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Preface

Gravitational lensing has matured into a thriving area of astrophysics, with applica-
tions ranging from detecting extrasolar planets (microlensing), to constraining the
distribution of dark matter in galaxies (strong lensing), to determining cosmological
parameters (weak lensing). While some problems are best suited to one of the
three flavors of lensing (strong, weak, or micro), there are others for which it is
possible to combine constraints from the different lensing regimes. The distribution
of dark matter in clusters of galaxies offers one important example. For this reason,
proficiency in the entire subject is indispensable to the student and researcher alike.

In their influential 1992 monograph, Gravitational Lenses, P. Schneider, J.
Ehlers, and E.E. Falco presented the theory of gravitational lensing in a rigorous
and systematic way and discussed the observations and applications then known.
During the following quarter century, though, advances in instrumentation have
made observations not possible at that time become almost routine today. The
quality and the quantity of the data thus generated allow for sophisticated statistical
analysis, making even the subtle distortions in the observed shapes of galaxies due
to the large-scale structure of the universe detectable. Such weak lensing was in its
infancy in the early 1990s, and microlensing had yet to be born.

A recent textbook that incorporates current research methods and applications
of gravitational lensing at the undergraduate level is Gravitational Lensing by
Scott Dodelson. His aim is to present enough gravitational lens theory so that the
student can quickly confront the current literature and begin conducting research.
We aim to take a complementary approach and present a thorough discussion of the
principles of gravitational lensing. As the centenary of the observational discovery
of gravitational lensing approaches in May 2019, we can only hope that the present
effort is fitting tribute to researchers in the field: past, present, and future.

It is our hope that this book will prove useful to students and researchers alike.
For those with prior experience in lensing, this book may serve as reference material
or as a supplement for researchers who wish to explore aspects of lensing outside
their own expertise. For the student, we envision this book as the basis for a one-
semester course or seminar in lensing at the advanced undergraduate or beginning
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graduate level. With this in mind, problems are included at the end of each chapter
(apart from the Introduction) to build familiarity with lensing calculations and show
how they connect with astrophysics research.

This book is organized as follow: We begin in Chap. 1 with a historical overview
to offer context and background to the development of gravitational lensing.
Gravitational lenses are introduced formally in Chap. 2. For the sake of gaining
hands-on experience, we offer an intuitive, Newtonian presentation and make the
necessary relativistic correction on the fly. The properties of gravitational lenses
with circular symmetry, many of which generalize to lenses with asymmetry, are
then discussed in some detail. Chapter 3 derives the fundamental equation for light
bending in its full, relativistic glory and introduces the homogeneous, isotropic
universe that is the backdrop for what follows in later chapters. We then turn to
the theory of multiple imaging by arbitrary mass distributions in Chap. 4.

The remaining chapters explore various applications of gravitational lensing.
Microlensing by stars and planets, in which multiple images cannot be spatially
resolved, is presented using complex variables in Chap. 5. Strong lensing, where
multiple images are resolved, is discussed in the context of galaxies in Chap. 6 and
clusters of galaxies in Chap. 7. Weak lensing, in which the gravitational field is too
weak to produce multiple images, is the subject of Chap. 7, where it is applied to
clusters, and Chap. 8, where it is applied to large-scale structure. Chapter 9 gives an
overview of lensing of the cosmic microwave background, in which we extend the
methods developed in the preceding chapters.

Strictly speaking, we assume background only in multivariable calculus and
introductory physics. Familiarity with intermediate classical mechanics, electro-
dynamics, and quantum mechanics would be useful, as much of the mathe-
matics encountered in those subjects applies to lensing. For those without such
experience, we include appendices on several topics that come up in the book:
variational calculus (Appendix A), complex variables (Appendix B), orthogonal
functions (Appendix C), Fourier analysis (Appendix D), and computational methods
(Appendix E).

Monrovia, CA, USA Arthur B. Congdon
Piscataway, NJ, USA Charles R. Keeton
November 2018
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Chapter 1 ®
Introduction Check for

We begin by summarizing the historical development of gravitational lensing. Our
journey begins in the late eighteenth century, before the wave nature of light was
definitively established (or so we thought) by Young in 1802. We then move to the
early twentieth century, when the wave-particle debate resurfaced with the advent
of the quantum. The particle interpretation of light is most useful in the context
of lensing, since we intuitively picture gravity as affecting the motion of material
objects, rather than waves. We will take this as our starting point and see where
it leads. As it turns out, the wavelike properties of light can be ignored if the
wavelength is much shorter than the distance scale over which a light ray is bent
by gravity. This approximation holds throughout the following pages.

1.1 Light and Gravity in Newtonian Physics

Perhaps the most important idea to emerge from the work of Newton is that physical
processes are governed by precise mathematical laws. Moreover, these laws apply
equally to happenings on Earth and anywhere else in the universe. This led to the
idea of “classical determinism,” famously championed by Laplace, in which the
present state of the universe determines its state at any other time, past or future. This
idea naturally gives rise to a mechanistic conception of the world, where particles
bump into other particles, keeping the machinery of the universe in working order.

It is against this backdrop that the effect of gravity on light was first considered.
Michell (1784) and Laplace (1795) considered what would happen if a star were so
dense that a particle emanating from its surface would be unable to escape. From
classical mechanics, a particle will escape from a spherical body if its total energy
is nonnegative, i.e.,

1
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for a star of mass M and radius R and a test particle of mass m. If we take v = c,
the smallest stellar radius for which a light ray can escape is

2GM
Rg = 2

(1.2)

where c is the speed of light and Rg is what we now call the Schwarzschild radius.
In eighteenth-century language, objects with R < Rg were called “dark stars”;
today, we call them black holes.

Now we turn to the bending of light by mass. Suppose that a light ray passes
by a point mass with impact parameter (distance of closest approach) R. In the
absence of the point mass, say, a star of mass M, the light ray will continue moving
on a straight line until it reaches an observer. In the presence of the star, the light
ray’s trajectory will change, causing the ray to appear farther from the star than R.
Since we can only measure angles on the sky rather than absolute distances, we
characterize the deflection of light by the angle between its observed position on
the sky and its position in the absence of gravity. We call this the deflection angle,
denoted by &.!

To determine &, we consider what happens as R increases. We expect that@ — 0
as R — oo. It is natural, then, to suppose that & o« R™", for some n > 0. For
simplicity, we take n = 1. Our final task is to determine the proportionality constant.
Since the deflection angle is dimensionless, this constant must have the dimension
of length. From our earlier consideration of dark stars, the Schwarzschild radius
seems like a good choice. This gives the expression

~ _Rs

=—. 1.3
&= (1.3)
As we will see in Chap.2, this agrees with a more sophisticated Newtonian
calculation, first published by Soldner (1804).

1.2 Light Bending in General Relativity

As plausible as our expression for the deflection angle may be, it relies on the
assumption that light particles have nonzero mass. In arriving at the expression
for the Schwarzschild radius (1.2), we canceled a factor of m in Eq. (1.1). This is
incompatible with our current understanding of the photon as a massless particle.
Our solution lies in the general theory of relativity, where all particles—massive
or not—are affected by gravity. This is because gravity arises from spacetime
curvature, to which all particles are subject, rather than action at a distance between

lAlthough a circumflex is often used to denote a unit vector, we do not use this convention here or
in what follows.
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massive bodies. We will show in Chap. 3 that in the weak-field limit (to be defined
later), general relativity (GR) predicts a deflection angle that is twice the Newtonian
value,? namely,

2Rs
R

a= (1.4)

Deriving this expression theoretically was one thing, but confirming the pre-
diction observationally was another. The main task was to find an object massive
enough to bend light passing by and one or more sources of light behind this object.
Since the effect would be difficult to detect, only a nearby star would work. The Sun
was a natural candidate, but it is only possible to see stars behind it during a total
solar eclipse. One complication is that only stars whose projected positions coincide
with the solar “limb” (outer edge) can be measurably lensed. Finally, one needed to
observe the relevant stars in the absence of the Sun. Comparing the positions of the
lensed and unlensed stars would then yield the desired angle.

A German team, led by Erwin Freundlich, set out to Russia in 1914 to observe
a total eclipse. Unfortunately, World War 1 broke out, and the team was captured
behind enemy lines. They eventually returned to Germany in a prisoner exchange,
but not until after the eclipse had occurred. Another team attempted to observe the
same eclipse for signs of light bending was prevented by cloud cover.

Eddington, in part to avoid military service that would compromise his Quaker
faith, proposed to undertake an expedition to observe the solar eclipse of 1919.
Whatever result he found, its importance to science would presumably bring glory to
the British Empire. This “reasoning” was rendered somewhat moot by the end of the
war in 1918, but the eclipse was observed on May 29, 1919, as planned. Eddington
found that Einstein’s prediction was correct, although observational errors of
roughly 30% were present.> His result was presented at a joint meeting of the Royal
Society and Royal Astronomical Society late that year and published as Dyson et al.
(1920). Although GR had explained Mercury’s anomalous perihelion shift, light
deflection was its first confirmed prediction; Einstein has been a household name
ever since.

1.3 Consequences of Light Bending

The importance of light bending as a prediction that set GR apart from the prevailing
theory of gravity cannot be understated. Just as the acceptance of theoretically
attractive ideas like cosmic inflation and the multiverse has been hampered by a
lack of testable predictions, a theory as mathematically abstruse as GR could truly
be considered science only by connecting with observations in the real world. Yet

2Einstein’s first published attempt to derive the deflection angle predicted the Newtonian value
(Einstein 1911), but he detected the error before presenting GR in its final form (Einstein 1916).

3Subsequent measurements have lowered the uncertainty to about 0.01% (see Will 2014).



4 1 Introduction

it was unclear at the time whether light bending would have a future in its own
right. Indeed, Einstein (1936) dismissed the possibility that phenomena such as
multiple images could actually be observed. He correctly noted that the two images
characteristic of lensing by a point mass cannot be observationally resolved, at least
in the stellar context he had in mind.

However, Zwicky (1937a) proposed that a galaxy could be observed as several
distinct images if its light passed sufficiently close to a foreground cluster of
galaxies. Not only do such clusters contain copious amounts of luminous matter,
but Zwicky (1933, 2009) found that the Coma Cluster, for one, also required a
significant amount of unseen “dark matter,” in order to keep its member galaxies
from flying apart. Although the vast distances to cluster lenses and background
galaxies mean that only very bright sources could be seen, the magnification
produced by extremely massive objects would make the probability of detecting
light bending on this grand scale non-negligible (Zwicky 1937b). This insight would
turn out to be prescient, though more than four decades would pass before such a
cosmic lens was observed. Even individual galaxies can act as gravitational lenses
since they also contain large quantities of dark matter, as discovered by Rubin and
Ford (1970) for the Andromeda Galaxy and more generally for high-luminosity
spiral galaxies by Rubin et al. (1978).

Zwicky’s work on gravitational lensing was largely forgotten until Sjur Refsdal
resurrected the field in the 1960s, though his Ph.D. thesis committee was initially
skeptical that the task was worth the effort. After developing the necessary formal-
ism (Refsdal 1964b), he proposed that the time delay between lensed images could
be used to measure the Hubble constant independent of other methods (Refsdal
1964a, 1966b). This technique requires sources that vary in brightness. Since each
lensed image corresponds to a particular trajectory of a light ray from the source
to the observer, the associated travel time differs from one image to another. This
means that a change in the flux of the source will be observed separately in
each of the lensed images. Quasars and supernovae have the requisite brightness
and variability and lie at cosmologically relevant distances. The first observed
gravitational lens was a quasar, and a lensed supernova was eventually detected as
well. These and other applications of strong lensing are presented in Chaps. 6 and 7.
He also pointed out that observing lensed stars from widely separated locations
would allow this phenomenon to be of practical use after all (Refsdal 1966a),
notwithstanding the dismissal of the idea by Einstein (1936). We will have more
to say on the subject of microlensing in Chap. 5.

1.4 Gravitational Lensing as an Observational Science

As with so many events, the historical significance of the detection of the double
quasar Q09574561 by Walsh et al. (1979) was not immediately obvious. The two
“blue stellar objects” are at the same (cosmic) redshift, have remarkably similar
spectra, and are separated by a mere 5.7 arcsec on the sky (see Fig. 1.1). While such
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Fig. 1.1 Hubble Space Telescope image of the strong lens system Q0957+561. The two star-like
objects in the center of the picture are lensed images of a single distant quasar, which occur because
the light rays are bent by the gravity of the galaxy between the images. Credit: ESA/NASA

evidence would establish that this pair is indeed the result of a gravitational lens by
today’s standards, the passage of six decades from the 1919 eclipse without multiple
images of the same source ever being seen led the authors to declare this as a “less
conventional view.” The subsequent discovery of other such systems made it clear
that gravitational lensing had entered the realm of observational science. Over the
years, three distinct flavors of lensing have developed into thriving subfields, which
we summarize below.

1.4.1 Strong Lensing

The case in which a nearer object splits the light from a more distant source into
multiple, resolved images is known as strong lensing. The lens and source must be
closely aligned in order for this effect to occur, but strong lenses are straightforward
to identify when candidates are found, at least for quasars. In the years immediately
following the discovery of Q0957+561, other two-image and even four-image lenses
were found, with the “Einstein cross” (Huchra et al. 1985) being a prominent
example. In the following years, configurations with close pairs or triplets of images
were discovered.
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Fig. 1.2 Hubble Space
Telescope image of the galaxy
cluster Abell 370. The long
structure to the lower left of
the center was the first lensed
arc to be discovered. Modern
observations reveal a plethora
of lensed images, which are
discussed in Chap. 7. Credit:
NASA, ESA, and J. Lotz and
the HFF Team (STScI)

While lensed images of quasars are point-like, owing to their great distances from
Earth, images of galaxies are extended. This means that separate lensed images
can merge together, creating structures that are visually striking but may be hard
to identify unambiguously as examples of lensing. A “giant luminous arc” was
detected in the galaxy cluster Abell 370 (Lynds and Petrosian 1986; see Fig. 1.2),
but its nature as a lensed image had to await detailed spectroscopy to be confirmed
(Soucail et al. 1987a,b).

Strong lensing allows us to study the distribution of matter within galaxies
and clusters of galaxies that split background sources into multiple images. Since
lensing is sensitive to both dark and luminous matter, while other techniques
principally constrain the luminous component, we can infer the distribution of the
all-important yet equally mysterious dark matter by comparing results derived from
complementary methods. It is also possible to constrain cosmological parameters
by examining the lenses in their cosmological context. We discuss the theory of
multiple imaging in Chaps.2 and 4 and its applications to galaxies and galaxy
clusters in Chaps. 6 and 7, respectively.

1.4.2 Microlensing

Even when several distinct images of a background source are produced by a
foreground lens, they may not always be resolved. This is what led Einstein
(1936) to dismiss such lensing from serious consideration. However, advances in
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Microlensing Event MACHO-LMC-5 Hubble Space Telescope * ACS
| WSTACSHRC :

Jan. 1994 July 11, 2002
-

NASA, ESA and D. Bannatt [University of Notre Dame) STScl-PRCO4-24

Fig. 1.3 A microlensing event. The two panels on the left show images of the same patch of sky
taken from the ground at different times. The star in the middle of the small box was much brighter
in Feb. 1993 than before or after, because its light was magnified when another star passed in front.
The right panel shows a later Hubble Space Telescope observation that detected both the red lens
star, which is in our Milky Way Galaxy, and the blue source star, which is in a nearby galaxy called
the Large Magellanic Cloud. (The right panel spans the same area as the small boxes in the left
panels.) Credit: NASA, ESA and D. Bennett (University of Notre Dame)

technology since the early days of the field opened the possibility of measuring
the collective (or total) magnification of all the lensed images. This phenomenon
is known as microlensing. In the case of stars, one observes the change in
magnification resulting from the relative motion of the observer, lens, and source,
which occurs on timescales of months or years (see Fig. 1.3).

Paczynski (1986b) suggested that dark matter in the form of compact objects in
the halo surrounding the Milky Way would lead to microlensing of background
stars in the Magellanic Clouds. While the probability that such a star is being
lensed at a given time is quite small, there is a non-negligible probability of
detecting microlensing if sufficiently many stars are regularly monitored. In fact,
roughly a million stars would need to be observed for the probability to be close
to unity. During the following decade, searches of this kind were undertaken, with
a handful of events being detected in the Large Magellanic Cloud (Alcock et al.
1993; Aubourg et al. 1993) and in the bulge of the Milky Way (Udalski et al. 1993).
These observations helped to demonstrate that massive astrophysical compact halo
objects (MACHO:s), including brown dwarfs and a variety of stellar remnants that
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are invisible at large distances, exist in quantities too small to account for the motion
of stars in orbit within galaxies (see Sect.5.5.1).

Microlensing can also be used to search for extrasolar planets (exoplanets),
complementing techniques based on the transit of planets in front of their host
stars, or the Doppler shift of stellar light due to the gravitational pull of orbiting
planets. Although planets are, of course, much less massive than the stars they
orbit, they nevertheless alter the magnification in detectable and identifiable ways.
Microlensing is most sensitive to planets with masses comparable to Jupiter or
Saturn (e.g., Bond et al. 2004; see also Sect. 5.5.2).

In the case of lensed quasars, where it takes far longer to move a distance
that is cosmologically significant, microlensing by stars within the lens galaxy
can still perturb the magnification of each macro-image. The light rays for the
different images pass through different star patterns, so microlensing of one image
is uncorrelated with that of another image. Inspired by the discovery of Q0957+561,
Chang and Refsdal (1979) considered perturbations to the magnification of a lensed
image by a single star. Paczynski (1986a) also considered microlensing at large
optical depth, where the collective effect of many stars is at play. With the help
of numerical simulations, it is now possible to model the effect of many stars
simultaneously. Such quasar microlensing is among the applications of strong
lensing by galaxies discussed in Sect. 6.6.

1.4.3 Weak Lensing

The remaining possibility is that the shapes of background galaxies can be altered
by lensing, without multiple images being formed. Unlike strong lensing and
microlensing, such weak lensing cannot be inferred from a single object but is
observable when many sources can be analyzed to yield a statistically significant
signal. Objects behind the lens, even if they are significantly offset from its
center, can still have their light bent, if the lens is massive enough. If the surface
mass density of the lens is above a certain threshold, multiple images will form.
Otherwise, a subtle distortion of the background source will be induced.

Tyson et al. (1990) observed the preferential alignment of galaxies tangential to
the center of a lens cluster characteristic of weak lensing. Kaiser and Squires (1993)
showed how the observed ellipticities of background galaxies, including both shape
and orientation, can be used to reconstruct the surface mass density of a foreground
lens cluster. Variations on this method have become the standard tools for the study
of weak lensing by galaxy clusters. We describe the basic approach in Sect. 7.2

As it turns out, weak lensing can be used to probe not only individual mass con-
centrations but also the large-scale structure of the universe between the observer
and source. The latter depends on cosmological parameters, such as the Hubble
constant, the total energy density of the universe, and the relative contributions
of radiation, matter, and dark energy. The effect of large-scale structure on the
shapes of galaxies is called cosmic shear and was first detected about a decade
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after weak lensing by clusters was discovered (Bacon et al. 2000; Van Waerbeke
et al. 2000; Wittman et al. 2000). Interestingly, all of these early papers found that
models excluding dark energy are inconsistent with the observed cosmic shear,
neatly following the discovery of dark energy just a couple years earlier (Riess
et al. 1998; Perlmutter et al. 1999). The fusion of advanced instrumentation and
sophisticated statistical techniques has made cosmic shear an integral part of the
current cosmological research.

We devote the entirety of Chap. 8 to lensing by large-scale structure, including
the relevant cosmological concepts. The effect of large-scale structure on the cosmic
microwave background is the subject of Chap. 9. The themes of these final chapters
are related, but there are notable differences as well.
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Chapter 2 ®
Gravitational Lenses with Circular Creck fo
Symmetry

We have seen the beauty and power of gravitational lensing in both the local
and distant universe, but exploiting this rich phenomenon requires a quantitative
treatment. Many of the most important concepts in lensing can be gleaned from the
axisymmetric case, where the mass distribution of the lens has either spherical or
cylindrical symmetry in three dimensions, corresponding to circular symmetry in
two dimensions. Strictly speaking, we must work within the confines of general
relativity, but a Newtonian derivation of the deflection angle is nevertheless
instructive (Sect.2.1) and requires only a slight mathematical tweak to bring the
result in line with relativity.

Because the radial extent of a lens is much smaller than either the distance
from the observer to the lens or from the lens to the source, we can project along
the line of sight to arrive at a two-dimensional problem (Sect.2.2). Using this
“thin lens” approximation, we derive the equation that a deflected light ray must
obey and discuss how to determine the positions and magnifications of lensed
images. We then use this framework to analyze a few simple yet representative lens
models (Sect.2.3). The final three sections derive conditions for multiple imaging
by axisymmetric lenses and discuss how to extend our analysis to non-axisymmetric
lenses.

2.1 Deflection Angle: Newtonian Derivation

We begin by deriving the deflection angle according to Newtonian gravity (Soldner
1804). In Chap. 1, we used a dimensional argument to suggest that the deflection
angle of a point mass is given by &(R) = Rs/R, where Rs = 2GM /c? and R is the
impact parameter of an incoming light ray. Consider a mass distribution centered
at the origin of cylindrical coordinates (R, ¢, z). The special case of a point mass
is shown in Fig.2.1. Suppose that the position of the observer is (0, 0, D;), where
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Fig. 2.1 Illustration of
lensing by a point mass. A
light ray is emitted by a
source at z = — Dy, i
deflected by a lens of mass M l

at z = 0, and is received by

an observer at z = D;. Note 7 z=D;
that the azimuthal angle ¢ : / |

remains constant. In the thin ‘
lens approximation of

Sect. 2.2.1, the deflection
through the angle & is taken
to occur instantaneously at
the point where the light ray
crosses the lens plane. For an

A z=0
extended mass distribution,
M refers to the mass inside
the radius R
z=—Dy

D; > 0 denotes the distance between the observer and the lens. Suppose that a light
ray comes in from a source located at z = — Dy (with D;; > 0) and crosses the
plane of the lens at a distance R from the z-axis. We take its initial velocity to be
ce; = vy, where c is the speed of light and e; is a unit vector in the z-direction. Note
that z increases toward the observer. The light ray will experience a gravitational
acceleration due to the lens, a = —V@(r), where @ is the gravitational potential
(potential energy per unit mass) at position r. This acceleration gives rise to a change
in velocity as the light ray travels from the source to the observer:

to 1 o
AV = / adr ~ —/ adz, 2.1
ts ¢ J—Dy

where the second integral is only approximate, since the path of integration is
the straight line from the source to the observer rather than the actual trajectory.
This is analogous to the first-order Born approximation! of quantum mechanics.

IThis approximation was introduced by Lord Rayleigh (Strutt 1881) in the context of classical
scattering.
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In principle, we could compute a second-order correction using the first-order
trajectory as input in the same way that the first-order correction is determined from
the zeroth-order (unperturbed) path.

Writing Av = Avje; + Av, eg, we can express Eq. (2.1) as separate equations
for the components of velocity parallel and perpendicular to the line of sight.> For
the parallel component, we have

1 (b 1 [P 3d(r)
Ay = — Vi@r)dz = - dz
¢ —Dys ¢ —Dys BZ

1
p (@&, D) — (&, —Dis)] (2.2)

where & = (R, ¢). Since D; and Dy, are large compared to the radial extent of the
lens, and since @ (r) — 0 as |r| — oo, we find Ay = 0.

The perpendicular component of the gravitational acceleration will impart a
change in velocity toward the z-axis:

1 (o 1 (P e
Avy = -/ vV, o) dz = —f L 2.3)
C — Dy C —Dyg aR

Thus, the light ray’s final velocity will be given by

V=V + Av=ce;, + Av egr = vje; + v eg, 2.4)

where we assume that v; < v, so that |v| ~ c. Infact, |[v] =¢,/1 + ﬂi > ¢, where

BL = vi/c. Since |BL| < 1, we have |v| = ¢[1 4+ & (B3)]. Assuming the light
ray’s path deviates only slightly from a straight line, we can ignore terms beyond
the first order in B, . This conclusion admittedly involves a bit of hand-waving, but
we offer a proper derivation in Chap. 3.

The relevant quantity for gravitational lensing is the angle & by which a light ray
is bent by a mass distribution. In terms of the velocity components v and v, this
angle is the solution of tan& = |vL/vH | Since v | € |v” | by assumption, we have

> (2.5)

Dy
/ Vio(r)dz| .
7Dls

Since a light ray is deflected in a particular direction, we define the deflection
vector &. Its magnitude is twice that of the deflection angle & we just computed, as

2Since gravity is a central force, it produces no azimuthal acceleration.
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required by general relativity (see Chap. 3). The direction of & is opposite to that of
v, because a deflected light ray appears farther from the line of sight to the lens
than an undeflected ray. Assuming that the lens is localized around z = 0, we can
let Dy, D;g — oo in Eq. (2.5). The deflection vector is then

2 o0
a) = 0_2/ Vi®(E, »)dz, (2.6)

where we write the position vector as r = (&, z), so that @ (r) = @ (§, 2).
We now specialize to the point-mass lens, for which Eq. (2.6) can be written as

o0 [BQ(R, Z)] dz

R 2.7)

2
(R, p) = er(}) ;/

oo

By writing & in terms of polar coordinates (R, ¢), we can write the deflection vector
as a product of its magnitude, which depends only on R, and its direction, which
depends only on ¢. We use the notation eg(¢) to indicate a unit vector in the R-
direction at azimuthal angle ¢. For a point mass M, the potential is given by

GM

PR, 7)) =———.
VR? + 22

(2.8)

We then have

90 (R, o -172
WD _ oM (R4 22)
oR oR

GMR
S 2.9)

(R2+22)°%

The deflection vector is then

2GMR o0 -3/2
&(R. ¢) = er(@) 2 / (R+2) e

c? 00

2GM [ 7/?

= er(¢) —5 cosu du
‘R J_zp

4GM

2R’

=egr(9) (2.10)

where z/R = tan(u). Note that this result differs from that of Chap. 1 only by the
factor of 2 introduced to make our conclusion consistent with the relativistic result.
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2.2 Theory of Axisymmetric Lenses

We saw in the previous section that the deflection angle does not depend on the z-
coordinate, i.e., it is a vector field defined on the (x, y) plane. This result furnishes
a useful physical interpretation, which is the subject of Sect.2.2.1. We use the
framework developed there to obtain an expression for the deflection angle of an
axisymmetric lens in terms of a specified three-dimensional density profile. The
next step is to derive the lens equation (Sect. 2.2.2), whose solutions specify where
lensed images will form. A lensed image will be magnified relative to the unlensed
source. We explore this topic in Sect. 2.2.3.

2.2.1 Thin Lens Approximation

Unless stated otherwise, we will treat the path of a lensed light ray as a straight
line from the source to a point in the lens plane followed by a second straight line
from this point to the observer. This is known as the thin-lens approximation and
is equivalent to the first-order Born approximation discussed in Sect.2.1. Starting
from a specified lens model, our task is to compute the corresponding deflection
angle.

In three dimensions, the gravitational field at a distance r from the center of a
spherically symmetric mass distribution is proportional to the mass M3p(r) interior
to radius r. In the thin lens approximation, the mass distribution is confined to a
disk, so that the deflection is affected by the mass M>p(R) within radius R. This
reasoning also applies to the deflection angle given in Eq. (2.10). Thus we replace
the mass M by M (R) = M>p(R) in Eq. (2.10) for the deflection angle. We write

R 4G M (R
aR )= SHB . @.11)
c R
where
R
M(R):/ 27 R (R dR'. 2.12)
0

(See Problem 2.1 for an alternative derivation of M (R).) The surface mass density,
Y (R), is given in terms of the volume mass density, po(r), by

E(R)=/ p(r)dz, (2.13)

e ¢]

where r = +/R? + z2. While the foregoing discussion says nothing new about the
point-mass lens, it allows us to generalize to extended mass distributions (Sect. 2.3).
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2.2.2 Lens Equation: Geometric Derivation

With Eq. (2.11) for the deflection angle of an axisymmetric lens in hand, we wish to
determine where lensed images will form for a given source position. The result will
be the lens equation. Before deriving it, let us recast Eq. (2.11) in a more useful form.
Since we restrict our attention to axisymmetric lenses in this chapter, we would
like to replace the deflection vector by some appropriate scalar quantity. A natural
choice would be the magnitude of the deflection vector, but this would exclude the
possibility that images may form on opposite sides of the lens. To see this, suppose
that an image forms at an angle on the sky 64 > 0 relative to the lens. By symmetry,
any additional images must form along the line connecting the lens and the image at
04 . If such an image appears on the other side of the lens with respect to the image
at 0, its deflection vector will point in the opposite direction. This corresponds to
the transformation ¢ — ¢ + 7 in Eq. (2.7), which causes the deflection vector to
change sign.

We therefore define a deflection angle, &, such that & > 0 when & > 0 and
a < 0 when 6 < 0. Specifically, we write

R 4G M(|x])
a(x) = — , (2.14)
c x
where x = D;0. Note that @ #* |& , since &(—x) = —a(x). The trade-off of

switching from & to & is that we suppress the azimuthal dependence in Eq. (2.11),
giving the false impression that lensing by an axisymmetric mass distribution occurs
on a line rather than in a plane.

For a given deflection angle & and angular source position 8, at what values of 6
will images form? From Fig. 2.2, we have the geometric relation

Dgtan 8 = Dytan6 — Dy tand . (2.15)
In the small-angle approximation (tan ¢ =~ sin ¢+ & 1), this reduces to
D;B = D0 — Disa, (2.16)

where Dj; and D, are the distances® from lens to source and observer to source,
respectively. Defining the reduced deflection angle by

Is

9—D D0 2.17
a()=Da(z), (2.17)

N

3More precisely, these quantities measure angular diameter distances (see Chap. 3).
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T ' Dytan

| Dgtan 6
Dy tan(é& — 0)

Dgtan 3

| Dy 1

Fig. 2.2 Trajectory of a light ray subject to a weak gravitational field (solid line). The light ray
emitted by source S is bent by lens L, producing an image [ seen by observer O. Relative to the
line of sight from O to L, the true angular position of S is 8, while that of 7 is 6. Note that a given
lens may produce multiple images and that these images are distorted as shown in Sect. 2.2.3. The
angle between [ and S as measured by O is denoted by «, and the angle through which the light
ray is bent by L is &. They are related by Eq. (2.17). The distances D;, Dy, and Dy, are angular
diameter distances, so that D;; # Ds — D; in general. This distinction becomes important in
cosmological settings (see Chap. 3)

we finally obtain the lens equation:
B=0—u). (2.18)

Images are observed at positions 6 that solve the lens equation for a given source
position B and deflection angle «(0). As we will see, there are often multiple
solutions, implying the existence of more than one image of a single background
source. We define a dimensionless mass profile:

0) = 16 Dis M(D; |6]) (2.19)
me =2 pp, Y '
so that
a(9) = @ (2.20)

(cf. Egs. (2.14) and (2.17)). The lens equation can then be written as

,3:9—@. 2.21)
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2.2.3 Image Magnification

An image with position 8 will be magnified by an amount p(6) which satisfies

ds2;
d$2s

Il = ’ , (2.22)

B ‘Gdedw
B dp des

_lede
~|BdB

where d§2; and d§2g are elements of solid angle in the image and source planes,
respectively. The sign of p is determined by the orientation of the lensed image
relative to the unlensed source: if they are oriented in the same way, then u > O,
and we say that the image has positive parity; if the orientations are opposite, then
© < 0, and we say that the image has negative parity. The meaning of parity is a
bit more involved for non-axisymmetric lenses, because the image can be inverted
along either or both of the two orthogonal directions. We will return to this point in
Chap. 4. Note that dp; = dgg for an axisymmetric lens since the deflection in that
case is purely radial (cf. Fig. 2.3). Because the lens equation tells us how 8 depends
on 6, it is easier to work with the inverse magnification:

1y BB _ @y (9
H (9)_9d0_<1 9)(1 d@)' (2:23)

As illustrated in Fig. 2.3, we can interpret the factors in Eq. (2.23) as follows.
Although B and 6 measure angles on the sky, we can think of them as radial
coordinates in the source and image planes, respectively. Consider a source that
subtends an angle Ag. Its arc length is then As = SAg@. A lensed image of this
source will have an arc length of As’ = 6Ag. The magnification of this image
is given by u;, = As’/As = 6/B, which is the reciprocal of the first factor in
Eq. (2.23). In other words, 6/ represents a tangential magnification. Now consider
a source with radial extent AS. The radial extent of a lensed image will then
be A0 = (d9/dB)AB = wu,AB, assuming that AB and A are small. We see
that w, is the reciprocal of the second factor in Eq.(2.23) and represents a radial
magnification. The total magnification of the image is just the product w, i;.

Another feature of Eq.(2.23) that is worth noting is that the magnification
diverges if either (or both) of the factors vanishes, i.e., if « = 6 or da/d6 = 1.
Values of 0 that satisfy these relations are said to lie on critical curves. For
axisymmetric lenses, critical curves are circles in the image plane. Under the lens
equation, critical curves correspond to curves in the source plane called caustics.
Axisymmetric lenses produce caustics that are points (u, - 0) or circles (u, =
0). Critical curves and caustics that satisfy «(f) = 0 or da(f)/df = 1 are termed
tangential or radial, respectively. As we will argue in Sect.2.5.1 for axisymmetric
lenses, and extend in Chap. 4 to more general lenses, the number of images of a
given lens increases or decreases by two when a source crosses a caustic.
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Fig. 2.3 Magnification of lensed images. In the plane of the sky, a source S at angular distance
B from lens L appears as images [t at distances 6i. Note that the angle ¢ is arbitrary.
The (infinitesimal) area of S is BABA¢, while that of It is 0+ A0+ A¢. This generally gives
rise to tangential and radial magnification as discussed in Sect.2.2.3. However, the singular
isothermal sphere (Sect. 2.3.2), from which the present figure is generated, only produces tangential
magnification. When 8 = 0, an “Einstein ring” of angular radius 6 is formed

Before considering a few specific lens models, we note that g is an odd?* function
of 6, so that 8/0 and dB/d6 are even functions of 6. Thus, ©(0) is also even. This
means that the magnification of an image produced by an axisymmetric lens depends
only on its distance from the center of the lens, as we would expect. Equivalently,
magnification of a source depends only on its (projected) distance from the lens.
This is in contrast to the deflection angle, which points away from the lens and
hence is an odd function of image position.

4Recall that a function f(x)is said to be odd if f(—x) = —f(x) and even if f(—x) = f(x).
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2.3 Axisymmetric Lens Models

We now turn to a few specific lens models to illustrate how one solves the lens
equation and computes image magnification in practice. In the axisymmetric case
we are considering, the lens equation is effectively one-dimensional. This restriction
notwithstanding, the models we present demonstrate the variety of lens systems
that even the simplest mass distributions can produce. Allowing for asymmetry is
essential for understanding observed lenses, but including such complexity comes
at a high algebraic cost. We will confront this painful reality in due time, but our
focus in this section is on the qualitative behavior common to axisymmetric and
non-axisymmetric lenses alike.

2.3.1 Point Mass Lens

The simplest lens consists of a single point mass, whose deflection angle is given by

D 4GM Dy 4GM
a=— =

= 2.24
Dy ¢2R  D;D; c20 (224

(cf. Egs. (2.19) and (2.20)). Defining the Einstein radius as

Dy, 4GM
Op = | =28 22 (2.25)
DiD; 2
the lens equation takes the form
92

B=6-— 7’5 (2.26)

For a given , there are two solutions:

B £./p%+ 402 227

0L =
+ 2

Notice that 6, > 0 and 6_ < O for all 8 > 0. This means that one image will form
on the same side of the lens as the source, and another will form on the opposite
side of the lens. This conclusion remains valid if 8 < 0; only the signs of 6+ will be
reversed. For convenience, we take 8 > 0 in what follows, unless stated otherwise.
Since we do not know the true source position, 8, how can we determine which
image is which? The answer lies in the magnification, given for a point-mass lens by
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B 62 02 0%
w o) = (1 — 9—§> (1 + 9—’;") = (1 — 9-’;{) (2.28)

(cf. Eq.(2.23)). As we will see in Problem 2.2, |_| < 0 and |#4+| > 6. This
implies that u— = u (0—) < 0and uy = w (4+) > 0 for all B > 0. In other words,
the image at 6 has positive parity while that at 6_ has negative parity.

In the case of Galactic® microlensing, to be discussed in Chap. 5, the individual
images cannot be spatially resolved. It is therefore useful to write down the total
magnification produced by both images, since that can be observed. Let us first
write the magnification in terms of the image position in units of the Einstein radius,
x =6/0g:

4
= . 2.29
e = (2.29)
The total magnification is then
Hiot = || + (1]
4 4
X X
=0 0. (2.30)

In terms of the source position in units of the Einstein radius, u = /6, we have:

w42
M —_— —_—
tot — um

Note that 1 represents a change in brightness of a source caused by lensing, so it
is not strictly a magnification; the latter would also contain parity information.
The centroid (center of light) of the two images is located at

2.31)

Xp gl + x= lp]

X =
Htot
1+ ! (2.32)
= U —_— . .
u>+2
Thus, the shift of the centroid position due to lensing is
AT =% - (2.33)
X=X—U=—— .
u?+2

SWe write Galaxy with a capital “G” when referring to the Milky Way galaxy.
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(Paczyniski 1998 and references therein), which vanishes in the limit 4 — oo, where
there is no lensing. The centroid will play a role in our discussion of microlensing
in Chap. 5.

Let us now consider the case of a source that is directly behind the lens. Reverting
to angular positions § and 6, this corresponds to 8 = 0, 6+ = +60g, and u+ — oo.
What does it mean for images to form at 6 ? Do they form to the left and right of
the lens, above or below it, or on some other line? Although we have been treating
the lens equation for an axisymmetric lens as one-dimensional, this is not quite
correct. The proper interpretation is that the azimuthal angular position of the source
is not affected by purely radial light deflection. This means that the source and
lensed images are collinear, with the orientation of the line being determined by the
azimuthal position of the source. For a source at 8 = 0, all lines passing through
B and 6+ are equivalent, so that a ring of angular radius 6, known as an Einstein
ring, is formed. Note that 8 = 0 is a caustic point, whose (tangential) critical curve
is the Einstein ring of the lens.

2.3.2 Singular Isothermal Sphere

A point mass is a reasonable approximation for a star but is too crude to describe
galaxies, which are an important class of lenses. The simplest plausible such model
is known as the singular isothermal sphere (SIS). Its key virtue is that it predicts
a flat rotation curve (Fig.2.4), which is observed at large radii in disks of spiral

SIS

100

ve (km/s)

r (kpc)

Fig. 2.4 Galactic rotation curves for two common density profiles. An SIS produces constant
rotational speed as a function of galactocentric distance. An NIS has a flat rotation curve at large
radii, but deviations from its asymptotic value are seen at small radii. We have chosen a typical
maximum rotation speed of vyoy = 220 km/s
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galaxies. One drawback of the SIS, however, is that the density is infinite at its
center. This singularity can be removed by introducing a small, finite-density core,
as described in Sect. 2.3.3.

Physical Motivation

It is often useful to picture a galaxy as a ball of gas where the pressure arising from
particle collisions is replaced by the orbital motion of stars and dark matter. This
motion balances the galaxy’s gravitational field at all radii. Assuming our gas sphere
(galaxy) can be described locally by the ideal gas law, we have

kT
P(r) =n()kT = ?p(r), (2.34)

where P, n, and p are the pressure, number density, and mass density, respectively.
A galaxy with a flat rotation curve is analogous to a gas of constant temperature, 7.
For simplicity, we assume all particles (stars) have the same mass, m.

Of course, collisionless stars and particles of dark matter in galaxies do not really
have a temperature but are instead described by a characteristic speed, known as
the velocity dispersion, o. In terms of the temperature, this quantity is given by
o = /kT/m. Hence, the ideal gas law takes the form

P(r)=0a’p(r). (2.35)
A lens model entails a density profile, so our task is to find p(r). To eliminate P, we

invoke the equation of hydrostatic equilibrium, which says that pressure balances
gravity. It reads

VP =—pVo, (2.36)
which reduces to
dpP _ do 2.37)
dr P dr '

under the assumption of spherical symmetry. Finally, we use Poisson’s equation to
write the density in terms of the potential:

4 Gp(r) = VO (r) = S\ - (2.38)
r=dr dr

Combining Eq. (2.37) with the derivative of Eq. (2.35) yields

do ,dInp
— == . 2.39
dr 7 dr ( )
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Plugging this result into Poisson’s equation (2.38) gives

47 Gp 1 d/,dlnp
— = r .
dr

o2 T r2dr

(2.40)

Following Binney and Tremaine (2008), we hypothesize that p(r) = Ar~%, and
thus

477 G Ar—®
T —wr? (2.41)
o

In order for this equation to hold at all radii, we require e = 2. It is then trivial to
solve for A. The SIS profile is therefore

2

_— 2.42
27 G r? (2:42)

p(r) =

A spiral galaxy consists of a rotating disk embedded in a halo of dark matter.

We obtain the rotation speed of the disk by equating centripetal and gravitational
acceleration, i.e., vrzot(r) = r@’(r). For the SIS, we find v;or = \/50, a constant!

In the case of an elliptical galaxy, however, stellar orbits are randomly oriented,

so the quantity vy is not meaningful. Instead, we measure the distribution of the

component of velocity parallel to the line of sight to the galaxy (Fig.2.5). For an

ideal gas, this distribution is Gaussian, and its standard deviation is the velocity

Jop)

[ \ \ \ \ [
_30 _20 —0 o 20 30

Line-of-sight velocity v|

Fig. 2.5 Line-of-sight velocity distribution f(v|). Stars moving away (toward) the observer have
positive (negative) values of v|. Assuming isotropic stellar motion, we find (v) = 0. A Gaussian
with mean zero and velocity dispersion (standard deviation) o ~ 150 km/s, corresponding to vyt ~
220km/s, provides a good fit to observed spiral galaxies. Elliptical galaxies are typically more
massive than spirals, with correspondingly greater values of o
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dispersion o. Specifically, if f(v)dv) is the fraction of stars with line-of-sight
velocity between v and v + dv, we have

1 —v?
fp) = PV <g'2> . (2.43)

Even for a spiral galaxy, where the stars are concentrated in a disk, the function
f(v)) has physical significance: Ostriker and Peebles (1973) showed that disks are
subject to large-scale instability if they are not embedded in a three-dimensional
halo. The absence of a visible halo is further evidence for dark matter in galaxies.
The velocity dispersion is a measure of a galaxy’s total mass, so knowing its value
and the total amount of luminous material allows us to infer the abundance of dark
matter. As we will now see, the SIS gives rise to multiple images of a sufficiently
aligned background source, offering an additional probe of galactic structure.

Lensing Properties
Regarding the SIS as a lens, our first task is to compute the deflection angle. As

we saw in Sect. 2.2.1, this requires specification of a surface mass density profile.
Integrating Eq. (2.42) along the line of sight yields

2 00
S(R) = o / dz

217G J_oo R+ 72
0,2 /2
= f du
27GR —/2
0?1
- (2.44)
2G R

where z = R tan u. From Eq. (2.12), the mass enclosed within radius R is then

o’nR
M(R) = (2.45)
G
Substituting this into Eq. (2.11), the deflection vector for an SIS is given by
. o?
a(R,¢) =4n C—ZeR(qb) . (2.46)

Note that the magnitude of the deflection angle is independent of R. This property
greatly simplifies the computation of the positions and magnifications of the
images produced by an SIS. An alternative derivation of Eq. (2.46) is considered
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in Problem 2.3. In terms of image position 6, the reduced deflection angle of the
SIS is given by

101

a) = 957 , (2.47)
where
2
D
O =4m— . 2.48
=TT D, (2.48)
The lens equation therefore takes the form
0]
B=06-— 057 . (2.49)

Solving the lens equation takes some care because absolute values are involved.
If 6 > 0, we find that

0 =pB+06g. (2.50)
For 6 < 0, we have
0=p8—-0g, 2.51)

which gives 6 < 0 only if 8 < 6. When 8 = 0, an Einstein ring with angular
radius O is formed.

Like the point mass, the SIS produces a caustic point at 8 = 0, which maps to
a critical curve (Einstein ring) in the image plane. For both models, the Einstein
ring is parametrized by 6, but it is important to note that the specific value of g
depends on the assumed model. One qualitative difference between the two models
is that the point mass always produces two images of a background source, while
the number of images produced by an SIS depends on the source position. In the
latter case, a source will be doubly imaged only if it is within the Einstein radius of
the lens.

In the general situation, the number of images changes by two as the source
crosses a curve along which the magnification diverges. For the SIS, on the other
hand, the number of images changes by one as the source crosses the curve along
which the magnification vanishes:

_ d
nO) =1-05 o5

Ok

=1- =,
6]

(2.52)
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so that © = 0 when 6 = 0 or, equivalently, when § = 6. The circle defined by
B = O is known as a pseudocaustic.

In addition to the change in brightness of an image, it is of interest to ascertain
its change in shape caused by lensing. Since da/df = o'(9) = 0 for 6 # 0, the
SIS does not produce a radial caustic or critical curve. The only way for an image
to appear radially elongated is if the tangential magnification is small. The SIS does
produce tangential arcs for sources near 8 = 0, corresponding to |6| ~ 6.

2.3.3 Nonsingular Isothermal Sphere

While the SIS has the desirable property of producing a flat rotation curve, it is far
from perfect. For one thing, it is spherical, which is only a rough approximation to
real galaxies. We will deal with this issue in Chap. 4. We focus here on the more
fundamental problem that the SIS has infinite density at its center. We can address
this shortcoming by introducing a finite-density core with radius r.. The result is the
nonsingular isothermal sphere® (NIS), with density

o2 1

_— 2.53
2nG r2+r? (2.53)

p(r) =

Note that p o r~2 when r > r. and is roughly constant for r < r.. This means
that the NIS yields a flat rotation curve only for r > r., which is consistent with
observation.

Projecting along the line of sight, we have

o2 1
26 /R 12

The mass within (projected) radius R is then

Y(R) = (2.54)

ro? (R RAR

G Jo JR?+r?
2
To /
T( R2+r§—rc> . (255)

M(R) =

5This model is also referred to as the softened isothermal sphere, but this leads to an ambiguous
abbreviation.
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The dimensionless mass profile (2.19) is consequently

Dy

D

le
=4 o’ Diy Jo2 4029 (2.56)
=4 2 D, £ ), .

where 6, = r./D;. The deflection angle can then be written as

SIS

where 0315 = 4702 Dy /(c? Dy) is the Einstein radius of the corresponding SIS (i.e.,
the NIS with 6, = 0). Given this deflection angle, the lens equation for the NIS takes
the form

4G
m(0) = = M(D; |6])

SIS

,9:9_9% (,/92+9§—9c). (2.58)

Defining u = ,3/9215, X = 9/9%15, and a = 0,/6355, we can write

u:x—l(\/xz—l—az—a). (2.59)
x

We replace the reduced deflection angle « by the function

G(x) = % (\/xZ Tal— a) , (2.60)

so that Eq. (2.59) can be written as u = x — @(x).

Graphical Solution of the Lens Equation

Unlike the point mass and SIS, it is not so simple to invert the lens equation for the
NIS to find the image positions x as a function of the source position, u. We could
solve for x numerically for particular values of # and a. However, our purpose is to
highlight the qualitative differences and similarities between the NIS and the other
models we have considered so far. To this end, we rewrite the lens equation in the
more suggestive form

a(x)=x—u, (2.61)

so that the solutions can be seen as the intersections of the curve y = @(x) and the
lines y = x — u for different values of u (Figs.2.6 and 2.7).
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(a) SIS (b) NIS-src

Fig. 2.6 Deflection curves for the singular isothermal sphere (a) and the nonsingular isothermal
sphere with core radius @ = 0.2 (b), together with lines y = x — u for various values of u

Fig. 2.7 Deflection curves y = a(x) for several values of a, together with the corresponding lines
y = x — u,. Note that if a > 0.5, the slope of the curve y = a(x) is less than one everywhere, so
there are never three intersections and consequently no solution for u,
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Comparing the two panels of Fig. 2.6 shows that the jump discontinuity at x = 0
in the deflection curve for the SIS does not occur on the curve for the NIS. This
opens the possibility of three lensed images forming for suitable values of u. Note
that, as before, we consider only positive values for the source position. For the SIS
(a = 0), u = 1 marks the boundary beyond which there is only one image. For the
NIS, however, the location of this boundary, denoted by u,, will depend of the value
of a. Finding this boundary analytically is the focus of Problem 2.5.

We have established that introducing a finite-density core results in a number of
qualitative differences with the SIS model, but we have yet to determine the effect of
a particular choice of core radius a. We show three illustrative examples in Fig. 2.7.
As a increases, the radial caustic shrinks, i.e., u, decreases. Notice that there is no
solution for u, when a > 0.5. Put another way, the slope of the curve y = a(x)
must exceed unity at the origin in order for u, > 0 to exist (cf. Problem 2.4).

The size of the central core affects not only the location of the radial caustic but
also the positions of the lensed images. For instance, a source at # = 0 will produce
an Einstein ring whose radius, xg, satisfies xg = &(xg). From Eq. (2.60), we find

xXg=+1-—2a. (2.62)

Notice that xg becomes imaginary for a > 1/2, which is consistent with our earlier
finding that only one image can form for such large cores. After all, an Einstein ring
would be a two-image system were it not for the axial symmetry of the NIS lens.
Moreover, we will see in Sect. 2.5 that the ability of a lens to produce an Einstein
ring is a necessary and sufficient condition for the creation of multiple images. For a
source with position # # 0, introducing a central core produces a third lensed image
and alters the positions of the two images formed by an SIS (see Problem 2.6 for
more).

Analytic Approach

Solving the lens equation graphically is intuitive and straightforward to implement
computationally, but it is of interest to approach the problem more formally. To that
end, we recast the lens equation in the form

X3 = 2ux? + (u2 +2a —1x —2ua =0. (2.63)

Since the coefficients of this cubic equation are real, it has either three real solutions,
or one real solution and two complex solutions that are conjugate. Since complex
image positions are not physically meaningful, the NIS produces one or three
images, depending on the specific values of u and a. We know from the graphical
solution of the lens equation described above that for a < 1/2, there is a critical
value u, that separates the source plane into regions with one (|u| > |u,|) or three
(Ju| < |u,|) images. The number of real solutions of a cubic equation is determined
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by the sign of its discriminant: there are three real roots if the discriminant is positive
and one if it is negative. Thus, u, is the value of u for which the discriminant
vanishes. Unfortunately, in transforming the lens equation (2.59) into the cubic
equation (2.63), we introduced a spurious solution for u,. This issue is explored
in Problem 2.7.

To avoid the difficulty of spurious image positions, we return to lens equa-
tion (2.59) to locate the radial caustic. An exact solution can be obtained, but an
approximate expression is often both convenient and sufficient. One such example
is an NIS with a small central core (a < 1). The first step is to find the critical curve.
To do this, we determine the value of x that satisfies

du

— =0, 2.64

dx ( )
which we denote by x,. The critical curve then has radius |x,|. Expanding to first
orderin a, we have vx2 + a2 =x + 0 (a2). Substituting this into Eq. (2.59) gives

ux~x—1+2, (2.65)
X

whence du/dx ~ 1 — a/x2. Therefore, the critical curve has radius |x,| ~ \/a. The
radial caustic then has radius |u,| = |u(x,)| ~ |1 — 2x,| = 1 — 2./a.

Thus, the location of the radial caustic for the NIS differs from the location of
the pseudocaustic for the SIS by 2x,.. It is worth noting at this point that nonsingular
lenses capable of producing multiple images give rise to true caustics, where the
magnification of a source is formally infinite; pseudocaustics can only arise for
lenses with divergent central surface density.

2.4 Einstein Rings

A common feature of the lens models presented in Sect. 2.3 is that they all produce
both multiple images and Einstein rings for suitable parameter values. Thus, one
may suspect a more general connection between multiple images and Einstein rings.
Indeed, any axisymmetric lens that has an Einstein radius produces multiple images
when the lens and source are sufficiently aligned. In this section, we derive the
condition under which Einstein rings form. We connect this result to the existence
of multiple images in Sect. 2.5.

Setting B = 0 in Eq. (2.21), we see that there is an Einstein ring if the condition

m®) _

=1 (2.66)
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is satisfied for some 6 = 6 > 0. Writing the left-hand side of Eq. (2.66) in terms
of the surface mass density using Eqs. (2.12) and (2.19), we obtain

m®) _ 4G Dy, M(Di16))
02 ¢ Dy Dy 02

4G Dy [P0
= f 27 RX(R)dR
02c2 DDy Jo

47G DDy [ 1 1ol
_ T "( / 270’ (Dy0))do' | | (2.67)
0

2 Dy 762

where R = D;6’. On defining the critical density for lensing by

2
c Dy
W= — 2.68
crit A7 G Dl Dls ( )
and the convergence by
X(D; |0
ko) = 220D (2.69)
Derit
Eq. (2.67) can be written as
m@ _ 1 (O
= 216’k (6")d0" =k (0), (2.70)

02— w2 J,

where k (6) is the mean convergence interior to |6|. The condition (2.66) for an
Einstein ring then becomes

KOp) =1. 2.71)

Thus, a source directly behind a lens appears as an Einstein ring if and only if there
is some angle 6 that encloses a disk with a mean convergence of unity. Note that the
convergence depends not only on the assumed mass distribution of the lens but also
on the distances between lens, source, and observer. The same is true for quantities
derived from the convergence, including the value of 6.

For realistic lens models, both x and k¥ decrease as |f| increases and approach
zero for || — oco. Moreover, one can show in Problem 2.9 that x > « for 8 # 0.
We then conclude (see Fig.2.8) that k(fg) = 1 for some 0 > O if and only if
k(0) > 1. A lens with £ (0) > 1 is said to be supercritical. Thus, an Einstein ring
can form if and only if the lens is supercritical.
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Fig. 2.8 Local convergence A
k and mean convergence k as
functions of angular radius
|6| for a nonsingular
isothermal sphere with

k(0) = 2. Note that

k(6x) = land k(Op) = 1

2.5 Supercriticality and Strong Lensing

Having demonstrated that an Einstein ring forms if and only if a lens is supercritical,
we now show that supercriticality is a necessary and sufficient condition for an
axisymmetric lens to produce multiple images. This condition remains sufficient
in the non-axisymmetric case, but it is not necessary (see Chap. 4).

For convenience we define the function

fO)=6—-a@), (2.72)

which is known as the lens mapping. Using Egs. (2.20) and (2.70), we can express
the deflection angle in terms of the mean convergence as

a@) =«(6)0, (2.73)
and hence the lens mapping takes the form
fO) =1[1—-k©)]6. (2.74)
Another important quantity is the derivative of the lens mapping

1O =1-k©®) —0k'(®)
=1-2c(0) +&(6), (2.75)
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where we have used Eq. (2.94) in Problem 2.9. One simple but useful consequence
of this relation is that

a'(0) =2k(0) — k(9). (2.76)

The lens equation is solved for a given source position Sy at values of & where
the horizontal line § = By intersects the lens mapping 8 = f(6). Since f(0)
is an odd function, we may assume Sy > 0 without loss of generality. We will
see in Sect.2.5.1 that the number of images changes at extremal points of f(0).
Multiple images can still form even if f(6) has no local extrema, but this involves
discontinuous lens mappings (Sect. 2.5.2). As we will see, yet another possibility is
that the lens mapping has local extrema but is nevertheless non-differentiable at the
origin (Sect.2.5.3).

