ cell, it starts to grow to become a fully grown oocyte filling the complete
diameter of the tube when it reaches the proximal end of the gonad. We also assume
here that the Ras level is decisive for germ cell death: it renders a cell capable for or
insensitive to physiological apoptosis.

1.2 Molecular Dynamics Model

Dividing cells in the mitotic zone apply pressure on the surrounding cells as the two
daughter cells need more space than the parent cell (cf. Fig. 12.2). This leads to
physical movement of the cells away from the pressure centre. We have constructed
our model using an algorithm based on the molecular dynamics (MD) modelling
framework [21] to capture this movement according to the physical properties of



12 A Dynamic Physical Model of Cell Migration 215

each individual cell. This makes the movement of cells in our model very realistic so
that we get a “virtual germ line”. Apart from realistic movement, the MD framework
allows for good visualisation and tracing of parameters for single or multiple cells.
Originating from theoretical physics and chemistry to investigate the behaviour and
properties of various particles like planets or molecules, physical algorithms similar
to MD have also been used in a few biological settings [22–27]. In contrast to our
specific modelling system, these MD models were applied to simulate the collective
behaviour of tissues and aggregations of cells moving along a chemical or nutritional
gradient. In these cases, the physical movement through MD is just a side effect of
the main movement along the gradient, while in our case the MD-movement is the
main component of movement. In fact, it is the only driving source of movement;
without the forces derived within the MD approach, the cells in our model would
not move at all.

In addition to movement, we have built our MD-model to include developmental
processes such as cell growth and division, as well as apoptosis, to make it
sufficiently realistic. These processes depend on signals received by the cells
according to their location in the tube. We show that our model reproduces cellular
behaviour observed in experimental settings [15, 28, 29] very closely. This suggests
that our model is a useful tool to gain novel insights into the core developmental
processes observed in the C. elegans germ line.

2 Model

The main part of our model is the movement algorithm from molecular dynamics.
We have used the velocity Verlet algorithm [30], which is based on the following
basic formula of Newtonian motion:

F D ma: (12.1)

A Taylor series development of formula (12.1) and some further transformations
imply the following steps of the algorithm for each cell. We will elaborate them a
little more in the subsequent two paragraphs.

Step 1: Ev �t C 1
2
�t
� D Ev.t/C 1

2
Ea.t/�t .

Step 2: Ex .t C�t/ D Ex.t/C Ev �t C 1
2
�t
�
�t .

Step 3: Derive Ea.t C�t/ from the interaction potential using Ex.t C�t/.
Step 4: Ev.t C�t/ D Ev �t C 1

2
�t
�C 1

2
Ea.t C�t/�t .

Here, t represents the time and�t signifies the timestep of the execution which is
usually very small. The variable Ex.t/ represents the location at the current time, Ev.t/
stands for the velocity at the current time and Ea.t/ for the acceleration at the current
time. In our model, we replace acceleration with the force and the mass based on
formula (12.1), i.e. a D F=m. For now, we simplify this further by assuming the
mass to be one, which leads to a D F .



216 A. Beyer et al.

Fig. 12.3 Snapshot of an execution of the germ line model: .a/ distal tip cell (dark green), .b/
marked cell (light green), .c/ mitotic cell with highest Notch level (dark red), .d/ cells defining
the border of the tube (blue), .e/ mitotic cell with Notch level between highest and 0.5 times
the highest level (orange), .f / mitotic cell with Notch level between 0.5 times the highest level
and 0 (yellow), .g/ mitotic cell with Notch level equal to 0 (black), .h/ meiotic cell (purple), .i/
meiotic cell that has grown to about twice its original size (purple), .j / oocyte with Ras level above
threshold (pink) and .k/ fully grown oocyte (pink)

The first step of the algorithm computes the velocity at the intermediate time
t C 1=2�t , which is used in the next step to evaluate the location of the cell at the
next time, t C �t . Using this new location of the cell, the force working on it at
time t C�t is derived from the so-called interaction potential in the third step. The
interaction potential is a function describing how a particle, here a cell, interacts
with its environment. In our case, the potential acts in such a way that the cell is
pushed away from cells that overlap it and there is no force working on the cell
if other cells do not overlap it. The force on the cell is stronger the more overlap
there is. If more than one cell overlaps the cell, the forces are accumulated. In the
last step of the algorithm, this new force is used to calculate the velocity at the next
time t C�t . This algorithm is computed for each cell and each timestep �t of the
execution for a certain number of timesteps.

Since the algorithm works on a per cell basis, we have constructed the cells in
our model as objects. To unite the functional style of the algorithm and the object
oriented style of the cells, we have used the F# programming language [31], which
incorporates both of these environments in a natural way. Additionally, the language
also provides us with a very straightforward visual front end. For simplification,
our current model is a two-dimensional representation of the germ line as shown in
Fig. 12.3. A movie of an execution of the model can be viewed at [32]. The different
colours are used to represent different states or component levels of the cells. To
define the general structure of the germ line in our model, we estimated germ cell
numbers along the gonadal tube from microscopic pictures of the germ line. This
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provided us with estimates of cells across the tube diameter (cells per column in our
model) and per developmental zone along the tube. The sizes of the different zones
of the germ line were translated into the range of pathway activation in our model.

2.1 Internal Properties of Cells

As previously mentioned, the cells in our model are represented as objects. All
cells are described by the same object class; they all have the same general internal
properties. The different values of these properties describe the cells’ current status
within the model. Differences in cell behaviour between cells arise from differences
in the specific momentary environment and slight randomisations of certain internal
properties. In this section, we will describe the most important of these internal
properties and how their values are derived.

2.1.1 Location

Every cell has a specific two-dimensional location assigned to it. The location
is updated at each timestep of the execution depending on the velocity Verlet
algorithm. The location is in continuous space as opposed to models which work
with a grid of possible locations.

2.1.2 Velocity and Force

As previously mentioned, the velocity Verlet algorithm computes the new cell
locations based on the velocity and force that are acting on the cell. For this purpose,
we have equipped each cell with two-dimensional velocity and force vectors which
are changed by the algorithm. The values of these two properties define the degree
of change in the location through the velocity Verlet algorithm.

2.1.3 Cell State

Another important property of the cells in our model is the state of a cell. We have
defined the states “Mitotic” (c, e, f and g in Fig. 12.3) and “Meiotic” (h, i, j and k
in Fig. 12.3) which depend on the location and the cell cycle state of the cells. We
also mark dead and fertilised cells in this way to make them countable and to be
able to remove them from the model. Furthermore, we defined a state “Stopped”
(a and d in Fig. 12.3) that marks all boundary cells of the tube not to move and
to form the walls of the germ line. This definition of the germ line walls does not
exactly conform to nature, but it is a simplification for computation purposes that is
sufficiently realistic.
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2.1.4 Ras and Notch Level

The cells also contain variables defining their Ras and Notch levels. These are
changed according to the environment at a cell’s location along the tube as this
informs about the presence of external ligand molecules for the two signalling
pathways. Along the x-axis of the coordinate system of our model, the Delta ligand
is active in the region from 3.8 (which is the beginning of the tube) to 22. From
coordinate 22, the Delta ligand is turned off; this is where the transition zone starts.
The external Ras is present from 75 up to the beginning of the bend at 117 when
it is turned off. When Delta ligand is present, the Notch level within the cells will
jump to its highest value (c in Fig. 12.3). The level decays linearly over time in the
absence of ligand (from c to e to f to g, representing no Notch, in Fig. 12.3). The
Ras level is accumulated linearly over time as long as the ligand is present.

2.1.5 Size and Growth

The cells are also assigned a size that is updated at each step of the execution. For
simplicity, we consider our cells to be round. Hence, the size of a cell is its radius.
The size of a cell changes as it progresses along the gonadal tube depending on the
cell’s status and location. All cells have the same basic size to which they go back
after a division. The change of size is defined by growth functions common to all
cells. An exception to this is the function defining the growth rate of mitotic cells
that is randomised for each cell. This assures that cells which are born at the same
time do not necessarily divide synchronously, but at slightly different times. This
results in a more realistic timing of the cell divisions.

2.1.6 Analysis Parameters

The previously mentioned cell properties are all included to achieve a behaviour and
movement of the cells that is as realistic as possible. We have also included a few
parameters for purely analytical purposes.

GFP

All cells contain a variable GFP – named after the visual marker green fluorescent
protein in biological experiments – that can be turned on to visually follow this
cell and its offspring in the simulation (b in Fig. 12.3). In addition, the data for
these cells, i.e. the values of the previously mentioned parameters and the analytical
parameters described below, can be read out to be analysed. If desired, this could be
adjusted to track only one cell.
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Density Factor

The cells also have a density factor associated with them. This density factor f of
cell c is computed at each timestep using the following equation:

f .c/ D
X

ci2N.c/

ri

6 .d .ci ; c/ � ri / ;

where N.c/ is the set of all cells touching cell c; ri is the radius of cell ci and
d.ci ; c/ is the distance between the cells ci and c. This factor is set to zero if no
cell is touching c and to one if the neighbouring cells are ideally packed, i.e. c is
surrounded by six cells of the same radius as c. The density is above one if other
cells are overlapping c. This density factor could later be used to test hypotheses
about the apoptotic mechanism.

Movement and Division Rates

To compare the movement rate of the cells with experimental findings, we have also
introduced a list to represent this rate. A function writes each timestep to this list
in which the cell has moved at least one diameter along the x-axis compared to the
location at the previously stored timestep. Similarly to the movement rate, we have
also defined a list representing the division rate. This list is appended by the current
timestep when the cell divides so that each cell carries a history of all previous
divisions for its ancestors. This list is passed to both daughter cells upon a division.

2.2 Other Properties of the Model

The cells in our model are not stand alone objects, but they interact with each other
and their environment, i.e. the gonadal tube. The interplay between the internal
configuration of the cells and their surroundings results in the behaviour that can be
observed in the model. For the specification of these interactions, we have defined
some general properties of the model which are described in this section.

2.2.1 Cell Growth and Division

Before they divide to form two daughter cells, cells marked as mitotic grow to a
size of

p
2 times their basic radius, which corresponds to twice their area. The two

daughter cells both have the same basic radius and are placed so that the distance
of their centres is two basic radii (cf. Fig. 12.2). In the C. elegans germ cells, the
orientation of the division axis appears to be random. In our model, the daughter
cells are placed symmetrically with regards to a random central division axis in
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their parental cell (straight line in Fig. 12.2). Their centres will thus be positioned
diametrically on an imaginary circle around the centre of the parent cell with the
basic radius (dotted circle in Fig. 12.2). The daughter cells inherit the Notch level
and GFP status from their parent. At the same time, the division rate list in the
daughter cells is updated and a cell is added to a counter of the total number of
cells.

2.2.2 Growth of Early Meiotic Cells and Oocytes

Meiotic cells stay at the basic radius until they reach a certain point in the tube from
which they start growing slowly, i.e. their radius is increased, until they have reached
about double their area right before the loop. When the Ras level within these cells
has reached a certain threshold, they exit the pachytene stage of meiosis and proceed
into diakinesis to become mature oocytes (j and k in Fig. 12.3). Initially, the radii of
the oocytes grow about ten times faster than the ones of late pachytene cells and, as
they reach the end of the loop, this growth rate is increased by another 10-fold. The
oocytes stop growing when their diameter is the width of the tube (k in Fig. 12.3).
All cell growth in our model is defined by an increase in radius and happens at
linear rates.

2.2.3 Death

In vivo, programmed cell death is normally confined to the late meiotic pachytene
region before the loop where some cells become apoptotic. Accordingly, we defined
a death zone in our model. In the worm, the death zone seems to be dependent on
the location of the oocytes. Hence, we have defined a death zone of fixed size which
ends at the x-axis location of the eighth oocyte and begins at a fixed distance distal
to it. At the moment, random cells within this death zone will be eliminated as soon
as the amount of cells surpasses a certain number. As a constraint to random cell
death, we defined an artificial Ras threshold, above which cells become insensitive
to apoptosis; only cells below this level are selectable for cell death. This is a
somewhat naı̈ve approach to the induction of apoptosis; the present model is just
preliminary in this respect. Once a cell has died, the timestep number of its death is
recorded for analysis purposes and the cell disappears from the model.

2.2.4 Fertilisation

For simplicity, we currently define a cell as being fertilised when it reaches the end
of the tube. As with the dead cells, the timestep numbers when fertilisations happen
are recorded and the cells are removed from the model.
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3 Results

3.1 Calibration

To calibrate the model, we extracted parameter values (shown in the first column
of Table 12.1) from the literature and from our own videos of the germ line to
compare with our model. Our observations have shown that, on average, it takes the
cells 90 minutes to advance along the x-axis by the distance of their own diameter.
Literature [28, 29] suggests that one mitotic cell cycle in the germ line is 16 to
24 hours. This calculates to an average time of 20 hours between divisions. For the
death rate, our observations suggest that on average two cells die per hour per gonad
arm, a value observed independently by many groups since the first characterisation
of physiological germ cell apoptosis in C. elegans [19]. The literature and our own
observations further suggest that the average egg laying rate is about four eggs per
hour per animal [15]. We have to be careful to translate this for our model since we
only consider one gonad, whereas the egg laying rate accounts collectively for both
the anterior and posterior gonad. Consequently, we consider a fertilisation rate of
two oocytes per hour per gonad arm as an approximation of the average over time.

As we will delineate in the following sections, our model produces values which
are in correspondence with these expected experimental values.

3.1.1 Movement Rate

For the calculation of the movement rate, each cell is equipped with a list containing
every timestep at which the cell has moved a distance forward equal to its current
diameter. To evaluate the time that each of these steps has taken, we calculated the
difference between every two succeeding timesteps. Figure 12.4 shows a histogram
of these differences for all of the cells within the model. The distribution looks
basically like a Gaussian. The average movement rate in our model is 5,250 steps
for one diameter. Since we have observed the movement rate to be one diameter per
90 minutes in vivo, we can derive here that 90 minutes is equivalent to approximately
5,250 steps in our model. As a consequence, we can assume that one hour in real
time is approximately 3,500 steps in our model.

Table 12.1 Table showing different properties extracted from experiments and literature (ex-
pected) and the according values derived from the present model (model) with the translation of
these values into real time in the fourth column

Rate Expected Model

Movement rate 1 row/90 min 1 row/5,250 steps 1 h D 3;500 steps
Time between divisions 20 h 40k to 90k steps 19.19 h
Death rate 2 cells per h 1.57 cells/3,500 steps 2 cells per h
Fertilisation rate 2 cells per h 4.27 cells/3,500 steps 4 cells per h
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Fig. 12.4 Histogram showing a distribution of the number of timesteps needed for the advance-
ment of each cell by one diameter

3.1.2 Time Between Divisions

Each cell carries a list containing all timesteps in which a division has occurred
for this cell. By subtracting succeeding values, we have calculated the number of
timesteps between two divisions. Figure 12.5 shows a histogram of these numbers
for all of the cells in the model. The values for the time between divisions range
from 40,000 to 90,000 timesteps. Using our estimation for real time from above,
this is a range of 11 to 26 hours. The average of all times between divisions for all
cells in our model is 67,158 timesteps which evaluates to about 19 hours.

3.1.3 Death Rate

For each dead cell, we have recorded the timestep number at which it died. To
get an estimate of the death rate, we looked at bins of 3,500 timesteps, which
is approximately one hour in real time (cf. Section 3.1.1). Figure 12.6 shows a
histogram of the number of cell deaths occurring in these bins during an execution.
Averaged over all bins, this computes to 1.57 deaths per bin or, in real time, 1.57
deaths per hour (continuous horizontal line). The figure shows that our reference
indicated by the dashed horizontal line is only slightly higher than the average
resulting in the model.
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Fig. 12.5 Histogram showing the distribution of timesteps between divisions for all cells

3.1.4 Fertilisation Rate

We have also recorded the timestep at which fertilisation occurred for each fertilised
cell. In a similar fashion to the death rate, we have sectioned this data in bins of 3,500
timesteps to get an estimate of the fertilisation rate. Figure 12.7 shows a histogram
of the number of fertilisations per 3,500 timesteps. The figure also shows the average
number of fertilisations per bin (or hour) which is 4.27 cells (continuous horizontal
line). The literature reference, indicated by the dashed horizontal line in the figure,
is lower than our model average.

3.1.5 Summary

Table 12.1 summarises the findings of our model calibration. Relative to the
movement rate observed in our model, the time between divisions and the death rate
in our model are very much in accordance with the values observed in vivo. Solely
the fertilisation rate differs between our model and the experimental observations.
These parameters are the major developmental components in our model. As
a consequence, we can consider this model as, for our purposes, a very good
approximation to the real organ since it reproduces the major developmental features
very accurately.
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Fig. 12.6 Histogram of the number of cell deaths over bins of 3,500 execution timesteps. The
continuous horizontal line indicates the average number of cell deaths per 3,500 timesteps, the
dashed line shows the experimental reference

3.2 Further Results

3.2.1 Cell Numbers

Figure 12.8 shows the development of cell numbers in the different developmental
stages and of the total number of cells over execution time. One can see that our
model is in a steady state in terms of cell numbers and that none of these values
significantly fluctuates. This is in accordance with in vivo observations of the germ
line of an adult wild-type animal [15, 28].

3.2.2 Density

Figure 12.9 shows the average density in bins of about 1.5 basic cell radii from the
distal end of the germ line up to the beginning of the loop. The average is taken of
the density factors of all cells whose centre is within the respective bin. As defined
earlier, a density factor of 1 represents an ideal packaging around an individual
cell, while a factor of 0 indicates a cell that does not have neighbours that touch it.
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Fig. 12.7 Histogram of the number of fertilised cells over bins of 3,500 execution timesteps. The
continuous horizontal line indicates the average number of fertilised cells per 3,500 timesteps, the
dashed line shows the literature reference

A value above 1 hence indicates overcrowding through overlap of neighbouring
cells. Figure 12.9 shows that the average density factor is relatively low. The figure
also shows that the size changes of germ cells are especially important in terms of
the density factor. In the region between 33 and 75, where there should be only
few dividing cells – apart from a few outliers – and where the cells do not grow,
the density is lowest and it does not fluctuate as much as in the other regions. The
changes in density by growth are especially apparent in the region from 75 up to
the end of the plot. Apart from a dip between 105 and 109, the density constantly
increases, which is also true for the size of the cells in this region. The dip in this
increase could be due to space that is freed up by dead cells since this is the region
of the tube where the death zone is located.

3.2.3 Following Marked Cells

As mentioned in the Model section, we are able to label cells in our model and
follow them on their course through the germ line. Here, we have followed one cell
and its 12 offspring to get more information about what happens to individual cells
in our model.
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Fig. 12.8 Graph showing the development of cell numbers over execution time; the thick
continuous line represents the total number of cells, the thin continuous line stands for the number
of meiotic cells, the dashed line is for the mitotic cells and the dotted line for the oocytes

Fig. 12.9 Graph showing the average density along the germ line from the distal end up to the
bend in bins of approximately 1.5 basic cell radii at execution step 734,000
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Fig. 12.10 Graph showing the sizes of the marked cells according to their location in the germ
line from the distal end up to the bend during the whole execution

Figure 12.10 depicts the development of size of these individually marked cells
from the distal end up to the beginning of the loop. For illustration, we have excluded
values ranging between 42 and 70 on the x-axis since the values remain constant.
The figure shows that the size of cells in the mitotic zone and the transition zone
ranges between 0.7 and a value just below 1. This is due to the fact that the basic
cell size is 0.7 and dividing cells grow from this size up to

p
2 � 0:7 which is just

below 1. From about 30 up to 37 there does not seem to be a smooth change of
size but rather an oscillation between maximal and basic size. This indicates that
cells of big size are pushed from the mitotic zone into this area of the germ line to
divide there. They do not grow anymore since they enter meiosis after the division.
This area represents the transition zone. The figure also shows that between about
37 and 75 there is no growth before a constant linear growth of the cells sets in. This
growth changes to a much steeper one at the end which corresponds to the region of
the tube where the first cells reach Ras levels above the threshold causing them to
grow faster. This figure also underlines our assumptions in the previous paragraph
that growth and division of cells are very important in the development of the density
factor.

Figure 12.11 shows the development of the density factor for the marked cells
over the distance from the distal end of the gonad to the beginning of the loop. As in
the averaged case, the density factor is generally fairly low. Since each mark in the
graph stands for the density factor of one single cell, it is expected that the factor
scatters more widely here. While some cells have a density factor of 0, others have
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Fig. 12.11 Graph showing the density factors of the marked cells according to their location in
the germ line from the distal end up to the bend during the whole execution

one of more than 0.5. While in Fig. 12.9, the average density is never above 0.2 up to
about 95 on the x-axis, individual cells in Fig. 12.11 show several values above 0.2
and even some that are above 0.5 in the same region. Similar to Fig. 12.9, Fig. 12.11
also shows that in the region without cell growth and with only some division, i.e.
between about 35 and 75 (cf. Fig. 12.10), the density stays relatively constant and
there are more cells with very low density factors. In fact, Fig. 12.11 shows that
from about 80, where growth is continuously strong, less and less of the marked
cells retain a density factor of 0.

Figure 12.12 shows the dynamic behaviour of Notch and Ras within the marked
cells according to their location between the distal end and the beginning of the
loop in response to external signals. Similar to Fig. 12.10, we have excluded the
range between 28 and 72 on the x-axis since the component levels do not change
in this area. In the most distal part of the tube, the external Delta ligand of Notch
signalling is present. Figure 12.12 shows that, in response to this, all cells reach the
maximal Notch level, which again decays in the absence of Delta. The figure further
shows that some cells reach the lowest Notch level farther down the tube than others.
Since, in each cell, the Notch level linearly decays over time at the same rate, this
indicates a difference in speed of the marked cells. Figure 12.12 also shows that in
the presence of external Ras inducing signal, generally the Ras level within the cells
constantly increases as they progress along the tube. There are a few cells before the
area where the external Ras signal is present which nonetheless have an internal Ras
level above 0. These are probably cells that were pushed back out of the Ras zone
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Fig. 12.12 Graph showing the Notch and Ras levels within the marked cells along with the status
of external Delta and external Ras according to location in the germ line from the distal end up to
the bend during the whole execution. The shaded area on the left indicates the region of the germ
line where the Delta ligand is present (corresponding to the mitotic region), the shaded area on the
right signifies the same for the external Ras (corresponding to the region before the gonad bend).
The squares represent the cell internal Notch levels, the crosses represent the internal Ras levels

after having been in it for a short while. Similar to the speed of the cells relating to
the Notch decay, Fig. 12.12 shows that there seems to be one cell at location 114
which still has a very low Ras level. Presumably, this cell was pushed much faster to
this location than the other ones and has hence not had enough time to accumulate
as much Ras. Apart from this single case, the Ras level does not seem to fluctuate
significantly, which indicates a mainly constant forward speed of the cells.

4 Discussion

In the present work, we have developed and calibrated a physical computational
model of the C. elegans germ line. The model highlights a novel way of using MD
as a central engine of computational models simulating physical cell movement.
The usage of the accurate physical features allows our model to be calibrated in a
way that matches simulation and experimental time. The stress on physical features
allows us to combine important developmental aspects such as cell division and
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growth in a realistic way. In addition, key molecular pathways, differentiation and
apoptosis are added, leading to a realistic model that can be used to an extensive
analysis of our concept of the underlying system.

The usefulness of physical and molecular dynamics-like approaches to cell
movement has been demonstrated in different settings [22, 24, 25, 27], mostly
involving cell populations of tissues. In these models, especially the ones modelling
more or less constant tissue-cell populations without cell divisions [24, 25], the
physical movement caused by overlap of cells is only a by-product of an active
movement along a chemical or nutritional gradient. In models including cell division
[22, 27], this aspect of movement is more prominent but still limited due to nutrient
dependence or contact inhibition. In our model, however, cells move purely due to
physical compression by other cells arising from cell divisions and growth of cells.
Our model visually represents this compression by overlap of the circles. To our
knowledge, the present model is the first to simulate cell movement purely based on
these physical aspects without any active migration. The lack of active movement
in our model is in accordance with the experimental observations in the biological
system [28, 29].

While still a simplified representation of the germ line, our model produces
cell movement that looks very natural, and we were able to calibrate the model in
accordance to different experimental observations found in the literature [15,19,28]
as well as from our own experiments. We have used the cell movement rate derived
from our own observations and [28,29] to incorporate a measure of real time in our
model. The comparison allowed us to identify the approximate number of timesteps
in our model that represents an hour in real time. Based on this value, the division
rate from our model is very much in accordance with the one observed in the
literature [28]. The same is true for the death rates that we observed in the model
and experimentally. Only the fertilisation rate differed slightly from the value in the
literature [15]. Furthermore, the value might change after including the rachis in a
revised version of our model, which will change the cell movement close to the end
of the germ line. In addition to calibrating, our model allows us to observe properties
of single marked cells like density factor, size and kinetics at any timepoint. These
aspects can be used in the future to test or evolve new hypotheses like density
dependent apoptosis or time-dependent developmental progression of individual
cells. Furthermore, these parameters allow feeding the model by results from wet lab
experimentation and vice versa. Conclusively, our physical MD modelling approach
can be very useful in this setting and extensions to the present model promise to
advance our understanding of fundamental biological processes.

5 Future Prospects

We will try to overcome certain limitations of our current simplified model.
Including the rachis into our model is very important as this might improve the
values of the death and fertilisation rates and will render the model as a whole
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visually more realistic. Further, extending the abstract “Notch” and “Ras” signalling
pathways by their individual regulatory components could help us to gain a more
detailed understanding of the biological system.

The successful calibration of our model renders it amenable to testing hypotheses
about the germ line system and about specific aspects of development. Our major
goal will be to test different possible mechanisms of apoptosis. It is known that
about 50% of all potential oocytes die; one likely explanation is the need for nurse
cells that synthesise enough cytoplasm for the rapidly growing oocytes [15, 19].
So far it is unclear how the decision is taken when and which of the cells should
die. A probable explanation is that there is a balance between the cytoplasm being
produced and the number of cells allowed to progress [19]. Still, apoptosis could
be random or clearly determined by aspects like Ras activity level, developmental
timing or cell size. Another very interesting aspect of the germ line is the question of
symmetric versus asymmetric division of stem cells. It has not been fully resolved
whether the post-larval germinal stem cells divide symmetrically or asymmetrically,
i.e. if both daughter cells retain stem cell properties and can divide further or if only
one of the daughter cells remains in the mitotic zone whereas the sister progresses
toward maturation into a gamete, respectively. The prevailing model assumes that
the division happens symmetrically [33]. Still, some of the cells might remain in the
mitotic zone if they are not pushed by other dividing cells [28]. We will focus our
future modelling work on these two and other sparsely understood aspects of the
C. elegans germ line to gain further understanding and generate input for wet lab
experiments that can validate the model’s predictions.
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Chapter 13
A Modular Model of the Apoptosis Machinery

E.O. Kutumova, I.N. Kiselev, R.N. Sharipov, I.N. Lavrik,
and Fedor A. Kolpakov

Abstract Using a modular principle of computer hardware as a metaphor, we
defined and implemented in the BioUML platform a module concept for biological
pathways. BioUML provides a user interface to create modular models and convert
them automatically into plain models for further simulations. Using this approach,
we created the apoptosis model including 13 modules: death stimuli (TRAIL,
CD95L, and TNF-˛)-induced activation of caspase-8; survival stimuli (p53, EGF,
and NF-�B) regulation; the mitochondria level; cytochrome C- and Smac-induced
activation of caspase-3; direct activation of effector caspases by caspase-8 and�12;
PARP and apoptosis execution phase modules. Each module is based on earlier
published models and extended by data from the Reactome and TRANSPATH
databases. The model ability to simulate the apoptosis-related processes was
checked; the modules were validated using experimental data. Availability: http://
www.biouml.org/apoptosis.shtml.
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1 Introduction

Apoptosis is a highly regulated and evolutionary conserved pathway of cell death
that plays a critical role in development and maintenance of tissue homeostasis.
Over the recent years, molecular biologists have significantly enriched the formal
description of the pro- and anti-apoptotic machineries, and amassed a range of
mathematical models [1–10]. However, these models mainly describe different
segments of implicated pathways, and a comprehensive model of the apoptosis
regulation still does not exist. The motivation for creating a more extensive model
is that there exists experimental information on the interactions of the subsystems –
interactions which the submodels cannot account for [11,12]. At the same time, the
analysis of the large model is difficult. Therefore, we need to modularize the model
for better understanding of how the parts of the model interact with each other. In
our case, modularization has a similar meaning as a model aggregation in [11].

For creation of the modular model of the pro- and anti-apoptotic machineries, we
used BioUML (http://www.biouml.org) – an open source integrated Java platform
for systems biology. It spans the comprehensive range of capabilities including
access to databases with experimental data, tools for formalized description of
biological systems structure and functioning, as well as tools for their visualization,
simulation, parameters fitting, and analyses. Plug-in based architecture (Eclipse run-
time from IBM is used) allows addition of new functionality using plug-ins.

In this work, we extended the BioUML platform for support of modular
models by:

– A new diagram type – composite diagrams using modules as components.
– A new convertor for transformation of the modular models into the plain models

for simulation.

2 Modularity

We define a “module” as a group of reactions with a specified set of input, output,
and contact ports (Fig. 13.1a), like an electronic board has a set of inputs, outputs,
and contacts (Fig. 13.1b).

The input and output ports [11] must be defined so that the modules can be linked
together unambiguously. Additionally, we define the contact ports linking common
parameters of the model.

If two different modules, for example, a module resulting in the activation
of procaspase-8 by CD95L (Fig. 13.1b) and the module describing the direct
activation of executioner caspases by caspase-8 (Fig. 13.2), contain the same
species caspase-8, then in the modular model they will be renamed, like
A caspase-8 and B caspase-8, respectively.

Furthermore, if you want to connect these modules, and to merge the renamed
molecules declaring that caspase-8 in the A module is the same as caspase-8 in
the B module, you can do this via the contact ports interaction. You can also

http://www.biouml.org
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Fig. 13.1 Explanation of the module conception on the base of the CD95L module interface.
(a) The graphic notation for the module depiction in BioUML. (b) The analogy of the port usage
in the modular modeling and computer hardware
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Fig. 13.2 The module of the direct executioner caspases activation, based on the model of Bentele
et al. [1]

assign some species as inputs (e.g., CD95L) and some as outputs, and specify the
mathematical functions in a way that takes into account the concentrations at which
the species will pass from one module to another.

3 Generation of Plain Models

In order to obtain a plain, appropriate for simulation model from the modular
one, we implemented a flattening algorithm in the BioUML platform. The input
for the algorithm is a composite diagram which consists of subdiagrams and the
connections between them (Fig. 13.3a). Connections can be of two types:

1. A directed connection between two parameters means that one parameter should
be completely replaced, in a simple case, by a parameter from another module, or
by an arbitrary function which depends on the parameters from another module.

2. An undirected connection means that two parameters could be changed by
several modules simultaneously.

For visual simplicity, we have added buses to the composite diagram type which
can be used as transitional nodes for connections (two buses corresponding to one
variable may be located far apart in the diagram, and not be connected).

Submodels may directly define their input, output, and contact parameters with
corresponding ports. Directed connections may be established between output
port and input port, and undirected between two contact ports. This approach
corresponds to the model aggregation concept from [11], and is used when modules
are initially designed to be submodels, so they can just be connected appropriately
in the composite model. However, for greater flexibility, it is allowed to establish
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Fig. 13.3 The example of transformation of the modular model into the plain model describing
interactions between TRAIL and CD95 pathways in BioUML: (a) the modular model; (b) the
resulting plain model

connections between any parameters of the modules. One composite diagram may
contain both connections through ports and connections directly to inner variables
and parameters of the modules. This approach corresponds to the composition
concept as it is defined in [12].

The output of the algorithm is a plain model (Fig. 13.3b) of the same type as the
submodels (in our case a SBML diagram that can be simulated in BioUML using
ODE solvers). The result of the algorithm is flattening of the modules [12]. Thus,
we have combined three approaches: aggregation, composition, and flattening.

The algorithm consists of three steps considered below.

Step 1 Generate unique names for all parameters and variables whose names are
repeated in several modules of the model.
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Step 2 Generate substitution rules for species and parameters of the model. For
each directed connection we have a mapping like p  f .p1; : : :; pn/. For each
pi , we may also have an input connection.

Therefore, we may have consequent connections:

p1  f1 .p11; : : : ; p1m/

: : :

pn  fn .pn1; : : : ; pnm/ :

This situation is resolved by the function substitution:

p  f .f1 .p11; : : : ; p1m/ ; : : : ; fn .pn1; : : : ; pnm// F .q1; : : : ; qk/:

Here, q1; : : : ; qk have no input directed connections. For each undirected connection
we have a mapping .p1 $ p2/, therefore we may have:

p1 $ p2 $ : : :$ pn:

From those variables, we choose the main one (if one of pi is a species, then the
algorithm will choose it as the main variable and create a node for it in the diagram)
and transform the mapping to

p ! fp1; : : : ; png :

Finally, we have a set of substitution rules. They can be of two types:

1. p  F.p1; : : : ; pn/

2. p ! fp1; : : : ; png
Let U be the set of variables which are on the left side of the second type rule (the
main variables),U.p/ – variables that will be substituted by p according to this rule,
and D – variables that will be substituted according to the first type rule. At first,
we should make sure that there can be only one substitution for each variable

D \ [U.p/ D ¿:

For that purpose, we consider the situation where one parameter is an input for some
directed connection, and has an undirected connection

p1 ! fp2g ; p2  F .p3/

as illegal, and do not allow it on the level of composite diagram building. The
situation where one parameter has two directed connections as input is also illegal:

F .p1/! p2  G .p3/ :
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The situation

p1 ! fp2g ; F .p2/! p3

is legal, and for the correct function of the algorithm this should be transformed to

p1 ! fp2g ; F .p1/! p3:

Step 3 Iterating through the subdiagrams for each element, we create a copy of
each element that will be added to a plain (not composite) diagram. All iterative
methods are implemented with the same interface. Method read (oldCompartment,
subDiagram, and newCompartment) gets element x from oldCompartment, creates
a copy, and puts it to newCompartment in the plain diagram. The first level
compartment is the diagram. The algorithm is recursive, if x is the compartment
itself, then we apply this method to it: read (x, subdiagrams, and copy(x)).

There are three different reading methods which are executed in a strict order.

1. Read species and compartments
Add all species and compartments from all subdiagrams to the plain diagram.
Let x be our diagram element containing some variable p. The following rules
are used.

a. If 9q W p 2 U.q/, then this species will be added to the diagram with the
attribute “clone” and replaced variable (q instead of p). If x is a compartment,
we do not add it to the diagram.

b. If p 2 U , then we add it to the plain diagram and reattach all edges from all
species U.p/. If x is the compartment, we read all content of the connected
compartments from U.p/ and copy it to the copy of x in the plain diagram.

c. If p 2 D, then we copy x to the plain diagram, set p to the boundary
conditions, and add a new equation which defines the value of p with the
formula from the directed connection.

d. If x is a compartment, we recursively apply the method to x.

2. Read equations, and other nodes

a. If a node represents a rate equation for parameter p.dp=dt D f / and 9q W
p 2 U.q/, then we ignore that equation.

b. If p 2 U , then we merge all rate equations for the connected variables with
the current equation:

dp=dt D f C
X

fi ; where dpi=dt D fi and pi 2 U.p/:
c. If a node represents an equation which defines in any way (differential, scalar,

algebraic, event, etc.) the parameter p, and p 2 D, then we do not add this
equation to the plain diagram.

d. If an equation formula contains a variable p 2D, then all inclusions of
p should be replaced by the corresponding formula from the directed
connection. If an equation formula contains a variable p and 9 q W p 2 U.q/,
then all inclusions of p should be replaced by q.
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Of course, we may achieve an inconsistent algebraic system in situations when
two parameters are connected and both have algebraic or scalar rules, for
example:

F.p/ D 0; p 2 U.q/; G.q/ D 0:
However, in such situations, we have no reasons to choose one of the rules and
remove the others, so this task is beyond the current algorithm.

3. Read edges After all nodes are added, we have a correspondence of the old node
from subdiagram to the new node. This mapping helps us to add edges. For
example, if one compartment is to be substituted by another, we do not add it to
the plain diagram. Instead, we map it to the copy of the substituted compartment
in the plain diagram, so that all edges are automatically reattached.

4 The Modular Model of Apoptosis

We combined the individual models and obtained a comprehensive map of the pro-
and anti-apoptotic pathways for in silico experiments. Then we extended this map
using information from the Reactome [13] and TRANSPATH [14] databases, and
divided it into the separate modules available at http://www.biouml.org/apoptosis.
shtml. Figure 13.4 shows the resulting workflow of the modeling procedure. The
ability of the modular model to simulate the apoptosis-related processes was
checked successfully.

Analysis of existing models
Selection of models for combining

Integration of the selected models and analysis of
reactions in an overlapping model

Extension of the comprehensive model based on the
pathways from Reactome and TRANSPATH

Modularization of the model

Parameters fitting of the individual modules

Analysis of the resulting modelFig. 13.4 Workflow of the
modeling procedure

http://www.biouml.org/apoptosis.shtml
http://www.biouml.org/apoptosis.shtml
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Fig. 13.5 The overview of the modular model of apoptosis

The modular model (Fig. 13.5) includes 13 functional modules located in
five different compartments (nucleus, cytoplasm, mitochondria, extracellular space,
and endosomal volume). It comprises 279 species (proteins, their complexes,
modifications such as different forms of the same molecule, and transformations,
for example, phosphorylation) and 372 reactions applying mass action as well as
Michaelis–Menten kinetics with 459 parameters.

For estimation of the model parameters, we used experimental data obtained from
literature for human cell lines, and represented time courses expressed as relative
values of protein concentrations. Table 13.1 contains the data used for estimation
of the death stimuli pathway (CD95L, TRAIL, and TNF-˛) modules. In order to
estimate the parameters of these modules, we performed a multi-experiment fitting.

We developed an optimization plug-in for BioUML to solve the non-linear opti-
mization problems regarding biochemical pathways by minimization of the distance
between model simulation results and experimental data that are time courses or
steady states expressed as exact or relative values of substance concentrations. The
plug-in includes the range of the optimization methods attempting to minimize the
distance using mean, mean square, or standard deviation weight criterions.

Figure 13.6 shows an example of the parameters fitting performed for the CD95L
module based on the experimental datasets [1,9,15,16] obtained for different human
cell lines.



244 E.O. Kutumova et al.

Table 13.1 The experimental data used for the CD95L, TRAIL, and
TNF-˛ modules fitting

References Cell line Modules

Bentele et al., 2004 [1] SKW 6.4 CD95L
Hua et al., 2005 [9] Jurkat
Neumann et al., 2010 [15] HeLa
Scaffidi et al., 1998 [16] CEM
Vilimanovich et al., 2008 [17] LN-71, U343MG TRAIL
Farfan et al., 2004 [18] Jurkat
Janes et al., 2006 [19] HT29 TNF

Fig. 13.6 Results of the CD95L module simultaneous fitting to the experimental datasets obtained
for different human cell lines

5 Conclusion

We developed the modular model of apoptosis based on the existing mathematical
models, as well as on information from the Reactome and TRANSPATH databases.
The models were reconstructed using the SBML and SBGN standards, and con-
verted into the modules with specified ports and connections. Modularization allows
for analyzing the individual parts of the whole model and relations among the
various modules.

This work was supported by the European Committee grants No 037590
“Net2Drug” and No 202272 “LipidomicNet.”

The modular model is available at http://www.biouml.org/apoptosis.shtml.

http://www.biouml.org/apoptosis.shtml
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Chapter 14
An Ensemble Approach for Inferring
Semi-quantitative Regulatory Dynamics
for the Differentiation of Mouse Embryonic
Stem Cells Using Prior Knowledge

Dominik Lutter�, Philipp Bruns�, and Fabian J. Theis

Abstract The process of differentiation of embryonic stem cells (ESCs) is
currently becoming the focus of many systems biologists not only due to
mechanistic interest but also since it is expected to play an increasingly important
role in regenerative medicine, in particular with the advert to induced pluripotent
stem cells. These ESCs give rise to the formation of the three germ layers and
therefore to the formation of all tissues and organs. Here, we present a computational
method for inferring regulatory interactions between the genes involved in ESC
differentiation based on time resolved microarray profiles. Fully quantitative
methods are commonly unavailable on such large-scale data; on the other hand,
purely qualitative methods may fail to capture some of the more detailed regulations.
Our method combines the beneficial aspects of qualitative and quantitative (ODE-
based) modeling approaches searching for quantitative interaction coefficients in a
discrete and qualitative state space. We further optimize on an ensemble of networks
to detect essential properties and compare networks with respect to robustness.
Applied to a toy model our method is able to reconstruct the original network
and outperforms an entire discrete boolean approach. In particular, we show that
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including prior knowledge leads to more accurate results. Applied to data from
differentiating mouse ESCs reveals new regulatory interactions, in particular we
confirm the activation of Foxh1 through Oct4, mediating Nodal signaling.

1 Introduction

Systems biology as a new field in biological research has developed and explored
a diversity of methods and tools to investigate regulatory models of genes and
their products such as proteins and RNAs [1–6]. In the majority of cases these
models form gene regulatory networks (GRNs), that can be represented as simple
node–edge graphs, where the nodes stand for the genes or proteins and the edges
represent their interactions. But in many cases the available knowledge about these
interactions is poor leading to either incomplete or imprecise and thus hardly
interpretable models. Thus, inferring missing network edges from data allows to
predict novel biological interactions. In practice, inferring network interactions from
biological data faces several drawbacks like experimental and biological noise,
overfitting, indeterminacies, and infinite solution spaces.

However, boolean modeling is considered as a highly abstract form of modeling
and has been successfully applied to biological systems [7–9]. The benefit of
boolean modeling is its simplicity and thus the relatively low number of unknown
parameters. Furthermore boolean approaches have also been used to model and
analyze time dependent genetic dynamics [10]. In contrast to continuous ODE
based models where dynamics can be modeled within infinite time steps, boolean
modeling is limited to discrete and qualitative states. By now, several approaches
have been developed to combine these two methods and benefit from boolean
simplicity and deal with continuous dynamics [11, 12].

Here we present an intermediate approach working with continuous regulation
coefficients, continuous expression values, and discrete time steps [13, 14]. With
this modification we are now able to add RNA concentrations to our model but keep
ON/OFF states for communication between nodes. The benefit of this method is
that we do not need to define any boolean regulation functions ab initio for each
node but still deal with the convenient boolean modeling framework. This method
is closely related to piecewise linear methods that were also applied for the analysis
of GRNs [15, 16]. In contrast to ODE systems based on mass action or Michaelis–
Menten kinetics our approach is less precise in dynamics, but allows for a much
more flexible search of new possible interactions.

The model itself is now defined by a number of genes that interact among them-
selves by activating or repressing their expressions. Known interactions between the
genes were used to define prior information. Already known interactions can now
be used to initialize parameters in order to reduce the set of computationally feasible
solutions to a set of potentially biologically reasonable solutions. The strength of the
interactions is modeled by the edge-weights that form our parameters. This allows us
to adopt the beneficial aspect of relative interaction weightings without introducing
too many additional parameters. The implemented algorithm is available upon
request to the authors.
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Embryonic stem cells (ESCs) appear to play a major role in future medicine
since their ability of unlimited self renewal and the potential of forming any
differentiated cell type [17]. Thus, these pluripotent cells will form a basis for many
new therapies for diseases like cancer, diabetes, neurodegenerative diseases, and
many more. Modern high throughput techniques allow to measure the dynamics of
gene expression during differentiation, but the regulatory mechanisms driving these
dynamics are widely unknown. Inferring GRNs from expression data is therefore a
promising but challenging task, that helps to understand the molecular mechanisms
driving the differentiation of the cell [18]. Moreover, the self maintenance of stem
cells is so far only partly understood and several models have been developed and
analyzed [19, 20]. In contrast, the early events that determine cell fate and the
genetic machinery that drives segregation are widely unclear [21].

Although several key genes involved in murine lineage segregation are well
known, like Foxa2 and Sox17 specifying endoderm [22], their functions during
differentiation are barely known. Taking into account transcription factors like Sox2,
Oct4, and Nanog, that form the core of ESC pluripotency [23, 24], the aim is to
create a regulatory model that helps to understand and predict cellular events when
ESCs leave pluripotency and differentiate.

In this work we investigate ESC differentiation by inferring a gene regulatory
model from gene expression data with use of prior information. Using a toy
model we can show that our approach outperforms discrete boolean modeling
and improves with the use of prior knowledge towards producing more robust
results. Through not only optimizing for one solution, but an ensemble of networks
we are able to select for networks with specific attributes like robustness against
experimental and biological noise and to look for common and therefore essential
properties. We need to point out that information gained through text-mining
approaches might be incorrect or useless in this context. For instance, direct effects
of protein–protein interactions were not covered by our data since we are only
working with microarray data which is based on mRNA levels. However, we show
that our approach is able to correctly reproduce a toy model and gains accuracy from
the use of prior data. Applied to experimental data, we predict new interactions,
whereby the activation of Foxh1 by Oct4 could be confirmed from published
data. Furthermore, we find by adding noise and doing cross validation, that robust
networks appear to be remarkably sparse, thus managing to reproduce the data with
fewer interactions.

2 Methods

2.1 Mouse Gene Expression Data

For gene expression analysis we used the following dataset available at GEO
www.ncbi.nlm.nih.gov/geo/ [25]: Time course of ESC differentiation into embryoid
bodies (EB) (GSE3749, GSE3231 GSE2972). CEL files were analyzed using
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Bioconductors simpleaffy package for R [26] and expression values were calculated
using the rma algorithm. All gene names and gene symbols to each probe were
retrieved from Bioconductors moe430a.db package. The dataset consisted of three
mouse ESC lines V6.5, R1, and J1. RNA was measured at 11 time points from
tD 0 h until tD 14 d. From each time point and each cell line three technical
replicates were measured.

2.2 Semi-quantitative Modeling Based on External
and Internal State Vectors

In this work, a GRN is described as a directed, weighted graph, where V denotes
the set of genes (vertices) and E denotes the interactions with relative coefficients.
For a given set of n genes, V is a vector of n vertices and E forms a n � n matrix
consisting of the edge weight coefficients. Each entry ei;j , with i; j D 1; : : : ; n,
denotes the weight of the edge from gene i to gene j , where positive weights stand
for activation and negative for inhibition, respectively.

In contrast to ODE systems, where the system can be described with an infinite
number of possible state vectors [12, 27], in this approach a state vector is split up
into an external and an internal state vector. The internal state vector ct corresponds
to the continuous expression levels of all genes at time t for t D 1; : : : ; mwherem is
the number of all measured time points, thus forming the columns of an expression
matrix C with ci the time dependent expression profiles for each gene i . For each
internal state vector a corresponding external state exists as a boolean vector Oct
referring to an either active or an inactive binary state. Each element of Oci;t , is then
assigned to a binary value using a threshold " on the present expression value ci;t .
After scaling the gene expression data between 0 and 1, we set " D 0:5. The update
rule for each gene i now follows:

ci;tC
t WD

8
ˆ̂<

ˆ̂:

ci;t C 1 � ci;t
�i

if bi > �

ci;t C �ci;t
�i

otherwise
; (14.1)

where b is the activation vector formed by b WD E>Oc, where E> is the transposed
matrix of E . Thus, bi is the sum of all relative interaction coefficients of all active
regulators of a gene i . The expression of gene i is now increased if the activation
value given with bi is above a predefined threshold � , or decreased otherwise. To
give all interaction coefficients the same weight we set � D 0. Hence, activation or
inhibition of a gene i depends on the current state of its regulators, given by Oc and the
relative weights given by the i th column of the matrix E . �i denotes a gene specific
time constant defining the speed of ascent and descent of the concentrations over
time. For all non-boolean simulations the parameter � is included in the optimization
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process. Setting � for all genes to 1 and allowing only for discrete weights in E ,
(14.1) leads to the following generic boolean update rule:

ci;tC
t WD
(
1 if j ˚j W .cj D 1 ^ ej i D 1/

� j � j ˚j W .cj D 1 ^ ej i D �1/
� j > 0

0 otherwise
:

(14.2)

2.3 Inference of an Ensemble of Networks Using Optimization
via a Genetic Algorithm

Beginning from each measured state vector ct , the model is simulated for N update
steps, thus generatingN internal simulated state vectors Qct;1 : : : Qct;N . To evaluate the
model we determined the simulated state Qct;min with a minimum average distance
dt D 1=n

Pn
iD1 jci;tC1 � Qci;t;N j to the following internal state vector ctC1. After a

full simulation the column-vectors Qct;min form a simulated state matrix QC , where Qci
is a simulated expression profile for a gene i .

The overall error of a given model was measured as the difference err D �
��r ,
where �
 is given by the average pairwise differences �
 WD 1=.m � 1/Pm�1

tD1 dt
and �r D Pn

iD1 corr.ci ; Qci / by the sum of all pearson correlation coefficients
between simulated and measured gene expression profiles.

We fitted our model to the data using a generic genetic algorithm (GA)
implemented within the MathWorks global optimization toolbox. The individuals
of the initial populations were initialized randomly using a normal distribution,
N .0; 0:2/ for the edges. Prior knowledge about interactions with a known effect
is included by addition of C0:5 (activation) or �0:5 (inhibition) to the edges.
Knowledge about interactions with an unknown effect is included by addition of
further random noise (N .0; 0:3/).

After each simulation step a new generation was created by the GA. To keep
connectivity low, between creating a new generation and the following simulation
step, all edges with an absolute weight below 0.2 were set to zero. Edge weights
were also constrained between C1 and �1. However, since our method allows
for any edge between the model genes, it may also include indirect edges after
optimization. In our case we can distinguish between two types of indirect edges:
Redundant indirect edges, an edge between two vertices v1 and v3 where the true
interaction is mediated through v2, and hidden indirect edges, where the mediating
gene is not included in the model. The latter type arises from an incomplete model
setup and can mainly be avoided by a careful gene selection, but still may occur
due to missing biological knowledge. One way to avoid the first type is to reduce
network density. Therefore, we additionally penalize redundant edges by adding
the network density to the optimization error. In order to minimize density only on
consistent networks the density term was added only after the error “err” converged
to a generic GA stopping criterion.
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3 Results and Discussion

3.1 Optimization on a Toy Model Results in Few Consistent
Network Solutions

To test our approach we generated a toy model shown in Fig. 14.1 consisting of
a feedback loop (vertices v1; v3; and v4), an extended feedforward loop (vertices
v1; v2; v3; and v5) and a linear activation motif (vertices v1, v2, and v5). With
this model we generated artificial expression data that were used as training set
(see Fig. 14.1b) starting with an arbitrarily chosen initial expression vector c0 D
.1; 0; 0; 0; 0/> and a unified production and decay rate based on �i D 2 for all 5
genes.

a

c e

i j k l

f g h

d

b

Fig. 14.1 (a) Our toy model consisting of five nodes and six weighted and directed edges. (b)
Expression data generated with the toy model using an arbitrary initial vector (see text) and a time
constant � D 2 for ten update steps. (c–d) The two consensus networks generated from the two
clusters obtained from the 20 best fitting solutions. Mean edge weights per cluster were indicated.
(e–l) All equally rated solutions obtained by the discrete optimization. Black solid edges indicate
for correctly identified original edges, grey dashed edges indicate for false negative (not identified
but present in toy model) and grey solid edges indicate for false positive edges (present in optimized
but not in original model)



14 Inferring Semi-quantitative Regulatory Dynamics of Differentiating Mouse ESCs 253

Table 14.1 The table shows the mean weights of the concerned edges resulting from optimization
with and without prior knowledge. Furthermore, it shows the percentage of the cases in which the
type of interaction was identified correctly

Edge Prior Real weight
Mean weight without prior
(Correct interaction found %)

Mean weight with prior
(Correct interaction found %)

e41 �1 1 0.43 (100) 0.51 (100)
e13 �0:5 0.5 0.24 (100) 0.30 (100)
e53 �0:5 �0:5 �0.19 (40) �0.60 (95)

We performed 20 independent optimization runs with 200 randomly sampled
parameters each. To test for consistency we clustered the 20 best fitting (with
minimum error) networks according to their edge weights using hierarchical
clustering (data not shown). The networks split up into two clusters. The mean
edge weights of the clustered networks were then used to generate two consensus
networks. The resulting network representations of both clusters are shown in
Fig. 14.1c and d. One network equals the original concerning the topology, whereas
the other only differs in one edge (e53 replaced by e43). The initial extended
feedforward loop is now replaced by a feedback loop, but still maintains the delayed
inhibition of v3. Interestingly, the increased weight of the inhibiting edge in both
consensus networks is relatively balanced by decreased weights within the edges
e34 and e41. In all cases, the unified time constant � of the models was between 1.95
and 2.05.

3.2 Including Prior Knowledge to the Toy Model Increases
Accuracy

To test our toy model towards its sensitivity to incorrect prior information, we
constructed a prior knowledge matrix comprising two false and one correct edge.

Again, after 20 optimization runs, the results were analyzed. The resulting
networks were widely similar to the previous results except for the edges included
in the prior. Table 14.1 shows how the average weights of the edges changed by
the inclusion of prior knowledge. As one can see in the table, wrong edges in the
prior did not affect the results negatively, whereas the inclusion of the edge e53 led
to improved results: The percentage of runs resulting in the correct cluster (with
e53 instead of e43) increased from 40% to 95%. This shows clearly that correct
prior knowledge is useful to “guide” the GA to local optima and, on the other
hand, that wrong prior knowledge does not affect the quality of our results strongly.
Furthermore, for multiple solutions with equal scores, prior knowledge supports the
GA in choosing the correct one. However, we should keep in mind that the test was
performed using a toy model.
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3.3 In Comparison to a Discrete Boolean Modeling Approach,
Semi-quantitative Modeling Reveals Fewer and More
Accurate Results

We further tested in our toy model approach, whether a discrete boolean approach
will generate comparable qualitative results. Therefore, we set the possible edge
weights in the networks to f�1; 0;C1g, i.e., E 2 f�1; 0;C1gn�n and the concen-
trations of simulated data was set to discrete values in f0; 1g. To simulate with a
generic boolean function we set � D 1 for all genes.

After 20 optimization runs, eight different solutions of the same quality were
obtained (see Fig. 14.1e–l). These networks all produce the same sequence of
states (simulated expression profiles) and all solutions share the same number
of edges. In all cases, the inhibiting edge e53 remains undetected. Compared to
our previous results this shows that in several cases gene regulatory interactions
might not be detected by a generic boolean approach. Furthermore, the ability of
covering the original dynamics using continuous models allows here for a more
accurate reconstruction: Due to the continuous decrease of concentration over time,
the inhibitory effect of v5 on v3 can be recognized, since the concentration of v3
decreases slower than the concentration of v2. As a consequence, the concentrations
of v4 and v5 will also differ. Thus, it could be recognized that v4 is an activator of v1
whereas it is also inhibited directly or indirectly by v5.

To substantiate the claim that our method outperforms boolean approaches, as ob-
served and explained for the toy model chosen above, we also applied both methods
to three different artificial datasets generated with the GeneNetWeaver 3 simulator
(http://sourceforge.net/projects/gnw/) used for the DREAM challenges [28]. We
chose three in silico networks, each comprising ten genes. For each network, we
used a unified randomly generated prior. Using both methods, we performed 100
optimization runs for each network. We analyzed the results by selecting all edges
occurring in more than 30% of the obtained network ensembles. Results were
summarized in Table 14.2. Although networks generated with the boolean method
appear to be more sensitive, semi-quantitative network reconstruction performed
better according to specificity and accuracy. In case of the boolean method, the
higher sensitivity is based on a remarkably higher network density. This finding
also confirms that compared to boolean modeling our semi-quantitative approach
predicts fewer but more reliable interactions.

3.4 Inferring a Model for Gastrulation from Gene Expression
Data Reveals New Regulatory Interactions

Next, we applied our method to the differentiation dataset. Initially we defined
the set of genes that form our model from literature. Additionally to the known
pluripoteny genes, we mainly selected genes known to be involved in gastrulation

http://sourceforge.net/projects/gnw/
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[29, 30]. Genes that were not expressed in the dataset were excluded from further
modeling. Prior knowledge was extracted from literature using the text mining tool
Bibliosphere from the Genomatix software suite (www.genomatix.de). For each
of the three cell lines we performed an independent optimization approach with
a population size of 20,000 individuals each. We tried different population sizes
but found that bigger populations do not change results significantly. The resulting
populations were used to generate consensus networks. From each cell line specific
network ensemble only edges with absolute weights ei;j > 0:2, occurring in more
than 30% of the networks were used. The results were displayed as an adjacency
matrix in Fig. 14.2a–c, where each row i denotes the effect that gene i has on its
target genes (columns).

When comparing the three networks, all three networks could confirm at least
half of the 21 known interactions (see Fig. 14.2d), with a total overlap of 6 edges.
From the 46 potential edges we found an overlap of 3 edges. Here, one has to
keep in mind that we initialized potential edges in both directions since, from the
prior, we only included an undirected interaction. We found no overlap concerning
the rejected known edges. Regarding new edges – edges not present in the prior
– we could identify one edge common to all three consensus graphs with respect
to weight and direction: Oct4 activates the expression of the transcription factor
gene Foxh1, which mediates Nodal signaling during anterior–posterior patterning
and node formation in the early mouse embryo [31]. Furthermore, it could be
experimentally confirmed that Oct4 binds to the Foxh1 promoter [32]. We assume
that the reason for the deviation of the fitted networks mainly arise from biological
divergence, e.g., all three cell lines differentiate with varying speed. A further reason
is that with the proceeding differentiation process the heterogeneity of cell types
increases. Since bulk RNA was measured this heterogeneity is reflected in the
expression profiles.

3.5 Among the Ensemble of Gastrulation Networks Sparse
Networks Appear to be More Robust Against Noise

GRNs are commonly assumed to be robust against noise, since robustness is
beneficial regarding evolvability and selection [33]. We use this fundamental
property to analyze our solutions for biological relevance. Therefore we add random
noise to the edge weights of the different networks, simulate it, and then compare
the resulting expression data with the original expression data.

We performed ten iterations on all networks optimized with all three cell lines
separately. In each iteration, we added noise to all edge weights and performed the
simulation. The noise was generated using N

�
0; k

10

�
(k 2 f1; 2; : : : ; 10g). This

was performed 200 times for each network in each iteration. Finally, we computed
the mean value for each noise level for all three cell lines and identified the best
scoring network, respectively (see Fig. 14.3a). Interestingly, the networks trained
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Fig. 14.2 Comparison of consensus networks. (a–c) Adjacency matrices of the three consensus
networks, one for each cell line. Each row i denotes the effect that gene i has on its target
genes (columns). The triangles denote for prior knowledge (lower, right) and for the modeling
results (upper, left). (d) The barplot summarizes the number of edges found or rejected in all three
consensus networks and the overlap. In particular the number of confirmed known prior edges, the
number of confirmed potential edges, the number of rejected known edges and the number of new
identified edges

with the cell line R1, that were overall more sparse compared to the others (see
Fig. 14.2b), perform most robust. This finding, that sparseness is associated with
robustness, agrees with the work of Leclerc that shows that biological networks are
parsimonious [34]. The network that performs best when adding noise is shown in
Fig. 14.3c. Its connectivity of 34 is significantly lower when compared to the mean
of all trained networks of 64 and a standard deviation of 9.9. Within the network
two known edges could be confirmed, 12 known edges are missing and two were
rejected (opposite direction). Six possible and 19 new edges are included.
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Fig. 14.3 Robustness analysis. To test for robustness, we added increasing noise to each optimized
network and computed the error score combined of correlation and pairwise deviation (see text).
(a) For each cell line we show the mean error of all networks and the best network, respectively.
(b) Network consisting of all common edges of the three most robust networks against noise. The
thickness of edges is relative to the mean edge weight of the three best networks. (c) Most robust
network against increasing noise. Edge thickness refers to edge weights. (d) Most stable network
after cross validation

We then compared the three best networks and selected all common edges. The
resulting graph is shown in Fig. 14.3b. The network shows a clear hierarchical
structure with Oct4, Nodal, and E-cadherin on top. Again these networks confirm
the activation of Foxh1 by Oct4.

To test for biological consistency we performed a cross validation analysis. From
all cell line specific networks the five best performing were validated against the
two other cell lines, respectively. The network with the best cross-validation score
is shown in Fig. 14.3c and was originally trained on the J1 cell line. Interestingly,
its connectivity of 51 is also relatively low when compared to the average of 64.
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This again agrees with our previous finding that sparse networks perform more
robustly. Taken together the network confirms three, rejects four, and lacks 14 of
the known interactions. It further includes 8 possible interactions and 36 new edges.

This strong deviation of the robust networks probably arises from the large
heterogeneity in the data. Since the cell lines differentiate in a diverse manner,
robustness of the networks reduces to the minimal accordance in the expression
profiles of the genes. Furthermore, the lack of most interactions of the core
pluripotency network can be explained by the fact that the networks were trained on
differentiating data, where these interactions were mostly displaced by mechanisms
driving the differentiation. Taken together, heterogeneity here leads to sparseness
that in turn helps to identify core regulatory interactions.
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Chapter 15
Cell Death and Life in Cancer: Mathematical
Modeling of Cell Fate Decisions

Andrei Zinovyev, Simon Fourquet, Laurent Tournier, Laurence Calzone,
and Emmanuel Barillot

Abstract Tumor development is characterized by a compromised balance between
cell life and death decision mechanisms, which are tightly regulated in normal
cells. Understanding this process provides insights for developing new treatments
for fighting with cancer. We present a study of a mathematical model describing
cellular choice between survival and two alternative cell death modalities: apoptosis
and necrosis. The model is implemented in discrete modeling formalism and allows
to predict probabilities of having a particular cellular phenotype in response to
engagement of cell death receptors. Using an original parameter sensitivity analysis
developed for discrete dynamic systems, we determine variables that appear to be
critical in the cellular fate decision and discuss how they are exploited by existing
cancer therapies.

1 Introduction

Evading various programmed cell death modalities is considered as one of the
major hallmarks of cancer cells [1]. A better understanding of the pro-death or pro-
survival roles of the genes associated with various cancers, and their interactions
with other pathways would set a ground for reestablishing a lost death phenotype
and identifying potential drug targets.
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Recent progress in studying the mechanisms of cell life/death decisions revealed
its astounding complexity. Among many, one can mention three difficulties on the
way to characterize, describe, and create strict mathematical descriptions of these
mechanisms.

First, the signaling network allowing a cell to react to an external stress (such as
damage of DNA, nutrient and oxygen deprivation, toxic environment) is assembled
from highly redundant pathways which are able to compensate each other in one
way or another. For example, there exist at least seven distinct and parallel survival
pathways associated with action of AKT protein [2]. Disruption of one of these
pathways in a potential cell death-inducing cancer therapy can be in principle
compensated by the others. Thus, understanding and modeling the survival response
in its full complexity is a daunting task.

Second, cellular death is an extremely complex phenotype that cannot merely
be described as a simple disaggregation of cellular components driven by purely
thermodynamical laws. Several distinct modes of cell death were identified in
the last decade [3], such as, necrosis, apoptosis, and autophagy. Importantly, all
these cell death modalities are controlled by cellular biochemical mechanisms,
activated in response to diverse types of stress: roughly speaking, a cell is usually
preprogrammed to die in a certain manner, sending appropriate signals to its
surroundings so as to limit tissue toxicity and allow recycling of its components.
Necrosis is a type of cell death usually associated with a lack of important cellular
resource such as ATP, which makes functioning of many biochemical pathways
impossible. This is why it was long thought of as an uncontrolled and purely
thermodynamics-driven degradation of cellular structures. However, recent research
showed that necrosis can be triggered by specific signals through the activation of
tightly regulated pathways, and can even proceed without ATP depletion [3]. By
contrast, apoptosis as a form of cellular suicide was, from the very beginning,
described as a mode of cell death requiring energy for the permeabilization
of mitochondrial membranes and cleavage of intracellular structures. Autophagy
remains a relatively poorly understood cell death mechanism, which seems to
serve both as a survival or a death modality. Upon certain stress conditions, and
until this stress is relieved, cellular components such as damaged proteins or
organelles are digested and recycled into reusable metabolites, and metabolism
is reoriented so as to spare vital functions. Long lasting, non-relievable stress
was described as triggering autophagic cell death, through unaffordable cellular
self-digestion. However, no experimental evidence ever unambiguously demon-
strated that such cell death is directly executed by autophagy in vivo, but this
is seen in the special case of the involution of Drosophila melanogaster salivary
glands [3].

The third difficulty can be attributed not directly to the complexity of the
biochemical mechanisms but rather to our capabilities of apprehending the design
principles used by biological evolution. Inspired by engineering practices, we
tend to investigate complex systems by splitting them into relatively independent
modules and associating well-characterized non-overlapping functions to each
molecular detail. Applying such reductionist approaches to biology comes with
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a caveat. Most cellular molecular machineries cannot be naturally dissected or
associated with well-defined functions, and sets of overlapping functions can be
distributed among groups of molecular players.

Not having the ambition to deal with the whole complexity of cell fate decisions
in vivo, we decided to concentrate on modeling the outcome of a classical and rather
well-defined experiment of inducing cell death: adding to a cell culture specific
ligands (Tumor Necrosis Factor, TNF, or other members of its family such as FASL).
These so-called death ligands can engage death receptors and trigger apoptosis
or necrosis, or activate pro-survival mechanisms [5]. The net outcome of such
experiments depends on many circumstances: cell type, dose of the ligand, duration
of the treatment, specific mutations in cell genomes, etc. Moreover, it is believed
that the outcome can have intrinsic stochastic nature governed by cellular decision
making mechanisms and intrinsic molecular noise [6]. Trying to characterize the
biochemical response of a cell to this relatively simple kind of perturbation allows
to understand certain cell fate decision mechanisms.

In this paper, we briefly describe and carefully analyze a mathematical model of
cell fate decision between survival and two alternative modes of cell death: apoptosis
and necrosis. The model was created and introduced in [4]. Here we propose the
principles for wiring and parametrizing a biological diagram that describes this
cellular switch. In addition to [4], here, by applying a novel sensitivity analysis
specifically developed for discrete modeling, we identify fragile sites of the cell
fate decision mechanism. In conclusion, we compare our analysis with our current
knowledge of cellular decision making fragilities utilized by cancer and cancer
therapies.

2 Mathematical Model of Cell Fate Decision

In [4] we summarized the current knowledge on the interactions between cell
fate decision mechanisms in a simplistic wiring diagram (see Fig. 15.1) where
a node represents either a protein (TNF, FADD, FASL, TNFR, CASP8, cFLIP,
BCL2, BAX, IKK, NF�B, CYT C, SMAC, XIAP, CASP3), a state of protein
(RIP1ub, RIP1K), a small molecule (ROS, ATP), a molecular complex (Apopto-
some, C2 TNF, DISC FAS), a group of molecular entities sharing the same function
(BAX can thus represent either of BAX and BAK, cIAP either cIAP1 or cIAP2,
and BCL2 any of the BH1–4 BCL2 family members, etc.) a molecular process
(Mitochondria permeabilization transition, MPT, Mitochondrial outer membrane
permeabilization, MOMP) or a phenotype (Survival, Apoptosis, Non-apoptotic cell
death, and Non-ACD). Each directed and signed edge represents an influence of
one molecular entity on another, either positive (arrowed edge) or negative (headed
edge).

The phenotype nodes on the diagram are simple interpretations of the following
molecular conditions: (a) activated NF�B is read as survival state; (b) lack of ATP
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Fig. 15.1 Biological diagram of molecular interactions involved in cell fate decisions derived
from the biological literature. The diagram is roughly divided by dashed lines into three modules
corresponding to three submechanisms of cell fate decisions. Notations: (1) Proteins: TNF, FADD,
FASL, TNFR, CASP8, cIAP, cFLIP, BCL2, BAX, IKK, NF�B, CYT C, SMAC, XIAP, CASP3;
(2) States of proteins: RIP1ub (ubiquitinated form of RIP1), RIP1K (kinase function of RIP1);
(3) Small molecules: ATP, ROS (Reactive oxygen species); (4) Molecular complexes: Apoptosome,
C2 TNF, DISC FAS; (5) Molecular processes: MPT (Mitochondria permeabilization transition),
MOMP (Mitochondrial outer membrane permeabilization); (6) Phenotypes: Survival, Apoptosis,
and Non-ACD (Non-apoptotic cell death). Below the table of logical rules defining the discrete
mathematical model is provided

is read as non-apoptotic cell death state; (c) activated CASP3 is read as apoptotic
cell death. Absence of any of such conditions is interpreted as a “naive” cell state,
corresponding to the fourth cellular phenotype.

After extensive examination of the biological literature we converted the diagram
into a logical mathematical model of cell fate decisions triggered by activation of
cell death receptors. The wiring diagram and the logical rules defining the model
are shown in Fig. 15.1.
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By applying a technique adapted to discrete formalism [7], we reduced this
model to a 11-dimensional network, thus enabling a complete analysis of the
asynchronous dynamics (see [4] for details). This analysis identified 27 stable
logical states and no cyclic attractors. Moreover, it showed that the distribution of the
stable logical states in the discrete 22-dimensional space of internal model variables
(without considering input and output variables) forms four compact clusters, each
corresponding to a particular cellular phenotype. Three of these clusters can be
attributed to a particular cell fate (survival, apoptosis, necrosis) while the forth
represents a “naive” survival state, where no death receptors are induced.

3 Computing Phenotype Probabilities

As we have already mentioned, the cellular fate decision machinery is characterized
by stochastic response, i.e., given a stimuli, the cell can reach several final states,
corresponding to different phenotypes, with different probabilities. The role of
mathematical modeling in this case could predict these probabilities as absolute
values that can be matched to an experiment, or at least can predict the relative
changes of the probabilities after introducing some perturbations to the system.

We have implemented this idea for the mathematical model of cell fate decisions
described above in the following manner.

In order to describe our results, let us introduce the notion of asynchronous state
transition graph. On this graph, each node represents a state of the system which in
this case can be encoded by a n-dimensional vector of 0s and 1s (n being the dimen-
sion of the system). A directed edge exists between two states x and y if there exists
an index i 2 f1; : : : ; ng such that yi D fi .x/ ¤ xi and yj D xj for j ¤ i (here, fi
denotes the logical rule of variable xi , see Fig. 15.1 for a complete list of the model
logical rules). In principle, the state transition graph could be defined independently
and without the biological diagram, however, this would require a tremendous
amount of empirical knowledge about the set of all permissible transitions between
the cell states which is not available. Hence, the biological diagram with associated
logical rules is used as a compact representation and a tool to generate the state
transition graph. Detailed instructions on this procedure can be found in [8, 9].

The set of all possible states provides a discrete phase space of the system.
The state transition graph contains all possible ways of the systems dynamics
(trajectories). In other words, it is the multidimensional epigenetic landscape of the
cell fate decision system. Note that the state transition graph is assumed to be rather
sparse compared to the fully connected graph where any two state transitions would
be possible. Hence, on this landscape, one can determine bifurcating states, points
of no return, etc.

The state transition graph allows to address the following question: Starting
from a distinguished state of a cell, what is the probability to arrive to each of the
stable states? In biological terms: Which proportions of a population of resting cells
exposed to death ligand will eventually display each of the different phenotypes –
cell fate?
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To answer the question, we converted the state transition graph into a Markov
process of random walk on a graph, following the method described in [9].
To do that, we associated to each transition between two states a probability
(called transition probability). By applying classical algorithms to the transition
probability matrix (strongly connected decomposition and topological sort), we
obtained an absorbing discrete Markov chain, and then analyzed it with classical
techniques [10].

One of the critical points in such type of analysis lies in the choice of the
transition probabilities. Once again, defining these probabilities directly from
some empirical observations is impossible at present time. Hence, these proba-
bilities should be derived from the logical model with the use of some additional
assumptions.

The simplest assumption is to consider all transitions firing from a given state
as equiprobable. Biological interpretation of such an assumption is not simple. In
a way, we consider a “generic” cell in which all possible system trajectories take
place with equal probabilities (without dominance, i.e., any preferable route). One
can argue that in any particular concrete cell, this would not be true anymore and
that the generic cell is not representative of anything real observed in any biological
experiment. Having in mind this difficulty, we avoid direct interpretation of absolute
values of probabilities, concentrating rather on relative changes of them in response
to some system modifications such as removing a node or fixing a node’s activity. It
happens that such a “generic” cell model is already capable of reproducing a number
of known experimental facts.

When the state transition graph is parametrized by transition probabilities, one
can use standard techniques to compute the probability of hitting a given stable
state, considering that a random walk starts from a given initial state. Then this
probability is associated with a probability of observing a particular phenotype
in given experimental conditions. For doing this, it is convenient to define a
unique initial state, which we choose to represent the “physiological state”, the one
representing un-induced cells growing in a plate. Model in Fig. 15.1 is the state
in which all elements are inactive except ATP, FADD, and cIAP. This is a stable
state, which looses its stability when TNF variable is changed from 0 to 1 and the
dynamical system starts to evolve in time.

Using this approach, we performed a series of in silico experiments in which the
probability of arriving to stable states was computed for the initial (“wild-type”)
model, or for a series of modified (“mutant”) model. Typical model modifications
consisted in fixing some nodes’ activities to 0 or to 1. For our cell fate decision
model, the results are provided in Fig. 15.2. In [4] this table was systematically
compared with the experimental data of the cell death phenotype modifications
observed in various mutant experimental systems, including cell cultures and mice.
The model was able to qualitatively recapitulate all of them and to suggest some
new yet unexplored experimentally mutant phenotypes. The most interesting in
this setting would be to consider synthetic interactions between individual mutants,
when several nodes on the diagram are affected by a mutation simultaneously.
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Fig. 15.2 Changes in the phenotype probabilities from the random walk on the state transition
graph, starting from the initial physiological state. Various “mutant” modifications of the dynamical
system are tested here. Here “A“ denotes Apoptosis, “N“ denotes Necrosis, and “S“ denotes
Survival, “0” denotes Naive state. “O.e.” stands for overexpression of a protein, “antiox”
corresponds to blunting the capacity of NF�B to prevent ROS formation, “z-VAD fmk” simulates
the effect of caspase inhibitor z-VAD-fmk

4 Identification of Fragile Points of the Cell Fate Decision
Machinery

Changing distribution of transition probabilities on the asynchronous state tran-
sition graph can drastically change the probabilistic outcome of a computational
experiment. At the same time, the probabilities for a random walk to converge to
some attractor depend also on the structure of the state transition graph which is
determined solely from the discrete model. In order to understand what are the
critical determinants of a cellular choice, we applied a novel strategy of discrete
model analysis consisting in parametrizing the state transition graph by changing
relative importance of certain variables. In a certain sense, this strategy corresponds
to a sensitivity analysis, commonly applied for continuous models based on an
ordinary differential equations and chemical kinetics approach [11].

First of all, we postulate that our “reference” parametrization corresponds to
the equal probabilities of any possible transition from a state. As mentioned
earlier, this corresponds to a “generic” cell model, where the relative speeds of
all biochemical processes are assumed equal. Mathematically, considering the
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dynamics as a Markov process, all transitions from a given state x to any of its
asynchronous successor are assigned equal probabilities (if x has r successors,
these probabilities are equal to 1=r). We will modify this default parametrization
by systematically changing relative speeds of certain elements. This will lead to
some reparametrization of the state transition graph and consequent changes in the
probabilities to reach attractors.

The key idea of priority classes [12, 13] consists in grouping variables of a
discrete model into classes according to the speeds of the underlying processes gov-
erning their turnover rates. For instance, in the case of genetic regulatory networks,
a natural grouping consists in putting de novo protein synthesis (transcription C
translation) in a slow transition class in comparison with other processes such as
post-translational protein modifications (phosphorylation, ubiquitination, etc.) or
complex formation. Following this idea, we can regroup nodes into priority classes
to which some priority ratios w are assigned. As it is said differently, each variable
xi is assigned to a priority value wi . For a given node, a value wi > 1 corresponds to
a higher than default priority, and a value wi < 1 to a lower than default priority. The
ratio wi can be interpreted as a global turnover rate of the component represented
by this node: those that are produced (activated) and degraded (deactivated) fast will
have a large wi .

Consider a state x, with r asynchronous successors. By definition, between x and
each of its successors, one and only one variable can be updated. Let y denote one of
the successors of x, and i be the index of the corresponding updated variable. With
the uniform assumption described before, the probability of the transition (x ! y)
is independent of i and is equal to 1=r . With priority classes, this probability is
now weighted by wi , making the transition more probable if component i belongs
to a “fast” class (wi greater than one) and less probable if it belongs to a “slow”
class (wi less than one). Obviously, for computing the actual transition probabilities
px!y , a normalization should be applied so that:

X

y succ. of x

px!y D 1:

Once the new values of the transition probabilities have been computed, the same
treatments as before can be applied, leading to new values for the probabilities to
reach the different phenotypes, starting from a given initial condition.

This general method may be applied in two different ways. First, one may use it to
compute more realistic probabilities, that could be compared to actual experimental
results (the probability to reach an attractor being compared with the proportion of
cells exhibiting the corresponding phenotype). However, such calculations would
need a complete classification of the relative speeds of all biochemical mechanisms
involved in the model. Given the number and heterogeneity of these mechanisms,
it is still difficult to obtain such classification. Instead, we used the method as a
sensitivity analysis tool, in order to detect which variables are more critical than
others in the decision-making process. Using the reduced model evoked earlier
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Fig. 15.3 Testing the effect of varying node turnovers on the resulting phenotypic probabilities.
The absciss on the graphs shows the value of w priority value, where w D 1 corresponds to the
probabilities computed for the default wild-type model (see Fig. 15.2). The colors are those adopted
in [4]: orange corresponds to apoptosis, purple to necrosis, and green to survival

(see [4]), we considered each variable independently, and successively boosted
it or slowed it down by some multiplicative factor. More precisely, to detect the
sensitivity of the network with respect to the turnover of variable xi , we performed
the calculations for different values of wi , the other weights wj being kept at one
(the reference value). By comparing the probabilities to reach the three phenotypes –
survival, apoptosis, and necrosis – with those of the initial model, one can detect
whether the system’s response is sensitive or not to the turnover rate of variable xi .
We performed such experiments for the nine inner variables of the reduced model.
Figure 15.3 presents the results we obtained.
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The plots reveal several interesting properties. First, the most sensitive
components, which correspond to the curves with the highest amplitude, are RIP1,
NFkB, and CASP8. This reinforces the idea that these three components play a
crucial role in the decision process. This seems reasonable, especially for RIP1 and
CASP8, as they occupy an upstream position in the regulatory graph. Interestingly,
CASP3 turnover does not seem to be so important, although CASP3 is a marker
of apoptosis. This confirms that even though CASP3 is essential for the existence
of apoptosis in the model (its removal completely suppress apoptotic outcome, see
Fig. 15.2), its turnover rate does not appear to be important in the dynamics of the
decision process (once it goes from 0 to 1, most of the decision has already been
made). Remarkably, the turnovers of MOMP and MPT, both contributing to the
permeabilization of mitochondrial membrane, have different effects: MOMP seems
to affect mainly the decision between survival and necrosis, while MPT plays a role
in the switch between apoptosis and necrosis.

The sensitivity analysis, that is, presented here is an extension of the results
proposed in [4]. In contrast with the all-or-none perturbations evoked in the previous
part (where a node is fixed to 0 or 1), here we consider finer perturbations by
modifying the turnover rates of the model’s variables. A next step would be to
consider the relative strengths of the model’s interactions, instead of the model’s
variables. Such an approach is currently investigated.

5 Comparison with the Fragilities Exploited by Cancer
and Its Treatment

Deregulations of the signaling pathways studied here can lead to drastic and serious
consequences. Hanahan and Weinberg proposed that escape of apoptosis, together
with other alterations of cellular physiology, represents a necessary event in cancer
promotion and progression [1]. As a result, somatic mutations leading to impaired
apoptosis are expected to be associated with cancer. In the cell fate model presented
here, most nodes can be classified as pro-apoptotic or anti-apoptotic according to
the results of “mutant” model simulations, which are correlated with experimental
results found in the literature. Genes classified as pro-apoptotic in our model
include caspases-8 and -3, APAF1 as part of the apoptosome complex, cytochrome
c (Cyt c), BAX, and SMAC. Anti-apoptotic genes encompass BCL2, cIAP1/2,
XIAP, cFLIP, and different genes involved in the NFkB pathway, including NFKB1,
RELA, IKBKG, and IKBKB (not explicit in the model). Genetic alterations leading
to loss of activity of pro-apoptotic genes or to increased activity of anti-apoptotic
genes have been associated with various cancers. Thus, we can cross-list the
alterations of these genes deduced from the model with what is reported in the
literature and verify their role and implications in cancer.

For instance, concerning pro-apoptotic genes, frameshift mutations in the ORF
of the BAX gene are reported in >50% of colorectal tumors of the micro-satellite
mutator phenotype [14]. Expression of CASP8 is reduced in�24% of tumors from
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Fig. 15.4 Cell fate decision fragilities identified in various cancers. Flash arrows, hitting from left
to right, represent overexpression or amplification, those hitting from right to left show deletion and
down-regulation. Rectangular arrows point to components targeted by cancer treatment strategies
(SMAC and BAX mimetics)

patients with Ewing’s sarcoma [15]. Caspase-8 was suggested in several studies to
function as a tumor suppressor in neuroblastomas [16] and in lung cancer [17] (see
Fig. 15.4).

On the other hand, constitutive activation of anti-apoptotic genes is often
observed in cancer cells. The most striking example is the over-expression of the
BCL2 oncogene in almost all follicular lymphomas, which can result from a t(14;18)
translocation that positions BCL2 in close proximity to enhancer elements of the
immunoglobulin heavy-chain locus [18]. As for the survival pathway, elevated
NFkB activity, resulting from different genetic alterations or expression of the
v-rel viral NFkB isoform, is detected in multiple cancers, including lymphomas and
breast cancers [19]. An amplification of the genomic region 11q22 that spans over
the cIAP1 and cIAP2 genes is associated with lung cancers [20], cervical cancer
resistance to radiotherapy [21], and oesophageal squamous cell carcinomas [22]
(see Fig. 15.4).

Some of the components of the cell fate decision machinery are considered
currently for the use in cancer treatment in preclinical or clinical trials. To give
some examples, SMAC mimetics directly target dysregulated, neoplastic cells that
overexpress IAPs or underexpress SMAC [23]. BCL-2 inhibitors, most notably
BAX mimetics, are currently passing clinical trials (for example, see [24]).

In our sensitivity analysis, the variables NFkB and CASP8 appear among the
most “vulnerable” components of the cell fate decision machinery, which could
explain why the gene products they represent are fragile points used by cancer.
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BLC-2 does not show up as a sensitive node in the model. However, its direct
target, MPT is a fragile site, accordingly to our analysis. Also analysis of our
model shows that RIP1 is a powerful and sensitive switch able to reverse phenotype
probabilities. Until so far we are not aware about possible targeting of RIP1
functions in cancer treatment, which can be explained by still relatively poor
characterization of its substrates and difficulties connected with targeting specific
RIP1 activities.

6 Conclusion

Mathematical models provide a way to test biological hypotheses in silico. They
recapitulate consistent heterogeneous published results and assemble disseminated
information into a coherent picture using an appropriate mathematical formalism
(discrete, continuous, stochastic, hybrid, etc.), depending on the questions and
the available data. Then, modeling consists of constantly challenging the obtained
model with available published data or experimental results (mutants or drug treat-
ments, in our case). After several refinement rounds, a model becomes particularly
useful when it can provide counter-intuitive insights or suggest novel promising
experiments.

Here, we have conceived a mathematical model of cell fate decision, based
on a logical formalization of well-characterized molecular interactions. Former
mathematical models only considered two cellular fates, apoptosis and cell survival
[25]. In contrast, we include a non-apoptotic modality of cell death, mainly necrosis,
involving RIP1, ROS, and mitochondria functions.

By analyzing properties of the state asynchronous transition graphs associated
with the discrete model, we implemented a procedure to simulate the process of
stochastic cellular decision making in response to activation of death receptors.
These simulations were able to predict relative changes for probabilities of cellular
phenotypes in response to some system perturbations such as a knock-out of a gene
or treatment with a drug. These predictions happened to be fully compatible with
published data from mouse experiments, and provided new predictions to be tested.

Moreover, on this model we have tested a novel strategy of discrete model
analysis, consisting in finding fragile or most sensitive places of the cell fate decision
machinery. Changing the cellular parameters determining choices made at these
fragile sites affect the probabilities for a cell to reach a particular cellular phenotype.
We found out that this type of analysis can explain some of the common fragilities
associated with tumorigenesis and also with currently employed cancer treatment
strategies.
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Chapter 16
Theoretical Aspects of Cellular Decision-Making
and Information-Processing

Tetsuya J. Kobayashi and Atsushi Kamimura

Abstract Microscopic biological processes have extraordinary complexity and
variety at the sub-cellular, intra-cellular, and multi-cellular levels. In dealing with
such complex phenomena, conceptual and theoretical frameworks are crucial, which
enable us to understand seemingly different intra- and inter-cellular phenomena
from unified viewpoints. Decision-making is one such concept that has attracted
much attention recently. Since a number of cellular behavior can be regarded as
processes to make specific actions in response to external stimuli, decision-making
can cover and has been used to explain a broad range of different cellular phenom-
ena [Balázsi et al. (Cell 144(6):910, 2011), Zeng et al. (Cell 141(4):682, 2010)].
Decision-making is also closely related to cellular information-processing because
appropriate decisions cannot be made without exploiting the information that the
external stimuli contain. Efficiency of information transduction and processing by
intra-cellular networks determines the amount of information obtained, which in
turn limits the efficiency of subsequent decision-making. Furthermore, information-
processing itself can serve as another concept that is crucial for understanding of
other biological processes than decision-making. In this work, we review recent
theoretical developments on cellular decision-making and information-processing
by focusing on the relation between these two concepts.

1 Introduction

A traditional example of cellular decision-making is regulation of the Lac operon,
in which a cell controls lactose uptake and metabolism by switching the expression
of the operon in response to environmental cues [1, 2]. This binary switch, together
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with the lytic–lysogenic switch of the 	-phage, have served as prototypes for cellular
decision-making for decades [3], and established the conceptual and technical basis
for understanding other decision-making phenomena such as metabolic switches,
differentiation, and apoptosis [4–6].

This fundamental and classical problem of binary cellular decision-making
has attracted renewed attention recently because the stochastic nature of cellular
decision-making has been observed directly by single-cell-imaging technology.
Balaban et al. have revealed that the stochastic switching of two phenotypes
is a mechanism of bacterial persistence, by directly observing that genetically
identical cells have at least two phenotypes with different antibiotic resistances
and replication rates [7]. Süel et al. also showed that genetically identical Bacillus
subtilis cells stochastically select replication, competence, and sporulation when
they are exposed to a starving environment [8]. These examples have led us to
realize that cellular decision-making has both deterministic and stochastic aspects
so that randomness is exploited and to some extent controlled [9, 10]. Even
though stochasticity in cellular decision-making was suggested theoretically several
decades ago, and it has been partially proven by indirect experimental observations,
these results have sufficient impact to attract attention to the classic, yet new, cellular
decision-making problem [11,12]. Furthermore, stochastic phenotypic switching in
persistence has provided an experimental evidence to support the idea that cells
exploit stochasticity to survive in unpredictable environments [13–17].

Once stochasticity is introduced into the problem, however, it becomes very
difficult to intuitively understand whether or not an observed randomness in cellular
decision-making is actually exploited to increase the fitness advantage of a cell.
Since all cellular phenomena are implemented by intra-cellular reactions that are
intrinsically noisy [16, 18–21], the stochastic output of cellular decision-making
could be a mere consequence of noise in the intra-cellular network that implements
decision-making. Furthermore, stochasticity in intra-cellular reactions can also be
a potential source of impairment, rather than improvement, of the efficiency of
decision-making, by disturbing the information produced by environmental cues
or by randomizing the final output of the decision-making. Theoretical analysis
is indispensable for embracing this tangled relation between the constructive and
destructive roles of stochasticity.

In this work, we first review the theory of cellular decision-making strategies;
this provides a bird’s-eye view of the problem. The mechanism of how bet–hedging
strategies can be advantageous is illustrated on the basis of traditional work by
Levins [22], and the effects of cue-dependent decision-making are subsequently
introduced based on recent work [14, 23]. This theory together with other seminal
results shows that fitness functions, statistics of environmental fluctuation, and
environmental information obtained via cues are major determinants in decision-
making. Among these factors, environmental information has a substantial influence
on the optimality of a decision-making strategy and its maximum fitness advantage.
Secondly, therefore, we review recent work on how such information is quantified
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and what kind of intra-cellular networks can convey information efficiently. Finally,
we discuss theoretical challenges in cellular decision-making and information-
processing.

2 Cellular Decision-Making Without Environmental Sensing

The simplest situation in cellular decision-making is that a cell or cells do not
have the ability to know the state of the environment they inhabit. If a certain
environmental state occurs very infrequently, it is probable that a cell does not
possess a sensory system for observing that state because of the cost of sustaining
the system. Persistence in bacteria may be categorized as this type of cellular
decision-making [7, 12].