2.5.1 Differentiable Lens Mappings

Suppose that the lens is supercritical. Then, there is some 6y for which « (6p) > 1,
assuming continuity. Furthermore, one can show in Problem 2.10 that

lim «(0) = «(0) . 2.77)
6—0

Hence, we find
) =1=2c0)+k0) = 1—«(0) < 0, (2.78)

where the last step follows from our assumption of supercriticality.

As |6] gets large, the deflection of a light ray approaches a constant value. This
means that f/(#) — 1 as |#] — oo. Since f'(—o0) > 0 and f'(0) < 0, there
must be at least one intermediate value 6y on the interval —oo < 6y < 0 such that
f'(Bp) = 0and f"(By) < 0, i.e., O is a local maximum of f(#). Thus, the value
Bo = f(6p) marks a transition such that a source with 8 > B¢ has two fewer images
than a source with 8 < By (see Fig.2.9). Hence, supercriticality implies multiple
images for at least some source positions. In the language of Sect.2.2.3, 8 = 69
defines a radial critical curve with corresponding caustic 8 = By.

We now show that a lens capable of producing multiple images is supercritical.
By assumption f”(8p) = 0 for some y. Equation (2.75) then reduces to

k(@) — 1 =k(60y) — k() > 0. (2.79)
Therefore, the lens is supercritical at 6y. Summing up, we have shown that a lens

will produce multiple images if and only if it is supercritical, at least in the case of
a differentiable convergence field.
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Ok
—6g 0

Fig. 2.9 Example of a continuous lens mapping 8 = f (@) that produces one image when 8 > o
and three images when 0 < 8 < Bp. An Einstein ring of angular radius g appears when g = 0.
Note that the slope f/(@) of the lens mapping asymptotically approaches unity

2.5.2 Discontinuous Lens Mappings

Let us now turn to the case that the lens mapping is discontinuous at the origin.
We need not consider the possibility of a discontinuity elsewhere since, according
to Eq. (2.74), it would imply a nonphysical discontinuity in the mean convergence
k. Note that the lens mapping is continuous at the origin as long as k diverges less
rapidly than 9]~ L.

Suppose that the deflection angle has the power-law form’

_, 16l
a@) =A|0| ik (2.80)
where n > 0 and A > 0 are constants, and the final factor ensures that the deflection
points away from the lens. In the following, we work in units where A = 1;
alternatively, we can ignore A, since its value will prove irrelevant anyway. We can

now write the mean convergence as

0]

k@) =16]"" ok

(2.81)

"This assumption holds for many, but not all, lens models. Fortunately, the conclusions of this and
the following subsection remain true in the general case.
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Since k (0) is even, we can take 6 > 0 without loss of generality. This gives us the
simple relation

K@) =00t (2.82)

In order to obtain the local convergence, we must compute the derivative of the
mean convergence:

') = —(n+ o=+ (2.83)

Equation (2.94) then yields
1 —Gr+D)
k() = 5(1 — )oY, (2.84)

Since k > 0, we must have n < 1. On the interval 0 < n < 1, the
convergence diverges at the origin, and hence a lens is supercritical if the deflection
is discontinuous at the origin.

The lens mappings shown in Fig.2.10 are those of the SIS and point mass,
corresponding, respectively, to the boundary cases n = 0 and n = 1. If we allowed
n < 0, we would find «(0) continuous at & = 0, which we have already considered.
The constraint n < 1 tells us that no lens can be more concentrated than a point
mass. The qualitative behavior of the lens mapping differs for » = 0 and 1 # 0, so
we consider these cases separately. Our subsequent discussion assumes that the lens
mapping has no local extrema, since we have dealt with that possibility above.

When 7 vanishes, «(0) is piecewise constant, with a jump discontinuity at the
origin. This translates to a lens mapping that is piecewise linear with a jump
discontinuity at the origin. In addition to the postulated power-law form for the
deflection near & = 0, we have the asymptotic boundary condition f'(6) — 1 as
|| — oo. For convenience, we define f () and f_(0) to be identical to f(0)
for & > 0 and 6 < O, respectively, and to be undefined elsewhere. Since f(0)
is continuous on the intervals —oo < 6 < O0and 0 < 6 < +o00, and has no
local extrema, the functions f.(6) are invertible on their respective domains. The
function f_(0) reaches its maximum at 0~ (i.e., just to the left of the 8-axis), which
we denote by Bp. Note that By is manifestly positive and that f_(0) takes on all
values on the closed interval between 0 and By. Now, 4 (07) = —f_(07) = —Bo,
since f(0) is odd. The function f; (0) strictly increases and takes on all values
between — By and co. We therefore conclude that for all 8 satisfying 0 < 8 < By,
there exist 0 < 0 and 6 > O such that f_(0_) = f(6+) = B, i.e., there are two
images for 0 < B < By. Note that the images with 8 = 0 will be seen as an Einstein
ring, due to symmetry. When 8 > fo, there will be a single value of 6 for which
f(0) = B, resulting from the branch f,, i.e., there is just one image for 8 > fy.

Now we turn to the case 0 < n < 1. The jump discontinuity at the origin for
n = 0 s replaced by a vertical asymptote collinear to the 8-axis. We again separate
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PM (7 = 1)

Bo

SIS (7 = 0)

Fig. 2.10 Examples of lens mappings 8 = f(0) that are discontinuous at the origin. The lens
mapping undergoes a jump discontinuity at & = 0 for a deflection curve with central (power-law)
slope n = 0. Such lens mappings have the peculiar property that the line 8 = By marks a change in
image number of only one. We plot the SIS lens mapping, for which n = 0 everywhere. Deflection
curves with central slope 0 < n < 1 diverge to =00 as & — 0T, respectively. In the case that such
a lens has no local extrema, two images will be produced regardless of source position. We plot
the lens mapping of the point mass (PM), for which n = 1 everywhere

f(0) into fy and f_ branches. This time, however, fi(0%) = Foo. The analysis
then proceeds as before but with By — co. The upshot is that there are two images
for all 8 > 0.

2.5.3 Divergent Convergence Fields

Before proceeding, let us take stock. We have shown that a lens that can pro-
duce multiple images is supercritical, whether the lens mapping is continuous
(Sect.2.5.1) or discontinuous (Sect.2.5.2). We have also seen in Sect.2.5.1 that a
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supercritical lens with finite central convergence can create multiple images of a
source. We have yet to demonstrate, however, that a supercritical lens with divergent
central convergence will also produce multiple images; we have only done so in the
case that « (0) diverges at least as rapidly as 16|~

From Eq. (2.84), we find that the convergence will diverge at the origin whenever
n > —1. We noted on physical grounds that n < 1, as larger values make the
convergence negative. In the range 0 < 1 < 1, we showed that the deflection is
divergent (n # 0) or discontinuous (n = 0) at the origin. While «(8) is continuous
at 6 = 0, its derivative may not be. We have

o' () = —nAeg~— 1t (2.85)

where we set A to unity as before. Strictly speaking, the above expression only
holds for 6 > 0, but the antisymmetry of «(6), and corresponding symmetry of
a’ (), about = 0 allows us to generalize to & < 0. When > 0, &’(0) < 0, for
all 6. Hence, «(9) has no local extrema in this case, which prompted our analysis in
Sect.2.5.1. When 1 < 0, however, a’/(0) > 0 for all 6. In particular, o’ (0) — oo.
Combining this result with the asymptotic boundary condition a’(00) = 0, we find
that o’(9,) = 1 for some 6, > 0, provided that «’(9) is continuous for positive
0 (see Problem 2.11). In other words, 6, is a local extremum of the lens mapping,
implying multiple images for at least some source positions.

To recap, we have now proved that supercriticality is a necessary and sufficient
condition for multiple imaging by axisymmetric lenses. This is a special case of the
condition for multiple imaging by arbitrary thin lenses. We will point the way to this
general condition in the next section, but a derivation is out of reach at this point.
We will take that up in Chap. 4.

2.6 Magnification and Shear

While we have focused so far on the local and mean convergence, the condition for
strong lensing by an arbitrary mass distribution can be best approached through the
magnification. We begin by writing

-0-9(-%)

=1 —-k)(1—-2+k). (2.86)

If either of these factors is zero, there are multiple images of the background source.
In the case that the first factor 1 — i vanishes, an Einstein ring appears. If the second
factor which is just f’(0) vanishes, the lens mapping has a local extremum at 6.
Conversely, if a lens produces multiple images, it must be supercritical (¢ > 1)
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for some 6. This implies that the first factor, and perhaps also the second, is zero
somewhere. Thus, strong lensing occurs if and only if the magnification diverges
for some 6.

To understand the meaning of this statement more clearly, it is instructive to
express each factor in terms of the local convergence and what is known as shear,
defined by

y=Kk—k, (2.87)

which is nonnegative for all 8 (cf. Fig. 2.8). The inverse magnification is then
==k =)A=k +y)=h iy, (2.88)

where A+ = (1 — k) £ y. If y = 0, then Ay = A_, implying that the source
is magnified isotropically. We can therefore think of the shear as the cause of
anisotropic magnification. In the same way that an extended body is deformed by
tidal forces, a nonuniform gravitational field distorts the apparent shape of the light
source. (We will explore this topic further in Chap. 4.)

In the case of circular symmetry, A_ can only vanish at the origin and never
becomes negative. Moreover, Ay = 0 for some 0, if, and only if, A_ = O at the
origin. These conclusions do not extend to noncircular lenses, but the concept of
shear does. However, shear cannot be described solely by the nonnegative scalar y
but instead must be thought of as a tensor, with y being understood as a magnitude.
For that matter, magnification itself turns out to be a tensor quantity in the general
case, with A;l being its eigenvalues. Multiple images will form whenever a given
source position corresponds to A+ < 0. For a source far from the lens in projection,
A+ — 1, i.e., no magnification takes place (« — 1). In order for strong lensing to
occur, there must be a set of source positions for which the magnification is formally
infinite (A+ = 0). Note that if A4 < 0 at a point, then A_ < 0O at the same location.
The necessary and sufficient condition for multiple imaging is therefore A_ = 0.

Problems

2.1 For a spherically symmetric mass distribution, one can compute the mass
M>p(R) within an infinite cylinder C of radius R directly from the mass M3p(r)
within a sphere of radius r. Begin by writing

Mop(R) = fc p(x)dx .

Since p depends only on » = |x]|, it is convenient to perform the integral in spherical
coordinates (r, 6, ¢). Find the limits of integration appropriate for the cylinder
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Cr centered on the z-axis, with respect to which 6 is measured. Then make the
substitution # = cos(6), and show that

! R

This result provides a different way to derive Eq. (2.45), and it will be useful in
Sect.7.1.1 when we study galaxy clusters.

2.2 Consider light from a source at angular position 8 lensed by a point mass with
Einstein radius 6.

(a) Show that |6_| < 6g and |04| > O for all 8 > 0. Hint: A proof by
contradiction may be most natural.

(b) Show that uy = pu (0+) — land u— = n(6-) — 0 as B — oo. This means
that a source sufficiently far from the lens is equivalent to an unlensed source.

2.3 Consider a singular isothermal sphere (SIS) with velocity dispersion o.

(a) Show that the mass enclosed within a sphere of radius r is given by M3p(r) =
20%r/G.

(b) Using Gauss’s law, compute the gravitational acceleration at radius 7.

(c) Find the corresponding deflection angle using Eq. (2.7). Does this expression
agree with Eq. (2.46) for the SIS?

(d) Show that the convergence and shear are identical.

(e) Compute the total magnification as a function of the source position, 8. Does
the asymptotic behavior of iy as § — 0 and  — oo make sense?

2.4 If &' (x) < 1 everywhere, there will be no possibility of multiple images for a
nonsingular isothermal lens.

(a) Show that &'(x) reaches its maximum at x = 0.
(b) Use this information to show that only a single image can form when a > 1/2.

2.5 We saw in Fig.2.6 that the number of images produced by a nonsingular
isothermal sphere changes when the line y = x — u is tangent to the deflection
curve, y = &(x). We denote the value of the source position at which this transition
occurs by u;.

(a) Show that the point of tangency occurs at the value of x for which the derivative
@’(x) = 1. Find an analytic expression for this value, which we denote by x,
(cf. Mollerach and Roulet 2002, p. 47). Recall that the corresponding value of
u, can be obtained directly from the lens equation (2.59).

(b) Show that the radius of the radial critical curve satisfies |x,| ~ /a fora < 1.

(c) We derived the result of part (b) using a Taylor series approach in Sect.2.3.3.
To extend the analysis to higher order in a, postulate that x,, can be written as
power series in a'/?:

X, =c1a?+ca+ 0 (a3/2) , (2.90)
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which seems natural since we know the lowest-order term scales as +/a. Set
@' (x,) = 1, and find the coefficients c; and c¢;. Why is it not possible to expand
X in a Taylor series?

2.6 With the power series approach in Problem 2.5, we essentially treat an NIS
with a small core radius as a perturbed SIS. The goal of this problem is to extend
the analysis to the images produced by an NIS. There are two salient questions:

(a) How do the two images produced by an SIS change with the addition of a core?
Recall that a source inside the pseudocaustic of an SIS lens produces two images
that are solutions of Eq. (2.49). Postulate that the image position for an NIS can
be written as a Taylor series of the form x = dg + dja + € (a*). Substitute this
expression into Eq. (2.59), show that d satisfies the SIS lens equation, and then
find d; in terms of dy and the source position.

(b) What is the location of the third image? Since we know this image vanishes
when a = 0, postulate that its position can be expanded as x = dja + dra® +
% (a3). Find the coefficients d; and d> in terms of the source position.

(c) Show that expanding the image positions of an NIS lens in half-integer powers
of a yields coefficients that cannot be determined in general.

2.7 In Sect.2.3.3, we showed that the lens equation for the NIS (2.59) can be
rewritten as the cubic equation (2.63) and that the latter equation has real roots that
may not correspond to lensed images. A cubic equation of the form Ax> + Bx? +
Cx + D = 0 has the discriminant

A= B>C?>—4B>D —4AC? + 18ABCD — 27A*>D?, (2.91)

whose sign determines the number of real solutions.

(a) For an NIS lens, show that setting A = 0 yields a quadratic equation for the
square of the source position 12 in terms of the core radius a. Which solution
for u? corresponds to the radial caustic?

(b) For certain source positions, we find three real solutions of Eq. (2.63), although
only one of them corresponds to an actual lensed image. For other source
positions, all real solutions are physically meaningful. For all source positions
u > 0, identify the number and position(s) of the lensed image(s).

2.8 While rotation curves of spiral galaxies are typically flat to the largest observ-
able radii, the circular speed must eventually drop off. This means that the total mass
of the halo in which the disk resides must be finite. In spite of its many desirable
properties, the isothermal sphere does satisfy this condition. The Plummer model
(Plummer 1911), by contrast, has finite mass and, like the SIS, can be derived
from an equation of state (Binney and Tremaine 2008). This model is often used
to describe globular clusters.

(a) Consider a polytropic gas, defined by the equation of state P = KpY, where
K and y are constants. Using the equation of hydrostatic equilibrium (2.37),
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(b)

(©)

(d)

(e)
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show that the density can be written as p = C,¥", where n = (y — 1)_1,
C, =[Kn+ 1], and ¥ = —® + const. The constant is chosen so that
¥ vanishes at the boundary of the system, which could lie at finite or infinite
radius.

Define the dimensionless radius & = r/rg and scaled potential 6(§) =
W (ro€) /¥y, where ¥y = ¥ (0). For what value of ry does Poisson’s equa-
tion (2.38) take the form

Y AN
e (£) o =0 -

which is known in astrophysics as the Lane-Emden equation.

Analytic solutions can be found only for a few values of n; the Plummer model
corresponds to n = 5. By definition, 6(0) = 1. If we make the physically
reasonable assumption that the potential and density are nearly constant for
small radii (0 < r <« rg), we obtain the additional boundary condition
6’(0) = 0. We assume the trial solution #(¢) = (1 + £%/b*)~'/2. Find the
value of b for which 6(£) solves the Lane-Emden equation. In terms of the
central density, p. = p(0), and core radius, r. = bry, give an expression for the
density profile of the Plummer model. Show that the total mass is finite.

If we regard the Plummer model as a gravitational lens, show that its reduced
deflection angle is given by

0
a(0) = (0 +62) (m) : (2.93)

where 6, = r./D;. What is the Einstein angle 6 in terms of the total mass,
Mi:? What are the possible numbers of images?

For what values of the source distance Dy would lensing by the globular cluster
w Centauri be observable? As a proxy, we consider lensing to be observable
if 0 > 1”. w Cen lies at a distance of D; = 4.8kpc and has mass My, =
5 x 106M@, and core radius r, = 4.5 pc. Assume that D;; = Dy — Dy.

2.9 Show that

2
K'(0) = g[x(é?) — k)], (2.94)

and hence that if & decreases as |0| increases, then ¥ > « for all 6 # 0.
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2.10 Show that Eq. (2.77), limg_, ¢ k (6) = «(0), holds under either of the following
assumptions:

(a) The convergence k (6) may be expanded in a Taylor series about the point & = 0.
(b) The convergence is a continuous function at the origin, so that for any € > 0,
there exists § > 0 such that

0] <8 = [k@®) —k(0)] <e.

Hint: Recall that | [ f(x)dx| < [ | f(x)| dx for any integrable function f (x).
2.11 Show that o’ (#) is continuous at all § for which « (@) is continuous.

2.12 For a continuous convergence function, show that the shear vanishes if and
only if the convergence is constant. Physically, a uniform convergence magnifies all
sources by the same amount, regardless of position, and it leads to the mass-sheet
degeneracy (see Sect.4.7).
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Chapter 3 )
Light Deflection in Curved Spacetime e

Before turning to lensing by arbitrary mass distributions, we would do well to
remember that the Newtonian deflection angle is off from the actual value by a
factor of two. Narrowly speaking, the result of this chapter will be that factor.
More broadly, though, understanding how gravitational lensing is an inevitable
consequence of general relativity puts the following chapters on solid theoretical
ground.

We begin in Sect.3.1 with a review of special relativity, including the math-
ematics of four-dimensional spacetime. The geodesic equation, whose solution
describes the trajectory of a particle moving through curved spacetime, is presented
in Sect.3.2. The special case of a spherically symmetric mass distribution, which
is the basis of weak-field gravitational lensing, is treated in Sects. 3.3 and 3.4. We
conclude in Sect. 3.5 with a discussion of a homogeneous, isotropic universe, which
is the setting for the cosmological applications of lensing given in later chapters.

3.1 Review of Special Relativity

3.1.1 Galilean Transformations

Central in Newtonian physics is the idea of an inertial reference frame, which is
simply a system of coordinates in which Newton’s second law (Newton II) holds:

F(x, x;t) = mX,

where an overdot indicates the total time derivative. In order for this equation to be
meaningful, it should not depend too sensitively on the coordinates being used. To
see whether this is the case, suppose that Newton II holds in some reference frame.
Under what coordinate transformations will it remain valid?

© Springer Nature Switzerland AG 2018 45
A. B. Congdon, C. R. Keeton, Principles of Gravitational Lensing,
Springer Praxis Books, https://doi.org/10.1007/978-3-030-02122-1_3


http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-02122-1_3&domain=pdf
https://doi.org/10.1007/978-3-030-02122-1_3

46 3 Light Deflection in Curved Spacetime

Because Newton II involves acceleration, we would not expect it to be preserved
under acceleration of the coordinates. Fortunately, Galileo found that a coordinate
system moving with constant velocity relative to an inertial one is itself inertial. To
see this, consider two coordinate systems, S and S’, with points denoted by x and
x/, respectively. If § and S’ are related by the transformation

=t (3.1a)
X =x—vt (3.1b)
for some constant velocity v, we have
2, & d? F
WX ZF(X—V[):d—IZXZE. (32)

Thus, if Newton IT holds in S, it holds in §’, as well. In words, we say that Newton’s
second law is invariant under Galilean transformations (Egs. (3.1)). This is known
as the principle of Galilean relativity. In Newtonian physics, the notion of absolute
time renders Eq. (3.1a) superfluous. However, one cannot cleanly separate space and
time in special relativity.

3.1.2 Lorentz Transformations

While Newton’s laws of mechanics and gravitation have greatly advanced our
understanding of the physical world, it was not until the nineteenth century that
electromagnetic phenomena were integrated into the classical picture. In the absence
of electric charge and current, the four Maxwell equations imply wave equations
for the electric and magnetic fields. Since a time-varying field of one type induces
a time-varying field of the other, these equations describe a single entity: the
electromagnetic wave. As it happens, the speed of such a wave is predicted to be
¢, the speed of light. What is peculiar is that this speed is independent of inertial
reference frame, which patently violates the principle of Galilean relativity. In the
case in which the S’ frame travels in the x direction with velocity v with the respect
to the S frame, the transformation that leaves Maxwell’s Equations invariant, known
as the Lorentz transformation, is

/=y (r — 1;—)2‘) (3.3a)
X' =y x—vt) (3.3b)
y =y (3.3¢)

7=z, (3.3d)



3.1 Review of Special Relativity 47

where

e — (3.4)

For v/c < 1, the Lorentz transformation (3.3) reduces to the Galilean transforma-
tion (3.1).

It is often convenient to express the Lorentz transformation in matrix form. In
terms of the quantities w = ct, f = v/c, and cosh x = y, the transformation can
be written as

w’ coshy —sinhy 0 O w
x’ —sinhy coshy 0 O x

= 3.5
y 0 0 1 0 y (3-5)
7 0 0 0 1 z

This can be generalized to a boost in an arbitrary spatial direction (Problem 3.1).

3.1.3 Four-Vectors in Minkowski Space

Let us denote a boost by v with the matrix A(v). We can then write X' = A(V)X,
where X and X’ are four-dimensional vectors. In the context of linear algebra, a
vector is simply a matrix consisting of a single row or column. However, we think
of a vector here as an object whose length is invariant under boost. One consequence
is that if we define |X| according to the usual Euclidean distance, we will find that
INX]| = |X/| # |X|. Instead, for a vector

: (3.6)

N = 8

we define
X2 = w? — (x2 2+ zz) , 3.7)

where w = ct as before. Under this definition of distance, |X| is invariant under
Lorentz transformation and is often called a four-vector.! In what follows, we use

IThis is a misnomer because a four-vector describes all objects that transform via the Lorentz
transformation regardless of how many dimensions are assumed. Moreover, simply having four
dimensions does not make a vector a four-vector.
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uppercase letters to denote four-vectors and lowercase letters to denote vectors in
Euclidean space. For any four-vectors, X; and Xj, the dot product takes the form

X - Xo =wjwy — (x1x2 + y1y2 +2122) © (3.8)

Four-vectors are elements of Minkowski space, denoted by RG:D_ The difference
between RG-D and R* is the metric, which specifies the infinitesimal distance
between neighboring points. In “flat” spacetimes, such as R” and RGD, differen-
tials can simply be replaced by finite displacements. Anticipating our discussion of
general relativity, we will primarily work with the metric in its infinitesimal version.
To see most clearly the distinction between Euclidean and Minkowski metrics, we
write these two metrics in turn. In four-dimensional Euclidean space, R*, we have

ds? = dw? + dx? + dy? + dz? = dx” I dx, (3.9)
where | is the (four-dimensional) identity matrix. We take dx to be a column vector,

so that its transpose, dx”, is a row vector. Four-vectors in R®D are described by
the Minkowski metric:

ds? = dw? — dx? — dy? — dz? = dX” pdX, (3.10)
where
10 00
n= 8_01 _01 8 (3.11)
00 0 —1

In general, the infinitesimal distance between neighboring points can be written as
ds? = dX7 gdX, (3.12)

where g is called the metric tensor. Our use of capital letters anticipates the result
that g will reduce to 7 in the absence of nearby massive bodies.

In Newtonian mechanics, x will be a curve that satisfies Newton’s second law,
parametrized by the time, ¢, i.e., X = X(¢). In special relativity, X includes time as
one of its coordinates, so it cannot be used to parametrize the trajectory of a particle.
Instead, we use the proper time, t, which is the time measured in the reference
frame of the moving particle; the coordinate time, ¢, is that measured by an inertial
observer. To determine how the proper time is related to the spacetime interval, ds,
consider an observer who measures a particle to be at rest. In this case, there is no
relative motion between the reference frame of the particle and that of the observer.
Thus, t = 7 in this case. Since the particle is at rest, the observer will find that
dx = dy = dz = 0. Equation (3.10) then gives
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ds? = dw? = 2d* = 2d72. (3.13)

Thus, ds = cdr. This relation turns out to hold in general.
Let us apply this result to the four-velocity, U = dX/dr. We can find its
magnitude by “dividing” Eq. (3.10) by dz? to find

ds\? 5, (dw\? [dx\? [dy\? [dz\?
— ) =c=(—) -|—) —-l=) -(—) - (3.14)
dr dr dr dr dr
Therefore, [U> = ¢? in any inertial reference frame. Defining the forward
momentum as P = mU, we find [P|?> = m2c? where m is the mass of the particle.

Our next step is to write P in terms of the coordinate time, ¢. By the chain rule, we
have

dX dXdr

= _= 1
dr dr dt (.15

We obtain the second factor on the right-hand side by writing Eq. (3.10) in terms of
tand T:

Ade? = 2di? — (dx2 +dy? + dzz> : (3.16)

or

dr 1[/dx\> [/dy\> [dz)\?
—=1-=l=) +|5) |5
dt c dt dt dt

[uf?
=118
=y. (3.17)

The vector u is just the usual (three-dimensional) velocity vector of the particle
measured with respect to coordinate time: u = dx/dr¢. Then it is conventional to
write B =u/c, = |Bl,and y = (1 — ,32)_1/2.

Now we can write the components of the four-momentum, P = mU, in terms of
the ordinary three-momentum, mu:

P = (ymc, ymu) . (3.18)

To make sense of the components of P, we first note that particles moving at a
significant fraction of the speed of light have their momentum augmented by the
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factor y. The physical significance of the time component, ymec, is less clear. In the
limit |u| < ¢, we can hope to make contact with our Newtonian intuition. To this
end, we make the Taylor expansion

W2\ V2
ymc = mc <1 — —2)
c

n mu?
~mc+ —
2c
1 T S
~ —|mc”+ —mu- ), (3.19)
c 2
where u = |u|. We immediately identify the second term in parentheses with the

kinetic energy, while the first term is independent of velocity and is known as the
rest energy. There is no Newtonian analogue to the rest energy, and it has no bearing
on the laws of motion in that case.

If we identify the parenthetical quantity on the right hand side of Eq. (3.19) to be
the total energy (rest + kinetic) of a particle, we can write the four-momentum as

E
P= (—, ) , (3.20)
c
where p = ymu.

We wish to obtain an expression for the energy, E, that is valid for all u < ¢. To
do this, we begin by taking the dot product of P with itself. Just as the magnitude of a
vector in Euclidean space is invariant under translations and rotations of coordinates,
the magnitude of a four-vector is invariant under Lorentz transformations. This
means that we may determine the dot product of interest in a convenient inertial
frame; we choose the frame in which u = 0, i.e., the rest frame of the particle. We
have P = (mc, 0), and hence,

[P = mc. (3.21)
When u is nonzero, we find
P> = m?c* = E? — ?p?, (3.22)
where p = |p|. Alternatively, one can show that
E = 7/mc2 . (3.23)
We have been using the standard notation for dot products, but we note that

P - P # PTP; we must remember to include the Minkowski metric tensor, 7, by
writing P - P = P7 »P. This notation is a bit unwieldy, so we often write P in terms
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of its components, p*. We use Greek indices to refer to components of vectors and
tensors in spacetime and Roman indices for quantities in Euclidean space, whether
in rectangular or curvilinear coordinates. While we continue to denote four-vectors
by capital letters, we use lower case letters when writing them in component form.
It is conventional to write the dot product as p* p,, where repeated indices are
summed over if they appear as a subscript-superscript pair. This is known as the
Einstein summation convention. We think of p* as fundamental and p,, as auxiliary.
These quantities are related by

Pp = mwp” , (3.24)

so that
P pu = nuwptp” =P yP. (3.25)

In general the dot product between four-vectors A and B in Minkowski space is
given by

A-B=ATyB =n,,a"b" . (3.26)

In addition to offering notational convenience, upper and lower indices convey
mathematical content as well (Sect.3.2.1). We revert to the standard practice of
writing vector components with subscripts in future chapters.

3.2 Geodesic Equation

3.2.1 Contravariant and Covariant Vectors

Since relating quantities in one reference frame to those in another occurs frequently
in GR, we briefly digress to derive the relevant transformations. Vectors can be
written in components that are either covariant or contravariant. The reason for
these names will become clear shortly.

Consider two inertial coordinate systems, S and §’, that are related by a spatial
rotation. We will work in Euclidean space for now. A translation (including uniform
relative motion) between S and S’ would not affect our discussion, so we ignore
that possibility for convenience. Measuring displacements by x and X’ in the their
respective frames, we can write

, x’
dx' = - ) dx =Rax, (3.27)
X
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where R has components (elements)

= (3.28)

where x' and x’' denote the components of x and X/, respectively. Because S and S’
have a common origin, we can integrate Eq. (3.27) to get

x = Rx, (3.29)
or
X = Rixl. (3.30)

Notice that j appears both as a superscript and a subscript, thus putting the Einstein
summation convention into force. The components of any vector that transform as
those of a displacement are said to be contravariant.

Now consider the gradient of a scalar function f. The chain rule yields

of  of ox/
ax’t dxJ gxt’

(3.31)

where a superscript (subscript) in the denominator is treated as a subscript (super-
script) in the numerator by the Einstein convention. We can then write

Vf=SVf, (3.32)

where the components of S are given this time by

s/ = gf . (3.33)
In component form, we can write
af=58f, (3.34)
where 9; is shorthand for 3/dx’. Defining u; = 9; f, we finally obtain
u; = Sijuj . (3.35)

The components of any vector that transform as those of the gradient are said to be
covariant.

It turns out that basis vectors transform covariantly (Problems 3.2 and 3.3).
Because of this, any vector whose components transform like basis vectors are
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called covariant; those transforming differently are termed contravariant (see Pea-
cock 1999). For the remainder of this chapter, superscripts denote contravariant
components, while subscripts denote covariant components. Sums involving the
product of a contravariant component with a covariant one appear frequently,
inspiring the use of Einstein’s convention. The framework developed here can
be applied to nonvector tensor components, as well. Indeed, we have already
encountered such tensors, namely, the rotation matrices R and S.

3.2.2 Metric Tensor

We mentioned briefly in Sect. 3.1.3 that the separation between points connected
by an infinitesimal displacement is given by Eq.(3.12), which can be written in
component form as

ds? = gy dxdx”, (3.36)

where g, are the components of the metric tensor g. Since ds is independent of the
inertial coordinate system being used, we find

guv dxHdx” = g&ﬂ dx'*dx'?

e ax'P
= B v

dxHdx" . (3.37)

Since this relation must hold for all coordinate displacements dx*, we have

7 8x/a 3)6”3 (3 38)
v = 8ap g v '
To solve for g’ in terms of g, we recast the above equation as
T/
g=NgA, (3.39)
whence
g =N"gn", (3.40)

where A represents either a spatial rotation or Lorentz transformation; it has
components Ay = 9, x’*. Defining ¥ by ¥} = 9/ x*, we have

Sk dxt dx’ _oxk

K2V 9x* 9xv axV

- (3.41)
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where 8% is the Kronecker delta. Thus, A~! = ¥ and so

g =3Tgy, (3.42)
or equivalently,
ax* axV

Therefore, the metric tensor is covariant. Because it has two indices, the metric
tensor is said to have rank two; an Nth rank tensor contains the product of N partial
derivatives, one factor for each index.

There are a few facts about the metric tensor worth noting before putting it to
use. The dot product of four-vectors A and B in curved spacetime is given by the
straightforward generalization of Eq. (3.26):

A-B=ATgB=g,,a"b". (3.44)

In the case A = B, the dot product simply gives |A|> = AT gA. Since this is a scalar,
it is identical to its transpose:

T
A2 = (ATgA> —ATgTA. (3.45)

This implies that g is symmetric. Another important property is that g~! is

contravariant. By way of justification, note that
gt g =8, (3.46)

where g/* are the components of g~!. It would not be possible to write down this
identity if g~! were covariant, i.e., if g~! had subscripts rather than superscripts.
A genuine proof is left to the interested reader to work out by brute force. A
consequence of this result is that we can compute a component a* in terms of a,,. To
see this, we first extend Eq. (3.24) to an arbitrary four-vector in curved spacetime:

ay = guva’ . (3.47)

Multiplying by g** yields

v

gmau = gk“g,wa” = Si‘a , (3.48)

from which we obtain the desired result:

a* = ga,. (3.49)
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3.2.3 Principle of Stationary Interval

We have seen that the metric tensor is the fundamental quantity for describing
spacetime. Two questions that naturally arise are how to determine g and how
this relates to the motion of a particle through spacetime. Our approach will be
to motivate what the metric tensor should look like under specified assumptions but
stop short of obtaining it directly from the Einstein field equations. We refer the
interested reader to a monograph or textbook on general relativity for details left out
in our discussion. A more relevant topic to gravitational lensing is the connection
between g and the trajectory of a photon. The culmination of our effort will be
obtaining the geodesic equation. We arrive at this result gradually, as there are a
few preliminaries to which we must attend.

The first of these is to clarify our terminology. To avoid confusion, we henceforth
refer to g as the metric and to ds as the (infinitesimal) spacetime interval. We
would ordinarily refer to ds as a distance, but it is not clear from the outset what
its physical meaning would be in spacetime. Indeed, ds need not be positive, nor
even real. If ds> > 0, we say that the interval is timelike; if ds®> < 0, the interval
is spacelike; if ds> = 0, the interval is lightlike, or null. To find the total interval
between two events A and B, we integrate ds along some appropriate path. To build
intuition, we begin with the well-known Twin Paradox of special relativity. We then
introduce the Equivalence Principle, which will allow us to consider non-uniform
(accelerated) motion. This framework will enable us to find the equations of motion
for both massive and massless particles.

Twin Paradox

Consider identical twins A and B at rest in some inertial reference frame. Knowing
that time is not an absolute concept in special relativity, the twins decide to conduct
an experiment in which A remains on their home planet, while B travels at high
speed through space before returning. To see if time flows at the same rate for both,
A and B compare the time elapsed on each of their atomic clocks. If there is a
significant time difference, one will be visibly older than the other.

Let ¢ be the time as measured by A, and t be the time as measured by B. Suppose
that B leaves at t = f; and returns at ¢t = t,. The time of departure as measured by
B is 11 = 11, but 17 is yet to be determined. Regardless of whose clock we refer to,
the initial and final spacetime positions (events) are the same. The total time of B’s
journey as measured by A will be At = , — 1. The situation is more complicated
for B, since there will be an intermediate time 7, when B turns around to head home.
The total time as measured by B is At = (7, — 71) + (72 — Tu) = T2 — 71. Assuming
that B turns around instantaneously and moves at a constant speed # (measured as
a fraction of ¢) relative to A at all other times, we have

At = AtV 1 —u?. (3.50)
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We see that At < At, i.e., the time measured by A will always be greater than that
measured by B. This is true for any 0 < u# < 1, which implies that the shortest
spatial path between the initial and final events is the one that maximizes proper
time.

If we just calculate without worrying about conceptual nuance, one may wonder
where the eponymous paradox lies. Since any inertial frame is as good as any other,
one might argue that both twins appear to be younger than the other. The catch
is that B accelerates halfway through the journey, breaking the symmetry between
the twins’ reference frames. Our purpose in presenting the twin paradox here is
to motivate the idea of a geodesic, the spacetime analogue of a straight line in
Euclidean space. Before we can offer a formal definition, we must generalize our
discussion of relativity to include accelerated (non-inertial) coordinate systems.

Equivalence Principle

In our discussion of the twin paradox, we avoided the thorny issue of accelerated
reference frames, which special relativity does not address. We did so by treating
the trajectory of the moving twin, B, as consisting of two legs of constant speed.
Of course, twin B cannot simply turn around instantaneously. The key to resolving
this shortcoming of our analysis is the weak equivalence principle, which states
that inertial and gravitational mass are identical. Put another way, the results of
experiments carried out in a freely falling laboratory will agree with those obtained
in an inertial reference frame. By confining measurements to a laboratory, we can
assume that whatever gravitational field is present can be considered uniform. The
fact that the lab is freely falling means that gravity is the only external force exerted
on it. Note that unless the gravitational field vanishes, the lab is not an inertial
frame.

In the language of GR, the equivalence principle states that spacetime is locally
flat, i.e., described by the Minkowski metric. Einstein went further by introducing
the strong equivalence principle, which asserts that the effects of acceleration
are indistinguishable from those of gravitation. This extension of the equivalence
principle is necessary if gravitation is truly a manifestation of spacetime curvature,
rather than being a conventional force. The relativistic interpretation of gravity
leads to physical predictions at odds with Newton’s theory. Deriving the equation
of motion of a particle in curved spacetime only requires the weak equivalence
principle.

To see this, consider timelike - separated events A and B. We divide the trajectory
of a particle that moves from A to B into a sequence of small segments during
which the proper time is §7. Because spacetime is locally flat, 67 will be maximized
along each segment. Thus the total proper time, 7p — 74, Will also be maximized.
Such a path through spacetime is known as a geodesic, which we now endeavor to
derive.
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Equation of Motion

Considering time dilation in both special and general relativistic contexts, we have
argued that a particle moving solely under the influence of gravity follows the path
of maximal proper time. Using a variational approach, we now derive the equation
of motion for an arbitrary metric g,,. Recall that the change in proper time in an
infinitesimal displacement of the particle is given by

ds 1 .
dt = — =-LX, X)dp, (3.51)
c c

where

LX, X) = /g, X)kx", (3.52)

as follows from Eq.(3.36), and where x, = dx,/dp. Here p is any convenient
parameter specifying the path of the particle. Thus, the elapsed proper time as the
particle moves from event A to event B is

PB .
At = -/ L(X,X)dp. (3.53)
€ Jpa

Now consider the family of curves {x*(p)}, which pass through events A and
B and satisfy x*(ps) = x! and x*(pg) = x5 , where x/; and x/; are fixed. One
of the curves is the extremal curve or physical path of the particle, which yields
a stationary value of the integral in Eq.(3.53) and, according to the calculus of
variations, satisfies the Euler-Lagrange equations (Appendix A):

L aL
4oL L _ (3.54)
dp 0x*  Jx“

In deriving the equation of motion from Eq. (3.54), it is advantageous to work
with the quantity F = L? instead of L, since squaring eliminates the square root in
Eq. (3.52). Substituting L = FY2in Eq. (3.54), one obtains

1 _,dF3F d dF OF

2 dp 9x« + dp dx*  9x« 0. (3.55)
This equation holds for an arbitrary parameter p. To obtain the equation of motion
in a particularly simple form, we choose p = t = ¢~ ls, where 7 and s are the
proper time and interval, respectively, along the extremal path. From Eq. (3.51) with
dp = dr, we see that L = F'/? = ¢ all along the extremal curve. Thus, for p = t,
dF/dp = 0, and the first term in Eq. (3.55) vanishes, implying that F satisfies the
Euler-Lagrange equations.
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To obtain the equation of motion from the Euler-Lagrange equations for F =
guvX”x", we need the derivatives

oF .

P 28auxt (3.56)
d OF . s

T 28au XM + 9, (gaﬂ + glm) xHx? (3.57)
oF

axr 0o gy X X", (3.58)

where we have used the symmetry of the metric tensor in the first line, and we have
used the chain rule to evaluate dg,,, /dt to obtain the second term in the second line.
Putting the pieces together yields

_d 9F  OF
T dr ax® 9x
= 2gqu XM + (avg(m + 0y 8ua — 8ag,w) xHxY. (3.59)

Finally, multiplying this result by the inverse metric g** and summing over o, we
arrive at the equation of motion or geodesic equation

d2x? _ dx# dx¥ (3.60)
de2 = "M de dr | '

where the Christoffel symbol,2 also known as the affine connection, is defined by

F;i\v = g)ux (B/Lgcw + 0v8ua — 8aguv) . (3.61)

| =

3.3 Schwarzschild Solution

3.3.1 Gravitational Time Dilation

While we are not in a position to derive the Schwarzschild metric from Einstein’s
equations (but see Appendix A.3), we can at least attempt to offer some motivation
for this important solution. Our point of entry is gravitational time dilation, which
can be most readily understood through the related phenomenon of gravitational
redshift. Consider a source that emits photons of wavelength A. Let this source
accelerate away from an observer at a rate a(t). During a time interval dt, the

2The word “symbol” reminds us that Fli‘u does not transform as a tensor (see Problem 3.4).
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wavelength will be redshifted by an amount dA = (adt/c)A, where c is the
propagation speed of the wave, namely the speed of light.

We know from the strong equivalence principle that the effects of acceleration are
indistinguishable from those of gravity, allowing us to write dA = (®'(r) dr/c?)A,
where @ is the (Newtonian) gravitational potential, which we take to be radial for
convenience. The absence of a negative sign follows from our convention that accel-
eration is defined to be positive for a light source moving away from the observer.
For a light source at a distance r from the center of the spherically symmetric matter
distribution with total mass M, the wavelength observed asymptotically far from the
source is obtained by integrating from the source (radius r and wavelength 1,) to
the observed (where the radius can be taken as infinity and the wavelength is A)
as follows:

/'\ocdx_GM > dr
R T I

GM GM
c°r

czr

assuming GM/(c*r) < 1. Since wavelength and period are proportional, it stands
to reason that

GM
too X ( 1+ —— )1y (3.63)
c°r

Strictly speaking, ¢, is the intrinsic period of a source at radius r, while ¢, is the
period measured by a distant observer. More broadly, though, we can think of #. and
o as the time measured by clocks at r and oo, respectively.

Just as acceleration was the key to making sense of the twin paradox, so too
does it explain gravitational time dilation, by way of the equivalence principle. The
observer at infinity plays the role of twin A above (Sect.3.2.3), while the one at r
stands in for twin B: a given time interval measured by someone in a gravitational
field will appear to be longer to a distant observer. Equation (3.63) is qualitatively
correct, but it is important to realize that it holds quantitatively only for a weak
gravitational field, where » > G M /c?. This assumption crept in when we took
the classical Doppler effect to apply to an inherently relativistic setting. In a proper
derivation, we would find gravitational time dilation as a direct consequence of the
Schwarzschild metric. However, following this path would take us too far afield.

3.3.2 Spacetime Interval Outside a Static, Spherically
Symmetric Mass Distribution

Our goal in this subsection is to write down the metric and corresponding spacetime
interval that will allow us to compute the bending angle of light by matter.
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By assuming the deflector to be static, we know the metric cannot have time
dependence. Moreover, spherical symmetry implies that, at fixed time and radius,
the metric reduces to that of the surface of a sphere, and that radial motion is
independent of the angular coordinates. If the total mass of the lens is finite, we
must recover flat spacetime at large radii. Symbolically, this translates as

ds? = F(r)2di? — g(rdr? — 12 (d92 +sin?0 d¢2> , (3.64)

where f(0c0) = g(oc0) = 1.
For a particle at a fixed location, we find

ds? = ?de? = f(r)ctdr?, (3.65)

where t is the proper time of an observer at r, and ¢ is the coordinate time,
measured as r — oo. In other words, T and ¢ are identical to 7 and #., respectively,
from our discussion of gravitational time dilation above. If Eq. (3.63) held exactly,
we would have f 120y =1+ GM / (c%r). As it happens, the correct functional
form is

—1/2
) = (1 — 2GTM> : (3.66)
cr

which reduces to our approximation for large r. An intuitive route to g(r) does not
exist, so we merely quote the result:

-1
glr) = (1 — 2GM> . (3.67)

c2r

With f and g in hand, we can write down the Schwarzschild interval as

2GM 26M\ !
ds? = (1 _ T) c2de? — <1 — ) dr? — r? <d92 + sin29d¢2) .
c°r

cr
(3.68)
The combination Rg = 2G M/c? is known as the Schwarzschild radius.
On making the coordinate transformation
GM\?
r=p|ll+-5-) ., (3.69)
2¢4p

the Schwarzschild metric takes the “isotropic” form

AN GM\™!
ds? — (ﬂ) 2di? — (1 — —> [d,o2 +p? <d92 +sin0 d¢2)] .
0

(3.70)
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In the weak-field limit |® (p)|/c? < 1, with @ (p) = —G M /p, this reduces to

ds? ~ (1 42 g) 2di? — (1 ) g) [d,o2 + 2 (d92 n sin29d¢>2)] .
3.71)
This result turns out to hold for an arbitrary weak gravitational field, |® (p, 6, ¢)| K
2, that vanishes for p — oo, but the general-relativistic derivation is beyond
the scope of this book. Note that the corrections to the Minkowski metric (flat
spacetime) are linear in @ in the weak-field limit.

3.3.3 Circular Orbits

Having written down the Schwarzschild interval, we wish to determine the path
through spacetime a particle will follow. For now, we parametrize the trajectory by
the proper time, which formally excludes photons. This shortcoming will turn out
to have a straightforward remedy. The geodesic equation consists of four separate
equations, one for each spacetime coordinate. Since lensing by a spherically
symmetric mass distribution occurs entirely in the plane defined by the observer,
source, and lens center, we can set 6 = m/2 without loss of generality. Thus, the
number of equations we must solve is reduced to three, one each for ¢, r, and ¢.

Including only the non-vanishing Christoffel symbols, the geodesic equation
takes the form

i =—2I"ir (3.72a)
F=—Ii* = L% — I, ¢° (3.72b)
$=-2r%id. (3.72¢)

The spherical symmetry of the problem suggests that the motion should be described
by a radial equation. In Newtonian mechanics, we would construct an effective
potential, consisting of a gravitational term plus a centrifugal term. In addition, we
would have two integrals of motion, namely the energy and angular momentum. In
its present form, only the left-hand side of Eq. (3.72b) resembles Newton’s second
law. We can use Eqs. (3.72a) and (3.72c¢) to find parameters representing the energy
per unit mass and angular momentum per unit mass, respectively. This will allow us
to replace £ and 72 in Eq. (3.72b) by functions of r only.
We begin by writing Egs. (3.72a) and (3.72c¢) in the suggestive form

dIni dl“<1 —¥)
dr - dr

dlng L dlnr
dr dr

(3.73a)

, (3.73b)
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where Ry = 2GM /6‘2 is the Schwarzschild radius, and the relevant Christoffel
symbols are given by

e R (3.74a)
77 2r(r — Ry) ’
s 1
Iy =~ (3.74b)
Upon integration, we arrive at
. Rg €
Int=—In{1—-— — —I—ln—2 (3.75a)
r C
Ing = —2Inr +1nt, (3.75b)
or
Rs)\ .
€ = c? (1 - —S> i (3.76a)
r
t=r¢, (3.76b)

where € and ¢ are constants, respectively measuring the energy (accounting for
gravitational redshift) per unit mass and the angular momentum per unit mass. We
can use these constants of motion to rewrite Eq. (3.72b) so that the right hand side
depends only on r. We can substitute immediately for /2 and ¢2, but we must appeal
to the interval given in Eq. (3.68) to write 72 as a function of radius. It is at this
point in our derivation where the distinction between massive and massless particles
becomes important.

Massive Case

If we continue to parametrize spacetime coordinates by the proper time, Eq. (3.68)
can be recast as

R ) Rs\ ! .
2= <1 - —S) i — (1 _ —S> P22, (3.77)
r

r

which yields

Rs\? ,. R .
7 (1 — —S> ** — <l - —S) (r2¢2 + c2>
r r
2 R 52
SR N [ A (3.78)
c? r r2
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Our next step is to compute the Christoffel symbols I :

R502 RS
I = 52 (1 — T) (3.79a)
Rg Rg -
r=——1I(1-— 3.79b
" 2r2 ( r ) ( )
Fdf(p =Rs—r. (3.79¢)
The radial equation (3.72b) then becomes ¥ = —@éff(r), where the effective

potential is given by

GM 2 GM/?
Pefi(r) = - Tz

27 s -89

If we were working in Newtonian mechanics, the effective potential would
consist of a term arising from an external force plus a second “fictitious” force,
the centrifugal term. There would be two constants of motion, which we have found
to be the case in the Schwarzschild solution as well. The salient difference between
Newtonian gravity and GR, at least in this case, is the third term in Eq. (3.80). It
is reassuring that this term diminishes faster than the other two, because it implies
that the relativistic effective potential reduces to its Newtonian counterpart at large
radius. Moreover the factor of ¢? in the denominator means that this term only
becomes important if » ~ 2GM/c?, at which point the second and third terms
become comparable in magnitude. Once again, the Schwarzschild radius proves to
be the relevant length scale!

In keeping with the title of this subsection, we now compute the radii at which
a massive particle can execute circular orbits in the effective potential we have
established. This means determining the extrema of @, just as we would for
Newtonian gravity. We have

,  GM ¢ 3G6M¢?

=5 — 5+ =0, (3.81)

Notice that when ¢ = 0 only the Newtonian term survives, implying that only radial
orbits are possible. When £ ## 0 we have the quadratic equation

2 £ + 30 0 (3.82)
re— r+— =0. .
GM c?

Circular orbits are therefore possible at radii

_e e
S 26M T2V GPm? 2

ri (3.83)
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Note that the descriminant is positive if £ > £ = 2J/3GM /c. In this case, the
asymptotic behavior of the effective potential at small and large radii implies that
Desr has a local maximum at »_ and a local minimum at 7. This means that orbits
at r4 will be stable and those at r_ will be unstable. Of particular interest is the
smallest value of 4 at which a particle can execute a stable circular orbit. This
occurs when ¢ = £, in which case

Zgrit 6GM
ry = =

T2GM T 2

(3.84)

three times the Schwarzschild radius.

Massless Case

It is straightforward to follow the same procedure to determine orbits of a massless
particle, but with two important modifications. First, a photon (the massless particle
of interest to us) experiences no proper time, so we must identify another quantity
to describe its trajectory; this is known as an affine parameter. For this and
subsequent discussions of light, an overdot will denote differentiation with respect
to such a parameter, though an exact specification will not be necessary. The second
difference between the present case and that of a massive particle is that we must
replace Eq. (3.78) by

) e 02 R

r r

The effective potential for a photon then turns out to be

022 GM?

e R

(3.86)

Unsurprisingly, at least in retrospect, light is not subject to the Newtonian term,
—G M /r. This greatly simplifies the task of finding the radii at which a circular orbit
is possible. In fact, there is only one such radius: r = 3GM/c?. This is half the
value we obtained for the innermost stable circular orbit of a massive particle, and
is independent of the photon’s angular momentum. However, this orbit is unstable,
as it occurs at a maximum of the effective potential. This leaves open the possibility
of open orbits, where the trajectory of an incoming photon is altered by a massive
object, but does not form a closed curve in space (Sect.3.4.1).
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3.4 Light Propagation in the Schwarzschild Metric

3.4.1 Deflection Angle

We found in Sect. 3.3.3 that null geodesics of the Schwarzschild metric describe
curves in space that are not closed, i.e., stable orbits do not exist in that case.
Instead, a photon approaches a massive object from a given direction, whereupon
it is deflected by some amount before resuming a straight course through space.
We wish to ascertain the deflection angle as a function of the distance of closest
approach, rp, to the massive object causing the light ray to bend. We set the origin
of spatial coordinates at the deflector. As the mass of the deflector, M, tends to zero,
the photon will follow a path ever closer to a straight line, in which case the initial
azimuthal angle will approach ¢ = 0, while the final angle will approach ¢ = .
Thus, the change in azimuthal angle, A¢, will be 7. Therefore, we compute the
deflection angle & = A¢ — 7 (see Fig. 3.1). Note that the coordinate system we are
now using differs from that of Sect. 2.1, but our final result will not depend on our
choice of coordinates.
Combining Egs. (3.76b) and (3.85), we obtain

S PN - (1 - —> , (3.87)
c r r

de
dr

\:.|$.

ro

Fig. 3.1 A light ray with impact parameter & travels leftward from infinity (¢ = 0), and is “bent”
by a deflector of mass M. This leads to a change in azimuthal angle of A¢, which is related to
the deflection angle, &, by @ = A¢ — 7. As expected, @ = 0 when M = 0. In the weak-field
limit, which we assume throughout this chapter, & is small enough so that the distance of closest
approach of the photon to the deflector ro &~ &
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where we we introduce m = GM/ c? as the mass in geometric units (i.e., length),
which is half the Schwarzschild radius. We take the positive (negative) root of
Eq. (3.85) for a light ray with r increasing (decreasing). Alternatively, we can take
r > 0 everywhere, and write

sg— [ [

_, [T de
_2/r0 o (3.88)

In words, the first line says that a light ray far from the deflector will reach a
minimum distance before traveling off to infinity again. Since both parts of the
trajectory contribute equally to the overall deflection, we arrive at the second line. To
perform the necessary integral, we must determine r¢. Such a turning point occurs
at 7 = 0, so we can write

¢_e (1 2’”) =0 (3.89)
C2 rg ro - ’ )

In the limit of vanishing mass, the distance of closest approach is the (invariant)
impact parameter of the light ray, &, so we have

=S (3.90)

Introducing & allows us to write the condition 7 = 0 in the presence of a massive
deflector as

S_ZZI_E’ (3.91)

which can be solved for ry if necessary (see Problem 3.5).
We can now write the change in azimuth in terms of rg as

A¢=2/w—¢dr

ro

o0 11 2m\ 172
2/ "_2|:_2__2<1__m)} ar
SR CE r
0 1 2 1 N
2/ 2 [_2 (1 _ _’"> - = (1 - _’"ﬂ dr.  (3.92)
7o o "o d "
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Changing variables to u = ro/r leads to

1 2m -1/2
Ap = 2/ [(1 —u?)-=a- u3)i| du . (3.93)
0 ro

While this expression is complete, it is not particularly enlightening. We now
assume that the deflector represents a small perturbation to flat spacetime, thus
allowing us to make a Taylor series expansion. Specifically, we assume m/rg < 1
so we can expand the integrand as

A —2/1 ! 1w m o mY 3.94
L N K T R v R

We can now integrate term by term (using the trigonometric substitution u = sin ),
and obtain

4 2
Ad :n+—m+ﬁ<ﬁ> . (3.95)
ro ro

At lowest order, the change in azimuth is m as expected. The deflection is
characterized by the first correction term, and at this order of approximation we
can set rg = £. Then recalling m = GM /c? we finally obtain

. 4GM

which is twice the Newtonian value!

3.4.2 Time Delay

An important consequence of light bending is that the spatial path taken by a
deflected light ray will be longer than that taken by an undeflected ray, implying
a greater travel time for the former. However, the presence of the deflector entails
an additional gravitational time delay, the so-called Shapiro delay (Shapiro 1964).
The most straightforward approach is to compute the total travel time, then subtract
off the geometric part. The Shapiro delay was proposed as a test of general relativity
independent of the previously measured bending of light. A radar signal would be
sent from Earth to Mercury or Venus, and bounced back to the radio telescope that
emitted the original signal. It turns out, though, that the geometric and gravitational
time delays can be combined into the Fermat potential, whose extrema correspond
to the positions of the lensed images. We will merely determine the time delay in
this section, but wait until Chap. 4 to derive the lens equation.
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Whereas our calculation of the deflection angle involved integrating d¢p/dr =
¢/, the time delay is given by the integral of d¢/dr = /7. However, the limits
of integration must be finite in order for the result to be finite. Intuitively, a light
ray will take an infinitely long time to travel an infinite distance. This means that the
setup depicted in Fig. 3.1 does not quite apply to the present situation: a photon with
¢ — 0 corresponds to r — oo. The easiest fix is to mark out two points along the
solid line that would indicate the initial and final positions, i.e., source and image
positions, respectively. We also must ensure that the time delay is positive, as we
would expect on physical grounds. This means that we must integrate from smaller
to larger (Schwarzschild) radial coordinate.

Consider a photon emitted by a source at radius 7 from the center of a deflector
of mass M. Suppose that the photon is received by an observer at rqps. Taking the
distance of closest approach to the deflector as r, the travel time from ro to some
larger radius R is given by

R g
T(R):/ SO (3.97)

0

_ 12
R 2m\ ! r2 2m 2m\ !
= 11— — — 0 (1-= 1 — — dr.
/;0< r) r2( r)( ro) '

We expect T (R) to be of order R/c, so what we actually compute is ¢7' /R, which
is of order unity. We change variables to u = rg/r and simplify the notation by
introducing the quantities 7 = m/ry, which is the combination we saw in the
analysis of the bending angle, and w = ro/R. With these substitutions, we can
write

T(R ! 1—2hu\"!
1t )=w/ w20 =200 (1 =222 du. (3.98)
R . 1—2h

As before, we want to make a Taylor series expansion, but now we must take care
because the time delay analysis involves three scales: m, rg, and R. We know that
ro will be of order the Einstein radius, and omitting factors of order unity we can
write3 R E~ m Notice that

p="~ (%)1/2 and  w=0~ (%)1/2 . (3.99)

In other words, ry is the geometric mean of m and R, such that 4 and w wind up
being of the same order. Thus, when we make a Taylor series expansion, we need

3Strictly speaking, the Einstein radius depends on three distances between the observer, lens, and
source. We will address the details momentarily, but for this argument we assume that the distances
are all of order R.



3.4 Light Propagation in the Schwarzschild Metric 69

to treat 4 and w jointly. First we return to Eq. (3.98) and expand the integrand as a
Taylor series in A:

cT(R) /1 [ 1 + 2+ 3u h+ ﬁ(h)z] d (3.100)
= w u ’
R 0 Lulv1l—u?  u(l+u)v1—u?

_ T — 2
:\/1—w2+|:‘/1+3 +21n(#)i|wh+wﬁ(h)2.

Working to second order in w, the first term becomes 1 — w? /2. The combination in
square brackets becomes 1 4+ 21n(2/w). This does not need to be expanded further
because it is multiplied by wh which is already second order. Thus, we obtain

cT(R) . w? w 3
=1 7+(1 21n5>wh+ﬁ(---), (3.101)

where O(---)3 is any third order combination of # and w. Lest we lose track of the
physics, let us reinsert the scales by writing out # and w:

R /ro\2 ro 3
¢T(R) = R 2<R> +m<1 21n2R)+ﬁ(---). (3.102)
The total travel time of a photon in going from an observer at radius rgps to a
radius rgc 1S Tror = T (Fobs) + T (rsrc). We saw in Chap. 2 that distances in lensing
are measured by angles on the sky, namely the source angle, 8, and the image angle,
6. Since the change of direction of a lensed light ray is confined to the proximity of
the deflector, we may suppose that the bending takes place in the plane of the lens.
We define the distances between the planes of the observer, lens, and source as dj,
djs, and d;. Note that these are coordinate distances. Unlike the angular diameter
distances D;, Dy, and Dy, shown in Fig. 2.2, dis =~ d; — d;.
The radii of the observer and source can be written as

Fobs = dj (3.103a)
[ 7 % g 1d}
Fsie = 4/ dj; + ds2 tan2 B ~ dj; [ 1+ Ed_2'3 , (3.103b)
Is

where we expand rg to second order using the small-angle approximation. In that
approximation, ro/robs = 6, and we can use Eq. (3.102) to write

92 0
cT (robs) ~ d 1—? +m—2mln 7] (3.104)
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The analysis for cT (rg.) is similar, except we must use ro/rsc X Orops/Tsre ~
0d;/d;s:

p? d? 02 d? 0 d
T(ree) ~ d LT Y —omn (24
cT (Fore) Is( + 7 dzs 5 dlzs +m—2mln 2dn

d 1+ﬁ2d€2 62 d; tm—2min (24 (3.105)
~ —_—— - = m—2mn{ -— ], .
o 22 242 2 djs

where we drop a term with #282 because we are working only to second order.
Noting that the unlensed path length is

d 2
cTo= —— ~d; |1+ B , (3.106)
cos B 2

the time delay can be written as

,32 6 d? 62 da
AT (6 —d d 2 2m1 ,
cAT(0|B) ~ 5 dé s > \an +d; | +2m —2mln T

(3.107)
where the zeroth order term vanishes because d; + dj; — d; = 0. Using that relation,
we realize that the distance combinations in the first two terms both simplify to
didg /djs, yielding

dyds (92 d1>
c AT (0 —60°)4+2m—2mln . 3.108
@B~ 50 (B =0 v (3.108)

Then using the lens equation 8 = 6 — 9% /6 we can manipulate the first term and
obtain

cATO|B) ~ dafl( — B)2 —4m1n|0| + const. (3.109)

Ls

This form is conventional because the first term reflects the extra travel time due
to the additional path length (the geometric contribution to the time delay), while
the second reflects the contribution from gravitational time dilation (the potential or
Shapiro delay). All remaining terms are independent of # and 8, and they do not
affect any observables (what we measure are differential time delays), so they can
be neglected. Thus, our final expression for the time delay is

M
In|é| . (3.110)

AT (©0|B) =

Recall that |#| <« 1 by assumption, so the gravitational time delay is positive as
expected.
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3.5 Friedmann-Robertson-Walker Cosmology

The Copernican Principle, which generalizes Copernicus’ conclusion that Earth
is not at the center of the solar system, led to the Cosmological Principle: the
universe is homogeneous and isotropic on large scales. Its original formulation,
which has come to be known as the Perfect Cosmological Principle, also assumed
that the universe is static. This idea infamously led to Einstein’s introduction of
the “cosmological constant” into his field equations, and also to the steady-state
theory of Hoyle, Bondi, and Gold (Hoyle 1948; Bondi and Gold 1948), which was
largely abandoned by cosmologists after the discovery of the cosmic microwave
background (see Sect.9.1).

Our goal in this section is to write down the metric describing a homogeneous,
isotropic spacetime. The most general form of this metric is the one described by
Robertson (1935) and Walker (1935), although we will not prove this here. Instead,
we use geometric and algebraic arguments to find a particular metric that satisfies the
cosmological principle, but we will make no attempt to show that it is the only such
metric. Furthermore, we argue purely on qualitative grounds that the Robertson-
Walker (RW) metric is indeed homogeneous and isotropic. We begin by considering
the spatial part of the metric where some degree of intuition can be brought to bear.

Any space that is homogeneous and isotropic will have constant curvature.
There are three possibilities we must consider: zero curvature, positive curvature,
and negative curvature. Current observations favor a flat (zero-curvature) universe,
which is to say one in which the Pythagorean Theorem holds at any moment in
time. But they do not rule out a universe of constant nonzero curvature, i.e., one that
is either spherical (positive curvature) or hyperbolic (negative curvature). The two
latter models are respectively termed closed and open. We describe each in turn,
before introducing the RW metric in its full generality.

3.5.1 Homogeneous, Isotropic Universe
Geometry of a Closed Universe

Since no book related to cosmology would be complete without appealing to the
analogy of an expanding balloon, we start by considering the geometry of a sphere.
Such a universe is closed, since traveling in a fixed direction from any point will
eventually lead back to that point. Although not necessary, it is convenient to think
of a 2-sphere as a subset of three-dimensional Euclidean space. This is known as
embedding, and is at the heart of our subsequent discussion. We refer the interested
reader to any text on non-Euclidean geometry for a more thorough treatment.

We can think of a closed universe as a three-dimensional sphere embedded in
a (fictitious) four-dimensional space. To get a feel for the terrain, we first consider
the two-dimensional unit sphere. In terms of Cartesian coordinates (x, y, z), this
sphere is defined by x? 4+ y2 4 z? = 1. It is more convenient to work in spherical
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coordinates. We start by defining the azimuthal angle, ¢, between the x-axis and
the projection of the vector r = (x, y, z) in the xy-plane. We then define the polar
angle, 6, between r and the z-axis. These angles lie in the intervals 0 < ¢ < 27 and
0 < 6 < &. Formally, the Cartesian coordinates (x, y, z) are related to the spherical
coordinates (8, ¢) through

x = sinf cos ¢ (3.111a)
y = sin6 sin¢ (3.111b)
z =cosf. (3.111¢)

The distance between two points on the sphere of infinitesimal separation is
described by the metric

dS7 = d6? + sin® 0dg? . (3.112)

We now turn to the three-dimensional unit sphere. To find its metric, we
embed it in four-dimensional Euclidean space described by Cartesian coordinates
(w, x, v, z). The equation to define a sphere is simply w? + x> 4+ y% + z2 = 1. Let
¢ be the angle between the x-axis and the projection of r = (w, x, y, z) into the
xy-plane, and let € be the angle between r and the z-axis. Since we are now dealing
with a three-dimensional sphere, we must introduce a new angular coordinate to
specify a given point. Accordingly, we define x to be the angle between r and the
w-axis. Like 6, the angle yx is restricted to the interval 0 < x < m. The Cartesian
coordinates (w, x, y, z) are related to the spherical coordinates (x, 6, ¢) by

w = Cos X (3.113a)
X = sin x sin6 cos ¢ (3.113b)
y = sin x sin 6 sin ¢ (3.113¢)
z =sin y cosf. (3.1134d)

When x = n/2, Eq. (3.113a) reduces to w = 0, while the remaining three reduce
to Egs.(3.111). In other words, setting x = /2 allows us to recover the two-
dimensional unit sphere from its three-dimensional counterpart. If we make the
further substitution & = 7/2 in Eqgs. (3.111), the unit 2-sphere reduces to the unit
circle (1-sphere).

Our next step is to write down the metric describing the 3-sphere in terms of
the coordinates (x, 6, ¢) without reference to the embedding space defined by
(w, x,y, 7). We have

d5? = dy? + sin® x (d92 + sin29d¢2) . (3.114)
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This metric can be obtained by brute force by substituting Egs. (3.113) into the
metric dS32 = dx? 4 dy? + dz? + dw?. A more elegant method is to construct the
(n + 1)-sphere from the n-sphere, for any integer n > 1. Denoting the metric of the
unit n-sphere by dS,%, we have

ds2, | = dv7 +sin® 9,dS7_; (3.115)

where the polar angles 91, 9>, ..., ¥, are restricted to [0, r ]. To begin the recursion,
we note that the metric of the unit circle is simply dSl2 = d¢?, where ¢ is the
azimuthal angle as before.

Geometry of an Open Universe

We would like to construct a three-dimensional space of constant negative curvature,
analogous to our spherical model of a space of constant positive curvature. A simple
variation of a spherical model would be to replace cos x and sin x with cosh x and
sinh yx, respectively:

w = cosh x (3.116a)
x = sinh y sin 6 cos ¢ (3.116b)
y = sinh x sin @ sin ¢ (3.116¢)
z = sinh x cos6 . (3.1164)

These quantities satisfy the relation w? — x> — y> — z% = 1, which is the equation

of a three-dimensional hyperboloid of revolution about the w-axis. However, this
hypersurface does not have constant negative curvature under the Euclidean metric.
Fortunately, we can get around this problem by introducing the metric

dH} = —dw? + dx? +dy? + dz°
= dy? + sinh? <d92 n sin29d¢2) : (3.117)

where 0 < y < oo. If we had reversed the signs of the terms on the right-hand side
of the first line, we would have obtained a negative definite metric, but we know the
distance between neighboring points must be positive. Such would not the case for
spacetime, however. We note that one can write the metric of an (n + 1)-dimensional
hyperboloid in terms of that for the unit n-sphere as

dH?Z, | = d®? + sinh? 9dS?, (3.118)

where 0 < ¥ < 0.
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3.5.2 Robertson-Walker Metric

There are two crucial steps we must take to obtain the metric describing an isotropic
(and hence also homogeneous) spacetime. The first is to find a metric that can
accommodate a closed, open, or flat universe, and the second is to put the “time”
into spacetime. We commence by combining dsz, dH32, and the Euclidean metric
dE% of flat, three-dimensional space into a single formula:

4 = dy? + 2(0) <d92 + sin29d¢2) , (3.119)

where

sin x (spherical)
S =1 x (flat) (3.120)
sinh ¥ (hyperbolic).

We can eliminate y in favor of the radial coordinate r = f(x) to write the metric
as

2

ae? = + r2(d6? + sin” 0d¢?) , (3.121)
1 — kr?
where we define k = 1 for a spherical universe, k = 0 for a flat universe, and
k = —1 for a hyperbolic universe.

Note that the coordinate r is dimensionless. However, it is more common for
r to be a length. The curvature k must then have units of inverse area. Under this
convention, k is not restricted to the values %1, 0. Instead, we require only that
k > 0,k = 0, and k < 0 in the spherical, flat, and hyperbolic cases, respectively.
Since r = y in the flat universe, the two quantities must have the same dimension.
Thus we replace Eq. (3.120) by the curvature-dependent relation

-z sin(xvk) (k > 0)
r=fi(x) =4 x (k=0) (3.122)
Jij sinh(x+/—k) (k <0).

The most straightforward way to incorporate time is to write ds?> = ¢>dr> —
a?(t)de2, where the scale factor a(r) allows for cosmic expansion or contraction.
Thus,

2
1 — kr?

ds? = 2dt* — a%(1) [ + r2(d6? + sin® 9d¢2)} (3.123a)

= 24 — @) [dx2 + F2(x)(d6? + sin? 9d¢2)] . (3.123b)
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which is known as the Robertson-Walker (RW) metric. The coordinates (r, 6, ¢)
and distance x are said to be comoving because they “move” with the expansion
or contraction of the universe. To measure physical distance, we define r’ = a(¢)r.
Correspondingly, we define k' = k/a(t). As expected, the curvature defined by
k" decreases as the universe expands. In the absence of curvature (k' = 0), the
RW metric reduces to the Minkowski metric in spherical coordinates. Moreover,
the RW metric is locally Minkowskian, i.e., assumes the Minkowski form when
r' & 1/+/k'. Finally, the metric describes an isotropic spacetime. To see this, we
observe that it is invariant under Lorentz transformation (i.e., boosts and spatial
rotations). For example, reversing the sign of any of the four coordinates leaves
the metric unchanged. Our discussion here is not intended to be mathematically
rigorous, but is physically motivated.

3.5.3 Friedmann’s Equation

Our next task is to understand how the cosmological scale factor a(f) evolves.
Rather than a full general-relativistic treatment, we give a simple Newtonian
argument which leads to the same time dependence of a(z). Consider a sphere of
radius R(t) and spatially uniform density p (f). The energy per unit mass of a particle
on the surface of the sphere is conserved and given by

1. 4 G
€= 3 z2_ nTpRz = —CZK, (3.124)

where the two terms on the right correspond to kinetic and potential energy, and K is
a dimensionless constant. Depending on the value of K, the particle either escapes
to infinity (K < 0) or attains a maximum displacement before falling toward the
center of the sphere (K > 0).

In terms of the dimensionless scale factor a(t), where R(t) = Rpal(t),
Eq. (3.124) takes the form

1, 47G 1
S - ’; pa? = —3c% |, (3.125)

where k = 2K/ Rg. The boxed evolution equation, known as Friedmann’s equa-
tion,* also follows from the full general-relativistic treatment combining the
Robertson-Walker metric and the Einstein field equations, with k equal to the
curvature discussed in Sect. 3.5.1.

4This relation is sometimes called Friedmann’s first equation. Friedmann’s second equation, which
is equivalent to Newton’s law of motion, will not be needed here.
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In the Big Bang picture, there are three contributions to the density: matter,
radiation, and dark energy. For each of these three components, the density has the
form p = ppa~". For a matter-dominated universe, n = 3, since the density varies
inversely with volume for a fixed total mass. For a radiation-dominated universe,
there is an extra factor of ¢! from scaling the wavelength, and n = 4. For a universe
dominated by dark energy or the cosmological constant, n = 0. According to these
values of n, the density is dominated by radiation for ¢ < 1 and by dark energy for
a > 1, with an important matter contribution in the intermediate regime.

Solutions for a Flat Universe

It is straightforward to solve Friedmann’s equation for p = ppa™".Inthe case k = 0
of a flat universe, the equation becomes

1., 4G ,_,

it =0, 3.126

54 3 Pod ( )
where pg is the current cosmic density. For the expansion following a Big Bang
(a =0atr = 0), Eq.(3.126) predicts

271G I/n
a(r) = (”Tpo nzﬂ) . (3.127)

Thus, a(t) grows as #2/3 and as r'/2 for matter-dominated (n = 3) and radiation-
dominated (n = 4) universes, respectively. In the case n = 0, corresponding to
expansion driven by the cosmological constant or dark energy, Eq. (3.126) has the

solution
871G
a(t) = exp |:,/ T,oo t] (3.128)

for —oo < t < 00, where ¢t = 0 corresponds to the present.

Solution for the Einstein-de Sitter Universe

Friedmann’s equation can also be solved analytically for a universe with nonzero
curvature k and with p = ppa~". In the Einstein-de Sitter or matter-dominated case
n = 3, we rescale the variables a and ¢ according to

47w Gpy . 4rGpo .
- . = TR0 4 3.129
=32k ¢ 33 (k|32 (3.129)
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Friedmann’s equation then becomes

da\?> 2
) =5 e, (3.130)

where sgn(k) = k/|k| if k # 0 and sgn(0) = 0. Equation (3.130) is readily solved
by separation of variables

/ a . A

and we choose the integration constant so that & = 0 when 7 = 0.

In the case k > 0 of positive curvature, corresponding to a closed universe,
integrating Eq. (3.131) with the help of the substitution @ = 1—cos ¢ = 2sin’(¢/2),
yields

a=1-cos¢ (3.132a)
f=¢—sing. (3.132b)

The graph of a versus ¢ has the form of a cycloid. The universe begins expansion
from a point at f = 0, reaches maximum size @ = 2 at f = 7, begins collapsing,
and at f = 27 is again pointlike.

In the case k < 0 of negative curvature, corresponding to an open universe,
integrating Eq. (3.131) with the substitution @ = cosh¢ — 1 = 2sinh?(¢/2), yields

a =cosh¢ — 1 (3.133a)
f=sinh¢p —¢. (3.133b)

As expected, a increases monotonically with time, with a ~ %(632/ 3for0 <7« 1
anda ~ 1 fort > 1.

Friedmann’s equation can also be solved analytically for radiation-dominated
and dark-energy-dominated universes with nonzero curvature (see Problem 3.9).

The Hubble Parameter

In terms of the Hubble parameter H = a/a, Friedmann’s equation (3.125) can be
written as

2_ 8tGp c*k

H —_— . 3.134
3 ) ( )
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According to this relation, the critical density pcri, which marks the threshold
between an open universe (k < 0) and a closed universe (k > 0) is

it = 3H (3.135)
IOCrlt - 87{G . .
Combining this definition and Eq. (3.134) leads to
3 %k
— Perit = ———=—5 - 3.136
P — Perit 871G a2 ( )

Thus, the sign of p — pci¢ is the same as the sign of k, and this sign is fixed for all
time.

To determine the present critical density, one needs the present value Hy of
the Hubble parameter. From observational data, Hubble (1929) concluded that
the recession speed of galaxies beyond the Local Group varies with distance d
according to the linear relation

v = Hyd, (3.137)
known as Hubble’s law. The Hubble constant is often expressed as
Hy = 100hkms~' Mpc™!, (3.138)

where / is dimensionless. Measurements of / point to a value around 0.7 (Freedman
and Madore 2010). According to Eqs. (3.136) and (3.138), the current value of the
critical density is

Perit = 1.8788 x 10720 h> kgm ™3, (3.139)

of the order of a few hydrogen atoms per cubic meter. For recessional motion driven
by the global expansion of the universe, v/d = d/d = a/a, and Hubble’s law
implies a = Hya.

With the value of Hy given above, Hubble’s law holds approximately for galaxies
which are outside the Local Group but not too distant. The Hubble parameter
depends on distance and time through the scale factor, as we now consider. Although
radiation was dominant in the early universe, it can now be neglected in comparison
with the contributions of matter and dark energy. We define the constant quantities

PA 2k

Om

_m Q% =——
(U 2

P crit HO

2, = T 24 = (3.140)
P crit

where pgrit is the current value of the critical density and 2y is the (dimensionless)

curvature density. Then Friedmann’s equation (3.134) can be written as
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H? = H}(2ma™> + 2a™2 + 24) . (3.141)

At present, H = Hyp and @ = 1, which implies 2 = 1 — £2,,, — £24.

It is convenient to express H in terms of redshift z, which it is a directly
measurable quantity. Since the wavelength of light transforms with the same scale
factor as the universe, light emitted with wavelength X from a distant galaxy at time
t reaches us at time 7y with a shift in wavelength AX = zA, where

A+ AN f
+ar L _ al(t)

. 7= at) (3.142)

On setting a(fp) = 1 and substituting Eq.(3.142) in Eq.(3.141), Friedmann’s
equation becomes

H?(2) = H[2n(1+2)* + (1 = 2 — 24)(1 +2)* + 24]. (3.143)
Galaxies in the neighborhood of a galaxy with redshift z obey Hubble’s law (3.137),
except that Hy is replaced by H (z).

Deviations from Hubble’s law may also be quantified by expanding the scale
factor about f¢ in the form

1
a(t) = ato) + a(to) (t — to) + 5d(t0)(r — 10)* + -
= alty) (1 + Ho(t — 19) — %Hé(r—to)2+-~), (3.144)

where Hy = H (t)), and

q0 = — (—2> (3.145)
as J =t

is the dimensionless deceleration parameter. This parameter was expected to
be positive, due to gravitational attraction, until the discovery of the acceleration
attributed to dark energy (Riess et al. 1998; Perlmutter et al. 1999). To first order,
H =a(t)/at) = Hy[1 — (go + 1)Hy(t — t9)], which reduces to Hubble’s law for
[t —to] < [(g0 + l)Ho]_l. In practice, one usually works with redshift rather than
time.

3.5.4 Cosmological Distances

If we liken the increase in wavelength due to cosmic expansion to the Doppler effect,
we can assign a recession speed v to a given redshift z. To first order in v/c we have

Ah=zA=—A, (3.146)
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where AL > 0 for recession. Hubble’s law can then be written as v = ¢z = Hyd.
This only holds when z <« v/c. The dependence of distance on redshift is the focus
of this subsection.

The most frequently used cosmological distances are the angular-diameter
distance and the luminosity distance. These can be related to the comoving distance
x in the RW metric (3.123), which, in the next paragraph, is expressed as an integral
involving the Hubble parameter.

Comoving Distance
The comoving distance x traversed by a photon emitted at time ¢ from a distant

source can be determined by setting ds = 0 in the RW metric. For fixed 6 and ¢, we
find

_focdt/ _ 1cda_/1 cda (3.147)
X_,a(t’)_aad_aazH' '

The upper limits of integration are the current time and scale factor. Since a =
(14 z)~!, the comoving distance to the emitter is given by

x(2) =c/0'% (3.148)

in terms of the redshift of the source, where H (z) is given by Eq. (3.143). Note that
the comoving distance between objects with redshifts z| and z > z; along the same
line of sight is the difference x (z2) — x (z1). Other cosmological distances discussed
below do not necessarily have this property.

Angular-Diameter Distance

The angular-diameter distance of an object with width or transverse size Aw that
subtends an angle A¢ on the sky is defined by

Aw

dt = —. (3.149)
A
According to the RW metric (3.123),
Aw =a() fi(x)Ap = (1+2)"'r(2)A¢, (3.150)

where fi(x) is given by Eq. (3.122) and r(z) = fx(x(z)). Thus,

() = (14+2)7'r@). (3.151)
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Now consider an observer in a plane at redshift z; # 0 and a source in a plane at
redshift zp > z;. The angular-diameter distance from plane 1 to plane 2 is

d¥(z1,22) = (1 +22) 'z, 22) = L+ 227 frbe — x1) | (3.152)

where x; = £(z;). In a closed universe,

1
= sin (x/%(xz — x1)>
= % [sin(x/zxz) cos(x/l;xl) — sin(x/z)(l) cos(x/%xz)] . (3.153)

With the help of Eq. (3.122), this can be rewritten as

ro =1 — ki =1 — ki (3.154)

It is straightforward to verify that this holds for all k. In particular, in a flat universe
(k=0),rp=r—ry.

Substituting Eq. (3.151) in Eq. (3.154) and replacing the subscripts 1 and 2 by /
and s, we obtain

(14+z9)Djs = (1 +z,)Dgy/1 — k(1 + 2)2D}

(14 @) Diy1 — k(1 +22D2, (3.155)

where Dy, Dy, and Dy are the usual distances in discussions of lensing. Thus, even
in the case k = 0 of a flat universe, D;; # Dg — D;.

Luminosity Distance

The distance to a source can also be inferred from the observed flux F and the
luminosity (power output) L of the source. For a static, flat universe, this distance is

| L
d=,——. (3.156)
dn F

The expansion of the universe does not affect L but does alter F'. This is because
the energy of an emitted photon is diminished by a factor of 1 4 z. Meanwhile, the
rate at which photons are received decreases by the same factor. At the end of the
day, this means making the substitution F — (1 4 z) 2 F. The luminosity distance
is then

d"™ = (1 +2)d. (3.157)



82 3 Light Deflection in Curved Spacetime

From the RW metric, the physical radius d(¢) of a sphere is given in terms of its
coordinate radius r as d(t) = a(t)r. At the present time, this reduces to d = r. Thus

d"(2) = (1 +2)r(z) = (1 + 2)%d™(2) . (3.158)

The luminosity distance of a source at redshift z, as seen by an observer at z; is

di(z1,22) = (1 + 22)r12(z21, 22) = (1 + 22)2d ] (21, 22) |. (3.159)

Problems

3.1 The Lorentz transformation for a boost with velocity v parallel to the x axis is
given in Eq. (3.3).

(a) Show that for a boost with velocity v in an arbitrary direction

N
Il

=y (r - Vc—zx) (3.160a)

/

X =x+ (- DIV 2(v-x)v—yvr. (3.160b)

(b) The Lorentz transformation for a boost with velocity v parallel to the x axis
is shown in matrix form in Eq. (3.5). From Eq. (3.160), find the corresponding
4 x 4 matrix for a boost with velocity v in an arbitrary direction.

3.2 Consider a set of curvilinear coordinates x’ in an n-dimensional Euclidian
space. A corresponding set of basis vectors e; is defined by expanding the
infinitesimal displacement dr as dr = dx’e;. In general these basis vectors are
neither of unit length nor orthogonal, and their lengths and directions depend on
position.

(a) Show thate; - €; = g;;, where g is the metric tensor.

(b) Now consider a different set of generalized coordinates and basis vectors, which
we denote by % and &;, respectively. Since the infinitesimal displacement
vector is independent of the particular basis, dr = dx’ e; = di’ &;. Show that
the basis vectors satisty €; = e; a’ ;» and evaluate a’ ; in terms of derivatives of
the coordinates x’ and %'.

(c) An arbitrary vector v may be expanded as v = v’ e¢; = ¥ &, in terms of the
basis vectors introduced in part (b). Show that the coordinates satisfy v/ =

bij v/, and evaluate b’} in terms of derivatives of the coordinates x! and X'.

(d) Show that »’;a’, = §’,, ie., matrix b is the inverse of matrix a. Thus,
the tranformation of the coordinates “opposes” the transformation of the basis
vectors, whence the term contravariant.
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3.3 The basis vectors e; defined in the preceding problem are neither of unit length
nor orthogonal. However, a set of reciprocal basis vectors €' can be constructed from
them which satisfy the orthonormality condition €' - e; = S’J. . Considering a three

dimensional space and making use of cross products such as e; x ep, construct el
ez, and €3 from e;,er, and e3.

Remark The basis vector e; may be expanded in terms of the reciprocal basis in the
form e¢; = ¢;; e/. From the property e; - e i = &ij (see preceding problem), it follows
that ¢;; = g;;. Thus, e; = g;;€/, i.e., the metric tensor serves to raise and lower the
indices of the basis vectors.

34

(a) For a Euclidian (flat) three-dimensional space parametrized by Cartesian coor-
dinates (x, y, z), find all elements of the metric tensor and of the Christoffel
symbol or affine connection defined in Eq. (3.61).

(b) For a Euclidian (flat) three-dimensional space parametrized by spherical coor-
dinates (r, 6, ¢), with x = rsinf cos¢, y = rsinf sin¢, z = r cos 9, find all
elements of the metric tensor and of the corresponding Christoffel symbol.

(c) Does the Christoffel symbol I ,i‘v, which has three indices, transform, in general,
like a tensor of rank three under a change of coordinates? Do your answers to
parts (a) and (b) shed any light on this question?

3.5 Trigonometric substitutions are very useful in evaluating integrals. A much
earlier use historically was in solving cubic equations (Viete 1591).

(a) Show that the general cubic equation y* 4+ ay? 4+ by + ¢ = 0 may be rewritten
as x> — Ax = B, without a quadratic term, by making a substitution of the form
y = x + xo. Express xg, A, and B in terms of @, b, and c.

(b) Using the relation cosf = %(eie +e”'9), prove the identity 4cos’6 —
3cosf = cos 36.
(c) Substituting x = kcos@ in x> — Ax = B and comparing with the above

trigonometric identity, solve for k, 6, and x in terms of A and B.
(d) Using the result of part (c), show that the solution to Eq. (3.91) is

rg = @cos |:l cos™! (_33/2m):| (3.161)
VR g )] '

3.6 In Sect.3.4.1 we derived the lowest order term in a Taylor expansion for the
deflection angle in the Schwarzschild metric. Now derive the second-order term in
the m /& expansion. Hint: It is natural to work first in terms of m /rg and then convert
to m/&; if you do that, recall that ryp & & at lowest order, but there are correction
terms that become important when you expand A¢ to second order in m /§.

3.7 In Sect.2.1 we derived the Newtonian deflection angle to lowest order using
the Born approximation. Now derive it using an analysis similar to what we did for
the relativistic bending angle. Specifically, consider a test particle passing a mass
M such that the impact parameter is &, the distance of closest approach is ry, and
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the initial speed is ¢. Use Newtonian mechanics to derive an equation of motion
involving d¢ /dr, and then obtain an expression for A¢ that is analogous to the GR
expression in Eq. (3.92). Recall from our earlier analysis that the lowest order terms
should be

2m

Ap = —.
qﬁn—f-g

Verify this result, and also derive the second-order term in a series expansion in
m/&.

3.8 Friedmann’s equation is a nonlinear first-order differential equation for the
scale factor a(t). For an Einstein-de Sitter or matter-dominated universe (n = 3),
that first-order differential equation is solved in Sect. 3.5.3. The goal of this problem
is to solve Friedmann’s equation for n = 3 in a different way, first converting it to a
linear second-order differential equation with constant coefficients.

(a) Show that the curvature k is given in terms of Hy and £2¢9 = pg/ ,ogm by

H2
k= C—S(QO— .

(b) Introducing the parameter ¢ through the relation d¢/dr = f(a), find the
function f(a) for which Friedmann’s equation takes the form

2
(d_a) 4+ 42 = & a,
d¢ [£20 — 1]
where the upper and lower signs correspond to positive and negative curvature,
respectively.

(c) Show that differentiating the above equation with respect to ¢ leads to a linear
second-order differential equation, reminiscent of Newton’s law of motion for a
driven harmonic oscillator. Solve the differential equation for a as a function of
¢, using the initial conditions a = 0 and ¢ = 0 at = 0. Show that the solution
is equivalent to the one in Sect. 3.5.3.

3.9 Using the method of Sect.3.5.3 for a matter-dominated universe, solve Fried-
mann’s equation with nonzero curvature in the cases n = 4 (radiation domination)
and n = 0 (domination by the cosmological constant or dark energy).
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Chapter 4 ®
Multiple Imaging in the Weak-Field Qs
Limit

Now that we have had some practice in carrying out lensing calculations and have
derived the all-important factor of two, we turn to non-axisymmetric lens models
in the context of the thin lens approximation. We show in Sect. 4.1 that the vector
counterpart of the deflection angle is given as the gradient of a scalar potential and
uses Fermat’s principle to obtain the lens equation. We then solve this equation
to find the image positions for a simple but important special case. What follows
thereafter is a general discussion of image magnification (Sect. 4.2) and time delay
(Sect.4.3), which can be observed and compared against specified lens models.
Some general properties of the lens mapping are described in Sects. 4.4 and 4.5.
We derive the conservation of surface brightness in Sect. 4.6, which allows us to
consider lensing of spatially extended sources. Mathematical degeneracies in the
lens equation, which constrain our ability to compare theory and observation, are
discussed in Sect. 4.7. The case of a light ray deflected by multiple lenses (Sect. 4.8)
rounds out our presentation of the theory of strong lensing in the weak-field limit.

4.1 Lens Equation

4.1.1 Lens Potential

Since we are now dealing with general lenses, the vectorial nature of the deflection
angle must be explicitly taken into account. As in electrostatics and gravitation, we
can define a scalar potential whose gradient gives the vector field of interest. Recall
from Eq. (2.6) that the deflection vector is given by

2 o0 n
&) = Z/ Ve (€, )dz = Ve (&), @.1)
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where V¢ = /3§, which is identical to V| in the notation of Chap. 2. The function
U is given by

o]

~ 2
Y = 0—2/ D€, 7)dz. 4.2)

Although the focus of this chapter is on general lenses described by 1}(5 ), it
is instructive to begin with the case of a point mass. In terms of R = |&|, the
corresponding gravitational potential in three dimensions is

P (R, 2) oM (4.3)
) = . .
VR?+ 22
The projected potential is then
Jemi(R) 2GM /oo dz
PM = -
c? —oc0o VRZ+ 72
o
2GM 2z
= — 62 In 1+F+E s (44)
—00

which diverges. However, recall that the actual source, lens, and observer coordi-

nates are 7 = — Dy, z = 0, and z = Dy, respectively. Thus,
Dy
. 2GM 2z
R) = — 1 1+ —+ —
vpm(R) 2 n tomtx
_Dls
2GM 2Dy 2D
N — In| — 1 , 4.5
& (%) e (% =

where R <« D; and R < Dj; if the deflection is small.
For an arbitrary mass distribution described by the density p(r) = p(&, z), the
gravitational potential can be written as

L
R3 [r—r|
I NA2E AL
:_G/ p&',2)d"¢'dz
R \/|§ — &P+ (2 —2)?

/ Z(£)8(z)d%EdZ’
=-G
2 e —g2+ -2
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NA2 &7
- —G/ > €)% (4.6)
R2

JiE—gP 2

where we have used the thin lens approximation
pE'.7)=2E)s(). (4.7)

Taking the gradient perpendicular to the line of sight, we have

> (& Y d2 /
v§q>(§,z)=cf (S)(Ezg) L .8)
R? (|& —&'|°+22)2
The deflection vector is then
~ 2G / / / o / -3
ae) =25 [ rere-e)ee [ (e-eP+2) e
_ 4G / TE) (§ - §) e
? Jre & — &
4G
=—2V£/ SE)In (& — &) ¢, 4.9)
C RrR2
where we use the relation
/ E_g/
Vel _ - > 4.10
gIn (& - &) T (4.10)
We can then write
N 4G
16 =5 [ @ m(ls - @11
C R2

Instead of starting from Eq. (4.1), we could have derived Eq. (4.9) by noting that it is
the straightforward generalization of the deflection due to a point mass (2.10). That
approach seems much simpler, but it does not make explicit the assumption of a thin
lens (4.7).

In terms of the angular vector § = &/ Dy, the reduced deflection vector is given
by

6)= 26Dy 4.12
a()=Doc(z)- (4.12)

N

Defining

a@) =Vy(0), (4.13)
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the reduced lens potential takes the form

Dy -

DiD, Y (D;0)

4G D;D;
==, : /Rz 2(Di0")In (|6 —6']) d%0’

v(0) =

= l/ k(@) In (|6 —6'|)d%’, (4.14)
T JR2

where the convergence of a two-dimensional mass distribution is

X (D;0)
Xerit

K(0) = , (4.15)

where X is defined by Eq. (2.68).
Using Eq. (4.5), we obtain

Dy

Ypm(0) = DiD. Ypem(D;10])

2GM Dy 2Dy 2Dy
= — In +In
¢z DDy D;10] Dy|6]

2GM D 4D
= 2 L [ 2m)g|—In =2 (4.16)
cc DDy D,

for the reduced lens potential of a point mass at the origin. Since the gradient
of the potential is the physical quantity of interest, we can ignore terms that are
independent of 6, as we did in going from Eq. (4.11) to Eq. (4.14). This leaves us
with

4GM Dy
Ypm(0) = 2 DiD. In |6 (4.172)
= L In|@]. (4.17b)
NDIZEcrit

The potential at @ due to a point mass with M = D12 et at @ is

1
g0 —0)=—1n|0 — 0. (4.18)
T

If we compare this with Eq. (4.14), we see that the potential of an arbitrary mass
distribution is the convolution of the point-mass potential and the convergence, i.e.,

V() = /2 k(0)g(O —0")d%6’ . (4.19)
R
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We can invert Eq. (4.14) to find the convergence « () for a given potential ¥/ (6).
We start by writing

V2 (0) = V> Uz k(0)g(0 — 0/)d29/}
R
= / K(0)V2g(0 —0')d%0’ . (4.20)
RZ

Since
V2@ —0)=28%0-9) 4.21)

(see Problem 4.1), we can write
V2 (@) = 2 / (050 — 0))d*0’ = 2« (). (4.22)
R2

This is Poisson’s equation in two dimensions.

To complete our discussion of the lens potential, we describe how to solve
Poisson’s equation (4.22) for a general convergence «(0). The convergence at
due to a point mass at 8 is simply 82 (9 — 0’). Poisson’s equation in this case
is then identical to Eq.(4.21). The solution g(# — @’) is called Green’s function
and is given by Eq.(4.18). Since Poisson’s equation is linear, the potential due
to an arbitrary mass distribution « (@) is the appropriate superposition of Green’s
functions for point masses at different locations (see Appendix D.3 for more details
on the Green’s function method). The result is Eq. (4.14), as desired.

4.1.2 Fermat’s Principle

If we compare the lens potential of a point mass (Eq. (4.17a)) with the gravitational
contribution to the time delay in the Schwarzschild metric (Eq. (3.110)), we notice
something curious: apart from constant factors, one is the negative of the other!
To understand the connection between the lens potential and the gravitational time
delay, we must adapt Eq.(3.110) to a cosmological context. This involves two
steps. First, we must interpret the Schwarzschild coordinate distances d as angular
diameter distances D. This is justified, since the observer and source are far from
the lens, where spacetime is approximately described by the RW metric. The second
step is a bit more subtle: Eq.(3.110) gives the time delay relative to the lens,
but we seek the time delay as measured by an observer, whose distance from the
lens increases with the cosmic expansion. This introduces a time dilation factor of
a ity =1+az.
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The total (geometric plus gravitational) time delay due to a Schwarzschild lens
lying in an expanding universe described by the RW metric is then

14z | DID 4GM
ATpm(61B) = (0~ B — —5- o]
c 2D c
1
=T, [5(9 - B - wPMw)] : (4.23)
where

1 D;D
T, = 420 (4.24)

c Dy

YpM is given by Eq. (4.17a), and the source position f is fixed. It is straightforward
to extend Eq. (4.23) to a general potential by noting that ATpy is linear in ¥py;
the potential due to a collection of point masses (or infinitesimal mass elements) at
redshift z; is just the sum (integral) of the individual potentials. We must also replace
the scalar source and image positions by their vector counterparts. If we denote the
potential of an arbitrary mass distribution at redshift z; by ¥ (), we can write the
time delay in units of T} as

ATOIB) 1

T018) = — 510 - B> — v (), (4.25)

where 7 is known as the Fermat potential.’

Once 7(0|B) is known, the image position(s) @ for a given source position § may
be found from Fermat’s principle, also known as the principle of extremal time. We
look for stationary points of 7, where Vt = 0. Using Eq. (4.25) we obtain

B=0-Vy(@)
=0 —a@), (4.26)

which is the vector generalization of the lens equation (2.18). But there is a
problem with this derivation: the geometric contribution proportional to (8 — 8)2
in Egs. (3.110 ), (4.23), and (4.24) was obtained assuming a point mass. We now
argue that this geometric term is generally valid.

From Problem 4.2, we know that the time delay in Euclidean geometry has the
form

DDy

it} _ 2
2. @B’ 4.27)

cATgeom =

I'This 7 is not related to the proper time we encountered in Chap. 3.
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Replacing 8 and B by their vectorial counterparts # and B yields

Dle 2
AT, =—10 — . 4.28
CAlgeom 2Dy, | Bl ( )

Schneider et al. (1992) show that this expression also holds if D;, D, and Dy
are angular diameter distances, provided that we include a redshift factor 1 + z; to
account for the cosmic expansion. The final form for the geometric time delay is
therefore

1+2z DD

ATgon = — =7, 10 BT (429)

which is completely consistent with the geometric time delay in Egs. (4.23)
and (4.24) and not limited to a point mass.

Having established the general form of the lens equation (4.26), we can now look
for solutions following Chap. 2 but allowing more general geometry. For simplicity,
we first consider cases where the lens equation can be recast in the form of a matrix
equation, which can be inverted to determine the positions of lensed images.

4.1.3 Convergence and Shear

Suppose that a light ray undergoes sufficiently small deflection that the lens potential
may be approximated by a Taylor series in the x and y components of #. A deflection
angle of linear order requires a quadratic lens potential:

1
Y0y ~ Y0+l ly S (U + U+ 200 x). (4.30)

where the superscript “0” denotes evaluation at the origin and the subscripts indicate
partial differentiation with respect to the specified coordinates. The constant can be
neglected since the deflection angle (4.13) is independent of ¥°. The linear terms
can also be ignored, because they produce a constant deflection, which amounts to a
translation 8 — B +a, of the origin of the source plane, where o® = Ip)?ex + w;)ey.

It is often convenient to write the lens potential as a multipole expansion, as
in electrodynamics (Jackson 1962). In general, a narrow “bundle” of light rays
undergoes both isotropic and anisotropic deflection, corresponding to monopole
and higher-order terms, respectively. Because gravitation is purely attractive, the
dipole term vanishes, and the lowest-order anisotropic deflection comes from the
quadrupole term. In the language of lensing, the monopole and quadrupole moments
are known as convergence (cf. Sects.2.4 and 4.1.1) and shear (cf. Sect.2.6),
respectively. Since the light rays in the bundle are close together, we may assume
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that they pass through a region of uniform density in the lens plane. This means the
convergence (4.22) has the constant value

1
K = z(wfjx + 90 - 4.31)

In terms of the shear components

1
v =50 = vy) (4.32a)
Yx = Uy (4.32b)

and the convergence, the lens potential (4.30) can be written as

1 |
Y, ) R =+ y) X2+ = (= ya) ¥+ pxxy

2 2
K 12
= 5(x24—y2>+-7§<x2-—y2>+-yxxy. (4.33)

To see that the x-term is isotropic while the y-terms are not, we introduce polar
coordinates (R, ¢):

2
VR.9) = Stk + i (cos” @ — sin® 9) + 2y sin s cos ]

2
= %[K + Y4 cos(2¢) + yx sin(2¢)]. (4.34)
Setting
Y+ = v cos(2¢y) (4.35a)
Yx =y sin(2¢,), (4.35b)

with y > 0and 0 < ¢, < 7, we rewrite Eq. (4.34) as

2

R
V(R §) = —lk +y cos(2¢y) cos(29) + y sin(24y) sin(2¢)]
R2
= -l +ycosl2(¢ — ¢} (4.36)

Notice that the first term is isotropic, i.e., independent of ¢, whereas the second
term depends on both R and ¢. We also find that the second term is invariant under
the rotation ¢ — ¢ + m. If the shear were a vector, it would be invariant under
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¢ — ¢+ 27 but not under ¢ — ¢ + 7. This implies that y and ¢, (or equivalently
y+ and y ) define a second rank tensor—a vector being a first rank tensor.
Reverting to Cartesian coordinates, we compute the deflection angle as

a(0):[”+”+ vx Hx}zro. (4.37)
Yx K —=V+ y

Letting | be the two-dimensional identity matrix, we can write the lens equa-
tion (4.26) in the form

B=(1-0)0. (4.38)
Thus, there is a single image at
0=01-")"18=A08. (4.39)

where the subscript “0” reminds us that [ involves derivatives of the lens poten-
tial (4.33) evaluated at the origin.

4.2 Amplification Tensor

While the lens equation (4.26) involves first derivatives of the Fermat poten-
tial (4.25), the magnification arises from its second derivatives. According to
Eq. (2.23), when the lens is axisymmetric the inverse magnification of a source with
angular position 8 and with an image at 6 is

nle) = (4.40)

SRS

g
o’

namely, the ratio of differential area in the source plane to that in the image plane.
For general lenses, we need the amplification tensor A, whose inverse is the
Jacobian of the lens mapping:

3 ou du
A-(0) — £ _ [g_ g_y} , (441)
dx dy

where B = [u v]T and 0 =[x y 17. We use the convention that 8 and @ are column
vectors. The magnification of an image is given by the relation

1(0) = det A(0) . (4.42)
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4.2.1 Magnification for Constant Convergence and Shear

To begin exploring the properties of the amplification tensor, let us return to the
scenario from Sect.4.1.3 in which the lens potential is characterized by a constant
convergence and shear. Equation (4.39) implies that the amplification tensor is Ay =
(I — MN~!. The magnification of a lensed image can therefore be written in terms of
the convergence « and shear y; and y« as

1o = det Ag = [(1 —)? - yz]fl : (4.43)

where y = 1/)/j% + yf.
Consider a small circular source with radius e. In terms of the azimuthal angle ¢,
we can parametrize the boundary of the source as

B=c [C°S¢] . (4.44)

sin ¢

In the absence of shear (y; = yx = 0), Ag = (1 — k)~ !I. This implies that

0=L[°°S¢}=(1—K)—1/3. (4.45)

1—« | sing

Thus, the (angular) radius of the image will be ¢ = |1 — k |~le. The absolute value
ensures that ¢ > 0 even when « > 1. We see in the upper left panel of Fig. 4.1 that
the image will be larger than the source (¢' > ¢) aslongas 0 < k < 2. If k > 2,
however, the image will be smaller than the source (¢ < ¢). The magnification will
be given by

pn=~E/*=10-x)"2>0 (4.46)

(see the upper right panel of Fig. 4.1).

When 1 > 1, we say the source is magnified; when © < 1 we say it is
demagnified. As expected, 4 = 1 when x = 0. When the lens is critical (¢ = 1), the
source will be infinitely magnified. This situation does not arise in practice because
real sources are not infinitesimal.

In the presence of shear, a circular source appears as an elliptical image. For
convenience let us set k = 0. Suppose for now that y = 0. We can then write

1 I+yy O i|
Ay = [ , (4.47)
l—yil 0 1-yp4
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Fig. 4.1 Image (left-hand panels) and magnification (right-hand panels) of a circular source for
different values of convergence (k # 0; y+ = yx = 0) and shear (y4 =y # 0,k = yx = 0).
Note that if 0 < « < 1, 1 — k produces the same magnification, i, as k. When « = 0, either
> 1orpu < 0; each value of u # 1 corresponds to two distinct values of y. If neither the y4
component nor the yx component of shear vanishes, the horizontal and vertical axes are aligned

with the eigenvectors of A, and y =,/ )/42_ + yf

so that

e Ta +y+>cos¢}
6 = . 4.48
l—yi[a—msincp 49
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Defining

€
-y

€
1+yy

(4.49a)

Q
I

S
1]

, (4.49b)

and using the identity cos? ¢ + sin® ¢ = 1, we see that x2/a® + y2/b? = 1. This is
just the equation of an ellipse with semimajor axis a and semiminor axis b, assuming
y+ > 0. The roles of a and b are reversed if y4 < 0 (see the lower left panel of
Fig.4.1). Notice thata < 0 (b < 0) when y; > 1 (Y4 < —1). We offer a physical
interpretation in Sect. 4.2.3.

Even without appealing to Eq. (4.42), we can compute the magnification as the
ratio of image area to source area:

wab 1

=—=—. 4.50
[ IS, (4.50)

e

Unlike the case with convergence and no shear, it is possible in the present situation
for p to be negative (see the lower right panel of Fig.4.1): this happens when
|Y+| > 1. This curious fact has the same explanation (see Sect. 4.2.3) as the negative
semimajor axis we encountered above. We also note that demagnification (|| < 1)
occurs when |y4| > +/2. The case with y, # 0 is the subject of Problem 4.4.

4.2.2 General Case

In terms of the lens potential, the inverse amplification tensor can be written as

—1 _ 1_Wxx(0) _Ilfxy(o)
A (0)‘[ Yy (0) 1—1/fyy<0>}’ 1)

where the subscripts denote partial derivatives as in Sect. 4.1.3. While we have been
thinking of the components of shear as constants, it is convenient to generalize these
quantities to be functions of 4. In particular, we define

1
y+(0) = z[lﬂxx(o) — Yy (0)] (4.52a)
Yx(0) = Yxy(0) . (4.52b)

The amplification tensor at @ can then be expressed in terms of the convergence and
shear:
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_ ! [1 —EEYE W } . (4.53)
R e 4 v« l—k—yy

Note that the lens equation may have more than one solution and the magnification
must be evaluated separately at each of the image positions.

4.2.3 Eigenvalues and Image Parity

We can characterize each of the several images formed by a strong lens by the
convergence and shear in its neighborhood. As we have seen, both the size and the
shape of a source can be distorted by lensing. An image can also be inverted along
either or both of two principal axes. To see this, we need go no further than the case
of a lens with nonzero shear and vanishing convergence. Specifically, if y+ # 0 and
yx = 0, the principal axes are just the major and minor axes of the elliptical image.
The analogous result for y; = 0 and yx # 0 is the subject of Problem 4.4. We now
turn to the general situation, where the convergence and both components of shear
may be nonzero.

While it is straightforward enough to compute the magnification as u = detA,
a geometric interpretation leads to a more intuitive understanding. Recall from
linear algebra that the determinant of a matrix can be written as the product of
eigenvalues. For a real, symmetric matrix, the eigenvalues will be real, and if they
are distinct, then the associated eigenvectors will be orthogonal; these vectors define
the principal axes we are seeking. Each lensed image will have a different set of
principal axes, determined by the local convergence and shear. In the axisymmetric
case, the eigenvalues of A give the radial and tangential magnifications. For a general
lens, the eigenvalues give the magnifications along the principal axes.

It turns out that the simplest approach is to compute the eigenvalues, A, of A~!;
the eigenvalues of A will then be A~!. The characteristic equation of A~ is

O=detA™' —Ah) =22 =20 —)rA+ (1 —k)>—y2=0, (4.54)

where y =,/ yf + yf. The solutions are A+ = (1 — k) % y, so that the eigenvalues
of A are simply [(1 — «) &+ y]~\.

Recall that an eigenvector of A corresponding to the eigenvalue A~! is an
eigenvector of A~! corresponding to the eigenvalue A. Thus, it suffices to solve
the equation

A~ lx = ax. (4.55)

Using the notation defined in Egs. (4.35), the normalized eigenvectors of A are

Xy = [_ sin ¢V} (4.56a)

Cos ¢y
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X_ = [COS ¢V] , (4.56b)

sin ¢,

where x4+ corresponds to A;l.
The magnification of an image is just the product

= 0pr) =10 -0 =y, (4.57)

which depends on the components of shear through the parameter y. Geometrically,
the source will be magnified by an amount )Jrl =h parallel to x4 (x—). The upshot
is that an infinitesimal circular source will appear as an infinitesimal elliptical image
whose axis ratio is given by A_/A. This will be smaller (larger) than unity for
Kk <1(k > 1),since y > 0.

The eigenvectors do not depend on the convergence, because that is an isotropic
effect. Moreover, they are independent of the magnitude of shear and involve only
the angle ¢, = tan~ 1 (yx /y4) /2.

A negative eigenvalue means that the image will be inverted along the direction
of the corresponding eigenvector. The parity of an image will be positive if the
orientation of the source is maintained by lensing and negative if an inversion
occurs. This effect will be unobservable for a purely elliptical source but can be
measured for a source whose structure is more general.

4.3 Time Delay and Parity

Along with the positions and fluxes of lensed images, the time delay between
any pair of images is sometimes observable. Such a measurement requires that
the unlensed light source vary in brightness over time. Since each lensed image
corresponds to a distinct light path, the travel time of light from the source to the
observer differs from one image to another. To compare observed time delays to
those predicted by a particular model, we must appeal to the Fermat potential. We
have seen that its stationary points give the locations of the lensed images, but so far
we have not attempted to determine whether a given image occurs at a minimum,
maximum, or saddle point. In this section we establish a connection between the
type of stationary point and the parity of the corresponding image.

Suppose that § = # solves the lens equation, so that Vg 79—y = 0. In the one-
dimensional case, this condition takes the form /(%) = 0, and the sign of t” (%)
determines the type of extremum. In two dimensions one deduces the nature of a
stationary point from the Hessian matrix

H= | T T (4.58)
Tyx Tyy
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of second derivatives, evaluated at the point (see any calculus textbook). If the
determinant detH < O, then the stationary point is a saddle point. This is because
detH < O requires the eigenvalues of the Hessian to have opposite signs. If
detH > 0, either both eigenvalues are positive, or they are both negative. The former
case corresponds to a minimum of t and, the latter, to a maximum.

According to Eq. (4.25), t;j = 8;j — ¥ij, where ¥ is the lens potential. Together
with Eq. (4.51), this implies H = A~!. Thus, a saddle point of 7 has negative parity,
ie., u = detA < 0, while a maximum or minimum has positive parity (1 > 0).
Note that the partial parities of a maximum of t are negative, i.e., the image is
inverted along both of its principal axes.

4.4 Burke’s Theorem

In Sect.2.5.1 we showed that a differentiable lens mapping produces at least one
image. When the lens is supercritical (¢ > 1), it produces more than one image
of any source that is sufficiently close to the lens. Our argument closely parallels
that given by Dyer and Roeder (1980), who showed that a spherical lens with finite
mass and continuous deflection function has an odd number of images. This result
is of limited utility, since it excludes the point mass, as well as the singular and
nonsingular isothermal spheres; the deflection of the point mass is infinite at the
origin, and isothermal spheres have infinite mass. Burke (1981) showed that the
conclusion of Dyer and Roeder remains true even for nonspherical lenses with
infinite mass, provided that the deflection is bounded and continuous. In particular,
Burke’s theorem applies to the nonsigular isothermal sphere (and its elliptical
counterpart), though not to the singular isothermal sphere or to the point mass. A
rigorous proof of Burke’s theorem is beyond the scope of this book, so we offer a
conceptual argument.

We define two vector fields on the lens plane: the reduced deflection angle « (@)
due to the lens and the reduced deflection angle a(f) = 6 — B that the light ray
would need to undergo in order to reach the observer. Images form at points where
the difference a(#) — a(#) = Vgt vanishes. Since «(6) is bounded by assumption
and B is constant, Vt = @ for large |0|.