Let X.t/ be the state of the environment at time t 2 N, where we assume
discrete time for simplicity. Also, let us denote the phenotype or action of a
cell with genotype g at t as ag.t/ (Fig. 16.1a(i)). If a population of cells with
genotype g is sufficiently large such that its total population size Ng.t/ can be
approximated as a continuous variable, then we can obtain a probability distribution
of the cell phenotypes at t as Pgt .a/. Furthermore, if we define a doubling probability
PDB.X.t/; a.t// and a death probability PDT.X.t/; a.t// of a cell whose phenotype
is a.t/ at t , then we can calculate the total population size at t C 1 as:

Ng.t C 1/ D
X

a

P
g
t .a/Œ1C PDB.X.t/; a/ � PDT.X.t/; a/�N

g.t/:

a b

(i)

(ii)

(iii)

(i)

(ii)

(iii)

(iv)

X

X(t) X(t+1)

a

X aZ

X aZS

Environment Phenotype

Sensory state Internal state

Each cell chooses different phenotype

Each cell makes different prediction on X

All cells make the same prediction on X

All cells choose the same phenotype

Cell

Fig. 16.1 (a) Schematic diagrams of models of cellular decision-making and information-
processing. (i) The simplest model in which only the environmental stateX and phenotype of a cell
a are considered. (ii) A model in which the internal state Z, representing the information on X , is
incorporated. (iii) A model in which information-processing from a sensory state S to the internal
predictionZ ofX is considered. (b) Schematic diagrams of different types of phenotypic switching
(i), (ii) and information transmission errors (iii), (iv). (i) Each cell chooses phenotype stochastically
and independently. (ii) All cells have the same phenotype, which changes stochastically over time.
(iii) Each cell makes a different prediction Z.t/ on X.t/. (iv) All cells make the same prediction
Z.t/ on X.t/
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By defining the marginal growth rate R.X; a/ of a cell with phenotype a under the
environmentX as R.X; a/ WD 1C PDB.X; a/� PDT.X; a/, we have Ng.t C 1/ D
Œ
P

a P
g
t .a/R.X.t/; a/�N

g.t/. Thus, the total population Ng
T can be described as

Ng.T / D QT�1
tD0 Œ

P
a P

g
t .a/R.X.t/; a/�N

g.0/, where Ng.0/ is the initial popula-
tion size at t D 0. The logarithm of the long-term mean growth-rate of the cells
with genotype g becomes:

Lm.g/ D lim
T!1

logNg.T /=Ng.0/

T
D lim

T!1

"
1

T

T�1X

tD0
log

"
X

a

P
g
t .a/R.X.t/; a/

##
:

We estimateLm.g/ approximately by replacing the temporal averaging with respect
to t by an ensemble averaging with respect to X , i.e.,

Lm.g/ D
X

X

P.X/ log

"
X

a

P
g.a/R.X; a/

#
;

where P.X/ is the probability that X occurs and P
g.a/ is assumed to be inde-

pendent of t . As it is easily seen, expŒLm.g/� contains both the geometric mean
with respect to X and the arithmetic mean with respect to a; this stems from
the fact that a population of cells rather than an individual cell is the unit of
decision-making, as shown in Fig. 16.1b(i) [22]. This property contrasts sharply
with decision-making by individual humans or animals in which an agent, i.e.,
individual human or animal, can choose only one action at one time [24]. This
situation is equivalent to the cellular decision-making where cells make the same
decision at the same time (Fig. 16.1b(ii)). If the agent of decision-making is an
individual, as in standard statistical decision theory, Lm.g/ will become Lind

m .g/ D	P
X;a P.X/P.a/ logŒR.X; a/�



, in which only the arithmetic mean of logŒR.X; a/�

appears [24]. The advantages of stochastic phenotypic switching strongly depend
on this difference, as is demonstrated in the next section.

In the following, we describe Lm.g/ as Lm.g/ D P
i P.Xi/ logRX.gjXi/,

where we define RX.gjXi/ WD P
a P

g.a/R.Xi ; a/. Since Lm.g/ depends on g
only via RX.gjXi/, a vector of RX.gjXi/ for i , RX.g/, is sufficient information
to characterize a genotype g [22]. To intuitively illustrate the behavior of Lm.g/,
we focus mainly on the simplest situation, where the environment has two states,
X 2 fX1;X2g. Figure 16.2a and b shows the contour plot of Lm.g/ as a function
of RX.gjX1/ and RX.gjX2/. Thus, the value of the contour at RX.g/ on the plot
defines the fitness of the genotype g. In the following, we assume that the phenotype
ai has advantages in environmentXi over the others, soR.X1; a1/ > R.X1; a2/ and
R.X2; a1/ < R.X2; a2/, without losing generality.

Let us first consider the simplest case, in which cells with genotype gj have
a single and fixed phenotype aj . Then, RX.gj jXi/ D R.Xi ; aj / holds, and the
contour value at .R.X1; aj /; R.X2; aj //T corresponds to Lm.gj /. Thus, if we have
two populations with different genotypes g1 and g2, as in Fig. 16.2a and b, then the
population that has the highest Lm.g/ will outcompete the others.
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Fig. 16.2 Contour plots of Lm.g/ as a function of RX.g/ D .RX.gjX1/; RX.gjX2//T. Lighter
colors represent higher values of Lm.g/. The circles represent RX.g/ of genotype g, designated
within the circle. Bold lines represent the set of RX.g12/ swept by changing P

g12 .a/ within
Œ0; 1�. Squares are g12 with optimal switching rates. (a) and (c) Symmetric situation in which
.P.X1/;P.X2/

T D .1=2; 1=2/T , RX.g1/ D .3=2; 1=2/T , and RX.g2/ D .1=2; 3=2/T . (b) and (d)
Asymmetric situation in which .P.X1/;P.X2/T D .9=10; 1=10/T, RX.g1/ D .3=2; 1=10/T , and
RX.g2/ D .1; 9=10/T. Dashed lines in (c) and (d) define the boundaries of the regions that RX.g/

sweeps by changing q1 and q2 for fixed values of p1 and p2. Each line can be defined either by
q1 D 0, q1 D 1, q2 D 0, or q2 D 1. Crosses correspond to genotypes with optimal q1 and q2

Next, we consider a cell with genotype g12 that has the ability to randomly select
either phenotype a1 or phenotype a2. Then, its average growth rate can be described
as RX.g12/ D P

i2f1;2g Pg12.ai /RX.gi /, where RX.gi / D .R.X1; ai /; R.X2; ai //
T.

Thus,RX.g12/ is on the segment fromRX.g1/ to RX.g2/, as in Fig. 16.2a and b. As
we can easily see graphically, there can be a point on the segment at which Lm.g12/

can be greater than Lm.g1/ and Lm.g2/, i.e., the squares in Fig. 16.2a and b.
Thus, stochastic phenotypic switching can be advantageous. Advantage of
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bet–hedging strategies (also known as mixed strategies) in fluctuating environments
was described theoretically by Levins in the 1960s [22]. In the field of evolutionary
biology, the conditions of the optimality have been further explored for more
general situations [23], and the evolutionary stability of the bet–hedging strategies
was investigated [25]. As mentioned, this phenomenon attracts renewed attention
recently in the context of cellular decision-making [26–28]. The merit of stochastic
switching stems from the mixture of geometric and arithmetic means in Lm.g/,
by which the contour of Lm.g/ becomes curved, whereas the set of RX.g12/ is a
segment, as shown in Fig. 16.2a and b. However, either g1 or g2 rather than g12
becomes advantageous when the decision-making is conducted at the individual
level, as in Fig. 16.1b(ii), and thus, Lm.g/ obtains only arithmetic means [24].
This result clearly illustrates that the ability of genetically identical cells to conduct
population-level decisions is crucial to exploiting stochasticity for survival.

3 Cellular Decision-Making with Environmental Sensing

In this section, we consider the case where a cell can employ cues or information
on the state of the environment obtained by sensing the environment. In this case,
the environmental cue can be a signal from other cells as well as the actual state
of the environment such as the amount of nutrients or toxic molecules. This type
of decision-making includes at least metabolic switches [4, 11], apoptosis [6],
differentiation [5], stress responses [29], viral latency decisions [30, 31], and
	-phage lysis/lysogenesis [3].

When environmental information is available, Lm.g/ and its approximation by
ensemble averaging becomes:

Lm.g/ D lim
T!1

"
T�1X

tD0
log

"
X

a

P
g
t .ajX.t//R.X.t/; a/

##,
T;

�
X

X

P.X/ log

"
X

a

P
g.ajX/R.X; a/

#
;

where P
g
t .ajX.t// is the phenotype distribution in a population with genotype

g under environment X.t/. As an extreme situation, let us consider that a cell
can perfectly predict the state of the environment. Then, we can easily see that
the strategy to deterministically select the best phenotype based on the prediction
becomes the most advantageous as Lm.gp/ D P

X P.X/ logŒmaxa R.X; a/�.
Thus, stochastic phenotypic switching is no longer advantageous when perfect
information is available.

In reality, however, a cell can neither obtain perfect information on X.t/ nor
conduct deterministic phenotypic switching. Under an environmental state X.t/,
each cell may have different predictions for X.t/ by its internal state Z.t/, as in
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Fig. 16.1a(ii), and Z.t/ may not completely correlate with X.t/ as P.Z.t/jX.t//.
This discrepancy between Z.t/ and X.t/ can be attributed to the intra-cellular
noise in the sensory and signal transduction pathways, or the inability of a cell to
exploit all the relevant information obtained from its sensory system. On the basis
of this internal representation of the environment Z, a cell subsequently makes a
specific action or chooses a specific phenotype a deterministically or stochastically
as Pgt .ajZ/. Then, we obtain Lm.g/ as:

Lm.g/ D lim
T!1

"
T�1X

tD0
log

"
X

a;Z

P
g
t .ajZ/Pgt .ZjX.t//R.X.t/; a/

##,
T;

�
X

X

P.X/ logŒRX.gjX/�;

where RX.gjX/ D P
a;Z P

g.ajZ/Pg.ZjX/R.X; a/. For simplicity, assume that
Zi represents an intra-cellular state predicting that X D Xi . Then, Pg.Zi jXi/ is
the probability that the internal state Z can correctly predict the state of X as Xi ,
whereas

P
j¤i Pg.Zj jXi/ D 1 � P

g.Zi jXi/ is the probability that the internal
state fails to predict X . Furthermore, we only consider binary environments, binary
internal states, and binary phenotypes such that X 2 fX1;X2g, Z 2 fZ1;Z2g, and
a 2 fa1; a2g; we define the following symbols for notational simplicity:

Ri;j WD R.Xi ; aj /; pi WD pi;i WD P
g.Zi jXi/; qi WD P

g.ai jZi/;
Qpi WD Qpk;i D 1 � pi D P

g.ZkjXi/; Qqi D 1 � qi D P
g.ak jZi/;

where i 2 f1; 2g, and k D 1 when i D 2 and k D 2 otherwise. Then, we have

RX.gjXi/ D
�
Ri;1; Ri;2

� �q1 Qq2
Qq1 q2

��
p1;i
Qp2;i

�
:

For constant accuracy of the sensory system represented by fixed p1 and p2, we can
graphically describe the region that RX.g/ can sweep, as in Fig. 16.2c and d, by
changing q1 and q2 within Œ0; 1�. We can easily see that Lm.g/ becomes maximum
when q1 D 1, or q2 D 1, or q1 D 1 and q2 D 1 holds. Because qi defines the
probability of choosing the phenotype ai when Zi , the condition qi D 1 means
that the phenotype ai is always selected deterministically whenZ D Zi . Therefore,
actively randomizing the phenotype is less encouraged when informationZ onX is
available (see also [14] for more detailed analysis).

To check the consistency of this result with the fact that stochastic phenotypic
switching is encouraged when no information on X is available, let us define p1 D
p0 C "1 and p2 D Qp0 C "2. "1 and "2 characterize the fidelity of the sensory system
because no information on Xi is obtained from Z when "i D 0. Then

�
RX.gjX1/
RX.gjX2/

�
D
�
RX.g12jX1/
RX.g12jX2/

�
C 2
q12

�
"1.R1;1 �R1;2/
"2.R2;2 �R2;1/

�
;
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where q12 WD .p0q1 C Qp0 Qq2/, 
q12 WD q1�Qq2
2

, and RX.g12jXi/ D ŒRi;1q12 C
Ri;2 Qq12�; RX.g12jXi/ is equivalent to that used for the case of no sensory system, if
q12 D P

g12.a1/. Thus, the termRX.g12jXi/ represents the factor of decision-making
without sensing, and 2"i
q12.Ri;1�Ri;2/ purely describes the influence of obtaining
information onX . Optimal stochastic phenotypic switching can be achieved as long
as .p0q1 C Qp0 Qq2/ D q

opt
12 is satisfied. Because p0 is involved in q12, the uncertainty

in predicting X can be a passive source of stochasticity in phenotypic switching
rather than an active one in which stochasticity or randomness is actively generated.
Furthermore, .p0q1 C Qp0 Qq2/ D q

opt
12 contains two free parameters other than p0;

these cannot be determined solely from this optimality. Since the optimal strategy
requires qi D 1 for either i 2 f1; 2g when " ¤ 0, it may be advantageous to have
either q1 D 1 or q2 D 1, even when no information on X is available. Thus, active
phenotype randomization by having q1; q2 ¤ 1 is necessarily not advantageous,
even if no information is available [14].

It should be noted that the conclusion that active randomization of phenotypes
is not encouraged depends on the type of error in predicting the environment.
In our case, we assume that the error in each cell is independent because we
consider that the intrinsic noise of each cell is the major source of the error, as in
Fig. 16.1b(iii). However, errors may be correlated among cells when there is a
common disturbance of the sensing process in the environment, as in Fig. 16.1b(iv).
In [14,23], it is shown that active randomization of phenotypes can be advantageous
in the latter case, demonstrating that the mechanism for obtaining information onX,
and the amount of information obtained, substantially influence the optimality of
a strategy for phenotypic switching. Therefore, the mechanism and efficiency of
cellular information-processing are also important determinants of cellular decision-
making. In the next section, we focus on recent theoretical advances in the
information-processing of cells by sensing environments with noisy intra-cellular
reactions.

4 Information Transmission for Decision-Making

As already shown, obtaining information on the environmental state X as an intra-
cellular state Z is a crucial step in making appropriate decisions in a changing
environment. In general, receptor reactions and subsequent signaling pathways in
a cell conduct this information transmission by relaying the received signal into a
cell. Noise in intra-cellular reactions, however, makes this basic task more difficult
and non-trivial than it sounds [18–21]. It is expected that intra-cellular networks
and pathways with specific structures will have higher efficiency than others in
transmitting relevant information, and that the efficiency is bounded by physical
constraints that are specific to intra-cellular reaction dynamics. This problem is
also relevant to other intra-cellular phenomena besides cellular decision-making
because robust operation of intra-cellular and inter-cellular phenomena such as
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metabolism, cell cycles, transcriptional regulation, and development [32, 33] may
require efficient flow of information from the input component X to the output
component Z. Because of its importance and broad implications, this problem
has been investigated theoretically for various intra-cellular and inter-cellular
phenomena [34].

For example, information transmission by intra-cellular signaling cascades has
been investigated in [35–37]. Among several pathways, the most investigated are
chemotactic pathways in which a cell senses information on a ligand gradient
by its sensory system [38–43]. Because both data on quantitative characteristics
and underlying molecular details are available, chemotactic pathways act as a
benchmark platform for integrative analysis of cellular information transmission,
theoretically and experimentally. Another important class of phenomena is gene
expression and regulation. Because information is transmitted from the state of a
gene or its regulatorX to its expression levelZ, gene expression and regulation are
examples of information transmission between intra-cellular components [44, 45].
Specifically, the readout of positional information from a morphogen gradient has
been analyzed theoretically and experimentally [46–48]. Interlocked fast and slow
positive feedback loops have also been proven to produce a distinct output robustly
from a noisy signal [49, 50].

Although the specific biological details differ, the performance of information
transmission is characterized by quantifying the efficiency of transmission by
various measures. One of the most frequently used measures is the variance of Z,
�2Z.X/, for a fixedX or its variants such as the coefficient of variation (CV), defined
as CV.X/ D �Z.X/

hZ.X/i , where hZ.X/i is the average of Z for a fixed X .
Let us consider the problem of discriminating between the state X and X 0 D

X C 
X on the basis of Z, when 
X is small. Intuitively, the difference
between X and X 0 can be determined less ambiguously when we have either
larger 
Z or smaller �Z.X/. Since 
hZi

�Z.X/
D 1

�Z.X/

dhZ.X/i
dX 
X holds for small


X , 1
�Z.X/

dhZ.X/i
dX or 1

CV.X/
d loghZ.X/i

dX works as a measure of the fidelity of Z
in transmitting information on X , and has been used in various applications
[38–41, 46]. The advantage of this measure is that, when the molecular detail of
an intra-cellular network is available, the variance and CV can be approximately
calculated by linearization of a chemical master equation or Langevin equation of
the network [51,52]. Thus, we can evaluate parameter dependence and lower bound
for a specific intra-cellular reaction. Furthermore, variance and CV are easier to
estimate experimentally than other measures that we introduce below. Nevertheless,
1

�Z.X/

dhZ.X/i
dX has some disadvantages compared to other measures. For example,

even when the value of the measure is specified, the probability of making a wrong
prediction on the state ofX , based onZ, is still not explicitly obvious. Furthermore,
the average and standard deviation cannot exactly specify the underlying probability
distribution of Z for fixed X . To resolve this problem, we have to employ more
detailed information on the distribution P.ZjX/.

Let fZkgk2N be an ensemble of Z generated from either P.ZjX/ or P.ZjX C

X/. When we observeZk , then P.ZkjX/ and P.ZkjXC
X/ are the likelihoods
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that Zk is generated from P.ZjX/ and P.ZjX C 
X/, respectively. Thus, their
ratio Lk D logŒP.ZkjX C 
X/=P.ZkjX/� measures the relative likelihood of
observing Zk from P.ZjX/ or P.ZjX C
X/. Because of the logarithm, Lk > 0

when X C 
X is more likely, Lk < 0 when X is more likely, and Lk D 0 when
X C 
X and X are equally likely. By averaging Lk for all k 2 N, we obtain the
average log-likelihood as:

hL i D lim
K!1

1

K

KX

kD1
Lk �

Z
P.Z/ log

P.ZjX C
X/
P.ZjX/ dZ;

where P.Z/ is either P.ZjX/ or P.ZjX C 
X/. When P.Z/ D P.ZjX C 
X/,
hL i becomes the Kullback–Leibler divergence DKLŒP.ZjX C 
X/jjP.ZjX/�,
defined as DKLŒp.x/jjq.x/� WD

R
p.x/ log p.x/

q.x/
dx [53]. Similarly, hL i D

�DKLŒP.ZjX/jj P.ZjX C 
X/�, when P.Z/DP.ZjX/. Thus, j hL i j measures
the ease of discriminating between X C 
X and X on the basis of Z.
Furthermore,DKLŒP

0.Z/jjP.Z/� is related to the probability that fZ1; : : : ; Zng
happens to behave as if they are generated from P

0.Z/ even though they are actually
generated from P.Z/ [53]. By expanding DKLŒP.ZjX C 
X/jjP.ZjX/� with
respect to 
X , we then obtain

hL i � DKLŒP.ZjX C
X/jjP.ZjX/� � DF.P.ZjX//
X2;

where DF.P.ZjX// is the Fisher information, defined as:

DF.p.xjy// WD
Z
p.xjy/

�
@ logp.xjy/

@y

�2
dx:

Thus, DF.P.ZjX// can be used to measure the fidelity of inferring X from Z.
Furthermore, DF.P.ZjX// also works as a statistical limit for the inference such
that the inverse of DF.P.ZjX// is related to the lower bound of the variance of the
inferred X [53]. If P.ZjX/ is a Gaussian distribution whose mean and variance

are hZ.X/i and �2Z , then DF.P.ZjX// D
�
1
�Z

dhZ.X/i
dX

�2
holds, indicating that

DF.p.xjy// is a generalization of the measure defined by variance.
Although DF.P.ZjX// is more general and informative than the variance, it

is just a local measure in the sense that it accounts for the vicinity of X . To
discriminateX from all the other states, we may be able to use DKLŒP.ZjX/jjP.Z/�,
where P.Z/ D R

P.ZjX/P.X//dX . Furthermore, DF.P.ZjX// does not employ
information on how X behaves or implicitly assume that all X occur evenly. Even
though a cell does not sense X via Z, it can still predict the state of X statistically
if it acquires prior information on X . Thus, by averaging DKLŒP.ZjX/jjP.Z/� over
P.X/, this prior information on X can be accounted in for the mutual information
I ŒX IZ�:
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I ŒX IZ� WD
Z

P.X/DKLŒP.ZjX/jjP.Z/�dX

D
Z Z

P.X;Z/ log
P.X;Z/

P.X/P.Z/
dXdZ:

The mutual information has also been used to quantify the efficiency of information
transmission in signaling pathways, morphogen gradient sensing, quorum sensing,
and gene regulatory networks with various network structures [44, 45, 47, 54–56].
We introduce only the static version of mutual information here for simplicity, but
its dynamic version, which accounts for the time-series of Xt and Zt , has also been
applied to different biological pathways [57–59]. Because only P.X;Z/ is needed
to calculate the static I ŒX IZ�, I ŒX IZ� potentially has wide applicability, not only
for theoretical but also for experimental evaluation of the efficiency of information
transmission.

5 Information-Processing Required for Efficient Information
Transmission

Although the information measures introduced above provide us with ways of
quantifying the efficiency of information transmission for a given intra-cellular
network, we have to specify a network structure before applying the measures.
Thus, in order to reveal a specific structure or response having optimal efficiency
in conducting such information transmission, other approaches than information
measures become crucial.

The theory of Bayesian inference in statistics has been employed to predict an
optimal way of obtaining information on X . In general, an intra-cellular state Z
cannot contain perfect information on X because the intermediate state S from X

toZ has stochasticity, as shown in Fig. 16.1a(iii). For example, the receptor activity
on the cell membrane, S , is the first step in sensing the environmental state X .
Subsequent processing of S is generally conducted before initiating the response
of a cell to the environment. Thus, the processed Z will be a function of S , i.e.,
Z.S/. By Bayesian inferences, the optimal Z�.S/ is the posterior probability of
X , given S , defined as Z�.S/ D P.X jS/, and is computed by Bayes’s rule as
P.X jS/ / P.S jX/P.X/.

This approach was adopted in [60] to derive an optimal way for E. coli to infer
the amount of extracellular sugar from a noisy intra-cellular sugar concentration.
Different genetic regulatory mechanisms were subsequently explored numerically
by evaluating their ability to be tuned to the optimal response predicted from Bayes’s
rule. Similarly, in [61], photoreceptor networks were proposed for approximating
Bayesian inferences. In [62–64], Bayes’s rule was also applied to the chemotaxis of
axons by gradient sensing.
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For more macroscopic phenomena than cellular ones, Bayes’s rule was exten-
sively used to explain foraging behaviors of animals [65–67], and perception and
cognitive processes of humans [68–70]. The applications in these fields illustrate
that the advantage of Bayes’s rule also lies in its ability to naturally incorporate
dynamic updating of the posterior probability P.X jS/ by obtaining new signals
from the environment. By exploiting this property, it was clarified in [71–73]
that a phosphorylation/dephosphorylation cycle with autoregulatory feedbacks can
implement a dynamic Bayesian inference rather than a static one. If temporal
dynamics is involved, Bayes’s rule is extended as:

P.X.t 0/jS.0 W t 0//D P.S.t 0/jX.t 0// R P.X.t 0/jX.t//P.X.t/jS.0 W t//dX.t/R R
P.S.t 0/jX.t 0//P.X.t 0/jX.t//P.X.t/jS.0 W t//dX.t/dX.t 0/ ;

where t 0 D t C 
t , P.S.t/jX.t// is the probability of observing receptor activity
S.t/ when the environment is in X.t/, and P.X.t 0/jX.t// defines the stochastic
dynamics of the environment within a small interval .t; t 0�. S.0 W t 0/ is the time-
series of S.t/ from t D 0 to t D t 0. For a binary environmental state X.t/ 2
fXon; Xoffg whose states switch by following a two-state Markov process, it was
shown that the update dynamics of the posterior probability Z.t/ D P.X.t/ D
XonjS.0 W t// is reduced to a differential equation:

dZ.t/

dt
D ŒN0	rS.t/Z.t/C ron� QZ.t/ � ŒN0	d QZ.t/C roff�Z.t/; (16.1)

where QZ.t/ D 1 � Z.t/, N0 is the total number of receptors, S.t/ is the ef-
fective activity of each receptor, and ron and roff are the rates at which the
environmental state switches. 	r and 	d are determined by the probability of the
receptor becoming active [71,72]. As is easily seen, ŒN0	rS.t/Z.t/C ron� QZ.t/ and
ŒN0	d QZ.t/ C roff�Z.t/ can be regarded as phosphorylation and dephosphorylation
reactions, whose rates are ŒN0	rS.t/Z.t/ C ron� and ŒN0	d QZ.t/ C roff�, if we
assume that Z.t/ and QZ.t/ are the ratios of phosphorylated and dephosphorylated
molecules, respectively. Since the phosphorylation and dephosphorylation rates
depend on Z.t/ and QZ.t/, respectively, this reaction can be identified with an auto-
phosphorylation/auto-dephosphorylation (aPadP) cycle (Fig. 16.3a(left)). As shown
in Fig. 16.3b, the aPadP cycle can extract information onX.t/ as Z.t/, even though
S.t/ looks extremely noisy [71, 72]. The dynamics equivalent to (16.1) can also
be implemented by a dueling reaction proposed as a simplified model of T-cell
responses (Fig. 16.3a(center)) and the polarity formation reaction in chemotaxis
(Fig. 16.3a(right)) [73]. These results, together with other results, suggest that
intra-cellular networks have the potential to conduct statistically optimal inference
from noisy signals. Finally, we note that the statistically optimal inference P.X.t/j
S.0 W t// is closely linked to the information on X.t/ contained in S.t/, measured
by the mutual information as:

I ŒX.t/IS0Wt � D
Z

DKLŒP.X.t/jS0Wt /jjP.X.t//�P.S0Wt /dS0Wt :
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Fig. 16.3 (a) Schematic diagrams of reaction networks that can approximately implement dy-
namic Bayesian inferences (16.1): the aPadP cycle (left) [71], dueling reaction (center) [73], and
one-dimensional version of polarity formation (right) [73]. (b) Behavior ofZ.t/ obtained by (16.1).
X.t/ and S.t/ represent the time-series of the environment and a noisy sensory system. All the
parameters are the same as those in Fig. 1 of [71]

Since DKLŒP.X.t/jS.0 W t//jjP.X.t//� in the right-hand side of the equation
becomes large when the inferred X.t/, P.X.t/jS.0 W t//, is distinct from the prior
information on X.t/ without S.0 W t/, P.X.t//, a larger I ŒX.t/IS.0 W t/� will lead
to a more distinct inference ofX by P.X.t/jS.0 W t//. Thus, the statistically optimal
inference by P.X.t/jS.0 W t// can effectively exploit the information on X.t/ that
S.t/ contains, which in turn improves the efficiency of cellular decision-making by
making more informativeZ available for subsequent phenotypic choices.

6 Conclusion and Discussion

In this work, we review the theories of cellular decision-making and information-
processing, together with related concepts. As demonstrated, a strategy to actively
generate heterogeneity can be either advantageous or disadvantageous, depending
on whether the fitness advantages of cells are determined at the population level or
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the individual level. In both situations, furthermore, the availability of environmental
information, when it is appropriately exploited, improves the fitness of cells, indicat-
ing that information actually has fitness value [28,74,75]. Information transmission
is also crucial for a cell, not only in making decisions, but also in regulating noisy
intra-cellular components [76, 77], because the limit of noise-suppression by an
intra-cellular regulation is related to available information on the change in the
target molecule [78]. However, information easily becomes degenerated when it is
processed inappropriately, suggesting that some intra-cellular networks are designed
to process and transmit information efficiently when the information has high fitness
value.

To address this problem, as illustrated in this review, information theory enables
us to quantify the efficiency of information transmission of a given network, and
statistical theories, such as Bayes’s theorem, provide us with a way of predicting
optimal intra-cellular networks for information-processing. Although their appli-
cations are currently limited, these theories may play a more important role than
before in unveiling design principles and the optimality of intra-cellular networks
because single-cell-level behavior is becoming experimentally accessible by single-
cell time-lapse measurements [79,80]. Nonetheless, the existing theories developed
not for cellular decision-making and information-processing are not sufficient, for
example, standard statistical decision theory does not cover the situation in which
the bet–hedging strategies become advantageous. Among several extensions re-
quired, incorporation of temporal continuity is of particular importance because
all cellular processes are continuous-time and stochastic in nature. Although
continuous-time problems are mathematically more tangled, their results can be as-
sociated easily and consistently with the actual stochastic dynamics of intra-cellular
networks [26, 28, 57–59, 71–73]. Furthermore, such theories may be able to make
the best use of information obtained by single-cell time-lapse measurements [81].
Integration of information and statistical theories with those of stochastic dynam-
ics [51, 52] may be the next theoretical challenge in achieving a comprehensive
understanding of cellular decision-making and information-processing.
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Chapter 17
Zooming in on Yeast Osmoadaptation

Clemens Kühn and Edda Klipp

Abstract Saccharomyces cerevisiae is considered as a model organism for the
investigation of cellular and molecular processes and gene regulation. Specifically,
the response of S. cerevisiae to increase in osmolarity of the external medium
(osmoadaptation) is a model adaptation process. The first mathematical model of
volume changes in S. cerevisiae due to osmolarity has been proposed as early
as 1983 by Schwartz and Diller (Cryobiology 20(5):542–552). Since then, both
experimental and computational methods in biology have progressed dramati-
cally. Especially in recent years, the study of response to hyperosmotic stress
in S. cerevisiae by systems biology approaches has advanced rapidly. However,
a holistic understanding of osmoadaptation combining environmental conditions,
cellular preconditions, biophysical processes, molecular and biochemical network
dynamics, has not yet been reached. Here, we review recent advances in the
investigation of different aspects of osmoadaptation and discuss them with respect
to an integrated view. This leads us to critically evaluate how to approach the goal
of such an integrated view.

1 Introduction

Understanding the osmoadaptation of eukaryotic cells and specifically of Saccha-
romyces cerevisiae is a longstanding goal that has been explicitly expressed by
Hohmann in 2002 [31]. Osmoadaptation describes that cells in liquid media have
to maintain their volume by equilibrating external and internal osmolarities. In S.
cerevisiae, the internal osmolarity is maintained at a higher level than the external
osmolarity. The resulting gradient leads to a swelling of the membrane enclosed
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cell volume. The outermost layer of a yeast cell is the cell wall, a structure that
is more rigid than the membrane. Because of the higher intracellular osmolarity,
the membrane is pushed against the cell wall. The causative difference of internal
and external osmotic pressures is termed as turgor pressure. Via changes in turgor
pressure, cells can maintain their volume in the face of weak perturbations of
osmolarities [6].

Strong perturbations in external osmolarity as induced, for example, by the
addition of salt or polyols to the medium increase the extracellular osmolarity
and induce cell shrinkage through water efflux. To maintain a viable and optimal
volume and to redirect water flow, cells have to increase their internal osmolarity.
They accumulate compatible solutes. The solutes accumulated is species and
growth condition specific, compatible solutes include, for example, potassium ions,
glutamate, and trehalose in E. coli [14] and glycerol in S. cerevisiae [6]. In principle,
any ion or metabolite that can be accumulated without causing toxicity is a possible
compatible solute.

In our model organism S. cerevisiae, the adaptation to an increase in extracel-
lular osmolarity, or a hyperosmotic shock, has been studied extensively, making
osmoadaptation in S. cerevisiae a biological model system. We will only give a
short overview over the classical view on osmoadaptation in S. cerevisiae here (see
Fig. 17.1). A detailed review on the relevant biology can be found in [31].

The main signal in osmoadaptation is mediated by Hog1 [9], a stress activated
protein (SAP) kinase activated by two signaling branches: The Sln1 branch (con-
sisting of Sln1, Ypd1, Ssk1, Ssk2) and the Sho1 branch (consisting of Msb2,
Cdc42, Ste20, Ste50, Sho1, Ste11). The two branches converge in the activation
of Pbs2 that in turn activates Hog1. Active Hog1 induces glycerol accumulation
via translocation to the nucleus and activation of transcription of GPD1 and
regulation of the expression of other genes. Additionally, glycerol accumulation is
facilitated by closure of the Fps1 channel protein upon stress. These mechanisms
have been extensively studied and are summarized in Fig. 17.1. Recently, addi-
tional mechanisms have gained attention that we will introduce in the following
sections.

Although the above sketch of the osmoadaptation system is very brief, it already
stretches diverse fields of biological research as signal transduction, glycolysis,
and gene regulation. A major task besides accumulating knowledge on individual
processes contribution to osmoadaptation is to gain insight into their interplay, to
integrate the available knowledge into a comprehensive picture of osmoadaptation
[31]. Accordingly, we will evaluate the progress towards an integrative view in the
latter sections.

Here, we will first summarize the experimental and theoretical frameworks used,
then we will take the different scientific perspectives of the presented research.
Is osmoadaptation perfect and what is a good model to highlight this? What is
the role of physical forces and how to properly calculate them? Is the wiring
and kinetics of the Hog1 signaling pathway as well as its interaction with other
pathways understood? How is the production of osmolytes regulated? How does
each perspective contribute to a comprehensive view?
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Fig. 17.1 Osmoadaptation in S. cerevisiae. Arrows indicate mass flow, diamonds indicate regula-
tion, circles indicate activation, bars indicate inhibition. Solid lines indicate mechanisms observed
and modeled, dashed lines indicate mechanisms observed but not modeled, dotted lines indicate
presumed mechanisms that could not be mechanistically explained. See text for details

2 Setting the Scene: Experimental and Theoretical
Frameworks

Before we consider relevant findings, we want to shortly introduce the experimental
and theoretical approaches used in the study of osmoadaptation so far.

Osmoadaptation has been extensively studied using classical approaches such
as enzyme assays, RT-qPCR, and western blotting for the observation of relevant
molecules. Recently, microfluidics combined with microscopy have been intro-
duced, refining the temporal resolution of experiments and enabling the monitoring
of localized concentrations and cell volumes [17, 54]. As detailed in the following
sections, the interplay of osmoadaptation with other cellular systems is achieving
increased recognition. In order to generate data that allows integration of this
biological knowledge into quantitative models, time resolved omics experiments
are necessary.

Most of the mathematical models of osmoadaptation are based on ordinary
differential equations (ODE). Other approaches include, for example, the use
of Bayesian networks [24] and agent based models [42]. ODE models can be
roughly divided into two different classes of approaches. The first originates from
control theory and engineering (e.g., [49]): A (often small) model is constructed
from basic engineering building blocks that are related to biological mechanisms.
The mapping of model entities and biological entities is not always straightforward,
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but these models allow for a rigid analysis of global system dynamics. The
second approach employs classical kinetic modeling. Rate laws are employed
to describe state transitions of biological entities (e.g., [39]). The mapping of
model entities and biological entities appears straightforward and allows for the
description of a wide range of biological perturbations, for example, gene knock-
outs. Kinetic models often employ a large number of parameters that can not be
measured in vivo and hence require sound amounts of reliable experimental data for
parametrization.

3 Systems Biology of Adaptation

Before understanding the details of osmoadaptation, it is imperative to understand
the global behavior of yeast cells upon hyperosmotic stress. An understanding of
the global dynamics can be achieved using models that are radical abstractions
of the real system. Such models are convenient to handle and parametrize
with only limited data while enabling a rigid analysis of the dynamical
features.

Distinct global aspects of signal transduction in osmoadaptation have been
investigated in model based studies of the van Oudenaarden group [49, 54]. The
most prominent example is the analysis of perfect adaptation of Hog1 nucle-
arization employing a simplistic model [54]. This is not only an elegant exercise
in applying control theory to biological processes, it also yields important re-
sults on the architecture of the adaptation process in general. The simplistic
nature of the model allows for a rigid and intelligible analysis and determination
of the key biological aspects, e.g., that the integration of the biological signal
occurs in Hog1-dependent steps, and also allows the temporal classification of
osmoadaptation. This is facilitated by the strict experimental focus on moni-
toring only volume, Hog1 nuclear enrichment, and intracellular glycerol. On
the other hand, such a simplistic analysis omits important biological detail and
does not generate predictions on biological interactions poorly characterized in
experimental data. One arguable finding is that osmoadaptation exhibits perfect
adaptation. In this model, the question is easy to answer, because the signal (Hog1
nuclear enrichment) does exhibit perfect adaptation. In a comprehensive view,
it is arguable, however, whether the maintenance of higher intracellular solute
concentrations does not come at an increased cost for the cell, contradicting perfect
adaptation.

Although the aforementioned examples are presumably the most prominent
applications of control theory to yeast osmoadaptation, they were preceded by
another study [25]. The presented model does not simplify osmoadaptation as
radical and hence contains more unknown parameters. The assignment of values to
these variables is done with great care and can serve as an example of good practice.

Simplistic models can also be used for integration of different data sets, as
presented in [96]. The model allows to thoroughly estimate its parameters and
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reproduces data from different sources [27, 39, 47, 49] and hence allows for solid
predictions and analysis of global aspects of osmoadaptation, such as signal gain
and response to repeated stresses.

4 Systems Biology of Biophysical Aspects

For a more detailed dissection of osmoadaptation, we start with a fundamental
aspect: its control principles cannot be fully understood without considering the
biophysical laws that govern the dynamics of volume changes, since thermodynamic
forces are essential for the activation of cellular signaling and for reestablishing
balanced osmolarity.

Changes in cell volume due to hyperosmotic shock can be assessed using, e.g.,
microfluidic devices, usually inferred from measurements of cell diameter [17].
In plant cells, turgor pressure can be measured using miniaturized pressure probes
[68, 69], but yeast cells are too small to be amendable to this technique.

In [39], a model of the signaling pathway and its effect on carbohydrate
metabolism has been combined with a description of changes in volume, internal
osmotic pressure, and turgor pressure. Here, a dependency of the activity of the
receptor Sln1 and the aqua(glycerol)porin Fps1 on turgor had been postulated.
This resulted in a model yielding plausible prediction, yet is not confirmed
experimentally.

To challenge the effect of turgor on components of the molecular network
further, Schaber et al. [67] combined modeling and experimentation to test different
hypotheses on the dynamics of volume and turgor changes and their relation to Hog1
activation. In a first step, the authors propose different feasible models of turgor
pressure. In a second step, the models are fitted to four data sets of minimal cell
volumes after hyperosmotic stresses of various strengths. These data sets have been
measured in different labs, under different conditions, and with different methods.
Based on the achieved fits, models are selected according to the Akaike information
criterion [1]. The selected model for turgor and volume dynamics selected fits all
four data sets.

Although turgor pressure could not be measured directly, the authors present a
rigid test on different models of turgor pressure in yeast cells and are able to derive
further biophysical properties and properties of Hog1 activation from comparably
simple data sets. This study provides a solid foundation for the description of
turgor pressure in other models and exemplifies how efficient combination of exper-
iments and modeling can lead to important new findings even without omics type
of data.

Despite this recent advance, the biophysical aspects of volume maintenance
remain somewhat of an enigma. This is especially true for cell volume, the key
feature of osmoadaptation. Although cell volume can be measured directly, it is
not at all obvious when adaptation is finished and normal cell growth becomes
the main driving force of volume changes. This is important in detailed models of
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osmoadaptation as described later and for arguing for or against perfect adaptation
in osmoadaptation as described in [54]. Ion concentrations and changing solvation
properties are also not yet taken into account.

5 Systems Biology of Signal Transduction

In the models considered so far, osmoadaptation is largely divided into a cellular
signal and a response to that signal. In this section, we will zoom into the activation
of the cellular signal Hog1. Hog1 is activated by two converging MAP Kinase
cascades. The next section is concerned with the biochemical network responsible
for the cellular response.

Hog1 is activated by a stress (or mitogen) activated protein (SAP or MAP) kinase
cascade, which in turn is activated by two upstream branches, the Sln1 branch
establishing a phosphorelay system and the Sho1 branch providing a SH3 anchor
that ensures proximity of Pbs2 to upstream modifiers. In [39], the architecture and
dynamics of the Sln1 branch are considered.

Characteristics of MAP Kinase cascades that are derived from engineering
principles have been discussed on the example of Hog1 activation in [30] such as
the bandwidth of the pathway and the signal integration of the individual branches.

The necessity of high basal activation of Hog1 and the role of feedback is
discussed in Macia et al. [47] based on systematic time-course experiments. The
high basal activity proposed here is in contrast to most other studies which assume
low or almost vanishing levels of double phosphorylated Hog1 in the absence of
stress.

There have been substantial findings concerning the molecular interactions inside
the signaling pathways not integrated into formal mathematical models: Additional
upstream sensors have been identified by Tatebayashi et al. [76]; mechanistic reason
for signaling specificity by determination of dedicated binding sites have been
identified for Pbs2 [74] and Hog1 [53]; details on specific steps in the signaling
cascade, namely the role of Ssk1 dimerization have been determined [33]; the role
of complexes is investigated in experimental studies, both with respect to signal
transduction in the Hog1 pathway [75] and to specificity and crosstalk [92, 93]; the
role of localization in Hog1 signaling can be assessed using mutations that tether
proteins to the membrane [86, 87].

This large body consisting of often qualitative data can not easily be integrated
into a quantitative model since the large number of possible interactions and
phosphorylation sites bears the problem of combinatorial explosion. Nevertheless,
it can be summarized using formal frameworks that allow for the unambiguous yet
intelligible representation of individual molecular interactions [42].

Although the quantitative data to parametrize detailed models of osmoadaptation
is not available, models can supplement experimental studies as exemplified in the
work of Hao et al. [27]: Given a data set for different stimuli or perturbations,
which model topologies can reproduce experimental data? In [27], the authors
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could identify a feedback inhibition of upstream signaling components as a required
network motif which they could confirm in experiments.

When dealing with cellular decision making, the interplay of different signaling
cascades has gained attention in recent years [48, 60, 64, 84, 97]. Because of the
good understanding achieved on Hog1 signaling and its many interfaces to different
cellular processes [18], it is often used as one of the pathways under study for
potential crosstalk. This crosstalk might seem circumstantial at first glance, but it is
essential to consider in an integrative view of osmoadaptation because it determines
cellular response to simultaneous stimuli, a situation that is, presumably, more
common to free living organisms than to laboratory strains.

6 Systems Biology of Glycolytic Regulation

According to current literature, the main effector of osmoadaptation upon activation
of Hog1 in batch cultures is intracellular glycerol. Glycerol is a by-product of
glycolysis branching off at dihydroxy-acetone phosphate (DHAP) and its basal
production in unstressed cells is strongly dependent on medium and growth stage
[56]. Most approaches focus on one experimental setup to circumvent accounting
for differences in glycolytic regulation.

Glycerol accumulation is regulated by glycerol efflux through Fps1 [72] and
increased production by transcriptional activation of Gpd1 [23, 65]. Additionally,
overall glycolysis undergoes Hog1 dependent and independent changes [57]. In the
following, we will discuss important advances towards the understanding of these
regulatory processes and highlight which questions remain (yet) unanswered.

The first model of osmoadaptation to take glycolysis into account was presented
in 2005 [39]. Here, glycolysis is part of an integrative model of osmoadaptation.
Although the model highlights the importance of glycolysis in osmoadaptation
and provides mechanistic explanations for the adaptation processes in detail, the
parameters presented are not fitted to a metabolite data.

Based on the observation that osmoadaptation reduces cell growth, Parmar et al.
[62] have constructed a large model of osmoadaptation integrating cell growth and
additional layers of glycolytic regulation [50]. Although the model is based on less
experimental data than [39], the authors use it to predict the growth speed decrease
for different stresses.

The generation of extensive metabolite data and the fit of mathematical models
to these data sets (also exemplified in [80]) is indeed a bottleneck in constructing
models of osmoadaptation that account for the glycolytic aspects of osmoadaptation.
Hence, most published models on osmoadaptation including glycolysis yet lack
extensive experimental data to which parameters could be fitted.

Following the finding that Pfk26/27 has a regulatory role in osmoadaptation,
Kühn et al. [41] presented a model to assess this role more in detail. The
authors conclude that an activation of upstream glycolysis is important not only
to sufficiently accumulate glycerol but also to maintain pyruvate production and
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subsequent energy generating reactions in glycolysis in face of increased demand
for glycerol production. The question how this regulation is achieved remains
unanswered and the model is not fitted to extensive metabolite data.

Besides, additional regulatory mechanisms that contribute to osmodependent
regulation of glycolysis are being uncovered in experimental studies that have not
been integrated into models yet. New details on the known mechanisms of osmoad-
aptation are generated, for example on the role, regulation, and localization of Gpd1
[36, 61, 82, 87]. Additional components of glycolysis such as sugar transporters are
taken into account [26] and new techniques including phosphoproteomics are being
applied [2, 22].

The integration of the novel insights in glycolytic regulation upon hyperosmotic
stress into a comprehensive model of glycolysis is extremely difficult (see, for
example, [10, 80] for difficulties in modeling glycolysis in itself). One method that
could help to understand is the dissection of metabolic changes into a transcriptional
component and an allosteric component [11, 20] that has been applied to yeast
osmoregulation [7]. This view might, however, occlude additional aspects of
glycolytic regulation also implicated in osmoregulation as post-transcriptional and
translational changes [55, 85].

Complex in itself, glycolysis can not be considered without accounting for
the general state and requirements of cells (e.g., maintaining energy production
even when adapting to stress). Here, indirect regulatory effects are important as
discussed in [50, 80]. Another relevant topic not discussed so far is the influence
of the environment on cellular state. The role of additional metabolites implied
in osmoadaptation (e.g., trehalose as discussed in [71]) gives rise to additional
adaptation mechanisms that have to be discussed, but also to new layers of glycolytic
regulation [79]. Possible roles of trehalose, glycolytic regulation, and the influence
of cellular redox state on osmoadaptation have been reviewed [5] but have not been
integrated into models.

7 Systems Biology of Glycerol Transport

Intracellular Glycerol accumulation is not possible without glycerol retention. The
Fps1 channel protein closes upon hyperosmotic stress [46]. Although the dynamics
of Fps1 closure upon hyperosmotic stress have been characterized by Tamàs et al.
[72, 73], the mechanisms of closure are not fully understood, albeit intensely
studied [4]. Under different stress conditions, Fps1 transport is regulated by Hog1
activity [51, 81, 89], hinting towards an interaction between Hog1 and Fps1 further
implicated in additional studies [51, 52]. Although a direct interaction could not be
observed in osmoadaptation, a strain in which Hog1 is tethered to the membrane
[87] could be used to infer whether proximity of Hog1 and Fps1 and resulting
induced regulatory activity affects osmoadaptation.
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Besides passive transport through Fps1, S. cerevisiae can actively take up
glycerol from the external medium through Stl1 [21]. Although not essential for
osmoadaptation, this mechanism might contribute under conditions not tested so far.

8 Towards an Integrative View

Hohmann described the integrative view on osmoadaptation as “comprehensive
view on the time line, spatial dynamics, interaction, and mutual dependency of the
underlying cellular events” in the “foreseeable future” covering the areas of “control
of transmembrane transport, the sensing of osmotic changes, the mechanisms,
dynamics, and spatial organization of signal transmission, metabolic adjustments,
the effects on the cytoskeleton, cell cycle progression, translation, and cell wall
dynamics” [31].

So far, we have described recent advances in the study of more or less individual
mechanisms that contribute to osmoadaptation. Except for two models [39, 62] that
integrate biological knowledge but lack experimental data on large parts of the
system, no dedicated advances towards an integrated view have been published so
far. Figure 17.2 visualizes the coverage of different aspects of osmoadaptation in
modeling studies. Have we lost sight of the integrative goal? Or are we on the right
track? And what needs to be achieved on the road to an integrative view?
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To answer these questions, we must first consider what a comprehensive view
exactly is. In contrast to the focused view of many individual approaches in the
field, we suggest two different comprehensive views: Either a formal knowledge
collection in the form of a web-based repository (including, for example, rule-
based formalizations of biological knowledge [42]) or a comprehensive, detailed,
dynamic, and quantitative model.

Currently, it is technically not possible to sensibly merge all models described
here into a comprehensive model. The emergence of standards and tools for
modeling in biology [34, 40, 43] and an increasing awareness of publishers to
require well annotated models to be submitted to model databases (like BioModels
[45] or JWS online [58]) indicate that in the foreseeable future, models can be
efficiently merged. Also, the collaborative effort UNICELLSYS [32] is an effort to
construct a comprehensive model of yeast cells. A different approach to construct a
comprehensive model is to use an existing detailed model, e.g., [39,62], and improve
details of these models in a collaborative way, using the large model as a scaffold.

The same holds for experimental data. Increasingly, data sets are made publicly
available and their interpretation is facilitated by annotation projects [8, 77, 78].
Even if merging of data sets and models will be technically feasible, the different
experimental settings used for data generation need to be accounted for. This either
requires good knowledge of the cellular states in the setting used or a comprehensive
data set obtained under controlled conditions.

Accordingly, a comprehensive model requires the integration of biological
knowledge, experimental data, and mathematical models into a formal framework.
The formal collection required for a comprehensive model is in itself a compre-
hensive view. It also offers more flexibility concerning the direction and revision
of the current view. This is important, because, although osmoadaptation has been
extensively studied, we are still facing a many open questions that must be answered
before a comprehensive view can be obtained.

9 Open Questions

Experimental data is, to some extent, available on all points mentioned in [31].
Nevertheless, our knowledge of the integration of osmoadaptation with other
cellular process is not sufficient and must be one of the main fields of research
to obtain a comprehensive view.

Experimental evidence on interactions between osmoadaptation and other cellu-
lar pathways exist, but further data and new models are necessary to quantitatively
formalize this evidence and put it into context. The most important links are links
between cell cycle and osmoadaptation [3, 12, 13, 18, 19, 90, 91, 95], crosstalk with
other signaling pathways prioritizing cellular response in face of multiple stresses
[84] not only on the level of signaling but also on the level of downstream effectors,
and to a more detailed and versatile glycolysis.
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The faithful mathematical description of yeast glycolysis has been an active topic
of research for decades [10, 28, 29, 35, 66, 80]. The complexity in the regulation of
glycolysis has yet withstood an efficient formalization of an adaptive glycolysis.
But regulation of glycolysis is a major effector of osmoadaptation and is regulated
both transcriptionally, translationally, and through regulation of enzyme activity and
stability, hence requiring to include all levels of regulation of glycolytic flux into a
comprehensive model of osmoadaptation.

Besides established osmoadaptation-linked processes, neglected pathways re-
quire attention. This is the case for the role of trehalose [15, 37, 63, 70, 71, 88, 94]
and the role of ions in osmoadaptation. Additionally, new processes involving Hog1
signaling are being uncovered [16, 38].

The aspect of an integrative view formulated in [31] for which our knowledge,
up to now, is still incomplete is the role of spatial aspects of osmoadaptation.
Spatial dynamics are presumably important on all levels of osmoadaptation, from
biophysical changes (do cells shrink symmetrically? Does this affect activation
of turgor-sensing signaling molecules?) to (co-)localization in signal transduction
and metabolism (does molecular crowding boost signal transduction?) and general
cellular organization (How important is the incompressible volume?). Spatial effects
might also contribute to the dynamics of Fps1, as Fps1 seems to form patches on
the membrane upon hyperosmotic stress [51].

Yet another topic that has received only limited attention so far is long term
adaptation. Cells exposed to enduring hyperosmotic conditions do reorganize
glycolysis and decrease growth [57, 59, 62]. Especially the transient nature of
glycerol accumulation and the late (and also transient) trehalose accumulation
[71] is generally neglected. Whether and how morphological changes, for ex-
ample, actin reorganization [38], are involved in a long term response is also
unknown.

10 Conclusion

We have summarized recent findings, discussed how they contribute to a com-
prehensive view of osmoadaptation and which aspects of osmoadaptation remain
enigmatic. We have also argued that a comprehensive view is not necessarily one
giant dynamic model but could be a practical comprehensive view that can also be
obtained in collecting knowledge, data, and models.

Formally, a comprehensive view of osmoadaptation requires a community plat-
form, additional biological knowledge, standardized quantitative data, and modular
mathematical models. A similar approach is used to construct a comprehensive
model for S. cerevisiae, in general, in the UNICELLSYS project [32], provid-
ing also a top level into which an integrated view of osmoadaptation can be
embedded.
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Biologically, a comprehensive view of osmoadaptation requires additional
knowledge on interactions with cell cycle and glycolytic regulation, an increase
in spatial resolution of biophysical, signaling and glycolytic dynamics, and the
integration of hitherto neglected aspects.

Since models are useful abstractions of reality and different models cover
different aspects in varying detail, modularity is the key feature to integrate mathe-
matical models. Modular modeling facilitate the integration of diverse models into
a comprehensive model using submodels that communicate via defined interfaces
and adhere to respective standards (e.g., MIRIAM [44] or MIASE [83]). Each
module could be studied in detail and, a key step, simplified. Abstract models
like the control circuit presented in [54] that reliably reproduce the dynamics of
a given module could then be used to describe processes that are not essential to
a given research question but are essential to consider when studying this question
in the context of a comprehensive view. This approach effectively yields a zoom-
able comprehensive model and would both strengthen and gain from a diversity of
models (as exemplified in Fig. 17.3).
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Brent R, Broomhead DS, Westerhoff HV, Kirdar B, Penttilä M, Klipp E, Palsson BO, Sauer U,
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47. Macia J, Regot S, Peeters T, Conde N, Solé R, Posas F (2009) Dynamic signaling in the hog1
mapk pathway relies on high basal signal transduction. Sci Signal 2(63):ra13

48. McClean MN, Mody A, Broach JR, Ramanathan S (2007) Cross-talk and decision making in
map kinase pathways. Nat Genet 39(3):409–414
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Chapter 18
Receptor Dynamics in Signaling

Verena Becker, Jens Timmer, and Ursula Klingmüller

Abstract Reliable inter- and intracellular communication is central to both the
development and the integrity of multicellular organisms. Key mediators of these
processes are cell surface receptors that perceive and convert extracellular cues
to trigger intracellular signaling networks and ultimately a phenotypic response.
Deregulation of signal transduction leads to a variety of diseases, and aberrations in
receptor proteins are very common in various cancer types. Therefore, cell surface
receptors have been established as major targets in drug discovery. However, in
order to efficiently apply therapeutics, it is crucial to gain knowledge about design
principles of receptor signaling. In this chapter, we will discuss signal transduction
at the receptor level for examples from different receptor classes.

1 Introduction

Tightly regulated cellular communication is key not only to the development of
multicellular organisms but also to the functional integrity of tissues, organs,
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Fig. 18.1 Generalized scheme of ligand and receptor interaction and trafficking processes

and the whole body. There are a plethora of mediators involved in cell-to-cell
communications such as small molecules, peptides, cytokines, growth factors, lipid
hormones, and physical signals. These molecules bind to specific cell surface
receptors, which initiate signal transmission by linking extracellular cues to intra-
cellular cascades of signaling molecules. Integration of different signal transduction
networks via crosstalk of intersecting pathways processes the information and
finally leads to appropriate phenotypic responses of the cell such as proliferation,
differentiation, migration, survival, or apoptosis.

Aberrations in signaling cascades are linked to various disease types including
cancer, infections, as well as immunological and metabolic disorders. In the advent
of targeted therapeutics, cell surface receptors have become prime objectives in drug
discovery [1], and various antibodies impeding ligand binding or small molecule
inhibitors interfering with the enzymatic activity of receptor proteins undergo
development or are already used in cancer therapy.

However, to efficiently apply targeted therapeutics, it is crucial to understand
the complex regulation of the underlying biochemical networks [2–4]. Therefore,
the identification of design principles for cell surface receptor signaling holds great
promise in furthering rational drug discovery and personalized therapy strategies.
Mathematical models have been established to aid the understanding of how
ligand–receptor interaction and trafficking shape receptor activation kinetics [5–
8]. In a generalized scheme (Fig. 18.1), ligand undergoes binding to receptor
proteins with distinct association .kon/ and dissociation .koff/ rates. Trafficking of
receptors can be both ligand-independent and ligand-induced. Receptor transport
to the plasma membrane .kt � Bmax/ can be described by ligand-independent
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endocytosis .kt/ and the receptor abundance in the absence of ligand .Bmax/, i.e. at
steady state. Endocytosis of ligand–receptor complexes .ke/ can either be followed
by recycling .kex/ or by degradation processes .kd/. This generalized model varies
with the receptor system under study, and additional processes might be taken into
account such as ligand-induced mobilization of newly synthesized receptor from
intracellular pools to the plasma membrane.

In this review, we will discuss information processing at the receptor level, exem-
plified by the erythropoietin receptor (EpoR), the interleukin 3 receptor (IL3R), the
epidermal growth factor receptor (EGFR), and the receptor for transforming growth
factor beta (TGF“).

2 Cytokine Receptors

Cytokine receptors are involved in diverse physiological processes such as the devel-
opment of the hematopoietic system or in pro- as well as anti-inflammatory cellular
responses [9, 10]. Members of the cytokine receptor family are single membrane-
spanning proteins that lack intrinsic enzymatic activity and, therefore, associate with
cytoplasmic Janus kinases (JAK). Mutations that constitutively activate cytokine
receptors have been described for a variety of hematological disorders, and they are
found either in receptor proteins such as the EpoR [11, 12], the granulocyte colony-
stimulating factor (GCSF) receptor [13], and the thrombopoietin receptor [14], or in
receptor-associated kinases such as JAK2 [15] and JAK1 [16].

2.1 Erythropoietin Receptor

Erythropoietin (Epo) signaling [17] is crucial for the survival, proliferation, and
differentiation of erythroid progenitors at the colony-forming unit-erythroid
(CFU-E) stage [18]. Crystallographic studies revealed that the EpoR is expressed
as a preformed homodimer [19]. The majority of receptor protein resides in
intracellular compartments of the endoplasmic reticulum and the Golgi apparatus
as shown for both endogenous EpoR in CFU-E cells as well as exogenous EpoR
expression in various cell lines [20–24].

Endocytosis and subsequent degradation of ligand–receptor complexes have been
proposed to downregulate EpoR activity [25]. Using a kinetic model, ligand-induced
endocytosis could be identified as a mechanism to clear Epo from the extracellular
space, and differences in clearance rates between Epo derivatives were assigned to
distinct ligand binding rates [26].

By combining time-resolved quantitative data for ligand-independent and ligand-
induced endocytosis with ordinary differential equation-based modeling, design
principles of EpoR signaling could be further refined [8]. Whereas ligand-induced
endocytosis plays a major role in shaping early-response kinetics of EpoR phos-
phorylation, ligand-independent EpoR turnover at the plasma membrane is crucial
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for a linear conversion of extracellular Epo levels into receptor activation. Both
computational and experimental evidence showed that intracellular EpoR pools
constitute a reservoir for a continuous replenishment of cell surface receptor, a
process that is key to linear information processing. While peak levels of EpoR and
JAK2 phosphorylation are saturated at higher ligand concentrations, the duration
and thereby the integral of signaling activity of these proteins is increased under
such conditions.

This principle of dose-to-duration signaling has been analyzed as a means to
decode ligand levels beyond saturation and subsequently shown for pheromone sig-
naling in yeast at the level of mitogen-activated protein kinases [27]. In light of this,
it will be interesting to examine if the linear relation between extracellular ligand
concentration and activation of signaling molecules might be abrogated downstream
of the EpoR. Such an observation could indicate at which level EpoR-mediated
signaling interacts with other signaling networks through pathway crosstalk, thereby
allowing for integration and interpretation of the cellular signaling status.

2.2 Interleukin 3 Receptor

In contrast to the EpoR, the IL3R consists of a cytokine-specific alpha chain and
the common beta chain, which is shared with cytokine receptors for IL5 and the
granulocyte–macrophage colony-stimulating factor (GM-CSF) [28].

Studying the characteristics of IL3R activation showed that, comparable to the
EpoR system, IL3 is rapidly depleted from the medium within the early phase
of stimulation [8]. A second key feature shared by the EpoR and the IL3R is
the restimulation capacity of both the receptor and the receptor-associated JAK2,
demonstrating that cells remain ligand-responsive (Fig. 18.2). However, treatment
of cells with IL3 resulted in a massive degradation of the common beta chain and
JAK2 (Fig. 18.2b). This observation indicates that in contrast to the EpoR, the
majority of IL3R resides at the plasma membrane where it is accessible for ligand
binding. Another key difference between these receptor systems is the IL3-induced
increase of beta chain expression, which may compensate for dramatic receptor
degradation after ligand engagement and prevent a refractory state of the cell.

In summary, the EpoR and the IL3R reveal comparable characteristics of
signaling at the receptor level, i.e. (1) rapid clearance of ligand from the medium
and (2) receptor recovery at the plasma membrane. However, both receptor systems
evolved distinct strategies to accomplish this systems behavior, either employing
a constant rapid ligand-independent turnover of the EpoR or a massive ligand-
stimulated synthesis of the IL3R (Fig. 18.2). Rapid uptake of ligand from the
medium by ligand-induced endocytosis has been discussed to facilitate temporal
fidelity of receptor signaling [29, 30]. Thus, the combination of rapid ligand
depletion with fast cell surface recovery of the EpoR or the IL3R enables the cell
to stay in a ligand-responsive state and at the same time promotes a high temporal
resolution of extracellular signaling cues.
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Fig. 18.2 Comparison of overall systems behavior and strategies employed in (a) the EpoR and
(b) the IL3R system. Immunoblot analysis shows that both receptor systems stay in a ligand-
responsive state as judged by receptor and JAK2 phosphorylation after re-addition of ligand.
(b) Left panel adapted from [8]

3 Epidermal Growth Factor Receptor

Members of the receptor tyrosine kinase (RTK) family are single-pass trans-
membrane proteins that regulate multiple cellular processes such as proliferation,
differentiation, migration, angiogenesis, and metabolism [31]. Conversely, deregu-
lation of RTK signaling pathways has been assigned to various human cancers as
well as non-malignant diseases [32, 33]. After completion of the Humane Genome
Project, 58 RTKs have been identified [34] including ErbB receptors, vascular
endothelial growth factor receptor, and c-Met. The EGFR (ErbB1, Her1) is a
member of the ErbB receptor family and as the prototypical RTK probably the best-
studied receptor, also from a systems point of view [6]. EGFR signaling regulates
proliferation and survival in a variety of epithelial cell types, and deregulated
signaling through the EGFR is associated with numerous solid tumors [35].
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Biochemical studies showed that the EGFR is rapidly internalized from the
plasma membrane upon epidermal growth factor (EGF) stimulation and subse-
quently degraded in the lysosomal compartment. This downregulation is proposed
to contribute to signal attenuation [36, 37]. However, this observation is context-
dependent since stimulation of the EGFR with transforming growth factor ’ (TGF’)
results in receptor recycling rather than in downregulation [38] due to a higher pH
sensitivity of ligand–receptor binding [39]. Differential binding and trafficking of
EGF and TGF’ have been shown to result in distinct mitogenic potency of EGFR
signaling [40]. This knowledge has also been employed to engineer a more effective
variant of EGF [41], and a similar study has been carried out for the cytokine GCSF
[42]. Distinct receptor trafficking or binding properties also account for the altered
biology of IL2 [43] and Epo [26] derivatives, respectively.

Comparing the regulatory role of endocytosis in EGFR and EpoR signaling
shows that the contribution of endocytic downregulationD, i.e. the ratio of ligand-
induced .ke/ to ligand-independent .kt/ receptor endocytosis, is approximately
threefold higher for EGF-stimulated EGFR .D D 7:5/ [30] than for the EpoR
system .D D 2:3/ [8]. This is due to both a lower rate of ligand-independent
endocytosis and a higher rate for ligand-induced endocytosis of the EGFR compared
to the EpoR. Whereas EGF mediated a substantial decrease in half-life and total
expression of its receptor [44], neither higher levels of Epo nor prolonged exposure
to ligand resulted in a change of total EpoR expression [8]. Thus, ligand-mediated
loss of receptor protein at the plasma membrane is much more likely to play
a role in attenuation of EGF-stimulated EGFR signaling [36, 37] compared to
EpoR signaling. In addition, the ratio of ligand-induced endocytosis ke to ligand–
receptor dissociation koff is considerably higher for Epo–EpoR compared to
EGF–EGFR complexes [30]. This, in combination with a rapid constitutive receptor
turnover, allows the EpoR system to reach a high temporal resolution of sampling
extracellular cues, while, at the same time, staying in a ligand-responsive state.

4 Transforming Growth Factor “ Receptor

In contrast to cytokine receptors and the EGFR, the TGF“ receptor belongs
to the serine/threonine kinase receptor family. Binding of TGF“ ligand induces
cooperative complex formation of two receptor subunits, the TGF“ type I and type II
receptors. The type II receptor is a constitutively active serine/threonine kinase that,
upon ligand binding, activates the dormant TGF“ type I receptor. The type I receptor
in turn phosphorylates serine residues of receptor-associated SMAD2 and SMAD3
transcription factors [45]. TGF“ is mainly involved in the development as well as
homeostasis of tissues. Although TGF“ signaling is typically thought of mediating
anti-proliferative cues and, therefore, being a tumor suppressor, it can fuel tumor
progression at later stages by stimulation of tumor angiogenesis and metastasis [46].

Signaling through SMAD transcription factors is promoted by clathrin-mediated
endocytosis, whereas endocytosis via caveolae mediates receptor turnover [47, 48].
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A recent study suggested that caveolae are also involved to differentially trigger
the mitogen-activated protein kinase cascade [49]. Thus, receptor trafficking pos-
sesses the capacity to induce distinct biological responses, thereby establishing an
additional layer of regulation to TGF“ signal transduction. Mathematical analysis
of the TGF“ pathway showed that the connection of receptor activation and
trafficking processes allows for sensing absolute and temporal changes in ligand
concentrations, regulating signal duration, and controlling cellular responses upon
stimulation with multiple ligands [7]. Another study suggested that the ratio of
clathrin- and caveolae-mediated endocytosis controls transient versus sustained
responses [50]. Similar to the TGF“ receptor, signaling from endosomes has
also been proposed for signaling downstream of RTKs as well as G-protein
coupled receptors (GPCR) as a mechanism to facilitate temporal and spatial
regulation [51].

5 Concluding Remarks

The examples discussed in this review show that various strategies have evolved
to shape signal initiation at the receptor level by ligand–receptor interaction and
trafficking kinetics. The physiological impact of distinct trafficking routes and
signaling endosomes is still not fully explored as illustrated by controversial results
for caveolae-mediated EGFR internalization [52, 53]. Deciphering these processes
might give rise to an even more complicated picture of how receptor dynamics set
the stage for selective regulation of downstream signaling. However, despite these
distinct strategies, a unifying regulator of signal transduction at the receptor level
appears to be the ratio of ligand-independent and ligand-induced endocytosis and
subsequent receptor degradation [7, 8, 30].

Different from homodimeric EpoR, many cytokine receptors are composed of
heterotypic subunits. Besides the IL3R that shares its common beta chain with
receptors for IL5 and GM-CSF, another subset of cytokine receptors including
receptors for IL2, IL4, IL7, IL9, IL13, IL15, and IL21 have a common gamma
chain, whereas receptors for e.g. IL6, IL11, or LIF engage the gp130 subunit
[28]. This gives rise to potential competition between different receptors for their
common chain and additionally, these receptors often signal through the same JAK–
STAT cascade. Moreover, induced feedback regulators, for instance members of
the suppressor of cytokine signaling (SOCS) family, can affect multiple cytokine
receptors either directly or indirectly at the level of JAKs or downstream pathway
components. Thus, there are numerous layers of cross-regulation in cytokine
signaling as exemplified by studies of IL7 signaling [54]. These phenomena create
the necessity to generate complex data and mathematical models, studying the
effects of multiple cytokine stimuli or of a specific stimulus on the activity of various
cytokine receptors.

Crosstalk also plays a crucial role for EGFR signaling in cancer. The EGFR does
not only form hetero-oligomeric structures with other members of the ErbB receptor
family, but it is also suggested to directly interact with c-Met [55,56] and to exhibit
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transactivation with c-Met [57] and GPCRs [58] at multiple levels. Such interactions
are relevant for both drug resistance and cancer progression.

Although studies of cell lines exposed to single stimuli give rise to important
insights, it will be crucial to expand the analysis of cell signaling towards more phys-
iological conditions of multi-factor stimulation for understanding in vivo signaling
through cell surface receptors. This also holds true for the repertoire of stimulation
schemes: bolus stimulation is a rather non-physiological, yet practical means to
examine signal transduction in cell lines. However, the investigation of autocrine
or paracrine signaling in the cellular microenvironment or the administration of a
constant stimulus at physiological concentrations promises to advance the field of
signaling research. Here, technical developments such as microfluidics [59, 60] in
combination with mathematical modeling may greatly impact the success of such
endeavors and finally refine strategies for drug discovery [3].
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Chapter 19
A Systems-Biology Approach to Yeast Actin
Cables

Tyler Drake, Eddy Yusuf, and Dimitrios Vavylonis

Abstract We focus on actin cables in yeast as a model system for understanding
cytoskeletal organization and the workings of actin itself. In particular, we highlight
quantitative approaches on the kinetics of actin-cable assembly and methods of mea-
suring their morphology by image analysis. Actin cables described by these studies
can span greater lengths than a thousand end-to-end actin-monomers. Because of
this difference in length scales, control of the actin-cable system constitutes a
junction between short-range interactions – among actin-monomers and nucleating,
polymerization-facilitating, side-binding, severing, and cross-linking proteins –
and the emergence of cell-scale physical form as embodied by the actin cables
themselves.

1 Introduction

Many basic cell functions such as cell motility, endocytosis, cytokinesis, and estab-
lishment of cell polarity depend on actin filaments [1]. Actin filament nucleation,
polymerization, and controlled disassembly keep actin subunits in a state of constant
turnover between the monomer and filament states. Groups of regulating proteins
marshal this adaptable actin cytoskeleton for diverse tasks. A huge body of work
considers the actin system both in controlled in vitro situations and in eukaryotic
and bacteria cells that use actin or its homologs [1, 2]. These studies raise questions
about how cells employ the actin system to move, polarize, divide, transport
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Fig. 19.1 Actin cables in fission and budding yeast. (a) Image of interphase yeast cells expressing
actin marker CHD–GFP showing actin patches (bright spots) and actin cables (linear elements)
[5]. (b) Actin cables (blue) in fission yeast polymerize away from the cell tips where formin For3p
(green) nucleates actin filament assembly. (c) Image of budding yeast showing actin cables and
actin patches (stained with rhodamine–phalloidin) from [12]. (d) Budding yeast actin cables (blue)
are nucleated by formins Bni1p (red) and Bnr1p (purple) that localize at the bud and bud neck

material, resist stress, contract, and signal. Here, we discuss how budding and fission
yeast can serve as model systems for universal molecular mechanisms of the actin
cytoskeleton.

During growth, yeast cells build two actin structures: patches and cables
[1,3–5]. The actin patches, dense dendritic networks of actin filaments nucleated by
the Arp2/3 complex, assist endocytosis. The actin cables, which we focus on here,
are bundles of actin filaments that run across the cell and guide the transport of
secretory vesicles and organelles (see Fig. 19.1). Formins proteins at the cell cortex
generate these bundles by promoting nucleation of new filaments out of monomers
and by processive polymerization [6–8]. As actin filaments polymerize away from
the cell tip, they become bundles held together by cross-linking proteins, often as
long as the cell. Budding and fission yeast differ in shape and, accordingly, in where
they direct formins to sow cables at specific sites. Two formins, Bni1p and Bnr1p,
activate cable growth in budding yeast [3]. A single formin, For3p, initiates actin-
cable growth in fission yeast [4]. The cell breaks down and disassembles long cables
through the coordinated action of a set of proteins. As a whole, the actin-cable
system manages an interface between actin biochemistry and cell geometry.

As a system to study how cells respond to information about location, actin
cables offer many advantages. Yeast serves well for genetic manipulation, allowing
researchers to exploit homologous recombination and deletion libraries. Regulating
proteins and the cables themselves can be monitored by fluorescence microscopy.
Methods have been developed to measure protein concentrations in yeast [9, 10].
Also, the cables may be one of the simpler actin structures: in fission yeast, they
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appear to require far fewer assisting proteins than actin patches or contractile rings
for division [4]. But although actin cables may be a relatively simple system,
they certainly behave in ways that would be hard to predict by knowing only
the interactions among components. Understanding the complexity of regulating
these dynamic structures by timing and location seems to require the approach of
systems-biology: simultaneous measurements of multiple components and rigorous
statistical analyses combined with mathematical models [11]. Here we highlight
recent quantitative studies of yeast actin cables and discuss our view of the direction
of this field.

2 Quantifying the Polymerization Kinetics of Actin-Cable
Assembly

Actin cables are very dynamic structures with lifetimes of order one minute. The
constituent filaments grow by adding monomers from the cytoplasm, at their barbed
ends, and losing monomers to the cytoplasm by severing and depolymerization.
Many actin-binding proteins modulate these kinetics. For instance, formins seed
cables and increase the rate of actin-monomer addition at the barbed end. Reaction
rates and protein concentrations, and their regulation, can affect qualitative behavior
and so understanding the actin-cable system depends on measuring their values.

Recent studies suggested a detailed molecular mechanism for formin-mediated
actin-cable assembly [13, 14]. Formin proteins promote actin-filament nucleation
and elongation by processive association with the polymerizing end of actin
filaments [6–8]. In fission yeast, formin For3p localizes in cortical foci at the
growing tips of the cell (see Fig. 19.1b). Budding-yeast actin cables are nucleated
by formins Bni1p and Bnr1p. Bnr1p localizes at the bud neck (see Fig. 19.1d).
Bni1p localizes as foci at the tip of the growing bud and subsequently joins Bnr1p
at the bud neck (see Fig. 19.1d). Both Bni1p and For3p associate with large cortical
macromolecular structures where they nucleate actin filaments for cables. These
filaments are bundled by actin cross-linking proteins such as fimbrin [3], and
undergo retrograde flow away from the bud (or away from the cell tips in fission
yeast) at speeds of order 0.3�m/s and larger [15, 16]. Long cables disassemble
through the coordinated action of tropomyosin, cofilin, actin-interacting protein
Aip1, coronin, and twinfillin [3, 17].

The association of Bni1p and For3p with the cortex is transient: within seconds,
these formins dissociate from the cortex and passively follow actin cable retrograde
flow and disassembly, thus following a turnover cycle similar to actin. Based on
these observations, Buttery and Pellman [13] and Martin and Chang [14] proposed
the mechanism shown in Fig. 19.2a. The movement of the formins away from the
cortex (process 4 in Fig. 19.2a) was found to be dependent on actin-polymerization,
indicating the existence of coupled control mechanisms between actin and formins.
This feedback mechanism indicates the possibility for rich dynamical behavior by
the cable system. Unlike Bni1p, Bnr1p appeared to remain associated with the
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neck [13]. The cartoon in Fig. 19.2a appears to describe a summary of what is seen
in experiments. But, without the support of a quantitative model, it is unclear if the
model is even a consistent representation of an actin-cable assembly mechanism.

To explore the quantitative implications of the proposed model in Fig. 19.2a,
Wang and Vavylonis added rate constants, protein concentrations, and diffusion
coefficients in an analytical and computational model [18]. They considered fission
yeast due to its simpler geometry as compared to budding yeast, and the fact that
actin cables are nucleated by only one formin, For3p. Figure 19.2b shows the
processes described by the rate equations of the model, with Acyto and Acable being
the numbers of actin subunits in the cytoplasm and in actin cables, respectively,
and Fcyto, Fcable, and Ftip, are the numbers of For3p in the cytoplasm, along the
body of actin cables, and at cable tips, respectively. One rate constant depends on
the processivity parameter, p, the average number of actin subunits polymerized
per cortical For3p before its detachment into the cable. Whole-cell numerical
simulations of actin and For3p reaction and diffusion were performed in 3D
(Fig. 19.2c). The model considers a continuous field of cytoplasmic actin due to
its abundance and individual For3p particles moving on a lattice due to their rarity.
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The simulations validated the cartoon model. Using a combination of measured
and fitted parameters, the model could explain experimental results, such as
fluorescence recovery after photobleaching curves (FRAP) of For3p-3GFP and the
response of the actin cables to treatments with the drug Latrunculin A (LatA), which
promotes cable disassembly by sequestering available actin-monomers.

In addition, the model suggests a description of the system in the form of
“dynamical phase diagrams” (Fig. 19.2d and e) that describe how parameter values
(concentrations, rate constants) affect physiological properties of actin cables:
polymerization rate, thickness, and length. Do cells tweak these parameter values
to manipulate form (as in Fig. 19.2d) and thus optimize function? The facility of
genetic engineering in yeast may allow future tests of these results. For example,
systematic For3p overexpression and/or reduction of For3p expression levels are
possible. Similarly, changes in the polymerization rate constant and processivity
parameter could be tested by targeted changes in the FH2 and FH1 domains of For3p
that mediate polymerization and processive motion [7, 16, 19, 20]. The above could
be combined with treatments with drugs such as LatA, which effectively reduces the
actin-polymerization rate constant.

With a constant processivity parameter, this model admits a single steady
state for the actin-cable system. A cooperative mechanism for For3p detachment,
meaning that the detachment rate depends sensitively on the polymerization rate,
would introduce nonlinearities that could lead to additional steady states of actin-
cable organization. This suggests the intriguing possibility that the cell might gain
fitness through the ability to signal a switch between these states, allowing a rapid
reorganization of the actin-cable system.

So far there have been no detailed quantitative models of actin-cable dynamics
in budding yeast. However, some experimental studies treat the actin cables from a
systems point of view [21]. For example, upon Bni1p overexpression the actin cables
become shorter and more dense within the bud [22, 23]. In these overexpression
studies, the actin cables within the mother cell (presumably nucleated by Bnr1p)
become short and thin [22], though some mother cells become unusually large and
contain multiple cable-like fragments [23]. This change in the actin cables in the
mother cell could be due to the Bni1p-induced depletion of the actin-monomer
pool available to Bnr1p. Because of uncertainties in the mechanisms of Bnr1p
cortical dissociation and association, the effects of Bnr1p overexpression [21] are
harder to interpret. Full length Bnr1p overexpression has small effects [21], though
overexpression of unregulated Bnr1p leads to serious defects that can be rescued
by an increase in the concentrations of proteins that bind to actin-monomers or
with treatment with LatA, possibly by reducing Bnr1p-mediated nucleation of actin
filaments in the cytoplasm [21]. A more recent study showed that the two formins,
Bni1p and Bnr1p, assemble kinetically in separable cable populations [16]. A future
quantitative modeling approach may help to provide an insight into the importance
of these experimental findings.
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3 Analyzing the Morphology of Actin Cables

The model in Fig. 19.2a described the kinetics of nucleation, assembly, disassembly,
and severing in 3D but treated each cable as a 1D object. Further cable traits arise
however in 3D: cables bend, twist, and buckle; organelles deflect the cables and
cell geometry confines them; and cables cross or become bundled with one another.
Actin-binding proteins regulate this cable morphology. Cross-linking proteins, such
as fimbrin [3, 4], can bind to multiple filaments and stiffen a single cable or help to
bundle multiple cables. Together with side-binding proteins, such as tropomyosin
[24] they mediate bending and twisting and may make filaments more or less
susceptible to severing [25]. Actin cables also appear to associate with actin patches
[26]; further, association with myosin V [16] may attach cables to organelles.
Mutations in these proteins can disrupt normal actin-cable morphology, indicating
that these proteins regulate the spatial distribution of actin cables.

Measuring actin-cable morphology requires clear images of actin cables. This
is possible since yeast actin cables are dilute as compared to actin structures in
other cells. Several fluorescent markers can illuminate cables in live cells. For
example, a fusion of the calponin homology domain from the IQGAP Rng2p to
GFP (GFP–CHD) [14], the seventeen-amino-acid peptide Lifeact [30], and actin-
binding protein 140 tagged with GFP [15] all mark filamentous actin. Confocal
microscopy allows for the reconstruction of the cable position in three dimensions.
Sub-diffraction microscopy could enhance the precision with which cables can be
located.

Extracting the numbers that describe morphology from images and movies of
the cables presents another challenge, but recent work shows that this can be done.
Smith and others provide an open-source tool, JFilament, which fits this task [28].
JFilament uses stretching open active contours [27] to find flexible filaments in a
noisy image. The algorithm starts with a proposed filament skeleton and modifies
it to minimize an energy, which includes internal terms that penalize bending and
stretching and external terms that account for crossing a gradient in the image (see
Fig. 19.3a). With adjustments to the relative contribution of these terms and some
manual interaction, JFilament allows efficient capture of many actin-cable statistics.
Using the program, Smith and others analyzed cables with a clear trajectory across
the cell (Fig. 19.3b and c). They found two length scales that described the cables,
one less than the persistence length of single actin filaments and one closer to the
persistence length of microtubules. The smaller length scale could correspond to
short-scale deformations from pulling and motor buckling [31, 32], interaction of
cables with patches [33], or fixed fluctuations during actin-cable assembly [18, 34].
The longer length scale could reflect the stiffness of the bundles and the fact that
the actin cables are confined to the cell interior, which behaves as a rigid tube
[35]. In any case, these analyses suggest that the equilibrium semiflexible-polymer
description needs a few additions to capture the behavior of actin cables.

Looking forward, work towards complete, reliable automation of the data extrac-
tion should allow for the leveraging of the statistics of thousands of cells’ worth
of actin cables, possibly to reveal subtle changes in the regulation of morphology
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Fig. 19.3 Segmentation and tracking of actin cables using active contours. (a) Example of
segmentation in a total internal reflection microscopy image of a single actin filament [27].
Initialization of the active contour away from the central line of the filament and position of
active contour after 20, 40, and 60 iterations of deformation. Scale: 1 pixelD 0.17�m. (b) Images
showing a fission yeast cdc25-22 cell expressing GFP–CHD that marks actin cables and actin
patches [28]. Left: 3D volume view and active contour of a segmented actin cable. Right: Image of
an active contour together with x; y and z cross-sections of the image. Cell diameter is 	3.5�m.
(c) The tangent correlation function of actin cables from images as in panel b. A fit to a double
exponential (continuous line) leads to length scales l1D 2�m and l2D 1 mm [28]. (d) Automatic
segmentation of 2D filament network using multiple active contours from [29]. A meshwork is
generated by initialization of multiple active contours at ridge points followed by growth, merging
and splitting of active contours. Grouping analysis is used to classify segments. Image shows
application to a 2D radial projection of a 3D confocal microscopy volume of a dividing cdc25-
22 fission yeast cell expressing GFP–CHD. Vertical axis is arc length
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across the breadth and cycle of the cell. Reported automated two-dimensional
methods that distill stacks of images into filament locations and network topologies
[29] (Fig. 19.3d) could be extended to three dimensions. Also, automated separation
of actin patches and cables remains challenging.

From this data, modeling studies will attempt to answer open questions: Do actin
cables interact with or attach to the membrane? If so, can they grow while attached?
Is cable position tightly regulated, or do cells allow random processes to determine
their precise location? Are multiple nucleators required in budding yeast because
it has a more complex shape than fission yeast? What minimal set of regulating
processes can capture the salient aspects of actin-cable morphology? Theoretical
work addresses the behavior of semi-flexible polymer bundles under confinement
[35–37], but this has yet to be applied to actin cables in yeast. A model may show
that only a few simple assumptions are necessary to reproduce most characteristics
of measurable behavior, and this could become a framework for understanding how
cells regulate the morphology of actin cables. These mathematical models will help
us to understand how proteins guide this measured morphology through collective
behavior.

4 Outlook

Cells may have optimized the actin-cable parameter values to be robust [38],
corresponding to a large parcel of parameter space for the physiological region
in Fig. 19.2d. However, the actin-cable system adapts for reorganization, as when
the cables disassemble and actin filaments move to the division site for cytokinesis
in fission yeast [5, 39]. The size of the physiological region may balance robust
behavior for actin cables, which requires a large region, with the need for a malleable
actin system that may be adapted to many purposes, which may require a small
region. Here we motivate a systematic experimental exploration of parameter space
to test these issues. Such studies should also reveal quantitative details on the role
of other components of actin cables, such as regulatory pathways and bundling
kinetics.

The results in yeast may have implications on the general role of formins in cells
beyond yeast, such as the actin-cable network in plants [40–42]. Because changes to
parameter values establish different distributions of actin and formins within yeast,
many other eukaryotic cells may have also used this property to establish different
patterns and structures. Future work will uncover the extent of universality in the
mechanisms of formin function. Much remains to be established, for example, on
the precise function of fission yeast formin Cdc12p in nucleating disperse actin
meshworks and/or actin cables during the assembly of the cytokinetic contractile
ring [43–46]. Hopefully, the modular structure of biological systems will allow us
to proceed to a hierarchical understanding of the cell biological function of formin-
mediated actin structures, starting from general features at a mesoscopic level of
description, down to the full details of regulatory pathways that may differ across
organisms.
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Finally, we acknowledge some significant challenges. Attempts to measure cable
elongation rates encounter technical difficulties – the end can be hard to locate
and the dynamic nature of the marker complicates FRAP experiments. Models of
actin cables become more complex as they include more elements, obscuring their
interpretation. Also, the actin cables are only approximately a modular system,
and incomplete knowledge of the systems with which they interact may limit
understanding of the actin cables. However, we are optimistic that an increasing
toolbox of quantitative methods will eventually help to overcome such obstacles.
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Chapter 20
Modeling Morphodynamic Phenotypes
and Dynamic Regimes of Cell Motion

Mihaela Enculescu and Martin Falcke

Abstract Many cellular processes and signaling pathways converge onto cell
morphology and cell motion, which share important components. The mechanisms
used for propulsion could also be responsible for shape changes, if they are capable
of generating the rich observed variety of dynamic regimes. Additionally, the
analysis of cell shape changes in space and time promises insight into the state of the
cytoskeleton and signaling pathways controlling it. While this has been obvious for
some time by now, little effort has been made to systematically and quantitatively
explore this source of information. First pioneering experimental work revealed
morphodynamic phenotypes which can be associated with dynamic regimes like
oscillations and excitability. Here, we review the current state of modeling of
morphodynamic phenotypes, the experimental results and discuss the ideas on the
mechanisms driving shape changes which are suggested by modeling.

1 Introduction

Cell motility plays a key role in tumor cell migration and enables the directed
movement of embryonic cells to the appropriate locations in the body [141].
Understanding the mechanisms of cell motility might be a basic tool to inhibit
cancer spread or prevent cardiac malfunctions [48].
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The goal of this review is to critically discuss and classify mathematical models
which capture the essential biological dependencies found experimentally. Such
models show by reduction the most important interactions of a very complex
biomechanical system. Also, models can predict how the migration pattern changes
by perturbing different mechanisms, and offer therefore further insight into the
biological phenomena.

Mathematical models for cell motility cover several levels of description – from
single actin filaments to cell fragments, whole cells, and tissues [26]. They also
focus on the description of different aspects of cell motility: initiation of actin-
assembly and pre-merging conditions, perpetuation mechanisms after movement
has started, adhesion and the interaction with the extra-cellular matrix, morphody-
namics, or cell-to-cell communication and group dynamics of migrating cells. Here,
we concentrate on the morphodynamics of single crawling cells.

The cell shape is mainly determined by the cell cytoskeleton, which is one of
the main players in cell crawling. Hence, understanding the external cell shape
deformations can indirectly provide information about the state of the motility
machinery of the cell. Cell crawling occurs by the interplay of leading edge
protrusion, adhesion of the front, deadhesion of the back, and contraction of the cell
body [3, 57]. Membrane protrusion, that also determines the cell shape dynamics,
occurs by the extension of a thin flat cytoskeletal structure, the lamellipodium,
in the direction of motion. Inside the lamellipodium, a network of cross-linked
actin filaments grows by polymerization in the direction of movement. This actin
network, attached to the extra-cellular matrix and to the rest of the cell body, can
be viewed as the motor of the cell. The main mechanisms that drive it are briefly
reviewed in the following.

2 Basic Ideas on the Motile Machinery of Cells

The cytoskeleton of the cell contains several biopolymers that differ in stiffness
and polarity. They can grow and shrink, rearrange, cross-link, and form bundles.
This determines the form of the cell and can also generate movement. The force of
protrusion in the lamellipodium is believed to arise from the polymerization of actin
[92, 112]. Actin polymers are found in bundles in the interior of the lamellipodium,
where myosin motor molecules can move along them to create contractions. Toward
the leading edge membrane, actin forms a polar network with the fast polymerizing
ends directed toward the membrane. At the opposite end, filaments depolymerize,
actin monomers are recycled and diffuse to the front, where they are consumed
by the growing tips [110]. This process of treadmilling is regulated by a number
of proteins [14, 34, 55, 66, 87, 128]. Arp2/3 (actin related protein 2/3) binds to an
existing actin filament and nucleates a new branch. Arp2/3 is activated by regulatory
proteins, like the membrane associated WASP. Capping proteins bind to the end
of a filament and prevent polymerization and depolymerization. Cofilin binds to
filaments, enhances depolymerization, and severs them. Profilin binds to actin
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monomers and favors the recycling of actin monomers into filaments. Thymosinˇ4
binds actin monomers preventing their polymerization and acts as a buffer for
monomeric actin. Different kinds of cross-linking proteins connect filaments and
provide mechanical stability to the network. Other proteins are believed to bind
actin polymers to the membrane.