Given a zero X of a vector field A defined in the plane, we define the index of xq
to be the net rotation (in units of 277) of the vectors on a small simple closed curve
% around X as it is traversed once counterclockwise. The index corresponding to a
minimum or maximum point of 7 is +1, while that corresponding to a saddle point
is —1. Because Vt(0) ~ @ for large |0|, the Poincaré-Hopf index theorem (see,
e.g., Guillemin and Pollack 1974, p. 134) implies that the sum of the indices of all
the zeros of Vt is +1. Thus, Vt has an odd number of zeros, which implies that the
lens produces an odd number of images. We may also conclude that npiy + nmax =
ngad+1, where n is the number of images of the specified type. Proving the Poincaré-
Hopf index theorem is far beyond the scope of this book, but the residue theorem,
presented in Appendix B.3, offers a pleasing analogy from complex analysis.
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4.5 Ciritical Curves and Caustics

We showed in Sect.2.2.3 that an image of a source with infinitesimal area has
divergent magnification if the source lies on a caustic. Point caustics and point
critical curves, which arise for axisymmetric lenses (see Sect.2.3), are replaced
by closed curves when the lens has some degree of asymmetry. We will find the
caustics and corresponding critical curves for representative lens models in Chap. 6.
Our goal in this section is to show that the number of images changes by two when
a source crosses a caustic.

The critical points form a finite set of closed curves (Schneider et al. 1992, §6.2),
which generically consist of smooth sections called folds that meet at zero or more
points known as cusps (Whitney 1955). Fold points and cusps are collectively
referred to as stable critical points.” To study their lensing properties, we begin
by expanding the lens potential i in a neighborhood of a critical point in a Taylor
series. We have seen that the second-order expansion (4.33) leads to a single image
with finite magnification, except in the special case that the total shear y and the
convergence k satisfy y = |1 — k|. Since the magnification diverges at a critical
point, higher-order terms must be included in the Taylor expansion. For a stable
critical point at the origin,

1 1
e,y =53 —K)szr§y2+ex3Jrfxzergxszrhy3
+hkx* +mx3y +nx2y? + pxyd +ryt (4.59)

to fourth order (Petters et al. 2001, p. 346), where K # 0. Note that this expansion
gives information only about images near the critical point, and not about any that
lie far away from it.

4.5.1 Folds

At a fold critical point the additional condition & # 0 holds? (Petters et al. 2001,
p- 347). In this case we may set the other third-order coefficients e, f, and g and
all the fourth-order coefficients k, m, n, p, and r equal to zero without affecting the
results qualitatively (see Keeton et al. (2005) for the general treatment).

The corresponding lens equation is

u=Kx, v=-3hy?, (4.60)

2Qther types of critical points are more difficult to analyze and are encountered rarely in practice.
We refer the interested reader to the book by Petters et al. (2001) for details.

3Equivalently, one can define a fold point by the condition e % 0.
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or, equivalently,

“ + | 4.61)
xX=—, = —_—. .
K7 “3h
The magnification is
= ! (4.62)
b= "enky '

Thus, the critical curve is the line y = 0, and the corresponding caustic line is v = 0.
If 1 > 0, the lens equation has two real solutions for v < 0 and no real solutions for
v > 0. Sources in these regimes are inside or outside the caustic, respectively. The
magnifications of the two images for v < 0 are

1

- 463
Y Wy (463)

The key results are as follows:

1. A source outside a fold caustic does not produce any images near the fold critical
curve.

2. A source inside a fold caustic produces two images that are equidistant from the
fold critical curve.

3. For a source inside the caustic, the magnification diverges as the inverse square
root of the distance from the caustic.

4. The magnification is discontinuous across the caustic.

5. The magnifications for a source inside the caustic satisfy u4 +u— = 0, implying
that the images are equally bright and have opposite parity.

4.5.2 Cusps

For a cusp critical point at the origin, the expansion (4.59) again applies but with
the additional restrictions* 4 = 0, g % 0, and r # 0 (Petters et al. 2001, p-347). In
this case we may set the remaining third-order and fourth-order coefficients equal
to zero without affecting the results qualitatively (see Keeton et al. (2003) for the
general treatment). The corresponding lens equation is

u=Kx— gy2 (4.64a)
v =—2gxy —4ry’, (4.64b)

40r equivalently, e = 0, f # 0, and k # 0.
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and the magnification is

-1
W= — [ZKgx 4 <3Kr n g2) yz] . (4.65)
The critical curve is the parabola

2 2
‘- _MyZ_ (4.66)
Kg

If (3K r+ gz) /(K g) > 0, the parabola opens to the left and otherwise to the right.
The caustic can be written parametrically as

3QKr +g%) ,
_—y
g

42Kr+ g% 4
V= —"—"J"/"—"—"—"7"Yy .
K

(4.67a)

u =
(4.67b)

It opens to the right if u > 0 in Eq. (4.67a), i.e., if QK7 +g?)/g < 0, and otherwise
to the left. An example is shown in Fig. 4.2.

0.3 7 i
v/ O

0.2 1

0.1

Fig. 4.2 Caustic (left panel) and critical curve (right panel) near a cusp produced by a singular
isothermal ellipsoid (see Sect. 6.1.2) with axis ratio ¢ = 0.8. The angle 6f is the Einstein radius
for the singular isothermal sphere obtained by setting ¢ = 1. A source outside the caustic produces
one image, while a source inside the caustic produces three images. The ratio of image area to
source area gives the (unsigned) magnification. Note that a circular source appears as elliptical
images, but the distortion is not depicted here
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To find the image positions, we first eliminate x from Eqs. (4.64), which leads to

3y gu n Kv _0
Y T kr+g2? T20Kr+ )

(4.68)

Since this equation is cubic in y, there are either one or three images.

First, let us consider a source on the u-axis. One solution of the cubic equation is
y = 0, corresponding to an image at x = u/K. Its magnification is u = —1/(2gu),
which diverges for a source approaching the cusp from either side of the caustic.
There are two other solutions of the lens equation:

2r (4.692)

=— .69a
* 2Kr+g2u
“eu

— 8" 4.69b

Y 2Kr + g2 (469)

which are real when the argument of the square root is positive. Both of these images
have magnification u = 1/(4gu), which diverges as the source approaches the cusp
from inside the caustic. From the discussion below Eqgs. (4.67), we conclude that
there are three images of a source inside the caustic and one image of a source
outside.

For a general source position (i, v), we can obtain some useful relations without
explicitly computing the image positions. Let us denote the three solutions of the
cubic equation (4.68) by y; , y2, y3. We can then write the cubic polynomial as

0=0Q -y —y2)Q —y3)
=3 — 1+ 32+ ¥y + Gy F 31y3 + vy — (1y2y3) . (4.70)

Matching coefficients with Eq. (4.68) yields the relations

yvi+y+y3=0 (4.71a)
gu
=—°> 4.71b
Y1y2 +y1ys +y2y3 = 5o e ( )
Kv @710)
= =5 - .11C
R Ty T

For the image at y;, we can use Eq. (4.64a) to find x; and, inserting these coordinates
in Eq. (4.65), obtain the magnification. Combining the results with Egs. (4.71) leads
to the magnification sum rule

u1+p2+pu3=0. 4.72)
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The key results are as follows:

1. A source outside a cusp produces one image.

2. A source inside a cusp produces three images.

3. For sources both inside and outside a cusp, the magnification diverges as the
inverse of the distance from the caustic.

4. In the case of three images, the magnifications satisfy u + uy + u3z = 0.

4.6 Surface Brightness and Extended Sources

Our discussion so far has focused on point-like or infinitesimal sources, for
mathematical convenience. From the definition of magnification, it would seem that
our task is to determine the ratio of image area (or more precisely, solid angle) to
source area in an observed lens. This approach does not work in practice, however,
since the area of the unlensed source is unknown. For a strong lens, where there
is more than one image, we can compute the ratio of image areas, which provides
n — 1 observables for a system of n images.

There is yet another difficulty we must overcome: it is typically not possible
to measure the area of an observed image with sufficient precision. Fortunately,
it turns out that the magnification is also the ratio of image flux to source flux.
We can obviate knowledge of the source flux by computing flux ratios among the
various images. We can replace area by flux due to the principle of conservation of
surface brightness, which we will come to in a moment. We can then compute the
magnification of an extended source as a flux ratio.

4.6.1 Conservation of Surface Brightness

Consider a source subtending an infinitesimal solid angle dS2 that gives rise to an
image subtending an angle d$2’. The flux per unit frequency of the source is given
in terms of the surface brightness by

dF, = 1,dR2 (4.73)
and that of the image by
dF), = 1,,d2". (4.74)

The quantity 7, is the surface brightness (flux per unit frequency per unit solid angle)
of the source and I/, is that of the image. For the time being, we allow for the
possibility that the lensed frequency v’ may differ from the unlensed frequency v.
In order to show that the ratio of fluxes is identical to that of solid angles, we
must demonstrate that I;, = I, (see Petters et al. 2001, §3.2.5). To do this, we
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invoke Liouville’s theorem, familiar from classical mechanics, which says that the
number of particles per unit volume of phase space is conserved, provided that the
particles do not interact with one another. During a time interval Az, photons from
a distant source will move a distance Az = cAt toward an observer on earth. If
these photons traverse a cross sectional area AA, the volume element in position
space will be AV}os = ¢ AA At. Meanwhile, photons with momenta between p and
p + Ap emanating from a solid angle A2 about the z-axis will occupy a volume in
momentum space AViom = p> Ap AS2. For a system of N noninteracting photons,
the phase space density is given by

N
"~ AVposAVinom
N
cAA At p?2 Ap AR2
2N
T VAV AT AA AR

(4.75)

The total energy of the system is hv N, so that the surface brightness takes the form

hvN
= —. 4.76)
Av At AA A2
Comparing this expression to the phase space density yields the relation
I, nh*
5= = const. 4.77)
v

(see Misner et al. 1973, Fig. 22.2). The lensed and unlensed surface brightnesses
satisfy

r I

v __ v
=3 (4.78)
If the gravitational potential of the lens remains static while the N photons pass by,
any blueshift of the photons as they approach the lens will be offset by a redshift as
they move away. This means that v’ = v and hence that I/, = I} = I,; this is the
conservation of surface brightness.

4.6.2 Magnification of an Extended Source

Since the surface brightness of an image is the same as that of the source, the
monochromatic flux of an image (4.74) becomes

dF! = 1,dQ' = I, |u| d2 = |u|dF, (4.79)
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where we take the absolute value of the magnification to ensure that the flux is
positive. Now consider an extended source whose surface brightness is a function
of position: I, = I,,(x). The surface brightness at a position B’ for a source with
centroid B is then I, (B’ — B). The total flux of the image is given by

FB) = [ 18 = BBl (4.80)

If a specified source position B gives rise to n distinct images, we replace |u(ﬂ’ )|
by the total magnification,

paB) =) |mi(B)] - (4.81)
i=1

Since a source of flux F, is magnified by the factor pex = F)/F\,

[ 18 = D)

(4.82)
/ 1,(8)d%p'
RZ

Hext(B) =

Thus, the magnification of an extended source is the convolution of the surface
brightness and the magnification due to a point source, normalized by the flux of the
unlensed source.

We saw in Sect. 4.5 that the magnification diverges as a power law as a point
source approaches a caustic. However, the divergences of po are weak enough so
that the integral in the numerator of Eq. (4.82) converges. Thus, the magnification
Uext(B) of an extended source remains finite for all positions B of the source
centroid.

4.7 Degeneracies in the Lens Equation

There are certain transformations that leave the form of the lens equation unchanged.
It is important to understand such degeneracies because they can lead to ambiguity
in the lens parameters that give rise to a given set of observables. Here we identify
several types of transformations that play a role in applications discussed later; more
detailed presentations can be found in the literature (e.g., Gorenstein et al. 1988;
Saha 2000; Schneider and Sluse 2014).
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4.7.1 Similarity Transformations

One simple transformation is to rescale by a constant multiplicative factor. If a is a
constant, the transformation

D; Dy D; Dy
— s a— (4.83)
Dy Dy

leaves the source position, image positions, and magnifications unchanged but
rescales the time delays by the factor a.
Also consider the transformation

B— a'’B (4.84a)
0 — a'?e (4.84b)
K — ak. (4.84¢)

This transformation is valid only if the images are not resolved, such that 6 is
not measured directly. The transformed quantities still solve the lens equation. The
magnifications are unchanged, while the time delays are again rescaled by a.

Saha (2000) labels these the distance degeneracy and angular degeneracy,
respectively. He also notes that they can be combined in different ways to yield
what he terms “parallax” and “perspective” degeneracies. These degeneracies are
important in microlensing (see Chap. 5).

4.7.2 Mass-Sheet Transformation

A more subtle transformation leads to the mass-sheet degeneracy. Consider the
lens equation (4.26). In addition to the lens potential ¥/ (f), we add an infinite
sheet of constant mass density. The vector version of Eq. (2.73), assuming circular
symmetry, is

a (@) =«x(l6))8, (4.85)
where i (]6]) is the mean convergence within angular radius |@]. If the convergence

has some constant value ko, we have k = ko. The potential corresponding to
Eq. (4.85) is then

1
Yo(0) = §K0|0|2- (4.86)
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The lens equation for the combined potential ¥ + vy is

p=0-7 () + je0i0P)
=(1—x0)0 —Vy(0). (4.87)

If we now scale B and ¥ by the factor 1 — ko, we recover Eq. (4.26). In other words,
the form of the lens equation is preserved under the transformations:

B— (1—ko)B =B (4.882)
v@). (4.88b)

1
V(@) — (1 —ko)y(0) + 5K0|0|2

Thus, the solutions 6 ofB =60 - V}D(ﬂ) are identigal to those of Eq. (4.26).

It is not possible to distinguish between 8 and B or ¥ and ¥ from the observed
image positions alone. This degeneracy is unimportant for the source position,
which is physically irrelevant, but poses a significant difficulty in determining the
lens potential. Of course, no truly infinite mass sheet exists, but there may be an
unknown quantity of matter along the line of sight to the lens that can effectively be
modeled by a constant convergence field. The mass-sheet degeneracy seems not to
apply to the magnification, since

3
Al = det (£> =(1—«ko)’n~", (4.89)

where (i is the magnification in the presence of the mass sheet. If the actual source
flux is known, then the observed magnifications enable us to distinguish between
Y and 1} If not, we must work with magnification ratios. In that case, the factor
(1 — ko)? cancels, leaving the degeneracy intact. The time delay between a pair
of images i and j seems to offer another way to break the degeneracy, because
Afi i = (1 — ko) AT;;, where the differential time delay is defined by

AT;;(0;,0;) = AT(6;) — AT(9;). (4.90)
Unfortunately, there remains a degeneracy between ko and the time scale T, of

Eq. (4.24). The mass sheet degeneracy is particularly important for galaxy-scale
lensing (see Chap. 6).

4.7.3 Source Position Transformation

Schneider and Sluse (2014) point out that the mass sheet transformation is an
example of a more general class that they call source plane transformations.
Consider the transformation
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B — () (4.91a)
a@) — 0 —£(0 — a(0)) . 4.91b)

The function f(8) must be one-to-one but is otherwise arbitrary. This transformation
leaves the image positions unchanged, but it does modify the magnifications (by the
Jacobian determinant of f) and the time delays.

It is not guaranteed that the transformed deflection field can be written as the
gradient of a potential or equivalently that it can be associated with a physically
plausible surface mass distribution. A transformation that preserves axial symmetry
yields a model that corresponds to a surface mass distribution. In the general
case, the only transformation that maintains an exact connection to a surface mass
distribution is f(8) = af for constant a, which is equivalent to the mass sheet
transformation. However, a broader range of transformations yield models that can
be closely related to surface mass distributions. (See Schneider and Sluse (2014) for
detailed discussion of these points.)

4.7.4 Connection to Electrodynamics

Equations (4.88) resemble gauge transformations in electrodynamics. Since the
magnetic field satisfies V - B = 0, we can write B = V x A, for some vector
potential A. From Faraday’s law (in Gaussian units), we have

10B
0=VXxE+4+ -——
c ot

1 0A
=V x (E + ——) . (4.92)
c

Just as V x & = 0 implies « = V4 in the context of lensing, Eq. (4.92) has the
solution

for some scalar potential @. The electric and magnetic fields are invariant under the
transformation

A—>A+Vfi=A (4.93a)
1 5

oo _3 (4.93b)
c ot

for any function f. We say that the potentials A and ¢ are degenerate with their
counterparts A and @.
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Unlike lensing degeneracies, the gauge invariance of electrodynamics has no
physically observable consequences, with the choice of gauge being a matter of
convenience. Two popular gauges are those due to Coulomb and Lorenz, which
require V-A = 0and V- A = —(1/c)0®/0t, respectively. The scalar potential
satisfies Poisson’s equation in the Coulomb gauge, and the scalar and vector
potentials satisfy the inhomogeneous wave equation in the Lorenz gauge. Which
(if either) of the gauges is preferred depends on the particular application. Since
both the original and transformed fields in Eqgs. (4.93) must be consistent with the
choice of gauge, we conclude that the function f satisfies either Laplace’s equation
(Coulomb gauge) or the homogeneous wave equation (Lorenz gauge).

4.8 Multiplane Lensing

So far we have considered the deflection of a light ray by a single lensing object, but
it is possible for the ray to encounter several lenses. If these lenses are approximately
equidistant from the observer, they may be treated in a single lens plane according
to Eq. (4.26). We now discuss the case of lenses that are at different distances along
the line of sight. If the interlens distances are large compared to the size of each
lens, the total deflection is the sum of individual deflections that can be described
by the thin lens approximation. (See Schneider et al. (1992), Petters et al. (2001),
and McCully et al. (2014) for more discussion.)

We begin with the case of two lenses at distances D; and Dy > D; from the
observer. We assume that the lens planes are parallel, i.e., the angular separation
between the lenses on the sky is small. A light ray emitted by a source at distance
Dy and angular position B relative to some line of sight undergoes a deflection
of &y(D70>,), followed by a deflection of &;(D10;). Generalizing the geometric
derivation of the lens equation in Sect. 2.2.2 yields the relation

DgB = Dg01 — Di501(D1601) — Dasa2(D20>), (4.94)

where 0 is the image position and D is the distance from lens i to the source.
Dividing through by Dy, and recalling the definition of the reduced deflection
angle (2.17), we have

B=01—a(0;)—a0>). (4.95)
The vector 6, would be the image position if the lens at D were not present. In
other words, we can think of @, as the source position and write down the lens

equation due to the single deflection &;(D161):

D10, = D01 — D1p@1(D101) . (4.96)
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In terms of the reduced deflection angle, we obtain

0> =0, — Brai(d), (4.97)
where
D3 Dy
- . (4.98)
B12 D2y,

Thus, we have two equations for the two unknowns 61 and 6. Note that if the planes
are at the same distance, then D12 = 0 so 812 = 0 and #, = 6. Equation (4.95)
then reduces to the single-plane lens equation for two lenses.

Now consider N lenses at distances D, D,, ..., Dy from the observer, with
D; < D;41. Applying the lens equation recursively, Egs. (4.95), (4.97), and (4.98)
can be replaced by

N
B=01-) ai(®) (4.99)
i=1
j—1
0,:01—Zﬁi,~a,~(0i) forj=2,3,...,N (4.99b)
i=1
Bii = M fori <j. (4.99¢)
! DDy -

Note that Eq. (4.99a) becomes a special case of Eq. (4.99b) if we also let j take the
value N + 1 and define Oy = B.

The time delay again has both geometric and potential terms, now summed over
planes:

N
1
T@,....,0nIB) = E Tiit1 [5 10; 1 — 60;1> — ,3i,i+11ﬂi(0i):| , (4.100)
i=1

where index N + 1 again represents the source plane, v; is the lens potential for

lens i, and

14z D;D i
c D,‘ j

T = fori < j. (4.101)

(Note a useful identity: B;;7;; = t;s for all i and j.) Petters et al. (2001) show that
the multiplane lens equation and time delay are related through a Fermat’s principle:
the lens equation can be obtained by finding stationary points of T with respect to
all of the angular positions {6;}.



114 4 Multiple Imaging in the Weak-Field Limit
Problems

4.1 The goal of this problem is to prove that V>g(#) = 28 (@), where g(0) =
7~ 11n|0| and V2 is the two-dimensional Laplacian.

(a) Writing V? in polar coordinates, show that V2g(#) = 0 at all points away from
the origin.
(b) The origin requires special attention. To begin, show that

/V21n|0|d20:/Vln|0|~nds, (4.102)
A C

where ds is an element of arc length, the integration contour C bounds the area
A, the direction of integration is counterclockwise, and n is an outward-pointing
unit vector normal to the contour.

(c) Taking the area A to be a disk of radius b centered at the origin, evaluate the
integral on the right-hand side of Eq. (4.102).

(d) Combine your results to prove that VZIn|0| = 278@(9), as desired.

4.2 Using the lensing diagram shown in Fig. 2.2, compute the difference between
light travel time for the actual light ray and a hypothetical ray that travels straight
from the source to the observer. Assuming Euclidean geometry and the small angle
approximation, show that the excess light travel time has the form given in Eq. (4.27)
for the geometric time delay.

4.3 This problem explores how the general theory presented in this chapter applies
to axisymmetric lenses. Express your answers in terms of the reduced deflection
angle o (R) and its derivatives.

(a) Write Poisson’s equation (4.22) for the lens potential in polar coordinates.
(b) Show that the convergence k and the reduced deflection angle « are related by

1l fa da
=—|l=-+—]). 4.103
N 2<R+dR> (4.103)

(c) Find general expressions for the eigenvalues and eigenvectors of the inverse
amplification tensor. Assuming that the model has two critical curves, use the
eigensystem to explain why we label one of the critical curves “tangential” and
the other one “radial.”

4.4 Following Sect.4.2.1, suppose that y, is constant and nonzero, while y, and «
both vanish.

(a) Once again parametrize the boundary of the source as a circle, and find the
boundary of the image.

(b) Show that the image is an ellipse whose semimajor and semiminor axes are
given by



References 115

a=-¢e(l—y)™! (4.104a)
b=c(l+y) " (4.104b)

(c) What is the orientation of the ellipse?

4.5 The goal of this problem is to use the methods from Sect. 4.2 to analyze how
images are distorted in the vicinity of fold and cusp caustics discussed in Sect. 4.5.

(a) Consider the two images produced by a fold caustic. What is the parity of each
image? In what direction is each image stretched?

(b) Repeat the analysis from part (a) for the three images produced by a cusp
caustic.

4.6 Consider an axisymmetric power-law lens model with lens potential v (6) =
A6, where the power-law index n and normalization A are constants.

(a) Find the range of n such that the model is physically and astrophysically
plausible, meaning that the density and deflection are nonnegative and the
density does not increase with radius. Is the model able to produce multiple
images for the full physical range of 1?

(b) Rewrite the normalization in terms of the Einstein radius, g (instead of A).

(c) For what range of n does the model have a radial critical curve? What is the
radius of that critical curve?

(d) Plot magnification as a function of 6 /6 for different values of n that show the
range of behaviors for this model.

(e) Sketch the image configuration (indicating parity) for a multiply-imaged source
when n = 0.5 and 1.5.
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Chapter 5 ®
Microlensing Within the Local Group Qs

Broadly speaking, there are two types of strong lensing: macrolensing and
microlensing. In the former case, the multiple images of the source can be spatially
resolved, while in the latter case, they cannot. The separations of the images
are of the order of the Einstein radius 6, which is determined by the distances
between the source, lens, and observer, as well as the mass of the lens. Thus, for a
given resolution limit 6, there is macrolensing for g 2 6 and microlensing for
0 < 69 .

In this chapter, we investigate microlensing within the Local Group of galaxies.
The discovery of vast, unseen quantities of “dark matter” in spiral galaxies prompted
researchers to ascertain its composition. The two leading proposals of the day were
that dark matter consists of as yet undetected particles distributed continuously in
space or that faint compact objects orbit within the extended spherical “halo” of the
galaxy along with visible stars. The first type became known as “weakly interacting
massive particles” (WIMPs); the second became known as “massive astrophysical
compact halo objects” (MACHOs). The growing consensus is that the WIMPs will
win in the end, but both merit discussion, as each has played an important role in
the ever-increasing prominence of gravitational lensing as a probe of the universe.
Since it is the aggregate distribution of WIMPs in the form of massive dark matter
halos that is observable in galaxies and clusters, we consider them in subsequent
chapters on macrolensing. MACHOs, on the other hand, are massive enough to
magnify stars passing behind them, though the images they produce are too close
together to be resolved. Thus, these objects fall into the microlensing regime. A
more recent application of microlensing is the detection of planets outside the solar
system, so-called exoplanets.

Except for the point mass, the analysis in Chap. 2 assumed the lensing object was
a galaxy or something larger. In both Chaps.2 and 4, we solved the lens equation
to find the image positions, with the understanding that they could be observed
individually. Here we assume only that the centroid (i.e., center of light) and total
magnification of the images can be measured. Another difference between earlier
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chapters and this one is that before, the lenses were at cosmological distances so
we could not simply add the observer-lens and lens-source distances to compute
the observer-source distance. However, the distances encountered in the galaxy
and to its neighbors are small enough that we can add them in the conventional
way. Another advantage of microlensing is that the flux of the unlensed source is
generally known (see Sect. 5.1.1). Although observer, lens, and source always move
relative to one another, the corresponding angular motion on the sky is smaller for
objects that are farther away. Thus, a microlensing event can be observed (more
or less) from start to finish, while the timescale for macrolensing far exceeds the
lifetime of an astronomer. The lens potential encountered in microlensing is a
discrete sum over the contributions of point masses, rather than an integral over
a mass distribution.

We begin by considering microlensing of a point source. The simplest such
case is for a lens consisting of a single point mass (Sect.5.1). We then turn to the
case of lensing by several point masses (Sect. 5.2). After formulating the problem
in terms of complex variables (Sect.5.2.1), we specialize to the binary lensing
(Sect.5.2.2) of a source by two stars close together or by a single star orbited by
a planet. Extended sources are considered in Sect. 5.3. Putting microlensing theory
into practice requires the statistical approach presented in Sect. 5.4. Applications of
microlensing are discussed in Sect. 5.5.

5.1 Microlensing by a Point Mass

In Chap.2 we analyzed lensing by a point mass and obtained in Eq.(2.31) the
formula

2
u-+2
Miot(u) = — (5.1
uvu +4

for the total magnification of the two images. Here, u denotes the distance of the
source from the lens in units of the Einstein angle 0g. Note that the value of u, and
hence that of u, changes due to the motion of the source relative to the lens. It
is conventional to say that a microlensing event occurs if u < 1 or equivalently,
Ut > 3/ V3 &~ 1.34, at some time. This restriction ensures that the magnification
changes appreciably as u varies with time.

5.1.1 Light Curves

In microlensing observations, one measures the flux of a source as a function of
time, i.e., a light curve. Expressed in units of the unlensed flux Fp, the light curve
gives the variation of the magnification over time. Note that Fjy cannot be determined
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exactly, because that would require observing the source at u — co. However, it can
be determined to within 1% of its actual value (i.e., uwt = 1.01) when the source
is only ~3.56f from the lens. Therefore, we may assume that Fy is known, so that
our light curves show the function f(f) = woi[u(?)], where u(¢) is the projected
lens-source separation at time ¢.

To construct a theoretical light curve, we must specify a trajectory for the source.
The simplest trajectory, resulting in the so-called Paczynski light curve, is uniform
motion across the sky. Working in units of length, we denote the minimum projected
lens-source separation by &nin. For a source with linear velocity v, relative to the
observer-lens line of sight, the transverse distance between the source and lens at an

arbitrary time ¢ takes the form
£=,/E2 +vir2. (5.2)

For a source at a distance D from the observer, a given lens-source separation &
corresponds to an angular separation on the sky of 8 = &/D,. Making the further
substitution u = /6, we arrive at the parameterization

2
) t
u(t) = fu;: + (—) , (5.3)
IE
where
D0
tp = = F (5.4)
vy

is the time required for the source to traverse a distance one Einstein radius and
therefore known as the Einstein time. In the microlensing literature, the Einstein
time is often given by the equivalent expression tg = D;0g /v, where v denotes
the transverse velocity of the lens relative to the observer-source line of sight.

The quantities we can determine directly from the light curve are the peak
magnification (tmax = Uor(0) and the time At during which pyoe > 3/ V5~ 1.34.

With the help of Eq. (5.1), we can calculate upin from pmax. The time in which the
source moves from u# = umi, to u = 1 is At /2. Thus, according to Eq. (5.3),

At
tp= ———— .
2
2\/ 1- Uin

If the distance to the source is known, then the value of v, follows from the angular
velocity of the source, and the value of 6 follows from Eq. (5.4). If the distance to
the lens is also known—no mean feat!—we can then calculate the mass of the lens
from Eq. (2.25) for 6g, with Dj; = Dy — Djy.

We show light curves for three values of up, in Fig.5.1. These impact
parameters are attained at 1 = 0. Since the magnification depends only on the

(5.5)



120 5 Microlensing Within the Local Group

Hiot
UL
Umin = 0
3+ Umin = 0.5
Upin = 1

Hiot = 3/\/§

Mot =1

T
-3 -2 -1 1 2 3 t/tg

Fig. 5.1 Light curves of a point source passing near a point mass with three different values of the
impact parameter upyi,. Notice that the curves become taller and broader as upj, decreases

distance u(t) of the source from the lens, the light curves are symmetric about
t = 0. When upi, = 0, the source passes directly behind the lens, causing the
magnification to diverge there. When upj, = 1, the source is microlensed only at
t = 0, since its magnification is below our chosen threshold at all other points along
its trajectory. At intermediate values of up;i,, the microlensing event lasts for an
interval satisfying 0 < Ar < 2tg. The peak magnification is finite, but exceeds

3/4/5.

5.1.2 Parallax

If the only information we have is the light curve of a given microlensing event,
the parameters of the model are degenerate, i.e., there are continuously many
combinations of parameter values that reproduce the same observational data. For
example, doubling Og in Eq. (5.4) yields no change in the Einstein time if Dj is
also halved. These are consequences of the similarity transformations discussed in
Sect.4.7.1.

Parallax observations offer one way around this difficulty. For microlensing
events that are longer than about a month, the motion of the Earth around the
Sun must be taken into account. In that case, we can no longer approximate the
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trajectory of the source as a straight line across the sky. This complication is
more than offset by the advantage of having multiple spatial perspectives of the
event. Alternatively, one can observe the same event simultaneously from different
locations, e.g., from a telescope on Earth and from another far away in space. Of
the space-based observatories currently online, the Spitzer Space Telescope is best
suited. This observatory is in heliocentric orbit, trailing the Earth at a distance of the
order of 1 AU. In addition, it is sensitive to infrared radiation, which most stars emit
copiously.

5.1.3 Astrometric Microlensing

The change in magnification with time is one manifestation of microlensing.
Another, known as astrometric microlensing, is a changing position of the centroid
of the images. If the angular separation of the source and the lens is sufficiently
small, both of these effects can be observed. Otherwise the magnification is always
close to one, and the centroid position is determined, to a good approximation, by
the brighter image. Until recently this second case has been of purely theoretical
interest. If we know the actual trajectory of the source, we can compare the true
position of the source with its apparent position at several epochs to infer the
Einstein radius of the lens. If we also know the distances to the lens and source,
we can deduce its mass as well.

5.2 Microlensing by Multiple Point Masses

Microlenses often consist of more than one object. Here we set out the formalism for
multiple point lenses and then analyze the binary lens in detail. Stars with multiple
planetary companions are rather common, so the case of more than two lenses
is also important. However, solving the lens equation and finding critical curves
and caustics become exceedingly difficult in such cases. Once we have made the
conceptual leap from one to two lensing objects, it is straightforward, in principle,
to generalize to an arbitrary number of lenses.

What distinguishes the binary lens from a single point mass is twofold: circular
symmetry is broken, and caustics are formed. In the axisymmetric case, we found
the light curve by taking the composition of (o o #)(¢), where u(¢) depended only
on two parameters: the minimum lens-source separation, #min, and the Einstein time,
tg. In the present section, the source trajectory is given by the two-component vector
u(t), which requires additional parameters containing directional information.
Furthermore, caustic crossings alter light curves by introducing sharp peaks. This
means that the maximum magnification need not occur at umiy.
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5.2.1 Complex Formulation

Consider a collection of n point lenses. We denote the mass of lens j by M, its
Einstein radius by b;, and its position on the sky by 6 ;. Under the assumption that
all of the lenses are at the same distance D; from the observer,! then it follows that
b? o M;. Ifb2 =Y. b j j, then b is the Einstein radius of a point lens with mass
M = Z j M;.

The deflection vector of such a system is

n

od) = Z 2 o - ZZ (5.6)

| }9 0|

where m; = M ;/M is the fraction of the total mass contained in lens j. (Note that
>_jmj = 1) The lens equation is then

B=0-— bZZm, | (5.7)

Setting U = B/b and X = 0/b, the lens equation takes the form

U=X-Ym 538)
Z j|X X|

where the source position U has components (u, v) and the image positions X have
components (x, y).

The two-dimensional nature of this equation suggests switching to complex
variables (see Appendix B), where vectors are replaced by numbers. Introducing
the variables ¢ = u 4 iv and z = x + iy, we arrive at the complex lens equation

- =
(=2=) mi——s
o 2=l

72—z

n

=Y 59

=1 T

I'The distances between lens stars are ~AU, while those between observer, lenses, and source
are ~kpc.
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where an asterisk denotes complex conjugation. We define the complex deflection
function

aR) =y (5.10)

so that the lens equation can be written as
¢ =z—[a@]". (5.11)

Note that @ (z) is meromorphic (Appendix B.3), i.e., analytic (Appendix B.1) for all
z except the z;, where it has poles.

We caution the reader that the complex deflection function of an arbitrary mass
distribution need not be rational nor even meromorphic. For example, it may depend
on both z and z*. While we use complex variables and functions extensively in
this chapter, their drawbacks outweigh their advantages when continuous matter
distributions are involved.

The lens equation (5.9) has at most Sn — 5 solutions for n > 1 (Khavinson and
Neumann 2006, Theorem 1; see also Rhie 2003). The physical interpretation is that
a system of n point lenses may produce a maximum of 5n — 5 images. The actual
number of images depends on the value of ¢, but is at least n + 1 (Petters et al. 2001,
Theorem 11.7). Recall that a source far from a single point mass appears as two
images: the primary image asymptotically approaches the true source position with
a magnification of unity, while the secondary image approaches the lens position
with vanishing magnification. In the case of n > 1 point lenses, a source far from
the lenses (|¢] > max; |z j |) will appear as a primary image with a magnification
of unity and n secondary images with vanishing magnification at the lens positions.
(The cases of n = 2 and n > 2 are explored in Problems 5.3 and 5.4, respectively.)

As usual, the inverse magnification is given by

L
T 9xdy 9y ax’

1

Our goal is to express © = as a function of z and z*. To this end, we introduce the

Wirtinger operators

a 1 /9 .0
—==|—=-i— (5.12a)
dz 2 \ox ay

o _1 (3_ +i3_) (5.12b)
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(see Appendix B.1). For any complex function f(z, z*), one can show that

af\*  oaf*
(—f) = f (5.13a)
0z az*
af \*  af*
f = f . (5.13b)
az* 0z
The partial derivatives with respect to x and y can be expressed as
0 a 0
- = 4 5.14
ox oz oo C-14
0 0 0
—=i|l——=—]. (5.14b)
ay dz  dz*
Thus, we see that
_ d¢ a¢* g 9g*
1 *y > _
wok) = 9z dz*  9z* 0z
|ag 2 o |2
oz az*
ac |
=1- , 5.15
az* G-15)

since d¢ /dz = 1 according to Eq. (5.9). From Egs. (5.11) and (5.13a), we have

a da* da\* da\*

C_ 0w _ (oay _ _(d*) (5.16)
az* az* 0z dz
where the last equality follows from the fact that « is analytic at each point where it
is defined. The inverse magnification then takes the simple form

da |

e (5.17)

pw @) =1-

On a critical curve, we have u~! = 0 so that |[da/dz| = 1. This, in turn, implies

that

do _ +eTi® (5.18)
dz

where 0 < ¢ < 2m. The choice of signs on the right-hand side is arbitrary. For
the sake of consistency with other authors (e.g., Petters et al. 2001; Mollerach and
Roulet 2002), we write
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da

i —e7i? (5.19)

Comparing this to the derivative of Eq. (5.10), we find

n

Yo e, (5.20)

—72)2
o (z—2zj)

This is equivalent to a set of polynomial equations Q(z; ¢) = 0 of degree 2n in z,
parametrized by ¢. We denote the solutions by z((¢), 2D (@), ...,z (¢). Note
that if 9 (¢1) = z)(¢2), then ¢ = ¢», since the left-hand side of Eq. (5.20) is
independent of ¢ and the right-hand side is independent of z. Thus, the solutions z ")
are pairwise disjoint curves, which are not necessarily closed. However, their union
does consist of a number (<2n) of closed curves. In the lensing literature, it is these
closed curves that are the critical curves.

Critical curves merge or separate when z(i)(qbo) = zU )(¢0) for some ¢y and

i # j. Suppose z(V (o) = 2 (¢9) = &. Then

2n
0@ ¢o) = [ [ (z — ¥ (¢0))
j=1
2n ‘
==z (¢0). (5.21)
j=3

Hence, Q'(£; ¢o) = 0. Similarly, if k > 1 of the z)(¢) are all equal to &, then the
first k — 1 derivatives of Q(z; ¢) are zero at z = &.

5.2.2 Binary Lens

We now specialize to the binary case (n = 2). For convenience we define the real
axis to be the line containing the two lenses, with the origin midway between them.
Letting d be the distance from the origin to each lens, we have z; = d and zo = —d
and a lens separation of A = 2d. We also define the mass ratiotobe g = M/ M> =
m1/my. The lens equation (5.9) reduces to

mi mo
*—d z¢+d’

r=z— (5.22)

The complex conjugate of this equation allows us to solve for z* in terms of z:

mi my
+ .
z—d z+4+d

=t (5.23)
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Substituting this result into Eq. (5.22) leads to the fifth order polynomial equation
P@ =@ = d?) |2+ dlm —mo) + 2 = d)IE* +dmi —m2)]]

—(z—2) {[;*(z2 —d) 4z +dmy — mo)P — A2 — d2)2}

=0 (5.24)

(cf. Mollerach and Roulet 2002, p. 130). Thus, the binary lens admits a maximum
of five images (see Problem 5.3). A given solution of Eq. (5.24) is physical if and
only if its conjugate agrees with the value obtained from Eq. (5.23).

Recall that we can determine the number of images for a given source position
¢, even without solving the lens equation. We start by generating the critical curves
in the image plane, from which the caustics in the source plane can be constructed.
For a binary lens, the critical curves satisfy Eq. (5.20) with n = 2:

mi ma —i
+ =e 5.25
@—d)?  (z+d)? 429
Multiplying both sides by (z — d)?(z + d)? yields the quartic equation
Q@) =miz+d)? +maz—d)? —e (2 —d?? =0 (5.26)

(cf. Petters et al. 2001; Mollerach and Roulet 2002), which, with the help of
Eqgs. (5.22) and (5.25) can be rewritten as

0(2) = (z —d)*(z +d)? (aaiz — e"'¢> . (5.27)

Recall that critical curves touch when Q’(z) = 0. It follows from Eq. (5.27) that if
Q(z) = 0, then Q'(z) = 0 if and only if 82§*/8z2 = 0. This is equivalent to the
condition

— =0. (5.28)

According to Eq. (5.10) , the condition (5.28) takes the form

mi mj

=0 5.2
(z—d)3+(z+d)3 29

in the binary case n = 2. Solving this equation for z, we obtain

z=d [ 2 1} , (5.30)

1= (=myi/ma)/3
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where there are three solutions, corresponding to the cube roots of —1: —1 and
e*7/3, Substituting z from Eq. (5.30) into Eq. (5.25) and solving for d, we obtain

32
Awr = 2dwr = (m) +m}") (5.31a)

—3/4
Arc = 2dic = () +m)?) (5.31b)

for the roots —1 and e+7/3, respectively. The subscripts W, I, and C refer to lenses

of wide, intermediate, or close separation. When the lens separation A satisfies A >
Awr, there are two critical curves, one surrounding each lens. These critical curves
touch at a single point on the negative real axis when A = Aw;. When Apc <
A < Awyi, there is a single critical curve surrounding both lenses. At A = Ajc,
two critical curves pinch off at two points, whose coordinates are conjugate. When
A < Ajc, there are three critical curves—one surrounding both lenses and two
smaller ones inside this curve. Using the lens equation (5.22) to move from the
image plane to the source plane, we find that widely separated lenses have two
caustics with four cusps each, lenses with intermediate separation have one caustic
with six cusps, and closely separated lenses have three caustics, one with four cusps
and two with three cusps.

There are two special cases that are important in microlensing: where the lenses
have roughly equal masses, or where one lens is much more massive than the other.
These correspond to binary stars and a single star orbited by a planet, respectively.
When m; = my = 1/2, the lens equation (5.24) remains quintic in z. However,
Eq. (5.26) for the critical curves reduces to a quadratic equation in z2, which is
straightforward to solve analytically. The corresponding lens separations at which
mergers occur are Awy = 2 and Ajc = 1/ V2.

The critical curves and caustics form| = my = 0.5 and form; = 0.1, m» = 0.9
are shown in Figs. 5.2 and 5.3, respectively. In both cases, the caustics are smaller
than the critical curves. The caustics and the critical curves are symmetric about
the horizontal axis; only for m; = my is there also symmetry about the vertical
axis. The value of the mass ratio m1/my = 0.11 used in Fig. 5.3 is far larger than
what one would expect for a star-planet system, but better illustrates the differences
between the cases of equal and unequal masses. In the extreme case m| < my,
Egs. (5.31a) reduce to

3

Awr = 1 + 5m}”’ (5.32a)
3

Ac=1- Zm}“ (5.32b)

to leading order in m; (cf. Mollerach and Roulet 2002, §6.1.1). Even for a
particularly massive planet such as Jupiter, the mass ratio of planet to star is ~0.001.
Thus, Eq. (5.32) should be a good approximation for planetary microlensing.
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Fig. 5.2 Ceritical curves and caustics for m| = my = 0.5. The axes in Figs.5.2, 5.3, 5.4 and 5.5

are in units of the combined Einstein angle b = , /b% + b%. The points in the image plane indicate
the locations of the point masses, and they are reproduced in the source plane to guide the eye
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Fig. 5.3 Critical curves and caustics for m; = 0.1 (right) and m, = 0.9 (left)
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Fig. 5.4 Lensing of sources near a cusp (top) and a fold (bottom). A portion of the caustic, along
with two source positions, is shown in each of the left-hand panels, while the associated critical
curve and image positions are shown in the right-hand panels. A source outside the caustic (open
circle) produces three images (open circles), while a source inside (filled circle) produces five
images (filled circles). The ratio of image area to source area gives the (unsigned) magnification of
that image. While the images of a circular source are ellipses, this effect is not shown. The lenses
(filled diamonds) have equal mass

Figures 5.4 and 5.5 show image configurations for different source positions.
Sources outside the caustic produce three images, while those inside give rise to five
images. Consistent with our discussion of critical points in Sect. 4.5, we see that the
image number changes by two when the source crosses the caustic. The individual
images are elliptical, and they differ in brightness from the source. However, the
images cannot actually be resolved in microlensing, so the relevant quantity is the
total magnification of the source. As the source moves far from the lens, the total
magnification approaches unity (cf. Sect.5.2.1).

As the source crosses from outside to inside the caustic, either a bright pair
of images forms or one bright image splits into three bright images. These cases
arise for fold and cusp crossings, respectively (cf. Sect. 4.5). This behavior is most
readily seen in the light curves shown in Fig. 5.6 with m; = 0.2 (m, = 0.8). For a
source that crosses a cusp from either direction, the total magnification diverges. By
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Fig. 5.5 Lensing of sources far from the caustic (thin curve) of an equal-mass binary system in
line with a cusp (left) and a fold (right). The source positions are indicated by open circles and
the images by filled circles. The area of each circle has the same interpretation as in Fig.5.4.
The critical curve (thick curve) and lens positions (filled diamonds) are also shown. Note that the
image near the actual source position has magnification approaching unity, while those near the
lens positions become very faint
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Fig. 5.6 Light curves for a binary system with m; = 0.2 (m, = 0.8). Source trajectories (left-
hand panel) have the same color as the corresponding light curves (right-hand panel)

contrast, the magnification diverges for a source approaching a fold from the inside,
but stays finite for a source approaching a fold from the outside. One can infer the
presence of cusps even for a source that doesn’t cross the caustic if the light curve
possesses spikes of finite height. We would see qualitatively similar behavior for a
system with any mass ratio. Thus, we cannot infer the mass ratio from a single light
curve (see Sect. 5.4).
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5.3 Microlensing of an Extended Source

Thus far, we have considered the microlensing of a point source, where the
magnification diverges for a source on a caustic (see Figs.5.1 and 5.6). For an
extended source, there is no such divergence, since the magnification is a normalized
convolution of the point-source magnification with the surface brightness of the
extended source, as shown in Eq. (4.82). In this section we study the magnification
of an extended source using the simple model of a circular disk with uniform surface
brightness. The three-dimensional structure of the source star causes the surface
brightness to vary in an effect known as limb darkening that may need to be taken
into account for practical applications.

5.3.1 Single Lens

We first examine finite source effects for the case of a single lens. We work in
units scaled by the Einstein radius: u is the angular position of the source scaled
by O (as above), and p is the angular radius of the source scaled by 6. Using the
magnification for a point lens from Eq. (5.1) in the convolution integral (4.82), we
can write the magnification as

1 2 0
Hext(U; p) = n_,oZ/ dd)/ dr r o (\/uz + 72 4 2ur cos ¢) . (5.33)
0 0

The integral can be evaluated in terms of special functions (Witt and Mao 1994), but
it is useful to examine two limits.
First consider a source at the origin, so u = 0. Then we can evaluate

©0: p) = > /p—r2+2 d 142 (5.34)
Hext(0; p) = — r= — :
- p*Jo rZ+4 p?

When the source is small (p < 1), the magnification scales as pexi(0; p) =~ 2/p;
it diverges in the limit of a point source (as expected). As the source size increases,
the magnification decreases. In the limit of a large source p >> 1 the magnification
wext (0; p) ~ 1 4+ 2p~2 deviates only slightly from unity.

The other interesting case is a source that is small compared with its distance
from the origin, so we can make a Taylor series expansion in p/u < 1. Since
0 < r < p, we can first expand the integrand in Eq. (5.33) as a Taylor series in r/u
and then evaluate the integral to obtain a series in p/u:
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Fig. 5.7 Light curves for extended sources. The trajectory has impact parameter i, = 0.1. The
thick dashed curve corresponds to a point source, while the curves with different colors correspond
to different scaled source sizes p as indicated in the legend
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At lowest order, the magnification reduces to the result for a point source. The first-
order correction term vanishes by symmetry in the ¢ integration. Thus, corrections
enter only at second order. The coefficient of the correction term is strictly positive,
so finite source effects increase the magnification relative to the point-source case.

For intermediate cases, we can evaluate the integral numerically and obtain light
curves like those shown in Fig. 5.7. We see that finite source effects raise the wings
of the light curve. When the size is small, the magnification increases even at
the peak of the light curve. However, when the size is large, finite source effects
make the light curve flatter and broader, so the peak winds up being lower than
the point source limit. The transition is such that finite source effects increase the
magnification when p < 2u, while they decrease the magnification when p = 2u
(see Witt and Mao 1994; the transition point can be estimated as the place where
Egs. (5.34) and (5.35) give similar magnifications).
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5.3.2 Fold Caustic

It is also interesting to examine the case of a source near a caustic like what appears
in a binary lens. We actually study the ideal fold caustic introduced in Sect.4.5.1.
According to Eq. (4.63), the total magnification of a point source near a fold is

C
Mot(V) = ﬁ@(v)’ (5.36)

where the fold caustic lies along the horizontal axis, so v measures the perpendicular

distance of the source from the caustic, and the scale factor is C = (K «/—3h)7].
Without loss of generality, we can take 7 < 0 such that the region inside the caustic
is v > 0. This convention, which is opposite to that used in Sect.4.5.1, allows us to
make use of the Heaviside step function. (As a reminder, ® (x) is the Heaviside step
function that is 1 for x > 0 and 0 for x < 0.) We can then write the magnification
as

Hext (i, V3 p) = nipz /_: du’ /_Z Q' —@jg)@ (0 =V =uw?+ ' =)

C o /‘X’ Oy +v) <
= — dx dy ——20 | p—/x2+y?), (5.37)
0% J oo -0 vy Fv

where x = u’ — u, y = v’ — v. Integrating over x leads to the single integral

20 [P 02 — 32
Mext(u, v; p) = — ‘/—y dy. (5.38)
TP J—min(p,v) y+v

We can identify the scaling with source size by changing integration variables to
w = y/p and then writing

C v
ext(U, U] = —— Jfo -1, 5.39
Mext(u, v; 0) \/ﬁff 1d <p> (5.39)

where the function ffoq(x) is defined by

2 ! 1 —w?
Sola(x) = - / dw. (5.40)

min(l,x) Y W+X

The form of Eq. (5.39) indicates that light curves for different source sizes are all
scaled versions of one another; the time (which is implicit in v) scales as 1/p, while
the amplitude scales as 1/,/p. Figure 5.8 shows both the scaled version of the fold
light curve and versions that are properly scaled for different source sizes.
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Fig. 5.8 Light curves for an extended source crossing an idealized fold caustic. The top panel
shows the scaled light curve fio1q(v/p). The bottom panel shows the actual light curves for different
scaled source sizes p as indicated in the legend. Here the fold scaling factor is C =1

5.4 Microlensing Statistics

The first question we must answer in order to put into practice the microlensing
theory that we have developed is how likely it is that a given star is being lensed
at some time. This is characterized by the optical depth,” which is the fraction

2In stellar and planetary astrophysics, the optical depth measures the degree of photon scattering
in a medium. The analogy between scattering and lensing is close enough to make the extension of
this concept to the present context worthwhile.
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of a region of the source plane covered by stellar Einstein rings. This definition is
chosen to be consistent with the notion that a microlensing event occurs when a
source star is within one Einstein radius of a lensed star. When the optical depth
is low, it is just the probability that a source will be microlensed. Optical depth
loses its connection with probability when it reaches a significant fraction of unity,
because the stars in that case combine to act as a single lens rather than a collection
of individual lenses. In other words, the sky is so crowded with lenses that their
Einstein rings overlap (cf. Sect. 6.4.2). For the purposes of including binary lenses
in our determination of optical depth, we define the effective Einstein radius of
such a system to be the quadrature sum of the stars’ Einstein radii. If the minimum
magnification (i.e., maximum lens-source separation) for which microlensing is said
to occur is lowered (raised), the optical depth will likewise increase (decrease) by a
multiplicative factor.

Consider a source at distance Dy. Conceptually, the optical depth is the fraction
of the source plane that is covered by the Einstein areas of intervening lenses. For
specificity, consider an area that subtends solid angle §2. We are interested in lenses
within the same solid angle. Consider lenses in a slab between D; and D; 4+ dDy;
its volume is £2 D12 dD;. Suppose (dn/dm) dm is the number density of lenses in the
slab with masses between m and m + dm. Then the number of lenses in question is

dn
dN = .QD,d dm dD; . (5.41)

The Einstein area of each lens (in physical units in the source plane) is

47 Gm Dy Dy
c? D

TR = (5.42)

The total Einstein area is then nR% dN. To obtain the optical depth, we divide this
by the area of the region of the source plane, .QDSZ:

1 4 Gm Dy D
dr = —— xQD, " dmdpy x M s
.QD2 dm 2 Dy
_ 472G DD d
=Y B 4oy m S am (5.43)
ez Dy dm

We obtain the total optical depth now by integrating over masses and distances:

t(Dy) = 4”G/ D’(D’S)/ —dmle

_ 47 G [Ds D;(Dg — Dy)
= D.

pdDy, (5.44)
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where Dj; = Ds — Dy, and the mass density is given by
o0
d
_ / m= dm . (5.45)
0 d

Let us see how the optical depth depends on p. In the special case of uniform
density, we can evaluate the integral to obtain

27 GpD?

o (5.46)

Tuni =

We can write the density in terms of the rotation speed, vy, at a distance r from the
Galactic Center by means of the relations

GM 2 4
z(r) = @; M(r) = —nr3,0, 5.47)
r r 3

where M (r) is the mass interior to r. For an observer at Earth and a source at the
Galactic Center, we have r = rg = Dy, with the galactocentric radial coordinate of
Earth denoted by rg. Substituting for p then leads to the simple expression
vzt 6
o _
Tuni = ﬁ ~107°. (5.48)

Thus, we must observe a million or so stars to have a reasonable chance to observe
a microlensing event!

If the density is not uniform, we must exercise some care. In particular,
galactic density profiles are given as functions of galactocentric coordinates. For a
spherically symmetric galaxy, the density profile can be written as o(r). The density
profile as measured from Earth would then be a function of the distance to the lens
and the angle of the lens relative to the line of sight to the Galactic Center. For a
lens at distance D; and angle b, its galactocentric distance is determined from the
law of cosines as r> = D12 + ré — 2Dyrg cos b. Thus, the mass density with respect
to Earth is

p(Dy, b) = g\/ (D} + 13 — 2Dyrg cosb) . (5.49)

For a nonspherical mass distribution, the function p also depends on the galactic
longitude.

Suppose that the galaxy is described by the singular isothermal profile of
Eq. (2.42). The optical depth is then

p(Dy, b)dD;

Tiso =

47 G /Ds Dy(Ds — D)
0

c2? Dy
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2 D
v s D;(Ds — D
= / ; ’2( s = Do) dpy, (5.50)
c*Ds Jo D +rg —2Dyrg cosb
where v is a constant. For a source at a distance Dy = rg, the optical depth
reduces to
2 1
Viot x(1—x)
Tiso = — —-—dx, 5.51
BT 2 /(; x2 —2xcosh + 1 (5-51)

where x = D;/D;. In general, this integral can only be evaluated numerically. For
a source at the Galactic Center (b = 0), we have
v2 U xdx

rot
Tiso = —5
C2

[ — 00 (5.52)
0 1—

(cf. Dodelson 2017, p. 94). This divergence is an artifact of the singularity in g at
the Galactic Center. We can obtain a finite result for Dy < rg and b = O:

Lo — Urzot bs py(Dy — Dl)le
YT etng Joo (D —rg)?

2

ol | (27 — Dy)log (—&— ) — 2D, |. (5.53)
D rg — DS

c? s

v,

For a source in galactic bulge, we find that tjs, ~ Tyni. Since the divergence in tigo as
Dy — rg is logarithmic, this rough equality holds almost all the way to the Galactic
Center.

The optical depth constrains the abundance of microlenses, but tells us nothing
further about their properties. Inferring lens parameters from a single event is
not possible, so we must observe an ensemble of events from which statistical
conclusions can be drawn. The distributions of event duration (Mollerach and Roulet
2002) and magnification are often used for this purpose. Deriving them does not
strictly involve lensing, so we move directly to the astrophysical applications of
microlensing.

5.5 Applications

5.5.1 Probing Dark Matter

As noted in the opening of this chapter, microlensing was initially used to search
for MACHO dark matter in the Milky Way. Paczyniski (1986) developed the theory
of microlensing by a point mass and pointed out that by monitoring a few million
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stars in the Large and Small Magellanic Clouds,? one could detect or place strong
upper limits on the presence of MACHOs in the dark matter halo of the Milky
Way. Such a program was demanding but feasible thanks to the advent of digital
detectors (charge-coupled devices, or CCDs) and computer processing. In the early
1990s, three teams began to search for microlensing: the MACHO Project (e.g.,
Alcock et al. 2000), the EROS Experiment (Expérience pour la Recherche d’Objets
Sombres; e.g., Tisserand et al. 2007), and OGLE (Optical Gravitational Lensing
Experiment; e.g., Wyrzykowski et al. 2011a,b).