Several studies have found differences in the actin network region just behind
the leading edge and the network further in the bulk of the lamellipodium [111,
121, 133]. This leads to a picture where two different actin arrays – the wide
lamella and a narrow lamellipodium in front or on top of the lamella – are pushing
the membrane. While the lamellipodium is rich in branched polymerizing and
depolymerizing actin filament ends, the lamella consists of more strongly cross-
linked or bundled filaments. Earlier studies suggested the lamellipodium network
to be highly branched and cross-linked very close to the leading edge membrane
already [131, 139]. More recent studies showed that the branch point density in the
lamellipodium may be rather low and the lamellipodium-like structures may extend
several hundred nanometers into the cell [137]. The studies also differ in their results
on filament length. While some conclude that filaments in the lamellipodium have
a length of a few hundred nanometers [131, 139], others find a few micrometers
[75,122,123,137]. In the dual picture, protrusion and retraction of the leading edge is
due to the lamellipodium, while the lamella plays the main role in cell translocation,
by integrating contractions due to myosin motors with adhesions to the substrate
[13, 29, 30, 75]. Other studies however question the existence of two different actin
networks in migrating cells [123] and a lamella beneath the lamellipodium [138].

3 A Short Review of the Scientific Discussion on Actin
Filament Attachment to the Leading Edge Membrane
of Lamellipodia and the Evidence for the Presence
and Functioning of F-Actin-Membrane-Linking
Proteins There

Attachment of filaments to the surface of the object which is moved by actin
polymerization is found in many reconstituted systems and biomimetic systems.
That observation led to the formulation of the tethered ratchet model [98]. Attached
filaments may fundamentally change the force balance at the obstacle surface
since they can exert pulling forces. Indeed, pushing and pulling forces exerted by
attached and polymerizing filaments respectively, may both be much stronger than
the resulting difference, which is then equal to the force actually moving the object
[43, 98]. Hence, it is worth discussing whether filaments also attach to the leading
edge membrane of lamellipodia and whether models should take that into account.

While there is no direct proof of attachment of filaments to the lamellipodium
leading edge membrane, Carlier and Pantaloni state “Biomimetic assays of propul-
sion of N-WASP-functionalized microspheres or vesicles have demonstrated that
the actin tail is attached to the particle surface. . . , suggesting that similar bonds
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exist between the filaments and the membrane during protrusion” [14]. Attachment
was also observed with oil droplets used as biomimetic system [135]. Binding of
filaments to leading edge membrane is discussed as a possibility, suggestion, or even
necessity for directed motion by several groups and labs [14, 15, 27, 75]. Keren and
Theriot also point out “the high concentration of protein complexes at the leading
edge and their extensive connections to the actin cytoskeleton” [72]. Co et al.
demonstrate that actin filaments can bind to WH2 domains also independently of
the branching process [27,130]. Hence, even without considering the major F-actin-
membrane linker ezrin, radixin, and moesin (ERM proteins), membrane binding of
F-actin is suggested.

Only activated ERM proteins link F-actin to membrane proteins. They are acti-
vated by first binding PIP2 and subsequent phosphorylation at a threonine residue
(T576 ezrin, T558 moesin, and T564 radixin) [46, 47]. ERMs are phosphorylated
by myotonic dystrophy kinase-related Cdc42-binding kinase in filopodia [100],
protein kinase C˛ in membrane protrusions [101], and the Rho-associated kinase
(ROCK) in microvilli [104], although this latter finding is controversial [93].
G protein-coupled receptor kinase 2 phosphorylates radixin in epithelial cells [71].
The Nck-interacting kinase NIK phosphorylates ERM proteins in rat mammary
epithelial cells and in CCL39 fibroblasts [7]. ERM proteins are phosphorylated in
response to stimuli linked to motility and morphodynamics.

Active ERM proteins and their binding partners are located at the leading edge.
Phosphorylated ezrin is localized in ruffles and at the leading edge of pseudopodia
of fibroblasts [85]. Similarly, phosphorylated ezrin and NIK were found at the
distal margins of lamellipodia in mammary epithelial cells [7]. Baumgartner et al.
mention the interesting idea that localization of kinases may sharpen the localization
of pERM at the distal margins of lamellipodia beyond the localization of ERM,
which is already restricted to lamellipodia [7]. The NaC–HC-exchanger NHE1 is
one of the ERM binding partners in the plasma membrane [36]. NHE1 is enriched
in lamellipodia and membrane tufts of fibroblasts [36, 60, 114] (and other cell types
[74, 83]) and the membrane pool of ezrin is predominantly bound to NHE1 [36].
NHE1 can also be found along the smooth edge of the cell [36]. Ezrin localization
showed a striking overlap with NHE1, but radixin was only found in lamellipodia
and membrane tufts [36]. It is interesting to note in this context that radixin was
originally identified as a barbed end capping protein [136].

Activation of ERM proteins may cause lamellipodium formation and ezrin–
NHE1 binding is required for normal lamellipodium shape. Radixin is involved in
lamellipodia stability of nerve growth cones [25]. ERM are also involved in lamel-
lipodium formation. Phosphorylation at T567 causes formation of lamellipodia in
LLC-PK cells [50]. F-actin networks extended to the peripheral edge of membrane
protrusions in fibroblasts expressing NHE1, which was able to bind ezrin, but
not in fibroblasts deficient of NHE1 or expressing NHE1 not able to bind ezrin
[36]. Loss of NHE1-dependent cytoskeletal anchoring impairs directionality of cell
migration [35]. Migrating fibroblasts expressing ezrin-binding NHE1 form a broad
lamellipodium, by contrast with migrating cells expressing NHE1 unable to bind
ezrin which form many small protrusions [35].
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Another actin- and membrane-binding protein – myristoylated alanine-rich C
kinase substrate (MARCKS) – is involved in lamellipodia formation [117]. It
translocates to the membrane upon dephosphorylation. MARCKS is phosphorylated
at Ser 159 by Rho-kinase as well as PKC [67, 99, 132]. In SH-SY5Y cells,
stimulation with insulin-like growth factor-I (IGF-I) causes dephosphorylation of
MARCKS. PI3-K has been reported to be involved in the dephosphorylation via
activation of the PI3-K/Akt pathway [106,118,140]. PI3-K inhibitors attenuated the
IGF-I-induced dephosphorylation of MARCKS, MARCKS translocation to lipid
rafts and lamellipodia formation. These results support the idea that the transient
dephosphorylation of MARCKS induced by IGF-I triggers the translocation of
MARCKS to lipid rafts and lamellipodia formation [144]. IGF-I stimulation
of SH-SY5Y cells caused the translocation of MARCKS to lipid rafts in the edge of
lamellipodia, where it forms a complex with PIP2 [144]. Knockdown of MARCKS
with siRNA technology abolished lamellipodia and neurite formation induced by
IGF-I [144]. Cells exhibited a small number of tiny lamellipodia-like structures at
the cell edge instead but not widely spread F-actin structures. That is evocative of
the small protrusions reported from migrating fibroblasts expressing NHE1 unable
to bind ezrin [35].

IGF-I stimulation also transiently decreases RhoA–GTP content in SH-SY5Y
cells [118]. The RhoA/Rho-kinase pathway is considered to be a major target of
the PI3-K/Akt signaling pathway, and PI3-K negatively controls RhoA activity
[106, 140]. Hence, a link from MARCKS to ERM proteins via RhoA might
exist.

Gelsolin is an actin severing and barbed end capping protein [129, 145, 146].
Gelsolin can bind actin filaments and membrane at the same time [61, 94].
Gelsolin interacts with PIP2, which inhibits capping [68]. Whether PIP2 also
uncaps filaments [38, 115] or not [79] is a matter of debate. Gelsolin can also bind
polyphosphoinositide-free lipid vesicles and simultaneously to actin microfilaments
[94]. CP (called CapZ in muscle) also caps F-actin barbed ends. It also interacts with
PIP2 [62, 79]. It has also been suggested that CapZ can link F-actin and membrane
independently of PIP2 [125]. Both gelsolin [124] and CapZ [28] are present in
the lamellipodium. Hence, gelsolin and CP are further potential F-actin-membrane
linkers.

Actin binding membrane proteins can stay at the leading edge despite the
retrograde flow of the actin network. References [7,85] suggest pERM to be located
directly at the leading edge. This is supported by another simple consideration.
Actin binding proteins in the membrane are carried away by F-actin retrograde
flow in the lamellipodium, if there is no counteracting force. Hence, actin binding
proteins staying in the lamellipodium must either be anchored or transported
retrogradely. Proteins in the leading edge membrane experience a force orthogonal
to the membrane when they bind to actin in the lamellipodium. The force keeping
them in the lipid bilayer provides the force counteracting retrograde transport and
they are therefore not swept away by retrograde flow. Keren and Theriot remark on
the observation that actin binding proteins at the leading edge do not flow rearward
“The lack of lipid flow, together with the presence of a diffusion barrier at the
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leading edge, imply that physical trapping may be sufficient for maintaining the
localization of various essential membrane-bound components there” [72].

In summary, it has been shown that F-actin-membrane-binding is necessary for
the formation of lamellipodia and that activated linker proteins are at the leading
edge.

The effect of binding of F-actin to the membrane on the shape of lamellipodia
favors larger coherent structures, as mentioned above [35, 144]. This suggests that
the occurrence of pushing and pulling filaments at the leading edge does not
strongly distort the membrane on the length scale of typical filament distances.
This is supported by another estimate. We can obtain an idea about the scale on
which cellular forces cause membrane distortion from an estimate of the critical
radius for bleb formation. Blebbing occurs at patches of membrane not bound to
the actin cortex. The pressure difference across the membrane drives blebbing.
Membrane tension and resistance to bending counteract deformation and cause a
minimal critical radius of the unattached membrane patch. Sheetz et al. estimated
it to be about 470 nm [117]. Hence, the critical diameter is at least by a factor
of nine larger than typical distances of filaments in lamellipodia, if calculated
from filament density measurements (100/�m, lamellipodium height 200 nm). More
recently, filament distance in lamellipodia was estimated to be even 30 nm only
[137]. In summary, there are good reasons to assume that membrane distortion is
negligible on the length scale of filament distances. Modeling methods for dealing
with membrane shape on larger length scales have been published [44, 73].

Modeling has shown that transient binding is compatible with protrusion [43,
43, 98, 147]. Based on these considerations, we conclude that the experimental evi-
dence strongly suggests inclusion of F-actin-membrane binding into lamellipodium
leading edge models.

4 Dynamic Regimes of Actin-Based Motion

When placed on a substrate, cells spread and eventually start moving spontaneously
or as a result of mechanical or chemical stimulation. Sometimes cells are found to
be testing the substrate, the topology of which influence the behavior [109]. The
movement of the cell boundary can occur continuously or in cycles of protrusion
and retraction. Mouse embryonic fibroblasts spreading on a fibronectin-coated glass
show phase transitions from a resting state to a state of fast and continuous spreading
and further to periodic membrane retractions [39]. Lateral membrane waves with
a lateral speed of about 100 nm/s have been observed in a variety of spreading
cells, including mouse embryonic fibroblasts, T cells, as well as wing disk cells
from fruit flies [40]. For keratocytes, the leading edge morphology seems to be
coupled to the motile behavior – coherent, smooth cells migrate significantly faster
than decoherent, rough cells [82]. Epithelial cells show three different protrusion
phenotypes: A state where long cell edge sectors are synchronized in cycles
of protrusion and retraction, a state where random bursts of protrusion initiate
protrusion waves propagating transversally in both directions, and a state where
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continuous protrusion is occasionally interrupted by self-propagating ruffles [91].
Cells switch between states depending on the Rac1 activation level and the PAK and
Arp2/3 concentrations. Increased Rac1 levels lead to increased activation of Arp2/3
and inhibition of cofilin via PAK [41, 65]. Arp2/3 nucleates filaments on existing
filaments [64,127], and cofilin severs filaments and promotes their depolymerization
[6,15,84]. Changing the activities of Rac1, PAK, and Arp2/3 results therefore into a
change of the most important parameters of the actin network – density, length, and
growth velocity. Thus, experiments show that in principle, the structure and function
of the actin network inside the cell can be mapped into the external shape dynamics,
which can be observed without interfering directly with the cell.

Experiments on model systems, such as protein-coated beads or fluid droplets
placed in a motility medium, are helpful in understanding the motile machinery
inside a cell. The motion of protein-coated plastic beads can be smooth or saltatory,
depending on the bead radius and the surface concentration of the protein [9, 105].
Also, deformable lipid vesicles show both regimes of motion, and can reach up
to 10�m/min, compared to 3–4�m/min for beads. A comparative study comes
to the conclusion that hard and fluid actin propelled objects rely on different
mechanisms to establish and maintain directed movement: Stress relaxation within
the actin gel prevents the accumulation of filaments at the front of moving beads,
while segregation of nucleators reduces actin polymerization at the front of moving
vesicles [33]. Similarly, oil droplets can show continuous or hopping motion in
a motility assay [12, 135]. The probability for oscillatory movement is higher for
smaller droplets, and the oscillatory mechanism seems to be based on diffusion and
convection of the surface protein activating actin polymerization.

5 Modeling Concepts

We distinguish in the following between continuum and filament models. This
classification is not based on the mathematical form of the model, but rather on the
primary treatment of the actin cytoskeleton. Continuum models start from the theory
for visco-elastic gels and the filament properties enter via constitutive equations and
material constants. Filament models start from the properties of single filaments and
investigate how a population or network composed of them behaves.

5.1 Continuum Models

Part of the theoretical work on cell motility has been done within the framework
of continuum models. Such models treat the cytoskeleton as a continuum medium
and do not consider the microscopic details of the force generation process. Existing
continuum models are based on various physical theories and differ in the choice of
the state variables used to describe the cytoskeleton.

Several approaches focus on the biochemical processes inside the cell. The
dynamics of the cytoskeleton are thereby described by the concentration of
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actin filaments as well as of the regulatory proteins controlling their growth,
leading to coupled systems of differential equations. Mogilner et al. establish
reaction–diffusion equations for the actin monomers in their different forms
(ADP–G-actin–ADF/cofilin, ADP–G-actin–profilin, ATP–G-actin–profilin, and
ATP–G-actin–thymosinˇ4 complexes) and include growth by polymerization of
the barbed ends of actin filaments, capping and depolymerization [96]. The study
calculates stationary velocities as stationary solution of the set of reaction diffusion
equations in dependence on concentrations of capping proteins, thymosinˇ,
profilin, and other biochemical parameters. Its force balance at the leading edge
includes pushing forces from polymerizing filaments and a constant force as
membrane resistance. Force dependence of polymerization and the limitations
by G-Actin flux toward the front lead to an optimal filament density for a given
membrane resistance.

A study by Grimm et al. aims at predicting the shape of the leading edge [59]. It
models the dynamics of the density of right and left oriented barbed ends by consid-
ering growth, branching, and capping but not retrograde flow or filament attachment.
The resistance of the membrane to motion is a constant force. Consequently, leading
edge velocity increases with filament density in that model. The feedback for the
shape of the leading edge to the actin density increases densities at local protrusions.
This positive feedback loop may cause shape instability at high capping rate. The
model predicts well the leading edge shape of fish keratocytes at low capping rates.
The theory was supplemented by G-actin consumption by growth and membrane
tension in the stability analysis in [73, 82].

Dawes et al. [31] consider the spatial distribution of actin filaments and their
barbed ends in a simplified 1D geometry. The model includes diffusion of the
Arp2/3 complex, force-dependent polymerization, retrograde flow, spontaneous
nucleation, tip and side branching as well as capping and depolymerization. As
in many models of this type, the protrusion rate is proportional or equal to the
polymerization rate. Increasing the rate of nucleation of filaments (by the actin
related protein Arp2/3) or the rate of actin polymerization leads to faster cell speed,
whereas increasing the rate of capping or the membrane resistance reduces cell
speed in this study. A simple model [49] considers the densities of barbed and
pointed ends, coupled to a reaction–diffusion equation for the concentration of
actin monomers and allows for the description of the polarization of an initially
symmetric cytoskeleton and the initiation of motion.

A very extensive model has been developed in [10, 11]. It provides a method to
solve the complete nucleotide profile within filaments by considering the cycle of
actin-assembly and disassembly, including many details such as ATP hydrolysis and
the role of profilin in the nucleotide exchange.

Other models focus on the mechanics of the cytoskeleton, which is treated as
viscous or visco-elastic fluid. References [2,81] consider two dynamic components:
the cytosol, treated as a Newtonian fluid, and the polymerized actin filaments,
treated as an elastic medium. Adhesion kinetics is considered here through a
frictional force on the filamentous phase. The idea of a two-phase network has been
elaborated further in [103], where a nonlocal pressure term modeling long-range
network compaction was included. A variety of models consider one-dimensional
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visco-elastic strips as a model for a radial cross-section through the lamellipodium
[58, 77, 86]. Gracheva and Othmer consider a one-dimensional visco-elastic cell in
contact with a viscous substrate [58]. The inclusion of graded adhesion (strong at
the front, weak at the rear) allows for reproduction of the bell-shaped dependence
of the cell velocity on adhesion strength [37, 58].

In [51], the actin network around a bacteria is treated by an elastic approach.
Filament growth on the bacterial surface produces here elastic stresses that propel
the bacterium forward. The same idea is used in [70] for the study of the symmetry
break at the formation of the actin tail around a propelled bead in a biomimetic
assay. Reference [126] treats the cell as an incompressible, visco-elastic solid and
uses classical mass balance and equilibrium equations to describe its motion. This
model allows to make predictions about the traction patterns on the substrate.

Based on a generic theory for active polar gels [76, 77], a model for the
lamellipodium motion was developed in [78]. Here, the cytoskeleton is treated as
a viscous polar gel. Myosin contraction in the cytoskeleton is included through an
additional intrinsic anisotropic stress.

A model coupling membrane elasticity with actin polymerization has been
proposed in [119] to explain membrane waves driven by actin and myosin. The
wave mechanism is based on the presence of freely diffusing membrane proteins,
the curvature of which influences the morphodynamic pattern of the cell.

5.2 Filament Models

A first model aiming to explain how polymerization of actin filaments can produce
the force of protrusion in migrating cells was proposed in [108]. This “Brownian
ratchet” model considers the polymerization of a stiff filament against a barrier, upon
which a load acts. The barrier is able to diffuse, and the ratchet mechanism is based
on the intercalation of monomers between the barrier and polymer tip. This model
has been extended to an “elastic Brownian ratchet” model in [97], by including the
thermal motions of the polymerizing actin filaments. It was further extended in [98]
by including transient attachment to the obstacle (“tethered ratchet”).

The entropic force exerted by a grafted semiflexible polymer on a rigid obstacle
has been calculated both analytically and by Monte Carlo simulations in [53].
Explicit scaling functions as well as analytical results for certain asymptotic regimes
were found. These results were used in [43, 54] in a model for the actin-based
propulsion of flat rigid obstacles. Polymerization, attachment to and detachment
from the obstacle as well as cross-linking between filaments were considered. The
model is used to find the dynamics of the length for attached and detached filaments,
which is required for the computation of the total force on the obstacle. This
approach has been extended to the propulsion of soft membranes under tension in
[44] as well as of rigid spherical beads in [42]. The actin network is described here
also by continuous state variables reflecting the densities and lengths of the actin
filaments. However, in contrast to the models discussed in the previous section, the
microscopic form of the force exerted by single actin filaments is taken into account
here.
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Several studies model the microscopic growth of the actin network explicitly. In
[16], a stochastic simulation frame for an actin network growing against an obstacle
is proposed, where single filaments and single subunits in each filament are con-
sidered. Growth, depolymerization, capping, and branching are included, allowing
the prediction of the network growth velocity. Based on this model, the structure of
branched actin networks has been analyzed in [18]. In [4], actin filaments are treated
as rigid rods under volume exclusion. Polymerization, depolymerization, branching,
and capping are simulated using a continuous-time Markov algorithm, allowing for
the prediction of the angular distribution of the filaments with respect to the leading
edge.

A mesoscopic network approach to the cross-linked actin network has been
proposed in [32]. Here, an Accumulative Particle-Spring model that builds on the
elastic gel model [51] is used. Network links have no direct correspondence to actin
filaments, but the bulk visco-elastic properties of the chains of nodes and springs are
intended to capture the bulk visco-elastic properties of the actin network.

5.3 Coupling of Membrane and Cytoskeletal Dynamics

The common goal of most modeling approaches is finding the dynamics of the
considered obstacles, e.g., the regime of motion of a bead or bacteria, or morphology
of the leading edge. To this end, the dynamics of the cytoskeleton has to be
coupled to the mechanics of the membrane. Most models do not include directly
this interaction, but assume that the membrane moves at the growth velocity of
the network. A model focusing on the membrane–cytoskeleton coupling has been
proposed in [147]. It combines a filament model [54] for the filament tips that reach
to the leading edge with and a continuum description of the cross-linked part of
the actin network farther in terms of the active polar gel model [78]. Thereby, the
filament model provides the force boundary condition for the visco-elastic part of
the network. In return, the flow of this network provides the grafting points of the
filament tips described by the filament model. This allows for the calculation of the
total force exerted on the membrane that is used to find its dynamics.

6 Mechanisms Suggested by Models

6.1 Comparison of Model Assumptions

One of the main differences between continuum and filament models lies in the way
the interaction between the actin network inside the cell and the cell membrane is
included. For continuum models, the interaction force is assumed to be either a given
constant [78] or to depend mainly on the membrane geometry, e.g., on the curvature
[2, 119, 120]. Filament models include often the length, position, and orientation of
actin filaments, which allow for a more accurate calculation of the entropic force
exerted on the membrane [4, 5, 16, 17, 43, 44, 53, 54, 147].
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Some continuum models require the knowledge of force boundary conditions,
that have to be included artificially, by assuming for example a constant external
force. In [78], such a boundary condition is needed to determine the force profile in
a gel strip across the leading edge and critically influences the resulting leading
edge velocity. Different other models calculate the interaction force in various
ways. In the two-phase flow model [2], the pressure exerted by both filamentous
phase and solvent phase are included explicitly. The analysis of Listeria propulsion
in [51] and the study of symmetry breaking leading to actin tail formation [70]
assume the interaction between the actin network and the obstacle relies on the
formation of an elastic stress at the obstacles surface, due to the creation of a
new layers of gel through polymerization. In [119, 120], membrane waves based
on the competition between protrusive forces due to actin, and contractile forces
due to myosin are studied. Here, the protrusion force is assumed to be proportional
to the local concentration of membrane proteins driving actin polymerization.
Additionally, membrane tension and elastic force are included. A common feature
of these continuum models is that the assumed interaction between the actin network
and membrane/obstacle involves almost exclusively properties of the membrane or
obstacle, and not of the actin filaments, that are not modeled explicitly. However,
it is known that the entropic force exerted by single actin filaments on an obstacle
depends strongly on their fluctuating length and their position and orientation with
respect to the obstacle being pushed [53, 97]. Additionally, in most continuum
models and many filament models describing filaments as stiff rods, the sum of
protrusion velocity and retrograde flow velocity equals the (effective, projected)
polymerization velocity. However, experiments showed that this is not always the
case [69, 89]. In order to include these observations, the properties of the filaments
close to the leading edge have to be modeled explicitly like, e.g., in [43, 44, 147].

The growth of an actin network against an obstacle has been simulated in [16].
The approach includes the position of single filament tips, which is considered for
the calculation of the total force on the obstacle. The dependence of this force on
the filament orientation has been included in [17]. The response of filaments to force
depends sensitively on the freely fluctuating length between the graft point closest to
the leading edge and the filament tip experiencing the force [53]. That dependence is
crucial in understanding different dynamic regimes of cell motion. Long free lengths
yield slow edge velocities because filaments are too floppy to exert a strong pushing
force and cell motion may even pause or stop if filaments become too long and
floppy [43, 75]. Short free lengths yield slow velocities due to the polymerization
rate limitation by strong force [8, 43, 75].

Explicit consideration of the length dynamics of actin filaments [43, 44, 54]
allows to include the dependence of the interaction force on the free fluctuation
length of the filaments. Initially, models made simplifying assumptions on the
dynamics of the cross-linking points of the filaments that are critical ingredients
in determining the force. Recently, a model combining a gel description of the actin
network, a cross-linking dynamics accounting for diffusion of free cross-linkers and
a filament description of the boundary has been studied [147]. The filament model
provides here an accurate force boundary condition for the gel model, that, in turn,
allows for the proper calculation of the filament position and length dynamics.



348 M. Enculescu and M. Falcke

Another controversy between several models concerns the relation between local
membrane velocity and local growth velocity of the actin network. Several models
assume for simplicity that the membrane moves with the mean polymerization
velocity of the actin network [31, 78, 113, 119, 120]. This is a strong constraint,
meaning that the relative position of the filament tips with respect to the membrane is
assumed to be constant. Such a constraint is realistic only during steady motion of a
cell, for example, a crawling fish keratocyte. Experimentally, it has been shown that
time shifts up to 20 s between the maxima of protrusion and polymerization velocity
at the leading edge are possible in dynamic regimes with oscillatory motion [69].

Most models do not reproduce this phase shift between polymerization and
protrusion, and that has to be seen in connection with the force balance at the leading
edge, the way retrograde flow is included, the force–velocity relation and the relation
between polymerization and leading edge motion. If the leading edge velocity is
equated with the polymerization velocity (in some models subtracting a constant
retrograde flow), there is no phase shift between protrusion and polymerization and
the force–velocity relation will reflect the force dependence of the polymerization
rate. However, measurements with fish keratocytes showed that the force–velocity
relation is different from the force dependence of polymerization [63, 112].

Several models do not couple actin network and boundary motion by the
same velocity, but by the same interaction force, according to Newton’s third
law. The processes contributing to the force balance and the relation between
force and gel flow as well as force and membrane velocity then decide whether
the measured force–velocity relation for the whole cell and the measured phase
behavior are explained by the model. Many studies assume a linear relation between
the total force exerted on the membrane and the resulting membrane velocity
[16,43,44,53,119,120,147]. That relation results from the assumption of a viscous
drag to over-damp membrane velocity dynamics. This drag comprises viscous drag
from the external medium and the transport of membrane to the protruding parts
of the cell. As mentioned above, some models describe membrane resistance as a
constant force.

The force driving protrusion is due to polymerizing filaments in lamellipodial
motion [1, 14, 73, 110]. The force with which these filaments push against the
membrane determines the polymerization rate [53, 98]. Models for the motion of
protein-coated beads include also the force exerted by attached filaments on the
obstacle surface [9, 42, 98]. Groswasser et al. derive a bi-phasic friction force–
velocity relation from this transient attachment of filaments [9]. It causes an
additional friction force proportional to the velocity at small velocities. At high
velocities, this additional friction force vanishes, since the time during which
filaments are attached drops at a certain velocity. Thus, for high velocities, the
proportionality constant between force and velocity is reduced. This bi-phasic
friction may lead to bead velocity oscillations [9]. Interestingly, velocity oscillations
are possible also when the friction force–velocity relation is assumed to be linear,
but attachment to the obstacle is considered in the computation of the total force
on the obstacle by separating the dynamics of attached and detached filaments and
tracking their mean length [43,54]. This explicit consideration of attached filaments
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comprises contributions of each of them to the force balance at the leading edge,
which again may change the phase relation between protrusion and polymerization.

If there are only viscous or constant forces resisting motion, each change in the
polymerization force necessarily entails immediately a change of velocity without
phase shift. Other forces resisting motion – like the one from attached filaments –
can modulate this temporal relation such that an increase in polymerization may
first increase retrograde flow or compress filaments close to the leading edge and
only slowly or later protrusion. That can be investigated by models like introduced
in [147].

Mathematical models for cell motility vary further in the complexity of the
biomechanical processes considered. Creation of new filaments by nucleation has
been explicitly included in some filament models, either by assuming creation on
existing filaments (autocatalytic model) or free creation on subsequent attachment
to existing filaments (nucleation model) [4, 17–19, 22, 24, 90]. Similarly, filament
capping and severing has been included explicitly in [21,23,90,95,96]. By contrast,
other filament models assume implicitly that the processes involving creation and
severing of filaments are balanced, such that a steady state with a constant number
of active filaments is reached [43, 44, 53, 97, 147].

Several models include contraction of myosin motors explicitly, e.g., [20, 78,
86, 102, 113, 119, 120, 147]. Similarly, adhesion to the substrate might be explicitly
included [78,81,102]. Other models neglect these processes, under the tacit assump-
tion that protrusion at the leading edge is decoupled from attachment/detachment
to the substrate and contraction of the cell body. Attachment to the membrane or
the surface of propelled artificial objects is explicitly included in several models
[44,53,90,98], motivated by different attachment mechanisms found experimentally
[27, 52, 80]. The whole actin cycle including the major regulatory mechanisms has
been modeled in [10, 11].

6.2 Comparison of Sets of Experiments Explained by Models

The morphodynamics of crawling cells has been analyzed in several experimental
conditions and with different cell types. Using various analysis techniques and
computational tools, high-resolution membrane velocity maps along the leading
edge can be obtained from processing experimental images.

Velocity maps of crawling cells show distinguishable morphodynamic patterns,
some of which seem to be characteristic to the cell type under the given experi-
mental conditions. Experiments with spreading cells show lateral membrane waves
[40], periodic lamellipodial contractions [56, 143], and phase transitions between
different morphodynamic pattern during the spreading process [39]. Observation
of different types of migrating cells has shown traveling waves with different
profiles, like protrusions spreading laterally from one point of the membrane in
both directions, traveling retractions, and slightly spatially modulated velocity
oscillations [91].
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Early models for cell migration aim to explain the global movement character-
istics of the cell, e.g., traveling speed and steady height profile [31, 78, 86, 96, 97],
shape determination of motile cells [73, 113] or the structure of the actin network
[4, 16]. Later models include the morphology of the leading edge. The existence of
periodic traveling waves along the lamellipodium can be explained by combining
protrusion forces due to polymerization and contraction forces due to the presence
of myosin motors [119, 120]. The wave mechanism described by Shlomovitz et
al. requires molecules inducing lateral curvature of the leading edge and myosin
activity [119]. However, at least some types of waves do not depend on myosin
activity [40, 91]. An alternative wave formation mechanism, based on the com-
petition between protrusive forces due to detached, polymerizing filaments and
pulling forces due to attached filaments has been proposed in [44]. It reproduces
the laterally traveling protrusions, the modulated velocity oscillations and the Rac-
induced transition between both patterns. In agreement with experiments, the lateral
velocity of protrusions is independent from cell velocity and both patterns do not
depend on myosin activity [44].

The velocity oscillations of Listeria bacteria have been modeled with the elastic
gel theory by Gerbal et al. [51]. This theory offers an explanation for oscillations
due to a competition between actin gel growth from the sides and growth from
the back of the bacterium, with different velocities and strengths for each. While
the simulated period agrees well with experiments, velocity amplitudes are about
one order of magnitude larger than measured values [51]. The filament model by
Gholami et al. including dynamics of free filament length and filament attachment
to the bacterium reproduces Listeria velocity oscillations quantitatively with respect
to periods and amplitudes [54].

The validity of model predictions can be further tested with the help of
biomimetic systems, where various parameters can be changed, in contrast to
migrating or spreading cells. Experiments on protein-coated spherical beads [9, 33]
and oil droplets [12,33] have revealed different regimes of motion – continuous and
oscillatory, and identified parameters that might induce transitions from one state
of motion to the others. The same model as used by Gholami et al. for Listeria
with slightly changed parameter values also reproduces the velocity oscillations
observed with oil droplets including the onset of oscillations due to weakening of
filament attachment by VASP [43,134]. The mechanism has periodic attachment and
detachment of filaments as central processes [43,134]. There are several theoretical
studies on bead motion characteristics [9, 42, 51, 90, 98]. Mogilner and Oster
demonstrated the compatibility of attachment and propulsion by polymerization by
the ground-breaking tethered ratchet model [98]. Elastic gel theory explains velocity
oscillations of protein-coated beads [9] by a mechanism called the “soap effect”,
“because it recalls the rapid motion of a wet bar of soap slipping away as it is
slowly squeezed by hand”. [51]. This is mainly justified by scaling arguments for
maximal velocities of the oscillations and the threshold for the onset of oscillations
in dependence on the bead radius [9, 51]. The oscillation mechanism relies on a
curved obstacle surface and the bi-phasic dependence of the friction force on bead
velocity mentioned in the previous section. Bead motion has also been investigated
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by the model used for Listeria motion, oil droplets, and morphodynamic phenotypes
[42–44,54]. The oscillation mechanism is essentially the same as with oil droplets or
Listeria. That model is able to simulate the velocity oscillations quantitatively with
respect to periods and amplitudes except a small shift in the average velocity [42].
It also reproduces the dependence of the onset of oscillations on the bead radius and
protein density on the bead surface.

While there are many models explaining very well certain aspects or systems of
cell motility or morphodynamics, the appeal of the modeling concept including the
dynamics of free fluctuating length of filaments, filament binding dynamics at the
obstacle surface, force-dependent polymerization and – if required – nucleation and
capping is for us the reproduction of experimental results with a variety of systems
in a very intuitive way [42, 43, 45, 53, 147]. It also offers a natural explanation for
the variety of dynamic regimes observed in cell motility, morphodynamics, and
biomimetic systems.

7 Open Problems

According to our view on the field, there are three conceptually highly relevant
problems the solution of which could advance the field: (1) Despite the molecular
similarities between the variety of biological and biomimetic systems, there is not
a unifying theory or model. (2) There is no satisfying theoretical explanation of the
force–velocity relation of fish keratocytes. (3) The phase shift between protrusion
and polymerization is unexplained and the function of the two functionally and
structurally different regions of the lamellipodium – often described as lamellum
and lamellipodium – has not been investigated theoretically.

The force–velocity relation of fish keratocytes must be shaped by the intra-
cellular force generation mechanism. The compatibility of the ideas on force
generation by actin polymerization with measured force–velocity relations has not
been shown in a mathematical model yet. But this if of course required for a
consistent theory on cell motility. The force–velocity relation exhibits a dramatic
velocity drop upon first contact with an AFM cantilever or glass fiber followed
by a concave-down relation in the slow-velocity regime [63, 112]. The discussion
around it has focused on an explanation for the concave down part since this shape
is in contradiction to the convex shape of the force exponential dependence of the
actin polymerization rate [53,97]. Most theoretical studies essentially neglected the
initial velocity drop. Simulations of branched actin networks made of rigid rod-
like filaments with excluded volume effects taken into account [116] produce a
concave-down force–velocity relation. However, they predict stall forces by a factor
of 20–50 too large. Brownian dynamics simulations of stiff actin filaments in a
branched network [88] also give rise to a concave shaped force–velocity curve but
velocities at half stall force are orders of magnitude faster than in experiments with
fish keratocytes and stall forces are by a factor 200–400 too small. No retrograde
flow is found in actin networks growing under an AFM cantilever [107]. The shape
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of the force–velocity curve of those systems resembles that of keratocytes, though
on much different scales – it takes more than 100 min to reach the stall force which
is in the order of 300 nN. Weichsel and Schwarz suggested to explain this behavior
by a configurational bistability of the actin network [142]. However, that bistability
has recently been excluded as the mechanism of the force–velocity relation in fish
keratocytes by Heinemann et al. [63]. They repeated the measurement with the same
cell and a time lag of 30–40 s. The second measurement should have provided results
different from the first one, if the actin network exhibited configurational bistability
and a state transition shaped the force–velocity relation. However, two repetitions
showed the same outcome as the first measurement. Heinemann et al. excluded
the autocatalytic branching model by the same reasoning. That model explains the
plateau after the initial drop by growing filament density [16]. Such an increase in
density should also affect the second and third measurement, according to [63], what
was not observed.

We subsume the phase shift between polymerization and protrusion and the
structure of the lamellipodium under one problem, because it is likely that the
phase shift depends on structural elements close to the leading edge membrane
showing dynamics which has not been accounted for by mathematical models
yet. Several processes may contribute to such a phase shift: Polymerization drives
not only protrusion but also retrograde flow, the region close to the leading edge
might be much softer than modeled until now, protrusion might not only depend on
polymerization forces but also on the binding of filaments to the membrane pulling it
back. Zimmermann et al. have recently suggested a model including these processes
but it has not been applied to the problem yet [147].

The vision of modeling of morphodynamics is to infer at least in part the state
of signaling pathways and the cytoskeleton from observing the changes of cell
shape and velocity. The starting point can be a biomechanical model in terms of the
elemental processes and rates like polymerization, depolymerization, capping and
nucleation, elastic responses, retrograde flow, membrane tension, etc. The above-
mentioned problems show that this still has to be established. Modeling of the
control of the parameters of such a model by signaling pathways can then lead to a
comprehensive understanding of morphodynamics and motility.
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Chapter 21
Time-Structure of the Yeast Metabolism In vivo

Kalesh Sasidharan, Masaru Tomita, Miguel Aon, David Lloyd,
and Douglas B. Murray

Abstract All previous studies on the yeast metabolome have yielded a plethora of
information on the components, function and organisation of low molecular mass
and macromolecular components involved in the cellular metabolic network. Here
we emphasise that an understanding of the global dynamics of the metabolome in
vivo requires elucidation of the temporal dynamics of metabolic processes on many
time-scales. We illustrate this using the 40 min oscillation in respiratory activity
displayed in auto-synchronous continuously grown cultures of Saccharomyces
cerevisiae, where respiration cycles between a phase of increased respiration
(oxidative phase) and decreased respiration (reductive phase). Thereby an ultradian
clock, i.e. a timekeeping device that runs through many cycles during one day,
is involved in the co-ordination of the vast majority of events and processes in
yeast. Through continuous online measurements, we first show that mitochondrial
and redox physiology are intertwined to produce the temporal landscape on which
cellular events occur. Next we look at the higher order processes of DNA duplication
and mitochondrial structure to reveal that both events are choreographed during
the respiratory cycles. Furthermore, spectral analysis using the discrete Fourier
transformation of high-resolution (10 Hz) time-series of NAD(P)H confirms the
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existence of higher frequency components of biological origin and that these
follow a scale-free architecture even in stable oscillating modes. A different signal-
processing approach using discrete wavelet transformations (DWT) indicates that
there is a significant contribution to the overall signal from �5; �10 and �20-
minutes cycles and the amplitudes of these cycles are phase-dependent. Further
investigation (derivative of Gaussian continuous wavelet transformation) reveals
that the observed 20-minutes cycles are actually confined to the reductive phase
and consist of two �15-minutes cycles. Moreover, the 5 and 10-minutes cycles are
restricted to the oxidative phase of the cycle. The mitochondrial origin of these
signals was confirmed by pulse-injection of the cytochrome c oxidase inhibitor H2S.
We next discuss how these multi-oscillatory states can impinge on the apparently
complex reactome (represented as a phase diagram of 1,650 chemical species
that show oscillatory behaviour). We conclude that biological processes can be
considerably more comprehensible when dynamic in vivo time-structure is taken
into account.

Abbreviation List

CWT Continuous wavelet transformation
DFT Discrete Fourier transformation
DOG Derivative of Gaussian
DWT Discrete wavelet transformation
FACS Fluorescence activated cell sorting
FAD Flavin adenine dinucleotide
FMN Flavin mononucleotide
rfu Relative fluorescence units

1 Introduction

The metabolic network is a highly dynamic system from millisecond interactions
at the cell membranes, seconds of metabolic reactions, minutes involved in tran-
scription/translation to cell-division cycles in the hour domain. However, rather
few studies have addressed how these domains interlink to create the “temporal
architecture in vivo” [1–4]. This is chiefly because detailed comprehension requires
time-resolutions not easily achieved for any one type of analysis. For example,
high-throughput analyses are costly and are mostly applicable to populations of
cells, whereas single cells analyses can only be conducted a set number of times
before the monitoring system perturbs and/or irrevocably damages the individual
[5]. In single cells, despite the astonishing advances in fast imaging techniques,
and the growing availability of specific fluorescent probes, limitations still exist
(e.g., for the quantification of molecular participants during the rapid observation
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of their kinetic interactions and for elucidation of their long-term fates). Use of
synchronous cultures, from which information on individual cells or organisms can
be inferred from populations, often suffers from the effect of perturbations given by
the experimental procedures employed to obtain the initial synchrony [6].

Early workers seeking to describe the cell-division cycles or organisms or cells
as ordered sequences of events or processes achieved considerable success for the
major steps (e.g., DNA synthesis (S-phase), nuclear division, organelle dynamics),
but description of metabolic changes was limited [7–12]. Observations of the
oscillatory behaviour in enzyme activities [13], concentrations of metabolites and
key co-enzymes (NAD(P)H and adenine nucleotides) necessitated the postulation
of the operation of a short period .�/ biological clock (for various species of yeast
� D 30min to 8 h) [14, 15]. Auto-synchrony during continuous aerobic cultures of
brewer’s yeast (Saccharomyces cerevisiae) can be maintained in an auto-dynamic
oscillatory state over extended times (up to months). This has been known for
over 40 years [16–20]; however, it is only recently that with developments in
high-throughput and continuous online monitoring (coupled to rapid acquisition
systems) the full extent of the oscillatory system has been revealed [3, 21–26].
The burgeoning power of mass-spectrometric analysis of metabolites [25,27], high-
throughput dissection of the cell-division cycle events [18, 21], transcriptomics
[21, 26], continuous in-line monitoring [23, 28] and computational modelling [29]
have now made possible a detailed study of the intricate operation of the metabolic
network of synchronised yeast on multiple time-scales. It should be stressed that the
extensive evolutionary conservation of central metabolic reactions and pathways
imply that our description of the yeast metabolome is an archetype and is, therefore,
of general applicability to eukaryotic microbes, animals and plants [30].

In this chapter, we first illustrate the global redox cycle underpinning auto-
synchronous respiratory oscillations using online measurements and conclude that
nucleo-mitochondrial activity is critical. We next utilise flow cytometry to further
explore the relationship between the redox cycle, mitochondrial mass and cell-
division cycle progression. We then use high frequency sampled NAD(P)H data
(analysed using Fourier, discrete and continuous wavelets) to illustrate that the
underlying architecture of the metabolome is multi-oscillatory, i.e., have a statis-
tically self-similar multiple frequency output. Inhibiting mitochondrial respiration
at the level of cytochrome oxidase with H2S abates all oscillatory frequencies
including the 40 min period ultradian clock. Therefore, providing proof-of-principle
that multi-scale timekeeping is an emergent property of the overall network involved
in metabolism, growth, and proliferation in yeast, as the overall impact of the pertur-
bation, was shown over all temporal scales. This illustrates that the architecture of
the cellular network, conventionally obtained from infrequent sampling, is merely
a snapshot of a highly dynamic system. These data are then discussed with respect
to amino acid regulation and cellular energetics. We next reconstruct the available
data to produce a polar plot or “clock-face” of phenotypic and molecular events
occurring during each redox cycle.
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2 Methods

2.1 Strain and Culture Conditions

Unless otherwise stated, all chemicals were supplied by Wako Chemicals, Japan.
The Saccharomyces cerevisiae strain used in this study was the diploid strain
IFO 0233. The medium consisted of glucose monohydrate .20 g dm�3/; .NH4/2
SO4 .5 g dm�3/, KH2PO4 .2 g dm�3/; MgSO4 � 7H2O .0:5 g dm�3/; CaCl2 �
2H2O .0:1 g dm�3/; FeSO4 � 7H2O .0:02 g dm�3/; ZnSO4 � 7H2O .0:01 g dm�3/;
CuSO4 �5H2O .0:005 g dm�3/; MnCl2 �4H2O .0:001 g dm�3/, yeast extract (Difco;
1 g dm�3) and 70% (v/v) H2SO4 .1 cm3 dm�3/. Sigma-Aldrich antifoam 204
was used at 0:2 cm3 dm�3. Continuous culture was carried out as described
previously using an Eyela bioreactor (MBF-250ME, Eyela, Japan; working volume
0:65 dm�3). The fermentor was stirred at 750 rpm utilising high-precision stirrers
(Eurostar Power Control Visc, IKA, Japan) and aerated at 0:15 dm3 min�1, the
aeration rate being controlled by a mass-flow controller (GFC, Aalborg, Japan). The
feed pump (Perista, AC-2120, Atto, Japan) was automatically calibrated to deliver
55 cm3 h�1 by monitoring the weight drop on a high-capacity balance (PM160001,
Mettler Toledo, Japan). Pulses were minimised by using small bore tubing (ID
1 mm, Pharmed, Cole-Parmer, Japan) and by the planetary design of the pump. The
pH was controlled at 3.4 by monitoring with an immersed electrode (InPro3030,
Mettler Toledo, Japan) and controlled addition of 2.5 M NaOH solution by a Labo
controller (B.E. Marubishi, Japan). An independent circulating water-bath (FE-25,
Julabo, Japan) maintained the culture at 30ıC using an external thermometer. The
dissolved oxygen concentration was monitored using an immersed polarographic
electrode (InPro6800, Mettler Toledo, Japan).

2.2 Electron Microscopy and Flow Cytometry

Samples were prepared and visualised by electron microscopy as previously
described [31]. Culture (1 mL) was removed from the reactor, pelleted at 12k �
g.10 s/ and aspirated. The staining solution (1 mL) containing 0:25 �g of Hoechst
33342 (Wako Chemicals, Japan), 0:1 �g 2-[3-[5,6-dihydro-2H -benzimidazol-2-
ylidene]-1-propen-1-yl]-3-methyl-benzoxazoliumchloride (Mitotracker Green FM,
Molecular probes, Japan) and phosphate buffered saline at 4ıC was used to re-
suspend the pellet. Samples were then analysed on a FACScalibur flow cytometer.
The time between sampling and analysis was �15min. Data from the analysis
were visualised and analysed using the Bioconductor package FlowClust [32].
The resulting cluster centre means and distributions were calculated for three
independent measurements and are represented in relative fluorescence units (rfu).



21 Time-Structure of the Yeast Metabolism In vivo 363

2.3 Monitoring and Calculations

All instruments were supervised and their outputs monitored and logged using
custom designed software.

Heat production rate Q in the culture was estimated using Fourier’s law of heat
conduction (21.1):

Q D �2k rl dT

x
(21.1)

where dT , temperature difference, was calculated by subtracting the fermentor
temperature from the water-bath temperature, r is the internal radius of the reactor, l
is the internal height of the reactor’s liquid phase, and k is the conductivity of glass
and x was the thickness of the glass (2 mm).

Continuous partial pressure of oxygen
�
PO2.o/

�
and partial pressure of carbon

dioxide
�
PCO2.o/

�
off-gas measurements were carried out using an Enoki-III (Figaro

engineering, Japan) analyser. The partial pressure of hydrogen sulphide
�
PH2S.o/

�
in

the off-gas was measured continuously using an electrode based gas monitor (HSC-
1050HL, GASTEC, Japan). Instruments were calibrated as per manufacturer’s
instruction. The input air partial pressures of oxygen

�
PO2.i/

�
was 0.20947 atm,

carbon dioxide
�
PCO2.i/

�
was 0.0004 atm and hydrogen sulphide

�
PH2S.o/

�
was 0 atm.

O2 uptake rates .qO2/ ; CO2 production rates .qCO2/ and H2S production rates .qH2S/

were derived from the following equations:

Ii D 1 � �PO2.i/ C PCO2.i/ C PH2S.i/

� D 0:79013

Io D 1 � �PO2.o/ C PCO2.o/ C PH2S.o/

�

qO2 D
F

RTV

�
PO2.i/ � PO2.o/

Ii

Io

�

qCO2 D
F

RTV

�
PCO2.o/

Ii

Io
� PCO2.i/

�

qH2S D F

RTV

�
PH2S.o/

Ii

Io
� PH2S.i/

�
(21.2)

where F was the gas flow into the system, R was the universal gas constant
(0.0820575 L atm mol�1 K�1) and V was the volume of the reactor .0:65 dm�3/.

NAD(P)H and oxidised flavins were measured by a fluorimeter. Briefly a Hg
source (Nikon, Japan) was coupled to a fibre guide through a 360 nm ˙ 10 nm
filter for NAD(P)H excitation or 460 nm ˙ 10 nm filter for flavin (Optoscience,
Japan). The fibre optic guide end was chemically sterilised with ethanol and the
tip was immersed in the culture. The fibre guide was split so that half the fibres (15
fibres) was used for excitation and the other half was used for emission detection.
Detection was carried out using a photomultiplier tube with 460 nm˙ 10 nm filter
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for NAD(P)H or 530 nm ˙ 10 nm filter for flavins. The scatter fluorescence and
lamp fluctuations were measured by monitoring the excitation wavelength using
filtered photomultiplier tube or photocell, respectively, and the excitation signal
was compensated for any variation in these signals [33]. The system was supplied
by Norman Graham (University of Pennsylvania, USA) [34]. Data were acquired
from the PMT amplifier using a fast USB data acquisition module (PMD-1608FS,
Measurement computing, Japan) at a rate of 10 Hz. Custom designed software
(VirtualChartRecorder) was then used to visualise and log the data stream.

2.4 Data and Signal Processing

All data and signal processing were carried out in R using custom scripts available
on request. Wavelet analyses were carried out using Rwave R package [35]
and MassSpecWavelet Bioconductor package [36]. Models were constructed in
CellDesigner [37, 38].

The data from numerous studies [3, 4, 21, 23, 31, 39–49] were compiled together
with their reference dissolved oxygen concentrations. Where the raw data were
not available, the plots were first digitised (Plot Digitiser, J.A. Huwaldt, http://
plotdigitizer.sourceforge.net/). The phase .�/ of each sample .k/ was calculated for
each cycle .m/ for each dataset (21.3).

�k D 360ı
 

tk � tm.dŒO2�=dt /min

tmC1
.dŒO2�=dt /min

� tm.dŒO2�=dt /min

!
(21.3)

where t was the sample time and the start point for each cycle was the minimum
first derivative .dŒO2�=dt/ of the dissolved oxygen concentrations. Samples were
then phase adjusted to reconstruct three cycles where �1 was closest to 0ı. All time
series were then analysed using statistical methods to obtain a phase angle, a signal-
to-noise ratio and a significance of the signal-to-noise ratio. The metabolites utilise
the nomenclature developed for a large-scale model of yeast metabolism. All gene
names were retrieved from the Saccharomyces genome database.

3 Results and Discussion

3.1 Real-Time Measurements of Redox State

Continuous online measurements (Fig. 21.1) illustrate the phase relationships
between seven parameters measured. Dissolved O2 was chosen as a benchmark
of oscillatory activity because it was most conveniently measured by a relatively
cheap immersed electrode, and it represents the residual dissolved O2 concentration

http://plotdigitizer.sourceforge.net/
http://plotdigitizer.sourceforge.net/
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Fig. 21.1 The phase relationships between the continuously monitored parameters and the
dissolved oxygen concentration (all figures; O2) during the respiratory oscillation found during
yeast continuous culture. NAD(P)H (a) and flavin (b) fluorescence were measured continuously
on-line using a fluorimeter. Heat transfer (c) was calculated using Fourier’s law from the water bath
temperature and the reactor temperature. Respiratory quotient (qR; d) was calculated by dividing
the carbon dioxide production rates

�
qCO2 I f

�
; by the oxygen uptake rates

�
qO2 I e

�
; these were

calculated from partial pressure measurements. Hydrogen sulphide production rates
�
qH2SIg

�
were

calculated from the partial pressure of H2S measured using an electrode



366 K. Sasidharan et al.

remaining after the organisms used what they require. The phase angles of all
variables were referenced to the minimum first derivative of this oscillatory output.
The troughs correspond to high respiratory activity or oxidative phase, where
oxygen uptake rates are at a maximum, and the peaks correspond to low respiratory
activity or reductive phase, where oxygen uptake is at a minimum. Its waveform
has a period circa 40 min. Nicotinamide nucleotide (NAD(P)H) redox state was
maximally reduced just before dissolved O2 reached maximal values (Fig. 21.1a),
at the onset of the reductive stage. Interestingly the minimum values for NAD(P)H
coincided with the minimum first derivative of the dissolved oxygen concentration.
Flavin fluorescence (Fig. 21.1b) peaked prior to NAD(P)H and was in-phase with
oxygen uptake rates (Fig. 21.1e) and anti-phase to respiratory activity (Fig. 21.1d).
The flavin signal (Fig. 21.1b) represents the sum of the fluorescent signal from free
and bound flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN)
both excite at 450 nm and emit at 535 nm in the oxidised form [50]. FAD is the
co-enzyme predominantly involved in transferring electrons from the TCA cycle
reactions to the electron transport chain. FMN in both free and protein bound forms
show auto-fluorescence and are key cofactors in many oxidoreductive enzymes in-
cluding those involved in cellular iron regulation and mitochondrial assembly [27].
The data presented here clearly show that flavins are predominantly oxidised during
the oxidative phase. Flavin fluorescence emission peaks at the end of the oxidative
phase then rapidly declines at the transition to the reductive phase. Both NAD(P)H
(Fig. 21.1a) and flavin signals (Fig. 21.1b) show more complex waveforms than that
of dissolved oxygen. Additionally, heat transfer from the reactor showed a complex
waveform with three local maxima occurring for each respiratory cycle (Fig. 21.1c),
with major maximum and minimum rates corresponding to those for oxygen uptake
rates (Fig. 21.1e). The higher frequency observed correlated with the three peaks
of transcriptional activity previously observed [21, 24]. Maximum CO2 production
occurred at the end of the oxidative phase (Fig. 21.1f). Maximum H2S production
occurs in-phase with maximum dissolved oxygen (Fig. 21.1g). Therefore, online
measurements provide a unique insight into the phase relationships between the
products of respiration and the redox state of the cell. This is perhaps best illustrated
by the increased flavin oxidation state and oxygen uptake rates thereby indicating
that mitochondrial function is globally being influenced during each cycle.

3.2 The Relationship Between Redox State, Mitochondrial
Function and the Cell-Division Cycle

Previously, we visualised the state of mitochondria during the oxidative and
reductive phase by using ultra-thin sections of fixed organisms and electron
microscopy [41]. These studies indicated that mitochondria structure drastically
altered during each cycle (Fig. 21.2). Energised mitochondria in the oxidative stage
were characterised by cristae that are not easily visible due to an expanded inter-
membrane space. In the reductive phase, mitochondria became de-energised, more
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electron dense and the cristae were folded into sheets with most of the intra-
mitochondrial space occupied by the matrix. However, the relationship between
the cell-division cycle and the mitochondrial cycle as well as the details of the
mitochondrial cycle remains to be elucidated. These changes are also mirrored in
the cytoplasmic structure where the osmium/Pb fixation procedure yields organisms
that are more electron dense during respiratory activity.

The cell-division cycle is gated by the respiratory oscillation where S-phase
predominantly occurs during the reductive phase of the 40 min period cycle [21].
This occurs in a para-synchronous way so that �10% of the total cell number
progress through S-phase (the cell-division time of the culture was set by the
dilution rate of the culture to 8.1 h). To address the relationship between the
oscillation, mitochondrial mass and the cell-division cycle we conducted two-dye
flow cytometry using the vital dyes Hoechst 33342 for DNA and Mitotracker
Green FM for mitochondrial mass (Fig. 21.2). Staining was conducted on live
cells, making high-resolution time sampling impossible, therefore, we selected two
time-points (the cytometry is a representative sample of triplicate plots). Small
cells (forward scatter results not shown) with a low DNA content were assigned
to be G0 cells, these small cells also had a very low mitochondrial mass which
was comparable in the oxidative (O) and reductive (R) phases. As cells progressed
through the cell-division cycle the mitochondrial mass increased linearly for both
time-points sampled. However, this increase was twice as much in cells sampled
during the oxidative phase. So the average mitochondrial mass of G1 cells in the
oxidative phase was 225 rfu ˙ 52 rfu and 175 rfu ˙ 24 rfu in the reductive; in G2

cells, the mitochondrial mass during the oxidative phase was 325 rfu˙ 64 rfu and
248 rfu ˙ 38 rfu during the reductive phase. A model based clustering approach
was used to define the cell cycle phases and the deviation of the cluster centres
[32]. A distinct S-phase cluster was not detected during the oxidative phase.
Therefore, the only cells that did show synchronous behaviour with respect to their
mitochondrial mass were G0 cells. S-Phase gating of 10% of the cells involves
a reduction in mitochondrial mass of the entire population and G1 appears to be
the most affected phase of the cell-division cycle as mitochondrial mass showed
significant differences in distributions compared to G2 between the oxidative and
reductive phases. We, therefore, provide an insight into how a short-time scale, i.e.,
that of mitochondrial energisation interact with the long-time scales of the cell-
division cycle.

3.3 The Multi-oscillatory States of the Yeast “Redox Core”

NAD(P)H redox state is one of the most important indicators of intracellular
function and also of oxidative stress [27]. In yeast, nitrosation of thiols and Fe cluster
by NOC has a striking perturbative effect on respiratory oscillations [23]. Data
on oxidative stress-mediated depletion of glutathione and cysteine levels confirm
the close association of these core reactions with sulphate assimilation and H2S



368 K. Sasidharan et al.

Fig. 21.2 The temporal organisation of mitochondria and the cell-division cycle, revealed by
electron micrographs of thin sections of organisms sampled in the oxidative (O) and reductive (R)
phases of the respiratory cycle (left-hand pictures; M – mitochondria), and flow-cytometry of DNA
concentration, measured by Hoechst 33448 and mitochondrial mass [mitochondria], measured by

Mitotracker Green
TM

(right-hand heatmaps). The pictures are electron micrographs taken from
thin sections of the fixed samples. The black bar represents 200�m. The heatmaps were produced
from 50,000 cells analysed by flow cytometry. The maximum peak was 528 cells (blue–purple hue
or black). Phases of the cell-division cycle are represented by G0; G1, S and G2. The panel insets
show a cycle of the respiratory oscillation found during continuous yeast growth where each black
dot represents a concentration of dissolved oxygen [DO]. The open circles represent the oscillation
phase where the samples were obtained

production [44]. H2S, an evanescent, toxic and highly diffusible messenger in cell
physiology [51–54], is also periodically produced in yeast with a fast rise time
and a slower decline, from sulphite via sulphite reductase [42, 43, 48]. Regulation
of this process has been studied using yeast disrupted in glutathione synthesis
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and glutathione reductase, and with thiol redox modifying agents (diethylmaleate,
N -ethylmaleimide, DL-buthionineŒS; R]-sulphoximine or 5-nitro-2-furaldehyde).
These compounds all caused perturbation of the respiratory oscillation [31], as did
certain genetic modifications of the wild-type strain [47, 55]. However, hydrogen
sulphide only phase shifts the oscillation during the reductive phase indicating
that this potent inhibitor of the cytochrome c oxidase is acting as an amplitude
modulator of the oscillation. Acetaldehyde too is a volatile and highly-diffusible
messenger molecule and is capable of phase-shifting the respiratory oscillations
during all phases making it an important synchronisation molecule [27, 46, 48, 49].
Acetaldehyde directly modulates NAD(P)H redox balance, and is a direct product
of ethanol oxidation. Therefore, balance of these reactions is critical for phase
modulation as revealed by the phase-resetting response curves obtained by pulsed
addition of acetaldehyde to the spontaneously synchronous culture [4]. Recently, we
analysed the data from continuous cultures exhibiting chaotic oscillatory behaviour
in CO2 and O2 (10 s resolution) and in NAD(P)H fluorescence (10 ms resolution)
for individual cells [1]. Both experiments indicated that temporal organisation in
cells followed the rules of a scale-free self-similar system or statistical fractal over
at least three orders of magnitude in time. These events encompass the cell-division
cycle time-scale down to the millisecond time-scale of metabolic events. The data
acquisition system of the fluorimeter employed to measure NAD(P)H can sample at
10 Hz; therefore, we carried out a similar analysis using NAD(P)H data sampled
from continuous cultures (420,000 data points; Fig. 21.3a). The oscillation was
allowed to free-run for 5 cycles, then we inhibited respiratory activity using a pulse-
injection of 10�mol ammonium sulphide. This resulted in the instantaneous release
of H2S which reversibly inhibits the mitochondrial respiratory chain [42]. This
perturbation led to an initial rapid rise in NAD(P)H due to inhibition of respiration
and NADH accumulation from the TCA cycle. The resulting redox imbalance was
followed by the oxidation of the NADH pool as the TCA cycle undergoes product
inhibition, and the antioxidant defences exhaust the electron donor capability of
NADH. Importantly, recovery to the stable oscillatory state occurs only after 10 h
stressing the overall impact across the metabolic and signalling network. Initially,
the signal was processed using discrete Fourier analysis (DFT) where the signal
could easily be delineated from the noise (where amplitude is proportional to
frequency; Fig. 21.3b). The signal component of the spectra followed the scale-
free behaviour as in our previous analysis during the unperturbed experiment [2].
The perturbation produced the major amplitude in the spectra (marked as 1 and 2
of Fig. 21.3b); the 40-minutes oscillation was the next most significant amplitude
(marked as 3 of Fig. 21.3b). Possible sub-harmonics of the 40-minutes oscillation
(20 and 10 min) were also observed (marked as 4 and 5 of Fig. 21.3b). Just prior
to the appearance of noise in the signal, there was also significant components
observed in the 2–5 min domain (marked as 6 and 7 of Fig. 21.3b). In order to
minimise computational resources, we re-sampled the data to 1 Hz (42,000 data
points) for further analyses.

Whilst DFT is very efficient at indicating whether a frequency occurred and for
discriminating noise from signal in a particular time series, it does not indicate the
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Fig. 21.3 Signal processing of the complex signal produced from continuous online measurement
of NAD(P)H initially sampled at 10 Hz (a). Discrete Fourier transformation (DFT) spectra reveal
that the relation between the amplitude was linear until 0.05 Hz indicating scale-free dynamics in
this region (b); below this, we observed a region of coloured noise. Discrete wavelet transformation
(DWT) using the Daubechies wavelet was then used to process the signal where windows (W)
that had significant correlation were shown (c). The data were down-sampled to 1 Hz to reduce
computation cost. Continuous wavelet transformation (CWT) using the derivative of Gaussian
wavelet (DOG) of data down-sampled to 0.1 Hz reveals the finer grain temporal events of the
signal (d). The heatmap intensity indicates the correlation of the signal to the wavelet. The vertical
line in (a) and (c) represents the time of .NH3/2S addition

temporal behaviour of this frequency [35]. For example, if a complex waveform
has frequency or amplitude modulation, e.g., if a signal becomes damped when
perturbed, then DFT will not differentiate this from a stable waveform. Wavelet
analysis while computationally more expensive than DFT provides not only a corre-
lation coefficient to the chosen wavelet of a particular component, but an indication
of the behaviour of that frequency. Therefore, DFT cannot be used to determine if
the perturbation causes changes to the signals we observe. Therefore, we analysed
the re-sampled data using Daubechies discrete wavelet transform (DWT, Fig. 21.3c).
Again, we find the major correlation in all the data-points was from the perturbation
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(Vall and W14 on Fig. 21.3c) and the next major component was from the 40-
minutes oscillation (W14 on Fig. 21.3c) where this signal was completely damped
during the perturbation. Interestingly, the correlation at 20 min (W13 on Fig. 21.3c)
was greater than half the correlation of the 40-minutes signal indicating that this
correlation was not merely a sub-harmonic of the 40-minutes signal, i.e., there
was an observable 20-minutes cycle in the reductive phase where two peaks are
merged. During the initial stages of the perturbation, this signal separates then
dampens. There is a residual 20-minutes oscillation during the perturbation but this
may be artificial due to effects from the DWT analysis. The 10-minutes correlation
(W12 on Fig. 21.3c) is also much larger than that expected from a sub-harmonic
(>1=3 of the 40-minutes signal). Additionally, its behaviour is also different from
the 20-minutes signal, in that the amplitude of the signal is larger during the
oxidative phase indicating that the NAD(P)H oscillates faster in the oxidative
phase when mitochondria are more active. On perturbation, the cycles also become
more separated and increase in amplitude before becoming damped later on in
the perturbation. The 5-minutes signal (W11 on Fig. 21.3c) follows a similar pattern
to the 10-minutes signal. We also found significant correlation in the 1-minute
signal (W9 on Fig. 21.3c); however, this did not display any significant change
during the perturbation. All other frequencies tested did not produce significant
correlations.

Whilst DWT is a powerful signal processing tool, it is limited by only extracting
sub-multiples of the original input dataset. We, therefore, utilised the continuous
wavelet transformation (CWT) to enhance the fidelity of the picture of the time-
structure [56]. The CWT produces wavelet coefficients that represent a collection
of correlations to a chosen waveform in a range that represents the time-scales
in the data (called octaves from the historical use of wavelets to analyse sound;
set to 13) and octaves are then subdivided into a number of arbitrarily chosen
correlations called voices to represent the sub-scale resolution required (set to 16).
The wavelet of choice is also arbitrary and we selected the derivative of Gaussian
(DOG) wavelet, as this produced the best temporal resolution for higher frequencies
for our data. The resulting matrix of correlation coefficients was visualised in a heat-
map (Fig. 21.3d). To minimise computational cost, we re-sampled the data to 0.1 Hz
and focussed on the stable oscillatory region (5 cycles). DOG-CWT reveals that the
5 and 10-minutes component (octaves 8 and 9) can be successfully delineated and
were of much higher amplitude in the transition between the reductive to oxidative
phase and during the oxidative phase. It also showed that the 20-minutes component
observed in the DWT was almost exclusively found in the reductive phase (octave
10), and its periodicity was closer to 12.5 min. The analysis indicates that NAD(P)H
undergoes a switch in its multi-oscillatory behaviour from low-frequency NAD(P)H
oscillations during the reductive phase to higher frequencies in the oxidative phase
which we suggest is mediated by mitochondrial activity. Indeed the mitochondria-
generated frequency oscillations have been directly imaged in time-series of
images obtained by two-photon excitation of NAD(P)H auto-fluorescence (scan-
rate 8 Hz) [2].
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3.4 The Temporal Behaviour of the Cellular Network

The impact of the observed multi-oscillatory behaviour on previous work using the
self-synchronised aerobic continuous culture of Saccharomyces cerevisiae is yet
to be fully appreciated and mitochondrial activity (especially the transmembrane
electrochemical potential of the inner membrane) and redox state of the nicoti-
namide nucleotide-coenzymes all are critical determinants of global metabolic state.
On many of the measurements, including those of dissolved oxygen and transcript
levels, we frequently observe shoulder peaks that correspond with the 12.5-minutes
oscillation observed by CWT [3,21]. Interestingly, on many of these measurements,
we also observed sample–sample variation, apparently confined to the oxidative
phase. As these were sampled at every 4 min, this variation could in retrospect
largely be due to the higher frequencies now observable during the oxidative phase.
This leads to the striking conclusion that stable-multi-oscillatory dynamics gives a
“noise-free” system in the metabolic and transcriptional time domains and indeed
may be their major function. By sampling at successively higher time resolutions,
we can repeatedly find another higher frequency responsible for apparently noisy
behaviour.

To illustrate how these multiple time-scales can be generated, we examined
the amino acid biosynthesis network, where carbon skeletons are derived from
central carbon metabolism, chiefly TCA cycle intermediates and to a lesser extent
glucogenesis/glycolytic intermediates. Thereby, we can generate a simple concep-
tual model (Fig. 21.4). The intracellular concentrations of glutamate, aspartate,
threonine, valine, leucine, serine and cysteine all oscillate with�40-minutes period,
but showed different oscillation amplitudes, apparent noise, dual peaks and maxima
[3, 43, 45]. This implies that numerous regulatory circuits are utilised for amino
acid biosynthesis during the respiratory oscillation. The cyclic functional changes
of mitochondria result in the oscillation in the concentration of NAD(P)H which
are directly linked with the rate of amino acid biosynthesis. When amino acids
biosynthesis rates are high, increases in the intracellular amino acid pools lead to
increased aminoacylation of tRNAs [57]. The aminoacylated tRNAs then inhibit the
translation of Gcn4p, the socalled “master regulator” of amino acid biosynthesis
[58, 59]. This in turn results in the suppression of amino acid biosynthesis genes,
leading to a change in production of the enzymes which catalyse amino acid
biosynthesis. This forms an auto-regulatory system where amino acids form a
negative feedback loop on a transcriptional feed forward loop; such systems have
long been known for their ability to generate sustained oscillations [13].

There are also numerous modifications to the basic system where ever increasing
levels of complexity exist. The GATA amino acid regulation system of nitrogen
catabolite repression provides a slower time-scale via regulatory feedback loops
on the promoters of many of the genes encoding amino acid enzymes [60].
Additionally, the activities of many amino acid enzymes are rapidly modulated by
allosteric inhibition. A particularly complex picture of regulation is emerging for the
regulation of serine where increase in the concentration of serine causes suppression
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Fig. 21.4 Simplified CellDesigner [37] representation of GCN4 regulation of amino acid biosyn-
thesis during respiratory oscillation [3]. The transition from the precursor to the amino acid is
tightly regulated by mitochondria and tRNA-mediated GCN4 pathway. All symbols follow system
biology graphical notation standards [38]

of the transcription of SER3 (encoding phosphoglycerate dehydrogenase) [61] via
the transcriptional regulator Cha4p (slow response) [62]. The Cha4p is primed on
the promoter site and once serine concentrations increase, a rapid transcriptional re-
sponse is elicited that is mediated by SRG1 (non-coding RNA) and a rearrangement
of nucleosome architecture at the promoter [63]. Serine also is an allosteric inhibitor
for Ser3p (a fast response) [64]. The metabolic and transcriptional feedbacks and
transcriptional feed-forward loops involved in SER3 transcription and the activity
of phosphoglycerate dehydrogenase have a high potential to oscillate or attenuate
the oscillatory frequency and amplitude. The rapid feedback caused by allosteric
inhibition, for example, may serve to dampen rapid changes in serine. However,
when concentrations of the product are low this will have little effect on the
fluctuation of the product.

The amino acid biosynthesis pathways and their regulation represent only a
small part of the reactome; taken together, this indicates that there exist a depth of
both intracellular and extracellular communication that at first seems unfathomably
complicated [29]. However, we suggest that temporal coherence provided by a
multi-oscillatory system simplifies and partitions the cellular processes. In order to
summarise this, we constructed a polar plot of all the measured parameters involved
in metabolic control (Fig. 21.5) and related this to some of the observed phenotypes
during a cycle. Transcription is known to occur in at least three bursts; one in the
oxidative phase and two in the reductive phase [21, 26, 65]. This correlates with
heat production and the multi-oscillatory signal of NAD(P)H found in these studies.
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Fig. 21.5 The phase reconstruction of the signal-to-noise ratio .S=N / of measured parameters
found during the respiratory oscillation in continuously growing yeast. The polar plot was
constructed from the fast Fourier transform analyses on numerous datasets [3,4,21,23,31,39–49].
The red text represents the online parameters where the signal-to-noise ratio had to be divided by
10 because sampling was much more frequent. The blue text represents metabolites measured in
low-throughput enzymatic or HPLC methods. The black text shows data from high-throughput
GC–MS measurements. The grey text represents transcripts involved in metabolism measured
using Affymetrix microarrays. Physiological markers are indicated in text centred on the peak of
the phenotype. For example, perturbation sensitivity refers to the sensitivity of this region to redox
altering compounds such as ROS and glutathione, as well as other chemical agents. The lower plot
represents a phase normalised cycle of dissolved oxygen and is meant to guide the reader. The
transcript names are common names found in the yeast genome database and the metabolite names
are from a model of yeast metabolism
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During the oxidative phase, a biosynthetic program is initiated that ends with a
peak in concentration of many of the measured cellular metabolites and NAD(P)H
[3]. This coincides to the peak of DNA synthesis [21] and hydrogen sulphide
production. From the polar plot, many transcripts involved in catalysis show peak
production in the reductive phase, for example, Enolase 1 transcript (ENO1),
oxidising the glycolytic intermediate 2-phosphoglycerate to phosphoenolpyruvate
[66], reaches a maximum concentration in the late reductive phase; about 8–
10 min prior to maximum glycolytic flux. It is important to note that Fig. 21.5
was produced exclusively from cells grown on glucose media. The oscillation still
occurs when cells are grown on ethanol [31, 49] as the sole carbon source and,
therefore, glycolytic activity is not required for the respiratory oscillation. Periodic
accumulation of storage carbohydrates (glycogen and trehalose) does not occur
during growth on ethanol media.

4 Outlook and Conclusions

Here we show a global overview of yeast respiratory organisation based on online
measurements, i.e., by using high- and low-throughput data “snapshots”. This is by
no means complete and we are utilising and developing computational, proteomic,
transcriptomic, metabolomic and single-cell analysis technologies to improve our
understanding of cellular organisation in time. Indeed, using optical tweezers, we
managed to monitor synchrony occurring between two individuals [2]. Recently,
yeast cells were sorted based on glutathione content and cadmium resistance by
fluorescence activated cell sorting (FACS), to reveal that the cell produces the
appropriate rhythmic output by integrating the environmental signals via a “redox
core” [55]. The “redox core” encompasses the cycling of intracellular redox bio-
chemistry, i.e., thiol, flavin and nicotinamide adenine dinucleotide pools. Moreover,
inhibiting mitochondrial respiration at the level of cytochrome c oxidase with H2S to
a synchronous continuous yeast culture abates all oscillatory frequencies including
the 40-minutes period ultradian clock.

The systems described in this chapter are some of the most highly conserved
during the long evolution of eukaryotes, and therefore it would seem likely that
similar systems operate in all higher eukaryotes. Emerging evidence from circadian
biology confirms that the majority of gene expression in mammals is oscillatory
[67–69] and fundamental redox changes underpin these oscillatory behaviours [70,
71]; it would seem likely that temporal architecture in these systems is also multi-
oscillatory.

Acknowledgements We thank Rainer Machné for helpful discussions. DL and DBM are grateful
to the Royal Society and the Japan Society for the Promotion of Science for supporting this work.
KS, DBM and MT are supported in part by funds from Yamagata Prefectural Government and
Tsuruoka-city. MT and DBM are also supported by a Japan partnering award (Japan Science and
Technology agency and the Biotechnology and Biological Sciences Research Council, UK).



376 K. Sasidharan et al.

References

1. Aon MA et al (2008) The scale free network organization of yeast and heart systems biology.
PLoS One 3:e3624

2. Aon MA, Cortassa S, Lemar KM, Hayes AJ, Lloyd D (2007) Single and cell population
respiratory oscillations in yeast: a 2-photon scanning laser microscopy study. FEBS Lett 581:
8–14

3. Murray DB, Beckmann M, Kitano H (2007) Regulation of yeast oscillatory dynamics. Proc
Natl Acad Sci USA 104:2241–2246

4. Murray DB, Lloyd D (2007) A tuneable attractor underlies yeast respiratory dynamics. Bio
Systems 90:287–294

5. Jacquet M, Renault G, Lallet S, De Mey J, Goldbeter A (2003) Oscillatory nucleocytoplasmic
shuttling of the general stress response transcriptional activators Msn2 and Msn4 in Saccha-
romyces cerevisiae. J Cell Biol 161:497–505

6. Shedden K, Cooper S (2002) Analysis of cell-cycle gene expression in Saccharomyces
cerevisiae using microarrays and multiple synchronization methods. Nucleic Acids Res
30:2920–2929
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Chapter 22
Coarse Graining Escherichia coli Chemotaxis:
From Multi-flagella Propulsion to Logarithmic
Sensing

Tine Curk, Franziska Matthäus, Yifat Brill-Karniely, and Jure Dobnikar

Abstract Various sensing mechanisms in nature can be described by the
Weber–Fechner law stating that the response to varying stimuli is proportional to
their relative rather than absolute changes. The chemotaxis of bacteria Escherichia
coli is an example where such logarithmic sensing enables sensitivity over large
range of concentrations. It has recently been experimentally demonstrated that
under certain conditions E. coli indeed respond to relative gradients of ligands.
We use numerical simulations of bacteria in food gradients to investigate the
limits of validity of the logarithmic behavior. We model the chemotactic signaling
pathway reactions, couple them to a multi-flagella model for propelling and take the
effects of rotational diffusion into account to accurately reproduce the experimental
observations of single cell swimming. Using this simulation scheme we analyze
the type of response of bacteria subject to exponential ligand profiles and identify
the regimes of absolute gradient sensing, relative gradient sensing, and a rotational
diffusion dominated regime. We explore dependance of the swimming speed,
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average run time and the clockwise (CW) bias on ligand variation and derive a
small set of relations that define a coarse grained model for bacterial chemotaxis.
Simulations based on this coarse grained model compare well with microfluidic
experiments on E. coli diffusion in linear and exponential gradients of aspartate.

1 Introduction

The bacterium Escherichia coli propels itself by rotating a set of long filaments,
the flagella. Depending on whether the rotation is clockwise (CW) or counter-
clockwise (CCW), the flagella, which have a chiral helical structure, take on
different conformations. As a result the bacterium either swims along a (more or
less) straight trajectory, or it engages in a tumble in which it randomly changes
the direction. The motion behavior, swim and tumble, is controlled by a network
of enzymatic reactions called the signaling pathway [1, 2]. Ligands (chemoattrac-
tands or chemorepellents) bind to a receptor complex in the bacterial membrane
and, through the signaling cascade, influence the bias of flagellar rotation. The
signaling pathway provides a certain “memory” of previously encountered ligand
concentrations, and allows a comparison to present concentrations. In this way E.
coli is able to bias its motion toward or against chemical gradients. This chemotactic
behavior of the bacteria exhibits complex properties. One example is a very high
sensitivity that enables E. coli to respond to very small as well as to very high
ligand concentrations. The sensitivity is the result of a strong signal amplification
by the signaling pathway [3] and ultrasensitivity of the flagellar motor on the
response control CheYp [4]. Also receptor clustering has been found to enhance
sensitivity [5]. Another example of complex behavior is a very precise adaptation to
constant ligand concentrations [6,7]. In constant ligand concentrations, the flagellar
bias returns to the bias of unstimulated bacteria with very high accuracy. In this
way, E. coli bacteria are able to respond to changes in the ligand concentration,
irrespective of the absolute concentration level. Through the adaptation process, the
bacteria sense relative gradients: they react to very small changes if the absolute
concentration is small, but large changes are necessary to influence behavior in
large absolute concentrations. The response to a relative gradient can be measured
via the average run time or run length hli. If the bacteria sense relative changes the
average run length relates to changes in the gradient as hli � dL=L D d.log.L//,
whereL denotes the ligand concentration. This so-called logarithmic sensing is also
a feature of visual or auditory perception, and has been described in the Weber–
Fechner law. It has been shown only recently that also the chemotactic sensing of E.
coli bacteria follows the Weber–Fechner law [8]. Although the logarithmic sensing
had been anticipated, only the development of microfluidic chambers that generate
stable chemical gradients, made an experimental verification possible.

Here we develop a coarse grained mathematical model for E. coli chemotaxis. We
extend a previous model for propelling [9] by accounting for the combined action
of four-flagella, which are regulated through the same signaling pathway. This
extension of the model will eliminate a prevalent inconsistency in the modeling of
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E. coli chemotaxis, namely, that the tumbling frequency of free swimming bacteria
(p � 0:1) does not correspond to the CW bias of a single flagella (� � 0:5) [10].
We then use numerical simulations to determine several macroscopic relations
and dependencies that constitute the coarse grained model for E. coli chemotaxis.
Performing coarse grained computer simulations we are able to reproduce the
bacterial density profiles in microfluidic experiments with various chemoattractand
landscapes.

The following sections are organized as follows: In Sect. 2 we introduce our
multi-flagella model to describe swimming of a single bacterium and derive the
macroscopic relations that constitute the coarse grained model. In Sect. 3 we use
the four-flagella model to simulate bacterial motion in exponential gradients. With
this approach we identify different regions of chemotactic sensing: gradient sensing,
relative gradient (logarithmic) sensing, and rotational diffusion dominated response.
Finally, in Sect. 4 we simulate bacterial behavior in linear and exponential gradients
based on the coarse grained model and we reproduce the experimental density
distributions of bacteria in defined ligand gradients.

2 Modeling the Interaction of Four-Flagella

In our previous work we have adapted a model of the chemotaxis signaling pathway
of E. coli to study the influence of noise on bacterial motion in various chemical
landscapes [9]. This model included a detailed description of the regulatory
processes: the signal transduction through steps of phosphorylation, from the
receptor to the motor control CheY, and receptor methylation regulating adaptation
to absolute ligand concentrations. The model was given as a set of differential
equations adapted from [2], complemented by an algebraic relation to couple the
concentration level of CheYp to the tumbling frequency. Another approach to study
E. coli chemotaxis is to use stochastic simulation of the interaction of regulatory
enzymes [11]. Bray et al. have developed a model that describes not only the
signaling pathway, but also the assembly of the receptor complex (see for instance
[12]). All these approaches model E. coli chemotaxis as a process, where the
internal signaling cascade directly controls the tumbling frequency through the
motor switching curve defining the CW bias. In other words, the propelling is
described as if it was governed by the action of a single effective flagellum.

In reality, the process is much more complicated, as the tumbling frequency,
as well as the swimming speed, are both affected by the interplay of several
(typically four) flagella. The molecular motors that drive the flagellar rotation switch
independently from each other, and not all of them have to turn CCW to impose
swimming. On the other hand, a tumble can occur upon reversal of one or several
flagella. Experimental studies by Turner et al. [13] have provided an insight into
flagellar forms during different stages of propelling: depending on the CW or
CCW spinning of the motor a flagellum spins in a so-called right handed or left
handed form, respectively. Actually, there exist different right handed forms, but
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Table 22.1 Shape (k) and
scale (� ) parameters of the
� -distribution (density
function f .xI k; �/D
x.k�1/ exp.�x=�/

�k �� .k/
/ for different

values of the CW bias
following Korobkova et al.
[14]. Intermediate values are
approximated using a
stepwise linear function

CCW CW

� kCCW ��1
CCW kCW ��1

CW

0.1 2 0.8 5 16.5
0.2 3 2.3 5 15
0.3 3 3.5 5 13.3
0.4 4 5.9 5 11
0.5 5 9.3 5 9.3
0.6 5 12 4 6.5
0.7 5 14 3 3.5
0.8 5 17 3 2.5
0.9 5 21 2 1

our modeling approach will not include this level of detail. When all the motors
spin CCW, the flagella form a bundle and E. coli performs a run. Upon reversal
of one motor (or more), the bundle is disturbed. The respective flagellum escapes
the bundle and changes its waveform to right handed. This causes a change in the
direction of swimming and a reduction of the speed. The more filaments break out
of the bundle, the greater is the effect. After reversal back to CCW rotation, the
flagellum rejoins the bundle and the initial speed is attained. It has been found that
E. coli with four-flagella in total will change the direction by approximately 30ı
when one motor switches from CCW to CW. The right handed waveform can also
contribute to propulsion, but is less efficient than left handed form. Thus, in the
unlikely case that the bundle is formed out of CW spinning flagella, the speed of
bacteria would be significantly lower than in the case of a left handed bundle.

To model the interplay of four-flagella and the resulting motion behavior we use
experimental data of Korobkova et al. [14] derived for a single flagellar motor. They
found that for an individual motor the duration of CW and CCW events follows a
� -distribution for a given CW bias. In homogeneous environments, bacteria have
a CW bias around 0.2, and the CW and CCW intervals have an average duration
of 0.3 s and 1.3 s, respectively. In our model the dependence of the CW bias on the
level of CheYp is described by a Hill function as given in [4]:

� D Yp
Hc

Yp
Hc CKHc

c

(22.1)

with Hill coefficientHc D 10:3 and dissociation constantKc D 3:1 �M. Depending
on the CW bias, the duration of CW and CCW intervals for every individual motor
is determined by a � -distribution, following Korobkova et al. [14] (see Table 22.1).
Whenever at least one of the motors switches from CCW to CW rotation the
direction of bacteria is changed according to a � -distribution with shape 5 and scale
0.14, which provides a good fit to the experimental data of Turner et al. [13].

The speed of the bacterium v is determined based on the forms of all flagella at
any given moment. Each form is designated by a form number which is a measure of
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how much the flagellum in the particular form contributes to the motion. We assign a
value f D 1 to all left handed forms, which are the most efficient. The right handed
forms can have two different form values. Relying on the experimental observations
of Turner et al. [13] we choose f D 0 for the first 80 ms after the switch, where
the bundle is disturbed and the direction is changing, and f D 0:5 for CW spinning
after 80 ms. This relates to the finding that the flagellum can contribute to the speed
even if it is not part of the bundle. Summarizing,

f D
8
<

:

1 left handed form,
0 right handed form less than 80 ms after the switch,
1
2

right handed form more than 80 ms after the switch.
(22.2)

The combined action of four-flagella can be described by a single parameter ˚4 DP4
iD1 fi = 4, where fi denotes the form of the i th flagellum. Now we define the

speed of the bacterium, subject to a respective combination of different flagellar
forms as:

v D vmax � ˚2:5
4 ; (22.3)

where vmax D 30�m/s is the maximum speed when all flagella contribute to
the bundle, i.e., ˚4 D 1. The exponent of 2.5 is chosen such that the average
speed in the simulations is compatible with the experimentally determined value
of 20�m/s [15, 16]. It has to be stressed that the choice of the particular functional
form in (22.3) and the choice of the numerical values of f in different states in
(22.2) are somewhat arbitrary. The constraints on the function v=vmax.˚4/ are that
it must be a monotonically increasing function on the interval [0, 1] with a value
of 1 at ˚4 D 1 and a positive value smaller than 1 at ˚4 D 0, and that the
average speed in a simulation using this relation is equal to 20�m/s. We have
constructed several analytical expressions meeting the above constraints; however,
the final result is always very similar and the particular choice of the function does
not seem to have any noticeable effect on the results of the modeling. It should be
noted that the arbitrary parameters in the model are only involved with calculating
the speed. The run–tumble transitions do not depend on the speed, therefore there
are no ambiguities connected with the distribution of the run and tumble events.
Furthermore, the speed variation with time in a homogeneous environment predicted
by our model (Fig. 22.1c) qualitatively agrees with the dynamics observed in the
experiments by Berg et al. [17].

In our model we also account for the effects of the rotational diffusion, which
is a consequence of the thermal interaction of the bacteria with the liquid medium.
Rotational diffusion causes the bacteria to deviate from a straight trajectory when
the cells try to swim straight for a long period of time. We model the rotational
diffusion as a change in the angle during a run – as a random walk with step
0.52 rad�p
t [17].
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Fig. 22.1 (a) and (b): Average run length and speed as a function of CW bias as a result of the four-
flagella model. The black curves are numerically determined from our model and the gray curves
are the fitting functions (22.4) and (22.5). (c) Time variation of the speed for a single bacterium in
homogenous environment (CW bias � 
 0:2). The figure looks similar to the experimental data of
Brown and Berg [17], and provides additional justification for the model

2.1 Model Verification

In order to compare simulations based on our model to the original tracking
experiments of Berg et al. [17], we need to “measure” tumbling and swimming in
the way defined in their original work. The beginning of a run is identified, when the
bacterium changes its direction by less then 35ı for three consecutive steps of 80 ms
duration. On the other hand, if during a period of 80 ms the direction changes by
more then 35ı, the run ends and the cell is considered to tumble (for exact procedure
description see Berg et al. [17]).

It needs to be noted that in this model a tumbling event is defined based on
the rate of change of the direction of swimming and is not directly connected to
the change of the flagellar states. Of course, the conformational switch of flagella
indirectly contributes to the probability for tumbling. However, even in the case
when the flagella do not switch at all, rotational diffusion alone can, with very low
probability, cause a change in the angle that would be identified as a tumble.

To verify our model, we performed numerical simulations considering N D
5000 bacteria with fixed CW bias. At each time step we determined the form for
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each flagellum on every cell according to the � -distribution mentioned above.
For every cell we determined the speed according to (22.3) and the change of
the direction (either through a switch in the flagellar conformation or due to the
rotational diffusion). Our simulation results agree very well with the tracking
experiments of Berg [17]. The run and tumble intervals are exponentially distributed
with mean 1 s and 0.13 s, respectively. Also, the average change in direction during
a tumble is about 60ı. In Fig. 22.1c we display the dynamics of the current speed
v.t/ of a single bacterium as a function of time. By visual inspection our simulation
qualitatively agrees with experimentally observed dynamics ([17]).

We repeat the simulations for various values of the CW bias � and measure the
average run time hli defined by the time elapsed between two consecutive tumbling
events, and the average speed hvi. The resulting dependencies are displayed in
Fig. 22.1a and b, together with the appropriate fitting expressions given by:

hli.�/
s
D 0:1C 0:3 � 0:03� � 0:5.� � 0:5/2

h
.� C 3 � 10�4/ .1C 3 � 10�3 � �/

i 2
3 .1C2.��0:5/2/

; (22.4)

v.�/

�m=s
D 30� 40� C 15�2 : (22.5)

The fit, (22.4), describing the average run time dependence on the CW bias was,
obtained in an iterative process, where we started with a simpler fitting function
hli D A C BCC�

.�.1��//D , with constants A, B , C , and D. We then improved the
fit step by step by adding higher order terms. Even though (22.4) looks rather
complicated we believe that it is necessary to have an accurate fitting expression,
and we could not find any simpler way to express it in terms of analytic functions.
For the dependence of the average speed on the CW bias (22.5), the rather simple
second order polynomial provided a very good fit to the simulation data.

3 Logarithmic Sensing

Since our model seems to reproduce experimentally observed motion behavior well,
we will now use it to study the response of large bacterial populations to time-
varying chemical stimuli. E. coli bacteria use chemotaxis to move toward or against
spatial gradients. Their way of detecting a spatial gradient is, however, to compare
concentration values while moving. Effectively they thus respond to concentration
changes in time. Studies on how time-varying stimuli affect the motion of E. coli
date back to the seminal experiments of Brown and Berg [18]. Using their tracking
microscope and an enzymatic reaction to either build up or degrade L-glutamate,
they showed for the first time that the average run length increases when the
L-glutamate concentration increases with time. More recently, Tu, Shimizu and Berg
[19–21], developed a simple coarse grained model that describes the relationship
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Fig. 22.2 Average run time dependence on the ligand concentration (˛-methyl DL-aspartate) for
different relative rates of temporal change g D PL=L

between the ligand, the average methylation level (adaptation control) and the
average kinase activity (motor control). The model is used to study the chemotactic
response for steps, linear and exponential increases in the ligand concentration, and
oscillatory concentration dynamics. In combination with an experimental approach
involving a microfluidic device producing stable spatial gradients, it is also used to
estimate the concentration range of logarithmic sensing [8], and to show that it is
the adaptation kinetics that underlies the logarithmic sensing.

In this section, we will use the four-flagella model to study the behavior of
bacterial populations when the ligand concentration changes exponentially in time.
For an exponential change L D L0egt , the relative change in the concentration
is a constant: PL=L D g. Vladimirov et al. [22] modeled chemotaxis signaling
pathway mathematically, based on a Monod–Wyman–Changeux model for mixed
chemoreceptor clusters and a simplified description of methylation and kinase
activity. They also accounted for multiple flagella through a simple voting model.
Based on this model, they derived a ligand gradient on which the chemotactic
activity and drift velocity are constant. In the intermediate region, this gradient can
be well described by an exponential, and thus, also defines a range where E. coli
sense logarithmically.

We simulated populations of bacteria in environments with different values of g
and measured their average run times as a function of the ligand concentration L.
In Fig. 22.2 we can easily identify the regime of logarithmic sensing as the range
of values of L where, for a given g, the average run time does not depend on L
(plateaus in the curves). In this range the bacterial response depends solely on the
relative ligand change g.



22 Coarse Graining Escherichia coli Chemotaxis... 389

Fig. 22.3 CW bias as a function of the relative temporal change in ligand g in the regime where
the sensing is logarithmic. Open symbols correspond to the simulation and the gray solid curve is
the fitting function (22.6). The inset shows the dependence of the average run length on g

If we limit ourselves to the regime of logarithmic sensing, we can analyze the
variation of the plateau heights in Fig. 22.2 with g and hence plot the dependence of
the CW bias (Fig. 22.3) and of the average run time (Fig. 22.3 (inset)) on the relative
ligand change g.

The relation of the CW bias on the relative concentration change g can be
described by a fit function

� D
(
0:2215� 26:57 g � 381 g2 g < 0:002 (also for negative gradients)

0:24 e�183:54 g g � 0:002
;

(22.6)

displayed as the solid gray line in Fig. 22.3.
In Fig. 22.4 we schematically illustrate the different regimes of bacterial sensing

observed in simulations. The figure displays the average run time as a function of
L for a relative temporal concentration change g D 0:02. Here one can see that
the response depends linearly on the temporal ligand change PL at small values of
L, followed by the logarithmic regime where the response is independent of L. For
large ligand concentrations the response decreases as a function ofL until saturation
occurs. At saturation the receptors are fully methylated and the signal pathway is
unable to adapt to the very high levels of L. For comparison we show a prediction
(blue dashed curves) by a simple model of Brown and Berg [18] where the response
is considered proportional to

hli / eK PL=.KCL/2 : (22.7)
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Fig. 22.4 Different sensing regimes in constant relative gradient g. For small ligand concentra-
tions L the response is roughly proportional to PL (Grad), in the intermediate region it is constant
meaning that it depends only on PL=L (RelGrad). For high concentrations it depends on PL=L2
(L�2). This region is very narrow. For yet higher values ofL the model predicts receptor saturation,
where the simulated bacteria cannot adapt to the concentrations any longer, but swim constantly
regardless of their direction (ModSat). The dashed blue curves show the response predicted by a
simple dissociation model (22.7) for two values of the dissociation constant K taken from [2]:
K2 D 150�M and K3 D 1500�M. The model accounts for the Grad and L�2 regimes; however,
the logarithmic sensing (RelGrad) regime is highly suppressed. The broadening of the RelGrad
regime is a consequence of the multiple methylation levels of chemotactic receptors

Hereby, K is a dissociation constant describing the response in an effective way.
Equation (22.7) describes the average run length being proportional to the gradient
for small values of L, and also features the e PL=L2 dependence for large values
where the response decreases with L. It fails, however, to properly describe the
regime of logarithmic sensing. We have plotted two curves for two different
dissociation constants associated with double and triple methylated receptors [2].
None features a broad flat logarithmic regime. The broader logarithmic regime
present in bacteria and observed in our simulations is a consequence of the receptor
multiple methylation levels and the slow adaptation kinetics. The range in which
bacteria sense logarithmically is also affected by the rate of temporal change PL.
For large PL the regime of logarithmic sensing is much wider, and spans several
magnitudes (see Fig. 22.5), which fit very well to the results of [8].

In Fig. 22.5 we illustrate the various response regimes of E. coli to aspartate in
the form of a “phase diagram”. Depending onL and PL the type of response changes
from linear gradient sensing (Grad) to logarithmic sensing (RelGrad). There is a
small (probably insignificant) region where the response decreases (L�2), and a
region at high L or PL where the behavior is dominated by the rotational diffusion
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Fig. 22.5 Phase plot showing different regimes of bacterial sensing. The intermediate region
between the dashed and the dotted line relates to logarithmic sensing. For small L bacteria sense
the gradient PL. In very high gradients PL or very high concentrations L the response is dominated
by the effects of rotational diffusion. For very high values of L, the receptors are fully saturated
and our model predicts constant swimming regardless of the orientation. Here, the run lengths are
limited only by the effects of rotational diffusion. The dotted lines on the diagram represent the
paths with constant relative gradient g

(RotDiff). In this regime the run times are very long, but Brownian rotational
diffusion causes deviations from a straight trajectory, and in turn reduces the drift
velocity.

4 Coarse Grained Model

The relations (22.4) and (22.5), together with (22.6) provide a coarse grained
description of the bacterial response to chemical gradients, which we will use in
this section to simulate chemotactic motion in different spatial gradients. There
have been several attempts to model the dependence of the chemotactic response
on the ligand profile. One example is an exponential dependence on the derivative
of the fraction of bound receptors (see equation (8) in Brown and Berg [18]). Other
models describe the bacterial memory using a kernel function (e.g., the chemotactic
response function [23, 24]), or a positive delta function [25]). A different approach
was proposed by Kalinin et al. [8], according to which the chemotactic response
depends on the relative (spatial) gradient of the ligand. We adapt the latter, and take
it one step forward by assuming that the tumble probability depends on the relative
change in the ligand felt by an individual bacterium over time.
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We use (22.4), (22.5), and (22.6) to carry out simulations of bacterial chemotaxis
in a three-dimensional environment in the following way: During each simulation
time step, a bacterium can either run or tumble, with tumble probability p. If a
bacterium tumbles, the angle of its new direction relative to the old one is distributed
as a � -distribution [11], and the azimuthal angle between the old and new direction
is chosen randomly. The tumbling probability p is given for each bacterium in every
time step as follows:

p D 
t

hli ; (22.8)

where 
t D 0:02 s is the simulation time step. The average run length, hli, is
calculated as a function of the CW bias according to (22.4). The CW bias is
calculated given the relative gradient felt by the bacterium from (22.6). Since the
velocity of the bacteria is not constant, but depends on the form and interaction of
the four-flagella, the distance of the bacterial movement during 
t is determined
by the CW bias-dependent velocity, (22.5). In a coarse grained way therefore our
model includes the chemotactic response of the signaling pathway, the effects of
the rotational diffusion and the multi-flagellar dynamics. Formulated in this way,
its natural constraint is that it is valid only in the regime of chemoattractand
concentrations and gradients where the logarithmic sensing applies (RelGrad in
Fig. 22.5). It could easily be extended to include the other sensing regimes as well;
however, this was not our intention here as we wanted to end up with a simple
tractable coarse grained model.

With this setting we simulate the motion of bacterial populations in linear
and exponential spatial gradients. Hereby, the ligand concentration is constant in
time and changes only in x-direction. We choose periodic boundary conditions in
the y- and z-direction, and reflecting boundary conditions in x. We traced 1,500
bacteria in the linear and 15,000 in the exponential case. Our results are compared
to experimental data obtained under constant ligand profiles that are provided by
microfluidic devices. Kalinin et al. [8] measured the chemotactic response of E. coli
in linear gradients. Ahmed et al. [26] created microfluidics where the geometry of
the channel allows arbitrary nonlinear gradients.

4.1 Linear Ligand Profile

Figure 22.6 shows the bacterial density at steady state (inset) and the profile decay
constant. As expected, the bacterial density at steady state shows an exponential
distribution (compare Fig. 2c in [8]). The decay constant of the exponential
probability density is given as ı D vd=�, where vd is the chemotaxis drift velocity
and � the motility (or diffusion) constant [8]. Assuming that � is constant (125–
150�m2=s, [8]), ı is proportional to the drift velocity. The monotonic relationship
between the decay constant ı and the relative gradient fits qualitatively very well to
the results of Kalinin et al. [8].

The drift velocity reaches a maximum for high relative gradients, both in the
experimental study of Kalinin et al. [8] and in our simulations. This, we believe, is
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Fig. 22.6 Decay constant ı D vd=� as a function of the relative gradient. The dependence of
the decay constant on the relative gradient is monotonic and agrees very well with the findings of
[8]. The density distribution of the bacteria at steady state, shown in the inset, is exponential as
expected

due to the rotational diffusion, which becomes dominant for high relative gradients
where the run lengths are large. Our results predict the regime at which the
drift velocity stops growing very well (around a relative gradient of 0.001�m�1).
Furthermore, the maximum drift velocity in our simulation (ı � �) is �4.8�m/s,
which is in good agreement with available data (7�m/s according to Berg and
Turner [27], 3�m/s according to [8]).

4.2 Exponential Ligand Profile

We next simulated the chemotactic behavior in exponential ligand gradients as
shown in Fig. 22.7a. We determine numerically the bacterial density distribution
in the gradient at steady state (see Fig. 22.7b), and compare it to experimental data
on E. coli profiles in microfluidic devices that produce similar gradients [26]. We
observe that our steady state density profile (black line in Fig. 22.7b) deviates from
the experimental data. We argue that the time given to the bacteria in the experiments
to settle to a density profile (1 h) was far too short to guarantee a steady state profile.
With a diffusion constant of about 300�m2=s the cells diffuse during this time only
about 1 mm and the observed profiles in the microfluidic chamber of 15 mm length
cannot be equilibrated. In our simulations a steady state was reached only after
25 h. This argument can be nicely supported by a very good agreement of early-
time density profiles from our simulations with the experimental data, including the
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Fig. 22.7 (a) Ligand profile used in the coarse grained simulations. (b) Profiles of bacterial density
at steady state (25 h after start, black line) and early-time profile (3.3 h after start, gray line).
Especially the early-time profile agrees very well with the experimental data [26]

peak at the onset of exponential decay, and the increase in sensitivity at low ligand
levels further away from the ramp. The gray curve shown in Fig. 22.7 corresponds
to a simulation time of 3.3 h. The early-time profile (gray curve in Fig. 22.7b), and
the experimentally obtained density profiles after 1 h from [26] show an increase
in density next to the right boundary although the ligand concentration is constant.
This is due to interaction with the boundary (in the simulations we have reflecting
boundaries). In the long time course, all bacteria have the chance to escape from this
region and the profile at the steady state becomes flat. Note that also the bacterial
density in x � 320�m is not constant even though the ligand is constant there. This
is because this area is affected by the exponential regime: bacteria that swim around
x D 320�m have high drift velocity to the left.

Summarizing, our simulations show that the our coarse grained model, given by
the three algebraic relations of (22.4), (22.5), and (22.6) provides a very simple but
efficient description of E. coli chemotactic swimming behavior in spatial gradients
falling in the region of logarithmic sensing defined as RelGrad in Fig. 22.5.

5 Conclusions

We have shown that the chemotactic response of E. coli to ligand gradients can be
effectively coarse grained to describe the observed bacterial dynamics in various
situations. Our present work is based on experiments of the E. coli response to
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aspartate as a ligand; however, the bacteria will generally be exposed to various
nutrients and poisons. Different ligands bind different receptors and certainly the
response to them is different. Depending on the number of methylation levels
involved for each receptor, there might be a smaller or a larger region of logarithmic
sensing for each substance. If the experiments were available for a greater variety
of ligands, the bacterial dynamics in a complex environment with many types of
chemoattractands and chemorepellents could be analyzed along the same lines as
we did here for aspartate. However, other phenomena, disregarded here, are also
important when studying bacterial dynamics. One example is bacterial communi-
cation via chemoattractand secretion, cell death, reproduction, and hydrodynamics.
The latter becomes very important in crowded environments and close to interfaces
and can lead to complex pattern formation even without chemotaxis [28]. Our coarse
grained approach is well suited to be combined with such effects in the future.
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Chapter 23
Self-Feedback in Actin Polymerization

Anders E. Carlsson

Abstract Polymerization of actin, which is crucial for functions such as cell migra-
tion, membrane ruffling, cytokinesis, and endocytosis, must be tightly regulated in
order to preserve an adequate supply of free actin monomers to respond to changing
external conditions. The paper will describe mechanisms by which F-actin feeds
back on its own assembly, thus regulating itself. I will present the experimental
evidence for such feedback terms, discuss their use in current models of actin
dynamics in cells, and present preliminary calculations for the role of feedback in
transient endocytic actin patches. These calculations suggest a partial homeostasis
of F-actin, in which the F-actin peak height depends only weakly on the actin
filament nucleation rate.

1 Introduction

The precise regulation of actin polymerization is crucial for appropriate polymer-
ization of actin in response to external stimuli, or for the internal dynamics of cells
exploring their local environment. Upstream regulation of actin polymerization has
both positive elements, which enhance actin polymerization, and negative elements,
which inhibit it. Well-established positive elements include nucleation-promoting
factors (NPFs), which act upstream of proteins/complexes nucleating new actin
filaments [1]. These proteins include the Arp2/3 complex, which generates new
actin filaments as branches on existing filaments, and formins, which generate new
filaments in the absence of preexisting filaments. Well-known negative elements
include severing and depolymerization induced by proteins such as cofilin. Actin
has a bound nucleotide, ATP or ADP or an intermediate state denoted ADP-Pi .
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The hydrolysis of ATP–actin to ADP–actin favors depolymerization, and this
process is accelerated by cofilin. In addition to such top–down control, feedback
mechanisms can be useful in tailoring the dynamic response of cells to stimuli
[2]. Positive feedback can lead to strong rapid responses, and negative feedback
to stability or homeostasis. Positive F-actin feedback motifs could thus be useful
in obtaining a rapid response to stimuli favoring polymerization, while negative
feedback motifs could avoid excessive F-actin accumulation. The combination of
positive feedback and delayed negative feedback could also provide an mechanism
for rendering F-actin dynamic – in the sense of causing F-actin accumulations to be
transient. This article outlines the experimental evidence for such feedback, explores
possible feedback circuits embodying both positive and negative feedback, reviews
the use of such circuits in recent theories of actin dynamics in cells, and presents
preliminary results for the protein dynamics of endocytic actin patches based on
a three-state model. Calculations of the F-actin peak height as a function of the
filament nucleation rate gives a weak dependence, suggesting a partial homeostasis
mechanism.

It is important to distinguish between “direct” and “indirect” feedback. “Direct”
feedback occurs on a rapid enough time scale that the assembly or disassembly of
F-actin at a given time is effectively proportional to the amount of F-actin present
at that time; “indirect” feedback occurs after a delay, which may be generated by
one or more intermediate nodes in a signaling pathway. This distinction is important
because direct positive and direct negative feedback will cancel each other, simply
leading to a reduced magnitude of feedback; on the other hand direct positive
feedback combined with delayed negative feedback can lead to oscillatory behavior.

2 Experimental Evidence for Positive and Negative
Self-Feedback of F-actin

Evidence for positive feedback of F-actin lies in the dynamics of actin poly-
merization in vitro induced by Arp2/3 complex. The Arp2/3 complex, when
activated by upstream agents such as NPFs, forms new growing branches on
the sides of existing filaments both in cells and in vitro. Because the rate of
nucleation of new filaments increases with the amount of F-actin present, a small
number of filaments can rapidly multiply and the F-actin concentration initially
grows exponentially. This means that the time course of polymerization often
appears to have a “lag phase”, where polymerization is limited, followed by an
explosive growth of polymerization. Figure 23.1 compares time courses of actin
polymerization assuming positive feedback (solid line), in which the number of
filaments increases proportionally to the F-actin concentration, and no feedback
(dashed line), in which the number of filaments is constant. The positive feedback
curve clearly demonstrates a lag phase, followed by a rapid jump to the final
value which is the total actin concentration minus the critical concentration. The
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Fig. 23.1 Schematic of actin
polymerization with (solid
line) and without (dashed
line) positive feedback.
Curves obtained using rate
equations described in [5]
with arbitrary parameters

no feedback curve increases much less dramatically. There are many examples
of Arp2/3-induced polymerization time courses in the literature which are similar
to the positive feedback curve shown here [3–7]. The positive feedback involves
two steps, the generation of new free barbed ends on existing filaments, and the
growth of these filaments to generate new F-actin. This is indicated by the positive
feedback lines in Fig. 23.2a. Thus it is in principle an indirect feedback mechanism.
However, if the delay between the generation of new filaments and the subsequent
F-actin accumulation is small, the feedback may be considered direct, for practical
purposes. This delay is determined by the lifetime of a free barbed end, which is
determined by the capping rate. In general, capping rates in cells are on the order
of 1 s�1, which is faster than most of the dynamic F-actin processes to be discussed
below. Therefore positive feedback of F-actin may legitimately be viewed as direct,
as indicated in Fig. 23.2b.

Evidence for indirect negative feedback of F-actin, as indicated by the negative
feedback lines in Fig. 23.2, comes from studies in cells and in vitro. Weiner et al.
[8] measured the dynamics of the Hem-1 component of the WAVE2 complex in
neutrophils, an NPF. The WAVE2 complex acts upstream of actin polymerization by
activating Arp2/3 complex, and is required for proper leading edge morphology; its
homologs regulate cell shape and movement in a variety of organisms. Weiner et al.
performed fluorescence recovery after photobleaching (FRAP) experiments using
fluorescently labeled Hem-1. In these experiments, a 1–2�m spot was bleached,
and the recovery was followed as a function of time. The recovery involves Hem-1
leaving the membrane and being replaced. The experiments were performed both
in the presence and absence of latrunculin (Lat), an agent which inhibits actin
polymerization. It was found that Lat greatly slowed the recovery process. This
implies that actin polymerization is essential for the dynamics of Hem-1 leaving
and entering the membrane.

Kaksonen et al. ([9] evaluated the effects of F-actin on the lifetimes of proteins
acting upstream of actin in transient protein patches occurring during endocytosis
in budding yeast. Under control conditions (Ctrl), a number of proteins, including
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Fig. 23.2 Possible F-actin feedback circuits generating F-actin dynamics. Arrows indicate positive
feedback and bars at ends of lines indicate negative feedback. Loops indicate positive feedback

Clc1, Bbc1, and End3, assemble first. These are followed by F-actin, and then by
a series of proteins, including cofilin, which disassembles F-actin. It was found
that suppression of actin polymerization by the addition of Lat greatly lengthened
the lifetimes of Clc1, Bbc1, and End3, as indicated in Fig. 23.3. This shows that
F-actin disassembles proteins which act upstream of actin polymerization, thus
demonstrating an indirect negative feedback loop, as in Fig. 23.2.

In vitro studies [10] have shown that F-actin inhibits the Abl tyrosine kinase,
which regulates actin polymerization [11]. Measurement of purified Abl-kinase
activity as a function of increasing F-actin concentration revealed a steady drop.
Furthermore, time-dependent growth of Abl-kinase activity was found to be inhib-
ited by F-actin.

Ganguly et al. studied the effect of serotonin receptor activity on actin poly-
merization [12] in Chinese hamster ovary (CHO) cells, and conversely the effect
of F-actin on receptor mobility and activity [13]. It was found that serotonin-
mediated activation of the receptor led to increased F-actin content, presumably
through inhibition of the production of cyclic AMP (cAMP), which causes actin
depolymerization. F-actin, in turn, inhibited serotonin receptor mobility, which was
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Fig. 23.3 Lifetimes of
endocytic coat proteins, under
control conditions (Ctrl) and
with latrunculin (Lat). Data
taken from Ref. [9]. Arrows
mean that bars are lower
bounds for lifetimes

found to reduce the receptor efficiency. These observations, taken together, suggest
a multistep negative feedback loop of the type shown in Fig. 23.2d, where the
disassembly module summarizes effects of F-actin on receptor mobility/efficiency,
the effects of serotonin receptors on cAMP production, and the pathways allowing
cAMP to depolymerize F-actin.

3 Calculations of the Effect of Self-Feedback on F-actin
Dynamics in Cells

Mathematical modeling of F-actin dynamics in cells has shown that the types of
feedback effects discussed here can lead to the formation of spontaneous dynamic
phenomena such as F-actin waves and patches [14]. These models have used
feedback architectures of the types illustrated in Fig. 23.2. The general mechanism
by which such feedback loops lead to transient F-actin structures, using Fig.
23.2c for concreteness, is the following. Positive feedback of NPF causes a small
fluctuation of NPF to grow. F-actin then builds up because NPF activates F-actin.
Since F-actin inhibits NPF, the NPF will drop to zero after a while, and subsequently
the F-actin will drop to zero. If diffusion is present, this can result in traveling waves
or patches.

Two models in the literature [8, 15] used an architecture of the type shown
in Fig. 23.2c. These models led to spontaneous waves of F-actin and the NPF
Hem-1; [15] also found actin patches under some conditions. Other models have
used positive F-actin feedback to treat the spontaneous formation of F-actin waves
and patches in Dictyostelium. The model of reference [16] used a feedback
circuit of the form shown in Fig. 23.2b, and assumed spontaneous polarization
of filament orientations and diffusion-like spreading of F-actin. These assumptions
were found to lead to the formation of patches which eventually coalesced into
traveling waves. The treatment of [17] implemented the circuit in Fig. 23.2a,
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Fig. 23.4 Progression of actin wave in stochastic-simulation approach [17]. Red rods denote actin
filaments; substrate-bound membrane of cell is green

using a dendritic-nucleation model of actin filament generation, in which new
filaments are generated as branches on existing filaments by the action of NPFs
in the plasma membrane. The calculations were performed using a stochastic-
growth methodology in which explicit three-dimensional network structures were
generated, and dendritic filament clusters moved by Brownian motion. This avoided
the explicit parameterization of positive feedback and diffusion effects; instead,
these effects emerged naturally from the known biochemistry. The calculations
revealed, with increasing actin concentration, a series of phases beginning with
patches, subsequently waves, and finally a phase which could not be described in
terms of either traveling waves of patches, but still displayed fluctuations which
appeared to be strongly out of equilibrium. Figure 23.4 shows an example of the
wave phase. A forest of actin filaments is seen moving to the left. The “story line”
of the motion is as follows: (1) there is a high concentration of membrane-bound
(active) NPF ahead of the wave; (2) F-actin grows into this region; and (3) the
F-actin removes and inactivates the NPF, causing subsequent depolymerization of
F-actin at the back of the wave.

A larger set of feedback interactions has been treated in a recent study of
endocytosis in budding yeast [18]. During this process, actin patches form at the
cortex and, disappear after approximately 20 s. The model used has roughly the
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structure of Fig. 23.2d. NPF was assumed to assemble in response to membrane-
bound PIP2, which had a positive feedback rate law. F-actin, rather than directly
inhibiting NPFs, was taken to cause membrane curvature. This curvature, in turn,
caused PIP2 hydrolysis, which reduced NPF accumulation. In other words, the
“disassembly” bubble in Fig. 23.2d would include curvature and PIP2 hydrolysis – a
multistep negative feedback of F-actin on NPFs. This set of assumptions led to the
appearance of transient patches, and made several predictions about the effects of
key rates on the success of endocytosis.

4 The Systems Biology of a Transient Actin Patch

Motivated by the modeling of [18], we have attempted to abstract the key ingredients
required to obtain transient actin patches by using a simpler model, based on
Fig. 23.2d, with only one variable in the “disassembly” bubble. We do not specify
the physical nature of this variable, but rather deduce its dynamics from its impact
on the assembly/dissasembly of the NPF module and F-actin. Because of this
simplicity, it is straightforward to evaluate the effects of key rates on measurable
output properties. The model has three variables. The first, [N], includes the coat
proteins which arrive first in endocytosis, and the NPFs; the second, [F], includes
F-actin and associated actin-binding proteins such as Arp2/3 complex and capping
protein; and the third [D], includes the factors that are most important in disassembly
of the coat proteins.

The initial assembly of the coat protein/NPFs is assumed to proceed by the
generation of accumulation nuclei from membrane proteins in a restricted “corral”
region. The nuclei grow when their size exceeds a critical size. The equations of
motion are:

dŒN �

dt
D kCN .N0� ŒN �/�kCN N0 exp

h
"s

�
1=
p
N � 1=

p
Nc

�i
�k�N ŒD�i ŒN � (23.1)

dŒF �

dt
D kCF ŒN �j � k�F ŒF � (23.2)

dŒD�

dt
D kCD ŒF � � k�DŒD�: (23.3)

Here N0 is the initial number of coat/NPF proteins in the corral, Nc is a critical
cluster size, and "s is a dimensionless surface energy parameter; i and j are powers
characterizing the cooperativity of NPFs in assembling actin and the nonlinearity of
coat/NPF disassembly. The k’s are on- and off-rate parameters for the three species.
The cooperativity of the NPFs in assembling actin (j ) is based on experimental
observations indicating a high degree of cooperativity in the activity of the NPF
WASp [19], which has the analog Las17 in yeast. The cooperativity in disassembly
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Fig. 23.5 Solid lines: time
courses of coat/NPF (black)
and F-actin (red) obtained
from deterministic
simulations. Dashed lines
denote experimental data
from [9]

(i ) could come from several sources [18], one of which is an exponential dependence
of coat protein off-rates on membrane curvature.

The form of (23.1) is motivated by classical nucleation theory [20], in which
the ratio of the on-rates to the off-rates is determined by the free energy of cluster
formation and its dependence on cluster size; the square-root terms in (23.1)
reflect the contribution of the surface energy (which is proportional to

p
N for

a protein patch growing in two dimensions). Note that the factor in front of the
exponential can safely be taken to be kCN , since adjusting this factor is equivalent to
adjusting Nc.

The parameters in this model were adjusted to fit measured data for the
dependence of a coat protein/NPF (Las17) and F-actin (as indicated by the actin-
binding protein Abp1) in budding yeast. The parameters adjusted were: an overall
factor scaling the model results to the experimental data, kCN , kCF , k�F , and kCD . The
parameter k�N was assigned a fixed value since changes in k�N can be compensated
for by changes in the normalization of ŒD�, and ŒD� is not included in the fitting
database. To reduce the number of fitting parameters, and because disassembly
of D is expected to at least partly require disassembly of F , it was assumed that
k�D D 0:25k�F . The exponents i and j were assigned the value 8; smaller values
than this tended to give a worse fit to the data. As shown in Fig. 23.5, the modeling
at this level gives a good fit to the averaged patch-count data. The life cycle of the
patch is that first NPF builds up, causing F-actin buildup; the F-actin in turn causes
disassembly factors to build up, which disassemble the NPF patch.

This model makes several predictions regarding the behavior of key observables
on underlying rates and concentrations. For example, kCF is expected to influence the
height and lifetime of the actin peak, and thus the NPF lifetime as well. Figure 23.6
shows the dependence of the F-actin peak height and the patch lifetime on kCF . It
is seen that the peak height increases with kCF , but at a rate slower than linear. The
slowness of the increase is a manifestation of the negative feedback loop connecting
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Fig. 23.6 F-actin peak height (a) and NPF patch lifetime (b) as functions of actin polymeriza-
tion/nucleation parameter kC

F , which is given in units of the best-fit value from the fits in Fig. 23.5

F-actin with itself: increased F-actin at a certain time leads to increased disassembly
agent buildup, which in turn removes NPF and inhibits actin polymerization. On
the other hand, decreasing kCF relative to its fitted value has little effect until it is
quite small; then the lifetime climbs very rapidly. (The “shelf” at small kCF should
be viewed as a lower bound, because the simulations were only run out to 400 s.)
These predictions could be tested by currently available experimental techniques.
Since kCF is expected to increase with increasing actin concentration, agents such as
Lat, which sequester free actin monomers, should reduce kCF . Similarly, mutations
in those NPF domains which activate Arp2/3 complex directly or indirectly [21]
should lead to reduced kCF . This theory predicts that such mutations, unless they
affect all or nearly all NPF activators, would have little effect on the F-actin peak
height. This may be viewed as a partial homeostasis mechanism in which the F-actin
peak height is robust to weak perturbations.

5 Summary

Several lines of evidence indicate that F-actin, rather than simply following its
upstream activators passively, feeds back on its own production in ways that can
either enhance or inhibit polymerization, depending on time scale. Such feedback
effects may be a key factor in regulating transient F-actin accumulations such as
those in F-actin waves or endocytic patches, and in stabilizing quantities such as the
F-actin peak height to perturbations in underlying rate parameters.

Acknowledgment This work was supported by the National Institutes of Health under Grant R01
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Chapter 24
Global Optimization in Systems Biology:
Stochastic Methods and Their Applications

Eva Balsa-Canto, J.R. Banga, J.A. Egea, A. Fernandez-Villaverde,
and G.M. de Hijas-Liste

Abstract Mathematical optimization is at the core of many problems in systems
biology: (1) as the underlying hypothesis for model development, (2) in model
identification, or (3) in the computation of optimal stimulation procedures to
synthetically achieve a desired biological behavior. These problems are usually
formulated as nonlinear programing problems (NLPs) with dynamic and algebraic
constraints. However the nonlinear and highly constrained nature of systems biology
models, together with the usually large number of decision variables, can make
their solution a daunting task, therefore calling for efficient and robust optimization
techniques.

Here, we present novel global optimization methods and software tools such as
cooperative enhanced scatter search (eSS), AMIGO, or DOTcvpSB, and illustrate
their possibilities in the context of modeling including model identification and
stimulation design in systems biology.

1 Introduction

The use of optimization has allowed biologists not only to describe patterns or
mechanisms but also to predict, from first principles, how organisms should be
designed [6, 41]. In particular, mathematical optimization (1) is the underlying
hypothesis for model development in for example flux balance analysis [21] or
the activation of metabolic pathways [22, 29, 47], (2) is at the core of model
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identification, including parameter estimation and optimal experimental design [7],
or (3) enables the computation of optimal stimulation procedures to synthetically
achieve a desired biological behavior [25, 35].

Most of these problems are formulated as nonlinear programing problems
(NLPs) where the objective is to find a set of decision variables (or functions) in
order to minimize or maximize a given cost function (or functional) subject to a
set of dynamic and algebraic constraints. The solution of such problems requires
the use of advanced numerical optimization methods. In this regard, hundreds of
different methods are at hand: from deterministic local methods to sophisticated
metaheuristics. One aspect that should be taken into account at the time of selecting
the most appropriate method is the nature of the problem under consideration.

Whereas convex problems present a unique solution which may be found with
deterministic local methods, finding the global optimum for multimodal problems,
i.e., those presenting multiple local optima, including noisy problems, typical in
dynamic systems due to the numerical integration of complex partial and ordinary
differential equations (ODEs), requires robust and efficient global optimization
methods.

Some of these methods have been incorporated in software tools devoted to
modeling, model analysis, simulation, and parameter estimation such as: COPASI
[18], SBToolbox2 [37], or PottersWheel [26].

In this work we present novel global optimization methods and software tools
developed at our group which are devoted to handle not only parameter estimation
but also different optimization problems in the context of systems biology. In this
regard we will introduce:

• DOTcvpSB [17], which is the first toolbox for dynamic optimization (DO)
problem in Systems Biology, i.e., offering the possibility of handling dynamic
FBA problems, optimal enzymatic activation problems, or the optimal design of
stimulation profiles to achieve certain desired biological behaviors.

• AMIGO, which covers all the steps of the iterative identification procedure
[2]: local and global sensitivity analysis, parameter estimation, identifiability
analysis, and optimal experimental design. The robust identifiability analysis,
parameter estimation, and optimal experimental design problems are formulated
and solved as general (dynamic) optimization problems.

• A multi-thread cooperative scatter search approach based on enhanced scatter
search (eSS) [14] is presented here as a means to handle large-scale multimodal
problems. We remark that the cooperative eSS could be incorporated as an
optimizer in both DOTcvpSB and AMIGO.

Four illustrative examples have been selected to show their applicability.
DOTcvpSB [17] is used to solve a problem related to the enzyme activation

in a branched reaction network. The advantages of the cooperative scatter search
approach are illustrated through the solution of a parameter estimation problem re-
lated to the modeling of the central carbon metabolism in Escherichia coli. AMIGO
is used to solve an optimal experimental design problem related to a three-step
metabolic pathway model. And the last example illustrates how hybrid optimization
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methods incorporated in DOTcvpSB are able to solve a highly multimodal problem
related to the computation of the optimal stimulation conditions to obtain a given
multicellular structure in bacterial chemotaxis.

2 Optimization Problem Formulation

Consider a general dynamic and possibly distributed system described by the
following state space equations:

Py D �.x; y;u;�; t/I xt D �.x; x� ; x�� ; y;u;�; t/; (24.1)

where � 2 ˝ 	 <3 are the spatial variables, x.�; t/ 2 X 	 <� is the subset of state
variables depending on both time and spatial location, y.t/ 2 Y 	 <� is the subset
of time-dependent variables, x� D @x=@�, x�� D @2x=@�2, xt D @x=@t , Py D dy=dt ,
u 2 U 	 <� are the control variables and � 2 � 	 <� are time-independent
parameters.

In addition, state variables are subject to initial and boundary conditions:

y.t0/ D �0.x.t0/;u.t0/;�; t0/ (24.2)

x.t0/ D �0.y.t0/;u.t0/;� ; t0/I B.x; x� ;u;� ; �; t/ D 0I � 2 ˝ (24.3)

Note that the formulation in (24.1)–(24.3) can be used to model many biological
systems such as biochemical pathways, e.g., cell signaling or metabolic pathways;
diffusion reaction systems, e.g., pattern formation or persistence and extinction of
species, etc.

State and control variables may be also subject to algebraic constraints which
force the satisfaction of particular biological conditions at particular time points or
throughout the process:

req
k .x.�; tk/; y.tk/;u.tk/;�; tk/ D 0I rin

k .x.�; tk/; y.tk/;u.tk/;�; tk/ � 0 (24.4)

ceq.x.�; t/; y.t/;u.t/;� ; t/ D 0I cin.x.�; t/; y.t/;u.t/;� ; t/ � 0: (24.5)

Control variables and parameters may be also subject to bound constraints:

uL � u.t/ � uU I �L � � � �U : (24.6)

The last element in the problem definition will be the objective functional that
quantifies the quality of a solution:

J D �.x.�; tf/; y.tf/;�; tf/C
Z tf

t0

L.x.�; t/; y.t/;u.t/;� ; �; t/dt (24.7)
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where the scalar functions � (Mayer term) and L (Lagrangian term) are continu-
ously differentiable with respect to all of their arguments, and the final time tf can
be either fixed or free.

This objective functional may be related to, for example, the quantity of
metabolites produced in a metabolic pathway, to the distance among experimental
data and model predictions in the case of parameter estimation or to the information
provided by an experimental scheme in the case of optimal experimental design.

The general dynamic optimization problem considered here can be then
formulated as: Find the controls u.t/ and the time-invariant parameters �

subject to the system dynamics in (24.1)–(24.3) and the algebraic constraints
in (24.4)–(24.6) so as to minimize (or maximize) the objective functional
in (24.7).

3 Numerical Methods

There are several alternatives for the solution of DO problems from which the
indirect and the direct methods are the most widely used. The indirect methods
make use of the Pontryagin’s maximum principle so as to obtain the optimality
necessary conditions. The method relies on the formulation of the Hamiltonian
by summing the cost functional, the product of multiplier functions (co-states)
with the dynamic equations in (24.1) and the product of the Lagrange multipliers
with algebraic constraints and the subsequent derivation of the corresponding first
and second order derivatives on the decision variables. The result will be a two
or multi-point boundary value problem which must be solved for the state and
co-state variables [11]. However, the complexity of the numerical solution of such
boundary value problems has motivated the use of direct methods for most realistic
applications.

Direct methods such as the complete parameterization (CP, [9]), multiple shoot-
ing (MS, [10]), or control vector parameterization (CVP, [44]) transform the DO
problem into a NLP. These methods discretize and approximate either the control
variables or both the control and state variables in such a way that the decision
variables for the NLP are related to the given parameterization scheme. The three
alternatives basically differ in the resulting number of decision variables, in the
presence or absence of parameterization-related constraints and in the necessity of
using a boundary value problem solver. While the CP or the MS approaches may
become prohibitively expensive in computational terms, the CVP approach allows
handling large-scale DO problems without solving very large NLPs and without
dealing with extra junction constraints.
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3.1 Control Vector Parameterization

The CVP method proceeds dividing the duration of the process into a number �
of control intervals and the control function is approximated using a low order
polynomial form over each interval. Each control variable approximation may be
expressed using Lagrange polynomials as follows:

uj .t/ D
MjX

iD1
uij˚

.Mj /

i .�/; (24.8)

where, j D 1; : : :; �, t 2 Œt0; tf�, and � is normalized time given by,

� D t � t0
tf � t0 (24.9)

and the Lagrange polynomials of order M, ˚
.Mj /

i are defined in the standard form,

if M D 1
˚
.M/
i .�/ � 1; (24.10)

if M � 2
˚
.M/
i .�/ �

MY

i 0D1;i¤1

� � �i 0
�i � �i 0 : (24.11)

The parameters of these polynomials, uij , will be used as decision variables in
the optimization process together with time-independent parameters.

The generalization of the CVP approach for the case of optimal experimental
design may be found in [1].

3.2 Boundary Value Problem Solution

The solution of the nonlinear dynamic, sometimes distributed, models describing
biological systems (24.1) requires the use of suitable numerical techniques. For the
most general case involving partial differential equations (PDEs) numerical methods
use some type of space parameterization approach to transform the PDEs into an
equivalent set of ODEs [36]. The numerical method of lines and the finite element
method are the most widely used approaches for this transformation. The underlying
idea is to discretize the domain of interest into many smaller subdomains and use
local spatial functions to approximate the distributed variables in each subdomain.
As a result a large-scale, usually stiff, set of ODEs is obtained which may be solved
with a sparse implicit initial value problem solver.
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3.3 Nonlinear Programing Methods

Nonlinear programing methods may be largely classified in two main groups: local
and global. Local methods are designed to generate a sequence of solutions, using
some type of pattern search or gradient and Hessian information, that will converge
to a local optimum, usually the closest to the provided initial guess. However
the NLPs with nonlinear dynamic constraints (such as in parameter estimation
or the ones resulting from the application of the CVP approach) are frequently
multimodal (i.e., presenting multiple local optima) [6, 7]. Therefore, local methods
may converge to local solutions, especially if they are started far away from the
global optimum. In order to surmount these difficulties, global methods must be
used.

3.3.1 Global Optimization Methods

Global methods have emerged as the alternative to search the global optimum [30].
The successful methodologies combine effective mechanisms of exploration of the
search space and exploitation of the previous knowledge obtained by the search.
Depending on how the search is performed and the information is exploited the
alternatives may be classified in three major groups: deterministic, stochastic, and
hybrid.

Global deterministic methods [16,31] in general take advantage of the problem’s
structure and guarantee global convergence for some particular problems that
verify specific smoothness and differentiability conditions. Although they are very
promising and powerful, there are still limitations to their application, particularly
for nonlinear dynamic systems, since the computational cost increases rapidly with
the size of the considered dynamic system and the number of decision variables.

Global stochastic methods do not require any assumptions about the problem’s
structure. They make use of pseudo-random sequences to determine search direc-
tions toward the global optimum. This leads to an increasing probability of finding
the global optimum during the run time of the algorithm, although convergence
may not be guaranteed. The main advantage of these methods is that, in practice,
they rapidly arrive to the proximity of the solution.

The most successful approaches lie in one (or more) of the following groups:
pure random search and adaptive sequential methods, clustering methods, or
metaheuristics. Metaheuristics are a special class of stochastic methods which have
proved to be very efficient in recent years. They include both population (e.g.,
genetic algorithms) or trajectory-based (e.g., simulated annealing) methods. They
can be defined as guided heuristics and many of them try to imitate the behavior
of natural or social processes that seek for any kind of optimality [42]. Some of
these strategies have been successfully applied to, for example, parameter estimation
[27, 28, 40] or optimal experimental design [1] in the context of systems biology.
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Despite the fact that many stochastic methods can locate the vicinity of global
solutions very rapidly, the computational cost associated to the refinement of the
solution is usually very large. In order to surmount this difficulty, hybrid methods,
and metaheuristics have been recently presented for the solution of DO problems
[4, 13] or parameter estimation problems [3, 33, 34]. They speed up these method-
ologies while retaining their robustness and, provided a gradient-based local method
is used, they guarantee convergence to a gradient zero solution.

In particular, the Scatter Search metaheuristic [15] is an evolutionary hybrid
optimization method that has been successfully applied to the solution of not
only parameter estimation problems [32, 34, 46] but also DO [13] and optimal
experimental design [2] problems. The newest version, the eSS method (www.
iim.csic.es/	gingproc/ssmGO.html, [14]), presents a simpler but more effective
design which helps to overcome typical difficulties of nonlinear dynamic systems
optimization such as noise, flat areas, nonsmoothness, and/or discontinuities.

4 Illustrative Examples

4.1 Optimal Enzyme Activation in Metabolic Networks

An example of the insight that optimization can provide concerns the enzyme
activation in metabolic networks. Several authors have shown that the genetic
regulation of metabolic networks may follow an optimality principle such as the
minimization of the transition time or the maximization of the production of a given
metabolite. For example, the optimal “just-in-time” activation pattern in enzyme
expression for the case of unbranched pathways has been formulated and solved as
a nonlinear optimization problem with dynamic constraints [22, 47]. More recently
the problem has been considered as a general DO one and was solved through the
use of the Pontryagin’s maximum principle for linear pathways [8, 29]. However
the difficulty (or impossibility) of analytically solving other more realistic cases,
such as those considering nonlinear dynamics for the enzyme expression, or other
arbitrarily complex networks, calls for the use of robust numerical DO approaches.

Here we consider one of such examples and approach its solution using the
DOTcvpSB toolbox (http://www.iim.csic.es/	dotcvpsb, [17]) which combines the
CVP approach with global stochastic and hybrid methods to solve DO problems.

The pathway considered is depicted in Fig. 24.1. It consists of four enzymatic
reactions with one branch where the products are accumulated to be consumed later.

The hypothesis is that the pathway activation minimizes the time from the
substrate to the product. The activation profile may then be found by computing
ri .t/ over t 2 Œt0; tf� to minimize J D tf subject to the system dynamics:

dSi
dt
D N� dEi

dt
D ri � 	Ei (24.12)

www.iim.csic.es/~gingproc/ssmGO.html
www.iim.csic.es/~gingproc/ssmGO.html
http://www.iim.csic.es/~dotcvpsb
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Fig. 24.1 Schematic representation of the branched pathway considered. The pathway consists of
four enzymatic reactions catalyzed by a specific enzyme .Ei / where S1 is the substrate, S2–S4
are intermediates and S5 is the product. The enzyme dynamics are considered to be linear with a
reaction rate ri

where:

� D kcatSi
KM C Si

N D

2

6664

�1 0 0 0

1 �1 0 0

0 1 �1 0

0 1 1 �1
0 0 0 1

3

7775 (24.13)

and the following end point and path constraints:

S5 .tf/ D Ptf
4X

iD1
Ei � ET (24.14)

with KM = 1mM, kcat = 1 s�1, Ptf = 0.75mM, and 	 D 0:5.
The optimal activation profile corresponding to an optimal final time tf = 10.4 s

obtained with an evolutionary approach is presented in Fig. 24.2.

4.2 Parameter Estimation in Complex Systems Biology Models

The problem of parameter estimation in biochemical pathways, formulated as a
NLP where the objective is to compute the model parameter values that maximize
the fit to the experimental data, has received substantial attention [19, 28, 33].
Many difficulties found during parameter estimation are not only due to the highly
nonlinear nature of the models and their size, but also due to the quality and
quantity of experimental data. These result in poor practical identifiability, i.e., in
the difficulty or impossibility to compute unique values for the parameters given a
set of data, or the presence of suboptimal solutions.
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Fig. 24.2 Optimal enzyme activation profile and the corresponding metabolite dynamics. The
optimal profiles for the expression rates follow a switching pattern that matches with the pathway
topology leading to enzyme profiles that follow a sequential activation with protein degradation
to synthesize another protein. The substrate .S1/ is converted into the product .S5/ through the
intermediates .S2; S3; S4/, the intermediate .S4/ is accumulated and consumed in the last section
of the pathway

The presence of suboptimal solutions may be tackled with global optimization
methods. Recent works show how hybrid stochastic–deterministic methods handle
small-to-medium size problems with reasonable computational efforts [3, 33, 34].
However, further developments are necessary to enhance, in so far is possible, the
efficiency of the optimization while keeping robustness for large-scale complex bi-
ological models. Multi-thread approaches, i.e., those running several computations
in parallel in different processors, seem to be the most suitable for this purpose.

Here we present a new cooperative strategy for the parallelization of the eSS
algorithm [14]. The central idea is to run, in parallel, several threads of eSS, which
may have different settings and/or random initializations, and exchange information
among them as shown in Fig. 24.3. Taking into account the classification of
cooperation schemes proposed in [43], the cooperative eSS can be described as
follows:

1. There are � concurrent programs.
2. The best solution found and the eSS reference set, which contains valuable

information about the diversity of solutions, are available for sharing.
3. All threads share the information.
4. The threads exchange information at a fixed time interval � .

It should be noted that cooperation produces more than just speed-up since it
can change the systemic properties of an algorithm and therefore its macroscopic
behavior [43]. To illustrate this point an example related to the parameter estimation
of a model describing the central carbon metabolism of E. coli that takes into
account the enzymatic and transcriptional regulation layer [23] is considered.
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Fig. 24.3 Schematic representation of the cooperative eSS. Each of the � threads has a fixed
degree of “aggressiveness”. “Conservative” threads are used for increasing the probabilities
of finding a feasible solution, even if the parameter space is “rugged” or weakly structured.
“Aggressive” threads may speed up the calculations in “smoother” areas. Communication, which
takes place at fixed time intervals, enables each thread to benefit from the knowledge gathered by
the others. This knowledge includes not only information about the best solution found so far, but
also about the sets of diverse parameter vectors that may be worth trying for improving the solution

The model consists of 47 nonlinear ODEs with 193 unknown parameters (affinity
constants, specific activities, Hill coefficients, growth rates, expression rates, etc.).
The objective is to compute those parameters so as to predict a given system
behavior. Due to the stiff character of the equations and the time required for their
solution, one evaluation of the least squares function takes a few seconds.

The cooperative and noncooperative multi-thread implementations of eSS are
compared by launching ten threads in both cases. In the cooperative case, the ten
threads exchange information as explained. In the noncooperative case, they simply
run until the maximum computation time is reached. Figure 24.4 presents the corre-
sponding convergence curves showing how the cooperative version outperforms the
noncooperative one, being capable of finding a better value of the objective function
while reducing computation time by 70%.

4.3 Optimal Experimental Design for Parameter Estimation

As mentioned above, poor practical identifiability has to do with the type of
experimental scheme being used and the quality of the corresponding experimental
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Fig. 24.4 Comparison of the performance of the parallel and cooperative eSS implementations in
the solution of a large-scale parameter estimation problem. Each curve represents, at every time
instant, the best value found by any of its 10 threads

data in terms of experimental noise. The purpose of optimal experimental design is
to devise the necessary dynamic experiments in such a way that the parameters are
estimated from the resulting experimental data with the best possible statistical qual-
ity, which is usually a measure of the accuracy and/or decorrelation of the estimated
parameters. In this way, the model and a close-to-optimal solution for the parameters
are being used to design new more informative experiments which in general will
result in better practical identifiability properties. The information provided by the
measurements is often quantified by means of the Fisher information matrix [1, 5].

AMIGO (http://www.iim.csic.es/	amigo, [2]) is a multi-platform toolbox which
apart from covering model simulation, local and global sensitivity analysis, param-
eter estimation, and identifiability analysis, incorporates the optimal experimental
design as a general DO problem.

Here we illustrate its possibilities in the context of optimal experimental design
with an example related to a model describing a pathway consisting of three
enzymatic steps including the enzymes and the mRNAs explicitly [28]. Previous
works [28, 33, 34] considered a factorial plan consisting of 16 experiments under
different amounts of substrate and product to estimate all 36 model parameters.
We will consider here the case of estimating: na2, na3, k1, k2, k3, k4, k6, V1, V2,
V3, V5, K5.

In a few seconds with eSS as implemented in AMIGO the global optimum is
achieved corresponding to the following parameter values: k1D 1:0˙ 4:4, k2D
0:1˙ 6:9, k3D 1:0˙ 8:8, k4D 0:1˙ 0:01, k6D 0:1˙ 0:02, V1D 1:0˙ 4:4,
V2D 0:1˙ 6:9, V3D 1:0˙ 8:8, V5D 0:1˙ 0:07, na2D 2:0˙ 0:7, na3D 2:0˙ 0:7,
K5D 1:0˙ 1:2. Note that even though the global solution was found, the confidence
regions for some of the parameters are rather large and in many cases (k1, k2, k3,
V1, V2, V3, K5) they are over the 100%.

http://www.iim.csic.es/~amigo
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In order to improve the practical identifiability we implemented in AMIGO the
design of a parallel-sequential experimental scheme. In particular two experiments
were designed under the following conditions:

• Experiment 17: pulsed stimulation of the substrate. The location and duration of
the pulses as well as the number and location of sampling times and experiment
duration were to be optimized.

• Experiment 18: a 5 step-wise stimulation of the substrate is allowed within the
maximum and minimum values.

Even allowing for limited flexibility in the design of the experiments, results
(Fig. 24.5) reveal a substantial reduction in the confidence regions for the pa-
rameters: k1D 1:0˙ 1:3.�70%/, k2D 0:1˙ 3:2.�54%/, k3D 1:0˙ 4:1.�53%/,
V1D 1:0˙ 1:3.�70%/, V2 D 0:1˙ 3:2.�54%/, V3 D 1:0˙ 4:1.�53%/, K5D
1:0˙ 0:2.�83%/. Further improvements may be achieved by either allowing for
further flexibility in the designs or by adding new experiments.

4.4 Stimulation Design

For some particular systems, once reliable models have been developed it is possible
to design stimulation conditions so as to achieve a certain goal. In this context, it is
possible, for example, to optimally design medical treatments or immune responses
[12, 20], or to obtain particular behaviors such as in the case of pattern formation
[24, 25, 35]. However the solution of such problems often results in the presence
of suboptimal solutions [25]. Here, we illustrate with an example related to pattern
formation in bacterial chemotaxis [24] how hybrid global optimization methods may
successfully solve these problems.
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Some types of cells are able to sense the presence of chemical signals (chemoat-
tractants) and guide their movement in the direction of the concentration gradient
of these signals. This process is called chemotaxis. The chemotaxis of the bacteria
E. coli is one of the best understood chemotaxis processes. These bacteria, under
given stress conditions, secrete chemoattractants. Other cells respond to these
secreted signaling molecules by moving up their local concentration gradients and
forming different types of multicellular structures.

The system may be described by a two-component diffusion reaction model:

@z

@t
D D@

2z

@

C � @

@


�
z

.1C c/2
@c

@


�
@c

@t
D @2c

@

C z2

.1C z2/
(24.15)

with homogenous first order boundary conditions and initial conditions z.
; 0/ D 1;
c.
; 0/ D 0, where z.
; t/ and c.
; t/ represent the cell density and the concentration
of the chemoattractant, respectively.

Lebiedz and co-workers [24, 25] considered the problem of externally manip-
ulating the process so as to achieve a particular Gaussian cell distribution. With
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Fig. 24.6 Optimal stimulation profile and corresponding optimal behavior for the bacterial
chemotaxis problem. The model in (24.15) with the corresponding boundary and initial conditions
was numerically solved using the numerical method of lines with fourth order formulae and a mesh
of 41 elements. In a first approximation to the DO problem the CVP approach with linear control
interpolation was combined with a multi-start of a local method (i.e., the solution of the problem
with a local method from 500 different initial guesses) which revealed the presence of several local
optima. The global solution was found with a sequential hybrid-deterministic method [4]
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this aim, a nonzero chemoattractant flux is introduced in the boundary @c
@

.
 D

L; t/ D �c.
 D L; t/ C u.t/. The problem was formulated as DO problem where
the objective is to find u.t/ so as to minimize the distance between the distribution
of bacteria at final time (z.
; tf/) and the desired Gaussian distribution, subject to
the system dynamics (24.15) and bounds on the concentration of chemoattractant.
These authors made use of the multiple shooting approach with a local optimization
method to solve the problem reporting some difficulties due to the presence of local
optima and the large computational cost associated. Here the problem is solved by
means of the CVP approach in combination with a sequential hybrid-deterministic
method [4]. The optimal solution (Fig. 24.6) was found in a few seconds.

5 Conclusions

In this work we have focused on typical optimization problems in systems biol-
ogy and how their solution may be approached with novel global optimization
methods and software tools developed in our group. In particular, a novel optimiza-
tion approach, the multi-thread eSS, for the solution of large-scale optimization
problems was presented, together with the AMIGO toolbox devoted to model
identification and the DOTcvpSB toolbox devoted to DO.

As illustrative examples we considered the optimal enzyme activation in a
branched metabolic pathway, the parameter estimation of a large-scale dynamic
model, an optimal experimental design problem to improve identifiability, and the
design of optimal stimulation conditions to achieve a given desired result in a
reaction-diffusion system.

It should be noted that these software tools can be easily extended to handle
multiobjetive optimization problems following the methods described in [38,39,45].
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Chapter 25
Mathematical Modeling of the Human Energy
Metabolism Based on the Selfish Brain Theory

Matthias Chung and Britta Göbel

Abstract Deregulations in the human energy metabolism may cause diseases such
as obesity and type 2 diabetes mellitus. The origins of these pathologies are fairly
unknown. The key role of the brain is the regulation of the complex whole body
energy metabolism. The Selfish Brain Theory identifies the priority of brain energy
supply in the competition for available energy resources within the organism. Here,
we review mathematical models of the human energy metabolism supporting central
aspects of the Selfish Brain Theory. First, we present a dynamical system modeling
the whole body energy metabolism. This model takes into account the two central
control mechanisms of the brain, i.e., allocation and appetite. Moreover, we present
mathematical models of regulatory subsystems. We examine a neuronal model
which specifies potential elements of the brain to sense and regulate cerebral energy
content. We investigate a model of the HPA system regulating the allocation of
energy within the organism. Finally, we present a robust modeling approach of
appetite regulation. All models account for a systemic understanding of the human
energy metabolism and thus do shed light onto defects causing metabolic diseases.

1 Selfish Brain Theory

How does the human organism control its energy metabolism? The answer to
this question is essential to understand disorders such as obesity and type 2
diabetes mellitus. However, the answer to the challenging question remains open.
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The lipostatic and glucostatic theory gave a first basic theoretical understanding of
control mechanisms of the human energy metabolism [20, 29]. However, studies
show that these theories fail to explain many phenomena like certain metabolic
diseases [18, 36]. The decisive role of the brain in the global regulation of the
complex whole body energy metabolism is subject to recent research activities
[28, 34, 37, 40]. To our best knowledge, the “Selfish Brain Theory” for the first
time regards the brain as the central organ in the energy metabolism and as its
hierarchical highest controller (a detailed review of the Selfish Brain Theory can
be found in Peters et al. [37]). The goal of the Selfish Brain Theory is to understand
the dynamics of the human energy metabolism in order to identify the origins of
disorders such as obesity, diabetes mellitus type 2, and anorexia nervosa as well as
to develop efficient therapies and treatments therefore, [32, 39, 42].

Why do we call the brain “selfish”? In contrast to other organs, the brain has
unique characteristics. The blood brain barrier restricts cerebral substrate uptake.
The brain almost exclusively metabolizes glucose. Compared to its size the energy
consumption of the brain is very high due to neuronal activity accounting for about
25% of total body glucose utilization [8]. Despite its high energy consumption, the
brain has little ability to store energy. Another key feature is the brain’s plasticity.
The brain is able to adapt to its environment, to learn, and to change neuronal and
hormonal responses to external stimuli. Furthermore, the brain is connected to all
other organs. Via afferent nerve fibers the brain receives status information from
the organs and via efferent nerve fibers the brain is capable of sending control
signals to the organs. The brain as subordinate controller needs to maintain its
own functionality. Without energy the brain will shut down and the organism will
collapse. Hence, highest priority for the brain is providing itself with sufficient
energy – the brain acts “selfish”.

How does the brain secure its energy supply? An overview of involved mecha-
nisms is given in Fig. 25.1. In general, the brain has two mechanisms. First, the brain
may direct available energy resources across the blood brain barrier into the brain
[4, 26, 45] or reduce energy uptake of peripheral organs [10, 12, 19] (allocation).
Secondly, ingestion of energy increases the total amount of energy in the body
(appetite) [30, 41]. We conclude, regulating appetite and changing the allocation
of energy are the main control mechanisms of the brain.

What are key control mechanisms to maintain cerebral energy supply? The
Selfish Brain Theory identifies the “principle of biological homeostasis” as central
control mechanism [9]. This mechanism can be found in various homeostatic
systems throughout the body [5]. The principle of biological homeostasis bases on
interacting negative and positive feedback signals naturally stabilizing the controlled
target substrate:

1. The ligand A binds with high affinity to a receptor B but with low affinity to a
receptor C.

2. The two ligand-bound receptors B and C act in opposing manners.
3. Ligand-bound receptors B increase the concentration of A (positive feedback)

while ligand-bound receptors C decrease the concentration of A (negative
feedback).
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Fig. 25.1 The energy metabolism according to the Selfish Brain Theory. The brain has two
principal mechanisms to secure its energy supply: allocation and appetite. The neocortex as well
as the HPA system govern these two mechanisms. Feedback signals from cerebral energy content
(glucose) and activity of the HPA system (cortisol) affect the hierarchical elements of the system.
The model reflects the priority of cerebral energy supply while brain and body periphery compete
for the available energy resources

These interactions lead to a homeostatic state of molecule A [9, 34]. They result in
cortical and hypothalamic balance which govern allocation and appetite.

Mathematical models play a key role in theory validation. There exist many
models describing the human energy metabolism, e.g., [1, 2, 6, 16, 25, 27]. These
models base on the classical glucostatic and lipostatic theory, respectively. Recently,
several mathematical models of the human energy metabolism have been developed
and investigated to analyze the numerous findings and complex mechanisms of the
Selfish Brain Theory [7,9,15,22,23,35]. These models take into account the decisive
role of the brain with respect to the energy metabolism. That is, it is considered as
superior regulatory instance and as energy consumer. The analytic investigations
and numerical simulations do shed light onto the global regulation of the complex
whole body energy metabolism. Moreover, there exist detailed modeling approaches
of the brain energy metabolism [11, 46].

In this work, we review and discuss mathematical models of the human energy
metabolism supporting the Selfish Brain Theory. First, we present a whole body
model focusing on the main regulatory control mechanisms of the brain, i.e.,
allocation and ingestion (Sect. 2.1) [14, 15]. This compact dynamical system aims
at understanding the basic mechanisms. The models in the following subsections
can be seen as submodels focusing on details of the energy metabolism presented
in Sect. 2.1. In Sect. 2.2, we present a neuronal model which identifies a potential
cerebral mechanism to sense the brain’s energy content and to send signals to the
body [7]. This section is followed by a mathematical model of the HPA system
which can be seen as allocation mechanism of the brain (Sect. 2.3) [9]. The last
mathematical model in our consideration in Sect. 2.4 focuses on appetite regulation
[13]. We close with a short discussion and conclusion in Sect. 3.
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2 Mathematical Modeling

2.1 Brain Centered Energy Metabolism Model

A mathematical model describing the human energy metabolism on a whole body
scale has been developed and investigated in Göbel et al. [15]. This model includes
principal elements of the Selfish Brain Theory. The model takes into account the
two central roles of the brain in the energy metabolism. The brain is considered as
subordinate regulatory authority as well as the consumer with highest priority.

The model consists of separated compartments containing energy metabolites.
It regards the time-dependent brain energy content A D A.t/ 2 RC WD fx 2
R W x � 0g, which might be identified as cerebral adenosine triphosphate (ATP)
concentration. The energy level in the blood is G D G.t/ 2 RC consisting mostly
of glucose. The energy resources in the body periphery R D R.t/ 2 RC comprise
all energy reserves like muscle, fat tissue, liver, and gastrointestinal tract.

The mathematical model integrates energy fluxes between these compartments
and control signals directing the energy fluxes within the organism, see Fig. 25.2.
Both mechanisms supplying the brain with adequate energy amounts are included
in the model: allocation and appetite. First, the allocation mechanism of the brain
is represented in the production of the control signal insulin I D I.t/ 2 RC. The
brain may supply itself with energy by dropping the insulin level. In this way, the

c2 c1

Z
Appetite 

H
Ingestion 

R
Muscle 

Fat 

G
Blood 

A
Brain 

I
Insulin 

-- -
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+
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Fig. 25.2 Energy fluxes between compartments (solid) and control signals directing the energy
fluxes in the organism (dashed). The ingested energy H passes the resources R and the blood G
and is transported into the brain A. Energy is consumed by the brain (c1) and the periphery (c2).
While the appetite Z affected by A, G, and I controls the ingestion H , insulin I controls the
allocation of energy to the brain via control of the blood glucose flux
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insulin-dependent glucose flux into the body periphery is suppressed. The available
blood glucose is assimilated into the brain because the glucose flux across the blood
brain barrier is insulin-independent. Regarding the hormone insulin not only as local
signal but as central feedback signal of the brain is a central new aspect in the model.
Secondly, the regulation of appetite Z D Z.t/ 2 RC and the ingestion of energy
H D H.t/ 2 RC are included. The brain as well as the body periphery consume
energy represented by c1 D c1.t/ 2 RC and c2 D c2.t/ 2 RC, respectively.

The model of the whole body energy metabolism is given by the system of five
ordinary differential equations:

PA D p1G
A
� c1;

PG D �p1G
A
� p2GI C p3 R

G
;

PI D p4A � p5I;

PR D p2GI � p3 R
G
C p6H � c2;

PH D p7 .f .Z/�H/

with Z D p8

AGI
(25.1)

and with positive parameters p1; : : : ; p8. All parameters have a physiological
interpretation. For instance, the sigmoid function f represents ingestion activation
depending on appetite.

It is well known that ingestion is mildly regulated on a short-time scale [38, 43].
In contrast, on a long-time scale extending over months or years we observe an
extremely strict food intake regulation [47]. In the presented dynamical system,
the parameter p7 reflects the sensitivity of the organism to food intake consistent
with its need for energy. A low value of p7 indicates a slow adaption to the body’s
energy needs. However, a rather high value of p7 reflects that ingestion is strongly
regulated and the energy uptake immediately satisfies the needs of the organism.
The transition p7 ! 1 in system (25.1) leads to a lower-dimensional dynamical
system describing the mean regulation of food intake. It is the related long-term
model of the energy metabolism giving insight into the long-term behavior of the
model.

The presented model realistically describes the qualitative and quantitative
behavior of the human whole body energy metabolism even for a large class of
physiological interventions. Short-time observations demonstrate the physiological
periodic ingestive behavior generating the circadian blood glucose and insulin
oscillations, see solid lines in Fig. 25.3. However, if ingestion activation is not
sensitively dependent on appetite and thereby energy deprivation, we observe
permanent feeding and fixed energy levels, see dashed lines in Fig. 25.3. A stable



430 M. Chung and B. Göbel
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Fig. 25.3 Simulation results of model (25.1) for sensitive activation of food intake (solid) and
moderate sensitivity of ingestion activation (dashed)

long-term behavior in accordance with the homeostatic regulation of the energy
metabolism on a long-time scale can be observed. The model properties have
been analyzed in detail in [14, 15]. It can be shown that the long-term model has
an asymptotically stable stationary point, whereas the short-term model features
stable limit cycles. Therefore, the analytic results are in line with the numerical
calculations.

The presented mathematical model of the human whole body energy metabolism
reproduces central aspects of the Selfish Brain Theory. Key elements like the
preeminence of the brain’s energy supply as well as the competition for available
energy resources between brain and body periphery are reflected in the obtained
results. In the following sections, we introduce mathematical models of regulatory
subsystems of the energy homeostasis, namely cortical balance, HPA system
(allocation), and appetite regulation, compare Fig. 25.1.
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2.2 Neuronal Model

The cortical balance of brain energy supply is essential to maintain the brain’s
functionality. Hence, a key question arises in understanding the regulation of the
energy metabolism: How does the brain sense its energy level and how is the
regulatory feedback generated?

The principle of biological homeostasis generates the cortical balance of the
energy metabolite ATP via interaction of ATP sensitive potassium (KATP) channels.
On the one hand, ATP binds at low concentrations to high affine KATP channels
predominantly distributed on excitatory dopaminergic neurons. On the other hand,
ATP binds at high concentrations to low affine KATP channels mainly located on
inhibitory GABAergic neurons. Activated KATP channels close and potassium ions
are prevented to cross the cell membrane. Thereby, the neuron fires and releases
its neurotransmitter. Action potentials of GABAergic neurons inhibit dopaminergic
neurons via GABAA receptors which are located at the postsynaptic membrane of
dopaminergic neurons. The neurotransmitter dopamine is prevented to be released.
Maximum dopamine outflow can be seen as feedback signal at the homeostatic
ATP level while low dopamine signals correspond to unbalanced brain energy
content [37].

Mathematical modeling of these interactions must incorporate coupled GABAer-
gic and dopaminergic neurons as well as the relevant ATP sensitive ion channels,
see Fig. 25.4. Mathematical models of brain activity need to consider neuronal
models with their signaling, interactions, and patterns. The Hodgkin–Huxley model
introduced in 1952 [17] is the standard type model to simulate neuronal activity
of a single neuron. This model is given by a system of four ordinary differential
equations for each neuron. In [7], a coupled Hodgkin–Huxley model of GABAergic
and dopaminergic neurons is used to investigate the neurological plausibility of the
described mechanisms. The differential equations:

PV dopa D 1

C

�
�I dopa

Na � I dopa
K � I dopa

L � IGABA C IP

�
;

PV GABA D 1

C

��IGABA
Na � IGABA

K � IGABA
L C IP

�
(25.2)

describe the membrane potential V of dopaminergic and GABAergic neurons,
respectively. The constant C is the membrane capacitance, and IP is an externally
applied current. The currents of sodium and potassium ion channels are represented
by INa; IK, while IL is a leakage current. These currents are described by membrane
potential-dependent gating variables in the Hodgkin–Huxley model.

The basic Hodgkin–Huxley model is expanded by the synaptic coupling of
GABAergic and dopaminergic neurons as well as by the interaction of high and
low affine KATP channels in [7]. The inhibitory effect of GABAergic neurons on
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Fig. 25.4 (a) Schematic illustration of the interaction between GABAergic and dopaminergic
neurons. (b) GABA (black dots) is released into the synaptic cleft between the presynaptic
GABAergic and the postsynaptic dopaminergic neuron. Activated GABAA receptors open and
Cl� ions (gray bars) pass into the dopaminergic neuron leading to a hyperpolarization. An action
potential cannot be generated. (c) Insulin-independent glucose receptors GLUT3 are permeable for
glucose (black dots) predominantly accounting for neuronal glucose uptake. Through glycolysis
and respiratory chain, glucose is decomposed into ATP (gray squares). In turn, ATP binds to KATP
channels closing these channels for KC ions and action potentials become more likely

dopaminergic neurons due to GABAA receptors is represented by the current IGABA

in equation (25.2), see Fig. 25.4b. The potassium current IK is modified since the
closing probability of KATP channels is ATP dependent, see Fig. 25.4c.

The developed mathematical model realistically reproduces the results of an in
vitro experiment in which a biphasic dopamine release under varying extracellular
glucose concentration is shown [44]. The simulations show a biphasic dopamine
release with low activity at low and high glucose levels and an elevated activity
at moderate glucose levels. The Selfish Brain Theory specifies KATP channels to
be involved in cerebral energy supply sensing [37]. According to this theory, the
biphasic dopamine release can be explained by the dynamics of high and low affine
KATP channels, and the biphasic release might be interpreted as an energy sensing
mechanism of the brain. The obtained results support the plausibility of interacting
high and low affine KATP channels controlling dopamine and GABA outflow [7].
The opposing effects of the channels may generate a homeostatic regulation of
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Fig. 25.5 CRH in the brain stimulates ACTH in the hypothalamus. In turn, ACTH is released in
the blood and stimulates the adrenals to produce cortisol. Cortisol crosses the blood brain barrier
and alters CRH as well as ACTH release. The HPA system is a closed loop feedback system

cerebral ATP concentration consistent with the proposed principle of biological
homeostasis. Note, the homeostatic feedback on the cerebral ATP is conjectured
by [37] and supported by references therein.

The link between the neuronal model and the whole body model (25.1) lies in the
description of the regulation of the energy supply of the organism f . Our neuronal
model represents the biphasic release of the neurotransmitter dopamine depending
on energy content. Integration of the biphasic dopamine release corresponds to the
sigmoid dynamics of the function f .p8=.AGI// in our whole body model (25.1)
regulating the energy supply of the organism according to its needs.

2.3 Model of the HPA System

Hypothalamic–pituitary–adrenal (HPA) dynamics are closely related to the energy
metabolism. Deregulation of cortisol may cause depression, diabetes, and visceral
obesity [34]. The Selfish Brain Theory identifies the HPA system as central control
mechanism of energy allocation [34].

Model (25.1) includes the allocation mechanism in terms of the control signal
insulin I , mainly regulated by the brain energy content A. The HPA system shows
similar central signaling behavior as insulin [37]. To investigate the allocation
mechanism in more detail we turn to a mathematical modeling of the HPA system.

Activation of hypothalamic neurons causes a release of corticotropin releasing
hormone (CRH). In turn, CRH is secreted into the pituitary, where it subsequently
stimulates the release of adrenocorticotropic hormone (ACTH) into the blood circu-
lation. ACTH stimulates the release of cortisol in the adrenal cortexes into the blood
stream (Fig. 25.5). Serum cortisol concentration has to be sufficiently regulated
within a physiological range. The HPA system is a closed loop control system
since cortisol reaches all areas of the brain and stimulates/inhibits via high affine
mineralocorticoid (MR) and low affine glucocorticoid receptors (GR), respectively.
The stimulation/inhibition of CRH via glutamatergic pathways closes the loop.

Inhibition of cortisol secretion is an essential component of the regulation within
this system. However, maintaining cortisol concentrations above a critical threshold
is vital since low cortisol may result in pathological conditions.
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The homeostatic regulation of cortisol follows the principle of biological home-
ostasis. Cortisol binds at low concentrations to MRs and only at high concentrations
to GRs. Activated MR and GR operate in an opposing manner. Cortisol raises
its own serum concentration via activated MRs, while the hormone reduces its
concentration via activated GRs.

The dynamics of the HPA system can now be described by two coupled
differential equations incorporating the principle of biological homeostasis:

Py D �b1y C e1z

zCK1

� e2z

zCK2

;

Pz D �b2zC b3y: (25.3)

Here, CRH and ACTH are pooled from different brain regions in one molecular cue
of the brain/pituitary compartment with a physiological interpretation as plasma
ACTH concentration y D y.t/ 2 RC. The concentration of cortisol is given by
z D z.t/ 2 RC. The change in cortisol concentration at time t is determined by a
natural decay rate b2 and a stimulus from ACTH with a rate b3. The feedback on
the ACTH compartment is formed by a decay rate b1 combined with the feedback
from cortisol via activated MR and GR. This feedback is modeled by nonlinear
biochemical receptor kinetics. The coefficients e1 and e2 represent the integrated
maximal efficacies, and K1 and K2 are the binding affinities of all MRs and GRs in
various brain regions, respectively.

It can be shown that the system of ordinary differential equations (25.3) has one
positive asymptotically stable stationary point if the condition

e1

K1

>
b1b2

b3
C e2

K2

holds [9]. This is a weak assumption. It only states that the stimulating feedback via
MR with e1;K1 dominates the inhibitory feedback via GR with e2;K2 plus the ratio
of inhibitory and excitatory first order terms b1; b2, and b3.

Simulations show that this dynamical system is tightly regulated and tends
quickly to its stationary point (see Fig. 25.6). Compared to other HPA models this
model does not depend on peripheral signals to generate a stationary point. It is
basically generated by feedback signals via MR and GR from the brain and can
be seen as a central allocation feedback signal. Comparisons with clinical trials
show the validity of the mathematical model [9]. Note, the dynamics of this model
are mainly generated by the principle of biological homeostasis. The balance is
primarily induced by the interaction of receptors located in various brain regions.
The association of the HPA system with the energy allocation mechanism results in
a novel view of deregulations in the energy metabolism. Hence, deregulations may
originate in the brain and medical conditions such as obesity and type 2 diabetes
mellitus can be seen as “brain disease”.
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Fig. 25.6 Simulation of the HPA model. After an initial deflection the system quickly tends to the
stationary point

2.4 Appetite-Regulation Model

A central part of the Selfish Brain Theory is the appetite regulation in the lateral
hypothalamus [3,30,31,41], see Fig. 25.1. As discussed above, food intake is one of
two mechanisms to supply the brain with adequate energy amounts. In this section,
we present mathematical models that investigate the control of appetite. These
models analyze appetite regulation in detail which is represented by p8=.AGI/ in
our whole body model (25.1).

Especially in medical applications, quantitative specifications of the numerous
metabolites and complex regulatory pathways are unknown, incomplete, or in-
completely understood. Our modeling approach features characteristics in order
to handle the named difficulties. In [13], a robust modeling approach is chosen
to describe appetite regulation in the lateral hypothalamus. Robust modeling
approaches merely use reliable information and formulate results which are valid for
a large class of models including all feasible realizations of unknown mechanisms
[24]. Abstract compartments with their energy contents and general influence
functions describing energy fluxes and regulatory pathways are used. The general
influence functions are only constrained by two weak, physiologically reasonable
assumptions. First, they are monotonous. In the majority of cases, it is known
whether a mechanism is governed by the supplier or by the receiver. Secondly, the
functions are saturated assuming that saturation is the regular case in physiological
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Fig. 25.7 Small three-compartment (left) and expanded four-compartment appetite-regulation
model including the brain (right). Food intake is regulated by appetite in the lateral hypothalamus
which is activated by lacking energy in body periphery and brain

systems. The influence functions are not further specified so that the obtained results
remain valid for a variety of possible interactions. The obtained class of models is
analytically investigated [21,33] with respect to circadian periodicity of human food
intake.

First, a three-compartment model is regarded consisting of an environmental, a
body and an appetite compartment, see Fig. 25.7(left). Time-dependent total energy
contents E D E.t/ 2 RC in the environment and B D B.t/ 2 RC in the blood
or body are considered. The compartment B could be regarded as consolidation of
the compartmentsG andR in our whole body model (25.1). The appetite activation
is described by Z D Z.t/ 2 RC which is regulated by the energy level in the
body. It can be shown that all possible interactions lead to a dynamical system
with an unique, asymptotically stable stationary point. Hence, this model describes
permanent feeding and does not reproduce the circadian periodicity of food intake.
Therefore, it is not an adequate appetite-regulation model.

The three-compartment model is expanded by a brain compartment with the
energy level A D A.t/ 2 RC, see Fig. 25.7(right). The brain is regarded as
regulatory instance of appetite activation and as energy consumer.

The influx into the near environment is described by the saturated, monotonously
decreasing function jin D jin.E/. Energy is consumed by the body jB

out D jB
out.t/

as well as by the brain jA
out D jA

out.t/. Ingestion is represented by the flux jEB D
jEB.E;Z/ from the environment E into the body B . Note, this flux corresponds
to the function H in model (25.1). The flux jEB is represented by a monotonously
increasing function since appetite Z as well as increased offer in the environment
E enhance the flux. The energy flux jBY D jBY.B;A/ from the body to the brain
compartment increases with B and decreases with A. The activation of the appetite
is described by the saturated, monotonously decreasing function u D u.B;A/.
Physiologically, appetite activation is suppressed at high energy levels in the body
and in the brain. Appetite is assumed to be a subject of self-inhibition. Energy
conservation gives the dynamical system:
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PE D jin.E/ � jEB.E;Z/;

PB D jEB.E;Z/� jBY.B;A/ � jB
out;

PA D jBY.B;A/� jA
out;

PZ D ˇ .u.B;A/�Z/ (25.4)

with ˇ > 0 reflecting the appetite sensitivity.
The four-compartment model (25.4) including the brain describes circadian

periodic ingestive behavior in case of a sensitive cerebral appetite activation.
Therefore, the indispensable role of the brain in the regulation of appetite and food
intake could be verified supporting central ideas of the Selfish Brain Theory. This
supports our simulation results in Sect. 2.1 where the need for a sensitive ingestion
activation was shown in order to model the physiological periodicity of food intake,
compare Fig. 25.3.

This robust modeling approach generalizes former mathematical models of
appetite regulation, e.g., [23]. This work presents a simple mathematical model
using almost exclusively linear functions to describe appetite regulation and energy
transport from the body into the brain. The model also demonstrates the important
role of the human brain in appetite regulation and periodic food intake as well as the
dependence of appetite activation on cerebral energy supply.

3 Discussion and Conclusion

Mathematical modeling provides a key tool to investigate and validate theoretical
formulations such as the Selfish Brain Theory. In this review paper, we discussed
mathematical models of the human energy metabolism considering the decisive
role of the brain. In Sect. 2.1, we introduced a compact model describing the
whole body energy metabolism [15]. Sections 2.2–2.4 focused on the mathematical
descriptions of regulatory subsystems within the Selfish Brain Theory, namely, the
cortical balance [7], the HPA system controlling the allocation mechanism [9],
and the appetite regulation in the lateral hypothalamus [13]. Therefore, the given
models form a theoretical representation of the Selfish Brain Theory. The systemic
analysis of the mathematical models allows to understand the qualitative and even
the quantitative behavior of the energy metabolism. The presented models support
the theoretical formulations given in Sect. 1.

The Selfish Brain Theory states that diseases such as obesity and type 2
diabetes mellitus might originate in deregulations in the brain [36]. The presented
mathematical models give new evidence that the origins of these pathologies are
indeed brain centered. The analysis of the presented new models provides the
opportunity to design new strategies to target diseases caused by deregulations in
the energy metabolism and to develop effective therapies.
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The brain centered energy metabolism model in Sect. 2.1 represents a compact
whole body model. In future work, mathematical models of the regulatory subsys-
tems in Sects. 2.2–2.4 need to be integrated to form a comprehensive whole body
model of the energy metabolism.
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Chapter 26
Identification of Sensitive Enzymes
in the Photosynthetic Carbon Metabolism

Renato Umeton, Giovanni Stracquadanio, Alessio Papini, Jole Costanza,
Pietro Liò, and Giuseppe Nicosia

Abstract Understanding and optimizing the CO2 fixation process would allow
human beings to address better current energy and biotechnology issues. We focused
on modeling the C3 photosynthetic Carbon metabolism pathway with the aim of
identifying the minimal set of enzymes whose biotechnological alteration could
allow a functional re-engineering of the pathway. To achieve this result we merged
in a single powerful pipe-line Sensitivity Analysis (SA), Single- (SO) and Multi-
Objective Optimization (MO), and Robustness Analysis (RA). By using our recently
developed multipurpose optimization algorithms (PAO and PMO2) here we extend
our work exploring a large combinatorial solution space and most importantly,
here we present an important reduction of the problem search space. From the
initial number of 23 enzymes we have identified 11 enzymes whose targeting
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in the C3 photosynthetic Carbon metabolism would provide about 90% of the
overall functional optimization. Both in terms of maximal CO2 Uptake and minimal
Nitrogen consumption, these 11 sensitive enzymes are confirmed to play a key role.
Finally we present a RA to confirm our findings.

1 Introduction

The Calvin Cycle (C3 cycle) is a biochemical pathway of plants capable of fixing
atmospheric inorganic CO2 into an organic compound. This biochemical pathway
is hence the basis of primary (plants) productivity. The modeling of this pathway
(and allied pathway in Carbon metabolism plants) aims at optimization with
respect to some specific functional targets of interest for possible biotechnological
applications. Photosynthesis models showed that modifying enzyme concentration
would allow the increase of the C3-cycle efficiency, while maintaining the total
amount of Nitrogen constant in the plant [1–3]. Where the biochemical pathway
of the Calvin cycle is concerned, a seminal work by Zhu et al. [1], based on
the Farquhar model [4], showed, with the help of an evolutionary algorithm,
how enzyme concentration rearrangements could be capable of increasing the
total amount of CO2 Uptake by a factor of 76% with respect to the results
obtained with the initial concentrations characteristic of the natural leaf. CO2

Uptake rate at the natural enzyme concentration was calculated in the latter work
as 15.5�mol m�2 s�1 in normal “air”. This value is within the range of typical CO2

Uptake rates calculated in the field for C3 leaves [5] and can then be considered
a good approximation. More recently, new efficient models showed that strategies
modifying enzyme concentrations may lead to an increase in CO2 amount of 135%
with respect to the initial natural value [2, 3]. In particular, Stracquadanio et al. [2]
used also the concepts of robustness and sensitivity for assessing the evaluation of
confidence limits in the results obtained by perturbing the new identified solutions;
this simulates typical “in-vitro” implementation variables (refer to Sensitivity and
Robustness in Sect. 2). An important question regarding this re-optimization is:
why did the evolution process and not optimize enzyme concentration in order
to maximize CO2 fixation? One hypothesis to answer this non-trivial question is
that the Calvin cycle pathway evolved during a time in which CO2 atmospheric
concentration was much lower compared to current values. Additionally, some
of the enzymes (such those belonging to the photorespiration pathway) whose
reduction in concentration would result in a theoretical increase in photosynthesis
efficiency, might be strongly linked to other biological functions (e.g., photosystem
protection and Nitrogen assumption [6, 7]).

In this paper, we improve and advance the work started in [2] by defining
and exploiting an investigation pipe-line that composes Sensitivity Analysis (SA),
Single- and Multi-objective optimization, and Robustness Analysis (RA) to move
toward the study of the artificial photosynthesis. More in detail, these techniques
are composed into the following pipe-line: beginning with a (1) system of ODEs
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(refer to coming paragraph) to have a computational model of C3 photosynthetic
pathway, (2) we exploit SA to identify which are the sensitive tuning gears of the
system, then (3) we exploit SO and MO optimization to re-optimize the pathway in
a functional fashion; (4) we adopt RA to have a quantitative prediction about the
stability of the lately found optimizations. Each step is iterated a number of times,
until a reasonable solution stability and then experimental feasibility is achieved.
Then (5) we compare the newly optimized solutions with natural values to assess
solution key changes and to possibly read new insights in the pathway mechanisms.
The paper is structured as follows. Section 2 details all of the methods adopted in our
design workflow. Section 3 presents the results obtained exploiting these methods.
In Sect. 4 conclusions and future directions are presented.

2 Methods

As mentioned above, the computational simulation of the C3 Carbon metabolism
requires the definition of a set of ODEs; in our research work, it is considered the
model proposed by [1]. The model takes into account rate equations for each discrete
step in photosynthetic metabolism, check-point equations for conserved quantities
(e.g., total leaf Nitrogen) and a set of ODEs to describe each pathway mechanism:
from initial concentration of nutrients of a cell of a leaf, toward enzyme-mediated
reactions, and having a consequent CO2 uptake. The model assumes that the total
protein–nitrogen in the enzymes is 1 g m�2; the mass nitrogen in each enzyme, in
a 1 m2 leaf area, is computed on the basis of the number of active sites, catalytic
rate per active site, molecular mass of each enzyme, and the ratios between Vm of
different enzymes. Mole of each protein is then calculated based on the molecular
mass and the mass of each protein, i.e., the total concentration of the adenylate
nucleotides ([CA]) in the chloroplast stroma (i.e., the sum of [ATP] and [ADP]) is
assumed to remain constant. The Vm for each enzyme is then calculated based on
the amount of each enzyme and the volume of the compartment that it occupies in
1 m2 leaf area. The total concentration of the adenylate nucleotides ([CA]) in the
chloroplast stroma, the sum of [ATP] and [ADP], are assumed to remain constant.
Similarly, the sum of [NADPH] and [NADP] in the chloroplast stroma ([CN])
are assumed constant. The export of PGA, GAP, or DHAP from the chloroplast
to the cytosol is associated with a counterimport of the phosphate, mediated by
a phosphate translocator. Consequently, the total concentration of phosphate in
the stroma ([CP]) is assumed constant. Finally, a set of ODEs encodes the rates
of changes in concentration for each metabolite; the latter is represented by the
difference between the rates of those reactions generating the metabolite and the rate
of the reactions consuming it. It is clear that the volume of the chloroplast stroma
can be different from the cytosol one in a typical higher plant cell; in this scenario,
it has been assumed a 1:1 ratio in the computation of concentrations within these
two compartments.
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2.1 Pathway Sensitivity Analysis

Morris method [8] has been adopted for the evaluation of sensitive components
in the set of ODEs mentioned. The main idea behind SA is the identification of
crucial pathway gears, whose tuning results in a major system response. More
in detail, the SA here adopted belongs to the class of the one-factor-a-time
(OAT) methods [9], aiming at the evaluation of pathway sensitivity by means
of a series of stimuli in a way such that only one input is perturbed while all
of the others are kept at their nominal value. Considering for the moment our
pathway as a black-box with certain inputs and certain outputs, each SA step-
variation, computed for each input is calculated as: ui D .P.x1; x2; : : : ; xi C

xi ; : : : ; xk/ � P.x1; x2; : : : ; xi ; : : : ; xk//=
xi , where P is the result computed
from the pathway model with input x; in particular x1; x2; : : : ; xi C 
xi ; : : : ; xk
is the perturbed input vector and x1; x2; : : : ; xi ; : : : ; xk is the nominal input vector.
For each factor, a group of outcomes ui is collected and, as metrics for sensitivity,
the mean �i� and the standard deviation �i are computed. Highly linear behaviors
should be expected from those inputs with a high value of �i�. A completely
different behavior, such as highly non-linear or counterintuitive responses should
be expected from those inputs with high �i values. For each enzyme (i.e., input)
we use the five concentrations under consideration (refer to Table 26.1 in Sect. 3)
as nominal values, computing 20 different factor levels, altered for 10 times each
one. As bounds of this SA we adopt ˙100% of the nominal value, for each input
enzyme concentration. The result of this analysis, highlighted how there are eleven
enzymes that have to be considered extremely sensitive when compared to all of
the others [2]. These enzymes are: Rubisco, PGA kinase, GAP dehydrogenase,
FBP aldolase, FBPase, SBP aldolase, SBPase, Phosphoribulose kinase, ADPGPP,
Phosphoglycolate phosphatase, and GDC. These enzymes showed indeed high
values of �i (i.e., 1 < �i < 15), when compared to all of the others (i.e.,
10�4 < �i < 1).

The definition of a set of linked ODEs gives a mathematical description of the
chemical process and, successively, the Morris analysis gives useful insights on
linear and non-linear contribution of enzymes to the Carbon metabolism. However,
it is important to validate these results by taking into account the interaction map
defined by the pathway; it is plausible to assume that sensitive enzymes should
be hubs of the photosynthesis pathway. This information has been obtained using
Rosvall community detection method [10]; the interaction map we gained confirms
these assumptions. Figure 26.1 shows how Rubisco and GAP dehydrogenase are the
most strongly regulated enzymes of the Calvin Cycle. Both enzymes are light regu-
lated. Transketolase is another key enzyme, since it uses as substrates Fructose-6-P
(otherwise destined to exit from the cycle toward the starch biosynthetic pathway)
and 3-P-Glyceraldehyde, that is produced by the enzyme GAP dehydrogenase itself.
These enzymes correspond to the main nodes of the Calvin Cycle leading to the
other biosynthetic pathways. Phosphoglycolate phosphatase is the first enzyme of
the photorespiration pattern linked to the Oxygenase activity of Rubisco and Glycine
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PGCAase

Glycerate kinase
GSAT

GCEADH
Rubisco

Transketolase

SBPase

SBP aldolase

GAPDH

SBP aldolase

FBP aldolase

PRK

GDC

PGA Kinase

ADPGPP

GGAT

Suc-P synthetase

Cyt FBPase
UDPGPP

F26BPaseSuc-P-ase

Cyt FBPaldolase

GCA oxydase

Fig. 26.1 Relationships within the Pathway. Enzyme interactions in the C3 photosynthetic Carbon
metabolism

decarboxylase the enzyme responsible for the loss of the CO2 fixed by Rubisco.
Figure 26.1 presents also 10 enzyme clusters in the C3 photosynthetic Carbon
metabolism pathway:

(1) Phosphoglycolate phosphatase, Glycerate kinase, Ser glyoxylate amino-
transferase, Glycerate dehydrogenase; (2) Transketolase, SBPase, SBP aldolase,
Enzyme 9; (3) GAP dehydrogenase, GAP dehydrogenase, FBPase, FBP aldolase,
Phosphoribulose kinase; (4) Rubisco, PGA Kinase, Enzyme11, ADPGPP; (5) GDC,
Glu glyoxylate aminotransferase, Suc-P synthetase; (6) Cytosolic FBPase, UDP-
Glc pyrophosphorylase; (7) F26BPase; (8) Suc-P phosphatase; (9) Cytosolic FBP
aldolase; (10) Glycolate oxidase.