The teams sought to identify stars with variable brightness due to microlensing,
and not other types of variability, such as variable stars and supernovae in back-
ground galaxies.* They also developed criteria for selecting events consistent with
expectations for microlensing, e.g., events consistent with the Paczynski light curve,
and which look the same in red and blue light. In 5.7 years, the MACHO Project
identified 13-17 microlensing events in observing 11.9 million stars. Making
detailed simulations of their detection efficiency, they found that the optical depth
for events with time scales between 2 and 400 days is 7 = 1.2;”8:‘31 x 1077 (Alcock
et al. 2000). EROS and OGLE found the smaller values 7 < 0.36 x 10~/ and
T = (0.16 = 0.12) x 1077, respectively (Tisserand et al. 2007; Wyrzykowski et al.
2011a). The observed optical depth and event rate are much smaller than what was
predicted for a dark matter halo made entirely of MACHOs, so the results place
strong upper limits on the fraction of dark matter in the form of MACHOs (at least
in the mass range from ~10~7 M, to a few tens of M).

The MACHO and EROS programs were completed, but OGLE continues to
monitor about 300 million stars in 51 fields (Udalski et al. 2015a). They detect
around 2000 microlensing events per year.)

5.5.2 Finding Planets

As discussed in Sect. 5.2, planets orbiting a lens star can create detectable features
in the light curve. Microlensing therefore offers a unique way to find extrasolar
planets, which is sensitive to a different combination of planet parameters (mass and
orbit) than traditional methods.® In particular, the mass of a planet mainly affects
the duration of the perturbations to the Paczynski light curve, not the amplitude.

3The Magellanic Clouds are small galaxies that orbit the Milky Way and are visible in the southern
hemisphere.

“In fact, microlensing campaigns have yielded large catalogs of variable stars (see, e.g., Alcock
et al. 1996; Soszynski et al. 2016).

Shttp://ogle.astrouw.edu.pl/ogle4/ews/ews.html.

5The “transit method” detects a planet when it passes between us and its host star, causing the star’s

light to dim briefly. The “radial velocity method” detects a star moving because a planet pulls on
it.


http://ogle.astrouw.edu.pl/ogle4/ews/ews.html
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Microlensing can detect low-mass planets if the monitoring is frequent enough
to catch perturbations that last a few hours to a few days. Initial searches for
microlensing planets relied on a two-step system: survey teams looked at large
numbers of stars every few days, and once they detected a new event, they sent a
community alert so that follow-up teams could begin more intensive monitoring.
Next-generation searches combine a large field of view with a rapid observing
cadence to enable both discovery and follow-up in the same data set.

Gaudi (2012) gives a nice discussion of both the methods and results of
microlensing searches for planets. Here we can only scratch the surface and mention
a few particularly interesting discoveries. Gaudi et al. (2008) discovered two planets
with masses M1 ~ 0.71M; and My, ~ 0.27M,, where M; = 9.5 x 10’4M@
is the mass of Jupiter. These planets orbit a host star with mass M; ~ 0.50Mg.
The masses, orbital sizes, and implied temperatures make the planets analogues of
Jupiter and Saturn. At a time when other methods were finding planets quite unlike
any in our own solar system, this discovery indicated that analogues of our solar
system do exist and can be found with microlensing. In a different system, Batista
et al. (2011) observed complicated caustic-crossing features in the light curve. To
explain the features, they had to consider finite source effects, orbital motion of the
planet around the star, and Earth’s motion around the Sun. To handle degeneracies
in the lens models, Batista et al. (2011) did a Bayesian analysis using a model of
the Milky Way and argued that the planet (M, ~ 2.6M;) is unusually massive
relative to the star (Mg ~ 0.19M). For a third system, Udalski et al. (2015b) took
advantage of the parallax effect (Sect.5.1.2) and used simultaneous observations
from the ground and the infrared Spitzer Space Telescope to break degeneracies and
learn more about a planetary microlensing event. It is quite striking to see how a
seemingly small change in the observing position can lead to a large change in the
shape and timing of the microlensing light curve.

Based on the success so far, microlensing searches for planets have become a
principal component of NASA’s proposed Wide Field Infrared Survey Telescopes
(WFIRST).

5.5.3 Characterizing Compact Objects

Microlensing can also be used to search for compact objects that remain after
stars die: white dwarfs, neutron stars, and black holes. These objects—especially
black holes—can be more massive than the typical stars that cause microlensing,
so they lead to long-duration events that are affected by Earth’s orbital motion.
Wyrzykowski et al. (2016) searched the OGLE database for microlensing events
that exhibited parallax effects from Earth’s orbital motion and found 13 candidates
of which the most massive is 9.3M at a distance of 2.4 kpc. Such searches offer a
unique opportunity to find isolated black holes (whereas searches that use X-rays or
gravitational waves can only find black holes in binary systems).
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All of the events discussed so far have been found by watching source stars and
hoping that an unseen lens happens to pass in the foreground. In rare circumstances
it is possible to invert the process—to find lens stars that will move in front of
source stars—and thus to predict microlensing events. Sahu et al. (2017) noted
that the white dwarf Stein 2051 B had a proper motion that would carry it in
front of a star from late 2013 through early 2014. They measured the shift in the
apparent position of the background star (the impact parameter was too large to
yield a detectable change in magnification) and used it to measure the white dwarf’s
mass. McGill et al. (2018) have predicted a similar event for the white dwarf LAWD
37 in November 2019. Measuring white dwarf masses with microlensing provides
important constraints on models of white dwarfs, which involves the physics of
degenerate matter as well as white dwarf atmospheres.

Problems

5.1 Figure 5.1 shows how the magnification changes as a function of time in a
microlensing event. Make an analogous plot to show how the centroid changes with
time in astrometric microlensing. Hint: recall Eq. (2.33).

5.2 Consider the lens potential

Y(x,y) =In (,/x2 + y2> + g(ﬁ +y2) + ’%( 2 —y%) + yexy. (5.54)

In the case k = 0, this potential models a point mass in the presence of external
shear, resulting from massive objects far from the origin. For « # 0, the model
consists of a lensed macro-image perturbed by a point mass. In this case, the single
lensed macroimage is split by the point mass into a number of microimages. This is
called the Chang-Refsdal lens (Chang and Refsdal 1979). The mass is chosen so
that the coefficient of the first term in Eq. (5.54) is 1.

(a) Write the complex deflection function the complex image position (see
Sect5.2.1) and complex shear (see Sect 7.2.1).

(b) What is the maximum number of images that this model can produce?

(c) Find the critical curves and caustics for different values of « and y... For each
set of values of « and y, plot light curves that illustrate the behavior of this
lens.

In the context of quasar lensing, the relative motion of observer, lens, and source
cannot be detected. However, such relative motion could be observed if we picture
the Chang-Refsdal model as describing a stellar microlensing event.

5.3 Consider an equal-mass binary lens (cf. Sect. 5.2.2) in which the separation A
is small enough that there is a single critical curve and caustic, as in the middle row
of Fig.5.2.
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(a) Solve the lens equation for a source at the origin to show that there are five
images in a symmetric configuration.

(b) Solve the lens equation for a source on the separation axis, and show that a
source inside the caustic produces five images, while a source outside the caustic
produces three images. (Hint: the top row of Fig. 5.4 might be helpful.)

(c) Show that when the source moves far from the caustics, there is one image close
to the source whose magnification is close to unity and one faint image close to
each point mass.

5.4 In Sect.5.2.1 we noted that a system of n > 1 point masses in a plane can
create as many as 5Sn — 5 images. Bleher et al. (2014) explicitly construct lens
configurations that achieve this limit. For n > 4, let n — 1 of the lenses have
Einstein radius 6 = 1, and distribute them equally around a circle of radius

1/2
a=n-1"" ("T_l) , and let the remaining lens have a small mass, and place

it at the origin. For n = 2 or 3, place all the masses on the circle and omit the mass at
the origin. Use the computational techniques discussed in Appendix E to construct
the critical curves and caustics, and verify that the configuration can produce 5n — 5
images. Hint: recall that a source far from the lenses produces n + 1 images (Petters
et al. 2001, Theorem 11.7).

5.5 In Sect.5.5.2 we noted that planets can create features in microlensing light
curves that last from a few hours to a few days. Beaulieu et al. (2006) reported the
discovery of a planet of 5.5 Earth masses. Making reasonable assumptions, estimate
the duration of the planetary perturbations, and compare your answer with the light
curve shown in Fig. 1 of the paper by Beaulieu et al. (2006).

5.6 In Sect.5.4 we computed the microlensing optical depth assuming a singular
isothermal sphere mass distribution. Repeat the analysis for a nonsingular isother-
mal sphere, assuming a source at the Galactic Center. As the NIS core radius goes
to zero, do your results match the SIS analysis?

5.7 Our analysis has assumed that all of the observed light comes from the source
star. In practice, observations often target crowded fields and have resolution that
is limited by atmospheric blurring and/or telescope optics. In that case, light from
the lens star and/or other stars along the line of sight may be blended with the light
from the source star. Let the blend fraction, fy, be the fraction of light that comes
from stars other than the source star long before or after a microlensing event. Make
a new version of Fig. 5.1 that includes different values for fi, as well as different
values of umin. Given a well-measured light curve, should it be easy to measure both
fb1 and um;n, or are they likely to be degenerate?
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Chapter 6 ®
Strong Lensing by Galaxies Qs

The remainder of this book is concerned with applications of gravitational lensing
of cosmological relevance. We proceed by considering ever larger mass and
distance scales, starting with galaxy-scale strong lensing in the present chapter.
The background sources in this context are point-like quasars or extended galaxies.
The axisymmetric models of Chap. 2 can be readily adapted to the more general
setting of Chap. 4. Only such non-axisymmetric mass distributions can be expected
to describe observed lens systems.

The isothermal sphere of Sect. 2.3, in both its singular and nonsingular forms,
offers a good starting point for modeling galaxy lenses, but it suffers from some
notable deficiencies. The most basic problem is that the image configurations of
observed lenses do not have the collinear appearance that axisymmetric models
require. We consider two non-axisymmetric lens models in Sect. 6.1, which reduce
to the axisymmetric case for appropriate parameter values. Another issue is that
the density of a physical object must be finite everywhere, in contrast to the
singular isothermal sphere of Sect. 2.3.2. We saw in the case of an isothermal
model that it is straightforward to introduce a core of finite density that leaves the
qualitative behavior of singular density profiles largely intact. Section 6.2 extends
the discussion in Sect. 2.3.3 to the present context.

Even all of these refinements to the models and methods of Chap. 2 are insuffi-
cient for understanding the full variety of observed galaxy lenses. For example, we
must account for extended sources (Sect. 6.3) and for lenses that cannot be described
by smooth density profiles (Sect. 6.4).

Determining the properties of lensed images for a given source position only gets
us so far. What is of interest in practice is to infer the mass distribution that gives rise
to observed images. We illustrate this approach in Sect. 6.5, first considering special
cases in which the lens parameters can be found analytically, before resorting to
statistical methods that the lensing researcher must inevitably confront. Applications
of the models and methods described in this chapter are outlined in Sect. 6.6.
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146 6 Strong Lensing by Galaxies
6.1 Singular Isothermal Lens Models

The lens models presented in Chap. 2 illustrate how multiple images can be
produced, as well as the dependence of image number on the position of the source.
In the axisymmetric case, it is just the angular distance of the source from the
lens center that is important; the azimuthal coordinate, ¢, can be defined so that
¢ = 0 and ¢ = m are the only allowed values. Upon introducing asymmetry,
however, parameterizing the caustics and critical curves requires both the radial
and azimuthal coordinates. In this section, we introduce two causes of asymmetry
frequently encountered in observed lenses. Firstly, real galaxies are not circular in
projection, owing either to intrinsic ellipticity in the case of early-type galaxies
or inclination in the case of late-type galaxies. Secondly, galaxies are often found
within groups or clusters, so that the lens system consists of a primary deflector and
one or more perturbing objects.

6.1.1 Spherical Lenses with External Shear

We begin by considering a singular isothermal sphere (SIS) that is perturbed by
other deflectors. If the perturbers are sufficiently far from the primary lens, we can
use a Taylor series expansion and characterize their effects through convergence and
shear (as in Sect. 4.1.3). The additional terms in the lens potential are often referred
to as external convergence and external shear because they are produced by
objects outside of the main lens galaxy. External convergence is subject to the mass-
sheet degeneracy (cf. Sect. 4.7.2), but external shear has distinct effects because it
breaks axisymmetry.

In Sect. 2.3.2, we found that the magnitude of the deflection angle for an SIS
is constant. This no longer holds in the absence of circular symmetry. Moreover,
the tangential caustic, which is a single point in the axisymmetric case, becomes a
closed curve, allowing for the possibility of four images for certain source positions
(see Fig.6.1). Recall that the non-singular isothermal sphere (NIS), discussed in
Sect. 2.3.3, gives rise to a more complicated form for the deflection angle. Adding
shear to that model complicates matters still further! For this reason, we confine
quantitative analysis to the singular case and offer a conceptual treatment of the NIS
in Sect. 6.2.

Without loss of generality, we choose coordinates aligned with the direction of
shear (¢, = 0). Then the lens potential associated with the external shear can be
written as

Yy (x, y) = —%(x2 —), ©.1)

where x and y are coordinates in the lens plane, and the components of shear are
Y+, ¥Yx) = (—y,0), with y > 0. The reason we choose y; < 0 is explained in
Sect. 6.1.2. The potential of the SIS takes the form



6.1 Singular Isothermal Lens Models 147
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Fig. 6.1 Sample image configurations for an SIS with external shear. In each row, the left panel
shows a set of sources along with the tangential caustic and radial pseudocaustic, while the right
panel shows the corresponding images along with the tangential critical curve
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Usis(x, y) = by/x% 4+ y2, (6.2)

which comes from integrating Eq. (2.47) over the coordinate 6. The potential of the
SIS with external shear is the sum ¥ = Y¥rs1s + ¥y,
The lens equation then reads

bx
U=xX— ——+yx (6.3a)

Vx2+y2

by
s VY
Vx4 y?
where b is the Einstein radius of the SIS without shear and (u, v) are coordinates in
the source plane. For a source at the origin, we find four images with positions

v=y—

(6.3b)

b b
(X, y) = <0, :l:m) and (x, y) = <:|:m, 0) . (64)

We see that the breaking of circular symmetry leads to four distinct images instead
of an Einstein ring. Images resembling Einstein rings can be formed if the source is
spatially extended.

Let us now consider a source away from the origin. For the sake of analytic
tractability, we assume that the source lies on one of the coordinate axes in the
source plane. When the source is on the positive u-axis,! we find the following
solutions:

b

(x,y) = <”+ ,0) for 0 < 1 < 0o (6.52)
1+y
u—>b

(x,y) = 0 for0 < u < uy (6.5b)
1+vy

b2 u?

u
Z, + m—é‘.—yz f0r0§u < Uy, (65C)

(x,y) =

where u, = b and u; = 2yb/(1 — y). The meaning of the subscripts will become
apparent. For y < 1/3, we have u;, < u,, and we see that one image is produced
if u, < u < oo, two images if u; < u < u,, and four images if 0 < u < u;. For
y > 1/3, we have u, < u;, so one image is produced if u; < u < oo, three images
if u, <u < u;, and four images if 0 < u < u,.

IFor a source on the negative u-axis, we let (x, y) — (—x, y) in Eq. (6.5a) while leaving the sign
of u unchanged.
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Since the number of images changes by two as the source crosses the value u =
uy, and by one as it crosses u = u,, we suspect that u#, and u, mark the points
where the tangential and radial caustics, respectively, intersect the positive u-axis.
(By symmetry, the caustics intersect the negative u-axis at —u; and —u,.) When

. T T
u = uy, three of the images converge to 6, = [xt yt] = [b/(l —-v) 0] . When
. . T T
u = u,, one of the images is at 8, = [x, y,] = [O 0] . To confirm that 8; =
T T . .
[ut O] and 8, = [ur O] are caustic points, we must show that 8, and 6, lie on
critical curves. To do this, we compute the magnification at 8, and 6,.. The inverse

amplification tensor for an SIS with shear at an arbitrary point § = [x y ]T is given
by

[ b2 by
A_1(0) _ 1 ZyD)32 +v Z1y2)372 6.6)
- bxy bx? :
I v Rl v o A
_1 _ bsi]r;zzp +y bsin%cosq)
— ‘ , . (6.7)
b sin ¢ cos ¢ 1— bcos“¢p
L R R
The corresponding inverse magnification is
-1 2 b
no(R @) =1—=y" = 5[l 4ycos2g)] . (6.8)

In terms of the polar coordinates (R, ¢), both 6, and 6, have ¢ = 0, while their
respective radial coordinates are R = |x;| = b/(1 — y) and R = |x,| = 0. Thus,
the magnification diverges (1 ~' = 0) for # = 6, and vanishes (u~! — —o0) for
6 = 0,. Note that the magnification will be zero whenever £ ~! — =+o0. The sign
corresponds to the parity of the image. Finally, we conclude that 8, is a cusp of the
tangential caustic and B, lies on the radial pseudocaustic.

We now turn to the case of a source on the positive v-axis.”> We find images at

b
(x,y) = (o, f+ > for 0 < v < 00 (6.92)
-7
v—>b
(x,y) = (O, I > for0 <v < v, (6.9b)
-7
b2 2
(x,y)= . for0 < v < v, (6.9¢)

I+py? 42 2y

2For a source on the negative v-axis, we let (x, y) — (x, —y) in Eq. (6.9a) while leaving the sign
of v unchanged.
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where tangential caustics intersect the positive v-axis at v, = b and v, = 2yb/(1 +
y), respectively. We see from the above solutions for (x, y) that for y < 1, one
image is produced if v, < v < oo, two images if v; < v < v,, and four images
if 0 < v < v;. Shear amplitudes exceeding unity would indicate that terms in the
perturbing potential beyond the quadrupole term cannot be neglected (i.e., the shear
approximation breaks down). Even y > 1/3 pushes the envelope of realistic shear
values (Holder and Schechter 2003). Note that a source on the v-axis must be closer
to the origin than a source on the u-axis to produce four images. For reasonable
shear values, the case of three images does not arise.

For a source that is not on a symmetry axis, we must solve the lens equation
numerically (see Appendix E). Nevertheless, our analytic approach provides useful
information. In particular, we can derive parametric equations for the caustics. The
first step is to express the critical curve in the form R = R(¢). We then obtain the
corresponding caustic by writing the lens equation (6.3a) in the parametric form

u(¢) =[(1+y)R(¢) — blcos ¢ (6.10a)
v(¢) = [(1 — y)R(p) — b]sing. (6.10b)

Recall that the tangential critical curve is the locus of points (R, ¢) for which u —
oo. From Eq.(6.8), we find the following relation between R and ¢:

1 + y cos(2¢)
Ri($) =0k [Y—ﬂ} . 6.11)
l—y
Substituting this expression into Eq. (6.10a) gives
2yb
(@) = —X2 cos® ¢ (6.122)
-y
2yb . 3
v () = — sin” ¢ . (6.12b)
1+y

This equation describes a curve known as an astroid with semimajor and semiminor
axesa; = 2yb/(1 —y)and ap = 2yb/(1 + y), respectively. Meanwhile, the radial
critical curve reduces to the single point R,(¢) = 0, so that Eq.(6.10a) implies
a circular radial caustic of radius b. If a source is far outside both caustics, then
R > b, and Eq. (6.8) yields © — (1 — y?)~!. This is just the magnification due to
a constant shear field with vanishing convergence.

The tangential and radial caustics are shown in Fig. 6.2 for several values of the
shear. In the absence of shear, the tangential caustic reduces to a point, and a source
at that point appears as an Einstein ring. As the shear increases, the tangential caustic
expands horizontally. For sufficiently large shear, two cusps poke through the radial
caustic, thus becoming “naked.” Without solving the lens equation, we deduce the
number of images for a given source position, as discussed in the figure caption.
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Fig. 6.2 Caustics for a singular isothermal sphere with shear along the horizontal axis. From left
to right, the panels show cases with no shear (y = 0), moderate shear (y = 0.1), and large shear
(y = 0.5). The tangential and radial caustics are indicated by solid and dotted curves, respectively.
Typically the tangential caustic is enclosed by the radial caustic (center panel). In that case, a
source outside the radial caustic produces one image, a source between the radial and tangential
caustics produces two images, and a source within both caustics produces four images. If y > 1/3
(e.g., right panel), the source may lie outside the radial caustic but inside the tangential caustic.
Such naked cusps give rise to three images

6.1.2 Elliptical Lenses

Moving beyond axisymmetry, it is natural to consider elliptical lenses. If we assume
that the density has elliptical symmetry, we obtain the singular isothermal elliptical
mass distribution (SIEMD; Kassiola and Kovner 1993; Kormann et al. 1994; Keeton
and Kochanek 1998). In coordinates aligned with the major axis of the ellipse, the
convergence can be written as

b b
KSIEMD = = , (6.13)

2y/q%x* +y? ZR\/q2C052¢+Sin2¢

where g is the axis ratio of the isodensity contours (0 < ¢ < 1) and b is the Einstein
radius of the corresponding SIS (¢ = 1). In order to obtain the lens equation, we
must solve Poisson’s equation for the lens potential and take its gradient to obtain the
deflection. Problem 6.4 gives the components of the deflection vector, which allows
one to study the allows one to study the magnification, critical curves, caustics, and
image configurations. The SIEMD and its generalization to nonsingular models can
be used to study elliptical galaxies and spiral galaxies with arbitrary inclination with
respect to the line of sight.

Alternatively, if we assume that the potential has elliptical symmetry, we obtain
the singular isothermal elliptical potential model (SIEP; Kassiola and Kovner 1993):

UsiEp(x, y) = by/q%x% 4 y? (6.14a)
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Vsiep(R, ¢) = bR\/q2 cos? ¢ + sin? ¢, (6.14b)

where ¢ is now the axis ratio of the isopotential contours. Since \, WSIEP = 2KSIEP,
the convergence is given in terms of polar coordinates by

q’b
ksiEp(R, @) = 373 (6.15)
2R (g2 cos? ¢ + sin’ ¢)

Note that both the SIEMD and SIEP models reduce to the SIS when ¢ = 1. While
the convergence of the SIEP has a different angular dependence than that of the
SIEMD, the SIEP is easier to work with and has qualitatively similar properties, for
axis ratios close to unity. We therefore focus on the SIEP in this section, but it is
important to bear in mind that it is the SIEMD that is used in lens modeling (see
Problem 6.3). The lens equation for the SIEP has the form

2p
u=x— —312% (6.162)
/252 + 12
b
vy —2Y (6.16b)

We can solve these equations analytically if the source lies along one of the
coordinate axes in the source plane.
For a source on the positive u-axis,> we find the solutions

(x,y)=(u+qb,0) for0 <u < oo (6.17a)
(x,y)=w—qb,0) for0 <u < u, (6.17b)
2,2
_ u 2 qu
(x,y) = 1_—q2, + /b —m for0 <u < u, (6.17¢)

where u, = gb and u, = (1 — g*)b/q. We see from these solutions that for ¢ >
1/+/2, one image is produced if u, < u < oo, two images if u; < u < u,, and four
images if 0 < u < u;. When g < 1/\/5, we find that #, < u;, and naked cusps are
produced.

For a source on the positive v-axis,* we find

(x,y)=0,v+b) for0 < v < oo (6.18a)

3Same as Footnote 1, but for Eq. (6.17a).
4Same as Footnote 2, but for Eq. (6.18a).
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(x,y)=(0,v-0b) for0 <v < v, (6.18b)

- b2 v? 4’ f 6.18
x,y)=|=%g _(l—qz)z’_l—qz or0<v <y, (6.18¢)

where v, = b and v; = (1 — qz)b. We see that for all allowed values g, one image
is produced if v, < v < oo, two images if v; < v < u,, and four images if
0 < v < v;. Notice that naked cusps cannot form on the v-axis.

To compute the magnification, we find it convenient to write the lens potential
and convergence in the generalized isothermal form

Y (R, ¢) = RF(¢) (6.19a)
G
k(R, 9) = %, (6.19b)

where (R, ¢) are polar coordinates. From Poisson’s equation, we find that

G(@)=F(¢p)+ F'(¢). (6.20)

For an elliptical potential, the angular part of the potential takes the form

F(¢) = b\/q2 cos ¢ +sin® ¢ . (6.21)

The angular part of the convergence is then

b 2
G(9) = T (6.22)
(g2 cos? ¢ + sin® @)
In terms of G(¢), the inverse magnification is given by
L_ ., G@) 623
R .

The tangential critical curve can be parametrized as R;(¢) = G(¢), from which it
follows that the tangential caustic has the parameterization

bg*(1—g*)cos’ ¢
u(¢p) = ( o — 3 (6.24a)
g~ cos= ¢ + sin ¢)

oy 3
u(g) = -2 —gDsin ¢3 - (6.24b)
(g2 cos? ¢ + sin® ¢) /
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Like the SIS with shear, the SIEP and all singular isothermal models for that matter
have a radial critical point at the origin: R,(¢) = 0. The radial caustic for the SIEP
can be parametrized as

2
ur () = — —9 L0 (6.250)
\/qz cos? ¢ + sin’ ¢
N L — (6.25b)
\/qz cos2 ¢ + sin’ ¢

When g = 1, both caustics reduce to those for an SIS. If g differs only slightly from
unity, the tangential caustic takes the form of an astroid and the radial caustic that of
a circle. Recall that the SIS with shear gives rise to caustics of the same form. The
caustic structure of the SIEMD lens is addressed in Problem 6.4.

To conclude our discussion of the SIEP without shear, we wish to show that
the caustic parameterizations of Egs. (6.24a) and (6.25a) reduce to the particular
values u;, v;, u,, and v, following Egs. (6.17a) and (6.18a). Recall that we took the
source coordinates to be positive in the on-axis cases. One may be tempted simply
to evaluate the expressions (6.24a) and (6.25a) at ¢ = 0, but that would cause u, and
v, to be negative. We must instead evaluate Egs. (6.25a) at ¢ = 7. This is because a
source that approaches u, or v, from below corresponds to images on the opposite
side of the lens from the source.

In realistic lens systems, we must include the effects of both intrinsic or apparent
ellipticity in the lens galaxy and external shear from perturbing bodies. Figure 6.3
shows caustics for a SIEMD with shear. We vary the ellipticity, e = 1 — ¢, from top
to bottom, and the modified shear angle, ¢, = ¢, — /2, from left to right. We fix
the shear amplitude at y = 0.1. The shear angle appearing in Eqs. (4.35) is defined
so that ¢, = 0 for an image that is stretched horizontally while ¢, = 0 for a caustic
that is stretched horizontally, that is, in direction of the major axis of the galaxy. For
a fixed value of ¢, , increasing the ellipticity enlarges the tangential caustic, similar
to what we found when increasing y for an SIS with shear. For e = 0.9, which could
be appropriate for a nearly edge-on disk (see Keeton and Kochanek 1998), naked
cusps are produced for all three values of ¢,. Meanwhile, the aspect ratio of the
radial caustic decreases with increasing ellipticity, in agreement with our analysis of
the SIEP. For an SIEP, the height of the radial caustic is constant, in contrast to its
behavior seen in Fig. 6.3. This is not surprising, since the SIEP and SIEMD make
different predictions when the ellipticity is large.

We now consider the effects of shear angle on the structure of the caustics, again
assuming an amplitude of y = 0.1. When ¢, = 0, we find a small naked-cusp

region when e = 0.5. In the absence of shear, naked cusps do not form for this
value of e. In other words, the shear conspires with the ellipticity to create a larger
tangential caustic than would be possible with ellipticity alone. When ¢, = n/4,
the tangential caustic undergoes a counterclockwise rotation, its size decreases, and
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its shape is altered. Nevertheless, it continues to resemble an astroid, in the sense
that it is composed of four cusps connected by fourfolds (Schneider et al. 1992;
Petters et al. 2001). We see that the reduction in size of the tangential caustic for
¢y, = m /4 removes the naked cusps we found when ¢, = 0 and e = 0.5. When the
shear and ellipticity are perpendicular (¢, = m/2), the shear and ellipticity partially
cancel out, leading to a substantial decrease in the size of the tangential caustic.
Although the values of ellipticity and shear angle we have considered do
not represent an exhaustive sampling of the (e, y) plane, the nine parameter
combinations whose caustics are shown in Fig. 6.3 provide a fair representation of
caustic topologies expected for realistic lens populations. We note, however, that it
is possible, given an appropriate combination of shear and ellipticity, to generate

e=0.1 e=0.1 e=0.1
Q=0 Qoy=1/4 . L Qy=m/2

e=0.5 e=0.5 e=0.5
oy=0 oy=m/4 _ oy=m/2

e=0.9 e=0.9 e=0.9
Qoy=0 Qoy=m/4 Qoy=m/2
AN N A
= — . o ___—//\
_— T _{\\/ = =
T ; ;
oy A N

Fig. 6.3 Caustics for a SIEMD with shear for various values of ellipticity e and modified shear
angle ¢, . The shear amplitude is fixed at y = 0.1
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caustics for which six, or even eight, lensed images can be formed (Keeton et al.
2000b). Such exotic caustics are discussed in more detail by Schneider et al. (1992)
and Petters et al. (2001).

6.2 Lenses with a Core of Finite Density

An important property of singular isothermal models is that the central density
diverges, which does not occur in nature. One simple way to remedy this is to
replace the radial coordinate o; = /g?x*+ y?, where 0 < ¢ < 1, by ¢} =

Vg% (x2 + 52) + y2 for some s > 0. This gives rise to a radial caustic with a critical
curve that is no longer a single point. The image number changes by two as the
source crosses this radial caustic rather than changing by one, as in the case of a
pseudocaustic. Since a source that is far from the lens is singly imaged, a lens with
finite central density always creates an odd number of images. If the central core is
small (s < b), the additional image we find for a source inside the radial caustic
is too faint to observe. This is because it is close to the center of the lens galaxy
and the brightness of the galaxy obscures the image. As it happens, even a lens that
is singular at its center behaves like a nonsingular lens as long as its convergence
k o« R77 is “shallower” than isothermal, i.e., 0 < n < 1.

6.2.1 Emergence of Radial Caustics

Recall that a caustic forms whenever the magnification diverges. In the axisymmet-
ric case, this occurs only for a source at the origin. For a point mass, a radial caustic
is not produced. A singular isothermal lens gives rise to a radial pseudocaustic,
where the magnification vanishes. To determine when a radial caustic forms, we
consider a power law lens with potential

b (R\"?
V(R) = — ; (Z) . (6.26)

The inverse magnification works out to be

o (O | S

The first factor vanishes when R = b. This critical curve maps to a source at the
origin. The second factor vanishes when

R=(1—n)ib. (6.28)
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This is the equation for the radial critical curve we have been seeking. The
corresponding caustic is described by

1Bl = n(1 —p=m/1p, (6.29)

i.e., a circle of radius |B|. It turns out that g itself is negative which means that
images merging on the radial critical curve are on the opposite side of the lens from
the source.

6.2.2 Central Images

When the density profile is shallow enough to admit a radial caustic, a source interior
to that caustic will be observed as an odd number of images (cf. Sect. 4.4), one of
which will be faint and close to the center of the lens. It is not generally possible
to ascertain the position and magnification of this “central” image analytically, so
we offer a qualitative discussion here. We can use the presence or absence of a
detectable central image to constrain the central slope of a singular lens or the core
radius of a nonsingular lens. If a central image is not observed, we can place an
upper limit on its brightness, which corresponds to a lower limit on the central slope
or core radius of the lens. If a central image is observed, we can use its brightness
to determine an actual value of the slope or core radius (see Problem 6.8).

In practice, using a central image to constrain the mass distribution of a lens
galaxy requires observation at wavelengths where the lens galaxy itself is not bright.
This is because we expect central images to be much fainter than the cores of
galaxies at optical wavelengths. The absence of central images in radio observations
of the lenses B0739+366 and B1030+074 allowed Rusin and Ma (2001) to constrain
the central power law slopes of the surface mass densities to be no smaller than
n = 0.85 and n = 0.91, respectively. Turning the problem around, Keeton (2003)
used stellar distributions in nearby elliptical galaxies to determine the expected
range of central power law density profile slopes, from which the magnification of
the central image can be inferred. While magnifications as large as 0.1 are possible,
typical values are closer to 0.001, making detection extremely difficult even at radio
wavelengths.

Since the centers of most if not all galaxies harbor supermassive black holes,
it is important to understand how such objects alter the caustic structure of lens
galaxies. Mao et al. (2001) showed that central images cannot form in nonsingular
isothermal lenses that contain black holes more massive than a certain threshold.
Even for masses below this value, the central image may become unobservably
faint. Alternatively, a second central image may form, as Rusin et al. (2005)
demonstrated for more general lens models. In practice, the case of two central
images is indistinguishable from that of one central image. The important point is
that central images are demagnified by black holes. Thus a given magnification is
degenerate to some extent with respect to black hole mass and inner density profile.
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To date, a central image has been observed only in the lensed quasar PMN
J1632—0033. Winn et al. (2004), who discovered this image at radio wavelengths,
found a logarithmic slope of n = 0.91 in the surface mass density profile. Their
model included a black hole of ~108M. Varying this mass did not noticeably
change the value of 7. Rusin and Ma (2001) found that increasing the black hole
mass led to a mild decrease in the profile slope. Both groups concluded that
suppression of the central image by a massive black hole is required in order for
theory and observation to agree. We note that a fifth image was also detected in the
quasar lens SDSS J1004+4112 (Inada et al. 2005), but the lensing object in that case
is a galaxy cluster. Since clusters are known to have shallow inner density profiles,
the detection of a central image is not so surprising, though it is still useful for
modeling purposes (see Sect. 7.1).

6.2.3 Caustic Metamorphosis

Referring to Eq.(2.57), we find that the magnitude of the deflection angle at a
distance R from the center of a nonsingular isothermal sphere is given by

b
anis(R) = & (x/R2 +52— s) . (6.30)
The lens equation for an NIS with external shear is then

(w/x2+y2+s2—s
U=x-—

x2 +y2

)bx+yx (6.31a)

(6.31b)

Vx4 y2 52—
v=y—< > by—vyy,

x2-|-y2

which reduces to Eq.(6.3a) in the limit s — 0. Rather than writing down the
amplification tensor, we compute the magnification directly from the deflection
vector, o, the partial derivatives of which are

oy 0 ( " )
= — cos ¢ —
dx 0x ONIS v
OR danis " d¢p in ¢
= — CoS ¢ — —aNis Sin ¢ —
ox dR ox NI 4
b OINTS > aNIS . o
_< R2+s2_ R cos q)—i—Tsm ¢ —y

beosd s o) (6.32a)
= — cos -y .32a
v/ R2 + 52 R
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o0ty day d
oy~ ox T dy (aNis COs ¢ — y x)
oR d a
= @ ZI\RIIS cos¢ — %ams sin ¢
= ( b —ZaNIS>sin¢cos¢
VR? +52 R
b OéNIs> :
= — sin(2¢) (6.32b)
(2\/ R? + 52 R
dary 0 .
—— = —(oNisSing +y y)
dy 9y
aR d a
= 5 ZI;;S sin¢ + %ams cos¢p +y
_ b anis \ . o aNIS -
_<m— R)sm ¢+TCOS ¢+ y
b SiIl2 ¢ ONIS
= + cos(2¢) + y . (6.32¢)
vV R? + 52 R
The corresponding convergence is
1 Qo day b
I B 6.33
* 2(8x+8y> 2VR? + 52 (€39

The components of the toral shear are

1 (doy, Oy ONIS
ry=> (W _ W) - (K - T) cos(2¢) — y (6.34a)

ry =

oty _ ONIS\ .
7y = (K — T) sin(2¢) , (6.34b)

so that the shear amplitude is

I'=,/I'?+T?
_ \/(K — “N—IS)Z —2y (K - %) cos(2¢) + 2 . (6.35)

Our goal is to determine the maximum number of images for a given set
of parameter values. The required information is contained in the signs of the
eigenvalues of the amplification tensor or equivalently its inverse. The inverse
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magnification is given in terms of the relevant eigenvalues as ' = A A_, where

A+ = 1 — k F I'. Recall that both eigenvalues are positive when the source is
sufficiently far from the lens. Each time a source crosses a caustic on its way toward
the center of the lens, a pair of images is created on a critical curve, and one of the
eigenvalues changes sign. Therefore, the signs of the eigenvalues at the origin tell
us how many images are produced. If both A4 and A_ are positive, no caustics will
form, and the total number of images will be one; if either A4 or A_ is negative,
there will be one caustic, and the total number of images will be three. If both A
and A_ are negative, there will be two caustics, and the total number of images will
be five.

In order to compute A4 at the origin, we begin by setting ¢ = 0. The shear
amplitude then reduces to

r= 6.36
R (6.36)
This implies that
ONIS
A+=1—2K+T+y (6.37a)
=1 S (6.37b)
R
Letting R — 0, we obtain
b
0)
A =1——=xy. 6.38
+ 25 Y (6.38)
These eigenvalues vanish when
= b (6.39)
st = ETIh .

Note that 0 < s < s—. If s < s, then both eigenvalues are negative at the origin;
ifsy <s <s_,then Ay > 0 and A_ < O at the origin; and if s > s_, then both
eigenvalues are positive at the origin. In other words, as an NIS with shear becomes
less concentrated, its lensing power diminishes. For sufficiently large s, multiple
images do not form.

Figure 6.4 shows critical curves and caustics for various core radii. We assume
b =1and y = 0.1, in which case s, = 5/11 ~ 0.455 and s_ = 5/9 = 0.556.
We see that as s increases, the inner critical curve increases until it touches the outer
critical curve (see Problem 6.4), and then it shrinks and disappears at s = s4. As s
increases further, the remaining critical curve shrinks until it disappears at s = s_.

Note that this lens can produce multiple images for any s < s— = b/(2(1 — y)).
Compare this to what we found for an NIS without shear in Sect. 2.3.3, which can
have multiple images only for s < b/2. This difference is explained by the presence
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Fig. 6.4 Illustration of caustic metamorphosis for an NIS with Einstein radius b in the presence of
external shear with magnitude y = 0.1 and orientation angle ¢,, = 7. In each row, the top panels
show the caustics (green) for different values of the core radius, while the bottom panels show the
corresponding critical curves (blue)

of external shear. For a circular lens, the condition for strong lensing is ¥ > 1. In
the general case, on the other hand, the conditionis A_ < 0,1i.e.,k +y > 1.

Varying s alters not only the structure of the caustics but also their relative sizes.
In particular, Fig. 6.4 shows that naked cusps emerge between s = 0.2b and s =
0.3b. In the limit s — 0, a shear of y = 0.1 is insufficient to produce naked
cusps. For a nonsingular lens, as s increases, the radial caustic shrinks more than
the tangential caustic, whence the naked cusps. A similar effect is observed for a
singular lens as the central density profile becomes shallower. This argument holds
whether a lens is noncircular due to external shear or intrinsic ellipticity. Indeed,
Oguri and Keeton (2004) found that naked cusps can form for systems with larger
axis ratios if the inner density profile is shallower than isothermal. One such lens is
the system SDSS J1029+2623 (Oguri et al. 2008).
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6.3 Ring Images of Extended Sources

We have seen that noncircular lenses cause a point source to appear as one or more
discrete images. In particular, Einstein rings do not form, even if the source and
lens are perfectly aligned. For an extended source, each point within it is lensed
into discrete images. If none of the source lies on a caustic, each of its points has
the same number of images. Consequently, the source will appear as a number of
extended images. If, on the other hand, any point of the source lies on the tangential
caustic, two or three of its images lie on the tangential critical curve. If the source
covers the entire tangential caustic, its images cover the critical curve and are
highly magnified. However, a ring image need not coincide with the critical curve,
because the magnification of an extended source involves a convolution integral.
The advantage of ring images is that they offer more observational constraints than
the two or four images typically seen in quasar lenses. Note that the term “Einstein
ring” is often used in the context of extended sources, whether or not the lens is
axisymmetric.

Suppose the lens surface brightness can be described by a continuous function
1(6). Kochanek et al. (2001) pointed out that it is useful to define a “ring curve” as
the set of points where the surface brightness is maximized in the radial direction;
this does not characterize the radial thickness of the ring, but it does describe the
angular structure. Sample ring curves are shown in Fig. 6.5. The point on the ring
curve at azimuth ¢ is found by solving

Vol (6) - er(p) =[Vol ()] er(¢) =0. (6.40)

Here er(¢) is the outward unit vector in the radial direction, and 8 =

. T _ . .
[Rcosd) RS1n¢] . For elliptical sources, it proves more convenient to work
with the source-plane gradient

20 0

= — =AVy, 6.41
=38 8 0 (6.41)

where A = A(0) is the amplification tensor. Using this expression and conservation
of surface brightness, Eq. (6.40) can be recast as

T
(A1 B)] er@) =0, (6.42)

where 1) (B) is the surface brightness of the source. If the source has elliptical
symmetry, we can write

19B) =791 where 7= (8- B0)"SB - Bo), (6.43)
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source plane image plane

Fig. 6.5 Sample Einstein rings produced by an isothermal elliptical mass distribution. In each row,
the left panel shows the extended source along with the tangential caustic and radial pseudocaustic,
while the right panel shows the corresponding ring image along with the tangential critical curve.
The “ring curve” is shown with a dashed line. The top row has a source at the origin, while the
bottom row has the source offset slightly

for a source centered at . The tensor

_ cos? gy + q;z sin? s (1 — qs’z) COS 5 Sin @

= . . 6.44
[(1 — q;z) COS (5 Sin @ q;z cos? ©s + sin? ©s } ( )

describes an ellipse with axis ratio 0 < g; < 1 whose major axis makes the angle
0 < ¢ < 27 with the horizontal. Equation (6.42) can now be written as

3J®

0=2"—[A'S(B ~Bo)] e

3J®

(B—Bo)"SA 'eg. (6.45)
an

=2
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If we assume that the source brightness profile J (S)(n) is strictly decreasing, the
derivative never vanishes, so it can be factored out. Thus the ring curve depends
only on the angular structure of the source, not on its brightness profile, and it can
be found as the solution of

[0 —a(@) — Bol’ SA lexg =0, (6.46)

where we used the lens equation to replace  with § — «a(9).

As a specific example, consider the generalized isothermal lens defined by
Egs. (6.19a). It turns out that eg is an eigenvector of A~ with eigenvalue 1,° so
A~lep = eg. If the source is circular, then S is the identity matrix. With these
simplifications, Eq. (6.46) has the solution

Riing(¢) = F($) + Bjer($). (6.47)

Note that the ring curve depends on the angular structure of the potential (6.19a),
whereas the critical curve depends on that of the convergence (6.19b): Rt (¢p) =
G(¢). Thus, the ring and critical curves generally have different shapes (see
Fig. 6.5). See Kochanek et al. (2001) for discussion of more general geometries.

6.4 Perturbations Due to Small-Scale Structure

So far we have supposed that the lens galaxy has a smooth mass distribution
described by a simple function. In reality, however, the mass can be concentrated
on a variety of scales: galaxies contain tens of billions of individual stars; they are
orbited by up to a few dozen small, satellite galaxies; and simulations of galaxy
formation suggest that the visible satellites are a subset of large population of
“subhalos,” or gravitationally bound clumps of dark matter that orbit within the
galaxy’s overall dark matter halo. While both stars and subhalos may be small
compared to the overall lens galaxy, they may nevertheless be important for lensing,
especially if their Einstein radii are comparable to or larger than the angular size of
the source. In this section we briefly discuss the main qualitative effects of small-
scale structure.

6.4.1 Millilensing by Dark Matter Substructure

First consider a galaxy that contains Ny}, subhalos, where the number could be a
few dozen to a few hundred. For lensing purposes we do not necessarily need to

5The isothermal model does not have any radial magnification.
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distinguish between visible satellite galaxies and dark matter subhalos. We can use
the principle of superposition to write the lens potential as a sum of contributions
from the large-scale, smooth component of the lens and the many subhalos:

Nsub

Y (0) = Ysmootn (0) + Y ¥i(6 — ), (6.48)

i=1

where ¥smooth 1S the lens potential for the smooth mass distribution, while v; is the
lens potential for subhalo i, which is centered at ;. Different models have been
used for subhalos (see, e.g., Nierenberg et al. 2014), but one simple model is an
isothermal sphere whose outer parts have been stripped away by tidal interactions
with the large galaxy.® One way to construct a tidally truncated isothermal model is
to write the 3-D density as

o’a®

T 2GR+ )@+

As with the nonsingular isothermal sphere discussed in Sect. 2.3.3, o is the velocity
dispersion, and s is the core radius. The new parameter a is referred to as the
truncation radius: the extra factor of a2 / (@® + r?) has little effect for r < a
but serves to suppress the density beyond r ~ a, such that the total mass is
M = mo*a*/(G(s + a)). The projected surface mass density can be written as

a? 1 1
H ) = G = sad <¢s2 TR Jal+ R2> ' ©20

This has the form of the difference between two nonsingular isothermal spheres,
one with core radius s and the other with core radius a.’

Figure 6.6 illustrates how subhalos affect lensing by showing magnification maps
(i.e., plotting || as a function of position @). The left panel shows a smooth SIEMD,
while the middle and right panels show models in which 2% of the total mass of the
galaxy has been placed in truncated isothermal spheres. The overall structure of
the magnification map, including the location of the critical curve, does not change
very much. However, the subhalos create small perturbations on scales comparable
to their Einstein radii. A point image that forms near a subhalo can have its position,
magnification, and time delay all perturbed (relative to the original smooth model),
while an arc or ring image can have its shape distorted. The spatial scale for such
perturbations is typically a few to tens of milliarcseconds, so the phenomenon is
often referred to as “millilensing.” Its implications are discussed in Sect. 6.6.

6 Another model for subhalos is the NFW model that we will encounter in Sect. 7.1.1.

7In some literature, especially for cluster lensing, this model is referred to as a pseudo-isothermal
elliptical mass distribution, or PIEMD, after Kassiola and Kovner (1993). It has also been called a
pseudo-Jaffe model (Keeton et al. 2000a).



166 6 Strong Lensing by Galaxies

Fig. 6.6 Examples of magnification maps in the image plane for a smooth lens (left) and one with
substructure (middle and right). The smooth component here is an SIEMD. In the middle panel,
2% of the mass has been replaced by dark matter subhalos. In this example all of the subhalos have
the same mass, but in reality they would have a range of masses. In the right panel, the subhalos
are 10x less massive but there are 10x as many, so the total mass in subhalos remains the same

6.4.2 Microlensing by Stars

Now consider a galaxy that contains N, stars. Formally the lens potential can again
be written using the superposition principle:

Nstar
¥ (0) = Ysmootn(®) + Y _ 0 ;In10 — ;] , (6.51)

i=1

where 6 ; is the Einstein radius for star i. In practice this expression is difficult to
use because it contains billions of terms. It is more useful to “zoom in” and examine
a local region where the number of stars is more modest. Formally, we write

Nstar
¥ (00 + A8) = Yamoon (B0 + AB) + Y " 0F ;In|0 + A0 — 0] , (6.52)
i=1

and then make two approximations. First, we make a Taylor series expansion
of Ysmooth and keep only the lowest order terms, which correspond to constant
convergence and shear (cf. Sect. 4.1.3). Second, we limit the sum to stars in some
“local” region where 8; — 6 is comparable to A#.® Thus, we approximate the lens
potential as’

8This local region needs to be defined with some care because the deflection can be non-negligible
even at many times the star’s Einstein radius (see, e.g., Wambsganss 1999).

This is a generalization of the Chang-Refsdal lens mentioned in Problem 5.2 to multiple stars.
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1 1
Y(x,y) =~ zl(smooth()62 + yz) + Eysmooth(xz - )’2)

Nioc

+ 0f;In \/(x —x)?+(y—yi)?, (6.53)

i=1

where (x, y) are the components of A# in a frame aligned with the direction of the
shear and (x;, y;) is the position of star i in this frame. Also, the number of stars
in this local region is Njoc. They contribute convergence kgiars = ZIN:R’]C 77912«:,1‘ / Aloc
where Aj is the area of this local region.

It is important to understand the scales involved. Lensed images typically appear
about an arcsecond from the center of a lens galaxy. The Einstein radii of the
individual stars are of order a few microarcseconds, so the local regions we need
to consider are typically a few tens of microarcseconds across (and centered on
each of the main images). Within each region, there can be a complicated caustic
network as shown in Fig. 6.7. Since the observed magnification is a convolution of
the source surface brightness with the lensing magnification (cf. Sect. 4.6.2), large
sources effectively average over the caustic network and experience a magnification
that is consistent with a smooth lens model, while sources whose angular size is
microarcseconds or smaller can experience magnifications that are very different
from what a smooth lens model would predict. The stars and source typically move
relative to one another at speeds that correspond to a fraction of a microarcsecond
per year, so the magnification of a small source can change over the course of
months and years. Section 6.6 discusses how this “microlensing” can be used to
study accretion disks around supermassive black holes in distant galaxies.

Fig. 6.7 Example of a ~
microlensing caustic network. W
This figure shows a local %
region that is 20 stellar ‘$

Einstein radii on a side. The

total convergence is

Kior = 0.4, which is divided W
into a smooth piece with

Ksmooth = 0.3 and a __%

contribution Kgiars = 0.1 from <>
é

stars. The shear is
Ysmooth = 0.4, and the
coordinates are chosen to be

aligned with the shear _¢v
Eor ey

‘?
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6.5 Lens Modeling

To this point we have focused on understanding the properties of images produced
by a given lens. In many applications, the images are observed, and we need to find
the mass distribution that produced them. Galaxies are complicated objects, so we
should not expect to recover every last detail of their mass distributions, but we can
hope to make a model that captures the key features. In this section we consider
how to solve for parameters of a lens model given a set of lensed images, focusing
on smooth models (see Sect. 6.6 for discussion of models that include small-scale
structure). We examine lenses with point images in detail and discuss some key
points about handling lenses with extended images in Sect. 6.5.3.

6.5.1 Analytic Determination of Lens Parameters

It is useful to start with examples that can be solved by hand. An axisymmetric lens
and a non-axisymmetric lens in a “cross” configuration both have symmetries that
simplify the analysis.

Einstein Radius for an Axisymmetric Lens
From the lens equation 8 = 6 — 0 sgn(f) for an SIS lens, we see that the image

positions are 6+ = B &+ 0g, where the image at 6_ only exists for § < 6. In the
case of two images, it is straightforward to solve for the two lens parameters:

1
B=50r+6-). (6.54a)
0p = %(9+ —0_). (6.54b)

For a point mass, on the other hand, 8 =6 — 6% /6, which implies the positions

1
0y = 3 (,3 + /B2 +49,%:> ) (6.55)

In terms of these positions, the lens parameters are (recall that 64 and 6_ have
opposite signs)

B=06,+6_, (6.56a)

0p = /—0, 6_ . (6.56b)
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Notice that the lens parameters depend on our choice of model. If we define
d+ = |0+|, we see that the Einstein radius of an SIS lens is the arithmetic mean of
d4 and d_, while for a point mass it is the geometric mean of these distances. If the
image configuration is roughly symmetric about the lens (d+ = d_), the Einstein
radii inferred from the SIS and point mass models will be similar.

Einstein Radius and Shear Magnitude for a Non-axisymmetric Lens

Galaxies are rarely isolated, so we should include shear in our model, at the very
least. (Also, galaxies are rarely spherical, but generalizing to elliptical models
usually precludes solving for parameters analytically.) Suppose that we observe a
lens with a “cross” configuration, where images form at +6; on the x-axis and a
second pair at =6, on the y-axis. We immediately rule out a spherical lens, since
the images and lens are not collinear. Equation (6.3a) describes an SIS lens, so we
assume that model for convenience. Letting x = 6; and y = 0, we find u = 0. If
x =0and y = 6,, we find v = 0. Thus, a cross configuration results from a source
directly behind the lens.

We have two remaining nontrivial equations from which we can determine the
Einstein radius and shear:

0 =61 —bsgn(6)) + yo1, (6.57a)
0 =6, —bsgn(6) — y6s,. (6.57b)

Without loss of generality, we assume 6 » > 0. Taking the difference of the above
equations, we find a shear amplitude of

y=— (01 _92> . (6.58)

01+ 6

If 6; > 6, we have y < 0. This is equivalent to a rotation of the shear tensor by
/2. Finally, the Einstein radius of the primary lens is

2016
0+ 6

(6.59)

The equivalent analysis for a point mass gives

0} — 03
_ , 6.60a
v 07 1 02 (6.60a)

202
B2 — 2070

=12 6.60b
07 +63 (6000

Again we find that the source must be directly behind the lens.
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6.5.2 Statistical Determination of Lens Parameters

In typical cases, the lens is not circular, and the source is not directly behind the lens.
One important consequence is that the number of model parameters generally differs
from the number of observational constraints. A common approach is the method of
least squares, where we begin by defining a quantity known as the “goodness of fit”
that has the form

mo obs 72
X2 _ Z|:qj d(p)._qu :|

j=1 %
T
— [qmod(p) _ qobs:l S—l [qmod(p) o qobs] , (6.61)
where q° is the ¢-dimensional vector of observational constraints and g™ (p)

is the corresponding vector of model values as a function of the m-dimensional
vector p of parameters we wish to determine. We take the covariance matrix S to be
diagonal, i.e., we assume that the » measurement uncertainties {o;} are statistically
independent. Specifically, we have S;; = 0128,- - Note that the covariance matrix is

always symmetric, even if it is not diagonal. The form of x? is chosen so that more
weight is given to terms with lower uncertainty. Our goal is to have q™°9 as close as
possible to q°®*, which is accomplished by minimizing x> with respect to p.

Einstein Radius for an Axisymmetric Lens

To gain some experience working with the least squares fitting method, we
reconsider the axisymmetric lenses of Sect. 6.5.1. We focus on the image positions
and introduce a goodness of fit evaluated in the source plane:

Xore = Z (8™ - ﬁ?bS)T s (8™ - B™) (6.62)

i=1

where 7 is the number of images. The model source position ™4 is the same for
all images. The values ﬂ?bs are not observed directly but rather are computed from
the observed image positions according to ﬂ?bs = ﬂ(ﬂ?bs) = 0§’bs — a(O?bs). The
quantity ﬂ?bs is independent of the two-component source position ™4 but does
depend on the m — 2 lens parameters pjens. Specializing to the case of two collinear
images with independent uncertainties (so the covariance matrix is diagonal), we
can write

(6.63)

SIc

o4 o_

2 |:ﬂm0d - ﬂ—?—bs(plens) :|2 + |:ﬂmod - ﬂgbs(plenS):|2
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where o4 are the standard deviations of the measurements 64. Our goal is to find
the values of the parameters that minimize 2.