2.2 Optimization of Sensitive Enzymes:
Single- and Multi-Objective Optimization

Once these eleven enzymes have been identified as sensitive, their optimization has
been then evaluated and compared to the optimization of the complete pathway
system. This means inspecting a search space in 11 dimensions (sensitive enzymes),
instead of inspecting the complete pathway one, that has 23 dimensions. The aim
of this is evidently the evaluation of the contribution of these sensitive enzymes
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in the optimization of the photosynthetic metabolism considered. To achieve
this aim we have employed Single- and Multi-objective optimization algorithms;
these approaches have considered both the complete domain space (x 2 R

23)
and the “sensitive domain”, as cropped by those 11 most sensitive enzymes
(x 2 R

11). Considering a fixed total amount of protein Nitrogen available to the
leaf (1 g m�2, i.e., ca. 20.833�104 mg l�1), we have used Parallel Optimization
Algorithm (PAO) [2] to let a pool of solutions evolve in an archipelago fashion.
Fixing at their natural value all but sensitive enzymes, PAO has evaluated a
number of new enzyme concentration profiles and has associated a CO2 Uptake
to each one of them by computing the system of ODEs mentioned above. The
key aspect of PAO is its ability to share portions of promising solutions among
optimization cores. We adopted two optimization cores (islands): on one PAO runs
A-CMA-ES [2] algorithm and on the other, it runs DE [11]; solution portions are
exchanged every 200 generations with probability 1/2. On both islands the opti-
mization aim is the same: to find all those sensitive enzyme concentration vectors
Ox D Œconc1; conc2; : : : ; conc11�, such that, when Ox is composed with the other
enzyme values kept at their nominal value, the resulting CO2 Uptake function is
maximized:

max
Ox 2 R

11

 
f1 . Ox; xnon-sensitive/

!
: (26.1)

Relaxing the constraint about the fixed total amount of protein Nitrogen, a
new optimization has been performed. The focus here is again on those sensitive
enzymes and on the comparative evaluation with respect to the rest of the pathway.
Parallel Multi-objective Optimization (PMO2) [12] has been adopted to evaluate
the contextual optimization of CO2 Uptake and total Nitrogen needed. Gaining
higher CO2 Uptake rates employing less Nitrogen mean absorbing more CO2, while
consuming less “leaf-fuel”, this means, a more efficient metabolism cycle. This
means that additionally to the maximization of the CO2 Uptake function, a new
function is taken into account; it is the minimization:

min
Ox 2 R

11

 
f2 . Ox/

!
D min
Ox 2 R

11

 
11X

iD1

OxŒi � �WMi

BKi

!
; (26.2)

where BKi is the catalytic number or turnover number, and WMi the molecular
weight of the ith enzyme, respectively. Hence, our search for Ox has to accomplish
a contextual trade-off between maximal CO2 Uptake rate and minimal Nitrogen
employment. Note that the minimization of f2 does not take into account those
enzymes that are not sensitive: since they are fixed in our search for minima,
the second objective is simply shifted by a constant quantity for all of the points
evaluated; this obviously does not impact the optimization as all of the point
efficiencies are translated as a whole. In PMO2, at the beginning, a random initial
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population P0 is generated and it is sorted based on the non-domination criterion;
a fitness proportional to its non-domination level is assigned to each solution.
Non-dominated sorting has been introduced in order to rank the population ac-
cording to its domination level. For each solution, we compute the domination
count np , that denotes the number of solutions dominated by p, and Sp , that
is, the set of solutions dominated by p; obviously, all the solutions belonging
to the first front have a domination count set to zero. For each solution with
np D 0, we pick each element of Sp and reduce its domination count by one; if
for any member of Sp the domination count goes to zero, it is put into a separate
list Q. The process is iterated until each solution is assigned to a front. The
algorithm proceeds using binary tournament selection, recombination and mutation
to create a population of offspringQ of size N . At each generation g, a population
Rg D Pg [ Qg is built and, hence, it is sorted according to non-domination;
it is important to note that since the parent population is put in Rg , elitism is
assured. The selection procedure chooses the individual with np D 0 and, then, it
picks individuals from other domination levels if there are not N non-dominated
individuals; this set of dominated solutions is chosen according to a crowding-
comparison operator.

2.3 Leaf Candidate Robustness

Once single-objective optimization algorithms have found the best solutions to the
f1 maximization problem, we adopt the RA to assess the intrinsic stability of the
solution. The definition of robustness here adopted has to be considered as the ability
of a system to survive random perturbations [13]. In order to evaluate the robustness
of enzymes partitions, the robustness condition, �, and the uptake yield, � , have
been defined [12]. Let Nx 2 R

23 an enzyme partitioning and f W Rn ! R a function
computing the expected CO2 uptake rate value of Nx. Given an enzyme partition Nx�
obtained by perturbing Nx, the robustness condition � is defined as follows:

�. Nx; Nx�; f; �/ D


1 if j f . Nx/ � f . Nx�/ j � �

0 otherwise
; (26.3)

where the robustness threshold � denotes the maximum percentage of variation from
the nominal CO2 uptake value.

Given an ensemble T of perturbed enzymatic concentrations obtained by
perturbing Nx, the uptake yield � is defined as follows:

� . Nx; f; �/ D
P

�2T �. Nx; �; f; �/
jT j : (26.4)

The ensemble T has been generated using a Monte-Carlo algorithm; mutations
occurring on all the enzymes (global RA) and one enzyme at time (local RA) have
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been considered [13]. A maximum perturbation of 10% has been fixed for each
enzyme concentration, and then it has been generated an ensemble of 5 � 103
trials for the global RA and 200 trials, for each enzyme, for the local RA. All the
experiments assume � D 5% of the nominal uptake rate value.

3 Results

3.1 Sensitive Enzymes for the Uptake Objective

The aim of the present research work is to compare how the exclusive targeting
of sensitive enzymes varies either when f1 (26.1) is maximized or when f1 is
maximized while f2 (26.2) is minimized. As mentioned above, we want to evaluate
if it is really worth moving from the original search space (x 2 R

23) to the sensitive
enzymes search space (x 2 R

11), without important losses in terms of functional
pathway optimization.

In order to suggest correct and minimal biotechnological targets, we present
in Table 26.1, four alternative leaf designs, unraveled by PAO algorithm: these
solutions represent candidate enzyme concentration whose task is the increase of the
CO2 Uptake rate, while maintaining the actual amount of total Nitrogen contained
in the enzymes.

Best solutions obtained on the optimization of sensitive enzymes both by PAO
(max f1) and PMO2 (max f1 \min f2) have been further inspected and compared
to the natural leaf. Figure 26.2 shows how sensitive enzymes changed their
concentration in order to maximize the CO2 Uptake (i.e., the best point found by
“PAO 11 Sens” and the end of its convergence, Fig. 26.3). Exclusive targeting of
sensitive enzymes brought an optimal uptake rate of 33.317�mol m�2s

�1
, that

is, only �9% than the most efficient known point; this confirms how these 11
enzymes perform about 91% of the whole photosynthetic optimization. It is also
worth noting in Fig. 26.2 histogram how all of the increases and decreases in
optimal enzyme concentration are within the range�0:001��4:3; this is a plausible
biotechnological range, indeed, around a fivefold increase can be achieved by means
of enzyme promoters. Afterward, RA has been employed to assess the stability
of this solution as well: as reported in Table 26.1, this point has an overall local
robustness that is not very high (81.5%) and a global robustness comparable to the
natural one (78.3%).

To evaluate the effective contribution of these 11 sensitive enzymes, we have fed
into PAO the optimization problem in which the variable enzyme set is extended
from 11 to all but those 3 that seemed to play an important role looking at single
histograms but did not play an important role according to the SA. These three
enzymes are: Cytosolic FBP aldolase, Cytosolic FBPase, and UDPGP. The result of
this optimization is reported in Fig. 26.4 (refer to Table 26.1 for single enzyme vari-
ation). This configuration registered a CO2 Uptake rate of 36:197�mol m�2 s

�1
,
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Fig. 26.2 The ratio of the enzyme concentrations optimized by the PAO algorithm
(33.317�mol m�2 s

�1
) at a ci D 270 �mol mol�1 compared to the initial concentrations

(15.486�mol m�2 s
�1

). Optimization of CO2 uptake rate perturbing the 11 most sensitive
enzymes only (Rubisco, PGA kinase, GAP dehydrogenase, FBP aldolase, FBPase, SBP aldolase,
SBPase, Phosphoribulose kinase, ADPGPP, Phosphoglycolate phosphatase, and GDC). These
enzymes are the most important enzymes in the studied model of the Carbon metabolism) while
the remaining enzymes are maintained at their initial concentration

that is, ca. C8% when compared to the optimization of sensitive enzymes. RA has
reported 100% and 92.6% for local and global robustness, respectively, proving the
stability of this solution.

We have then decided to target four enzymes of the C3 metabolic pathway: we
all know biotechnological intervention is hard and error prone, then we want to
minimize intervention points. This decision came from combining the information
gained on different points of our research: (1) promising leaf engineering obtained
with the alteration of the 11 most sensitive enzymes, (2) those three enzymes that
could have played a crucial role do not seem to affect the Uptake objective, (3) out of
those 11 enzymes pointed out by the SA only six of them present a change out of the
range 0.2� � 1:5� (Rubisco, FBP aldolase, SBPase, ADPGPP, Phosphoglycolate
phosphatase, and GDC). Because of the non-optimal local robustness showed (refer
to Table 26.1, 84.5%), Rubisco has been filtered from the analysis to ensure a fair
comparison and a more precise identification of robust targets for biotechnological
intervention. These five enzymes have been sorted out into three simulations; we
have designed each simulation such that there are two enzymes that showed a
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Fig. 26.3 Convergence process of fourteen derivative-free global optimization algorithms; on
single objective, the PAO algorithm outperforms all of the other algorithms (from best to worst:
Hooke–Jeeves [14], DE [11], MCS [15], PSWARM [16], MADS [17], CMAES [18], Evolutionary
Algorithm in [1], DIRECT [19], GPS [20], and Implicit Filtering [21]) in the single-objective
optimization of the full problem version (i.e., optimization of all of the enzymes) and then it
has been adopted for the optimization of the reduced model which has optimized using the most
sensitive enzymes (in the legend “PAO 11 Sens”). This optimization comparison has been per-
formed to maximize light-saturated photosynthetic rate (CO2 Uptake) at ci D 270�mol mol�1,
that is, the value characteristic of nowadays CO2 atmospheric concentration. It is also reported the
convergence of the PMO2 algorithm, in terms of non-dominated solutions, when the optimization
enzyme set is restricted to the eleven sensitive ones (“PMO2 11 Sens” in the legend)

negative fold-change and other two with a positive one; this has been put into place
to ensure a balance with respect to the total Nitrogen partitioning. Indeed, having a
fixed amount of protein Nitrogen, it is likely that to allow ADPGPP to grow as in
Fig. 26.2, we have to couple it with some of those enzymes that diminished their
concentrations (i.e., Phosphoglycolate phosphatase, and GDC). Summarizing, we
have further inspected our pathway through three more simulation configurations:
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Fig. 26.4 Changes in the concentrations of Carbon metabolism enzymes with respect to their
natural values when three metabolites are kept constant: Cytosolic FBP aldolase, Cytosolic
FBPase, and UDPGP. The Ci has value 270�mol mol�1, reflecting nowadays condition. This
configuration obtains CO2 Uptake rate of 36.197�mol m�2 s

�1
, suggesting that even fixing these

three enzymes the uptake performance can be very effective

Var4-1 (that tunes only FBP aldolase, SBPase, Phosphoglycolate phosphatase, and
GDC), Var4-2 (FBP aldolase, ADPGPP, Phosphoglycolate phosphatase, and GDC)
and Var4-3 (that targets only ADPGPP, SBPase, Phosphoglycolate phosphatase,
and GDC). Table 26.2 presents these results from a quantitative point of view. It
is of note how when the optimization is pushed selectively to the limit varying
only 4 enzymes (i.e., Var4 simulations), we observe enzyme concentrations that
readjust their values within the range 0.001� � 160�. Such a step variation has
to be considered a strong signal, as targeting such a small set of enzymes we
are unraveling how the metabolism can become functional (uptake maximization)
without invalidating any other connected pathway.

3.2 Sensitive Enzymes on Uptake Maximization and Nitrogen
Minimization

In order to compare the optimization of the whole system with the optimization
of the sensitive enzymes, we have compared the Pareto frontiers obtained on
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Fig. 26.5 CO2 uptake and protein–nitrogen concentration trade-off. Maximizing the CO2 Uptake
while minimizing the total amount of protein–nitrogen concentration; the operative area of natural
leaves is located in the green checked area. The label “Sensitive Enzymes” indicates the multi-
objective optimization using the 11 most sensitive enzymes of the model, the three resulting
Pareto Fronts have been dominated by the multi-objective optimization over all enzymes of the
model. This trade-off search has been carried out for the three ci concentration referring to the
environmental condition in effect 25 million years ago, nowadays and in 2100 AC

both tasks by PMO2 in three conditions: Present, Past, and Future atmospheric
conditions, i.e., ci 2 f270; 165; 490g�mol mol�1. Figure 26.5 presents these Pareto
frontiers comparison: in this multi-objective optimization, as we saw in the single-
objective one, the optimization of only the sensitive enzymes causes a minor loss
in optimization performances. It is interesting, how reducing the search space to
less than half of the dimensions (i.e., sensitive optimization), the performances are
affected by a factor between 5% and 10%. It is also of note how this difference
is consistently kept among all of the atmospheric conditions considered. Having a
narrower search space means on one hand the achievement of sub-optimal solutions,
but on the other hand, it means that during the biotechnological implementation we
will have just half of the variables, compared to the original problem. Functional
optimization, versus problem dimensionality, is an intrinsic trade-off that shows how
we have to accept slightly lower efficiencies if we want the benefits of dealing with
half of the unknowns.

Figure 26.6 shows the comparison between the natural leaf and the best non-
dominated solution found by PMO2. This non-dominated solution (i.e., it belongs
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Fig. 26.6 Optimization of CO2 uptake rate and Nitrogen consumption perturbing the 11 most
sensitive enzymes only. The ratio of the enzyme concentrations optimized by the multi-objective
optimization algorithm PMO2 (39.242�mol m�2 s

�1
) at a ci D 270 �mol mol�1 compared to

the initial concentrations (15.486�mol m�2 s
�1

). The non-dominated solution here considered
is the one with the highest CO2 uptake rate, which shows a Nitrogen consumption of ca.
269658 mg l�1

to the Pareto front, and more in detail, it is the best point found by PMO2 11 Sens
and the end of its convergence, Fig. 26.3) is the one with the overall maximal CO2

Uptake rate (39.242�mol m�2 s
�1

). It is remarkable how, despite the tremendous
increase in uptake rate of ca. 253%, and the relatively high increase in Nitrogen
consumption (129%), all of the changes at the enzyme level are within the range
�0:01 � �2. From a theoretical point of view, these changes are even easier to
implement with the current chemical processing, when compared to the one reported
in Fig. 26.2.

4 Conclusion

The statistician George Box said: “All models are wrong, but some are useful”.
Nowadays this sentence would reflect many things: the continuous improve-
ment of developing new models in all scientific fields, the different level of
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abstractions that a model could express and our difficulties in modeling multi-scale
or compartmentalized dynamical systems. In conclusion, we are delighted to report
that the modeling of C3 carbon metabolism is a thriving field of research. It has
two immediate and important benefits: the improved understanding of the process
that shapes photosynthesis in plants and the possibility to test engineered solutions
in silico using a mature single- and multi-objective optimization methodology.
We believe that our quantitative findings of a small number of enzymes that
concentrate the biotechnology potentialities and our methodological improvements
could effectively represent a significant contribution to the community working in
this area.
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Chapter 27
Formal Methods for Checking the Consistency
of Biological Models

Allan Clark, Vashti Galpin, Stephen Gilmore, Maria Luisa Guerriero,
and Jane Hillston

Abstract Formal modeling approaches such as process algebras and Petri nets seek
to provide insight into biological processes by using both symbolic and numerical
methods to reveal the dynamics of the process under study. These formal approaches
differ from classical methods of investigating the dynamics of the process through
numerical integration of ODEs because they additionally provide alternative rep-
resentations which are amenable to discrete-state analysis and logical reasoning.
Backed by these additional analysis methods, formal modeling approaches have
been able to identify errors in published and widely-cited biological models. This
paper provides an introduction to these analysis methods, and explains the benefits
which they can bring to ensuring the consistency of biological models.

1 Introduction

Modeling complex systems on a computer allows us to investigate the rich dynamics
of phenomena which are difficult or impossible to study at first hand. Making
and analyzing models may open the door to understanding but the insights and
understanding gained depend crucially on the accuracy of the model and the
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legitimacy of its assumptions. Accurate modeling of complex systems often leads
to difficult computational problems where inherent complexities of the problem
such as multi-scale populations and widely-separated reaction rates present genuine
technical challenges for robust numerical software. When grappling with these
challenges it is important not to lose sight of the fact that the quality of the
insights obtained from the modeling depend critically on the quality of the model
and that – in addition to carrying the burden of computing robust numerical
results – modelers must also shoulder the burden of creating accurate biological
models.

Adding to the difficulty of the problem, it is very easy to introduce simple errors
which may have subtle effects which are extremely difficult to detect. For example,
writing down the wrong variable in a differential equation may give rise to a model
whose results look plausible (for example, there are no negative concentrations
or other non-physical results) but which are essentially meaningless. From the
perspective of a traditional differential equation integrator we have an entirely valid
system of equations and a well-posed initial value problem; it is simply that it does
not capture the phenomenon under study.

Domain-specific modeling languages such as process algebras and Petri nets
specifically tailored for biology are helpful here because they define and enforce
rules about the internal consistency of models which can allow simple modeling
errors to be detected automatically. In this way, these languages can prevent the
computational analysis of non-well-formed models and thereby – in some cases –
stop erroneous conclusions being derived from erroneous models.

Evidence for the effectiveness of these methods can be seen when formal
modeling is applied retrospectively to published models and at that point a
previously-unknown error is discovered. It is possible for these errors to be either
in the model itself, or in the computational analysis which was carried out in order
to reveal the dynamics of the underlying biological process. An example of an error
of the former kind in a model of the TNF˛-mediated NF�-B signal transduction
pathway was uncovered using the techniques in [1]. An example of an error of the
latter kind was uncovered as reported in [2] where Gillespie simulation is used in
co-operation with continuous deterministic simulation to reveal a discrepancy which
is traced to an incorrect use of a numerical integrator.

Two of the most important motivations for modeling a biological system are:
(1) to identify gaps in the existing knowledge of the system, and (2) to generate
new insights and understanding without the need to perform laboratory experiments.
In the former case we would work through validation where we try to discover
whether the behavior of the model agrees with current biological knowledge. In the
latter case we investigate specific hypotheses via computational analysis instead of
laboratory work.

Although these aspects are closely interconnected, there are existing computa-
tional and mathematical techniques which provide features particularly suitable to
tackle one or the other. The process of identifying inconsistencies within models
is an important phase which should always be performed before any conclusion is
drawn from the results of the analysis of the model. Here, we focus on the use of



27 Formal Methods for Checking the Consistency of Biological Models 463

analysis techniques which have their roots in formal language theory and program
analysis. These range from static analysis and control flow analysis through to
invariant generation, graph analysis, and bisimulation. These methods enable us to
identify flaws in models: both errors due to unknowns or incorrect hypotheses in the
biological knowledge which are then unwittingly encoded in the model, leading to a
flawed model; and errors which are introduced during model construction such that
the model does not faithfully represent current biological understanding.

Several formal methods have been developed (or adapted) in order to model
and analyze biological systems, including Petri nets [3]; rewriting systems such as
membrane systems [4], and Kappa [5]; and process algebras such as the biochemical
stochastic �-calculus [6], Bio-PEPA [7], and the Continuous �-calculus [8]. Most
of these languages are equipped with a discrete stochastic semantics, and some also
allow for a continuous deterministic interpretation. The analysis techniques which
are available differ for the various formalisms. For some of these languages it is
possible to employ verification techniques such as model-checking.

These kinds of computational models can either be analyzed statically via
techniques which work at the level of the model structure, or can be dynamically ex-
ecuted via stochastic simulation [9] to produce time-course trajectories of amounts
of the participating species. For languages which have a deterministic interpretation,
numerical solution of the associated set of ordinary differential equations (ODEs)
can be also performed, together with the various mathematical methods available
for the analysis of ODE systems such as bistability, bifurcation, and continuation
analysis. Existing modeling platforms such as the Bio-PEPA Eclipse Plug-in [10]
allow modelers to perform model experimentation including parameter sensitivity
analysis, components knock-down, and dose–response experiments.

2 Static Analysis

Viewed as a formal text, a biological model contains definitions of constituents
of the model such as reaction rate constants, kinetic laws, initial concentrations,
and chemical species; and it contains uses of these definitions. One simple check
of self-consistency in the model is to determine that all definitions are used, and
that everything which is used has been defined. This type of checking falls within
the domain of static analysis because it can be performed without executing the
model (via simulation or otherwise). The benefits of static analysis are enormous: a
vast range of simple modeling errors can be easily and automatically caught at low
computational cost.

Automatic static analysis seems such a simple and sensible check that it may be
surprising to learn that not all programing languages enforce a static analysis check.
For example, the Python programing language [11] does not and so a biological
model implemented in Python has had less thorough automatic checking than a
model implemented in Bio-PEPA or Snoopy [12] where a static analysis check is
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automatically enforced for every version of every model. Similar remarks apply to
biological models coded directly in MATLAB [13]. Both Python and MATLAB
have separate, optional static analysis tools (PyLint and M-Lint) which may be used
by modelers, but are not required.

Static analysis based on the structure of a model is the first step which allows
us to identify a number of errors, ranging from syntax errors such as trivial typos
in variable names to more subtle omissions of species behavior. Static analysis can
also be used in order to verify the presence or absence of deadlocks in the model
behavior and to clarify the causal and temporal relations between events.

Most static analysis checks relate to the internal consistency of a model. They
generally do not require quantitative information such as kinetic rates and molecular
concentrations. The use of high-level modeling languages helps modelers to reduce
potential sources of errors by allowing them to define mnemonic names for system
components, reaction kinetic laws, and parameters. In addition to reducing the
chance of introducing trivial modeling errors, the use of named definitions instead
of numerical vectors for variables and parameters makes it possible to automatically
perform a number of internal self-consistency checks as we will see.

In order to be considered valid, a formal model does not have to be only
syntactically correct, but it must also satisfy a set of predefined plausible and
common constraints. Formal languages are often domain-specific, thus allowing the
notion of plausible and common constraints to be tailored to the specific domain.
For example, as discussed below, static analysis checks on dependencies of kinetic
laws on reactants in Bio-PEPA models will warn that simulations may produce
negative results. A general-purpose programing language or numerical computing
environment will never warn about this because negative results might be legitimate
for some modeling problems in other domains.

Throughout the remainder we illustrate some of the concepts with features of the
Bio-PEPA language, as an example of a text-based formalism, and Petri nets, as an
example of a graphical formalism.

2.1 The Reagent and Reaction-Centric Views of a Model

A biochemical model can be viewed in one of two orthogonal ways which we call
the reagent-centric and the reaction-centric views. In the former, for each reagent we
list the set of reactions in which the reagent is involved. Conversely, the reaction-
centric view displays, for each reaction, the set of reagents which are involved in
that reaction and the associated effect that the reaction has on the population of that
reagent. The BIOCHAM language [14] uses the reaction-centric view. In Bio-PEPA
models are constructed in the reagent-centric view and the reaction-centric view
is generated automatically by the software, in addition to some annotations on the
reagent-centric view to be discussed below.

Providing both views of a model is important because they have complementary
sets of advantages. The reagent-centric view is appropriate when scrutinizing the
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behavior of a particular component. Biologists are often trained to read reaction
definitions and this view can assist the detection of errors such as misplaced
reactants or products.

This is a strength of high-level modeling languages such as process algebras and
Petri nets: they give us more than one view of a model. In contrast, a programing
language model such as a system of differential equations implemented in C or
Python gives only a single view.

2.2 Missing and Unused Definitions

For a textual modeling language, such as Bio-PEPA, a straightforward static analysis
check scrutinizes all definitions of names and considers if any are not subsequently
used. There is also a converse check to ensure that any names used have indeed been
defined. These checks are fast to perform and catch simple errors made by modelers,
commonly misspelt names as well as missing definitions. Whenever a definition
is missing, this is considered as an error from which the software cannot recover
and evaluation of the model is disallowed. When a definition remains unused, the
software can still evaluate the model, but presents the user with a clear warning that
something is possibly wrong. For example, in the Bio-PEPA tools these checks are
applied to definitions of rate constants, kinetic laws, and biochemical species.

Whenever a rate function or initial concentration uses a constant which lacks a
definition this is likely to be an error on the part of the modeler, either they have
forgotten to provide such a definition or the constant name has been misspelt at
the point of use. Similarly, if a chemical species is given an initial concentration or
molecule count but is not involved in any reaction as reactant, modifier, or product
then the model is incomplete – perhaps a component definition has been forgotten.
Alternatively a name which is misspelled at the point of use will be detected as a
missing definition and an unused definition.

An unused constant definition is likely to be caused by an error in either a rate
function or an initial concentration or molecule count. An unused rate function is
possibly missing behavior in a species definition or perhaps the species definition is
missing entirely. Finally, an unused species definition may signal that the modeler
has forgotten to set the initial concentration or molecule count for one of the species
in the model.

In the context of Petri nets, a graphical notation, a similar problem may arise
if the model is not strongly connected, i.e., if there is not a directed path between
every pair of nodes in the Petri net. A disconnected Petri net implies that there are
two or more independent submodels. If static analysis reports that a model is not
connected, this could be the desired model (in which case the distinct submodels
can be analyzed independently) but it could be due to reactions or species omitted
in error.
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2.3 Kinetic Dependency Analysis

Although missing and unused definitions can catch some simple errors made by the
user, some similar errors may escape such analysis. There are two basic analyzes
which the Bio-PEPA Eclipse Plug-in performs over rate functions to catch further
errors. The two analyzes performed check that any species P, whose population
affects a given rate function r , has a corresponding behavior for r as a reactant,
activator, inhibitor, or general modifier in the definition of P. When this is not
the case, the software brings this to the attention of the modeler since it is likely
that the modeler has forgotten to add the reaction-behavior to the species definition.
Since we cannot know the role in which it should be added (reactant, activator, etc.)
the modeler must be notified. The second analysis can be seen as the converse of
this, it checks that for every reaction r for which a given species P is defined to be
a reactant, activator, or inhibitor then the corresponding rate function for r includes
a reference to the population of P. Again, if this is not the case then it is likely that
the model erroneously includes reaction r behavior in the definition of P or has an
incorrect definition for the rate function for r . These types of errors may lead to the
amount of a speciesP undergoing inappropriate or insufficient updates as the model
is exercised.

Kinetic dependency analysis does not guarantee that species are being used
effectively in a kinetic law. For example, it is possible to construct pathological
functions such as .k � E/ C .P � P/ which formally depends on the value of P
because the symbolP occurs in the expression, but which uses P in such a way that
its current value has no impact on the result of the function – which will always be
equal to k �E . It is not possible to detect all such false dependencies statically and
so kinetic dependency analysis helps to detect when species have accidentally been
omitted from function expressions but it can never provide a guarantee that their
values have been used effectively.

2.4 Boundary Nodes, Sources, Sinks, and Input/Output Paths

Simple analysis of the model can determine its boundaries and its interactions with
its environment. For example, a Petri net without boundary nodes is a self-contained
closed system.

We can consider the interface to a model in terms of both reactions (transitions in
a Petri net model) and species (places in a Petri net). In general an input to the model
is termed a source while an output is termed a sink. A source reaction is a reaction
which has no reactants and at least one product (e.g., synthesis reaction). A sink
reaction is one which has no products and at least one reactant (e.g., degradations).
The reaction r1

defD P CS �! is an example of a sink reaction as mass is consumed
without any being produced.
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Similarly, a species is considered a source if it is involved in at least one reaction
as a consumed reactant and no reactions as a product. Conversely, a species sink is
a species which is involved in at least one reaction as a product and no reactions as
a consumed reactant. In Bio-PEPA the species S with definition: S

defD r1#SC r2#S
is a source species as it can be consumed by the reactions r1 and r2 but it is never
produced.

The presence of boundary nodes is not in itself an error because these kinds
of species and reactions are perfectly valid in general open systems, but they can
also be the cause of unintended behavior. For instance, a Petri net with source
species cannot be live and might lead to undesired deadlocks once the source node’s
initial amount is consumed. Similarly, a Petri net with source transitions cannot be
bounded because its products could grow unboundedly.

The dual views offered by the Bio-PEPA software allow appropriate source/sink
annotations to be added to reaction and species definitions. These annotations can
provide useful error detection information to the modeler. Reaction source and sinks
in particular denote that mass is not conserved by the model, although this may be
intentional. Additionally the user can be warned if a source species has an initial
population of zero, since in this case it will never have non-zero population and the
reactions associated with it will never occur (assuming that the rate of the reactions
do depend in a meaningful way on the population of the source species).

When boundary nodes are not caused by errors, but instead represent inputs or
outputs with the environment, they can provide additional insight into the behavior
of the model: their identification, supplemented with the minimal sequences of
reactions that link a given source/sink combination, illustrates the flow of mass
through the model as an input/output behavior. The input/output behavior informs
modelers about which sources influence which sink, and what is the effect on the
overall model of the sequence of reactions leading from source to sink. For instance,
consider a signaling pathway that describes the signaling cascade which, starting
from a constant influx of a ligand, leads to the production of one target protein.
This will have a source action and one sink species. When dealing with complex
interconnected pathways, the input/output behavior can help in understanding causal
dependencies and in abstracting from the behavior of part of the system.

3 Structural Analysis

For graphical formalisms, such as Petri nets, a complementary method of investigat-
ing internal consistency is to view the model as a graph and consider it in terms of
graph-theoretic concepts such as connectedness, reachability, paths, and cycles. An
extensive body of work on structural analysis of models comes from Petri net-based
techniques so we will discuss this type of analysis in Petri net terms.

Petri nets are graphical models of concurrent systems which contain places
and transitions. Places contain tokens and firing a transition moves tokens from
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one place to another place. In the context of biological modeling, a Petri net
is an automaton whose places represent molecular species and whose transitions
represent reactions transforming reactants into products. Places can only ever be
connected to transitions, and transitions to places – thus every Petri net defines
a bipartite graph. Arcs are weighted, and their weights specify the stoichiometric
coefficients of reactants. Places contain an arbitrary number of tokens which
represent the current molecule count of each biochemical species. The current state
of the system, termed the marking of the Petri net, is given by the number of tokens
on each place.

The behavior of a Petri net is defined by a firing rule, which specifies when
transitions are enabled (if there are enough tokens for the involved reactants) and
what is their effect (the changes in the number of tokens for the involved species).

Petri nets build on well-established mathematical foundations, which, in addition
to the static and structural analysis techniques discussed here, support transient and
steady-state analysis of the dynamic behavior. Reachability analysis can be used
to identify parts of the model which are not connected; boundedness analysis can
be used to ensure uncontrolled growth of molecules is not possible; and invariant
analysis can identify violations of the law of conservation of mass. See [15] for
more details and examples.

3.1 Structural Concepts in Petri Nets

A number of structural properties have been defined for Petri nets. All of these can
be checked statically, because they are based solely on the structure of the Petri
net without consideration of the initial marking. Here we give only an informal
overview; for more details and their formal definitions see for instance [16]. These
common properties are often valid for biological models. If they are not satisfied, it
can be an indication of an error in the model specification (though not necessarily).
Some concepts, such as, pure Petri nets and ordinary Petri nets, simply allow models
to be categorized – this can provide a validity check to the modeler. For example,
an ordinary Petri net is one in which all arcs are equal to 1 (which implies all
stoichiometric coefficients are 1). Thus if the model is identified as being an ordinary
Petri net but the model should include a homodimerization it is an indication that
something is wrong. A pure Petri net is one in which there is no pair of nodes which
are connected in both directions. This excludes models in which the same species is
both a reactant and a product of a reaction.

Other concepts are related to the possible behaviors of the model when it is
executed, i.e., when the Petri net is given a marking. For example a Petri net is
considered to be bounded if the maximum number of tokens which can be on any
place in the net is bounded by a constant. In biological terms this means that the
amount of a species cannot grow without limit. A net is said to be structurally
bounded if it is bounded for any initial marking. In some circumstances this property
can be determined without executing the model and exploring its state space. A Petri
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net is conservative if for each transition the sum of the weights of the incoming
arcs is equal to the sum of weights of the outgoing arcs (i.e., the model does not
contain any reaction which does not preserve the total number of molecules, such
as complex formation reactions). Conservative Petri nets are always structurally
bounded.

Another way of characterizing nets is in terms of the conflict and causality
structures in operation within the model. For example a Petri net is termed static
conflict free if there are no two transitions which share an input place. In terms
of a biological model this means that there is no competition between reactions
for reactants. Again, identifying such properties can be a source of validation – or
otherwise – for the model.

3.2 Invariants

For biochemical models it is commonly the case that the modeler wishes to respect
conservation of mass, so that the total quantity of matter at any time throughout the
simulation is the same as the total quantity at the start. This can be characterized
as an invariant of the model, a weighted sum of species quantities which remains
constant.

Where the model contains source and/or sink reactions, mass will, of course,
not be conserved. Such reactions are generally an abstraction, the products of a
source reaction do not suddenly materialize from nothing and nor do the reactants
of a sink reaction disintegrate into nothing. However the real reactants (of source
reactions) or products (of sink reactions) are outside the scope of the model. A sink
reaction could also represent a transportation to a place outside the scope of a
model. For example, an intracellular model may represent a movement to the
extracellular environment by the use of a sink reaction. Similarly, a movement from
the extracellular environment into the cell may be represented by a source reaction.

However, even for models in which the entire mass of the system is not
conserved, we expect there to be local conservation. When mass is conserved
within a set of components we call this an invariant, since the sum of the values
of all the members of the invariant – weighted by some suitable coefficients – will
remain constant throughout the simulation of the model. Invariant analysis is a well-
established technique of structural analysis of Petri nets, and can also be applied to
textual notations such as Bio-PEPA.

The stoichiometric information about the reaction network, captured as the
incidence matrix for a Petri net, defines a system of linear inequalities. Fourier–
Motzkin elimination can find both real and integer solutions to such a system of
linear inequalities. These solutions are the weights which are used in the invariants
which hold over the species of the system. These are termed P-invariants in the
context of Petri nets. We can compute a minimal generating set of invariants with a
version of the Fourier–Motzkin method which produces only integer solutions [17].
The algorithm works on a matrix representation of the stoichiometric information
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a : A B C
b : B D
c : C D
d : D A

prod : A
degr : D

A
def
a A d A prod A

B
def
b B a B

C
def
c C a C

D
def
d D b D c D degr D

Fig. 27.1 An incorrect
model which is not covered
by invariants even if the
source reaction ‘prod’ and the
sink reaction ‘degr’ are
ignored

for the model. This has as columns the reactions of the model and as rows the
species. Each element reflects the change in population of the given species when
the given reaction is fired.

When the matrix is transposed, such that, the rows become the reactions and the
columns are the species, performing the same Fourier–Motzkin method over the
transposed matrix we compute a new set of invariants. This new set of invariants is
called the reaction invariants, or reaction loops (termed T-invariants in Petri nets).
A reaction invariant consists of a set of reaction names with an integer coefficient
associated with each reaction name. Such an invariant states that if this exact set of
reactions is fired, the number of times indicated by each associated coefficient – in
any order – then the model will be returned to the same state it was in at the start of
the reaction invariant sequence.

The Bio-PEPA software computes both state and reaction invariants. Addition-
ally the user can temporarily eliminate any of the reactions. This means that the
chosen reactions are ignored for the purposes of the invariant analysis. In particular
then the modeler may ignore all sink and source reactions in the model. If this
is done then the entire set of species in the model should be covered by a list of
invariants (which may be summed to create a single invariant which covers all of the
species in the model). Where this is not the case, this indicates that somewhere in
the model, mass is not conserved by a sequence of (non-source/sink) reactions. This
probably indicates an error and the modeler should inspect their model carefully and
either be able to repair it or explain why the conservation of mass is not observed.

Consider the model in Fig. 27.1. This model will not be covered by any state
invariants, however it does contain two reaction loops: a C b C c C d C degr and
aC bC cC .2� degr/C prod. The first of these is suspicious because it includes a
sink reaction without a corresponding source reaction. Hence we employ our tactic
of ignoring source and sink reactions and computing the set of invariants that this
implies. This shows us that there are no invariants and this is highly indicative of an
error in modeling.

In this particular case the correction could be that the reaction a should be
modified to consume two molecules of A as in: AC A! B C C or the reaction d
could be modified to consume two molecules of D as in: D CD ! A.

This is not an exhaustive list of possible corrections and in general there are
many possible ways to correct this problem. However, the static analysis of invariant
coverage has highlighted the possibility of an error and this hopefully will help to
ensure that less time is spent analyzing incorrect models.
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4 Verification of Behavioral Properties

As valuable as static and structural analysis are, there are some properties of
models which cannot be assessed in this way. These instead require the model to
be exercised to find all the possible configurations or states that it can reach. These
correspond to the possible (although some of them may be unlikely) behaviors of
the system. Such properties are termed behavioral properties, and generally are able
to tell us more about the dynamics of the system.

One point of interest may be the extent to which behavior in the model persists,
or whether it reaches a state where no further reactions are possible (often termed
deadlock). In Petri nets this is known as liveness: A Petri net is live if, for every
transition, it is possible from any state to reach a state where this transition is
enabled. A live Petri net is deadlock-free (i.e., the corresponding system does not
have any state where no reaction is possible).

Classical techniques for checking the behavior of models over a bounded state-
space are considered in theoretical computer science under the heading of model
checking. These techniques use efficient algorithms and data structures to determine
whether logical formulae characterizing desired (or undesired) behavior are satisfied
by a model. The presence of desired behavior shows that the model is live, and that
sequences of reactions can lead the model to good states. The absence of undesired
behavior shows that the model is safe, and that no sequence of reactions can lead
the model to bad states. Both liveness and safety are desirable qualities for a model
to possess.

Exact discrete-state model-checking where the complete state-space is generated
can have applications in the modeling of biological processes (see [18]) but very
often the memory needed to store the reachable state-space of a biological model
exceeds the memory capacity of any computer system which we can access.
Approximate statistical model-checking [19, 20] can be used instead and can give
numerical results which are in very good agreement with those which are computed
using more expensive techniques [21]. In this method, exhaustive generation of the
reachable state-space is replaced by investigation of numerous trajectories over the
state-space generated by simulation. Exact numerical solution of the underlying
Markov chain is replaced by the execution of an ensemble of sufficiently many
Monte Carlo simulations to approximate the measure of interest, and the probability
of satisfaction of the logical formulae of interest is reported together with a
confidence interval on the result.

4.1 Trace-Based Validation and Model-Checking

Novel techniques for detecting errors in models are now working not on the models
themselves, but on their outputs generated through simulation. These complement
static and structural methods beautifully because they consider the simulation results
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which are the output from a modeling study, not the model used as input. Such
a perspective can allow these techniques to detect errors in simulators, as well as
errors in models.

The Traviando trace analyzer [22] is a discrete-event simulation trace analyzer
which provides graphical techniques to inspect and manipulate simulation trace
output and to compute statistical results. These results include counts of reaction
events by category and can allow the modeler to discover that their simulation run
has not been long enough to allow some reactions to fire, or to discover that they
only fire a small number of times. Either of these might indicate an error in the
model, caught by trace analysis.

Another novel and promising technique integrates model-checking and trace
analysis and can be applied even in the continuous domain to the results of numerical
integrators. Fages [23], Donaldson [24], and others describe model checkers which
inspect simulation outputs and evaluate quantified logical formulae over a single
simulation trace (in contrast to the statistical model-checking approach, which
requires an ensemble of traces generated from Monte Carlo simulations conducted
in the discrete molecular regime).

When working in the continuous domain the output of a model is a deterministic
simulation utilizing continuous sure variables. This contrasts strongly with a
stochastic simulation – which uses discrete random variables – because a single
stochastic simulation run can be very far from the average-case behavior of the
model, and thus conclusions drawn from a single stochastic simulation can rarely
give definitive insights into behavior. In contrast, a time-course output from a
continuous deterministic simulation returns sure trajectories for each of the chemical
species in the model and thus carries more information which can be investigated in
model-checking.

4.2 Equivalence Relations

Once we are working at the level of the state space generated by a model as well
as verification of behavioral properties, we can also consider whether alternative
models of the same system are in some sense equivalent. At the static level this
may be carried out by identifying an isomorphism between the constructs of the
model – essentially showing that models are equivalent because they are made
up of equivalent components. However, at the underlying level of the state space,
often termed the labeled transition system, much richer and more flexible notions of
equivalence can be defined.

A bisimulation (and a semantic equivalence, more generally) is a way to
assess whether two different labeled transition systems have the same behavior.
A bisimulation is a symmetric relation between states of two labeled transition
systems that requires that any two states in the relation both have transitions with
similar enough behavior, as captured by the labels of transitions, and the states that
are a result of a pair of transitions are again in the bisimulation relation [25]. This
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captures the idea that the way the two models progress is the same for both models
because states have transitions that match, as do the states that are targets of those
transitions.

In the context of process algebras such as Bio-PEPA a variety of different
bisimulations have been defined depending on what information about transitions
is included in the labels [26]. In the original definition of bisimulation [25], equality
between labels is required. However, it is possible to relax this requirement to allow
for different notions of behavior, as exemplified by the work on g-bisimulation in
Bio-PEPA [27]. This applies a function g to the labels on transitions and two labels
are determined to be similar enough whenever the function g gives the same value
for both labels. This is a powerful mechanism as it allows identification of selected
reaction names, and selection of information about the reaction that the transition
represents. The function g is chosen by the modeler to express the information of
interest when considering behavior of the two systems. For example, a weak form
of this equivalence relation, together with invariant analysis, is used to establish the
equivalence of two previous models of the MAPK signaling cascade activated by
EGF receptors [27–29].

5 Conclusions

As memorably expressed by Box and Draper [30], “all models are wrong, but some
are useful”. Models are built in order to help us to improve our understanding
of systems and processes: if we already had perfect understanding then these
models would not be needed. Our current imperfect understanding is necessarily
encoded in the model. On top of this, all models simplify and abstract from details
which are believed to be inessential in order that they can be tractable and usable
for mathematical analysis. The belief that these details were inessential could be
misplaced, and simply one part of our imperfect understanding. Because of this, and
by their nature, we can never expect models of biological processes to be “correct”.

However, we can – and should – expect our models to be consistent. If we
intended to make a closed model where mass is conserved then we have an invariant
which we expect to hold – computing the species invariants of our model allows us
to check that mass is conserved and eliminates one possible source of error in our
encoding. Similarly, if we have defined a reaction in our reaction network to involve
species E and S then the kinetic law for the rate of that reaction should depend on
E and S, and only on E and S. If not, then we have a likely source of error in the
model.

Errors such as these may seem like simple carelessness but all of the evidence
which we have seen seems to suggest that errors in the construction of formal
models are very similar in nature to the errors which occur when writing a computer
program. These are very rarely profound misunderstandings and are more likely
to be simple mistakes such as a forgotten parameter or a forgotten function [31].
Nevertheless, the impact of such errors should not be underestimated.
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Domain-specific modeling languages specialized to biological modeling are
much more helpful in enabling simple errors to be caught automatically than
are general-purpose numerical computing platforms. By building static analysis
techniques into their modeling tools, domain-specific modeling languages can check
that models are consistent, for every model, and for every revision of that model.
State-of-the-art modeling platforms run inexpensive static analysis procedures every
time that a model is saved after an edit has been made. This ‘always-on’ supervision
helps modelers to find flaws in their models early, before analysis results are
computed.

At best the methods which we have considered in this paper can help us to
produce biological models which are internally consistent, with all parameters,
kinetic laws, and species used in the way in which we intended. Internal consistency
in our models can never make them right, but lack of consistency will make them
wrong.
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Chapter 28
Global Parameter Identification of Stochastic
Reaction Networks from Single Trajectories

Christian L. Müller�, Rajesh Ramaswamy�, and Ivo F. Sbalzarini

Abstract We consider the problem of inferring the unknown parameters of a
stochastic biochemical network model from a single measured time-course of the
concentration of some of the involved species. Such measurements are available,
e.g., from live-cell fluorescence microscopy in image-based systems biology. In
addition, fluctuation time-courses from, e.g., fluorescence correlation spectroscopy
(FCS) provide additional information about the system dynamics that can be used
to more robustly infer parameters than when considering only mean concentrations.
Estimating model parameters from a single experimental trajectory enables single-
cell measurements and quantification of cell–cell variability. We propose a novel
combination of an adaptive Monte Carlo sampler, called Gaussian Adaptation
(GaA), and efficient exact stochastic simulation algorithms (SSA) that allows
parameter identification from single stochastic trajectories. We benchmark the
proposed method on a linear and a non-linear reaction network at steady state and
during transient phases. In addition, we demonstrate that the present method also
provides an ellipsoidal volume estimate of the viable part of parameter space and
is able to estimate the physical volume of the compartment in which the observed
reactions take place.

1 Introduction

Systems biology implies a holistic research paradigm, complementing the reduc-
tionist approach to biological organization [15, 16]. This frequently has the goal of
mechanistically understanding the function of biological entities and processes in
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interaction with the other entities and processes they are linked to or communicate
with. A formalism to express these links and connections is provided by network
models of biological processes [1, 4]. Using concepts from graph theory [26] and
dynamic systems theory [44], the organization, dynamics, and plasticity of these
networks can then be studied.

Systems biology models of molecular reaction networks contain a number of
parameters. These are the rate constants of the involved reactions and, if spatiotem-
poral processes are considered, the transport rates, e.g., diffusion constants, of the
chemical species. In order for the models to be predictive, these parameters need
to be inferred. The process of inferring them from experimental data is called
parameter identification. If in addition also the network structure is to be inferred
from data, the problem is called systems identification. Here, we consider the
problem of identifying the parameters of a biochemical reaction network from a
single, noisy measurement of the concentration time-course of some of the involved
species. While this time series can be long, ensemble replicas are not possible, either
because the measurements are destructive or one is interested in variations between
different specimens or cells. This is particularly important in molecular systems
biology, where cell–cell variations are of interest or large numbers of experimental
replica are otherwise not feasible.

This problem is particularly challenging and traditional genomic and proteomic
techniques do not provide single-cell resolution. Moreover, in individual cells the
molecules and chemical reactions can only be observed indirectly. Frequently,
fluorescence microscopy is used to observe biochemical processes in single cells.
Fluorescently tagging some of the species in the network of interest allows measur-
ing the spatiotemporal evolution of their concentrations from video microscopy and
fluorescence photometry. In addition, fluorescence correlation spectroscopy (FCS)
allows measuring fluctuation time-courses of molecule numbers [23].

Using only a single trajectory of the mean concentrations would hardly allow
identification of network parameters. There could be several combinations of
network parameters that lead to the same mean dynamics. A stochastic network
model, however, additionally provides information about the fluctuations of the
molecular abundances. The hope is that there is then only a small region of
parameter space that produces the correct behavior of the mean and the correct
spectrum of fluctuations [31]. Experimentally, fluctuation spectra can be measured
at single-cell resolution using FCS.

The stochastic behavior of biochemical reaction networks can be due to low copy
numbers of the reacting molecules [10, 39]. In addition, biochemical networks may
exhibit stochasticity due to extrinsic noise. This can persist even at the continuum
scale, leading to continuous–stochastic models. Extrinsic noise can, e.g., arise
from environmental variations or variations in how the reactants are delivered into
the system. Also measurement uncertainties can be accounted for in the model
as extrinsic noise, modeling our inability to precisely quantify the experimental
observables.
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We model stochastic chemical kinetics using the chemical master equation
(CME). Using a CME forward model in biological parameter identification amounts
to tracking the evolution of a probability distribution, rather than just of a single
value. This prohibits predicting the state of the system and only allows statements
about the probability for the system to be in a certain state, hence requiring
sampling-based parameter identification methods. In the stochastic–discrete con-
text, a number of different approaches have been suggested. Boys et al. proposed
a fully Bayesian approach for parameter estimation using an explicit likelihood for
data/model comparison and a Markov Chain Monte Carlo (MCMC) scheme for
sampling [5]. Zechner et al. developed a recursive Bayesian estimation technique
[45] to cope with cell–cell variability in experimental ensembles. Toni and co-
workers used an approximate Bayesian computation (ABC) ansatz, as introduced
by Marjoram and co-workers [25], that does not require an explicit likelihood
[43]. Instead, sampling is done in a sequential Monte Carlo (or particle filter)
framework. Reinker et al. used a hidden Markov model where the hidden states
are the actual molecule abundances, and state transitions model chemical reactions
[40]. Inspired by Prediction Error Methods [24], Cinquemani et al. identified the
parameters of a hybrid deterministic–stochastic model of gene expression from
multiple experimental time courses [7]. Randomized optimization algorithms have
been used, e.g., by Koutroumpas et al. who applied a Genetic Algorithm to a
hybrid deterministic–stochastic network model [21]. More recently, Poovathingal
and Gunawan used another global optimization heuristic, the Differential Evolution
algorithm [32]. A variational approach for stochastic two-state systems has been
proposed by Stock and co-workers based on Maximum Caliber [41], an extension of
Jaynes’ Maximum Entropy principle [14] to non-equilibrium systems. If estimates
are to be made based on a single trajectory, the stochasticity of the measurements
and of the model leads to noisy similarity measures, requiring optimization and
sampling schemes that are robust against noise in the data.

Here, we propose a novel combination of exact stochastic simulations for a CME
forward model and an adaptive Monte Carlo sampling technique, called Gaussian
Adaptation (GaA), to address the single-trajectory parameter estimation problem
for monostable stochastic biochemical reaction networks. Evaluations of the CME
model are done using exact partial-propensity stochastic simulation algorithms
(SSA) [35]. Parameter optimization uses GaA. The method iteratively samples
model parameters from a multivariate normal distribution and evaluates a suitable
objective function that measures the distance between the dynamics of the forward
model output and the experimental measurements. In addition to estimates of the
kinetic parameters in the network, the present method also provides an ellipsoidal
volume estimate of the viable part of parameter space and is able to estimate the
physical volume of the compartment in which the reactions take place.

We assume that quantitative experimental time series of either a transient or
the steady state of the concentrations of some of the molecular species in the
network are available. This can, for example, be obtained from single-cell fluo-
rescence microscopy by translating fluorescence intensities to estimated chemical
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concentrations. Accurate methods that account for the microscope’s point-spread
function and the camera noise model are available to this end [6, 12, 13]. Addi-
tionally, FCS spectra can be analyzed in order to quantify molecule populations,
their intrinsic fluctuations, and lifetimes [23, 34, 39]. The present approach requires
only a single stochastic trajectory from each cell. Since the forward model is
stochastic and only a single experimental trajectory is used, the objective function
needs to robustly measure closeness between the experimental and the simulated
trajectories. We review previously considered measures and present a new distance
function in Sect. 5. First, however, we set out the formal stochastic framework
and problem description below. We then describe GaA and its applicability to the
current estimation task. The evaluation of the forward model is outlined in Sect. 4.
We consider a linear cyclic chain and a non-linear colloidal aggregation model as
benchmark test cases in Sect. 6 and conclude in Sect. 7.

2 Background and Problem Statement

We consider a network model of a biochemical system given by M coupled
chemical reactions

NX

iD1
��i;jSi

kj�����!
NX

iD1
�Ci;jSi 8j D 1; : : : ;M (28.1)

between N species, where �� D Œ��i;j � and �C D Œ�Ci;j � are the stoichiometry
matrices of the reactants and products, respectively, and Si is the i th species in
the reaction network. Let ni be the population (molecular copy number) of species
Si . The reactions occur in a physical volume ˝ and the macroscopic reaction
rate of reaction j is kj . This defines a dynamic system with integer-valued state
n.t/ D Œni .t/� andM C 1 parameters � D Œk1; : : : ; kM ;˝�.

The state of such a system can be interpreted as a realization of a random
variable n.t/ that changes over time t . Every one can know about the system is
the probability for it to be in a certain state at a certain time tj given the system’s
state history, hence

P.n.tj / j n.tj�1/; : : : ; n.t1/; n.t0// dNn

D Probfn.tj / 2 Œn.tj /; n.tj /C dn/ j n.ti /; i D 0; : : : ; j � 1 g: (28.2)

A frequently made model assumption, substantiated by physical reasoning, is
that the probability of the current state depends solely on the previous state, i.e.,

P.n.tj / j n.tj�1/; : : : ; n.t1/; n.t0// D P.n.tj / j n.tj�1//: (28.3)
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The system is then modeled as a first-order Markov chain where the state n
evolves as:

n.t C
t/ D n.t/C�.
t I n; t/: (28.4)

This is the equation of motion of the system. If n is real-valued, it defines a
continuous–stochastic model in the form of a continuous-state Markov chain.
Discrete n, as is the case in chemical kinetics, amount to discrete–stochastic
models expressed as discrete-state Markov chains. The Markov propagator � is
itself a random variable, distributed with probability distribution ˘.
 j
t I n; t/ D
P.nC 
; t C
t j n; t/ for the state change 
 . For continuous-state Markov chains,
˘ is a continuous probability density function (PDF), for discrete-state Markov
chains a discrete probability distribution. If ˘.
/ D ı.
 � 


0
/, with ı the Dirac

delta distribution, then the system’s state evolution becomes deterministic with
predictable discrete or continuous increments 


0
. Deterministic models can hence

be interpreted as a limit case of stochastic models [22].
In chemical kinetics, the probability distribution ˘ of the Markov propagator

is a linear combination of Poisson distributions with weights given by the reaction
stoichiometry. This leads to the equation of motion for the population n given by

n.t C
t/ D n.t/C .�C � ��/

2
64
 1
:::

 M

3
75 ; (28.5)

where  i � P.ai .n.t//
t/ is a random variable from the Poisson distribution
with rate 	 D ai .n.t//
t . The second term on the right-hand side of (28.5)
follows a probability distribution˘.
 j
t In; t/ whose explicit form is analytically
intractable in the general case. The rates aj , j D 1; : : :M , are called the reaction
propensities and are defined as:

aj D
NY

iD1

 
ni
��i;j

!
kj

˝
1CPN

i 0D1 �
�
i 0;j

: (28.6)

They depend on the macroscopic reaction rates and the reaction volume and can be
interpreted as the probability rates of the respective reactions. Advancing (28.5)
with a 
t such that more than one reaction event happens per time step yields
an approximate simulation of the biochemical network as done in approximate
SSA [3, 9].

An alternative approach consists in considering the evolution of the state
probability distribution P.n; t j n0; t0/ of the Markov chain described by (28.5),
hence:

@P

@t
D

MX

jD1

 
NY

iD1
E
��
i;j

i E
��C

i;j

j � 1
!
aj .n.t//P.n; t/ (28.7)
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with the step operator Epi f .n/ D f
�
nC pOi

�
for any function f , where Oi is

the N -dimensional unit vector along the i th dimension. This equation is called
the CME. Directly solving it for P is analytically intractable, but trajectories
of the Markov chain governed by the unknown state probability P can be sampled
using exact SSA [8]. Exact SSAs are exact in the sense that they sample Markov
chain realizations from the exact solution P of the CME, without ever explicitly
computing this solution. Since SSAs are Monte Carlo algorithms, however, a
sampling error remains.

Assuming that the population n increases with the volume ˝ , n can be
approximated as a continuous random variable in the limit of large volumes, and
(28.5) becomes

n.t C
t/ D n.t/C .�C � ��/

2
64
�1
:::

�M

3
75; (28.8)

where �i � N .ai .n.t//
t; ai .n.t//
t/ are normally distributed random vari-
ables. The second term on the right-hand side of this equation is a random
variable, that is, distributed according to the corresponding Markov propagator
˘.
 j
t In; t/, which is a Gaussian. Equation (28.8) is called the chemical Langevin
equation with ˘ given by:

˘
�

 j
t In; t

�
D .2�/�N=2 ˇ̌˙ ˇ̌�1=2e� 12 .
��/T

˙�1.
��/; (28.9)

where

�D
t
�
�C � ��

�
2

64
a1.n.t//

:::

aM .n.t//

3

75and ˙D
t
�
�C���

�
diag a.n.t//

�
�C � ��

�T
:

The corresponding equation for the evolution of the state PDF is the non-linear
Fokker–Planck equation, given by:

@P

@t
D rT

�
1

2
D r � F

�
P.n; t/; (28.10)

where

rT D
�
@

@n1
; : : : ;

@

@nN

�
; (28.11)

Fi D lim

t!0

1


t

Z C1

�1
d
i 
i ˘.
 j
t In; t/; (28.12)
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and

Dij D lim

t!0

1


t

Z C1

�1

Z C1

�1
d
id
j 
i 
j ˘.
 j
t In; t/ � FiFj : (28.13)

At much larger˝ , when the population n is on the order of Avogadro’s number,
(28.8) can be further approximated as:

n.t C
t/ D n.t/C
�
�C � ��

�
2
64
�1.n.t//
t

:::

�M .n.t//
t

3
75 ; (28.14)

where �j .n/ D kj˝
1�PN

i 0D1 �
�
i 0;j
QN
iD1 n

��
i;j

i .��i;j Š/�1. Note that the second term
on the right-hand side of this equation is a random variable whose probability
distribution is the Dirac delta

˘
�

 j
t In; t

�
D ı

0

B@
 �
�
�C � ��

�
2

64
�1.n.t//
t

:::

�M .n.t//
t

3

75

1

CA: (28.15)

Equation (28.14) hence is a deterministic equation of motion. In the limit 
t ! 0

this equation can be written as the ordinary differential equation

dx

dt
D
�
�C � ��

�
2
64
�1.x.t//

:::

�M .x.t//

3
75 (28.16)

for the concentration x D n˝�1. This is the classical reaction rate equation for the
system in (28.1).

By choosing the appropriate probability distribution ˘ of the Markov propa-
gator, one can model reaction networks in different regimes: small population n
(small ˝) using SSA over (28.7), intermediate population (intermediate ˝) using
(28.8), and large population (large˝) using (28.16). The complete model definition

therefore is M .�/ D
n
��; �C; ˘

o
.

The problem considered here can then be formalized as follows: Given a forward
model M .�/ and a single noisy trajectory of the population of the chemical
species On.t0 C .q � 1/
texp/ at K discrete time points t D t0 C .q � 1/
texp,
q D 1; : : : ; K , we wish to infer � D Œk1; : : : ; kM ;˝�. The time between two
consecutive measurements 
texp and the number of measurements K are given by
the experimental technique used. As a forward model we use the full CME as given
in (28.7) and sample trajectories from it using the partial-propensity formulation of
Gillespie’s exact SSA as described in Sect. 4.
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3 Gaussian Adaptation for Global Parameter Optimization,
Approximate Bayesian Computation, and Volume
Estimation

Gaussian Adaptation, introduced in the late 1960s by Gregor Kjellström [17,19], is a
Monte Carlo technique that has originally been developed to solve design-centering
and optimization problems in analog electric circuit design. Design-centering solves
the problem of determining the nominal values (resistances, capacitances, etc.) of
the components of a circuit such that the circuit output is within specified design
bounds and is maximally robust against random variations in the circuit components
with respect to a suitable criterion or objective function. This problem is a superset
of general optimization, where one is interested in finding a parameter vector that
minimizes (or maximizes) an objective function without any additional robustness
criterion. GaA has been specifically designed for scenarios where the objective
function f .�/ is only available in a black-box (or oracle) model that is defined on
a real-valued domain A 
 R

n and returns scalar real-valued output. The black-box
model assumes that gradients or higher-order derivatives of the objective function
may not exist or may not be available, hence including the class of discontinuous
and noisy functions. The specific objective function used here is presented in
Sect. 5.

The principle idea behind GaA is the following: Starting from a user-defined
point in parameter space, GaA explores the space by iteratively sampling single
parameter vectors from a multivariate Gaussian distribution N .m;˙/ whose mean
m 2 R

n and covariance matrix ˙ 2 R
n�n are dynamically adapted based on the

information from previously accepted samples. The acceptance criterion depends on
the specific mode of operation, i.e., whether GaA is used as an optimizer or as a sam-
pler [27,28]. Adaptation is performed such as to maximize the entropy of the search
distribution under the constraint that acceptable search points are found with a
predefined, fixed hitting (success) probabilityp < 1 [19]. Using the definition of the

entropy of a multivariate Gaussian distribution H .N / D log
�q

.2�e/n det.˙/
�

shows that this is equivalent to maximizing the determinant of the covariance matrix
˙ . GaA thus follows Jaynes’ Maximum Entropy principle [14].

GaA starts by setting the mean m.0/ of the multivariate Gaussian to an initial
acceptable point �.0/ and the Cholesky factor Q.0/ of the covariance matrix to the

identity matrix I . At each iteration g > 0, the covariance ˙.g/ is decomposed as:

˙.g/ D
�
r �Q.g/

� �
r �Q.g/

�T D r2
�
Q.g/

� �
Q.g/

�T
;where r is the scalar step size

that controls the scale of the search. The matrixQ.g/ is the normalized square root of

˙.g/, found by eigen- or Cholesky decomposition of˙.g/. The candidate parameter



28 Global Stochastic Parameter Identification 485

vector in iteration g C 1 is sampled from a multivariate Gaussian according to
�.gC1/ D m.g/ C r.g/Q.g/�.g/, where �.g/ � N .0; I /. The parameter vector is

then evaluated by the objective function f .�.gC1//.
Only if the parameter vector is accepted, the following adaptation rules are

applied: The step size r is increased as r.gC1/ D fe � r.g/, where fe > 1 is termed
the expansion factor. The mean of the proposal distribution is updated as:

m.gC1/ D
�
1 � 1

Nm

�
m.g/ C 1

Nm
�.gC1/: (28.17)

Nm is a weighting factor that controls the learning rate of the method. The successful

search direction d .gC1/ D
�
�.gC1/ �m.g/

�
is used to perform a rank-one update of

the covariance matrix: ˙.gC1/ D
�
1 � 1

NC

�
˙.g/ C 1

NC
d .gC1/d .gC1/T. NC weights

the influence of the accepted parameter vector on the covariance matrix. In order to
decouple the volume of the covariance (controlled by r.gC1/) from its orientation,

Q.gC1/ is normalized such that det
�
Q.gC1/

�
D 1.

In case �.gC1/ is not accepted at the current iteration, only the step size is adapted
as r.gC1/ D fc � r.g/, where fc < 1 is the contraction factor.

The behavior of GaA is controlled by several strategy parameters. Kjellström
analyzed the information-theoretic optimality of the acceptance probability p for
GaA in general regions [19]. He concluded that the efficiency E of the process and
p are related as E / �p logp, leading to an optimal p D 1

e � 0:3679, where
e is Euler’s number. A proof is provided in [18]. Maintaining this optimal hitting
probability corresponds to leaving the volume of the distribution, measured by

det
�
˙
�

, constant under stationary conditions. Since det
�
˙
�
D r2n det

�
QQT

�
,

the expansion and contraction factors fe and fc expand or contract the volume by
a factor of f 2n

e and f 2n
c , respectively. After S accepted and F rejected samples,

a necessary condition for constant volume thus is:
QS
iD1.fe/

2n
QF
iD1.fc/

2n D 1.
Using p D S

SCF , and introducing a small ˇ > 0, the choice fe D 1Cˇ.1�p/ and
fc D 1� ˇp satisfies the constant-volume condition to first order. The scalar rate ˇ
is coupled to NC. NC influences the update of˙ 2 R

n�n, which contains n2 entries.

Hence, NC should be related to n2. We suggested using NC D .nC 1/2= log.nC 1/
as a standard value, and coupling ˇ D 1

NC
[29]. A similar reasoning is also applied

to Nm. Since Nm influences the update of m 2 R
n, it is reasonable to set Nm / n.

We propose Nm D en as a standard value.
Depending on the specific acceptance rule used, GaA can be turned into a global

optimizer [29], an adaptive MCMC sampler [27,28], or a volume estimation method
[30], as described next.
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3.1 GaA for Global Black-Box Optimization

In a minimization scenario, GaA uses an adaptive-threshold acceptance mechanism.
Given an initial scalar cutoff threshold c.0/T , we accept a parameter vector �.gC1/ at

iteration gC 1 if f
�
�.gC1/

�
< c

.g/
T . Upon acceptance, the threshold cT is lowered

as c.gC1/T D
�
1 � 1

NT

�
c
.g/
T C 1

NT
f
�
�.gC1/

�
, where NT controls the weighting

between the old threshold and the objective-function value of the accepted sample.
This sample-dependent threshold update renders the algorithm invariant to linear
transformations of the objective function. The standard strategy parameter value is
NT D en [28]. We refer to [28] for further information about convergence criteria
and constraint handling techniques in GaA.

3.2 GaA for Approximate Bayesian Computation and Viable
Volume Estimation

Replacing the threshold acceptance-criterion by a probabilistic Metropolis criterion,
and setting Nm D 1, turns GaA into an adaptive MCMC sampler with global
adaptive scaling [2]. We termed this method Metropolis-GaA [27, 28]. Its strength
is that GaA can automatically adapt to the covariance of the target probability
distribution while maintaining the fixed hitting probability. For standard MCMC,
this cannot be achieved without fine-tuning the proposal using multiple MCMC
runs. We hypothesize that GaA might also be an effective tool for ABC [43]. In
essence, the ABC ansatz is MCMC without an explicit likelihood function [25].
The likelihood is replaced by a distance function – which plays the same role as
our objective function – that measures closeness between a parameterized model
simulation and empirical data D , or summary statistics thereof. When a uniform
prior over the parameters and a symmetric proposal are assumed, a parameter vector
in ABC is unconditionally accepted if its corresponding distance function value
f .�.gC1// < cT [25]. The threshold cT is a problem-dependent constant that is fixed
prior to the actual computation. Marjoram and co-workers have shown that samples
obtained in this manner are approximately drawn from the posterior parameter
distribution given the data D . While Pritchard et al. used a simple rejection sampler
[33], Marjoram and co-workers proposed a standard MCMC scheme [25]. Toni
and co-workers used sequential MC for sample generation [43]. To the best of our
knowledge, however, the present work presents the first application of an adaptive
MCMC scheme for ABC in biochemical network parameter inference. Finally, we
emphasize that when GaA’s mean, covariance matrix, and hitting probability p
stabilize during ABC, they provide direct access to an ellipsoidal estimation of the
volume of the viable parameter space as defined by the threshold cT [30]. Hafner
and co-workers have shown how to use such viable volume estimates for model
discrimination [11].
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4 Evaluation of the Forward Model

In each iteration of the GaA algorithm, the forward model of the network needs to be
evaluated for the proposed parameter vector � . This requires an efficient and exact
SSA for the chemical kinetics of the reaction network, used to generate trajectories
n.t/ from M .�/. Since GaA could well propose parameter vectors that lead to
low copy numbers for some species, it is important that the SSA be exact since
approximate algorithms are not appropriate at low copy number.

In its original formulation, Gillespie’s SSA has a computational cost that is
linearly proportional to the total number M of reactions in the network. If many
model evaluations are required, as in the present application, this computational
cost quickly becomes prohibitive. While more efficient formulations of SSA have
been developed for weakly coupled reaction networks, their computational cost
remains proportional to M for strongly coupled reaction networks [35]. A reaction
network is weakly coupled if the number of reactions that are influenced by any
other reaction is bounded by a constant. If a network contains at least one reaction
whose firing influences the propensities of a fixed proportion (in the worst case
all) of the other reactions, then the network is strongly coupled [35]. Scale-free
networks as seem to be characteristic for systems biology models [1, 42] are
by definition strongly coupled. This is due to the existence of hubs that have a
higher connection probability than other nodes. These hubs frequently correspond
to chemical reactions that produce or consume species that also participate in the
majority of the other reactions, such as water, ATP, or CO2 in metabolic networks.

We use partial-propensity methods [35, 36] to simulate trajectories according to
the solution of the chemical master (28.7) of the forward model. Partial-propensity
methods are exact SSAs whose computational cost scales at most linearly with the
numberN of species in the network [35]. For large networks, this number is usually
much smaller than the number of reactions. Depending on the network model at
hand, different partial-propensity methods are available for its efficient simulation.
Strongly coupled networks where the rate constants span only a limited spectrum of
values are best simulated with the partial-propensity direct method (PDM) [35].
Multi-scale networks where the rate constants span many orders of magnitude
are most efficiently simulated using the sorting partial-propensity direct method
(SPDM) [35]. Weakly coupled reaction networks can be simulated at constant
computational cost using the partial-propensity SSA with composition-rejection
sampling (PSSA-CR) [37]. Lastly, reaction networks that include time delays can
be exactly simulated using the delay partial-propensity direct method (dPDM) [38].
Different combinations of the algorithmic modules of partial-propensity methods
can be used to constitute all members of this family of SSAs [36]. We refer to the
original publications for algorithmic details, benchmarks of the computational cost,
and a proof of exactness of partial-propensity methods.
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5 Objective Function

In the context of parameter identification of stochastic biochemical networks, a
number of distance or objective functions have previously been suggested. Reinker
et al. proposed an approximate maximum-likelihood measure under the assumption
that only a small number of reactions fire between two experimental measurement
points, and a likelihood based on singular value decomposition that works when
many reactions occur per time interval [40]. Koutroumpas et al. compared objective
functions based on least squares, normalized cross-correlations, and conditional
probabilities using a Genetic Algorithm [21]. Koeppl and co-workers proposed
the Kantorovich distance to compare experimental and model-based probability
distributions [20]. Alternative distance measures include the Earth Mover’s distance
or the Kolomogorov–Smirnov distance [32]. These distance measures, however,
can only be used when many experimental trajectories are available. In order to
measure the distance between a single experimental trajectory On.t/ and a single
model output n.t/, we propose a novel cost function f .�/ D f .M .�/; On/ that
reasonably captures the kinetics of a monostable system. We define a compound
objective function f .�/ D f1.�/C f2.�/ with

f1.�/ D
4X

iD1
�i ; f2.�/ D

NX

iD1

Pzx
lD0 jACFl . Oni /� ACFl .ni /jPzx

lD0 ACFl . Oni / ; (28.18)

where

�i D
NX

jD1

s�
�i.nj / � �i . Onj /

�i . Onj /
�2

(28.19)

with the central moments given by:

�i.nj / D
8
<

:

PK
pD1 nj

�
t0 C .p � 1/
texp

�
if i D 1

�ˇ̌
ˇ
PK

qD1
�
nj
�
t0 C .q � 1/
texp

� � �1.nj /
�i ˇ̌ˇ
�1=i

otherwise

(28.20)

and the time–autocorrelation function (ACF) at lag l given by:

ACFl .ni / D ni .t0/ni .t0 C l 
texp/� .�1.ni //2
�2.ni /

:

The variable zx is the lag at which the experimental ACF crosses 0 for the first time.
The function f1.�/measures the difference between the first four moments of n and
On. This function alone would, however, not be enough to capture the kinetics since
it lacks information about correlations in time. This is taken into account by f2.�/,
measuring the difference in the lifetimes of all chemical species. These lifetimes
are systematically modulated by the volume ˝ [39], hence enabling volumetric
measurements of intra-cellular reaction compartments along with the identification
of the rate constants.
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The present objective function allows inclusion of experimental readouts from
image-based systems biology. The moment-matching part is a typical readout from
fluorescence photometry, whereas the autocorrelation of the fluctuations can directly
be measured using, e.g., FCS.

6 Results

We estimate the unknown parameters � for two reaction networks: a weakly coupled
cyclic chain and a strongly coupled non-linear colloidal aggregation network. For
the cyclic chain we estimate � at steady state. For the aggregation model we estimate
� both at steady state and in the transient phase. Every kinetic parameter is allowed
to vary in the interval Œ10�3; 103� and the reaction volume˝ in Œ1; 500�. Each GaA
run starts from a point selected uniformly at random in logarithmic parameter space.

6.1 Weakly Coupled Reaction Network: Cyclic Chain

The cyclic chain network is given by:

Si
ki�! SiC1 i D 1; : : : ; N � 1;

Si
kN�! S1 i D N: (28.21)

In this linear network, the number of reactionsM is equal to the number of species
N . The maximum degree of coupling of this reaction network is 2, irrespective of
the size of the system (length of the chain), rendering it weakly coupled [35]. We
hence use PSSA-CR to evaluate the forward model with a computational complexity
ofO.1/ [37]. In the present test case, we limit ourselves to 3 species and 3 reactions,
i.e., N D M D 3. The parameter vector for this case is given by � D Œk1; k2; k3�,
since the kinetics of linear reactions is independent of the volume˝ [39].

We simulate steady-state “experimental” data On using PSSA-CR with ground
truth k1 D 2, k2 D 1:5, k3 D 3:2 (see Fig. 28.1a). We set the initial population of
the species to n1.t D 0/ D 50, n2.t D 0/ D 50, and n3.t D 0/ D 50 and sample a
single CME trajectory at equi-spaced time points with 
texp D 0:1 between t D t0
and t D t0 C .K � 1/
texp with t0 D 2000 andK D 1001 for each of the 3 species
S1, S2, and S3. For the generated data we find zx D 7.

We generate trajectories from the forward model for every parameter vector �
proposed by GaA using PSSA-CR between t D 0 and t D .K � 1/
texp D 100,
starting from the initial population ni .t D 0/ D Oni .t D t0/.
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Fig. 28.1 In silico data for all test cases. (a) Time evolution of the populations of three species in
the cyclic chain model at steady state (starting at t0 D 2000). (b) Time evolution of the populations
of two species in the aggregation model at steady state (starting at t0 D 5000). (c) Same as (b), but
during the transient phase (starting at t0 D 0)

Before turning to the actual parameter identification, we illustrate the topography
of the objective function landscape for the present example. We fix k3 D 3:2

to its optimal value and perform a two-dimensional grid sampling for k1 and
k2 over the full search domain. We use 40 logarithmically spaced sample points
per parameter, resulting in 402 parameter combinations. For each combination we
evaluate the objective function. The resulting landscapes of f1.�/, f2.�/, and f .�/
are depicted in Fig. 28.2a. Figure 28.2b shows refined versions around the global
optimum. We see that the moment-matching term f1.�/ is largely responsible for
the global single-funnel topology of the landscape. The autocorrelation term f2.�/

sharpens the objective function near the global optimum and renders it locally more
isotropic.

We perform both global optimization and ABC runs using GaA. In each of the 15
independent optimization runs the number of objective function evaluations (FES)
is limited to MAX FES D 1000M D 3000. We set the initial step size to r.0/ D 1

and perform all searches in logarithmic scale of the parameters. Independent restarts
from uniform random points are performed when the step size r drops below
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Fig. 28.2 (a) Global objective function landscape for the cyclic chain over the complete search
domain for optimal k3 D 3:2. The three panels from left to right show f1.�/, f2.�/, and f .�/,
respectively. (b) A refined view of the global objective function landscape near the global optimum.
The three panels from left to right show f1.�/, f2.�/, and f .�/, respectively. The white dots mark
the ground truth parameters

10�4 [29]. For each of the 15 independent runs, the 30 parameter vectors with
the smallest objective function value are collected and displayed in the box plot
shown in the left panel of Fig. 28.3a. All 450 collected parameter vectors have
objective function values smaller than 1.6. These results suggest that the present
method is able to accurately determine the correct scale of the kinetic parameters
from a single experimental trajectory, although an overestimation of the rates is
apparent.

We use the obtained optimization results for subsequent ABC runs. We conduct
15 independent ABC runs using cT D 2. The starting points for the ABC runs
are selected uniformly at random from the 450 collected parameter vectors in
order to ensure stable initialization. For each run we again set MAX FESD
1000M D 3000. The initial step size r.0/ is set to 0.1, and the parameters are
again explored in logarithmic scale. For all runs we observe rapid convergence
of the empirical hitting probability pemp to the optimal p D 1

e (see Sect. 3). We
collect the ABC samples along with the means and covariances of GaA as soon as
jpemp �pj < 0:05. As an example we show the histograms of the posterior samples
for a randomly selected run in Fig. 28.3b. The means of the posterior distributions
are again larger than the true kinetic parameters. Using GaA’s means, covariance
matrices, and the corresponding hitting probabilities that generated the posterior
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Fig. 28.3 (a) Left panel: Box plot of the 30 best parameter vectors from each of the 15 independent
optimization runs. The blue dots mark the true parameter values. Right panel: Ellipsoidal volume
estimate of the parameter space below an objective-function threshold cT D 2 from a single ABC
run. (b) Empirical posterior distributions of the kinetic parameters from the same single ABC run
with cT D 2. The red lines indicate the true parameters

samples, we can construct an ellipsoidal volume estimation [30]. This is done by
multiplying each eigenvalue of the average of the collected covariance matrices with
cpemp D inv!2n.pemp/, the n-dimensional inverse Chi-square distribution evaluated
at the empirical hitting probability. The product of these scaled eigenvalues and

the volume of the n-dimensional unit sphere, jS.n/j D �
n
2

� . n2C1/ , then yields the

ellipsoid volume with respect to a uniform distribution (see [30] for details). The
resulting ellipsoid contains the optimal kinetic parameter vector and is depicted
in the right panel of Fig. 28.3a. It has a volume of 0.045 in log-parameter space.
This constitutes only 0.0208% of the initial search space volume, indicating that
GaA significantly narrows down the viable parameter space around the true optimal
parameters despite the noise in the forward model and in the data.
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6.2 Strongly Coupled Reaction Network: Colloidal
Aggregation

The colloidal aggregation network is given by:

; kon
1��! S1

Si C Sj
kij�! SiCj i C j D 1; : : : ; N

SiCj
Nkij�! Si C Sj i C j D 1; : : : ; N

Si
koff
i��! ; i D 1; : : : ; N: (28.22)

For this network of N species, the number of reactions is M D
j
N2

2

k
C N C 1.

The maximum degree of coupling of this reaction network is proportional to N ,
rendering the network strongly coupled [35]. We hence use SPDM to evaluate the
forward model with a computational complexity of O.N/ [35]. We use SPDM
instead of PDM since the search path of GaA is unpredictable and could well
generate parameters that lead to multi-scale networks. For this test case, we limit
ourselves to two species, i.e., N D 2 and M D 5. The parameter vector for this
case is � D 	k11; Nk11; kon

1 ; k
off
1 ; k

off
2 ;˝



.

We perform GaA global optimization runs following the same protocol as for the
cyclic chain network with MAX FES = 1000.M C 1/ D 6000.

6.2.1 At Steady State

We simulate “experimental” data On using SPDM with ground truth k11 D 0:1, Nk11 D
1:0, kon

1 D 2:1, koff
1 D 0:01, koff

2 D 0:1, and ˝ D 15 (see Fig. 28.1b). We set the
initial population of the species to n1.t D 0/ D 0, n2.t D 0/ D 0, and n3.t D
0/ D 0 and sample K D 1001 equi-spaced data points between t D t0 and t D
t0 C .K � 1/
texp with t0 D 5000 and 
texp D 0:1.

We generate trajectories from the forward model for every parameter vector �
proposed by GaA using SPDM between t D 0 and t D .K�1/
texp D 100, stating
from the initial population ni .t D 0/ D Oni .t D t0/.

The optimization results are summarized in the left panel of Fig. 28.4a. For each
of the 15 independent runs, the 30 lowest-objective parameter vectors are collected
and shown in the box plot. We observe that the true parameters corresponding to
�2 D Nk11, �3 D kon

1 , �4 D koff
1 , and �5 D koff

2 are between the 25th and 75th
percentiles of the identified parameters. Both the first parameter and the reaction
volume are, on average, overestimated. Upon rescaling the kinetic rate constants
with the estimated volume, we find �norm D Œ�1=�6; �2; �3 �6; �4; �5�, which are the
specific probability rates of the reactions. The identified values are shown in the
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Fig. 28.4 (a) Left panel: Box plot of the 30 best parameter vectors from each of the 15 independent
optimization runs for the steady-state data set. Right panel: Box plots of the normalized parameters
(see main text for details). (b) Left panel: Box plot of the 30 best parameter vectors from each of the
15 independent optimization runs for the transient data set. Right panel: Box plot of the normalized
parameters (see main text for details). The blue dots indicate the true parameter values

right panel of Fig. 28.4a. The median of the identified �norm
3 coincides with the

true specific probability rate. Likewise, �norm
1 is closer to the 25th percentile of

the parameter distribution. This suggests a better estimation performance of GaA
in the space of specific probability rates, at the expense of not obtaining an estimate
of the reactor volume.

6.2.2 In the Transient Phase

We simulate “experimental” data in the transient phase of the network dynamics
using the same parameters as above between t D t0 and t D .K � 1/
texp with
t0 D 0, 
texp D 0:1, and K D 1001 (see Fig. 28.1c). We evaluate the forward
model with ni .t D 0/ D Oni .t D t0/ to obtain trajectories between t D 0 and
t D .K � 1/
texp for every proposed parameter vector � .
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The optimization results for the transient case are summarized in Fig. 28.4b.
We observe that the true parameters corresponding to �3 D kon

1 , �5 D koff
2 , and

�6 D ˝ are between the 25th and 75th percentiles of the identified parameters.
The remaining parameters are, on average, overestimated. In the space of rescaled
parameters �norm we do not observe a significant improvement of the estimation.

7 Conclusions and Discussion

We have considered parameter estimation in monostable stochastic biochemical
networks from single experimental trajectories. Parameter identification from single
time series is desirable in image-based systems biology, where per-cell estimates
of the fluorescence evolution and its fluctuations are available. This enables quan-
tifying cell–cell variability on the level of network parameters. The histogram of
the parameters identified for different cells provides a biologically meaningful way
of assessing phenotypic variability beyond simple differences in the fluorescence
levels.

We have proposed a novel combination of a flexible Monte Carlo method, the
GaA algorithm, and efficient exact stochastic simulation algorithms, the partial-
propensity methods. The presented method can be used for global parameter
optimization, approximate Bayesian inference under uniform prior, and ellipsoidal
volume estimation of the viable parameter space. We have introduced an objective
function that measures closeness between a single experimental trajectory and a
single trajectory generated by the forward model. The objective function comprises
a moment-matching and a time-autocorrelation part. This allows including experi-
mental readouts from, e.g., fluorescence photometry and FCS.

We have applied the method to estimate the parameters of two monostable
reaction networks from a single simulated temporal trajectory each, both at steady
state and during transient phases. We considered the linear cyclic chain network
and a non-linear colloidal aggregation network. For the linear model we were
able to robustly identify a small region of parameter space containing the true
kinetic parameters. In the non-linear aggregation model, we could identify several
parameter vectors that fit the simulated experimental data well. There are two
possible reasons for this reduced parameter identifiability: either GaA cannot find
the globally optimal region of parameter space due to high ruggedness and noise in
the objective function, or the non-linearity of the aggregation network modulates the
kinetics in a non-trivial way [10,39]. Both cases are not accounted for in the current
objective function, thus leading to reduced performance for non-linear reaction
networks.

We also used GaA as an adaptive MCMC method for approximate Bayesian
inference of the posterior parameter distributions in the linear chain network.
This enabled estimating the volume of the viable parameter space below a given
objective-function value threshold. We found these volume estimates to be stable
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across independent runs. We thus believe that GaA might be a useful tool for
exploring the parameter spaces of stochastic systems.

Future work will include (1) alternative objective functions that include temporal
cross-correlations between species and the derivative of the autocorrelation; (2)
longer experimental trajectories; (3) multi-stable and oscillatory systems; and
(4) alternative global optimization schemes. Moreover, the applicability of the
present method to large-scale, non-linear biochemical networks, and real-world
experimental data will be tested in future work.
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Chapter 29
A Systems Biology View of Adaptation
in Sensory Mechanisms

Pablo A. Iglesias

Abstract Adaptation, the desensitization to persistent changes in environmental
conditions, is present throughout biological sensory mechanisms. Not surprisingly,
it has been an active area of research to systems biologists. Here, we consider some
of the models proposed to account for adaptation as well as the experiments used
to motivate and validate these models. We discuss some salient features of these
models including robustness, deadaptation, transient responses, and the response of
these systems to more complex temporal stimuli. While most of these models have
been used to study chemoattractant-induced responses in bacteria and amoebae, the
system-theoretic issues associated with these systems are of importance in a broad
spectrum of biological systems.

1 Introduction

All organisms, from the simplest single-celled species to humans, use sensory
mechanisms to monitor and respond to changes in their environment. An important
aspect of these systems is the ability to adapt – to adjust their sensitivity so as
to be able to respond to a wide range of inputs. As an example, the human eye
adapts to varying levels of light in approximately 5–30 min, partly by regulating the
quantity of light that reaches the retina, but also by changing the sensitivity of rods
and cones [1]. In vision, problems with adaptation can be lead to nyctalopia (night
blindess) or hemeralopia.

In single-celled organisms, adaptation is probably best understood in the
chemoattractant-mediated response of bacteria [2, 3] and amoeba [4, 5]. Fast
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swimming bacteria, such as Escherichia coli, direct migration by responding to
temporal changes in receptor–ligand binding to chemical chemoattractants and
repellents. Two proteins, CheW and CheA bind to the receptor. The latter, a histidine
kinase, phosphorylates the response regulator CheY. When phosphorylated, CheY
binds to the flagellar motors inducing clockwise rotation which causes the bacteria
to tumble. This tumbling stops the cell and reorients it in a more-or-less random
direction. In contrast, in the presence of unphosphorylated CheY, the motors rotate
in a counter-clockwise direction propelling the cell in a straight run. High receptor–
ligand binding inactivates CheA thus maintaining CheY unphosphorylated. This
ensures that in the presence of high chemoattractant concentration, tumbling is
suppressed. A feedback mechanism, based on receptor methylation, is used by cells
to adapt to the level of receptor occupation. Two enzymes, a methyltransferase CheR
and a methylesterase CheB regulate adaptation in the chemotactic pathway. When
receptor occupancy is high, CheA induces CheB phosphorylation. The subsequent
methylation of the receptor returns CheA to its prestimulus levels.

It follows that when a cell is moving up a chemoattractant gradient, the
rate of tumbling decreases, maintaining movement in this favorable direction. In
this respect, perfect adaptation is a signature of a low-passed filtered temporal
differentiator [6–8]. When presented by a constant dose of chemoattractant, the
tumbling rate is unaffected by the actual concentration. In contrast, swimming
in the direction of increasing concentration leads to a positive response which
induces a decrease in tumbling rate. Similarly, a run in the direction of decreasing
chemoattractant concentration results in a negative signal, manifested in an increase
in tumbling rate.

In contrast to this temporal sensing, larger, slower cells like the amoeba Dic-
tyostelium discoideum and human neutrophils employ a spatial sensing mechanism.
With chemoattractant receptors uniformly distributed throughout their membrane,
they compare the concentration of chemoattractant even when immobilized by sup-
pressors of actin polymerization like latrunculin. Though the method of interpreting
the chemoattractant gradient is different, these cells also display perfect adaptation.
That is, when presented by a spatially uniform dose of chemoattractant, several
signaling events, including actin polymerization and the translocation of PH-domain
containing proteins from the cytosol to the membrane respond in a transient manner.

Here, we review some of the models that have been proposed to account for these
adaptive responses. We highlight some of the differences and similarities with these
models, and also present some open questions.

2 Perfect Adaptation

The property of adaptation can be described by the scheme depicted in Fig. 29.1.
We note that there are two important components: the ability to detect the stimulus,
referred to as the sensitivity of the sensory system [9], and the adaptation step. If we
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Stimulus

ui

uf

yi

yf

ymax
Response

Fig. 29.1 Adaptive response to step changes in stimulus concentration. A sudden change in the
stimulus concentration from an initial (ui) to a final (uf) value gives rise to a corresponding response
from yi , peaking at ymax before settling back to yf. Perfect adaptation is a return to the initial value:
yf D yi

denote the stimulus (the input) by u and the response (the output) by y, then the
sensitivity is given by:

S D
ˇ̌
ˇ̌ .maxy.t/ � yi/=yi

.uf � ui/=ui

ˇ̌
ˇ̌ ; (29.1)

and the precision is

P D
ˇ̌
ˇ̌ .yf � yi/=yi

.uf � ui/=ui

ˇ̌
ˇ̌ ; (29.2)

where ui and uf are the initial and final input concentrations, respectively, and yi

and yf are the initial and final output concentrations. Perfect adaptation refers to
the property P � 0. Note that, in general, these are both nonlinear functions of
the stimulus, and hence the precision and sensitivity measures depend on both the
initial and final input levels. Nevertheless, we will seek adapting systems where
perfect adaptation holds over a wide range of concentrations.

If we consider dynamic models of signaling systems, we assume that the system
equations can be expressed in terms of the nonlinear differential equations

dx

dt
D f .x; p; u/; (29.3)

y D h.x; p; u/: (29.4)

Here, x is a vector representing internal states (such as the concentrations of
different regulatory proteins, etc.), and p includes parameters in the differential
equations. The function f is a vector field describing the differential equations.
The function h outlines the output of the system, which may be a specific x (for
example, if y D x1) or a combination of states.

Perfect adaptation is a steady-state property. Thus, given constant initial and final
inputs u.t/ D ui and u.t/ D uf, we have

0 D f .xi; p; ui/ ) yi D h.xi; p; ui/;

0 D f .xf; p; uf/ ) yf D h.xf; p; uf/;

And Perfect adaptation requires that h.xf; p; uf/ D h.xi; p; ui/.
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3 A First Model of Adaptation

We now present a simple model of perfect adaptation based on covalent modification
of receptors. The basic model is shown in Fig. 29.2. We assume that unoccupied
receptors can be found in two states: R1 and R2, where the latter is a modified
form of R2. This receptor is capable of binding the ligand L; bound receptors are
also assumed to exist in two states: C1 and C2. Two enzymes mediate reversible
modification transitions between states. The inhibitory enzyme I catalyzes the
modification from R1 (respectively C1) to R2 (respectively C2), whereas the
reverse process is catalyzed by the excitation enzyme E . For example, E. coli
chemoreceptors can be methylated (R1, C1) or not (R2, C2), and demethylation
is catalyzed by the methylesterase CheB whereas methylation is catalyzed by the
methyltransferase CheR.

We now write differential equations describing the concentration of the different
species depicted in Fig. 29.2. When the ligand (L) binds to an unbound receptorR,
the complex C1 is formed.

R1 C L
kr��*)��
k�r

C1:

In mathematical terms, the differential equation describing this reaction is

dC1
dt
D krR1 � L � k�rC1: (29.5)

Similarly, for the modified receptors

dC2
dt
D kdR2 � L � k�dC2: (29.6)

R1+L R2+L

C2C1

I

I

E

E

k-r k-d kdkr

k1

k-1

k2

k-2

Fig. 29.2 Signaling
mechanism used for
adaptation. Unmodified
receptors can be bound, C1,
or not, R1, to the ligand
L. Receptors also exist in a
modified form in both bound,
C2, and unbound, R2, states.
Covalent modification
between the two receptor
states is mediated by two
enzymes, E and I
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Using Michaelis–Menten kinetics, a differential equation describing the change
in concentration between R1 and R2 in the system of Fig. 29.2 is

dR1
dt
D k�1ETR2

kME CR2
� k1ITR1

kMI CR1
;

and, similarly

dC1
dt
D k�2ETC2

kME C C2
� k2ITC1

kMI C C1
:

Combining the effects of ligand binding with the enzymatic reactions leads to the
following set of four nonlinear differential equations describing the system

dR1
dt
D k�1ETR2

kME CR2
� k1ITR1

kMI CR1
� krR1 � LC k�rC1;

dR2
dt
D � k�1ETR2

kME CR2
C k1ITR1

kMI CR1
� kdR2 �LC k�dC2;

dC1
dt
D k�2ETC2

kME C C2
� k2ITC1

kMI C C1
C krR1 �L � k�rC1;

dC2
dt
D � k�2ETC2

kME C C2
C k2ITC1

kMI C C1
C kdR2 � L � k�dC2:

Conservation of receptors implies that RT D R1 C C1 CR2 C C2.
We assume that both enzymes are working in the linear regime (R1; C1 � kMI

and R2; C2 � kME /, so that

k1ITR1

kMI CR1
� k1IT

kMI

R1 D kiR1; and
k1ITC1

kMI C C1
� k1IT

kMI

C1 D kiC1;

with similar expressions for the enzymes’ actions on R2 and C2. Using the
conservation of receptors and normalizing by the total number of receptors, we can
rewrite the system, as in (29.3), as follows:

d

dt

2

4
x1
x2
x3

3

5

D
2

4
�.ki C krL/ ke k�r
ki � k�d �.ke C kdLC k�d / �k�d
krL� k�i �k�i �.k�r C ki C ke/

3

5

2

4
x1
x2
x3

3

5 �
2

4
0

k�d
ke

3

5

„ ƒ‚ …
f .x;p;u/

;

(29.7)
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where x1 D R1=RT, x2 D C1=RT, x3 D R2=RT, x4 D 1 � x1 � x2 � x3,
u D L, and the parameters p represent the different coefficients and total enzyme
concentrations.

We assume that the total level of activity, y.t/ D A.t/, and that this is a linear
combination of the four receptor states:

y.t/ D ˛1R1.t/C ˛2R2.t/C ˛3C1.t/C ˛4C2.t/„ ƒ‚ …
h.x;p;u/

:

Solving (29.7) at equilibrium reveals that the steady-state concentration has the
form

2

664

x1
x2

x3
x4

3

775 D
1

m1 Cm2 C LP4
iD1 ni

0

BB@

2

664

m1

m2

0

0

3

775C

2

664

n1
n2

n3
n4

3

775L

1

CCA ;

where themi and ni are terms that depend on the specific kinetic coefficients, though
the precise form is not needed for the analysis that follows and is therefore omitted.
For example, if there is no chemoattractant, L D 0, then x3 D x4 D 0 and the
steady-state activity is given by:

A0 D y.1/jLD0 D ˛1m1 C ˛2m2

m1 Cm2

;

which implies that

A0.m1 Cm2/ D ˛1m1 C ˛2m2:

With constant L ¤ 0, we have that

AL D y.1/jL¤0 D ˛1m1 C ˛2m2 C LP4
i ˛ini

m1 Cm2 C LP4
iD1 ni

;

and this is equivalent to

AL

 
m1 Cm2 C L

4X

iD1
ni

!
D ˛1m1 C ˛2m2 C L

4X

iD1
˛ini :

Of course, perfect adaptation means that A0 D AL. To achieve this we select
coefficients ˛3 and ˛4 so that A0 D AL independent of the value of L. Equivalently,
we require that

A0

4X

iD1
ni D

4X

iD1
˛ini :

As there are two free parameters and only one equation, this can always be achieved.
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The scheme is equivalent to that proposed to account for adaptation [10].
Experiments on the responses of both E. coli and D. discoideum were used to obtain
parameters [11].

4 A Robust Model of Adaptation

A property of a system, such as adaptation, can be classified as to whether it is
robust or not depending on whether it is preserved under the presence of small
perturbations in the components [12, 13]. A problem with the scheme presented
above is that the property of perfect adaptation is achieved by fine tuning parameters
for activity in a way that depends on the specific kinetic parameters. However, if
we perturb these kinetic parameters, the resultant steady-state concentrations will
differ and the activity will no longer be independent of L. In this respect the system
is said to lack robustness. This fragility is seen in other more detailed models of
adaptation [14, 15].

In a recent seminal paper, Barkai and Leibler proposed a model of the bacterial
chemotactic network that achieved perfect adaptation in a robust manner [16]. In
the context of the scheme presented in Fig. 29.2, we can recover their model by
making the following assumptions. The first is that only fractions of the unmodified
receptors,R1 and C1, are active, and that the total activity (the output of the system)
can be expressed as a linear combination of these two states:

y D ˛1x1 C ˛3x3: (29.8)

As second assumption is that the inhibitor enzyme, I , acts only on these active
states. The kinetic constants for both these states are otherwise the same: k2 D k1
in Fig. 29.2. It is not necessary to assume that k�1 D k�2. The final key assumption
concerns the regimes in which the two enzymatic reactions are acting. We assume
that the forward reaction (catalyzed by I ) is occurring in the linear regime, whereas
the reverse reaction (catalyzed byE), occurs at saturation. Using these assumptions,
the equations above are replaced by:

d

dt

2

6664

x1

x2

x3

x4

3

7775 D

2

6664

�.˛1k1IT C krL/ 0 k�r 0

˛1k1IT �kdL 0 k�d
krL 0 �.˛3k2IT C k�r / 0

0 kdL ˛3k2IT �k�d

3

7775

2

6664

x1

x2

x3

x4

3

7775C

2

6664

k�1
k�2
�k�1
�k�2

3

7775ET:

Note that, for simplicity, we have incorporated the Michaelis–Menten constant
(kMI ) into k1.

Because of the third assumption, the differential equations describing the con-
centrations of the unmodified receptor states R1 (x1) and C1 (x3) do not involve the
concentrations of R2 and C2. Thus, these two equations have been decoupled from
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the other two. Furthermore, we can write these decoupled equations in matrix form
as follows:

d

dt

�
x1

x3

�
D
��.˛1k1IT C krL/ k�r

krL �.˛3k2IT C k�r /
� �
x1

x3

�
C
�
k�1
�k�1

�
ET:

We now perform a state-variable transformation. That is, we rewrite the differen-
tial equations in terms of two auxiliary states. The first is the total activity (given by
(29.8)) which corresponds to the total concentration of active receptors. The second
variable, z, is proportional to the total number of receptors in their unmodified form:

z D x1 C x3
k1IT

: (29.9)

In the new co-ordinates, the resultant second order differential equation is:

d

dt

�
y

z

�
D
��a1.L; IT/ a0.L; IT/

�1 0

� �
y

z

�
C
�
b1.IT/

1

�
r0; (29.10)

where

a0.L; IT/ D .˛1k�r C ˛3krLC ˛1˛3k1IT/k1IT;

a1.L; IT/ D krLC k�r C .˛1 C ˛3/k1IT;

b1.IT/ D .˛1k�1 C ˛3k�2/k1IT/=.k�1 C k�2/;
r0 D

�
.k�1 C k�2/=k1

�
.ET=IT/:

Perfect adaptation follows immediately from the differential equation for z:

dz.t/

dt
D �y.t/C r0: (29.11)

Thus, whenever a steady-state in concentration is reached, the right-hand side
of (29.11) is zero, or

Ast D lim
t�!1y.t/ D r0: (29.12)

Note that the steady-state value of activity depends on the constants k1, k�1, and
k�2, as well as the total concentrations of the two enzymes E and I . While not
shown above, the time that it takes for the system to adapt also depends on these
parameters and concentrations. However, as long as the two assumptions stated
above are not violated, adaptation is a robust feature of the system. No matter what
these constants and enzyme concentrations are, the system’s steady-state activityAst

is independent of the ligand concentration.
In theory, a robust model of adaptation is more appealing than one that requires

precise tuning of parameters. Alon and co-workers tested this notion of robustness
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Fig. 29.3 Adaptation through integral control. The regulatory model for adaptation (29.10) can
be represented as an integral control mechanism as shown. The difference between the activity, y
and the adapted level of activity, r0, is integrated ensuring that at steady-state, the two equal each
other. This integral feedback controller is commonly used in engineering

in the context of the adaptation mechanism in bacterial chemotaxis [17]. They
systematically altered the concentrations of various intracellular components of
the pathway, including the concentrations of CheB, CheY, and the receptor, and
monitored both the property of perfect adaptation, as well as other aspects of this
behavior such as adaptation time and steady-state tumbling frequency. As predicted
by the model, the property of perfect adaptation was remarkably robust – changes
of CheR expression could be altered 50 fold and yet the adaptation precision
was unaltered. However, both adaptation time and steady-state tumbling frequency
depended on these changes, as suggested by the model.

4.1 Integral Feedback and the Internal Model Principle

The key to achieve robust perfect adaptation comes from the differential equation
for the response, (29.11). If we consider the difference

e.t/ D r0 � y.t/;
as an error signal denoting deviations away from the adapted level of activity,
this equation is equivalent to the integration of the error signal (Fig. 29.3). In
control engineering, it is well known that systems that need to reject constant
disturbances require an integral control mechanism [15]. This is a special case of a
more encompassing theory, the internal model principle, which states that to reject a
disturbance robustly, the system must incorporate a model of the disturbance inside
the control loop [18]. The engineering context of this is somewhat different than
that suggested by the model above. Engineering systems usually consist of a plant,
a system that is to be controlled, and a separate controller, a subsystem that is to
be designed. This distinction is somewhat artificial in biological sensory systems.
Moreover, in sensory systems a more important requirement is the property of signal
detection, that is, that the sensitivity of the system, as defined in (29.1), not be zero.
It can be shown that if a system adapts to a class of bounded external signals (i.e.,
achieves perfect adaptation), then the system necessarily contains a subsystem that
is capable of generating the signals in that class [19]. Importantly, this holds even in
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nonlinear systems. In perfect adaptation, the class of signals is the set of all constant
stimuli, and the system that can generate these signals is an integrator.

It is worth asking to what extent this property itself is robust. For example,
perfect adaptation in the Barkai–Leibler model relies on basic assumptions about
the activity of the enzymes. If these assumptions do not hold exactly, then perfect
adaptation is lost, though the system can adapt approximately, that is, P � ". In this
case, an approximate internal model principle holds [20, 21].

5 Adaptation Through Incoherent Feedforward Loops

The model of Barkai–Leibler is not the only model of a biochemical network
that achieves robust adaptation. Here we present a simple model for adaptation,
originally due to Koshland, who proposed it as a means of explaining adaptation in
bacterial chemotaxis [22] though it is now more widely used to explain adaptation
in models of chemotactic amoebae [23].

The central element of network is a response regulator, RR, that is activated by
an excitatory process E , and suppressed by an inhibitory process, I (Fig. 29.4).
Both of these regulatory processes are themselves regulated by the stimulus,
through increases in receptor occupancy, S . A simple ordinary differential equation
description of this scheme is given by:

dE

dt
D �k�eE C keS; (29.13)

dI

dt
D �k�i I C kiS; (29.14)

dRR

dt
D �k�r I � RRC krE: (29.15)

The system can be thought of as an incoherent feedforward loop in which positive
and negative signals come directly from the receptor and act in a complementary, or
incoherent, fashion on the response regulator. Incoherent feedforward loops have
received considerable attention recently [24–29]. Note that Tyson refers to this
topology as a sniffer, as it mimics the way that our sense of smell works [30].

Equations (29.13)–(29.15) represent one implementation of the incoherent
feedforward loop, whereby the excitation and inhibition activate and inactivate,

S

E

I

RR

Fig. 29.4 Response regulator model. In this scheme, the external stimulus regulates two
intermediate processes which act on a response regulator in complementary fashion
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respectively, the response regulator. However, other possibilities exist [27, 31].
For example, the excitation and inhibition processes could inhibit degradation and
activation respectively:

dRR

dt
D �k�r

E
RRC kr

I
: (29.16)

We can rewrite (29.13)–(29.15) as:

d OE
d�
D � OE C OS;

d OI
d�
D �˛. OI � OS/;

"
dcRR

d�
D � OI � cRRC OE:

where the kinetic coefficients have been normalized [23]. Hereafter we assume that
this normalization has taken place and drop the O in the notation. That the system
adapts is straightforward to check. In particular, at steady-state: E D S , I D S ,
and RR D E=I D 1. The transient signal is somewhat more complicated, but
can be computed analytically [32]. It is straightforward to check that, if ˛ D 1,
the system does not detect the change in stimulus. In this case, the receptor signal
causes identical increases in both the excitation and inhibition processes, the net
effect which is to leave the response regulator unaffected. If the excitation process
is faster (˛ < 1) then the response regulator rises in response to the faster increase
in excitation. However, as the inhibitory process catches up, the response regulator
returns to its steady-state value, and the system adapts perfectly. If ˛ > 1, then the
stimulus increase causes faster rise in the inhibition leading to a transient decrease
in the concentration of the response regulator.

It is also easy to see that this adaptation is completely robust to parameter
variations. We might expect this is achieved as a consequence of an integral
control mechanism. To demonstrate this we rewrite the equation for the response
regulator as:

"
dRR

d�
D �I .RR �E=I/ :

Provided that the stimulus in not zero, the ratio E=I D 1 C “decaying transient”
and hence this equation shows that the response regulator is acting as a feedback
integral control system, though with a time-varying gain, I.t/.

5.1 Deadaptation

In this analysis of the incoherent feedforward loop we have to restrict the stimulus
to values, S ¤ 0. When S D 0, the equilibrium of the response regulator is not
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Stimulus

ui

uf-1 yf

Response

uf-2

Fig. 29.5 Deadaptation dynamics of an incoherent feedforward loop model. Step increases
of equal size give rise to responses that adapt to the same basal value. Once adapted, the
stimuli is removed. For the system in which the response is described by (29.17), the cell’s
response decreases monotonically before settling on a final value that depends on the stimulus,
demonstrating a memory of the stimulus concentration

isolated because the right-hand side of (29.15) is zero for all values of RR. This
is clearly problematic and has consequences when we consider the cell’s response
to a removal of stimulus, or deadapation. The analysis is somewhat easier if we
consider the following simplified model of an incoherent feedforward loop, which
we write as:

dx

dt
D u � x;

dy

dt
D u � xy: (29.17)

We will assume that a constant stimulus, u0, has been applied and that the system
has adapted to this value. We select the initial time as the point at which the stimulus
has been removed, at which point the differential equations are

dx

dt
D �x; x.0/ D u0

dy

dt
D �xy; y.0/ D 1:

The equation for x is linear and hence it is easy to solve: x.t/ D e�tu0. Replacing
this into the equation for the response leads to a time-varying scalar differential
equation

dy

dt
D �e�tu0y; y.0/ D 1;

whose solution

y.t/ D exp.�.1 � e�t /u0/;
decays to

y.1/ D e�u0 < 1:

Thus, the system steady-state depends on the original stimulus (Fig. 29.5). This
memory can be expected whenever a pulse input is applied [33].
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The actual deadaptation mechanism depends on the specific form of the incoher-
ent feedforward loop used. For example, using the mechanism of (29.16), in which
we replace the equation for y, which we write as:

dy

dt
D u=x � y

leads to the same adapted state, but different deadaptation behavior. In particular, if
y.0/ D 1 and u.t/ D 0, for t � 0, then y.t/ D e�t , which does not exhibit memory
of the previous stimulus, but still does not return to the adapted steady-state in which
y D 1 is obtained for all u0 > 0.

Experimentally, Devreotes and co-workers studied the recovery of the signaling
response in D. discoideum cells after adaptation to chemoattractant [34, 35]. As a
marker of the response they considered the production and secretion of cAMP. In
these experiments, a memory was observed in that reapplication of the stimulus after
a period of deadaptation showed an irreversible decrease in responsiveness to the
stimulus. More recently, Bodenschatz and co-workers used an elegant combination
of microfluidics and photo-activated cAMP to analyze the translocation of GFP-
tagged PH-domains in response to a short pulse of cAMP [36]. In this case, the
PH-domain returned to pre-stimulus level after application and removal of the
stimulus. Reconciling these seemingly contradictory results is not possible at this
time, though one must bear in mind that two different assays were used and that
different responses were measured. Both the production and secretion of cAMP,
as well as the translocation of PH-domains are responses that are downstream of
receptor signaling. More importantly, these are now considered to be downstream of
the adaptation mechanism in D. discoideum. For example, a recent model postulates
that the adaptation mechanism biases a second excitable network that controls
downstream events like PH-domain translocation [37]. In this model, the return of
PH-domains to the cytosol 10–15 s after application of the stimulus may reflect the
refractory period of the excitable network rather than the time frame of adaptation,
which is in the scale of minutes.

5.2 Responding to More Complex Stimuli

So far, all our attention has been on the response to step changes in the concentration
of stimulus. While relatively easy to impose in the lab, it is unlikely that cells
experience these changes in their native environment. It is worth asking how these
systems respond to these more complex temporal stimuli.

We first consider the effect of a temporal ramp, that is, a linear increase
in the concentration of ligand over time, as in the experiments carried out by
Berg and co-workers [8, 38]. These experiments compensate for a feature of the
E. coli receptor cluster which responds to logarithmic changes in concentration.
Thus, an exponentially increasing ramp increases the chemoreceptor occupancy
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linearly [38]. This increase induced a cellular response that reached a steady-
state level, which is consistent with the notion that the system acts as a low-pass
filtered differentiator [6, 8]. Exponentially varying sinusoidal inputs also gave rise
to sinusoidal outputs, further confirming this connection. These responses matched
a simplified model of the integral control feedback model of Barkai–Leibler that
incorporates logarithmic inputs [7].

Interestingly, the response of the incoherent feedforward model to ramp changes
in chemoattractant adapts [39], suggesting that the system behaves as a double
integrator.

We note that the use of this frequency-domain analysis can be helpful as a
means of studying the adaptive responses of biological circuits that are not as
well understood as the bacterial chemotaxis pathway. For example, in a recent
study of the high-osmolarity glycerol mitogen-activated protein kinase cascade
in the Saccharomyces cerevisiae, oscillatory stimuli of different frequencies were
applied and the response at these frequencies was used to elucidate a model of the
mechanism [40].

6 Transient Response: Fold-Change Detection
and Weber’s Law

Adaptation is a steady-state phenomenon. Of related interest is transient behavior
of sensory mechanisms to changes in the level of stimulus. Perhaps the earliest
studies into this behavior are those of Ernst Weber, who noted that the response of
sensory mechanisms was proportional to relative changes in the stimulus [41]. These
findings have given rise to Weber’s law, which states that the maximum change in
output, that is, the sensitivity, is proportional to a change in input relative to the
background level. We write this as:

yf � yi / uf � ui

ui
:

More recently, Alon and co-workers introduced a related concept: fold-change
detection (FCD): a response that is completely insensitive to fold changes in the
input [27, 42] (Fig. 29.6). Whereas Weber’s law refers to the initial or maximal
response of the system, fold change detection compares the complete time history
of the response. If the system is described by:

dx

dt
D f .x; y; u/;

dy

dt
D g.x; y; u/;
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Stimuli

ui

uf
pui

puf

0
yi=yf

Responses

a b c d

ymax ymax

Fig. 29.6 Fold change detection. (a) Consider two step changes in stimulus: from ui to uf and
from pui to puf. The latter is a p-fold larger change. (It has been delayed so as to highlight the
different responses.) (b) The observed responses achieve perfect adaptation as they both settle to
the same prestimulus levels. (c) These responses also adapt perfectly, but also satisfy Weber’s law,
as the peak is the same. (d) These responses achieve fold change detection. Not only are they
perfectly adapting and satisfy Weber’s law, but in fact the response to each stimulus is the same

then fold-change detection implies that

f .px; y; pu/ D pf .x; y; u/ and g.px; y; pu/ D g.x; y; u/:

It is worth asking which systems achieve fold-change detection. One example is
the incoherent feedforward loop (29.16), which we rewrite as:

dx

dt
D u � x

dy

dt
D u=x � y:

Because the differential equation for x is linear, it follows that changing the input
to pu also gives rise to a change in x to px. In the equation for the response, y, the
ratio u

x
D pu

px
;

and hence this equation is invariant with respect to p-fold changes in the input. We
contrast this with a simplified version of the sniffer incoherent feedforward loop
(29.15), in which the output equation is replaced by:

dy

dt
D u � xy:

Here, a p-fold change in u with corresponding p-change in x gives rise to:

d Ny
dt
D .pu/� .px/ Ny;
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which implies that

Ny.t/ D y.t=p/:
Note that because the peak in Ny equals that of y, this sniffer system satisfies Weber’s
law, but does not achieve fold change detection.

Similarly, the integral control feedback loop of (29.11) does not achieve fold
change detection. However, if the input to the system is log-transformed, as is the
case in the chemotactic pathway [7, 8], then fold change detection is recovered.

7 Discussion and Open Questions

We have presented two general classes of robustly adapting networks, the inte-
gral control feedback network and the incoherent feedforward loop. While it is
reasonable to expect that biological systems will employ robust mechanisms to
achieve adaptation [13], this has only been shown experimentally in the bacterial
chemotactic network [17]. Similar experimentation is needed in other systems.
A difficulty, however, is that the details of these other mechanisms are not as well
understood, and hence experimental perturbation of the networks is more difficult
to address. For example, though the adaptation mechanism in the chemoattractant-
mediated response in D. discoideum has been studied for over three decades and
the response is relatively well characterized, to date the actual mechanism by which
adaptation is achieved remains an open question.

It is worth pointing out that the two schemes presented here are essentially the
only two motifs that achieve perfect adaptation [9]. Nevertheless, within these two
general classes, there are numerous choices that can give rise to different behavior.
For example, different incoherent feedforward loops can give rise to fold change
detection, but others do not. Similarly, some of these networks can give rise to
a biphasic response in the presence of feedback, but others cannot [31]. These
differences may be useful as a means of discriminating amongst different putative
networks based on experimental observations. This will require extensive experi-
mentation using different temporal stimuli, including steps of different sizes, both
positive and negative.

As highlighted by the discrepancy between the experimental results studying
deadaptation in D. discoideum, matching of experimental data to models, is com-
plicated unless there exists a strong connection between the adaptation mechanism
and the observed variable in the experimental assay.

In describing the response regulator model, Koshland noted that this would serve
as an input to a threshold detector [22]. In the bacterial chemotactic network, this
happens at the level of the flagellar motor. The need to amplify the adapted signal
has also been well documented in D. discoideum, though the precise method of
amplifying the response is less clear [23, 37].

Despite these difficulties, we believe that studies of adaptation provide an
ideal vehicle for the systems biology community combining modeling, theory, and
experimentation in the study of a ubiquitous and fundamental cellular process.
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Chapter 30
Leveraging Modeling Approaches: Reaction
Networks and Rules

Michael L. Blinov and Ion I. Moraru

Abstract We have witnessed an explosive growth in research involving mathe-
matical models and computer simulations of intracellular molecular interactions,
ranging from metabolic pathways to signaling and gene regulatory networks. Many
software tools have been developed to aid in the study of such biological systems,
some of which have a wealth of features for model building and visualization, and
powerful capabilities for simulation and data analysis. Novel high-resolution and/or
high-throughput experimental techniques have led to an abundance of qualitative
and quantitative data related to the spatiotemporal distribution of molecules and
complexes, their interactions kinetics, and functional modifications. Based on
this information, computational biology researchers are attempting to build larger
and more detailed models. However, this has proved to be a major challenge.
Traditionally, modeling tools require the explicit specification of all molecular
species and interactions in a model, which can quickly become a major limitation in
the case of complex networks – the number of ways biomolecules can combine to
form multimolecular complexes can be combinatorially large. Recently, a new breed
of software tools has been created to address the problems faced when building
models marked by combinatorial complexity. These have a different approach for
model specification, using reaction rules and species patterns. Here we compare the
traditional modeling approach with the new rule-based methods. We make a case
for combining the capabilities of conventional simulation software with the unique
features and flexibility of a rule-based approach in a single software platform for
building models of molecular interaction networks.

M.L. Blinov (�) • I.I. Moraru
Center for Cell Analysis and Modeling, University of Connecticut Health Center,
Farmington, CT, USA
e-mail: blinov@uchc.edu; moraru@neuron.uchc.edu

I.I. Goryanin and A.B. Goryachev (eds.), Advances in Systems Biology,
Advances in Experimental Medicine and Biology 736,
DOI 10.1007/978-1-4419-7210-1 30, © Springer Science+Business Media, LLC 2012

517



518 M.L. Blinov and I.I. Moraru

1 Models of Reaction Networks

Modelers usually create a model of cellular processes by explicit specification of a
reaction network consisting of molecular species and reactions. This is currently the
most common paradigm implemented in model building and simulation software
such as VCell ([1, 2], http://vcell.org), CellDesigner ([3], http://celldesigner.org),
Copasi ([4], http://copasi.org), ECell (http://e-vell.org), MCell (http://www.mcell.
cnl.salk.edu), and others. Each species has to be created, named, and reactions
specified and assigned to the appropriate compartment within the cell. For each
interaction described in the model, a user chooses the appropriate kinetic formalism
and inputs relevant parameter values. A model usually includes molecular species
corresponding to experimentally identified or hypothesized events, such as ligand–
receptor binding, phosphorylation events, etc. Such models can fit experimental
data and provide useful predictions. After a reaction network is specified, it can
be simulated in order to identify time-courses for species.

Figure 30.1a illustrates a simplified version of seminal model of signaling by
epidermal growth factor (EGF) receptor (EGFR) developed by Kholodenko et al.
[5]. The major assumptions and elements of reaction network used in this model
were later reused is some other modeling studies [6,7]. This reaction network (which
is typical to many studies of receptor-initiated signal transduction) is comprised
of reactions for binding of extracellular ligand (L) to cell-surface receptor (R),
ligand-induced (LR) dimerization of receptors (D), phosphorylation of cytoplasmic
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nodes – to reactions) representing a model of initial events in EGFR signaling. (b) The potential
protein complex arising during EGFR dimer signaling. (c) The Vcell model corresponding to the
model describing interactions among all protein complexes looks like a maze consisting of green
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receptor tyrosines (Dp) by the intrinsic protein tyrosine kinase, and competitive
binding of adapter proteins Grb2 and Shc to a dimer (at most one protein per dimer).

The main paradigm in the reaction network approach is that every species
represents a pool, a set of “things” that are indistinguishable from the standpoint
of the processes (reactions) in which they participate. It provides a convenient way
to visualize the molecular interactions as a graph where each species is a node. It
also provides a unique and convenient mapping of the model to a mathematical
description, where concentration of each species is a variable in time, which can be
used to simulate the evolution of the system over time.

1.1 Limitations of the Reaction Network Approach

This approach of describing in detail all elements of a reaction network has several
obvious limitations. Whether or not the reaction network is specified manually by
the modeler, or through some computer-aided process (such as automated import
from a pathway database [8]), it may include only a limited number of species and
reactions. Thus, the model is usually based on mechanistic assumptions that limit
the size of the reaction network.

Consider, for example, the EGFR signaling network described above. It includes
many simplifications, such as omitting events like: ligand binding to cytosolically
modified (phosphorylated at some combination of residues) receptor, ligand disso-
ciation from the receptor in a dimer, dissociation of phosphorylated receptors in
a dimer, multiple proteins bound to distinct phosphorylated receptors residues at
the same time, etc. Additionally, lumping tyrosines of both receptor molecules in
a dimer means that in the model they are phosphorylated and dephosphorylated si-
multaneously, and excludes the possibility that modification of individual tyrosines
during signaling may affect the signaling outcome.

One might surmise that molecular complexes are often not considered in detail
simply because of Occam’s razor concept. As long as the model predictions match
experimental observations, one can use simplifying assumptions and omit many
details deemed unnecessary. However, these simplifications are often not motivated
by experimental considerations. In [9], we reviewed the evidences contradicting
some of these assumptions. Individual tyrosines of EGFR may have distinct tem-
poral patterns of phosphorylation, Grb2 and Shc may be simultaneously associated
with a single copy of EGFR, which is consistent with the observed nucleation of
large heterogeneous protein complexes in other systems, and receptor monomers
may be responsible for the spatial spread of receptor phosphorylation observed in
response to localized EGF stimulation and therefore involved in signaling. Thus, it is
conceivable that distinct combinations of phosphorylated receptor complexes may
have distinct functions. Despite this evidence, simplified assumptions preventing
formation of receptor dimers with multiple adaptor proteins bound to both receptors
and receptor monomers have been used in most modeling studies of EGF receptor
signaling.
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The main reason to include simplifying assumptions is that without them, many
more molecular species and reactions must be considered. For example, if we
allow adapter proteins to simultaneously bind to distinct phosphorylated binding
sites on receptors and allow receptors in dimers to dissociate, we need to include
into the model all multiple forms of monomeric and dimeric EGFR complexes
(like the one shown in Fig. 30.1b). Thus, we need to account for 93 species
(12 monomeric and 78 dimeric receptor complexes, and proteins EGF, Grb2, and
Shc). One can see (Fig. 30.1c) that such model is not easily tractable in a regular
reaction editor (here shown in VCell). Furthermore, note that the number of species
corresponding to multiple phosphoforms of receptor stacks up explosively: to
track phosphorylation of the nine tyrosines of EGFR, one needs to account for
the 29 D 512 different phosphorylation states of an individual receptor and the
131,328 distinct combinations of phosphorylation states of receptors in a dimer. Of
course, the true scope of such complexity is uncertain and may lie well below these
theoretical maximal numbers due to various constraints, such as steric clashes, that
might play a role in limiting the combinatoric possibilities in signal-transduction
systems. But one would need to have the capability to handle very large number of
species and reactions in order for models to be able to capture critical features of
variability in signaling [10].

Another practical problem is that such models based on simplified assumptions
usually involve species that lump together entities that correspond to specific
experimental measurements, and a new model may be required to describe each
new set of measurements. A related issue is the fact that even if one would like to
include all molecular details of protein complexes in the model, there often is a lack
of knowledge of the required detailed mechanisms of interactions and related kinetic
parameters. However, new high-throughput flow cytometry and mass spectrometry
measurements provide a wealth of information about interactions and activities of
proteins [11], which now can be (and should be) included in some models.

2 Rule-Based Models

An alternative to the conventional modeling approach, that has been gaining
increasing acceptance, is to attempt to create a model description that is capable of
accounting for all the potential molecular complexes and interactions among them
that can be generated during a response to a signal. A feasible strategy to implement
this is a rule-based approach [12]. In this approach, protein–protein interactions and
their effects are represented in the form of reaction rules that serve as generators of
chemical species and reactions. This method, discussed in more detail in [12–14],
provides an opportunity to consider the whole nomenclature of potential protein
complexes, including their phosphoforms, modifications, and interactions that can
potentially be generated during the response to signaling. Moreover, this approach
also allows exclusion of those species and reactions that cannot be realized, e.g.,
because of cooperativity and steric clashes.
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The rule-based approach has been initially developed based on the modularity
of protein domains [15]. A model is specified as a set of reaction rules, which are
associated with specific rate laws. Given a set of species, a reaction rule identifies
those species that have the features required to undergo the transformation from
reactants to products specified in the reaction rule. Interactions represented in a
reaction rule do not depend on features not explicitly indicated. Thus, multiple
species may qualify as reactants in a type of reaction defined by a reaction rule.

The modeler can define which components and modifications of a molecule or
molecular assembly affect a particular chemical transformation, and which do not.
Furthermore, the modeler has the ability to account for steric clashes, cooperativity,
and any other factors that might influence the rate of a reaction. A reaction rule can
state, for example, that “any cell-surface monomeric receptor having an available
extracellular binding site and any free extracellular ligand can interact and form
a ligand–receptor complex; the probability of this interaction depends only on
the total numbers of cell-surface monomeric receptors and extracellular ligands
and does not depend on the specific state of the receptor cytosolic portion.” In
this example, we assume that the cytoplasmic state of a receptor does not affect
ligand–receptor binding, which implies that to parameterize all reactions specified
by the ligand–receptor interaction rule, we need just two rate constants: on and
off rates. Biophysicists would argue that any cytosolic modification will definitely
affect all portions of a receptor, and hence must affect these rates. However, as we
have shown [16] the model read-outs are relatively robust to parameter variations
within the same reaction rule. Thus, in practice, the number of reaction rules (and
rate constants) that the user must provide to specify a model is comparable to the
number of assumptions about interactions among molecular domains considered in
the model, which is usually much less than the total number of actual reactions.
Moreover, the number of rate constants that the model is built upon can be limited
to those that come directly from experiments, such as in vitro binding affinities for
multiple SH2/PTB domains and tyrosines.

Moreover, when the user changes a model to include new assumptions about
mechanisms of molecular interactions (such as replacing competitive binding
of proteins to a scaffold with cooperative binding), these rate constants remain
unchanged. This is in a contrast with a reaction network model where variables
representing lumped entities often require adjusted kinetic laws.

2.1 Simulation Methods for Rule-Based Models

A model where the reaction network is explicitly specified always allows one to
directly derive a unique mathematical formulation as a set of differential equations
in variables corresponding to species concentrations/population numbers. The same
is not true for rule-based models – they do not immediately provide the formalism
required for simulation and they need pre-processing. In some cases, the rule-
based model can be expanded into an explicit reaction network, such as by using
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an iterative algorithm for processing reaction rules [13, 14] (e.g., the algorithm
implemented in the BioNetGen software – which is, in fact, the origin of the name:
Biological Network Generator). The iterations of rule application are halted when
specified termination conditions (like reaching a predefined size of an oligomer)
are satisfied or all possible reactions have been generated. The exact size of the
generated reaction network depends, in general, on the entire set of reaction rules
and also on the set of species to which reaction rules are initially applied.

Sometimes a reaction network can be of potentially unlimited size, such as when
reaction rules provide a way for infinite elongation of molecular chains, e.g., while
specifying actin filaments. In this scenario, “on-the-fly” network generation can
be used. Reaction rule evaluation is embedded in a discrete-event Monte Carlo
simulation of reaction kinetics, and reactions are generated only when a species
is first populated during a simulation [14, 17].

However, the on-the-fly method still requires network generation: a product of
a reaction generated by a reaction rule has to be identified either as a new species
or as the species that was previously generated and already in the reaction network.
This becomes a serious computational problem when the generated reaction network
contains species that have complicated topological structures, such as species
representing branched actin filaments. To deal with it, a “network free simulation”
approach [18–20] was recently introduced. In this method, a model does not have
to have its reaction network generated prior to and/or during simulation steps.
Individual instances of possible species and interactions are accounted for and
reaction rules are evaluated directly during the simulation. Depending on the size
and complexity of the system, network-free simulation can be much more effective
from a computational standpoint, although it is limited to using discrete simulation
algorithms.

2.2 Graphical Representations for Rule-Based Models

One obstacle to the acceptance of rule-based modeling is the unusual way such
models are being specified. Modelers tend to think of a model as a pathway or a
reaction sequence, where the product of one reaction is used as a reactant (or a
catalyst) in another reaction. Reaction rules are intrinsically disconnected, because
not all of the multiple species that are products of a certain reaction rule participate
in another reaction. Products and reactants of the reaction rule are no more pools of
identical things, like species nodes in reaction networks. For example, let Rule 1 be
the ligand binding to a receptor with three intracellular binding sites. Let Rules 2–4
be the independent binding of different adapter proteins to each of the three receptor
binding sites. Thus, all product species of a ligand–receptor binding rule are divided
into three intersecting subsets that can participate in three reaction rules of protein
binding (Fig. 30.2).

To describe rule-based models, several non-network-based representations are
used. One way of model specification is using a specially designed scripting
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Fig. 30.3 Graphical representations of rule-based models. (a) Two rules are represented as
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bind any receptor R provided binding sites l and r or R and L, respectively, are unbound. The
second rule says that tyrosine Y1173 can be phosphorylated provided there is another receptor
in proximity. (b) Molecular interaction map (MIM) representation of all interactions in Fig. 30.1a.
Although compact, it might be ambiguous and the temporal order of interactions is difficult to infer

language, such as BioNetGen language (BNGL, [21]) or Kappa language [22] This
approach requires intimate knowledge of such specialized languages, and thus is
typically used only by advanced users.

Another approach is to use a graphical specification of all reaction rules following
certain conventions, as described in [23, 24]. In this approach each molecular entity
(protein, receptor, DNA, etc.) in a model is specified as a box containing components
that denote features of a molecule. Several boxes can be joined to form a species
or species pattern by connecting components. Each reaction rule is specified as a
separate cartoon describing reactants and products (Fig. 30.3a).

Yet another approach to specify rule-based models is using cartoons representing
interactions among molecular entities and their components, such as entity rela-
tionship diagrams in SBGN [25], molecular interaction maps [26] (Fig. 30.3b), or
extended contact maps [27]. However, specification of rule-based models in this
way is often ambiguous as the temporal order of interactions is difficult to infer
[28]. This approach is used mostly to supplement the model-building process using
a scripting language [29].

As a conclusion, all current approaches for specification of rule-based models are
distinct from the usual model specification as a reaction network and thus require
special training in rule-based modeling in order to be used. However, with all these
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shortcomings, and despite being relatively new, the rule-based modeling approach
has been used to develop a wide range of models [9, 30–34]. Several software tools
with some rule-based modeling capabilities have been developed in recent years,
including BioNetGen [13, 21], STOCHSIM [35], Moleculizer [17], K-factory [22],
and Simmune [36].

3 Merging Reaction Network and Rule-Based Models

The reaction network and rule-based modeling approaches are complementary
and have distinct representation schemas. The reaction network approach has the
advantage of often being in one-to-one correspondence with cartoons representing
signaling pathways and a defined mathematical representation. However, these
advantages fade away as more and more details are included into the model, as very
large reaction networks become cluttered and difficult to deal with. The rule-based
approach has the advantage of being able to account for all details of molecular
activities and interactions, but the complete overview of the biological system
evolution may not be apparent until network generation or model simulation is
performed.

It would be of enormous advantage to the modeling community if these two
approaches would seamlessly work together. We have recently developed several
prototype methodologies to use rule-based modeling alongside reaction network
modeling, and to implement these two techniques into a common modeling and
simulation interface.

3.1 Extending a Reaction Network by Adding Species Features

There are several classes of use cases where reaction rules can be organically used to
extend existing models. Consider, for example, a model of a reaction network where
the user wants to add a fluorescent tag to some features. For a minimal reaction
network like A C B ! C; CC D ! E, if species A is fluorescently labeled, then
the result of interaction of A with B, species C, will be fluorescently labeled as
well. The fluorescence will be then passed to species E. If we now want to model a
mixture of fluorescent and non-fluorescent species, we will need to double the size
of original reaction network by adding extra reactions AfCB! Cf; CfCD! Ef
(Fig. 30.4). This information makes the reaction network more cluttered and does
not provide any new information, since often the kinetic behavior of fluorescent and
non-fluorescent species is the same. Such an extension of the model can be easily
described by introducing a “fluorescence” feature of molecules A, C, and E, and
specifying that the value of this feature (fluorescent or non-fluorescent) is preserved
when participating in reactions. Now each former reaction node becomes a reaction
rule node, as it describes the same interaction for two different species: fluorescent
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and non-fluorescent. Thus, the reactions become now reaction rules. This is a natural
way to introduce rule-based modeling into a regular network.

Using this approach, a rule-based model can be build atop of a regular reaction
network by converting some species and reactions into species patterns and reaction
rules. In this scenario, each species can be extended into a species type by adding
a set of features (attributes) and specifying allowable and default values of these
features. Thus, a species is converted to a species template that defines a set of
species. A second step is the conversion of a reaction to a reaction rule. A reaction
where some of reactants or products are species templates becomes a reaction rule,
as it is now applied to a set of species selected by a species template.

3.2 Extending a Reaction Network by Specifying
Multimolecular Species

A more complicated case is to extend a reaction network that includes multimolecu-
lar species – for example the complex depicted in Fig. 30.1b where a transmembrane
receptor R can bind extracellular ligand L, associate with another transmembrane
receptor R, and bind two intracellular proteins Grb2 and Shc. To extend a reaction
network into a rule-based model, the user can start from extending species L and
R into species types. A ligand L becomes a species type by introducing a single
feature “binding to R.” A receptor R becomes a species type by introducing features
“binding site for L,” “phosphosite Y1,” and “phosphosite Y2.” Each feature may
have several possible values, e.g., phosphosites can have values of “phosphorylated”
or “unphosphorylated.” Note that in BNGL species types are called molecules, and
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features are called components. When all features are uniquely specified (for exam-
ple, values of phosphosites are set to “unphosphorylated”), a species type includes
“things” of the same kind, e.g., it represents a species. Thus, species type is more
than species, in this example it includes at least four species representing different
phosphoforms (those are species with sites Y1 and Y2 being unphosphorylated,
phosphorylated, and pairwise different).

When the user follows a reaction network graph and sees a reaction arrow starting
at two species extended into species type, the user has to convert the reaction into a
reaction rule, and a product into a species template. Indeed, the species LR becomes
a species template containing two species types L and R. To proceed, the user must
specify a bond between components of L and R, by setting values of “binding site
for R” to “bound to R” and “binding site for L” to “bound to L”.

By traversing the reaction graph, each species node in a reaction diagram can be
converted into a species template. While doing that, new features are introduced
for each species type. For example, when converting dimerization reaction into
a reaction rule, the user must specify how two ligand–receptor complexes are
connected into the larger dimeric complex. To do it, a new feature “binding to R”
must be specified for the species type R. Now each species type in the reaction of
ligand–receptor binding becomes a species template, as receptor species type now
has two features (“binding to L” and “binding to R”), and the second feature was not
specified (ligand could potentially bind to a receptor connected to another receptor).
As we noted in Fig. 30.2, the reaction network graph with nodes representing
species templates does not represent a reaction network, as nodes do not represent
identical “things” anymore. However, we still can use the reaction network graph
with composite nodes in place of species templates. These nodes contain all species
types used in a species template (Fig. 30.5). Here we follow the notations of [21]
where the center and content of a reaction rule were introduced. The rule center
contains all species types that have features changed during the interaction (for
example, a binding site becomes bound or a phosphosite becomes phosphorylated),
while content contains molecular entities that affect the interaction but remain
unmodified. For example, in a dimer transphosphorylation rule, one receptor subject
to phosphorylation belongs to a rule center, and another receptor that acts as a
kinase and thus remains unmodified belongs to content. In a graphical presentation,
a composite node for a reactant contains only reaction center.

Note that the reaction rule is valid only if it can be uniquely converted into a set
of reactions. This is often not trivial. Consider the case where there is one reactant
species template and one product species template, but each has a different number
of unspecified features. The number of reactant species defined by the reactant
species template will be different from the number of product species generated
by the product species template. This makes one-to-one mapping impossible.
Thus, conversion of a reaction to a reaction rule must be done with caution:
selected reactant and product species must be converted to species templates, and a
mapping between reactant species template and product species template has to be
established.



30 Leveraging Modeling Approaches: Reaction Networks and Rules 527

L R

L
R

LR

R
D

R

Rp1Rp2

Grb2 Shc

L R
R-G L R

R-S

(2)

Fig. 30.5 The combination
of reaction network view with
rule-based modeling. Green
nodes correspond to species,
blue nodes to species
templates. Orange nodes
correspond to rules. Arrows
connect molecular entities
that are modified during
interactions (rule centers)

3.3 Prototype for a Unified Modeling Interface

We are implementing the approach discussed above into the VCell modeling
and simulation framework [1, 2]. By combining a reaction network specified
in the VCell editor (explicitly specifying individual species and reactions) with
multicomponent species and rules of interactions, a user should be able to use
rule-based specifications within the familiar “look and feel” environment of the
physiology editor. The new VCell interface introduced in version 5.0 (public beta
release as of this writing) includes dual views for a reaction network: a set of tables
describing all model elements, and a bipartite graph with species and reaction nodes.
Both views can be extended to support rule-based features.

The tabular view is a good interface for extending an existing reaction networks
into a rule-based model, or for creating a new rule-based model. The table can be
used to specify features and possible feature states for species types, and drop-down
menus are a good way to select feature states for species templates and specify
bonds. Reaction rules can be specified in two tables that represent reactant and
product parts of a rule.

The reaction network view can be used for visualizing a composite rule-based
and network model. A mix of species and species patterns, reactions and rules,
is illustrated in Figs. 30.4 and 30.5. The reaction network can be also “flattened,”
when all species and reactions are generated. Flattening is possible and provides
essential information only when network generation is possible. In the flattened
view, regular species and species generated from reaction rules are displayed as
a usual bipartite graph, where each species carries all the features inherited from
reaction rule specification. Thus, many modes of model visualization are possible –
collapsing all species corresponding to certain reaction rule, displaying sub-network
consisting only of species with a certain feature (like fluorescence), etc.
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We aim to provide an expert system guiding users in building a rule-based model,
providing suggestions on what features have to be introduced for each molecular
entity and each interaction. Significant efforts are still required to introduce a
convenient way to mix rule-based and network models.

4 Conclusions

Quantitative modeling studies have rapidly spread across many domains of biology
in recent years and the scientific community has been putting a great deal of
efforts into standardization. These efforts are crucial for more efficient and accurate
transmission of biological knowledge between different communities in research,
education, publishing, and more. Standards like Systems Biology Markup Language
(SBML, [37]), Systems Biology Graphical Notations (SBGN, [25]), and Biological
PAthway eXchange (BioPAX, [38]) are already widely used to provide exchange
of models, visualization schemas, and pathway data, respectively. The goal is to
provide interoperability between various methods and tools, as it has become clear
that there is no single strategy and platform that can cover all needs.

Initially, all of these standards have been developed based on the conventional
approach to model building. However, the rule-based modeling approach is gaining
momentum, and the old paradigm that every species in a model, every node in
a graph description and every entity in a database consist of identical “things”
is phasing out. This has been recognized by the community, and each of the
standards mentioned above has some capabilities to describe “generic” entities
and elements of rule-based modeling. SBML has a package (“L3 multi”) under
development to enable description of multistate and multicomponent species and
rules of interactions among them. SBGN and BioPAX have proposals to introduce
generic entities that describe sets of species that may participate in multiple
interactions.

The VCell simulation and modeling framework always strives to be on the
leading edge of new technologies, be user-friendly, and be compatible with the
community standards. It is often not easy, as in the case of rule-based modeling.
However, adoption of the new standards will hopefully facilitate the development
of more tools with mixed capabilities, just like our prototype of VCell-BioNetGen
integration.
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Chapter 31
Why and How to Expand the Role of Systems
Biology in Pharmaceutical Research
and Development

Robert D. Phair

Abstract Seen from the perspective of funding organizations, investors, and the
general public, the productivity of our world-wide biomedical research enterprise is
declining despite increased investment. This opinion piece suggests a cause and a
solution. The cause is the enormous complexity of human biology and pathophys-
iology. The unsolved human diseases involve so many interacting variables that
single research laboratories headed by skilled principal investigators doing inno-
vative experimental work cannot be expected to assemble the reductionist pieces
into an integrated working model. Systems biology offers a solution, but it will
require teamwork. Co-equal teams of experimental and computational biologists can
construct multiscale differential equation models and test them against experimental
data. A successful model provides actionable evidence-based guidance to the entire
research and development team. These integrative biology teams may, for historical
and cultural reasons, be unsustainable in academia, but they seem naturally suited to
modern pharmaceutical research and development. One way to organize such teams
and their workflow is described in detail.

This opinion piece must begin with a disclaimer. The author is not and never
has been an employee of a major pharmaceutical firm. What follows are views
of a keenly interested physiologist/biomedical engineer/systems biologist who
began his biological modeling work decades before the phrase “systems biology”
entered the lexicon of modern science. We systems biologists emphatically do not
share a single vision of how best to proceed with integrative biology. A good
idea of the diversity of vision can be found in a sampling of recent reviews
[1–10]. Nevertheless, we are united in our conviction that translating basic biomed-
ical discovery into an actionable understanding of human disease will require the
mathematical and computational tools of the physical and engineering sciences.

R.D. Phair (�)
Integrative Bioinformatics Inc., Los Altos, CA 94024, USA
e-mail: rphair@integrativebioinformatics.com

I.I. Goryanin and A.B. Goryachev (eds.), Advances in Systems Biology,
Advances in Experimental Medicine and Biology 736,
DOI 10.1007/978-1-4419-7210-1 31, © Springer Science+Business Media, LLC 2012

533



534 R.D. Phair

1 Complexity

Complexity: this single word motivates every sub-field of systems biology. No
professional biomedical scientist can seriously maintain that 21st century biology
will, without recourse to computation, achieve what the public expects of us. The
complexity of biochemistry and molecular biology alone, much less cell biology,
organ system physiology, and pathophysiology, demands computational tools.

Two primary approaches to complexity comprise the computational arms of
systems biology. They are statistical pattern recognition and mechanistic modeling.
We need both, but we also need serious efforts at communication across this
boundary. Too often, statistical, unbiased, high throughput approaches are seen as
incompatible with mechanistic modeling when, in fact, such methods often yield
unimagined novel hypotheses that deserve mechanistic tests. Similarly, mechanistic
models are too often seen as “not scalable” to 100s or 1000s of variables when, in
fact, models of this size are now commonplace. Both views are at odds with the
facts: statistics and modeling are humankind’s premier tools for making complex
hypotheses testable.

Hypotheses regarding complex human diseases are at the top of our list.
There are thousands upon thousands of contributions to the biomedical research
literature and each proclaims a key protein, a central gene, an essential signaling
pathway, or a pivotal physiological control system. Complex diseases – diseases like
atherosclerosis, stroke, autoimmune disease, cancer, metabolic syndrome, neurolog-
ical disease, diabetes, obesity, infectious diseases, and heart failure – are polygenic
and responsive to a multitude of environmental inputs. How should we organize the
research enterprise so that all those thousands of individual contributions can best
be leveraged to produce an actual therapeutic benefit?

2 Specialization

Complexity forces specialization. Specialization fosters depth. Depth in research is
not only revered, it is essential. Expertise in any scientific field requires a view that
spans from the big picture all the way to the details. The only way to achieve this
level of expertise in our era is to focus. In other words, we have to know “more and
more about less and less.”

Unfortunately, this necessity to specialize – this fact of modern scientific life –
erects walls between disciplines; it blocks cross-fertilization and integration. Almost
nothing (perhaps only the joy of science) motivates a scientist to attend a meeting
where he or she is not an expert. Specialization, though absolutely essential, is the
polar opposite of integration. How are we, as specialists, going to assemble the
pieces of a complex pathophysiological puzzle?
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3 Synthesis

Everyone agrees on the importance of synthetic, integrative work. This is why a
thoughtful review article is so important to and so widely read by a community of
scholars. But the review literature is rarely actionable. First, the authors have, by
necessity, chosen a subset of the relevant literature – usually the papers published
since the last roughly similar review.

Second, the summary diagram – perhaps the most widely studied portion of any
review – is limited to a single (hopefully) consistent perspective. Other members
of the same community of scholars regularly advance different summary diagrams
based on a different reading of the same literature. Hence, the review literature is not
actionable because each reviewer’s synthesis is, in effect, a large-scale hypothesis. It
represents an honest, often brilliant, effort to imagine a system that is consistent with
all the reviewed published data plus the enormous store of unpublished information
that each scientist uniquely accumulates.

Probably no single expert laboratory has the resources to test all the implications
of such a large-scale hypothesis. Yet such tests are the essential prerequisite for
an actionable working model (AWM) of human biology – an evidence-based
model that can be used as the basis for pharmaceutical development. So we are
faced with an apparent systemic design flaw. Scientific expertise requires depth.
Depth requires specialization. Specialization is the antithesis of synthesis and
integration, but synthesis is vital to the 21st century mission of publicly funded
biomedical research and privately funded pharmaceutical development. Once again,
the question devolves to this: how should we manage synthesis of all the reductionist
results extracted from nature by legions of tenacious experts?

4 Teams

Teamwork is, I think, the only way to get both expertise and coverage – both depth
and breadth. We need principal investigator/lab chief-level expertise in all aspects
of the integrative biology endeavor. Paradoxically, this may not be possible in
academia. Universities and colleges and research institutes are consciously designed
to promote individual genius, not team genius. It has never been easy to build teams
in academia. Ask any academic dean or any imaginative NIH program director.
Convincing professors to work together toward a shared goal and a shared reward,
they will say, is like herding cats. There have been exceptional teams in the academic
world, but their rarity suggests the need for an expansion of the classic (and
extremely successful) Vannevar Bush academic entrepreneurial business model. Our
universities are ideally organized for reductionist discovery. Their track record over
the past millennium is a testament to what humankind can accomplish. There is no
sense in changing something that works so well.
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Who, then, has both the motive and the human resources to nurture teams of
integrative or systems biologists? A public organization like the newly proposed
National Center for Advancing Translational Science (NCATS) at the United States
National Institutes of Health might undertake this challenge, but I think the world’s
pharmaceutical companies are the obvious candidates.

5 Two Cultures Redux

Snow’s thesis [11], though popularly defined by the unfortunate gulf that now sepa-
rates the sciences from the humanities, was actually a critique of specialization. He
particularly lamented our increasing inability to communicate across disciplinary
boundaries. A modern pharmaceutical firm, however, has the profit motive to design
and drive adoption of a 21st century synthesis-driven approach. To an outsider,
promoting cooperation between systems and experimental biologists may seem a
simple task, but the two-cultures division between those for whom mathematics
is the natural language of nature and those for whom, as I was once admonished
by a famous senior scientist, “Physiology (or substitute your favorite biomedical
discipline) is an experimental science and mathematics has no place in it,” is still in
evidence.

This is changing, but the pace of change is only slightly faster than evolution.
To speed the pace, we need better communication across the divide. This will re-
quire cross-education; the systems biologists must understand the experimentalist’s
results at least at the level of a current review article and ideally at the level of
experimental methods. Experimentalists, on the other hand, need to understand
more and more clearly how statistics and modeling work with complexity. And
everyone on the team should know basic physiology.

One approach to this communication problem that is gaining momentum is the
increased availability of both commercial and academic software tools that take
advantage of diagrams as a common language – a language that can be under-
stood by both experimental and systems biologists. So important is this approach
that multiple standards for the creation of such diagrams are being promulgated
[12–15]. Cooperation among these software teams has been laudable and there
seems little doubt that a diagram standard will emerge that satisfies the systems
biologists. If there is any weakness in this joint effort, it is that few experimental
biologists, or their professional societies, have been involved. But within a single
pharmaceutical firm, it should be possible for internal debate to identify and adopt
one diagram language company-wide. This would be a major step toward building
a cohesive integrative biology team.
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6 Integrate Pharma M&S into Line Management

Typically, large pharmaceutical firms already employ a nucleus of modeling and
simulation (M&S) experts. Often these organizational units emerged from the
paramount importance of pharmacokinetics in establishing a dosing regimen and in
the regulatory drug approval process. Increasingly, however, M&S input is sought
in early discovery and development efforts. From the perspective of building a 21st
century integrative biomedical development team, M&S must be elevated from the
position of a service organization to co-equal status with the biology and medicine-
based discovery and development teams.

This would necessitate a dramatic change in mindset and substantially greater
responsibility. In order to participate in the firm’s most pivotal decisions, M&S
leadership will need to understand in substantial detail the biochemical and physi-
ological rationale for each drug target and each drug candidate. Indeed, a co-equal
M&S organizational unit will have contributed substantially to that rationale.

Profound increases in organizational responsibility are always attended by
increased reward and increased risk. Line managers become highly valued and
rewarded employees when products succeed. Line managers must change jobs when
products fail. It is the nature of the pharmaceutical industry that unanticipated
clinical outcomes can change your career overnight. Building integrative biology
teams – teams that are managed so that both experimental and computational exper-
tise is leveraged – is arguably the best strategy for a 21st century pharmaceutical
firm whose target therapeutic areas are the major diseases. These diseases are
enormously complex. Co-equal teams of experimental and computational biologists
are going to be essential.

It might be argued that academic collaborations are just as likely to succeed.
Teamwork, however, is different from collaboration. Collaboration is a negotiated
bargain; teamwork spreads responsibility and credit equally. Credit is the coin of
the realm in academia and credit is diluted as the number of PIs on the team
increases. Success is the coin of the realm in industry. Integrative biology teams,
by necessity, must be bigger than any academic laboratory. The capacity for size is
yet another reason the modern pharmaceutical firm is ideally positioned to undertake
this essential work.

Importantly, there are innovative small companies in and around the pharmaceu-
tical industry whose business models are centered on M&S. Small businesses in
this category can be excellent partners for firms adopting the integrative biology
approach. Medium-sized M&S-centric companies will probably choose to remain
independent and could also opt for an integrative biology team approach, but they
would have to elevate their experimental work from outsourced contracts to line
management. Neither experiment nor modeling, alone, is enough. These teams
can only thrive on trust and mutual respect. To achieve this, they need principal
investigator/lab chief-level expertise at all positions on the team. Academia cannot,
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and arguably should not, be reorganized in this way; we need to sustain individual
genius. But pharmaceutical firms have the managerial covenant, the experimental
skill, the modeling expertise, and the organizational size to discover what team
genius and shared leadership can accomplish.

7 How Integrative Biology Teams Could Work

How would integrative biology teams function? What would be the value added for
the pharmaceutical development enterprise? One view of this process is diagrammed
in Fig. 31.1.

In the lower left of the diagram there are two sources of experimental data:
proprietary data collected by the company and public data from the open scien-
tific literature. The first task of an integrative biology team is to identify those
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Match?

Pharmaceutical Integrative Biology Team
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experiments

Published
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Fig. 31.1 Integrative biology team workflow. An approach, detailed in the text, by which
pharmaceutical integrative biology teams can combine experimental and modeling expertise to
leverage systems biology productively. This method allows input from all internal stakeholders
plus all information in the public domain. External consultants are more effectively employed.
This workflow succeeds by providing an objective synthesis of these inputs that can be rigorously
tested and then used to guide development
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experiments that define the system for which an actionable working model is
sought. For candidate drugs and candidate drug targets, the data will likely be
proprietary, but much of the current paradigm in any research field will depend on
the published literature. Extracting the key defining experiments from that literature
is an important task that requires PI-level expertise. Outside consultancy may have
an advisory role here, but the in-house integrative biology team must shoulder the
final responsibility. Doing this well on an ongoing basis will require team members
to stay current with the literature in their fields. Advanced text mining, database,
and search technology could contribute greatly to each team’s success.

The second task facing an integrative biology team is constructing a mechanistic
diagram that the team agrees might account for all the key experimental findings.
For this purpose, the team may wish to combine its own views with those expressed
in current review articles. The process of diagram building can provide a productive
means of leveraging investments in outside consultants, because the team will be
seeking a consultant’s mechanistic insight in order to test that insight against the
accumulated data. The choice of working models thus becomes more objective and
less subjective.

With defining experiments and mechanistic diagram in hand, the third task
is testing the diagram against the defining experiments. At this stage, software
would play a central role. Mechanistic diagrams can be automatically converted to
corresponding mechanistic kinetic models. Team members with modeling expertise
can supply rate laws for processes where default mass-action rate laws are deemed
insufficient. Relevant processes, or even entire sub-models, may be imported
from public databases such as BioModels.net [16] or the CellML repository [17]
because innovative software teams have seen and met the need for standardized
model exchange languages at both biochemical [18] and cell physiological [19]
levels of biological organization. Next, experimental designs or protocols from
the defining experiments would be applied to each mechanistic kinetic model.
Numerical solution of the model’s differential equations would yield predictions for
each of the key experiments. Parameters would be optimized simultaneously over
all experiments and the resulting optimized solutions would be compared directly to
the experimental data. Initially there will be significant failures; model predictions
will not match the data especially if the team has chosen a large, comprehensive
assembly of key experiments for testing. Mismatch will usually signify some
significant failure of the proposed mechanistic diagram, although it is always pos-
sible that simultaneous testing will uncover fundamental data inconsistencies. Such
inconsistencies, viewed by the experimental members of the team, will immediately
suggest new experiments to fill gaps in mechanistic understanding. Alternative
diagrams can be systematically tested and any diagram can be revised by the team
and re-tested against the defining experiments. One extremely valuable source of
new mechanisms that might account for uncovered discrepancies is unbiased, high-
throughput “-omics” studies of the system of interest. This synergy between the two
halves of systems biology, mechanistic and statistical, has been incompletely lever-
aged to date. Formulation of new diagrams is an exercise in scientific imagination
and is always improved by polling as many stakeholders as possible.
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This process is repeated until a diagram is found that adequately accounts for
all of the defining experimental data. The successful diagram and its corresponding
kinetic model become the team’s actionable working model.

Value added by integrative biology teams would take many forms only some
of which can be listed here. First, confidence in the team’s working model is
dramatically improved because it has been explicitly and quantitatively tested
against the available data. Such a model is evidence-based instead of opinion-based.
Testing against all the data simultaneously protects the pharmaceutical development
program from unrecognized implications of datasets that might be glossed over
in the standard qualitative assessment. The systems biology approach will not
“forget” one dataset while formulating a mechanistic explanation for another
dataset. Second, an actionable working model can check new experimental designs,
before experimental resources are committed, to ensure that they are capable of
answering the questions posed. This has enormous potential to save both time
and money. Third, such models establish a new kind of corporate memory that
insulates the enterprise against inevitable changes in personnel and provides a tool
for bringing new team members up to speed quickly.

It might be argued that such tests are suspect because the defining experimental
results are known by the team when the mechanistic diagram is formulated, but
decades of experience have convinced our field that discovery of a single model that
accounts for any extensive collection of different experiments is a major challenge
to any team. There are so many constraints requiring simultaneous satisfaction
and only so many molecular, cellular, and physiological mechanisms available to
work with that success will depend on the very best efforts of all members of
the integrative biology team. Successful diagrams and their corresponding kinetic
models represent valuable intellectual property and would provide their owners with
an enviable competitive advantage.

Others might argue that this approach ignores the principle of model validation.
Advocates of validation generally withhold some dataset(s) from the original
panel of experiments used to develop the model. Then, they argue, if the model
subsequently accounts for the validation dataset, it can be promoted to a new and
more august stature known as “validated.” Another interpretation, though, is that the
withheld experiments simply contain no new information.

Models, theories, and hypotheses are, on the view expressed in this article, never
validated, only corroborated. We test models against experimental data and either
reject or corroborate them. Thus, the modeling process is simply a quantitative
version of classical Popperian hypothesis testing [20]. Whether or not one agrees
with Popper’s logic of scientific discovery, it must be granted that a “validated”
model could be invalidated by next week’s experiment. For all these reasons
“validation” reduces rather than improves a modeler’s credibility among his or her
experimental colleagues.

In other words, an actionable working model is never final or validated in any
absolute sense, but it has unique value because it has actually passed the stiffest
tests the integrative biology team can devise based on a combination of proprietary
and public data. Because its details were assembled within the company, they are
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known and can be questioned and checked by any employee with the need to
know. A proprietary actionable working model not only integrates a company’s
experimental and systems biology teams but also serves as a platform for testing
new biological ideas and new mechanisms of action against the totality of what
the company sees as the essential primary data. Actionable working models thus
become tangible and extraordinarily valuable intellectual property.

8 Conclusion

Declining productivity in the worldwide biomedical research and development
enterprise is a consequence of the enormous complexity of the unsolved human
diseases. This complexity will not yield to experimental biology and pharmaceutical
development unless we build co-equal teams of expert experimental and expert
systems biologists. Academic institutions will always be major sources of new
insights and data because they are ideally structured to promote individual genius.
But specialization and competition – both essential features of this enormously
successful publically funded research engine – have left our universities and
research institutes structurally ill-positioned to establish and nurture high-level
teams for integrative biology. A potent combination of size, teamwork, expertise,
resources, and profit motive strongly suggests that the world-wide pharmaceutical
industry is where 21st century integrative biology should be done.

Success will require visionary corporate leadership and skillful management. It
will require experimental biologists and physicians who are willing to give up a
portion of their historical responsibility for success and failure. It will require M&S
leadership that is able and willing to share both the responsibility for scientific
decision making and the risks of failure in a for-profit environment where successful
patient outcomes are, ultimately, the bottom line. It will not be easy, but, in my view,
it is the only way forward.
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Villéger A, Boyd SE, Calzone L, Courtot M, Dogrusoz U, Freeman TC, Funahashi A, Ghosh S,
Jouraku A, Kim S, Kolpakov F, Luna A, Sahle S, Schmidt E, Watterson S, Wu G, Goryanin I,
Kell DB, Sander C, Sauro H, Snoep JL, Kohn K, Kitano H (2009) The systems biology
graphical notation. Nat Biotechnol 27(8):735–741

13. Freeman TC, Raza S, Theocharidis A, Ghazal P (2010) The mEPN scheme: an intuitive
and flexible graphical system for rendering biological pathways. BMC Syst Biol 4:65–65.
doi:10.1186/1752–0509–4–65

14. Kohn KW, Aladjem MI, Weinstein JN, Pommier Y (2006) Molecular interaction maps of
bioregulatory networks: a general rubric for systems biology. Mol Biol Cell 17(1):1–13.
doi:10.1091/mbc.E05–09–0824

15. Wimalaratne SM, Halstead MDB, Lloyd CM, Cooling MT, Crampin EJ, Nielsen PF (2009) A
method for visualizing CellML models. Bioinformatics 25(22):3012–3019

16. Le Novere N, Bornstein B, Broicher A, Courtot M, Donizelli M, Dharuri H, Li L, Sauro H,
Schilstra M, Shapiro B, Snoep JL, Hucka M (2006) BioModels database: a free, centralized
database of curated, published, quantitative kinetic models of biochemical and cellular systems.
Nucleic Acids Res 34(Database issue):D689–D691

17. Lloyd CM, Lawson JR, Hunter PJ, Nielsen PF (2008) The CellML model repository.
Bioinformatics 24(18):2122–2123

18. Hucka M, Finney A, Sauro HM, Bolouri H, Doyle JC, Kitano H, Arkin AP, Bornstein BJ,
Bray D, Cornish-Bowden A, Cuellar AA, Dronov S, Gilles ED, Ginkel M, Gor V, Goryanin
II, Hedley WJ, Hodgman TC, Hofmeyr JH, Hunter PJ, Juty NS, Kasberger JL, Kremling A,
Kummer U, Le Novere N, Loew LM, Lucio D, Mendes P, Minch E, Mjolsness ED, Nakayama
Y, Nelson MR, Nielsen PF, Sakurada T, Schaff JC, Shapiro BE, Shimizu TS, Spence HD,
Stelling J, Takahashi K, Tomita M, Wagner J, and Wang J (2003) The systems biology markup
language (SBML): a medium for representation and exchange of biochemical network models.
Bioinformatics 19:524–531

19. Lloyd CM, Halstead MDB, Nielsen PF (2004) CellML: its future, present and past. Prog
Biophys Mol Biol 85(2–3):433–450

20. Popper KR (1965) The logic of scientific discovery, vol 479. Harper & Roy, New York



Chapter 32
Multiscale Mechanistic Modeling
in Pharmaceutical Research and Development
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Abstract Discontinuation of drug development projects due to lack of efficacy
or adverse events is one of the main cost drivers in pharmaceutical research and
development (R&D). Investments have to be written-off and contribute to the total
costs of a successful drug candidate receiving marketing authorization and allowing
return on invest. A vital risk for pharmaceutical innovator companies is late stage
clinical failure since costs for individual clinical trials may exceed the one billion
Euro threshold. To guide investment decisions and to safeguard maximum medical
benefit and safety for patients recruited in clinical trials, it is therefore essential to
understand the clinical consequences of all information and data generated. The
complexity of the physiological and pathophysiological processes and the sheer
amount of information available overcharge the mental capacity of any human being
and prevent a prediction of the success in clinical development. A rigorous integra-
tion of knowledge, assumption, and experimental data into computational models
promises a significant improvement of the rationalization of decision making in
pharmaceutical industry. We here give an overview of the current status of modeling
and simulation in pharmaceutical R&D and outline the perspectives of more recent
developments in mechanistic modeling. Specific modeling approaches for different
biological scales ranging from intracellular processes to whole organism physiology
are introduced and an example for integrative multiscale modeling of therapeutic
efficiency in clinical oncology trials is showcased.
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1 An Introduction to Drug Development

Development of novel drugs is a laborious, longsome, and risky process. This is
even though biology has seen the advent of many new high-throughput techniques
in recent years. Even worse, despite the fundamentally new insights in the regulatory
processes underlying biology at different scales, both cost and expenditure of time
to market for new drugs have constantly been increasing [17, 28]. The average time
to develop a new drug is currently more than 10 years involving costs in the order
of 1 billion US dollars, which is to a large extent spend in the late clinical phases
[7]. Hence, the translation of mechanistic insights in fundamental and preclinical
research towards clinical applications remains challenging [14].

When considering current drug development, the tardily proof of therapeutic
efficiency in late phases of clinical development clearly is the largest drawback. This
is because in case of failure, large amounts of money allocated for development of a
novel drug candidate have already been spent, while in turn expected revenues after
approval by marketing and sales are inevitably lost. Hence, any kind of precocious
indication of later failure or even withdrawal after market launch will be very
beneficial due to a large leverage effect, the earlier the better. Failure in proving
therapeutic efficiency, however, might not be the only reason for withdrawal of a
novel drug candidate, since occurrence of adverse effects may be an even more
serious incident.

With regard to above challenges, novel approaches to generate a mechanis-
tic understanding of drug action and toxicity are important and the wealth of
experimental data nowadays available in molecular and cellular biology is not
sufficient on its own. The still largely isolated representation of the various layers of
biological organization such as the transcriptome, proteome, or kinome [16, 24, 25]
reflects the rather reductionist approach resulting from historical development of
experimental techniques. Not unexpectedly, this is where systems biology comes
in. While contextualization of experimental data in a comprehensive, interpretive
framework is the avowed goal of this highly interdisciplinary field, integration
across multiple physiological scales still remains an ambitious long-term objective.
Moreover, despite an increasing number of targeted studies combining experiment
and computational models, systems biology has hardly left fundamental research.
Urging questions for the upcoming role and contribution in drug research and
development (R&D) hence remain largely unanswered as of now. This becomes
even more important as both therapeutic success and occurrence of unwanted
side-effects frequently show a large inter-individual variability, which can only be
resolved based on a profound mechanistic understanding of the governing processes.
This in-depth understanding is also a prerequisite for personalized medicine in order
to overcome the current “one size fits all” paradigm in therapeutic design.

To put the various modeling approaches in a wider context, we will briefly review
the usual workflow in the development of novel drug candidates in the following
(Fig. 32.1). Target identification and compound screening are the prerequisites
for the overall development process to start. This still is, by and large, a trial



32 Multiscale Mechanistic Modeling in Pharmaceutical Research and Development 545

proteins

Target 
identification & 

validation

Preclinical
development

Lead 
identification & 

optimization

Clinical 
phase I

Clinical 
phase II

Clinical 
phase III

cells

animals

volunteers

patients

identification
of new

drugable
targets

optimization
of efficacy & 
ADME-Tox

animal safety

First in Man
dose

human 
safety

efficacy vs.
benchmark

efficacy vs.
placebo

to
ta

l c
o

st
s

bi
ol

og
ic

al
sy

st
em

s

Fig. 32.1 Phases, costs, and biological systems used in drug development

and error process, which, however, can be supported by chem- or bioinformatics
database mining. Once a lead compound and a corresponding target have been
identified, in vitro assays are performed to optimize affinity and analyze causal
dose–response relationships at a cellular scale. During preclinical development, the
substance is then tested in different animal models to provide information on the
distribution and action including dose–response relations as well as toxicity in order
to estimate a therapeutic window. Toxicity assessments are in fact most important
to design a first in man dose suggestion. Nevertheless, translation of preclinical
results into a clinical settings remains a major challenge and failure of a drug
candidate may still occur at each of the three phases of clinical research, which
are (1) assessment of general safety in healthy volunteers, (2) evaluation of efficacy
in patients, and (3) randomized trials in large groups of patients to achieve a high
level of confidence that the drug is safe and efficient. As outlined above, drop out
of novel drug candidates in these late stages represents the worst case scenario
where large amounts of money are inevitably lost. For these reasons, any kind of
comprehensive evaluation of the to be expected therapeutic potential of novel drug
candidates supports the establishment of a more favorable risk-benefit profile and
bears, moreover, a huge economic potential (Fig. 32.1).

2 Computational Systems Biology in Pharma R&D

Computational models are an effective way to integrate knowledge, information,
and assumptions with experimental data in one unified representation. This is in
particular important in complex systems, such as animal models or human patients,
because experimental data generated on different levels of biological organization
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may easily become too complex for non-formal, intuition-based analyses. Here,
computational models represent a comfortable way for data processing, integration,
and subsequent analyses and they allow the inclusion of experimental data into a
(mathematically) rigorous framework. Ideally, computational models may represent
the accumulated expert knowledge generated over years of research. This allows
simulation of system behavior in the face of perturbations and the generation of
testable hypotheses for further experimental planning. However, so far the role of
computational models in drug development is restricted to mostly pharmacokinetic
(PK) and pharmacodynamic modeling (see below), thus accompanying late stage
(pre-)clinical research. This again is in sharp contrast to the wealth of highly specific
modeling approaches developed in computational systems biology over recent
years, which largely remain unused in the context of pharmaceutical development.
Moreover, the main focus of model-based investigations is on the retrospective
analysis of experimental data rather than on future design of preclinical and clinical
studies such that existing possibilities remain unused. One reason is that the
acceptance of modeling and the belief in the predictive power is still limited.

In principle, computational simulations in drug development can provide mech-
anistic insights into both PK, i.e., the processes governing the absorption, distri-
bution, metabolization, and elimination (ADME) behavior of substances within
the body [13, 26, 34, 46] and pharmacodynamics (PD), i.e., the modes of action
at the specific target site and its physiological effect on the organism [5, 6, 38].
Model-based analyses may significantly contribute to the generation of a truly
mechanistic understanding of drug action such that fundamental analyses may be
performed in silico in a prospective rather than in a retrospective manner. Ideally,
computational models can be used for an exhaustive integration of experimental
data into mathematical frameworks at all stages of drug development. Thereby,
data can be processed, represented, and analyzed within the context of the current
systems understanding. Likewise, this understanding can in turn constantly be
put to the test by comparing simulation results with new experimental findings.
Computational models may hence accompany all phases of drug development
by structural knowledge management ranging from early data mining and target
identification to planning of clinical trials in phases one to three (Fig. 32.1).

Since mechanistic computational models include a high level of prior infor-
mation, they are particularly well-suited for analyses of the underlying network
structure. Moreover, the comprehensive representation of existing knowledge allows
an efficient extrapolation to new scenarios. This is a valuable tool at various stages
of drug development, especially when it comes to crossing physiological scales
and areas of application, for example, when special sub-populations need to be
investigated or new indications are to be identified [10, 44]. In this regard, in vitro
to in vivo extrapolation is a typical example, where the mechanistic information
included in the basic model structure may help to transfer the predictive capabilities
of wet-lab assays to animal studies and further to trials in humans. Mechanistic
PK/PD models can be used to summarize the experimental information generated
for one animal species and extrapolate existing knowledge to other species,
thereby reducing significantly the number of animal sacrifices. In clinical phases,
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computational models may be valuable tools to allow a mechanistic consideration
of the therapeutic window in order to maximize the efficiency and safety of a drug.
In this respect, computational models may ideally be used for the establishment
of a mechanistic understanding of occurrence of potentially severe adverse effects,
which thus can be avoided in a prospective way. Mechanistic computational models
may also be used in between clinical studies to extrapolate to new patient subgroups
[10] including pediatric scaling [9].

3 Multiscale Modeling in Pharma R&D

Above examples describe the current role of computational models in pharma R&D
also outlining future fields of application. In the face of the various preclinical and
clinical phases involved, however, it becomes clear that computational modeling in
support of development of novel drug candidates is inevitably a multiscale problem.
This is because (1) cellular, (2) tissue and organ, (3) whole-body, and (4) population
scale, respectively, ideally need to be addressed in one integrative modeling
framework (Fig. 32.2). Given the fact that an exhaustive mechanistic representation
of human physiology, however, requires to cover a factor of 109 in a spatial scale
(size of a molecule wrt the human body) and 1015 in a time scale (Brownian motion
wrt human lifespan) [19], it is obvious that this endeavor is largely out of reach
of current modeling possibilities. Moreover, even though such an aggregate model
might certainly be beneficial for an unforeseeable number of future applications
in clinical medicine, it is highly questionable if it is actually needed or helpful
to support current drug development. This is because any computational model
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generally should focus on the specific questions to be investigated instead of aiming
for general-purpose applicability. With regard to drug development it is, however,
mandatory to always take the molecular level into account, either in terms of drug
ADME or PD, such that the fundamental cause–response relationships governing a
therapeutic outcome can be mechanistically described and ideally investigated on a
mechanistic level.

We therefore have to arrive at a reasonable level of abstraction and simplification
in order to consider different relevant scales within one model. As of now,
however, even reduced multiscale models are currently far from being standard
in drug development, which is both due to heterogeneity of experimental data
and limitations in adequate modeling approaches, which have just started to be
developed [12]. Computational models rather follow reductionist approaches thus
representing the different levels of biological organization such as molecular or
cellular biology. In the face of the different questions to be addressed at these
scales, the models frequently use very specific mathematical formalisms for the
structural representation. In the following, we will discuss the different approaches
with respect to the various scales for which they were developed before outlining
possible applications for pharma R&D in the future.

3.1 Cellular Scale

3.1.1 Stoichiometric Models at Cellular Scale

Stoichiometric models of metabolism represent the fundamental inventory of the
cell for maintenance and fueling (Fig. 32.3a). Metabolic network models are con-
structed based on genome annotation and summarize biochemical knowledge within
the stoichiometric matrix. They inherently assume steady state of the intracellular
components at the expense of abandoning any kinetic information. The overall
model structure is generally linear and represents an underdetermined system of
algebraic equations in which intracellular fluxes are the unknown variables. Such
flux distributions can be seen as functional endpoints of upstream regulation and
ultimately specify cellular modes of operation. Metabolic network models have
been used previously for the investigation of metabolic principles in microbial cells
[20, 35], but recent works have started to consider genome-scale models of human
metabolism in a generic [8] or tissue-specific way [15].

A special advantage of stoichiometric models lies in the wealth of analytical
algorithms that have been developed in recent years. Human metabolic models
have, for example, been used for the analysis of gene expression data thus
revealing disease-related enzymes in different organs [36] or for the identification of
biomarkers of metabolic diseases [37]. Stoichiometric models provide an analytical
framework for the contextualization of experimental data and structural analysis
of network disorders. Limitations of metabolic network models are the negligence
of regulatory constraints, possible non-identifiability of flux solutions and the
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Fig. 32.3 Computational models at cellular scale: a schema of a stochiometric model for the cen-
tral carbon metabolism (a) and a dynamic model of a signaling cascade network (b) implemented
in MoBir are exemplarily shown

fundamental steady state assumption, which severely hampers embedding of such
models into dynamic models considering physiological processes on a higher scale.
Since these network models, however, can represent cellular metabolism at genome
scale, they provide in turn a unique possibility to correlate genetic predisposition
with clinical observations making them a valuable tool for model-based analysis of
genotype–phenotype correlations [22].

3.1.2 Dynamic Models at Cellular Scale

Most of the dynamic models at cellular scale represent metabolic pathways or
intracellular signaling (Fig. 32.3b) in the face of specific triggers or perturbations
thus addressing fundamental biochemistry of the cell [3, 11, 23]. In case of intra-
cellular signaling cascades, the models describe protein–protein interactions which
result in modifications such as protein phosphorylation status or protein complex
formation. Such models thus describe intracellular information trafficking in the
face of extracellular perturbations and thereby directly complement cell biological
in vitro assays. In the context of pharma R&D, dynamic models could generally
complement PK/PD models and simulations as they follow similar mathematical
formalisms such that an incorporation of submodels is technically feasible given
an adequate modeling framework [12]. Dynamic models are moreover a valuable
tool for mechanistic investigation at an in-depth level of detail since they enable
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simulation of intracellular systems at rapid time scales, which in addition frequently
display non-linear behavior. Mechanistic models are particularly important for
system identification since they enable simultaneous consideration of multiple
sets of experimental data. Adequate algorithms for both structural and parameter
identification, respectively, are in turn mandatory.

Dynamic models in drug development can be used to explain cause–response
relationships in cellular networks and to quantify system dynamics, respectively
[11]. They can furthermore be used to investigate cellular responses in the face
of extracellular stimuli such as binding of exogenous and endogenous ligands
[3,23]. They have direct applications in pharmacodynamics, where they can be used
to investigate specific modes of drug action at cellular scale and dose–response
relationships intertwined in the basic structure of the signaling network. Since
dynamic models at cellular scale can be used to process and analyze a large level
of various kinds of in vitro data, they may significantly support early preclinical
research. In this regard, incorporation of the generated data into an integrative
modeling framework can help to establish a mechanistic assessment of drug action
both on and off-target-wise, and, equally important, detect gaps in the current
systems understanding.

While dynamic models in computational systems biology are mostly based on
ordinary differential equations (ODEs), some cellular events can only be explained
with different modeling approaches. This may, for example, become important
if some proteins of a signaling cascade are firmly integrated into a structure
of the cell while others may move freely in a particular compartment [21]. To
explain resulting changes in signaling dynamics, protein–protein interactions can
be described by spatio-temporal models which additionally take into account spatial
coordinates. Likewise, molecular diffusion and migration may need to be described
by reaction–diffusion equations also requiring partial differential equations. How-
ever, parameterization of spatio-temporal models is often difficult, time-consuming,
and computationally demanding. Further, many relevant phenomena for whose
description such approaches are used might also be modeled by simpler model
formulations, e.g., compartmental approximations of spatial effects.

Both ordinary and partial differential equations are deterministic ignoring
stochastic effects being at the very basis of molecular interactions [30]. Especially
if only a very low number of a certain molecule is strongly influencing a process,
intrinsic noise arises. For example, gene expression is variable and consequently
even neighboring cells of the same type will have different molecule numbers for
most proteins expressed. Different modeling techniques have evolved to exactly
or approximately describe stochastic processes and ignoring stochasticity will lead
to simplifications, sometimes making it impossible to understand basic processes.
It may even be necessary to consider both stochastic and partial effects as, for
example, diffusion itself is also stochastic. However, stochastic simulations are
computationally demanding, adding random-walk aspects increases this demand
further. Also, for many investigations, average models are a good approximation
and certain sources of noise can alternatively be reflected in a deterministic
framework by executing population simulations that use parameter sets derived
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from distributions describing the observed variability. For example, the intrinsic
noise leading to a variable gene expressing might not be considered explicitly, but
the consequence of variable amounts of proteins can be reflected.

3.2 Tissue and Organ Scale

While dynamic models at the cellular scale represent a structural description of
fundamental biochemistry, computational models at the tissue and organ scale
largely focus on physical conservation laws such as mass, momentum, and charge
in order to describe organ morphology and function [19]. Computational models
at that scale, therefore, directly complement experimental data such as imaging
techniques and histology. To account for a particular spatial shape of an organ
which ultimately contributes to a specific function, computational organ models
are frequently based on partial differential equations. Thus, movement of different
fluids within the human body can be described in the context of the surrounding
tissue and its time resolved motility. While a large level of organ systems have
been investigated with such so-called continuum methods, the virtual heart model
is by far the most advanced representation of a human organ taking into account
both cellular scale and macroscopic anatomy [27]. The heart model has been
used to generate a mechanistic understanding of the various processes underlying
myocardial contraction ranging from electrophysiology to laws of mechanics. It
was, for example, used successfully to analyze drug-induced occurrence of cardiac
arrhythmias which has important implication for in silico testing of toxicity [31].

Further examples for models of organ systems at a macroscopic scale are models
of kidney [40] or lung [39]. These models are mainly driven by mechanistic consid-
eration of specific organ functions such as urinary secretion which ultimately drive
the structure of the underlying modeling framework. The models are valuable tools
for the investigation of the physiological functionality in healthy or even diseased
individuals. Their applicability in the context of drug development, however, is
rather limited since these models often do not consider the cellular or molecular
scale, such that drug action and distribution, respectively, cannot be represented at a
mechanistic level of detail. Many computational organ models are moreover based
on finite-element methods, which again hampers their linking to models at others
scales.

An interesting application of organ models at a macroscopic scale offer methods
which consider cells at discrete entities. Such models describe the actions and
interactions of single cells based on governing equations which are assumed to
represent fundamental global rationales such as cellular growth or differentiation.
Such discrete models have, for example, been used to describe proliferation of tumor
cells and their subsequent migration within tissue [1]. Following a similar approach,
agent-based models were successfully used to describe regeneration of liver tissue
in mice after toxin-induced injury [18]. Again, the integration of ODE-based models
in such discrete models is not trivial.
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The number of computational models at organ scale has constantly been
increasing in recent years. Macroscopic models, however, demand for elaborate
computational approaches such as spatio-temporal modeling or agent-based meth-
ods. While such detailed descriptions of specific processes are inevitably necessary
for mechanistic investigations of particular physiological functions, linking of
advanced organ models to models at cellular scale or to support PK/PD simulations
is currently still challenging. To nevertheless consider models at organ scale for the
description of drug action and distribution, it is hence necessary to rather focus on
a reduced, purpose-driven representation. A simple solution is the consideration of
spatial effects in a compartmental model where each component is assigned to a
particular location. This approach, which allows the consideration of PDE models
as much simpler ODE models will be discussed in the next paragraph.

3.3 Whole-body Scale PK and PD Models

While the site of action of a pharmacological substance might be restricted to certain
tissues or cells, first of all a quantitative estimation of the administered substance
available at the site of action is required. These questions underlie the subject of PK
and different modeling techniques are well-established in pharmaceutical research
to support their investigation. So far, the most widely used approach is to establish
descriptive and comparably simple compartmental PK models that can be well-
identified based on available data (Fig. 32.4a). Such PK models can be extended
to include compartments or a descriptive relation to effects (PD), for example,
in the form of a simple hyperbolic concentration–effect relation. In contrast to
the rather phenomenological consideration of drug PK of compartmental models,
physiology-based pharmacokinetic (PBPK) models aim for a detailed representation
of physiological processes (Fig. 32.4b). In the next two sections both approaches
will be introduced in more detail.

3.3.1 Compartmental PK Models

Compartmental PK models are kinetic models to describe the concentration–time
curve of a substance [2, 32, 41]. The simplest form is a one-compartment model
for an intravenous bolus corresponding to a linear first order differential equation,
which considers that a given amount of substance is homogenously distributed
in an unknown volume from where it is eliminated via a first order process.
Concentration–time measurements from blood plasma taken in a clinical study are
then used to identify the elimination rate constant and the volume. The volume to
be identified can indicate the distribution between blood plasma and the rest of the
body. Whereas a very large substance that cannot cross the endothelial barrier of the
blood vessels will have a small volume of distribution corresponding to the blood



32 Multiscale Mechanistic Modeling in Pharmaceutical Research and Development 553

V2/F
(central)

V3/F
(peripheral)

Dose

Q/F

CL/F, IIVCL/F

KA, ALAG1

a
b

V
E

N
O

U
S

  B
L

O
O

D
  P

O
O

L

A
R

T
E

R
IA

L 
 B

L
O

O
D

  P
O

O
L

PANCREAS

SPLEEN

PORTAL VEIN

LIVER

KIDNEY

LUNG

DOSEi.v.

p.o.

GALL BLADDER

STOMACH

WALL

SMALL INTESTINE

WALL

LARGE INTESTINE

WALL

TESTES

HEART
BRAIN

FAT
BONE

SKIN

MUSCLE
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Arrows indicate mass-transport via organ-specific blood flow rates [47]

volume, a small lipophilic substance will quickly distribute into most parts of the
body and accumulate in fat giving rise to a large volume of distribution that can
become larger than the physiological volume of the whole organisms [32].