As before, the model parameters are the source position S and the Einstein
radius @g. To find the source position, we minimize x2. with respect to ™4,
Setting the derivative

aXs%‘c _ 2 mod obs 2 mod obs
W—E(ﬂ —,3+)+z<,3 —ﬂ_) (6.64)

equal to zero, we obtain

03,85’:’5 + O__%ﬂgbs

d
ﬂmo =
2 2
o- + (ogind

(6.65)

To minimize x2, with respect to the Einstein radius, we consider the derivative

3 Xore 1 d b B 1 d bs) OB
Ghsie _ o | L (pgmod _ gobs) PP+ 7 (gmod _ gobs) ZP— | 6.66
00 o‘_%_ (ﬂ 2 ) 00 + o2 (ﬂ p- ) 00 ( )

Since we must specify a model in order to ascertain the dependence of the right-hand
side on 6, we first consider the SIS. In that case, the lens equation yields

B =0, FOp. (6.67)

Setting 0 strc /00 = 0 then gives

1
O = | ——— ) 026, —020_ + ™92 —52)] . 6.68

In order to compare with our results from Sect. 6.5.1, we set 04 = o_ = o and take
the limit as ¢ — 0. Then Egs. (6.65) and (6.68) reduce to

mod __ 1 obs obs
gt = 2 (B +82) (6.692)
0p = % Oy —6_) (6.69b)

as before.
We now turn to the point mass, for which

92
B =6, — -E. (6.70)
0+
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Equation (6.66) then reads

9 qurc 1 'Bmod 9]21_ 1 ,BmOd 9122
Wsre _ 49, | — 1+ L)+ (E——1+ZE)|. 671
e o2\ er e Tz T e ©70

Setting this to zero gives three solutions for 6. One of these is 0 = 0, which we
can discard since it corresponds to the case of no lensing. As for the other two, we
have

040_(02 +02) — pm(020, + "29)} . (6.72)

0% =0.0_
E + |: Oiai + 6262

Combining this with Eq. (6.65) and again taking the limit 04 = 0_ = 0 — 0, we
recover Egs. (6.56).

The General Case

More generally, the observational constraints can include the fluxes and time delays
as well as the positions of lensed images. Thus, we use the decomposition

2 2 2 2
Xtot = Xpos + Xftux T Xidel - (6.73)

The observational uncertainties are measured in the image plane, so it is best to
define the x2 contribution from the image positions in that plane by writing

n

X = D67 D) - O?bS]T s [oram — 6] | (6.74)
i=1

where there are n images and S; is the covariance matrix of image i.'” This
expression requires that we solve the lens equation for each set of lens parameters
that we wish to evaluate, which can be computationally demanding. In order to avoid
solving the lens equation, we make a Taylor series expansion of the lens equation as

8'Bmod
'Bmod ~ ﬂmod (amod . oqbs)
gmod _gobs 80m0d ! !
i i i 0;“0d=0?bs
~ QObs —1 d bs
~ B+ AT (000 — 05 | (675)

10f the images are blurred together, Xgos can be generalized to account for covariances between
different images.
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where A; = A(0l.°b5) is the amplification tensor at image i. This allows us to express

2
Xpos a8

n

X2 ~ Z [ﬂmod _ ﬂ?bs]T 7! [ﬁmod _ ﬁ;)bs:l _ (6.76)

i=1

This is similar to Eq. (6.62), except that the covariance matrices S; in the image
plane have been replaced by their counterparts T; in the source plane. The two are
related by

Ti=A"'S; (A;‘)T : (6.77)

The dependence of T; on A; means that although S; is diagonal, T; need not be.
Moreover, the T; are in general different from one another, even if all S; are equal.

Keeton (2010) discusses the relative merits of the exact and approximate
expressions for X[%os' For now, we proceed with Eq. (6.76) for illustration. Since this

expression is quadratic in ™9, we can solve for 8™° analytically. As a reminder
of how to take the gradient of xgos with respect to a vector ™4, consider a scalar
function of the form @ (x) = xT Mx, where x has components x; and M is a square,
symmetric matrix with constant elements. The kth component of V@ is

0P
E = ax]( szMij

Z (8ik Mijxj + xi M;j8 j)
i,j

= ZMijj + th ik
= 22ngxe, (6.78)

where the last line follows from the symmetry of M. In matrix form, we have V@ =
2Mx. Applying this result to Eq. (6.76), we can write

n
Vit =23 T, (8™ - ™) (6.79)
i=1

where the gradient is taken with respect to ™4, Note that T; and its inverse are
symmetric since the covariance matrix, S;, is symmetric. Setting this to zero gives

cpmd =4, (6.80)
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where

C=)T" = > Als/'A (6.81)

i=1 i=1

n n
d=> T8 = Y ATS'AB™. (6.82)

i=1 i=1

For a single lens plane, A; is symmetric, but we have not used this in our derivation,
in order to be as general as possible.

The flux and time delay terms in Eq. (6.73) are also written as sums of squared
differences between model and data:

2
n d obs
wi(p) "¢ — F;
Xi%ux = Z l SO'F : s (68321)
i=1 i
AT™Od(py — ATOb T
2 ij ij
Xiel = Z [ v , (6.83b)
ij

where of, is the measurement uncertainty for the flux of image i, u;(p) is the
predicted magnification for image i, which depends on the lens model parameters,
and FsmOd is the flux of the source, which is another parameter of the model. In
Eq. (6.83b), ATi‘;bS is the differential time delay measured between images i and j,
0AT;; 1s its uncertainty, and the sum runs over all image pairs for which the time
delay has been measured. Note that Xéux is quadratic in F, sm"d, so the optimal value
can be found analytically, following a procedure analogous to what we did for ™4
above.

6.5.3 Modeling Lenses with Extended Sources

The preceding discussion focused on lenses with point-like images for which the
constraints are the positions and fluxes of the images as well as differential time
delays. We now consider lenses in which the source is extended and the images
are arcs or rings. At many wavelengths,!! observations use charge-coupled devices
to collect light into discrete pixels, so the data consist of the brightness in each
pixel. We can collect them into a data vector d° = {diobs} where the index i
runs over pixels. Let ; be the angular position of pixel i. Suppose we have a lens

1I'The exception is radio wavelengths, where observations usually use interferometry. The model-
ing methods discussed here can be generalized to handle interferometric data.
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model characterized by parameters piens. We also have to build a model for the
extended source, which is described by a surface brightness distribution fyrc (8|Psrc)
that depends on some parameters ps.. Then we can use conservation of surface
brightness (cf. Sect. 4.6.1) to write the model prediction as a vector d™¢ with
components

dl'mOd(plens» Psic) = fore [0i — o (0;|Plens) |Psrc] - (6.84)

(The formalism can be generalized to include blurring due to the atmosphere and
telescope optics.) Then we can define a goodness of fit

X2 — (dmod _ dObS)TS—l(dmOd _ dObS) , (685)

where S is the covariance matrix for the pixel brightnesses.

The modeling can proceed in a couple of different ways. One approach is to
make assumptions about the structure of the source such that fg. can be described
by a modest number of parameters. Then the lens parameters, piens, and source
parameters, Pgc, can be varied together in an attempt to find the best overall fit to
the data.

A different approach is to decompose the source into a set of basis functions
and fit for the amplitude of each mode. For example, one possibility is to define
pixels in the source plane and let the set of source plane brightnesses, s = {s;}
where j runs over source plane pixels, be free parameters. In this case, conservation
of surface brightness means that the predicted image can be written in the form
dmod — L(piens) S, where the “lensing operator” L is a matrix that, in its simplest
form, has entry L;; = 1 if the lens model connects image pixel i to source pixel
J»and L;; = 0 otherwise. (The matrix can be generalized to allow interpolation
between pixels.) In this case the goodness of fit has the form

x% = (Ls — d°®)Ts7I(Ls — @°). (6.86)

This is quadratic in s, so the optimal set of source brightnesses can be found
analytically following a procedure similar to that in Sect. 6.5.2. The same idea
can be applied to other choices of basis functions, including smooth functions
known as shapelets. Depending on the number of modes used, the source may
have a considerable amount of freedom that can lead to unrealistic source models
(especially in the presence of noisy data). It is therefore common to add a term to x>
that penalizes models for not conforming to certain assumptions about the source
structure. Extensive discussions of this “free-form” approach to extended source
modeling can be found in the literature (e.g., Warren and Dye 2003; Suyu et al.
2006; Vegetti and Koopmans 2009; Tagore and Keeton 2014; Birrer et al. 2015;
Tagore and Jackson 2016).
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6.6 Applications

Strong lensing by galaxies has been used for a wide range of astrophysical
applications. While we cannot give an exhaustive review of the literature, we can
introduce the different types of applications and provide references for readers who
wish to dig deeper into particular topics.

One set of applications involves the physical properties of lens galaxies. Lensing
is useful here because it provides a unique way to measure masses. Lens models
constrain the FEinstein radius in a way that is not very sensitive to the choice
of model,'? and the mass within the Einstein radius is among the most precise
mass measurements available for distant galaxies. Mass measured with lensing is
generally larger than the mass that can be ascribed to the visible stars and gas
(even accounting for uncertainties in how much stellar mass is associated with a
given luminosity), which provides strong support for the hypothesis that galaxies
contain significant amounts of dark matter. Yet lensing is often limited in its ability
to probe the mass distribution far from the Einstein radius. To learn more about
the full density profile of a lens galaxy, three approaches have been taken. One is
to combine lensing with other observations, such as the motions of stars within
the lens galaxy, which probe the mass distribution on smaller scales. A second
approach is to combine a number of lenses with different Einstein radii, making
some (reasonable) assumptions about scaling relations in order to compare different
galaxies. A third approach is to look for special lenses whose images span a range of
distances from the center of the lens, offering mass constraints across that range. The
general finding is that stars and dark matter combine to create a density profile that
is close to isothermal. Lensing supports growing evidence that stellar populations
can vary from one galaxy to another in a way that is not fully understood. (See the
review by Treu (2010) for more discussion and an extensive set of references.)

A second application focuses on finer details in the mass distributions of lens
galaxies. As discussed in Sect. 6.4.1, substructure in the lens galaxy can lead to
images that are inconsistent with a smooth mass distribution. Such millilensing
was first noted in four-image lenses with flux ratio “anomalies” that could not be
explained by simple, smooth lens models (Mao and Schneider 1998; Metcalf and
Madau 2001; Dalal and Kochanek 2002; Chiba 2002). The concept of substructure-
induced anomalies has been extended to positions and time delays in quasar lenses
(Chen et al. 2007; Keeton and Moustakas 2009), as well as to the shapes of arcs
and rings (Koopmans 2005; Vegetti and Koopmans 2009; Hezaveh et al. 2013a). If
the anomalies are thought to be dominated by a single subhalo, its properties can
be constrained through direct modeling as in Sect. 6.5 (Vegetti et al. 2010a,b, 2012;
Nierenberg et al. 2014; Hezaveh et al. 2016b). If the plethora of other subhalos
throughout the lens cannot be ignored, more sophisticated statistical analysis

12Section 6.5.1 shows that the inferred Einstein radius does depend on the choice of model, but
the quantitative difference between results from various models is typically no more than a few
percent.
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is needed (Hezaveh et al. 2016a; Birrer et al. 2017; Chatterjee and Koopmans
2018; Bayer et al. 2018); in particular, Cyr-Racine et al. (2016, 2018) present a
comprehensive theory of lensing with an extended population of subhalos. Small
halos projected along the line of sight need to be considered as well (Metcalf 2005;
Inoue 2016; Despali et al. 2018). Current results certainly indicate that lensing has
a unique ability to detect small-scale structure and may ultimately help determine
the fundamental physical properties of dark matter particles.

A third application exploits a fortuitous match between interesting scales in the
lens and source. As discussed in Sect. 6.4.2, stars in the lens galaxy create spatial
variations in the lensing magnification on scales of microarcseconds. The optical,
ultraviolet (UV), and X-ray emission from quasars originates from an accretion disk
around a supermassive black hole that is small enough to be affected by microlens-
ing. Thus, in quasar lenses the magnification can vary with both wavelength
(because the emission region is smaller for X-rays than for UV and optical light)
and time (as the stars and source move relative to one another), and observations of
these effects can be used to measure the sizes of accretion disks as well as the density
of stars responsible for microlensing. The analysis requires sophisticated statistical
techniques that include generating many realizations of caustic networks (like the
one shown in Fig. 6.7; see Kochanek (2004) and Mediavilla et al. (2006, 2009) for
more discussion), but the effort is rewarded by unique constraints on structures that
are far too small to observe directly. Overall, microlensing shows that accretion
disk sizes generally scale with black hole mass in a way that follows theoretical
predictions, but the optical sizes are larger than expected. It also supports the dark
matter picture by indicating that stars cannot account for 100% of the mass density
in the vicinity of lensed images. (See Kochanek et al. (2007) and Chartas et al.
(2016) for more discussion and references.)

A fourth application likewise gives attention to the sources, but when they
are galaxies rather than quasars. One interesting source population is dusty star-
forming galaxies (DSFGs). Surveys at far-infrared and submillimeter wavelengths
have revealed that a substantial fraction of star formation, especially in the early
universe, occurs in regions that are rich in dust, which absorbs light from the young
stars and reemits it at longer wavelengths. Studying DSFGs is therefore critical for a
complete view of galaxy evolution (see the review by Casey et al. 2014). Most of the
brightest observed DSFGs are lensed by intervening galaxies (they would not be so
bright without lensing magnification; see Negrello et al. 2010; Hezaveh and Holder
2011; Hezaveh et al. 2013b). Determining their intrinsic properties therefore relies
on fitting lens models that jointly reconstruct the light distribution of the source and
the mass distribution of the lens. Because of lensing magnification, such models
can reveal the intrinsic properties of DSFGs with a higher effective resolution than
would be possible without lensing. As new facilities and instruments map spectral
lines in increasing detail, lens modeling that uses the full spectral information offers
a three-dimensional view of the kinematics of these distant star-forming galaxies
(e.g., Geach et al. 2018; Rivera et al. 2018).

The last application we mention considers lenses in their cosmological context.
Because the light rays cover cosmic distances, lensing can be used to probe the
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global geometry of the universe, provided that we understand how the rays are bent
by the lens. Using Egs. (4.24) and (4.25), we can write the differential time delay
between two lensed images at positions #; and 6 ; as

14z DD,
ATy = L S [c0118) ~ 70,18)]. (687

where 7(0|8) = %|0 — BI?> — ¥ (#) is the Fermat potential. If the source varies
with time, the temporal offset between two light curves reveals the differential time
delay AT;;. If we use a lens model to determine the lens potential v and the source
position B, we can combine the time delay and Fermat potential to constrain the
“time delay distance” as

1+ 2z DDy AT;j
i L _ _ 6.88
ar (21, Zs) c D T(0:18) —7(0;1B) o

The time delay distance depends on the lens and source redshifts, obviously, but
it also depends on cosmological parameters through Eq.(3.152) for the angular
diameter distance. The upshot is that gravitational lens time delays can be used
to constrain cosmological parameters. This “time delay cosmography” provides a
valuable complement to other cosmological probes (such as the cosmic microwave
background, discussed in Chap. 9, as well as Type Ia supernovae) because it involves
different physics and different data. There are many details that must be handled
with care, which are illustrated by a project known as HOLiCOW for “Hy Lenses
in COSMOGRAIL’s Wellspring” (Suyu et al. 2017). These include measuring
lens light curves in order to determine the time delays (Bonvin et al. 2017) and
then fitting a lens model (Wong et al. 2017). They also include understanding the
distribution of matter around the lens and along the line of sight (Sluse et al. 2017,
Rusu et al. 2017) in order to avoid a degeneracy associated with the mass-sheet
transformation (cf. Sect. 4.7.2; but see McCully et al. (2014, 2017) for an approach
that accounts for multiplane lensing). With such attention to detail, lensing can
provide cosmological constraints that are competitive with other probes. (See the
review by Treu and Marshall (2016) for more discussion.)

Problems

6.1 For a given source position, we can think of the time delay function 7 (8|8) as
a surface and use Fermat’s principle (Sect. 4.1.2) to find the images as stationary
points on the surface. Plot the time delay surface for an SIS lens with Einstein
radius O = 1” and a source at position (0.3”,0”). Comment on its topography
(i.e., identify the stationary points).
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6.2 We can visualize image configurations without solving the lens equation by
using conservation of surface brightness (cf. Sect. 4.6.1): if the surface brightness
in the source plane is S(f8), then the surface brightness in the image plane is 1 (0) =
S (0 — ot(0)). This is the method that was used to create Fig. 6.1. Make your own
version of the figure for an SIS with external shear.

6.3 For the SIEP model, plot convergence maps for different values of the axis
ratio. Based on what you see, explain why the SIEP is not considered to be a good
model for galaxies.

6.4 For the SIEMD model,
b

2/

the two components of deflection are (see Kassiola and Kovner 1993; Keeton and
Kochanek 1998)

K =

Oy =

—b tan_1 —1 _ qzx
1— qz /qzxz + yz

b S V1-4g*y
ay = ————tanh —_—,
1—42 [q2x2 + 32
and the lens potential can be written as ¥ = x oy + y ay.

(a) Find the tangential critical curve, and show that it is an isodensity contour. Write
a parametric form for the tangential caustic.

(b) The pseudocaustic is the set of points in the source plane that map to the origin
in the image plane. To find it, consider an image plane circle with radius R, map
it to the source plane, and take the limit R — O.

(c) For what range of axis ratios does the SIEMD have naked cusps?

(d) Use the method from Problem 6.2 to make a plot analogous to Fig. 6.1 but now
for an SIEMD lens.

(e) For one of the fold lenses from part (d), use the time delay surface or eigenvalues
of the amplification tensor to classify the images as minima, maxima, or saddles.

6.5 Use the method from Problem 6.2 to plot image configurations for a nonsingu-
lar isothermal sphere with shear.

(a) Consider a small value of the core radius. How is this lens similar to or different
from an SIS with shear?

(b) Consider several “large” values of the core radius that correspond to different
stages of the caustic metamorphosis shown in Fig. 6.4.
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6.6 In Sect. 6.2.3 we considered caustic metamorphosis for an NIS with shear,
focusing on the conditions for critical curves and caustics to disappear. Now find
the value of s for which the two critical curves intersect.

6.7 Suppose you observe three different cross lenses with the following image
positions and brightnesses. (The positions are measured relative to the center of
the lens, and the brightnesses are given relative to the first image.)

Lens | x (") y () Brightness
#1 0.679 | —1.177 | =1
—0.679 1.177 1.000
0.993 0.574 0.621
—0.993 | —0.574 0.621
#2 —0.622 0741 | =1
0.622 | —0.741 1.000
—0.644 | —0.541 0.869
0.644 0.541 0.869
#3 —0.752 0.907 | =1
0.752 | —0.907 1.000
—0.779 | —0.590 0.695
0.779 0.590 0.695

Fit the lenses using an isothermal model that has shear, ellipticity, or both. For each
lens, determine which is the correct model.

Note: You can work analytically, in which case it may be helpful to rotate into
a reference frame aligned with the images. Or you can work numerically using the
methods discussed in Sect. 6.5.2.

6.8 Suppose you observe three different circular lenses with central images. (As in
Problem 6.7, the positions are measured relative to the center of the lens, and the
brightnesses are given relative to the first image.)

Lens |x (") v (") | Brightness
A 1.268 0 =1
—0.765 0 0.7697
—0.103 0 0.0437
B 1.362 0 =1
—0.922 0 0.7306
—0.040 0 0.0060
C 1.406 0 =1
—0.988 0 0.7254
—0.018 0 0.0012
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Fit the lenses using a nonsingular isothermal sphere. How would your results change
if you had an upper limit on the brightness of each central image rather than a
measurement?
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Chapter 7 ®
Strong and Weak Lensing by Galaxy Qs
Clusters

In some parts of the Universe, hundreds of galaxies are bound by their mutual
gravity into enormous structures known as clusters. The lensing properties of galaxy
clusters differ from those of individual galaxies for two reasons: a cluster is a
hundred to a thousand times more massive than a galaxy, and the inner density
profile of a cluster is shallower than isothermal. Since a larger mass means a
larger Einstein radius, the angular separation between the lens and source for which
lensing can be observed is larger for a cluster than for a galaxy. Consequently, there
is a non-negligible probability that two or more sources will be lensed by a single
cluster. The sources are likely to have different redshifts and hence different values
of the distance ratio Dj;/ Dy that enters the reduced deflection angle. Figure 7.1
shows how the distance ratio affects the locations of lensed images.

In our discussion of cored galaxy models in Sect. 6.2, we saw that radial caustics
emerge for density profiles that are less concentrated than the singular isothermal
sphere. This allows the creation of radial arcs for a source sufficiently close to the
radial caustic. The bottom panels of Fig.7.1 illustrate radial arcs and show that
they, too, depend on D/ D;. Section 7.1 extends our previous discussion of strong
lensing to clusters.

Since they are so massive, clusters can produce distortions well beyond the
strong lensing region. These distortions are too small to be detected individually, but
they can be extracted from statistical analysis of thousands of galaxies. Section 7.2
introduces the theory of weak lensing and describes how measurements of shape
distortions can be used to constrain lens mass distributions. Section 7.3 then
discusses applications of both strong and weak lensing by clusters.
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Fig. 7.1 Illustration of cluster strong lensing with sources at different distances behind the lens:
red shows Dys/Dg = 0.5, while blue shows D;s/Ds; = 0.7. The left panels show caustics, while
the right panels show the corresponding critical curves. In the top row, the red source yields a
tangential arc, while the blue source yields a four-image configuration because this source is well
inside its caustic (remember that the red caustic corresponds to a different source plane). In the
bottom row, both sources yield radial arcs. We see that sources with larger values of Dj;/Dj create
images that tend to lie farther from the center of the lens. The lens here is an elliptical NFW model
(see Sect. 7.1.1)

7.1 Strong Lensing by Clusters

7.1.1 Navarro-Frenk-White (NFW) Model

While a power law of the form p o r~7 works well for galaxies (e.g., the singular
isothermal sphere), it does not apply to clusters. A natural generalization is to allow
the power law index to take on one value for small radii and another for large radii.
To ensure a smooth transition between these regimes, we write the density profile as

q

PsTs
— P 7.1
o) = 1)
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where r; is a scale radius such that p o« r~” when r < rg and p o« r=7 when r >
rg. Navarro et al. (1995, 1996, 1997) found p = 1 and ¢ = 3 from cosmological
simulations of cluster-sized dark matter halos. Compared to the isothermal profile,
the NFW profile is shallower near the center and steeper farther out.

To find its lensing properties, we begin by calculating the mass within a sphere
of radius r:

M3p(r) = 477/ prY(")2dr' = dmpgr? |:1n (1 + L) —
0

Is

} .12

re +r

The projected (two-dimensional) mass within a circle of radius R is then (cf.
Problem 2.1)

Mop(R) = 4dmpsry [In| — |+ Fnew | — ) | (7.3)
2r r

s N

where

L _tan'Vx2—-1 (x>1)

Vx2-1
FNew () = \/11_—2 tanh ' V1 —x2 (x<1) (7.4)
1 x=1).

The reduced deflection angle and convergence work out to be

() = dic,, MH/D F Fnrw(x) (7.50)
X
1 — Fnrw ()
x2 -1 ’

Kk (0) = 2k, (7.5b)

where x = 0/6s, 65 = ry/Dj is the scale radius in angular units, and k; = pgrg/ Xerit
is a characteristic convergence that is also known as the lensing strength of an NFW
halo. These functions are shown in Fig. 7.2. Bartelmann (1996) first performed this
analysis in order to demonstrate that NFW lenses can produce radial as well as
tangential arcs.

Clusters usually do not have perfect spherical symmetry, so it is interesting
to consider a projected mass distribution with elliptical symmetry. To define an
elliptical lens model, let (x, y) be Cartesian coordinates in the lens plane, and let us
choose a reference frame that is centered on the lens and has the x-axis aligned with
the major axis of the ellipse. (Any other reference frame can be obtained by rotation
and translation.) We can take the projected mass distribution described by Eq. (7.5b)
and make it elliptical by replacing  with /x% + y2/q2%, where 0 < g < 1 is the
minor/major axis ratio of the ellipse. Then the two components of the deflection
vector can be computed as follows (Schramm 1990; Keeton 2001):
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Fig. 7.2 Convergence (left) and deflection (right) for an NFW lens model, from Eq. (7.5a)

ax(x,y) =qx Jo(x,y) (7.6a)
ay(x,y) =qyJJi(x,y), (7.6b)

where the integrals have the form!

! e (§(u))
Il ) = /0 TEEreT G
h 2 y?
where %-(I/t) =./lu |:X + m] . (77)

(Schramm (1990) and Keeton (2001) also give corresponding expressions for the
lens potential and the components of the amplification tensor.) These integrals
cannot be evaluated analytically, but they can be computed numerically.

7.1.2 Cluster Lens Modeling

Once lensed images are observed, they can be used to constrain the cluster’s mass
distribution in a generalization of the lens modeling introduced in Sect. 6.5. Cluster
mass distributions are sufficiently complicated that any detailed analysis must be
computational, but we can highlight some key principles (for more discussion, see
Kneib and Natarajan 2011).

A simple axisymmetric lens illustrates what can be learned from cluster arcs.
Recall from Sect. 2.2 that the reduced deflection angle can be written as

IThese functions should not be confused with cylindrical Bessel functions encountered in
Appendix C.2.2 and elsewhere.
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4G D;s Mop(D;0)

0) =
«O)= 35D, 8

(7.8)

Tangential arcs form near the Einstein radius, 6, which solves «(0g) = 6. Thus, if
we observe a tangential arc, we can essentially determine 6, and that immediately
yields the mass enclosed by 6 as

¢>D; D07

Mop(Dy0E) = 3G D,
N

(7.9)

By contrast, radial arcs are associated with the radial critical curve, which occurs at
a location where do/d6 = 1. That derivative involves dM>p/df, which is related to
the projected density profile, X'(D;0). The details are more complicated when the
lens is not axisymmetric, but still the basic idea is that tangential arcs constrain the
enclosed mass, while radial arcs constrain the density profile of the cluster.

Long arcs are visually spectacular but rare, because they require the source to
lie on or near a caustic. Multiple images of small, faint galaxies are more common;
for example, the cluster MACS J0416.1—2403 has more than 90 confirmed images
of more than 30 different sources (see Fig. 7.3). The large collection of images can

Fig. 7.3 Hubble Space Telescope image of the cluster MACS J0416.1—2403, taken as part of the
Hubble Frontier Fields program (Lotz et al. 2017). The markers indicate confirmed lensed images,
where the point type and color are the same for multiple images of the same source. (The processed
HST image was provided by D. Coe for the HFF program. Data for the lensed images are given by
Christensen et al. (2012), Jauzac et al. (2014), Schmidt et al. (2014), Diego et al. (2015b), Grillo
et al. (2015), Treu et al. (2015), and Caminha et al. (2017))
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provide a lot of information about the cluster mass distribution, especially if the
images are spread out to cover most of the strong lensing region, but matching
images requires some care. It may not be immediately obvious which small, faint
galaxies are common images of a single background object. Information from color,
morphology, and redshift can be used to determine which galaxies are likely to
be related lensed images (see, e.g., Broadhurst et al. (2005) for more discussion).
Redshifts are particularly important for two reasons. First, they provide a stringent
test of the lensing hypothesis: if two galaxies do not have the same redshift, they
cannot be lensed images of a single source. This test demands precise, well-
measured spectroscopic redshifts. Second, having sources at different redshifts
provides constraints at different distances from the cluster center (see Fig.7.1),
but the redshifts must be known in order to determine the factor D;;/ Dy for each
image system. For this purpose it may be sufficient to use “photometric redshifts”
estimated from color information, as long as a few of the image systems are
anchored with precise spectroscopic redshifts (see Johnson and Sharon 2016).

Clusters contain structure on various scales that needs to be incorporated into lens
models. The visible galaxies, which are tens of kiloparsecs across and hundreds of
kiloparsecs apart, are surrounded by clouds of gas and dark matter that are of order
one megaparsec in size. The gas can be detected directly because it is hot enough to
glow at X-ray wavelengths, and it interacts with photons from the cosmic microwave
background (see Sect. 9.1). The dark matter is detected through its gravitational
influence on the galaxies and gas and through gravitational lensing. These large-
scale components are often treated using either an NFW model or a nonsingular
isothermal ellipsoid. It may be sufficient to use a single halo component if the
cluster has reached dynamical equilibrium, or it may be necessary to use several
such components if the system has had a more active history, such as a recent merger
event, that has led to a more complicated mass distribution. Examples of such lens
models are given in Sect. 7.3.

The galaxies can be observed with optical telescopes and inserted into lens mod-
els at their measured positions. They are often treated using truncated isothermal
models, using Eq.(6.50) or its generalization to an elliptical mass distribution.
With this model, each galaxy in the cluster is described by its position, velocity
dispersion, core radius, and truncation radius.? In most cases there are too many
galaxies to constrain all of their parameters using lensed images alone. It is therefore
customary to estimate the parameters for galaxy i from its observed luminosity, L;,
using empirical scaling relations of the form (see Natarajan and Kneib 1997)

L. No
0, = My (—) (7.10a)

2If the galaxies are allowed to be elliptical, each one has an ellipticity and position angle as well.
Those are often fixed to match the shape of the visible galaxy.



7.2 Weak Lensing by Clusters 191

— i\ (7.10b)
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With this approach lens models need to fit just the three normalization parameters
My, so, and agp; it might be possible to fit for the power law exponents as well,
although it is more common to take those from other observations. The simplest
models let all the galaxies be singular or nearly so (meaning sq is fixed to be zero
or small) and use typical values (14, n,) = (0.25,0.5), (0.35,0.5), or (0.25,0.4)
(e.g., Natarajan and Kneib 1997; Grillo et al. 2015; Raney et al. 2018). The empirical
scaling relations have intrinsic scatter, which has recently been incorporated into the
error analysis for lens models (Raney et al. 2018).

All of the preceding discussion applies to models in which the mass distribution
is built from components that have simple functional forms described by a modest
number of parameters. While such “parametric” models can be made quite sophisti-
cated, ultimately they are only as flexible as the functions out of which they are built.
Some researchers have therefore introduced “nonparametric” methods to allow
more freedom in the mass distribution. For example, one might divide the lens plane
into a large number of pixels and then attempt to constrain the mass in each pixel.
A different approach would be to pixelate the lens potential. In fact, the same idea
can be applied to any choice of basis functions. A variety of implementations can be
found in the literature (e.g., Abdelsalam et al. 1998; Bradac et al. 2005; Diego et al.
2005, 2007; Liesenborgs et al. 2006; Saha et al. 2006; Merten et al. 2015; Merten
2016). Some authors have developed hybrid methods that use parametric models for
the galaxies and nonparametric methods for the large-scale mass distribution (e.g.,
Diego et al. 2015a). We will see examples of both nonparametric and hybrid lens
models in Sect. 7.3.

7.2 Weak Lensing by Clusters

If a source lies outside the caustics, it will not be multiply imaged but it can still be
distorted by lensing. With a single source, it is essentially impossible to determine
how much of the galaxy’s observed shape is caused by lensing shear and how much
is due to its intrinsic ellipticity. However, with a large sample of sources, it becomes
possible to detect shear through its correlated effects on the observed shapes.
Measuring shear then provides valuable information about the mass distribution,
characterized by the convergence. In this section we develop the basic theory of
weak lensing by examining the relationship between shear and convergence.
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7.2.1 General Relation Between Shear and Convergence

According to Egs. (4.22) and (4.52), the convergence « and the complex shear y =
¥+ + iyx are related to the lens potential by

K= %(af + )Y (7.11a)
y = %(8x +id,)%y . (7.11b)

It then follows that

Ve, ) = 502+ D2 )

L e —i0,)2(0, + 10,2
5( x — 1 y) (0x +1i y) Yx,y)

= (B — i3’y (x, ). (7.12)
For a given shear map y (x, y), it is straightforward to obtain the corresponding con-

vergence field « (x, y). Based on our discussion of Green’s functions in Sect. 4.1.1,
we know that the solution of V2G (x, y) =38(x)8(y) is

1
G(x,y) = Zln,/x2+y2. (7.13)

Hence, the convergence in Eq. (7.12) is given by

=) oo
K(x,y) = / f G(x—x',y =)@, —i0,)%y (', y)dx'dy’ (7.14)
—00 J—00

l o oo ’
Ef / ln\/(x —x)2 4+ (y = y)H@ —idy) y (¥, y)dx'dy’.
—o00 J—00

Integration by parts allows us to rewrite this as (Kaiser and Squires 1993; Umetsu
2011)

ENE y @, y) o
= —— dx'dy’ |. 7.15
ke ) = -2 [_oo f_oo [(—x)+iy— )P (7.15)

Since shear is measured using the shapes of images of background galaxies (see
Sect. 7.2.2), it is known only at certain locations. Thus the integral must be
approximated by a sum, which means that the accuracy of the inferred convergence
map depends on both the quantity and quality of shear measurements. It is also
important to realize that the background galaxies have different redshifts and hence
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different values of the D;;/D; factor, so the inferred convergence is effectively
averaged over the distribution of source redshifts.

A similar Green’s function analysis makes it possible to write the shear as an
integral over the convergence (see Problem 7.1):

1 o o K(x/, y/) , ,
Y = —— . dx'dy’. 7.16
y@x.y) i /—oo /—oo [((x —x) —i(y —y)]? Y (7.16)

This expression will be useful in Sect. 7.2.3.

7.2.2 Inferring Shear from Galaxy Shapes

Since shear behaves as a quadrupole, we can estimate it from the quadrupole
moment of the light distribution of a galaxy. The quadrupole-moment tensor is
defined to be

0i = Jor 6 = 61)(0; — 6;)1(8)d%0
v e 1®)d%6 ’

(7.17)

where 1 (@) is the observed surface brightness of the galaxy and the image centroid
is at

5 Jg2 01(6)d%0

An alternative perspective is offered in Problem 7.3. We define the complex
ellipticity e by

c— O11— 02 +2i012

(7.19)
O+ 0»n
A galaxy whose projected image is an ellipse with axis ratio g < 1 has ellipticity
1-q*
e=— Lo, (7.20)
l+gq

where ¢ denotes the angle between the major axis and the horizontal. Note that e is
invariant under the rotation ¢ — ¢+ . The definition of e ensures that this remains
true even for non-elliptical images.

The complex ellipticity of the unlensed source,

(s) (s) ()

(o Qi — @y +2i0y,
(s) (s)
Qi + 9%

(7.21)
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can be related to that of the lensed image through the amplification tensor A from
Eq.(4.41). In terms of unlensed source coordinates f, the quadrupole moment
tensor is given by

© _ Jr2Bi — B (Bj — BHI®(B)d*B

@ Ji I(B)0B ’ (722

where [ (s)(ﬂ) is the intrinsic surface brightness of the source, and the centroid
position is

(s) 2
 fp BIO BB .

T e 9B

=!I

If the source and image are small enough that we may regard A as constant, then the
lens equation reduces to the linear form

B—B=A"10)0—0]. (7.24)
In this case, it can be shown that (see Problem 7.4)
QW =A-1Qa . (7.25)

This expression allows us to write the complex ellipticity €*) of the source (7.21) in
terms of the image ellipticity € and the reduced shear g = y /(1 — «) as

) _ €—2g+ g%

~ e—2g (7.26)
1+ |gl* — 2Re(ge®)

(e.g., Bartelmann and Schneider 2001), where we remind the reader that an asterisk
denotes complex conjugation. In weak lensing, we may typically neglect terms of
quadratic or higher order in g and e. Note that €*) depends on the convergence «
and complex shear y only through the ratio g. If the unlensed sources have zero
ellipticity on average, we can take the expected value of both sides of Eq. (7.26) to
obtain

(e = 2(g) = 2(y), (7.27)

where the second step follows if the convergence is small enough. Kaiser et al.
(1995, commonly referred to as KSB) developed a method for inferring shear values
from measured galaxy ellipticities. While the analytic formulation presented here
captures the main astrophysical ideas, turning noisy measurements into a clean shear
map is not straightforward. In addition, there may be physical effects that invalidate
the assumption that source galaxies have uncorrelated ellipticities with (¢*)) = 0
(see the review by Troxel and Ishak 2015).
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7.2.3 Convergence and Tangential Shear Profiles

Relative to position vector ® = [ Rcos¢ Rsin¢]”, we define

I't (R, ¢) = —y4+(R, ¢) c0os2¢ — yx (R, ¢) sin2¢ (7.28a)
I' (R, ¢) = y+(R, @) sin2¢ — yx (R, ¢) cos2¢ . (7.28b)

The I+ component corresponds to tangential shear relative to # when it is positive
and to radial shear when it is negative; the I'x component corresponds to shear at
an angle of £ /4 relative to 6. Returning to Eq. (7.16) and extracting the real and
imaginary components, we can write

_ 1 o * VA (x_x/)Z_(y_y/)Z /1.7
y4+(0) = —;[OO /;oox(x Y )[(x o _y/)z]zdx dy’  (7.29a)

1 o o A Z(X_x/)(y_y/) I 1.7
X = - s .(7.2
vx(8) nﬁw/;wx(x ) G G =y - (7:290)

Converting the integrals to polar coordinates yields

1 oo p2m
Y+(R, ¢) = ——/ / R'k(R', ¢)
T Jo 0

R?cos (2¢)) + R cos 2¢') — 2RR' cos (¢ + ¢')
% [RZ+ RZ —2RR'cos (¢ — ¢

d¢'dR’
(7.30a)

1 oo p2m
Yx(R, @) = ——/ / R'k(R', ¢")
T Jo 0

R?sin (2¢) + R sin (2¢') — 2RR'sin (¢ +¢') ., .,
X d¢'dR".
[R2 4+ R’?2 —2RR’cos (¢ — ¢")]?

(7.30b)

Equations (7.28) then become:

1 oo p2m
I' (R, ¢) = ;/0 /O R'k(R', ¢

R*+ R cos[2(¢p—¢")]-2RR’ cos(¢p—¢')

[R24+R"2?—2RR’ cos (¢ — ¢")]? d¢'drR" (7.31a)
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1 00 2
FX(R,¢)=—;/O /0 R(R, ¢')

y R"sin[2(¢ — ¢)] — 2RR'sin(¢p — ')

[RZ + R2 —2RR’cos (¢ — ¢,)]2 d¢'dR". (7.31b)

If the lens is axisymmetric, the convergence is independent of ¢, i.e., k = k(R).
Equations (7.31) then take the form

' (R) = % /0 OOK(R’)W(R, RHR'AR’ (7.32a)
I'y(R) = % /O OOK(R/)V(R, RHR'AR’. (7.32b)

The integration kernels are given by

VR R = /271 R? 4+ R cos[2(¢ — ¢')] — 2RR’ cos(¢ — ¢') d¢’
0 [RZ + R? —2RR’ cos (¢ — ¢/)]2
_ /271 R? + R"?cos2¢ — 2RR' cos ¢ (7.33a)
o [R*+ R?—2RR cosg]?
VR R = — /zﬂ R?sin[2(¢ — ¢")] — 2RR'sin(¢ — ¢') de’
0 [RZ + R2 —2RR’cos (¢ — ¢/)]2
B /n R’ sin2¢ — 2RR’ sing
= —7'[ [R2+R/2_2RR/COS¢]2 v
o (7.33b)

where ¢ = ¢ — ¢’. The final line of Eq. (7.33b) follows because the integrand is an
odd function of ¢. From Egs. (7.32b) and (7.33b), we see that I'x (R) vanishes for
an axisymmetric lens. If the convergence is constant, both components of the shear
vanish, and so Eq. (7.32a) implies that

o0
/ W(R,R)R dR' =0. (7.34)
0

To derive an explicit expression for the tangential shear, we evaluate the integral
in Eq. (7.33a). For R’ # R,

27R2 ifR <R
W(R, R = (7.35)
{0 if R > R.
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The integral diverges if R’ = R, corresponding to a delta function. In other words,
/ 27[ !/ /!
W(R,R) = F@(R—R)—}—F(R)S(R—R), (7.36)

where @ is the Heaviside step function. In order to satisfy Eq. (7.34), we must have
F(R) = —m/R. Thus,

1 1
W(R,R)=2n|—-OR—-R)— —=8(R—-R)|. 7.37
( )=2m [RZ ( ) — 54 )} (1.37)
Substituting this into Eq. (7.32a), we obtain
2 R
I''(R) = —/ K(RYR'AR" — k(R) (7.38)
R? Jo

for the tangential shear of an axisymmetric lens. This expression agrees with the
definition of shear in Eq. (2.87).

For a circular background source lensed by a foreground galaxy cluster, the
tangential shear I} is simply the measured ellipticity of the image. If there are
multiple noncircular sources, we can use Eq. (7.27) to relate the average ellipticity to
the average shear. At an angular distance R from the center of the lens, the azimuthal
average of the shear components in Egs. (7.28) and (7.30) is given by

1 2
(M) = E/o Ty (R, ¢) do

1 21 0o 2w Lo
= — k(R ¢ )R
=l

R? + R">cos[2(¢ — ¢')] — 2RR’ cos(¢p — ¢')

[R2+ R? —2RR'cos (¢ — ¢)]? 49 AR do
2 o0
= L2/ / K(R',¢"YW(R, R)R'dR" d¢’ (7.39a)
2= Jo  Jo
1 2
() = E/o I (R, ¢) do
1 2 0o p2m
= m/0 /O fo k(R', "R’
2 o _ ! o A
R sinl2(¢ — ¢)) = 2RR'Sin(@ = ¢) |\ pr g

[R% + R? —2RR'cos (¢ — ¢)]
1

2w 00
=53 / k(R',¢")V(R, R)R'dR' d¢’, (7.39b)
T Jo 0
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where we have used the definitions of W (R, R’) and V (R, R’) from Egs. (7.33a).
With the help of Egs. (7.33b) and (7.37), we obtain

1 2r  pR R , ) 1 27 ) )
=R ), /0 k(R',¢) R"dR" d¢ _5/0 k(R,¢") d¢’ (7.40a)

(I'\)y = 0. (7.40b)

<F+>¢ =

The first term in Eq. (7.40a) represents the average convergence inside a disk of
radius R, while the second term is the azimuthally averaged convergence evaluated
at radius R. In words, given a circular aperture, the mean tangential shear along
the circumference is given by the density contrast between the mean convergence
within the aperture and the mean convergence along the edge.

Suppose there are N galaxies with ellipticities ¢;, fori = 1,2, ..., N, within an
annulus of inner radius R and thickness AR. The average ellipticity is then

1
N

1

(€)

N
€ ~2(y)g (7.41)
=1

where the last step follows from Eq. (7.27). From Egs. (7.28) we have
F=T +il =—e 2%y = T720)) (7.42)

In terms of ¢ = /(T2 Eq. (7.27) becomes (g) ~ 2(I"). Since (I'x)y = 0, we
can write

(Ree) =2(I't)y,  (Ime)=0. (7.43)

If the second of these relations fails to hold, some effect other than (single-plane)
lensing is at work.

7.2.4 E-modes and B-modes

To interpret weak lensing quantities, it is useful to draw an analogy with electro-
magnetism and speak of Iy as an E-mode and I« as a B-mode. To understand
this terminology, consider an electric field E and magnetic field B. Gauss’s law
tells us that V - B = 0. If the magnetic field is independent of time, Faraday’s
law (4.92) reduces to V x E = 0. Thus, a vector field whose curl vanishes can be
thought of as an E-mode, while a vector field whose divergence vanishes is called
a B-mode. This nomenclature is meaningful because any well-behaved vector field
can be expressed as the sum of curl-free and divergence-free terms (Helmholtz’s



7.3 Applications 199

theorem).> We have seen that lensing produces only E-modes, at least when there
is a single lens plane. Therefore any measurement of a non-zero B-mode indicates
either a physical phenomenon other than single-plane lensing or systematic effects
in the measurements and analysis.

7.3 Applications

One set of cluster lensing applications examines the physical properties of the
clusters themselves (see Kneib and Natarajan (2011) and Hoekstra et al. (2013)
for reviews). Many cluster lenses have been studied individually, but several recent
projects have worked with samples of a few dozen clusters.

The Sloan Giant Arcs Survey (SGAS, Hennawi et al. 2008) searched for lensed
arcs in ground-based imaging from the Sloan Digital Sky Survey (York et al. 2000)
and then obtained follow-up observations with telescopes in Arizona and Hawaii.
Oguri et al. (2012) performed a joint strong and weak lensing analysis of 28 clusters
using parametric models with an NFW halo. The Cluster Lensing and Supernova
survey with Hubble (CLASH, Postman et al. 2012) observed 25 clusters using the
Hubble Space Telescope and then performed several lensing analyses. Zitrin et al.
(2015) used both strong and weak lensing data to constrain parametric models
including an NFW halo along with the cluster member galaxies, and they also
considered a type of nonparametric model in which the NFW halo was replaced by
a smoothed version of the observed light distribution. Merten et al. (2015) also used
strong and weak lensing data to constrain nonparametric models in which the lens
potential was reconstructed on an adaptive grid. Umetsu et al. (2014, 2016) added
weak lensing data from wider-field observations with the Subaru Telescope. In both
SGAS and CLASH, one goal was to measure cluster density profiles and constrain
the relation between a cluster’s “total” mass and its concentration. Since clusters
do not have sharp edges, it is necessary to define a radius within which the “total”
mass is measured. This is often taken to be the radius rpgg within which the mean
density is 200 times larger than the background critical density of the Universe,
which is a reasonable estimate of the region in which the cluster has reached a
state of dynamical equilibrium. Then the concentration of an NFW halo is defined
as 00 = rp00/rs Where rg is the scale radius in Eq.(7.1). SGAS and CLASH
found results that were compatible with one another and with theoretical predictions
for massive clusters (~10% M), but SGAS found a steeper relation between M»qg
and cpqo such that less massive clusters (~1014M@) were more concentrated than
expected.

The MAssive Cluster Survey (MACS, Ebeling et al. 2001; Repp and Ebeling
2018) provided HST data for a different set of clusters. A project called “Weighing

3Note that the electric field is not, strictly speaking, an E-mode when the magnetic field depends
on time, since V x E = —(1/c)0B/dt.
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the Giants” then performed a weak lensing analysis of 51 clusters from MACS and
other surveys, which served as the basis for constraints on cosmological parameters
(von der Linden et al. 2014; Applegate et al. 2014; Mantz et al. 2015). Clusters
are good probes of cosmology because their formation is sensitive to interplay
between gravitational collapse and cosmic expansion (see Allen et al. 2011), but
comparisons between observations and theoretical predictions rely on having well-
measured masses. Mantz et al. (2015) used masses from weak lensing to derive
constraints from clusters that are complementary to those from observations of the
cosmic microwave background (see Chap. 9). Mantz et al. (2016) then compared
weak lensing masses with properties of the hot X-ray gas to probe astrophysical
processes within clusters. (See Giodini et al. (2013) for a general discussion of
scaling relations between masses and X-ray properties of clusters.)

One cluster deserves individual mention. In the system 1E 0657—558, a collision
between two sub-components caused the X-ray gas to be separated from the
galaxies; one of the gas clouds exhibits a bow shock similar to that produced
by a bullet, leading to the moniker “Bullet Cluster” (Markevitch et al. 2002). A
lensing analysis reveals that most of the matter in the system is concentrated around
the galaxies, not the gas (Clowe et al. 2004, 2006). This is precisely what would
be expected if dark matter is a substance that experiences little or no physical
interactions other than gravity, and it is difficult to explain in theories that invoke
modifications to gravity or dynamics in place of dark matter (but see Angus et al.
(2007) for a dissenting view).

Another set of applications focuses on the galaxies behind clusters; in effect,
the clusters are used as “cosmic telescopes” whose magnification makes distant
galaxies bigger and brighter and hence easier to observe. In addition to CLASH, the
Hubble Frontier Fields (HFF, Lotz et al. 2017) program provided an extraordinarily
deep view of six clusters specially chosen to be good cosmic telescopes, while the
Reionization Lensing Cluster Survey (RELICS, Salmon et al. 2017) offered a larger
sample of 41 clusters but did not go as deep in each field. These programs have
enabled discoveries of some of the most distant known galaxies, at redshifts z ~ 9—
11 that correspond to times as little as ~500 Myr after the Big Bang (Zheng et al.
2012; Coe et al. 2013; Bouwens et al. 2014; Zitrin et al. 2014; Infante et al. 2015;
Salmon et al. 2018).

In this set of applications, lens modeling is still essential because we need
to know how lensing distorts our view of the region behind a cluster. Lensing
magnification changes the apparent size and brightness of an image, of course, and
it also changes the effective area of a survey: a given angular area in the image
plane, d€2;, corresponds to a different area in the source plane, d25 = |u|’1d.(21.
Therefore it must be taken into account not only when studying individual sources
but also when studying statistical properties such as the number density of galaxies.

Each cosmic telescope program has included lens modeling, but the HFF
program went further and invited different teams to provide lens models for
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CATS GLAFIC

Sharon Keeton Williams

Fig. 7.4 Examples of magnification maps for a source at redshift z = 9 in the Hubble Frontier
Field MACS J0416.1—2403 provided by different lens modeling teams. The field itself is shown
in Fig.7.3. The models in the left and middle columns are parametric. In the right column,
the Williams model is nonparametric, while the Diego model is hybrid. The lens models are
publicly available at https://archive.stsci.edu/prepds/frontier/lensmodels (In the GLAFIC, Sharon,
and Williams panels it is apparent that the region used to compute the magnification is smaller than
the region shown here)

the same fields, which are now publicly available. The idea was to compare
different approaches to lens modeling as a way to quantify systematic uncertainties.
Figure 7.4 shows some of the resulting magnification maps for the cluster MACS
J0416.1—2403. The models labeled CATS, Sharon, GLAFIC, and Keeton are all
parametric; the CATS and Sharon teams use the same modeling software but with
different input data and assumptions; while the GLAFIC and Keeton teams use their
own software. The Williams model is fully nonparametric, while the Diego model
is hybrid.

Whether the maps are considered to be similar or different is a matter of
perspective. On the one hand, it seems impressive to find broad agreement about
something we cannot observe directly (namely, the mass distribution and associated
gravitational field), even between models that are quite diverse in their methods and
assumptions (e.g., parametric vs. nonparametric). On the other hand, broad agree-

“https://archive.stsci.edu/prepds/frontier/lensmodels.
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ment may not be good enough when it comes to placing quantitative constraints on
the abundance of high-redshift galaxies; detailed studies suggest that the differences
between teams are generally larger than the uncertainties quoted by the teams, which
implies that lens modeling uncertainties are being underestimated (see Priewe et al.
2017; Raney et al. 2018). Even accounting for the modeling uncertainties, however,
cluster lensing is already playing a significant role in studies of the earliest stages
of galaxy formation in the Universe (e.g., Oesch et al. 2018; Atek et al. 2018; and
references therein), and it will continue to do so: 2 of the 13 programs selected for
the Director’s Discretionary Early Release Science Program with the James Webb
Space Telescope involve using clusters as cosmic telescopes.’

The cluster SDSS J1110+6459 (which was discovered as part of SGAS) has
already provided a particularly high-resolution view of star formation in a galaxy
at redshift z = 2.481. The galaxy is lensed into a long arc, which is shown
by HST imaging to contain two dozen clumps of star formation. Johnson et al.
(2017a) performed a strong lensing analysis using a parametric model along with
nonparametric perturbations to improve the fit and then reconstructed what the
source looked like before it was lensed. They found that the star-forming regions are
as small as 30-50 pc, which is far smaller than the scales typically probed at such
redshifts. This system illustrates how lensing has the potential to revolutionize our
understanding of star formation in distant galaxies (see also Johnson et al. 2017b;
Rigby et al. 2017).

Problems

7.1 Use a Green’s function analysis like that in Sect. 7.2.1 to derive Eq. (7.16) for
the shear as an integral over convergence.

7.2 Notice from Eq.(7.15) that the convergence, k, is the convolution of the
complex shear, y, with the function

1 1

(a) Starting from Eq. (7.11), show that the Fourier transforms of « and y, denoted
by k and y, are related by

Ky, ly) = fle, L)y, 1y, (7.45)

and find f(Ix, ly).

Shttps://jwst.stsci.edu/observing-programs/approved-ers-programs.
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(b) Show that f(lx, ly) is the Fourier transform of /(x, y), and use the convolution
theorem to derive Eq. (7.15).

(c) Use the fact that differentiation of a function corresponds to multiplication of
its Fourier transform by an appropriate factor to derive Eq. (7.12).

7.3 An alternative definition of the quadrupole-moment tensor (7.17) of an image
with surface brightness 7 (0) is

w20 =600 = 0,)1O)W(8)d*6
Qij = [z 1O)W (0)d%6 ; (7.46)

where we take the centroid position to be 6 = 0.
(a) Find an appropriate weighting function W (@) for each of the following cases:

* Suppose that there is a minimum detectable surface brightness Ip;y.

* Suppose that measuring the surface brightness is only possible inside of an
ellipse with semi-major axis a and semi-minor axis b.

* Suppose that the surface brightness can be most easily measured within the
ellipse mentioned above, but with a weaker signal farther out.

(b) Consider the case that I (6) is constant within an ellipse with semi-axes a and
b (a > b). Assuming that the denominator in Eq. (7.46) is fixed, compute Q;;
for each of the weighting functions in part (7.3). How sensitive is the complex
ellipticity (7.19) to the choice of W(0)?

7.4 Use conservation of surface brightness and the properties of the amplification
tensor to show that the quadrupole moment tensors of an unlensed source and its
lensed image are related by Eq. (7.25) in the linear approximation (7.24).

7.5 Consider a massive, spherical NFW halo with total mass Magy = 3 x 10'5 M
and radius 99 = 2.5 Mpc. It has concentration cgp = r200/7s = 3.5. The lens has
redshift z; = 0.38 and angular diameter distance D; = 1066 Mpc. Let’s consider
sources with D;;/D; = 0.5 (for weak lensing this reflects an average over source
redshifts).

(a) What is the Einstein radius? (Solve for it graphically or numerically.)

(b) Derive and plot the shear profile.

(c) Suppose you want to measure the shear at a distance of 10 arcmin from the
center of the cluster. We said in Sect. 7.2 that shear can be estimated from
the average ellipticity of images. However, in practice there is “shape noise”
because the number of sources is finite and their intrinsic shapes may not
average to zero. Suppose the source galaxy shapes are drawn from a Gaussian
distribution with mean zero and standard deviation o =~ 0.3. How many source
galaxies would you need in order to detect that y at 10 arcmin is different from
0 at more than 30°?
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7.6 Suppose a spherical NFW lens has two sources directly behind it, producing
two concentric Einstein rings. The lens has redshift z = 0.38 and distance D; =
1066 Mpc. Source #1 has z; = 1.0, D; = 1654 Mpc, and D;; = 919 Mpc. Source
#2 has zp = 2.0, D, = 1742 Mpc, and Dj; = 1251 Mpc.

(a) Using the cluster from Problem 7.5, find the radii of the two rings.

(b) Suppose instead that you observe two concentric rings with radii 8.7” and 16.9”.
Find the masses enclosed by the two rings. If you have only ring #1, can you
determine the parameters of the NFW lens (i.e., py and r)? What if you have
both rings?
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Chapter 8 ®
Weak Lensing by Large-Scale Structure e

In the remaining chapters, we apply lensing to cases where no single object, such
as a galaxy or cluster of galaxies, is responsible for the deflection of light from
a background source. Instead, all matter along the line of sight to the source acts
collectively as a lens. Comparing large samples of observed galaxy shapes to what
we would expect for particular cosmological models allows us to constrain the
properties of the Universe itself.

The first step is to describe the statistical properties of density fluctuations in
three dimensions, from which we can infer the statistics of the two-dimensional
convergence field relevant for lensing. Linear perturbation theory, in which density
fluctuations are assumed to be small, provides a framework for lensing by large-
scale structure (Sect. 8.1.1), even though a nonlinear treatment is needed for
a quantitative comparison between theory and observation. Such considerations
cannot be ignored by the researcher, but they do not substantially affect the basic
approach to the subject. (See Sect. 8.1.2 for a flavor of what is involved.) For
a given model, whether linear or nonlinear, the correlation function and power
spectrum encapsulate much of the statistics of structure formation (Sects. 8.2 and
8.3). The lensed versions of these quantities can be inferred from galaxy shapes,
which are distorted by the “cosmic shear” from matter in the foreground (Sect. 8.4).
Understanding this phenomenon sets the stage for the applications presented in the
final section (Sect. 8.5).