More elaborate compartmental models consider more than one compartment,
and the different compartments are generally interconnected by exchange rates (see
Fig. 32.4a). Structural model identification is guided by identifiability measures
and quality of fit. Besides the model parameters themselves that already provide
a first characterization of the substance, the model can be further used to determine
descriptive concentration–time curve characteristics such as the maximal concen-
tration, area under the plasma concentration–time curve, or the half-life time. This
holds true even if the experimental data are sparse making a direct assessment
difficult.
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Because compartmental models are often rather simple, sophisticated identi-
fication techniques can be efficiently applied. This allows to not only identify
typical parameters for an average individual but also to quantify variability between
subjects in a population or between occasions in order to investigate sources of
variation, and provide individual estimates for the different subjects in a populations
using non-linear mixed effect models. Such a model-based data analysis can also be
used to evaluate the statistical significance of a certain influence or status (covariate)
which is to be included in the model in a hierarchical manner. For example, an
analysis can show how much of the inter-individual variability can be explained by
a covariate such as body-weight or disease status.

Consequently, non-linear mixed effect models are a powerful tool in order to
analyze population data as obtained in clinical studies. However, such models
are generally drug or even dataset-specific and therefore do not provide the ideal
platform for knowledge integration. Furthermore, since the model parameters are
empiric and generally have no true physical or physiological correspondence, it is
difficult to translate these models to new situations thereby limiting the predictive
power. Certain concepts including allometric scaling of parameters have been
adapted over time, but these have their limits as they only consider selected aspects
[33,43]. Also, there are approaches to extend compartmental PK models to consider
important aspects of physiology. While these can provide some mechanistic insight
into the PK, the approach often remains phenomenological. In order to enable truly
comprehensive analyses of the processes governing the distribution and subsequent
metabolization and excretion of a substance, a much more elaborate model structure
is clearly needed. This approach is used by PBPK models which are presented in
the following.

3.3.2 Physiologically-Based Pharmacokinetic Models

PBPK models are a mechanistic approach to describe the ADME behavior of a sub-
stance based on substance-specific properties and human physiology, which include
a large level of prior biological information for model building [13,26,34,45,47–49].

In order to provide a physiological framework model, the (human) body is
divided into containers representing relevant organs or tissues as well as arterial
and venous blood pools connecting the different organs through the blood flow
(see Fig. 32.4b). Organs are further sub-divided into several sub-compartments
considering, for example, the vascular space divided into plasma and (red) blood
cells as well as the avascular space divided into interstitial and cellular space. Such
a model framework corresponds to a large compartmental model and provides the
basis to describe the ADME behavior of a substance, while all free parameters
can be identified independent of substance knowledge and PK measurements.
In addition, information on compartment composition, e.g., in terms of volume
fractions of water, proteins, and lipids can be implemented independent of the
substance. In order to further describe active transport processes and enzyme-
catalyzed metabolization, the basic model can be extended accordingly.
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Based on generic distribution models, only a few basic physico-chemical pa-
rameters of a substance such as molecular weight, lipophilicity, and protein
binding are necessary to describe the ADME behavior in this framework including
permeabilities across membranes and partition coefficients between compartments.
To start with, such a model will only consider passive processes, which are primarily
the distribution based on blood flow and diffusion as well as absorption for orally
administered substances. Active processes including metabolization, transportation,
or binding can be added as needed. In this regard, substance knowledge and in
vitro data can often guide decision making between structural model alternatives.
Especially for antibodies target binding or receptor-mediated clearance or protection
from clearance might also be important. With adequate PK data at hand, selected
parameters of the model can be fine-tuned to achieve a good fit.

For establishing a PBPK model in humans, physiological knowledge is not
restricted to average individuals, but for many parameters their distribution within
different populations is known in an age-dependent or patient-specific manner
allowing population PK predictions rather than fits only. PBPK models can also
be established for different animal species. With a predictive animal PBPK model at
hand, for example, the physiological parameters can then be substituted to make
a first prediction for humans. The physiological correspondence of parameters
allows both a good interpretation of results as well as a translation to new
scenarios. Consequently, PBPK models are well-established in the environmental
toxicology and risk assessment fields and are becoming increasingly popular
also in pharmaceutical research. In addition, PBPK models automatically provide
exposure estimates at the side of action and therefore provide a natural basis
to build multiscale models PK/PD models as exemplified below and thereby
provide a good platform for knowledge integration along the pharmaceutical R&D
process [42].

4 An Exemplary Multiscale Model

In the previous chapters, different modeling approaches specific for the various
scales of biological organization were presented and discussed. To support pharma
R&D, a model-based presentation of expert knowledge and experimental data in
integrative multiscale models is clearly desirable. In the following, we will discuss
such a modeling concept, which, despite being generic in large parts, clearly outlines
our vision of computational models in drug development. The exemplary multiscale
model describes a virtual patient with a pancreatic tumor and the treatment by a
generic chemotherapeutic agent (Fig. 32.5) [12].

The model (Fig. 32.5a) considers the PK of the parent prodrug and its acti-
vation through metabolization by a polymorphic enzyme (cytochrome P450 2D6,
CYP2D6) generating the active drug itself. The coupled PBPK model thus provides
drug concentration–time information at the site of action, which is the pancreatic
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Fig. 32.5 Multiscale model outline (a) and simulation results (b and c) according to [12] as
discussed in the text

tumor modeled to in a larger level of detail to include the signal transduction
pathway the drug is interfering with trough a competitive binding to the Raf kinase,
and a tumor model whose growth is driven by a transcription factor activated in the
signal transduction pathway.

In a virtual clinical study, the individual therapeutic outcome of the chemothera-
peutic intervention is simulated for a large population with heterogeneous genomic
background. Apart from normal physiological variability, e.g., in organ sizes and
blood flow rates, also the phenotypic CYP2D6 activity differences are considered as
indicated by the different colors in Fig. 32.5b (ultra-rapid, extensive, intermediate,
and poor metabolizers abbreviated as UM, EM, IM, and PM, respectively). The
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model is simulated without drug treatment for four weeks resulting in an initial
exponential growth phase, followed by a linear growth phase during the first four
weeks of untreated tumor growth. Thereafter, two weeks of bi-daily treatment
(indicated by the black bar on the top) in the form of orally administered tablets
are simulated. Simulation results are shown for the viable tumor mass (Fig. 32.5b),
which was also chosen as a simple endpoint (Fig. 32.5c). As can be seen, the
endpoint distribution shows a significant variability with some virtual patients who
are hardly responding to treatment, whereas for other patients the treatment even
leads to a weak tumor regression.

More detailed analysis into the sources of variability shows that treatment
success is only weakly influence by general physiology, but strongly dependent on
the CYP2D6 phenotype, which would likely also have fundamental implications for
optimal therapeutic dosing. Comparable findings have been reported for, e.g., the
chemotherapeutic prodrug tamoxifen [4,29]. Further investigations on the influence
of GAP-insensitive Ras mutations indicate that this mutation mainly impacts on the
linear tumor growth phase in the current setting, potentially reflecting the important
role of growth-factor signaling during this phase to further promote cell division
although limiting environmental conditions do not support exponential growth any
more. The results of such analyses for a validated model can provide a rational basis
for the planning of clinical studies and pave a road to personalized medicine.

5 Conclusions and Outlook

Ethical and medical constraints and the high level of investments required for the de-
velopment of novel drugs demand rational decision making even beyond the typical
level in other industries. At the same time, the biological system “patient” as well
as the preclinical model systems ranging from individual target proteins through
cellular systems to animal models provide a level of complexity unraveled by any
technical system. As a consequence, human intuition or classical “management
reasoning” alone cannot cope with the wealth of information accumulated in the
course of a pharmaceutical R&D project.

Pharmaceutical innovator companies and public R&D organizations developing
drugs are therefore looking for new approaches for decision making at all levels
of the R&D process, ranging from experimental design and dose selection to
rationalization of investment decisions at a project portfolio level. Computational
modeling is a candidate technology due to its capability to integrate, process, and
represent data and to use computational simulation for prediction purposes.

In biological modeling, model structures directly represent the systems under-
standing of, e.g., drug ADME properties and drug action, which can be used
for hypotheses testing, experimental design, and identification of inconsistencies.
In the face of the various types of experimental data generated at the different
levels of biological organization along the pharmaceutical R&D process, so far,
specific computational models for individual biological systems and levels used in
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different project phases have been developed rather independently. This lead to an
overemphasized reductionism and prevented a true translational use of models for
bridging between project phases and the corresponding model systems used (protein
to cell, cell to animal, animal to volunteer, and volunteer to patient). Adequate
multiscale approaches, however, are necessary for an in-depth mechanistic descrip-
tion of drug action integrating across biological scales and allowing translation.
On the one hand, such approaches clearly need to represent pharmacodynamics
at cellular scale to represent basic molecular mechanisms, while on the other
hand the mechanisms governing drug ADME need to be taken into account
as well. Given the mind-blowing complexity of biology, a pragmatic, purpose-
driven representation of physiological function and patho-physiological processes
is mandatory nevertheless.

We here present various approaches of computational modeling at the cellular,
organ, and whole-body scale. The applicability of the different mathematical
formalisms within an integrative multiscale modeling framework is discussed.
Compartmental PK/PD models have currently achieved the highest acceptance
in pharmaceutical industry and regulatory bodies. The compartmental approach
is characterized by a phenomenological representation of biology, however. An
integration of models with computational representations of smaller biological
scales is therefore usually quite difficult and often impossible. PBPK models
offer a much higher level of mechanistic detail and physiological information.
As a direct consequence, PBPK models offer a mechanistic framework for the
integration of metabolic and signal transduction models, which can often be seen
as more elaborate mechanistic PD representations. A small number of dedicated
computational models at organ scale are partly very advanced but due to a focus
on, e.g., biomechanical properties of the heart in the virtual heart initiative a use of
these models for modeling of drug action is not always straight forward.

The relevance of computational models in drug development has already in-
creased for more than a decade and this process is rather accelerating than decel-
erating. Both pharmaceutical companies and regulatory bodies like the US Food
and Drug Administration (FDA) are building up dedicated resources and nowadays
computational considerations are already considered as a valuable complement to
experimental data. The current investments in dedicated disease models for specific
therapeutic areas will further strengthen this position. The rapid development of
more and more powerful and user-friendly software platforms for modeling and
simulation will also help. Altogether, reality is becoming closer and closer to the
vision of an exhaustive representation of knowledge, information, assumption, and
data in computational models and the use of simulation for a truly rational decision
making. It appears reasonable that modeling and simulation will soon significantly
enhance the development of targeted therapeutics with favorable risk-benefit profile
thereby markedly providing benefits to industry, patient, and careers.
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Chapter 33
Re-analysis of Bipolar Disorder
and Schizophrenia Gene Expression
Complements the Kraepelinian Dichotomy

Kui Qian, Antonio Di Lieto, Jukka Corander, Petri Auvinen,
and Dario Greco

Abstract The differential diagnosis of schizophrenia (SZ) and bipolar disorder
(BD) is based solely on clinical features and upon a subset of overlapping
symptoms. Within the last years, an increasing amount of clinical, epidemiological
and genetic data suggested inconsistent with the Kraepelinian dichotomy. We per-
formed re-analysis of genome-wide gene expression data obtained from postmortem
prefrontal cortex (PEC) of both BD and SZ patients with matched controls from four
independent microarray experiments. We found 2,577 and 477 genes specifically
altered in BD and SZ, respectively. Of these, 164 genes were shared between
the syndromes. We identified genes of the transcriptional and post-transcriptional
machineries altered in BD and genes of the development changed in SZ. Our results
showed that the genomic expression profile of BD and SZ had some similarity but
still could be well-distinguished by suitable statistical test.
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1 Introduction

Schizophrenia (SZ) and bipolar disorder (BD) are psychiatric syndromes affecting
each �1% of the population worldwide. Although their incidence is relatively low,
these conditions are major contributors to the global burden of diseases. The rela-
tively early onset, and the persistence or fluctuation of symptoms, has devastating
consequences on the quality of life of the patients.

SZ is mainly characterized by a combination of hallucinations and delusions
and is often associated with specific cognitive deficits. On the other hand, BD is
marked by an alternation of elevated and depressed mood with or without psychotic
symptoms. Their diagnosis is based solely on clinical features because validating
diagnostic tests are, currently, not available. Differential diagnosis is based upon a
subset of overlapping symptoms [1]. Despite, their hereditability is estimated to be
higher than in other diseases of the central nervous system or in some cancers [2],
evidence for genetic candidate factors is still far from being robust or conclusive [3].

Descriptions of the major psychiatric diseases were recorded in the 19th century
by Kraepelin, who described two distinct disorders (the Kraepelinian dichotomy):
dementia praecox, renamed SZ by Bleuler in 1911, and manic depressive insanity,
now called BD. This classification forms the basis of modern diagnostic system as
defined in DSM IV and ICD-10. Within the last years, the traditional Kraepelinian
dichotomy dividing SZ and BD has been strongly challenged [4]. An emergent
amount of clinical, epidemiological and genetic data questioned the model that
SZ and BD would be two independent syndromes [4, 5]. Recently, an extensive
population-based study on the Swedish registers strongly shows that SZ and BD
partially share genetic cause (up to 63%) [6], and another study shows that common
polygenic variation that contributes to risk of these syndromes are shared between
SZ and BD [7]. Large-scale genome-wide surveys of rare copy number variants
(CNVs) [8,9] and genome-wide association (GWA) studies [10] have recently been
undertaken to decipher the number and type of genetic variants involved SZ and BD.

Microarray technologies have been used to address the gene expression in
postmortem human brain samples. Different groups of genes have been described
as differentially expressed in these syndromes: genes encoding for transcripts of
synaptic protein [11, 12] cell growth and development of CNS [13], myelination
[14], apoptosis [15], mitochondrial dysfunction [16], oligodendrocyte functions
[17], receptors channels, transporters and signal transduction [18], oxidative stress
[19], neurotransmission [20] and ubiquitination [12]. However, these results are
partially confirmed and concordant.

Combining microarray data from independent experiments in re-analysis fashion
can generate a more comprehensive understanding of the genome biology of SZ
and BD by increasing the statistical power of the analysis. There are two general
approaches for re-analyzing microarray experiments: (1) by comparing the results
published in several studies; (2) by comprehensively re-analysing the primary data
from several experiments [21]. The latter approach has been successfully used in
searching for human tissue-selective gene expression patterns [22].
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Similarly, here we have carried out re-analysis of Affymetrix GeneChip data
from human dorsolateral prefrontal cortex (PFC) of SZ and BD patients as well
as healthy subjects publicly available at the Stanley Medical Research Insti-
tute (SMRI).

The aims of this study are: (1) to identify families of genes involved in
pathophysiology of SZ and BD and (2) to define the gene expression similarities
and differences between these syndromes.

2 Materials and Methods

2.1 Microarray Data Collection

Microarray data were collected from the SMRI Online Genomics Database (www.
stanleygenomics.org), where 20 independent studies performed on two collections
of postmortem human samples (the Stanley Array collection and the Stanley
Consortium collection) are stored. Data were selected according to the following
criteria: (1) microarrays performed on PEC; (2) the samples extracted from patients
with BD or SZ, and normal control individuals; (3) each individual sample
profiled only in one microarray (samples used in more than one studies were
selected only once); (4) the gene expression would be studied by using Affymetrix
U133A GeneChips. For each sample, the microarray raw file (CEL file) and the
demographic data were retrieved.

2.2 Microarray Data Quality Control

Extensive QC analysis was carried out on each array data. Particularly, the RNA
degradation state, the spatial distribution of foreground and background signals over
the slide, as well as the signals from the control probes were inspected. The facilities
in the BioConductor packages affyQCReport [23] and affyPLM [24] were used for
this task. Arrays were eliminated from further analysis if matching one of these
conditions: (1) artefacts were screened by the affyPLM analysis; (2) the 30–50 ratios
for the genes GAPDH and “-actin were aberrant and the RNA degradation plot was
abnormal.

2.3 Re-annotation of Affymetrix Probes

To account for recent advances in genomics, the probes on each chipset were re-
annotated and re-arranged in newly defined probe sets according to the Entrez Gene
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database. To achieve this, custom CDF v.12 files were retrieved from the BrainArray
Laboratory website (http://brainarray.mbni.med.umich.edu). After re-assignment,
each new probe set contained only probes perfectly matching with an individual
and unique gene sequence from the Entrez Gene database.

2.4 Microarray Data Pre-processing

Gene expression values for each re-annotated probe set were calculated by RMA
algorithm [25] implemented in the BioConductor affy package [26]. Briefly, in
the RMA algorithm, the signals of the probes of each probe sets are background
corrected, normalized using the quantile method and summarized by the median
polish technique [24].

2.5 Differential Expression Analysis

To testing which of the 17 demographic variables are associated with the genes
expression value, the global effect of each demographic variable on the totality of
the genes analysed was evaluated using the BioConductor package globaltest [27].
The variables containing missing data were omitted, as they would have effects
on the accuracy of the testing. In this analysis, three different models were used
according to the nature of each variable: (1) logistic regression model for the
discrete variables with two categories; (2) multinomial regression model for discrete
variables with more than two categories; (3) linear regression model for continuous
numerical variables. Variables with significant effects (p-value < 0:001) were
selected and used in the statistical test models.

A linear model including strong associated demographic variables was used
to explain the expression level of each gene across all the arrays of the dataset.
Contrasts were defined to evaluate the expression differences between BD versus
control and SZ versus control, and tested by moderated t-test. The Bioconductor
package limma [28] was used for this task. Genes presenting p-value <0:05 were
considered to be significantly expressed and used for further functional analysis.

2.6 Functional Analysis

The DAVID functional annotation tool was used to search for over-represented
Gene ontology families by the Fisher’s exact test [29, 30]. Gene ontology families
with nominal p-value <0:05 were considered to be significant. This analysis was
done using all the differentially expressed genes of each contrast analysed and the
subgroups of upregulated and downregulated genes.

http://brainarray.mbni.med.umich.edu
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WebGestalt2 (http://bioinfo.vanderbilt.edu/webgestalt/) was used to study the
gene set enrichment in KEGG pathways, targets of transcription factors, targets
of microRNAs and the cytogenetic bands [31]. For all these test, the group of all
the genes in the human genome was used as a reference set and three gene lists
were utilized as input for the test: (a) all differently expressed genes in BD, (b) all
differently expressed genes in SZ and (c) common genes in gene list a and b. Results
with multiple test adjustment of false discovery rate (BH)<0:05 were considered as
significant.

2.7 Diagnostic Cross-Validation

To accurate classification of our samples, we performed cross-validation on 134
arrays. Straight leave-one-out cross-validation (LOOCV) was carried out by MLIn-
terfaces package, using the diagnosis as the classes. In addition, Bayesian model
averaging (BMA) method for gene selection and classification was utilized to
perform LOOCV through iterativeBMA package [32].

3 Results

A total of 400 CEL files from four independent experiments were collected
and checked about their RNA and image quality. Five of them presented RNA
degradation and 261 arrays showed varying degrees of artefacts or nonuniform
spatial distribution of probe signals, leading to a total number of 266 arrays .�66%/
that were eliminated from our dataset. Details of the dataset information were shown
in (Table 33.1). All of the 134 arrays that successfully passed the quality control
were re-annotated according to the probe mapping to the Entrez Gene database [33].
In the original annotation released from the manufacturer Affymetrix, 21,722 probe
sets were, respectively, present on the U133A chipset. After re-annotation, as many
as 11,911 probe sets were newly defined.

3.1 Gene Expression Modelling and Statistical Test

A linear model was fitted taking into account the demographic variables with a
possible strong effect on the gene expression: study ID, collection type and brain pH
(p < 0:001, Table 33.2). Three studies were in collection A and one in collection C,
suggesting the study ID would be more suitable than collection type. Finally, study
ID and brain pH were included in the statistical test for gene expression.

The p-value distribution patterns of BD and SZ test results were investigated
(Fig. 33.1). For different p-values, there were always an obvious high number

http://bioinfo.vanderbilt.edu/webgestalt/
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Table 33.2 The effect of each demographic variable on the gene
expression profiles. PMI: Postmortem interval

Bipolar disorder Schizophrenia

Study ID�� 7:57 � 10�8 1:22 � 10�12

Collection type�� 0.00039 3:00 � 10�5

Age 0.585 0.143
Sex 0.0569 0.0372
Race 0.0761 0.517
Axis I primary diagnosis 0.00269 0.492
PMI 0.126 0.178
Brain PH�� 2:91 � 10�6 0.000633
Left brain 0.383 0.211
Suicide status 0.105 0.893
Psychotic feature 0.0129 0.278
Rate of death 0.0131 0.0163
Exacerbation 0.00244 0.268
Smoking at time of death 0.719 0.854
Lifetime alcohol 0.834 0.9
Lifetime drugs 0.182 0.0419
Lifetime anti-psychotics 0.214 0.428
�� p-Value < 0:001

of genes in range of smallest p-value in BD, while for SZ, there were no such
pattern observed (p-value < 0:05 and p-value < 0:001, the 1st bar on left for each
histogram in Fig. 33.1). With the threshold of p-value < 0:05, a total of 2,577
genes were found differentially expressed in BD versus control (Fig. 33.1a). Out of
these, 1,319 were upregulated and 1,259 were downregulated. As many as 477 genes
were differentially expressed in SZ against control samples (Fig. 33.1b), of which
197 were induced and 280 were repressed. A total of 164 genes were both dys-
regulated in BD and SZ, of which some had been reported before, such as AIF1,
BID, CACNA1A, CYP2C19, JMJD7-PLA2G4B, NDE1, NOS1AP, NPY, PENK,
PER1, PTGS1, SST and TAC1.

Further, the common genes differentially expressed in both disorders showed
similar expression pattern (Fig. 33.2). We checked this phenomenon by utilizing
four different linear models. In the univariate statistical model Y � diagnosis
(Fig. 33.2d) as well as in a multivariate model Y � diagnosisC pH (Fig. 33.2c), all
the common differentially expressed genes show the same altered direction. In the
model Y � diagnosisC study, DDX39B (Entrez Gene ID 7919) and CUTC (Entrez
Gene ID 51076) were suppressed in BD but induced in SZ. Meanwhile, CXorf36
(Entrez Gene ID 79742) were induced in BD but suppressed in SZ (Fig. 33.2b). In
the model Y� diagnosisC studyC pH, only DDX39B (Entrez Gene ID 7919) was
upregulated in SZ and downregulated in BD (Fig. 33.2a).
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Fig. 33.1 Distribution of genes’ p-values of schizophrenia (b, d) and bipolar disorder (a, c).
Number of genes (y-axis) represents the count within the range of corresponding p-value (x-axis).
Two different width of column was used: 0.05 (a, b) or 0.001 (c, d) for each column

3.2 Functional Analysis

For more functional annotation, we looked for a number of features in the dataset.
The most significant enriched KEGG pathways were “metabolic pathway” for BD
.p D 1:67 � 10�44/, “MAPK signalling pathway” for SZ .p D 2:04 � 10�5/
and “arachidonic acid metabolism” for the common gene list .P D 0:0315/

(Table 33.3). We were also interested about the possible transcription factors that
could be involved and as a result of this analysis we saw the most significantly
enriched transcription factor consensus sequence was GGGCGGR for SP1 in BD
.p D 5:17 � 10�95/, TTGTTT for FOXO4 in SZ .p D 4:51 � 10�17/ and
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Fig. 33.2 Fold change of common genes between bipolar disorder (BD) and schizophrenia (SZ).
The fold change of each gene in BD was plotted in x-axis and SZ in y-axis. Four different statistical
models were checked and suggested that this phenomenon was not specific to models

GTGACGY for E4F1 in common gene list .p D 0:0003/. In addition to the
transcription factor, one obvious target would be the possible involvement of
miRNA regulations. The most significant enriched miRNA consensus sequence
was TGCTGCT (MIR-15A, MIR-16, MIR-15B, MIR-195, MIR-424 and MIR-497)
in BD .p D 3:19 � 10�33/, TATTATA (MIR-374) in SZ .p D 5:92 � 10�5/
and CACTGCC (MIR-34A, MIR-34C and MIR-449) for the common gene list
.p D 4:21 � 10�5/. We did also analyse the higher-order organization involved
and observed some cytobands that were enriched in this data. The most significant
enriched the cytogenetic bands were chr16q22 for BD .p D 2:87 � 10�6/, chr19p
for SZ .p D 0:0068/ and chr2p14 for common gene list .p D 0:0093/.
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Table 33.3 Enriched top
KEGG pathways with
adjusted p-value

KEGG pathways Adjusted p-value

BD
Metabolic pathways 1:67� 10�44

Pathways in cancer 1:95� 10�11

Endocytosis 1:56� 10�9

Wnt signalling pathway 3:93� 10�9

Purine metabolism 6:15� 10�8

Melanogenesis 6:24� 10�8

Chemokine signalling pathway 6:29� 10�8

Spliceosome 6:29� 10�8

Cytokine–cytokine receptor interaction 1:41� 10�7

MAPK signalling pathway 4:83� 10�7

SZ
MAPK signalling pathway 2:04� 10�5

Arachidonic acid metabolism 8:77� 10�5

Pathways in cancer 8:77� 10�5

Focal adhesion 0.0002
Long-term depression 0.0002
Chemokine signalling pathway 0.0006
Neurotrophin signalling pathway 0.0008
Regulation of actin cytoskeleton 0.001
Metabolic pathways 0.001
Fc epsilon RI signalling pathway 0.0019

Common gene
Arachidonic acid metabolism 0.0315
Glycerophospholipid metabolism 0.0315
Homologous recombination 0.0375
Linoleic acid metabolism 0.0375
Nucleotide excision repair 0.0489
Spliceosome 0.0489
Vascular smooth muscle contraction 0.0489

3.3 Class Prediction and Cross-Validation

Since there was no test set in this dataset, the LOOCV procedure was applied.
We used two different LOOCV algorithms: k-nearest neighbour classification and
Bayesian model averaging classification. The k-nearest neighbour classification
showed about 27% error rate (12/43) to classify between BD and control samples,
and much higher error rate �59% (27/46) for SZ. On the other hand, the iterative
BMA algorithm showed excellent prediction capability (Table 33.4), as all the 43
BD samples was predicted into the BD class, and so were the 46 SZ and the 45
controls samples.
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Table 33.4 Results of leave one out cross-validation

Predicted Predicted Predicted
BD Control SZ Control BD SZ

k-Nearest BD 31 12 SZ 19 27 BD 29 14
neighbour Control 13 32 Control 17 28 SZ 22 24
classification

Bayesian BD 43 0 SZ 46 0 BD 43 0
model Control 0 45 Control 0 45 SZ 0 46
averaging
classification

4 Discussion

We have integrated and re-analysed publicly available microarray gene expression
data of postmortem PEC of BD and SZ patients, and control subjects. The integrated
large-scale dataset had been carefully re-analysed at every step, extensive statistical
modelling had been utilized and several aspects of the biological annotations were
present in the results.

The independence of the samples is an issue when working with data based on a
common brain collection, as some subjects can be utilized for more than one assay.
This is the case with the brain collections available at the Stanley Foundation. In the
year 2008, Choi and collaborators used a post hoc correction that took into account
the over-estimation of the degrees of freedom [34]. Here, we strictly selected the
data based on the quality of arrays, so that microarrays hybridized to the same
subject were included only once in the final analysis. We are convinced that this
quality control step increases the accuracy of the final results by improving the
accuracy of the quality of the utilized data.

It is always a difficult task to deal with multiple factor experiments, especially
for clinical samples where many biological and demographic variables can affect
the expression of many genes. Several variables of this dataset had been reported
to be associated with the disorders, such as age [35–38], gender [39, 40], PMI
[41, 42] and lifetime drug usage [43, 44]. However, we showed that even though
many of them had modest effects on BD or SZ (p-value < 0:05 but > 0:001),
the most important variable was pH (p-value D 2:91 � 10�6 for BD, p-value D
0:000633 for SZ), which was already reported in many studies [42, 44–46].

Under the null hypothesis of no differential expression in statistical test, the
p-values would be uniformly distributed in the range [0, 1] [47]. The histograms of
p-value of BD versus control were densely distributed near zero and become less as
the p-values increased and this pattern was shown to be the same on two different
scales (Fig. 33.1a and c). These distributions indicated that the test method was
well-fit in our linear model and suggests that genes with low p-value were reliably
differentially expressed. The flat histograms of SZ versus control did not indicate
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any violation of the assumptions of statistical test but suggested that the genes with
low p-value might not be statistically significant after adjusting for multiple testing
(Fig. 33.1b and d).

Even though the p-value distributions were quite different between BD and SZ,
the genes both altered in SZ and BD showed similar expression patterns (Fig. 33.2).
This would indicate that there are some common molecular mechanisms shared by
BD and SZ.

We observed several biologically relevant aspects of BD and SZ physiopathol-
ogy. The post-transcriptional regulation by miRNAs has been heavily investigated
also in the field of the neurosciences [48]. For the genes differentially expressed both
in SZ and BD, the predicted miRNA binding sites were also consistent with recent
reports on hsa-mir-34a [49] and has-mir-195 [50]. Many important transcription
factors involved in BD and SZ pathogenesis were also retrieved in our predicted list:
CREB, OCT, P53, SP1, TATA, ATF4 and MYC [51–56]. Several KEGG pathway
in our gene set enrichment results were already studied, such as arachidonic acid
metabolism, linoleic acid metabolism and nucleotide excision repair [57–59].

Classification of gene expression data could be utilized to predict the diagnostic
category of new samples [60–63]. Our results also suggested that the profiles of
SZ are less different from controls than BD and hence more difficult to classify
(Table 33.3).

Our results suggest that the Bayesian approach is more efficient and reliable as
compared to the more traditionally utilized k-nearest neighbour method. Though
this may be depended on the selection of samples and many critical pre-steps we
used, this method would be a great tool to classify new microarray data of SZ and
BD as well as to support their differential diagnosis.

Taken altogether, our results suggest that, even though BD and SZ share
some features of their expression profiles, they are still characterized by distinct
gene expression patterns, supporting the Kraepelinian dichotomy. Supporting the
dichotomy at gene expression level might have a major impact not only at diagnostic
level but also in order to identify novel target genes for development of specific
drugs, consequently improving the care of patients.

Alternative approaches for better studying gene expression in complex tissues
could involve the novel sequencing technologies that allow better resolution and
precision than microarray measurements [64]. Thus, we suggest that future investi-
gation by more accurate methods like deep sequencing can be useful to highlight
smaller expression differences as well as to detect qualitative differences of the
transcripts, such as alternative splicing, differential usage of promoters usage of
alternative polyadenylation sites.
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Chapter 34
Bringing Together Models from Bottom-Up
and Top-Down Approaches: An Application
for Growth of Escherichia coli on Different
Carbohydrates

Andeas Kremling

Abstract Modeling in systems biology follows two lines: a data driven top-down
approach that integrates experimental data from various “omics” technologies and a
model based bottom-up approach where the model structure is given and kinetic
parameters are chosen in such a way that an experimental observation can be
reproduced quantitatively or qualitatively. Mathematical models are frequently used
to elucidate cellular design principles in order to understand complex biochemical
networks better. To show that both approaches lead to a consistent description of
cellular dynamics, mathematical models from both approaches are explored. On the
level of transcription factor activities a sufficient qualitative agreement is observed.
Experimental data for the classical growth experiment of Escherichia coli on two
carbon sources, glucose and lactose is available to set up the data driven model and
to support the theoretical findings from the bottom-up approach.

1 Introduction

A quantitative description of cellular processes offers new possibilities in medical
applications or biotechnology. This requires the availability of time course data
of the interesting state variables that nowadays can be found in a number of data
bases. In systems biology two approaches are established to derive a quantitative
description. In the bottom-up approach, starting from smaller networks, the structure
of the mathematical model is based on balance equations that are represented by
differential equations. These equations are characterized by a number of (in most
cases unknown) kinetic parameters. To determine the parameters, often the models
have to be calibrated based on time course data. In general, time course data are

A. Kremling (�)
Department of Systems Biotechnology, Technische Universität München,
Boltzmannstr. 15, 85748 Garching, Germany
e-mail: a.kremling@lrz.tum.de

I.I. Goryanin and A.B. Goryachev (eds.), Advances in Systems Biology,
Advances in Experimental Medicine and Biology 736,
DOI 10.1007/978-1-4419-7210-1 34, © Springer Science+Business Media, LLC 2012

579



580 Andeas Kremling

0 0.5 1 1.5 2

10−1

100

Scaled time
O

D
 [−

]

Top−down

Singular value decomposition
Number of genes considered: 2040

Network component analysis
Number of genes considered: 33

Mechanistic model
Number of genes considered: 17

Bottom−up

Growth on glucose and lactose

Theoretical approach Experimental application (2 data sets)

Fig. 34.1 Outline of the approach and experimental data used for application. The optical densities
in both data sets are very similar (circles [2], squares [1]). Time scaling was performed: phase 1
characterizes growth on glucose while phase 2 characterizes growth on lactose

not available for all state variables in the model. Therefore, simulation studies are
performed to elucidate the dynamics of those state variables and to determine for
example parametric sensitivities. In contrast, to perform a top-down approach, data
from different cellular levels (named “omics”) are integrated and analyzed. These
data characterize the overall status of the cell, since all transcripts or all fluxes
are determined and are often used together with techniques from multivariate data
analysis to infer properties of the cellular network.

In the present contribution different methods are applied to show the consis-
tency between the two approaches. This is achieved on the level of transcription
factor activities. Transcription factors are responsible for coordinated expression of
genes during growth, but also in the case of changes of environmental situations.
A classical example is growth of Escherichia coli on two substrates. It is well
known, that during growth on glucose and lactose, the first one is consumed while
the second one is not until the first one is run out. In the situation when glucose
is running out, several cellular programs are started to cope with the stress and
to adapt to the new situation. Here, two data sets are used and three models
are introduced – one based on a bottom-up approach, and two based on a top-
down approach – to simulate the activities of several transcription factors and to
show a good qualitative agreement between bottom-up and top-down approaches.
Figure 34.1 summarizes the approaches giving also the number of genes represented
in the respective models.

A prerequisite for the application of the proposed strategy is a consistent data
set. Two data sets are used [1, 2] that show a comparable optical density as shown
for the two experiments in Fig. 34.1. Since different initial conditions are used for
the substrates, time scaling was performed. In next sections models are introduced
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and in Sect. 5 the simulation results are compared. Section 6 focuses on a further
regulatory circuit observed during the experiment, namely, the stress response.
Finally by-product secretion is analyzed in Sect. 7.

2 Bottom-Up Model

To describe carbohydrate uptake in E. coli a very detailed model was introduced [1]
that comprises uptake and metabolism of six carbohydrates, including the descrip-
tion of global signaling, signal processing, and gene expression. The model was
validated by fitting kinetic parameters against a very comprehensive experimental
data base (18 experiments with 5 different strains) and describes expression of 17
key enzymes, 38 enzymatic reactions, and the dynamic behavior of more than 50
metabolites. In contrast to a model that was published very recently on the same
topic [11], the model shows predictive character and is able to forecast experiments
with good accuracy [9].

In the central pathways two metabolites have a distinguished role in the model.
On the one hand, the phosphoenolpyruvate (PEP) to pyruvate ratio determines the
degree of the phosphorylation of the proteins of the phosphotransferase system
(PTS). This is described in detail in [7, 8]. Here, protein EIIA of the PTS in
its phosphorylated form is an activator for the adenylate cyclase which produces
cAMP. cAMP is a co-factor for transcription factor Crp that is involved in gene
regulation of a number of genes related to central metabolism as well as others (for
the current number see the Ecocyc database [6]). This straight forward activation
is shown in Fig. 34.2. On the other hand, fructose-1,6-bisphosphate is a co-factor
for transcription factor FruR (also named Cra). FruR is mainly involved in gene
expression of genes of glycolysis and gluconeogenesis. FruR interacts with fructose-
1,6-bisphosphate and activates or inhibits the respective genes. However, depending
on the mode of regulation, the relationship between co-factor and transcription
factor is more complex, as summarized in Fig. 34.2. As can be seen in the inserted

pyruvate

PEP

Fru 1,6 BP

Glc uptake Lac uptake

...
EIIA~P

EIIA

cAMP Crp

FruR

+ +

Fru 1,6 BP

+
−

re−
pressor

+

−

activator

Fru 1,6 BP

Fig. 34.2 Scheme that describes the two signaling pathways starting from central pathway
glycolysis and ending at the two transcription factors FruR and Crp, respectively. Details are given
in the text
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table, high values of fructose-1,6-bisphosphate change the sign of the regulatory
action. If FruR acts as a repressor, high values of fructose-1,6-bisphosphate lead
to a deactivation of FruR and therefore the respective genes are transcribed (plus
sign). Contrary, if FruR is an activator the deactivation leads to a decrease of the
regulatory activity (minus sign). If the level of fructose-1,6-bisphosphate is low,
the opposite values are true. For the experimental situation – growth on glucose
and lactose – fructose-1,6-bisphosphate is rather high and therefore the sign of the
regulatory action has to be inverted.

3 Top-Down Models

3.1 Singular Value Decomposition

Experimental data obtained from an “omics” approach can be analyzed in different
ways. A straight forward approach is the elucidation of the characteristic (or
dominant) modes of the data with the help of a singular value decomposition (SVD)
approach [5]. Formally, a given data set, the mRNA data is given as a matrix with
every row representing the time course of one specific mRNA. SVD decomposes the
matrix mRNA in three matrices U, ˙ , and VT (U and V are orthonormal systems,
i.e., U UT D I, V VT D I) in such a way that

mRNA D U � ˙ � VT : (34.1)

Matrix mRNA has n rows (one for each gene) and tk columns. In economy size, the
dimension of the respective other matrices are: U n � tk , ˙ tk � tk , V tk � tk . The
matrix ˙ contains the singular values in decreasing order. It is observed that most
of the values are small compared to the first ones, so one can reduce the matrix ˙
in such a way that only the main modes of the system are calculated to decompose
matrix mRNA. The number of singular values considered here is s. So, the matrices
have the following dimensions: U0 n� s, ˙ 0 s� s, V0 s� tk . To be conform with the
approach introduced in the next section, two matrices are combined, so the overall
mRNA dynamics is given by the following equation:

mRNA D U0 � ˙ 0 � V0T D US � V0T ; (34.2)

where US (n � s) represents the strength of coupling of each mode V0T (s � tk).
The rows of V0T can be interpreted as the time course data of key players of the
system. However, in general, it represents a linear combination of transcription
factor concentrations and activities.

Based on the available data set with transcriptomic data [2] nD 2040 genes are
considered in the model with tk D 18 time points.
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3.2 Network Component Analysis

A cognate approach incorporating detailed biological knowledge was applied and
a further model was developed. The model is based on the concept of Network
Component Analysis (NCA) [10] that allows a semi-quantitative description of
gene expression based on measured transcriptomic data. In brief, the approach is as
follows. The number of selected genes isN and the number of selected transcription
factors is m. The dynamics of a single gene (i ) is described with an ordinary
differential equation:

PmRNAi D ki TF
k1i
1 � TF k2i

2 � � � � � TF kmi
m � kz mRNAi (34.3)

with the last term describing the degradation of the mRNA. Parameters kj i are
related to the strength of each transcription factor TFj binding to the respective
control sequence: if kj i > 0, then the transcription factor is an activator, while
kj i < 0 points to an inhibition. Assuming that the dynamics of mRNA is faster than
protein synthesis, a steady-state assumption holds true and the following equation
results after fixing a set point (subscript 0):

mRNAi
mRNAi0

D
�
TF1

TF10

�k1i �
TF2

TF20

�k2i
� � �
�
TFm

TFm0

�kmi
: (34.4)

Taking logarithm (log2) leads to:

log
mRNAi
mRNAi0

Dk1i log

�
TF1

TF10

�
Ck2i log

�
TF2

TF20

�
C � � �Ckmi log

�
TFm

TFm0

�

(34.5)

which can be written in matrix form:

mRNA D K � TF ; (34.6)

with K isN �m coupling matrix representing the effect of each transcription factor
on the respective gene and TF is a m � tk matrix of transcription factor activities
(tk is again the number of available data points). The aim is now to decompose
matrix mRNA to get both K as well as TF. Note that the entries of K have to be
specified before (value 0 if a transcription factor is not involved in the regulation
of the gene and 1 as starting value for the algorithm, if a transcription factor is
involved) the algorithm starts, that is, the structure of the model has to be given and
NCA determines the coupling strength and the time course of transcription factor
activities. To solve the problem, the following objective function is minimized:

min jjmRNA � K � TFjj2 (34.7)
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considering the difference between measured data and model simulation. Further
details and the algorithm as MATLAB file can be found in the original paper [10].

The model is based on available transcriptomic data [2], but in contrast to
the SVD approach, is reduced to focus on central metabolism. It comprises 50
transcriptional units (75 genes) and mD 4 transcription factors (Crp, ArcA, FruR,
and GalS). After filtering out genes with no entry in the database (no experimental
evidence that the gene is under control of one of the transcription factors) the final
model contains ND 33 genes, representing the central metabolism. The choice is
based on prerequisites of the algorithm and the experimental conditions chosen. So,
transcription factor Fnr, related to genes that are involved in oxygen consumption
is not considered. Also, several other transcription factors cannot be integrated
or are not significant, e.g., considering transcription factor Fis showed that this
transcription factor has only marginal influence on the calculations.

4 mRNA–Protein Relationship

An interesting observation is that in many cases the dynamical behavior of mRNA
and protein seem not to be correlated. However, for steady-state data, a good
agreement was shown [12, 14]. Experimental data, protein, and mRNA time course
data are available for example for the LacZ protein from the two data sources. Due to
the fact that a dynamical system is analyzed, a modeling approach was also chosen
here to correlate mRNA and protein dynamics. As a starting point, a differential
equation for the protein is set-up:

PP D ksyn TA mRNA � .� C kd/ P: (34.8)

The equation takes into account, that the rate of protein synthesis is proportional
to the amount of mRNA (mRNA) available and to the amount of proteins (TA)
representing the translation apparatus (parameter ksyn) and a degradation term
(parameter kd). In translation, several proteins are involved that are also subject
to dynamical changes as can be seen from the experimental data (see below). The
rate of degradation is proportional to the protein concentration; furthermore dilution
by growth (specific growth rate is �) is considered. The mRNA data is scaled with
respect to a chosen value at the beginning of the experiment. This can be done with
the protein concentration in the same way. Having p D P=P0, with P0 is being
the set point for the protein, ta D TA=TA0 with TA0 is the corresponding operation
point for the translation apparatus, and the fact that the mRNA concentration can be
reconstructed from the measured data mRNAM , the equation from above reads:

P.p P0/ D ksyn ta TA0 mRNA0 2
mRNAM � .�C kd/ p P0: (34.9)

For the experimental growth situation considered, growth on glucose takes place
in the first growth phase. Here we assume that in the exponential phase the rate of
synthesis and degradation for most of the proteins is well balanced and hence, for
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Fig. 34.3 Left: mRNA data for LacZ. Middle: Corresponding protein time course based on
(34.11). Right: Measured time course for LacZ (symbols) and simulation data from the detailed
dynamic model [1]

the operation point considered (i.e., ta = 1, p D 1, andmRNAM D 0), the following
equation will hold true:

ksyn TA0 mRNA0 D .� C kd/ P0: (34.10)

Plugging in this equation, the equation for the scaled protein results in:

Pp D �
ta 2mRNAM � p

�
.�C kd/: (34.11)

The equation is based only on a single unknown parameter, kd that allows to adjust
the model in such a way that the experimental data are matched. To validate the
approach, a comparison with experimental data for LacZ based on the two data
sets is shown in Fig. 34.3. Note that a first calculation was performed to determine
“ta” (transcription/translation apparatus) and that this results were used for the
example here. Comparing the results from the proposed approach (middle plot) with



586 Andeas Kremling

the experimental and simulation data [1] (right plot) reveals that both time course
data for the LacZ protein show qualitatively a sufficient agreement. Note that the
simulation in the middle plot is based only on the few data points in the left plot,
while the dynamic simulation in the right plot is continuous.

5 Transcription Factors Activities During Growth
on Glucose and Lactose

The modeling approaches introduced so far are applied to growth of E. coli on
glucose and lactose. This is a very classical experiment to demonstrate genetic
control and is discussed very frequently in the literature. To compare transcription
factor activities, two data sets were used. In [1] 18 experiments are used to calibrate
the comprehensive model introduced in Sect. 2. In [2] an experiment with the focus
on transcriptomic data during the same environmental condition was introduced.
To compare the data sets, a time scale normalization was performed. This was
necessary since different initial values for glucose and lactose were used. This leads
to the observation that glucose runs out to different time points. So, the experimental
data was subdivided into two phases: Phase 1 corresponds to growth on glucose
while phase 2 growth on lactose. As was shown already above, the two time courses
for biomass show a good agreement.

5.1 Results for the Singular Value Decomposition

For the complete data set in [2] a SVD composition was performed. The data set
contains 2040 genes and 18 time points. Figure 34.4 shows the dynamics of the first
two modes that are the first two columns of matrix V (see above). The SVD reveals
a characteristic mode on a short time scale (1–1.5 h) and a characteristic mode on
a longer time scale (4 h). Sequential growth of E. coli on the two substrates, as can
be seen in the figure, leads to a short time period where the organism must adapt to
the altered situation. As discussed in [13], the stringent response, mediated by the
alarmone guanosine 3’,5’-bispyrophosphate (ppGpp) coordinates gene expression
in the transition time from growth on glucose to growth on lactose. Mode 1 from
the SVD approach corresponds very well to this time frame (compare Fig. 1
in [13]; it shows expression data of genes that were under control of ppGpp. Direct
measurement for ppGpp for this type of experiment is not available, however, for
an experiment with glucose and succinate as substrates, ppGpp was measured [4].
The time course of ppGpp during this experiment reveals a fast time constant and
the system reaches a new steady state after 30 min). It is the dominant mode, that
is, the dynamics of all 2040 genes can be explained in large part by this mode.
Mode 2 shows a short decrease when glucose is running out, then quickly increases
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Fig. 34.4 The first two characteristic modes from SVD. Left: Mode 1 with a short time scale;
right: Mode 2 on a longer time scale. Time is not scaled here

and is present during the overall time period until lactose is running out. This
mode reflects growth on lactose where many genes are adjusted to meet the cellular
requirements.

5.2 Transcription Factors Connectivities and Activities

NCA was applied several times for different systems. However, a problem that is
seldomly addressed in the literature is the correct sign of the entries in matrix K
(coupling strength). The signs should be in agreement with data base entries, e.g.,
Ecocyc.

In the model, four transcriptions factors were considered: Crp, ArcA, FruR, and
GalS. Figure 34.5 shows the elements of matrixK for every transcription unit in the
model. In the same plots, the entry of the correct sign according to Ecocyc is also
given as gray bar. Note, that according to Fig. 34.2 the sign for repressor FruR has to
be inverted. Comparing the database entries for positive or negative regulation, the
following results are obtained. The entries are correct for the cAMP�Crp regulated
genes in 82.35%; for ArcA in 100%, for FruR for 70%, and for GalS in 80% (note
that if a calculated value is zero or below 0.05, the gene is not counted in the
statistics, e.g., pfl, cydAB, and rpoS that are under control of ArcA).

Figure 34.6 left shows the simulation results for the complex cAMP�Crp for the
bottom-up model [1]. On the right side the corresponding result for NCA is shown.
The second line of plots shows the dynamics of fructose-1,6-bisphosphate�FruR in
both approaches. As can be seen, transcription factor activities from the bottom-up
approach and from the top-down approach agree qualitatively well.
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6 Stress Response

Running out of the major carbon source glucose leads to a sudden shut-down of
the genes for the translation apparatus and an immediate recovery at the beginning
of growth on lactose. This cellular response is called stringent response and is a
part of the stress response of the cell. The stringent response is monitored with the
time course of nine genes involved in transcription and translation. The choice of
genes is based on the selection in [2, Fig. 4]; note, that the choice mainly focuses on
genes of the 50S ribosomal subunit and the 30S ribosomal subunit. To determine the
effects on the protein level, the approach shown above was applied. Using (34.11)
leads to the dynamics shown in Fig. 34.7. Interestingly, the fast dynamics that can
be seen on the mRNA level is not reflected on the calculated protein level. Based
on the fact that both, synthesis and degradation (dilution by growth) decrease after
the run off of glucose, the protein level remains nearly unchanged during the whole
experiment.

A further stress response is the activation of the �S -factor. This sigma factor is
under control of cAMP�Crp and it is well known that also translation and protein
degradation are regulated (not included in the model). Figure 34.8 shows the fast
synthesis of the mRNA of �S when glucose is running out. However, since the
specific growth rate at the end of the glucose phase (and before the run out) is still
high, the protein level decreases – due to dilution – indicating a non-stress situation.
Quickly after the run out of glucose, the level of �S increases and finally decreases
in the middle of the second growth phase.
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7 Product Secretion During Growth on Lactose

Growth on lactose leads to a lower specific growth rate than growth on glucose.
In [3] it is discussed that maybe ethanol is produced in large amounts during growth
on lactose (Fig. 4 therein) while in [1] it is observed that galactose is produced. In
the following, (34.11) is used to monitor the dynamics of the galactose transporters,
the galactose operon, the galactose regulators, and the enzymes responsible for by-
product synthesis from glycolysis (lactate, ethanol, and acetate).

Figure 34.9 shows the calculated time course data for the two galactose regulators
GalS and GalR, the proteins of the galactose operon galETKM, and the galactose
transport systems Mgl (three genes) and GalP.

From database entries it is known that GalS is under control of cAMP�Crp but
not GalR. This can be seen in the time course on the left side: GalS increases in a
small amount while GalR decreases based also on the negative control from GalS.

Figure 34.10 finally shows the calculated time course data for the proteins
involved in by-products synthesis. The enzyme involved in ethanol synthesis shows
an increase while the enzyme involved in lactate synthesis decreases. In comparison
with the galactose pathway, the induction of the ethanol pathway as predicted
in [3] is rather marginal. The observation that acetate is produced during a high
specific growth rate of E. coli on glucose and other carbon sources is documented in
several publications (e.g., [14] and references therein). Very recently it was shown
that both pathways involved in acetate synthesis and degradation (Pta, Ack, and
Acs, respectively) are repressed during growth on glucose, however, the strength of
repression is different leading to the excretion of acetate for high growth rates [14]:
for high specific growth rates the acs operon is severely repressed while pta
and ackA are repressed moderately. Here, we confirm the results while monitoring
the protein levels during higher values of cAMP�Crp. As can be seen in the figure,
the Acs protein increases in the second growth phase reflecting a strong repression
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in first growth phase. In contrast, Pta and AckA show a very different behavior. Both
protein levels drop during the first hour and resume afterwards. Surprisingly, gene
poxB that is known to be not repressed by cAMP�Crp is also induced during growth
on lactose. PoxB also synthesizes acetate from acetyl-CoA.

8 Discussion

Mathematical modeling is a powerful tool in systems biology to reproduce ex-
perimental data based on the knowledge of the underlying biochemical network
and to formulate and test hypotheses. Here, mathematical modeling is applied
to show that models based on the bottom-up and the top-down approach lead
to a consistent behavior with respect to the dynamics of state variables of the
system. In bottom-up models, state variables are chosen in such a way that the
network of interest is adequately described. In general, metabolites, mRNA, or
proteins are chosen as state variables and balance equations are set up to describe
in which way the state variables change over time. Thereby, reaction rates are
formulated that describe either a metabolic flux or activation/inhibition in signaling
networks. A main drawback of this approach is the high number of unknown
kinetic parameters needed for the reaction kinetics. Models based on a top-down
approach integrate experimental data based on “omics” technologies (transcrip-
tome, proteome, etc.) together with biological knowledge. Several approaches are
described – either to find all significant interconnections between two nodes in the
network or to explain the behavior of nodes based on additional variables. The latter
approach is used in SVD of time course data and also in NCA. In NCA additional
biological knowledge is incorporated in form of basic information on the network
structure (gene is controlled by a transcription factor or not). All three approaches
are related by the observation that they produce the dynamics of transcription factor
activities: the bottom-up network includes metabolites in central metabolism that
are starting points of signaling pathways that end with the activation/deactivation of
regulators; in the SVD approach, characteristic modes are calculated that represent
the overall dynamics of the system and in NCA selected transcription factors are
used to describe the dynamics of the respective genes. For a classical example from
microbiology, diauxic growth on glucose and lactose, all approaches are used to
calculate the respective time course data. Comprehensive experimental time course
data from two sources is used to calibrate the dynamical bottom-up model and to
calculate the coupling strength of the transcription factors for the respective genes.

Using SVD the two first singular values and the corresponding entries in the
U and the V matrices are analyzed. The first singular value (largest absolute value)
corresponds to a initial fast response of the cell named stringent response: genes that
are involved in amino acid synthesis or the transcription and translation apparatus
are shut down and resume after approximately one hour. A very similar behavior is
observed when looking on the time course of FruR with the NCA approach. Effector
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Fructose-1,6-bisphosphate of FruR in this way is a candidate to transduce the signal
(running out of glucose) to the components of the stringent control circuit. The
second singular value reflects the dynamics on a longer time scale and describes
the adaption of the organism to the new condition. A comparable dynamics is
seen in the time course of cAMP�Crp in the NCA approach. Starting point for this
signaling pathway is the ratio of two metabolites, PEP, and pyruvate. However,
before activating transcription factor Crp a further element with own dynamics,
namely, the synthesis of cAMP comes into play. The synthesis and excretion of
cAMP shows dynamics on a longer time scale and therefore characterises the
transient behavior of the cells from growth on glucose to growth on lactose.

NCA was applied in several cases, however, the entries of matrix K are not
discussed at all. Here, it is shown that the sign of the entries in matrix K show
a good agreement with the entries in data bases. For transcription factor FruR the
error of 30% might be due to the fact that other regulators contribute to transcription
of the respective genes.

The stringent response leads to an immediate shut down of transcription of
a number genes involved in biosynthesis. When looking at the transcription and
translation apparatus, the shut down of transcription is not seen on the protein level.
This is due to the fact that both the rate of synthesis and the specific growth rate
change with time. This leads to a very well balanced behavior of the proteins.

During growth on lactose, galactose is produced in large amounts as observed
in [1]. This is also reflected in the microarray data in [2] where the genes for
galactose uptake and metabolism are induced. Acetate secretion is observed during
growth on glucose and lactose. Monitoring the proteins confirms a recent result
described in [14] that the acs gene is repressed much more than ackA and pta.
However, a further pathway via poxB shows a higher value in the second growth
phase on lactose. This corresponds well with an increase of the specific acetate
production on lactose as observed in [1]: in the glucose phase the yield coefficient is
0.35 g/g while in lactose growth phase it increases to 0.45 g/g (data calculated from
material provided in the supplement).

In the recent literature, bottom-up and top-down modeling approaches are used
“stand alone” in many applications. Here, evidence is provided that for systems very
well understood from a biological point of view, both approaches lead to comparable
simulation results of unmeasured state variables, here transcription factor activities.
This gives hope that in the future, both approaches can benefit from each other in
a more intensive way than nowadays. A possible way to do this is to quantitatively
map the transcription factor activities from the bottom-up approach to the top-down
approach (e.g., using empirical functions). So, the bottom-up model can be used
to simulate the expression of the genes from the top-down model under different
conditions than presented here.

Acknowledgments Funding in part by the German BMBF during the FORSYS initiative is
acknowledged.
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Chapter 35
A Differential Equation Model to Investigate
the Dynamics of the Bovine Estrous Cycle

H.M.T. Boer, C. Stötzel, S. Röblitz, and H. Woelders

Abstract To investigate physiological factors affecting fertility of dairy cows, we
developed a mechanistic mathematical model of the dynamics of the bovine estrous
cycle. The model consists of 12 (delay) differential equations and 54 parameters.
It simulates follicle and corpus luteum development and the periodic changes in
hormones levels that regulate these processes. The model can be used to determine
the level of control exerted by various system components on the functioning
of the system. As an example, it was investigated which mechanisms could be
candidates for regulation of the number of waves of follicle development per cycle.
Important issues in model building and validation of our model were parameter
identification, sensitivity analysis, stability, and prediction of model behavior in
different scenarios.
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Department of Numerical Analysis and Modeling, Computational Systems Biology Group,
Zuse Institute Berlin (ZIB), Berlin, Germany
e-mail: stoetzel@zib.de; susanna.roeblitz@zib.de

H. Woelders
Animal Breeding and Genomics Centre, Wageningen UR Livestock Research, Lelystad,
The Netherlands
e-mail: Henri.Woelders@wur.nl

I.I. Goryanin and A.B. Goryachev (eds.), Advances in Systems Biology,
Advances in Experimental Medicine and Biology 736,
DOI 10.1007/978-1-4419-7210-1 35, © Springer Science+Business Media, LLC 2012

597



598 H.M.T. Boer et al.

1 Fertility in Dairy Cows

Bovine fertility is the subject of extensive research in animal sciences, especially
because fertility of dairy cows has declined during the last decades. Subfertility
has negative implications for dairy farm profitability, sustainability of animal
production, and animal welfare, as it takes more time and effort to get cows to
be pregnant. The decline in fertility has coincided with selection for a higher milk
yield, and is manifested in alterations in hormone patterns, reduced expression of
estrous behavior, and lower conception rates. However, it is unknown if and how
high milk yield and subfertility are causally related. Systems biology approaches,
including the use of mathematical models, can help to increase our understanding of
the complex interplay of factors involved in the reproductive cycle. Such models can
be very valuable in studying effects of, e.g., stress or disease on reproduction [1].

The bovine estrous cycle is the hormonally controlled recurrent period when the
cow is preparing for reproduction by producing a fertilizable oocyte. The main
tissues and organs involved in the regulation of the estrous cycle are the ovaries,
the uterus, the hypothalamus, and the anterior pituitary. These organs interact via
hormones in the blood. A normal cycle includes two or three wave-like patterns of
follicle development, in which a cohort of follicles starts to grow. The length of the
estrous cycle is often taken to be approximately 21 days, but the cycle length may
be shorter in two-wave cycles than in three-wave cycles. The first one or two waves
produce a dominant follicle that does not ovulate, but undergoes regression under
influence of P4 (see abbreviation key in the caption of Fig. 35.1). The dominant
follicle in the last wave produces increasing amounts of E2, triggering the surge of
LH, which induces ovulation. Once an oocyte is successfully ovulated, the remains
of the follicle form a new P4-producing CL.

In this chapter, we briefly describe the development of a mathematical model of
the bovine estrous cycle, we discuss how such a model could be validated, and we
show an example of how the model can be used to investigate patterns of follicle
development. The model summarizes physiological knowledge and empirical data,
and thereby provides insight in the regulatory structure of the system.

2 Modeling the Bovine Estrous Cycle

The endocrine and physiologic regulation of the bovine estrous cycle has been
studied extensively. For some specific mechanisms or parts of the system mathe-
matical models have been developed (reviewed in [2]), but mostly these models
were of limited scope and do not contain all the major tissues and hormones
necessary for simulation of the dynamics of follicle development over consecutive
cycles. From the mathematical point of view, many biological processes, such as
hormonal interactions, can be modeled with the help of differential equations, which
describe the rates of change of the involved substances over time. We developed a
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Fig. 35.1 Key components of the biological system and their interactions. “C” and “�”:
inhibiting and stimulating effects respectively. Dashed lines: time delay. Foll follicular function
(in the model representing the combined capacity of all follicles present at any time to produce
E2 and Inh), CL corpus luteum (in the model representing the capacity of the CL to produce
P4, rather than the physical size of the CL), P4 progesterone, E2 estradiol, Inh inhibin, GnRH
gonadotropin releasing hormone, FSH follicle stimulating hormone, LH luteinizing hormone,
PGF2˛ prostaglandin F2’

mathematical model of the dynamics of the bovine estrous cycle on individual cow
level that is able to simulate follicle and CL development and the periodic changes in
hormones levels that control these processes by a set of linked differential equations.
We performed an extensive literature research on how the individual components
of the cycle function together, obtained abstraction levels that display the most
important mechanisms, and constructed a flow chart of their interactions. The key
components of the biological system and their interactions incorporated in the model
are shown in Fig. 35.1.

We derived a differential equation for each of the components mentioned in
Fig. 35.1. This initial model contains 12 ordinary and delay differential equations
and 54 parameters [3] and is partly based on previous work by Selgrade and
colleagues [4] and Reinecke and Deuflhard [5] on modeling the human menstrual
cycle. Hill functions are used to model the non-linear stimulating and inhibiting
effects of hormones. In the model, the amount of GnRH in the hypothalamus is a
result of synthesis in the hypothalamus and release into the pituitary and is affected
by P4 and E2. FSH is synthesized in the pituitary when the level of Inh is low.
FSH release is stimulated by GnRH and inhibited by E2. LH synthesis in the
pituitary is stimulated by E2 and inhibited by P4, and LH release is stimulated by
GnRH. Follicle development is stimulated by FSH and inhibited by P4 and the LH
surge. The production of P4 is proportional to CL function. PGF2’ induces CL
regression and is stimulated by P4 with a time delay. The production of E2 and Inh
is proportional to follicular function. Simulation results (Fig. 35.2) show that a set
of equations and parameters was obtained that describes the system consistent with
empirical knowledge. Even though the majority of the mechanisms included in the
model are based on relations that in literature have only been described qualitatively,
the model output is surprisingly well in line with empirical data.
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Fig. 35.2 Model parameterization generating estrous cycles of approximately 21 days, with three
peaks of FSH and three corresponding waves of follicular growth. The third wave of follicular
growth takes place when P4 levels are low, which results in increasing levels of E2. This causes
an LH surge, which then triggers ovulation. (a) Foll (solid line) and CL (dashed line). (b) GnRH
(solid line), LH (dashed line), and E2 (dashed–dotted line). (c) FSH (solid line) and Inh (dashed
line). (d) PGF2’ (solid line) and P4 (dashed line). The equations are expressed on a relative scale
in order to simplify parameter estimation, and therefore the y-axis of the figures is dimensionless

3 Model Validation

There is no general procedure for model validation. The most important aspect is
whether certain model simulation outcomes match with some given experimental
data. Model validation therein aims to assess the predictive accuracy of the
numerical model, and thereby to build confidence in the model. A model has
an added value when it not only matches given data but also gives insight into
certain processes that cannot be observed by measurements, and thus hints to
explanations for certain phenomena. Here we discuss four steps that we consider
to be important for the model building and validation of our specific model of
the bovine estrous cycle: parameter identification, sensitivity analysis, stability, and
prediction of model behavior in different scenarios.

Our model describes the interactions between key components of the bovine
estrous cycle. For solving the system of differential equations, the solver RADAR5
[6] developed for the solution of stiff delay differential equations was used. The
main difficulty lies in the identification of the involved parameters. Most parameter
values in the model are neither measurable nor available in literature, and sometimes
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even the range of values is completely unknown. For a model of a complex
system with various components functioning together, this leads to a large number
of differential equations and unknown parameters. Under these circumstances,
estimating all parameters simultaneously is impossible. For our model, we used
a model decomposition approach to obtain a good initial guess of the parameter
values for the optimization procedure. The model was decomposed into disjoint
model parts, and parts of the model were temporarily replaced by input curves
based on published data of hormone profiles of cows with a normal estrous cycle.
A first subset of parameters was then estimated, and step by step the output
functions for the other model parts were fitted, until finally a closed network
was obtained [7]. Parameters were estimated with software developed at the Zuse
Institute (NLSCON). This software uses subtle mathematical techniques such as
affine covariant Gauss–Newton methods that take into account sensitivities and
linear dependencies of the parameters [8].

A sensitivity analysis for the complete set of model parameters has been
performed with techniques described in [8]. A higher sensitivity means that a
change in the value of the parameter has a larger effect on the model solution.
Sensitivity analysis can, therefore, identify the parts that need a more precise
parameter estimation. It is an important step not only in the parameter estimation
algorithm but also in model validation, since it quantifies the relative importance of
parameters. Thereby, it shows if the model does not depend unexpectedly strong
on biologically less relevant parameters. The sensitivity analysis of our model
confirmed that parameters that are very important for follicle development and cycle
length had a high impact on the model solution.

Model validation also deals with the question of stability. Stability investigates
how changes in the model input affect model output. In a stable model, small
perturbations should not disturb the qualitative behavior of the system. As can also
be observed in Figs. 35.2 and 35.3, some parameterizations of our model produce
a stable limit cycle (periodic behavior), while others generate consecutive estrous
cycles that are not entirely identical (quasi-periodic behavior). The variations
between simulated cycles are thus not an intrinsic characteristic of the model, but
depend on the parameterization. In the bovine, a new population of follicles is
recruited in each cycle, with a different number and size, leading to differences
in the hormonal profiles that are the result. We, therefore, think the variation
between estrous cycles is not only due to changes in external factors for that cow
but also arises from the fact that each cycle presents slightly new and somewhat
different “starting values” for the next cycle, which we think that our model can
mimic. Stability of the model is also an essential requirement to handle variation
between individuals. With one single model, we aim at finding parameterizations
for individual measurement data. This could be done by defining input functions
of individual time series, but also by simulating external influences like effects of
nutrition or stress. However, experimental data available in the literature often do
not meet the requirements for these individual parameterizations, because either
the time scale of investigation is too short or the data lack information of certain
experimental parameters.
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Fig. 35.3 A change in specific parameter values can result in a series of two-wave cycles (a) or
alternating three- and two-wave cycles (b). E2 (dotted line), GnRH (solid line), and LH (dashed
line). This figure was obtained by decreasing the parameter that represents the maximum inhibiting
effect of P4 on follicular function

Apart from fitting to individual data, the model could be used to determine the
level of control exerted by various system components on the functioning of the
system. This could be done by changing the value of specific parameters, aiming to
obtain a certain model output, or by mimicking, e.g., external hormone administra-
tion. Experimental data to verify the predicted causes of certain phenomena are not
always available, but the simulation could provide some likely candidates involved
in the regulation of certain mechanisms that could be tested in further experiments.
Further, the model can serve as a basis for more elaborate models and simulations,
with the ability to study effects of external manipulations and genetic differences.
Summarizing, there are many possible model applications, and therefore we should
think carefully about what we want to investigate and which parts of the model need,
therefore, to be validated.
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4 Using the Model to Investigate Patterns of Follicle
Development

The model was initially parameterized to generate three waves of follicle devel-
opment per cycle. One model application that has already been performed was
to investigate which mechanisms could be likely candidates for regulation of the
number of waves in the bovine estrous cycle. This specific research question allowed
us to predict the temporal behavior of the system, to optimize parameters, and to
study the sensitivity of dynamical processes with respect to its initial parameter
values. A normal bovine estrous cycle contains two or three waves in which a
cohort of follicles starts to grow. However, the reason for cycles being of the
two or three wave types is unclear. Some studies report better fertility in three-
wave cycles compared to two-wave cycles [9], and it has been suggested that the
older and larger ovulatory follicles in cycles with two waves contain oocytes of
less quality than cycles with three waves [10]. However, other studies showed no
difference [11]. A better understanding of endocrine mechanisms regulating follicle
development is important to obtain more precise control of the estrous cycle, which
can help improvement of pregnancy rates. In the bovine, the follicle that is dominant
at the moment of CL regression develops to become the ovulatory follicle. We
assumed that there may be two mechanisms by which the follicle-wave pattern can
be influenced. One is the rate of follicle growth and the other is the time point of CL
regression. In our model, follicle growth is stimulated by FSH and inhibited by P4.
Therefore, the first mechanism might be induced by changing the effect of FSH or
P4 on follicle growth, or by changing FSH or P4 synthesis. The second mechanism,
i.e., the time point of CL regression, is expected to have an effect on the follicular-
wave pattern because two-wave cycles can occur when the CL starts to regress at an
earlier time point, e.g., because of an earlier increase of PGF2’. We have selected
ten parameters in our model that relate to these two overall mechanisms, and we
have tested whether changing the value of these parameters affects the number of
waves per cycle in the model simulations. For this purpose, the model was extended
with an extra equation, which is described in detail in [12]. In brief, the fixed time
delays for the effect of the increase in P4 levels on PGF2’ release (which limited
the predictive ability for this part of the model) were replaced by a mechanism
in which the ability to synthesize PGF2’ develops over time under the influence
of P4. PGF2’ levels now rise because P4 stimulates the production of enzymes
and receptors required for PGF2’ production, which was previously included as a
“black box” by using large delays.

Simulation results showed that a change in the value of specific parameters
involved in the regulation of follicle growth rate or the time point of CL regression
can change the number of waves in a cycle (Fig. 35.3). Of the ten parameters
tested, six affected the number of waves per cycle. Like in real cows, the period
of oscillations (cycle length) appeared to be variable. Cycles with two waves had a
shorter cycle length. In non-ovulatory waves of two-wave cycles, FSH levels were
higher, Foll (follicular capacity to produce E2 and Inh) was larger, and therefore
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also E2 and Inh levels were higher compared to non-ovulatory waves of three-wave
cycles. The two-wave cycles obtained by a change in follicle growth rate were due
to a later emergence of the second wave, while the two-wave cycles obtained by a
change in time point of CL regression were caused by a shorter CL life span.

The simulation results thus showed that several components of our model of
the bovine estrous cycle can affect the pattern of follicle growth, and some of
them are plausible biological mechanisms that could explain these patterns. The
model appeared to be sufficiently stable when simulation of two-wave cycles
was performed. A reason of poor reproductive performance could be suboptimal
matching of follicle growth rate and the time point of CL regression. An earlier
time point of CL regression (and therefore a shorter cycle) induces a switch from
three to two waves, because when P4 levels are sufficiently decreased at the second
wave, this will become the ovulatory wave. Although in the bovine, two-wave cycles
are on average shorter than three-wave cycles, the difference is not the duration of
a complete wave. Based on reported differences in follicle development, we think
that differences in number of waves in natural estrous cycles may rather be due to
changes in the mechanisms regulating follicle growth rate, and that the shorter cycle
length is rather the result than the cause of the change in wave pattern.

In conclusion, this mathematical model can provide plausible pathways of
interactions of follicular and endocrine dynamics that contribute to bovine fertility.
Our aim is not to develop a model as simple as possible, but a model that, although
with a high level of abstraction, includes all the main processes that are considered
important from a physiologic point of view, in order to obtain a model that improves
insight in these processes.
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Abstract Reviews of the productivity of the pharmaceutical industry have
concluded that the current business model is unsustainable. Various remedies
for this have been proposed, however, arguably these do not directly address
the fundamental issue; namely, that it is the knowledge required to enable good
decisions in the process of delivering a drug that is largely absent; in turn, this
leads to a disconnect between our intuition of what the right drug target is and the
reality of pharmacological intervention in a system such as a human disease state.
As this system is highly complex, modelling will be required to elucidate emergent
properties together with the data necessary to construct such models. Currently,
however, both the models and data available are limited. The ultimate solution to
the problem of pharmaceutical productivity may be the virtual human, however, it is
likely to be many years, if at all, before this goal is realised. The current challenge
is, therefore, whether systems modelling can contribute to improving productivity
in the pharmaceutical industry in the interim and help to guide the optimal route
to the virtual human. In this context, this chapter discusses the emergence of
systems pharmacology in drug discovery from the interface of pharmacokinetic–
pharmacodynamic modelling and systems biology. Examples of applications to the
identification of optimal drug targets in given pathways, selecting drug modalities
and defining biomarkers are discussed, together with future directions.
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1 Introduction

Recent reviews of the productivity and processes of the pharmaceutical industry
have concluded that the current business model is not optimal, or even unsustainable
[1]. More specifically, detailed analyses have highlighted that arguably the most
significant challenge facing the pharmaceutical industry is compound attrition (the
proportion of first in human trial registered drugs that are subsequently approved,
a success rate measure that is currently about 10%) [2]. In turn this reflects the
failure of preclinical efficacy and safety model data to translate into human proof of
mechanism/concept. Various strategies have been proposed for tackling this attrition
issue, including increased outsourcing, use of biomarkers, personalised medicine,
adaptive trial design, open innovation and a greater direct input from academia [3].
However, one topic that is often not evaluated is the cause of the apparent lack of
productivity. No doubt a major component of this is the complexity of questions
arising in drug discovery; there are �25k genes in the human genome potentially
giving rise to an estimated 1.8 million protein species [4]. There are more than 300
cell types, 4 types of tissue and 12 organ systems. Together these give rise to the
organism and its behaviours over timescales ranging from msec to decades, where
interactions with the environment influence outcome, be it disease or non-disease.
Clearly, the potential complexity of this is staggering; for example, theoretically
the number of paired combinations of the 25k genes alone yields �300 million
interactions and one conclusion is that predicting the impact of pharmacological
intervention is likely to be extremely difficult and non-intuitive.

The notion that cost savings can be achieved via strategic re-organisation may
be true, but without a shift in the fundamental understanding of disease biology
there is no reason to believe that attrition will improve relative to that observed
in the past decades. In this context, experimenting with approaches to improve
the understanding of complex biology prior to engaging significant resource would
appear logical. In other disciplines such as engineering, finance and environmental
science, mathematical modelling is used successfully and indeed the application in
biology is growing dramatically [5]. In the age of rapidly developing information
technology and computational capabilities, the potential to integrate, share and
visualise vastly increasing sources of biological data is without precedent. Indeed
this exciting progress at least introduces the idea of generating a virtual human, with
for example the virtual physiological human attracting of much current attention [6].
However, the gap between the promise and the reality of understanding a system
such as the human body are enormous; undoubtedly most of the data needed to
construct models with which we can confidently predict outcome do not exist yet
and Cohen’s recent statement that “Despite the eloquent pleas that have been made
for model-based drug development, it is clear that in many cases the basic data
to do this simply are still lacking” remains true [7]. Although it would appear
clear that collecting data on the behaviour of human proteins, cells and tissues and
integrating these to generate a better understanding is a desirable objective, reducing
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this to practice in an efficient way is difficult. Potentially industrial/academic pre-
competitive consortia could be a fruitful way to realise synergies and tackle the
tough technical, scientific and logistical challenges. However, it is likely to be many
years, if at all, before the virtual human is available. The immediate challenge is,
therefore, whether systems modelling can contribute to improving productivity in
the pharmaceutical industry in the interim.

But why should an improved, but far from complete understanding of system
complexity benefit drug discovery? A common response to this question is to
conclude that effort to understand such a complex and large system a human disease
state is likely to be futile and instead to use surrogates in which to observe emergent
properties; i.e., in vitro systems and in vivo animal experiments where the influence
of drugs can be evaluated in complex models of disease states. However, we should
recall this paradigm has been in place for decades and culminated in the attrition
observed, with far too many encouraging preclinical discoveries turning out to be
false positives when evaluated in human disease.

An alternative approach is a strategy that aims to build a contextual understanding
of the system. This is currently being employed within companies such as Pfizer,
by combining and integrating the ideas and approaches from the disciplines of
pharmacokinetic–pharmacodynamic (PKPD) modelling with systems biology and
understanding the actions and adverse effects of drugs by considering targets in the
context of the biological networks in which they exist. This trend has been labelled
“systems pharmacology” to highlight the integration of disciplines that have until
recently been distinct [8–10]. Deliverables of systems pharmacology include the
identification of testable hypotheses and likely controlling parameters in the known
system; a premise of this thinking is that by measuring and therefore defining
these parameters, our knowledge will be improved and hence such biomeasures
(i.e., quantitative information about system properties such as, for example, target
expression levels and turnover dynamics) are key enablers for success in this area in
a similar way as biomarkers have been for PKPD. By generating successive cycles
of modelling and biomeasures, the confidence in models can be increased. These
experimentally tested models can then be used for project selection and progression,
facilitating the assessment of the relative risks of projects. Furthermore, optimal
experiments to de-risk programmes ahead of Phase 2 can be designed and projects
with a low probability of success terminated early (see Fig. 36.1). Although the
added value of systems pharmacology would be greatest if novel targets can be
identified with high confidence, there are also benefits from terminating work early
on targets that will ultimately lack the requisite safety or efficacy in disease. The
resource saved could be re-used to expedite the remaining programs or to generate
data and models to improve our systems understanding.

Some examples of useful application in pharmaceutical research follow, but in
general the work involves three phases. The first is to engage with a project team
to clearly define the question posed. Although this seems trivial and obvious, in
reality this fundamental requirement can be overlooked or indeed be difficult to
define. Nevertheless, several years experience of such projects has shown repeatedly
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Fig. 36.1 Schematic showing an example of how systems pharmacology could be implemented in
drug discovery projects. From an initial evaluation of the literature and input from disease biology
experts, with a mathematical model can be constructed (Iteration 1). For example this could be of a
particular pathway of interest (e.g. the NFKB pathway). The predictions of this model are subject
to feedback from a wider expert panel and subsequently this iteration (Iteration 2), via for example
sensitivity analyses, is used to identify critical assumptions and testable hypotheses. At this stage,
the determination of key system parameters such as target molecule concentrations (biomeasures)
is likely to be critical. An iteration of the model is then produced that is consistent with these data
(Iteration 3). This model can be used to predict clinical outcome and contribute to trial design e.g.
initial dose prediction. Finally, the actual result can be compared to predictions and the conclusions
incorporated in subsequent projects

that having this clarity is critical to a successful outcome. The second phase is to
establish the relevant facts via a detailed survey of the available internal and external
data. In this regard, the use of state of the art text mining [11] can be very helpful.
Finally, once a quantitative and holistic assessment of the available data has been
made, a hypothesis that addresses the question can be proposed and described in
a mathematical model (usually based on ordinary differential equations). The use
of a mathematical model has many advantages. Firstly, with more than a handful
of components, it quickly becomes very difficult, if not impossible, to picture
intuitively the emergent properties of a given system. In contrast, the mathematical
model enables a methodical interrogation of this. Secondly, the model can succinctly
summarise the structure of a hypothesis, the parameters included and the sources
of parameters used to make predictions. In turn this allows assumptions to be
made explicit and facilitates the identification of non-intuitive experiments that
can validate or invalidate the model. Together, this can then enable communication
between the groups in a given drug discovery project. Finally, the model is not static
and can be revised as data becomes available. Hence, it can develop with a project
as a tool to aid decision making. Of course, the tool should be used in addition to
standard decision making input such as preclinical animal model and in vitro data
and considered in this context.
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2 Examples

Medicinal chemistry strategy for avoiding CNS penetration. In certain circum-
stances, excluding a drug from the CNS could be perceived as an advantage.
An example is in the case of opioid agonists, where such drugs have negative
effects in the CNS but potentially positive (analgesic) benefits in the periphery. In
order to prevent a small molecule from entering the CNS, two obvious medicinal
chemistry options are apparent, either designing a molecule with poor blood–brain
barrier (bbb) permeability or designing in attributes that render the molecule a
substrate for P-glycoprotein (PGP). PGP is expressed in the bbb and thought to be a
major contributor to the poor CNS penetration of small molecules [12] with export
against the concentration gradient achieved via active transport. The question in this
instance is whether one of these strategies is superior to the other. In order to address
this, a model of the bbb was constructed (cf. Fig. 36.2 and [13]) incorporating drug
target binding kinetics. Given that the drug was required to be dosed to a pseudo
steady state to achieve the clinical endpoint, we concluded that because the surface
area of the brain is large .200;000 cm2/ and the clearance of the drug across the
bbb is the product of the surface area and permeability, then success for the non-
PGP option was likely to require very low permeability. In this, the quantification
of “low” was critical and the model highlighted the need for better methods for
determining the permeability of the bbb that give a true parameter estimate that
can be used in a prognostic sense, rather than in a relative sense as is current
practice [14]. In summary, the model highlighted a risk with the non-PGP option
that is not immediately apparent without a tool to explore our understanding of this
complex system. Hence, in cases such as this, the systems model view suggests that
developing a drug that is a PGP substrate is the superior strategy.

Inhibition of the NFkappaB (NFKB) pathway by small interfering (si) RNA;
in this case example the project team posed two questions; firstly, what are the
optimal targets within the NFKB pathway and secondly what fractional inhibition is
required to significantly impact the key endpoint of the system? Using a published
model [15], a sensitivity analysis showed that I kappa B kinase (IKK) was the
most tractable influential drug target in the pathway of interest. By assuming, as
a base case, that the area under the curve (AUC) of the oscillation of NFKB in the
nucleus represented a measure of outcome and a 90% decrease in AUC equated
to a positive drug response, the model also showed that inhibition of >95% of the
activity of IKK would be required to achieve this goal. In this particular case, the
drug modality proposed was siRNA; in general with this technology, the maximum
reduction in protein expression that can be achieved is �80%. Hence, we were able
to predict that siRNA was unlikely to yield the necessary efficacy and that, at least
potentially, a conventional small molecule carried a higher probability of success.
It was subsequently found, using human in vitro cell based assays, that although
some inhibition of inflammatory endpoints such as IL8 could be achieved (30%),
it was less than required (personal communication from S. Moschos). This result
highlights the potential for the systems pharmacology approach to set clear criteria
for lead compound selection prior to engaging significant resource.
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Fig. 36.2 Schematic description of the blood–brain barrier model incorporating target binding
kinetics. The model was used to inform decisions on medicinal chemistry strategy. Compartment
1 is the central compartment (e.g., the plasma) and compartment 2 the peripheral (e.g., the central
nervous system). D1 and P1 are, respectively, the drug and protein concentration in the central
compartment; DP1 is the concentration of the drug–protein complex. D2, P2, R2 and L2 are the
concentrations of drug, protein, receptor and lipid in the peripheral compartment; DP2, DR2 and
DL2 are the concentrations of the respective complexes of drug and protein, receptor or lipid. PS
is the permeability-surface area product and kout is the rate constant for removal of the drug from
the plasma

Hepatitis C Virus (HCV) life cycle modelling; in HCV drug research a key
question is why the standard of care [Interferon-’ (IFN-’) plus ribavirin] is
effective for only approximately 50% of patients and, subsequently, what alternative
treatments are plausible. By integrating a selection of published models [16–19]
together with expressions for the PKPD behaviour of (IFN-’) and incorporating
other literature data, we were able to explore this and develop new hypotheses.
Notably, one of the key characteristics determining susceptibility of HCV patients
to IFN-’ therapy (responder vs. non-responder) is the EC50 of IFN-’ and indeed it
has been concluded from analyses of clinical data that the EC50 of non-responder
patients substantially exceeds that measured for responder patients [20]. The two
main experimentally observed phenomena contributing to the variable EC50’s of
IFN-’ treatment are desensitisation and refractoriness. Desensitisation is defined
as an IFN-’ independent decrease in the sensitivity of hepatocytes with respect
to IFN-’ which results from an interaction of virus particles with signalling
proteins/receptors. Refractoriness is defined as an IFN-’ dependent decrease in the
sensitivity of hepatocytes to IFN- P’ treatment which is based on negative feedback
observed in IFN-’ signalling pathway.

To capture these quantitative characteristics of signalling pathways mediating
the response of the hepatocyte to interferon and virus, we have reconstructed key
signalling pathways participating in an IFN-’ based cell response in a mathematical
model of HCV combining virus/cell dynamics with a quantitative description
of IFN-’ dependent JAK/STAT mediated signalling pathways (see for example
[21]). Molecular mechanisms explaining both desensitisation and refractoriness and,
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consequently, the status of HCV patients (responder vs. non-responder) in terms of
dynamic and regulatory properties of signalling and gene regulatory pathways have
been identified. The model has also been applied to identify possible biomarkers
indicating the patient status before IFN-’ therapy is applied. Taking into account
the values of the biomarkers, the model was also able to predict the optimal dosage
and administration regime strategy for each particular patient.

Another example of application of this HCV life cycle model concerns identifi-
cation of alternative plausible treatments. For example, our models indicated that
a viral entry blocking drug, with realistic pharmacological and pharmacokinetic
properties, in combination with the standard of care, could achieve a cure in the
non-responder population. Moreover, the model enabled a rational interrogation of
the drug pharmacological and PK parameters required for success (in this case to
elicit a cure within six months). We found that, for example, a hypothetical drug
blocking viral entry (e.g., via antagonism of the HCV:host cell interaction) with
�0:1 nM potency and exhibiting a PK half life .t1=2/ of twenty one days would meet
these criteria at a feasible dose, when combined with the standard of care. These
properties are consistent with those often exhibited by IgG monoclonal antibody
drugs, where picomolar or even femtomolar affinities can be achieved and t1=2’s are
typically around 21 days [22]. Notably, there are some data showing that anti-CD81
antibodies can prevent re-infection in vivo [23].

This kind of model based input is very useful in drug discovery projects, where
often the range of possibilities at the outset is vast. For example, it is often difficult
to decide whether a small molecule or biological drug is likely to be optimal, or in
either case what is necessary for success in terms of drug pharmacology, PK and
dose. By providing potential answers to such questions, the strategy can be focused,
minimising the time and resource required to deliver a drug. The caveats in this case
are the assumptions inherent in the model, and ultimately the model prediction will
need to be tested clinically.

3 Conclusions

In our experience, the systems pharmacology approach has contributed to improved
decision making in projects, via identification of those carrying a high risk of
failure. In addition, insight into likely requirements for success has been provided,
for example in terms of pharmacology and PK required for a drug. A further
deliverable has been the generation of experimentally testable hypotheses that can
be readily evaluated early in drug discovery. Integrating these biomeasure data
to improve models and/or make decisions in a timely way requires a dynamic
interaction between model building, data generation and feedback from disease
biology experts. In all cases, a key component for success was the formation of
clear questions at the outset of modelling. However, although there are promising
signs that systems pharmacology can add value in drug discovery, there are many
challenges. For example, given the early stage of research into the application of
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systems pharmacology, all current models contain assumptions, any or all of which
could invalidate conclusions. Only by accumulating a body of data on the outcome
of model predictions will we begin to learn about the strengths and weaknesses
of this approach and where the most critical gaps in data and understanding
exist. Conceivably one of the scientific challenges may be that truly contextual
biomeasures are required, for example from human tissue. Clearly this raises
questions from a practical and ethical perspective that will need to be addressed.
Furthermore, the interoperability challenges in terms of sharing and integrating
models require continued effort [24]. Irrespective of these challenges we envisage,
further integration of mechanistic modelling into drug discovery processes in the
future. This could include a spectrum of modelling and simulation approaches
such as further mechanistic PKPD, systems biology, systems pharmacology and
network biology [25]. Ultimately, integrating these disciplines effectively will
deliver the best possible understanding of complex biology. Furthermore, systems
pharmacology interfaced with disease biology expertise will generate new insights
into aspects of diseases biology that will add value in the context of drug discovery
(see for example [26]). Having access to the expertise to identify and implement
these ideas in pharmaceutical research will be critical to success in the future. To
this end, the provision of educational programmes that provide the optimal training
will be crucial.
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Chapter 37
System-Scale Network Modeling of Cancer
Using EPoC

Tobias Abenius, Rebecka Jörnsten, Teresia Kling, Linnéa Schmidt,
José Sánchez, and Sven Nelander

Abstract One of the central problems of cancer systems biology is to understand
the complex molecular changes of cancerous cells and tissues, and use this under-
standing to support the development of new targeted therapies. EPoC (Endogenous
Perturbation analysis of Cancer) is a network modeling technique for tumor
molecular profiles. EPoC models are constructed from combined copy number
aberration (CNA) and mRNA data and aim to (1) identify genes whose copy
number aberrations significantly affect target mRNA expression and (2) generate
markers for long- and short-term survival of cancer patients. Models are constructed
by a combination of regression and bootstrapping methods. Prognostic scores are
obtained from a singular value decomposition of the networks. We have previously
analyzed the performance of EPoC using glioblastoma data from The Cancer
Genome Atlas (TCGA) consortium, and have shown that resulting network models
contain both known and candidate disease-relevant genes as network hubs, as well
as uncover predictors of patient survival. Here, we give a practical guide how
to perform EPoC modeling in practice using R, and present a set of alternative
modeling frameworks.

1 Introduction

The molecular exploration of cancer is still in its infancy. In the next few years,
consortia such as the Cancer Genome Atlas project (TCGA), the Cancer Genome
Project (CGP), and the international cancer genome consortium (ICGC) will
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produce comprehensive observations of molecular changes in solid tumors and
leukemias [34]. Mathematical models that integrate several levels of the cancer
genome data can prove helpful in the study of several key problems in cancer
biology, such as,

1. the identification of “disease driving genes” whose altered copy number impact
transcription,

2. the construction of molecular features that are predictive of patient survival, and
3. the discovery of possible therapeutic targets by matching the identified network

model hub-genes, or their targets, to pharmacological databases.

Key recent examples of advanced integrative analyses in the literature include
modular network modeling combined with clustering analyses, resulting in the
discovery of regulators MITF, RAB27A, and TBC1D16 in malignant malinoma
[2, 9], and the association of cMYC amplification to wound healing signatures in
breast cancer [1]. Network analysis of a set of transcripts known to be related to
breast cancer and relating these to 384 genomic regions with altered copy number
has identified a candidate regulatory region on chromosome 17 [23]. For a broader
overview that also covers possible non-network approaches to modeling cancer, see
Sect. 4 below and [15].

1.1 Network Models Reveal Regulation and Prognostic
Scores in Glioblastoma

We recently explored the idea to view acquired genetic variation in tumors (copy
number aberrations, CNAs, or single nucleotide variations, SNVs) as informative,
“endogenous perturbations”, which are analyzed jointly with mRNA profiles to
derive causal, system-scale network models (Fig. 37.1). CNAs are prevalent in
several human cancers. Moreover, these genetic variations tend to appear in a
patient-specific, near multifactorial manner in the tumors, thus resembling an
optimal experimental design to derive causality [4]. The use of CNAs as informative
perturbations is complementary to using, e.g., RNAi or SNP variation to derive
models, e.g., [18, 35].