8.1 Structure Formation

According to the cosmological principle, the universe is homogeneous, with some
specified constant density. However, we know that the universe is only approxi-
mately homogeneous and that inflation (or some other mechanism) produced small
fluctuations that eventually grew into the large-scale structure observed today. Let
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the average density of the universe at time ¢ be p(¢), and the density at a particular
point be p(x, 7). It is convenient to define the density contrast as

pX, 1) — p(t)
sx, 1) = ————. 8.1
x, 1) 50 (8.1)

8.1.1 Linear Perturbation Theory

The utility of the density contrast becomes clear in the context of linear pertur-
bation theory. The idea is to write the density and other relevant quantities as
sums of two terms, one of which is much smaller than the other. This allows us
to obtain solutions of the governing equations that are accurate to first order in the
perturbation terms.

In the present discussion, we consider a universe described by a pressureless
fluid, as we expect dark matter to be, subject only to gravity. We assume this fluid
to be homogeneous on large scales but with inhomogeneities on small scales that
lead to gravitational instabilities. At some point, these initially small fluctuations
will become large enough to be outside the linear regime. In that case, our only
recourse is to obtain numerical solutions to the equations of general relativistic
hydrodynamics. Until then, though, it is valid to describe the growth of structure
in terms of a fluid subject to Newtonian gravity. Clusters of galaxies are the densest
objects for which this approach may be justified.

An inviscid fluid (i.e., one without viscosity) is described by its density, velocity,
and gravitational potential. We write these quantities as

p(x, 1) = p(0)[1 +8(x,1)] (8.2a)
ux,t) = HOx+ v(x, 1) (8.2b)
D(x, 1) = Po(x, 1) + D1 (X, 1), (8.2¢)

where the second term in each equation is assumed to be much smaller than the first
in absolute value. Note that the unperturbed density depends only on time, as it must
for a homogeneous, isotropic universe. We also remark that the Hubble parameter,
H (t), can only be regarded as constant at small redshift.

The perturbed density, velocity, and gravitational potential are determined by the
continuity equation (conservation of mass), the Euler equation (Newton’s second
law applied to inviscid fluids), and Poisson’s equation:

Do, v 0 (8.3a)
R .u: .a
pr P
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D
M _voe (8.3b)
Dt

V2P =47Gp, (8.3¢)

where the convective derivative' is defined by
d
—=—+4+W-V) (8.4)

(see, e.g., Thompson 2006, p. 2). We neglect the pressure term in Euler equa-
tion (8.3b), since it does not apply to dark matter.

In the framework of linear perturbation theory, we require that both the perturbed
and unperturbed quantities satisfy the governing equations (8.3). In particular, the
unperturbed density, velocity, and gravitational potential satisfy

p+3Hp =0 (8.52)
(H+ H)x = -V, (8.5b)
V2py = 47Gp, (8.5¢)

where an overdot indicates differentiation with respect to time. We can simplify
Eq. (8.5b) by writing the Hubble parameter in terms of the cosmic scale factor H =
a/a. We then have

H— i a®
o a (12
=4 (8.6)
a
The unperturbed Euler equation (8.5b) thus reduces to
Vo) = —x. 8.7)
a
Taking the divergence of both sides yields
35
V2, = — 22 (8.8)
a

IThis operator is often called the material derivative, among various other names.
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Combining this with Poisson’s equation (8.5¢c) gives

a 47 G _
—=——0, (3.9)
a 3

which is known as Friedmann’s second equation for a pressureless fluid.”

The next step is to write down the perturbed fluid equations. We consider the
continuity, Euler, and Poisson’s equations in turn. We write the continuity equation
as

_ 0 _ _
p(1+8)V . -(Hx+v) = —5[,0(1 +8)]— p(Hx+vVv)-VS§. (8.10)
Neglecting quadratic terms in the perturbation, we find
_ _ - _08 _
3H,0(1+8)+,0V~V=—p(1+8)—p§—pr-VS. (8.11)

Simplifying this with the aid of the unperturbed continuity equation (8.5a), we
obtain

38
o THX- V54 V.v=0]. (8.12)

The perturbed Euler equation can be written as

V(o + b)) = — %+(Hx+v)-v} (Hx + V)

. )
—_ HX+H2(X~V)x+H(v-V)X+a—:+H(X-V)v]

~ ;
— | Hx+ H> + Hv + a_: + H(x-V)v] . (8.13)

From the unperturbed Euler equation, this reduces to

av

” +HX-V)v+ Hv=—-V&|. (8.14)

For Poisson’s equation we have

V(@ + ®1) = 4nGp(l +6). (8.15)

2In the case of non-zero pressure p, p — p + 3p/ct.
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This and Eq. (8.5¢) imply that the perturbation @ satisfies

V2P, =4nGps |. (8.16)

We now transform this equation to a form commonly used in cosmology. Since
matter density is inversely proportional to volume, the average density o can be
expressed as p = poa > in terms of a constant density pg and the scale factor a(r),
where a = 1 at present. We define the comoving position vector r by the relation
X = a(t)r, where x is the proper position vector. Thus, the comoving gradient V
satisfies V = a(¢) V. This allows us to rewrite Poisson’s equation (8.16) in the form

V2P, = 47 Gpoa™'s. (8.17)

We now have a set of coupled, linear partial differential equations for §, v, and

@1. To study the time evolution of §, we begin by taking the divergence of the
perturbed Euler equation (8.14):

(H+%)V-V—}-HV-[(X-V)V]:—VZCDL (8.18)

Combining the identity
V. [(x-V)V]=V.v4+x-V)V.v (8.19)

with the perturbed Poisson’s equation gives

d
<2H+§+HX~V)V~v:—4nG,68. (3.20)

Using the perturbed continuity equation (8.12) to eliminate V - v, we obtain
0 d _
2H+5+onV E+HX~V §=4nGpé. (8.21)
In terms of the convective derivative, this becomes
2H+D A" D V)§=4nGpéb (8.22)
Dt v Dt v = rees, '

where we have used Eqs. (8.2¢) and (8.4). To first order in v and 4, we find

D* +2H b drGp |6 =0 (8.23)
— — —4n =0]. .
D¢2 Dt P

for a pressureless fluid.
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If § is independent of position over distances much smaller than the Hubble
length cH, _1, the convective derivative reduces to the ordinary time derivative, and
Eq. (8.23) takes the form

47 Gpo
a3

54295 = 5, (8.24)
a

assuming a pressureless, matter-dominated universe. Here we have expressed the
Hubble parameter and the mean cosmic density in terms of the scale factor a.
According to Eq. (3.127), the scale factor for a matter-dominated universe is

a(t) = (6xGpo)'* 1. (8.25)
Substituting this expression into Eq. (8.24) yields

£3'+4S— 25 (8.26)
3r 32 '

We attempt a solution of the form § o %, which holds for all ¢, provided that

a2+1a—2—0 (8.27)
3 3 =0 .
The solutions are « = 2/3 and ¢« = —1, so that §(¢t) = Ar?/3 + Bt~ !, for some

constants A and B. We keep only the first term, which grows with time, and discard
the second, which decays. In terms of the scale factor we see that § o a.

The density contrast for a flat, radiation-dominated universe will be needed in
Sect. 8.3, where we derive the matter power spectrum using linear perturbation
theory. Relativistic matter, including radiation, obeys the equation of state p =
pc? /3, for pressure p and density p. Incorporating pressure into the fluid equations
leads to a modified version of Eq. (8.24), namely,

. 1. 327G
54095 = 22T (8.28)
a 3a4
(cf. Peacock 1999, p. 465), where the scale factor is now
32 1/4
a(t) = <?7TG,OQ> 1172 (8.29)

We follow the same procedure as for the matter-dominated universe and conclude

that §(t) = Ct+ Dt ™!, where C and D are constants. We again discard the decaying

solution, so that § o t o a2.
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8.1.2 Beyond the Linear Regime

In the case 8(x,7) 2 1, the fluid equations become nonlinear. In general, the
solutions can only be obtained numerically. However, it is possible to describe
the formation of a single dark-matter halo within an FRW model. Peacock (1999)
uses Newtonian gravity to consider spherical collapse in a flat, matter-dominated
(Einstein-de Sitter) universe. An overdense region behaves like a closed universe,
initially increasing in size due to cosmic expansion, then contracting due to
gravitation. When an overdense sphere reaches its maximum radius, linear theory
predicts 6 ~ 1, while the actual density contrast is § ~ 5.

A sphere composed entirely of dark matter would collapse to a singularity, since
there would be no outward pressure to counteract the pull of gravity. In practice,
halos contain ordinary matter as well, thus allowing the kinetic energy of collapse to
become random motion. Thermal equilibrium is achieved when the virial theorem,
which relates the kinetic and potential energy of a system, applies. In that case,
linear theory gives § ~ 1.5, while the spherical collapse model predicts a value one
hundred times greater. For convenience, the radius of a dark matter halo is often
defined such that the density there is two hundred times the background, cosmic
density. The model we have described here offers only a rough approximation to
reality, so quantities of interest, such as the matter power spectrum discussed below,
are obtained from numerical simulations.

8.2 Statistics of Density Fluctuations

In principle, one can calculate the density contrast §(x, #) in the linear regime by
solving Eq. (8.23) for appropriate boundary and initial conditions. In the absence of
this information, we study the behavior of ¢ statistically. To do this, we identify a
volume V large enough so that the average density is a well-defined quantity. We
then consider the fluctuations around the average value in terms of the random field
s.

8.2.1 Correlation Function and Power Spectrum

To determine whether the density contrast at X is correlated to that at X', we compute
the covariance
C(x,x) = ([8(x) — (§xNI[B(X) — (X))
= (8(x)8(x))
= &(x —x]), (8.30)
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where the angle brackets denote the average over an ensemble of regions, each with
volume V. The second line follows since (§) = 0 by construction. The cosmological
principle implies that the correlation function &; is positive and depends only on
|x — x'| = r. As r increases, &;(r) decreases, approaching 0 asymptotically. The
size of a typical dark matter halo (overdense region) or void (underdense region) is
given by the correlation length? r., where

_ Jo & (ndr

== > - . 8.31
fooo r2&s(r)dr (8.31)

Ic

It is often convenient to work in Fourier space. Let §(K) be the Fourier transform
of §(x). The correlation function of the transformed variables is given by

(S(k)S*(k’)):< / 5(x)e®*d3x / 5(x/)e—“‘“’"d3x’>
R3 R3
- / / KXo KX 505 (x)) dPx d3x’
R3 JR3

=/ / KX KX g 1y X)) BPx PPy (8.32)
R3 JR3

Here the asterisk denotes complex conjugation, and the correlation function is
assumed to fall off rapidly enough to justify integration over the infinite volume
R3. On changing the integration variables from x, X’ to r = x — X/, X/, this becomes

(5105 (&) = /

ol KN g3y f E(r)e’™ Tdr
R3 R3

= 2n)’sPk — K)Ps(k), (8.33)

where r = |r|, k = |k|, and §® denotes the Dirac delta function in three dimensions.
The power spectrum

Ps(k) = / £ (e (834)
R3

is the Fourier transform of the correlation function. We refer to it as the matter power

spectrum in order to distinguish it from other power spectra used in cosmology.
That the power spectrum only depends on the magnitude of k follows from

introducing spherical coordinates (r, 8, ¢), with k - r = kr cos 6. This leads to

3The definition used here is one of many found in the literature, which all predict similar values
for a given correlation function.
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2 [ee) T .
Ps(k) = / / f £5(r)e™ %2 5in o do dr dg
0 0 0

fe's] elkr _ e—ikr
=2x f r&s(r) (—) dr. (8.35)
0 ikr

In terms of the spherical Bessel function jo(kr) = sin(kr)/(kr), this becomes

Ps(k) = / - 47 r2&s(r) jo(kr)dr |. (8.36)
0

We may also encounter random fields defined in the plane. The convergence,
k(0), is one example. The convergence power spectrum can be worked out in
analogy with the matter power spectrum, except that the position and wave vectors
are two-dimensional. The convergence power spectrum has the same form as the
matter power spectrum (8.33), so we may immediately write

(kHE*I)) = 20)*8P A=) Pe(), (837)
where [ = |l|. Besides replacing § by «, the remaining differences between this
expression and Eq.(8.33) arise from the two-dimensional context in which we

are now working. Introducing plane polar coordinates (R, ¢), we have for the
convergence power spectrum,

0o p2m )
P.(]) =/ £ (R)RSPR dp dR
0 0

0 2r
= / RgK(R)/ PRSP 4 dR . (8.38)
0 0
Now we use the identity
1 2 )
Jo(IR) = — / e TR cos(@) 4 (8.39)
2 0

to write the convergence power spectrum as

P(l) = / - 27 RE(R)Jo(R)dR |. (8.40)
0

Both Eqgs. (8.36) and (8.40) may be inverted to express the correlation function as
an integral over the power spectrum.

Since the correlation function and the power spectrum are related by Fourier
transformation, they contain the same information. In analyzing observations, one
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or the other may be more convenient. The correlation function (§(x)8(x")) depends
on x and X’ through the single variable r = |x — x'|. Since (5(k)5*(k’)) vanishes
unless k = K/, the Fourier components {S(k)} are statistically independent. If we
further assume that §(x) is normally distributed, we say that §(x) is a Gaussian
random field.

8.2.2 Limber’s Equation

Since angular positions in the sky are easier to measure than displacements in three
dimensions, one often encounters projections of the density contrast §. Here we
show how to express the correlation function or power spectrum of a projected
quantity in terms of its corresponding unprojected version. Consider the random
fields g1 (@) and g»(#), which are weighted integrals of § along the line of sight. For
specified weighting functions Q1(0) and Q,(0), we write

Xh
gi(0) = A Qi (0)3(fe(x)0, x)dx , (3.41)
where i = 1, 2. The covariance of g{(#) and g(# + ) is given by
§12(0) = (g1 (P g2(F + 09))
Xh Xh
= /O dx /0 dx" 010 Q2(x")

x(B(f(OB, 08 (fi(xH @ +60), x)), (8.42)

where & = |0]. Since the correlation function &5 of the density contrast depends only
on distance, so too does &1». If g» = g1, then &1 is said to be the autocorrelation of
g1. Otherwise, we call &1, the cross-correlation of g1 and g».

In the Limber approximation, we assume that the correlation function &
vanishes when |Ax| > x., where Ax = x' — x, and . is the comoving correlation
length. Since x. < xn we canset fi(x +A4x) ~ fi(x) and Q;(x +Ax) =~ Qi(x)-
Equation (8.42 ) then becomes

Xh oo
£12(0) %/0 dX/ dAx Q1(x) Q2(x)és <\/[fk(X)]292+(AX)2>

(8.43)
which is one form of Limber’s equation (Limber 1953).
To relate the projected and unprojected power spectra, we first express the
correlation function in Eq. (8.42) in terms of Fourier transforms as

& = (8(fiOF, )6(fi(x + Ax)@ +0), x + Ax))
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B / &k
e )

31/ Sy ~ ~
fR 3 % oKL i AR 040) =ik x K AT (510 5% (')

&Sk ;
~ /Ra (2m)3 kL0 AX py(ky (8.44)

where we have used the definition of the power spectrum (8.33) and the Limber
approximation. We have also written the wave vectors in terms of components
parallel and perpendicular to the line of sight. Substituting Eq. (8.44) into Eq. (8.43)
leads to

£12(0) ~ /0 fR Gy / dk Q1) Q2 (e M50 hy) Py (k)

Xh d kL R ]
= / dx / —= 01(0) Q200K Py ), (8.45)
0 r2 (27)
where k) = |k |, and the §-function in the first line follows from the identity
oo .
/ ehiAxday =228 (k) . (8.46)
—0oQ

We can reduce the number of integrals in Eq. (8.45) by using Eq. (8.39) to write

Xh * kdk
£12(0) ~ /0 dx /0 2 01000200k 1O) Py(k ). (8.47)

To relate the projected power spectrum Py to the correlation function &5, we
multiply both sides of Eq. (8.45) by e~ and integrate over . This gives

f d%0 £12(0)e?
RZ

Xn d2k . T
= [T [ G [ #0000t ).

2 (27)?

The left-hand side is just the power spectrum, and the 6-integral on the right-hand
side yields the factor

SP(fkL =D = ) 28D kL — frOO7'D). (8.48)
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Thus, we arrive at

" 00000, < 1 )
Pir(l) = d , 8.49
12() /o Y00 700 (849

which is another version of Limber’s equation.

8.3 Modeling and Measuring the Matter Power Spectrum

It has been argued (Harrison 1970; Peebles and Yu 1970; Zeldovich 1972) that the
variance of fluctuations in the primordial gravitational potential were scale free,
with all wave numbers contributing equally. One way to justify this assertion is
to consider a homogeneous, isotropic universe with local perturbations described
by a small gravitational potential @;. The simplest metric for such a model is
obtained by combining the weak-field metric (3.71) and the Robertson-Walker (RW)
metric (3.123), namely,

2¢ 20 dr?
ds? = (1+ 21) a2 — 2 (1= 2L 4 12(d6? + sin? 6 dg?)
c? c? 1—kr2
(8.50)

Quantum fluctuations in the early universe, which translate into leading-order
corrections to the RW metric, are then proportional to the gravitational potential.

The variance of the perturbation to the gravitational potential @ is related to the
potential correlation function by oq% = £4(0). By inverting Eq. (8.34) and setting
r = 0, we find

1
/ (2n)3 Py (k) = = 2/ dk k> Py (k) , (8.51)

where Pg (k) is the power spectrum of @1. Now consider the perturbed Poisson’s
equation (8.16) in Fourier space,

—k>®; = 4nGps, (8.52)
Wherg 431 and § are the Fourier transforms of @; and §. The covariance of cf)l(k)
and @ (k') is then

- - A7 Gp
(61 (k) B (K)) = ( —r

2
) (5k)5*(K)). (8.53)

Thus, from the definition of the power spectrum (8.33),
Ps (k)

Py (k) = (47 Gp)? (8.54)
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Assuming the primordial matter power spectrum has the form P80 o« k, known as
the Harrison-Zel’dovich power spectrum, the variance of @1 has the scale-free form

dk
05 o / = (8.55)

which is invariant under the transformation k — «k, for any constant ««. The theory
of inflation also predicts a power law P50 o k™ but with n slightly below unity.

The primordial matter power spectrum was modified by various physical pro-
cesses. In the linear regime, the matter power spectrum during a particular epoch
can be written as Ps(k) = T (k) Pao(k). The transfer function, 7' (k), is governed by
the evolution of the density contrast 5. The dependence of 7' on the wavenumber k
arises from that of § on the scale factor a, but the details do not concern us here.
For a universe dominated by matter or radiation, we found in Sect. 8.1.1 that § < a
(matter-dominated case) and 8§ a2 (radiation-dominated case). Since Ps |(§ |2
and a oc k! (roughly speaking, at least), the transfer function for a fixed Pa0 has the
form T (k) o k~2 for a matter-dominated universe and T (k) o< k—* for a radiation-
dominated universe (e.g., Bartelmann and Schneider 2001).

If the correlation function were known for every pair of angular positions, one
could infer the power spectrum for any given redshift. However, that would require
knowing the density contrast at all points. Instead of the fine-grained density contrast
8(x), which is difficult to measure precisely, one considers the coarse-grained
quantity &5 (x), smoothed over a sphere of radius b according to

—1
Sp(x) = <§ﬂb3> / syOMB —Ix—yhdy, (8.56)
R3

where @ is the Heaviside step function. In terms of the filter function

-1
Wy (r) = (gan) OB -—r), (8.57)

we can write
55(x) =ASS(y>Wb(|x—y|>d3y=[8*Wb1 ®). (8.58)

In words, the smoothed (coarse-grained) density contrast is the convolution of the
actual (fine-grained) density contrast with a filter function. This particular choice of
Wp, known as the top-hat filter,* is the simplest of a variety of filter functions that
work equally well. One example, the Gaussian, has the convenient property that its
Fourier transform is also Gaussian.

“4This name comes from the two-dimensional analog of W}, whose graph resembles a top hat.
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To obtain the coarse-grained power spectrum Pgb (k), we start by taking the
Fourier transform of Eq. (8.58), namely

5 (k) = S(k) W (k) , (8.59)
where for the top-hat filter
W) = 3 sin(kb) (—k;c)icos(kb) (8.60)
(e.g., Bracewell 1965). According to Eq. (8.33),
(85 ()85 (k) = Wy (k) Wy (k') (3(K)5* (k)
= (21)°8% (k — K) | Wy (k) > P5 (k) . (8.61)
Thus, the coarse-grained power spectrum is given by
P{ (k) = Wy (k)[* Ps (k) . (8.62)
In terms of the power spectrum, the variance of §y, is
= Lk phiry = / Pk P E® . (569
r3 (27)3 r3 (27)3

Thus, the variance of the density contrast is said to normalize® the power spectrum
Pab . A convenient length scale b for coarse-graining is the radius b ~ 84! Mpc of a
typical galaxy cluster, where / is the Hubble constant in units of 100 km s~ Mpc™!.
We can estimate the corresponding variance 082 from galaxy counts and obtain the

matter power spectrum Pj using Egs. (8.60) and (8.63).

8.4 Cosmic Shear

In addition to the possibility that a distant source is lensed by one or more mass
concentrations along the line of sight, there is a weaker yet measurable effect of
cosmological significance. Because of the mass sheet degeneracy and the unknown
intrinsic size of the source, the shear due to matter at all distances along the
line of sight is the quantity of interest. This cosmic shear allows us to constrain
cosmological parameters by measuring the shear of sources at a large number of

SFor a power spectrum of the form P(k) = Ak", any method for determining the constant A is
referred to as “normalization,” even if it does not involve integrating P (k).
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different redshifts. The key mathematical difference between cosmic shear and
lensing by discrete objects is that the thin-lens approximation no longer holds.
However, the analysis is somewhat simplified since the total deflection is quite
small.

Consider a source at comoving distance x from the observer. The reduced
deflection originating in a slab of thickness dx’ at distance x” < x from the observer
is given by

d 2d
da(0) = fd&wze) = c—szqbl(dla, x)dx’ (8.64)
S S

where V| is the portion of the comoving gradient perpendicular to the yx’-axis.
Using Eq. (3.122), we express the comoving angular-diameter distances® as d; =
fe(x)), ds = fi(x), and dis = fi(x — x’). The gravitational potential @; satisfies
the comoving form (8.17) of Poisson’s equation.

Integrating Eq. (8.64) over x’, we obtain

(@) = c%/OX %meu/w, ) dy! (8.65)

for the total reduced deflection. Here we use the Born approximation (cf. Sect. 2.1)
and integrate along the straight line between the observer and source, rather than
along the actual path of the light ray. In the special case of a single lens at distance
dj, Eq. (8.65) becomes

0 _ 2d; [* ’ ’
a@x) = 24 ), Vi®@1(d0, x)dx . (8.60)
s

In the limit ¥ — oo, which is appropriate for a spatially concentrated lens far from
both observer and source, we have

Is A

af) = Xli_)rréoa(OI)() = Z—a(dﬂ)), (8.67)

where & is given by Eq. (2.6).
In terms of the angular gradient Vo = fi(x')V 1, the reduced deflection takes

the form
2 (% filx = x")

2@l =

——————Vy® N0, x))dy'. 8.68
2y fooson 1(fe(x)8, x)dx (8.68)

%The comoving angular-diameter distance is the physical angular-diameter distance modulo the
scale factor.
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Since Vg may be taken outside the integral, we can write this as

a(@x) = Voveri(0lx) . (8.69)

with the effective lens potential

2 X fk(X - X/) / / /
et 0)x) = — — 0, x)dy'. 8.70
Vert(@1x) = — RGO R G 1(fe(x)0, x) dx (8.70)

8.4.1 Effective Convergence

Associated with Vg is an effective convergence «.fr defined by Vg Wett = 2Kefr. We
can compute kef in two ways. Using Eq. (8.68), it is given by

1
kett(B1x) = 5 Vo - a(@1x)

L (% filx —x) o2 g N
= — — VP 0, d
2 Jo FeCo iy oS IROO% X0 dx

_ U A = DA
2 Jo JeGO

Vo (fi(xH0, xHdx . (8.71)

Alternatively, we can express k.ff in terms of the density contrast §. The convergence
due to a thin slab perpendicular to the line of sight with proper width d Dpop is given
by

d¥  47G DDy

de = =—
Derit c D,

(:0 - ;6) derop ’ (872)

where Y is defined in Eq. (2.68). Since a light ray propagating through the unper-
turbed homogeneous, isotropic universe with density p is unlensed by definition,
the convergence arises from the difference p — p = poa—>8. For a light ray
traveling along the straight line from source to observer, the RW metric (3.123b)
gives cdt = a(t)dy’, where x' < x. This allows us to write the scale factor as
a(x") = [a o t](x"). We can also replace the angular-diameter distances by their
comoving counterparts and likewise for the differential proper distance dDprop =
a(x’)dy’. Putting the pieces together, and integrating along the line of sight, we
obtain

47 Gpo /X Sex — X/)fk(X/)S(fk(X/)a x)dy . (8.73)
0

Keff(0]x) = 2 feGoalx’)

White and Hu (2000) showed through numerical simulations that Egs. (8.71)
and (8.73) make similar predictions for ke, and lead to nearly the same statistical
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conclusions, e.g., for the convergence power spectrum. If the two-dimensional
Laplacian Vidﬁ 1 could be replaced by the three-dimensional Laplacian V2, of
Eq. (8.17), then Egs. (8.71) and (8.73) would be identical. Some authors claim that
2y /0y’ 2 = 0, at least when averaged along the line of sight (e.g., Bartelmann
and Schneider 2001; Kilbinger 2015), but a rigorous proof has yet to emerge.

In order to compute the convergence power spectrum, which can be inferred from
gravitational lensing, we must average k. over all source distances x < x;, where
the comoving horizon distance yxy, is defined by a(x) = 0, corresponding to infinite
redshift. Let the probability that there is a source between x and x +dyx be g(x) dx.
Then

Xh
Rer(8) = f keit(®108 G0 dx

0
7 Gpo /Xh /X SO = x) fi(x")
2 Jo Jo feGoax)
_ 47Gpo f"h X fe(x = x) f(x)
a2 Jo Jo JeGoalx")
x8(fir(x"0, xNg(xX)O(x — x")dx"dx., (3.74)

S(fr(x"8., xHg(x)dx dx

where the step function allows us to extend the x’ integral out to the horizon
distance. Since both integrals have the same limits, we can exchange the dummy
variables x and ' to write

furr(8) = 4712/)0 /X” X fie(x' — XA)fk(X)
¢ o Jo Je(xDa(x)
x8(fr()0, x)e(xNO(x" — x)dx' dx
_ 4nGpo (" fi(O)

3 ——WOOs(fi()8. x)dx (8.75)
¢ o a(x)
where
Xh [
W(x) = / SO =0 0y ay (8.76)
X fk(X )

To give the weighting function W(x) a physical interpretation, it is helpful
to think of x as the comoving distance from observer to lens and x’ as that
from observer to source. Thus, W is a weighted average of the ratio of lens-
source distance to observer-source distance. Bearing this in mind, we can integrate
Eq. (8.72) out to some redshift z. The effective convergence averaged over redshift
is then

for = /0 DO, V(@) (p - p)dz, (8.77)
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where D(z1, z2) is the angular diameter distance of zo from zj. If p(z)dz is the
probability that there is a source between z and z 4+ dz, the weighting function is
given by

_ (D&
V(z)=/Z D(O,z’)p(Z)dZ' (8.78)

Note that redshift is directly observable, while comoving distance is not.

8.4.2 Correlation Functions and Power Spectra of Shear
and Convergence

Since the effective convergence is a two-dimensional projection of the three-dimen-
sional density contrast, the power spectra of these fields are related by Limber’s
equation (8.49). For the effective convergence (8.75), the weighting functions in
Eq. (8.41) satisfy Q1(x) = Q2(x) = Q(x), with

4w Gpo fir (OW ()
000 = —3 a0

c

(8.79)

We then conclude from Eq. (8.49) that

_9Q3HG (% 4CONE !
P~ = /0 dx[&u)} Ps(fk<x>’x>’ (8:50

where we have written the density pg in terms of the parameters §2p and Hp. The
second argument of Ps reminds us that the matter power spectrum evolves with
cosmic epoch, for which the comoving distance is a proxy.

Equation (8.80) shows that the effective-convergence power spectrum depends
directly on the statistics of density fluctuations in the universe. While P, is not
directly observable, it is closely related to the statistics of shear, which can be
measured. Problem 7.2 establishes that the Fourier transforms of the convergence
and shear fields are related by y(1) = f()k (1), and it turns out that | f(I)| = 1.
Therefore the shear and convergence power spectra are identical: Py, (I) = P (]).
In practice, measurements usually focus on correlation functions rather than power
spectra. Since there are two components of shear, there are three possible correlation
functions that can be written schematically as (y4+y+), (¥Yx¥x), and (y4yx). The
cross term vanishes in the ensemble average, and the remaining two terms are
combined into

E£(®) = (14 O)y+(0)) £ (¥ (0)yx(8) (8.81)
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which depend only on the distance & = | — 0’| between the points. These
correlation functions can be written in terms of the complex shear y = y +iyx as

E-(®) = (y(@)y*(0)) and & (9) =Re(y(0)y (). (8.82)

Converting to Fourier space and again relating y and k allow us to write the
correlation functions as integrals over the convergence power spectrum,

&) = i / P.() Jo(I®) 1dl (8.83a)
21

&) = i / P () Jo(I9) 1dl. (8.83b)
2

The angular integrals can be evaluated because P, depends only on the length of 1
(not on its direction), and they yield Bessel functions Jy and J4.

8.5 Applications

8.5.1 Cosmic Shear

Since its first detections (Bacon et al. 2000; Van Waerbeke et al. 2000; Wittman et al.
2000), cosmic shear has drawn a lot of attention as a probe of large-scale structure
in the universe and, by extension, cosmological parameters. The measurements are
challenging, but concerted effort with both observations and analysis has allowed
current surveys, such as the Dark Energy Survey (DES, Abbott et al. 2018), Hyper
Suprime-Cam Subaru Strategic Program (HSC-SSP, Aihara et al. 2018), and Kilo-
Degree Survey (KiDS, de Jong et al. 2017), to measure cosmic shear over many
hundreds of square degrees. We highlight key aspects of the measurements here and
refer readers to the literature for technical details.

Once galaxies have been observed, the first step is to measure their shapes. As
discussed in Sect. 7.2.2, galaxy shapes can in principle be measured directly from
quadrupole moments of the light distribution. The task is complicated, however, by
distortions from Earth’s atmosphere and telescope optics, not to mention noise in the
data (from photon counts and detector read noise). The community has developed
and tested sophisticated methods to deal with distortions and noise precisely enough
to uncover the subtle effects of cosmic shear (e.g., Mandelbaum et al. 2015; Huff and
Mandelbaum 2017; Sheldon and Huff 2017; Fenech Conti et al. 2017). Briefly, the
methods rely on models for the distortions that can be calibrated from simulations
and/or the data directly. Current surveys provide shape measurements for tens of
millions of galaxies (Zuntz et al. 2018; Hildebrandt et al. 2017; Mandelbaum et al.
2018).
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The second step is to determine how the source galaxies are distributed in
redshift. This is necessary for computing the overall effective convergence (note the
factor g(x) that appears in Eq. (8.75)). It also offers the opportunity, given enough
data, to separate the sources in redshift bins and perform “tomography” to study
how the convergence varies with source redshift,” which offers information about
the growth of structure. Measuring spectroscopic redshifts is not feasible for the
vast number of faint galaxies needed to measure cosmic shear, but “photometric
redshifts” can be estimated by analyzing the brightnesses of galaxies in several
broadband filters. Methods for computing photometric redshifts can be calibrated
on subsamples of galaxies that have spectroscopic data, and they have achieved
sufficient accuracy and precision to be used for cosmic shear analyses (see
Hildebrandt et al. (2010) and references therein). Redshift distributions for current
surveys are reported by Hoyle et al. (2018), Tanaka et al. (2018), and Hildebrandt
et al. (2017). Strategies are being developed to meet the challenge of attaining the
accuracy and precision that will be needed for future surveys (see Newman et al.
2015; Mandelbaum 2018).

The measured shapes can be used to compute the shear correlation functions
£1(¥) defined in Eq. (8.83). The ensemble average is approximated by a weighted
sum of all galaxies with a separation of ¢ (where the weighting can account for
variations in data quality). The shear correlation functions have been measured
using 26 million galaxies in DES (Troxel et al. 2018), more than 12 million galaxies
in HSC-SSP (Mandelbaum et al. 2018), and nearly 15 million galaxies in KiDS
(Hildebrandt et al. 2017). The measurements can be compared against theoretical
predictions by combining Egs. (8.80) and (8.83) to write £1 in terms of integrals
over the matter power spectrum Ps. Because linear perturbation theory breaks
down on some of the relevant scales, predictions for Ps must be derived from
numerical simulations, but that process is well understood. Cosmic shear predictions
are most sensitive to two cosmological parameters: the overall amount of matter
in the universe, characterized by the density parameter $2), and the amplitude
of density fluctuations, characterized by og (see Sect. 8.3). They depend mainly
on the combination Sg = 0g(£27/0.3)">. Among current surveys, DES yields
Sg = 0.782 £ 0.027 (Troxel et al. 2018), while KiDS yields Sg = 0.745 £ 0.039
(Hildebrandt et al. 2017), and these results are generally consistent with other
probes of large-scale structure. Combining cosmic shear with other probes improves
constraints on cosmological parameters (see, e.g., Abbott et al. 2018), and as surveys
expand still further cosmic shear is expected to play a significant role in probing dark
energy (see Albrecht et al. 2006).

7Comparing shapes of sources at redshift z to those at z + Az allows one to infer the matter content
between z and z + Az. It is similar in spirit to medical tomography, in that information from n
dimensions is used to reconstruct an (n + 1)-dimensional picture.
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8.5.2 Cosmic Magnification

This chapter has focused on changes in shape caused by shear, but there are also
effects from magnification, namely, changes in the size and brightness of lensed
images and in the effective area of a survey. To quantify the two effects, let
Nsre (Ssre) = A2 Ngre (Sere) /dSsre dS24rc be the number of sources with fluxes between
Ssre and Sgre + dSgc in a small angular area d€2.. With lensing magnification,
the corresponding flux and area in the image plane are Sjmg = p Sgrc and d€2jyg =
t dS2c. Therefore the number of images with fluxes between Sipg and Simg +dSimg
in a small angular area d§2jp, is

1 Si
Nimg (Simg) = E Ngre (%) . (8.84)

Suppose the number of sources can be approximated as a power law ng(Sgre) =
ASyd where A is a constant and we expect 7 > 0 since bright sources are less
abundant than faint ones. Then the number of images is

Nimg (Simg) = "> A Si0. (8.85)
Lensing modifies the number of galaxies by the factor ;7 ~2. The factor of u arises
because magnification makes images brighter and therefore easier to detect. The
factor of ;42 arises because magnification reduces the area in the source plane that
corresponds to a given portion of the image plane. The combined effect can either
increase or decrease the number of lensed images depending on whether the increase
in brightness or loss of area is the stronger effect.

The predicted dependence on the power-law slope 1 of the source luminosity
function can be tested with observations that probe a range of fluxes. This is a
valuable way to distinguish lensing from possible contaminants that would not
depend on the source luminosity function in the same way.

As with other effects in lensing, cosmic magnification varies with the projected
separation between lenses and sources. Therefore one way to detect it is to
measure cross-correlations between background source populations and foreground
lens populations (Scranton et al. 2005; Hildebrandt et al. 2009; Garcia-Fernandez
et al. 2018). Another way is through changes in the distribution of galaxy sizes
and brightnesses (Schmidt et al. 2012; Huff and Graves 2014). To date, cosmic
magnification has been measured, but the statistical significance is not as high as
it is for cosmic shear. However, cosmic magnification is still a useful complement
to cosmic shear as the systematic uncertainties impacting each method are often
distinct, allowing for cross validation of results.
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Problems

8.1 The assumption of a pressureless fluid (p = 0) holds for dark matter, but not
for ordinary (baryonic) matter, let alone radiation or dark energy. As mentioned in
the footnote to Friedmann’s second equation (8.9), in the case of non-zero pressure,
the equation becomes

(a) Show that this result follows from differentiating Friedmann’s first equation
(3.125) with respect to time, while imposing energy conservation in the form
d(pc?V) = —pdV, with V = §7a’.

(b) Now assume an equation of state p = wpc?, where w is a constant. Consider
the cases of radiation domination (w = 1/3) and dark energy domination
(w = —1). What qualitative differences in the solution to Friedmann’s second
equation are expected in these two cases and in the pressureless case?

8.2 We know that the correlation function decreases monotonically, but this can
happen in many ways. Here, we consider two simplified but instructive examples.

(a) For the correlation function &5(r) = Ae ", where A and a are positive
constants, evaluate the correlation length r. and the power spectrum Ps(k)
defined in Eqgs. (8.31) and (8.36), respectively.

(b) Now consider another correlation function which is also finite for 0 < r < oo,
but which falls off as » =¥ for r — 00. For what value(s) of s are the correlation
length and the power spectrum well-defined (finite) quantities?

8.3 Cosmic shear measures an integral over the three-dimensional density field of
the universe. Here we examine the redshift range that has significant weight in the
integral. The effective convergence averaged over the population of sources can be
written in the form

I?eﬁ:/o / F(z1,z5) [p(z0) — p(z)]dzs dzy (8.86)
2

where z; and z; are lens and source redshifts, respectively. Recall that the weighting
function F(z;, z5) depends on the source redshift distribution p(z). The exact form
of F(z;, zs) can be inferred from Sect. 8.4.1.

Using a model derived from the COSMOS field, Ilbert et al. (2009) found

7% 4 7%

p(z) = Am , (8.87)
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where A must be chosen to satisfy the normalization condition [;° p(z)dz = 1.
They examined a range of magnitudes, but we consider only the bright and faint ends
of their sample: the bright sample has (a, b, ¢) = (0.497, 12.643, 0.381), while the
faint sample has (a, b, ¢) = (0.126, 4.146, 5.925).

For both samples, plot F(z;, z5) as a function of both the lens and source
redshifts, and then plot fz ?o F(z, z5) dzs. How much does the redshift range depend
on the depth to which source galaxies can be measured?
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Chapter 9 ®
Lensing of the Cosmic Microwave Qs
Background

The most distant light source that can be observed is the cosmic microwave
background. Its cosmological significance is outlined in Sect. 9.1. As in the case
of cosmic shear, the lensed power spectrum is the key quantity of interest. However,
shear is ill-defined when the background source is the entire sky. Nevertheless,
lensing “rearranges” the distribution of photons in a way that alters the observed
pattern of temperature fluctuations that characterize cosmic background radiation.
The spherical nature of the sky results in a power spectrum that depends on a discrete
index, rather than a continuous wavenumber (Sect. 9.2). On the angular scales
affected by lensing, the sky can be treated as “flat” in the vicinity of a given point.
We use this approximation to derive expressions for the lensed power spectrum
(Sect. 9.3.1) and the lens potential (Sect. 9.3.2). Finally, we mention applications in
Sect. 9.4.

9.1 Prediction, Detection, and Significance

We noted in Sect. 3.5 that the discovery of the cosmic microwave background
(CMB) settled the debate between the steady-state and Big Bang models, with
the Big Bang emerging triumphant. The conventional narrative is that Penzias
and Wilson (1965) serendipitously detected the CMB while repurposing a disused
antenna for radio astronomy and that Dicke et al. (1965) simultaneously predicted
the existence of the CMB on theoretical grounds. This is the truth, but not the whole
truth. Alpher et al. (1948) considered the problem of nucleosynthesis at the high
temperatures that would follow a Big Bang, but it was not until the work of Gamow
(1948) that the context of an expanding universe was explicitly included. Alpher and
Herman (1948) predicted that radiation emitted when neutral atoms “recombined”
from the primordial plasma should have a blackbody spectrum with a temperature
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of ~5 K today. Thus, the intensity of this isotropic background radiation would
have its peak in the microwave band. No such signal would arise in a steady-state
universe.

There were at least two reasons for the delay between prediction and detection.
The Hubble constant was thought to be significantly larger than the currently
accepted value, implying that the Earth was older than the universe itself. In
addition, the Big Bang could only account for the abundances of the few lightest
elements. Ironically, Hoyle, who championed the steady-state view, helped to
unburden the Big Bang from having to explain the origin of heavy elements. He
and coauthors (Burbidge et al. 1957) showed that stellar nucleosynthesis filled in
the gap.

Penzias and Wilson (1965) indeed found that the CMB is isotropic, but the
single frequency (4.08 GHz) to which their antenna was sensitive was insufficient
to confirm a blackbody spectrum. Measurements over the following quarter century,
culminating with the Cosmic Background Explorer (COBE) satellite, showed that
the CMB has the expected blackbody form, with peak intensity at 160 GHz. This
corresponds to a temperature of 7 = 2.725 K, a few degrees lower than the origi-
nally predicted value. For his work on the Far Infrared Absolute Spectrophotometer,
the instrument on COBE that measured the CMB spectrum, John Mather shared the
Nobel Prize in Physics in 2006. The nearly exact agreement between the data and
the theoretical curve, shown in Fig. 9.1, establishes the CMB as an almost perfect
blackbody. The COBE results were refined by the WMAP and Planck satellites.

The differential microwave radiometer onboard COBE, the development of
which earned George Smoot a share of the 2006 Nobel Prize in Physics, found
fractional temperature variations of ~10~> between points separated by >7° on the
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Fig. 9.2 Maps of observed CMB temperature fluctuations (after a dipole term due to the solar
system’s motion relative to the CMB has been removed). The celestial sphere is projected onto an
ellipse, with the Milky Way lying along the major axis. The coolest and warmest points on the sky
are shown in blue and red, respectively. The top panel shows a map from COBE with a temperature
range of 100 wK; the red band in the middle shows foreground emission from the Milky Way.
The bottom panel shows a higher-resolution map from WMAP with a temperature range of +
200 pwK; foreground emission from the Milky Way has been removed (Credit: NASA/WMAP
Science Team)

sky (see Fig. 9.2). The successor WMAP (e.g., Bennett et al. 2013) and Planck (e.g.,
Planck Collaboration et al. 2018b) satellites mapped the temperature fluctuations on
angular scales of 14’ and 5, respectively. Partial CMB sky maps with still greater
angular resolution have been obtained by the ground-based Atacama Cosmology
Telescope (Das et al. 2011a) and South Pole Telescope (Keisler et al. 2011).
Anisotropy can arise from nonuniformity in the CMB itself or from matter along
a given line of sight. These are known as primary and secondary anisotropies,
respectively. It is conceptually convenient to picture secondary anisotropies as
modifications to an intrinsically uniform CMB. Note, however, that all forms of
anisotropy are ultimately due to density fluctuations in the early universe, to which
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observed temperature fluctuations are proportional. We can nevertheless regard
primary and secondary anisotropies as statistically independent for all practical
purposes.

Primary anisotropies can be understood by considering light emitted when it
decoupled from matter, close to the time of recombination. While cosmic expansion
increases the wavelength of all photons by the same amount, photons of a given
initial energy undergo a further redshift that depends on the depth of the potential
well from which they were emitted at recombination. Thus, a lower (higher)
temperature on the sky corresponds to a region of higher (lower) density on the
surface of last scattering. Sachs and Wolfe (1967) argued on general relativistic
grounds that this effect induces temperature fluctuations at the 1% level. This is
counteracted to some extent by virtue of regions of higher density yielding photons
of greater energy, but the Sachs-Wolfe effect remains detectable and important.

We now turn to secondary anisotropies. The motion of the solar system relative to
the CMB reference frame induces a significant dipole term, which can be corrected
for. Of cosmological significance is the amplification of inhomogeneities in the
early universe, which were the seeds of objects that merged to form galaxies and
clusters of galaxies. The distribution of this matter close to a particular line of sight
causes the observed temperature to differ from its intrinsic value. Thus, secondary
anisotropy arises from both large-scale structure and individual objects.

Large-scale structure and cosmic expansion give rise to the integrated Sachs-
Wolfe (ISW) effect, which accounts for the cumulative change in energy of a photon
as it traverses regions of varying density in an expanding universe. Suppose that a
photon with initial energy E; enters a region of size d. If the potential in the region
evolves on time scales ¢t < d/c, the final energy of the photon will be E ¢ # E;. The
dominant contribution is from the expansion of the universe rather than intrinsically
time-dependent gravitational fields. The power law expansion of a matter-dominated
or radiation-dominated universe is insufficient to yield a detectable ISW signal. For
example, Rees and Sciama (1968) showed that the ISW temperature fluctuations
are quadratic in the density contrast' in an Einstein-de Sitter model and thus can be
ignored in comparison with first-order effects. Moreover, it is only relevant at late
times, when the universe tends toward exponential expansion due to dark energy.

The most significant source of secondary anisotropy caused by discrete matter
concentrations is the effect described by Sunyaev and Zeldovich (1970), in which
CMB photons gain energy by interacting with hot electrons. Such “inverse”
Compton scattering occurs mostly in galaxy clusters, which typically have large
amounts of ionized gas. The kinetic and thermal Sunyaev-Zeldovich effects refer,
respectively, to the increase in energy of a CMB photon by the motion of the cluster
relative to the CMB rest frame and the random motion of hot electrons within
the cluster. The latter contribution increases the apparent temperature of the CMB
blackbody spectrum, so that the intensity of photons with energy lower (higher) than
a threshold value is lower (higher) than it would otherwise be.

IThis quantity is assumed to be small, which is valid on the large scales of interest here.
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It stands to reason that density fluctuations along the line of sight to the surface
of last scattering deflect photons from the CMB. Since gravitational lensing is
achromatic, a CMB with a constant temperature would be unaffected by light
deflection. In the presence of temperature anisotropy, however, lensing introduces
additional corrections. This is because the temperature of a photon emitted from a
particular direction on the sky differs from its true position. Therefore, we need to
introduce the formalism for describing CMB temperature fluctuations before we can
describe how the statistics of temperature fluctuations are modified by lensing.

9.2 Temperature Fluctuations

The cosmic microwave background offers an indirect probe of the matter power
spectrum at the time of matter-radiation decoupling. What can actually be measured
is the angular power spectrum of temperature fluctuations. The approach mirrors
that of Sect. 8.2.1, except that we work on the surface of a sphere instead of in an
unbounded Euclidian space. As in the case of the density contrast, we characterize
the temperature fluctuations in the CMB by the fractional difference in temperature
relative to the average CMB temperature, T = 2.725 K. Since any scalar function on
the sphere can be expressed as an infinite linear combination of spherical harmonics,
we write the temperature fluctuations field as

oo l
T@, o) —
r(&@s% DY amYin®,9). ©.1)

=0 m=-I

The spherical harmonics Y;,, (0, ¢) are defined in the Appendix C.3.1 and form a
complete set on the sphere (see Appendix C.1). The temperature autocorrelation
function is defined by

(T0, 90, 9")) =& (9), 9.2)
where ¥ is the angle between the points (6, ¢) and (6’, ¢’), with
cos® = cosf cos@’ + sin6 sin @’ cos(¢p — ¢) . (9.3)

The function &; depends only on ¥ according to the usual assumptions of isotropy
and homogeneity.

As in our earlier discussion of the density contrast, we now wish to compute the
power spectrum of temperature fluctuations. The qualitative difference between the
present and earlier cases is that the former considered spatial fluctuations, whereas
the latter deals with angular fluctuations. Because the sphere is finite, the power
spectrum is described by a discrete index rather than a continuous variable. In
close analogy with our earlier discussion of density fluctuations, we obtain the
temperature power spectrum by computing
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(@amay,,) = /§2 ds2 fsz d2" Y5, (0, ¢) Y (0, ") (20, 9)T (0, ¢))
=f dQ/ d2'Y;,(0,0) Y (0', ¢)5: (), 9.4)
2 2

where we have used the orthonormality of spherical harmonics (C.46) to invert
Eq. (9.1) to solve for the a;,, and d§2 = sin6 df d¢ is an element of solid angle
on the two-sphere S?. We can write the correlation function as the Legendre series

HOE ZCAPA(cosﬁ) Z Z T m(e QY O,¢), (9.5
A=0 u=—»2

where we have used the addition theorem for spherical harmonics (C.47). Substitut-
ing this expression into Eq. (9.4) gives
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where the power spectrum is given by

C = TR 1/ &:(0)P;(cosB)sinf db . 9.7

Observed values of a quantity proportional to C; are plotted against both / and
the corresponding angular scale in Fig. 9.3. The most prominent feature in the power
spectrum is the sharp peak at [ ~ 200, corresponding to an angular scale of ~ 1°.
This arises from what are essentially sound waves in the early universe. Since dark
matter has no pressure, such waves are referred to as baryon acoustic oscillations.
The higher harmonics, which occur at multiples of the fundamental mode (I ~ 200),
contribute smaller peaks. The anisotropies described in Sect. 9.1 are also revealed
by the power spectrum but in a less pronounced way.
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Fig. 9.3 Power spectrum of temperature fluctuations shown in the bottom panel of Fig.9.2. The
quantity on the vertical axis is proportional to C; defined by Eq. (9.7). The horizontal axes give the
multipole order / (top axis) and the corresponding angular scale (bottom axis). WMAP data with
error bars are indicated along with the best fit ACDM model (solid line) (Credit: NASA/WMAP
Science Team)

9.3 Lensed CMB

Because the CMB is lensed, the temperature contrast seen at 6 actually reflects the
contrast at 8 = 0 — a(#). Thus, the lensed temperature fluctuations .7 (@) can be
written in terms of the intrinsic fluctuations as

T0) =100 — ). 9.8)

In this section we examine how lensing affects the statistics of temperature fluctu-
ations (Sect. 9.3.1) and then consider how to use observed temperature fluctuations
to reconstruct the lensing potential (Sect. 9.3.2). To simplify the presentation, we
work in the flat sky approximation, so we can work with Fourier modes rather than
spherical harmonics. This approach is reasonable on small scales and captures key
conceptual results. Our presentation follows Hu and Okamoto (2002) and Lewis and
Challinor (2006). Okamoto and Hu (2003) give the generalization to the full, curved
sky (also see Problem 9.1).

The analysis begins with the Fourier transform of the lensed temperature
fluctuations:

T0) = f d%0 (0 — a)e ?
RZ
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Since large-scale lensing effects are expected to be small in amplitude, it is
instructive to expand e~*¢** in a Taylor series. Working to second order in & yields

51y A e . 2, —i(-0)0 , 1 2
y(l)N/RzWT(Z)/deQe |:1—1£-ot—§(€-a)j|. (9.10)

Now we express &(6) in terms of its Fourier transform and simplify, evaluating the
0 integral using [, e~ M?d%0 = (27)5@ (1):

2
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The key conceptual result is that lensing mixes modes: mode 1 in the lensed map
depends not only on mode 1 in the unlensed maps but also on some range of modes
controlled by the width of & in Fourier space.

9.3.1 Lensed Power Spectrum

We first study the power spectrum of the lensed CMB. Using Eq.(9.9), the
correlation between modes in the lensed map can be written as

. d’e d*
(9(1)y*(1/)>=< fR 2 fR G G FOTO) 9.12)

X/ / 820 20" o~ 10-00 i)' it il
r2 JR? '

Here we take ensemble averages over both the temperature fluctuations and the
deflection field, and we assume they are statistically independent because the
temperature fluctuations are generated in the early universe, while the deflection
field arises from a combination of density fluctuations at late times. The ensemble
average over intrinsic temperature fluctuations yields the power spectrum of tem-
perature fluctuations according to (T(£)T*({')) = 2m)28@ (& — )P, (). Thus we
can write
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As before, we make a Taylor series expansion to second order in «:
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Because the deflection field has mean zero, the linear terms vanish in the ensemble
average. For the quadratic terms, the analysis proceeds as follows. We express each
o in terms of its Fourier transform and then convert to the Fourier transform of the
lensing potential using &(£) = i Zl}(() (which follows from & = V). Consider the
term with ((£ - &0)2):

/Rz /Rz d20 29’ ¢—11-0-8 i —0-0' ((Z .a)2>

_ d29 d20/ e—i(l—l)-Oei(l/—l)-b"
R2 JR2
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= (2n)25<2>(l—e)5<2>(l'—e)/ A2 (€-€1)° Py (). (9.15)
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In the last step, we introduce the power spectrum of the potential fluctuations,
Py, using (¥ (€)Y (€2)) = (271)28(2) (€1 + €2) Py (£1). The analysis is essentially
identical for the term with ((£ - o’ )2). That leaves the term with ((£ - o) (£ - &')):
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_ d20 426 o—i1-08 i —0)6’
R2 JR2

dzgl d2£2 il1-0 ll -0’
X/Rz ./Rz e LRSI I e

= (27)? Az 208D — € — )P — L —€)E-€)?Py(£1). (9.16)
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Putting the pieces together back in Eq. (9.14), we obtain

L d?¢
)\ 2020 _ v _ 2
<y(l)9 It} )> ~ 21)28P 0 =1)P, () [1 /Rz (zn)z(l ) PI/,(Z)}

d?¢

. —_— 2 —_—
(271)2[( A=OF P () Py —1¢).

+(2n)28(2)(l—l’)/
R2

9.17)
The correlation is still diagonal (i.e., it vanishes if 1 # '), which is a consequence
of the fact that both the temperature and density fluctuations are statistically
homogeneous and isotropic. Therefore, we can write (.7 (1) 7*(')) = (27)>8@ (1—

I')P#(I) where the lensed power spectrum involves integrals over the unlensed
power spectrum:

Py~ P.()|1 dzglezpe
7 () ~ r()|: —/RZW(J w()]

2
+/ e A= oPP.@Pa—0
R

2 (2m)2
~ _ g2 00%3
Npr(l)[1 z/o el P.p(ﬁ)]
dzg(llzPlPll 9.18
+/RZW[-(—)] (O Py(1—1). (9.18)

In the first term, we have used the fact that Py, is isotropic to carry out the angular
integration. We see that the lensed power spectrum has one term that is the unlensed
power spectrum with a correction term that scales as /2, along with a second term
in which the unlensed power spectrum is convolved with the power spectrum of the
lensing potential.

9.3.2 Reconstructing the Lensing Potential

Equation (9.18) shows how lensing affects the power spectrum of temperature
fluctuations, but it is not very practical if we want to measure the lensing potential
because Py is buried inside integrals. For an alternate approach, we consider that
our universe actually has one realization of the lensing potential, so we can omit the
ensemble average over the lensing terms in Eq. (9.14). Then the terms that are linear
in & no longer vanish, so to lowest order we have
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2

L d2e
<9(1)9*(1/)> ~ /Rz B Fe (9.19)
x/ / 4?0 %0 71O INO0 ) _jg. g+ it-a'].
R2 JRR2

Each integral over 8 and 6’ yields a Fourier transform if it contains a factor of & or
o’ (respectively) or a § function otherwise:

2

<§~(l)9~*(l’)>% /R i (;T—l;zp, (©) [(271)45(2) 1—05s20 — 0 (9.20)

—il- a0 —02m)28P0 -0 +it-a —1)2r)>sPa - e)] )

Now we use the § functions to evaluate the £ integral, and we relate the Fourier
transform of the deflection field to the Fourier transform of the lensing potential by
a(£) = i€y (£). Simplifying yields

<i(l)j(l’)*> ~ Q)P0 -1 P+ A=1) - [-1P. () + VP, (H] YA =T).