In our recent work, we develop the modeling technique EPoC and apply it to 186
cases of glioblastoma. The resulting model is the first large-scale model of transcrip-
tional effects of copy number aberrations in glioblastoma, and reveals interesting
candidates, not detected by other methods. For instance, targeted validations in four
glioblastoma cell lines implicate the p53-interacting protein Necdin in suppressing
glioblastoma cell growth (Fig. 37.1). A novel prognostic score, based on the singular
value decomposition of the network, successfully stratified glioblastoma patients
into poor/favorable prognosis, not achieved by, e.g., principal component analysis
(PCA) or clustering (Fig. 37.1b). In technical tests, EPoC performs better than
existing tools (e.g., ARACNE, eQTL) in terms of robustness, biological accuracy,
and speed [15].
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Fig. 37.1 Network modeling of glioblastoma. (a) Targeted validations in four glioblastoma cell
lines support selected predictions, and implicate the p53-interacting protein Necdin in suppressing
glioblastoma cell growth. (b) EPoC uses a novel procedure to isolate CNA (yellow) and mRNA
(green) prognostic biomarkers, here shown in a network context. Kaplan–Meier curves show that
network-derived patient scores achieve prognostic separation [15]

1.2 Making System-Scale Network Modeling Work in Practice:
The EPoC Package

Taken together, our data show that large-scale network modeling of the effects of
copy number aberrations on gene expression may provide insights into the biology
of human cancer. The benefits of our approach become clear when considering that
(1) colossal amounts of data are rapidly becoming available, motivating large-scale
explorations using this method and, (2) EPoC is distributed as a high-performance
software (R / MATLAB) that others can use.

In this chapter, we give a comprehensive presentation of how to perform
EPoC modeling of human cancer in practice in the R language. We also cover
several alternative modeling approaches for system-scale modeling of cancer, and
discuss their key differences in terms of implementation, algorithmic speed, and
performance. The first section gives a brief overview of EPoC modeling principles.
In the second section, we give a compact tutorial how to build and validate EPoC
models based on combined CNA and mRNA data from a set of human tumors. This
tutorial should be accessible to all researchers with a working knowledge of R. In the
last sections, we discuss other modeling alternatives and outline future challenges.
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2 EPoC: Modeling Copy Number-Dependent Transcription
in Tumors

2.1 Biological Assumptions and Underlying Mathematical
Model

The goal of EPoC modeling, is to construct a global network model that explains
the transcriptional consequences of DNA copy number alterations. By assuming
a formal model of transcriptional regulation, given in [15], we demonstrate that
the CNA-driven transcriptional steady state in a set of tumors can be expressed
as two complementary linear matrix equations. We first describe the model for
transcriptional regulation via the so-called transcriptional network, A:

A
Y C
U CR D 0: (37.1)

The data matrices 
Y and 
U represent the mRNA and CNA profiles of glioblas-
toma, respectively. Each column in 
Y contains the mRNA expression profile
for a patient, each row a gene’s expression across patient tumors. Similarly, the
matrix 
U contains the copy number profiles of patients, where copy number
altered regions have been mapped to the set of genes for which transcription levels
have been measured. For the model to make sense, the mRNA profiles should be
log-relative expression levels, and be zero-centered, i.e., each row of 
Y should
have mean zero [15]. Similarly, the CNA profiles must be log-relative and zero-
centered. Finally, the noise term R (defined from parameters of the underlying
network model, not shown) is a matrix that captures the effects on transcription
of non-CNA perturbations in individual tumors (e.g., SNPs, sequence mutations, or
environmental effects). We can interpret the elements of the transcriptional network
A D faij g as follows: the elements aij represent the net influence from transcript j
to transcript i ; aij > 0 indicates activation of transcription i by transcript j , aij < 0
inhibition, and the magnitude aij the strength of the interaction. The transcriptional
regulation model can be represented in a second form, where we term the CNA-
driven network (G):


Y D G
U C �: (37.2)

The elements of G D fgij g consists of CNA–mRNA couplings: gij > 0 indicates
CNA-driven transcriptional activation, in the sense that transcription of gene i is
increased because the copy number of gene j has been altered. Similarly, gij < 0

indicates a negative coupling between a CNA at gene j and transcription of gene i .
For both positive and negative couplings, the magnitude of gij reflects the strength
of the interaction. The network G is related to the transcriptional network as
G D �A�1 and thus the topologies of the two networks are related. However, while
A aims to capture direct transcriptional interaction, corrected for the impact of a
transcript’s own CNA, G models how the effects of CNA perturbations propagate
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through the system to affect transcription indirectly. We therefore conjecture that
the alternative network representation G should contain key disease-driving CNAs
as hubs, as well as their downstream targets.

2.2 Global Estimation of Network Models Using EPoC

To estimate A and G from the data, EPoC combines methods from lasso regres-
sion and non-parametric (Breiman’s pseudo-)bootstrap. For each gene, EPoC first
estimates the local transcriptional effect of that gene’s own copy number aberration.
For a particular gene i , this is done by a truncated least squares estimate:

d D max
�
0;
Ui
Y

T
i

�
; (37.3)

where 
Yi and 
Ui are the i th row of the data matrices, respectively (data for
gene i across all tumors). For each gene, we then solve a L1 regularized regression
problem to identify the CNAs that significantly affect the residual transcript after a
gene’s own copy number has been accounted for:

min
Gi

���.
Y Ti � d
UT
i / �Gi
UniT

���
2

F
C 	

X

jni
j Gi Œj � j; (37.4)

where 
Uni D 
U Œni; ni �, i.e., the 
U matrix excluding gene i . Gi here denotes
the i th row inG with element i excluded (the diagonal ofG). 	 is the regularization
parameter that controls the degree of sparsity (number of non-zeroes, i.e., network
links) in G. Gi Œj � denotes the j th element in vector Gi . We solve (37.4) using the
cyclic coordinate descent (CCD) algorithm [5, 8].

Details on the estimation of network parameters can be found in [15], but we
summarize the main steps in EPoC modeling below:

(1) Import and standardize the data. For our model to be meaningful, the mRNA
and CNA data needs to be row-centered. Two recommended optional steps
are standardization of transcription profile variance (to 1), and pre-filtering
of a subset of ca. 25% of the most CNA-altered genes as possible regulators
(below).

(2) Perform a statistical simulation to select 	. A key feature of EPoC is a novel
model validation technique; instead of a minimizing cross-validation prediction
error (which is the most commonly used criterion in lasso regression), EPoC
maximizes Kendall’s W, a score that measures the concordance of networks
between data splits (below) [16] . We argue that this criterion produces smaller
models, more likely to be structurally consistent between replicate data sets
(c.f. [15]).

(3) Identify hubs and robust links. EPoC solidifies the results by a 1000-fold
pseudo-bootstrapping protocol, in which the network is reconstructed 1000
times, from resampled patient sets. Links that appear at high frequencies are
kept as regulatory links.
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(4) Identify prognostic biomarkers. EPoC derives prognostic scores from the
network by the use of a sparse singular value decomposition of the network,
as explained below.

In Sect. 3 we describe how to perform each of these steps in practice.

2.3 Biological Assessment of the Derived Networks

The derived networks are exported to Cytoscape for assessment. In our own analyses
of EPoC networks, we have thus far focused on three key network features. First,
we consider hub genes in the CNA-driven network, i.e., genes which are recurrently
altered at the CNA level, and which are inferred by EPoC to control multiple
downstream genes (e.g., the genes EGFR, PDGFRA, and NDN in Fig. 37.1).
Second, we explore the functional annotation of downstream genes, since this
may help elucidate the mechanisms by which CNAs drive the disease process.
As an example of this, our EPoC model of glioblastoma contained multiple co-
regulated genes involved in early neural development, including PROM1 (CD1333),
NKX2.2, and SOX10/11 factors [11,24,29]. Third, we use Cytoscape to inspect the
intersection between our EPoC model and pharmacological databases (Drugbank,
Ingenuity, Chembank, KEGG) to derive compound-target representations, which
are analyzed manually to identify targets. This assessment can be followed up
by targeted experiments to pursue mechanisms, e.g., growth effects of hub gene
perturbation (Fig. 37.1). To further exemplify network analysis, we show results
where the A and G networks are compared for our glioblastoma model (Fig. 37.2). In
comparison to the G matrix, the A matrix is strongly enriched for genes associated
with inflammation, immune response, and blood lineage markers. These results are
best explained by the fact that the estimate of A is highly dependent on mRNA–
mRNA correlations, and that much of the mRNA variability in our samples is caused
by variations in the stromal, blood, and inflammatory components across the tumor
samples.

2.4 Network Based Survival Scores

We now describe how to use the estimated EPoC network models to derive prog-
nostic scores for patient survival. The CNA-driven network G can be interpreted as
a model for signal amplification. That is, viewing transcriptional regulation from a
systems perspective, we think of a copy number profile as input into the system G

resulting in a mRNA expression output. We loosely think of the CNA input as the
driver of the disease and the system output as the symptom.
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Fig. 37.2 Differences in gene content between EPoC G and A networks. Differences between
the CNA-driven (a) and transcriptional (b) networks are highlighted using the top three enriched
GO process terms (the corrected Fisher’s test p-values (<10�9 for all terms shown) are used as a
ranking principle and not as evidence of network links). The CNA-driven network contains genes
involved in cell–cell signaling and developmental processes, whereas the transcriptional network
contains a large number of genes associated with inflammatory and cell cycle associated processes

To summarize the input–output behavior of a system it is common to compute
the main axes of signal gain, defined as the singular value decomposition (SVD)
[10, 21, 30]:

G D C#DT ; (37.5)

where CCT D I, DDT D I , and # is diagonal. The leading left (C ) and right
(D) SVD components have the following meaning: large elements of the leading
components ofD represent genes whose CNAs are highly amplified by the system.
That is, copy number aberrations for these genes have a substantial and potentially
broad impact on mRNA expression. The large magnitude elements of the leading
components of C identify the genes whose mRNA expression are most affected by
these copy number altered genes. To increase the interpretational strength of the
decomposition, we compute C , #, and D using sparse SVD [38, 40]. The sparse
SVD components C and D contain only a small subset of non-zero elements as
those with low magnitude are eliminated via a combined L1 and L2 (elastic net)
regularization. The subset of genes present in each leading components facilitate
the identification of key disease-driving CNAs (from the sparse D) and their
corresponding mRNA targets (from the sparse C ).
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Once sparse estimates of C andD have been obtained, EPoC computes the level
of signal amplification in each tumor by the scalar projection scores:



Zy D CT
Y

Zu D DT
U:
(37.6)

These scores summarize the total burden of molecular changes consistent with the
CNA-driven network, i.e., how well the patient profile aligns with the identified
disease-driving CNAs and the corresponding mRNA profile, and should therefore
correlate with clinical survival. For the different components of Zy and Zu we thus
compare patients stratified according to z > 0 and z < 0 in terms of clinical
survival (from date of surgery to date of death); survival difference p-values are
obtained by Kaplan–Meier curves and the log-rank test. We have confirmed that
both z D Zy and z D Zu achieve a clinical separation for glioblastoma patients: for
the 186 patients studied in [15], both Zy and Zu achieved a significant stratification
(results for Zy in (Fig. 37.1), as analyzed by Kaplan–Meier curves and the log-rank
test (p < 0:001 for both Zy and Zu). Using Pearson correlation, the correlation
between Zy and survival is � D 0:21, .p D 0:006/ and the same correlation for
Zu is � D 0:19, p D 0:0098. As a reference, we have also demonstrated that the
equivalent scores derived directly from an SVD of the Y (mRNA) or the U (CNA)
data matrices do not achieve this clinical separation of patients [15].

3 The epoc package

We provide a detailed illustration of how to apply the R package (epoc) for the
joint analysis of mRNA and CNA data. Note, epoc also includes functions that
can be used to perform network analysis of mRNA data only. The R package
contains convenient summary and plotting commands to aid the extraction of the
most important information from the estimated network models. The step-by-step
demonstration below summarizes the analysis procedure and generated output. For
convenience and ease of illustration we perform the demonstration on a synthetic
data set (CNA and expression data simulated from TCGA glioblastoma data). These
demonstration data are also provided in the package to allow users to try out the
program in a controlled setting. Updated information and releases of the package
for older versions of R can be found at: http://sysbio.med.gu.se/epoc.html.

3.1 Data Preparation

To begin analysis, we load the EPoC package and the mRNA data (and CNA if
available) we wish to analyze. Below we illustrate how to load the synthetic data

http://sysbio.med.gu.se/epoc.html
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which consists of N D 186 tumors and p D 50 genes. To analyze another dataset,
we would have to read it into R as two data matrices: y is the N � p mRNA data
(N D number of tumors, p D number of genes), and u is the N � p CNA data.

> install.packages(‘epoc’)
> require(epoc)
> data(synth)
> u <- synth$u
> y <- synth$y
> N <- dim(y)[1]
> p <- dim(y)[2]
> print(dim(y))
[1] 186 50

We check that the dimensions are such that samples are on the rows (N ) and the
columns (p) are genes. (NB: If the data are in the format where rows are genes and
samples are columns we would need to transpose the data matrices. This is easily
done with the transpose commands: y <- t(y); u <- t(u).)

In the current version, the epoc package cannot handle missing values (a possible
future extension if users express interest in this). If the data set contains missing
values we need to apply an imputation method, e.g., the k-nearest neighbor method
implemented in the R package impute [36] which can be installed from the
Comprehensive R Archive Network (CRAN) server using the install.packages

command as above.
It has been our experience that network analysis benefits from data standard-

ization. In the package, we have left this as a user option. To perform optional
standardization for each gene, we simply run the following commands:

> stdize <- function(x) x.std <- x/sd(x)
> y <- apply(y, 2, stdize)
> u <- apply(u, 2, stdize)

For simplicity of notation we use notation y and u below regardless if the data are
standardized or not.

3.2 The Basic EPoC Call

EPoC estimates networks for a sequence of relative penalty parameter values, 	,
ranging from zero to one, where 	 closer to one produces more sparse networks.
The basic EPoC function (epocG) includes a small default set of 	-values ranging
from very sparse to very dense networks. However, the user can also provide a set
of 	-values focusing on a selected sparsity level (see discussion below).

To estimate a network using the default 	 sequence the following command is
used:

> G <- epocG(Y = y, U = u)
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The output from epocG is an object that contains network estimates for each of the
included values of 	. The summary function allows for easy extraction of the most
important statistics for each network estimate.

> summary(G)
Call:
epocG(Y = y, U = u)

Models:
R2 Cp BIC RSS links

lambda=1 0.0658 10773.558 220.4464 8642.180 1
lambda=0.8 0.0753 10668.541 136.1846 8554.892 2
lambda=0.64 0.0854 10559.853 64.3761 8461.348 5
lambda=0.512 0.0955 10446.609 -29.3689 8367.350 6
lambda=0.4096 0.1035 10363.954 -71.3253 8293.408 10
lambda=0.3277 0.1116 10295.093 -43.1641 8219.298 21
lambda=0.2621 0.1252 10202.497 127.7470 8093.203 52
lambda=0.2097 0.1463 10090.547 550.1105 7897.490 116
lambda=0.1678 0.1711 9973.619 1109.8054 7668.353 198
lambda=0.1342 0.1953 9882.668 1769.8521 7444.092 290
lambda=0.1074 0.2180 9818.000 2482.3967 7234.743 386

SStot: 9251.292

For each 	 we obtain the total (across genes) residual sum of squares, RSS, and the
total error sum of squares corresponding to an empty model, SStot. From these,
we compute the R2 statistics R2, i.e., the total percentage of the mRNA variation
explained by CNAs. The size of the models for each corresponding 	 is recorded as
the number of network links in links.

The summary function also generates two model assessment statistics: Mallows
Cp (Cp) and the Bayesian information criterion BIC (BIC). These criteria are
commonly used to summarize the tradeoff between the model goodness-of-fit (RSS)
and the number of parameters used in the fit (here network size, i.e., the number of
links) (see, e.g., [12]). In addition to examining the summary output, we can also
compare the network fit for different values of 	 visually:

> plot.modelsel(G)

The result is shown in Fig. 37.3. Note, inside plot.modelsel we standardize
the scales of the Cp and BIC so they can be displayed in the same graph. From
the plot we can now identify a candidate region of 	-values that optimizes the
criterion of choice, e.g., BIC. We note both from the summary above and Fig. 37.3
that Mallows Cp obtains it minimum for the densest model, which corresponds to
penalty parameter 	 D 0:1074. In contrast, the more conservative BIC identifies the
k=5 sparsest model as the best, corresponding to 	 D 0:4096.

We can choose to only view the summary of the best model according to Mallows
Cp, BIC, or other chosen network sparsity levels by inputting the optional index
parameter k into the summary function.
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Fig. 37.3 The Mallow’s Cp and BIC criteria as functions of the penalty parameter 	. The optimum
	 and corresponding network size for each criterion are highlighted with vertical lines

> summary(G, k = which.min(G$BIC))
Call:
epocG(Y = y, U = u)

Models:
R2 Cp BIC RSS links

lambda=0.4096 0.1035 10363.95 -71.3253 8293.408 10

SStot: 9251.292

The which.min command extracts the index corresponding to the minimized BIC
value (here k=5).

Since BIC is minimized for 	 D 0:4096 we explore neighboring penalty values
further. In the commands below we first generate a denser sequence of 	s centering
around the 	 that minimizes BIC.

> K <- length(G$lambdas)
> uplam <- G$lambdas[max(1, which.min(G$BIC) - 1)]
> lolam <- G$lambdas[min(K, which.min(G$BIC) + 1)]
> lambdas <- seq(lolam, uplam, by = 0.025)
> lambdas
[1] 0.32768 0.35268 0.37768 0.40268 0.42768 0.45268 0.47768

0.50268

We then apply epocG for this set of 	s. Finally, we output the summary for the
network corresponding to the minimum BIC within this finer range 	s.
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> G <- epocG(Y = y, U = u, lambdas = lambdas)

> summary(G, k = which.min(G$BIC))
Call:
epocG(Y = y, U = u, lambdas = lambdas)

Models:
R2 Cp BIC RSS links

lambda=0.3777 0.1063 9485.375 -100.2066 8267.693 10

SStot: 9251.292

The optimal 	 for minimizing BIC is found to equal 0.3777. Note, however, that
while Cp and BIC are convenient to use for selection of the penalty parameter, it is
well known that Cp tends to overfit (notice in Fig. 37.3 that Cp picked a network
with 386 links), and BIC can be too conservative [12]. epoc thus includes a separate
validation function that uses cross-validation or network concordance as alternative
estimation performance indicators. In addition, epoc includes a bootstrap procedure
to provide more robust network estimates (see sections below).

3.3 Plotting the Network Models

EPoC provides link weight estimates for all networks. coef(G,k=1) outputs the
links for the most sparse network in the format of a sparse network matrix, and by
changing the value of k we can extract the denser models. The epoc plot command
extracts the link weight estimates and displays the network. We can graph any of the
estimated network by using the optional index parameter k (default k=1 corresponds
to the sparsest model).

> plot(G, k = which.min(G$BIC))

We here display the model selected by BIC, obtained by using the optional
parameter k=6 (corresponding to 	 D 0:3777) in the plot command (result in
Fig. 37.4).

While the internal R plotting commands are quite adequate for initial exploration,
we recommend that users export network estimation results to Cytoscape [28] for
final assessment or when analyzing large (dense) networks. In Cytoscape, we can
examine the networks in terms of GO terms and other biological database informa-
tion. We have made Cytoscape visualization of EPoC results easy by providing an
export script, write.sif. This function converts the estimated network to a sif-file
which can be displayed in, e.g., Cytoscape.

> write.sif(G, k = which.min(G$BIC), file = "G.sif")
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Fig. 37.4 The CNA-driven network, G, for penalty parameter 	 minimizing the BIC

3.4 Transcriptional Network Analysis

While EPoC was developed for joint analysis of mRNA and CNA data, we also
provide a network estimation function that can be applied to mRNA data only. The
function, epocA, can be used to estimate transcriptional networks, A, as described
above, and if no CNA data is available this function generates mRNA–mRNA
networks (you simply use the CNA entry empty in the command). The syntax for
epocA follows that of epocG.

> A <- epocA(Y = y, U = u)
> summary(A)
> plot(A, k = 3)
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3.5 Validation

In Sect. 2, we provide an algorithmic overview of EPoC estimation, validation,
and robust inference. Here, we illustrate how to use epoc to validate the network
estimates and select an optimal penalty parameter.

We provide two alternative validation techniques in epoc: (1) network con-
cordance using Kendall’s W and (2) cross-validation prediction error estimation.
These techniques are available as type options in the function epoc.validation.
The validation is performed on B replicates of validation data, generated by
random sampling from the original data [15]. Below, we demonstrate how to apply
epoc.validation to B D 20 random subsets of data. Note, as default epocG is
used as the base function in epoc.validation, but by including the optional input
method=‘A’ you can perform validation for transcriptional network estimation
instead.

> B <- 20
> W <- epoc.validation(type = "concordance", Y = y, U = u,

repl = B)
> P <- epoc.validation(type = "pred", Y = y, U = u, repl = B)

The epoc package includes plotting commands for visual validation. Below, we
plot Kendall’sW concordance versus 	.

> plot(W)

The generated graph displays a smooth fit (loess) of W on 	, as well as
associated standard error bands (Fig. 37.5). By using a smooth function estimate
of the validation criterion’s dependency on 	 we can use interpolation to estimate
the optimum 	. This can make validation considerably faster since fewer values of 	
need to be directly compared in the validation procedure. We identify the maximum
concordance,W �, (marked with a horizontal line) in the figure. Finally, to select the
optimal value for 	, 	�, we identify the smallest 	 such that the corresponding
standard error band contains W �. We also include a conversion of 	-values to
network sizes s in the plot, located on the top axis. These network sizes are obtained
from a loess fit of the network sizes from each randomly sampled data set as a
function of 	. The optimal network size, s�, is obtained from the fitted value of
this loess fit evaluated at 	 D 	�. We note here that the network concordance is
optimized for 	� D 0:4174 with the corresponding network size s� D 17.

Similarly, using validation type=‘‘pred" and applying the plot command to
the epoc.valdation results we obtain a smooth fit of cross-validation (CV) errors
as a function of 	.

> plot(P)

Standard error bands are added and the optimal 	 D 	� is identified as the
smallest 	 such that the corresponding error band contains the minimum CV error
(Fig. 37.6). The corresponding optimal network size is also provided. As noted
before in [15], networks optimized for CV error tend to be larger than networks
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optimized for concordance. Here, the CV error optimized networks are obtained for
	� D 0:1074, corresponding to network size s� D 389.

We can access the optimal 	-value (output lopt from epoc.validation) or
optimal network size (output value sopt) directly from the epoc.validation

without plotting (though we strongly recommend that users plot to assess the
stability of estimation as a function of the penalty parameter).

> W$sopt
[1] 17.2488
> W$lopt
[1] 0.4173742
> P$sopt
[1] 388.5226
> P$lopt
[1] 0.1073742

For our small, synthetic data set, we note that Cp and the CV error select
similarly sized networks, whereas the concordance statistics and BIC performed
quite similarly, though we have noted on real data that these four criteria can differ
substantially.

Once the optimal penalty parameter 	� has been identified (denoted lopt in the
code above), we can generate a network for the original data set as follows:

> G.opt <- epocG(Y = y, U = u, lambdas = W$lopt)

> summary(G.opt)
Call:
epocG(Y = y, U = u, lambdas = W$lopt)

Models:
R2 Cp BIC RSS links

lambda=0.4174 0.1028 9442 -63.951 8299.987 10

SStot: 9251.292

The estimated optimal parameter values W$lopt is not guaranteed to provide
a network of size W$sopt on the original data as this can depend heavily upon
relative sample size between the original and validation data sets, as well as data
signal correlation and noise. We thus recommend that users search a range of 	 near
W$lopt that when applied to the original data results in a network of the optimum
size W$sopt.

> ll <- seq(0.3,0.7, by = 0.02)
> G.opt <- epocG(Y = y, U = u, lambdas = ll)
> summary(G.opt)

For our synthetic data, we choose 	 D 0:34 which produces a network of size
s D 18 matching closely the desired network size W$sopt which can also be found
by examining Fig. 37.3. This figure contains the map from penalty parameters 	 to
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network size s (top axis) for the original data. From the validation procedure above
we find the optimum network size for either network concordance (W$sopt = 17) or
mRNA prediction (P$sopt = 389). A reverse mapping from network size to 	 from
Fig. 37.3 identifies the optimum penalty parameter value 	 D 0:34 for concordance
and 	 D 0:11 for mRNA prediction. (Note, as the validation is performed on
randomly resampled sets of data (here B D 20 sets) results obtained by users may
vary slightly from those documented here.)

3.6 Estimating a Robust Network

To provide robust network estimates, we perform network estimation of pseudo-
bootstrap samples [15]. For a given 	, e.g., the estimated optimal penalty parameter
from above, we repeatedly generate bootstrap samples and estimate the corre-
sponding networks. We aggregate the generated networks across bootstrap samples
and record the proportion of times (across bootstraps) that each link is identified
by EPoC. This bootstrap procedure has been implemented in the R function
epoc.bootstrap which takes as input the data, the number of bootstrap samples,
and the identified optimum 	-value.

> G.boot <- epoc.bootstrap(Y = y, U = u, nboots = 100,
method = "epocG", lambda = 0.34)

The user can explore the impact of different values of 	 near the optimum
by providing a vector of values of interest (lambda.boot below). The plotting
command plot.bootsize enables the user to visualize the impact of both values
of 	 and the bootstrap threshold on the network size.

> lambda.boot <- c(0.33,0.34,0.35)
> G.boot <- epoc.bootstrap(Y = y, U = u, nboots = 100,

method = "epocG", lambda = lambda.boot)
> plot.bootsize(G.boot, lambda.boot, 100, range = c(.05,.7))

In Fig. 37.7 we see that the network size stabilizes beyond a threshold of about
30% link appearance frequency (NB: the axis for link prevalence is on a log-scale).
If we use this as a cutoff for a link to be retained in the model, we obtain a final
network model of size s D 16.

We provide a plotting command for epoc.bootstrap. We first extract the final
network from the bootstrap result using the function epoc.final. Input values are
the bootstrap estimates G.boot, the index of the chosen 	 (here k=2 since 	 D 0:34
is the second element in lambda.boot, and finally the threshold value bthr (here
30%).

> G.final <- epoc.final(G.boot, k = 2, bthr = 0.3)
> epoc.bootplot(G.final)

The final network is displayed in Fig. 37.8. (Note, as the bootstrap procedure is
random, results obtained by users may vary slightly from those documented here.
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Fig. 37.7 The estimated size network at different bootstrap thresholds

Internal consistency is improved with a larger set of bootstrap samples (nboots)
and a higher link prevalence threshold (bthr) to produce the final network.)

3.7 Survival Scoring

If survival data are available, epoc provides the user with functions that reduces the
estimated networks to survival scores. As described above, we generate survival
scores based on the singular value decomposition (SVD) of the network matrix
(G for epocG CNA-driven networks, or A for epocG(method=‘A’) transcriptional
networks). We first generate a sparse SVD decomposition of the network using the
function epoc.svd.

> G.svd <- epoc.svd(G.final, C = 3, numload = c(10, 10, 10))
> print(G.svd)

By default, epoc.svd outputs only the leading SVD components, but more compo-
nents can be generated using the optional parameter C. The sparsity of the SVD
components is controlled via the input parameter numload. Values of numload

determine the number of genes that contribute to each component. To aid in the
interpretation of the survival scores we choose to use a small number of genes,
e.g., 10 as above, but users can also choose to optimize this number for survival
scoring (see below). The output from epoc.svd consists of the sparse loadings
for the input G.svd$spload.in and output G.svd$spload.out. If the network
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Fig. 37.8 The final estimated network using bootstrap and a 30% threshold

G.final above is an epocG object, the input is CNA and the output mRNA. If
it is an epocA object, the reverse is true. If no CNA is provided, both input and
output are mRNAs. The print command outputs the sparse loadings of the SVD
decomposition of the network matrix as well as the list of genes which are present
in at least one of the sparse input or output components. For the synthetic data set,
only nine out of the 50 genes are present among the first SVD components (object
G.svd$ii provides this gene list).

The epoc.svdplot function displays the subgraph of the G.final network
above. Only links connecting genes that contribute to either the input or output
SVD components are shown, and we thus identify the genes whose CNA are most
amplified by the system (listed in G.svd$spload.in) and those mRNA that are
main responders in the system (G.svd$spload.out).

> epoc.svdplot(G.svd, C = 1)

Note in Fig. 37.9, obtained from the first SVD components, that e.g., Gene 13 is
a main mRNA responder and perturbation of e.g., Gene 17 is strongly amplified by
the system (compare Fig. 37.9 to full system network in Fig. 37.8).
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Fig. 37.9 The sub-graph corresponding to the leading SVD in- and out-components. CNAs
amplified, mRNA responders

The function epoc.survival uses the SVD decomposition components to
perform survival comparisons. This function takes as input the selected sparse SVD
input and output component and the survival data of the patients in the data set.

> surv <- synth$surv
> G.surv <- epoc.survival(G.svd, y, u, surv, C = 1, type = "G")

By default, epoc.surv applies survival analysis using the first SVD component,
but other components can also be used by changing the input value of C. Survival
scores are generated as described in Subsect. 2.4. A simple non-parametric survival
analysis is performed, comparing survival between patients with positive or negative
scores (tumor fitness). The epoc.survival object contains the summary informa-
tion from a log-rank test comparing survival (R function survdiff) and survival fit
objects.

> summary(G.surv)

In
Call:
survdiff(formula = Surv(surv) ˜ sign(sc.in))



37 System-Scale Network Modeling of Cancer Using EPoC 637

N Observed Expected (O-E)ˆ2/E (O-E)ˆ2/V
sign(sc.in)=-1 93 93 74.5 4.57 7.91
sign(sc.in)=1 93 93 111.5 3.06 7.91

Chisq= 7.9 on 1 degrees of freedom, p= 0.00493

Out
Call:
survdiff(formula = Surv(surv) ˜ sign(sc.out))

N Observed Expected (O-E)ˆ2/E (O-E)ˆ2/V
sign(sc.out)=-1 104 104 80.6 6.8 13
sign(sc.out)=1 82 82 105.4 5.2 13

Chisq= 13 on 1 degrees of freedom, p= 0.000317

For the synthetic data set, we note that both the first input (CNA) and output
(mRNA) components can stratify patients in terms of survival. We can also summa-
rize this graphically using the plot command which outputs regular Kaplain–Meier
curves for patients stratified by positive and negative projection scores onto the SVD
components.

> plot(G.surv)

In Fig. 37.10 we see that those patients with positive scores (solid lines) have lower
survival than those with negative scores (dashed), indicating the patients whose
CNA and mRNA profiles agree with the network model have poorer prognosis.

3.8 Summary

The epoc package can be used for network model exploration using the basic
epocG function. The internal validation criteria (Cp and BIC) can be used to
identify a candidate region of penalty parameter values and network sizes. Cross-
validation or network concordance are used to better assess optimal network
sizes (epoc.validation). We recommend final robust network estimation to
retain links in the network that are consistently identified across many bootstrap
datasets (epoc.bootstrap). Finally, estimated networks can be summarized in
terms of input and output (CNA drivers and mRNA responders) using a sparse SVD
decomposition (epoc.svd). When survival data are available, the networks can be
examined for potential patient stratification (epoc.survival).

The epoc package is still under development. We hope to expand the package
to include more visualization and validation options, as well as allow for survival
analysis with multiple factors and variables. New and updated package components
and their descriptions will be distributed through the package web page http://
sysbio.med.gu.se/epoc.html.

http://sysbio.med.gu.se/epoc.html
http://sysbio.med.gu.se/epoc.html
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Fig. 37.10 Survival curves for input and output scores with patient groups corresponding to
positive and negative scores, respectively

4 Other Packages for Modeling CNA–mRNA Effects

In this section we give an overview of key alternatives to EPoC modeling, also
underlining factors such as algorithmic principle, performance, and speed. One
common approach to large-scale transcriptional modeling, is to derive models
from mRNA profiles only, using e.g., gene–gene (partial) correlations, Bayesian
networks, ordinary differential equations, or mutual information [3, 7, 20, 22, 27].
Useful alternative to EPoC include:

• Partial correlation methods, such as glasso [6] and GeneNet, estimate the
(sparse) inverse correlation matrix from a set of data which reflects the direct
dependencies. In contrast, the correlation matrix itself includes both direct and
indirect interactions. The inverse correlation matrix is related to ourA network as
follows. Under our model formulation,
Y ' �A�1
U , and so the correlation
matrix of the mRNA expression levels˙Y Y D A�1˙UU .A

�1/T , or equivalently,
the inverse correlation matrix ˙�1Y Y D A˙�1UU AT . The estimate of ˙�1Y Y thus
generates an undirected version of A.
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• ARACNE uses a mutual information criterion to identify directly dependent
transcripts and distinguish them from those dependent only through other
transcripts [20].

A second approach, used in “genetical genomics”, is to use the naturally occur-
ring genetic variation in a separating population to study the relationship between
genotype and expression phenotype [13, 18, 19, 25, 33, 39]. Useful alternatives to
EPoC in this category of tools include:

• eQTL is a standard class of methods to associate SNPs to mRNA levels (e.g., [31,
32]). These methods simply involve calculation of all pairwise linear regression
models between genotypes and mRNAs, and correction of the nominal p-values
to obtain a smaller set of links.

• remMap, introduced in [23] is a method for combined CNA–mRNA analysis that
involves several steps. First, the CNA data is converted to CNA-intervals using
fixed order clustering. Second, a set of mRNA–mRNA interactions are identified
by running a partial correlation analysis of the mRNA data (similar to glasso).
Third, for each mRNA transcript a model is built based on other transcripts
and CNA interval data using elastic net regression techniques. The method can
therefore be thought of as a hybrid of EPoC A/G analyzed for genomic regions.

• LirNet [18] is designed to derive a transcriptional module network from com-
bined SNP and mRNA data. Given a set of transcript clusters and a set of possible
regulators, this algorithm identifies SNP and mRNA regulators for each cluster by
elastic net regression (combined lasso-type and standard least squares penalties).
An additional feature of the algorithm is that the lasso penalties can be learnt
from annotation features (e.g., the position of the SNP inside the gene).

Applying these methods to the same set of data (glioblastoma data from the
Cancer Genome Atlas project), see [15], we see drastic differences in terms of
method robustness (Fig. 37.11a), matching pathways (Fig. 37.11b), and in terms of
speed (Table 37.1). We see generally strong performance of EPoC and glasso, which
are both robust and achieve a higher overlap with known pathway interactions than
the other methods. Two key differences between EPoC and glasso, however are
speed (results for 500 gene networks in Table 37.1, the difference is even more
accentuated for larger networks), and the fact that EPoC links are directed whereas
glasso links are not. In addition, it is not clear how to extend glasso to incorporate
multiple data types like CNA and mRNA. From these comparisons, we conclude
that EPoC exhibits excellent performance in terms of model reproducibility, validity,
and algorithmic speed.

We compare the estimated network structures by each method using hier-
archical clustering, with the concordance measure Kendall’s W as the metric
of similarity. The result is shown in Fig. 37.12. We see a separation of the
methods into two groups: those coupling CNA and mRNA data (LirNet, remMap,
eQTL, EPoC-G) and those that derive networks from mainly mRNA–mRNA
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Fig. 37.11 Method comparisons: network consistency and pathway interactions. (a) In a first
analysis, we test each method’s reliability, i.e., its robustness to noise and technological factors.
For this, we compare network models derived from two full replicate glioblastoma datasets (146
identical tumors (same patients and samples) but processed at different centers with slightly
different technological setups (Affymetrix and Agilent technologies, run at MSKCC, Harvard
Medical School and Broad Institute). We subsequently measure the inconsistency (1�W ) between
the two models. In this test, EPoC estimation of the CNA-driven network G is the best performing
method on the TCGA data (1 �W lower, arrow%). glasso is second best, followed by sparse
estimation of the transcriptional network A (EPoC A), and remMap. LirNet, eQTL, GeneNet, and
ARACNE all exhibit less robust performance compared with EPoC G.
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Table 37.1 Methods for modeling CNA/mRNA data, main characteristics

Method Type Principle Speed Software

EPoC CNACmRNA Regression 3–6 s R
ARACNE mRNA cleavage Information theory 100–200 s C
glasso mRNA Sparse inverse correlation 15–60 s R
GeneNet mRNA Inverse correlation 3–6 s R
remMap CNACmRNA Clustering, sparse inverse

correlation, and elastic net
regression

40–60 s R

LirNet CNACmRNA Clustering, elastic net
regression

10–20 s MATLAB

All run times were obtained on a desktop computer, Mac Pro, 2 � 2:8GHz quad-core Intel Xeon,
for a set of 500 gene problems

LirNet

eQTL

remMap

EPoC G

EPoC A

GeneNet

glasso

ARACNE

Fig. 37.12 Comparison of networks obtained by different methods. Hierarchical clustering of
network solutions (single linkage, 1-fractional network overlap as distance); note that EPoC A

networks group with transcriptional network methods (ARACNE and GeneNet) and EPoC G

groups with remMap and similar genotype-based methods

dependencies (ARACNE, GeneNet, glasso, EPoC-A). Viewed together with the
results in Fig. 37.2, we see that mRNA–CNA and mRNA–mRNA methods com-
plement each other and identifies different dependency structures in the data.

 �������������������������������������������������������������������
Fig. 37.11 (continued) (b) In a second analysis, we test each method’s ability to re-discover
pathway and PPI links present in databases. For this, we map interactions, found by EPoC and other
methods, to molecular links in the pathway repositories HPRD, Reactome, Intact, and NCI-nature.
Each interaction is characterized by the number of steps minimally needed to “walk” between the
network gene and its target (i.e., the shortest path). A well-estimated network, in our view, should
be comprised of identified interactions that either match known interactions in the data bases or are
enriched for shorter paths [14]. The figure depicts the enrichment, defined as the relative proportion
of interactions that correspond to a shortest path length of 1 or 2 interactions in a pooled network
based on the four different pathway databases. EPoC G interactions are clearly enriched for short
or direct paths in the data bases, followed by glasso and EPoC A
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5 Perspectives

In the light of ongoing efforts currently being undertaken to acquire comprehensive
genome-scale data sets for several cancer types (e.g., the Cancer Genome Atlas,
and the International Cancer Genome Consortium), meaningful analysis of the
data becomes a major challenge. We argue that a priority should be to develop
mechanistically and clinically relevant molecular network models of the data. EPoC
is one step in this direction, and helps to set the stage for the continued modeling
efforts in the context of human cancer genome programs. Future work should be
directed at generalizing our methods to enable comparison of regulatory networks
between sets of patients, and to make optimal use of all available data (e.g.,
methylation and miRNA profiles). These extensions will enable more exact and
comprehensive model-based analysis of the complex molecular landscape of cancer.
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Chapter 38
Early Patient Stratification and Predictive
Biomarkers in Drug Discovery and Development

A Case Study in Ulcerative Colitis Anti-TNF Therapy

Daphna Laifenfeld, David A. Drubin, Natalie L. Catlett, Jennifer S. Park,
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and Renée Deehan

Abstract The current drug discovery paradigm is long, costly, and prone to failure.
For projects in early development, lack of efficacy in Phase II is a major contributor
to the overall failure rate. Efficacy failures often occur from one of two major
reasons: either the investigational agent did not achieve the required pharmacol-
ogy or the mechanism targeted by the investigational agent did not significantly
contribute to the disease in the tested patient population. The latter scenario can
arise due to insufficient study power stemming from patient heterogeneity. If the
subset of disease patients driven by the mechanism that is likely to respond to the
drug can be identified and selected before enrollment begins, efficacy and response
rates should improve. This will not only augment drug approval percentages, but
will also minimize the number of patients at risk of side effects in the face of a
suboptimal response to treatment. Here we describe a systems biology approach
using molecular profiling data from patients at baseline for the development of
predictive biomarker content to identify potential responders to a molecular targeted
therapy before the drug is tested in humans. A case study is presented where a
classifier to predict response to a TNF targeted therapy for ulcerative colitis is
developed a priori and verified against a test set of patients where clinical outcomes
are known. This approach will promote the tandem development of drugs with
predictive response, patient selection biomarkers.

1 Introduction

Though our abilities to measure and analyze large amounts of complex data
have increased significantly over the past decade and have provided valuable
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insight into the molecular mechanisms underlying disease, the industry as a whole
is lagging in the production of new and innovative therapies. Multiple studies
reference the extremely high failure rate .>80%/, the length of time to develop
(10–15 years through Phase III), and the high cost (at least $800 million) of new
therapies [1–3]. A substantial part of this expenditure is attributed to the cost of those
projects (investigational drugs) that failed. Phase II, in which efficacy is usually first
tested in patients, is the stage of drug development exhibiting an extremely high
failure rate. Across multiple therapeutic mechanisms, approximately 80% of novel
projects that reach Phase II fail to demonstrate clinically significant efficacy [1].
This emphasizes the need to select the patients most likely to respond to treatment
for entry into clinical trials.

It has long been recognized that some patients may respond well to a particular
intervention, whereas others may gain little or no benefit. As diseases are classically
characterized by their phenotype and not always sub-categorized by the specific
mechanisms or genotypes contributing to the phenotype, applying a focused molec-
ular targeted therapy may not be effective in most patients, thus obscuring the benefit
to a responder sub-population. For example, although glucose elevation defines the
diagnosis of diabetes, it does not explain what pathophysiology caused the glucose
to be elevated, nor does it suggest the treatment mechanism by which it could be
lowered. Or, in the case study presented here, is ulcerative colitis driven by the
same mechanism in all patients (and hence should all receive the same treatment)?
Although one possibility for efficacy failure in a group of classically defined patients
could be that the investigated mechanism is altogether irrelevant to the disease, an
alternative is that there are molecular subpopulations of patients, some of whom
might be sensitive to a highly specific and directed therapy. Potentially valuable
therapies are likely failing in some cases due to uninformed patient selection.

Ideally, the responsive patient population within a disease group would be
identified with the help of predictive biomarkers before enrollment in a clinical
trial. However, the current paradigm to develop such biomarkers suffers from
the dependency on available datasets bridging potential biomarker measurements
with clinical outcome. Significant patient numbers to develop these correlative
biomarkers are not available until after a phase II or III clinical trial, at which point
millions of dollars have been spent on a program that could fail due to a lack of
efficacy. Establishing predictive biomarkers in pre-clinical phases, before outcomes
data become available, is a critical factor for selecting the patients most likely to
respond to the drug and therefore improving success.

Systems biology, which focuses on complex interactions in biological systems,
moving away from a reductionist, hypothesis-driven approach, holds the potential to
address the above mentioned key challenges in identification of predictive biomark-
ers. This approach does not focus on a limited number of molecular components but
rather achieves a comprehensive understanding of how large numbers of interrelated
components of a system comprise networks whose functional properties emerge as
definable phenotypes, using complex, rich data as a substrate. In the context of a
patient population, this means that through a systems biology approach, one can
define patients not through their phenotype, but rather via the molecular networks
that underlie them.
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In this review, we present a systems biology approach that exploits high-
throughput data collected from diseased patients before treatment to develop
predictive biomarkers in tandem with drugs as early as the pre-clinical stage.
This approach may in many cases allow for a better in-depth understanding of
human disease biology, improved success rate, and improved translatability from
pre-clinical to clinical studies. Specifically, we will review the following as they
relate to patient stratification: (1) the use of biomarkers within the current paradigm
of drug development, (2) an approach where high-throughput patient data are
used to generate mechanistic biomarkers to predict the most likely candidates for
response to treatment, and (3) a case study where a classifier was developed to
predict response to a TNF-targeted therapy in ulcerative colitis patients without prior
knowledge of clinical outcomes using transcriptomic data from colon biopsies.

2 Challenges Associated with Predictive Biomarker
Development Using Clinical Outcomes Data

In addition to selection of the right mechanism to target within a disease population,
it is critical that we also select the right patient for targeted therapy treatment.
Even a population of patients that appears to be phenotypically similar can exhibit
distinct molecular disease profiles due to differences in etiology, environmental
factors, co-morbidities, or genetics. For example, in a disease like atherosclerosis,
there are multiple elements that may contribute to the observed burden of disease
and eventual myocardial infarction (e.g., inflammation, lipid metabolism, anatomic
alterations, etc.). The same is also true for many malignancies. A similar clinical
diagnosis, therefore, may be the integrated result of multiple molecular disease-
driving mechanisms.

Thus, the patient population in a clinical trial for a targeted therapy often
represents multiple disease subsets driven by different molecular mechanisms,
only a subset of which will respond to a very specific, molecularly-focused
treatment. There are several examples of how biomarkers are used to identify
the likely-to-respond subjects, best exemplified in oncology. In breast cancer,
immunohistochemical detection of the estrogen receptor is used to predict the
efficacy of tamoxifen or aromatase inhibitors, and HER2 gene amplification is a
positive indication for use of anti-HER2 treatment such as trastuzumab (Herceptin)
[4, 5]. In colon cancer, k-ras mutations predict resistance to anti-EGFR therapies
[6]. Distinct biomarkers such as these that provide a specific patient stratification
are currently packaged as companion diagnostics for targeted therapies, enabling
the selection of patients that have a greater chance of responding to receive the
drug. As a result, companion diagnostics are currently accepted and even mandated
by regulatory agencies [7]. Selecting the patient pool most likely to respond has
proven beneficial for obtaining regulatory approval of effective drugs, for example,
herceptin and gefitinib [8]. Importantly, in the absence of the ability to select the
right patients prior to enrollment, the efficacy of these drugs may have been masked



648 D. Laifenfeld et al.

by a cohort of patients that, while clinically similar, were heterogeneous with
respect to disease etiology and pathogenesis, and an unstratified patient population
would have yielded a lackluster response to the molecularly precise drug. Lackluster
responses may often lead to termination of a program, and a potentially effective
approach for some patients will have been discarded.

Given the advantages of patient stratification for both treatment protocol design
and targeted therapeutic efficacy, proactively applying patient stratification as early
as possible in the drug development paradigm is critical. The current use of patient
stratification has too often arisen as a reactive solution to the problems of patient
heterogeneity and drug resistance wherein markers of effective response were
assessed only subsequent to extensive characterization of clinical trial data (i.e., after
a costly Phase II clinical trial). Moreover, if a biomarker strategy to identify likely
responders is currently employed, it most often will depend on a single biomarker
directly associated with the therapeutic target rather than a more robust multiple-
biomarker signature of target activity.

Recent use has been made of high-throughput data such as gene expression
and proteomics to add granularity to the biomarker approach. While this post hoc
application of large-scale patient data is being realized, the value of the data will
be even greater when utilized as the substrate for patient stratification at early
drug development phases. Wielding high-resolution readouts of patient biology a
priori would facilitate a more proactive approach to drug development, one that
leverages patient data directly for drug target discovery and an increased potential
for clinical success. Additionally, the identification of candidate therapeutic targets
and biomarkers predictive of response would effectively be co-indicated at the pre-
clinical stage, affording the ability to pre-select an optimal patient population for
response prior to the initiation of clinical trials. However, realization of such an a
priori strategy requires a means of effectively interpreting this patient data in terms
of the specific biological mechanisms active in individual patients.

3 A Methodology to Develop Predictive Biomarkers
in the Absence of Relevant Clinical Outcomes Data

To meet the demand for a priori patient stratification, we developed a unique
strategy to develop predictive biomarkers that identify likely responders for a
targeted therapeutic within a population of patients across multiple disease areas
(e.g., cancer, inflammatory disease, etc.) based upon mechanistic inferences from
patient data. The strategy relies upon the hypothesis that patient groups that exhibit
either high levels or low levels of target mechanism signaling strength will be more
likely to respond to treatment with that targeted therapeutic. This approach can
be implemented using molecular profiling data, such as whole genome expression
data, from diseased patients at baseline, and does not require a priori knowledge of
treatment outcomes. The substrate for this strategy is our causal knowledge base that
has stored gene expression signatures of over 2,000 biological perturbations from
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Fig. 38.1 Patients can be stratified by target mechanisms to identify likely responders. The non-
responder population can be further stratified to identify disease-driving mechanisms unique to
different sub-groups of patients. This elucidates targets that can potentially treat each sub-group,
and biomarkers can be co-developed to identify subgroup members using the signaling strength
approach

over 46,000 peer-reviewed publications. Each of these mechanisms can represent
a potential driver of disease. The perturbation, or “signaling strength” of each
mechanism, can be assessed in individual patients within a population. For example,
a gene expression signature for MAPK13 activity, based on prior knowledge, can be
extracted from our knowledge base. Fold changes in gene expression are calculated
for each patient as compared to a common baseline like a non-diseased population or
a median patient, and a strength assessment algorithm that takes the hypergeometric
mean of the fold change for each gene in the signature of interest is applied. The
output of this assessment is a quantitative value that enables the group of patients to
be stratified by their levels of signaling strength for each of the 2;000Cmechanisms.
Patient stratification by signal strength allows identification of those mechanisms
that are most strongly or weakly activated in different subsets of heterogeneous
patients and can be used in this way to identify subsets most likely to respond to a
molecular-targeted treatment.

The strength algorithm is applied to gene signatures that represent the target
mechanism (e.g., a c-Met targeted therapy) and patients can be stratified by their
respective levels of pathway activation (Fig. 38.1). If patients can be stratified by
the strength of target mechanism signaling, and this signaling can be considered
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a surrogate response to treatment, we can determine whether a patient is in the
“likely responder” or “likely non-responder” category based on their individual
target mechanism/pathway signaling levels. Patients with high versus low signaling
strength may be predicted to be the responders depending on the disease–target pair
under study (see case study below for an example).

The gene signatures used to stratify patients by target mechanism signaling
strength can range in size from four to over a thousand genes and be derived from
multiple tissues. With respect to development of content for a biomarker, it is useful
to identify a small, targeted number of genes to be measured. Therefore, we can
develop classifiers to predict whether a patient is a “likely responder” or a “likely
non-responder.” The population of likely non-responders can be analyzed further
to identify the disease driving mechanisms active in these patients by researching
known mechanisms in the literature, or using the 2;000C gene signatures to identify
mechanisms that mostly saliently distinguish different groups of patients. This can
illuminate potential therapeutics that may target the different subsets from patients,
and enable portfolio optimization to provide holistic treatment solutions for an entire
disease population.

4 Case-study: Identifying Ulcerative Colitis Patients
that Respond to Infliximab in the Absence of Clinical
Outcomes Data via TNF Pathway Activation Levels

We tested this approach to predict response to therapy while remaining naive to
clinical response by generating a gene expression classifier to identify patients
most likely to respond to the TNF targeted therapy infliximab, and testing it in
a patient population where response to infliximab is known. This example was
chosen because two datasets with baseline gene expression profiling data and
response to therapy are published providing for training [9] and test [10] datasets.
Based on the previously published work of others, we hypothesized that patients
with high levels of TNF activation were less likely to respond to a TNF targeted
therapy [11–13] than those with lower TNF activation, and developed a TNF
signaling strength-based classifier to identify patients with “high” versus “low” TNF
pathway activation. The response to therapy calls available in training and test sets
were used only for: (1) validation of the hypothesis that patients with high TNF
pathway activation were less likely to respond to treatment and (2) validation of the
predictive capacity of the classifier that were not used in any way during classifier
generation.

To detect TNF signaling in colon, a 256-gene signature was culled from our
casual knowledge base and applied to colon samples from a training set of 43
patients with inflammatory bowel disease (24 patients with UC and 19 with Crohn’s
colitis). Six healthy control subjects along with the training set patients were
stratified by their individual levels of TNF pathway activation (Fig. 38.2). The
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Fig. 38.2 Stratification of diseased training set patients and healthy controls by their levels of
TNF signaling pathway strength. Patients that responded to infliximab are shown in orange, non-
responders in blue, and healthy controls in grey. Patients with lower levels of TNF pathway
activation were more likely to respond to infliximab

Fig. 38.3 Predicting infliximab response through TNF activation levels. The TNF pathway
activation classifier predicts low TNF signaling and response to infliximab. True responders and
non-responders are shown in yellow and grey, respectively. False responders are shown in purple

healthy controls had the lowest levels of TNF pathway activation, and low levels
of activation in treated patients correlated with response (Fig. 38.2, p D 3e�8),
confirming our hypothesis.

Standard classifier development methods were applied on data from patients with
the highest 20% and lowest 20% TNF activation level to develop a 20-gene classifier
[14]. The TNF pathway activation classifier, using detection of TNF pathway
amplitude as a surrogate marker of response, performed with a 70% responder
predictive value and a 100% non-responder predictive value in an independent test
set of 23 UC patients where outcomes to infliximab were known (Fig. 38.3).
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This example with infliximab in UC is one validation of how our approach for
patient stratification by disease-driving mechanisms and pathway activation can
be used to predict response to a targeted therapy. Once patient populations are
identified, biomarkers can be generated for each subset driven by a distinct pathway,
as we did here with TNF. These biomarkers may then be further developed as a
therapeutic diagnostics for selecting appropriate patient populations for entry into
clinical trials or for postmarketing use.

5 Conclusions

While previous post hoc biomarker development has demonstrated the benefit of
applying biomarkers to preselect a patient population more likely to respond to a
particular therapy, the resources required for the generation of data coupled with
clinical outcomes are extensive. Here we have demonstrated a means to identify
biomarkers with exclusively untreated patient data, bypassing the cost associated
with post hoc biomarker development.

The biomarker development strategy presented here is driven by patient data
and requires a highly represented field of patients to best capture the heterogeneity
of disease. Currently, efforts to molecularly describe cancers of various tissues
have been undertaken and are embodied by efforts such as the government-
sponsored, The Cancer Genome Atlas [15]. Databases such as these are an ideal
substrate by which to generate patient biological profiles facilitating identification
and stratification for specific drug targets: they are extensive, with a large amount
of samples and multiple large-scale data modalities including gene expression, and
they are publicly available. Furthermore, they serve as a blueprint for how we should
move forward with other diseases that remain wanting for rich and plentiful patient
datasets.

The strategy of using patient data in the early phases of the drug development
process holds tremendous promise for bringing increased value to portfolios, both
by assigning new indications for existing drugs and as the engine for future pipeline
development. Our approach described in this chapter using high-throughput data
analysis and interpretation is an ideal conduit for bringing the wealth of information
from attainable patient data to the process of drug discovery in order to realize the
success of an a priori drug development paradigm.
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Chapter 39
Biomedical Atlases: Systematics, Informatics
and Analysis

Richard A. Baldock and Albert Burger

Abstract Biomedical imaging is ubiquitous in the Life Sciences. Technology
advances, and the resulting multitude of imaging modalities, have led to a sharp rise
in the quantity and quality of such images. In addition, computational models are
increasingly used to study biological processes involving spatio-temporal changes
from the cell to the organism level, e.g., the development of an embryo or the
growth of a tumour, and models and images are extensively described in natural
language, for example, in research publications and patient records. Together this
leads to a major spatio-temporal data and model integration challenge. Biomedical
atlases have emerged as a key technology in solving this integration problem. Such
atlases typically include an image-based (2D and/or 3D) component as well as a
conceptual representation (ontologies) of the organisms involved. In this chapter,
we review the notion of atlases in the biomedical domain, how they can be created,
how they provide an index to spatio-temporal experimental data, issues of atlas data
integration and their use for the analysis of large volumes of biomedical data.
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1 Introduction

Biomedical research has always relied on visual observation and imaging is a
primary mechanism for recording data from the sub-cellular through to whole-
organism level. In particular, imaging is used to capture the spatial organisation of
biological entities, such as sub-cellular organelle and chromosomal organisation,
cellular morphology, tissue organisation and organ histology and morphology.
At the highest levels of resolution imaging is being used to capture molecular
structures, synaptic organisation and molecular flux within the cytoplasm. Modern
imaging techniques have been extended to capture 3D data not only at all ranges
of resolution, but also to include the option of capture through time. Figure 39.1
shows a range of imaging modes that illustrate the nature of the spatio-temporal
data produced for biomedical research.

In many cases image data are used to support simple observations. For example,
gene X is expressed in the ventral half of the left ventricle, or the cells of the
epithelial layer show an elongated appearance. As more data is collected, the trend
is to use manual and automated means to extract numerical information from the

Fig. 39.1 (a) Optical Projection Tomography (OPT) image of mouse 10.5 dpc embryo in-situ
hybridisation expression of Crabp1; (b) Caltech �MRI (Magnetic Resonance Imaging) image from
the Caltech Mouse Atlas; (c) Time-lapse confocal images of oligodendrocyte development, adapted
by permission from Macmillan Publishers Ltd., Nat Neurosci [21] copyright 2007; (d) Transgenic
expression of vascular development in the mouse embryo [34]; (e) serial-section EM (Electron
Microscopy) reconstruction of a neuropil structure courtesy of SynapseWeb, Kristen M. Harris, PI,
http://synapses.clm.utexas.edu/

http://synapses.clm.utexas.edu/
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images to provide objective numerical analysis in terms of spatial patterns, signal in-
tensities, shape and morphology, cell densities ablation recovery times, etc. As data
is captured at higher rates and volumes, the requirements for image archiving and
analysis are demanding far greater automation. The focus of this paper is image data
captured to show information at the organ or whole-organism level of biological
organisation. In our case this is with respect to embryo development and can
include gene-expression patterns, lineage tracing, physiology and cellular activity,
morphometric and mutant phenotype. At this level of biological organisation a key
requirement is to be able to compare spatial and temporal patterning and to be able to
collate information from across all the different imaging modalities. At the genomic
and molecular biology level the natural framework for capturing data relationships
is the genome, at the organ/organism level the appropriate framework is provided
by explicit spatio-temporal atlases [9]. To some extent the spatial aspects of the
information can be captured by annotation using an anatomy ontology, but this
does not have the resolution or computational capability of an explicit coordinate
framework provided by a digital atlas.

Atlases provide the integrating framework for spatial data of tissues, organs
and whole organisms. For genomic and molecular level data, information between
species can be compared by “mapping” of the sequence data. Such sequence
mapping provides detailed comparative analysis of the evolution of the genome
and enables the use of model organisms (e.g., mouse) to support research into
human disease and abnormalities for translational purposes. By analogy the basic
information captured at the whole-organ level can be compared across species
including through to human for direct medical research and ultimately clinical
application. If we take the “layer cake” view of biology passing from the lowest
levels of organisation at the base through to tissue, organ and whole-organism level
at the top, then the spatio-temporal data mapped to the atlases at the top serve as
the target for a systems biology understanding of the high level biology. In addition,
the basic research data captured, for example, for model organisms such as zebra-
fish and mouse, serve for comparative analysis and provide basic understanding
to physiological and disease modelling applied for translational research into the
human condition. This can extend through to medical and clinical data sets and
ultimately through to individuals. At this end of the atlas range we envisage
the use of a personal “myAtlas” to capture and record the clinical history of an
individual and perhaps to support patient–doctor consultation. This view of the role
of explicit spatio-temporal atlases in the context of biological and medical research
and potentially clinical practice is illustrated in Fig. 39.2.

In this paper, we outline informatics aspects of atlasing frameworks in the context
of biomedical research and illustrate these with procedures and examples from the
eMouseAtlas project EMAP and EMAGE [4] (Edinburgh Mouse Atlas Project and
Edinburgh Mouse Atlas Gene Expression database).
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Fig. 39.2 Atlases in the context of systems biology and translation biomedical research. Hudsen
is the human development atlas and data resource, the visible human indicates the adult level atlas
and virtual patient and personal atlas indicate resources under development or envisaged. VPH
refers to the international Virtual Physiological Human programme to develop computational and
predictive models of adult human physiology

2 Atlas Systematics

In the scientific world, there often is a general understanding of the meaning of
widely used key terms, such as, “gene” or “ontology”, but a lack of agreement on
their precise definition. This applies particularly to the use of the term “Atlas” in
biomedical research. Here we develop a classification of resources that describe
themselves as atlases and argue that a proper use of the term should imply an overt
spatial representation used to express the spatial relationships in the data.

For most people the definition of an atlas relates back to the familiar geographic
atlases and maps and is typically an overt depiction of a coordinate space, e.g.,
the surface of the earth. This is supplemented with the representation of features
and regions which in the geographic example could be cities and countries. The
Oxford English Dictionary (OED) defines the term atlas: A collection of maps (or
illustrative plates) in a volume, where a map is defined as A diagram or collection
of data showing the spatial distribution of something or the relative positions of its
components. For us the equivalent of the collection of maps is a collection of 2D
or 3D images, which define the space we need to represent for the mapping of data
with spatial relationships. Some technologies, e.g., Optical Projection Tomography
(OPT) [32] allow the generation of the 3D model directly, but from which 2D
section images can be generated. Most atlases we know of use actual images,
such as, generated by microscopy or MRI, instead of symbolic depictions (e.g.,
drawings). In either case, the visual representation in the form of sets of pixels and
voxels, described in an appropriate coordinate framework, forms the first essential
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component of our notion of a biomedical atlas. Although it is not stated so explicitly
in the OED definition implying “spatial distribution” or “relative position” requires
some sort of labelling or mapping of the artefacts in the context of the map. In
geography we expect the regions of countries and cities on a map. Similarly, in
the context of a biomedical atlas, we expect labels describing the components in the
visual representation, e.g., the label “heart” refers to an image region depicting the
heart in the image model. This implies that there is a mapping between the term and
the image model.

The terms may simply consist of a controlled vocabulary such as the names
of anatomical structures, or form a part of a formally specified ontology. This
formalisation can be fairly lightweight, using languages such as SKOS [27], or
rather detailed and precise, using languages such as OWL,1 to describe it. The higher
the level of formalisation, the more automated reasoning it will allow, but the more
difficult it is to get widespread acceptance of the ontology as a standard within the
biomedical community. This has implications for interoperability (see Sect. 5).
With this discussion we can identify components that could be part of an atlas:

Representation of space: a visual representation such as an image with the image
coordinates allowing location of specific features or regions. For biomedical atlases
this is typically a selected representative image or an averaged image over a number
of samples.

Spatial reference terms: in biomedical atlases this is typically anatomy.
Mapping: locations or regions of the spatial reference terms in the context of the
spatial representation.

Direction: definition of directions in the context of the underlying object. In a
geographic atlas this is usually simple to identify North or to plot lines of latitude
and longitude. In biomedicine it may require a much more complex mapping of left–
right, dorsal–ventral and anterior–posterior axes at each location within the map.

Data: this is the association of data such as gene-expression or physiological state
with different parts of the spatial representation.

Some “Atlas” resources only include the spatial representation in an implicit way
by referring only to the anatomical terms. Examples of such atlases are the Human
Protein Atlas [5] and Gene Expression Atlas [18], where data is annotated with
anatomical tissue and cellular terms but there is no explicit spatial representation
or mapping. All spatial association is via the spatial understanding of the user.
At the other extreme are the full 3D, spatially mapped anatomical atlases, used
as frameworks for capturing digital image data. Examples here are the mouse
gene-expression databases eMouseAtlas [4, 7] and the Allen Brain Atlas [23].
Between these there are traditional “paper” atlases such as the Atlas of Mouse
Development’ by Kaufman [19] and those with digital content, e.g., the Paxinos
Rat Brain Atlas [29].

1www.w3.org/TR/owl2-overview/.

www.w3.org/TR/owl2-overview/
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In order to realise the power of a digital atlas to provide an objective spatial
analysis and provide tools for spatial data mining an explicit spatial representation
is essential, and we therefore define the minimal requirements for a biomedical atlas
to be:

Spatial RepresentationC TermsCMappingsD Atlas

If an atlas also includes a specification of biological directions then more sophisti-
cated query and analysis in biological terms becomes possible. The construction of
biomedical atlases, the use of atlases to index spatio-temporal experimental data, the
integration across atlases and other resources, and the use of atlases in the context
of the analysis of large quantities of biomedical data are discussed in the following
sections.

3 Atlas Construction and Spatial Annotation

Biomedical atlases that include an explicit coordinate framework can be constructed
in many ways, including “simple” graphical modelling to depict the primary
structures that are to be represented. In practice, atlases developed for biomedical
research are typically based on one or more representative individuals using imaging
that enables full 3D reconstruction. This can be a direct 3D imaging technique, such
as, �MRI [11], �CT [1] (Computed Tomography), block-face imaging [35, 36] or
OPT [32] or, if resolution and contrast are critical, then 2D imaging of microtome
sections followed by 3D reconstruction. When the key requirement is to be able
to capture spatial patterns for subsequent comparison and analysis, for example
anatomical labelling or syn-expression grouping, then it is sufficient for the atlas
to be a representative individual. Such an atlas can also be used to capture
morphological variation of experimental sets by capturing both the mapped data
and the spatial transformation from which variation in the original data set can be
established [8]. If, however, the key purpose is to be able to assess the morphology
of a new sample, it is more convenient to create a probabilistic atlas [13, 25].

For the mouse embryo models of the eMouseAtlas database we have used a
combination of OPT 3D imaging to capture the original shape of the embryo
followed by wax-embedding and microtome sectioning so that the individual section
could be stained to reveal the cellular detail. These histological sections are imaged
at high-resolution and reconstructed using the OPT image as a morphological
template. When the 3D model has been reconstructed, it is then segmented into
anatomical regions which provide the link between the spatial representation of the
embryo (image coordinates) and the anatomy ontology. This process is illustrated in
Fig. 39.3. The embryo atlas we have developed in Edinburgh is comprised of a series
of 3D reconstructions, an anatomy ontology to describe the developing anatomy,
plus a set of delineated regions or domains that link the ontology terms (at some
level of resolution) to the 3D image model.
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Fig. 39.3 Reconstruction process used to build the high-resolution 3D models of the mouse
embryo for EMAP

The 3D image can be used directly as an atlas framework. In some cases
it is possible to supplement the image coordinate frame with more biologically
meaningful coordinates such as the stereotaxic coordinates used in neuroscience
studies of the brain [16]. This is not always required and the key requirement for
an atlas to be useful is a mechanism by which data can be spatially transformed
or mapped into the atlas space. This is termed spatial registration or spatial mapping
and in general is a complex non-linear transformation from the original (source)
coordinate frame to the atlas coordinate frame (target). Image registration has been
studied very thoroughly, especially for clinical imaging where comparison between
modalities and for disease progression are important. Techniques that have been
established typically define a deformation field across the volume of image space
enclosing the source image of interest. This deformation field is established by
manual definition of points of correspondence or automation and the full field
defined via a mathematical model such as radial-basis function interpolation or
physical modelling of the deformation. In either case we have found that the
embryo presents special problems because of the extreme deformations that arise
due to the flexibility and variability of presentation and pose. In this situation the
standard warping techniques fail and we therefore have established warping based
on the constrained distance transform [17], which is a combination of rapid manual
alignment to correct the primary deformation due to pose followed by an automated
process using the open-source software ANTs [2] to fine-tune the alignment. The
WlzWarp software tool we use for the manual registration is illustrated in Fig. 39.4.

The procedure to transform experimental samples into the model space can
be considered as spatial annotation. Each location within the sample acquires a
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Fig. 39.4 Spatial mapping of a 3D image of a human Carnegie stage 14 embryo onto the EMAP
Theiler stage 17 embryo model using the WlzWarp software tool developed to deal with the
complex mappings required with embryos. Left-hand frame original human embryo; middle frame
the target mouse embryo; right-hand frame the warped human embryo to match the mouse. The
marked locations show locations of point-correspondences (Note: Carnegie and Theiler stages are
classification systems for how far human and mouse embryos, respectively, have progressed in
their development.)

mapping into the model. In this way, data from the model can be presented in
the context of the sample, or data from the sample such as gene-expression signal
intensity, can be transformed into the space of the atlas models. It is then possible
to analyse the data either in terms of the atlas, e.g., to establish anatomical regions
that show gene-expression, or to compare with other data directly, such as, other
gene-expression patterns. In analogous fashion to a text-based annotation, spatial
annotation enables search for patterns but directly in terms of the atlas space, e.g.,
queries, such as, “what genes are expressed at this locations?” or “what gene show
expression in a similar pattern?” are now possible.

In the mouse atlas EMAP and associated gene-expression database EMAGE [7]
the spatial annotation is a standardised procedure to map the source image, and to
segment the signal into pre-defined strengths of expression.2 The mapped signal
patterns are held in the database and a query against the database results in direct
comparison of image data. This is an image-processing operation and executed in

2http://www.emouseatlas.org/emage/about/data annotation methods.html.

http://www.emouseatlas.org/emage/about/data_annotation_methods.html
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an image server linked to the RDBMS (Relational Data Base Management System)
which manages the metadata. For efficiency the spatial indexing and similarity
calculations are encoded using the Woolz image-processing library.

4 Experimental Data and Atlases

Atlas frameworks can be used to capture, compare and analyse any spatial data,
which can range from cellular signalling and gene-expression patterns through
clonal distributions to long-range neuronal connectivity and physiological function.
Here we will use the data captured in the context of the eMouseAtlas models to
illustrate the issues of mapping and interoperability of atlas-based resources. The
primary data for which the mouse embryo atlas was established is gene-expression
patterns as revealed by in situ hybridisation to mRNA and immunohistochemistry
with protein antibodies. In addition, we have mapped anatomy terms to the 3D
space and explored direct mapping of cellular clonal data following lineage tracing
experiments.

4.1 In situ Data

Transforming a gene-expression pattern from an in situ experiment involves two
steps. The first is to establish the spatial transformation from the experimental data
images to the atlas model. The second is to segment the signal in the context of
the original data and to use the spatial mapping to transform the pattern to the atlas
model context. Our experience with mouse embryo data indicates we need to deal
with a number of different presentations of the information:

2D data: Intrinsically 2D data captured from the embryo. The prime example is a
whole-mount view which is effectively a projection of the underlying 3D data onto
2D and in principle the original 3D location of the signal cannot be recovered. For
this data we have adopted a simple approach of mapping the data to a projection of
the atlas model, i.e., maintain the 2D character of the original data. Within EMAGE
this implies that the data is segregated and a spatial query is currently against either
the wholemeal data or the 3D data.

2D images of 3D data: These are microtome sections of the sample embryo which
has been physically sectioned and stained. In principle, the section image can
be mapped back into a 3D location within the atlas model. In practice this can
be difficult, because distortion of the tissue section could mimic a re-location of
the image within the 3D framework with a consequential ambiguity. This can
be resolved by capturing more than one section and using the adjacent data to
correctly align the sections that have been treated to show the in situ pattern.
Most high-throughput data, such as generated for the Allen Brain Atlas [23] and
Unexpress [12], is of this form – sparse 3D data.
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In EMAGE we have adopted two strategies for the data. The first is simply
to find the best matching section for each sample and to use a mapping tool
such as Maxint to transform (warp) the image onto the atlas. The same tool
then allows a segmentation of the signal into a series of domains to repre-
sent strong, moderate, weak, possible and not-detected expression strengths. An
additional domain not-observed ensures that a null-return from the data base can
distinguish data that shows no-detectable expression from no-data.

A second strategy is to project the 3D data onto 2D and to treat it in a similar
fashion to wholemeal samples. This of course loses the 3D information and reduces
the ability to discriminate patterns, but can be useful for a first-pass automated
mapping to be followed up with a more detailed 3D mapping later.

Full 3D data: This is data from a 3D imaging technique such as OPT or confocal
LAM (Laser Scanning Microscopy) or could be serial sectioning that can be
reconstructed to a full 3D data set. This type of data provides the most complete
view of the overall expression pattern, but is typically at a lower resolution and
does not deliver the cellular detail of real histological sections. A benefit is that the
process of 3D mapping is very much faster than the section-by-section mapping
of sparse data, but does require sophisticated mapping tools such as the WlzWarp
tool based on the constrained distance transform and potentially significant compute
power for the automated fine-alignment phase.

4.2 Sparse Cell Data

In some experiments the observation may be a set of cells that exhibit a particular
stain. A particular instance of this is a clonal set of cells arising from a single
progenitor cell. This could be marking using a vital dye [22] or by a random re-
combination event in a tamoxifen-inducible cre-transgenic line [24]. The issue with
this data is that the individual cells that comprise the clones cannot in general be
identified in the target model. The mechanism for mapping is therefore to map by
direct marking of the estimated best match for each clone cell. With serial section
data this can be very time-consuming. This could be done by direct matching of
a serial section series which encompasses the clone, but this is similarly time-
consuming.

4.3 Anatomy and Physiology

Classically an atlas depicts the physical geography overlaid with coloured regions
depicting countries and national boundaries. In biological atlases the closest analogy
is anatomy overlaid on a histological image and rather like the geographic case the
“country” boundaries are subject to disagreement and dispute! In the EMAP mouse
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Fig. 39.5 The EMAP anatomy browser. The user can select arbitrary section views through the
3D model and show selected anatomical components overlaid on the histology. In this case we are
showing the limb atlas material from DeLaurier et al. [10]

atlas the anatomy delineations are available for download and can be visualised in
a number of applications. Figure 39.5 shows a screenshot of the anatomy viewer
provided for visualisation in the context of a standard web-browser. In this case we
are showing a view through the limb atlas of DeLaurier et al. [10].

The atlas can of course also capture physiological data such as calcium concen-
tration and ion-channel status in the heart or functional imaging of the brain. This
type of data will clearly include detailed temporal and behavioural information, but
the spatial aspects of the observations can be mapped to the atlas and compared with
other data. An example we have been exploring is discussed in the next section; it is
the use of the atlas approach to integrate a detailed physiological model of the heart
with a statistical model of dynamic heart morphology over the cardiac cycle. The
basic concept is to map both models to a common atlas model which can then also
bring in other data from for example the EMAGE gene-expression database into the
same analysis.

5 Integration of Biomedical Atlases

Computational frameworks, such as the atlases described in this paper, are in the first
instance mechanisms for the management of data and knowledge, initially simply
to capture and store it, but subsequently also to query it and to perform complex
analysis studies (see Sect. 6). Typically, we find more than one atlas covering the
same or related data, and we usually want to link data in an atlas to that in a
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Fig. 39.6 (a) For the gene expression use case, a client application specifies a point in Waxholm
Space (WHS) in order to access relevant gene-expression data in EMAGE and AGEA, (b)
mapping between atlases can be achieved by applying image-processing techniques, ontology-
based mappings and the specification of locations using spatial rules which are based on the 3D
models as well as the ontological description of the atlas anatomies

non-atlas resource, e.g., entries for gene-expression experiments in EMAGE have
links to Ensemble (www.ensemble.org) for further information about the gene under
consideration. All this creates a challenging integration problem for biomedical
atlases. As always, the desired interoperability between atlas and related resources
depends to a large extent on agreed standards. In this section, we illustrate these
interoperability issues, drawing on our experience of a use case study linking the
EMAGE data set to the Allen Brain Atlas [28] using the emerging Waxholm Space
standard [16] which is a 3D reference atlas for the adult mouse brain.

The basic architecture for this use case is shown in Fig. 39.6a. It is based on the
INCF Digital Atlas Infrastructure (INCF-DAI), which is currently being developed
by the INCF (International Neuroinformatics Coordination Facility, www.incf.org).
The INCF hubs for EMAP and ABA (Allen Brain Atlas) are responsible for map-
ping the point of interest in Waxholm Space (WHS) into corresponding locations
in their respective atlas spaces – an alternative approach where a central spatial
transformation INCF hub will assume responsibility for all spatial transformations
is being considered – and then retrieve the relevant gene-expression data for return
to the client. At this stage, the hubs simply return URLs to html pages containing
the gene-expression query results. The client displays these in two separate browser
windows, but does not merge the results. To facilitate the latter, a standard for gene-
expression query results needs to be agreed first. This is a key point, as it applies
to many different types of data. Achieving interoperability between different spatio-
temporal reference frameworks does not guarantee the interoperability of the data
that is indexed by these frameworks. Standards, such as for gene-expression data,
are required in addition, if the analysis of the data across multiple atlases is to be
maximally supported by software.

As discussed in Sect. 2, although there is no single definition of what biomedical
atlases should consist of, it is usually the case that they have an image component as

www.ensemble.org
www.incf.org
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well as textual labels for identifiable regions of the image space. In some cases
the textual labels are part of comprehensive anatomy ontologies. This leads us
to the following three spatial mapping types: (1) based on image processing, (2)
based on ontology mapping and (3) based on spatial rules; see Fig. 39.6b for an
overview diagram in the context of our use case. The first of these uses image-
processing algorithms to transform pixels and voxels from one space to another. In
our examples we use a constrained distance transform to link between the WHS
atlas and the EMAP atlas spaces. The second type is based on mapping anatomical
concepts from one ontology to another, e.g., the concept Cerebellum in the ABA
maps to the Cerebellum in EMAP. The third type uses spatial relations, such
as, contained in and next to, known about identified regions in the atlas to
describe a spatial location. Whilst the image-processing solution can potentially
achieve very good accuracy, it does so only for atlases that are morphologically
not too different. Ontology-based mappings deal with such differences more easily,
but do not achieve the same level of precision. The use of spatial rules is a com-
promise solution that aims at reasonable accuracy in spite of some morphological
differences.

We know that the level of formalisation of the terms used by atlases has a
significant impact on their interoperability. In principle, a more detailed ontology
leads to better integration possibilities, but only if this ontology is widely shared
and used by the biomedical atlasing community. Herein, however, lies the dilemma,
since the more detail one specifies in the ontology, the more difficult it becomes to
obtain community acceptance. There exists, of course, a large body of work on the
topic of biomedical ontologies, and a detailed discussion of it lies outside the scope
of this paper. For a collection of relevant papers, we refer the reader to [6]. An area
of biomedical ontologies that has not been explored very much thus far is their use
in the context of spatial rules-based mappings, which will require, amongst other
things, some level of standardisation of the meaning of directional terms, such as,
“lateral to”, “close to”, etc. The challenge in biomedical atlasing is the lack of a
single frame of reference, such as is available in the geo-sciences; there is only one
Earth, but there are many instances of organisms such as human and mouse.

It is important to remember that in the context of integrated spatial queries,
several mappings across different spaces may be involved. Figure 39.7 illustrates
how we distinguish between four categories of spaces. Initially, experiments, such
as for in-situ hybridisation gene-expression analysis, are carried out in the context
of specific animal experiments resulting in 2D and 3D image data for their particular
experiments space. These results are typically mapped into a standard spatial
or spatio-temporal repository framework, the respository space, such as EMAP,
through which they can then be queried. To integrate across two or more repositories
may involve a mediator space such as Waxholm Space (WHS), and if the data that
has triggered the original query of interest is based on a particular experiment, we
require a mapping from the query space to the mediator space. Where labs produce
their own data for their reference space, the distinction between repository and
experiments space may not explicitly exist. So, an integrated query to EMAGE and
AGEA brain gene-expression data, using WHS as the mediator, would involve at
least 4 spatial mappings and potentially all three mapping types.
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Fig. 39.7 Types of spaces

As the number of mappings across spaces increases, the accuracy of the results
for a query is likely to diminish. Intuitively, one might argue to expect the overall
accuracy to be determined by the “weakest link”, i.e., the least accurate spatial
mapping involved in the query. However, there may also be an accumulative effect
resulting in even worse accuracy. There is also an issue of giving an end user the
impression of high precision, for example, because his/her query space was very
carefully mapped into the mediator space, but that the actual results are by far less
accurate due to other mappings involved.

The above discussion has focused on the integration of atlases as spatio-temporal
frameworks for experimental data, but as more and more such data becomes
available, we also see an increase in computational models which firstly help explain
the underlying biomedical processes resulting in this data, and secondly include pre-
dictive capabilities for scenarios that have not yet been studied experimentally. The
integration of “data atlases” with the spatio-temporal frameworks of computational
models is critical for the development and calibration, as well as the validation and
verification, of the models. As part of the European Union’s Virtual Physiological
Human (VPH) research programme (www.vph-noe.eu), the RICORDO project
(www.ricordo.eu) investigates this data model integration for volumetric data.
Amongst other work, it has developed a spatial mapping from the computational
heart developed at the University of Auckland to the EMAP atlas in Edinburgh.
To the best of our knowledge this is the first example of mapping volumetric,
computational VPH model sections to the corresponding location in a 3D framework
for molecular data (gene expression). Although it is outwith the scope of this paper
to discuss the technical details of this mapping, it illustrates one example of this
extended requirement for atlas integration. Based on the increasing amounts of
experimental data and related models, we predict that the importance of this type
of integration will significantly increase over the next five years.

www.vph-noe.eu
www.ricordo.eu
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6 Using Atlases for Data Analysis

Atlas frameworks provide a straightforward context for spatial comparison and
analysis. The types of analysis depend on the nature of the data collected and can
be characterised by the nature of the input data and the output results. For example,
if the input is a point or region defined within the atlas space, the result could be
atlas-based, such as an image of the overall gene-expression intensity, or a numeric
result, such as the similarity to another expression pattern, or just a list of assay
results that match the query. Similarly the input could be a list of genes for which
co-expression hot-spots are required in which case the output would be a heat-map
type image with a gene-list associated with each point. In this section we illustrate
the use of atlases for data analysis in the context of the embryo and atlas databases
that we have integrated with the eMouseAtlas resource. These include the human
embryo atlas and database Hudsen [20], GUDMAP [26], EurExpress [12] and Chick
Atlas3 databases.

6.1 Annotation and Query

Mapping data onto the atlas framework provides a means to specify a query on
the database in graphical terms. This could be as simple as a single vertex or
as an arbitrary point-set representing a complex region within the domain of the
atlas model. In addition, an atlas within which the anatomical tissues have been
delineated makes it possible to query using the anatomical terms. These provide
two simple examples of data analysis. The first is annotation. By mapping the
expression pattern onto the atlas model and comparing the mapped pattern with
the anatomical domains delineated within the model, it is possible to generate an
anatomical description of the gene-expression pattern. This is illustrated in Fig. 39.8
in the context of the EMAGE database. As well as establishing the list of tissues
that show gene-expression, it is possible to calculate the relative proportion of each
tissue that shows expression.

The second example is to use the spatial location or region as a means of finding
genes expressed at the given location or area of interest. To process this query the
given location is compared to each stored pattern in the database to establish if it is
contained within the mapped region. In this case the spatial “index” of a mapped
gene-expression pattern is represented internally as an image region or binary
image. The query region as a single point or a second image region is compared
with the expression pattern using a simple image operation of domain-intersection.
This is equivalent to the intersection of two point-sets, but executed as an efficient
image-processing algorithm. If the resulting intersection domain is non-empty then

3http://www.echickatlas.org/.

http://www.echickatlas.org/
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Fig. 39.8 Spatial analysis. The mapped expression pattern for the gene Bone morphogenic protein
5 (Bmp5) is mapped onto the Theiler stage 12 embryo atlas (a). The mapped section data is
shown in 3D (b) and in the context of the wholemount embryo (c). The bar chart (d) shows the
expression analysis in the terms of anatomical tissues that is automatically generated by comparing
the expression domain with the delineated anatomy domains

the two patterns overlap. This is repeated for each pattern that could form a match.
The result in the context of EMAGE is a list of assays that show overlap with the
query region (see Fig. 39.9).

6.2 Similarity and Correlation

In addition to using the pattern to simply test spatial overlap or containment, the
patterns can be compared for spatial similarity. For potentially dispersed and non-
contiguous patterns we have discovered that the Jaccard index, which is a simple
set-based measure of similarity, provides a suitable first-pass numerical value of
similarity which is robust to the variation and noise found in typical gene-expression
patterns. Here it is implemented in the context of a spatial region of interest defined
by dilating the query pattern by the equivalent of about 300�m. The tool is the
LOcal Spatial Similarity Search Tool (LOSSST) and is described by Venkataraman
et al. [33]. Figure 39.9 shows the result of using LOSSST to query the EMAGE
database using the expression pattern of Bmp5 at Theiler stage 12. Using the option
of mapping the query region through to other embryonic stages, it is possible to
extend the query to return temporal data.
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Fig. 39.9 Result of a spatial query on the EMAGE gene-expression database. In this screen shot
the data has been sorted by similarity with the expression of Bmp5. The Bmp5 pattern is returned
at the top if the list with a maximum similarity match of 1.0, the next most similar if Bmp7 from
the same gene-family. Note real interface uses colour to show pattern strength

The use of similarity provides a sorted query result bringing to the top syn-
expression patterns for any given gene. The same query can be posed on text-
annotated data such as in the EurExpress database. The two annotation options
are complementary. Text annotation can provide a more accurate and focussed
return for very sparse and isolated tissue and cell-type specific expression patterns.
Spatial annotation delivers accurate analysis of more complex and in particular near
ubiquitous, but non-uniform, expression patterns.

A second measure that becomes available with spatially mapped data is expres-
sion correlation. With spatial similarity the query is to find genes with similar spatial
expression patterns. It is also possible to test the expression correlation between
spatial locations, i.e., to query for similar expression profiles between different
locations. A good example of this is the interface provided by the Allen Brain
Atlas [28] (see Fig. 39.10). For a given seed point, selected by “clicking” the
required point on the screen, the system returns a correlation map which of course
will have value 1 at the seed and typically includes the local region. Regions that
have similar expression signatures are not always spatially connected and this may
well indicate similar function or similar developmental lineage.
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Fig. 39.10 Allen Brain atlas AGEA interface showing the correlation map for gene-expression
with respect to the selected seed point

6.3 Data Mining

Atlas-based data with a mapping either onto the spatial framework of the atlas or the
ontological framework, such as anatomy, becomes accessible for data mining. The
simplest data mining approach is clustering based on a measure of spatial similarity
or annotation. An example of this clustering is provided by the EurExpress data
set [12], and the downloaded data can be visualized using standard cluster viewing
packages, such as, TreeView and MeV. The results can be displayed in two ways:
the first is as a set of gene-expression patterns that show similar spatial distributions
and the orthogonal clustering will reveal the set of atlas regions that show similar
expression profiles. These are related to the search options described above, but
are not directed, and therefore provide a more objective overview of the structures
implicit in the data.

Data mining can also be used to extract more detailed information from the
data by using one set of data to train a classifier that can then be used to infer
new relationships with a measure of confidence. An example here is the automated
annotation of gene-expression patterns with anatomical terms by using an annotated
set of images to train a classifier which can then be applied to new image samples.
Han et al. [15] use this approach to develop tissue classifiers in the context of the
EurExpress gene-expression data set.
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6.4 Morphometric Variation

Atlases provide a natural framework in which to capture spatial patterns, such as,
gene-expression, cell morphologies and behaviour. They can also be used to capture
morphological variation even though the atlas may not be an “average” or “correct”
model in the sense of representing the average size and shape for a given stage of
development. In fact, in the context of mouse development a standard embryo is very
difficult to define given the dynamic nature and heterochronicity of development
even for pure strains. Nevertheless, if an experiment collects a standardised set
of embryos with a protocol that will preserve size and shape, then morphological
variation can be captured. The key to understanding this is that the data set that
needs to be preserved is the non-linear mapping from each experimental instance as
well as any data that may be mapped. If the mapping structures are available, i.e.,
the detail of how each point in the source experimental embryo is mapped, then it
is straightforward to establish the average mapping from the experimental set to the
atlas, and by applying the inverse of this transform to the atlas, an average embryo
can be established. The meaning of this is that for each point within the average
the sum of the displacements from each of the source experimental embryos will
be zero. With this average in place other quantities that relate to morphological
variation can be established. For example, the mean size and shapes of any given
structure, say the heart, are the transformed version of the same structure in the
original atlas. To establish the variation of any given feature, it is simply a matter
of defining that feature in the atlas, e.g., the volume of the ventricular space in the
brain, applying the inverse transform to the original sample and then re-measure the
volume.

In addition, spatial patterns of variation, such as parts of tissues, that exhibit
most volume variation can be displayed as a heat map in the context of the atlas
and overlaid with other information. In this way it may be possible to associate
morphological variation with gene-expression. Cleary et al. [8] showed how �MRI
can be used to capture this type of data for late stage mouse embryos. Their
methodology would not work for earlier stages of development because it lacks
resolution and tissue contrast, but the principle is clear. Atlases deliver the necessary
framework to associate complex morphological variation with other patterns and
phenotypes in the biology.

7 Discussion and Conclusion

In the context of the developing mouse embryo, we have illustrated aspects of
a new “bioinformatics” that can capture and manage data associated with higher
levels of biological organisation. This approach in biology was pioneered by the
Edinburgh Mouse Atlas Project (EMAP) [3,30] and demonstrates the use of explicit
biomedical atlases to collate, compare and analyse spatially organised data. For
the associated computer science infrastructure we coin the term “atlas informatics”
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which covers the underlying theory and practice of using spatio-temporal atlases as
the organising framework for spatial data. The geo-sciences have been working with
geographic information systems for many years, but biology and medicine require
significant extension of the techniques and capabilities, because of the variability of
the underlying data sources and the complexity of the structures.

It is clear that atlases can provide the key integrating framework for data
associated with individual model organisms and with the development of the
methods and services for atlas integration many of the aspects of comparative
analysis that are taken for granted at the genomic level become possible at the tissue
and whole-organism level. This can be based on “simple” image-based mapping
but a much richer semantic mapping is possible by using the underlying biology
to define spatial location and direction. Developing this atlas semantic context and
the logic and algebra that can use these natural coordinate systems is an immediate
challenge for atlas informatics.

Finally, in a special issue of Science4 dedicated to the “data deluge” a paper
entitled “The disappearing third dimension”, Rowe and Frank [31] discuss the
difficulties of publishing 3D data, citing examples of tissue and palaeontology
samples which may be difficult to replicate. They compare the image context with
genomics which has a natural framework on which to associate data where re-use
of experimental data is the norm. They conclude:

Funding agencies can rejoice in the unexpected longevity and growing value in voxels they
have already produced. But they must first secure the basic tenet of science by ensuring that
researchers have the means to archive, disclose, validate and re-purpose their primary data.

Image repositories such as the Open Microscopy Environment [14] are essential to
address part of this problem, but to retrieve, compare and analyse “re-purposed”
data, a spatial framework is required, which is the role of atlases. Atlas frameworks
are the key component of any informatics strategy to manage and analyse such data.
In this paper we have illustrated some of the atlas informatics issues in the context of
the mouse embryo but the underlying informatics model applies across biological,
medical and natural sciences.
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