9.21)
There are two important conceptual results here. First, without lensing the cor-
relation is diagonal (the first term has §@1 = 1)), but lensing creates nonzero
off-diagonal terms. Second, if we know the unlensed power spectrum P;(I) (from
measurements on scales where lensing has little effect, combined with cosmological
models), then we can invert Eq. (9.21) to infer &(l) and hence measure the lensing
power spectrum Py (1).

9.4 Applications

For practical applications, the theory needs to be extended in two ways. First, a
naive inversion of Eq.(9.21) would be sensitive to noise in the measurements. Hu
and Okamoto (2002) construct statistical estimators for 1} that are well behaved in
the presence of noise, and they show how to use information from polarization of
the CMB to supplement the information from temperature fluctuations and improve
the measurement. Second, the analysis needs to account for the fact that the sky is
not flat. Okamoto and Hu (2003) present a comprehensive analysis using spherical
harmonics; the details are complicated, but the conceptual result is similar to what
we learned above: the correlation matrix of modes in the lensed CMB has off-
diagonal terms that are proportional to the lensing potential. Measurements of the
off-diagonal terms can therefore be used to reconstruct the lensing potential, and
that reconstruction can then be used to compute the lensing power spectrum.
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-0.0016 0.0016

Fig. 9.4 Full-sky map of the lensing reconstruction from Planck measurements of the CMB. The
color scale shows the amplitude of the deflection or the gradient of the reconstructed potential
field. Gray regions are masked out due to foreground contamination. Figure courtesy J. Carron
(see Planck Collaboration et al. 2018a)

To date, measurements of CMB lensing have been reported by five different
experiments: the Atacama Cosmology Telescope (Das et al. 2011b; Sherwin et al.
2017), the South Pole Telescope (van Engelen et al. 2012; Story et al. 2015),
POLARBEAR (Ade et al. 2014), BICEP2/Keck Array (BICEP2 Collaboration et al.
2016), and the Planck satellite (Planck Collaboration et al. 2014, 2016, 2018a).
Figure 9.4 shows the Planck reconstruction of the lensing potential over the whole
sky except for regions contaminated by light from the Milky Way galaxy. The
dominant features are generally larger in scale than the features in the map of
temperature fluctuations (compare Fig.9.2). As a result, Fig.9.5 shows that the
power spectrum of the lensing potential peaks at lower multipole orders than the
power spectrum of temperature fluctuations (compare Fig. 9.3). The measurements
agree well with predictions for a ACDM cosmology, and they strengthen to some
extent constraints on cosmological parameters. In the future, as measurements
improve, CMB lensing is expected to play an important role in probing dark
matter, dark energy, and fundamental physics such as neutrino masses by essentially
mapping all of the matter in the universe (see Abazajian et al. 2016).

Problems

9.1 This problem explores power spectra for the curved sky and the flat sky
approximation. Consider a Gaussian function defined for the curved sky. Without
loss of generality, we can choose spherical coordinates such that the north pole is
located at the center of the Gaussian and then write
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[ Planck 2018 (MV) — SPT-SZ 2017 (T, 2500 deg?)
[ Planck 2015 (MV) ACTPol 2017 (MV, 626 deg?)
— SPTpol 2015 (MV, 100 deg?)

10 100 500 1000 2000

Fig. 9.5 Constraints on the power spectrum of the lensing potential. Green and red boxes show the
Planck 2015 and 2018 results, respectively (Planck Collaboration et al. 2016, 2018a). Results are
also shown for ground-based observations with the Atacama Cosmology Telescope (ACT, orange;
Sherwin et al. 2017) and the South Pole Telescope (SPT, blue and red; Story et al. 2015; Simard
et al. 2018). The solid black line shows the prediction for a standard ACDM cosmology. Figure
courtesy J. Carron (see Planck Collaboration et al. 2018a)

2

Seurved (@, @) = exp <_%) ’ (9.22)
o

where o represents the width of the Gaussian. For the flat sky approximation,

consider the tangent plane, or gnomonic, projection: each point on the sphere is

projected along a radial line until it reaches the plane tangent to the north pole. Then

coordinates in the tangent plane are given by x = tan6 cos ¢ and y = tan 0 sin ¢, so

the function on the flat sky is

(tan~! {/x2 4 y2)?
p

o (9.23)

fﬂat(-xv y) Zexp -

The goal now is to compute the power spectra using a spherical harmonic decom-
position for feyrveq and a Fourier decomposition for fas.

(a) Conceptually, do you expect the curved and flat sky power spectra to be more
similar when o is small or large?

(b) For different values of o, compute the spherical harmonic decomposition,
Seurved (@, @) = D}, aimYim (0, $). What can you say about aj, for m # 0?
Plot the power spectrum, Peyrved(!) = 221=7 1 lam |2 for the different values of
o.
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(c) Now compute the Fourier transform, fﬁat(l), of fha(x, y). What can you say
about the symmetry properties of fﬂa[(l)? Plot the radial power spectrum,?
P (D) = 1] fﬂa[(1)|2, for the different values of o. Note: the Fourier transform
integral over R? formally diverges, so limit the radial integral to some finite
radius rmax. How much do the results depend on 7,y ?

(d) How do the curved and flat sky power spectra compare for the different values
of 0?

Hint: it may be helpful to use symbolic or numerical mathematics software.

9.2 While the body of this chapter focused on lensing of the CMB by large-scale
structure, there can also be features associated with individual galaxy clusters. Take
the cluster lens model from Problem 7.5 and rescale it so the source is the CMB. On
the angular scales that are relevant, we can approximate the CMB using a Taylor
series expansion in position. If we work at zeroth order so the CMB is locally
uniform, what would it look like when lensed? How about if we work at first order
so the gradient is uniform? How does the direction of the gradient affect what we
see? Make appropriate plots to illustrate the effects.

References

Abazajian, K. N., Adshead, P., Ahmed, Z., Allen, S. W., Alonso, D., Arnold, K. S., et al. (2016).
CMB-54 science book (1st ed.). arXiv e-prints, arXiv:1610.02743.

Ade, P. A. R., Akiba, Y., Anthony, A. E., Amnold, K., Atlas, M., Barron, D., et al. (2014).
Measurement of the cosmic microwave background polarization lensing power spectrum with
the POLARBEAR experiment. Physical Review Letters, 113,021301.

Alpher, R. A., Bethe, H., & Gamow, G. (1948). The origin of chemical elements. Physical Review,
73, 803.

Alpher, R. A., & Herman, R. (1948). Evolution of the universe. Nature, 162, 774.

Bennett, C. L., Larson, D., Weiland, J. L., Jarosik, N., Hinshaw, G., Odegard, N., et al. (2013).
Nine-year Wilkinson microwave anisotropy probe (WMAP) observations: Final maps and
results. The Astrophysical Journal Supplement Series, 208, 20.

BICEP2 Collaboration, Keck Array Collaboration, Ade, P. A. R., Ahmed, Z., Aikin, R. W.,
Alexander, K. D., et al. (2016). BICEP2/Keck Array VIII: Measurement of gravitational lensing
from large-scale B-mode polarization. The Astrophysical Journal, 833, 228.

Burbidge, E. M., Burbidge, G. R., Fowler, W. A., & Hoyle, F. (1957). Synthesis of the elements in
stars. Reviews of Modern Physics, 29, 547.

Das, S., Marriage, T. A., Ade, P. A. R., Aguirre, P., Amiri, M., Appel, J. W,, et al. (2011a). The
Atacama Cosmology Telescope: A measurement of the cosmic microwave background power
spectrum at 148 and 218 GHz from the 2008 Southern Survey. The Astrophysical Journal, 729,
62.

Das, S., Sherwin, B. D., Aguirre, P., Appel, J. W., Bond, J. R., Carvalho, C. S., et al. (2011b).
Detection of the power spectrum of cosmic microwave background lensing by the Atacama
Cosmology Telescope. Physical Review Letters, 107, 021301.

2This is defined such that the total power can be written as Pgy = fooo Prac(D) di.



References 247

Dicke, R. H., Peebles, P. J. E., Roll, P. G., & Wilkinson, D. T. (1965). Cosmic black-body radiation.
The Astrophysical Journal, 142, 414.

Gamow, G. (1948). The evolution of the universe. Nature, 162, 680.

Hu, W., & Okamoto, T. (2002). Mass reconstruction with cosmic microwave background polariza-
tion. The Astrophysical Journal, 574, 566.

Keisler, R., Reichardt, C. L., Aird, K. A., Benson, B. A., Bleem, L. E., Carlstrom, J. E., et
al. (2011). A measurement of the damping tail of the cosmic microwave background power
spectrum with the South Pole Telescope. The Astrophysical Journal, 743, 28.

Lewis, A., & Challinor, A. (2006). Weak gravitational lensing of the CMB. Physics Reports, 429,
1.

Okamoto, T., & Hu, W. (2003). Cosmic microwave background lensing reconstruction on the full
sky. Physical Review D, 67, 083002

Penzias, A. A., & Wilson, R. W. (1965). A measurement of excess antenna temperature at 4080
Mc/s. The Astrophysical Journal, 142, 419.

Planck Collaboration, Ade, P. A. R., Aghanim, N., Armitage-Caplan, C., Arnaud, M., Ashdown,
M., et al. (2014). Planck 2013 results. XVII. Gravitational lensing by large-scale structure.
Astronomy & Astrophysics, 571, A17.

Planck Collaboration, Ade, P. A. R., Aghanim, N., Arnaud, M., Ashdown, M., Aumont, J., et al.
(2016). Planck 2015 results. XV. Gravitational lensing. Astronomy & Astrophysics, 594, A15.

Planck Collaboration, Aghanim, N., Akrami, Y., Ashdown, M., Aumont, J., Baccigalupi, C., et al.
(2018a). Planck 2018 results. VIII. Gravitational lensing. arXiv e-prints, arXiv:1807.06210.

Planck Collaboration, Akrami, Y., Arroja, F., Ashdown, M., Aumont, J., Baccigalupi, C., et al.
(2018b). Planck 2018 results. I. Overview and the cosmological legacy of Planck. arXiv e-
prints, arXiv:1807.06205.

Rees, M. J., & Sciama, D. W. (1968). Large-scale density inhomogeneities in the universe. Nature,
217,511.

Sachs, R. K., & Wolfe, A. M. (1967). Perturbations of a cosmological model and angular variations
of the microwave background. The Astrophysical Journal, 147, 73.

Sherwin, B. D., van Engelen, A., Sehgal, N., Madhavacheril, M., Addison, G. E., Aiola, S., et
al. (2017). Two-season Atacama Cosmology Telescope polarimeter lensing power spectrum.
Physical Review D, 95, 123529.

Simard, G., Omori, Y., Aylor, K., Baxter, E. J., Benson, B. A., Bleem, L. E., et al. (2018).
Constraints on cosmological parameters from the angular power spectrum of a combined 2500
deg? SPT-SZ and Planck Gravitational Lensing Map. The Astrophysical Journal, 860, 137.

Story, K. T., Hanson, D., Ade, P. A. R., Aird, K. A., Austermann, J. E., Beall, J. A., et al. (2015).
A measurement of the cosmic microwave background gravitational lensing potential from 100
square degrees of SPTpol data. The Astrophysical Journal, 810, 50.

Sunyaev, R. A., & Zeldovich, Y. B. (1970). Small-scale fluctuations of relic radiation. Astrophysics
and Space Science, 7, 3.

van Engelen, A., Keisler, R., Zahn, O., Aird, K. A., Benson, B. A., Bleem, L. E., et al. (2012). A
measurement of gravitational lensing of the microwave background using South Pole Telescope
Data. The Astrophysical Journal, 756, 142.



Appendix A
Calculus of Variations

In many physical problems, the solution corresponds to the extremum of a function
of one or more variables. Our derivation of the lens equation in Sect. 4.1.2 from
Fermat’s principle is an example. In the calculus of variations, one considers the
more involved problem of finding the particular curve that yields an extremum of
a functional or integral of a curve. Lagrangian mechanics is a reformulation of
Newtonian mechanics as a problem in the calculus of variations. In this book we
use methods of calculus of variations in deriving Eq. (3.60) for geodesics, which
correspond to extrema of the arc length [ ds.

In Sect. A.1, we derive the Euler-Lagrange differential equation, which deter-
mines the extremal curve for a given functional. In Sect. A.2, the equation is
used to solve the brachistochrone problem, which is instructive and of historical
interest. Finally, in Sect. A.3, we present the Einstein-Hilbert action and show that
its extrema correspond to solutions of Einstein’s field equations in a vacuum.

A.1 Euler-Lagrange Equations

Consider the functional

A2
Slq] =/ L(g.4: 1) dh, (A1)

Al

where g (1) is a curve between fixed endpoints and ¢ = dg/dA. We call S the action
and L the Lagrangian. Let ¢(?) (1) be a path between the fixed endpoints that yields
an extreme value of the functional. Now let ¢ = ¢@ + eg"), where ¢V is a path
with endpoints g M) =gV () =0, and € is an adjustable parameter. For q©
to yield a local extremum of S, dS[g]/de must vanish for ¢ = 0. The derivative is
given by
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d aL aL
—SI[q] =/ ( —qW 4+ = <‘>) di. (A.2)
de A dq g

On integration by parts, this becomes
d k2 (L d oL dL
—S[q] = / <—q“) - ——.q“)> dr+ —q
de y \0g dA 9g aq Y

oL d oL
zf ( —,> gV dx (A3)
y \0q ~da aq

since gV (A1) = ¢V (h2) = 0. In order for dS[g@]/de to vanish for arbitrary
functions ¢(1, the quantity in parentheses in Eq. (A.3) must vanish, implying the
Euler-Lagrange equation

A2

d oL

T —@9,¢O 0 = —(q“” 71050 (A.4)

for the extremal path.
Suppose that the parameter A is the time ¢ and that the Lagrangian

1
L(g,¢;1) = quz - V(g (A.5)

is the difference between the kinetic energy and the potential energy of a particle.
For this Lagrangian, the Euler-Lagrange equation,

. av
mi == (A.6)

is Newton’s second law in one dimension. In three dimensions, each of the three
coordinates g; satisfies an Euler-Lagrange equation.

A.2 Brachistochrone

As an application of the Euler-Lagrange equation, consider the following problem:
let A and B be two points, with B below (but not directly below) A, connected by
a wire. A bead slides without friction along the wire from A to B solely under the
influence of gravity, starting from rest. What shape of the wire minimizes the time
to get from A to B? The optimal shape is called the brachistochrone or shortest
time curve (see Fig. A.1).
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In solving the problem, it is convenient to set A = (0, 0) and choose down to be
the positive direction for the vertical coordinate y, so that B = (a, b) witha > 0
and b > 0. We represent the wire by a function x(y), with element of arc length
ds = /(dx)2 + (dy)2 = v/1 + x'2dy, where x” = dx/dy. The speed of the particle
at vertical displacement y is given by v = /2gy, as follows from conservation of
kinetic plus potential energy. Thus, the time to get from A to B is

d b 1 12
T[x]:/—S=/ Ty (A7)
v 0 2gy

Substituting L(x, x"; y) = /(1 + x'2)/2gy in the Euler-Lagrange equation (A.4)
leads to

doL 9L 1 d x' —0 (A8)
dydx’  dx  2g dy | /y(1+x'2) ' .
From Eq.(A.8), it is clear that the quantity in square brackets is a constant.

Equating it to £~ /2, where £ is a constant with the dimensions of length, and solving
for x’ lead to the first-order differential equation

dx y
— =4 (A.9)
dy t—y
It is solved by choosing the upper sign, consistent with a particle traveling
downward and to the right, as in Fig. A.1, separating variables in the form

/dx =/ [ 4y, (A.10)
t—y

and performing the integration with the help of the substitution y = £sin’(¢/2) =
%Z(l — cos ¢). Choosing the constant of integration so that the curve passes through
the point (0, 0), we obtain the familiar parametric equations for a cycloid,

2
BN

b °
¢

Fig. A.1 The brachistochrone (A.11) for a/b < 7 /2 (left) and a/b > /2 (right). For a/b >
7 /2, the particle actually descends below y = b, before arriving at B
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Fig. A.2 On the tautochrone, I
particles released from rest at 2
different points A and A’ \ '
reach B at the same time . A
A/
® B
£ Bl

y = %6(1 — Ccos )

x = %E((b —sing) |. (A.11)

The value of £ is determined by the requirement that the curve also pass through
the point (a, b), which implies a/b = (¢ — sin¢)/(1 — cos¢). This equation is
transcendental but can be solved for ¢ numerically and has a unique solution 0 <
¢o < 27 for any positive b/a. The numerical value of £ is then 2b/(1 —cos ¢pp) > O.

The cycloid, also encountered in Sect. 3.5.3, has other interesting properties. For
example, it has the tautochrone property that the time for a particle to reach the
lowest point, starting from rest, is independent of its starting point (see Fig. A.2).
Thus, the period of a particle sliding back and forth along a cycloidal path is
independent of the amplitude of the motion. In the familiar case of motion along
a circular arc, as in a simple pendulum, the period is only independent of amplitude
for small oscillations.

A.3 Hilbert Action

In Sect. 3.2.3, the geodesic equation (3.60) was derived from a variational principle
involving the proper time. That equation determines the trajectory x*(t) of a particle
in a gravitational field with a given metric tensor g. Here, we turn to the problem
of determining the metric tensor itself and discuss the action from which g can be
deduced in the special case of a vacuum. To do this, we first generalize Eq. (A.4) to
the case of a fensor field.

For the purpose of illustration, we start with the simpler case of a scalar field
f(x1, ..., x,) and an action of the form

SLf1= f L fD d'x (A.12)



Appendix A Calculus of Variations 253

where the Lagrangian density . depends on f and its partial derivatives oy f =
df/dx¥. The action is stationary when the Euler-Lagrange equation

% (ﬂ) - % (A.13)
93k f) of

is satisfied, where summation over k is implied.

We now turn to the action S[g] from which the metric tensor g in a vacuum can
be derived. We expect the associated Lagrangian density to depend on the spacetime
curvature, which is described by the Riemann curvature tensor

A 2 A 2 2
Ry =D, — 00, + 00y, — 5,1, (A.14)
where the Christoffel symbols I, are defined by Eq. (3.61). Note that the Riemann
tensor depends on g as well as its first and second partial derivatives. If all
components of the Riemann tensor vanish, the spacetime described by g is flat. It

is standard to define a scalar curvature, from which the Lagrangian density follows
directly. The first step is to define the Ricci tensor by

Ry =R",,,. (A.15)
The Ricci scalar is then defined by
R =g""R,,. (A.16)

The simplest action involving R is § = f RdV.
The volume element in a locally flat neighborhood of a point P is d*x =
dx?dx! dx? dx3. With respect to some other point P’, the volume element is

X"\ 4 4
dV = det X d*x =rd'x, (A.17)

where 9x’/0x = A is a Lorentz transformation and A = det(A). In order for
ds? = dx'dx, = dx""dx], = ds”?, (A.18)

2

where {x*} and {x'"} are measured relative to P and P’, we must have

g(P") = N(P)HTg(P)N(P) = N(P) n\(P'), (A.19)
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where 1 is the Minkowski metric tensor. Since det(n) = —1, we conclude that
A = /—g, where g = det(g). Thus, the volume element near any point P’ is
dV = /—g d*x. Finally, the Hilbert action' is

S[gl = / R —g d*x. (A.20)
The associated Lagrangian density is then

Z(g. {0:.g}. {9,.0.8}) = RvV—¢. (A.21)

Since g is a tensor field and .Z depends on the derivatives of g up to second order,
the Euler-Lagrange equation in this case is more complicated than that for a scalar
field (A.13). The details do not concern us here, so we merely quote the result:

1
Gu =Ry — ERgW =0, (A.22)

where G is called the Einstein tensor. Equations (A.22) are the Einstein field
equations in a vacuum. Since the metric and Ricci tensors are symmetric, only ten
of these sixteen equations are independent. If we multiply both sides of Egs. (A.22)
by g"¥ and sum over u and v, we see that R = 0.

We can allow for a nonzero energy density for the vacuum by letting G, —
G v + Aguw, where A is called the cosmological constant. The Ricci scalar then
becomes R = 4A. The associated action is obtained by letting R — R — 2A in
Eq. (A.20). The metric of a flat universe with A > 0 is known as the de Sitter
solution. It turns out that the Ricci scalar R is related to the curvature k of an FRW
model by

6
R=——(ai+a*+ck). (A.23)
cea

Thus, it is possible to have a flat universe (k = 0) with R # 0.
In the case of nonzero energy density, the Einstein tensor satisfies

G 8 G T
w=—g"Tuv, (A.24)
where T),, are the components of the stress-energy tensor. For an FRW model
with energy density pc? and pressure p, the stress-energy tensor is diagonal, with
Too = ,062 and 7;; = p (i = 1,2,3). For a universe with a nonzero cosmological
constant but without matter or radiation,

1A factor of ¢* /(167 G) is often included, but is irrelevant for our purposes. It becomes meaningful
when generalizing to a universe with matter or other sources of energy.



Appendix A Calculus of Variations 255

2

=— A, = —pct. A.25
e p pc ( )

p
Combining the first of these relations with Eq. (3.128) shows that the scale factor
for the de Sitter solution is a(t) = exp(ca/A/3 t), with —co < t < oo. The
Hubble constant for this model is then Hy = c+/A/3. The general form of Einstein’s
equations can be derived from a variational principle, but the details are beyond the
scope of this book.



Appendix B
Functions of a Complex Variable

For problems in two dimensions, it may be convenient to work with complex
numbers and complex functions. The results presented here can be found in any
textbook on complex analysis. We denote the set of complex numbers by C, and we
visualize it as a plane, called the complex plane.

B.1 Complex Derivatives and Analytic Functions

Let £2 € C, and let f be a function defined on £2. Given a point zg € £2, if the limit

. f(o+h) — f(z0)
im

B.1
h—0 h ( )

exists, we say f is (complex) differentiable at zg, and we denote by f”(zo) the value
of the limit.
If we write z = x + iy, then

f@) = fx+iy)=ux,y)+ivix,y), (B.2)

where x, y, u, and v are real. If we restrict & to real values in the limit (B.1), we find
that

f(Z)Za—Fia. (B3)

On the other hand, if & is purely imaginary, then

fl@) = —i—y +—. (B.4)
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Thus, if f is differentiable at z, then # and v must satisfy the Cauchy-Riemann
equations:

ou ov

= B.5
ax ay (B.52)
a d

r__a (B.5b)
ox ay

Since the value of the limit (B.1) must be the same no matter how % approaches 0,
the Cauchy-Riemann equations are a necessary but not sufficient condition for f”(z)
to exist.

The complex conjugate of z is z* = x—iy. Note that z and z* are not independent.
However, if we write the (purely formal) expressions

d 0z 9 az* 0 0 9

— - = 4 — B.6
dx 0xdz  dx dz* 0z + az* (B.62)
0] dz d az* 0 d ad

g% % 9 (L2 (B.6b)
dy dyodz  dy dz* dz  0z*

and solve, we obtain the so-called Wirtinger derivatives:

3 1/a .0
— = (——z—) (B.7a)

3z 2 \ax  ady
3 1/ 3

=—(—+i—). (B.7b)
az* 2 \0x ay

If f(z,z*) is a rational function in z and z*, then the Wirtinger derivatives df/dz
and df/dz* can be calculated in the usual way, treating z and z* as if they were
independent. In particular, 0z/9z* = 9z*/dz = 0, and 9z/9z = 9z*/9z* = 1. It is
straightforward to verify that u and v satisfy the Cauchy-Riemann equations if and
only if 3f/9z* = 0.

We say f is analytic> at zo if it is differentiable at every point in some
neighborhood of zg, and we say f is holomorphic in a subset A C §2 if it is analytic
at each point of A. If f is holomorphic on all of C, we say it is entire. We caution
the reader that the terms “analytic” and “holomorphic” are used in subtly different
ways by different authors.

A standard theorem in complex analysis states that f is holomorphic in A if
and only if the partial derivatives of # and v with respect to x and y are all
continuous and satisfy the Cauchy-Riemann equations. It is easy to see that these
conditions are satisfied if and only if df/0z is continuous and df/9z* = 0. For

2Note that our definition of an analytic function only applies to complex functions. The term is
also used in the context of real functions, but with a different definition.
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example, any polynomial function of z is analytic in all of C, as are the exponential
and trigonometric functions. On the other hand, the functions p(z) = z* and
q(z) = Re(z) = (z + z¥)/2 are not analytic anywhere since dp/dz* = 1 and
dq/dz* = 1/2. The function r(z) = |z|> = zz* satisfies dr/dz* = z, which
vanishes when z = 0, but at no other point. Thus, there is no point of C at which r
is analytic. Note that g and r are real valued; the only real-valued analytic functions
are constant.

B.2 Contour Integrals and Cauchy’s Theorem

A contour in C is a continuous function P : [a,b] — C, where a < b are real.
Given a contour P = Q + iR and a complex function f = u + iv, the contour
integral of f along P is defined as

b
/Pf(z)dz=/ F(P@®)P' (t)dt
b
=/ [u(P(1)Q'(1) —v(P())R'(1)] dt
b
+i/ [v(P)Q'(t) + u(P()R'(1)] dt .

Example B.1 Let f(z) = (z—z0)" and let P(t) = zo+r(cost+i sint) = zo+re'!
for 0 <t < 2m. Geometrically, P is a circle of radius r centered at zg, and

2 2 .
/‘ f(z)dz _ f T rneinl . ireitdt — ir}’l-‘,—] / 4 el(}’l-‘r])ldt — { 0 ifn # —1
P 0 0

2wi ifn=-1.
(B.8)

Example B.2 Let f(z) = z°. For the semicircle P(r) = ¢/’ with0 <t < m,

T T 2
/ f(2)dz =/ H el dr =i/ Sitdr = - = (B.9)
P 0 0 3

On the other hand, if Q(t) =1 —1¢for0 <t < 2, then Q(0) = P(0) and Q(2) =
P (). Thatis, Q and P have the same endpoints. In this case,

2
/f(z)dzz/ (1—z)2(—1)dr=—%. (B.10)
0 0 3

Example B.2 illustrates the general principle that if f is holomorphic in some set
§£2 C C,if P and Q are two contours in §2 with the same endpoints, and if P can
be continuously deformed into Q within §2 while keeping the endpoints fixed, then
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[p f(2)dz = |, o f(2)dz. The contours P and Q are said to be homologous in this
case. One consequence is that if f is holomorphic in §2, and if the closed contour P
is homologous to the constant contour at P(a), then f p f(z)dz = 0. This result is
called Cauchy’s theorem. Note that Example B.1 does not contradict this statement,
since the function f(z) = 1/(z — zo) is not analytic (nor even defined) at z = zo.

An important property of complex functions is that if the function f is analytic
at some point zo, then it has derivatives of all orders at zq.> This fact follows from
Cauchy’s integral formula:

1
f(zo) = =— /(@)

: dz, (B.11)
27i Jp 72— 20

where P is any positively oriented simple closed curve, zg lies inside P, and f is
analytic at every point on or inside P. Note that as a function of zg, f(z)/(z — zo)
is differentiable at each point on P, and so

oy L[4 F@
f(zo) = Zﬂi/szoz—zodZ

_ ACI R
C27i Jp (z—z0)r

Note that f(z)/(z — 20)? is also differentiable as a function of zg. In fact, we can
conclude that

8 n! f @)
=— | —————dz. B.12
i S o) = —— o= 2T (B.12)
In particular, f has a Taylor series centered at zg:
oo
> anz —z0)" (B.13)
n=0

where a, = % £ (z0). In fact, this Taylor series converges to f(z) at each point z
in some neighborhood of zo.*

Note that if f = u +iv is analytic, then d? f/dz? exists, and so the second partial
derivatives of u and v with respect to x and y all exist. It then follows from the
Cauchy-Riemann equations (B.5) that u and v satisfy Laplace’s equation in two
variables. That is,

3By contrast, the real function f(x) = x|x| is differentiable everywhere, but f”(0) does not exist.
“4The analogous statement for real functions is not true. For example, if F(x) = ¢~/ “ for x #0
and F(0) = 0, then F (”)(O) = 0 for all n, which means its Taylor series converges to O for all x;
but F(x) is nonzero for all x # 0.
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9%u N Pu 0 9% N 9%v B.14)
ax2  ayr o ax2 o 9y?’ '

A function whose second partial derivatives are continuous and which satisfies
Laplace’s equation is said to be harmonic. It can be shown that a function of x and
y is harmonic if and only if it is the real (imaginary) part of an analytic function.

B.3 Meromorphic Functions and the Residue Theorem

We now turn to functions that are analytic at each point of an open set £2 except
for one, which we denote by zg. For example, the function s(z) = (z — 20) "2
is analytic at every point except zo. Let f be such a function, and suppose that
lim,_,;, | f(z)] = oco. We say f has a pole at zg if there exists an integer n > 0
such that lim__, ;,(z — z0)" f (z) exists and is finite. In this case, the function g(z) =
(z — 20)" f (2) is analytic at zg. The smallest n for which this limit is finite is called
the order of the pole. For example, the function s(z) has a pole of order two at zg.

If f is holomorphic in £2 except for poles, we say f is meromorphic in 2. A
meromorphic function can also be expressed by means of a power series, which will
include terms of the form b,,(z — z9) ™" for some n > 0. Such a series is called a
Laurent series. Note that the Laurent series for f can be obtained by multiplying
the Taylor series for g by (z — zg)™".

Now let P be a positively oriented simple closed curve, such as the curve P;
in Fig. B.1. Suppose z¢ lies inside P, and that f is analytic at each point on and
inside P except zg, where it has a pole. Then by integrating the Laurent series for f
term-by-term, we find

/ f(2)dz =2mib; . (B.15)
P

The coefficient b; is called the residue of f at zg; we denote it by Res( f, zg). This
result can be extended to any function that has a finite number of poles inside P: if
f has poles z1, z2, ..., zy inside P, then

N
f f(2)dz =2mi Y " Res(f. z) . (B.16)
p k=1

This is called the residue theorem. We illustrate it in Fig. B.1.
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0 Q
3 @
o § . © Qe
P Ps

Fig. B.1 The contours Pj, P2, and P3 are all homologous. Note that each straight line segment
in the third panel is traversed once in each direction, and so their contributions to the value of the
integral are all 0. Thus, the integral around P is equal to the sum of the integrals around the circles
in the third panel. Each of these integrals is 277/ multiplied by the corresponding residue

Note the resemblance between the residue theorem and the Poincaré-Hopf index
theorem (see Sect.4.4). Each asserts that the value of a certain integral around
a simple closed curve depends only on the behavior of the integrand at certain
“exceptional” points: poles of a meromorphic function on the one hand and zeros of
a vector field on the other. In particular, the value of such an integral is unchanged
if the path of integration is replaced by one that is homologous to it, that is to say,
one that can be deformed to it without crossing an exceptional point.
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Orthogonal Functions

We often encounter physical quantities that are most naturally represented as linear
combinations of orthogonal basis functions. The choice of a particular basis is
determined by the symmetry of a given situation. For example, it is convenient
to express temperature fluctuations in the cosmic microwave background in terms
of spherical harmonics (Sect.9.2). In this Appendix, we discuss the orthogonal
functions most relevant to astrophysics and cosmology, and we demonstrate how
these functions arise as solutions to Laplace’s equation (cylindrical Bessel functions
and cylindrical and spherical harmonics) and the Helmholtz equation (spherical
Bessel functions). More details can be found in any standard text on mathematical
physics.

C.1 Completeness

Any function of physical interest is square integrable, i.e.,

f |f(x)|?d"x < c0. (C.1)

The set of complex-valued square-integrable functions on R" is a Hilbert space.
One feature common to all the sets of functions presented below is that they are
complete, which is to say that any square-integrable function can be expressed as a
linear combination of a possibly infinite number of basis functions.

The most useful bases are those that are orthonormal, i.e., a collection
{ur, usz, ...} of complex-valued functions for which

/R up (X)uy, (x) d"x = S . (C2)
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It follows that the functions uy are linearly independent, meaning that none of
them can be expressed as a linear combination of the others. An orthonormal set
is complete if and only if any square-integrable function f(x) can be written as

f®) =" aur(x), (C.3)
k=1
where for each k,
ax = /]R” F®upx)d"x. (C4)

Note that the coefficients ay are finite, since
o
> =f |f(®)[2d"x < oo (C.5)
k=1 Re

In this case, we say {ux} is a basis of the Hilbert space of square-integrable
functions.
A necessary and sufficient condition for completeness is

D u®upx) =87 (x —x). (C.6)
k=1

To see this, first suppose that {u,} is complete. Then substituting Eq. (C.4) into
Eq. (C.3) gives

/R ) FE)DY u®up)d'x’ = f(x) = /R M x—xHd"x'.  (CT)
k=1

Since this holds for all (square-integrable) functions f(x), Eq.(C.6) immediately
follows.

Now assume that Eq. (C.6) is satisfied. Multiplying this relation by any square-
integrable function f(x’) and integrating the result with respect to x yields

> fR U = f(x). (€8)

k=1

Thus, f(x) is of the form (C.3) where the coefficients a; are given by Eq. (C.4). As
before, Eq. (C.5) insures that ay is finite for all k.

We can generalize the completeness relation (C.6) to the case of an uncountable
number of basis functions u(x; k), parametrized by the continuous index k € R”".
Equations (C.3), (C.4), (C.5), and (C.6) then become
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fo) = / a(u(x: K)d'k (C.92)
a(k) = / Fug(x; k)d"x (C.9b)
Rn
Fx)d'x = / la(k)|> d"k (C.9¢)
R~ R”
/ ux; Ku*(x; k)d'x = s (x —x), (C.9d)

respectively. As an example, consider the complex exponentials ¢’** (k € R"). It is
well known, though not trivial to prove, that these functions satisfy the orthogonality
relation:

/ d"xel ®KIX — oy (k — K. (C.10)
By relabeling variables and rearranging the result, we see that

d"k ik-(x—x") (n) ’
We =34 (X—X), (Cll)
Rn

which is just Eq.(C.9d) for the functions u(x;k) = e**/(27)"/2. Thus, the
complex exponentials form a complete, orthonormal basis for the square-integrable
functions. This result provides the foundation for Fourier analysis, as discussed in
detail in Appendix D.

We have assumed to this point that the domain of interest is R”, but this condition
can be relaxed. The formalism we have presented can be applied both to Euclidean
spaces described by curvilinear coordinates (e.g., cylinders) and to non-Euclidean
spaces (e.g., spheres). Many of the functions described in the following sections fall
into one of these categories.

C.2 Laplace’s Equation in Cylindrical Coordinates

We begin by writing Laplace’s equation in cylindrical coordinates (R, ¢, z):

19 ou 1 3%u  d%u
V= (RE) 4 228 T . C.12
! R8R< 8R>+R28¢2+8z2 €12)
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C.2.1 Cylindrical Harmonics

We first consider solutions which are independent of z. Laplace’s equation then

reduces to
19 9 1 92
Vi=-—(REVL 2% . (C.13)
RAR \ R R2 3¢2

Substituting a separable solution of the form u (R, ¢) = f(R)g(¢) and then dividing
by fg yield

1/ df ,d2f 1 d’g
—(R= +R—= )+-——2=0. C.14
f( ar TN g2 +gd¢2 149

Since the first term depends only on R and the second only on ¢, each must be
constant, say, :|:/L2, respectively:

1 /odf 2 f 2

—(R=L + RP=L ) = C.15
f< TRRT? 2 (C.152)
1d2g 5

—— = —u-. C.15b
2 492 2 ( )

We first solve the azimuthal equation, obtaining

8(#) = Acos(u¢) + Bsin(up) = Ccos[u(¢p — ¢:)], (C.16)

where A, B, C, and ¢, are constants. In order that u(R, ¢) be single valued, we
require g(¢ + 2w) = g(¢). This means that x must be an integer m. The radial
equation can then be written as

Rf'(R) + R*f"(R) = m*f(R). (C.17)
Substituting a solution of the form f(R) = DR?, we find § = +m. For m = 0, the

two linearly independent solutions are f(R) = Cp (a constant) and f(R) = BgIln R.
Thus, the general solution of Laplace’s equation in polar coordinates is

u(R.¢) = BolnR+ Y CpR" cos[m(@ — ¢m)]. (C.18)

m=—0o0
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C.2.2 Cylindrical Bessel Functions

Returning to three dimensions, we again use the technique of separation of variables
and assume a solution to Eq.(C.12) of the form u(R,¢,z) = f(R)g(p)h(2).
Making this substitution and dividing by fgh yield

1 d d 1 d? 1 d%h
<R—f) & = (C.19)

FRAR\"dR) " gR2d¢? ' hdz?

Since the third term is the only term which depends on z and is independent of R
and ¢, it must be constant. Thus, #”" = k?h, and

1 d d 1 d?
LA (R4 LA e (C.20)
fRAR \' dR gR? d¢p?
Multiplying by R? gives
R d d 1d?
RA (R perey 198 o) (€21)
fdr \"dR g d¢?

Since the third term depends only on ¢, g” = u?g. This implies

d /odf 2p2 2\
RdR(RdR)+(kR m2f=0]|, (C.22)

which is known as Bessel’s equation. In the solution to Laplace’s equation, u
is restricted to integer values, as in the preceding subsection. However, in other
applications this is not the case, and we consider the solution for general complex

“w.
In terms of x = kR and F(x) = f(R), Bessel’s equation takes the form

d dFr 2 2
— [y — F = 2
xdx<xdx>+(x w) 0 (C.23)

and has the power series solution

o (—DF¥ X\ 2K+
Ju(x) = k;) TR (5) : (C.24)

The functions J, (x) and J_, (x) are linearly independent, except in the limit y —
m, where m is an integer. This follows from the identity J,,(x) = (—1)"J_,,(x),



268 Appendix C  Orthogonal Functions

which can be proved from Eq. (C.24), keeping in mind that the gamma function has
simple poles at each of the nonpositive integers. It is customary to work with the
two solutions J, (x) and

Ju(x)cos(um) — J_ ;i (x)

Vi) = sin(ur)

: (C.25)

known as Bessel functions of the first and second kind (or as Bessel and Neumann
functions, respectively), which remain linearly independent, even in the limit of
integer [

The Bessel functions have the useful integral representation

)"

i - 27
WO e+ D

n .
/ €175 ? gin* ¢ dep (C.26)
0

for complex z. Expanding the exponential in the integrand in powers of iz cos ¢ and
then integrating over ¢ lead to the series representation (C.24).

We also mention two important orthogonality properties of the Bessel functions.
It can be shown that

a
1
/ Ju(XunR/@) T, (X R/a)R AR = gazfi 1 ) s (C.27)
0

where x,, with n = 1,2,3,... is the nth zero of J,(x). In the limit a — o0,
n — oo, n’ — oo with fixed k = x,,/a and k' = x,,/a, the orthogonality
property (C.27) takes the form

/OO J,(kR)J, (K RYRAR = k™'8(k — k'). (C.28)
0

C.3 Helmholtz’s Equation in Spherical Coordinates

In addition to the cylindrical harmonics and Bessel functions, we will need their
spherical counterparts. We introduce them in the context of Helmholtz’s equation
for the propagation of waves. The pressure amplitude u(x, ) of a sound wave
propagating along the x-axis satisfies the one-dimensional wave equation,

u 1 9%u

— == C.29
ax2 2 9r? ( )
where c is the speed of sound. In three dimensions, the wave equation is
) 1 9%u
Vou (C.30)

a2
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where u = u(x,t). For a wave that is periodic in time, we can write u(x,1) =
€' “"u(x). On assuming this time dependence and substituting @ = ck, the wave
equation reduces to Helmholtz’s equation:

Viu = —k*u. (C.31)

In terms of spherical coordinates (r, 6, ¢), Helmholtz’s equation takes the form

o2 Lo (0w 1 0 (o o). 1 %u
U= —-—\rr— ———— |smb—— -5
r2ar \' ar)  r?sin@ 96 30 ) r2sin®6 9>
= —ku. (C.32)

Seeking a separable solution, we substitute u(r, 8, ¢) = f(r)g(0)h(¢) and multiply
by r2sin” /( fgh), which leads to

1 in®0 d [ ,d ind d d 1 d*h
—Vzuzﬁ— r2—f —l—&— Sinf =S + ——— = —k*r?sin? 6.
u f dr dr g do dé h dgp?

(C.33)

The term involving 4 is the only one that depends on ¢, so it must be a constant.
Thus,

h(¢) x e=imd (C.34)

where the requirement of periodicity restricts m to integer values. Substituting this
into Helmholtz’s equation and dividing by sin® 6 give

1d [ ,df )0 1 d /. dg m?
() pr e @ (GinpS8) —0. C35
7dr (r dr)+ Tt gsmoae "3 ) T e (€39

The first two terms of Eq. (C.35) depend only on r, while the final two depend only
on 6. Consequently,

—— (P )+ K=+ 1 C.36
fdr(’dr)+ =+ (C:36)
L4 (Gneds m Qe+ 1) (C.37)
— | smfé— | — = — s .

gsin6 do do sin” 0

for some real number £. (Why we call this constant £(£ + 1) will become apparent
in the next subsection.)
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C.3.1 Spherical Harmonics

In terms of x = cos @ and G(x) = g(6), Eq. (C.37) takes the form

a9 (e + ™ N6 —o (C.38)
—_— J— x —_— — _— p— . .
dx dx 1 —x2

We first solve this differential equation in the special case m = 0, known as

Legendre’s equation. Substituting a power series solution G(x) = Y ;2 apx* Tk,

one can show that @ must be 0 or 1 and that the series diverges unless it terminates
after a finite number of terms, which restricts £ to 0, 1, 2, 3,...The corresponding
polynomial solutions Py (x) are normalized so that Py(1) = 1, known as Legendre
polynomials, are given by Rodrigues’ formula’:

dZ

1 2 4
St @ — D (C39)

Py(x) =

It follows that Py(x) is an even (odd) function of x for £ even (odd). The first four
Legendre polynomials are

Py(x) =1
Pi(x)=x

Py( Ll
zx)—i(x -1
P3(x) = % (5x3 = 3x). (C.40)

For m > 0, the solution to Eq. (C.38) is the associated Legendre polynomial

dm
Pen(x) = (=" (1 = x)" 2 Py (x), (C41)
which reduces to Py(x) for m = 0 and vanishes for all integers m > €. The

associated Legendre polynomials are extended to negative m by the relation

€ —m)!

s P - (C.42)

PZ,—m = (_1)m

SFor a given £, Legendre’s equation has two linearly independent solutions Py(x) and Q¢ (x). The
Q¢ (x) diverge logarithmically at x = =1 and are not needed in many physical applications.
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Thus, the allowed range of m is —¢, —€+-1, ..., £. Finally we note the orthogonality
relation

2(¢£ + m)!

1
/_1 Py (x) Py (x)dx = G+ Dl —m) o -

(C.43)

It is convenient to combine the angular functions g(6) o Py, (cos 6) and h(¢)
€% in the spherical harmonic Yy, (9, ¢) defined by

20+ 1) (€ —m)! .
Yim (6, ¢) = \/ %ﬁpgm(cos 0)e™$ (C.44)

for all integers £ > 0 and —¢ < m < {. The spherical harmonics have the property
Ye—m(©,¢) = (=1)" Y"1 (0, ¢) . (C.45)

Note that Yy, (0, ¢) and Y,—,, (0, ¢) are linearly independent, whereas Py, (cos 0)
and Py_,, (cos ) are not, as is clear from Eq. (C.42). The spherical harmonics form
a complete set of angular functions and have the orthonormality property

b4 2
/ df sin6 / do Y* 4,0 (0, @)Y (0, @) = 800 Smm (C.46)
0 0
which follows from Eq. (C.43) and the identity fozn ei(’"_’"/)d’dq) = 278,,- They

also satisfy the useful addition theorem

14

Y Ym0, )Yin @, ¢, (C47)

m=—

4
2¢+1

Py(cos ) =

where ¥ is the angle between (0, ¢) and (0',¢’), which satisfies cos® =
cos B cos @’ + sinf sin6’ cos(¢p — ¢').
The first few spherical harmonics are given by

v 1
00 = —F—
4
3 +i¢
Y41 =F,/—sinfe
T
3
Y0 =,/ —cosf
T
15 :
Yo 40 =4/ — sin? § T2®
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[5 /3 , 1
Y2() = E (E cos“ 6 — E) . (C48)

C.3.2 Spherical Bessel Functions

On substituting f(r) = F(r) /«/E, Eq. (C.36) becomes

d (aF + | k%2 z+1 ’ F=0 (C.49)
"o U " 2 - '

which is Bessel’s Equation (C.22) with R = r and the integer m replaced by the
half-odd-integer ¢ + % According to Egs. (C.22), (C.24), and (C.25), the general
solution of Eq. (C.36) is given by

f(r)y=a jetkr) + b ye(kr), (C.50)

where a and b are arbitrary constants and the functions

Je(x) = \/gJEH/Z(x)’ ye(x) = \/§Ye+l/2(x) (C.51)

are called spherical Bessel functions of order .

According to Egs. (C.24), (C.25), and (C.51), y¢(x) diverges as x ¢+ for x —
0, whereas jy(x) ~ x' remains finite. Both types of spherical Bessel functions
are expressible in terms of sinx and cosx multiplied by polynomials in x~!. The
spherical Bessel functions for / =1 and 2 have the explicit form

. sin x
Jo(x) = — (C.52)
X
sinx  cosx
W) = — (C.53)
X X
CcoSs x
yo(x) = — (C.54)
X
cosx  sinx
V@) =" — (C.55)
X X

In terms of spherical Bessel functions, the orthogonality properties (C.27)
and (C.28) take the form
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a 1
/0 JeEenr /@) joEppr/a)r? dr = 5a3j%+1(&n>an,nu (C.56)

where &y, withn = 1,2, 3, ... is the nth zero of j,(x) and

/0 Jetkr) je(k'ryr* dr = Zlkzb‘(k — k). (C.57)



Appendix D
Fourier Analysis

In this Appendix, we use the complex exponentials ¢/** as a basis for representing

periodic functions as Fourier series and aperiodic functions as Fourier integrals.

D.1 Fourier Series

The exponential function e’** is periodic in x with period L if ¢/** = ¢/kO+L)

which implies ¢’*L = 1, or k = 2mn/L, where n is an integer. The functions
e?7inx/L form a very useful set of basis functions with the orthogonality property

L/2 ,
/ , dx e2mim=m/L — 1§, (D.1)
—L

An arbitrary function f(x) can be expanded in terms of the basis functions in a
Fourier series

o0
f)y =Y cpe?mIE (D.2)
n=-—00
Multiplying both sides of this equation by e~27"*/L and integrating over x with
the help of Eq. (D.1), we find that the coefficients c,, are determined by

1 rL2 )
Ch = — / dx f(x)e 2minx/L (D.3)
LJ_ 1

The coefficients ¢, are, in general, complex and, if f(x) is real, satisfy c_, = c}\.
Since exp(2winx /L) = cos(2nnx /L) +i sin(2rnx /L), the Fourier series (D.2)
can be rewritten as
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f(x) =ap+ Z [an cos (272’”) + b, sin (ZNL’”>] , (D.4)

n=1

where a, = ¢, +c—, and b,, =i (¢, — c—,) forn # 0 and a9 = cp. Clearly, if f(x)
is an even (odd) function of x, the b,, (the a,) all vanish.

D.2 Fourier Integrals

Any function f(x) for which ffooo | f(x)]?dx converges can be expanded on the
interval —oo < x < oo as a Fourier integral. This representation follows from
Egs. (D.2) and (D.3) in the limit L — oo. Defining k = 27n/L, we note that the
spacing Ak = 2m/L between two adjacent k values goes to zero for L — oo, and
we use this to convert the sum over n to an integral over k. Using the definition
of k, defining f (k) = L c,, and inserting the factor LAk/(2m) = 1, we rewrite
Egs. (D.2) and (D.3) as

. LAk f(k)
feo = Jlim % Erahr (D.5)
- L/2 )
f(k) = lim dx f(x)e %> (D.6)
L—o0 —L/2

This yields the desired Fourier integral representation

* dk -~ .
fx) = / Zf(k)e”"‘ (D.7)
flk) = / e flxye ik, (D.8)

where f (k) is called the Fourier transform of f(x).In N dimensions,

¥k - ik-x
0= [ 5 foe 09)
f&) =/ dVx f(x)e kX (D.10)
RN

Some differential equations are easily solved by the use of Fourier transforms,
and for this the Fourier transform of derivatives of a function is needed. Differ-
entiating Eq.(D.7) n times, we see that the Fourier transform of d* f(x)/dx" is
(ik)" f (k). Similarly, the Fourier transforms of V f (x) and of V2 f(x) are ik f (k)
and -k -k f (k), respectively.



Appendix D Fourier Analysis 277
D.3 Convolution Theorem

Convolution integrals are frequently encountered in applications. For example, they
can be used to solve linear differential equations. Let L, be a linear differential
operator, and consider the equation

Lily(x)] = f(x). (D.11)

To solve this equation, we first look for a so-called Green’s function g such that
Ly[g(x —x")] = 8(x — x'). Then

Lylf(xNg(x —x"] = fF()Lxlg(x —xN] = f(xNS(x —x'). (D.12)
Integrating both sides, we have

/Lx[f(x/)g(x —xNldx" = Ly [/ fxDgx — x/)dx/}

:ff(x’)a(x—x’)dx’zf(x). (D.13)

Hence,

ypx) = / fxgx = x"dx’ (D.14)

is a particular solution to Eq.(D.11). It is a superposition of Green’s functions.
Recall that any solution of Eq. (D.11) has the form y(x) = y,(x) + h(x), where h
satisfies the homogeneous equation L[/ (x)] = 0. The Green’s function method can
also be used to solve higher-dimensional ordinary and partial differential equations.

An integral of the form (D.14) is said to be a convolution. For functions f, g :
RYM — R, their convolution is given by®

Cpq(x) = fR LA p(xg(x —x) = fR LAY p(x = x)g(x) = Ggp ().

(D.15)
According to Eq. (D.10), the Fourier transform of €, (X) is

Cpg(K) = / dVx ek / dVx' p(x)g(x — x')
RN RN

5The convolution of f and g is often written as f s g, but this notation can be confusing if an
argument of the resulting function is explicitly included.
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— / de/e_ik'X/p(X/)/ dVy e—ik-(x—x’)q(X _ X/)
RN RN

:(/' de/e*k*}xxﬁt/‘ dVy e Vg (y) (D.16)
RN RN

where in the second line, the order of the x and x’ integrations has been reversed
and in the third line, the integration variable x has been replaced by y = x — x'.
Making use of Eq. (D.10), we express the third line in terms of Fourier transforms
in the simple form

Cpg (k) = k)G (K) , (D.17)

where p and ¢ are the Fourier transforms of p and g. This is the convolution
theorem.



Appendix E
Computational Techniques

While the principles of gravitational lensing can be gleaned from analytic examples,
many applications require computational approaches. In this Appendix we describe
computational methods that can be used to solve the lens equation and find critical
curves and caustics. The key concepts have been discussed previously in connection
with the original version of Keeton’s gravlens software (see Keeton 2001a,b,
2010, 2016), but they have been updated for a new open-source, Python-based
version of the software.

E.1 Tiling the Image and Source Planes

Many analyses involve searching the image plane (e.g., for images and/or critical
curves), so a first step is to make a grid and cover the plane with tiles. It would
be ideal to have an infinite number of infinitesimal tiles, but the more tiles we use,
the more computer time we need. To balance computational effort and numerical
precision, we can use an adaptive algorithm that makes tiles small only where it
is important to have good resolution—which, for lensing purposes, is near critical
curves. Figure E.1 shows an example that starts with a coarse regular grid (depicted
by the red points) and uses adaptive subgridding to improve the resolution near
the critical curve. Specifically, if the magnification changes sign across a grid cell,
then the critical curve must cross the cell, so that cell should be subdivided.” The
subdivision can be arbitrary, but the example in the figure uses 2 x 2 subgrids and
goes down three layers beyond the initial grid.

The points on the grid can be connected into triangular tiles using a computa-
tional geometry technique known as Delaunay triangulation (Delaunay 1934). The

7If we only check the corners of a cell, we may miss cells in which the critical curve crosses a
small portion of one edge, but such situations should be relatively rare.
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Fig. E.1 Illustration of adaptive gridding for a point mass lens with an Einstein radius of unity.
The starting grid is shown by the red points. If the magnification changes sign across a grid cell,
then the critical curve must cross the cell, so that cell is subdivided to obtain the green points.
Further subdivisions yield the blue and black points

left panel of Fig. E.2 shows a triangulation of the example grid. To obtain good
resolution near the centers of lenses, it may be valuable to use a polar grid as
shown in the middle panel of Fig. E.2. Delaunay triangulation can easily handle
a combination of Cartesian and polar grids, as shown in the right panel of Fig. E.2.

The idea can be generalized to composite models that have multiple mass
components. Figure E.3 shows an example with two point masses, using polar grids
centered on the two masses along with a Cartesian grid to achieve good coverage of
the full image plane.

The tiling of the image plane leads naturally to a tiling of the source plane. Each
grid point in the image plane is mapped to the source plane, and the connections are
mapped as well: if 6; connects to 8 ;, then B; connects to ﬁj.8 In a strong lensing

8The Delaunay triangulation should not be computed directly in the source plane, because that
would lose information about the lens mapping.
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Fig. E.2 The left panel shows a Delaunay triangulation of the adaptive Cartesian grid from
Fig. E.1 The middle panel shows an adaptive polar grid. The right panel shows the result when
the Cartesian and polar grids are combined before performing the Delaunay triangulation

2.0

15F

1.0 1

0.5 B

0.0 - B

-0.5} a

—10F i

-1.5

-2.0 L L L
-3 -2 -1 0 1 2 3

Fig. E.3 An example with two point masses. A Cartesian grid is combined with polar grids
centered on each point mass. The lensing critical curves are shown in red (see Sect. E.2)

scenario, the grid folds over into itself as depicted in Figs. E.4 and E.5, such that any
multiply-imaged region of the source plane is covered by multiple tiles.

E.2 Finding Critical Curves and Caustics

The tiling of the image plane can serve as a starting point to find the lensing critical
curves. For each tile edge, we can check the magnification at the two endpoints. If
they have different signs, then the critical curve must cross that segment, and we
can use a numerical root finder to find the crossing point. By checking all tile edges,
we can find the collection of critical points and then map them to the source plane
to obtain points on the caustic(s). Critical curves and caustics found in this way are
shown starting in Fig. E.3.
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Fig. E.4 The left panel shows the grid (black) and critical curves (red) in the image plane for a
nonsingular isothermal sphere lens. The middle panel depicts the lens mapping. Each part of the
image plane is effectively pulled toward the origin (recall 8 = 6 — «(#)), such that the central
region folds over on itself. The folded grid gets projected down onto the source plane, yielding
the overlapping grid shown in the right panel (with the caustics in red). The cyan points and line
illustrate a solution of the lens equation (see Sect. E.3)
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Fig. E.5 Similar to Fig. E.4 but the lens model includes shear so the folding is more complicated

E.3 Solving the Lens Equation

Last but not least, the tiling provides a way to solve the lens equation, as depicted
in Fig. E.4. We pick a source position, indicated by the cyan star in the right panel.
We find the tiles that overlap that source position, as shown by the cyan line in the
middle panel. The positions of those tiles in the image plane provide estimates of
the positions of the images, which can be refined with a numerical root finder. The
resulting image positions are shown by the cyan stars in the left panel of the figure.
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